WO2022042048A1 - 一种通信方法与装置 - Google Patents

一种通信方法与装置 Download PDF

Info

Publication number
WO2022042048A1
WO2022042048A1 PCT/CN2021/104560 CN2021104560W WO2022042048A1 WO 2022042048 A1 WO2022042048 A1 WO 2022042048A1 CN 2021104560 W CN2021104560 W CN 2021104560W WO 2022042048 A1 WO2022042048 A1 WO 2022042048A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
transmission
domain resource
frame structure
resource
Prior art date
Application number
PCT/CN2021/104560
Other languages
English (en)
French (fr)
Inventor
李胜钰
官磊
李锐杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180050668.5A priority Critical patent/CN115885495A/zh
Priority to EP21859888.6A priority patent/EP4195834A4/en
Publication of WO2022042048A1 publication Critical patent/WO2022042048A1/zh
Priority to US18/172,532 priority patent/US20230199740A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • the 5G communication system is committed to supporting higher system performance, such as supporting multiple service types, different deployment scenarios and wider spectrum range.
  • the multiple service types may include enhanced mobile broadband (eMBB), Massive Machine type Communication (mMTC) services, ultra-reliable low-latency communication (ultra-reliable low-latency communication) , URLLC) service, multimedia broadcast and multicast service (Multimedia Broadcast Multicast Service, MBMS) or positioning service.
  • eMBB enhanced mobile broadband
  • mMTC Massive Machine type Communication
  • ultra-reliable low-latency communication ultra-reliable low-latency communication
  • URLLC ultra-reliable low-latency communication
  • Multimedia Broadcast Multicast Service Multimedia Broadcast Multicast Service
  • Deployment scenarios can include indoor hotspot, dense urban, suburban, urban macro, or high-speed rail scenarios.
  • the wider spectrum range means that 5G will support a spectrum range up to 100GHz, which includes both the low frequency part below 6GHz and the high frequency part above 6GHz up to 100GHz.
  • motion control services generally require a round-trip time of 1ms (that is, the one-way air interface delay is 0.5ms), while the typical frame structure on the existing C-band is 30kHz subcarrier spacing and 7D:1S:2U frame structure (
  • the frame structure "xD:yS:zU" indicates that an uplink and downlink switching cycle consists of x consecutive downlink time slots, y flexible time slots and z consecutive uplink time slots), and the switching period between downlink and uplink is 5ms, which obviously cannot be satisfied. 1ms round trip time requirement.
  • Embodiments of the present application provide a communication method and apparatus, to solve the problem of implementing different frame structures with different frequency domain resource configurations in a dual-spectrum scenario.
  • the present application provides a communication method, and the execution body of the method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the terminal device receives information for configuring a first frequency domain resource and a second frequency domain resource, the first frequency domain resource corresponds to frame structure A, the second frequency domain resource corresponds to frame structure B, and the frame structure A corresponds to the frame structure A.
  • the frame structure B is different, and the terminal device performs the first transmission on the first frequency domain resource and/or the second frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource are two different bandwidth parts BWP in the first component carrier CC; for another example, the first frequency domain resource and the second frequency domain resource
  • the resources are two different subbands in the first BWP; for another example, the first frequency domain resource and the second frequency domain resource are different CCs.
  • first frequency domain resource and the second frequency domain resource may be included in the sixth frequency domain resource.
  • first frequency domain resource and the second frequency domain resource may be two subbands within the first BWP
  • the sixth frequency domain resource may be the first BWP
  • the domain resource may be a third subband within the first BWP, and the RB resource contained in the third subband is equal to the union of the RB resources contained in the first subband and the second subband.
  • the first frequency domain resource and the second frequency domain resource are 2 BWPs in the first CC
  • the sixth frequency domain resource may be the first CC
  • the sixth frequency domain resource may be the first CC
  • the domain resource may be a third BWP within the first CC, and the third BWP includes RB resources equal to the union of the first BWP and the second subband including RB resources.
  • the first frequency domain resource and the second frequency domain resource are 2 CCs in the first band
  • the sixth frequency domain resource may be the first band
  • the resource may be a third CC in the first band, and the RB resource included in the third CC is equal to the union of the RB resource included in the first CC and the second CC.
  • the switching delay of the terminal device switching from the first frequency domain resource to the second frequency domain resource is shorter than the switching delay of switching from the second frequency domain resource to the third frequency domain resource ; wherein, the first frequency domain resource and the second frequency domain resource belong to a first frequency domain resource set, and the third frequency domain resource belongs to a second frequency domain resource set.
  • the third frequency domain resource, the first frequency domain resource and the second frequency domain resource are three different BWPs in the first CC, and the first frequency domain resource and the second frequency domain resource
  • the resources belong to the first BWP set, and the third frequency domain resources belong to the second BWP set.
  • the first resource set and the second resource set may be indicated by first configuration information sent by the network device.
  • the first frequency domain resource and the second frequency domain resource satisfy at least one of the following relationships: the frequency domain positions of the first frequency domain resource and the second frequency domain resource do not overlap; or, the The first frequency domain resource and the second frequency domain resource have the same frequency domain width; or, the first frequency domain resource and the second frequency domain resource have the same subcarrier spacing.
  • the network device can determine the switching delay required for the terminal device to switch between different frequency domain resources, so that when scheduling the first transmission, the switching behaviors (intra-set switching or inter-set switching) for different frequency domain resources can be determined. , select an appropriate scheduling delay to ensure that the terminal device has enough time for handover processing and subsequent sending and receiving processing.
  • the first frequency domain resource and the second frequency domain resource are different CCs, and the first transmission is a HARQ retransmission scheduled by the first DCI, so
  • the method further includes: acquiring first indication information, where the first indication information indicates a fourth frequency domain resource, the fourth frequency domain resource is the frequency domain resource where the HARQ initial transmission corresponding to the first transmission is located, and the The fourth frequency domain resource is CC.
  • the first indication information may be carried in the first DCI.
  • the fourth frequency domain resource and the target frequency domain resource where the first transmission is located are different frequency domain resources, that is, by indicating the frequency domain resource where the initial transmission is located, the terminal device can be enabled to perform correct retransmission and transmission. First pass combined decoding.
  • the fourth frequency domain resource belongs to the first frequency domain resource set, that is, the fourth frequency domain resource and the target frequency domain resource belong to one frequency domain resource set.
  • the first frequency domain resource and the second frequency domain resource are different CCs
  • the first transmission is a data transmission (including downlink data transmission or uplink data transmission) scheduled by the first DCI transmission)
  • the method further includes: acquiring first indication information, where the first indication information indicates a fourth frequency domain resource, where the fourth frequency domain resource is where the most recent transmission of the HARQ process number corresponding to the first transmission is located frequency domain resource, and the fourth frequency domain resource is the first frequency domain resource or the second frequency domain resource.
  • the first indication information may be carried in the first DCI.
  • the fourth frequency domain resource and the target frequency domain resource where the first transmission is located are different frequency domain resources.
  • the value of NDI in the DCI is scheduled. , to determine whether this transmission is a retransmission of the most recent transmission or a new transmission.
  • the first frequency domain resource and the second frequency domain resource are different CCs
  • the first transmission is a data transmission (including downlink data transmission or uplink data transmission) scheduled by the first DCI transmission) and the first transmission corresponds to the first HARQ process number
  • the method further includes: acquiring first indication information, the first indication information indicating the fourth frequency domain resource and the second HARQ on the fourth frequency domain resource process number, the fourth frequency domain resource is the first frequency domain resource or the second frequency domain resource, and the first transmission corresponds to the second HARQ process number on the fourth frequency domain resource A retransmission of the most recent transmission.
  • the first indication information may be carried in the first DCI.
  • the fourth frequency domain resource and the target frequency domain resource where the first transmission is located are different frequency domain resources.
  • the terminal device further acquires second indication information and third indication information, the second indication information indicates the target frequency domain resource, and the third indication information indicates the first transmission adopts
  • the frequency domain resource of 1 is at the resource block RB position in the target frequency domain resource, and the target frequency domain resource is the first frequency domain resource or the second frequency domain resource.
  • the first transmission is a hybrid automatic repeat request acknowledgment HARQ-ACK transmission of downlink data transmission dynamically scheduled by the second DCI
  • the second indication information is carried by the second DCI.
  • the network device respectively indicates the target frequency domain resource and the frequency domain RB position within the target frequency domain resource, and the indication method is simple and has backward compatibility.
  • the frequency domain RB position indication overhead in the target frequency domain resource is small.
  • the terminal device may further acquire fourth indication information, where the fourth indication information indicates a time domain position where the first transmission is performed, according to the time domain position, the frame structure A and the frame structure B to determine a target frequency domain resource, where the target frequency domain resource is the first frequency domain resource or the second frequency domain resource.
  • the target frequency domain resource is predefined by a protocol or a network device.
  • the target frequency domain resource is the first frequency domain resource; and/or when the first transmission is an uplink transmission, the frame structure A at the time domain position is not an uplink symbol, the target frequency domain resource is the first frequency domain resource; and/or when the first transmission is an uplink transmission, the frame structure A at the time domain position is not an uplink symbol, and the When the frame structure B is an uplink symbol, the target frequency domain resource is the second frequency domain resource; and/or when the first transmission is a downlink transmission, the frame structure A at the time domain position and the When the frame structure B is a downlink symbol, the target frequency domain resource is predefined by the protocol or configured by the network device to the terminal device through RRC signaling; and/or when the first transmission is a downlink transmission, the when the frame structure A at the time domain position is a downlink symbol and the frame structure B is not a downlink symbol, the target frequency domain resource is the first frequency domain resource; and/or when the first transmission is downlink transmission, when the first transmission is downlink transmission, when the frame structure A at
  • the terminal device may also obtain fifth indication information, the first Five indication information indicates the frequency domain position of the first transmission in the first CC, and a target frequency domain resource is determined according to the frequency domain position, and the target frequency domain resource is the first frequency domain resource or the The second frequency domain resource.
  • the fifth indication information may indicate the RB position occupied by the first transmission in the first CC, for example, the occupied RB set, or the occupied starting RB number and the number of consecutively occupied RBs.
  • the terminal device may also obtain sixth indication information, the The sixth indication information indicates the frequency domain position of the first transmission in the first BWP, and a target frequency domain resource is determined according to the frequency domain position, and the target frequency domain resource is the first frequency domain resource or the first frequency domain resource.
  • the sixth indication information may indicate an RB position occupied by the first transmission in the first BWP, and the RB position may be, for example, an RB set, or a starting RB number and the number of RBs occupied continuously.
  • the terminal device may further receive a third DCI, where the third DCI includes a first field, and the first field indicates the frame structure A and the frame structure B. Specifically, the terminal device determines the frame structure A and the frame structure B according to the first field and the first relationship, the first relationship includes at least one set of mapping relationships, and each set of mapping relationships includes at least two A frame structure and a field corresponding to the at least two frame structures. In this way, the frame structure A and the frame structure B can be determined dynamically and quickly based on the first field, and the indication overhead of the DCI can be reduced.
  • the terminal device may also receive a fourth DCI, where the fourth DCI includes a second field indicating a second field and a third field, the second field indicates the frame structure A, the third Field indicates frame structure B.
  • the terminal device determines the frame structure A according to the second field and the second relationship, and determines the frame structure B according to the third field and the third relationship, wherein the second relationship and the third relationship respectively include at least A set of mapping relationships, each set of mapping relationships includes a frame structure and fields corresponding to the one frame structure.
  • the frame structure A and the frame structure B can be determined based on the second field and the third field, respectively, which can provide maximum indication flexibility.
  • the terminal device may also acquire indication information C and indication information D, where the indication information C indicates a time domain position where the first transmission is performed, and the indication information D indicates that the first transmission is performed.
  • a transmitted frequency domain location, the frequency domain location information is the frequency domain location information in the sixth frequency domain resource. The terminal device performs a first transmission at the time domain location and the frequency domain location.
  • the terminal device adjusts the parameters of the transceiving channel according to the direction of the first transmission, the frame structure A and the frame structure B, and based on the adjusted transceiving channel
  • the first transmission is performed at the time domain location and the frequency domain location.
  • the present application provides a communication method, and the execution body of the method may be a network device or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the network device sends information for configuring the first frequency domain resource and the second frequency domain resource, the first frequency domain resource corresponds to frame structure A, the second frequency domain resource corresponds to frame structure B, and the frame structure A and the The frame structure B is different, and the first transmission is performed on the first frequency domain resource and/or the second frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource are two different bandwidth parts BWP in the first component carrier CC; or, the first frequency domain resource and the second frequency domain resource are two different subbands in the first BWP; or, the first frequency domain resource and the second frequency domain resource are different CCs.
  • first frequency domain resource and the second frequency domain resource may be included in the sixth frequency domain resource.
  • first frequency domain resource and the second frequency domain resource may be two subbands within the first BWP
  • the sixth frequency domain resource may be the first BWP
  • the domain resource may be a third subband within the first BWP, and the RB resource contained in the third subband is equal to the union of the RB resources contained in the first subband and the second subband.
  • the first frequency domain resource and the second frequency domain resource are 2 BWPs in the first CC
  • the sixth frequency domain resource may be the first CC
  • the sixth frequency domain resource may be the first CC
  • the domain resource may be a third BWP within the first CC, and the third BWP includes RB resources equal to the union of the first BWP and the second subband including RB resources.
  • the first frequency domain resource and the second frequency domain resource are 2 CCs in the first band
  • the sixth frequency domain resource may be the first band
  • the resource may be a third CC in the first band, and the RB resource included in the third CC is equal to the union of the RB resource included in the first CC and the second CC.
  • the first frequency domain resource and the second frequency domain resource satisfy at least one of the following relationships: the frequency domain positions of the first frequency domain resource and the second frequency domain resource are different overlapping; or, the first frequency domain resource and the second frequency domain resource have the same frequency domain width; or, the first frequency domain resource and the second frequency domain resource have the same subcarrier spacing.
  • the network device may further send first configuration information to the terminal device, where the first configuration information indicates the first frequency domain resource set and the second frequency domain resource set.
  • the switching delay of the terminal equipment switching from the first frequency domain resource to the second frequency domain resource is smaller than the switching delay of switching from the second frequency domain resource to the third frequency domain resource; wherein, the first frequency domain resource The frequency domain resource and the second frequency domain resource belong to the first frequency domain resource set, and the third frequency domain resource belongs to the second frequency domain resource set.
  • the first frequency domain resource and the second frequency domain resource are different CCs, and the first transmission is a HARQ retransmission scheduled by the first DCI, so
  • the network device may also send first indication information to the terminal device, where the first indication information indicates a fourth frequency domain resource, and the fourth frequency domain resource is the frequency domain resource where the HARQ initial transmission corresponding to the first transmission is located, And the fourth frequency domain resource is the first frequency domain resource or the second frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource are different CCs
  • the first transmission is a data transmission (including downlink data transmission or uplink data transmission) scheduled by the first DCI transmission)
  • the network device may also send first indication information to the terminal device, where the first indication information indicates a fourth frequency domain resource, and the fourth frequency domain resource is the closest HARQ process number corresponding to the first transmission
  • the frequency domain resource where one transmission is located, and the fourth frequency domain resource is CC.
  • the first frequency domain resource and the second frequency domain resource are different CCs
  • the first transmission is a data transmission (including downlink data transmission or uplink data transmission) scheduled by the first DCI transmission) and the first transmission corresponds to the first HARQ process number
  • the network device may also send first indication information to the terminal device, where the first indication information indicates the fourth frequency domain resource and the information on the fourth frequency domain resource
  • the second HARQ process number, the fourth frequency domain resource is the first frequency domain resource or the second frequency domain resource, and the first transmission is the second HARQ resource on the fourth frequency domain resource The retransmission of the most recent transmission corresponding to the process ID.
  • the network device may also send second indication information and third indication information to the terminal device, where the second indication information indicates the target frequency domain resource, and the third indication information indicates the target frequency domain resource.
  • the first transmission is a hybrid automatic repeat request acknowledgment HARQ-ACK transmission of downlink data transmission dynamically scheduled by the second DCI
  • the second indication information is carried by the second DCI
  • the network device may further send fourth indication information to the terminal device, where the fourth indication information indicates a time domain location where the first transmission is performed.
  • the first frequency domain resource and the second frequency domain resource are two different BWPs in the first CC
  • the network device may also send fifth indication information to the terminal device,
  • the fifth indication information indicates a frequency domain position of the first transmission within the first CC.
  • the first frequency domain resource and the second frequency domain resource are two different subbands in the first BWP
  • the network device may also send sixth indication information to the terminal device , and the sixth indication information indicates the frequency domain position of the first transmission within the first BWP.
  • the network device may also send a third DCI to the terminal device, where the third DCI includes a first field, and the first field indicates the frame structure A and the frame structure B.
  • the network device may also send a fourth DCI to the terminal device, where the fourth DCI includes a second field and a third field, the second field indicates the frame structure A, so The third field indicates frame structure B.
  • the network device may also send indication information C and indication information D to the terminal device, where the indication information C indicates a time domain location where the first transmission is performed, and the indication information D indicates that the first transmission is performed.
  • the frequency domain location of the first transmission, and the frequency domain location information is the frequency domain location information in the sixth frequency domain resource.
  • the terminal device performs a first transmission at the time domain location and the frequency domain location.
  • the network device adjusts the parameters of the transceiving channel according to the direction of the first transmission, the frame structure A and the frame structure B, and based on the adjusted transceiving channel
  • the first transmission is performed at the time domain location and the frequency domain location.
  • the present application provides a communication method, and the execution body of the method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the terminal device determines a third frequency domain resource set, the third frequency domain resource set includes at least two frequency domain resources, and the terminal device determines each or at least one time in the first time unit set of the terminal device according to the first information
  • the first time unit set includes N time units, and N is a positive integer greater than or equal to 2.
  • the first information can indicate the frequency domain resources associated with the N time units in the first time unit set, avoiding the need to send a handover instruction signaling every time the frequency domain resource is switched, and reducing the Signaling overhead.
  • the present application provides a communication method, and the execution body of the method may be a network device or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the network device determines a third frequency domain resource set, the third frequency domain resource set includes at least two frequency domain resources, the network device determines first information, the first information indicates that the terminal device is within the first time unit set
  • the third frequency domain resource set includes at least two frequency domain resources, which may be at least two component carriers, at least two BWPs, or at least two subbands.
  • the third set of frequency domain resources includes at least two BWPs within the first CC.
  • the terminal device does not support simultaneous information reception and/or information transmission on multiple frequency domain resources in the third frequency domain resource set.
  • each time unit in the first time unit is a time slot or a symbol or a subslot.
  • the network device sends the first information, and correspondingly, the terminal device obtains the first information.
  • the first information is used to indicate the number of the frequency domain resource associated with each time unit in the first time unit set, and the associated frequency domain resource belongs to the third frequency domain resource set.
  • the first information is also used to indicate the number of the frequency domain resource associated with each time unit in the first time unit set and the communication direction for information transmission on the time unit, and the communication direction may be downlink. Information reception or uplink information transmission.
  • the first information may include P fields, the P fields correspond to a first time window with a length of P time units, and the P fields are The i-th field is used to indicate the number of the frequency domain resource associated with the i-th time unit in the first time window, or the i-th field in the P fields is used to indicate the i-th time in the first time window.
  • the frequency domain resource number and communication direction associated with the unit, where the starting position of the first time window is the S+j*Pth time unit, where j is an integer greater than or equal to zero.
  • the first information may include first sub-indication information and second sub-indication information
  • the first sub-indication information and the second sub-indication information respectively include P fields
  • the P field corresponds to P time units in the first time window
  • the ith field of the first sub-indication information is used to indicate the number of the downlink frequency domain resource associated with the ith time unit in the first time window
  • the ith field of the second sub-indication information is used to indicate the serial number of the uplink frequency domain resource associated with the ith time unit in the first time window.
  • the third set of frequency domain resources includes a frequency domain resource A and a frequency domain resource B
  • the first information indicates a frame structure E of the frequency domain resource A and the frame structure F of the frequency domain resource B
  • the first time unit set corresponds to the time unit set where the terminal equipment performs the first downlink transmission
  • the first downlink transmission includes: a semi-persistent downlink data channel (SPS PDSCH) , Periodic/semi-persistent channel state information (Channel State Information, CSI) - at least one of a reference signal (Reference Signal, RS), a downlink control channel PDCCH configured by a higher layer.
  • SPS PDSCH semi-persistent downlink data channel
  • CSI Periodic/semi-persistent channel state information
  • RS Reference Signal
  • PDCCH downlink control channel
  • the number of the frequency domain resource for information transmission and reception in the first time unit is the frequency domain resource
  • the third frequency domain resource set includes a frequency domain resource A and a frequency domain resource B
  • the first information determines and indicates a frame structure E corresponding to the frequency domain resource A
  • the frame structure F corresponding to the frequency domain resource B, and the first set of time units is the set of time units where the corresponding terminal equipment performs the first uplink transmission, wherein the first uplink transmission includes: feedback information HARQ-ACK of the SPS PDSCH, configuration At least one of the authorized uplink data channel PUSCH, periodic/semi-persistent CSI reporting, periodic scheduling request SR, periodic/semi-persistent sounding reference signal SRS, and periodic random access channel.
  • the first information indicates the frame structure E and the frame structure F
  • the determination of the frequency domain resource number associated with each time unit in the first time unit set by the terminal device according to the first information includes:
  • the number of the frequency domain resource associated with the first time unit is the number of the frequency domain resource B; when the frame structure E corresponds to the uplink symbol, and the frame structure F corresponds to the downlink symbol, and the number of the frequency domain resource associated with the first time unit is the number of the frequency domain resource A; when the frame structure E corresponds to the downlink symbol, and the frame structure F corresponds to the downlink symbol , the number of the associated frequency domain resource on the first time unit is the number of the frequency domain resource D, and the frequency domain resource D is a preset frequency domain resource in the frequency domain resource A or the frequency domain resource B, or, the The frequency domain resource D is the frequency domain resource associated with the previous time unit closest to the first time unit, or the frequency domain resource D is the terminal device and the network device performing information transmission and reception on the third time unit
  • the third time unit is the previous time unit in the first time unit set that is closest
  • a communication apparatus in a fifth aspect, is provided, and the beneficial effects can be referred to the description of the first aspect and will not be repeated here.
  • the communication device has a function to implement the behavior in the method example of the first aspect above.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a processing module and a transceiver module.
  • the transceiver module is configured to receive information for configuring the first frequency domain resource and the second frequency domain resource
  • the processing module is configured to determine the first frequency domain resource and the second frequency domain resource according to the information received by the transceiver module
  • the first frequency domain resource corresponds to a frame structure A
  • the second frequency domain resource corresponds to a frame structure B
  • the frame structure A is different from the frame structure B
  • the first transmission is performed on the domain resource and/or the second frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource are two different bandwidth parts BWP in the first component carrier CC; or, the first frequency domain resource and the second frequency domain resource are two different subbands in the first BWP; or, the first frequency domain resource and the second frequency domain resource are different CCs.
  • a communication device in a sixth aspect, is provided, and the beneficial effects can be referred to the description of the second aspect and will not be repeated here.
  • the communication device has a function to implement the behavior in the method example of the second aspect above.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes a processing module and a transceiver module, the processing module is configured to determine a first frequency domain resource and a second frequency domain resource, the first frequency domain resource corresponds to the frame structure A, so The second frequency domain resource corresponds to frame structure B, and the frame structure A is different from the frame structure B; the transceiver module is configured to send and configure the first frequency domain resource and the second frequency domain resource information, and perform the first transmission on the first frequency domain resource and/or the second frequency domain resource determined by the processing module.
  • the first frequency domain resource and the second frequency domain resource are two different bandwidth parts BWP in the first component carrier CC; or, the first frequency domain resource and the second frequency domain resource are two different subbands in the first BWP; or, the first frequency domain resource and the second frequency domain resource are different CCs.
  • These modules can perform the corresponding functions in the method examples of the second aspect. For details, please refer to the detailed descriptions in the method examples, which will not be repeated here.
  • a communication device in a seventh aspect, is provided, and the beneficial effects can be referred to the description of the third aspect and will not be repeated here.
  • the communication device has a function to implement the behavior in the method example of the third aspect above.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a processing module and a transceiver module.
  • a transceiver module configured to receive configuration information for configuring a third frequency domain resource set, the processing module is configured to determine a third frequency domain resource set, the third frequency domain resource set includes at least two frequency domain resources, the transceiver a module, configured to receive first information, and the processing module is configured to determine, according to the first information, the number of the frequency domain resource associated with each time unit of the terminal device in the first time unit set, and the associated frequency domain resource Belonging to the third frequency domain resource set, the first time unit set includes N time units, where N is a positive integer greater than or equal to 2; the transceiver module is configured to support the device to communicate with a network device.
  • These modules can perform the corresponding functions in the method examples of the third aspect. For details, please refer to the detailed descriptions in the method examples, which will not be repeated here.
  • a communication device is provided, and the beneficial effects can be referred to the description of the fourth aspect and will not be repeated here.
  • the communication device has a function to implement the behavior in the method example of the fourth aspect above.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes a processing module and a transceiver module, the processing module is configured to determine a third frequency domain resource set, and the third frequency domain resource set includes at least two frequency domain resources; the The transceiver module is configured to send the configuration information of the third frequency domain resource combination to the terminal device, and the processing module is configured to determine first information, the first information indicating that the terminal device is in a first time unit The number of the frequency domain resource associated with each time unit in the set, the associated frequency domain resource belongs to the third frequency domain resource set, the first time unit set includes N time units, and N is greater than or equal to 2. A positive integer; the transceiver module is configured to send the first information to the terminal device.
  • These modules can perform the corresponding functions in the method example of the fourth aspect. For details, please refer to the detailed description in the method example, which will not be repeated here.
  • a communication apparatus is provided, and the communication apparatus may be the terminal device in the above method embodiments, or a chip provided in the terminal device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions, and the processor is coupled to the memory and the communication interface.
  • the processor executes the computer program or instructions, the communication device is made to execute the method executed by the terminal device in the above method embodiments. .
  • a communication apparatus is provided, and the communication apparatus may be the network device in the above method embodiments, or a chip provided in the network device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions, and the processor is coupled to the memory and the communication interface.
  • the processor executes the computer program or instructions, the communication apparatus is made to execute the method executed by the network device in the above method embodiments. .
  • a computer program product includes: computer program code, when the computer program code is executed, the method performed by the terminal device in the above aspects is executed.
  • a twelfth aspect provides a computer program product, the computer program product comprising: computer program code, when the computer program code is executed, the method performed by the network device in the above aspects is performed.
  • the present application provides a chip system, where the chip system includes a processor for implementing the functions of the terminal device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system, where the chip system includes a processor for implementing the functions of the network device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, the method executed by the terminal device in the above aspects is implemented.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, the method performed by the network device in the above aspects is implemented.
  • the present application provides a communication system, including the communication devices of the fifth and sixth aspects, or the devices of the seventh and eighth aspects, or the communication devices of the ninth and tenth aspects .
  • FIG. 1 is a schematic diagram of an applicable communication system provided by an embodiment of the present application.
  • FIG. 2 provides a schematic flowchart of a communication method according to an embodiment of the present application
  • FIG. 3 provides a schematic flowchart of another communication method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another communication apparatus according to an embodiment of the present application.
  • LTE Long Term Evolution
  • 5G mobile communication system 5G mobile communication system
  • future mobile communication system etc.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the embodiments of the present application can be applied not only to a time division duplex (time division duplex, TDD) scenario, but also to a frequency division duplex (frequency division duplex, FDD) scenario.
  • TDD time division duplex
  • FDD frequency division duplex
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied.
  • the mobile communication system includes a core network device 110 , a radio access network device 120 and at least one terminal device (such as the terminal device 130 and the terminal device 140 in FIG. 1 ).
  • the terminal equipment is connected to the wireless access network equipment in a wireless manner, and the wireless access network equipment is connected with the core network equipment in a wireless or wired manner.
  • the core network device and the radio access network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the radio access network device can be integrated on the same physical device, or they can be one physical device. It integrates the functions of some core network equipment and some functions of the wireless access network equipment.
  • Terminal equipment can be fixed or movable.
  • FIG. 1 is just a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of core network devices, wireless access network devices, and terminal devices included in the mobile communication system.
  • a wireless access network device is an access device that a terminal device wirelessly accesses to the mobile communication system, which can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), the next generation NodeB (gNB) in the 5G mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also be a module or unit that completes some functions of the base station, such as , which can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless access network device.
  • wireless access network equipment is referred to as network equipment, and unless otherwise specified, network equipment refers to wireless access network equipment.
  • a terminal device may also be referred to as a terminal, user equipment (UE), a mobile station, a mobile terminal, and the like.
  • the terminal equipment can be mobile phone, tablet computer, computer with wireless transceiver function, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminal in industrial control, wireless terminal in unmanned driving, wireless terminal in remote surgery, smart grid wireless terminals in transportation security, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the apparatus for implementing the function of the terminal may be a terminal device; it may also be an apparatus capable of supporting the terminal device to implement the function, such as a chip system, and the apparatus may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water; can also be deployed in the air on aircraft, balloons and satellites.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • Communication between network equipment and terminal equipment can be performed through licensed spectrum (licensed spectrum), or unlicensed spectrum (unlicensed spectrum), or both licensed spectrum and unlicensed spectrum.
  • the network device and the terminal device can communicate through the frequency spectrum below 6 GHz (gigahertz, GHz), and can also communicate through the frequency spectrum above 6 GHz, and can also use the frequency spectrum below 6 GHz and the frequency spectrum above 6 GHz for communication at the same time.
  • the embodiments of the present application do not limit the spectrum resources used between the network device and the terminal device.
  • the time-domain symbols may be orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, or may be single carrier frequency division multiplexing (single carrier-frequency division multiplexing, SC-FDM) symbols symbol.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single carrier frequency division multiplexing
  • a physical downlink shared channel (physical downlink shared channel, PDSCH), a physical downlink control channel (physical downlink control channel, PDCCH), a physical uplink control channel (physical uplink control channel, PUCCH)
  • the physical uplink shared channel (PUSCH) is only an example of the downlink data channel, downlink control channel, uplink control channel and uplink data channel. In different systems and different scenarios, these channels may be different. name, which is not limited by the embodiments of the present application.
  • the low latency requirement of the URLLC service puts forward extremely high latency requirements for data communication.
  • the switching delay problem will increase the waiting delay of data transmission opportunities.
  • motion control services have extremely low delay requirements (such as 1ms loopback delay, that is, 0.5ms one-way air interface delay) and extremely high reliability requirements (such as 99.9999% ⁇ 99.9999999% reliability).
  • the typical frame structure on the existing C-band is 30kHz subcarrier space (SCS) and 3D:1S:1U or 7D:1S:2U frame structure, that is, the switching period between downlink and uplink It is 2.5ms or 5ms, which obviously cannot meet the communication transmission requirements of 1ms.
  • SCS subcarrier space
  • 3D:1S:1U or 7D:1S:2U frame structure that is, the switching period between downlink and uplink It is 2.5ms or 5ms, which obviously cannot meet the communication transmission requirements of 1ms.
  • the sub-slot level frame structure In order to meet the communication transmission requirement of 1ms or the one-way transmission delay requirement of 0.5ms, the sub-slot level frame structure is currently introduced, but the uplink and downlink switching and transmission of the sub-slot level will inevitably bring greater switching overhead and conduction. frequency/control overhead, which is extremely unfavorable for normal uplink large-capacity or downlink large-capacity services. Therefore, for hybrid service deployment scenarios, how to design a reasonable spectrum and frame structure is a key technology for future industrial automation applications.
  • the spectrum usage in NR is divided into multiple levels, which are frequency band (band), component carrier (CC), bandwidth part (BWP), subband (subband, SB), resource block (resource block), RB) and subcarrier (subcarrier, SC), the frequency spectrum used in NR is introduced separately below:
  • band The definition of band is formulated by the International Telecommunication Union (ITU). For example, band n78 corresponds to 3.3GHz to 3.8GHz, a total of 500MHz frequency band, and can only be in TDD format. In the communication system, the bandwidth of most RF filters is in band, that is to say, the signals of different frequency domain resources on one band cannot be filtered by the RF filter, and will form the same frequency band (Intra-Band) interference.
  • ITU International Telecommunication Union
  • CC is the basic unit for operators to deploy spectrum.
  • one band may include one or more CCs
  • one CC corresponds to a section of frequency domain resources in the frequency domain
  • the frequency domain resources may include a starting position and a bandwidth.
  • the bandwidth may be 100MHz, 80MHz, 40MHz, 20MHz, 10MHz, 5MHz, etc., and both sides of the bandwidth may include guard bands.
  • the frame structure is configured in units of CCs, that is, without considering the dynamic TDD frame structure, the TDD frame structure in one CC is fixed, and different CCs The TDD frame structure can be different.
  • terminal equipment in LTE and NR, terminal equipment generally supports carrier aggregation (at least downlink carrier aggregation), that is, supports sending and receiving information on multiple component carriers.
  • carrier aggregation at least downlink carrier aggregation
  • the terminal equipment can Direct selection of the corresponding component carrier does not involve CC switching, so there is no switching delay.
  • different component carrier CCs have different HARQ entities, that is to say, they have different HARQ processes, so they cannot support HARQ combining across CCs, that is, they cannot support the initial transmission and retransmission of data transmission in different CCs, and the terminal device can Joint decoding with retransmission.
  • BWP A CC can include one or more BWPs.
  • BWPs have the following characteristics:
  • Different BWPs can support different subcarrier spacings, so that different services can be matched.
  • Multiple BWPs can share the center frequency and have different bandwidths. This kind of system can make the terminal equipment work on different bandwidths according to business needs, so as to achieve the purpose of saving power.
  • BWP bandwidths are different, allowing terminal devices to select BWPs according to their own capabilities, so that terminal devices can gain more design freedom.
  • the subcarrier spacings of different BWPs may be different, that is, the subcarrier spacings are configured in units of BWPs.
  • the BWP corresponds to a frequency domain position on the CC in the frequency domain, the starting position of the BWP is included in the frequency domain range of the CC, and the bandwidth may be composed of multiple RBs.
  • NR currently does not support activating multiple BWPs at the same time, that is, multiple BWPs in a CC can only have one BWP active at the same time. If the terminal device needs to send and receive information on different BWPs, it needs to perform BWP switching first.
  • a certain handover delay will bring a certain processing delay to the sending and receiving of information.
  • multiple BWPs in a CC share one HARQ entity, so although BWP handover will bring handover delay, it naturally supports HARQ merging for initial transmission and retransmission on different BWPs in a CC.
  • Subband SB One BWP includes multiple SBs, and one SB includes one or more RBs.
  • SB may represent a segment of continuous frequency domain resources.
  • ⁇ Resource block RB and subcarrier SC 1 RB contains 12 consecutive SCs, of which 1 SC is the smallest frequency domain resource unit in LTE and NR systems, and can be used to carry 1 modulation symbol.
  • the frame structure may include an NR time domain structure and a TDD frame structure. Details are as follows:
  • NR time domain structure The transmission unit of NR time domain resources can be frame, subframe, slot, or symbol.
  • the length of the frame is fixed at 10ms, and the length of the subframe is fixed at 1ms.
  • the length is related to the subcarrier spacing, and 1 slot includes 14 symbols (normal cyclic prefix) or 12 symbols (extended cyclic prefix).
  • SCS index carrier spacing index
  • TDD frame structure The unit of the TDD frame structure in NR can be a symbol, which can include downlink symbols D, uplink symbols U, and flexible symbols X (or flexible symbols S), where flexible symbols can be used for DL-UL switching, or can Used for DL transmission and/or UL transmission.
  • the TDD frame structure is generally expressed as "xD:yS:zU", indicating that an uplink and downlink switching cycle consists of x consecutive downlink time slots, y flexible time slots, and z consecutive uplink time slots; flexible time slots may include downlink time slots.
  • At least one of symbols, flexible symbols or uplink symbols the TDD frame structure may further use "aD:bS:cU" to indicate that a flexible time slot consists of a consecutive downlink symbols, b flexible symbols, and c consecutive uplink symbols.
  • the current spectrum usage strategies in the factory include: the intra-factory communication and the outdoor macro base station can share the spectrum, or the intra-factory communication uses a separate spectrum, or the outdoor macro base station is used jointly
  • the spectrum F1 and the new spectrum F2 communicate within the factory.
  • a frequency spectrum F2 may be used in the factory, and an outdoor macro station may use a frequency spectrum F1, wherein F1 and F2 may be located in the same band with non-overlapping frequency domains, or in different bands.
  • F1 and F2 may be located in the same band with non-overlapping frequency domains, or in different bands.
  • China Telecom deploys 100Mhz spectrum of 3.4GHz to 3.5GHz on C-band outdoors
  • China Unicom deploys 100Mhz spectrum from 3.5GHz to 3.6GHz on C-band outdoors, while indoors can use 3.3GHz on C-band 100Mhz industrial spectrum at ⁇ 3.4GHz.
  • hybrid services are supported in the following ways:
