WO2022222109A1 - 资源选取方法、装置、设备及存储介质 - Google Patents

资源选取方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022222109A1
WO2022222109A1 PCT/CN2021/089051 CN2021089051W WO2022222109A1 WO 2022222109 A1 WO2022222109 A1 WO 2022222109A1 CN 2021089051 W CN2021089051 W CN 2021089051W WO 2022222109 A1 WO2022222109 A1 WO 2022222109A1
Authority
WO
WIPO (PCT)
Prior art keywords
psfch
resource pool
terminal
sending
sideline
Prior art date
Application number
PCT/CN2021/089051
Other languages
English (en)
French (fr)
Inventor
赵振山
张世昌
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21937347.9A priority Critical patent/EP4329227A1/en
Priority to PCT/CN2021/089051 priority patent/WO2022222109A1/zh
Priority to CN202180097066.5A priority patent/CN117157925A/zh
Publication of WO2022222109A1 publication Critical patent/WO2022222109A1/zh
Priority to US18/381,343 priority patent/US20240073867A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the embodiments of the present application relate to the field of wireless communication technologies, and in particular, to a resource selection method, apparatus, device, and storage medium.
  • the physical sideline feedback channel PSFCH is introduced to transmit the sideline feedback information to improve the reliability of the sideline communication.
  • the receiving terminal receives the sideline data sent by the sending terminal, and can select the carrier with the lowest channel occupancy for sideline feedback according to the channel occupancy rate of each carrier.
  • sideline multi-carrier transmission is introduced on a sidelink (sidelink, SL), that is, a sending terminal or a receiving terminal can perform data transmission on multiple carriers.
  • sidelink sidelink, SL
  • SL sidelink
  • how the receiving terminal determines the resource for sending the PSFCH is an urgent problem to be solved at present.
  • Embodiments of the present application provide a resource selection method, apparatus, device, and storage medium, so as to improve the performance of sideline multi-carrier transmission.
  • an embodiment of the present application provides a resource selection method, the method includes: a first terminal receives sideline data from a second terminal on multiple carriers, and the first terminal determines a physical side from the multiple carriers Resource pool of row feedback channel PSFCH.
  • an embodiment of the present application provides a resource selection apparatus, the apparatus includes: a receiving module and a processing module.
  • the receiving module is configured to receive sidelink data from the second terminal on multiple carriers
  • the processing module is configured to determine a resource pool for sending the physical sidelink feedback channel PSFCH from the multiple carriers.
  • an embodiment of the present application provides an electronic device, the device includes: a memory and a processor, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, The processor is caused to run the computer program to perform the method described in the first aspect of the present application.
  • an embodiment of the present application provides a computer storage medium for storing a computer program, which when the computer program runs on a computer, causes the computer to execute the method described in the first aspect of the present application.
  • an embodiment of the present application provides a computer program, which, when executed by a processor, is used to execute the method described in the first aspect of the present application.
  • an embodiment of the present application provides a computer program product that, when the computer program product runs on a computer, causes the computer to execute the method described in the first aspect of the present application.
  • an embodiment of the present application provides a chip, comprising: a processing module and a communication interface, the processing module is configured to call and run a computer program stored in the memory from a memory, and execute the computer program described in the first aspect of the present application.
  • Embodiments of the present application provide a resource selection method, apparatus, device, and storage medium, which can be used in a sideline communication system to improve the performance of sideline multi-carrier transmission.
  • the resource selection method includes: the first terminal receives sidelink data from the second terminal on multiple carriers, and the first terminal may select multiple carriers where the sidelink data is located, or all multiple carriers that can be used for sidelink transmission. , select the resource pool for sending the PSFCH.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the relationship between a carrier, an SLBWP, and a resource pool provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram 1 of a time slot structure of sideline communication provided by an embodiment of the present application.
  • FIG. 6 is a second schematic diagram of a time slot structure of sideline communication according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram 3 of a time slot structure of sideline communication according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a PSFCH resource provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the correspondence between the transmission resources of the PSFCH and PSSCH provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram 1 of PSFCH and multi-carrier transmission of PSCCH/PSSCH provided by an embodiment of the present application;
  • FIG. 11 is a schematic flowchart 1 of a resource selection method provided by an embodiment of the present application.
  • FIG. 12 is a second schematic flowchart of a resource selection method provided by an embodiment of the present application.
  • FIG. 13 is a second schematic diagram of PSFCH and multi-carrier transmission of PSCCH/PSSCH provided by an embodiment of the present application;
  • FIG. 14 is a schematic diagram 3 of PSFCH and multi-carrier transmission of PSCCH/PSSCH provided by an embodiment of the present application;
  • FIG. 15 is a fourth schematic diagram of PSFCH and multi-carrier transmission of PSCCH/PSSCH provided by an embodiment of the present application.
  • 16 is a schematic flowchart three of a resource selection method provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram 5 of PSFCH and multi-carrier transmission of PSCCH/PSSCH provided by an embodiment of the present application;
  • FIG. 18 is a fourth schematic flowchart of a resource selection method provided by an embodiment of the present application.
  • FIG. 19 is a schematic flowchart five of a resource selection method provided by an embodiment of the present application.
  • 20 is a schematic structural diagram of a resource selection apparatus provided by an embodiment of the present application.
  • FIG. 21 is a schematic diagram of a hardware structure of an electronic device according to an embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the communication system shown in FIG. 1 includes a network device 101 and two terminal devices, which are terminal devices 102 and 103 respectively. Both the terminal device 102 and the terminal device 103 are within the coverage of the network device 101 .
  • the network device 101 is connected in communication with the terminal device 102 and the terminal device 103 respectively, and the terminal device 102 is connected in communication with the terminal device 103 .
  • the terminal device 102 may send a communication message to the terminal device 103 through the network device 101 , and the terminal device 102 may also directly send a communication message to the terminal device 103 .
  • the link for direct communication between the terminal device 102 and the terminal device 103 is called a device-to-device (D2D) link, and may also be called a proximity service (ProSe) link, a sideline link etc. Transmission resources on the D2D link may be allocated by network equipment.
  • D2D device-to-device
  • ProSe proximity service
  • Transmission resources on the D2D link may be allocated by network equipment.
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the communication system shown in FIG. 2 also includes one network device 101 and two terminal devices.
  • the difference from FIG. 1 is that the terminal device 103 is within the coverage of the network device 101 , and the terminal device 104 is outside the coverage of the network device 101 .
  • the network device 101 is connected in communication with the terminal device 103
  • the terminal device 103 is connected in communication with the terminal device 104 .
  • the terminal device 103 may receive the configuration information sent by the network device 101, and perform sideline communication according to the configuration information. Since the terminal device 104 cannot receive the configuration information sent by the network device 101, the terminal device 104 can, according to the pre-configuration information and the information carried in the Physical Sidelink Broadcast Channel (PSBCH) sent by the terminal device 103, sideline communication.
  • PSBCH Physical Sidelink Broadcast Channel
  • FIG. 3 is a schematic diagram of an application scenario provided by an embodiment of the present application. Both the terminal device 104 and the terminal device 105 shown in FIG. 3 are outside the coverage of the network device 101 . Both the terminal device 104 and the terminal device 105 can determine the sideline configuration according to the pre-configuration information, and perform sideline communication.
  • the terminal device involved in the embodiments of this application may also be referred to as a terminal, which may be a device with a wireless transceiver function, which may be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it may also be deployed on water (such as ships, etc.); can also be deployed in the air (such as on airplanes, balloons, satellites, etc.).
