WO2024032535A1 - 一种传输块大小确定方法及装置 - Google Patents

一种传输块大小确定方法及装置 Download PDF

Info

Publication number
WO2024032535A1
WO2024032535A1 PCT/CN2023/111417 CN2023111417W WO2024032535A1 WO 2024032535 A1 WO2024032535 A1 WO 2024032535A1 CN 2023111417 W CN2023111417 W CN 2023111417W WO 2024032535 A1 WO2024032535 A1 WO 2024032535A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain resource
symbols
information
terminal device
Prior art date
Application number
PCT/CN2023/111417
Other languages
English (en)
French (fr)
Inventor
易凤
苏宏家
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202310401611.6A external-priority patent/CN117596679A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032535A1 publication Critical patent/WO2024032535A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communication technology, and in particular, to a method and device for determining a transport block size.
  • the different frequency bands used can be divided into authorized frequency bands and unlicensed frequency bands.
  • the licensed frequency band users use spectrum resources based on the scheduling of the central node.
  • unlicensed frequency bands transmitting nodes need to use spectrum resources in a competitive manner. Specifically, they compete for channels through listen-before talk (LBT). Since resource scheduling in unlicensed spectrum mainly relies on competition to seize channels, in order to reduce interference, in unlicensed spectrum, not all frequency band resources on the carrier can be used to carry data, and part of the frequency band resources is used as a guard band.
  • LBT listen-before talk
  • the terminal The device can transmit data in frequency domain resources outside the protected bandwidth. This part of the available resources is called a set of frequency domain resource units.
  • a channel can be divided into multiple sub-channels, and one or more sub-channels can be allocated to a terminal device at a time.
  • the resources in the channel are evenly divided into each sub-channel according to the size of the entire channel.
  • sub-channels are divided in the same manner as in licensed spectrum. However, due to the existence of guard bandwidth, the sizes of the two sub-channels may not be equal.
  • the transport block size must be determined based on the frequency domain resource unit data included in the subchannel.
  • the frequency domain resource unit data included in the subchannel is not a fixed value, resulting in the final An error in the determined transport block size prevents the data from being successfully decoded.
  • This application provides a transport block size determination method and device to solve the problem of how to accurately determine the transport block size.
  • this application provides a method for determining a transport block size.
  • the method includes: a first terminal device receiving first information from a second terminal device; and the first terminal device determining the first information according to the number of first frequency domain resource units.
  • n′ PRB represents the number of first frequency domain resource units
  • N represents the number of frequency domain resource unit sets occupied by the first information
  • N is a positive integer
  • Mr represents the number of frequency domain resource unit groups occupied by the first information
  • Mr is a positive integer
  • Indicates the number of second frequency domain resource units is a positive integer
  • the second frequency domain resource unit number is the reference number of the frequency domain resource unit group in a frequency domain resource unit set, or the second frequency domain resource unit number is the frequency domain resource unit group in at least The reference number of frequency domain resource units in the two frequency domain resource unit sets, or the second number of frequency domain resource units is the reference number of frequency domain resource units included in the frequency domain resource unit group.
  • the first terminal device determines the TBS of the first information according to the number of first frequency domain resource units, and the number of first frequency domain resource units is determined according to the number of second frequency domain resource units.
  • the number of second frequency domain resource units is A positive integer, decoupled from the number of frequency domain resource units actually occupied by the first information, which can be determined for each transmission when the frequency domain resources allocated between initial transmission and retransmission, or retransmission and retransmission, are not equal.
  • the TBS of the information is consistent, which can avoid the merge failure of multiple received data hybrid automatic repeat requests (HARQ), improve the accuracy of data decoding, and improve the efficiency of data decoding.
  • HARQ merge failure of multiple received data hybrid automatic repeat requests
  • the number of second frequency domain resource units is 10 or 11.
  • the number of second frequency domain resource units is the set ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 20, 25, 50, 75, 100 ⁇ or any value in its subset.
  • the number of second frequency domain resource units By setting the number of second frequency domain resource units to a fixed value, it is possible to realize the initial transmission and retransmission of the first information, or when the frequency domain resources allocated between retransmission and retransmission are not equal, the determined number of each transmission can be achieved. Keeping the TBS of information consistent can avoid HARQ merge failure of multiple received data, improve data decoding accuracy, and improve data decoding efficiency.
  • the number of second frequency domain resource units meets any of the following forms:
  • RB total represents the number of third frequency domain resource units
  • M subch represents the number of frequency domain resource unit groups included in the resource pool where the first information is located
  • the number of third frequency domain resource units is determined based on the number of frequency domain resource units included in the resource pool.
  • ceil means rounding up
  • floor means rounding down.
  • the number of second frequency domain resource units can be determined according to any of the following methods:
  • RB subtotal represents the number of fourth frequency domain resource units
  • M total represents the number of frequency domain resource unit groups occupied by the initial transmission and/or retransmission of the first information
  • the number of frequency domain resource unit groups occupied by retransmission refers to the second
  • the number of frequency domain resource unit groups reserved by the terminal device for transmitting the first information includes the number of frequency domain resource unit groups occupied by at least one retransmission.
  • the number of fourth frequency domain resource units may be the number of frequency domain resource units reserved by the second terminal device for transmitting the first information, including the frequency domain resource unit group occupied by the initial transmission of the first information.
  • the frequency domain resource unit includes the frequency domain resource unit and the frequency domain resource unit included in the frequency domain resource unit group occupied by at least one retransmission of the first information.
  • the number of third frequency domain resource units is the number of frequency domain resource units included in all frequency domain resource unit sets in the resource pool; or, the number of third frequency domain resource units is the number of frequency domain resource units included in all frequency domain resource unit sets in the resource pool.
  • the number of frequency domain resource units is the sum of the number of frequency domain resource units included in all protection bandwidths in the resource pool.
  • the first terminal device receives first indication information, and the first indication information is used to indicate the number of second frequency domain resource units.
  • the first indication information comes from the second terminal device, and the first indication information is carried in sideline control information; or the first indication information comes from a network device, and the first indication information is carried in high-layer signaling.
  • the first terminal device determines the transmission block size of the first information based on the number of first frequency domain resource units, including: the first terminal device determines the first information based on the number of first frequency domain resource units and the first number of symbols.
  • the transfer block size is the transfer block size.
  • the TBS can be determined based on the number of first symbols. Since the number of first symbols is a fixed value or indicated by the second terminal device, it can be reduced The difference between the actual TBS and the calculated TBS improves the accuracy of TBS and improves the decoding accuracy.
  • the number of first symbols is any value from 5 to 12.
  • the first terminal device receives first side row indication information from the second terminal device, and the first side row indication information is used to indicate the first number of symbols.
  • the first symbol quantity satisfies the following form:
  • Represents the second symbol quantity is a positive integer
  • Y is determined based on the number of automatic gain control symbols and the number of interval symbols in the time slot, and Y is a positive integer.
  • the first terminal device receives second side row indication information from the second terminal device, and the second side row indication information is used to indicate the second number of symbols.
  • the first symbol quantity satisfies the following form:
  • sl-LengthSymbols indicates the number of row symbols inside the slot indicated by the higher layer
  • sl-LengthSymbols is a positive integer
  • Y is determined based on the number of automatic gain control symbols and the number of interval symbols in the time slot
  • Y is a positive integer.
  • the value of Y is 0, 1, or 2.
  • the first terminal device receives third side row indication information from the second terminal device, and the third side row indication information is used to indicate the value of Y.
  • the method further includes:
  • the first terminal device receives second indication information, the second indication information is used to indicate that the first number of symbols is determined according to the first parameter sl-LengthSymbols, or the second indication information is used to indicate the first The number of symbols is determined according to the first parameter sl-LengthSymbols and the second parameter Y or according to the second number of symbols and the second parameter Y.
  • the first information satisfies the following conditions, and the number of first symbols is determined according to the first parameter sl-LengthSymbols:
  • the first condition includes one or more of the following: the second terminal device accesses the first channel through sharing, and the first information is transmitted on the first channel;
  • the first information is transmitted within the channel occupation time
  • the initial transmission of the first information is transmitted within the channel occupancy time, and the first information is located in any time slot after the first time slot within the channel occupancy time.
  • the first number of symbols satisfies the following form:
  • the second parameter Y is determined according to the number of automatic gain control symbols and the number of interval symbols in the time slot.
  • the second parameter Y is a positive integer;
  • the third parameter A is predefined, or preset configured, or configured by the network, or a value indicated by the second terminal device.
  • the method further includes:
  • the first terminal device receives third indication information, and the third indication information is used to indicate the value of the third parameter A.
  • this application provides a method for determining the size of a transport block.
  • the method includes: a first terminal device receiving first information from a second terminal device; and the first terminal device determining a transport block of the first information based on the first number of symbols. Size; the number of first symbols is determined according to the number of symbols included in the time slot where the first information is located.
  • the TBS can be determined based on the number of first symbols. Since the number of first symbols is a fixed value or indicated by the second terminal device, it can be reduced The difference between the actual TBS and the calculated TBS improves the accuracy of TBS and improves the decoding accuracy.
  • the number of first symbols is any value from 5 to 12.
  • the first terminal device receives first side row indication information from the second terminal device, and the first side row indication information is used to indicate the first number of symbols.
  • the first symbol quantity satisfies the following form:
  • the first terminal device receives second side row indication information from the second terminal device, and the second side row indication information is used to indicate the second number of symbols.
  • the first symbol quantity satisfies the following form:
  • sl-LengthSymbols indicates the number of row symbols inside the time slot indicated by the higher layer
  • Y root Determined by the number of automatic gain control symbols in the time slot and the number of interval symbols.
  • the value of Y is 0, 1, or 2.
  • the value of Y is 2;
  • the value of Y is 1;
  • the first terminal device receives third side row indication information from the second terminal device, and the third side row indication information is used to indicate the value of Y.
  • the present application provides a communication device, which can be applied to a terminal device and has the function of implementing the method performed by the first terminal device in the first or second aspect.
  • This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • it includes a transceiver unit and a processing unit.
  • the transceiver unit may also be called a communication unit or a transceiver module.
  • the transceiver unit may specifically include a receiving unit and a sending unit.
  • the processing unit may also be called a processing module.
  • the communication device is a communication chip
  • the transceiver unit may be an input/output circuit or port, interface circuit, output circuit, input circuit, pin or related circuit of the communication chip, etc.
  • the processing unit may be a processing circuit or a logic circuit of a communication chip.
  • the present application provides a communication device, which includes: a processor and a memory.
  • Computer programs or computer instructions are stored in the memory, and the processor is used to call and run the computer program or computer instructions stored in the memory, so that the processor implements any possible implementation manner as in the first to second aspects.
  • the communication device further includes an interface circuit, and the processor is configured to control the interface circuit to send and receive signals and/or information and/or data.
  • the present application provides a communication device, which includes a processor.
  • the processor is configured to call a stored computer program or computer instruction, so that the processor implements any possible implementation manner from the first aspect to the second aspect.
  • the communication device further includes an interface circuit, and the processor is configured to control the interface circuit to send and receive signals and/or information and/or data.
  • the present application also provides a computer program product including instructions, which when run on a computer causes the computer to execute any of the possible implementations of the first to second aspects.
  • the present application also provides a computer-readable storage medium, which includes computer instructions.
  • the instructions When the instructions are run on a computer, the computer executes any of the possible implementations of the first to second aspects.
  • the present application further provides a chip device, including a processor for calling a computer program or computer instructions in the memory, so that the processor executes any one of the above-mentioned first to second aspects. Possible implementations.
  • the processor is coupled to the memory through an interface.
  • the implementation of this application also provides a method for determining the size of a transport block, including:
  • the second terminal device sends the first information
  • the second terminal device sends second indication information, the second indication information is used to indicate that the number of first symbols is determined according to the first parameter sl-LengthSymbols, or the second indication information is used to indicate the number of first symbols Determined according to the first parameter sl-LengthSymbols and the second parameter Y or according to the second number of symbols and the second parameter Y; the first number of symbols is used to determine the transport block size of the first information.
  • the value of Y is 0, 1, or 2.
  • the first number of symbols satisfies the following form:
  • sl-LengthSymbols represents the number of row symbols inside the time slot indicated by the higher layer
  • sl-LengthSymbols is a positive integer.
  • the value of sl-LengthSymbols is preconfigured or configured by the network.
  • the first number of symbols satisfies the following form:
  • the third parameter A is predefined, or preconfigured, or configured by the network, or a value indicated by the second terminal device.
  • the method further includes: the second terminal device sending third indication information, the third indication information being used to indicate the value of the third parameter A.
  • Figures 1(a) to 1(c) are schematic diagrams of a network architecture provided by embodiments of the present application.
  • Figure 2 is a schematic diagram of a channel structure provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of a channel structure provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of channel division provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of channel division provided by an embodiment of the present application.
  • Figure 6(a) to Figure 6(c) are a schematic diagram of channel division provided by an embodiment of the present application.
  • Figure 7(a) to Figure 7(b) are a schematic diagram of channel division provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of a time slot structure provided by an embodiment of the present application.
  • Figure 9 is a schematic flow chart of a method for determining the size of a transport block provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of channel division provided by an embodiment of the present application.
  • Figure 11 is a schematic flow chart of a method for determining the size of a transport block provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication method provided by the embodiment of this application can be applied to the fourth generation (4th generation, 4G) communication system, such as long term evolution (long term evolution, LTE), and can also be applied to the fifth generation (5th generation, 5G) communication system.
  • 4G long term evolution
  • 5th generation, 5G 5th generation
  • 5G new radio NR
  • 6G sixth generation (6th generation, 6G) communication system.
  • the network devices involved in the embodiments of this application may be devices in a wireless network.
  • the network device may be a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • the network device may be a radio access network (RAN) node that connects the terminal device to the wireless network, and may also be called an access network device.
  • RAN radio access network
  • Network equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (BSC) , base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc., can also be used in 5G mobile communication systems network equipment.
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • BTS home base station
  • BBU baseband unit
  • WIFI wireless fidelity
  • AP wireless relay node
  • TP transmission point
  • TRP transmission and reception point
  • next generation base station next generation NodeB, gNB
  • transmission reception point TRP
  • TP transmission reception point
  • the network device may also be a network node that constitutes a gNB or transmission point.
  • BBU BBU, or distributed unit (DU), etc.
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implementing radio resource control (RRC) and packet data convergence protocol (PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer. Therefore, under this architecture, high-level signaling (such as RRC layer signaling) can also be considered It is sent by DU, or sent by DU and AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in the RAN, or the CU can be divided into network devices in the core network (core network, CN), which is not limited in this application.
  • the terminal device involved in the embodiment of this application may be a wireless terminal device capable of receiving network device scheduling and indication information.
  • An end device may be a device that provides voice and/or data connectivity to a user, or a handheld device with wireless connectivity capabilities, or other processing device connected to a wireless modem.
  • Terminal equipment is also called user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • An end device is a device that includes wireless communication capabilities (providing voice/data connectivity to the user).
  • handheld devices with wireless connection functions or vehicle-mounted devices.
  • some examples of terminal devices are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality devices Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in the Internet of Vehicles, wireless terminals in self-driving, and wireless terminals in remote medical surgery , wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, or wireless terminals in smart home, etc.
  • wireless terminals in the Internet of Vehicles can be vehicle-mounted equipment, vehicle equipment, vehicle-mounted modules, vehicles, etc.
  • Wireless terminals in industrial control can be cameras, robots, etc.
  • Wireless terminals in smart homes can be TVs, air conditioners, sweepers, speakers, set-top boxes, etc.