  • Mode 1 Design a TDD frame structure according to a variety of service requirements, but the URLLC service requires a relatively short transmission delay and requires frequent switching of data transmission between uplink transmission and downlink transmission, resulting in increased switching overhead.
  • Mode 2 The spectrum F2 is divided into multiple sub-bands, different services use different sub-bands, and different sub-bands use different frame structures. In this case, setting one service to occupy one sub-band is likely to cause spectrum fragmentation and low resource utilization.
  • Mode 3 Divide the spectrum F2 into 2 sub-bands. Sub-band 1 is used to process DL services, and sub-band 2 is used to process UL services. This method can realize the TDD complementary frame structure.
  • the spectrum F2 is complementary and similar.
  • the communication in the factory adopts the joint use of the spectrum F1 and the spectrum F2. Since the TDD frame structure of the spectrum F1 has been fixed, for example, it can be 7D:1S:2U. The communication in the factory retains the same frame structure on the spectrum F1, but in the spectrum F2 The opposite frame structure is deployed on the 2D:1S:7U. In this way, the intra-factory communication system forms a TDD complementary frame structure of the spectrum F1 and the spectrum F2, thereby achieving an effect similar to FDD. Downlink high-capacity services and uplink high-capacity services can be deployed on spectrum F1 and spectrum F2 respectively, while URLLC services are switched through spectrum F1 and spectrum F2. This setting can improve the transmission efficiency on FDD and reduce the waiting time for switching. extension.
  • spectrum F1 and spectrum F2 correspond to 2 CCs in 2 bands, or correspond to 2 BWPs in 2 bands, since different bands have different RF filters, the problem of mutual influence of RF filters can be solved, but it is very difficult to Few operators can get 2 bands of spectrum.
  • the terminal device can be configured to support Carrier Aggregation (CA), that is, to support simultaneous operation on two CCs
  • CA Carrier Aggregation
  • the current protocol does not support initial transmission on one CC and retransmission on another CC.
  • the HARQ-ACK feedback can only be fixed and transmitted on a certain CC, and the protocol does not support dynamic switching of the CC where the HARQ-ACK transmission is located.
  • a terminal device that performs URLLC service transmission essentially only sends or receives data at one CC at a time, thus wasting the parallel processing capability of two CCs.
  • the TDD frame structure configuration in the current protocol is in units of CCs, and TDD frame structure configuration with BWP as the level is not supported; secondly, The current protocol also does not support the scheme in which multiple BWPs are activated at the same time.
  • URLLC communication needs to be switched on different BWPs, but the switching latency of BWP itself is relatively large, so the latency of URLLC data transmission is relatively increased.
  • spectrum F1 and spectrum F2 correspond to two spectrums in one BWP, for example, they can be subband subband #1 and subband subband #2.
  • the current protocol does not support frame structure configuration with subband as the level; on the other hand, subband
  • the positions and bandwidths of #1 and subband #2 change dynamically, making it difficult for the terminal equipment to adjust the filter analog components in real time to match the subband. If the operating bandwidth of these analog components is kept at the entire BWP, the gap between the two subbands cannot be eliminated. anisotropic interference.
  • Anisotropic interference refers to "interference of downlink transmission of base station A to uplink reception of base station B" or “interference of uplink transmission of terminal A to downlink reception of terminal B"; it corresponds to co-directional interference, which refers to "Interference of downlink transmission of base station A to downlink transmission of base station B (ie, downlink reception of terminal B)" or “interference of uplink transmission of terminal A to uplink transmission of terminal B (ie, uplink reception of base station B)".
  • the present application proposes a communication method to solve the dual-spectrum scenario In this way, different frame structures are configured for different frequency domain resources, and terminal equipment can quickly switch and combine retransmissions between different frequency domain resources.
  • the first time domain resource and the second time domain resource are used as examples for description in the embodiment of the present application, but the embodiment of the present invention can be applied to two or more frequency domain resources
  • two or more frequency domain resources may also respectively correspond to two or more types of frame structures, which is not specifically limited in this application. It should be understood that the relationship between the first frequency domain resource and the second frequency domain resource in the following embodiments may include the following:
  • the first frequency domain resource and the second frequency domain resource are located in 2 different bands, such as 2 CCs, 2 BWPs or 2 subbands in 2 different bands; or
  • the first frequency domain resource and the second frequency domain resource are located in the same band, for example, two different CCs in one band, or two different BWPs in one CC, or two different BWPs in one BWP different subbands.
  • band, CC, BWP and subband are as described above.
  • the above relationship between the first frequency domain resource and the second frequency domain resource is only an example for better understanding of the technical solutions of the present application, and the present application includes but is not limited to the above examples.
  • transmission includes uplink transmission and downlink transmission.
  • the terminal equipment sends signaling, data or signals to the network equipment, and the network equipment receives the signaling, data or signals from the terminal equipment.
  • the network equipment sends signaling, data or signals to the terminal equipment, and the terminal equipment receives signaling, data or signals from the network equipment.
  • the sender to transmit means to send; for the receiver, to transmit means to receive.
  • the function of the network device may also be performed by a module (eg, a chip) in the network device, or may be performed by a control subsystem including the function of the network device.
  • the control subsystem including the functions of the network equipment here can be the control center in the industrial Internet of Things application scenarios such as smart grid, factory automation, and intelligent transportation; the functions of the terminal equipment can also be performed by modules (such as chips) in the terminal equipment.
  • FIG. 2 an embodiment of the present application provides a schematic flowchart of a communication method.
  • the network device sends information for configuring a first frequency domain resource and a second frequency domain resource to a terminal device, where the first frequency domain resource corresponds to frame structure A, the second frequency domain resource corresponds to frame structure B, and the frame Structure A is different from the frame structure B.
  • the terminal device receives the information.
  • the terminal device may determine the first frequency domain resource and the second frequency domain resource according to the information.
  • the period of the frame structure A and the frame structure B is the same, thereby reducing the configuration overhead of the frame structure A and the frame structure B.
  • the configuration periods of the frame structure A and the frame structure B are both 5ms.
  • the frame structure A and the frame structure B not only have the same period, but also are frame structures of the first complementary type.
  • the downlink symbols of the frame structure A correspond to the uplink symbols of the frame structure B
  • the uplink symbols of the frame structure A correspond to the downlink symbols of the frame structure B
  • the flexible symbols of the frame structure A correspond to the frame Flexible notation for structure B.
  • the frame structure A and the frame structure B may be the second complementary frame structure.
  • the downlink symbol of frame structure A corresponds to the uplink symbol or flexible symbol of frame structure B
  • the uplink symbol of frame structure A corresponds to the downlink symbol or flexible symbol of frame structure B
  • the downlink symbol or flexible symbol of frame structure A corresponds to frame structure B
  • the uplink symbols, and/or the uplink symbols or flexible symbols of the frame structure A correspond to the downlink symbols of the frame structure B.
  • the frame structure A and the frame structure B may be a third complementary frame structure.
  • the downlink time slot of frame structure A corresponds to the uplink time slot of frame structure B
  • the uplink time slot of frame structure A corresponds to the downlink time slot of frame structure B
  • the flexible time slot of frame structure A corresponds to the flexible time slot of frame structure B.
  • first, second or third complementary frame structure is adopted, so that the terminal equipment processing the URLLC service has downlink resources and uplink resources in any symbol (or time slot), so that it can be performed as required. Downlink transmission and uplink transmission will not add additional latency.
  • the terminal device and the network device use the first frequency domain resource and/or the second frequency domain resource to perform first transmission.
  • the first transmission includes downlink transmission or uplink transmission.
  • downlink transmission may include transmission of at least one of the following: PDCCH, PDSCH, channel state information reference signal (CSI-RS), downlink synchronization signal, and physical broadcast channel (PBCH) );
  • uplink transmission may include transmission of at least one of the following: PUSCH, PUCCH, sounding reference signal (sounding reference signal, SRS) and physical random access channel (physical random access channel, PRACH).
  • the PUCCH can be used to carry at least one of scheduling request (scheduling request, SR), hybrid automatic repeat request acknowledgment (hybrid automatic repeat request-acknowledgment, HARQ-ACK) and CSI.
  • PDSCH transmission may be the initial transmission or HARQ retransmission of downlink data
  • PUSCH transmission may be the initial transmission or HARQ retransmission of uplink data.
  • the terminal device supports sending and receiving information on multiple frequency domain resources at the same time.
  • the network device can configure/indicate both the first frequency domain resource and the second frequency domain resource as active, that is, notify the terminal device to prepare at the same time.
  • Information is sent or received on the first frequency domain resource and the second frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource are two CCs in a band, and the terminal supports carrier aggregation for these two CCs; for another example, the first frequency domain resource and the second frequency domain resource are one CC
  • the terminal device may support switching on the first frequency domain resource and the second frequency domain resource, that is, according to the network device indicating the first transmission to the terminal device.
  • the target frequency domain resource where the first transmission is located the terminal device switches to the target frequency domain resource where the first transmission is located, and then performs the first transmission.
  • the first frequency domain resource and the second frequency domain resource are two BWPs in one component carrier, and the terminal device does not support activating these two BWPs at the same time.
  • the first frequency domain resource and the second frequency domain resource may correspond to one digital processing unit, and correspond to two independent analog channels, each analog channel includes an automatic gain controller, a mixer, a baseband analog filter or a digital channel. A/D converter, etc. at least one.
  • the terminal equipment is on the first frequency domain resource and the second frequency domain resource. Supports no-delay (or extremely low-delay) switching. Since the first frequency domain resource and the second frequency domain resource share one digital processing unit, they cannot support the simultaneous processing of the transmitted and received signals on the two frequency domain resources. Therefore, the first frequency domain cannot be implemented in the first frequency domain. Data transmission or reception is performed simultaneously on the resource and the second frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource correspond to one digital processing unit and one analog channel. That is to say, the terminal device can only send and receive signals on the first frequency domain resource or the second frequency domain resource at the same time, and switching between the frequency domain resources needs to adjust the parameters of the analog channel, where the parameters of the analog channel can be At least one of mixer frequency, baseband analog filter bandwidth, and digital-to-analog/analog-to-digital converter resolution, so the terminal device needs a certain amount of switching to switch between the first frequency domain resource and the second frequency domain resource extension.
  • the first frequency domain resource and the second frequency domain resource correspond to one digital processing unit and one analog channel
  • the first frequency domain resource and the second frequency domain resource have some of the same parameter configuration, for example, the first frequency domain resource and the second frequency domain resource satisfy at least one of the following relationships: the frequency domain positions of the first frequency domain resource and the second frequency domain resource do not overlap; or , the first frequency domain resource and the second frequency domain resource have the same frequency domain width; or, the first frequency domain resource and the second frequency domain resource have the same subcarrier spacing, so that the maximum The time required for analog channel parameter adjustment is reduced, and the switching delay between the first frequency domain resource and the second frequency domain resource is reduced.
  • the embodiment may further include: the terminal device determines, according to the target frequency domain resource and the current frequency domain resource, whether switching between different frequency domain resources is required.
  • the terminal device can perform the first frequency domain resources and the second frequency domain resources.
  • the joint transmission and reception are performed on the second frequency domain resource, and it is determined that switching between different frequency domain resources is not required.
  • first frequency domain resource and the second frequency domain resource share a processing entity, or share a set of analog channels
  • switching between different frequency domain resources requires the terminal device to adjust some processing parameters, and the processing parameters are as described above. mixer frequency, filter bandwidth, or sampler rate, etc.
  • the terminal device determines that switching of the frequency domain resource is required.
  • the current frequency domain resource is the first frequency domain resource and the target frequency domain resource is the second frequency domain resource; or the current frequency domain resource is the second frequency domain resource and the target frequency domain resource is the first frequency domain resource, then the terminal equipment It is determined that the handover delay is the first delay T1.
  • the current frequency domain resource is the fifth frequency domain resource and the target frequency domain resource is the first frequency domain resource or the second frequency domain resource, or the current frequency domain resource is the first frequency domain resource or the second frequency domain resource, and the target frequency domain resource is the first frequency domain resource or the second frequency domain resource.
  • the frequency domain resource is the fifth frequency domain resource, wherein the fifth frequency domain resource does not belong to the first frequency domain resource set, and the terminal device determines that the handover delay is the second handover delay T2.
  • the terminal device determines the first time length.
  • the first time length is: the start time of the DCI start symbol or the end time of the DCI end symbol, to the start of the first transmission start symbol The time length of the moment, wherein the DCI is used to carry the indication information of frequency domain resources or time domain resources.
  • the first transmission is a semi-persistent scheduling (SPS) PDSCH or a Type-2 (Type-2) configured grant (CG) PUSCH (where Type-2 represents the CG PUSCH)
  • SPS semi-persistent scheduling
  • Type-2 Type-2
  • the first time length is: the start time of the start symbol of the DCI that activates the SPS PDSCH or Type-2 CG PUSCH or the start time of the DCI end symbol The end time and the time length from the start time of the first transmission start symbol.
  • the first transmission is a non-first transmission of SPS PDSCH or Type-2 CG PUSCH or a transmission configured by a higher layer (such as Type-1 CG PUSCH, periodic CSI-RS, periodic CSI or periodic SRS), that is, It is said that the first transmission is a periodic transmission, and the first time length is: the start time of the start symbol or the end time of the end symbol of the last transmission of the first transmission, the time to the first transmission The time length of the start moment of the start symbol of this transmission.
  • T0 is the minimum handover delay for the terminal equipment to switch between resources in different frequency domains, and it is T1 or T2 according to the relationship between the resources in the fifth frequency domain and the resources in the first/second frequency domain.
  • the terminal device determines that it is necessary to perform handover between different frequency domain resources, and the terminal device performs the first transmission on the target frequency domain resource, the terminal device will perform the first transmission according to the configuration information of the target frequency domain resource (such as the frequency domain position and width, subcarrier spacing), etc. to adjust analog channel parameters and/or digital processing parameters, such as mixer frequency, baseband filter bandwidth, sampler rate, FFT/IFFT size, and the terminal device sends/ A first transmission is received.
  • the configuration information of the target frequency domain resource such as the frequency domain position and width, subcarrier spacing), etc. to adjust analog channel parameters and/or digital processing parameters, such as mixer frequency, baseband filter bandwidth, sampler rate, FFT/IFFT size, and the terminal device sends/ A first transmission is received.
  • the embodiment may further include: the network device sends the first configuration to the terminal device.
  • the first configuration information indicates the first frequency domain resource set and the second frequency domain resource set.
  • the terminal device receives the first configuration information.
  • the first frequency domain resource and the second frequency domain resource belong to the first frequency domain resource set, and the third frequency domain resource belongs to the second frequency domain resource set.
  • the network device configures the terminal device with N frequency domain resource sets, such as N BWP sets, by using the first configuration information, wherein one frequency domain resource set (such as the first frequency domain resource set) includes the first frequency domain resource and the first frequency domain resource set.
  • N BWP sets N frequency domain resource sets
  • the network device can specify the switching delay required for the terminal device to switch between different frequency domain resources, so that when scheduling the first transmission, for different frequency domain resource switching behaviors (intra-set switching or inter-set switching), select Appropriate scheduling delay ensures that the terminal device has enough time for handover processing and subsequent sending and receiving processing.
  • the switching delay from the first frequency domain resource to the second frequency domain resource is smaller than the switching from the second frequency domain resource to the third frequency domain resource.
  • the switching delay ie the second switching delay T2
  • the N frequency domain resource sets configured by the network device meet the following characteristics: the switching delay of switching between multiple frequency domain resources in one set is T1, and the switching delay of two frequency domain resources in different frequency domain resource sets is T2, and satisfy T1 ⁇ T2.
  • the first handover delay T1 and the second handover delay T2 may also be indicated by the network device to the terminal device through signaling or predefined by the protocol, and the first handover delay T1 ⁇ the second handover delay Extend T2.
  • the transition delay of the deactivated state is, for example, 10us, or, the first switching delay is equal to twice the transition delay of the terminal device from sending the active state to the transmitting deactivation state, for example, 20us.
  • the second handover delay T2 is related to the subcarrier spacing and the capability of the terminal device (such as UE).
  • the second handover delay T2 is 1ms respectively (for SCS 15kHz and 30kHz) or 0.75ms (for SCS 60kHz and 120kHz).
  • the switching delay corresponding to switching from the source frequency domain resource to the target frequency domain resource determined by the terminal device is T1 or T2.
  • the network device indicates to the terminal device the corresponding frequency domain position (for example, the resource block RB set) or the time domain position (for example, the time domain OFDM time slot and symbol set) corresponding to the first transmission in the following manner: ).
  • the terminal device determines a frequency domain position or a time domain position corresponding to the first transmission.
  • the target frequency domain resource may be the first frequency domain resource or the second frequency domain resource resource.
  • the terminal device first determines the target frequency domain resources, and can adjust some of the transmit and receive channel parameters according to the target frequency domain resources, so as to better realize the first transmission and minimize the impact of the first transmission on other frequency domain resources. interference caused by transmission.
  • the network device may use any of the following examples to indicate the target frequency domain resource:
  • the network device directly indicates the target frequency domain resource.
  • the network device may send target frequency domain resource indication information to the terminal device.
  • the terminal device determines a target frequency domain resource corresponding to the first transmission according to the target frequency domain resource indication information, where the target frequency domain resource is the first frequency domain resource or the second frequency domain resource.
  • the network device sends target frequency domain resource indication information to the terminal device, where the indication information includes second indication information and third indication information, the second indication information explicitly indicates the target frequency domain resource, and the third indication
  • the information indicates the RB position of the first transmission in the target frequency domain resource.
  • the network device respectively indicates the target frequency domain resource and the RB position in the target frequency domain resource, the indication method is simple and has backward compatibility; at the same time, in the determined target frequency domain resource, the indication of the RB position in the target frequency domain resource Less overhead.
  • the first transmission is a DCI dynamically scheduled PDSCH or a DCI dynamically scheduled PUSCH, or a DCI dynamically scheduled PDSCH HARQ-ACK transmission, or a DCI dynamically triggered aperiodic CSI-RS transmission, or a DCI dynamically triggered aperiodic transmission
  • the network device may also send DCI to the terminal device, and the target frequency domain resource indication information may be included in the DCI.
  • the target frequency domain resource indication information may include second indication information and third indication information, where the second indication information is field H in the DCI and the third indication information is field J in the DCI.
  • the DCI simultaneously schedules the PDSCH transmission and the HARQ-ACK transmission corresponding to the PDSCH, and field H and field J are respectively used to indicate the target frequency of the HARQ-ACK transmission. domain resource and the RB position of the HARQ-ACK transmission in the target frequency domain resource.
  • field H may be a separate field, which is only used to indicate the target frequency domain resource where HARQ-ACK transmission is located;
  • field H may jointly indicate the target frequency domain resource (downlink frequency domain resource) where PDSCH transmission is located and the target frequency domain resource (uplink frequency domain resource) where HARQ-ACK transmission is located.
  • field H may indicate the number of the BWP where the HARQ-ACK feedback of the DCI scheduling data is located.
  • the first transmission in step 202 may be a transmission configured through radio resource control (radio resource control, RRC) signaling
  • RRC radio resource control
  • the first transmission may be a Type-1 configuration grant PUSCH transmission (Type-1 configuration grant
  • the PUSCH refers to the PUSCH authorized by the configuration, which can be transmitted without DCI activation after being configured), periodic CSI-RS transmission, periodic CSI feedback or periodic SRS transmission, and the target frequency domain resource indication information may include in RRC signaling.
  • the first transmission in step 202 may be a transmission configured by RRC signaling and requiring dynamic activation of DCI, such as semi-persistent PDSCH transmission or PUSCH transmission authorized by Type-2 configuration (PUSCH authorized by Type-2 configuration).
  • DCI such as semi-persistent PDSCH transmission or PUSCH transmission authorized by Type-2 configuration (PUSCH authorized by Type-2 configuration).
  • PUSCH authorized by Type-2 configuration PUSCH authorized by Type-2 configuration
  • the target frequency domain resource indication information may be included in the RRC signaling or in the activated DCI.
  • the network device indirectly indicates the target frequency domain resource.
  • the network device may send the first transmitted frequency domain location information to the terminal device.
  • the terminal device determines the target frequency domain resource corresponding to the first transmission according to the frequency domain location information.
  • the frequency domain location information of the first transmission can simultaneously indicate the target frequency domain resource corresponding to the first transmission and the RB in the target frequency domain resource of the first transmission, thereby improving the flexibility of the frequency domain location indication of the first transmission sex.
  • the network device sends information indicating the frequency domain location of the first transmission to the terminal device.
  • the terminal device determines that the target frequency domain resource is the target frequency domain resource. the first frequency domain resource; when the frequency domain position is within the frequency domain range of the second frequency domain resource, the terminal device determines that the target frequency domain resource is the second frequency domain resource.
  • the frequency domain position of the first transmission may be indicated by the set of RBs occupied by the first transmission, or may be indicated by the frequency domain starting position and width of the first transmission.
  • the first frequency domain resource and the second frequency domain resource may be two different BWPs in the first CC
  • the network device sends fifth indication information to the terminal device, where the fifth indication information indicates The frequency domain position of the first transmission in the first CC
  • the terminal device receives the fifth indication information, and determines a target frequency domain resource according to the frequency domain position, and the target frequency domain resource is the the first frequency domain resource or the second frequency domain resource.
  • the subcarrier intervals corresponding to the first frequency domain resource and the second frequency domain resource are the same, and the fifth indication information may indicate the RB position occupied by the first transmission in the first CC, for example, the occupied RB set, Or the occupied starting RB number and the number of consecutively occupied RBs.
  • the first CC includes a first width B1 Hz in the frequency domain, and the starting frequency point of the first CC is used as a reference point.
  • the starting position of the first BWP in the frequency domain is f1 Hz, and the occupied width is B2 Hz.
  • the starting position of the second BWP in the frequency domain is f2 Hz, and the occupied width is B3 Hz
  • the fifth indication information indicates that the starting position of the first transmission in the frequency domain is f3 Hz and the ending position in the frequency domain is f4 Hz
  • the above starting frequency points f1, f2 and f3 may be indicated by RB numbers in the first CC.
  • the network device sends sixth indication information to the terminal device, and the sixth indication information indicates that The frequency domain location of the first transmission within the first BWP.
  • the terminal device receives the sixth indication information, and determines a target frequency domain resource according to the frequency domain position in the first BWP, where the target frequency domain resource is the first frequency domain resource or the second frequency domain resource.
  • the sixth indication information may indicate an RB position occupied by the first transmission in the first BWP, and the RB position may be, for example, an RB set, or a starting RB number and the number of RBs occupied continuously.
  • the first BWP includes a first width B1'Hz in the frequency domain
  • the starting frequency of the first BWP is used as a reference point
  • the starting position of the first SB in the frequency domain is f1'Hz
  • the occupied width is B2' Hz
  • the starting position of the second SB in the frequency domain is f2'Hz
  • the occupied width is B3'Hz
  • the sixth indication information indicates that the starting position of the first transmission in the frequency domain is f3'Hz
  • the end position of the frequency domain is f4'Hz
  • the network device indirectly indicates the target frequency domain resource.
  • the network device may indicate to the terminal device the time domain location information of the first transmission, and the terminal device determines the target frequency domain resource corresponding to the first transmission according to the time domain location information.
  • the network device can implicitly indicate the target frequency domain resource through the information of the time domain location, thereby eliminating the target frequency domain resource indication signaling overhead.
  • the network device may send fourth indication information to the terminal device, which is used to indicate a time domain location where the first transmission is performed, where the time domain location includes a time slot where the first transmission is located, and a starting point in the time slot where the first transmission is located. The initial symbol and the number of consecutively occupied symbols.
  • the terminal device determines a target frequency domain resource according to the time domain position, the frame structure A and the frame structure B, where the target frequency domain resource is the first frequency domain resource or the second frequency domain resource .
  • frame structure A and frame structure B are the first complementary frame structure described above.
  • the target frequency domain resource is predefined by the protocol or Configured in the RRC signaling; when the first transmission is an uplink transmission, the frame structure A at the time domain position is an uplink symbol, and the frame structure B is not an uplink symbol, the target frequency domain resource is the first frequency domain resource; when the first transmission is uplink transmission, the frame structure A at the time domain position is not an uplink symbol, and the frame structure B is an uplink symbol, the target frequency domain resources are the second frequency domain resources; when the first transmission is downlink transmission, and the frame structure A and the frame structure B at the time domain position are flexible symbols, the target frequency domain
  • the resources are pre-defined by the protocol or configured by high-level signaling; when the first transmission is a downlink transmission, the frame structure A at the time domain position is a downlink symbol, and the frame structure B is not
  • the frame structure A and the frame structure B are the frame structures of the second complementary frame described above.
  • the target frequency domain resource is a protocol preset resource.
  • the target frequency domain resource is the first frequency domain resource; when the first transmission is an uplink transmission, the frame structure A at the time domain position is a downlink symbol, and the frame When the structure B is an uplink symbol or a flexible symbol, the target frequency domain resource is the second frequency domain resource; when the first transmission is a downlink transmission, the frame structure A at the time domain position and the When the frame structure B is a flexible symbol or a downlink symbol, the target frequency domain resource is predefined by the protocol or configured by the network device to the terminal device through RRC signaling; when the first transmission is a downlink transmission, the time domain location When the frame structure A above is a downlink symbol or a flexible symbol, and the frame structure B is an uplink symbol, the target frequency domain resource is the first frequency domain resource; when the
  • a possible implementation manner of step 201 is: the network device sends information of a sixth frequency domain resource to the terminal device, where the sixth frequency domain resource includes the first frequency domain resource and the first frequency domain resource. Two frequency domain resources.
  • the terminal device receives the information of the sixth frequency domain resource.
  • different sub-frequency domain resources can be configured with different frame structures in the sixth frequency domain resource. In this way, it is ensured that the terminal device has sub-frequency domain resources that can perform uplink transmission and downlink transmission on any symbol in the frequency domain resources.
  • the sixth frequency domain resource is a continuous frequency domain resource, and the starting position of the sixth frequency domain resource in the frequency domain is less than or equal to the first frequency domain resource and the second frequency domain resource.
  • the starting position of the frequency domain, and the ending position of the sixth frequency domain resource in the frequency domain is greater than or equal to the starting position of the first frequency domain resource and the second frequency domain resource in the frequency domain.
  • the sixth frequency domain resource is a discrete frequency domain resource, including a first sub-frequency domain resource and a second sub-frequency domain resource, the frequency domain position of the first sub-frequency domain resource and the first frequency domain resource
  • the resource alignment is a continuous frequency domain resource, and the frequency domain position of the second sub-frequency domain resource is aligned with the second frequency domain resource, which is a continuous frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource may be two subbands within the first BWP, and the sixth frequency domain resource may be the first BWP, or the sixth frequency domain resource
  • the domain resource may be the third subband in the first BWP, and the RB resource included in the third subband is equal to the union of the RB resource included in the first subband and the second subband, or the third subband includes RB resources.
  • the three subbands contain all RB resources within the first subband and the second subband.
  • the first frequency domain resource and the second frequency domain resource are 2 BWPs in the first CC
  • the sixth frequency domain resource may be the first CC
  • the sixth frequency domain resource may be the first CC
  • the domain resource may be the third BWP in the first CC
  • the RB resource included in the third BWP is equal to the union of the first BWP and the second subband including the RB resource, or the third BWP includes All RB resources within the first BWP and the second BWP.
  • the first frequency domain resource and the second frequency domain resource are 2 CCs in the first band
  • the sixth frequency domain resource may be the first band
  • the resource may be a third CC in the first band
  • the RB resource included in the third CC is equal to the union of the RB resource included in the first CC and the second CC, or the third CC includes the All RB resources within the first CC and the second CC.
  • the network device may directly indicate the frequency domain position of the first transmission within the sixth frequency domain resource, that is, the RB set occupied in the frequency domain.
  • the network device always instructs the terminal device to send and receive information in the sixth frequency domain resource.
  • the terminal device always sends and receives information on the sixth frequency domain resource, and the network device does not need to send a frequency domain resource switching signal. It also does not need to combine initial transmission and retransmission across frequency domain resources, which can simplify the design of high-level protocols.
  • the terminal device adjusts the transceiving channel parameters, and the first transmission is performed at the time domain position and the frequency domain position based on the adjusted transceiving channel. That is to say, the first transmission is always on the sixth frequency domain resource, but the transmitting and receiving channel of the terminal device can perform parameter adjustment based on one of the multiple frequency domain resources included in the sixth frequency domain resource, thereby avoiding the need for other frequency domain resources. Resource leakage interference.
  • the transmission and reception are adaptively adjusted according to the frame structure A corresponding to the first frequency domain resource and the frame structure B corresponding to the second frequency domain resource.
  • the working parameters of the channel are adaptively adjusted according to the frame structure A corresponding to the first frequency domain resource and the frame structure B corresponding to the second frequency domain resource.
  • the frame structure A is a downlink symbol and the frame structure B is an uplink symbol
  • the receiving channel parameters of the terminal equipment need to match the first frequency domain resources, which can be understood as a mixer
  • the operating frequency point of the filter matches the frequency domain position of the first frequency domain resource, or the bandwidth of the filter matches the width of the first frequency domain resource.
  • the transmission channel parameter of the terminal device needs to match the second frequency domain resource.
  • the terminal device when performing the first transmission, according to the frame structure A corresponding to the first frequency domain resource and the frame structure B corresponding to the second frequency domain resource, automatically Adapt to adjust the working parameters of the transceiver channel.
  • the receiving channel parameters of the terminal device need to be the same as the first one.
  • Frequency domain resource matching when the frame structure A at the time domain position of the first transmission is an uplink symbol, and the frame structure B is a downlink symbol, the receiving channel parameters of the terminal equipment need to match the second frequency domain resources .
  • the transmission channel parameters of the terminal device need to be the same as The second frequency domain resource is matched; when the frame structure A at the time domain position of the first transmission is an uplink symbol, and the frame structure B is a downlink symbol, the transmission and reception channel parameters of the terminal device need to be the same as the first frequency. Domain resource matching.
  • the network device indicates to the terminal device whether the first transmission is an initial transmission or a retransmission of data transmission, and if it is a retransmission, further indicates the last retransmission or retransmission of the first transmission.
  • the frequency domain resources in which the initial transmission is located are convenient for the terminal equipment to correctly perform retransmission combining and retransmission.
  • 5G NR supports HARQ-based data retransmission when the first transmission is a data transmission, such as PDSCH or PUSCH retransmission.
  • a data transmission such as PDSCH or PUSCH retransmission.
  • the network device first sends the initial transmission of the data in a HARQ process, and the terminal device receives the data. If the terminal device successfully decodes the data, it feeds back an ACK to the network device, and the network device receives the ACK. After confirming that the data transmission is successful, the HARQ process is released (which can be used for the next data transmission). After the terminal device receives the initial transmission of the next data of the HARQ process, it will overwrite the previously reserved soft information in the HARQ process cache and store the original data. The soft information of the secondary transmission.
  • NACK is fed back to the network device.
  • the network device can use the same HARQ process to send the retransmission of the data.
  • the retransmission and the initial transmission of the data correspond to the same information bits, which can be are the same coded bits, or can be different coded bits truncated after being encoded by the same mother code.
  • the terminal device may choose to jointly process the retransmission received data and the initial transmission received data, for example, based on the stored soft information of the last transmission (for example, the likelihood value of the information bit) Perform joint decoding with the soft information transmitted this time to increase the probability of successful decoding.
  • the ACK will be fed back to the network equipment. After receiving the ACK, the network equipment will release the HARQ process. If the joint decoding of the terminal equipment fails, The NACK is then fed back to the network device. After receiving the NACK, the network device sends the second retransmission of the data transmission using the same HARQ process, and the process is repeated until the network device confirms that the data is received correctly or reaches the maximum number of retransmissions.
  • the process of PUSCH transmission is similar to that of PDSCH transmission, the difference is that if the network device indicates that the current transmission is a retransmission of a certain data transmission, the terminal device needs to send the information bits of the initial transmission, and the network device indicates the retransmission after encoding. Whether the bits are consistent with the initial transmission.
  • the terminal device determines the last transmission (possibly the last transmission of the current transmission) according to the frequency domain resource in which the last retransmission or the initial transmission of the first transmission indicated by the network device is located. It is the frequency domain resource where the initial transmission or the last retransmission is located. It is assumed to be the second target frequency domain resource. After the terminal device receives the first transmission, the The last transmission is combined to increase the probability of successful decoding.
  • a possible implementation method is that after the terminal device receives the initial transmission of downlink data, if the initial transmission fails, establish a buffer buffer corresponding to the HARQ process in the frequency domain resource where the initial transmission is located, and cache the corresponding soft information (such as the data itself or the similarities of the data). ratio). After that, the terminal device receives the retransmission of the data transmission. Regardless of whether the retransmission and the initial transmission are in the same frequency domain resources, the retransmission received data will be jointly decoded with the data in the above Buffer. If the decoding still fails, it will be further decoded. The combined soft information is stored in the Buffer. That is to say, the terminal device establishes the HARQ Buffer based on the frequency domain resources where the initial transmission is located, and maintains the data buffering and joint processing of subsequent retransmissions.
  • the terminal device determines the last transmission (possibly the last transmission of the current transmission) according to the frequency domain resource in which the last retransmission or the initial transmission of the first transmission indicated by the network device is located. It is the frequency domain resource where the initial transmission or the last retransmission is located, and it is assumed to be the third target frequency domain resource, so as to determine the information bit (or Transport Block (TB)) that needs to be transmitted, and encode the information bit.
  • TB Transport Block
  • a possible implementation method is that after the terminal device sends the initial transmission of a certain uplink data, a buffer buffer corresponding to the HARQ process is established in the frequency domain resource where the initial transmission is located, and the corresponding information (such as data information bits or after encoding the mother code) is buffered. bits). If the terminal device is scheduled to send the retransmission of the data transmission, regardless of whether the retransmission and the initial transmission are in the same frequency domain resource, it will read the information bits or the encoded bits of the mother code from the Buffer, and generate the encoded bits that need to be transmitted finally. . That is to say, the terminal device establishes the HARQ Buffer based on the frequency band where the initial transmission is located, and maintains the information bits or bits encoded by the mother code for subsequent retransmissions.
  • the first frequency domain resource and the second frequency domain resource are different CCs (such as two CCs), and the first transmission is scheduled by first downlink control information (DCI) Hybrid automatic retransmission requests HARQ retransmission, the network device sends first indication information to the terminal device, the first indication information is carried in the first DCI, and is used to indicate a fourth frequency domain resource, the fourth frequency domain
  • the resource is the frequency domain resource where the initial transmission of the HARQ corresponding to the first transmission is located, and the fourth frequency domain resource is a CC, for example, the fourth frequency domain resource is the first frequency domain resource or the second frequency domain resource. frequency domain resources.
  • the first frequency domain resource and the second frequency domain resource are different CCs
  • the first transmission is the first DCI scheduling data transmission, corresponding to the first HARQ process number
  • the network device sends the terminal device Send first indication information, where the first indication information is carried in the first DCI and is used to indicate a fourth frequency domain resource, where the fourth frequency domain resource is where the most recent transmission of the HARQ process number corresponding to the first transmission is located
  • a frequency domain resource and the fourth frequency domain resource is a CC, for example, the fourth frequency domain resource is the first frequency domain resource or the second frequency domain resource.
  • the terminal device can determine the latest scheduling information of the first HARQ process number according to the fourth information, so as to determine whether the current transmission is a new transmission or a retransmission.
  • the terminal device determines the frequency domain where the most recent transmission of the first HARQ process number is located according to the first indication information sent by the network device.
  • the resource is assumed to be the second target frequency domain resource, and it is further determined whether the first transmission this time is an initial transmission or a retransmission.
  • the terminal device determines whether the current transmission is a data retransmission according to the NDI in the DCI scheduled for the latest transmission and the NDI value in the first DCI, for example, when the NDI does not flip , it is considered that the first transmission is data retransmission.
  • the terminal device When the latest transmission is a configured data transmission, such as semi-persistent scheduling transmission, it is determined whether the first transmission is a retransmission according to the value of NDI in the first DCI. For example, when the value of NDI in the first DCI is 1, it is considered that the The next first transmission is a data retransmission. In this way, if the first transmission is a data retransmission, after receiving the first transmission, the terminal device combines the first transmission with the latest transmission of the same HARQ process number received on the second target frequency domain resource, thereby increasing the probability of successful decoding .
  • a possible implementation method is that after the terminal device receives the initial transmission of downlink data, if the initial transmission fails, establish a buffer buffer corresponding to the HARQ process in the frequency domain resource where the initial transmission is located, and cache the corresponding soft information (such as the data itself or the similarities of the data). ratio). After that, the terminal device receives the retransmission of the data transmission. Regardless of whether the retransmission and the initial transmission are in the same frequency domain resources, the retransmission received data will be jointly decoded with the data in the above Buffer. If the decoding still fails, it will be further decoded. The combined soft information is stored in the Buffer. That is to say, the terminal device establishes the HARQ Buffer based on the frequency domain resources where the initial transmission is located, and maintains the data buffering and joint processing of subsequent retransmissions.
  • the terminal device determines the frequency domain where the most recent transmission of the first HARQ process number is located according to the first indication information sent by the network device.
  • the resource is assumed to be the third target frequency domain resource, and it is further determined whether the first transmission this time is an initial transmission or a retransmission.
  • the terminal device determines whether the current transmission is a data retransmission according to the NDI in the latest transmission-scheduled DCI and the NDI value in the first DCI.
  • the next first transmission is a data retransmission; when the latest transmission is a configured data transmission, such as a configuration authorized uplink transmission, it is determined whether this first transmission is a retransmission according to the NDI value in the first DCI, for example, when the first DCI The value of NDI is 1, and it is considered that the first transmission is data retransmission.
  • the terminal device determines the information bits (or TBs) that need to be transmitted according to the third target frequency domain resource and whether the first transmission this time is an initial transmission or a retransmission. For example, when the first transmission this time is a retransmission, the The transmission information bit is the information bit corresponding to the latest transmission of the HARQ process number on the third target frequency domain resource.