  • the terminal device may be a user equipment (user equipment, UE), wherein the UE includes a handheld device, a vehicle-mounted device, a wearable device or a computing device with a wireless communication function.
  • the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • the terminal device may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, intelligent Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the device for realizing the function of the terminal may be a terminal; it may also be a device capable of supporting the terminal to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network device involved in the embodiments of the present application includes a base station (base station, BS), which may be a device deployed in a wireless access network and capable of wirelessly communicating with a terminal.
  • the base station may have various forms, such as a macro base station, a micro base station, a relay station, and an access point.
  • the base station involved in the embodiments of the present application may be a base station in the fifth generation mobile communication (5th generation mobile networks, 5G) or a base station in LTE, where the base station in 5G may also be referred to as a sending and receiving point ( transmission reception point, TRP) or gNB.
  • the apparatus for implementing the function of the network device may be a network device; it may also be an apparatus capable of supporting the network device to implement the function, such as a chip system, and the apparatus may be installed in the network device.
  • the technical solutions of the embodiments of the present application are mainly applied to communication systems based on NR technology, such as 5G communication systems, NR-V2X, NR-V2V communication systems, and the like. It can also be applied to other communication systems, as long as there is resource scheduling between entities in the communication system, for example, it can be applied to resource scheduling between network equipment and terminal equipment, or resource scheduling between two terminal equipment, One of the terminal devices assumes the function of accessing the network, etc.
  • two transmission modes are defined in the 3GPP protocol: a first transmission mode and a second transmission mode.
  • the first transmission mode the transmission resources of the terminal equipment are allocated by the base station, and the terminal equipment performs data transmission on the sidelink according to the resources allocated by the base station.
  • the base station can allocate resources for a single transmission to the terminal equipment, and can also allocate resources for semi-static transmission to the terminal equipment.
  • the terminal device 102 is located within the coverage area of the network device 101 , and the network device 101 allocates transmission resources for sideline transmission to the terminal device 102 .
  • Second transmission mode (1) If the terminal device has the interception capability, it can transmit data by means of interception and reservation or transmit data by means of randomly selecting resources. Specifically, the above method of listening and reserving means that the terminal device can acquire an available resource set by listening in a network configuration or a pre-configured resource pool, and randomly select a resource from the available resource set for data analysis. transmission. (2) If the terminal device does not have the ability to listen, it can directly select transmission resources from the resource pool at random.
  • the above-mentioned interception means that the terminal device receives the first sideline control information sent by other terminal devices, learns the resources reserved by other terminal devices according to the instructions of the first sideline control information, and excludes resources reserved by other terminal devices during resource selection. resources to avoid resource collision with other terminal devices.
  • the terminal device 102 shown in FIG. 1 may autonomously select transmission resources from the resource pool configured by the network to perform sideline transmission.
  • the terminal devices 104 and 105 shown in FIG. 3 are both located outside the coverage of the network device 101, and the terminal devices 104 and 105 can autonomously select transmission resources from the preconfigured resource pool for sideline transmission.
  • NR-V2X is a communication scenario based on sidelink communication.
  • X can generally refer to any device with wireless receiving and sending capabilities, including but not limited to slow-moving wireless devices, fast-moving wireless devices Mobile vehicle-mounted equipment, network control nodes with wireless transmission and reception capabilities, etc.
  • NR-V2X communication supports unicast, multicast, and broadcast transmission methods.
  • unicast transmission the sending terminal sends data, and there is only one receiving terminal.
  • the sending terminal sends data, and the receiving terminal is all terminals in a communication group, or all terminals within a certain transmission distance.
  • For broadcast transmission the sending terminal sends data, and the receiving terminal is any terminal around the sending terminal.
  • the sidelink bandwidth part (SL BWP) configuration is also supported on the NR-V2X carrier. Since there are broadcast and multicast services in the sidelink communication, one UE needs to face multiple receiving UEs on the sending side. A UE may also need to receive sideline signals sent by multiple UEs at the same time. On a carrier, only one SL BWP can be configured at most, and the SL BWP can be used for sideline transmission and sideline reception at the same time.
  • Resource Pool There is also a resource pool (Resource Pool, RP) configuration in NR-V2X, and the resource pool limits the range of time-frequency resources for sideline communication.
  • the minimum time-domain granularity of the resource pool configuration is one time slot, and the resource pool can contain time slots that are discontinuous in time; the minimum frequency-domain granularity is a sub-channel, and a sub-channel is a continuous number of physical time slots in the frequency domain.
  • Resource block Physical Resource Block, PRB
  • a subchannel can be 10, 12, 15, 20, 25, 50, 75 or 100 PRBs.
  • FIG. 4 is a schematic diagram of the relationship between the carrier, the SL BWP, and the resource pool provided by this embodiment of the application.
  • the carrier includes at least one SL BWP (only one SL BWP is shown in FIG. 4 ), and the SL The BWP includes at least one resource pool (only one resource pool is shown in FIG. 4 ).
  • FIG. 5 is a schematic diagram 1 of the time slot structure of the sideline communication provided by the embodiment of the application.
  • the time slot does not include the symbol of the physical sideline feedback channel PSFCH, and the first time slot of the time slot is A side row symbol is usually used as automatic gain control (Automatic Gain Control, AGC).
  • AGC Automatic Gain Control
  • the terminal equipment replicates the data sent on the second symbol, and the data on the AGC symbol is usually not used for data demodulation.
  • the last side row symbol of the time slot is a guard interval (Guard Period, GP), which is used for transceiving transition, and is used for the terminal equipment to transition from the sending (or receiving) state to the receiving (or sending) state.
  • Guard Period Guard Period
  • the physical side row control channel PSCCH can occupy two or three OFDM symbols starting from the second side row symbol, and in the frequency domain PSCCH can occupy ⁇ 10, 12 15, 20 , 25 ⁇ PRBs.
  • PSCCH symbol number and PRB number are allowed to be configured in one resource pool.
  • the number of PRBs occupied by PSCCH must be less than or equal to the number of PRBs contained in a subchannel in the resource pool, so as to avoid additional restrictions on PSSCH resource selection or allocation .
  • the physical side row shared channel PSSCH may occupy symbols starting from the second side row symbol of the slot until before the last GP symbol of the slot.
  • the PSSCH occupies K sub-channels in the frequency domain, and each sub-channel includes M consecutive PRBs.
  • FIG. 6 is a second schematic diagram of a time slot structure of sideline communication provided by an embodiment of the present application.
  • the time slot structure is different from FIG. 5 in that the time slot structure includes a time domain symbol of the PSFCH, where The second-to-last and third-to-last symbols in the slot structure are used to transmit the PSFCH, and one time-domain symbol before the third-to-last symbol is used as a GP symbol.
  • the data of the third-to-last symbol in the time slot structure shown in FIG. 6 is the same as the data of the second-to-last symbol, and the third-to-last symbol is used as AGC.
  • the second-order sideline control information (Sidelink Control Information, SCI) is introduced.
  • the first-order SCI (or the first sideline control information) is carried in the PSCCH and is used to indicate the PSSCH transmission resources, reserved resource information, modulation and coding strategy (Modulation and Coding Scheme, MCS) level, priority, etc. information.
  • the second-order SCI (or referred to as the second sideline control information) is carried in the PSSCH and is used to indicate the source ID, destination ID, HARQ ID, new data indication NDI and other information used for data demodulation.