  • FIG. 1(a) to Figure 1(c) it is a schematic diagram of a network architecture suitable for this application.
  • terminal device A and terminal device B are both within the signal coverage range of the network device; in Figure 1(b), terminal device A is within the signal coverage range of the network device, but terminal device B is within the signal coverage range of the network device. The device's signal coverage is outside.
  • both terminal equipment A and terminal equipment B are outside the signal coverage of the network equipment.
  • Terminal equipment A and terminal equipment B in Figure 1(a) and Figure 1(b) can communicate using side links through resources scheduled by the network equipment.
  • the resources can be authorized resources or authorized frequency bands; terminal equipment Between A and terminal device B, the terminal device can also perform resource self-selection, that is, select resources for sidelink communication from the resource pool.
  • the resources are unlicensed resources or unlicensed frequency bands.
  • Terminal equipment A and terminal equipment B in Figure 1(c) are both outside the signal coverage of the network equipment, so they can only communicate through side links through resource selection.
  • a resource pool for data transmission can be preconfigured.
  • a resource pool can include one or more channels. In one implementation, the bandwidth of each channel is 20MHz.
  • the resource blocks included in the resource pool are resource blocks corresponding to the resource block (RB) set (set) in the channel.
  • RB resource block
  • a channel includes a RB set and guard bandwidths at both ends. The guard bandwidth is used to ensure that the signal/energy on the current channel will not cause interference to adjacent channels. Frequency domain resources within the RB set can be used for data transmission.
  • the resource pool includes a set of RBs and resource blocks of part of the protection bandwidth. As shown in Figure 3, channel 1 includes RB set 1, and channel 2 includes RB set 2. Then the resource pool includes RB set 1, RB set 2, and the protection bandwidth between RB set 1 and RB set 2.
  • the resources available to the terminal device are not only the resources on the RB sets in the two channels, but also include the protection bandwidth between two adjacent RB sets.
  • an RB set can be divided into multiple sub-sets.
  • the resource blocks in the RB set can be divided into M subsets in an interleaved manner.
  • two adjacent resource blocks are separated by M Resource blocks.
  • the index of the resource block included in the channel by the sub-set is: ⁇ m,M+m,2M+m,3M+m,... ⁇ .
  • the channel includes 110 RBs.
  • the index of the resource blocks included in the subset identified as #0 in the RB set is: ⁇ 0,10,20 ,30,...100 ⁇
  • the resource block index included in the sub-set identified as #1 in the RB set is: ⁇ 1,11,21,31,...101 ⁇ , and so on in other cases.
  • multiple consecutive resource blocks in the RB set can be divided into one sub-set, and the resource blocks in one RB set are divided into M sub-sets.
  • the resource blocks included in the subset are contiguous. Assume that the identifier of a sub-set is m, m ⁇ 0,1,...,M-1 ⁇ , and the index of the starting resource block of the channel is 0, then the index of the resource block included in the channel by the sub-set is: ⁇ m,m+1,m+2,m+3,... ⁇ . For example, as shown in Figure 5, for a channel with a 15kHz subcarrier spacing, the channel includes 110 RBs.
  • the index of the resource blocks included in the subset identified as #0 in the RB set is: ⁇ 0,1 ,2,3,...10 ⁇ , identified in the RB set
  • the index of the resource block included in the sub-collection #1 is: ⁇ 11,12,13,...21 ⁇ , and so on in other cases.
  • a channel or a resource pool can be divided into multiple frequency domain resource unit groups, and the frequency domain resource unit group can refer to sub-channels or interlaces.
  • the resource blocks included in a frequency domain resource unit group are the resource blocks included in a subset.
  • the resource pool includes a RB set.
  • the resources in the resource pool can be divided into M frequency domain resource unit groups.
  • One frequency domain resource unit group corresponds to a sub-set.
  • the frequency domain resource unit group Can refer to intertwining.
  • the resource blocks included in frequency domain resource unit group #0 are the resource blocks included in subset #0, that is, the resource block index included in frequency domain resource unit group #0 is: ⁇ m,M+m,2M+m,3M+ m,... ⁇ .
  • the resource pool includes a RB set.
  • the resources in the resource pool can be divided into M frequency domain resource unit groups.
  • One frequency domain resource unit group corresponds to a subset.
  • the frequency domain resource unit A group may refer to a sub-channel.
  • the resource blocks included in frequency domain resource unit group #0 are the resource blocks included in subset #0, that is, the resource block index included in frequency domain resource unit group #0 is: ⁇ m,m+1,m+2,m+ 3,... ⁇ .
  • the frequency domain resource unit group can also be called interleaving, or it can also be called a frequency domain resource unit sub-set, as shown in Figure 6(a)
  • RB set 1 includes 100 RBs, with indices ranging from 0 to 99; protection bandwidth includes 10 RBs, with indices ranging from 100 to 109; RB set 2 includes 100 RBs, with indices ranging from 110 to 209; for example, identified in RB set 1
  • the index of RBs included in the sub-set #0 is: ⁇ 0,10,20,30,...90 ⁇ , and the index of RBs included in the sub-set identified as #1 in RB set 1 is: ⁇ 1,11,21 ,31,...91 ⁇ , and so on in other cases.
  • the index of RBs included in the sub-set identified as #0 in RB set 2 is: ⁇ 110,120,130,140,...200 ⁇
  • the index of RBs included in the sub-set identified as #1 in RB set 2 is: ⁇ 111,121,131,141,...201 ⁇
  • one frequency domain resource unit group includes resource blocks that span multiple RB sets, that is, one frequency domain resource unit group corresponds to at least one subset of the resource pool, or one frequency domain resource unit group can include multiple RBs in the resource pool. Resource blocks corresponding to at least one subset of each RB set in the set. Combined with Figure 6(a) and taking Figure 6(b) as an example, the subcarriers in the resource pool are configured as 15KHz. One frequency domain resource unit group corresponds to the resource blocks corresponding to the sub-sets with the same identifier in different RB sets in the resource pool.
  • the number of resource blocks of a group is the number of resource blocks included in the frequency domain resource unit group in multiple resource block sets.
  • the frequency domain resource unit group (subCH#0) includes the resource blocks corresponding to the sub-set identified as #0 in RB set 1, and the resource blocks corresponding to the sub-set identified as #0 in RB set 2.
  • the frequency domain resource unit group (subCH#1) includes resource blocks corresponding to the sub-set identified as #1 in RB set 1, and resource blocks corresponding to the sub-set identified as #1 in RB set 2.
  • the resource blocks included in a frequency domain resource unit group are located in an RB set, and the frequency domain resource unit group corresponds to at least one subset in each channel, or a frequency domain resource unit group may include a resource block in the resource pool. Resource blocks corresponding to at least one subset of the RB set. Specifically, a frequency domain resource unit group corresponds to the resource blocks contained in a subset within a channel. For this method, because the resource blocks included in the frequency domain resource unit group do not span multiple RB sets, they are allocated to the terminal device. All resources in the frequency domain resource unit group are available.
  • the subcarriers in the resource pool are configured as 15KHz, and a frequency domain resource unit group corresponds to a resource block corresponding to a sub-set of an RB set in the resource pool.
  • the frequency domain resource unit group (subCH#0) includes the resource blocks corresponding to the subset identified as #0 in RB set 1
  • the frequency domain resource unit group (subCH#10) includes RB set 2.
  • the resource units (for example, RBs) included in the frequency domain resource unit group may be continuous, that is, the resource units included in the frequency domain resource unit group may be continuously distributed in one or more resource block sets; it may also be Discrete, that is, the resource units included in the frequency domain resource unit group are discretely distributed in one or more resource block sets.
  • the resource pool only includes resources of one RB set
  • the above two methods have the same effect.
  • the corresponding name of RB in the physical layer can also be physical resource block (PRB).
  • the terminal device When the terminal device receives data, it needs to determine the transport block size (TBS) of the data before decoding the data. If the terminal device transmits data through the physical sidelink shared channel (PSSCH), and the PSSCH is scheduled through the sidelink control information (Sidelink Control Information, SCI), the calculation of the TBS corresponding to the data.
  • PSSCH physical sidelink shared channel
  • SCI Sidelink Control Information
  • Step 1 First, calculate the number of resource elements (RE) in the time slot, that is, the parameter N RE .
  • sl-LengthSymbols represents the number of SL symbols in a time slot. This parameter is provided by higher layers;
  • N_RE ⁇ DMRS value is determined by the high-level parameter sl-PSSCH-DMRS-TimePattern
  • -n PRB is the number of PRBs allocated to PSSCH
  • PSCCH physical sidelink control channel
  • DMRS PSCCH demodulation reference signal
  • Qm is the modulation order of the transmitted data
  • R is the code rate of the transmitted data
  • is the number of layers of the transmitted data.
  • Qm and R can be obtained by looking up the table through the index number of the modulation and coding scheme (MCS) configured or indicated by the network device. If N info ⁇ 3824, use step 3 as the subsequent step to calculate TBS. If N info > 3824, use step 4 as the subsequent step to calculate TBS.
  • Step 3 If N info ⁇ 3824, the TBS calculation steps are:
  • max represents the maximum value operation, Indicates rounding down.
  • Step 4 If N info >3824, the TBS calculation steps are:
  • TBS satisfies the following formula (5):
  • TBS satisfies the following formula (6):
  • TBS satisfies the following formula (7):
  • the TBS calculated by the terminal device using the above method may not be accurate.
  • the frequency domain resource unit group includes interleaved resource blocks.
  • the RB set includes 105 resource blocks, corresponding indexes are 0 to 104; the guard bandwidth includes 5 resource blocks, and the corresponding indexes are 105 to 109; as can be seen from the figure, in the RB set, the frequency domain identified as 0
  • the indexes of the 11 resource blocks included in the resource unit group are: ⁇ 0,10,20,30,...100 ⁇ ; the indexes of the 11 resource blocks included in the frequency domain resource unit group identified as 5 are: ⁇ 5, 15,25,35,...105 ⁇ . Since the resource block with index 105 is located within the guard bandwidth, it cannot be used for data transmission. Therefore, the frequency domain resource unit group identified with 5 actually includes 10 resource blocks.
  • the channel in Figure 7(a) is divided into 10 frequency domain resource unit groups, and the frequency domain resource unit groups identified as 0 to 8 include 10 resource blocks, and All are located in the RB set; among the 10 resource blocks included in the frequency domain resource unit group identified as 9, 5 resource blocks are located in the RB set, and 5 resource blocks are located in the guard bandwidth, so the frequency domain resource identified as 9
  • the unit group actually includes 5 resource blocks, and the 5 resource blocks located within the protection bandwidth cannot be used for data transmission.
  • the calculated TBS results will also be different. If the initial transmission and retransmission, or the TBS determined by the two retransmissions are different, the HARQ combining will fail, resulting in the data not being correctly decoded.
  • the parameter corresponding to the TBS time slot reference point is sl-LengthSymbols-2, where sl-LengthSymbols represents the number of SL symbols in a time slot.
  • This parameter is provided by the higher layer and a resource pool There is only one value for sl-LengthSymbols, for example, the value is 14.
  • the terminal device In the unlicensed frequency band, the terminal device must perform the LBT operation before sending data, and the data can be sent only after the LBT operation is successful. Since the terminal device may access at any position in the time slot, after the LBT is successful, the terminal device needs to wait until the beginning of the time slot before sending data, that is, starting from the first symbol of the time slot. When the time interval between the successful timing of LBT and the start of the next time slot is greater than 25 ⁇ s, there will be a risk of channel occupancy time (COT) loss. Therefore, multiple time slot access symbols can be introduced to reduce the risk of COT loss. . Similarly, multiple time slot end points can also be introduced to preempt COT in advance.
  • COT channel occupancy time
  • FIG 8 it is a schematic diagram of a time slot structure provided by this application.
  • This time slot structure has two candidate access points.
  • the first candidate access point is the 1st symbol of the time slot
  • the second candidate access point is the 5th symbol of the time slot. If the terminal device is in the time slot If the LBT is successful on the 4th symbol, there is no need to wait until the next time slot starts before sending data. Instead, data is sent according to the established time slot structure starting on the 5th symbol.
  • TBS is still calculated according to sl-LengthSymbols-2, when the actual transmitted symbol length differs greatly from the time slot reference point, the TBS calculated by the receiver will differ greatly from the actual TBS, resulting in a decrease in the data decoding performance of the receiver. .
  • this application provides a method that can improve the accuracy of TBS calculation, which will be described in detail below.
  • FIG. 9 it is a schematic flow chart of a method for determining the transmission block size provided by an embodiment of the present application. This method can be applied to communication using unlicensed spectrum in side links.
  • the method includes:
  • the second terminal device sends the first information to the first terminal device; correspondingly, the first terminal device receives the first information from the second terminal device.
  • the specific content of the first information is not limited by this application.
  • the first information may be carried on a data channel, and the TBS of the first information is the size of a transport block carried by the data channel, and the data channel may be PSSCH.
  • the first information may be initially transmitted information or retransmitted information, which is not limited in this application.
  • the second terminal device can perform LBT in one or more channels. If LBT is successful in one channel, it can use one or more frequency domain resource unit groups in the channel for transmission. First information.
  • the second terminal device can reserve one or more frequency domain resource units according to the amount of data corresponding to the first information.
  • the second terminal device may reserve the number of frequency domain resource units required to initially transmit the first information, and the number of frequency domain resource units required to retransmit the first information at least once.
  • the first terminal device determines the TBS of the first information according to the number of first frequency domain resource units.
  • the first terminal device may determine the PSSCH transmission allocated to carry the first information based on the number of first frequency domain resource units.
  • the number of REs N RE and then the TBS of the first information is determined based on the N RE .
  • the description of determining the TBS based on the N RE in the previous steps 2 to 4 can be followed, and the specific process will not be described again.
  • N RE satisfies formula (8):
  • N′ RE the determination method of N′ RE can refer to the previous formula (1), and The specific meaning of can refer to the previous description in formula (2), and will not be repeated here.
  • n′ PRB represents the number of first frequency domain resource units.
  • the number of first frequency domain resource units n′ PRB satisfies the following form:
  • N represents the number of frequency domain resource unit sets occupied by the first information
  • N is a positive integer
  • Mr represents the number of frequency domain resource unit groups occupied by the first information
  • Mr is a positive integer
  • frequency domain resource units may refer to RBs or PRBs
  • frequency domain resource unit sets may refer to RB sets
  • frequency domain resource unit groups may also refer to subchannels or interleavings.
  • the RBs included in one frequency domain resource unit group are located in one or more RB sets, that is, in line with the previous method 1 regarding frequency domain resource units. Description of the group.
  • the number of second frequency domain resource units is a positive integer.
  • the number of second frequency domain resource units It may refer to the reference number of frequency domain resource units included in the frequency domain resource unit group in one frequency domain resource unit set, or the second frequency domain resource unit number is the frequency domain resource unit group in at least two frequency domain resource unit sets.
  • the reference number of frequency domain resource units, or the second number of frequency domain resource units is the reference number of frequency domain resource units included in the frequency domain resource unit group.
  • the number of second frequency domain resource units refers to the reference number of frequency domain resource units included in the frequency domain resource unit group in one resource block set among the plurality of resource block sets.
  • the frequency domain resource units included in the frequency domain resource unit group are evenly distributed among the multiple resource block sets.
  • the number of second frequency domain resource units It may also refer to the reference number of frequency domain resource units included in the frequency domain resource unit group in the multiple resource block sets.
  • the number of second frequency domain resource units may be a preset value, for example, the number of second frequency domain resource units is 10 or 11. In one implementation, the number of second frequency domain resource units is the set ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 20, 25, 50, 75, 100 ⁇ or any value in its subset.
  • the specific value of the number of second frequency domain resource units may be indicated by the network device or the second terminal device, or may be determined independently by the first terminal device.
  • the number of first frequency domain resource units n′ PRB satisfies the following form:
  • Mr represents the number of frequency domain resource unit groups occupied by the first information.
  • the RBs included in one frequency domain resource unit group are located in one RB set, which is consistent with the description of the frequency domain resource unit group in the previous method 2. .
  • the number of second frequency domain resource units is a positive integer. Or, in another possible implementation, the number of second frequency domain resource units It may refer to the reference number of frequency domain resource units included in one frequency domain resource unit set by the frequency domain resource unit group.
  • the frequency domain resource units are RBs
  • the RBs included in the frequency domain resource unit group are interleaved, and the RBs included in the frequency domain resource unit group are located in multiple RB sets.
  • the frequency domain resource units are RBs
  • the RBs included in the frequency domain resource unit group are interleaved, and the RBs included in the frequency domain resource unit group are located in one RB set.
  • the first terminal device may receive first indication information, and the first indication information is used to indicate the number of second frequency domain resource units. If the first indication information comes from the second terminal device, the first indication information may be carried in sideline control information; if the first indication information comes from the network device, the first indication information may be carried in high-layer signaling.
  • the number of second frequency domain resource units in formula (9) This can be determined in any of the following ways:
  • RB total represents the number of third frequency domain resource units
  • M subch represents the number of frequency domain resource unit groups included in the resource pool where the first information is located
  • the number of third frequency domain resource units is determined based on the number of frequency domain resource units included in the resource pool.
  • ceil means rounding up
  • floor means rounding down.
  • the number of second frequency domain resource units may also be determined by the network device or the second terminal device according to any of the above methods and then indicated to the first terminal device, or may be determined by the first terminal device according to any of the above methods. .
  • the number of second frequency domain resource units in formula (10) This can be determined in any of the following ways:
  • RB total represents the number of third frequency domain resource units
  • M subch represents the number of frequency domain resource unit groups included in the resource pool where the first information is located
  • the number of third frequency domain resource units is determined based on the number of frequency domain resource units included in the resource pool.
  • ceil means rounding up
  • floor means rounding down.
  • the number of second frequency domain resource units may also be determined by the network device or the second terminal device according to any of the above methods and then indicated to the first terminal device, or may be determined by the first terminal device according to any of the above methods. .