  • the terminal device encodes the information bits to obtain the coded bits, or directly determines the bits of the information bits that need to be transmitted after being encoded by the mother code (for example, the bits saved after the last transmission encoding), and determines the coded bits to be transmitted.
  • a possible implementation method is that, after the terminal device sends the initial transmission of a certain uplink data, a cache buffer corresponding to the HARQ process is established in the storage resource where the frequency domain resource where the initial transmission is located, and the corresponding information (such as data information bits) is cached. or mother code encoded bits).
  • the terminal device If the terminal device is scheduled to send the retransmission of the data transmission, regardless of whether the retransmission and the initial transmission are in the same frequency domain resource, it will read the information bits or the encoded bits of the mother code from the Buffer, and generate the encoded bits that need to be transmitted finally. . That is to say, the terminal device establishes the HARQ Buffer based on the frequency domain resources where the initial transmission is located, and maintains the information bits of subsequent retransmissions or bits encoded by the mother code.
  • the first frequency domain resource and the second frequency domain resource are different CCs (eg, 2 CCs), and the first transmission is a data transmission scheduled by the first DCI, corresponding to the first HARQ process number , the network device sends first indication information to the terminal device, where the first indication information is carried in the first DCI and is used to indicate the fourth frequency domain resource and the second HARQ process number on the fourth frequency domain resource, so
  • the fourth frequency domain resource is the first frequency domain resource or the second frequency domain resource
  • the first transmission is the initial transmission or the latest transmission of the second HARQ process number on the fourth frequency domain resource Retransmission.
  • the network device first determines an associated HARQ process number subset Ai on the second frequency domain resource for the HARQ process number i on the first frequency domain resource, where i can be 0, 1 through a piece of configuration information. ,..., one or more values in N-1, where N is the number of HARQ processes on the first frequency domain resource, which is used to indicate that the transmission data of HARQ process number i on the first frequency domain resource can be in the second frequency domain resource. Retransmission is performed on HARQ processes in subset Ai.
  • the network device uses the first DCI to schedule the first transmission on the second frequency domain resource.
  • the first DCI may be used to carry the first indication information, which is used to indicate the fourth frequency domain resource and the first transmission.
  • the second HARQ process number on the fourth frequency domain resource indicates that the first transmission is a retransmission or initial transmission of the latest transmission corresponding to the second HARQ process in the fourth frequency domain.
  • the fourth frequency domain resource here may be the above-mentioned first frequency domain resource or the second frequency domain resource.
  • a possible implementation method is that when the first indication information indicates that the fourth frequency domain resource is the target frequency domain resource where the first transmission is located, the second HARQ process number is equal to the first HARQ process number, and whether the first transmission is a retransmission or an initial transmission.
  • the transmission depends on the value of NDI in the first DCI, which is the same as the existing method; when the first indication information indicates that the fourth frequency domain resource is not the target frequency domain resource where the first transmission is located, the second HARQ process number can only be from the above subset.
  • the first indication information can be jointly designed with the NDI field in the first DCI, that is, the field length of the first indication information is M, and there can be 2 ⁇ M values, of which 2 values correspond to the fourth frequency domain resource.
  • the fourth frequency domain resource is not the target frequency domain resource where the first transmission is located, and the corresponding second HARQ process number is indexed in the subset Bj.
  • This method increases the degree of freedom for the network device to select a HARQ process on the second frequency domain resource for carrying the retransmission of a certain HARQ process on the first frequency domain resource.
  • the network device can One HARQ process number is selected from the set Ai to carry the retransmission.
  • the HARQ process number i on the second frequency domain resource is occupied again (that is, the data transmission is not successfully received)
  • the cache of the HARQ process number on the network device and the terminal device side is not released, and the network device does not expect to preempt the cache space.
  • the HARQ process ID whose cache has been released can be changed to carry the retransmission of the data, which increases flexibility.
  • the terminal device does not expect that the first HARQ process ID has not successfully received the data transmission on the target frequency domain resource in the last time (or in other words, no ACK has been fed back).
  • the terminal device can implicitly know that the first HARQ process number has been successfully received by the network device for the most recent data transmission on the target frequency domain resource. In both cases, the terminal device can clear the first HARQ process. The number corresponds to the previously stored content in the buffer space, and is used to store the data of the second HARQ process number on the fourth frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource are different CCs (such as 2 CCs), and the first transmission is HARQ retransmission of downlink data transmission, so
  • the network device sends first indication information to the terminal device, the first indication information is high-level signaling, used to indicate the fourth frequency domain resource set, and indicates that all frequency domain resources in the fourth frequency domain resource set share one set HARQ process.
  • the terminal device initially uploads the HARQ process corresponding to the first transmission on one frequency domain resource in the fourth frequency domain resource set, and the one frequency domain resource is the fourth frequency domain resource, and the The fourth frequency domain resource is CC.
  • the fourth frequency domain resource may be the first frequency domain resource or the second frequency domain resource, or may be a frequency domain resource different from the first frequency domain resource or the second frequency domain resource.
  • An example is that the fourth frequency domain resource and the target frequency domain resource where the first transmission is located are different frequency domain resources.
  • the fourth frequency domain resource and the target frequency domain resource where the first transmission is located are different frequency domain resources, and the fourth frequency domain resource belongs to the first frequency domain resource set, that is, the fourth frequency domain resource.
  • the domain resource and the target frequency domain resource belong to a frequency domain resource set.
  • the embodiment may further include: the network device sends seventh indication information to the terminal device, where the seventh indication information is used to indicate the frame structure A and the frame structure B.
  • the seventh indication information is high layer configuration signaling, such as RRC parameters, or physical layer signaling, such as DCI.
  • the embodiment may further include: the network device sends a third DCI to the terminal device, where the third DCI includes a first field, the first field indicates a first index, and the The first index indicates the frame structure A and the frame structure B; or, the network device sends a fourth DCI to the terminal device, where the fourth DCI includes a second field and a third field, and the second field A second index is indicated, the second index indicates the frame structure A, the third field indicates a third index, and the third index indicates the frame structure B.
  • the terminal device determines the frame structure A and the frame structure B according to the first index and the first relationship indicated by the first field, where the first relationship includes at least one set of mapping relationships, each set of The mapping relationship includes at least two frame structures and an index corresponding to the at least two frame structures.
  • the first index can be dynamically and quickly indicated, and the frame structure A and the frame structure B are jointly determined based on the first index, which can reduce the indication overhead of the DCI for the first index.
  • the terminal device determines the frame structure A according to the second index and the second relationship, and determines the frame structure B according to the third index and the third relationship, wherein the second relationship and the third relationship A set of mapping relationships are respectively included, and each set of mapping relationships includes a frame structure and an index corresponding to the one frame structure.
  • the second index and the third index can be dynamically and quickly indicated; the frame structure A and the frame structure B are respectively determined based on the second index and the third index, which can provide the maximum indication flexibility.
  • the network device and the terminal device can communicate with each other through the scheduling method, physical layer priority, frequency resource priority, and communication At least one of the characteristics such as direction determines which transmission is reserved, thereby ensuring that high-priority transmissions can be performed normally.
  • the terminal device and the network device determine that the first frequency domain The first transmission is performed on the resource or the second frequency domain resource, wherein the first transmission is one of the second transmission and the third transmission.
  • the frequency domain resource here can be Band, CC or BWP.
  • the meaning of the frequency domain resource is the same as that in 201.
  • the first frequency domain resource and the second frequency domain resource are two different CCs in one Band, or two different BWPs in one CC.
  • the TDD frame structures of the first frequency domain resource and the second frequency domain resource are different.
  • the subcarrier spacing of the first frequency domain resource and the second frequency domain resource are the same, and the TDD frame structures are 7D:1S:2U and 2D:1S:7U respectively.
  • the communication directions of the second transmission and the third transmission are different.
  • the second transmission is downlink transmission and the third transmission is uplink transmission
  • the second transmission is uplink transmission and the third transmission is downlink transmission.
  • the second transmission when the second transmission is a PDCCH, it does not mean that the second transmission is a real PDCCH transmission, but a candidate PDCCH transmission, and the time domain position of the second transmission corresponds to a configured PDCCH monitoring timing (monitor occasion). That is to say, the time domain overlap between the third transmission and the PDCCH monitor occurrence configured on the first frequency domain resource also belongs to the consideration scope of the embodiment of the present invention.
  • the second transmission is configured downlink transmission or uplink transmission, such as SPS PDSCH, CG PUSCH, PUCCH carrying SPS HARQ-ACK or PUCCH carrying SR
  • the second transmission is not necessarily a real transmission at this time, Instead, it corresponds to the potential data channel or control channel transmission at the matched transmission opportunity, or in other words, the time-frequency resources occupied by the data channel transmission or the control channel transmission.
  • the terminal device does not support simultaneous information sending and receiving on the first frequency domain resource and the second frequency domain resource, for example:
  • does not support receiving information on the first frequency domain resource while sending information on the second frequency domain resource, and, does not support sending information on the first frequency domain resource while receiving information on the second frequency domain resource UE.
  • the network device may send the information for configuring the first frequency domain resource and the second frequency domain resource to the terminal device, and send the configuration information or scheduling of the second transmission and the third transmission to the terminal device information.
  • the terminal device before the terminal device determines the second transmission and the third transmission, the terminal device further receives the information for configuring the first frequency domain resource and the second frequency domain resource, and determines the first frequency domain resource and the second frequency domain resource.
  • the values of parameters such as the frequency domain position and frequency domain width of the resource; the terminal device also receives the configuration information or scheduling information of the second transmission and the third transmission, and determines the time domain position of the second transmission and the time domain of the third transmission. location, and other transfer parameters.
  • the terminal device and the network device can determine one transmission from the second transmission and the third transmission as the first transmission according to the following criteria.
  • Dynamically scheduled transmissions have higher priority than higher-layer configured transmissions.
  • the second transmission is dynamically scheduled and the third transmission is configured by higher layers, it is determined that the first transmission is the second transmission.
  • a dynamically scheduled transmission means that the time-frequency resources of the transmission are scheduled through a DCI.
  • the dynamically scheduled transmission may be PDSCH dynamically scheduled by DCI, CSI-RS dynamically scheduled by DCI; Scheduled PRACH.
  • the transmission configured by the high layer means that the time-frequency resource of the transmission is configured by the high layer signaling and may appear periodically.
  • the transmission configured by the higher layers may be SPS PDSCH, periodic CSI-RS, PDCCH monitor occasion configured by higher layers, CG PUSCH, PUCCH bearing SR, PUCCH bearing periodic CSI reports, and PUCCH bearing HARQ-ACK of SPS PDSCH , periodic SRS, periodic synchronization signal, periodic PBCH or periodic PRACH.
  • ⁇ Criterion #2 When the physical layer priority of the second transmission is greater than the physical layer priority of the third transmission, it is determined that the first transmission is the second transmission.
  • its physical layer priority is indicated by the priority indication field in the DCI; for the transmission configured by high-level signaling, its priority is indicated by an information element in the corresponding high-level signaling.
  • its physical layer priority is indicated in the SPS configuration information, and different SPS configurations with different SPS indexes can correspond to different physical layer priorities; for CG PUSCH, its physical layer priority is indicated in the CG configuration information.
  • different CG configurations with different CG PUSCH indexes can correspond to different physical layer priorities; for PDCCH, its physical layer priority is in the control-resource set (CORESET) configuration information or corresponding search for the corresponding control-resource set (CORESET) transmission of the candidate PDCCH.
  • the search space (SS) configuration information indicates that different CORESET configurations with different CORESET identifiers or different SS configurations with different SS identifiers can correspond to different physical layer priorities; for SR, its physical layer priority is in the PUCCH that carries the SR Indicated in the resource configuration information; for CSI-RS, CSI report, SRS, etc., its physical layer priority may be indicated in the corresponding configuration information, or it may be a low priority by default. For synchronization signals, PBCH, and PRACH, their physical layer priority may be a high priority by default, or indicated in the corresponding configuration information.
  • PDCCH For PDCCH, there may be multiple candidate PDCCH transmissions on one PDCCH occasion, corresponding to different CORESETs in the frequency domain. If the physical layer priority of the PDCCH is configured per-CORESET, there may be multiple CORESETs corresponding to one PDCCH occasion, that is, there are multiple PDCCH blind detecting (BD) candidates. At this time, the priority of the PDCCH monitor occasion can be performed according to the highest priority among multiple CORESET priorities.
  • BD PDCCH blind detecting
  • ⁇ Criterion #3 When the priority of the frequency domain resource where the second transmission is located is greater than the priority of the frequency domain resource where the third transmission is located, it is determined that the first transmission is the second transmission.
  • the priority of the frequency domain resource refers to the priority between multiple frequency domain resources. For example, if the frequency domain resource is multiple BWPs in a CC, this priority indicates that when there is overlapping information transmission on multiple BWPs, the UE will The information on which BWP is preferentially selected for transmission.
  • the priority of the frequency domain resources may be one priority for each frequency domain resource configuration, or may be indicated in the frequency domain resource configuration information of a higher layer. Taking the frequency domain resource as multiple BWPs in one CC as an example, the priority information of the BWPs can be configured with a priority for each BWP, or can indicate a common priority in the configuration information of the CC to which these BWPs belong. class.
  • ⁇ Criterion #4 The priority of upstream transmission is higher than that of downstream transmission.
  • the second transmission is an uplink transmission and the third transmission is a downlink transmission, it is determined that the first transmission is the second transmission.
  • criterion #4 can also be replaced with "the priority of downlink transmission is greater than the priority of uplink transmission"; or, it can also be that the network device sends priority criterion configuration information to the terminal device, and the priority criterion configuration information indicates the criterion. #4 is "the priority of uplink transmission is higher than that of downlink transmission” or "the priority of downlink transmission is higher than that of uplink transmission”.
  • ⁇ Criterion #5 When the third transmission is an event-triggered uplink transmission and the transmission is not triggered, determine that the first transmission is the second transmission.
  • the criterion further includes: the second transmission is a downlink transmission, or the second transmission is not an event-triggered uplink transmission.
  • the event-triggered uplink transmission may be CG PUSCH, PUCCH bearing SR, SRS or CSI report or PRACH triggered by NACK.
  • CG PUSCH PUCCH bearing SR, SRS or CSI report or PRACH triggered by NACK.
  • CG PUSCH PUCCH bearing SR
  • SRS SRS
  • CSI report PRACH triggered by NACK.
  • PUCCH bearing the SR PUCCH bearing the SR
  • PUCCH bearing the SR means that the higher layer does not trigger the corresponding SR to be sent on the PUCCH resource, or in other words, the SR is negative.
  • NACK-triggered SRS or CSI report that is, the SRS or CSI report is associated with a downlink data reception
  • the SRS or CSI report is associated with a downlink data reception
  • only when the downlink data decoding fails will the SRS or CSI be sent on the corresponding time-frequency resource.
  • “not triggered” refers to It is the correct decoding of the associated downlink data.
  • PRACH For PRACH, "not triggered” means that the terminal device does not send PRACH.
  • the terminal device and the network device may also determine one transmission as the first transmission from the second transmission and the third transmission according to a plurality of the above-mentioned five criteria.
  • Criterion #1 and Criterion #2 work jointly and "Criterion #1 > Criterion #2"
  • the second transmission is dynamically scheduled and the third transmission is configured by higher layers, it is determined that the first transmission is the second transmission; or, when both the second transmission and the third transmission are dynamically scheduled (or both are configured by higher layers) and When the physical layer priority of the second transmission is greater than the physical priority of the third transmission, it is determined that the first transmission is the second transmission.
  • Criterion #1 and Criterion #2 work jointly and "Criterion #2 > Criterion #1"
  • the first transmission is the second transmission; or, when the physical layer priorities of the second transmission and the third transmission are the same and the second transmission is dynamic
  • the scheduled third transmission is configured by a higher layer, it is determined that the first transmission is the second transmission.
  • Criterion #1 and Criterion #3 work jointly and "Criterion #1 > Criterion #3"
  • the second transmission is dynamically scheduled and the third transmission is configured by higher layers
  • it is determined that the first transmission is the second transmission; or, when both the second transmission and the third transmission are dynamically scheduled (or both are configured by higher layers) and
  • the priority of the frequency domain resource where the second transmission is located ie the first frequency domain resource
  • the priority of the frequency domain resource where the third transmission is located ie the second frequency domain resource
  • Criterion #1 and Criterion #3 work jointly and "Criterion #3 > Criterion #1"
  • the priority of the frequency domain resource where the second transmission is located is greater than the priority of the frequency domain resource where the third transmission is located, it is determined that the first transmission is the second transmission; or, when the priority of the frequency domain resource where the second transmission is located is equal to the third transmission It is determined that the first transmission is the second transmission when the priority of the frequency domain resource where the resource is located, and the second transmission is dynamically scheduled and the third transmission is configured by a high layer.
  • Criterion #2 and Criterion #3 work jointly and "Criterion #2 > Criterion #3"; or, Criterion #2 and Criterion #3 work jointly and "Criterion #3 > Criterion #2”; or, Criterion #1 , Criterion #2 (or Criterion #3), and Criterion #4 work jointly and Criterion #1 > Criterion #2 (or Criterion #3) > Criterion #4; or, Criterion #1, Criterion #2 (or Criterion #3) Working in conjunction with Criterion #4 and Criterion #2 (or Criterion #3) > Criterion #1 > Criterion #4; or
  • criterion #5 can work in conjunction with any other criterion and "criteria #5 > other criterion", that is, the terminal device preferentially judges whether the third transmission is really triggered, if not, it does not participate in conflict processing, the default is low priority, and the second transmission takes precedence.
  • criteria #5 > other criterion that is, the terminal device preferentially judges whether the third transmission is really triggered, if not, it does not participate in conflict processing, the default is low priority, and the second transmission takes precedence.
  • the priority of each transmission can be pre-defined or pre-configured through high-level parameters, for example: the priority of the HARQ-ACK of the SPS PDSCH is greater than the priority of the configured PDCCH occasion; or, the priority of the configured PDCCH occasion is greater than Priority of CG PUSCH and PUCCH carrying SR.
  • the terminal device before determining the first transmission, needs to receive some configuration information or indication information sent by the network device. For example, the physical layer priority indication information of the second transmission and the third transmission, and/or the priority configuration information of the first frequency domain resource and the second frequency domain resource.
  • the terminal device may first perform frequency domain resource switching, switch to the first frequency domain resource, and adjust the transmission and reception channel parameters according to the configuration parameters of the first frequency domain resource.
  • the frequency domain resource parameters include: at least one of center frequency, bandwidth, subcarrier spacing, and TDD frame structure.
  • the terminal device adjusts the operating point of the mixer according to the center frequency; or, adjusts the parameters of the baseband filter according to the bandwidth; or, adjusts the resolution and sampling rate of analog-to-digital conversion or digital-to-analog conversion according to the bandwidth; or, according to the bandwidth
  • the size of the baseband DFT is adjusted with the subcarrier spacing; or, the transmission or reception conversion is performed according to the TDD frame structure and the communication direction of the first transmission.
  • the terminal device uses the transmission and reception channel to perform the first transmission, that is, uplink information sending or downlink information reception.
  • the terminal device When the first transmission is an uplink transmission, the terminal device does not expect to receive a downlink transmission on the second frequency domain resource within the time period W1 before the first transmission; or, when the first transmission is a downlink transmission, the terminal device does not expect to receive a downlink transmission on the second frequency domain resource.
  • the network device performs the first transmission on the time-frequency resource corresponding to the first transmission, where the first transmission is one of the second transmission and the third transmission, and satisfies the above-mentioned priority criterion.
  • the terminal device determines to activate the frequency domain resource according to at least one of the following rules:
  • ⁇ Rule A Keep the current frequency domain resources unchanged, that is, the activated frequency domain resources are maintained in the first frequency domain resources;
  • the activated frequency domain resources are preset frequency domain resources, and the preset frequency domain resources are predefined or pre-configured by higher layers. That is, if the preset frequency domain resource is the same as the first frequency domain resource, no frequency domain resource switching is required; otherwise, the terminal device switches from the first frequency domain resource to the preset frequency domain resource.
  • the activated frequency domain resources are the frequency domain resources with downlink transmission symbols, that is, the terminal equipment adaptively switches to the frequency domain resources with downlink symbols at different times. At this time, if the symbol on the first frequency domain resource after the first transmission is a downlink transmission symbol, there is no need to perform frequency domain resource switching; otherwise, if the second frequency domain resource after the first transmission is a downlink transmission symbol, the terminal device will The first frequency domain resource is switched to the second frequency domain resource.
  • an embodiment of the present application provides a schematic flowchart of a communication method.
  • the network device sends configuration information for configuring a third frequency domain resource set to a terminal device, where the third frequency domain resource set includes at least two frequency domain resources.
  • the terminal device receives the configuration information.
  • the terminal device determines the third frequency domain resource set according to the configuration information.
  • the third set of frequency domain resources may include at least two CCs, at least two BWPs, or at least two subbands.
  • the third set of frequency domain resources includes multiple BWPs in the first CC.
  • the terminal device does not support simultaneous information reception and/or information transmission on multiple frequency domain resources in the third frequency domain resource set.
  • the network device sends first information to the terminal device, where the first information is used to indicate the number of the frequency domain resource associated with each or at least one time unit in the first time unit set.
  • the terminal device receives the first information, and determines, according to the first information, the number of the frequency domain resource associated with each or at least one time unit in the first time unit set. Wherein, the associated frequency domain resource belongs to the third frequency domain resource set.
  • the first time unit set includes N time units, where N is a positive integer greater than or equal to 2, and any time unit in the first time unit set is a time slot, a symbol, a sub-slot or a fixed number of consecutive symbols.
  • the first information can indicate the frequency domain resources associated with the N time units in the first time unit set, avoiding the need to send a handover instruction signaling every time the frequency domain resource is switched, and reducing the Signaling overhead.
  • the third set of frequency domain resources includes at least two frequency domain resources, and the at least two frequency domain resources may be at least two CCs, at least two BWPs, or at least two subbands.
  • the third set of frequency domain resources includes at least two BWPs within the first CC.
  • Each time unit in the first time unit may be a time slot, a symbol or a sub-slot.
  • the first information is used to indicate the number of the frequency domain resource associated with each or at least one time unit in the first time unit set, and the associated frequency domain resource belongs to the third frequency domain resource set.
  • the first information is used to indicate the number of the frequency domain resource associated with each time unit in the first time unit set and the communication direction of the time unit, and the communication direction may be downlink information reception or uplink information. send.
  • the first information may include P fields, the P fields correspond to a first time window with a length of P time units, and the ith field is used to indicate the location of the ith time unit in the first time window.
  • the number of the associated frequency domain resource, the ith field is used to indicate the number of the frequency domain resource associated with the ith time unit in the first time window, or the ith field is used to indicate the ith time in the first time window.
  • the frequency domain resource number and communication direction associated with the unit, where the starting position of the first time window is the S+j*Pth time unit, where j is an integer greater than or equal to zero.
  • the value of the ith field in the P fields may be an invalid value or empty, indicating that the frequency domain resource number and/or the communication direction associated with the ith time unit in the first time window is to be determined, In other words, the first information this time does not indicate the frequency domain resource number and/or the communication direction associated with the i-th time unit.
  • the first information may include first sub-indication information and second sub-indication information
  • the first sub-indication information and the second sub-indication information respectively include P fields
  • the P fields correspond to the first time.
  • the i-th field of the first sub-indication information is used to indicate the number of the downlink frequency domain resource associated with the i-th time unit in the first time window
  • the i-th field of the second sub-indication information is used for Indicates the serial number of the uplink frequency domain resource associated with the i-th time unit in the first time window.
  • the value of the i-th field in the P fields in the first sub-indication information may be the first invalid value or be empty, indicating that the downlink frequency domain associated with the i-th time unit in the first time window.
  • the resource number is to be determined, or in other words, the first sub-indication information this time does not indicate the downlink frequency domain resource number associated with the i-th time unit; optionally, the i-th in the P fields in the first sub-indication information
  • the value of the field may be the second invalid value, indicating that the ith time unit in the first time window is not associated with any downlink frequency domain resource number, or in other words, downlink transmission and reception cannot be performed on the ith time unit.
  • the value of the i-th field in the P fields in the second sub-indication information may be the first invalid value or null, indicating that the uplink frequency domain associated with the i-th time unit in the first time window is The resource number is to be determined, or in other words, the second sub-indication information this time does not indicate the uplink frequency domain resource number associated with the i-th time unit; optionally, the i-th in the P fields in the second sub-indication information
  • the value of the field may be the second invalid value, indicating that the ith time unit in the first time window is not associated with any uplink frequency domain resource number, or in other words, the ith time unit cannot perform uplink transmission and transmission.
  • the third set of frequency domain resources includes a frequency domain resource A and a frequency domain resource B
  • the first information indicates a frame structure E corresponding to the frequency domain resource A and a frame structure F corresponding to the frequency domain resource B
  • the first time unit set corresponds to the time unit set where the terminal equipment performs the first downlink transmission
  • the first downlink transmission includes: SPS PDSCH, periodic/semi-persistent channel state information (channel state information, CSI) -At least one of a reference signal (RS) and a downlink control channel PDCCH configured by a higher layer.
  • the terminal device determines, according to the frame structure E and the frame structure F, the frequency domain resource number associated with each time unit in the first time unit set of the terminal device, including:
  • the number of the frequency domain resource for information transmission and reception in the first time unit is the frequency domain resource
  • the third set of frequency domain resources includes a frequency domain resource A and a frequency domain resource B
  • the first information determines and indicates the frame structure E corresponding to the frequency domain resource A and the frame structure F corresponding to the frequency domain resource B
  • the first time unit set is the time unit set where the corresponding terminal equipment performs the first uplink transmission, wherein the first uplink transmission includes: the feedback information HARQ-ACK of the SPS PDSCH, the configuration authorized uplink data channel PUSCH, periodic/half At least one of persistent CSI reporting, periodic scheduling request SR, periodic/semi-persistent sounding reference signal SRS, and periodic random access channel.
  • the first information indicates the frame structure E and the frame structure F
  • the determining, according to the first information, the number of the frequency domain resource associated with each time unit of the terminal device in the first time unit set includes: for the first time unit set.
  • the number of the frequency domain resource associated with the first time unit is the number of the frequency domain resource B
  • the frame structure E corresponds to the uplink symbol
  • the frame structure F corresponds to the downlink symbol
  • the number of the frequency domain resource associated with the first time unit is the number of the frequency domain resource A
  • the frame structure E corresponds to the downlink symbol
  • the frame structure F corresponds to the downlink symbol
  • the The number of the frequency-domain resource associated with the first time unit is the number of the frequency-domain resource D
  • the frequency-domain resource D is a preset frequency-domain resource in the frequency-domain resource A or the frequency-domain resource B, or the
  • the domain resource D is the frequency domain resource associated with the previous time unit closest to the first time unit, or, the frequency domain resource D is the frequency domain resource for the terminal device to send and receive information on the third time unit,
  • the third time unit is a previous time unit within the first time unit set that is closest to the first time unit.
  • FIG. 4 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the communication directions on the Q frequency domain resources are respectively indicated by the Q fields in the frequency domain resource configuration information.
  • the network device sends the configuration information of the first frequency domain DL-UL to the terminal device, where the configuration information of the first frequency domain DL-UL is used to indicate the first time domain resource A in the fourth frequency domain resource set The communication direction of each frequency domain resource.
  • the terminal device receives the configuration information.
  • the communication direction is uplink, downlink or flexible.
  • the configuration information of the first frequency domain DL-UL includes Q fields, which are respectively used to indicate communication directions on the Q frequency domain resources included in the fourth frequency domain resource set.
  • the configuration information of the first frequency domain DL-UL is used to indicate three frequency domain resource sets, and the communication directions corresponding to the three frequency domain resource sets respectively are uplink, downlink and flexible.
  • the configuration information of the first frequency domain DL-UL is used to indicate that the frequency domain range in which the communication direction is uplink is [A1, B1], the similar frequency domain range in which the communication direction is downlink is [A2, B2], and the communication direction is [A2, B2].
  • the frequency domain range where the direction is flexible is [A3,B3].
  • the terminal device may determine the communication direction of each frequency domain resource according to the position of each frequency domain resource in the fourth frequency domain resource and the configuration information of the first frequency domain DL-UL.
  • the network device communicates with the terminal device using the first time domain resource A and the communication direction of the frequency domain resource corresponding to the first time domain resource A.
  • each time domain resource is individually configured/indicates the DL-UL configuration of multiple frequency domain resources in the frequency domain, and the terminal device can adaptively adjust the communication direction at different times (different time domain resources), which is convenient for timely adjustment of the sending and receiving Channel parameters to improve the quality of uplink and downlink information transmission.
  • the embodiment may further include: 400.
  • the network device sends the first configuration information to the terminal device.
  • the corresponding terminal device receives the first configuration information, and determines time domain resource division according to the first configuration information.
  • the first configuration information includes at least one of a start time S and a period P
  • the time domain resources are divided into multiple time windows of equal length according to the first configuration information, and the length of each time window is the above-mentioned period P,
  • the starting moment of the i-th time window is S+(i-1)*P.
  • the time-domain resources are all time-domain resources in a radio frame or a superframe.
  • start time S is defined relative to the start time of a radio frame or superframe (such as N radio frames), and the unit can be a time slot, a symbol or an absolute time (such as ms), and the period P is The unit can be slot, symbol or absolute time (eg ms).
  • the network device sends the second configuration information to the terminal device.
  • the terminal device receives the second configuration information, and obtains the time domain resource division in any time window according to the second configuration information.
  • the time domain resources in any time window are divided into N first time domain resources, and the time domains of the N first time domain resources do not overlap, and the N is a positive integer.
  • the first time domain resource A is one first time domain resource among the N first time domain resources.
  • the 4 first time domain resources correspond to the 4 slots in sequence.
  • the method may further include step 404: the network device sends third configuration information to the terminal device.
  • the terminal device receives the third configuration information, and determines a frequency domain resource set/sequence according to the third configuration information.
  • the sequence includes M frequency domain resources, each frequency domain resource corresponds to one frequency domain position, and the M frequency domain resources do not overlap, and M is a positive integer.
  • the M frequency domain resources are in one-to-one correspondence with the Q frequency domain resources in S410, or the M frequency domain resources include the Q frequency domain resources in S410.
  • the method may further include step 404: the network device sends fourth configuration information to the terminal device.
  • the terminal device acquires fourth configuration information, where the fourth configuration information includes first frequency domain DL-UL configuration information of the first time domain resource A.
  • the method may further include step 406: the network device sends fifth configuration information to the terminal device.
  • the terminal device obtains the fifth configuration information, and determines, according to the fifth configuration information, a starting frequency domain position Z corresponding to a frequency domain resource (or a set of frequency domain resources, for example, the fourth frequency domain resource in S410 matches) and width B.
  • the method may further include step 408: the network device sends sixth configuration information to the terminal device.
  • the terminal device obtains sixth configuration information, where the sixth configuration information is used to indicate the first frequency domain DL-UL configuration information of the first time domain resource A.
  • the first frequency domain DL-UL configuration information includes three parts, the first part indicates that the communication direction from the starting position Z to the frequency domain position Z+B1 is DL, and the second part indicates that the communication direction is DL from the frequency domain position Z+B1
  • the communication direction from the start to the frequency domain position Z+B2 is the flexible direction
  • the third part indicates that the communication direction from the frequency domain position Z+B2 to the frequency domain position Z+B is the UL.
  • the first part indicates that the communication direction from the start time Z to the frequency domain position Z+B1 is UL
  • the second part indicates that the communication direction from the frequency domain position Z+B1 to the frequency domain position Z+B2 is the flexible direction
  • the third part indicates that the communication direction is DL from the frequency domain position Z+B2 to the frequency domain position Z+B.
  • frequency-domain DL-UL configuration is performed on each time-domain resource, which is convenient for terminal equipment to adaptively adjust the communication direction at different times.
  • steps 410, 420, 402 to 408 are only an example for understanding the technical solutions of the present application, and the execution order of steps 410, 420, 402 to 408 is not subject to the above examples. Restriction, which will not be repeated in this application.
  • the network device and the terminal device include corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 5 and FIG. 6 are schematic structural diagrams of possible communication apparatuses provided by embodiments of the present application. These communication apparatuses can be used to implement the functions of the terminal equipment or the network equipment in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be the terminal device 130 or the terminal device 140 as shown in FIG. 1 , or may be the wireless access network device 120 as shown in FIG. 1 , or may be applied to the terminal device or a module (such as a chip) of a network device.
  • the communication device 500 includes a transceiver module 501 and a processing module 502 .
  • the communication apparatus 500 may be used to implement the functions of the terminal device or the network device in the method embodiment shown in FIG. 2 , FIG. 3 or FIG. 4 .
  • the transceiver module 501 is used to receive information for configuring the first frequency domain resource and the second frequency domain resource, and the processing module 502 is used to determine the first frequency domain resource and the second frequency domain resource according to the information received by the transceiver module, the first frequency domain resource corresponds to frame structure A, the second frequency domain resource corresponds to frame structure B, and the The frame structure A is different from the frame structure B, and the transceiver module 501 is configured to perform first transmission on the first frequency domain resource and/or the second frequency domain resource determined by the processing module.
  • the first frequency domain resource and the second frequency domain resource are two different bandwidth partial BWPs in the first component carrier; or, the first frequency domain resource and the second frequency domain resource are two different subbands in the first BWP; or, the first frequency domain resource and the second frequency domain resource are different component carriers.
  • the processing module 502 is configured to determine a first frequency domain resource and a second frequency domain resource, and the first frequency domain resource corresponds to Frame structure A, the second frequency domain resource corresponds to frame structure B, and the frame structure A is different from the frame structure B.
  • the transceiver module 501 is configured to send and configure the first frequency domain resource and the first frequency domain resource. information of two frequency domain resources, and for performing first transmission on the first frequency domain resource and/or the second frequency domain resource determined by the processing module.
  • the first frequency domain resource and the second frequency domain resource are two different bandwidth partial BWPs in the first component carrier; or, the first frequency domain resource and the second frequency domain resource are two different subbands in the first BWP; or, the first frequency domain resource and the second frequency domain resource are different component carriers.
  • the transceiver module 501 is configured to receive configuration information for configuring a third frequency domain resource set, where the third frequency domain resource set includes At least two frequency domain resources, the processing module 502 is configured to determine a third frequency domain resource set according to the configuration information of the third frequency domain resource set received by the transceiver module 501, and the transceiver module 501 is configured to receive the network
  • the processing module 502 is configured to determine, according to the first indication information received by the receiving module 501, the number of the frequency domain resource associated with each time unit in the first time unit set . Wherein, the associated frequency domain resource belongs to the third frequency domain resource set.
  • the processing module 502 is configured to determine a third frequency domain resource set
  • the transceiver module 501 is configured to send to the terminal device a set of configuring configuration information for the third frequency domain resource set, where the third frequency domain resource set includes at least two frequency domain resources, and sending first information to the terminal device, where the first information is used to determine the first The number of the frequency domain resource associated with each time unit in the time unit set.
  • the associated frequency domain resource belongs to the third frequency domain resource set.
  • the transceiver module 501 is configured to receive configuration information of the first frequency domain DL-UL, where the first frequency domain DL -
  • the configuration information of the UL is used to indicate the communication direction of each frequency domain resource in the fourth frequency domain resource set on the first time domain resource A
  • the processing module 502 is configured to use the first time domain resource A and the A communication direction of a frequency domain resource corresponding to a time domain resource A communicates with a network device.
  • the transceiver module 501 is configured to send configuration information of the first frequency domain DL-UL, wherein the first frequency domain DL -
  • the configuration information of the UL is used to indicate the communication direction of each frequency domain resource in the fourth frequency domain resource set on the first time domain resource A.
  • the processing module 502 is configured to use the communication direction of the first time domain resource A and the frequency domain resource corresponding to the first time domain resource A to communicate with the terminal device.
  • transceiver module 501 may be a transceiver
  • processing module 502 may be a processor
  • the communication apparatus 600 includes a processor 610 and an interface circuit 6020 .
  • the processor 610 and the interface circuit 620 are coupled to each other.
  • the interface circuit 620 can be a transceiver or an input-output interface.
  • the communication apparatus 600 may further include a memory 630 for storing instructions executed by the processor 610 or input data required by the processor 610 to execute the instructions or data generated after the processor 610 executes the instructions.
  • the communication apparatus 600 When the communication apparatus 600 is used to implement the methods in the foregoing method embodiments, it is used to execute the functions of the terminal equipment or the functions of the network equipment in the foregoing method embodiments.
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions may be composed of corresponding software modules, and software modules may be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the access network equipment or in the terminal equipment.
  • the processor and the storage medium may also exist in the access network device or the terminal device as discrete components.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions.
  • the computer program or instructions When the computer program or instructions are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer program or instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server that integrates one or more of the available media.
  • the usable media can be magnetic media, such as floppy disks, hard disks, magnetic tapes; optical media, such as DVDs; and semiconductor media, such as solid-state drives.
  • “at least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are a kind of "or” relationship; in the formula of this application, the character "/” indicates that the related objects are a kind of "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,用以解决在双频谱的场景下,实现不同频域资源配置不同的帧结构。通过网络设备向终端设备发送配置第一频域资源与第二频域资源的信息,第一频域资源对应帧结构A,第二频域资源对应帧结构B,帧结构A与帧结构B不同,第一频域资源与第二频域资源为第一成员载波内的两个不同的带宽部分BWP,或者第一频域资源与第二频域资源为第一BWP内的两个不同的子带,终端设备在第一频域资源和/或第二频域资源上进行第一传输。从而可以在双频谱的场景下,实现不同频域资源配置不同的帧结构,以及终端设备在不同频域资源间快速切换和重传合并。