  • FIG. 7 is a schematic diagram 3 of a time slot structure for sideline communication provided by an embodiment of the application.
  • the PSCCH occupies 3 symbols, for example, symbols 1, 2, and 3 in FIG.
  • DMRS occupies symbols 4 and 11.
  • the second-order SCI is mapped from symbol 4, and is frequency-division multiplexed with DMRS on symbol 4.
  • the second-order SCI is mapped to symbols 4, 5, and 6.
  • the size of the resources occupied by the second-order SCI depends on The number of bits in the second-order SCI.
  • NR-V2X communication needs to support autonomous driving, so it puts forward higher requirements for data interaction between vehicles, such as higher throughput, lower latency, higher reliability, larger coverage, and more flexibility resource allocation, etc.
  • PSFCH Physical Sidelink Feedback Channel
  • the sending terminal For unicast transmission, the sending terminal sends sidelink data to the receiving terminal, including the Physical Sidelink Control Channel (PSCCH) and the Physical Sidelink Shared Channel (PSSCH), and the receiving terminal sends the data to the sending terminal.
  • Hybrid Automatic Repeat Request (HARQ) feedback information the sending terminal determines whether data retransmission is required according to the feedback information of the receiving terminal. Wherein, the feedback information of HARQ is carried in the PSFCH.
  • the terminal device can activate or deactivate the sideline feedback through pre-configuration information or network configuration information. If sideline feedback is activated, the receiving terminal receives the sideline data sent by the sending terminal, and needs to feed back HARQ ACK/NACK (acknowledgement/non-acknowledgement) to the sending terminal according to the detection result, and the sending terminal decides to send retransmission data according to the feedback information of the receiving terminal or new data. If the sideline feedback is deactivated, the receiving terminal does not need to send feedback information, and the sending terminal usually sends data in a blind retransmission manner, for example, the sending terminal repeatedly sends a preset number of retransmissions for each sideline data.
  • HARQ ACK/NACK acknowledgement/non-acknowledgement
  • the PSFCH only carries 1-bit HARQ ACK information, occupying 2 time-domain symbols in the time domain (wherein the second symbol carries the sideline feedback information, and the data on the first symbol is The duplication of data on the second symbol, the first symbol is used as AGC), occupies 1 PRB in the frequency domain.
  • FIG. 6 for a schematic diagram of the position of the PSFCH in a time slot structure.
  • Mode 1 The terminal within a certain distance receives the sideline data of the transmitting terminal. If the detection result is NACK, the sideline feedback needs to be sent; if the detection result is ACK, the sideline feedback does not need to be sent. Terminals outside this distance range do not need to send sideline feedback no matter what the detection result is.
  • Mode 2 For a communication group, all receiving terminals need to send sideline feedback.
  • a communication group includes P terminals. When one terminal acts as a sending terminal to send sideline data, the other P-1 terminals all need to send sideline feedback information.
  • the cycle of the sideline feedback resources can be defined, for example, the cycle is N time slots, and N is 1, 2, 4, etc.
  • the parameter N can be pre-configured or configured by the network.
  • FIG. 8 is a schematic diagram of a PSFCH resource provided by an embodiment of the present application.
  • the period of the PSFCH is 4 time slots.
  • the feedback information of PSSCH transmitted in time slots 2, 3, 4, and 5 is all transmitted in time slot 7. Therefore, time slots 2, 3, 4, and 5 can be regarded as a time slot set.
  • the PSSCH transmitted in the corresponding PSFCH is in the same time slot (time slot 7).
  • the resource of the sideline feedback information may be determined according to the time slot where the sideline data PSSCH is located and the starting position of the occupied subband.
  • FIG. 9 is a schematic diagram of the corresponding relationship between the transmission resources of PSFCH and PSSCH provided by an embodiment of the present application. As shown in FIG. 9 , the period of PSFCH is 4 time slots, and transmission is performed at the same subband starting position in different time slots. The PSSCH corresponding to the different PSFCH resources in the feedback time slot respectively.
  • the configuration information of the sidelink resource pool includes: PSCCH/PSSCH transmission resources and PSFCH transmission resources.
  • the transmitting terminal transmits the PSCCH/PSSCH in the transmission resource pool configured for it.
  • the receiving terminal detects whether there is a PSCCH/PSSCH sent by other terminals in the receiving resource pool configured for it. If detected, the receiving terminal determines the transmission resource for sending the PSFCH according to the transmission resources of the PSCCH/PSSCH and the configuration information of the PSFCH in the receiving resource pool. . After sending the PSCCH/PSSCH, the sending terminal will determine the resources for receiving the PSFCH according to the PSFCH configuration information in the sending resource pool, and perform PSFCH detection.
  • the sending resource pool configured for the sending terminal is usually the same as the receiving resource pool configured for the receiving terminal, so that the sending terminal and the receiving terminal can transmit resources according to the PSSCH and the resources in their respective resource pools.
  • the configuration information of the PSFCH can determine the same PSFCH transmission resources.
  • multi-carrier transmission can be supported on the sidelink.
  • a multi-carrier transmission scheme is introduced, and the data of the terminal can be transmitted on one or more carriers, so there is a problem of selecting the transmission carrier.
  • channel busy ratio, CBR channel busy ratio
  • the CBR reflects the channel occupancy in the past 100ms or 100 time slots: the lower the CBR, the lower the system resource occupancy rate and the more available resources; the higher the CBR, the higher the system resource occupancy rate and the more congested, Transmission collisions and interference are prone to occur.
  • the transmitting terminal transmits PSCCH/PSSCH on multiple carriers. For each carrier that transmits PSCCH/PSSCH, the transmitting terminal transmits PSCCH in the transmitting resource pool of the transmitting terminal. /PSSCH, the receiving terminal detects the PSCCH/PSSCH sent by other terminals in the receiving resource pool of the receiving terminal, and if detected, sends the PSFCH. If the receiving terminal detects PSCCH/PSSCH on multiple carriers, it may send the PSFCH on one carrier or multiple carriers, and the carrier that sends the PSFCH and the carrier that detects the PSCCH/PSSCH may be the same carrier, or may be different carrier. At this time, how the receiving terminal determines the resource pool for sending the PSFCH in multiple carriers is an urgent problem to be solved at present.
  • the embodiment of the present application provides a resource selection scheme, which is used to determine the resource for sending the PSFCH.
  • This solution is mainly aimed at the sidelink multi-carrier transmission scenario, that is, the sending terminal can send the same or different sidelink data at the same time or at different times, and the sending terminal can also send the above-mentioned sidelink data on multiple carriers.
  • the receiving terminal may receive sideline data on multiple carriers at the same time or at different times.
  • the receiving terminal sends sideline feedback information, where the sideline feedback information is carried in the PSFCH, and the receiving terminal may send the PSFCH on one or more carriers.
  • Sideline feedback information corresponding to multiple sideline data may be carried on one PSFCH, or the sideline feedback information corresponding to each sideline data may be carried in a separate PSFCH respectively.
  • FIG. 10 is a schematic diagram 1 of the PSFCH and multi-carrier sending PSCCH/PSSCH provided by the embodiment of the application.
  • the sideline communication system is configured with 4 sideline carriers, that is, carriers 0-3.
  • Each carrier includes two sending resource pools, and each sending resource pool corresponds to one receiving resource pool, so there can be two receiving resource pools on each carrier.