  • Implementation method 1 the number of third frequency domain resource units is the number of frequency domain resource units included in all frequency domain resource unit sets in the resource pool;
  • implementation method 2 the number of third frequency domain resource units is the number of frequency domain resource units included in all frequency domain resource unit sets in the resource pool
  • the number of frequency domain resource units is the sum of the number of frequency domain resource units included in all protection bandwidths in the resource pool.
  • the frequency domain resource units are RBs
  • the RBs included in the frequency domain resource unit group are interleaved, and the RBs included in the frequency domain resource unit group are located in an RB set.
  • the subcarrier spacing in the resource pool is configured as 15KHz.
  • the number of second frequency domain resource units in Formula (9) or Formula (10) can be determined according to any of the following methods:
  • RB dubtotal represents the number of fourth frequency domain resource units
  • M total represents the frequency domain resource unit occupied by the initial transmission and/or retransmission of the first information.
  • the number of tuples here the number of frequency domain resource unit groups occupied by retransmissions refers to the number of frequency domain resource unit groups reserved by the second terminal device for transmitting the first information, including the frequency domain resource unit groups occupied by at least one retransmission. quantity.
  • the fourth number of frequency domain resource units may be the number of frequency domain resource units reserved by the second terminal device for transmitting the first information, including frequency domain resource units included in the frequency domain resource unit group occupied by the initial transmission of the first information. and the frequency domain resource units included in the frequency domain resource unit group occupied by at least one retransmission of the first information.
  • any of the following options can be used for data transmission:
  • Solution 1 Data transmission is performed through X1 frequency domain resource units located in the RB set in the frequency domain resource unit group.
  • frequency domain resource units belonging to the RB set are always available.
  • Option 2 When the number of frequency domain resource units X1 located in the RB set in the frequency domain resource unit group is greater than the preset threshold, or when the ratio of X1 to X2 is greater than the preset ratio, the frequency domain resource unit group located in the RB X1 frequency domain resource units in the set perform data transmission; when the number of frequency domain resource units X1 in the RB set in the frequency domain resource unit group is less than or equal to the preset threshold, or the ratio of X1 to When the ratio is set, data is not transmitted through the frequency domain resource units in the frequency domain resource unit group.
  • the frequency domain resource unit group can be used for transmission.
  • the frequency domain resource unit group can be used for transmission.
  • the preset threshold and the preset ratio can be configured by the network device or independently determined by the second terminal device.
  • the preset threshold can be any value from 1 to 9, and the preset ratio can be greater than 0 and less than 1.
  • the above ratio of X1 and X2 can also be replaced by the ratio of X2 and X1, or by the ratio of X1 and X, or by the ratio of X2 and X, or by the ratio of The ratio of X2.
  • the value range of the preset ratio is also adjusted accordingly, and the details will not be described again.
  • the first terminal device determines the number of first frequency domain resource units, it can determine the TBS of the first information according to the previous descriptions in steps 2 to 4, and the specific process will not be described again.
  • the value of the number of first frequency domain resource units when the first information is initially transmitted is the same as the value of the number of first frequency domain resource units when the first information is retransmitted. This ensures that the TBS of the first information remains consistent during initial transmission and retransmission.
  • the first terminal device determines the TBS of the first information according to the number of first frequency domain resource units, and the number of first frequency domain resource units is determined according to the number of second frequency domain resource units.
  • the number of second frequency domain resource units is A positive integer, decoupled from the number of frequency domain resource units actually occupied by the first information, which can be determined for each transmission when the frequency domain resources allocated between initial transmission and retransmission, or retransmission and retransmission, are not equal.
  • the TBS of the information remains consistent, which can avoid the HARQ merge failure of multiple received data, improve the accuracy of data decoding, and improve the efficiency of data decoding.
  • FIG. 11 it is a schematic flow chart of a method for determining the transmission block size provided by an embodiment of the present application. This method can be applied to communication using unlicensed spectrum in sidelinks.
  • the method includes:
  • the second terminal device sends the first information to the first terminal device; correspondingly, the first terminal device receives the first information from the second terminal device.
  • the specific content of the first information is not limited by this application.
  • the first information may be carried on a data channel, and the TBS of the first information is the size of a transport block carried by the data channel, and the data channel may be PSSCH.
  • the first terminal device determines the TBS of the first information according to the first number of symbols.
  • the first terminal equipment can determine the number of REs N' RE in a PRB allocated to the PSSCH transmission carrying the first information based on the number of first symbols, and then determine the TBS of the first information based on N' RE . Specifically, it can be as described above. The description of determining TBS based on N′ RE in steps 2 to 4 will not be described again.
  • N′ RE satisfies formula (11):
  • the number of first symbols is any value from 5 to 12.
  • the number of first symbols can be determined based on the current timeslot access point, possible timeslot end points, and multiple states such as retransmission.
  • the application does not limit how to determine the value of the first number of symbols.
  • the value of the first number of symbols when the first information is initially transmitted is the same as the value of the first number of symbols when the first information is retransmitted.
  • the same number of first symbols is used for initial transmission and retransmission, so that the TBS calculated for each transmission can be the same. This is to avoid HARQ merging failure of multiple received data and improve the accuracy of data decoding.
  • the number of first symbols may be indicated by the network device or the second terminal device, or may be determined independently by the first terminal device.
  • the first terminal device receives first side row indication information from the second terminal device, and the first side row indication information is used to indicate the first number of symbols.
  • the TBS can be determined based on the number of first symbols. Since the number of first symbols is a fixed value or indicated by the second terminal device, it can be reduced The difference between the actual TBS and the calculated TBS improves the accuracy of TBS and improves the decoding accuracy.
  • the first symbol quantity satisfies the following form:
  • Represents the second symbol quantity is a positive integer
  • the second parameter Y is determined according to the number of automatic gain control symbols and/or the number of interval symbols in the time slot, and Y is a positive integer.
  • the number of second symbols is any value from 7 to 14.
  • the number of second symbols can be determined based on the current slot access point, possible slot end points, retransmissions and other states.
  • the application does not limit how to determine the value of the second number of symbols.
  • the value of the second number of symbols when the first information is initially transmitted is the same as the value of the second number of symbols when the first information is retransmitted.
  • the number of second symbols may be indicated by the network device or the second terminal device, or may be determined independently by the first terminal device.
  • the first terminal device receives second side row indication information from the second terminal device, and the second side row indication information is used to indicate the second number of symbols.
  • the value of Y when the first information is initially transmitted is the same as the value of Y when the first information is retransmitted.
  • the value of Y is 0, 1, or 2.
  • the value of Y is 2; if the time slot in which the first information is located only includes automatic gain control symbols, Gain control symbols or interval symbols, then the value of Y is 1; if the time slot where the first information is located does not include automatic gain control symbols and interval symbols, the value of Y is 0.
  • Y can be indicated by the network device or the second terminal device, or can be determined independently by the first terminal device.
  • the first terminal device receives third side row indication information from the second terminal device, and the third side row indication information is used to indicate the value of Y.
  • the first symbol quantity satisfies the following form:
  • the first parameter sl-LengthSymbols indicates the number of row symbols inside the time slot indicated by the higher layer.
  • sl-LengthSymbols is a positive integer.
  • sl-LengthSymbols is 14.
  • the value of the second parameter Y refers to formula (12) The description in will not be repeated here.
  • A is predefined, or preconfigured, or network configured, or the first value indicated by the second terminal device, for example, A is any one or more values from 0 to 7 or a subset thereof, and A is greater than or equal to 0 positive integer.
  • the first terminal device receives second indication information
  • the second indication information is used to indicate that the first number of symbols is determined according to the first parameter sl-LengthSymbols
  • the second indication information is used to indicate The first number of symbols is determined according to the first parameter sl-LengthSymbols and the second parameter Y or according to the second number of symbols and the second parameter Y.
  • the second indication information is used to indicate that when the number of first symbols is determined according to the first parameter sl-LengthSymbols,
  • the second indication information is used to indicate that when the number of first symbols is determined according to the first parameter sl-LengthSymbols and the second parameter Y, the number of first symbols satisfies formula (13-1) or formula ( 13-2).
  • the second indication information is used to indicate that when the first number of symbols is determined based on the second number of symbols and the second parameter Y, the first number of symbols satisfies formula (12).
  • the first number of symbols has two configuration values.
  • the first configuration value of the first number of symbols is the value originally defined by R16/R17, that is, sl-LengthSymbols–2.
  • the second configuration value of the first number of symbols is It is defined by formula (13-1) or formula (13-2) in this application, and the first terminal device determines to use one of the two configuration values according to the second instruction information.
  • the second indication information is carried in the SCI and is indicated by 1 bit. If the bit value is 0, it means that the first terminal device adopts the first configuration value (ie, sl-LengthSymbols–2); if the bit value is 1, it means that the first terminal device adopts the first configuration value.
  • Two configuration values that is, according to formula (13-1) or formula (13-2) The determined number of first reference symbols); vice versa, which will not be described again.
  • TBS TBS
  • the first information satisfies the following conditions, the first number of symbols is determined according to the first parameter sl-LengthSymbols, and the first condition includes one or more of the following: the second terminal The device accesses the first channel through sharing, and the first information is transmitted on the first channel; or the first information is transmitted within the channel occupancy time; or the initial transmission of the first information is within the channel occupancy time. is transmitted within a certain period of time, and the first information is located in any time slot after the first time slot within the channel occupation time.
  • the channel occupancy time is the total time the second terminal device performs the channel access step to occupy the first channel and the time the second terminal device shares the first channel with other terminal devices; one implementation
  • the terminal device may be the first terminal device or other terminal devices.
  • the first terminal device executes a type 1 channel access process to access the first channel, and the first channel is shared for access by the second terminal in parallel.
  • the first symbol quantity satisfies the following form:
  • the third parameter A is predefined, or preconfigured, or configured by the network, or a value indicated by the second terminal device.
  • A is one or more values from 0 to 7 or a subset thereof, and A is greater than or A positive integer equal to 0. for example, is the high-level parameter sl-LengthSymbols, indicating the number of row symbols inside the time slot.
  • the first terminal device receives third indication information, where the third indication information is used to indicate the value of the third parameter A.
  • the reference symbols (calculated according to formula (14)) can be used to calculate TBS.
  • the terminal equipment uses formula (13) -1) Calculate TBS. This is because the initial transmission and retransmission of most TBs are within the COT. At this time, their transmission will start from the first time slot position, so the calculation method defined by the original R16/R17 is more accurate. is reasonable; that is, it can be predefined.
  • the RX UE determines the TBS according to the value of formula (13-1).
  • an example 1 of using the above implementation method is:
  • N′ RE satisfies formula (11):
  • the number of first symbols shall be in the following manner;
  • sl-LengthSymbols represents the number of SL symbols in a time slot. This parameter is provided by higher layers;
  • the number of first symbols shall be as follows;
  • an example 2 using the above implementation method is:
  • N′ RE satisfies formula (11):
  • A is predefined, preconfigured, or multiple values configured by the network. For example, A has two values: A1 and A2;
  • Y indicates whether the time slot where the first information is located includes gap symbols and AGC symbols, which can indicate the number of symbols actually used for transmission in the time slot, thereby reducing the difference between the actual TBS and the calculated TBS. Improve the accuracy of TBS and improve decoding accuracy.
  • the processes shown in Figure 9 and Figure 11 can be implemented independently or jointly. If the processes shown in Figures 9 and 11 are jointly implemented, then the first terminal device determines the transmission block size of the first information according to the number of first frequency domain resource units and the number of first symbols. At this time, the first terminal equipment can determine the number of REs N' RE in a PRB allocated to the PSSCH transmission carrying the first information based on the number of first symbols. For details, refer to the process shown in Figure 11; and then based on the N' RE and the first The number of frequency domain resource units determines the number of REs N RE allocated to the PSSCH transmission carrying the first information. For details, please refer to the process shown in Figure 9; and then determine the TBS of the first information based on the N RE . Specifically, you can follow the previous steps 2 to The description of determining TBS based on N RE in step 4 will not be repeated here.
  • the network device or terminal device may include a hardware structure and/or a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is performed as a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in various embodiments of the present application can be integrated into a processor, or can exist physically alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • an embodiment of the present application also provides a communication device for realizing the functions of the network device or terminal device in the above method.
  • the device may be a software module or a system on a chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1200 may include: a processing unit 1201 and a communication unit 1202.
  • the communication unit may also be called a transceiver unit, and may include a sending unit and/or a receiving unit, respectively configured to perform the steps of sending and receiving by the network device or terminal device in the above method embodiment.
  • the communication unit may also be called an interface circuit, a transceiver, a transceiver device, etc.
  • the processing unit can also be called a processor, a processing board, a processing module, a processing device, etc.
  • the device used to implement the receiving function in the communication unit 1202 can be regarded as a receiving unit
  • the device used to implement the sending function in the communication unit 1202 can be regarded as a sending unit, that is, the communication unit 1202 includes a receiving unit and a sending unit.
  • the communication unit may sometimes be called a transceiver, an interface circuit, or a transceiver circuit.
  • the receiving unit may also be called a receiver, receiver, or receiving circuit.
  • the sending unit may sometimes be called a transmitter, transmitter or transmitting circuit.
  • a communication unit configured to receive the first information from the second terminal device
  • a processing unit configured to determine the transmission block size of the first information according to the number of first frequency domain resource units; wherein the number of first frequency domain resource units satisfies the following form:
  • n′ PRB represents the number of first frequency domain resource units
  • N represents the number of frequency domain resource unit sets occupied by the first information
  • N is a positive integer
  • Mr represents the number of frequency domain resource unit groups occupied by the first information
  • Mr is a positive integer
  • the second frequency domain resource unit number is the reference number of frequency domain resource units included in the frequency domain resource unit group in a frequency domain resource unit set.
  • a communication unit configured to receive the first information from the second terminal device
  • a processing unit configured to determine the transmission block size of the first information according to the first number of symbols; the first number of symbols is determined according to the number of symbols included in the time slot in which the first information is located.
  • a communication unit configured to send first information; send second indication information, the second indication information is used to indicate that the number of first symbols is determined according to the first parameter sl-LengthSymbols, or the second indication information is used to indicate that the The first number of symbols is determined according to the first parameter sl-LengthSymbols and the second parameter Y or according to the second number of symbols and the second parameter Y; the first number of symbols is used to determine the transmission block of the first information size.
  • the processing unit 1201 and the communication unit 1202 can also perform other functions.
  • the processing unit 1201 and the communication unit 1202 can also perform other functions.
  • FIG. 13 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • the device shown in FIG. 13 may be a hardware circuit implementation of the device shown in FIG. 12 .
  • the communication device can be adapted to the flow chart shown above to perform the functions of the terminal device or network device in the above method embodiment. For convenience of explanation, FIG. 13 only shows the main components of the communication device.
  • the communication device 1300 includes a processor 1310 and an interface circuit 1320.
  • the processor 1310 and the interface circuit 1320 are coupled to each other.
  • the interface circuit 1320 may be an interface circuit, a pin, an interface circuit or an input-output interface.
  • the communication device 1300 may also include a memory 1330 for storing instructions executed by the processor 1310 or input data required for the processor 1310 to run the instructions or data generated after the processor 1310 executes the instructions.
  • Interface circuits can also be called transceivers, transceivers, input and output circuits, or transceiver circuits.
  • the processor 1310 is used to implement the functions of the above-mentioned processing unit 1201
  • the interface circuit 1320 is used to implement the functions of the above-mentioned communication unit 1202.
  • processor in the embodiment of the present application may be a central processing unit, or other general-purpose processor, digital signal processor, application-specific integrated circuit or other programmable logic device, transistor logic device, hardware component or any combination thereof.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the memory may be random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory, register, hard disk, mobile phone hard drive or any other form of storage media well known in the art.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • a computer-usable storage media including, but not limited to, disk storage, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种传输块大小确定方法及装置,其中方法包括:第一终端设备接收来自第二终端设备的第一信息;根据第一频域资源单元数量确定第一信息的TBS;第一频域资源单元数量n'PRB满足:式(I)表示第二频域资源单元数量,为正整数。通过该方法,第一信息的TBS根据第一频域资源单元数量确定,而第一频域资源单元数量根据第二频域资源单元数量确定,第二频域资源单元数量是一个正整数,可以实现在确定第一信息的初传和重传分别对应的TBS保持一致,可以避免多次接收的数据HARQ合并失效,提高数据解码准确性,提高数据解码效率。