Description

一种通信方法与装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
5G通信系统致力于支持更高的系统性能,如支持多种业务类型、不同部署场景和更宽的频谱范围。该多种业务类型中可以包括增强移动宽带(enhanced mobile broadband,eMBB)、海量机器类型通信(Massive Machine type Communication,mMTC)业务,超高可靠性超低时延通信(ultra-reliable low-latency communication,URLLC)业务、多媒体广播多播业务(Multimedia Broadcast Multicast Service,MBMS)或定位业务等。部署场景可以包括室内热点(indoor hotspot)、密集城区(dense urban)、郊区、城区宏覆盖(urban macro)或高铁场景等。更宽的频谱范围是指5G将支持高达100GHz的频谱范围,这既包括6GHz以下的低频部分,也包括6GHz以上最高到100GHz的高频部分。
工业自动化是第五代移动通信(5th generation,5G)的典型应用场景,一个工厂内会布署多种业务,例如以摄像头实时监控为主的上行大容量业务,以设备测试为主的下行大容量业务、以及以控制自动化为主的URLLC业务。对于URLLC业务,低时延需求对数据通信的各个环节都提出极高的时延需求,而对于时分双工(time division duplex,TDD)频带,固定帧结构带来的上下行切换时延会极大增加业务到达后到数据传输机会的等待时延。例如,运动控制业务一般对往返时间的需求是1ms(即单向空口时延是0.5ms),而现有C-band上的典型帧结构是30kHz子载波间隔和7D:1S:2U帧结构(帧结构“xD:yS:zU”表示一个上下行切换周期由x个连续下行时隙、y个灵活时隙和z个连续上行时隙组成),下行与上行的切换周期为5ms,显然无法满足1ms的往返时间需求。为了满足1ms的往返时间的需求或者0.5ms单向传输时延需求,引入了sub-slot级的帧结构,但是这种sub-slot级的上下行切换和传输,必然带来更大的切换开销和导频/控制开销,从而对正常的上行大容量或者下行大容量业务极为不利。
因此如何针对双频谱的场景下,设计合理的频谱使用策略和帧结构是目前需要解决的问题。
发明内容
本申请实施例提供了一种通信方法及装置,用以解决在双频谱的场景下,实现不同频域资源配置不同的帧结构。
第一方面,本申请提供一种通信方法,所述方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。终端设备接收配置第一频域资源与第二频域资源的信息,所述第一频域资源对应帧结构A,所述第二频域资源对应帧结构B,所述帧结构A与所述帧结构B不同,所述终端设备在所述第一频域资源和/或所述第二频域资源上进行第一传输。例如,所述第一频域资源与所述第二频域资源为第一成员 载波CC内的两个不同的带宽部分BWP;又例如,所述第一频域资源与所述第二频域资源为第一BWP内的两个不同的子带;再例如,所述第一频域资源与所述第二频域资源为不同的CC。采用本申请提供的方法,可以解决双频谱的场景下,实现不同频域资源配置不同的帧结构,以及终端设备在不同频域资源间快速切换和重传合并。
一个示例可以为,所述第一频域资源和第二频域资源可以包括在第六频域资源内。例如,所述第一频域资源和所述第二频域资源可以是第一BWP内2个子带,则所述第六频域资源可以是所述第一BWP,或者,所述第六频域资源可以是第一BWP内第三子带,且所述第三子带包含的RB资源等于所述第一子带和所述第二子带包含RB资源的并集。又例如,所述第一频域资源和所述第二频域资源是第一CC内2个BWP,则所述第六频域资源可以是所述第一CC,或者,所述第六频域资源可以是第一CC内第三BWP、且所述第三BWP包含的RB资源等于所述第一BWP和所述第二子带包含RB资源的并集。例如,所述第一频域资源和所述第二频域资源是第一band内2个CC,则所述第六频域资源可以是所述第一band,或者,所述第六频域资源可以是第一band内第三CC、且所述第三CC包含的RB资源等于所述第一CC和所述第二CC包含RB资源的并集。采用这种方式,可以实现在第六频域资源内不同频域资源配置不同的帧结构,可以保证终端设备在第六频域资源内任何一个符号上皆存在可以进行第一传输的频域资源。
在一种可能设计中,终端设备从所述第一频域资源切换到所述第二频域资源的切换时延小于从所述第二频域资源切换到第三频域资源的切换时延;其中,所述第一频域资源与所述第二频域资源属于第一频域资源集合,所述第三频域资源属于第二频域资源集合。例如,所述第三频域资源、所述第一频域资源与所述第二频域资源为所述第一CC内的三个不同的BWP,且第一频域资源和第二频域资源属于第一BWP集合,第三频域资源属于第二BWP集合。所述第一资源集合和所述第二资源集合可以由网络设备发送的第一配置信息指示。其中,所述第一频域资源和所述第二频域资源满足如下至少一种关系:所述第一频域资源和所述第二频域资源的频域位置不重叠;或者,所述第一频域资源和所述第二频域资源的频域宽度相同;或者,所述第一频域资源和所述第二频域资源的子载波间隔相同。
采用这种设计,通过将所有频域资源分为多个集合,可以保证相同集合内的频域资源具有一些相同参数配置,从而降低相同集合内不同频域资源的切换时延。这样,网络设备可以确定终端设备在不同频域资源之间进行切换所需要的切换时延,从而在调度第一传输时,针对不同的频域资源切换行为(集合内部切换还是不同集合间切换),选择合适的调度时延,保证终端设备有足够的时间进行切换处理和后续收发处理。
在一种可能的设计中,所述第一频域资源与所述第二频域资源为不同的CC,且所述第一传输为第一DCI调度的混合自动重传请求HARQ重传,所述方法还包括:获取第一指示信息,所述第一指示信息指示第四频域资源,所述第四频域资源为所述第一传输对应的HARQ初传所在频域资源,且所述第四频域资为CC。可选地,所述第一指示信息可以携带在第一DCI中。可选地,所述第四频域资源和所述第一传输所在目标频域资源是不同的频域资源,即通过指示初传所在频域资源,使能终端设备可以进行正确的重传与初传合并译码。应理解,所述第四频域资源属于第一频域资源集合,即所述第四频域资源与所述目标频域资源属于一个频域资源集合。通过保证所述第四频域资源与所述目标频域资源属于一个频域资源集合,可以降低终端设备的频域资源切换时延,降低数据重传处理时延。
在一种可能的设计中,所述第一频域资源与所述第二频域资源为不同的CC,且所述第一传输为第一DCI调度的数据传输(包括下行数据传输或上行数据传输),所述方法还包括: 获取第一指示信息,所述第一指示信息指示第四频域资源,所述第四频域资源为所述第一传输对应的HARQ进程号最近一次传输所在频域资源,且所述第四频域资为所述第一频域资源或者所述第二频域资源。可选地,所述第一指示信息可以携带在第一DCI中。可选地,所述第四频域资源和所述第一传输所在目标频域资源是不同的频域资源。通过确定第一传输的HARQ进程号最近一次传输在哪个频域资源,并结合最近一次传输的传输方式(如动态调度的传输或配置的传输)以及(对于调度的传输)调度DCI中NDI取值,确定本次传输是最近一次传输的重传,还是一个新的传输。
在一种可能的设计中,所述第一频域资源与所述第二频域资源为不同的CC,且所述第一传输为第一DCI调度的数据传输(包括下行数据传输或上行数据传输)且所述第一传输对应第一HARQ进程号,所述方法还包括:获取第一指示信息,所述第一指示信息指示第四频域资源和第四频域资源上的第二HARQ进程号,所述第四频域资为所述第一频域资源或所述第二频域资源,且所述第一传输为所述第四频域资源上所述第二HARQ进程号对应的最近一次传输的重传。可选地,所述第一指示信息可以携带在第一DCI中。可选地,所述第四频域资源和所述第一传输所在目标频域资源是不同的频域资源。通过进一步指示第二HARQ进程号,可以实现不同频域资源上不同HARQ进程相互关联,增加调度灵活性。
在一种可能的设计中,所述终端设备还获取第二指示信息和第三指示信息,所述第二指示信息指示目标频域资源,所述第三指示信息指示所述第一传输所采用的频域资源在所述目标频域资源中的资源块RB位置,所述目标频域资源为所述第一频域资源或所述第二频域资源。可选地,所述第一传输为第二DCI动态调度的下行数据传输的混合自动重传请求确认HARQ-ACK传输,所述第二指示信息由所述第二DCI承载。采用这种方式,网络设备分别指示目标频域资源和在该目标频域资源内的频域RB位置,指示方法简单,具有后向兼容性。同时,目标频域资源内的频域RB位置指示开销较小。
在一种可能的设计中,所述终端设备还可以获取第四指示信息,所述第四指示信息指示进行所述第一传输的时域位置,根据所述时域位置、所述帧结构A和所述帧结构B确定目标频域资源,所述目标频域资源为所述第一频域资源或所述第二频域资源。示例的,当所述第一传输是上行传输,所述时域位置上的所述帧结构A和所述帧结构B为上行符号时,所述目标频域资源是协议预定义的或网络设备通过无线资源控制RRC信令配置给终端设备的;和/或当所述第一传输是上行传输,所述时域位置上的所述帧结构A是上行符号、且所述帧结构B不是上行符号时,所述目标频域资源为所述第一频域资源;和/或当所述第一传输是上行传输,所述时域位置上的所述帧结构A不是上行符号、且所述帧结构B是上行符号时,所述目标频域资源为所述第二频域资源;和/或当所述第一传输是下行传输,所述时域位置上的所述帧结构A和所述帧结构B为下行符号时,所述目标频域资源是协议预定义的或网络设备通过无线资源控制RRC信令配置给终端设备的;和/或当所述第一传输是下行传输,所述时域位置上的所述帧结构A是下行符号、且所述帧结构B不是下行符号时,所述目标频域资源为所述第一频域资源;和/或当所述第一传输是下行传输,所述时域位置上的所述帧结构A不是下行符号、且所述帧结构B是下行符号时,所述目标频域资源为所述第二频域资源。
在一种可能的设计中,所述第一频域资源与所述第二频域资源为第一CC内的两个不同的BWP,所述终端设备还可以获取第五指示信息,所述第五指示信息指示所述第一传输在所述第一CC内的频域位置,根据所述频域位置确定目标频域资源,所述目标频域资源为所述第一频域资源或所述第二频域资源。示例性,所述第五指示信息可以指示所述第一传输在第 一CC内占据的RB位置,例如占据的RB集合,或者,占据的起始RB编号和连续占据RB数目。
在一种可能的设计中,所述第一频域资源与所述第二频域资源为第一BWP内的两个不同的子带,所述终端设备还可以获取第六指示信息,所述第六指示信息指示所述第一传输在所述第一BWP内的频域位置,根据所述频域位置确定目标频域资源,所述目标频域资源为第一频域资源或所述第二频域资源。示例的,所述第六指示信息可以指示所述第一传输在第一BWP内占据的RB位置,所述RB位置例如可以是RB集合,或者起始RB编号和连续占据RB数目。
在一种可能的设计中,所述终端设备还可以接收第三DCI,所述第三DCI包括第一字段,所述第一字段指示所述帧结构A与所述帧结构B。具体的,所述终端设备根据所述第一字段与第一关系确定所述帧结构A与所述帧结构B,所述第一关系包括至少一组映射关系,每组映射关系包括至少两个帧结构以及与所述至少两个帧结构对应的一个字段。采用这种方式,可以实现动态快速的基于所述第一字段确定帧结构A和帧结构B,可以降低DCI的指示开销。
在一种可能的设计中,所述终端设备还可以接收第四DCI,所述第四DCI包括指示第二字段和第三字段,所述第二字段指示所述帧结构A,所述第三字段指示帧结构B。所述终端设备根据第二字段与第二关系确定所述帧结构A,根据第三字段与第三关系确定所述帧结构B,其中,所述第二关系与所述第三关系分别包括至少一组映射关系,每组映射关系包括一个帧结构以及与所述一个帧结构对应的字段。采用这种方式,可以基于第二字段和第三字段分别确定帧结构A和帧结构B,可以提供最大的指示灵活性。
在一种可能的设计中,所述终端设备还可以获取指示信息C和指示信息D,所述指示信息C指示进行所述第一传输的时域位置,所述指示信息D指示进行所述第一传输的频域位置,所述频域位置信息为所述第六频域资源内的频域位置信息。所述终端设备在所述时域位置和所述频域位置上进行第一传输。
在一种可能的设计中,所述终端设备根据所述第一传输的方向、所述帧结构A和所述帧结构B,调整所述收发通道参数,并基于调整后的收发通道在所述时域位置和所述频域位置上进行第一传输。
第二方面,本申请提供一种通信方法,所述方法的执行主体可以是网络设备也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。网络设备发送用于配置第一频域资源与第二频域资源的信息,所述第一频域资源对应帧结构A,所述第二频域资源对应帧结构B,所述帧结构A与所述帧结构B不同,在所述第一频域资源和/或所述第二频域资源上进行第一传输。其中,所述第一频域资源与所述第二频域资源为第一成员载波CC内的两个不同的带宽部分BWP;或者,所述第一频域资源与所述第二频域资源为第一BWP内的两个不同的子带;或者,所述第一频域资源与所述第二频域资源为不同的CC。
一个示例可以为,所述第一频域资源和第二频域资源可以包括在第六频域资源内。例如,所述第一频域资源和所述第二频域资源可以是第一BWP内2个子带,则所述第六频域资源可以是所述第一BWP,或者,所述第六频域资源可以是第一BWP内第三子带,且所述第三子带包含的RB资源等于所述第一子带和所述第二子带包含RB资源的并集。又例如,所述第一频域资源和所述第二频域资源是第一CC内2个BWP,则所述第六频域资源可以是所述第一CC,或者,所述第六频域资源可以是第一CC内第三BWP、且所述第三BWP包含的RB资源等于所述第一BWP和所述第二子带包含RB资源的并集。例如,所述第一频域资源和所述第二频域资源是第一band内2个CC,则所述第六频域资源可以是所述第一band,或 者,所述第六频域资源可以是第一band内第三CC、且所述第三CC包含的RB资源等于所述第一CC和所述第二CC包含RB资源的并集。
在一种可能的设计中,所述第一频域资源和所述第二频域资源满足如下至少一种关系:所述第一频域资源和所述第二频域资源的频域位置不重叠;或者,所述第一频域资源和所述第二频域资源的频域宽度相同;或者,所述第一频域资源和所述第二频域资源的子载波间隔相同。
在一种可能的设计中,所述网络设备还可以向终端设备发送第一配置信息,所述第一配置信息指示第一频域资源集合和第二频域资源集合。终端设备从所述第一频域资源切换到所述第二频域资源的切换时延小于从所述第二频域资源切换到第三频域资源的切换时延;其中,所述第一频域资源与所述第二频域资源属于所述第一频域资源集合,所述第三频域资源属于所述第二频域资源集合。
在一种可能的设计中,所述第一频域资源与所述第二频域资源为不同的CC,且所述第一传输为第一DCI调度的混合自动重传请求HARQ重传,所述网络设备还可以向终端设备发送第一指示信息,所述第一指示信息指示第四频域资源,所述第四频域资源为所述第一传输对应的HARQ初传所在频域资源,且所述第四频域资为所述第一频域资源或所述第二频域资源。
在一种可能的设计中,所述第一频域资源与所述第二频域资源为不同的CC,且所述第一传输为第一DCI调度的数据传输(包括下行数据传输或上行数据传输),所述网络设备还可以向终端设备发送第一指示信息,所述第一指示信息指示第四频域资源,所述第四频域资源为所述第一传输对应的HARQ进程号最近一次传输所在频域资源,且所述第四频域资为CC。
在一种可能的设计中,所述第一频域资源与所述第二频域资源为不同的CC,且所述第一传输为第一DCI调度的数据传输(包括下行数据传输或上行数据传输)且所述第一传输对应第一HARQ进程号,所述网络设备还可以向终端设备发送第一指示信息,所述第一指示信息指示第四频域资源和第四频域资源上的第二HARQ进程号,所述第四频域资为所述第一频域资源或所述第二频域资源,且所述第一传输为所述第四频域资源上所述第二HARQ进程号对应的最近一次传输的重传。
在一种可能的设计中,所述网络设备还可以向所述终端设备发送第二指示信息和第三指示信息,所述第二指示信息指示目标频域资源,所述第三指示信息指示所述第一传输所采用的频域资源在所述目标频域资源中的频域位置,所述目标频域资源为所述第一频域资源或所述第二频域资源。
在一种可能的设计中,所述第一传输为第二DCI动态调度的下行数据传输的混合自动重传请求确认HARQ-ACK传输,所述第二指示信息由所述第二DCI承载。
在一种可能的设计中,所述网络设备还可以向终端设备发送第四指示信息,所述第四指示信息指示进行所述第一传输的时域位置。
在一种可能的设计中,所述第一频域资源与所述第二频域资源为第一CC内的两个不同的BWP,所述网络设备还可以向终端设备发送第五指示信息,所述第五指示信息指示所述第一传输在所述第一CC内的频域位置。
在一种可能的设计中,所述第一频域资源与所述第二频域资源为第一BWP内的两个不同的子带,所述网络设备还可以向终端设备发送第六指示信息,所述第六指示信息指示所述第一传输在所述第一BWP内的频域位置。
在一种可能的设计中,所述网络设备还可以向终端设备发送第三DCI,所述第三DCI包 括第一字段,所述第一字段指示所述帧结构A与所述帧结构B。
在一种可能的设计中,所述网络设备还可以向终端设备发送第四DCI,所述第四DCI包括第二字段和指第三字段,所述第二字段指示所述帧结构A,所述第三字段指示帧结构B。
在一种可能的设计中,所述网络设备还可以向终端设备发送指示信息C和指示信息D,所述指示信息C指示进行所述第一传输的时域位置,所述指示信息D指示进行所述第一传输的频域位置,所述频域位置信息为所述第六频域资源内的频域位置信息。所述终端设备在所述时域位置和所述频域位置上进行第一传输。
在一种可能的设计中,所述网络设备根据所述第一传输的方向、所述帧结构A和所述帧结构B,调整所述收发通道参数,并基于调整后的收发通道在所述时域位置和所述频域位置上进行第一传输。
其中,第二方面中各个方法的有益效果可以参考第一方面中各个方法的有益效果,在此不再赘述。
第三方面,本申请提供一种通信方法,所述方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。终端设备确定第三频域资源集合,所述第三频域资源集合包含至少两个频域资源,所述终端设备根据第一信息确定终端设备在第一时间单元集合内每个或至少一个时间单元所关联频域资源的编号,所述所关联频域资源属于所述第三频域资源集合,所述第一时间单元集合包含N个时间单元,N为大于等于2的正整数。采用本申请提供的方法,可以通过第一信息指示所述第一时间单元集合内的N个时间单元上关联的频域资源,避免每次频域资源切换都需要发送一个切换指示信令,降低信令开销。
第四方面,本申请提供一种通信方法,所述方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。网络设备确定第三频域资源集合,所述第三频域资源集合包含至少两个频域资源,所述网络设备确定第一信息,所述第一信息指示终端设备在第一时间单元集合内每个或至少一个时间单元所关联频域资源的编号,所述所关联频域资源属于所述第三频域资源集合,所述第一时间单元集合包含N个时间单元,N为大于等于2的正整数,所述网络设备向所述终端设备发送第三频域资源集合与所述第一信息。
上述第三方面或第四方面的一种可能设计中,所述第三频域资源集合包含至少两个频域资源可以为至少两个成员载波、至少两个BWP或至少两个子带。例如,所述第三频域资源集合包含第一CC内的至少两个BWP。
上述第三方面或第四方面的一种可能设计中,所述终端设备不支持在第三频域资源集合内的多个频域资源上同时进行信息接收和/或信息发送。
上述第三方面或第四方面的一种可能设计中,所述第一时间单元中每个时间单元是一个时隙或一个符号或一个子时隙。
上述第三方面或第四方面的一种可能设计中,所述网络设备发送第一信息,相应的,所述终端设备获取第一信息。所述第一信息用于指示第一时间单元集合内每个时间单元所关联频域资源的编号,所述所关联频域资源属于所述第三频域资源集合。可选地,所述第一信息还用于指示第一时间单元集合内每个时间单元所关联频域资源的编号和所述时间单元上进行信息传输的通信方向,所述通信方向可以是下行信息接收或者上行信息发送。
上述第三方面或第四方面的一种可能设计中,所述第一信息可以包括P个字段,所述P个字段对应长度为P个时间单元的第一时间窗,所述P个字段中的第i个字段用于指示第一 时间窗内第i个时间单元所关联频域资源的编号,或所述P个字段中的第i个字段用于指示第一时间窗内第i个时间单元所关联频域资源编号和通信方向,其中第一时间窗的起始位置为第S+j*P个时间单元,其中j为大于等于零的整数。
上述第三方面或第四方面的一种可能设计中,所述第一信息可以包括第一子指示信息和第二子指示信息,所述第一子指示信息和第二子指示信息分别包含P个字段,所述P字段对应第一时间窗内P个时间单元,第一子指示信息的第i个字段用于指示第一时间窗内第i个时间单元所关联下行频域资源的编号,第二子指示信息的第i个字段用于指示第一时间窗内第i个时间单元所关联上行频域资源的编号。
上述第三方面或第四方面的一种可能设计中,所述第三频域资源集合包括频域资源A和频域资源B,所述第一信息指示所述频域资源A的帧结构E和频域资源B的帧结构F,且第一时间单元集合对应终端设备进行第一下行传输所在的时间单元集合,所述第一下行传输包括:半持续性下行数据信道(SPS PDSCH)、周期性/半持续性信道状态信息(Channel State Information,CSI)-参考信号(Reference Signal,RS)、高层配置的下行控制信道PDCCH中至少一个。此时,所述第一信息指示所述帧结构E和帧结构F,所述根据第一信息确定终端设备在第一时间单元集合内每个时间单元所关联频域资源的编号,包括:
对于第一时间集合单元内的第一时间单元,当帧结构E对应下行符号、且帧结构F对应上行符号,该第一时间单元上进行信息收发的频域资源的编号为所述频域资源A的编号;当帧结构E对应上行符号、且帧结构F对应下行符号,该第一时间单元所关联频域资源的编号为所述频域资源B的编号;当帧结构E对应下行符号、且帧结构F对应下行符号,该第一时间单元所关联频域资源的编号为频域资源C的编号,所述频域资源C为频域资源A或频域资源B中预设的一个频域资源,或者,所述频域资源C为终端设备在与所述第一时间单元最接近的前一个时间单元所关联的频域资源,或者,所述频域资源C为终端设备在第二时间单元上进行信息收发的频域资源,所述第二时间单元是第一时间单元集合内、且与所述第一时间单元最接近的前一个时间单元。
上述第三方面或第四方面的一种可能设计中,所述第三频域资源集合包含频域资源A和频域资源B,所述第一信息确定指示频域资源A对应的帧结构E和频域资源B对应的帧结构F,且第一时间单元集合为对应终端设备进行第一上行传输所在时间单元集合,其中所述第一上行传输包括:SPS PDSCH的反馈信息HARQ-ACK、配置授权的上行数据信道PUSCH、周期性/半持续性CSI上报、周期性调度请求SR、周期性/半持续性探测参考信号SRS、周期性随机接入信道中至少一个。此时所述第一信息指示所述帧结构E和帧结构F,所述根据第一信息确定终端设备在第一时间单元集合内每个时间单元所关联频域资源的编号,包括:
对于第一时间集合单元内的第一时间单元,当帧结构E对应下行符号、且帧结构F对应上行符号,该第一时间单元所关联频域资源的编号为频域资源B的编号;当帧结构E对应上行符号、且帧结构F对应下行符号,该第一时间单元所关联频域资源的编号为频域资源A的编号;当帧结构E对应下行符号、且帧结构F对应下行符号,该第一时间单元上所关联频域资源的编号为频域资源D的编号,所述频域资源D为频域资源A或频域资源B中预设的一个频域资源,或者,所述频域资源D为与所述第一时间单元最接近的前一个时间单元所关联的频域资源,或者,所述频域资源D是终端设备与网络设备在第三时间单元上进行信息收发的频域资源,所述第三时间单元是第一时间单元集合内、且与所述第一时间单元最接近的前一个时间单元。
第五方面,提供一种通信装置,有益效果可以参见第一方面的描述此处不再赘述。所述 通信装置具有实现上述第一方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:处理模块和收发模块。所述收发模块,用于接收配置第一频域资源与第二频域资源的信息,所述处理模块用于根据收发模块接收的所述信息确定第一频域资源与第二频域资源,所述第一频域资源对应帧结构A,所述第二频域资源对应帧结构B,所述帧结构A与所述帧结构B不同;所述收发模块,用于在所述第一频域资源和/或所述第二频域资源上进行第一传输。其中,所述第一频域资源与所述第二频域资源为第一成员载波CC内的两个不同的带宽部分BWP;或者,所述第一频域资源与所述第二频域资源为第一BWP内的两个不同的子带;或者,所述第一频域资源与所述第二频域资源为不同的CC。这些模块可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第六方面,提供一种通信装置,有益效果可以参见第二方面的描述此处不再赘述。所述通信装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括处理模块与收发模块,所述处理模块用于确定第一频域资源与第二频域资源,所述第一频域资源对应帧结构A,所述第二频域资源对应帧结构B,所述帧结构A与所述帧结构B不同;所述收发模块用于,用于发送配置所述第一频域资源与所述第二频域资源的信息,以及在所述处理模块确定的所述第一频域资源和/或所述第二频域资源上进行第一传输。其中,所述第一频域资源与所述第二频域资源为第一成员载波CC内的两个不同的带宽部分BWP;或者,所述第一频域资源与所述第二频域资源为第一BWP内的两个不同的子带;或者,所述第一频域资源与所述第二频域资源为不同的CC。这些模块可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第七方面,提供一种通信装置,有益效果可以参见第三方面的描述此处不再赘述。所述通信装置具有实现上述第三方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:处理模块和收发模块。收发模块,用于接收配置第三频域资源集合的配置信息,所述处理模块用于确定第三频域资源集合,所述第三频域资源集合包含至少两个频域资源,所述收发模块,用于接收第一信息,所述处理模块用于根据所述第一信息确定终端设备在第一时间单元集合内每个时间单元所关联频域资源的编号,所述所关联频域资源属于所述第三频域资源集合,所述第一时间单元集合包含N个时间单元,N为大于等于2的正整数;所述收发模块,用于支撑所述装置与网络设备进行通信。这些模块可以执行上述第三方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第八方面,提供一种通信装置,有益效果可以参见第四方面的描述此处不再赘述。所述通信装置具有实现上述第四方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括处理模块与收发模块,所述处理模块,用于确定第三频域资源集合,所述第三频域资源集合包含至少两个频域资源;所述收发模块,用于向所述终端设备发送所述第三频域资源信合的配置信息,所述处理模块,用于确定第一信息,所述第一信息指示终端设备在第一时间单元集合内每个时间单元所关联频域资源的编号,所 述所关联频域资源属于所述第三频域资源集合,所述第一时间单元集合包含N个时间单元,N为大于等于2的正整数;所述收发模块用于,向所述终端设备发送所述第一信息。这些模块可以执行上述第四方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第九方面,提供了一种通信装置,所述通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片。所述通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,所述存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第十方面,提供了一种通信装置,所述通信装置可以为上述方法实施例中的网络设备,或者为设置在网络设备中的芯片。所述通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,所述存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由网络设备所执行的方法。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得上述各方面中由终端设备执行的方法被执行。
第十二方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由网络设备执行的方法被执行。
第十三方面,本申请提供了一种芯片系统,所述芯片系统包括处理器,用于实现上述各方面的方法中终端设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。所述芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十四方面,本申请提供了一种芯片系统,所述芯片系统包括处理器,用于实现上述各方面的方法中网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。所述芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十五方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现上述各方面中由终端设备执行的方法。
第十六方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现上述各方面中由网络设备执行的方法。
第十七方面,本申请提供了一种通信系统,包括第五方面和第六方面的通信装置,或者包括第七方面与第八方面的装置,或者包括第九方面与第十方面的通信装置。
附图说明
图1为本申请实施例提供的一种可应用的通信系统示意图;
图2为本申请实施例提供一通信方法的流程示意图;
图3为本申请实施例提供另一种通信方法的流程示意图;
图4本申请实施例提供另一种通信方法的流程示意图;
图5为本申请的实施例提供的一种通信装置的结构示意图;
图6为本申请的实施例提供的另一种通信装置的结构示意图。
具体实施方式
本申请实施例中的技术方案,可应用于各种通信系统。比如,长期演进(long term evolution,LTE)系统、5G移动通信系统以及未来的移动通信系统等。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例既可以应用于时分双工(time division duplex,TDD)的场景,也可以适用于频分双工(frequency division duplex,FDD)的场景。
本申请实施例中部分场景以无线通信网络中新空口(New Radio,NR)网络的场景为例进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
图1是本申请的实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
无线接入网设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,网络设备均指无线接入网设备。
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
本申请实施例中,用于实现终端的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。在本申请实施例中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通 信。网络设备和终端设备之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
在本申请的实施例中,时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是单载波频分复用(single carrier-frequency division multiplexing,SC-FDM)符号。如果没有特别说明,本申请实施例中的符号均指时域符号。
可以理解的是,本申请的实施例中,物理下行共享信道(physical downlink shared channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)、物理上行控制信道(physical uplink control channel,PUCCH)和物理上行共享信道(physical uplink shared channel,PUSCH)只是作为下行数据信道、下行控制信道、上行控制信道和上行数据信道的一种举例,在不同的系统和不同的场景中,这些信道可能有不同的名称,本申请的实施例对此并不做限定。
下面对本申请实施例涉及的一些技术特征进行介绍。
URLLC业务的低时延需求对数据通信提出了极高的时延需求,但是采用固定帧结构的TDD频域资源进行上下行切换时,因切换时延问题,会增加数据传输机会的等待时延。例如运动控制(motion control)类业务具有极低的时延需求(如1ms的环回时延,即0.5ms单向空口时延)和极高的可靠性需求(如99.9999%~99.9999999%的可靠性),而现有C-band上的典型帧结构是30kHz子载波间隔(subcarrier space,SCS)和3D:1S:1U或7D:1S:2U帧结构,也就是说,下行与上行的切换周期是2.5ms或者5ms,显然无法满足1ms的通信传输需求。
为了满足1ms的通信传输需求或者0.5ms单向传输时延需求,当前引入了sub-slot级的帧结构,但是sub-slot级的上下行切换和传输必然会带来更大的切换开销和导频/控制开销,对正常的上行大容量或者下行大容量业务极不利。因此针对混合业务部署场景,如何设计合理的频谱和帧结构是未来工业自动化应用的关键技术。
下面针对本申请实施例中所需要使用的名词作简单地介绍
一、频谱
NR中频谱使用分为多个级别,依次分别是频带(band)、成员载波(component carrier,CC)、带宽部分(bandwidth part,BWP)、子带(subband,SB)、资源块(resource block,RB)和子载波(subcarrier,SC),下面对NR中使用的频谱分别进行介绍:
band:band的定义是由国际电信联盟(International Telecommunication Union,ITU)制定的。例如band n78对应3.3GHz~3.8GHz,共500MHz频带,且只能是TDD制式。在通信系统中,大部分射频滤波器的带宽都是以band为单位,也就是说,一个band上不同频域资源的信号无法通过射频滤波器进行滤波处理,会形成同频带(Intra-Band)干扰。
CC:CC是运营商部署频谱的基本单位。例如一个band内可以包括一个或多个CC,一个CC对应频域的一段频域资源,该频域资源可以包括起始位置与带宽。例如带宽可以为100MHz、80MHz、40MHz、20MHz、10MHz和5MHz等,并且带宽两侧可以包括保护频带(guard band)。需要注意的是,目前LTE与NR中,帧结构的配置都是以CC为单位,也就是说,在不考虑动态TDD帧结构的情况下,1个CC中TDD帧结构是固定的,不同CC的TDD帧结构可以不同。另外,LTE和NR中,终端设备一般支持载波聚合(至少下行载波聚合),也就是说,支持在多个成员载波上进行信息收发,当终端设备需要在不同成员载波上进行信息收发时,可以直接选择对应的成员载波,不涉及CC切换,因而没有切换时延。但是不同成员载波CC具有不同的HARQ实体,也就是说具有不同的HARQ进程,因而无法支持跨CC的HARQ合并,即无法支持数据 传输初传和重传在不同CC、且终端设备可以对初传和重传进行联合译码。
BWP:一个CC可以包括一个或多个BWP,BWP具有如下特点:
·不同的BWP可以支持不同的子载波间隔,从而可以匹配不同的业务。
·多个BWP可以共享中心频点、且具有不同的带宽。这种设制可以使终端设备根据业务需要,在不同的带宽上工作,以达到省电的目的。
·不同BWP带宽不同,可以允许终端设备根据自身能力选择BWP,从而使终端设备获得更多设计的自由度。
目前,网络设备可以通过预留一定资源来充当2个相邻BWP之间的guard band。另外,不同BWP的子载波间隔可以不同,也就是说,子载波间隔的配置是以BWP为单位的。BWP在频域上对应CC上的一段频域位置,BWP的起始位置包含于CC的频域范围内,而带宽可以由多个RB组成。另外,NR目前不支持同时激活多个BWP,即一个CC内多个BWP在同一时刻只能有一个BWP是激活状态,如果终端设备需要在不同BWP上进行信息收发,需要先进行BWP切换,存在一定的切换时延,会给信息收发带来一定处理时延。但是一个CC内多个BWP是共享一个HARQ实体,因而虽然BWP切换会带来切换时延,但是天然支持一个CC内的不同BWP上的初传和重传进行HARQ合并。
·子带SB:1个BWP包括多个SB,1个SB包含1个或多个RB。示例的,本申请中SB可以表示一段连续频域资源。
·资源块RB和子载波SC:1个RB包含12个连续的SC,其中,1个SC是LTE与NR系统中最小的频域资源单位,可以用于承载1个调制符号。