  • the sending terminal sends PSCCH/PSSCH on time slots a, b, c, and d, and its corresponding PSFCH is on time slot k, that is, the feedback time slot k corresponds to the PSSCH time slot set ⁇ a,b,c,d ⁇ .
  • the transmitting terminal transmits sideline data on four carriers in time slots a, b, and c, respectively.
  • the sending terminal uses multiple carriers to send sideline data, and the sending terminal can send sideline data on multiple carriers at the same time, for example, on the carrier 2 and carrier 3 of time slot c.
  • Sideline data is sent on different carriers at different times, for example, sideline data is sent on carrier 0 in time slot a, and sideline data is sent on carrier 1 in time slot b.
  • the same sideline data (such as different redundant versions of the same transmission block (TB)) can be sent on multiple carriers, and different sideline data can also be sent. No restrictions apply.
  • Each PSCCH/PSSCH in FIG. 10 corresponds to one PSFCH respectively.
  • the receiving terminal sends the sideline feedback information for the sideline data on the time slots a, b, and c in the time slot k.
  • the receiving terminal may transmit the PSFCH on one or more carriers.
  • the receiving terminal may send the PSFCH on two carriers, for example, the PSFCH on carrier 0 and carrier 2.
  • the transmitting terminal uses carrier 0 in time slot a and carrier 1 to transmit PSCCH/PSSCH in time slot b, and the corresponding PSFCHs are all located in carrier 0, and the transmitting terminal uses carrier 2 and carrier 3 to transmit simultaneously in time slot c PSCCH/PSSCH, the corresponding PSFCH is located on carrier 2.
  • the receiving terminal may carry all the sideline feedback information of the sideline data in one PSFCH.
  • the receiving terminal only needs to send one PSFCH in time slot k, for example, only in time slot k.
  • a PSFCH is sent on carrier 0 of k.
  • this application proposes the following resource selection schemes:
  • Scheme 1 The receiving terminal selects the resource pool for sending the PSFCH according to the resource pool where the sideline data is located.
  • the receiving terminal selects a resource pool for sending the PSFCH according to the PSFCH configuration information.
  • the PSFCH configuration information includes at least one item of information for configuring a PSFCH format and information for configuring a PSFCH transmission resource.
  • Solution 3 The receiving terminal selects the resource pool for sending the PFSCH according to the measurement information of the resource pool.
  • the measurement information of the resource pool includes the CBR measurement result of the resource pool.
  • the receiving terminal selects a resource pool for sending the PFSCH according to the first indication information from other devices.
  • the other device may be a sending terminal or a network device.
  • the resource pool for sending PSFCH can also be determined by a combination of the above solutions:
  • Scheme 1 The receiving terminal selects the resource pool for sending the PSFCH according to the resource pool where the sideline data is located and the PSFCH configuration information of the resource pool where the sideline data is located.
  • Scheme 2 The receiving terminal selects the resource pool for sending the PSFCH according to the resource pool where the sideline data is located and the measurement information of the resource pool where the sideline data is located.
  • Solution 3 The receiving terminal selects the resource pool for sending the PSFCH according to the resource pool where the sideline data is located and the first indication information of other devices. That is, the resource pool that belongs to the resource pool where the sideline data is located and indicated by the first indication information is selected as the resource pool for sending the PSFCH.
  • FIG. 11 is a schematic flowchart 1 of a resource selection method provided by an embodiment of the present application. As shown in FIG. 11 , the resource selection method provided by this embodiment includes the following steps:
  • Step 10 The first terminal receives sideline data from the second terminal on multiple carriers.
  • Step 11 Determine the resource pool for sending the PSFCH from multiple carriers.
  • the first terminal is a sidelink data receiving terminal in the sidelink
  • the second terminal is a sidelink data sending terminal in the sidelink.
  • the multiple carriers include any of the following:
  • sideline transmission includes sideline transmission or sideline reception.
  • the sideline data includes PSCCH and PSSCH.
  • the sideline data received by the first terminal on multiple carriers may be the same sideline data or different sideline data, which is not limited in this embodiment of the present application. That is, the sideline data received by the first terminal on multiple carriers belong to the same transmission block (Transmission Block, TB) or different transmission blocks.
  • the same transport block may correspond to different redundancy versions (Redundancy version, RV).
  • RV redundancy version
  • the first terminal receives sideline transport block 1 on carrier 0 and carrier 1 respectively, and carrier 0 and carrier 1 correspond to redundancy version 0 and redundancy version 2 of sideline transport block 1 respectively.
  • the first terminal receives sideline transport block 1 on carrier 0, and receives sideline transport block 2 on carrier 2.
  • the first terminal receives sideline data from the second terminal on multiple carriers, including: the sideline data sent by the second terminal at the same time, and/or the second terminal sent at different times side row data.
  • the first terminal may receive sideline data on different carriers at the same time, or may receive sideline data on the same carrier or different carriers at different times, which is not limited in this embodiment of the present application.
  • the first terminal receives sideline data 1 on carrier 0 in time slot a, and simultaneously receives sideline data 2 on carrier 1 .
  • the first terminal receives sideline data 1 on carrier 0 in time slot a, and receives sideline data 1 on carrier 0 in time slot b.
  • the first terminal receives sideline data 1 on carrier 0 in time slot a, and receives sideline data 2 on carrier 1 in time slot b.
  • the sideline feedback information corresponding to the sideline data from the second terminal received by the first terminal on multiple carriers is carried on one PSFCH.
  • the sideline feedback information corresponding to the sideline data from the second terminal received by the first terminal on multiple carriers is carried on different PSFCHs.
  • the resource pool in which the first sideline data received by the first terminal from the second terminal on multiple carriers is located and the resource pool in which the PSFCH corresponding to the first sideline data is transmitted are different resources pool.
  • the first sideline data is one sideline data among sideline data received by the first terminal from the second terminal on multiple carriers.
  • the first terminal sends the PSSCH on carrier 0 and carrier 1, and the PSFCH corresponding to the PSSCH on carrier 0 and carrier 1 is sent on carrier 1, then, the resource pool where the sidelink data received on carrier 0 is located is the same as
  • the resource pools in which the PSFCH is transmitted are different resource pools.
  • the carrier on which the first sideline data is located and the carrier on which the PSFCH corresponding to the first sideline data is transmitted are different carriers.
  • the resource pool where the first sideline data received by the first terminal from the second terminal on multiple carriers is located and the resource pool where the PSFCH corresponding to the first sideline data is transmitted are the same resource pool .
  • the carrier on which the first sideline data is located and the carrier on which the PSFCH corresponding to the first sideline data is transmitted are the same carrier.
  • the resource pool where the first sideline data received by the first terminal from the second terminal on multiple carriers is located and the resource pool where the PSFCH corresponding to the first sideline data is transmitted are the same resource pool , and the carrier on which the first sideline data is located is the same carrier as the carrier on which the PSFCH corresponding to the first sideline data is transmitted.
  • the first terminal receives sideline data from the second terminal on multiple carriers
  • the multiple carriers for receiving sideline data may specifically be multiple carriers in all carriers used for sideline transmission, or is a plurality of carriers of all carriers used for sideline transmission by the second terminal, and may also be a plurality of carriers of all carriers used by the first terminal for sideline transmission.
  • the first terminal can use all carriers available for sideline transmission, or the first terminal can use all carriers for sideline transmission, or the second terminal can use all carriers for sideline transmission, or The terminal receives the multiple carriers where the sideline data from the second terminal is located, and determines the resource pool for sending the PSFCH.