Description

一种传输块大小确定方法及装置
相关申请的交叉引用
本申请要求在2022年08月12日提交中国专利局、申请号为202210970529.0、申请名称为“一种传输块大小确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2023年04月7日提交中国专利局、申请号为202310401611.6、申请名称为“一种传输块大小确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种传输块大小确定方法及装置。
背景技术
在无线通信系统中,按照使用频段的不同,可以分为授权频段和非授权频段。在授权频段中,用户基于中心节点的调度使用频谱资源。在非授权频段中,发射节点需要按照竞争的方式使用频谱资源,具体地,通过先听后说(listen-before talk,LBT)的方式竞争信道。由于非授权频谱在资源调度主要靠竞争方式抢占信道,为了减少干扰,非授权频谱中,并不是载波上的所有频带资源都能用来承载数据,一部分频带资源作为保护带宽(guard band),终端设备可以保护带宽之外的频域资源传输数据,这部分可用的资源被称作频域资源单元集合。
在无线通信系统中,一个信道可以划分为多个子信道,每次可以为终端设备分配一个或多个子信道。授权频谱中,是按照整个信道的大小,将信道中的资源平均划分至每个子信道。在非授权频谱中,子信道的划分是按照授权频谱中的方式进行,然而由于存在保护带宽,所以会导致两个子信道的大小可能不相等。在计算传输数据的传输块大小时,要根据子信道包括的频域资源单元数据确定传输块大小,然而在非授权频谱中,子信道包括的频域资源单元数据并不是固定的值,导致最终确定的传输块大小存在错误,会导致数据无法成功译码。
发明内容
本申请提供一种传输块大小确定方法及装置,用以解决如何准确的确定的传输块大小的问题。
第一方面,本申请提供一种传输块大小确定方法,该方法包括:第一终端设备接收来自第二终端设备的第一信息;第一终端设备根据第一频域资源单元数量确定第一信息的传输块大小;其中,第一频域资源单元数量满足以下形式:
或者,
其中,n′PRB表示第一频域资源单元数量,N表示第一信息占用的频域资源单元集合的数量,N为正整数,Mr表示第一信息占用的频域资源单元组的数量,Mr为正整数,表示第二频域资源单元数量,为正整数,第二频域资源单元数量为频域资源单元组在一个频域资源单元集合内的频域资源单元的参考数量,或第二频域资源单元数量为频域资源单元组在至少两个频域资源单元集合内的频域资源单元的参考数量,或第二频域资源单元数量为频域资源单元组包含的频域资源单元的参考数量。
通过上面的方法,第一终端设备根据第一频域资源单元数量确定第一信息的TBS,而第一频域资源单元数量根据第二频域资源单元数量确定,第二频域资源单元数量是一个正整数,和第一信息实际占用的频域资源单元的数量解耦,可以实现初传与重传,或重传与重传之间分配的频域资源不等时,确定的每次传输的信息的TBS保持一致,可以避免多次接收的数据混合自动重传请求(hybrid automatic repeat request,HARQ)合并失效,提高数据解码准确性,提高数据解码效率。
一种实现方式中,第二频域资源单元数量为10或11。
一种实现方式中,第二频域资源单元数量为集合{1,2,3,4,5,6,7,8,9,10,11,12,15,20,25,50,75,100}或其子集中的任一取值。
通过将第二频域资源单元数量设置为固定的值,可以实现第一信息的初传与重传,或重传与重传之间分配的频域资源不等时,确定的每次传输的信息的TBS保持一致,可以避免多次接收的数据HARQ合并失效,提高数据解码准确性,提高数据解码效率。
一种实现方式中,第二频域资源单元数量满足以下任一种形式:


其中,RBtotal表示第三频域资源单元数量,Msubch表示第一信息所在资源池包含的频域资源单元组数量,第三频域资源单元数量根据资源池包括的频域资源单元的数量确定,ceil表示向上取整,floor表示向下取整。
一种实现方式中,第二频域资源单元数量可以根据以下任一方式确定:


其中,RBsubtotal表示第四频域资源单元数量,Mtotal表示第一信息初传和/或重传占用的频域资源单元组数量,这里重传占用的频域资源单元组数量是指第二终端设备为传输第一信息而预约的频域资源单元组的数量,包括至少一次重传所占的频域资源单元组数量。
一种实现方式中,第四频域资源单元数量可以为第二终端设备为传输第一信息而预约的频域资源单元的数量,包括第一信息的初始传输所占的频域资源单元组所包括的频域资源单元和第一信息的至少一次重传所占的频域资源单元组所包括的频域资源单元。
一种实现方式中,第三频域资源单元数量为资源池内所有频域资源单元集合包括的频域资源单元数量;或者,第三频域资源单元数量为资源池内所有频域资源单元集合包括的频域资源单元数量,与资源池内所有保护带宽包括的频域资源单元数量的总和。
一种实现方式中,第一终端设备接收第一指示信息,第一指示信息用于指示第二频域资源单元数量
一种实现方式中,第一指示信息来自第二终端设备,第一指示信息承载于侧行控制信息中;或者,第一指示信息来自网络设备,第一指示信息承载于高层信令中。
一种实现方式中,第一终端设备根据第一频域资源单元数量确定第一信息的传输块大小,包括:第一终端设备根据第一频域资源单元数量以及第一符号数量确定第一信息的传输块大小。
通过上面的方法,若非授权频段中引入多个时隙接入点或结束点,可以根据第一符号数量确定TBS,由于第一符号数量是固定值或者由第二终端设备指示的,从而可以减少实际的TBS与计算得到的TBS之间差异,提高TBS的准确性,提高译码准确度。
一种实现方式中,第一符号数量为5至12中的任一值。
一种实现方式中,第一终端设备接收来自第二终端设备的第一侧行指示信息,第一侧行指示信息用于指示第一符号数量。
一种实现方式中,第一符号数量满足以下形式:
其中,表示第一符号数量,表示第二符号数量,为正整数,Y根据时隙中自动增益控制符号的数量以及间隔符号的数量确定,Y为正整数。
一种实现方式中,第一终端设备接收来自第二终端设备的第二侧行指示信息,第二侧行指示信息用于指示第二符号数量。
一种实现方式中,第一符号数量满足以下形式:
其中,表示第一符号数量,sl-LengthSymbols表示由高层指示的时隙内侧行符号数目, sl-LengthSymbols为正整数,Y根据时隙中自动增益控制符号的数量以及间隔符号的数量确定,Y为正整数。
一种实现方式中,Y的取值为0或1或2。
一种实现方式中,第一终端设备接收来自第二终端设备的第三侧行指示信息,第三侧行指示信息用于指示Y的取值。
一种实现方式中,所述方法还包括:
所述第一终端设备接收第二指示信息,所述第二指示信息用于指示所述第一符号数量根据第一参数sl-LengthSymbols确定,或者所述第二指示信息用于指示所述第一符号数量根据所述第一参数sl-LengthSymbols和第二参数Y或根据第二符号数量和所述第二参数Y确定。
一种实现方式中,所述第一信息满足以下条件,所述第一符号数量根据所述第一参数sl-LengthSymbols确定:
所述第一条件包括以下一项或多项:所述第二终端设备通过共享接入第一信道,所述第一信息在所述第一信道上传输;
或所述第一信息在信道占用时间内传输;
或所述第一信息的初传在所述信道占用时间内传输,且所述第一信息位于所述信道占用时间内的第一个时隙之后的任一时隙。
一种实现方式中,所述第一符号数量满足以下形式:
其中,表示所述第一符号数量,表示第二符号数量,为正整数,第二参数Y根据所述时隙中自动增益控制符号的数量以及间隔符号的数量确定,所述第二参数Y为正整数;所述第三参数A为预定义的,或者预配置的,或者网络配置的,或者第二终端设备指示的值。
一种实现方式中,所述方法还包括:
所述第一终端设备接收第三指示信息,所述第三指示信息用于指示所述第三参数A的值。
第二方面,本申请提供一种传输块大小确定方法,该方法包括:第一终端设备接收来自第二终端设备的第一信息;第一终端设备根据第一符号数量确定第一信息的传输块大小;第一符号数量根据第一信息所在的时隙包括的符号数量确定。
通过上面的方法,若非授权频段中引入多个时隙接入点或结束点,可以根据第一符号数量确定TBS,由于第一符号数量是固定值或者由第二终端设备指示的,从而可以减少实际的TBS与计算得到的TBS之间差异,提高TBS的准确性,提高译码准确度。
一种实现方式中,第一符号数量为5至12中的任一值。
一种实现方式中,第一终端设备接收来自第二终端设备的第一侧行指示信息,第一侧行指示信息用于指示第一符号数量。
其中,表示第一符号数量,表示第二符号数量。
一种实现方式中,第一符号数量满足以下形式:
其中,表示第一符号数量,表示第二符号数量,Y根据时隙中自动增益控制符号的数量以及间隔符号的数量确定。
一种实现方式中,第一终端设备接收来自第二终端设备的第二侧行指示信息,第二侧行指示信息用于指示第二符号数量。
一种实现方式中,第一符号数量满足以下形式:
其中,表示第一符号数量,sl-LengthSymbols表示由高层指示的时隙内侧行符号数目,Y根 据时隙中自动增益控制符号的数量以及间隔符号的数量确定。
一种实现方式中,Y的取值为0或1或2。
一种实现方式中,如果时隙中包括自动增益控制符号以及间隔符号,则Y的取值为2;
或者,如果时隙中不包括自动增益控制符号或间隔符号,则Y的取值为1;
或者,如果时隙中不包括自动增益控制符号以及间隔符号,则Y的取值为0。
一种实现方式中,第一终端设备接收来自第二终端设备的第三侧行指示信息,第三侧行指示信息用于指示Y的取值。
第三方面,本申请实施提供一种通信装置,该装置可应用于终端设备,具有实现上述第一方面或第二方面中由第一终端设备执行的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。比如包括收发单元和处理单元,所述收发单元还可以称为通信单元或收发模块,所述收发单元可以具体包括接收单元和发送单元,所述处理单元又可称为处理模块。
一种实现方式中,通信装置为通信芯片,收发单元可以为通信芯片的输入输出电路或者端口、接口电路、输出电路、输入电路、管脚或相关电路等。处理单元可以为通信芯片的处理电路或逻辑电路。
第四方面,本申请实施提供一种通信装置,该通信装置包括:处理器和存储器。该存储器中存储有计算机程序或计算机指令,该处理器用于调用并运行该存储器中存储的计算机程序或计算机指令,使得处理器实现如第一方面至第二方面中任一种可能的实施方式。
一种实现方式中,该通信装置还包括接口电路,该处理器用于控制该接口电路收发信号和/或信息和/或数据等。
第五方面,本申请实施提供一种通信装置,该通信装置包括处理器。该处理器用于调用存储起中的计算机程序或计算机指令,使得处理器实现如第一方面至第二方面中任一种可能的实施方式。
一种实现方式中,该通信装置还包括接口电路,该处理器用于控制该接口电路收发信号和/或信息和/或数据等。
第六方面,本申请实施还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行如第一方面至第二方面中任一种可能的实施方式。
第七方面,本申请实施还提供一种计算机可读存储介质,包括计算机指令,当该指令在计算机上运行时,使得计算机执行如第一方面至第二方面中任一种可能的实施方式。
第八方面,本申请实施还提供一种芯片装置,包括处理器,用于调用该存储器中的计算机程序或计算机指令,以使得该处理器执行上述如第一方面至第二方面中任一种可能的实施方式。
一种实现方式中,该处理器通过接口与该存储器耦合。
第九方面,本申请实施还提供一种传输块大小确定方法,包括:
第二终端设备发送第一信息;
所述第二终端设备发送第二指示信息,所述第二指示信息用于指示第一符号数量根据第一参数sl-LengthSymbols确定,或者所述第二指示信息用于指示所述第一符号数量根据所述第一参数sl-LengthSymbols和第二参数Y或根据第二符号数量和所述第二参数Y确定;所述第一符号数量用于确定所述第一信息的传输块大小。
一种实现方式中,Y的取值为0或1或2。
一种实现方式中,所述第一符号数量满足以下形式:
其中,表示所述第一符号数量,sl-LengthSymbols表示由高层指示的时隙内侧行符号数目,sl-LengthSymbols为正整数。sl-LengthSymbols的取值是预配置的,或者网络配置的。
一种实现方式中,所述第一符号数量满足以下形式:
其中,表示所述第一符号数量,表示第二符号数量,为正整数,第二参数Y根据所述时隙中自动增益控制符号的数量以及间隔符号的数量确定,所述第二参数Y为正整数;所述第 三参数A为预定义的,或者预配置的,或者网络配置的,或者第二终端设备指示的值。
一种实现方式中,所述方法还包括:所述第二终端设备发送第三指示信息,所述第三指示信息用于指示所述第三参数A的值。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1(a)至图1(c)为本申请实施例提供的一种网络架构示意图;
图2为本申请实施例提供的一种信道结构示意图;
图3为本申请实施例提供的一种信道结构示意图;
图4为本申请实施例提供的一种信道划分示意图;
图5为本申请实施例提供的一种信道划分示意图;
图6(a)至图6(c)为本申请实施例提供的一种信道划分示意图;
图7(a)至图7(b)为本申请实施例提供的一种信道划分示意图;
图8为本申请实施例提供的一种时隙结构示意图;
图9为本申请实施例提供的一种传输块大小确定方法流程示意图;
图10为本申请实施例提供的一种信道划分示意图;
图11为本申请实施例提供的一种传输块大小确定方法流程示意图;
图12为本申请实施例提供的一种通信装置结构示意图;
图13为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例提供的通信方法可以应用于第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE),也可以应用于第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR),或应用于未来的各种通信系统,例如,第六代(6th generation,6G)通信系统。
本申请实施例提供的方法和装置是基于同一或相似技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
以下,首先对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
本申请实施例中涉及的网络设备,可以为无线网络中的设备。例如,网络设备可以是部署在无线接入网中为终端设备提供无线通信功能的设备。例如,网络设备可以为将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点,又可以称为接入网设备。
网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G移动通信系统中的网络设备。例如,NR系统中的下一代基站(next generation NodeB,gNB),传输接收点(transmission reception point,TRP),TP;或者,5G移动通信系统中的基站的一个或一组(包括多个天线面板)天线面板;或者,网络设备还可以为构成gNB或传输点的网络节点。例如,BBU,或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。例如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来。因此在该架构下,高层信令(如RRC层信令)也可以认为 是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一个或多个的设备。此外,可以将CU划分为RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
本申请实施例中涉及的终端设备,可以是能够接收网络设备调度和指示信息的无线终端设备。终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。
终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备是包括无线通信功能(向用户提供语音/数据连通性)的设备。例如,具有无线连接功能的手持式设备、或车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、车联网中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、或智慧家庭(smart home)中的无线终端等。例如,车联网中的无线终端可以为车载设备、整车设备、车载模块、车辆等。工业控制中的无线终端可以为摄像头、机器人等。智慧家庭中的无线终端可以为电视、空调、扫地机、音箱、机顶盒等。
本申请适用于支持侧行链路(sidelink,SL)通信的场景,支持有网络覆盖和无网络覆盖的通信场景。如图1(a)至图1(c)所示,为适用于本申请的一种网络架构示意图。在图1(a)中,终端设备A和终端设备B都在网络设备的信号覆盖范围内;图1(b)中,终端设备A在网络设备的信号覆盖范围内,但是终端设备B在网络设备的信号覆盖范围外。图1(c)中,终端设备A和终端设备B都在网络设备的信号覆盖范围外。
图1(a)和图1(b)中的终端设备A和终端设备B之间,可以通过网络设备调度的资源使用侧行链路进行通信,该资源可以为授权资源或授权频段;终端设备A和终端设备B之间也可以由终端设备进行资源自选,即从资源池中选择用于侧行链路通信的资源,该资源为非授权资源或非授权频段。
图1(c)中的终端设备A和终端设备B,都在网络设备的信号覆盖范围外,因此只能采用资源自选的方式通过侧行链路进行通信。
在非授权频段中,终端设备在通信之前,通过LBT方式竞争信道。在SL中,可以预配置用于数据传输的资源池,一个资源池可以包括一个或多个信道,一种实现方式中,每个信道的带宽大小为20MHz。当一个资源池包括一个信道时,该资源池包括的资源块为该信道中资源块(resource block,RB)集合(set)对应的资源块。如图2所示,在非授权频段中,一个信道包括RB集合和位于两端的保护带宽,保护带宽用于保证在当前信道上的信号/能量不会对相邻信道造成干扰。RB集合内的频域资源可用于数据传输。
如果一个资源池包括多个信道,那么该资源池包括RB集合和部分保护带宽的资源块。如图3所示,信道1包括RB集合1,信道2包括RB集合2,那么资源池包括RB集合1、RB集合2以及RB集合1与RB集合2之间的保护带宽。当一个终端设备在这两个信道上LBT成功时,终端设备可用的资源不仅是两个信道中RB集合上的资源,还包括两相邻RB集合之间的保护带宽。
本申请中,一个RB集合可以划分为多个子集合。一种实现方式中,可以按照交织的方式将RB集合中的资源块划分为M个子集合,在该实现方式中,子集合中包括的资源块中,相邻两个资源块之间间隔M个资源块。假设一个子集合的标识为m,m∈{0,1,…,M-1},信道的起始资源块的索引为0,那么该子集合在信道中包括的资源块的索引为:{m,M+m,2M+m,3M+m,…}。如图4所示,对于15kHz子载波间隔的信道,该信道包括110个RB,M=10时,RB集合中标识为#0的子集合包括的资源块的索引为:{0,10,20,30,…100},RB集合中标识为#1的子集合包括的资源块的索引为:{1,11,21,31,…101},其他情况以此类推。
另一种实现方式中,可以将RB集合中多个连续的资源块划分为一个子集合,一个RB集合中的资源块划分为M个子集合。在该实现方式中,子集合中包括的资源块为连续的。假设一个子集合的标识为m,m∈{0,1,…,M-1},信道的起始资源块的索引为0,那么该子集合在信道中包括的资源块的索引为:{m,m+1,m+2,m+3,…}。例如,如图5所示,对于15kHz子载波间隔的信道,该信道包括110个RB,M=10时,RB集合中标识为#0的子集合包括的资源块的索引为:{0,1,2,3,…10},RB集合中标识 为#1的子集合包括的资源块的索引为:{11,12,13,…21},其他情况以此类推。
一个信道或一个资源池可以划分为多个频域资源单元组,频域资源单元组可以是指子信道或交织(interlace)。当一个资源池包括一个信道时,一个频域资源单元组包括的资源块就是一个子集合包括的资源块。例如,结合前面的图4,资源池包括一个RB集合,资源池中的资源可以划分为M个频域资源单元组,一个频域资源单元组对应一个子集合,此时的频域资源单元组可以是指交织。例如频域资源单元组#0包括的资源块就是子集合#0包括的资源块,即频域资源单元组#0包括的资源块索引为:{m,M+m,2M+m,3M+m,…}。
再例如,结合前面的图5,资源池包括一个RB集合,资源池中的资源可以划分为M个频域资源单元组,一个频域资源单元组对应一个子集合,此时的频域资源单元组可以是指子信道。例如频域资源单元组#0包括的资源块就是子集合#0包括的资源块,即频域资源单元组#0包括的资源块索引为:{m,m+1,m+2,m+3,…}。
当一个资源池包括多个信道(即包括多个RB集合)时,频域资源单元组有两种可能的资源分配方式。以将资源池中的资源块按照交织的方式划分为多个子集合为例,此时频域资源单元组也可以称为交织,也可以称为频域资源单元子集合,如图6(a)所示,资源池子载波配置为15KHz,包括2个信道,信道1和信道2相邻,信道1包括RB集合1,信道2包括RB集合2,每个信道划分的子集合的数量为10,即M=10。RB集合1包括100个RB,索引分别为0至99;保护带宽包括10个RB,索引分别为100至109;RB集合2包括100个RB,索引分别为110至209;例如RB集合1中标识为#0的子集合包括的RB的索引为:{0,10,20,30,…90},RB集合1中标识为#1的子集合包括的RB的索引为:{1,11,21,31,…91},其他情况以此类推。RB集合2中标识为#0的子集合包括的RB的索引为:{110,120,130,140,…200},RB集合2中标识为#1的子集合包括的RB的索引为:{111,121,131,141,…201},其他情况以此类推。
方式1中,一个频域资源单元组包括的资源块跨多个RB集合,即一个频域资源单元组对应资源池内至少一个子集合,或者一个频域资源单元组可以包括资源池中多个RB集合中每个RB集合中的至少一个子集合对应的资源块。结合如图6(a),以图6(b)为例,资源池内的子载波配置为15KHz,一个频域资源单元组对应资源池内不同RB集合中标识相同的子集合对应的资源块,资源池内的频域资源单元组个数等于M=10,即等于一个信道内子集合的个数,而一个频域资源单元组包括2个子集合中的资源块数量>=20,即一个频域资源单元组的资源块数量为频域资源单元组在多个资源块集合内包含的资源块数量。以图6(b)为例,频域资源单元组(subCH#0)包括RB集合1中标识为#0的子集合对应的资源块,以及RB集合2中标识为#0的子集合对应的资源块。频域资源单元组(subCH#1)包括RB集合1中标识为#1的子集合对应的资源块,以及RB集合2中标识为#1的子集合对应的资源块。
方式2中,一个频域资源单元组包括的资源块位于一个RB集合内,频域资源单元组对应着每一个信道内的至少一个子集合,或者一个频域资源单元组可以包括资源池中一个RB集合中的至少一个子集合对应的资源块。具体的,一个频域资源单元组对应一个信道内部的一个子集合包含的资源块,对于此方式,因为频域资源单元组中包含的资源块不会跨越多个RB集合,因此给终端设备分配的频域资源单元组中的资源全部可用。如图6(a),以图6(c)为例,资源池内的子载波配置为15KHz,一个频域资源单元组对应资源池内一个RB集合中的一个子集合对应的资源块,资源池内的频域资源单元组个数等于2M=20,而一个频域资源单元组中的资源块数量>=10。以图6(c)为例,频域资源单元组(subCH#0)包括RB集合1中标识为#0的子集合对应的资源块,频域资源单元组(subCH#10)包括RB集合2中标识为#0的子集合对应的资源块。
可选的,频域资源单元组内包含的资源单元(例如,RB)可以是连续的,即频域资源单元组内包含的资源单元连续的分布于一个或多个资源块集合;也可以是离散的,即频域资源单元组内包含的资源单元离散的分布于一个或多个资源块集合。
其中,当资源池只包括一个RB集合的资源时,上述两种方式效果相同。另外,RB在物理层对应的名称还可以为物理资源块(physical resource block,PRB)。
终端设备接收到数据时,在解码数据之前,需要先确定数据的传输块大小(transport block size,TBS)。如果终端设备通过物理层侧行链路共享信道(physical sidelink shared channel,PSSCH)传输数据,该PSSCH通过侧行链路控制信息(Sidelink Control Information,SCI)调度时,该数据对应的TBS的计算 过程可以简单描述如下。
步骤1:首先计算时隙内的资源元素(resource element,RE)数,即参数NRE
首先计算分配给PSSCH传输的一个PRB内RE数N′RE,具体的:
-表示PRB上的子载波数;
-其中sl-LengthSymbols表示一个时隙内的SL符号数,该参数有高层提供;
-当高层参数sl-PSFCH-Period为2或4时,如果SCI中,“PSFCH overhead indication”域指示“1,则否则当高层参数sl-PSFCH-Period为0时,当高层参数sl-PSFCH-Period为1时,PSFCH表示物理侧行链路反馈信道(physical sidelink feedback channel)。
-表示开销,由高层参数sl-X-Overhead给出;
-根据高层参数sl-PSSCH-DMRS-TimePattern,通过下表1确定。
表1:N_RE^DMRS数值由高层参数sl-PSSCH-DMRS-TimePattern确定
然后确定分配给PSSCH传输的RE数NRE,具体的:
-nPRB为分配给PSSCH的PRB数目;
-表示物理侧行链路控制信道(physical sidelink control channel,PSCCH)和PSCCH解调参考信号(demodulation reference signal,DMRS)占据的RE数;
-表示为在假设第2级SCI的最后一个编码符号所属的资源块中空闲的资源元素的数量为0时,2阶SCI传输生成的编码调制符号数目。
步骤2:根据公式Ninfo=NRE·R·Qm·υ计算中间变量Ninfo
其中,Qm为传输数据的调制阶数,R为传输数据的码率,υ为传输数据的层(layer)数。Qm和R可以通过网络设备配置或指示的调制与编码策略(modulation and coding scheme,MCS)的索引号查表得到。如果Ninfo≤3824,使用步骤3作为后续计算TBS步骤,如果Ninfo>3824,使用步骤4作为后续计算TBS步骤。
步骤3:如果Ninfo≤3824,TBS计算步骤为:
-计算中间变量N′info,具体的:
其中,max表示取最大值运算,表示向下取整。计算出N′info之后,使用表2找到不小于N′info的最接近的TBS。
步骤4:如果Ninfo>3824,TBS计算步骤为:
-计算中间变量N′info,具体的:
如果R≤1/4,那么TBS满足以下公式(5):
其中表示向上取整运算。
如果R>1/4,且N′info>8424,那么TBS满足以下公式(6):
其中
如果R>1/4,且N′info≤8424,那么TBS满足以下公式(7):
表2:Ninfo≤3824时,确定TBS所使用的表
在非授权频段进行通信时,终端设备使用上面的方法计算的TBS不一定准确。对于子载波间隔为15KHz的信道,包括RB集合和保护带宽。如图7(a)所示,以M=10为间隔对信道中的资源块进行分组, 频域资源单元组包括交织的资源块。其中RB集合包括105个资源块,对应的索引为0至104;保护带宽包括5个资源块,对应的索引为105至109;从图中可以看出,RB集合中,标识为0的频域资源单元组包括的11个资源块的索引分别为:{0,10,20,30,…100};标识为5的频域资源单元组包括的11个资源块的索引分别为:{5,15,25,35,…105},由于索引为105的资源块位于保护带宽内,因此不能用于数据传输,因此标识为5的频域资源单元组实际包括10个资源块。若终端设备在初传使用标识为0的频域资源单元组,此时分配给PSSCH传输的RB数=11;若终端设备重传采用标识为5的频域资源单元组时,此时分配给PSSCH传输的RB数=10。
同样的,当频域资源单元组包括连续的资源块时,也会产生上述问题。如图7(b)所示,将图7(a)中的信道划分为10个频域资源单元组,标识为0至标识为8的频域资源单元组均包括的10个资源块,且均位于RB集合内;标识为9的频域资源单元组包括的10个资源块中有5个资源块位于RB集合内,有5个资源块位于保护带宽内,因此标识为9的频域资源单元组实际包括5个资源块,位于保护带宽内的5个资源块不能用于数据传输。若终端设备在初传使用标识为0的频域资源单元组,此时分配给PSSCH传输的RB数=10;若终端设备重传采用标识为9的频域资源单元组时,此时分配给PSSCH传输的RB数=5。
由于不同传输之间,使用的频域资源单元组包含的RB数不同,导致计算的TBS的结果也会不同。如果初传和重传,或者两次重传确定的TBS不相同,会导致HARQ合并失效,从而导致数据无法被正确译码。
另外,在前面的公式(1)中,TBS的时隙参考点对应的参数为sl-LengthSymbols-2,其中sl-LengthSymbols表示一个时隙内的SL符号数,该参数由高层提供,一个资源池只有一种sl-LengthSymbols取值,例如取值为14。
在非授权频段中,终端设备在发送数据前得先执行LBT操作,LBT操作成功后方可发送数据。由于终端设备可能在时隙的任意位置接入,因此终端设备在LBT成功之后,需要一直等到时隙开始时再发送数据,即从时隙的第一个符号开始发送数据。当LBT成功的时机与下一次时隙开始的时间间隔大于25μs时,将出现信道占用时间(channel occupancy time,COT)丢失的风险,因此可以引入多个时隙接入符号,降低COT丢失的风险。类似的,也可以引入多个时隙结束点,提前抢占COT。如图8所示,为本申请提供的一种时隙结构示意图。该时隙结构具有两个候选接入点,第一个候选接入点为时隙的第1个符号,第二个候选接入点为时隙的第5个符号,若终端设备在时隙的第4个符号LBT成功,则不需要等到下一个时隙开始再发送数据,而是在第5个符号开始按照既定的时隙结构发送数据。
无论是引入多个时隙接入点还是时隙结束点,此时一个时隙内符号的个数将发生变化,而不再是固定的14个符号。若仍按照sl-LengthSymbols-2计算TBS,当实际发送符号长度与时隙参考点相差较大时,此时接收方计算的TBS与实际的TBS相差较大,导致接收方的数据译码性能下降。
为此,本申请提供一种方法,可以提高TBS计算的准确性,下面将详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图9所示,为本申请实施例提供的一种传输块大小确定方法流程示意图,该方法可以应用于在侧行链路中采用非授权频谱进行通信,该方法包括:
S901:第二终端设备向第一终端设备发送第一信息;相应的,第一终端设备接收来自第二终端设备的第一信息。
其中,第一信息的具体内容,本申请并不限定。第一信息可以承载于数据信道,第一信息的TBS是该数据信道所承载的传输块的大小,该数据信道可以为PSSCH。
第一信息可以为初传的信息,也可以为重传的信息,本申请对此并不限定。
本申请应用于非授权频谱中时,第二终端设备可以在一个或多个信道中进行LBT,如果在一个信道中LBT成功,则可以使用该信道中的一个或多个频域资源单元组传输第一信息。
本申请中,第二终端设备可以根据第一信息对应的数据量大小,预约一个或多个频域资源单元。第二终端设备可以预约初传第一信息所需的频域资源单元数量,以及至少一次重传第一信息所需的频域资源单元数量。
S902:第一终端设备根据第一频域资源单元数量确定第一信息的TBS。
本申请中,第一终端设备可以根据第一频域资源单元数量确定分配给承载第一信息的PSSCH传输 的RE数NRE,再根据NRE确定第一信息的TBS,具体可以按照前面的步骤2至步骤4中根据NRE确定TBS的描述,具体过程不再赘述。
本申请中NRE满足公式(8):
其中,N′RE的确定方法可以参考前面的公式(1),的具体含义可以参考前面的公式(2)中的描述,在此不再赘述。n′PRB表示第一频域资源单元数量。
第一种实现方式中,第一频域资源单元数量n′PRB满足以下形式:
其中,N表示第一信息占用的频域资源单元集合的数量,N为正整数,Mr表示第一信息占用的频域资源单元组的数量,Mr为正整数,表示第二频域资源单元数量。
本申请中,频域资源单元可以是指RB或PRB,频域资源单元集合可以是指RB集合,频域资源单元组也可以是指子信道或交织。
在该实现方式中,第一信息占用的Mr个频域资源单元组中,一个频域资源单元组包括的RB位于一个或多个RB集合内,即符合前面的方式1中关于频域资源单元组的描述。
公式(9)中,一种可能的实现方式中,第二频域资源单元数量为正整数。或者,另一种可能的实现方式中,第二频域资源单元数量可以是指频域资源单元组在一个频域资源单元集合内包含的频域资源单元的参考数量,或第二频域资源单元数量为频域资源单元组在至少两个频域资源单元集合内的频域资源单元的参考数量,或第二频域资源单元数量为频域资源单元组包含的频域资源单元的参考数量。即,当频域资源单元组所包含的频域资源单元(即RB)分布在多个资源块集合(即RB set)中时,第二频域资源单元数量是指频域资源单元组在所述多个资源块集合中的一个资源块集合内包含的频域资源单元的参考数量。可选的,所述频域资源单元组所包含的频域资源单元均匀分布于所述多个资源块集合中。可选的,第二频域资源单元数量也可以是指频域资源单元组在所述多个资源块集合中包含的频域资源单元的参考数量。
一种实现方式中,第二频域资源单元数量可以为预设值,例如第二频域资源单元数量为10或11。一种实现方式中,第二频域资源单元数量为集合{1,2,3,4,5,6,7,8,9,10,11,12,15,20,25,50,75,100}或其子集中的任一取值。
第二频域资源单元数量的具体取值可以由网络设备或第二终端设备指示,也可以由第一终端设备自主确定。
第二种实现方式中,第一频域资源单元数量n′PRB满足以下形式:
其中,Mr表示第一信息占用的频域资源单元组的数量。
在该实现方式中,第一信息占用的Mr个频域资源单元组中,一个频域资源单元组包括的RB位于一个RB集合内,即符合前面的方式2中关于频域资源单元组的描述。
公式(10)中,一种可能的实现方式中,第二频域资源单元数量为正整数。或者,另一种可能的实现方式中,第二频域资源单元数量可以是指频域资源单元组在1个频域资源单元集合内包含的频域资源单元的参考数量。
举例来说,以频域资源单元为RB为例,频域资源单元组中包括的RB为交织的,频域资源单元组中包括的RB位于多个RB集合内。假设第一信息占用的频域资源单元集合的数量N=2,第一信息在每个频域资源单元集合占用1个频域资源单元组,因此Mr=1,第二频域资源单元数量为10或11,如果第二终端设备指示第二频域资源单元数量为10,根据公式(9)可以确定第一频域资源单元数量n′PRB=1×2×10=20。
举例来说,以频域资源单元为RB为例,频域资源单元组中包括的RB为交织的,频域资源单元组中包括的RB位于1个RB集合内。以15KHz的子载波间隔配置为例,该RB集合内包括的频域资源单元组的数量为10,即M=10。假设第一信息占用的频域资源单元组的数量Mr=2,如果第二终端设备指示第二频域资源单元数量为10,那么根据公式(10)可以确定第一频域资源单元数量n′PRB=2×10=20。
一种实现方式中,第一终端设备可以接收第一指示信息,第一指示信息用于指示第二频域资源单元数量如果第一指示信息来自第二终端设备,第一指示信息可能承载于侧行控制信息中;如果第一指示信息来自网络设备,第一指示信息可能承载于高层信令中。
一种实现方式中,公式(9)中第二频域资源单元数量可以根据以下任一方式确定:


其中,RBtotal表示第三频域资源单元数量,Msubch表示第一信息所在资源池包含的频域资源单元组数量,第三频域资源单元数量根据资源池包括的频域资源单元的数量确定,ceil表示向上取整,floor表示向下取整。
在该实现方式中,第二频域资源单元数量也可以由网络设备或第二终端设备根据上述任一方式确定之后指示给第一终端设备,也可以由第一终端设备根据上述任一方式确定。
一种实现方式中,公式(10)中的第二频域资源单元数量可以根据以下任一方式确定:


其中,RBtotal表示第三频域资源单元数量,Msubch表示第一信息所在资源池包含的频域资源单元组数量,第三频域资源单元数量根据资源池包括的频域资源单元的数量确定,ceil表示向上取整,floor表示向下取整。
在该实现方式中,第二频域资源单元数量也可以由网络设备或第二终端设备根据上述任一方式确定之后指示给第一终端设备,也可以由第一终端设备根据上述任一方式确定。
本申请中,具体如何确定第三频域资源单元数量,可能存在多种实现方式。实现方式一,第三频域资源单元数量为资源池内所有频域资源单元集合包括的频域资源单元数量;实现方式二,第三频域资源单元数量为资源池内所有频域资源单元集合包括的频域资源单元数量,与资源池内所有保护带宽包括的频域资源单元数量的总和。
举例来说,以频域资源单元为RB为例,频域资源单元组中包括的RB为交织的,频域资源单元组中包括的RB位于一个RB集合内。假设资源池内的子载波间隔配置为15KHz,当采用公式(9)中频域资源单元组的定义,一个频域资源单元组包括的RB位于多个RB集合内,包含的频域资源单元集合的数量N=2,假设此时资源池内频域资源单元组Msubch=10。如果每个频域资源单元集合包括的资源块数量为105,资源池内的保护带宽占用的资源块数量为5,那么第三频域资源单元数量为105×2+5=215。
此时,第二频域资源单元数量
第一信息占用的频域资源单元集合的数量N=2,在每个频域资源单元集合占用1个频域资源单元组,即Mr=1。那么,那么第一频域资源单元数量n′PRB=2×1×11=22。
一种实现方式中,公式(9)或公式(10)中的第二频域资源单元数量可以根据以下任一方式确定:


其中,RBdubtotal表示第四频域资源单元数量,Mtotal表示第一信息初传和/或重传占用的频域资源单 元组数量,这里重传占用的频域资源单元组数量是指第二终端设备为传输第一信息而预约的频域资源单元组的数量,包括至少一次重传所占的频域资源单元组数量。第四频域资源单元数量可以为第二终端设备为传输第一信息而预约的频域资源单元的数量,包括第一信息的初始传输所占的频域资源单元组所包括的频域资源单元和第一信息的至少一次重传所占的频域资源单元组所包括的频域资源单元。
一种实现方式中,如图10所示,当一个信道中的频域资源单元组包括X个频域资源单元时,如果该X个频域资源单元中的X1个频域资源单元位于该信道的RB集合内,该X个频域资源单元中的X2个频域资源单元位于该信道的保护带宽内时,第二终端设备如果在该信道LBT通过,第二终端设备占用该频域资源单元组时,可以采用以下任一方案进行数据传输:
方案一,通过该频域资源单元组中位于RB集合内的X1个频域资源单元进行数据传输。
该方案中,属于RB集合中的频域资源单元是一直可用的。
方案二,当该频域资源单元组中位于RB集合内的频域资源单元数量X1大于预设阈值,或者,X1与X2的比值大于预设比值时,通过该频域资源单元组中位于RB集合内的X1个频域资源单元进行数据传输;当该频域资源单元组中位于RB集合内的频域资源单元数量X1小于或等于预设阈值,或者,X1与X2的比值小于或等于预设比值时,不通过该频域资源单元组中的频域资源单元进行数据传输。
例如,当X1>1/2/3/4/5时,该频域资源单元组可以用于传输。
例如当X1/X2>0.1或X1/X2>0.2时,该频域资源单元组可以用于传输。
其中,预设阈值和预设比值,可以由网络设备配置,也可以由第二终端设备自主确定。预设阈值可以为1至9中的任一值,预设比值可以大于0且小于1。
上面的X1与X2的比值,也可以替换为X2与X1的比值,或者替换为X1与X的比值,或者替换为X2与X的比值,或者替换为X与X1的比值,或者替换为X与X2的比值。相应的,预设比值的取值范围也相应调整,具体不再赘述。
本申请中,第一终端设备确定第一频域资源单元数量之后,可以按照前面的步骤2至步骤4中的描述确定第一信息的TBS,具体过程不再赘述。
另外,对于第一信息,第一信息初传时的第一频域资源单元数量的取值,和第一信息重传时的第一频域资源单元数量的取值相同。这样可以保证第一信息在初传和重传时的TBS保持一致。
通过上面的方法,第一终端设备根据第一频域资源单元数量确定第一信息的TBS,而第一频域资源单元数量根据第二频域资源单元数量确定,第二频域资源单元数量是一个正整数,和第一信息实际占用的频域资源单元的数量解耦,可以实现初传与重传,或重传与重传之间分配的频域资源不等时,确定的每次传输的信息的TBS保持一致,可以避免多次接收的数据HARQ合并失效,提高数据解码准确性,提高数据解码效率。
如图11所示,为本申请实施例提供的一种传输块大小确定方法流程示意图,该方法可以应用于在侧行链路中采用非授权频谱进行通信,该方法包括:
S1101:第二终端设备向第一终端设备发送第一信息;相应的,第一终端设备接收来自第二终端设备的第一信息。
其中,第一信息的具体内容,本申请并不限定。第一信息可以承载于数据信道,第一信息的TBS是该数据信道所承载的传输块的大小,该数据信道可以为PSSCH。
S1102:第一终端设备根据第一符号数量确定第一信息的TBS。
本申请中,第一终端设备可以根据第一符号数量确定分配给承载第一信息的PSSCH传输的一个PRB内RE数N′RE,再根据N′RE确定第一信息的TBS,具体可以按照前面的步骤2至步骤4中根据N′RE确定TBS的描述,具体过程不再赘述。
本申请中N′RE满足公式(11):
其中,表示第一符号数量,其他参数的含义可以参考公式(1)中的描述,在此不再赘述。
一种实现方式中,第一符号数量为5至12中的任一值。其中,当引入多个候选时隙接入点和/或时隙结束点,可以根据当前的时隙接入点和可能的时隙结束点以及重传等多个状态确定第一符号数量的取值,具体如何确定第一符号数量的取值,本申请对此并不限定。另外,对于第一信息,第一信息初传时的第一符号数量的取值,和第一信息重传时的第一符号数量的取值相同。
通过该方法,初传和重传使用同样的第一符号数量,可以使得每次传输计算获得的TBS相同,可 以避免多次接收的数据HARQ合并失效,提高数据译码的准确性。
该实现方式中,第一符号数量可以为网络设备或第二终端设备指示,也可以由第一终端设备自主确定。例如,第一终端设备接收来自第二终端设备的第一侧行指示信息,该第一侧行指示信息用于指示第一符号数量。
通过上面的方法,若非授权频段中引入多个时隙接入点或结束点,可以根据第一符号数量确定TBS,由于第一符号数量是固定值或者由第二终端设备指示的,从而可以减少实际的TBS与计算得到的TBS之间差异,提高TBS的准确性,提高译码准确度。
一种实现方式中,第一符号数量满足以下形式:
其中,表示第一符号数量,表示第二符号数量,为正整数,第二参数Y根据时隙中自动增益控制符号的数量和/或间隔符号的数量确定,Y为正整数。
一种实现方式中,第二符号数量为7至14中的任一值。其中,当引入多个候选时隙接入点和/或时隙结束点,可以根据当前的时隙接入点和可能的时隙结束点以及重传等多个状态确定第二符号数量的取值,具体如何确定第二符号数量的取值,本申请对此并不限定。另外,对于第一信息,第一信息初传时的第二符号数量的取值,和第一信息重传时的第二符号数量的取值相同。
该实现方式中,第二符号数量可以为网络设备或第二终端设备指示,也可以由第一终端设备自主确定。例如,第一终端设备接收来自第二终端设备的第二侧行指示信息,该第二侧行指示信息用于指示第二符号数量。另外,对于第一信息,第一信息初传时的Y的取值,和第一信息重传时的Y的取值相同。
一种实现方式中,Y的取值为0或1或2。例如,如果第一信息所在的时隙中包括自动增益控制符号(automatic gain control,AGC)以及间隔(gap)符号,则Y的取值为2;如果第一信息所在的时隙中只包括自动增益控制符号或间隔符号,则Y的取值为1;如果第一信息所在的时隙中不包括自动增益控制符号以及间隔符号,则Y的取值为0。
Y可以为网络设备或第二终端设备指示,也可以由第一终端设备自主确定。例如,第一终端设备接收来自第二终端设备的第三侧行指示信息,该第三侧行指示信息用于指示Y的取值。
一种实现方式中,第一符号数量满足以下形式:
其中,表示第一符号数量,第一参数sl-LengthSymbols表示由高层指示的时隙内侧行符号数目,sl-LengthSymbols为正整数,例如sl-LengthSymbols为14;第二参数Y的取值参考公式(12)中的描述,在此不再赘述。A为预定义的,或者预配置的,或者网络配置的,或者第二终端设备指示的第一数值,例如A为0到7或其子集内任意一个或多个值,A为大于等于0的正整数。
一种实现方式中,第一终端设备接收第二指示信息,所述第二指示信息用于指示所述第一符号数量根据第一参数sl-LengthSymbols确定,或者所述第二指示信息用于指示所述第一符号数量根据所述第一参数sl-LengthSymbols和第二参数Y或根据第二符号数量和所述第二参数Y确定。
一种实现方式中,第二指示信息用于指示所述第一符号数量根据第一参数sl-LengthSymbols确定时,
一种实现方式中,第二指示信息用于指示所述第一符号数量根据所述第一参数sl-LengthSymbols和第二参数Y确定时,第一符号数量满足公式(13-1)或公式(13-2)。
一种实现方式中,第二指示信息用于指示所述第一符号数量根据第二符号数量和第二参数Y确定时,第一符号数量满足公式(12)。
在这种方式中,第一符号数量有两个配置值,第一符号数量的第一配置值为原来R16/R17定义的数值,即sl-LengthSymbols–2,第一符号数量的第二配置值则为本申请中公式(13-1)或公式(13-2)定义的,第一终端设备根据第二指示信息,确定采用两个配置值中的某一个。
例如第二指示信息承载于SCI中,用1bit指示,bit值为0,则表示第一终端设备采用第一配置值(即sl-LengthSymbols–2);bit值为1则表示第一终端采用第二配置值(即根据公式(13-1)或公式 (13-2)确定的第一参考符号数量);反之亦然,不再赘述。
假设时隙包含的符号长度为14,即此时第一配置值为14,第二个接入符号位置为时隙内第4个符号,假设第二配置值为12,此时第二参数Y=2;则TBS可以通过以下方式得出:
当采用第一配置值时,当采用第二配置值时,
一种实现方式中,所述第一信息满足以下条件,所述第一符号数量根据所述第一参数sl-LengthSymbols确定,所述第一条件包括以下一项或多项:所述第二终端设备通过共享接入第一信道,所述第一信息在所述第一信道上传输;或所述第一信息位于信道占用时间内传输;或所述第一信息的初传在所述信道占用时间内传输,且所述第一信息位于所述信道占用时间内的第一个时隙之后的任一时隙。
一种实现方式中,所述信道占用时间为第二终端设备执行信道接入步骤占用第一信道时间和第二终端设备共享所述第一信道给其他终端设备时间的总时间;一种实现方式中,所述信道占用时间为第三终端设备执行信道接入步骤占用第一信道和第三终端设备共享所述第一信道给第二终端,和或其他终端设备的总时间,所述第三终端设备可以是第一终端设备,也可以是其他终端设备。例如第一终端设备执行type1信道接入流程接入第一信道,并行第一信道共享给第二终端接入。
一种实现方式中,第一符号数量满足以下形式:
其中,表示第一符号数量,为预配置的,或者网络配置的,或者第二终端设备指示的,例如可以为7到14的或其子集任意一个值。第三参数A为预定义的,或为预配置的,或者网络配置的,或者第二终端设备指示的值,例如A为0到7或其子集内一个或多个值,A为大于或等于0的正整数。举例来说,为高层参数sl-LengthSymbols,指示的时隙内侧行符号数目,sl-LengthSymbols为正整数,例如sl-LengthSymbols为14;A为预配置的,或者网络配置的第二数值,例如A=2;为Y的取值参考公式(12)中的描述,在此不再赘述。
一种实现方式中,第一终端设备接收第三指示信息,所述第三指示信息用于指示所述第三参数A的值。
其中,对于COT第一个时隙,由于COT初始者UE不确定起始符号位置,可以采用参考符号(根据公式(14)计算)计算TBS,而对于COT内的传输,终端设备采用公式(13-1)计算TBS,这是因为大部分TB的初传和重传都在COT内,此时他们的传输将从第一个时隙位置开始,所以采用原有R16/R17定义的计算方式更为合理;即可以预定义,对于一个TB,若它的初始传输在COT内,即不是COT的第一个时隙,则RX UE按照公式(13-1)值确定TBS。
按照上述描述步骤1,采用上述实现方式的一种示例1为:
在计算本申请中N′RE满足公式(11):
-表示PRB上的子载波数;
-如果第二指示信息中比特值为“1”或第一信息的初传在COT内第一个时隙传输,则第一符号数量采用以下方式;
其中sl-LengthSymbols表示一个时隙内的SL符号数,该参数有高层提供;
-如果第二指示信息中比特值为“0”或第一信息的初传在COT内非第一个时隙传输,则第一符号数量采用以下方式;
其他步骤和参数定义参考上述描述。
按照上述描述步骤1,采用上述实现方式的一种示例2为:
在计算本申请中N′RE满足公式(11):
-表示PRB上的子载波数;
-
(14),其中或sl-LengthSymbols是预定义的,或预配置的,或网络配置的。A为预定义,或预配置的,或者网络配置的多个值,例如A有A1和A2两个值;
◆如果第二指示信息中比特值为“1”或第一信息的初传在COT内第一个时隙传输,A=A1;
◆如果第二指示信息中比特值为“0”或第一信息的初传在COT内非第一个时隙传输,A=A2;
其他步骤和参数定义参考上述描述。
通过上面的方法,针对非授权频段的信道接入机制,在一个COT内,若终端设备连续发送信息,则可能将时隙中的间隔符号和自动增益控制符号中的至少一个符号用来传输数据。因此通过Y指示出第一信息所在的时隙中是否包括gap符号和AGC符号,可以实现指示时隙中实际传输所使用的符号数量,从而可以减少实际的TBS与计算得到的TBS之间差异,提高TBS的准确性,提高译码准确度。
图9和图11所示的流程可以分别独立实施,也可以联合实施。如果图9和图11所示的流程联合实施,那么第一终端设备根据第一频域资源单元数量以及第一符号数量确定第一信息的传输块大小。此时第一终端设备可以根据第一符号数量确定分配给承载第一信息的PSSCH传输的一个PRB内RE数N′RE,具体可以参考图11所示的流程;再根据N′RE以及第一频域资源单元数量确定分配给承载第一信息的PSSCH传输的RE数NRE,具体可以参考图9所示的流程;再根据NRE确定第一信息的TBS,具体可以按照前面的步骤2至步骤4中根据NRE确定TBS的描述,在此不再赘述。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备或终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图12所示,本申请实施例还提供一种通信装置用于实现上述方法中网络设备或终端设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该通信装置1200可以包括:处理单元1201和通信单元1202。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中网络设备或终端设备发送和接收的步骤。
以下,结合图12至图13详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
通信单元也可以称为接口电路、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信单元1202中用于实现接收功能的器件视为接收单元,将通信单元1202中用于实现发送功能的器件视为发送单元,即通信单元1202包括接收单元和发送单元。通信单元有时也可以称为收发机、接口电路、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
当该通信装置实现第一终端设备的功能时:
通信单元,用于接收来自第二终端设备的第一信息;
处理单元,用于根据第一频域资源单元数量确定第一信息的传输块大小;其中,第一频域资源单元数量满足以下形式:
或者,
其中,n′PRB表示第一频域资源单元数量,N表示第一信息占用的频域资源单元集合的数量,N为正整数,Mr表示第一信息占用的频域资源单元组的数量,Mr为正整数,表示第二频域资源单元数 量,为正整数,第二频域资源单元数量为频域资源单元组在一个频域资源单元集合内包含的频域资源单元的参考数量。
当该通信装置实现第一终端设备的功能时:
通信单元,用于接收来自第二终端设备的第一信息;
处理单元,用于根据第一符号数量确定第一信息的传输块大小;第一符号数量根据第一信息所在的时隙包括的符号数量确定。
当该通信装置实现第二终端设备的功能时:
处理单元,用于生成第一信息;
通信单元,用于发送第一信息;发送第二指示信息,所述第二指示信息用于指示第一符号数量根据第一参数sl-LengthSymbols确定,或者所述第二指示信息用于指示所述第一符号数量根据所述第一参数sl-LengthSymbols和第二参数Y或根据第二符号数量和所述第二参数Y确定;所述第一符号数量用于确定所述第一信息的传输块大小。
以上只是示例,处理单元1201和通信单元1202还可以执行其他功能,更详细的描述可以参考图9或图11所示的实施例中相关描述,这里不加赘述。
如图13所示为本申请实施例提供的通信装置示意图,图13所示的装置可以为图12所示的装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中终端设备或者网络设备的功能。为了便于说明,图13仅示出了该通信装置的主要部件。
如图13所示,通信装置1300包括处理器1310和接口电路1320。处理器1310和接口电路1320之间相互耦合。可以理解的是,接口电路1320可以为接口电路、管脚、接口电路或输入输出接口。可选的,通信装置1300还可以包括存储器1330,用于存储处理器1310执行的指令或存储处理器1310运行指令所需要的输入数据或存储处理器1310运行指令后产生的数据。接口电路也可以称为收发机、收发器、输入输出电路、或收发电路等。
当通信装置1300用于实现图9或图11所示的方法时,处理器1310用于实现上述处理单元1201的功能,接口电路1320用于实现上述通信单元1202的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元,还可以是其它通用处理器、数字信号处理器、专用集成电路或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中存储器可以是随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘或者本领域熟知的任何其它形式的存储介质中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (44)