二、帧结构
本申请中,帧结构可以包括NR时域结构和TDD帧结构。具体情况如下:
NR时域结构:NR时域资源的传输单位可以为帧frame、子帧subframe、时隙Slot或符号Symbol,帧的长度固定是10ms,子帧的长度固定是1ms,其中,时隙与符号的长度与子载波间隔相关,1个时隙包括14个符号(正常循环前缀)或12个符号(扩展循环前缀)。假设子载波间隔是SCS=2 μ×15kHz,则1个子帧subframe包含2 μ个时隙Slot,其中μ是载波间隔索引(SCS index),取值可以为0、1、2或3。
TDD帧结构:NR中TDD帧结构的单位可以是符号,该符号可以包含下行符号D、上行符号U和灵活符号X(或灵活符号S),其中灵活符号可以用于DL-UL切换,也可以用于DL传输和/或UL传输。所述TDD帧结构一般表示为“xD:yS:zU”,表示一个上下行切换周期由x个连续下行时隙、y个灵活时隙、z个连续上行时隙组成;灵活时隙可以包含下行符号、灵活符号或上行符号中至少一种,TDD帧结构还可以进一步用“aD:bS:cU”表示一个灵活时隙由a个连续下行符号、b个灵活符号、c个连续上行符号组成。
为了实现工厂混合业务部署,实现不同业务匹配不同的帧结构,当前工厂内频谱使用策略包括:工厂内通信与室外宏基站可以共用频谱,或者,工厂内通信采用单独频谱,或者联合使用室外宏基站频谱F1和新的频谱F2进行工厂内通信。
示例性的,工厂内通信使用单独频谱时,工厂内可以使用频谱F2,室外宏站可以使用频谱F1,其中F1与F2可以位于相同的band、且频域不重叠,或者位于不同band。例如,电信在室外部署的是C-band上3.4GHz~3.5GHz的100Mhz频谱,联通在室外部署的是C-band上3.5GHz~3.6GHz的100Mhz频谱,而室内可以使用C-band上3.3GHz~3.4GHz的100Mhz工业频谱。在F2上,采用以下方式支持混合业务:
方式一、根据多种业务需求,设计一种TDD帧结构,但是URLLC业务要求传输时延比较 短,并且要求数据传输在上行传输和下行传输之间进行频繁切换,从而导致切换开销增大。
方式二、将频谱F2分为多个子频带,不同的业务使用不同的子频带,不同的子频带使用不同的帧结构。此时,设置一种业务占用一个子频带,容易造成频谱碎片和资源利用率低的问题。
方式三、将频谱F2分为2个子频带,子频带1用于处理DL业务,子频带2用于处理UL业务,采用这种方式可以实现TDD互补帧结构,具体情况和下面说的频谱F1和频谱F2互补类似。
工厂内的通信采用联合使用频谱F1和频谱F2方式,由于频谱F1的TDD帧结构已经固定,例如可以为7D:1S:2U,工厂内的通信在频谱F1上保留相同帧结构,但是在频谱F2上部署相反的帧结构,即2D:1S:7U。采用这种方式,工厂内通信系统形成频谱F1和频谱F2的TDD互补帧结构,从而达成类似FDD的效果。下行大容量业务和上行大容量业务可以分别在频谱F1和频谱F2上部署,而URLLC业务则通过频谱F1和频谱F2切换,采用这设种设置能够提高了FDD上传输效率,减小切换等待时延。
当频谱F1与频谱F2对应2个band中的2个CC,或者对应2个band中2个BWP时,由于不同band具有不同的射频滤波器,从而可以解决射频滤波的相互影响的问题,但是很少有运营商能拿到2个band的频谱。
当频谱F1与频谱F2对应1个band中的2个或多个CC时,以2个CC为例,终端设备可以配置支持载波聚合(Carrier Aggregation,CA),即支持同时在2个CC上进行信息接收和/或信息发送,目前协议并不支持在一个CC上进行初传而在另一个CC上进行重传。此外,对于下行数据传输的HARQ-ACK反馈,目前HARQ-ACK反馈只能固定在某个CC上传输,协议不支持动态切换HARQ-ACK传输所在的CC。最后,进行URLLC业务传输的终端设备本质上在一个时刻只会在一个CC发送或者接收数据,因此浪费了2个CC的并行处理能力。
当频谱F1与频谱F2对应1个CC中的2个或多个BWP,首先,目前协议中TDD帧结构配置都是以CC为单位的,不支持以BWP为级别的TDD帧结构配置;其次,目前协议也不支持多个BWP同时被激活的方案。为了不引入等待时延,URLLC通信需要在不同的BWP上切换,但是BWP的切换时延本身就比较大,从而进行URLLC数据传输的等待时延也相对增大。
当频谱F1与频谱F2对应1个BWP内中的2段频谱,例如可以是子带subband#1和子带subband#2,一方面目前协议不支持以subband为级别的帧结构配置;另一方面subband#1和subband#2的位置和带宽动态变化,使终端设备很难实时调整滤波器模拟元器件去匹配subband,如果保持这些模拟元器件的工作带宽是整个BWP,则无法消除2个subband之间的异向干扰。异向干扰指的是“基站A的下行传输对基站B的上行接收的干扰”或“终端A的上行传输对终端B的下行接收的干扰”;与之对应的是同向干扰,指的是“基站A的下行传输对基站B的下行传输(即终端B的下行接收)的干扰”或“终端A的上行传输对终端B的上行传输(即基站B的上行接收)的干扰”。
为了解决上述提到的双频异配比帧结构如何配置频域资源,以及如何支持跨频域资源重传和快速切换的问题,本申请提出了一种通信方法,用以解决双频谱的场景下,实现不同频域资源配置不同的帧结构,以及终端设备在不同频域资源间快速切换和重传合并。
为了表述方便,下述实施例中,本申请实施例是以第一时域资源与第二时域资源为例进行说明的,但是本发明实施例是可应用在两个或多个频域资源的场景下的,相应的,两个或多个频域资源也可以分别对应两种或多种帧结构,对此,本申请不做具体的限制。应理解,下述实施例中的第一频域资源和第二频域资源的关系可以包括如下几种:
·第一频域资源和第二频域资源位于2个不同的bands内,例如可以是2个不同bands内的 2个CC、2个BWP或2个子带;或者
·第一频域资源和第二频域资源位于1个相同的band内,例如可以是1个band内的2个不同CC,或者,1个CC内2个不同BWP,或者1个BWP内2个不同子带。
其中,band、CC、BWP和子带的概念如上文所述。上述第一频域资源与第二频域资源的关系仅是为了更好理解本申请的技术方案所举的例子,本申请包括并不限于上述举例。
在本申请的实施例中,传输包括上行传输和下行传输。对于上行传输,终端设备发送信令、数据或信号给网络设备,网络设备接收来自终端设备的信令、数据或信号。对于下行传输,网络设备发送信令、数据或信号给终端设备,终端设备接收来自网络设备的信令、数据或信号。对于发送端而言,进行传输指的是发送;对于接收端而言,进行传输指的是接收。
在本申请的实施例中,网络设备的功能也可以由网络设备中的模块(如芯片)来执行,也可以由包含有网络设备功能的控制子系统来执行。这里的包含有网络设备功能的控制子系统可以是智能电网、工厂自动化以及智能交通等工业物联网应用场景中的控制中心;终端设备的功能也可以由终端设备中的模块(如芯片)来执行。如图2所示,本申请实施例提供一通信方法的流程示意图。
201、网络设备向终设备发送配置第一频域资源与第二频域资源的信息,所述第一频域资源对应帧结构A,所述第二频域资源对应帧结构B,所述帧结构A与所述帧结构B不同。相应的,所述终端设备接收所述信息。
可选的,所述终端设备可以根据所述信息确定所述第一频域资源与所述第二频域资源。
示例性的,所述帧结构A与所述帧结构B的周期相同,从而降低帧结构A和帧结构B的配置开销,例如帧结构A和帧结B的配置周期都是5ms。
示例性的,所述帧结构A和所述帧结构B不仅周期相同,且为第一种互补型的帧结构。例如,所述帧结构A的下行符号对应所述帧结构B的上行符号,所述帧结构A的上行符号对应所述帧结构B的下行符号,所述帧结构A的灵活符号对应所述帧结构B的灵活符号。
示例性的,所述帧结构A和帧结构B可以是第二种互补型的帧结构。例如,帧结构A下行符号对应帧结构B上行符号或灵活符号,和/或,帧结构A上行符号对应帧结构B下行符号或灵活符号;或者,帧结构A下行符号或灵活符号对应帧结构B上行符号,和/或,帧结构A上行符号或灵活符号对应帧结构B下行符号。
示例性的,所述帧结构A和帧结构B可以是第三种互补型的帧结构。例如,帧结构A的下行时隙对应帧结构B的上行时隙,帧结构A的上行时隙对应帧结构B的下行时隙,帧结构A的灵活时隙对应帧结构B的灵活时隙。
应理解,采用上述第一种、第二种或第三种互补型的帧结构,使得处理URLLC业务的终端设备在任何符号(或时隙)都有下行资源和上行资源,从而可以根据需要进行下行传输和上行传输,不会增加额外的等待时延。
202、所述终端设备与所述网络设备采用所述第一频域资源和/或所述第二频域资源进行第一传输。
示例性的,所述第一传输包括下行传输或上行传输。在本申请中,下行传输可以包括以下至少一项的传输:PDCCH、PDSCH、信道状态信息参考信号(channel state information reference signal,CSI-RS)、下行同步信号和物理广播信道(physical broadcast channel,PBCH);上行传输可以包括以下至少一项的传输:PUSCH、PUCCH、探测参考信号(sounding reference signal,SRS)和物理随机接入信道(physical random access channel,PRACH)。其中,PUCCH可以用于承载调度请求(scheduling request,SR)、混合自动重传请求确认(hybrid automatic  repeat request-acknowledgment,HARQ-ACK)和CSI中的至少一项。PDSCH传输可以是下行数据的初传或HARQ重传,PUSCH传输可以是上行数据的初传或HARQ重传。
示例性的,终端设备支持同时在多个频域资源上进行信息收发,此时网络设备可以将第一频域资源和第二频域资源都配置/指示为激活状态,即通知终端设备同时准备在第一频域资源和第二频域资源上进行信息发送或接收。例如,第一频域资源和第二频域资源是一个band内2个CC,且终端支持对这2个CC进行载波聚合;又例如,第一频域资源和第二频域资源是一个CC内2个BWP,且终端支持同时激活这2个BWP。
或者,终端设备不支持同时在多个频域资源上进行信息收发,则可以在第一频域资源和第二频域资源上支持切换,也就是说,根据网络设备向终端设备指示第一传输所在的目标频域资源,所述终端设备切换到第一传输所在的目标频域资源后再进行第一传输。例如,第一频域资源和第二频域资源是一个成员载波内2个BWP,且终端设备不支持同时激活这2个BWP。
为了更好的理解本申请的技方案,下述以两个频域资源为例,从不同角度对“终端设备不支持同时在至少两个频域资源上进行信息收发”进行说明:
第一频域资源和所述第二频域资源可以对应1个数字处理单元,且对应2个独立的模拟通道,每个模拟通道包括自动增益控制器、混频器、基带模拟滤波器或数模/模数转换器等至少一个。对应地,由于所述第一频域资源和所述第二频域资源分别与1个独立的模拟通道关联,因此,终端设备在所述第一频域资源和所述第二频域资源上支持无时延(或极低时延)切换。由于所述第一频域资源和所述第二频域资源共享1份数字处理单元,无法支持同时对2个频域资源上的收发信号进行处理,因此,无法实现在所述第一频域资源和所述第二频域资源上同时进行数据发送或接收。
在终端设备侧,第一频域资源和所述第二频域资源对应1个数字处理单元和1个模拟通道。也就是说,终端设备在同一时刻只能在第一频域资源或第二频域资源上进行信号收发,且频域资源之间的切换需要调整模拟通道的参数,其中,模拟通道参数可以是混频器频点、基带模拟滤波器带宽、数模/模数转换器分辨率中至少一种,因此终端设备在第一频域资源和所述第二频域资源上切换需要一定的切换时延。应理解,在终端设备侧,第一频域资源和所述第二频域资源对应1个数字处理单元和1个模拟通道时,由于第一频域资源和第二频域资源具有一些相同的参数配置,例如,所述第一频域资源和所述第二频域资源满足如下至少一种关系:所述第一频域资源和所述第二频域资源的频域位置不重叠;或者,所述第一频域资源和所述第二频域资源的频域宽度相同;或者,所述第一频域资源和所述第二频域资源的子载波间隔相同,从而可以最大程度上降低模拟通道参数调整需要的时间,降低第一频域资源和所述第二频域资之间的切换时延。
示例性的,步骤202前,所述实施例进一步还可以包括:所述终端设备根据目标频域资源和当前所在频域资源,确定是否需要进行不同频域资源间切换。
应理解,如果所述终端设备在第一频域资源和第二频域资源上有独立的处理实体,例如独立的模拟通道和计算处理单元,则所述终端设备可以在第一频域资源和第二频域资源上进行联合收发,确定不需要进行不同频域资源间切换。
应理解,当第一频域资源和第二频域资源共享一个处理实体,或者说共享一套模拟通道,则不同频域资源间切换需要终端设备调整部分处理参数,所述处理参数如前述介绍的混频器频率、滤波器带宽或采样器速率等。
例如,当目标频域资源与当前终端设备所在的频域资源不同,则终端设备确定需要进行 频域资源切换。
当前频域资源是第一频域资源、且目标频域资源是第二频域资源;或者当前频域资源是第二频域资源、且目标频域资源是第一频域资源,则终端设备确定切换时延是第一时延T1。当前频域资源是第五频域资源、且目标频域资源是第一频域资源或第二频域资源,或者,当前频域资源是第一频域资源或第二频域资源、且目标频域资源是第五频域资源,其中第五频域资源不属于所述第一频域资源集合,则终端设备确定切换时延是第二切换时延T2。
进一步,如果终端设备确定需要进行频域资源切换,则终端设备确定第一时间长度。
例如,当所述第一传输是动态调度的传输,则第一时间长度是:DCI的起始符号的起始时刻或者DCI结束符号的结束时刻、至所述第一传输起始符号的起始时刻的时间长度,其中,所述DCI用于承载频域资源或时域资源的指示信息。
例如,当所述第一传输是半持续性调度(semi-persistent scheduling,SPS)的PDSCH或类型-2(Type-2)配置授权(configured grant,CG)PUSCH(其中Type-2表示该CG PUSCH在被配置后,需要DCI激活才可以进行上行数据传输)的首次传输,则第一时间长度是:激活SPS PDSCH或Type-2 CG PUSCH的DCI的起始符号的起始时刻或者DCI结束符号的结束时刻、至所述第一传输起始符号的起始时刻的时间长度。
例如,当所述第一传输是SPS PDSCH或Type-2 CG PUSCH的非首次传输或者高层配置的传输(例如Type-1CG PUSCH、周期性CSI-RS、周期性CSI或周期性SRS),也就是说,所述第一传输是周期性传输,则第一时间长度是:所述第一传输的上次传输的起始符号的起始时刻或者结束符号的结束时刻、至所述第一传输的本次传输的起始符号的起始时刻的时间长度。
需要特别说明的是,当第一时间长度大于等于规定切换时延T0,则终端设备在目标频域资源发送/接收第一传输,否则终端设备在第一频域资源不发送/不接收第一传输。其中,T0是终端设备在不同频域资源间切换的最低切换时延,根据第五频域资源与第一/第二频域资源的关系,取值为T1或T2。
进一步,如果终端设备确定需要进行不同频域资源间切换、且所述终端设备在目标频域资源进行第一传输时,则终端设备根据所述目标频域资源的配置信息(如频域位置和宽度、子载波间隔)等调整模拟通道参数和/或数字处理参数,如混频器频率、基带滤波器带宽、采样器速率、FFT/IFFT大小,所述终端设备在目标频域资源上发送/接收第一传输。
示例性的,步骤201中网络设备向终端设备发送配置第一频域资源和第二频域资源的信息后,所述实施例还可以包括:所述网络设备向所述终端设备发送第一配置信息,所述第一配置信息指示所述第一频域资源集合和所述第二频域资源集合。所述终端设备接收所述第一配置信息。所述第一频域资源与所述第二频域资源属于第一频域资源集合,第三频域资源属于第二频域资源集合。
例如,网络设备通过第一配置信息,给终端设备配置N个频域资源集合,如N个BWP集合,其中一个频域资源集合(如第一频域资源集合)包含第一频域资源和第二频域资源,另一个频域资源集合(如第二频域资源集合)包含第三频域资源。通过将所有频域资源分为多个集合,相同集合内的频域资源具有一些相同参数配置,从而降低相同集合内不同频域资源的切换时延。这样,网络设备可以明确终端设备在不同频域资源之间切换需要的切换时延,从而在调度第一传输时,针对不同的频域资源切换行为(集合内部切换或是集合间切换),选择合适的调度时延,保证终端设备有足够的时间进行切换处理和后续收发处理。
示例性的,从所述第一频域资源切换到所述第二频域资源的切换时延(即第一切换时延T1)小于从所述第二频域资源切换到第三频域资源的切换时延(即第二切换时延T2)。例如, 网络设备配置的N个频域资源集合满足如下特征:一个集合内多个频域资源之间切换的切换时延为T1,不同频域资源集合内的2个频域资源切换时延是T2,且满足T1<T2。
需要特别说明的是,第一切换时延T1和第二切换时延T2也可以是网络设备通过信令指示给终端设备或者是协议预定义,且满足第一切换时延T1<第二切换时延T2。其中,第一切换时延T1=0,或第一切换时延T1=1个符号,或第一切换时延T1=2个符号,或第一切换时延等于终端设备从发送激活状态到发送去激活状态的转换时延,例如10us,或者,第一切换时延等于终端设备从发送激活状态到发送去激活状态的转换时延的2倍,例如20us。可选地,第二切换时延T2与子载波间隔和终端设备(如UE)的能力相关,例如对于能力较强的终端设备,第二切换时延T2分别是1ms(对于SCS 15kHz和30kHz)或0.75ms(对于SCS 60kHz和120kHz)。可选的,所述终端设备确定的从源频域资源切换至目标频域资源所对应的切换时延为T1或T2。
示例性的,在步骤202前,所述网络设备采用下述方式向终端设备指示第一传输对应的频域位置(例如资源块RB集合)或时域位置(例如时域OFDM时隙和符号集合)。对应的,所述终端设备确定进行第一传输所对应的频域位置或者时域位置。其中,终端设备确定第一传输对应的频域位置之前,需要先确定第一传输所在的目标频域资源,所述目标频域资源可以为所述第一频域资源或所述第二频域资源。通过这种方法,终端设备先确定目标频域资源,可以根据目标频域资源调整部分收发通道参数,从而更好地实现第一传输,并最大程度上降低第一传输对其他频域资源上的传输所造成的干扰。
网络设备可以采用下述任一示例指示目标频域资源:
一个示例为:网络设备直接指示目标频域资源。所述网络设备可以向终端设备发送目标频域资源指示信息。对应的,所述终端设备根据所述目标频域资源指示信息确定第一传输对应的目标频域资源,所述目标频域资源为所述第一频域资源或所述第二频域资源。
例如,网络设备向终端设备发送目标频域资源指示信息,所述指示信息包括第二指示信息和第三指示信息,所述第二指示信息显式地指示目标频域资源,所述第三指示信息指示所述第一传输在所述目标频域资源中RB位置。网络设备分别指示目标频域资源和在该目标频域资源中的RB位置,指示方法简单,具有后向兼容性;同时,在确定的目标频域资源中,目标频域资源中RB位置的指示开销较小。
又例如:第一传输为DCI动态调度的PDSCH或DCI动态调度的PUSCH、或DCI动态调度的PDSCH的HARQ-ACK传输、或DCI动态触发的非周期CSI-RS传输、或DCI动态触发的非周期CSI反馈、或DCI动态触发的SRS传输中的至少一种时,所述网络设备还可以向终端设备发送DCI,所述目标频域资源指示信息可以包括在所述DCI中。
一个例子是,所述目标频域资源指示信息可以包括第二指示信息与第三指示信息,第二指示信息为所述DCI中的字段H和第三指示信息为所述DCI中的字段J。例如,第一传输是DCI动态调度的PDSCH的HARQ-ACK传输,则所述DCI同时调度PDSCH传输和PDSCH对应的HARQ-ACK传输,字段H和字段J分别用于指示HARQ-ACK传输所在目标频域资源和HARQ-ACK传输在该目标频域资源中的RB位置。可选地,字段H可以是一个单独的字段,只用于指示HARQ-ACK传输所在目标频域资源;可选地,字段H可以是现有DCI中PDSCH所在目标频域资源指示字段,在一种DCI设计中,字段H可以联合指示PDSCH传输所在目标频域资源(下行频域资源)和HARQ-ACK传输所在目标频域资源(上行频域资源)。以第一频域资源和第二频域资源为一个CC内2个BWP为例,字段H可以指示该DCI调度数据的HARQ-ACK反馈所在BWP的编号。
又例如,所述步骤202中的第一传输可以是通过无线资源控制(radio resource control,RRC)信令配置的传输,例如第一传输可以是Type-1配置授权PUSCH传输(Type-1配置授权的PUSCH指的是配置授权的PUSCH在被配置后,不需要DCI激活即可传输)、周期性CSI-RS传输、周期性CSI反馈或周期性SRS传输,所述目标频域资源指示信息可以包括在RRC信令中。
又例如,所述步骤202中的第一传输可以是RRC信令配置、且需DCI动态激活的传输,例如半持续性PDSCH传输或Type-2配置授权的PUSCH传输(Type-2配置授权的PUSCH指的是配置授权的PUSCH在被配置后,需要DCI激活才可传输),则所述目标频域资源指示信息可以包括在RRC信令中或者激活DCI中。
另一个示例为:网络设备间接指示目标频域资源。所述网络设备可以向终端设备发送第一传输的频域位置信息。相应的,所述终端设备根据所述频域位置信息确定第一传输对应的目标频域资源。通过这种方法可以通过第一传输的频域位置信息同时指示第一传输对应的目标频域资源和第一传输在目标频域资源内的RB,提高对第一传输的频域位置指示的灵活性。
例如,所述网络设备向终端设备发送指示第一传输的频域位置的信息,当所述频域位置在第一频域资源的频域范围内,所述终端设备确定目标频域资源为所述第一频域资源;当所述频域位置在第二频域资源的频域范围内,所述终端设备确定目标频域资源为所述第二频域资源。可选地,上述第一传输的频域位置可以通过第一传输占据的RB的集合来指示,也可以通过第一传输的频域起始位置和宽度来指示。
例如,所述第一频域资源与所述第二频域资源可以为第一CC内的两个不同的BWP,所述网络设备向终端设备发送第五指示信息,所述第五指示信息指示所述第一传输在所述第一CC内的频域位置,所述终端设备接收到所述第五指示信息,根据所述频域位置确定目标频域资源,所述目标频域资源为所述第一频域资源或所述第二频域资源。
示例性,第一频域资源和第二频域资源对应的子载波间隔相同,所述第五指示信息可以指示所述第一传输在第一CC内占据的RB位置,例如占据的RB集合,或者占据的起始RB编号和连续占据的RB的数目。
具体的,第一CC在频域包含第一宽度B1 Hz,以第一CC起始频点作为参考点,第一BWP在频域的起始位置为f1 Hz,占据的宽度为B2 Hz,第二BWP在频域的起始位置为f2 Hz,占据的宽度为B3 Hz,所述第五指示信息指示所述第一传输在频域的起始位置为f3 Hz以及在频域的结束位置为f4 Hz,或者第五指示信息指示第一传输在频域的起始位置为f3 Hz以及第一传输连续占据的频域资源宽度为B4 Hz(此时f4=f3+B4)。当f2>f1+B2,即第一BWP和第二BWP频域不重叠,如果f1<=f3且f4<=f1+B2,即第一传输的频域位置在第一BWP之内,则目标频域资源为第一BWP;如果f2<=f3且f4<=f2+B3,即第一传输的频域位置在第二BWP之内,则目标频域资源为第二BWP。当f1<f2<f1+B2,即第一BWP和第二BWP频域存在重叠,如果f1<=f3且f4<=f2,即第一传输的频域位置在第一BWP之内而与第二BWP没有重叠,则目标频域资源为第一BWP;如果f1+B2<=f3且f4<=f2+B3,即第一传输的频域位置在第二BWP之内而与第一BWP没有重叠,则目标频域资源为第二BWP;如果f2<=f3且f4<=f1+B2,即第一传输在所述第一CC内的频域位置在第一BWP和第二BWP的重叠频域资源之内,则目标频域资源为预设BWP,所述预设BWP是协议预定义或者网络设备通过RRC信令配置给终端设备的。可选地,上述起始频点f1、f2和f3可以通过第一CC内RB编号指示。
例如,所述第一频域资源与所述第二频域资源为第一BWP内的两个不同的子带,所述网络设备向终端设备发送第六指示信息,所述第六指示信息指示所述第一传输在所述第一BWP内的频域位置。所述终端设备接收所述第六指示信息,根据所述第一BWP内的频域位置确定 目标频域资源,所述目标频域资源为第一频域资源或所述第二频域资源。
例如,所述第六指示信息可以指示所述第一传输在第一BWP内占据的RB位置,RB位置例如可以是RB集合,或者起始RB编号和连续占据的RB的数目。
具体的,第一BWP在频域包含第一宽度B1’Hz,以第一BWP起始频点作为参考点,第一SB在频域的起始位置为f1’Hz,占据的宽度为B2’Hz,第二SB在频域的起始位置为f2’Hz,占据的宽度为B3’Hz,所述第六指示信息指示所述第一传输在频域的起始位置为f3’Hz,在频域的结束位置为f4’Hz,或者第六指示信息指示第一传输在频域的起始位置为f3Hz以及第一传输连续占据的频域资源宽度为B4’Hz(此时f4’=f3’+B4’)。当f2’>f1’+B2’,即第一SB和第二SB频域不重叠,如果f1’<=f3’且f4’<=f1’+B2’,即第一传输的频域位置包含于第一SB之内,则目标频域资源为第一SB;如果f2’<=f3’且f4’<=f2’+B3’,即第一传输的频域位置在第二SB内,则目标频域资源为第二SB;当f1’<f2’<f1’+B2’,即第一SB和第二SB频域存在重叠,如果f1’<=f3’且f4’<=f2’,即第一传输在频域位置在第一SB内,且与第二SB没有重叠,则目标频域资源为第一SB,如果f1’+B2’<=f3’且f4’<=f2’+B3’,即第一传输的频域位置在第二SB之内,且与第一SB没有重叠,则目标频域资源为第二SB,如果f2’<=f3’且f4’<=f1’+B2’,即第一传输在所述第一BWP内的频域位置在第一SB和第二SB的重叠频域资源之内,则目标频域资源为预设SB,所述预设SB是协议预定义或者网络设备通过RRC信令配置给终端设备的。可选地,上述起始频点f1、f2以及f3可以通过第一BWP内RB编号指示。
另一个示例:网络设备间接指示目标频域资源。所述网络设备可以向终端设备指示第一传输的时域位置的信息,所述终端设备根据所述时域位置的信息确定第一传输对应的目标频域资源。通过这种方法,网络设备可以通过所述时域位置的信息隐式指示目标频域资源,从而省去目标频域资源指示信令开销。
示例的,所述网络设备可以向终端设备发送第四指示信息,用于指示进行第一传输的时域位置,所述时域位置包括第一传输所在时隙、以及在所在时隙内的起始符号和连续占据的符号数目。所述终端设备根据所述时域位置、所述帧结构A和所述帧结构B确定目标频域资源,所述目标频域资源为所述第一频域资源或所述第二频域资源。
例如,帧结构A和帧结构B是前述介绍的第一种互补型帧结构。当所述第一传输是上行传输,且所述第一传输的时域位置上的所述帧结构A和所述帧结构B为灵活符号时,所述目标频域资源是协议预定义的或RRC信令中配置的;当所述第一传输是上行传输,所述时域位置上的所述帧结构A是上行符号、且所述帧结构B不是上行符号时,所述目标频域资源为所述第一频域资源;当所述第一传输是上行传输,所述时域位置上的所述帧结构A不是上行符号、且所述帧结构B是上行符号时,所述目标频域资源为所述第二频域资源;当所述第一传输是下行传输,且所述时域位置上的所述帧结构A和所述帧结构B为灵活符号时,所述目标频域资源由协议预定义的或高层信令配置;当所述第一传输是下行传输,所述时域位置上的所述帧结构A是下行符号、且所述帧结构B不是下行符号时,所述目标频域资源为所述第一频域资源;当所述第一传输是下行传输,所述时域位置上的所述帧结构A不是下行符号、且所述帧结构B是下行符号时,所述目标频域资源为所述第二频域资源。
应理解,帧结构A和帧结构B是前述介绍的第二种互补型帧的帧结构。当所述第一传输是上行传输,且所述第一传输的时域位置上的所述帧结构A和所述帧结构B为灵活符号或上行符号时,所述目标频域资源是协议预定义的或网络设备通过RRC信令配置给终端设备的;当所述第一传输是上行传输,所述时域位置上的所述帧结构A是上行符号或灵活符号、且所述帧结构B是下行符号时,所述目标频域资源为所述第一频域资源;当所述第一传输是上行传输, 所述时域位置上的所述帧结构A是下行符号、以及所述帧结构B是上行符号或灵活符号时,所述目标频域资源为所述第二频域资源;当所述第一传输是下行传输,所述时域位置上的所述帧结构A和所述帧结构B为灵活符号或下行符号时,所述目标频域资源是协议预定义的或网络设备通过RRC信令配置给终端设备的;当所述第一传输是下行传输,所述时域位置上的所述帧结构A是下行符号或灵活符号、以及所述帧结构B是上行符号时,所述目标频域资源为所述第一频域资源;当所述第一传输是下行传输,所述时域位置上的所述帧结构A是上行符号、以及所述帧结构B是下行符号或灵活符号时,所述目标频域资源为所述第二频域资源。
示例性的,步骤201的一种可实现方式为:所述网络设备向终端设备发送第六频域资源的信息,所述第六频域资源包括第所述第一频域资源和所述第二频域资源。相应的,所述终端设备接收所述第六频域资源的信息。采用这种方式,可以实现在第六频域资源内不同子频域资源配置不同的帧结构。采用这种方式,保证终端设备在所述频域资源内任何一个符号上存在可以进行上行传输和下行传输的子频域资源。
其中,所述第六频域资源是连续的频域资源,且所述第六频域资源在频域的起始位置小于等于所述第一频域资源和所述第二频域资源在频域的起始位置,所述第六频域资源在频域的结束位置大于等于所述第一频域资源和所述第二频域资源在频域的起始位置。或者,所述第六频域资源是离散的频域资源,包括第一子频域资源和第二子频域资源,所述第一子频域资源的频域位置和所述第一频域资源对齐,是连续的频域资源,所述第二子频域资源的频域位置和所述第二频域资源对齐,是连续的频域资源。
例如,所述第一频域资源和所述第二频域资源可以是第一BWP内2个子带,则所述第六频域资源可以是所述第一BWP,或者,所述第六频域资源可以是第一BWP内第三子带,且所述第三子带包含的RB资源等于所述第一子带和所述第二子带包含RB资源的并集,或者,所述第三子带包含所述第一子带和所述第二子带内的所有RB资源。
又例如,所述第一频域资源和所述第二频域资源是第一CC内2个BWP,则所述第六频域资源可以是所述第一CC,或者,所述第六频域资源可以是第一CC内第三BWP、且所述第三BWP包含的RB资源等于所述第一BWP和所述第二子带包含RB资源的并集,或者,所述第三BWP包含所述第一BWP和所述第二BWP内的所有RB资源。
例如,所述第一频域资源和所述第二频域资源是第一band内2个CC,则所述第六频域资源可以是所述第一band,或者,所述第六频域资源可以是第一band内第三CC、且所述第三CC包含的RB资源等于所述第一CC和所述第二CC包含RB资源的并集,或者,所述第三CC包含所述第一CC和所述第二CC内的所有RB资源。
可选地,所述网络设备可以直接指示所述第一传输在所述第六频域资源内的频域位置,即在频域占据的RB集合。通过这种方法,网络设备始终以第六频域资源为单位指示终端设备进行信息收发,对应地,终端设备始终在第六频域资源上进行信息收发,不需要网络设备发送频域资源切换信令,也不需要跨频域资源进行初传和重传合并,可以简化高层协议设计。
示例性的,为了最大化第一传输的质量并尽量降低对其他邻频传输的泄露干扰,所述终端设备根据所述第一传输的方向、所述帧结构A和所述帧结构B,调整所述收发通道参数,并基于调整后的收发通道在所述时域位置和所述频域位置上进行第一传输。也就是说,第一传输始终是在第六频域资源上,但是终端设备的收发通道可以基于该第六频域资源包含的多个频域资源中一个进行参数调整,从而规避对其他频域资源的泄露干扰。
示例性的,若终端设备支持同时进行数据收发,在进行数据收发时,根据所述第一频域资源对应的帧结构A和所述第二频域资源对应的帧结构B,自适应调整收发通道的工作参数。
例如,对于第一TTI,所述帧结构A为下行符号对应所述帧结构B为上行符号,则所述终端设备的接收通道参数需要与第一频域资源匹配,可以理解解为混频器的工作频点与第一频域资源的频域位置匹配,或者滤波器的带宽与第一频域资源的宽度匹配。类似地,所述终端设备的发送通道参数需要与第二频域资源匹配。
示例性的,若终端设备不支持同时进行数据收发,则在进行第一传输时,根据所述第一频域资源对应的帧结构A和所述第二频域资源对应的帧结构B,自适应调整收发通道的工作参数。
例如,如果第一传输是下行传输,第一传输的时域位置上的所述帧结构A为下行符号,所述帧结构B为上行符号,则所述终端设备的接收通道参数需要与第一频域资源匹配;当第一传输的时域位置上的所述帧结构A为上行符号,所述帧结构B为下行符号,则所述终端设备的接收通道参数需要与第二频域资源匹配。类似地,如果第一传输是上行传输,当第一传输的时域位置上的所述帧结构A为下行符号,所述帧结构B为上行符号,则所述终端设备的发送通道参数需要与第二频域资源匹配;当第一传输的时域位置上的所述帧结构A为上行符号,所述帧结构B为下行符号,则所述终端设备的发送收通道参数需要与第一频域资源匹配。
示例性的,在步骤202前,所述网络设备向终设备指示所述第一传输是数据传输的初传还是重传,如果是重传,进一步指示所述第一传输的上次重传或初传所在频域资源,从而便于终端设备正确进行重传合并和重传发送。
例如,当第一传输是数据传输,如PDSCH或PUSCH的重传时,5G NR支持基于HARQ的数据重传。以PDSCH为例,网络设备首先在一个HARQ进程上发送所述数据的初传,终端设备接收所述数据,如果终端设备对所述数据译码成功,则向网络设备反馈ACK,网络设备接收ACK后确认数据传输成功,释放该HARQ进程(可用于下一次数据传输),终端设备收到该HARQ进程的下一个数据的初传后,会覆盖该HARQ进程缓存中之前保留软信息,并存储本次传输的软信息。如果终端设备对所述数据译码错误,则向网络设备反馈NACK,网络设备接收NACK后,可以使用相同HARQ进程发送数据的重传,该数据的重传和初传对应相同的信息比特,可以是相同的编码比特,也可以是同一母码编码后截取的不同编码比特。对应地,终端设备接收该HARQ进程的数据重传,可以选择将重传接收数据与初传接收数据进行联合处理,例如基于存储的上次传输的软信息(例如,信息比特的似然值)和本次传输的软信息进行联合译码,提升译码成功概率,如果终端设备联合译码成功,则向网络设备反馈ACK,网络设备接收ACK后释放HARQ进程,如果终端设备联合译码失败,则向网络设备反馈NACK,网络设备接收NACK后,使用相同HARQ进程发送所述数据传输的第二次重传,循环该流程、直至网络设备确认所述数据正确接收或者达到最大重传次数。
PUSCH传输与PDSCH传输的流程类似,不同之处在于,如果网络设备指示本次传输是某个数据传输的重传,则终端设备需要发送初传的信息比特,由网络设备指示重传的编码后比特是否与初传保持一致。
例如,当第一传输是下行数据的重传,则终端设备根据网络设备指示的所述第一传输的上次重传或初传所在的频域资源,确定本次传输的上一次传输(可能是初传或者上一次重传)所在的频域资源,假设为第二目标频域资源,终端设备接收第一传输后,将第一传输与第二目标频域资源上接收的相同HARQ进程的上次传输进行合并,从而提升译码成功概率。一种可能的实现方法是,终端设备接收下行数据的初传后,当初传失败,在初传所在频域资源建立对应HARQ进程的缓存buffer,并缓存相应软信息(如数据本身或数据的似然比值)。之后,终端设备接收该数据传输的重传,无论重传和初传是否在相同频域资源,都将重传接收数据 与上述Buffer中数据进行联合译码,如果译码还失败,则进一步将合并后的软信息存入该Buffer。也就是说,终端设备基于初传所在频域资源建立HARQ Buffer,维护后续重传的数据缓存和联合处理。
例如,当第一传输是上行数据的重传,则终端设备根据网络设备指示的所述第一传输的上次重传或初传所在的频域资源,确定本次传输的上一次传输(可能是初传或者上一次重传)所在的频域资源,假设为第三目标频域资源,从而确定需要传输的信息比特(或者传输块(Transport Block,TB)),并对该信息比特进行编码获取编码比特,或者直接确定需要传输的信息比特经过母码编码后的比特(例如上次传输编码后保存的比特),并确定需要传输的编码比特。一种可能的实现方法是,终端设备发送某个上行数据的初传后,在初传所在的频域资源建立对应HARQ进程的缓存buffer,并缓存相应信息(如数据信息比特或母码编码后比特)。终端设备如果被调度发送该数据传输的重传,无论重传和初传是否在相同频域资源,都从该Buffer中读取信息比特或母码编码后的比特,生成最终需要传输的编码比特。也就是说,终端设备基于初传所在频带建立HARQ Buffer,维护后续重传的信息比特或母码编码后的比特。
例如,所述第一频域资源与所述第二频域资源为不同的CC(如2个CC),且所述第一传输为第一下行控制信息(downlink control information,DCI)调度的混合自动重传请求HARQ重传,所述网络设备向终端设备发送第一指示信息,所述第一指示信息携带在第一DCI中,用于指示第四频域资源,所述第四频域资源为所述第一传输对应的HARQ的初传所在频域资源,且所述第四频域资源为CC,例如所述第四频域资源为所述第一频域资源或所述第二频域资源。
例如,所述第一频域资源与所述第二频域资源为不同的CC,且所述第一传输为第一DCI调度数据传输,对应第一HARQ进程号,所述网络设备向终端设备发送第一指示信息,所述第一指示信息携带在第一DCI中,用于指示第四频域资源,所述第四频域资源为所述第一传输对应的HARQ进程号最近一次传输所在频域资源,且所述第四频域资源为CC,例如所述第四频域资源为所述第一频域资源或所述第二频域资源。这样,终端设备根据第四信息可以确定该第一HARQ进程号最近一次的调度信息,从而确定本次传输是新传还是重传。