  • the above scheme realizes the reasonable selection of transmission resources of the sideline feedback information in the sideline multi-carrier transmission, improves the transmission performance of the sideline communication, and reduces the transmission conflict and interference of the sideline communication.
  • FIG. 11 is a second schematic flowchart of a resource selection method provided by an embodiment of the present application. As shown in FIG. 12 , the resource selection method provided by this embodiment includes the following steps:
  • Step 101 The first terminal receives sideline data from the second terminal on multiple carriers.
  • Step 102 The first terminal determines the resource pool for sending the PSFCH from multiple carriers according to the resource pool where the sideline data is located.
  • the first terminal determines the resource pool for sending the PSFCH from multiple carriers according to the resource pool where the sideline data is located, including: the first terminal obtains the received data on multiple carriers from the second At least one resource pool where the PSCCH or PSSCH of the terminal is located, and the resource pool for sending the PSFCH is determined from the at least one resource pool.
  • the first terminal may first determine the first carrier used for sending the PSFCH from the multiple carriers, and then acquire at least one resource where the sidelink data is located. pool, selecting a resource pool corresponding to at least one resource pool where the sideline data is located on the first carrier as the resource pool for sending the PSFCH.
  • the first terminal may determine the first carrier for sending the PSFCH from multiple carriers in the following manner.
  • the first terminal may select a carrier with the lowest CBR from multiple carriers as the first carrier for sending the PSFCH according to the CBR of the carrier.
  • the first terminal may determine the first carrier for sending the PSFCH according to the first indication information sent by other devices.
  • the other device includes a second terminal or a network device, and the first indication information may be used to instruct the first terminal to send carrier information of the PSFCH.
  • the first terminal may determine the first carrier for sending the PSFCH according to the PSFCH configuration information.
  • the PSFCH configuration information includes at least a carrier set supported by sideline transmission, and the carrier set at least includes a carrier used for PSFCH transmission.
  • FIG. 13 is a schematic diagram 2 of the PSFCH and multi-carrier transmission of PSCCH/PSSCH provided by the embodiment of the application.
  • the transmitting terminal transmits PSCCH1/PSSCH1 in resource pool 1 on carrier 0 of time slot a, and then Resource pool 2 on time slot b carrier 1 sends PSCCH2/PSSCH2, and the receiving terminal determines to send sideline feedback information for the above two sideline data on carrier 0.
  • the sideline feedback information can be multiplexed with a PSFCH, or use an independent
  • the PSFCHs are fed back separately (as shown in Figure 13).
  • the receiving terminal Since the receiving terminal receives the PSCCH1/PSSCH1 sent by the transmitting terminal in resource pool 1, when the receiving terminal determines the resource pool for sending PSFCH on carrier 0 of time slot k, it can feedback the sideline to be sent according to time slot k The resource pool where the PSCCH/PSSCH corresponding to the information is located determines the resource pool for sending the PSFCH.
  • the receiving terminal needs to send 2 PSFCHs in time slot k, corresponding to PSCCH1/PSSCH1 and PSCCH2/PSSCH2 respectively, and the receiving terminal determines to send the PSFCH on carrier 0, and the receiving terminal is in the resource pool on carrier 0 1 PSCCH1/PSSCH1 is received, therefore, the receiving terminal determines to transmit 2 PSFCHs in resource pool 1 on carrier 0.
  • FIG. 14 is a schematic diagram 3 of the PSFCH and multi-carrier sending PSCCH/PSSCH provided by the embodiment of the application.
  • the sending terminal sends the PSCCH1/PSSCH1 in the resource pool 1 on the carrier 0 of the time slot a.
  • Resource pool 2 on carrier 0 in time slot b sends PSCCH2/PSSCH2, and the receiving terminal determines to send sideline feedback information for the above two sideline data on carrier 0.
  • the receiving terminal sends the PSFCH respectively to carry the respective sideline feedback information of the two sideline data.
  • the PSFCH corresponding to each sideline data can be determined according to the resource pool where each sideline data is located. resource pool.
  • the PSFCH corresponding to PSCCH1/PSSCH1 is sent in resource pool 1 of carrier 0, and the PSFCH corresponding to PSCCH2/PSSCH2 is sent in resource pool 2 of carrier 0.
  • the first terminal when the first terminal determines that the resource pool for sending the PSFCH is a resource pool, the first terminal may determine a resource pool for sending the PSFCH from at least one resource pool in the following two ways.
  • the first terminal determines a resource pool for sending the PSFCH from at least one resource pool according to the priority information.
  • the first terminal may determine a resource pool for sending the PSFCH from at least one resource pool according to the priority information of the sideline data.
  • the side row control information SCI carries the priority information of the side row data.
  • the first terminal may select the resource pool where the sideline data with the highest priority (or the lowest priority) is located from the at least one resource pool, or the first terminal may select the highest priority (or the lowest priority) from the at least one resource pool.
  • the resource pool where the PSSCH with the lowest) is located, and the resource pool is used as the resource pool for sending the PSFCH.
  • the first terminal determines the resource pool for sending the PSFCH from at least one resource pool according to the time sequence of the received PSCCH or PSSCH. Specifically, the first terminal may determine a resource pool for sending the PSFCH from at least one resource pool according to the receiving time of the sideline data. The first terminal may use the resource pool where the sidelink data received first is located as the resource pool for sending the PSFCH, or the resource pool where the sidelink data received last is located as the resource pool for sending the PSFCH.
  • FIG. 15 is a schematic diagram 4 of the PSFCH and multi-carrier sending PSCCH/PSSCH provided by the embodiment of the application.
  • the sending terminal sends the PSCCH1/PSSCH1 in the resource pool 1 on the carrier 0 of the time slot a.
  • Resource pool 2 on time slot b carrier 0 transmits PSCCH2/PSSCH2. If the receiving terminal determines to send the PSFCH for the above two sideline data on carrier 0.
  • the receiving terminal determines that carrier 0
  • the resource pool 1 is the resource pool for sending PSFCH.
  • FIG. 15 shows that sideline feedback information for two sideline data is carried in two PSFCHs of resource pool 1 on carrier 0, respectively.
  • the sideline feedback information for the two sideline data may also be carried in one PSFCH of resource pool 1 on carrier 0 (not shown in the figure).
  • the receiving terminal determines that the carrier The resource pool 1 of 0 is the resource pool for sending the PSFCH.
  • the sideline feedback information for the two sideline data is carried in the two PSFCHs of the resource pool 1 on the carrier 0 respectively.
  • the sideline feedback information for the two sideline data may also be carried in one PSFCH of resource pool 1 on carrier 0 (not shown in the figure).
  • the first terminal receives the sidelink data sent by the second terminal on multiple carriers, and determines from the multiple carriers where the sidelink data is located according to the resource pool where the sidelink data is located. Resource pool for sending PSFCH.
  • FIG. 15 is a third schematic flowchart of a resource selection method provided by an embodiment of the present application. As shown in FIG. 16 , the resource selection method provided by this embodiment includes the following steps:
  • Step 201 The first terminal receives sideline data from the second terminal on multiple carriers.
  • Step 202 The first terminal determines a resource pool for sending the PSFCH from multiple carriers according to the measurement information of the resource pool.
  • the first terminal may determine the resource pool (and/or carrier) for sending the PSFCH according to the received measurement result of the resource pool (and/or carrier) where the PSCCH/PSSCH is located.