  1. 一种传输块大小确定方法,其特征在于,包括:
    第一终端设备接收来自第二终端设备的第一信息;
    所述第一终端设备根据第一频域资源单元数量确定所述第一信息的传输块大小;
    其中,所述第一频域资源单元数量满足以下形式:
    其中,n′PRB表示所述第一频域资源单元数量,N表示第一信息占用的频域资源单元集合的数量,N为正整数,Mr表示所述第一信息占用的频域资源单元组的数量,Mr为正整数,表示第二频域资源单元数量,为正整数,所述第二频域资源单元数量为频域资源单元组在一个频域资源单元集合内包含的频域资源单元的参考数量。
  2. 根据权利要求1所述的方法,其特征在于,所述第二频域资源单元数量为10或11。
  3. 根据权利要求1所述的方法,其特征在于,所述第二频域资源单元数量满足以下任一种形式:


    其中,RBtotal表示第三频域资源单元数量,Msubch表示第一信息所在资源池包含的频域资源单元组数量,所述第三频域资源单元数量根据所述资源池包括的频域资源单元的数量确定,ceil表示向上取整,floor表示向下取整。
  4. 根据权利要求3所述的方法,其特征在于,所述第三频域资源单元数量为所述资源池内所有频域资源单元集合包括的频域资源单元数量;
    或者,所述第三频域资源单元数量为所述资源池内所有频域资源单元集合包括的频域资源单元数量,与所述资源池内所有保护带宽包括的频域资源单元数量的总和。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收第一指示信息,所述第一指示信息用于指示所述第二频域资源单元数量
  6. 根据权利要求5所述的方法,其特征在于,所述第一指示信息来自所述第二终端设备,所述第一指示信息承载于侧行控制信息中;
    或者,所述第一指示信息来自网络设备,所述第一指示信息承载于高层信令中。
  7. 根据权利要求1至5任一所述的方法,其特征在于,所述第一终端设备根据第一频域资源单元数量确定所述第一信息的传输块大小,包括:
    所述第一终端设备根据第一频域资源单元数量以及第一符号数量确定所述第一信息的传输块大小。
  8. 根据权利要求7所述的方法,其特征在于,所述第一符号数量为5至12中的任一值。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收来自所述第二终端设备的第一侧行指示信息,所述第一侧行指示信息用于指示所述第一符号数量。
  10. 根据权利要求7或8所述的方法,其特征在于,所述第一符号数量满足以下形式:
    其中,表示所述第一符号数量,表示第二符号数量,为正整数,Y根据所述时隙中自动增益控制符号的数量以及间隔符号的数量确定,Y为正整数。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收来自所述第二终端设备的第二侧行指示信息,所述第二侧行指示信息用于指 示所述第二符号数量。
  12. 根据权利要求7或8所述的方法,其特征在于,所述第一符号数量满足以下形式:
    其中,表示所述第一符号数量,sl-LengthSymbols表示由高层指示的时隙内侧行符号数目,sl-LengthSymbols为正整数,Y根据所述时隙中自动增益控制符号的数量以及间隔符号的数量确定,Y为正整数。
  13. 根据权利要求10至12任一所述的方法,其特征在于,Y的取值为0或1或2。
  14. 根据权利要求10至12任一所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收来自所述第二终端设备的第三侧行指示信息,所述第三侧行指示信息用于指示Y的取值。
  15. 根据权利要求10至14任一所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收第二指示信息,所述第二指示信息用于指示所述第一符号数量根据第一参数sl-LengthSymbols确定,或者所述第二指示信息用于指示所述第一符号数量根据所述第一参数sl-LengthSymbols和第二参数Y或根据第二符号数量和所述第二参数Y确定。
  16. 根据权利要求10至14任一所述的方法,其特征在于,所述第一信息满足以下条件,所述第一符号数量根据所述第一参数sl-LengthSymbols确定:
    所述第一条件包括以下一项或多项:所述第二终端设备通过共享接入第一信道,所述第一信息在所述第一信道上传输;
    或所述第一信息在信道占用时间内传输;
    或所述第一信息的初传在所述信道占用时间内传输,且所述第一信息位于所述信道占用时间内的第一个时隙之后的任一时隙。
  17. 根据权利要求10至14任一所述的方法,其特征在于,
    所述第一符号数量满足以下形式:
    其中,表示所述第一符号数量,表示第二符号数量,为正整数,第二参数Y根据所述时隙中自动增益控制符号的数量以及间隔符号的数量确定,所述第二参数Y为正整数;所述第三参数A为预定义的,或者预配置的,或者网络配置的,或者第二终端设备指示的值。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收第三指示信息,所述第三指示信息用于指示所述第三参数A的值。
  19. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自第二终端设备的第一信息;
    处理单元,用于根据第一频域资源单元数量确定所述第一信息的传输块大小;
    其中,所述第一频域资源单元数量满足以下形式:
    其中,n′PRB表示所述第一频域资源单元数量,N表示第一信息占用的频域资源单元集合的数量,N为正整数,Mr表示所述第一信息占用的频域资源单元组的数量,Mr为正整数,表示第二频域资源单元数量,为正整数,所述第二频域资源单元数量为频域资源单元组在一个频域资源单元集合内包含的频域资源单元的参考数量。
  20. 根据权利要求19所述的装置,其特征在于,所述第二频域资源单元数量为10或11。
  21. 根据权利要求19所述的装置,其特征在于,所述第二频域资源单元数量满足以下任一种形式:


    其中,RBtotal表示第三频域资源单元数量,Msubch表示第一信息所在资源池包含的频域资源单元组数量,所述第三频域资源单元数量根据所述资源池包括的频域资源单元的数量确定,ceil表示向上取整,floor表示向下取整。
  22. 根据权利要求21所述的装置,其特征在于,所述第三频域资源单元数量为所述资源池内所有频域资源单元集合包括的频域资源单元数量;
    或者,所述第三频域资源单元数量为所述资源池内所有频域资源单元集合包括的频域资源单元数量,与所述资源池内所有保护带宽包括的频域资源单元数量的总和。
  23. 根据权利要求19至22任一所述的装置,其特征在于,所述装置还包括:
    所述第一终端设备接收第一指示信息,所述第一指示信息用于指示所述第二频域资源单元数量
  24. 根据权利要求23所述的装置,其特征在于,所述第一指示信息来自所述第二终端设备,所述第一指示信息承载于侧行控制信息中;
    或者,所述第一指示信息来自网络设备,所述第一指示信息承载于高层信令中。
  25. 根据权利要求19至24任一所述的装置,其特征在于,所述处理单元具体用于:
    根据第一频域资源单元数量以及第一符号数量确定所述第一信息的传输块大小。
  26. 根据权利要求25所述的装置,其特征在于,所述第一符号数量为5至12中的任一值。
  27. 根据权利要求25或26所述的装置,其特征在于,所述通信单元还用于:
    接收来自所述第二终端设备的第一侧行指示信息,所述第一侧行指示信息用于指示所述第一符号数量。
  28. 根据权利要求25或26所述的装置,其特征在于,所述第一符号数量满足以下形式:
    其中,表示所述第一符号数量,表示第二符号数量,为正整数,Y根据所述时隙中自动增益控制符号的数量以及间隔符号的数量确定,Y为正整数。
  29. 根据权利要求28所述的装置,其特征在于,所述通信单元还用于:
    接收来自所述第二终端设备的第二侧行指示信息,所述第二侧行指示信息用于指示所述第二符号数量。
  30. 根据权利要求25或26所述的装置,其特征在于,所述第一符号数量满足以下形式:
    其中,表示所述第一符号数量,sl-LengthSymbols表示由高层指示的时隙内侧行符号数目,sl-LengthSymbols为正整数,Y根据所述时隙中自动增益控制符号的数量以及间隔符号的数量确定,Y为正整数。
  31. 根据权利要求28至30任一所述的装置,其特征在于,Y的取值为0或1或2。
  32. 根据权利要求28至30任一所述的装置,其特征在于,所述通信单元还用于:
    接收来自所述第二终端设备的第三侧行指示信息,所述第三侧行指示信息用于指示Y的取值。
  33. 根据权利要求28至32任一所述的装置,其特征在于,所述通信单元还用于:
    接收第二指示信息,所述第二指示信息用于指示所述第一符号数量根据第一参数sl-LengthSymbols确定,或者所述第二指示信息用于指示所述第一符号数量根据所述第一参数sl-LengthSymbols和第二参数Y或根据第二符号数量和所述第二参数Y确定。
  34. 根据权利要求28至32任一所述的装置,其特征在于,所述第一信息满足以下条件,所述第一符号数量根据所述第一参数sl-LengthSymbols确定:
    所述第一条件包括以下一项或多项:所述第二终端设备通过共享接入第一信道,所述第一信息在所述第一信道上传输;
    或所述第一信息在信道占用时间内传输;
    或所述第一信息的初传在所述信道占用时间内传输,且所述第一信息位于所述信道占用时间内的第一个时隙之后的任一时隙。
  35. 根据权利要求28至32任一所述的装置,其特征在于,
    所述第一符号数量满足以下形式:
    其中,表示所述第一符号数量,表示第二符号数量,为正整数,第二参数Y根据所述时隙中自动增益控制符号的数量以及间隔符号的数量确定,所述第二参数Y为正整数;所述第三参数A为预定义的,或者预配置的,或者网络配置的,或者第二终端设备指示的值。
  36. 根据权利要求35所述的装置,其特征在于,所述通信单元还用于:
    接收第三指示信息,所述第三指示信息用于指示所述第三参数A的值。
  37. 一种传输块大小确定方法,其特征在于,包括:
    第二终端设备发送第一信息;
    所述第二终端设备发送第二指示信息,所述第二指示信息用于指示第一符号数量根据第一参数sl-LengthSymbols确定,或者所述第二指示信息用于指示所述第一符号数量根据所述第一参数sl-LengthSymbols和第二参数Y或根据第二符号数量和所述第二参数Y确定;所述第一符号数量用于确定所述第一信息的传输块大小。
  38. 根据权利要求37所述的方法,其特征在于,Y的取值为0或1或2。
  39. 根据权利要求37或38所述方法,其特征在于,所述第一符号数量满足以下形式:
    其中,表示所述第一符号数量,sl-LengthSymbols表示由高层指示的时隙内侧行符号数目,sl-LengthSymbols为正整数;sl-LengthSymbols的取值是预配置的,或者网络配置的。
  40. 根据权利要求38或39所述的方法,其特征在于,
    所述第一符号数量满足以下形式:
    其中,表示所述第一符号数量,表示第二符号数量,为正整数,第二参数Y根据所述时隙中自动增益控制符号的数量以及间隔符号的数量确定,所述第二参数Y为正整数;所述第三参数A为预定义的,或者预配置的,或者网络配置的,或者第二终端设备指示的值。
  41. 根据权利要求40所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备发送第三指示信息,所述第三指示信息用于指示所述第三参数A的值。
  42. 一种通信装置,其特征在于,包括:
    处理单元,用于生成第一信息;
    通信单元,用于发送第一信息;发送第二指示信息,所述第二指示信息用于指示第一符号数量根据第一参数sl-LengthSymbols确定,或者所述第二指示信息用于指示所述第一符号数量根据所述第一参数sl-LengthSymbols和第二参数Y或根据第二符号数量和所述第二参数Y确定;所述第一符号数量用于确定所述第一信息的传输块大小。
  43. 一种通信装置,其特征在于,包括处理器,所述处理器,用于执行存储器中的计算机程序或指令,使得所述通信装置实现权利要求1至18、37至41中任意一项所述的方法。
  44. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机实现如权利要求1至18、37至41中任意一项所述的方法。
PCT/CN2023/111417 2022-08-12 2023-08-07 一种传输块大小确定方法及装置 WO2024032535A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210970529.0 2022-08-12
CN202210970529 2022-08-12
CN202310401611.6 2023-04-07
CN202310401611.6A CN117596679A (zh) 2022-08-12 2023-04-07 一种传输块大小确定方法及装置

Publications (1)

Publication Number Publication Date
WO2024032535A1 true WO2024032535A1 (zh) 2024-02-15

Family

ID=89850817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111417 WO2024032535A1 (zh) 2022-08-12 2023-08-07 一种传输块大小确定方法及装置

Country Status (1)

Country Link
WO (1) WO2024032535A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018202164A1 (zh) * 2017-05-04 2018-11-08 华为技术有限公司 一种控制信息传输方法、相关装置及计算机存储介质
CN109565361A (zh) * 2017-03-23 2019-04-02 Lg电子株式会社 用于确定传输块大小的方法及无线装置
WO2022116014A1 (zh) * 2020-12-01 2022-06-09 华为技术有限公司 一种tbs确定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565361A (zh) * 2017-03-23 2019-04-02 Lg电子株式会社 用于确定传输块大小的方法及无线装置
WO2018202164A1 (zh) * 2017-05-04 2018-11-08 华为技术有限公司 一种控制信息传输方法、相关装置及计算机存储介质
WO2022116014A1 (zh) * 2020-12-01 2022-06-09 华为技术有限公司 一种tbs确定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "DL/UL resource allocation", 3GPP DRAFT; R1-1720821, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 18 November 2017 (2017-11-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051370250 *

Similar Documents

Publication Publication Date Title
US11943168B2 (en) Method and apparatus for transmission and reception of sidelink feedback in wireless communication system
US11638240B2 (en) Method and device for transmitting control information in wireless communication system
US11588581B2 (en) Method and apparatus for transmission and reception of sidelink control information in wireless communication system
US11219008B2 (en) Methods and apparatus for guardband configuration
CN110536464A (zh) 一种传输方法、装置、通信节点及介质
US11665704B2 (en) Method and apparatus for control and data channel transmission and reception in wireless communication system
WO2019242710A1 (zh) 生成混合自动重传请求harq信息的方法和装置
WO2019007182A1 (zh) 一种数据传输方法及装置
EP3751763A1 (en) Indication method, network device and user equipment
US11595848B2 (en) Method and apparatus for transmission and reception of data in communication system
JP2024073619A (ja) 端末、通信方法及び集積回路
CN118199831A (zh) 资源指示方法、装置和终端
WO2021031948A1 (zh) 处理数据的方法和通信装置
WO2021032003A1 (zh) 上行控制信息传输方法及通信装置
WO2021088026A1 (zh) 一种确定数据传输反馈时延的方法及装置
WO2022156567A1 (zh) 信息传输方法、装置、终端设备、网络设备及存储介质
WO2024032535A1 (zh) 一种传输块大小确定方法及装置
WO2021164603A1 (zh) 辅链路控制信息的资源指示方法与装置、终端设备
CN114390698A (zh) 一种数据传输的方法、装置、介质以及程序产品
JP2021129298A (ja) 物理的上りリンク制御チャネルの衝突を扱うための装置および方法
CN117596679A (zh) 一种传输块大小确定方法及装置
WO2024099173A1 (zh) 一种通信方法及装置
WO2022222109A1 (zh) 资源选取方法、装置、设备及存储介质
WO2023131010A1 (zh) 一种数据传输方法及装置
WO2024031463A1 (zh) Sl通信方法、装置、设备、存储介质及程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851756

Country of ref document: EP

Kind code of ref document: A1