例如,当第一传输是下行数据传输,由第一DCI调度,对应第一HARQ进程号,则终端设备根据网络设备发送的第一指示信息确定该第一HARQ进程号最近一次传输所在的频域资源,假设为第二目标频域资源,并进一步确定本次第一传输是初传还是重传。具体地,当最近一次传输是DCI调度的传输,则终端设备根据调度最近一次传输的DCI中的NDI和该第一DCI中NDI值判断本次传输是否是数据重传,例如,当NDI不翻转,认为本次第一传输是数据重传。当最近一次传输是配置的数据传输,例如半持续性调度传输,根据第一DCI中NDI取值确定本次第一传输是否是重传,例如当第一DCI中NDI取值为1,认为本次第一传输是数据重传。这样,如果第一传输是数据重传,终端设备接收第一传输后,将第一传输与第二目标频域资源上接收的相同HARQ进程号的最近一次传输进行合并,从而提升译码成功概率。一种可能的实现方法是,终端设备接收下行数据的初传后,当初传失败,在初传所在频域资源建立对应HARQ进程的缓存buffer,并缓存相应软信息(如数据本身或数据的似然比值)。之后,终端设备接收该数据传输的重传,无论重传和初传是否在相同频域资源,都将重传接收数据与上述Buffer中数据进行联合译码,如果译码还失败,则进一步将合并后的软信息存入该Buffer。也就是说,终端设备基于初传所在频域资源建立HARQ Buffer,维护后续重传的数据缓存和联合处理。
例如,当第一传输是上行数据传输,对应第一DCI调度,对应第一HARQ进程号,则终端设备根据网络设备发送的第一指示信息确定该第一HARQ进程号最近一次传输所在的频域资源,假设为第三目标频域资源,并进一步确定本次第一传输是初传还是重传。具体地,当最近一次传输是DCI调度的传输,则终端设备根据最近一次传输调度DCI中NDI和该第一DCI中NDI值判断本次传输是否是数据重传,例如,当NDI翻转,认为本次第一传输是数据重传;当最近一次传输是配置的数据传输,例如配置授权的上行传输,根据第一DCI中NDI取值确定本次第一传输是否是重传,例如当第一DCI中NDI取值为1,认为本次第一传输是数据重传。此时,终端设备根据第三目标频域资源和本次第一传输是初传还是重传,确定需要传输的信息比特(或者TB),例如,当本次第一传输是重传,则需要传输信息比特是第三目标频域资源上该HARQ进程号最近一次传输对应信息比特。终端设备对该信息比特进行编码获取编码比特,或者直接确定需要传输的信息比特经过母码编码后的比特(例如上次传输编码后保存的比特),并确定需要传输的编码比特。一种可能的实现方法是,终端设备发送某个上行数据的初传后,在初传所在的频域资源所在的存储资源中建立对应HARQ进程的缓存buffer,并缓存相应信息(如数据信息比特或母码编码后比特)。终端设备如果被调度发送该数据传输的重传,无论重传和初传是否在相同频域资源,都从该Buffer中读取信息比特或母码编码后的比特,生成最终需要传输的编码比特。也就是说,终端设备基于初传所在频域资源建立HARQ Buffer,维护后续重传的信息比特或母码编码后的比特。
又例如,所述第一频域资源与所述第二频域资源为不同的CC(如2个CC),且所述第一传输为第一DCI调度的数据传输,对应第一HARQ进程号,所述网络设备向终端设备发送第一指示信息,所述第一指示信息携带在第一DCI中,用于指示第四频域资源和第四频域资源上的第二HARQ进程号,所述第四频域资源为所述第一频域资源或所述第二频域资源,所述第一传输是所述第四频域资源上第二HARQ进程号的初传或最近一次传输的重传。
可选地,网络设备先通过一个配置信息,给第一频域资源上HARQ进程号i确定一个可关联的、第二频域资源上的HARQ进程号子集Ai,其中i可以取0,1,…,N-1中一个或多个值,N为第一频域资源上HARQ进程数目,用于指示第一频域资源上HARQ进程号i的传输数据可以在第二频域资源上的子集Ai中的HARQ进程上进行重传。或者,给第二频域资源上HARQ进程号j确定一个可关联的、第一频域资源上的HARQ进程号子集Bj,用于指示该第二频域资源上HARQ进程号j可以用于传输第一频域资源上的HARQ进程子集Bj中某个HARQ进程上的数据。上述第一频域资源和第二频域资源没有顺序,只是举例说明。此时,网络设备在第二频域资源上用第一DCI调度第一传输,对应第一HARQ进程号,可以用第一DCI承载第一指示信息,用于指示该第四频域资源以及第四频域资源上的第二HARQ进程号,并表示该第一传输是第四频域上第二HARQ进程对应的最近一次传输的重传或初传。这里的第四频域资源可以是上述的第一频域资源或第二频域资源。
一种可能实现方法是,当第一指示信息指示第四频域资源是第一传输所在目标频域资源,则第二HARQ进程号等于第一HARQ进程号,且第一传输是重传还是初传取决于第一DCI中NDI取值,与现有方法相同;当第一指示信息指示第四频域资源不是第一传输所在目标频域资源,则第二HARQ进程号只能从上述子集Bj中选择,其中子集Bj对应第二频域资源上第一HARQ进程号(取值为j)对应的第一频域资源上的HARQ进程号子集,这里假设目标频域资源是第二频域资源。具体地,第一指示信息可以和第一DCI中NDI字段联合设计,即第一指示信息的字段长度为M,可以有2^M个取值,其中2个取值对应第四频域资源是第一传输所在目标频域资源且NDI取值为1和对应第四频域资源是第一传输所在目标频域资源且NDI取值为0, 剩余2^(M-1)种取值分别对应第四频域资源不是第一传输所在目标频域资源且对应的第二HARQ进程号在子集Bj中索引。通过这种方法,增加了网络设备在第二频域资源上选择一个HARQ进程用于承载第一频域资源上某个HARQ进程重传的自由度。也就是说,当第一频域资源上HARQ进程号i的数据需要重传,且第一频域资源上没有对应方向的传输符号时,网络设备可以选择在第二频域资源上、从子集Ai中选择1个HARQ进程号承载该重传。这样当第二频域资源上HARQ进程号i又被占用(即数据传输没有被成功接收),该HARQ进程号在网络设备和终端设备侧的缓存没有释放,网络设备不期望抢占该缓存空间,可以换一个缓存释放了的HARQ进程号来承载所述数据的重传,增加了灵活性。对应地,如果第一传输是下行传输,则终端设备不期望第一HARQ进程号最近一次在目标频域资源上数据传输没有成功接收(或者说没有反馈ACK),如果第一传输是上行传输,则终端设备收到该指示可以隐式知道该第一HARQ进程号最近一次在目标频域资源上数据传输已经被网络设备成功接收,在这两种情况下,终端设备都可以清空第一HARQ进程号对应缓存空间中之前存储内容,用来存储所述第四频域资源上第二HARQ进程号的数据。
又例如,所述第一频域资源与所述第二频域资源为不同的CC(如2个CC),且所述第一传输为下行数据传输的混合自动重传请求HARQ重传,所述网络设备向终端设备发送第一指示信息,所述第一指示信息是高层信令,用于指示第四频域资源集合,且表示第四频域资源集合内的所有频域资源共享一套HARQ进程。终端设备根据第一指示信息,在第四频域资源集合中一个频域资源上初传所述第一传输对应的HARQ进程,该一个频域资源即为所述第四频域资源,且所述第四频域资源为CC。
其中,第四频域资源可以是第一频域资源或第二频域资源,也可以是与第一频域资源或第二频域资源不同的频域资源。一个示例为,第四频域资源和所述第一传输所在目标频域资源是不同的频域资源。另一个示例为,第四频域资源和所述第一传输所在目标频域资源是不同的频域资源、且所述第四频域资源属于第一频域资源集合,即所述第四频域资源与所述目标频域资源属于一个频域资源集合。通过保证所述第四频域资源与所述目标频域资源属于一个频域资源集合,可以降低终端设备的频域资源切换时延,降低数据重传处理时延。
示例性的,步骤201前,所述实施例进一步还可以包括:所述网络设备向终端设备发送第七指示信息,所述第七指示信息用于指示所述帧结构A和帧结构B。可选地,第七指示信息是高层配置信令,如RRC参数,或物理层信令,如DCI。
示例性的,步骤201前,所述实施例进一步还可以包括:所述网络设备向终端设备发送第三DCI,所述第三DCI包括第一字段,所述第一字段指示第一索引,所述第一索引指示所述帧结构A与所述帧结构B;或者,所述网络设备向终端设备发送第四DCI,所述第四DCI包括第二字段和第三字段,所述第二字段指示第二索引,所述第二索引指示所述帧结构A,所述第三字段指示第三索引,所述第三索引指示所述帧结构B。
例如,所述终端设备根据所述第一字段指示的所述第一索引与第一关系确定所述帧结构A与所述帧结构B,所述第一关系包括至少一组映射关系,每组映射关系包括至少两个帧结构以及与所述至少两个帧结构对应的一个索引。采用这种方式,可以实现动态快速的指示第一索引,基于第一索引联合确定帧结构A和帧结构B,可以提供降低DCI对第一索引的指示开销。
又例如,所述终端设备根据第二索引与第二关系确定所述帧结构A,根据第三索引与第三关系确定所述帧结构B,其中,所述第二关系与所述第三关系分别包括一组映射关系,每组映射关系包括一个帧结构以及与所述一个帧结构对应的索引。采用这种方式,可以实现动 态快速的指示第二索引和第三索引;基于第二索引和第三索引分别确定帧结构A和帧结构B,可以提供最大的指示灵活性。
在图2所示的实施例中,当在两个频域资源上两个不同方向的传输发生冲突的时候,网络设备和终端设备可以通过调度方式、物理层优先级、频率资源优先级、通信方向等特征中至少一项确定保留哪一个传输,从而保证高优先级传输可以正常进行。
具体的,在位于所述第一频域资源的第二传输与位于所述第二频域资源的第三传输在时域重叠的条件下,终端设备和网络设备确定在所述第一频域资源或所述第二频域资源上进行所述第一传输,其中,所述第一传输是所述第二传输与所述第三传输中一个。
这里的频域资源可以为Band、CC或BWP。所述频域资源的含义与201中含义相同。例如,所述第一频域资源和第二频域资源为一个Band内2个不同的CC,或者1个CC内两个不同的BWP。
可选地,所述第一频域资源和所述第二频域资源的TDD帧结构不同。例如,所述第一频域资源和所述第二频域资源的子载波间隔相同,TDD帧结构分别为7D:1S:2U和2D:1S:7U。
可选地,第二传输和第三传输的通信方向不同,例如,第二传输是下行传输,第三传输是上行传输,或者,第二传输是上行传输,第三传输是下行传输。
以第二传输为例,当第二传输是PDCCH,并不意味这第二传输是真正发送的PDCCH传输,而是候选的PDCCH传输,所述第二传输的时域位置对应一个配置的PDCCH监测时机(monitor occasion)。也就是说,第三传输与第一频域资源上配置的PDCCH monitor occasion时域重叠,也属于本发明实施例考虑范畴。类似地,当第二传输是配置的下行传输或上行传输,例如SPS PDSCH、CG PUSCH、承载SPS HARQ-ACK的PUCCH或承载SR的PUCCH,此时所述第二传输不一定是真正的传输,而是对应配的传输时机上潜在的数据信道或控制信道传输,或者说,数据信道传输或控制信道传输占据的时频资源。
可选地,所述终端设备不支持在第一频域资源和第二频域资源上同时进行信息收发,例如:
√不支持在第一频域资源上接收信息的同时在第二频域资源上发送信息,和,不支持在第一频域资源上发送信息的同时在第二频域资源上接收信息UE。或者,
√不支持在第一频域资源上和第二频域资源上同时接收信息,和,不支持在第一频域资源上和第二频域资源上同时发送信息。
对应地,网络设备可以向终端设备发送配置所述第一频域资源和所述第二频域资源的信息,并向所述终端设备发送所述第二传输和第三传输的配置信息或调度信息。对应地,所述终端设备在确定第二传输和第三传输之前,所述终端设备还接收配置第一频域资源和第二频域资源的信息,确定第一频域资源和第二频域资源的频域位置、频域宽度等参数的取值;所述终端设备还接收第二传输和第三传输的配置信息或调度信息,确定第二传输的时域位置和第三传输的时域位置,以及其他传输参数。
终端设备和网络设备可以根据如下准则从第二传输和第三传输中确定一个传输作为第一传输。
√准则#1:动态调度的传输的优先级高于高层配置的传输的优先级。当第二传输是动态调度的且第三传输是高层配置的,则确定第一传输是第二传输。
动态调度的传输是指该传输的时频资源是通过一个DCI调度的。例如,该动态调度的传输可以是DCI动态调度的PDSCH、DCI动态调度的CSI-RS;承载DCI动态调度的PDSCH的HARQ-ACK的PUCCH、承载动态调度CSI报告的PUCCH、动态调度的SRS或动态调度 的PRACH。
高层配置的传输是指该传输的时频资源是高层信令配置的,可以是周期性出现的。例如,该高层配置的传输可以是SPS PDSCH、周期性CSI-RS、高层配置的PDCCH monitor occasion、CG PUSCH、承载SR的PUCCH、承载周期性CSI报告的PUCCH、承载SPS PDSCH的HARQ-ACK的PUCCH、周期性SRS、周期性同步信号、周期性PBCH或周期性PRACH。
√准则#2:当第二传输的物理层优先级大于第三传输的物理层优先级时,则确定第一传输是第二传输。
对于DCI动态调度的传输,其物理层优先级由该DCI中优先级指示字段进行指示;对于高层信令配置的传输,其优先级由对应的高层信令中的一个信元指示。具体的,对于SPS PDSCH,其物理层优先级在SPS配置信息中指示,具有不同SPS索引的不同SPS配置可以对应不同物理层优先级;对于CG PUSCH,其物理层优先级在CG配置信息中指示,具有不同CG PUSCH索引的不同CG配置可以对应不同物理层优先级;对于PDCCH,其物理层优先级在该候选PDCCH传输对应的控制资源集合(control-resource set,CORESET)配置信息或对应的搜索空间(search space,SS)配置信息中指示,具有不同CORESET标识的不同CORESET配置或具有不同SS标识的不同SS配置可以对应不同物理层优先级;对于SR,其物理层优先级在承载SR的PUCCH资源配置信息中指示;对于CSI-RS、CSI报告、SRS等,其物理层优先级可以在对应的配置信息中指示,也可以默认是低优先级。对于同步信号、PBCH、PRACH,其物理层优先级可以默认是高优先级,或者在对应的配置信息中指示。
对于PDCCH,一个PDCCH occasion上可能存在多个候选PDCCH传输,对应频域不同CORESET。如果PDCCH的物理层优先级是per-CORESET配置的,则可能一个PDCCH occasion上对应多个CORESET,即存在多个PDCCH blind detecting(BD)candidates。此时,PDCCH monitor occasion的优先级可以按照多个CORESET优先级中最高那个进行。
√准则#3:当第二传输所在频域资源的优先级大于第三传输所在频域资源的优先级时,确定第一传输是第二传输。
频域资源的优先级指的是多个频域资源之间的优先级,例如,频域资源是一个CC内多个BWP,则这个优先级表示多个BWP上存在重叠的信息传输时,UE优先选择哪个BWP上的信息进行传输。频域资源的优先级可以是每个频域资源配置一个优先级,也可以是在更高一层的频域资源配置信息中指示的。以频域资源是1个CC内的多个BWP为例,BWP的优先级信息可以是每个BWP配置一个优先级,也可以是在这些BWP所归属的CC的配置信息中指示一个共同的优先级。
√准则#4:上行传输的优先级大于下行传输的优先级。当第二传输是上行传输而第三传输是下行传输时,确定第一传输是第二传输。
可选的,准则#4也可以替换为“下行传输的优先级大于上行传输的优先级”;或者,也可以是网络设备向终端设备发送优先级准则配置信息,该优先级准则配置信息指示准则#4是“上行传输的优先级大于下行传输的优先级”还是“下行传输的优先级大于上行传输的优先级”。
√准则#5:当第三传输是事件触发的上行传输且该传输没有被触发,确定第一传输是第二传输。可选地,该准则还包括:第二传输是下行传输,或者,第二传输不是事件触发的上行传输。
事件触发的上行传输可以为CG PUSCH、承载SR的PUCCH、NACK触发的SRS或CSI报告或PRACH。对于CG PUSCH,“没有被触发”指的是该CG PUSCH时机(occasion)被跳过,或者说,UE没有数据需要发送,不在该CG PUSCH occasion上发送数据。对于承载SR的PUCCH,“没有被触发”指的是高层没有触发对应的SR在该PUCCH资源上发送,或者说,该SR是negative的。对于NACK触发的SRS或CSI报告,即该SRS或CSI报告关联一个下行数据接收,只有该下行数据译码失败时才在对应的时频资源发送SRS或CSI,此时“没有被触发”指的是该关联的下行数据正确译码。对于PRACH,“没有被触发”指的是终端设备没有发送PRACH。
终端设备和网络设备还可以根据上述五个准则中的多个准则从第二传输和第三传输中确定一个传输作为第一传输。
√准则#1和准则#2联合工作且“准则#1>准则#2”
当第二传输是动态调度的且第三传输是高层配置的时,确定第一传输是第二传输;或者,当第二传输和第三传输都是动态调度(或者都是高层配置的)且第二传输的物理层优先级大于第三传输的物理优先级时,确定第一传输是第二传输。
√准则#1和准则#2联合工作且“准则#2>准则#1”
当第二传输的物理层优先级大于第三传输的物理优先级时,确定第一传输是第二传输;或者,当第二传输和第三传输的物理层优先级相同且第二传输是动态调度的、第三传输是高层配置的时,确定第一传输是第二传输。
√准则#1和准则#3联合工作且“准则#1>准则#3”
当第二传输是动态调度的且第三传输是高层配置的时,确定第一传输是第二传输;或者,当第二传输和第三传输都是动态调度(或者都是高层配置的)且第二传输所在频域资源(即第一频域资源)的优先级大于第三传输所在频域资源(即第二频域资源)的优先级时,确定第一传输是第二传输。
√准则#1和准则#3联合工作且“准则#3>准则#1”
当第二传输所在频域资源的优先级大于第三传输所在频域资源的优先级时,确定第一传输是第二传输;或者,当第二传输所在频域资源的优先级等于第三传输所在频域资源的优先级,且第二传输是动态调度的、第三传输是高层配置的时,确定第一传输是第二传输。
类似的,准则#2和准则#3联合工作且“准则#2>准则#3”;或者,准则#2和准则#3联合工作且“准则#3>准则#2”;或者,准则#1、准则#2(或准则#3)和准则#4联合工作且准则#1>准则#2(或准则#3)>准则#4;或者,准则#1、准则#2(或准则#3)和准则#4联合工作且准则#2(或准则#3)>准则#1>准则#4;或者
可选地,准则#5可以和其他任何准则联合工作且“准则#5>其他准则”,即终端设备优先判断第三传输是否真的被触发,如果没有被触发,则不参与冲突处理,默认是低优先级的,优先进行第二传输。采用这种处理方法,可以规避无效的上行传输打掉其他传输。
可选地,可以预定义或者通过高层参数预配置每一种传输的优先级,例如:SPS PDSCH的HARQ-ACK的优先级大于配置的PDCCH occasion的优先级;或者,配置的PDCCH occasion优先级大于CG PUSCH和承载SR的PUCCH的优先级。
可选地,终端设备在确定第一传输之前,需要接收网络设备发送的一些配置信息或指示信息。例如,第二传输和第三传输的物理层优先级指示信息,和/或,第一频域资源和第二频域资源的优先级配置信息。
以从第二传输和第三传输中确定第二传输作为第一传输为例,可选地,终端设备在进行第一传输之前,如果终端设备当前用于数据传输所使用的频域资源不是第一频域资源,终端设备可以先进行频域资源切换,切换到第一频域资源,且根据第一频域资源的配置参数调整收发通道参数。所述频域资源参数包括:中心频点、带宽、子载波间隔、TDD帧结构中至少一项。例如,终端设备根据中心频点调整混频器的工作点;或,根据带宽调整基带滤波器的参数;或,根据带宽调整模数转换或者数模转换的分辨率和采样速率;或,根据带宽和子载波间隔调整基带DFT的大小;或,根据TDD帧结构和第一传输的通信方向进行发送或者接收转换。当终端设备根据第一传输所在频域资源调整收发通道参数后,终端设备使用该收发通道进行第一传输,即上行信息发送或者下行信息接收。
以从第二传输和第三传输中确定第二传输作为第一传输为例。当第一传输是上行传输时,终端设备不期望在第二频域资源上、第一传输之前W1时间段内接收下行传输;或者,当第一传输是下行传输,终端设备不期望在第二频域资源上、第一传输之前W1时间段内发送上行传输;或者,终端设备不期望在第二频域资源上、第一传输之前W1时间段内进行信息传输(包括下行和上行)。
对应地,网络设备在第一传输对应的时频资源上进行第一传输,其中第一传输是第二传输和第三传输中一个,满足上述的优先级准则。
假设从第二传输和第三传输中确定第二传输作为第一传输,在第一频域资源上,终端设备在完成第一传输之后,按照如下规则中至少一个确定激活频域资源:
√规则A:保持当前频域资源不变,即激活频域资源维持在第一频域资源;
√规则B:激活频域资源是预设频域资源,所述预设频域资源是预定义的或者高层预先配置的。即,如果预设频域资源与第一频域资源相同,则不需要进行频域资源切换;否则,终端设备从第一频域资源切换到预设频域资源。
√规则C:激活频域资源是具有下行传输符号的频域资源,即终端设备在不同时刻、自适应切换到具有下行符号的频域资源。此时,如果第一传输之后第一频域资源上的符号是下行传输符号,则不需要进行频域资源切换;否则,如果第一传输之后第二频域资是下行传输符号,终端设备从第一频域资源切换到第二频域资源。
如图3所示,本申请实施例提供一通信方法的流程示意图。
301、网络设备向终设备发送用于配置第三频域资源集合的配置信息,所述第三频域资源集合包含至少2个频域资源。相应的,所述终端设备接收所述配置信息。
可选的,所述终端设备根据所述配置信息确定所述第三频域资源集合。
示例性的,所述第三频域资源集合可以包括至少两个CC、至少两个BWP或至少两个子带。例如,所述第三频域资源集合包含第一CC内的多个BWP。
示例性的,所述终端设备不支持在第三频域资源集合内的多个频域资源上同时进行信息接收和/或信息发送。
302、网络设备向终设备发送第一信息,所述第一信息用于指示第一时间单元集合内每个或至少一个时间单元所关联频域资源的编号。
303、所述终端设备接收第一信息,根据所述第一信息确定第一时间单元集合内每个或至少一个时间单元所关联频域资源的编号。其中,所述所关联频域资源属于所述第三频域资源集合。
所述第一时间单元集合包含N个时间单元,N为大于等于2的正整数,所述第一时间单元集合中任何一个时间单元为一个时隙、一个符号、一个子时隙或一段固定数目的连续符号。
采用本申请提供的方法,可以通过第一信息指示所述第一时间单元集合内的N个时间单元上关联的频域资源,避免每次频域资源切换都需要发送一个切换指示信令,降低信令开销。
示例性的,所述第三频域资源集合包括至少两个频域资源,所述至少两个频域资源可以是至少两个CC、至少两个BWP或至少两个子带。例如,所述第三频域资源集合包含第一CC内的至少两个BWP。所述第一时间单元中每个时间单元可以是一个时隙、一个符号或一个子时隙。
示例性的,所述第一信息用于指示第一时间单元集合内每个或至少一个时间单元所关联频域资源的编号,所述关联的频域资源属于第三频域资源集合。可选地,所述第一信息用于指示第一时间单元集合内每个时间单元所关联频域资源的编号和所述时间单元的通信方向,所述通信方向可以是下行信息接收或者上行信息发送。
示例性的,第一信息包含可以包括P个字段,所述P个字段对应长度为P个时间单元的第一时间窗,第i个字段用于指示第一时间窗内第i个时间单元所关联的频域资源的编号,第i个字段用于指示第一时间窗内第i个时间单元所关联频域资源的编号,或第i个字段用于指示第一时间窗内第i个时间单元所关联频域资源编号和通信方向,其中第一时间窗的起始位置为第S+j*P个时间单元,其中j为大于等于零的整数。可选的,所述P个字段中的第i个字段取值可以为无效值或者为空,表示该第一时间窗内第i个时间单元所关联频域资源编号和/或通信方向待定,或者说,本次第一信息不指示该第i个时间单元所关联频域资源编号和/或通信方向。
示例性的,所述第一信息可以包括第一子指示信息和第二子指示信息,所述第一子指示信息和第二子指示信息分别包含P个字段,所述P字段对应第一时间窗内P个时间单元,第一子指示信息的第i个字段用于指示第一时间窗内第i个时间单元所关联下行频域资源的编号,第二子指示信息的第i个字段用于指示第一时间窗内第i个时间单元所关联上行频域资源的编号。可选的,所述第一子指示信息中P个字段中的第i个字段取值可以为第一无效值或者为空,表示该第一时间窗内第i个时间单元所关联下行频域资源编号待定,或者说,本次第一子指示信息不指示该第i个时间单元所关联下行频域资源编号;可选地,所述第一子指示信息中P个字段中的第i个字段取值可以为第二无效值,表示该第一时间窗内第i个时间单元不关联任何下行频域资源编号,或者说,第i个时间单元上不能进行下行传输接收。可选的,所述第二子指示信息中P个字段中的第i个字段取值可以为第一无效值或者为空,表示该第一时间窗内第i个时间单元所关联上行频域资源编号待定,或者说,本次第二子指示信息不指示该第i个时间单元所关联上行频域资源编号;可选地,所述第二子指示信息中P个字段中的第i个字段取值可以为第二无效值,表示该第一时间窗内第i个时间单元不关联任何上行频域资源编号,或者说,第i个时间单元上不能进行上行传输发送。
示例性的,所述第三频域资源集合包括频域资源A和频域资源B,所述第一信息指示所述频域资源A对应的帧结构E和频域资源B对应的帧结构F,且第一时间单元集合对应终端设备进行第一下行传输所在的时间单元集合,所述第一下行传输包括:SPS PDSCH、周期性/半持续性信道状态信息(channel state information,CSI)-参考信号(reference signal,RS)、高层配置的下行控制信道PDCCH中至少一个。此时,终端设备根据所述帧结构E和帧结构F确定终端设备的第一时间单元集合内每个时间单元关联的频域资源编号,包括:
对于第一时间集合单元内的第一时间单元,当帧结构E对应下行符号、且帧结构F对应上行符号,该第一时间单元上进行信息收发的频域资源的编号为所述频域资源A的编号;当帧结构E对应上行符号、且帧结构F对应下行符号,该第一时间单元所关联频域资源的编号 为所述频域资源B的编号;当帧结构E对应下行符号、且帧结构F对应下行符号,该第一时间单元所关联频域资源的编号为频域资源C的编号,所述频域资源C为频域资源A或频域资源B中预设的一个频域资源,或者,所述频域资源C为终端设备在与所述第一时间单元最接近的前一个时间单元所关联的频域资源,或者,所述频域资源C为终端设备在第二时间单元上进行信息收发的频域资源,所述第二时间单元是第一时间单元集合内、且与所述第一时间单元最接近的前一个时间单元。
示例性的,所述第三频域资源集合包含频域资源A和频域资源B,所述第一信息确定指示频域资源A对应的帧结构E和频域资源B对应的帧结构F,且第一时间单元集合为对应终端设备进行第一上行传输所在时间单元集合,其中所述第一上行传输包括:SPS PDSCH的反馈信息HARQ-ACK、配置授权的上行数据信道PUSCH、周期性/半持续性CSI上报、周期性调度请求SR、周期性/半持续性探测参考信号SRS、周期性随机接入信道中至少一个。此时所述第一信息指示所述帧结构E和帧结构F,所述根据第一信息确定终端设备在第一时间单元集合内每个时间单元所关联频域资源的编号,包括:对于第一时间集合单元内的第一时间单元,当帧结构E对应下行符号、且帧结构F对应上行符号,该第一时间单元所关联频域资源的编号为频域资源B的编号;当帧结构E对应上行符号、且帧结构F对应下行符号,该第一时间单元所关联频域资源的编号为频域资源A的编号;当帧结构E对应下行符号、且帧结构F对应下行符号,该第一时间单元上所关联频域资源的编号为频域资源D的编号,所述频域资源D为频域资源A或频域资源B中预设的一个频域资源,或者,所述频域资源D为与所述第一时间单元最接近的前一个时间单元所关联的频域资源,或者,所述频域资源D是终端设备在第三时间单元上进行信息收发的频域资源,所述第三时间单元是第一时间单元集合内、且与所述第一时间单元最接近的前一个时间单元。
图4为本申请实施例提供一通信方法的流程示意图。图4所示的实施例,通过频域资源配置信息中的Q个字段,分别指示Q个频域资源上的通信方向。
410、网络设备向终端设备发送第一频域DL-UL的配置信息,其中,所述第一频域DL-UL的配置信息用于指示第一时域资源A上第四频域资源集合中每个频域资源的通信方向。相应的,所述终端设备接收所述配置信息。
其中,所述通信方向为上行、下行或者灵活。
例如,所述第一频域DL-UL的配置信息包含Q个字段,分别用于指示第四频域资源集合包含的Q个频域资源上的通信方向。
又例如,所述第一频域DL-UL的配置信息用于指示三个频域资源集合,所述三个频域资源集合分别对应的通信方向为上行、下行和灵活。可选的,第一频域DL-UL的配置信息用于指示通信方向为上行的频域范围为[A1,B1],类似的通信方向为下行的频域范围为[A2,B2],通信方向为灵活的频域范围为[A3,B3]。所述终端设备可以根据第四频域资源中的每个频域资源的位置和第一频域DL-UL的配置信息确定每个频域资源的通信方向。
420、所述网络设备与所述终端设备采用第一时域资源A以及所述第一时域资源A对应的频域资源的通信方向进行通信。
采用这样方法,每个时域资源单独配置/指示在频域上多个频域资源的DL-UL配置,终端设备在不同时刻(不同时域资源)可以自适应调整通信方向,方便及时调整收发通道参数,改善上下行信息传输质量。
可选的,所述实施例还可以包括:400、网络设备向所述终端设备发送第一配置信息。相 应的所述终端设备接收所述第一配置信息,根据所述第一配置信息确定时域资源划分。
其中,所述第一配置信息包括起始时刻S和周期P中至少一个,根据第一配置信息将时域资源分为等长度的多个时间窗,每个时间窗的长度为上述周期P,第i个时间窗的起始时刻为S+(i-1)*P。其中,所述时域资源是一个无线帧或者超帧中的所有时域资源。
应理解,上述起始时刻S是相对于一个无线帧或者超帧(如N个无线帧)的起始时刻定义的,单位可以是时隙slot、符号或绝对时间(如ms),周期P的单位可以时隙slot、符号或绝对时间(如ms)。
402、网络设备向终端设备发送第二配置信息。相应的,所述终端设备接收所述第二配置信息,根据第二配置信息获取任一时间窗内的时域资源划分。
示例的,任一时间窗内的时域资源分为N个第一时域资源,且所述N个第一时域资源的时域不重叠,所述N为正整数。例如,第一时域资源A为N个第一时域资源中的1个第一时域资源。
又例如,周期为4个slot,N=4,则4个第一时域资源依次与4个slot对应。
可选地,该方法还可以包括步骤404、所述网络设备向终端设备发送第三配置信息。相应的,所述终端设备接收所述第三配置信息,根据所述第三配置信息确定一个频域资源集合/序列。
例如,所述序列包括M个频域资源,每个频域资源对应1个频域位置、且M个频域资源不重叠,所述M为正整数。可选地,所述M个频域资源与S410中Q个频域资源一一对应,或者,所述M个频域资源包含S410中Q个频域资源。
可选的,该方法还可以包括步骤404、所述网络设备向终端设备发送第四配置信息。相应的,所述终端设备获取第四配置信息,所述第四配置信息包含第一时域资源A的第一频域DL-UL配置信息。
可选的,该方法还可以包括步骤406、所述网络设备向终端设备发送第五配置信息。相应的,所述终端设备获取第五配置信息,根据第五配置信息确定一个频域资源(或者说一个频域资源集合,例如S410中第四频域资源契合)对应的起始频域位置Z和宽度B。
可选的,该方法还可以包括步骤408、所述网络设备向终端设备发送第六配置信息。相应的,所述终端设备获取第六配置信息,所述第六配置信息用指示第一时域资源A的第一频域DL-UL配置信息。
例如,所述第一频域DL-UL配置信息包含三部分,第一部分指示从起始位置Z开始到频域位置Z+B1内通信方向是DL,第二部分指示从频域位置Z+B1开始到频域位置Z+B2内通信方向是灵活方向,第三部分指示从频域位置Z+B2开始到频域位置Z+B内通信方向是UL。或者,第一部分指示从起始时刻Z开始到频域位置Z+B1内通信方向是UL,第二部分指示从频域位置Z+B1开始到频域位置Z+B2内通信方向是灵活方向,第三部分指示从频域位置Z+B2开始到频域位置Z+B内通信方向是DL。
采用这种方式,对每个时域资源进行频域DL-UL配置,方便终端设备在不同时刻自适应调整通信方向。
需要特别说明的是,步骤410、420、402至步骤408的执行顺序仅是为了理解本申请技术方案所列举的一种示例,步骤410、420、402至步骤408的执行顺序不受上述示例的限制,对此本申请不再赘述。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的 实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图5和图6为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端设备130或终端设备140,也可以是如图1所示的无线接入网设备120,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图5所示,通信装置500包括收发模块501和处理模块502。通信装置500可用于实现上述图2、图3或图4所示的方法实施例中终端设备或网络设备的功能。
当通信装置500用于实现图2所述方法实施例中终端设备的功能时,所述收发模块501,用于接收配置第一频域资源与第二频域资源的信息,所述处理模块502,用于根据收发模块接收的所述信息确定第一频域资源与第二频域资源,所述第一频域资源对应帧结构A,所述第二频域资源对应帧结构B,所述帧结构A与所述帧结构B不同,所述收发模块501,用于在所述处理模块确定的所述第一频域资源和/或所述第二频域资源上进行第一传输。其中,所述第一频域资源与所述第二频域资源为第一成员载波内的两个不同的带宽部分BWP;或者,所述第一频域资源与所述第二频域资源为第一BWP内的两个不同的子带;或者,所述第一频域资源与所述第二频域资源为不同的成员载波。
当通信装置500用于实现图2所述方法实施例中网络设备的功能时,所述处理模块502,用于确定第一频域资源与第二频域资源,所述第一频域资源对应帧结构A,所述第二频域资源对应帧结构B,所述帧结构A与所述帧结构B不同,所述收发模块501,用于发送配置所述第一频域资源与所述第二频域资源的信息,以及用于在所述处理模块确定的所述第一频域资源和/或所述第二频域资源上进行第一传输。其中,所述第一频域资源与所述第二频域资源为第一成员载波内的两个不同的带宽部分BWP;或者,所述第一频域资源与所述第二频域资源为第一BWP内的两个不同的子带;或者,所述第一频域资源与所述第二频域资源为不同的成员载波。
当通信装置500用于实现图3所述方法实施例中终端设备的功能时,所述收发模块501,用于接收配置第三频域资源集合的配置信息,所述第三频域资源集合包含至少两个频域资源,所述处理模块502,用于根据收发模块501接收的所述第三频域资源集合的配置信息确定第三频域资源集合,所述收发模块501,用于接收网络设备发送的第一指示信息,所述处理模块502,用于根据所述接收模块501接收的所述第一指示信息确定所述第一时间单元集合内每个时间单元所关联频域资源的编号。其中,所述所关联频域资源属于所述第三频域资源集合。
当通信装置500用于实现图3所述方法实施例中网络设备的功能时,所述处理模块502用于确定第三频域资源集合,所述收发模块501,用于向终设备发送用于配置所述第三频域资源集合的配置信息,所述第三频域资源集合包含至少2个频域资源,以及向所述终端设备发送第一信息,所述第一信息用于确定第一时间单元集合内每个时间单元所关联频域资源的编号。其中,所述所关联频域资源属于所述第三频域资源集合。
当通信装置500用于实现图4所述方法实施例中终端设备的功能时,所述收发模块501,用于接收第一频域DL-UL的配置信息,其中,所述第一频域DL-UL的配置信息用于指示第一时域资源A上第四频域资源集合中每个频域资源的通信方向,所述处理模块502,用于采 用第一时域资源A以及所述第一时域资源A对应的频域资源的通信方向与网络设备进行通信。
当通信装置500用于实现图4所述方法实施例中网络设备的功能时,所述收发模块501,用于发送第一频域DL-UL的配置信息,其中,所述第一频域DL-UL的配置信息用于指示第一时域资源A上第四频域资源集合中每个频域资源的通信方向。所述处理模块502,用于采用第一时域资源A以及所述第一时域资源A对应的频域资源的通信方向与终端设备进行通信。
关于上述收发模块501和处理模块502更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。应理解,收发模块501对应的实体设备可以为收发器,处理模块502对应的实体设备可以为处理器。
如图6所示,通信装置600包括处理器610和接口电路6020。处理器610和接口电路620之间相互耦合。可以理解的是,接口电路620可以为收发器或输入输出接口。可选的,通信装置600还可以包括存储器630,用于存储处理器610执行的指令或存储处理器610运行指令所需要的输入数据或存储处理器610运行指令后产生的数据。
当通信装置600用于实现上述方法实施例中的方法时,用于执行上述方法实施例中终端设备的功能或者网络设备的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能 够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (69)