  • the measurement information of the resource pool includes the channel busy rate CBR of the resource pool.
  • the first terminal may select the resource pool for sending the PSFCH from the resource pool set of multiple carriers in order of CBR from low to high.
  • FIG. 17 is a schematic diagram 5 of the PSFCH and multi-carrier transmission of PSCCH/PSSCH provided by the embodiment of the application.
  • the transmitting terminal sends PSCCH1/PSSCH1 in resource pool 1 on time slot a carrier 0, and then Resource pool 2 on time slot b carrier 2 transmits PSCCH2/PSSCH2, and resource pool 2 on time slot c carrier 1 transmits PSCCH3/PSSCH3.
  • the receiving terminal measures the CBR1 of resource pool 1 on carrier 0, the CBR2 of resource pool 2 on carrier 2, and the CBR3 of resource pool 2 on carrier 1 respectively.
  • the PSFCH of the sideline data, the receiving terminal can determine to use the resource pool 2 on the carrier 1 to send the PSFCH.
  • the receiving terminal when the receiving terminal determines to send the PSFCH for the above three sideline data on two carriers, because CBR3 ⁇ CBR1 ⁇ CBR2, it may determine to send the PSFCH on the resource pool of carrier 1 and carrier 0, that is, the receiving terminal The PSFCH may be sent using resource pool 2 on carrier 1 and resource pool 1 on carrier 0.
  • the first terminal may, according to the CBR of the resource pool, determine at least one resource pool whose CBR is less than the CBR threshold from a set of resource pools of multiple carriers, and select a resource pool for sending the PSFCH from the at least one resource pool. resource pool. Specifically, the first terminal may select a resource pool for sending the PSFCH from the at least one resource pool in order of CBR from low to high. In this embodiment, the first terminal selects a resource pool for sending the PSFCH from a resource pool set of multiple carriers according to the CBR of the resource pool and the CBR threshold.
  • the CBR threshold is pre-configured or configured by the network, and only when the CBR of the resource pool is smaller than the CBR threshold, the resource pool may be used as a candidate resource pool (candidate resource pool) for transmitting PSFCH. Subsequently, the first terminal selects a resource pool for transmitting the PSFCH from the candidate resource pool in the order of CBR from low to high.
  • the network configures CBR_thd (ie, the CBR threshold) through RRC signaling.
  • CBR_thd ie, the CBR threshold
  • the receiving terminal measures CBR1 ⁇ CBR_thd of resource pool 1 of carrier 0, and measures CBR2>CBR_thd of resource pool 2 of carrier 2.
  • the resource pool 2 is used as the resource pool for transmitting PSFCH.
  • determining the resource pool for sending the PSFCH it may not be limited to
  • the receiving terminal may measure the CBRs of all resource pools in all 4 carriers, and then select the resource pools for sending the PSFCH in order from low to high according to all the CBR measurement results.
  • the first terminal by receiving the sidelink data sent by the second terminal on multiple carriers, the first terminal can select the sidelink data from the resource pool where the sidelink data is located according to the measurement information of the resource pool where the sidelink data is located. Determine the resource pool for sending the PSFCH from among the resource pools; or determine the resource pool for sending the PSFCH from all the resource pools according to the measurement information of all the resource pools. All resource pools include all resource pools available for sideline transmission, or all resource pools available for sideline transmission by the first terminal, or all resource pools available for sideline transmission by the second terminal. The above scheme realizes the reasonable selection of transmission resources of the sideline feedback information in the sideline multi-carrier transmission, improves the transmission performance of the sideline communication, and reduces the transmission conflict and interference of the sideline communication.
  • FIG. 17 is a fourth schematic flowchart of a resource selection method provided by an embodiment of the present application. As shown in FIG. 18 , the resource selection method provided by this embodiment includes the following steps:
  • Step 301 The first terminal receives sideline data from the second terminal on multiple carriers.
  • Step 302 The first terminal determines, according to the first indication information, a resource pool for sending the PSFCH from multiple carriers.
  • the first indication information is used to indicate at least one resource pool in which the first terminal transmits the PSFCH.
  • the first indication information may be carried in sideline control information SCI, PC5 radio resource control RRC signaling or medium access control layer control element MAC CE.
  • the first terminal receives the PSCCH/PSSCH sent by the second terminal, and carries the first indication information in the SCI borne by the PSCCH, or the second-order SCI or MAC CE borne by the PSSCH.
  • the first indication information includes index information.
  • the first terminal determines a resource pool for sending the PSFCH from multiple carriers according to the first indication information, including: selecting a resource pool corresponding to the index information as the resource pool for sending the PSFCH. That is, according to the index information in the first indication information, the first terminal selects the resource pool corresponding to the index information as the resource pool for sending the PSFCH.
  • the sending terminal and the receiving terminal when they establish a sidelink communication link, they will exchange configuration information, such as respective resource pool configuration information, through PC5RRC.
  • the resource pool configuration information includes index information corresponding to the resource pool.
  • the resource pool configuration information of the receiving terminal includes the sending resource pool of the receiving terminal and/or the index information corresponding to the receiving resource pool
  • the resource pool configuration information of the sending terminal includes the sending terminal.
  • the index information corresponding to the resource pool is sent and/or received. Therefore, when the two terminals perform sidelink communication, the sending terminal may instruct the receiving terminal to send the PSFCH resource pool through the first indication information.
  • the index information in the first indication information includes: a resource pool index and/or a carrier index
  • the resource pool index includes an index of a sending resource pool and/or an index of a receiving resource pool.
  • the index information includes a resource pool index
  • the first terminal determines a resource pool for sending the PSFCH from multiple carriers according to the first indication information, including: selecting a resource pool corresponding to the resource pool index in the first indication information The resource pool is used as the resource pool for sending the PSFCH.
  • the index information includes a carrier index
  • the first terminal determines a resource pool for sending the PSFCH from multiple carriers according to the first indication information, including: the carrier corresponding to the carrier index from the first indication information includes: The resource pool for sending the PSFCH is selected from the resource pools of .
  • the index information includes a resource pool index (first index) and a carrier index (second index), and the first terminal determines a resource pool for sending the PSFCH from multiple carriers according to the first indication information,
  • the method includes: selecting the resource pool corresponding to the resource pool index (first index) on the carrier corresponding to the carrier index (second index) in the first indication information as the resource pool for sending the PSFCH.
  • the sending terminal may indicate the resource pool and/or carrier for sending the PSFCH to the receiving terminal through the first indication information.
  • the sending terminal sends PSSCH1 in resource pool 1 on carrier 0 of time slot a, and the second-order SCI of PSSCH1 carries first indication information, indicating that the first terminal is in the resource pool 0 of carrier 0.
  • PSFCH is sent in pool 1.
  • the transmitting terminal transmits PSSCH2 in resource pool 2 on carrier 1 of time slot b, and carries first indication information in the second-order SCI of PSSCH2, instructing the first terminal to transmit PSFCH in resource pool 1 of carrier 0.
  • the receiving terminal may determine, according to the first indication information from the second terminal, to send the PSFCH for the above-mentioned two sidelink data in resource pool 1 of carrier 0. Specifically, it may be multiplexed in one PSFCH, or fed back separately by using an independent PSFCH, which is not limited in this embodiment.
  • the resource pool index (resource pool identity) is configured for the sending resource pool (TX RP), and the resource pool index is not configured for the receiving resource pool (RX RP).