  1. 一种通信方法,其特征在于,包括:
    接收配置第一频域资源与第二频域资源的信息,所述第一频域资源对应帧结构A,所述第二频域资源对应帧结构B,所述帧结构A与所述帧结构B不同;
    在所述第一频域资源和/或所述第二频域资源上进行第一传输;
    其中,所述第一频域资源与所述第二频域资源为第一成员载波内的两个不同的带宽部分BWP;或者,所述第一频域资源与所述第二频域资源为第一BWP内的两个不同的子带;或者,所述第一频域资源与所述第二频域资源为不同的成员载波。
  2. 根据权利要求1所述的方法,其特征在于,从所述第一频域资源切换到所述第二频域资源的切换时延小于从所述第二频域资源切换到第三频域资源的切换时延;其中,所述第一频域资源与所述第二频域资源属于第一频域资源集合,所述第三频域资源属于第二频域资源集合。
  3. 根据权利要求2所述的方法,其特征在于,所述第一频域资源和所述第二频域资源满足如下至少一种关系:
    所述第一频域资源和所述第二频域资源的频域位置不重叠;或者,
    所述第一频域资源和所述第二频域资源的频域宽度相同;或者,
    所述第一频域资源和所述第二频域资源的子载波间隔相同。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    接收第一配置信息,所述第一配置信息指示所述第一频域资源集合和所述第二频域资源集合。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一频域资源与所述第二频域资源为不同的成员载波,所述方法还包括:
    获取第一指示信息,所述第一指示信息指示第四频域资源,所述第四频域资源为所述第一传输对应的HARQ进程的最近一次传输所在的成员载波。
  6. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    获取第二指示信息和第三指示信息,所述第二指示信息指示目标频域资源,所述第三指示信息指示所述第一传输所采用的频域资源在所述目标频域资源中的资源块RB位置,所述目标频域资源为所述第一频域资源或所述第二频域资源。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第一传输为第二DCI动态调度的下行数据的混合自动重传请求确认HARQ-ACK信息的传输,所述第二指示信息由所述第二DCI承载。
  8. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    获取第四指示信息,所述第四指示信息指示进行所述第一传输的时域位置;
    根据所述时域位置、所述帧结构A和所述帧结构B确定目标频域资源,所述目标频域资源为所述第一频域资源或所述第二频域资源。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述时域位置、所述帧结构A和所述帧结构B确定目标频域资源,包括:
    当所述第一传输是上行传输,且所述时域位置上的所述帧结构A和所述帧结构B为上行符号时,所述目标频域资源是协议预定义的或网络设备通过无线资源控制RRC信令配置给终端设备的;和/或
    当所述第一传输是上行传输,所述时域位置上的所述帧结构A是上行符号、且所述帧结构B不是上行符号时,所述目标频域资源为所述第一频域资源;和/或
    当所述第一传输是上行传输,所述时域位置上的所述帧结构A不是上行符号、且所述帧结构B是上行符号时,所述目标频域资源为所述第二频域资源;和/或
    当所述第一传输是下行传输,所述时域位置上的所述帧结构A和所述帧结构B为下行符号时,所述目标频域资源是协议预定义的或高层信令配置的;和/或
    当所述第一传输是下行传输,所述时域位置上的所述帧结构A是下行符号、且所述帧结构B不是下行符号时,所述目标频域资源为所述第一频域资源;和/或
    当所述第一传输是下行传输,所述时域位置上的所述帧结构A不是下行符号、且所述帧结构B是下行符号时,所述目标频域资源为所述第二频域资源。
  10. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    接收第三DCI,所述第三DCI包括第一字段,所述第一字段指示所述帧结构A与所述帧结构B。
  11. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    接收第四DCI,所述第四DCI包括第二字段和第三字段,所述第二字段指示所述帧结构A,所述第三字段指示帧结构B。
  12. 根据权利要求1所述方法,其特征在于,所述方法具体包括:
    在位于所述第一频域资源的第二传输与位于所述第二频域资源的第三传输在时域重叠的条件下,确定在所述第一频域资源或所述第二频域资源上进行所述第一传输,其中,所述第一传输是所述第二传输与所述第三传输中一个。
  13. 根据权利要求12所述方法,其特征在于,所述第二传输和所述第三传输的通信方向不同。
  14. 根据权利要求12或13所述方法,其特征在于,所述第一传输是所述第二传输,且所述第二传输和所述第三传输满足如下至少一个条件:
    所述第二传输是DCI动态调度的传输,且所述第三传输是高层配置的传输;
    所述第二传输的物理层优先级大于等于所述第三传输的物理层优先级;
    所述第一频域资源的优先级大于等于所述第二频域资源的优先级;
    所述第二传输是上行传输,且所述第三传输是下行传输。
  15. 根据权利要求12或13所述方法,其特征在于,所述第一传输是所述第二传输,且所述第二传输和所述第三传输满足:
    所述第二传输的物理层优先级大于所述第三传输的物理层优先级;或,
    所述第二传输的物理层优先级等于所述第三传输的物理层优先级,且所述第二传输是DCI动态调度的传输,所述第三传输是高层配置的传输。
  16. 根据权利要求14或15所述方法,其特征在于,所述第二传输是候选物理层下行控制信道PDCCH,所述第二传输的时域位置是一个PDCCH监测时机;
    所述第二传输的物理层优先级是在所述第二传输对应的控制资源集合CORESET的配置信令或者搜索空间search space的配置信令中指示的。
  17. 根据权利要求12或13所述方法,其特征在于,所述第一传输是所述第二传输,且所述第三传输满足如下至少一个:
    所述第三传输是配置授权的上行数据信道且该第三传输没有被触发;
    所述第三传输是承载调度请求的上行控制信道且该第三传输没有被触发;
    所述第三传输是否定应答NACK触发的探测参考信号SRS或者承载NACK触发的信道状态信息的上行控制信道,且该第三传输没有被触发。
  18. 一种通信方法,其特征在于,包括:
    发送配置第一频域资源与第二频域资源的信息,所述第一频域资源对应帧结构A,所述第二频域资源对应帧结构B,所述帧结构A与所述帧结构B不同;
    在所述第一频域资源和/或所述第二频域资源上进行第一传输;
    其中,所述第一频域资源与所述第二频域资源为第一成员载波内的两个不同的带宽部分BWP;或者,所述第一频域资源与所述第二频域资源为第一BWP内的两个不同的子带;或者,所述第一频域资源与所述第二频域资源为不同的成员载波。
  19. 根据权利要求18所述的方法,其特征在于,所述第一频域资源和所述第二频域资源满足如下至少一种关系:
    所述第一频域资源和所述第二频域资源的频域位置不重叠;或者,
    所述第一频域资源和所述第二频域资源的频域宽度相同;或者,
    所述第一频域资源和所述第二频域资源的子载波间隔相同。
  20. 根据权利要求18或19所述的方法,其特征在于,所述方法还包括:
    发送第一配置信息,所述第一配置信息指示所述第一频域资源集合和所述第二频域资源集合。
  21. 据权利要求18至20任一项所述的方法,其特征在于,所述第一频域资源与所述第二频域资源为不同的成员载波,所述方法还包括:
    发送第一指示信息,所述第一指示信息指示第四频域资源,所述第四频域资源为所述第一传输对应的HARQ进程的最近一次传输所在的成员载波。
  22. 根据权利要求18至20任一项所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息和第三指示信息,所述第二指示信息指示目标频域资源,所述第三指示信息指示所述第一传输所采用的频域资源在所述目标频域资源中的频域位置,所述目标频域资源为所述第一频域资源或所述第二频域资源。
  23. 根据权利要求22所述的方法,其特征在于,
    所述第一传输为第二DCI动态调度的下行数据传输的混合自动重传请求确认HARQ-ACK传输,所述第二指示信息由所述第二DCI承载。
  24. 根据权利要求18至20任一项所述的方法,其特征在于,所述方法还包括:
    发送第四指示信息,所述第四指示信息指示进行所述第一传输的时域位置。
  25. 根据权利要求18至20任一项所述的方法,其特征在于,所述方法还包括:
    发送第三DCI,所述第三DCI包括第一字段,所述第一字段指示所述帧结构A与所述帧结构B。
  26. 根据权利要求18至20任一项所述的方法,其特征在于,所述方法还包括:
    发送第四DCI,所述第四DCI包括第二字段和第三字段,所述第二字段指示所述帧结构A,所述第三字段指示所述帧结构B。
  27. 根据权利要求18所述方法,其特征在于,所述方法具体包括:
    在位于所述第一频域资源的第二传输与位于所述第二频域资源的第三传输在时域重叠的条件下,确定在所述第一频域资源或所述第二频域资源上进行所述第一传输,其中,所述第一传输是所述第二传输与所述第三传输中一个。
  28. 根据权利要求27所述方法,其特征在于,所述第二传输和所述第三传输的通信方向 不同。
  29. 根据权利要求27或28所述方法,其特征在于,所述第一传输是所述第二传输,且所述第二传输和所述第三传输满足如下至少一个条件:
    所述第二传输是DCI动态调度的传输,且所述第三传输是高层配置的传输;
    所述第二传输的物理层优先级大于等于所述第三传输的物理层优先级;
    所述第一频域资源的优先级大于等于所述第二频域资源的优先级;
    所述第二传输是上行传输,且所述第三传输是下行传输。
  30. 根据权利要求27或28所述方法,其特征在于,所述第一传输是所述第二传输,且所述第二传输和所述第三传输满足:
    所述第二传输的物理层优先级大于所述第三传输的物理层优先级;或,
    所述第二传输的物理层优先级等于所述第三传输的物理层优先级,且所述第二传输是DCI动态调度的传输,所述第三传输是高层配置的传输。
  31. 根据权利要求29或30所述方法,其特征在于,所述第二传输是候选物理层下行控制信道PDCCH,所述第二传输的时域位置是一个PDCCH监测时机;
    所述第二传输的物理层优先级是在所述第二传输对应的控制资源集合CORESET的配置信令或者搜索空间search space的配置信令中指示的。
  32. 根据权利要求27或28所述方法,其特征在于,所述第一传输是所述第二传输,且所述第三传输满足如下至少一个:
    所述第三传输是配置授权的上行数据信道且该第三传输没有被触发;
    所述第三传输是承载调度请求的上行控制信道且该第三传输没有被触发;
    所述第三传输是否定应答NACK触发的探测参考信号SRS或者承载NACK触发的信道状态信息的上行控制信道,且该第三传输没有被触发。
  33. 一种通信装置,其特征在于,包括:
    收发模块,用于接收配置第一频域资源与第二频域资源的信息;
    处理模块,用于根据收发模块接收的所述信息确定第一频域资源与第二频域资源,所述第一频域资源对应帧结构A,所述第二频域资源对应帧结构B,所述帧结构A与所述帧结构B不同;
    所述收发模块还用于在所述处理模块确定的所述第一频域资源和/或所述第二频域资源上进行第一传输;
    其中,所述第一频域资源与所述第二频域资源为第一成员载波内的两个不同的带宽部分BWP;或者,所述第一频域资源与所述第二频域资源为第一BWP内的两个不同的子带;或者,所述第一频域资源与所述第二频域资源为不同的成员载波。
  34. 根据权利要求33所述的装置,其特征在于,从所述第一频域资源切换到所述第二频域资源的切换时延小于从所述第二频域资源切换到第三频域资源的切换时延;其中,所述第一频域资源与所述第二频域资源属于第一频域资源集合,所述第三频域资源属于第二频域资源集合。
  35. 根据权利要求34所述的装置,其特征在于,所述第一频域资源和所述第二频域资源满足如下至少一种关系:
    所述第一频域资源和所述第二频域资源的频域位置不重叠;或者,
    所述第一频域资源和所述第二频域资源的频域宽度相同;或者,
    所述第一频域资源和所述第二频域资源的子载波间隔相同。
  36. 根据权利要求35所述的装置,其特征在于,所述收发模块还包用于:
    接收第一配置信息,所述第一配置信息指示所述第一频域资源集合和所述第二频域资源集合。
  37. 根据权利要求33至36任一项所述的装置,其特征在于,所述处理模块还用于获取第一指示信息,所述第一指示信息指示第四频域资源,所述第四频域资源为所述第一传输对应的HARQ进程的最近一次传输所在的成员载波,其中,所述第一频域资源与所述第二频域资源为不同的成员载波。
  38. 根据权利要求33至36任一项所述的装置,其特征在于,所述收发模块还用于:
    获取第二指示信息和第三指示信息,所述第二指示信息指示目标频域资源,所述第三指示信息指示所述第一传输所采用的频域资源在所述目标频域资源中的资源块RB位置,所述目标频域资源为所述第一频域资源或所述第二频域资源。
  39. 根据权利要求38所述的装置,其特征在于,
    所述第一传输为第二DCI动态调度的下行数据传输的混合自动重传请求确认HARQ-ACK传输,所述第二指示信息由所述第二DCI承载。
  40. 根据权利要求33至36任一项所述的装置,其特征在于,所述收发模块还用于:
    获取第四指示信息,所述第四指示信息指示进行所述第一传输的时域位置,根据所述时域位置、所述帧结构A和所述帧结构B确定目标频域资源,所述目标频域资源为所述第一频域资源或所述第二频域资源。
  41. 根据权利要求40所述的方法,其特征在于,所述处理模块具体用于:
    当所述第一传输是上行传输,所述时域位置上的所述帧结构A和所述帧结构B为上行符号时,所述目标频域资源是协议预定义的或高层信令配置的;和/或
    当所述第一传输是上行传输,所述时域位置上的所述帧结构A是上行符号、且所述帧结构B不是上行符号时,所述目标频域资源为所述第一频域资源;和/或
    当所述第一传输是上行传输,所述时域位置上的所述帧结构A不是上行符号、且所述帧结构B是上行符号时,所述目标频域资源为所述第二频域资源;和/或
    当所述第一传输是下行传输,所述时域位置上的所述帧结构A和所述帧结构B为下行符号时,所述目标频域资源是协议预定义的或高层信令配置的;和/或
    当所述第一传输是下行传输,所述时域位置上的所述帧结构A是下行符号、且所述帧结构B不是下行符号时,所述目标频域资源为所述第一频域资源;和/或
    当所述第一传输是下行传输,所述时域位置上的所述帧结构A不是下行符号、且所述帧结构B是下行符号时,所述目标频域资源为所述第二频域资源。
  42. 根据权利要求33至36任一项所述的装置,其特征在于,所述收发模块还用于:
    接收第三DCI,所述第三DCI包括第一字段,所述第一字段指示所述帧结构A与所述帧结构B。
  43. 根据权利要求33至36任一项所述的装置,其特征在于,所述收发模块还用于:
    接收第四DCI,所述第四DCI包括第二字段和第三字段,所述第二字段指示所述帧结构A,所述第三字段指示所述帧结构B。
  44. 根据权利要求33所述装置,其特征在于,所述收发模块还用于:
    在位于所述第一频域资源的第二传输与位于所述第二频域资源的第三传输在时域重叠的条件下,确定在所述第一频域资源或所述第二频域资源上进行所述第一传输,其中,所述第一传输是所述第二传输与所述第三传输中一个。
  45. 根据权利要求44所述装置,其特征在于,所述第二传输和所述第三传输的通信方向不同。
  46. 根据权利要求44或45所述装置,其特征在于,所述第一传输是所述第二传输,且所述第二传输和所述第三传输满足如下至少一个条件:
    所述第二传输是DCI动态调度的传输,且所述第三传输是高层配置的传输;
    所述第二传输的物理层优先级大于等于所述第三传输的物理层优先级;
    所述第一频域资源的优先级大于等于所述第二频域资源的优先级;
    所述第二传输是上行传输,且所述第三传输是下行传输。
  47. 根据权利要求44或45所述装置,其特征在于,所述第一传输是所述第二传输,且所述第二传输和所述第三传输满足:
    所述第二传输的物理层优先级大于所述第三传输的物理层优先级;或,
    所述第二传输的物理层优先级等于所述第三传输的物理层优先级,且所述第二传输是DCI动态调度的传输,所述第三传输是高层配置的传输。
  48. 根据权利要求46或47所述装置,其特征在于,所述第二传输是候选物理层下行控制信道PDCCH,所述第二传输的时域位置是一个PDCCH监测时机;
    所述第二传输的物理层优先级是在所述第二传输对应的控制资源集合CORESET的配置信令或者搜索空间search space的配置信令中指示的。
  49. 根据权利要求44或45所述装置,其特征在于,所述第一传输是所述第二传输,且所述第三传输满足如下至少一个:
    所述第三传输是配置授权的上行数据信道且该第三传输没有被触发;
    所述第三传输是承载调度请求的上行控制信道且该第三传输没有被触发;
    所述第三传输是否定应答NACK触发的探测参考信号SRS或者承载NACK触发的信道状态信息的上行控制信道,且该第三传输没有被触发。
  50. 一种通信装置,其特征在于,包括:
    处理模块,用于确定第一频域资源与第二频域资源,所述第一频域资源对应帧结构A,所述第二频域资源对应帧结构B,所述帧结构A与所述帧结构B不同;
    收发模块,用于发送配置所述第一频域资源与所述第二频域资源的信息;
    所述收发模块还用于在所述处理模块确定的所述第一频域资源和/或所述第二频域资源上进行第一传输;
    其中,所述第一频域资源与所述第二频域资源为第一成员载波内的两个不同的带宽部分BWP;或者,所述第一频域资源与所述第二频域资源为第一BWP内的两个不同的子带;或者,所述第一频域资源与所述第二频域资源为不同的成员载波。
  51. 根据权利要求50所述的装置,其特征在于,所述第一频域资源和所述第二频域资源满足如下至少一种关系:
    所述第一频域资源和所述第二频域资源的频域位置不重叠;或者,
    所述第一频域资源和所述第二频域资源的频域宽度相同;或者,
    所述第一频域资源和所述第二频域资源的子载波间隔相同。
  52. 根据权利要求50或51所述的装置,其特征在于,所述收发模块还用于:
    发送第一配置信息,所述第一配置信息指示所述第一频域资源集合和所述第二频域资源集合。
  53. 根据权利要求50至52任一项所述的装置,其特征在于,所述收发模块还用于发送 第一指示信息,所述第一指示信息指示第四频域资源,所述第四频域资源为所述第一传输对应的HARQ进程的最近一次传输所在的成员载波,其中,所述第一频域资源与所述第二频域资源为不同的成员载波。
  54. 根据权利要求50至52任一项所述的装置,其特征在于,所述收发模块还用于发送第二指示信息和第三指示信息,所述第二指示信息指示目标频域资源,所述第三指示信息指示所述第一传输所采用的频域资源在所述目标频域资源中的频域位置,所述目标频域资源为所述第一频域资源或所述第二频域资源。
  55. 根据权利要求54所述的装置,其特征在于,
    所述第一传输为第二DCI动态调度的下行数据传输的混合自动重传请求确认HARQ-ACK传输,所述第二指示信息由所述第二DCI承载。
  56. 根据权利要求50至52任一项所述的装置,其特征在于,所述收发模块还用于发送第四指示信息,所述第四指示信息指示进行所述第一传输的时域位置。
  57. 根据权利要求50至52任一项所述的装置,其特征在于,所述收发模块还用于发送第三DCI,所述第三DCI包括第一字段,所述第一字段指示所述帧结构A与所述帧结构B。
  58. 根据权利要求50至52任一项所述的装置,其特征在于,所述收发模块还用于发送第四DCI,所述第四DCI包括第二字段和第三字段,所述第二字段指示所述帧结构A,所述第三字段指示所述帧结构B。
  59. 根据权利要求50所述装置,其特征在于,所述收发模块还用于:
    在位于所述第一频域资源的第二传输与位于所述第二频域资源的第三传输在时域重叠的条件下,确定在所述第一频域资源或所述第二频域资源上进行所述第一传输,其中,所述第一传输是所述第二传输与所述第三传输中一个。
  60. 根据权利要求59所述装置,其特征在于,所述第二传输和所述第三传输的通信方向不同。
  61. 根据权利要求59或60所述装置,其特征在于,所述第一传输是所述第二传输,且所述第二传输和所述第三传输满足如下至少一个条件:
    所述第二传输是DCI动态调度的传输,且所述第三传输是高层配置的传输;
    所述第二传输的物理层优先级大于等于所述第三传输的物理层优先级;
    所述第一频域资源的优先级大于等于所述第二频域资源的优先级;
    所述第二传输是上行传输,且所述第三传输是下行传输。
  62. 根据权利要求59或60所述装置,其特征在于,所述第一传输是所述第二传输,且所述第二传输和所述第三传输满足:
    所述第二传输的物理层优先级大于所述第三传输的物理层优先级;或,
    所述第二传输的物理层优先级等于所述第三传输的物理层优先级,且所述第二传输是DCI动态调度的传输,所述第三传输是高层配置的传输。
  63. 根据权利要求61或62所述装置,其特征在于,所述第二传输是候选物理层下行控制信道PDCCH,所述第二传输的时域位置是一个PDCCH监测时机;
    所述第二传输的物理层优先级是在所述第二传输对应的控制资源集合CORESET的配置信令或者搜索空间search space的配置信令中指示的。
  64. 根据权利要求59或60所述装置,其特征在于,所述第一传输是所述第二传输,且所述第三传输满足如下至少一个:
    所述第三传输是配置授权的上行数据信道且该第三传输没有被触发;
    所述第三传输是承载调度请求的上行控制信道且该第三传输没有被触发;
    所述第三传输是否定应答NACK触发的探测参考信号SRS或者承载NACK触发的信道状态信息的上行控制信道,且该第三传输没有被触发。
  65. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至17中任一项所述的方法。
  66. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求18至32中任一项所述的方法。
  67. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至17或18至32任一项所述的方法。
  68. 一种计算机程序,其特征在于,当所述计算机程序被通信装置执行时,实现如权利要求1至17或18至32中任一项所述的方法。
  69. 一种通信系统,包括如权利要求33至49中任一项所述的装置或权利要求65所述的装置,和如权利要求50至64中任一项所述的装置或权利要求66所述的通信装置。
PCT/CN2021/104560 2020-08-26 2021-07-05 一种通信方法与装置 WO2022042048A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180050668.5A CN115885495A (zh) 2020-08-26 2021-07-05 一种通信方法与装置
EP21859888.6A EP4195834A4 (en) 2020-08-26 2021-07-05 COMMUNICATION METHOD AND DEVICE
US18/172,532 US20230199740A1 (en) 2020-08-26 2023-02-22 Communication method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/111418 2020-08-26
PCT/CN2020/111418 WO2022040984A1 (zh) 2020-08-26 2020-08-26 一种通信方法与装置
PCT/CN2020/121954 WO2022041419A1 (zh) 2020-08-26 2020-10-19 一种通信方法与装置
CNPCT/CN2020/121954 2020-10-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/172,532 Continuation US20230199740A1 (en) 2020-08-26 2023-02-22 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022042048A1 true WO2022042048A1 (zh) 2022-03-03

Family

ID=80352276

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2020/111418 WO2022040984A1 (zh) 2020-08-26 2020-08-26 一种通信方法与装置
PCT/CN2020/121954 WO2022041419A1 (zh) 2020-08-26 2020-10-19 一种通信方法与装置
PCT/CN2021/104560 WO2022042048A1 (zh) 2020-08-26 2021-07-05 一种通信方法与装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/111418 WO2022040984A1 (zh) 2020-08-26 2020-08-26 一种通信方法与装置
PCT/CN2020/121954 WO2022041419A1 (zh) 2020-08-26 2020-10-19 一种通信方法与装置

Country Status (4)

Country Link
US (1) US20230199740A1 (zh)
EP (1) EP4195834A4 (zh)
CN (1) CN115885495A (zh)
WO (3) WO2022040984A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285531B (zh) * 2019-09-30 2023-09-08 Oppo广东移动通信有限公司 反馈信息的发送方法、接收方法和装置
CN116801393A (zh) * 2022-03-15 2023-09-22 展讯半导体(南京)有限公司 数据传输方法及装置、计算机可读存储介质
WO2024026652A1 (zh) * 2022-08-02 2024-02-08 深圳传音控股股份有限公司 处理方法、通信设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797248A (zh) * 2014-10-21 2017-05-31 Lg电子株式会社 在无线通信系统中发送和接收数据的方法及其设备
CN108496388A (zh) * 2016-01-26 2018-09-04 夏普株式会社 基站装置、终端装置以及通信方法
CN109586881A (zh) * 2017-09-29 2019-04-05 株式会社Kt 用于在新无线电中切换带宽部分的方法和装置
CN110536447A (zh) * 2019-07-01 2019-12-03 中兴通讯股份有限公司 一种发送、接收方法以及发送、接收装置
CN111034113A (zh) * 2018-02-27 2020-04-17 Lg电子株式会社 用于发送和接收harq-ack信号的方法和装置
CN111148237A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 一种通信方法及装置
CN111586844A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种通信方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964704B (zh) * 2009-07-23 2013-06-05 华为技术有限公司 混合自动重传请求通信方法、装置与通信系统
US10128993B2 (en) * 2015-05-29 2018-11-13 Huawei Technologies Co., Ltd. Systems and methods of adaptive frame structure for time division duplex
KR20180018504A (ko) * 2015-06-17 2018-02-21 인텔 아이피 코포레이션 차세대 lte 디바이스들 및 시스템들을 위한 ack/nack 신호들
US11153126B2 (en) * 2016-06-22 2021-10-19 Apple Inc. Uplink sounding reference signal (SRS) transmission in carrier aggregation system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797248A (zh) * 2014-10-21 2017-05-31 Lg电子株式会社 在无线通信系统中发送和接收数据的方法及其设备
CN108496388A (zh) * 2016-01-26 2018-09-04 夏普株式会社 基站装置、终端装置以及通信方法
CN109586881A (zh) * 2017-09-29 2019-04-05 株式会社Kt 用于在新无线电中切换带宽部分的方法和装置
CN111034113A (zh) * 2018-02-27 2020-04-17 Lg电子株式会社 用于发送和接收harq-ack信号的方法和装置
CN111148237A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 一种通信方法及装置
CN111586844A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种通信方法及装置
CN110536447A (zh) * 2019-07-01 2019-12-03 中兴通讯股份有限公司 一种发送、接收方法以及发送、接收装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Overview of 5G frame structure", 3GPP DRAFT; R1-162157, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Busan, Korea; 20160411 - 20160415, 2 April 2016 (2016-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051080003 *
See also references of EP4195834A4 *

Also Published As

Publication number Publication date
US20230199740A1 (en) 2023-06-22
EP4195834A1 (en) 2023-06-14
WO2022041419A1 (zh) 2022-03-03
WO2022040984A1 (zh) 2022-03-03
EP4195834A4 (en) 2024-02-28
CN115885495A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
US11683132B2 (en) System and method for a long-term evolution (LTE)-compatible subframe structure for wideband LTE
ES2955572T3 (es) Planificación de canal de enlace ascendente para retener ocupación de canal para un espectro inalámbrico sin licencia
CN110268786B (zh) 无线蜂窝通信系统中发送控制和数据信息的方法和装置
WO2022042048A1 (zh) 一种通信方法与装置
US20210377979A1 (en) User equipment and system performing transmission and reception operations
KR20200054068A (ko) 무선 통신 시스템에서 서브밴드 기반 채널 접속 방법 및 장치
WO2020094025A1 (zh) 一种上行控制信息的传输方法及装置
US11431462B2 (en) Indication method, network device, and user equipment
KR20200080864A (ko) 무선 통신 시스템에서 채널 접속을 위한 장치 및 방법
KR20200050849A (ko) 무선 통신 시스템에서 무선 자원 할당을 위한 방법 및 장치
CN114885431A (zh) 一种通信方法及装置
CN114930765A (zh) 基于多普勒参数来控制参考信号模式
WO2022237611A1 (zh) 一种信息确认方法、装置及通信设备
TWI794078B (zh) 載波切換的傳輸處理方法、裝置及處理器可讀存儲介質
WO2021031948A1 (zh) 处理数据的方法和通信装置
CN116418469A (zh) 无线通信系统中的终端及其通信方法
CN115245030A (zh) 用于在无线通信系统中发送上行链路数据的方法及装置
WO2020063837A1 (zh) 通信方法、装置、设备、系统及存储介质
KR20210017748A (ko) 무선 통신 시스템에서 상향링크 전송 자원을 결정하기 위한 방법 및 장치
WO2024093878A1 (zh) 一种通信方法及装置
WO2023011097A1 (zh) 反馈信息传输方法及相关装置
WO2022151599A1 (zh) 反馈信息发送方法、反馈信息接收方法及装置
KR102666201B1 (ko) 무선 통신 시스템에서 데이터 및 제어 정보 송수신 방법 및 장치
US11818081B2 (en) Method and device for transmitting uplink channel, by terminal, for dual connectivity in wireless communication system
WO2022156567A1 (zh) 信息传输方法、装置、终端设备、网络设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021859888

Country of ref document: EP

Effective date: 20230307

NENP Non-entry into the national phase

Ref country code: DE