  • the receiving terminal detects whether there is a PSCCH/PSSCH in the receiving resource pool. If the detection is successful, the receiving terminal will send the corresponding PSFCH, that is, the PSFCH is also sent in the receiving resource pool. Therefore, it is necessary to configure the resource pool index for the receiving resource pool. This enables the terminal at the transmitting end to indicate the resource pool where the terminal at the receiving end sends the PSFCH through the resource pool index.
  • the first terminal receives the sidelink data sent from the second terminal on multiple carriers, and selects from all the carriers available for sidelink transmission according to the first indication information of the second terminal, or
  • the first terminal can be used for all the carriers of the sideline transmission, or the second terminal can be used for all the carriers of the sideline transmission, or the multiple carriers where the sideline data from the second terminal is received from the first terminal, determine the resource pool for sending the PSFCH .
  • the above scheme realizes the reasonable selection of transmission resources of the sideline feedback information in the sideline multi-carrier transmission, improves the transmission performance of the sideline communication, and reduces the transmission conflict and interference of the sideline communication.
  • FIG. 18 is a fifth schematic flowchart of a resource selection method provided by an embodiment of the present application. As shown in Figure 19, the resource selection method provided by this embodiment includes the following steps:
  • Step 401 The first terminal receives sideline data from the second terminal on multiple carriers.
  • Step 402 The first terminal determines a resource pool for sending the PSFCH from multiple carriers according to the PSFCH configuration information.
  • the PSFCH configuration information includes information for configuring a PSFCH format.
  • the PSFCH format includes at least one of a plurality of PSFCH formats.
  • the number of PRBs of physical resource blocks occupied by the PSFCH the number of time domain symbols occupied by the PSFCH, or the maximum number of bits carried by the PSFCH.
  • the number of PRBs occupied by the PSFCH can be understood as the number of PRBs that can be occupied by one PSFCH channel, for example, one PSFCH occupies 1 PRB or 4 PRBs.
  • the system defines at least two PSFCH formats.
  • PSFCH format 0 carries 1-bit sideline feedback information
  • PSFCH format 1 carries N-bit sideline feedback information, where N is a positive value greater than 1 Integer.
  • the resource pool configuration information includes indication information of the PSFCH format supported by the resource pool, and the receiving terminal may determine the resource pool for sending the PSFCH according to the PSFCH format supported by the resource pool. Specifically, when the receiving terminal determines that more than 1 bit of sideline feedback information needs to be sent in one time slot, the receiving terminal selects a resource pool supporting PSFCH format 1 as a resource pool for sending PSFCH. When the receiving terminal determines to send 1-bit sideline feedback information in one time slot, the receiving terminal selects a resource pool supporting PSFCH format 0 as a resource pool for sending PSFCH.
  • the transmitting terminal sends 3 PSCCH/PSSCH, and the receiving terminal needs to send the sidelink feedback information for these 3 PSCCH/PSSCH in time slot k, and the information is carried on one PSFCH. If resource pool 1 and resource pool 2 on carrier 0 support PSFCH format 0, and resource pool 2 on carrier 1 supports PSFCH format 1, the receiving terminal selects resource pool 2 on carrier 1 as the resource pool for sending PSFCH.
  • the system defines at least two PSFCH formats.
  • the number of PRBs occupied by PSFCH format 0 is less than or equal to a first threshold (for example, the first threshold is 1), and the number of PRBs occupied by PSFCH format 1 The number is greater than the first threshold.
  • a first threshold for example, the first threshold is 1
  • multiple thresholds for the number of PRBs may also be set according to actual requirements, which is not limited in this embodiment of the present application.
  • the system defines at least two PSFCH formats.
  • the number of time domain symbols occupied by PSFCH format 0 is less than or equal to the second threshold (for example, the second threshold is 2)
  • the number of time domain symbols occupied by PSFCH format 1 is less than or equal to the second threshold (for example, the second threshold is 2).
  • the number of time domain symbols is greater than the second threshold.
  • multiple thresholds for the number of time-domain symbols may also be set according to actual requirements, which is not limited in this embodiment of the present application.
  • the first terminal determines the resource pool for sending the PSFCH from multiple carriers according to the PSFCH configuration information, including: the first terminal according to The PSFCH configuration information determines the PSFCH formats supported by the resource pools in the multiple carriers, and determines the resource pool for sending the PSFCH from the resource pools supporting the first PSFCH format.
  • the first PSFCH format may be any one of the PSFCH formats in any of the above configurations.
  • the resource pool in the above-mentioned multiple carriers may refer to the resource pool of multiple carriers where the first terminal receives sideline data (that is, the resource pool of multiple carriers where the first terminal receives PSCCH/PSSCH), or may Refers to the resource pool of all carriers available for sideline transmission, and may also refer to the resource pool of all carriers available for sideline transmission by the first terminal or the second terminal, which is not limited in this embodiment of the present application.
  • the receiving terminal can select from resource pool 1 and resource pool 2 of carrier 0 and the resource pool of carrier 1. In step 2, one of them is selected as the resource pool for sending the PSFCH.
  • the first terminal by receiving the sidelink data sent by the second terminal on multiple carriers, selects all the carriers available for sidelink transmission from all the carriers available for sidelink transmission according to the PSFCH format supported by the resource pool in the resource pool configuration information. , or the first terminal can be used for all carriers of sideline transmission, or the second terminal can be used for all carriers of sideline transmission, or the multiple carriers where sideline data from the second terminal are received from the first terminal, determine the carrier for sending PSFCH resource pool.
  • the above scheme realizes the reasonable selection of transmission resources of the sideline feedback information in the sideline multi-carrier transmission, improves the transmission performance of the sideline communication, and reduces the transmission conflict and interference of the sideline communication.
  • the PSFCH configuration information includes information for configuring PSFCH transmission resources.
  • the PSFCH configuration information includes at least one of a first parameter and a second parameter
  • the first parameter is used to indicate the PRBs available for transmitting the PSFCH in the PSFCH slot
  • the second parameter is used to indicate a cyclic shift pair (Cyclic Shift Pair).
  • the first parameter is the parameter s1-PSFCH-RB-Set, which indicates the number of PRBs available for PSFCH transmission in the frequency domain. It should be noted that the first parameter indicates the set of PRBs in the resource pool that can be used for PSFCH transmission. For example, the system bandwidth includes 100 PRBs, and the first parameter indicates that 50 PRBs can be used for PSFCH transmission. According to different PSFCH formats, each PSFCH occupies 1 PRB or 4 PRBs.
  • the second parameter is the parameter sl-NumMuxCS-Pair, indicating a cyclic shift pair (Cyclic Shift Pair).
  • the second parameter specifically indicates the number of PSFCHs multiplexed by code division multiplexing CDM in the PRB occupied by the PSFCH.
  • the above two parameters can be used to determine the number of resources for transmitting the PSFCH.
  • the first terminal determines a resource pool for sending the PSFCH from multiple carriers according to the PSFCH configuration information, including: the first terminal selects according to the number of PSFCH transmission resources included in the resource pools in the multiple carriers Resource pool for sending PSFCH. It should be understood that the more resources of the PSFCH, the lower the interference between the PSFCHs, and the better the transmission performance of the PSFCH can be guaranteed.
  • the resource pool in the above-mentioned multiple carriers may refer to the resource pool of multiple carriers where the first terminal receives sideline data (that is, the resource pool of multiple carriers where the first terminal receives PSCCH/PSSCH), or may Refers to the resource pool of all carriers available for sideline transmission, and may also refer to the resource pool of all carriers available for sideline transmission by the first terminal or the second terminal, which is not limited in this embodiment of the present application.
  • the first terminal uses the resource pool with the largest first parameter among all the resource pools of the multiple carriers as the resource pool for sending the PSFCH. That is, the resource pool with the largest number of PRBs included in the parameter sl-PSFCH-RB-Set is selected as the resource pool for sending the PSFCH.
  • the first terminal uses the resource pool with the largest second parameter among all resource pools of multiple carriers as the resource pool for sending the PSFCH. That is, the resource pool with the largest number of cyclic shift pairs included in the parameter sl-NumMuxCS-Pair is selected as the resource pool for sending the PSFCH.
  • the first terminal uses the resource pool with the largest product of the first parameter and the second parameter among all resource pools of multiple carriers as the resource pool for sending the PSFCH. That is, the parameter sl-PSFCH-RB-Set includes the largest number of PRBs, and the resource pool with the largest number of cyclic shift pairs included in the parameter sl-NumMuxCS-Pair is selected as the resource pool for sending the PSFCH.
  • the first terminal receives the sideline data sent by the second terminal on multiple carriers, and according to the number of PSFCH transmission resources in the resource pool in the resource pool configuration information, selects all available data for sideline transmission from the number of PSFCH transmission resources in the resource pool.
  • carrier, or all carriers that the first terminal can use for sideline transmission, or all carriers that the second terminal can use for sideline transmission, or multiple carriers where sideline data from the second terminal are received from the first terminal determine to send the PSFCH resource pool.
  • the first terminal determines a resource pool for sending the PSFCH from multiple carriers according to the PSFCH configuration information, including: the first terminal determines, according to the PSFCH configuration information, a resource pool configured with PSFCH transmission resources in the multiple carriers The resource pool set, which determines the resource pool for sending the PSFCH from the resource pool set configured with the PSFCH transmission resources.
  • the above-mentioned multiple carriers may refer to multiple carriers where the first terminal receives sideline data (that is, multiple carriers where the first terminal receives PSCCH/PSSCH), or may refer to all carriers that can be used for sideline transmission, It may also refer to all carriers available for sideline transmission by the first terminal or the second terminal, which is not limited in this embodiment of the present application.
  • the PSFCH configuration information includes resources that can be used to transmit the PSFCH, such as a carrier set and/or a resource pool set that can be used to transmit the PSFCH.
  • the PSFCH configuration information in any of the foregoing embodiments may be pre-configuration information or network configuration information.
  • the configuration information may be carried in System Information Blocks (SIB), Radio Resource Control (RRC) signaling or Downlink Control Information (DCI) ) signaling.
  • SIB System Information Blocks
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the above-mentioned pre-configuration information or network configuration information includes a carrier set supported by sideline transmission.
  • One or more of the carriers can be used to transmit PSCCH or PSSCH.
  • the receiving terminal receives the PSCCH/PSSCH on the side carrier, it can only select a resource pool for sending the PSFCH from one or more configured carriers that can be used to transmit the PSFCH.
  • the network configures sideline transmission to support 4 carriers through RRC signaling, for example, carriers 0-3, and configures carrier 0 and carrier 1 to be carriers for transmitting PSFCH.
  • RRC signaling for example, carriers 0-3, and configures carrier 0 and carrier 1 to be carriers for transmitting PSFCH.
  • the receiving terminal receives PSCCH/PSSCH on carriers 0-3, it can only select 1 or 2 carriers from carrier 0 and carrier 1 for transmitting PSFCH.
  • the network configures sideline transmission through RRC signaling to support 4 carriers, such as carriers 0-3, and configures the resource pool on each carrier through RRC signaling, only the resource pools on carrier 0 and carrier 3 are configured.
  • the receiving terminal receives PSCCH/PSSCH on each carrier, it can only use the resource pools on carrier 0 and carrier 3 to send the PSFCH.
  • the first terminal receives the sidelink data sent from the second terminal on multiple carriers, according to the carrier set that can be used for transmitting the PSFCH in the PSFCH configuration information, from all the carriers that can be used for sidelink transmission. , or the first terminal can be used for all carriers of sideline transmission, or the second terminal can be used for all carriers of sideline transmission, or the multiple carriers where sideline data from the second terminal are received from the first terminal, determine the carrier for sending PSFCH resource pool.
  • the above scheme realizes the reasonable selection of transmission resources of the sideline feedback information in the sideline multi-carrier transmission, improves the transmission performance of the sideline communication, and reduces the transmission conflict and interference of the sideline communication.
  • BWP Bandwidth Part
  • the following describes in detail how the receiving terminal determines the BWP of the PSFCH.
  • the first terminal receives sidelink data from the second terminal on multiple carriers, and the first terminal determines the BWP for sending the PSFCH from the multiple carriers.
  • At least one BWP is configured on each of the multiple carriers.
  • the first terminal determines the BWP for sending the PSFCH from multiple carriers according to at least one of the BWP where the sideline data is located, the PSFCH configuration information, the measurement information of the resource pool in the BWP, and the second indication information.
  • the second indication information is used to indicate at least one BWP that sends the PSFCH.
  • the BWP where the first sideline data received by the first terminal from the second terminal on multiple carriers is located and the BWP of the PSFCH corresponding to transmitting the first sideline data are different BWPs.
  • the first sideline data is one sideline data among sideline data received by the first terminal from the second terminal on multiple carriers.
  • the carrier where the first sideline data is located and the carrier on which the PSFCH corresponding to the first sideline data is transmitted are different carriers.
  • the BWP where the first sideline data received by the first terminal from the second terminal on multiple carriers is located and the BWP of the PSFCH corresponding to transmitting the first sideline data are the same BWP.
  • the carrier on which the first sideline data is located and the carrier on which the PSFCH corresponding to the first sideline data is transmitted are the same carrier.
  • the BWP where the first sideline data received by the first terminal from the second terminal on multiple carriers is located and the BWP of the PSFCH corresponding to transmitting the first sideline data are the same BWP, and the first sideline data is located.
  • the carrier is the same carrier as the carrier of the PSFCH corresponding to the first side row data is transmitted.
  • the first terminal receives sidelink data from the second terminal on multiple carriers; the first terminal determines the BWP for sending the PSFCH from the multiple carriers according to the BWP where the sidelink data is located.
  • the first terminal determines the BWP for sending the PSFCH from multiple carriers according to the BWP where the sideline data is located, including: the first terminal obtains the BWP received from the second terminal on the multiple carriers. At least one BWP where the PSCCH or the PSSCH is located, and the BWP for sending the PSFCH is determined from the at least one BWP.
  • the first terminal may first determine the first carrier used for sending the PSFCH from the multiple carriers, and then acquire at least one BWP where the sidelink data is located. , the BWP corresponding to at least one BWP where the sideline data is located on the first carrier is selected as the BWP for sending the PSFCH.
  • the first terminal when the first terminal determines that the BWP for sending the PSFCH is one BWP, the first terminal may determine one BWP for sending the PSFCH from at least one BWP in the following two ways.
  • the first terminal determines a BWP for sending the PSFCH from at least one BWP according to priority information. Specifically, the first terminal may determine a BWP for sending the PSFCH from at least one BWP according to the priority information of the sideline data.
  • the side row control information SCI carries the priority information of the side row data.
  • the first terminal may select the BWP where the sideline data with the highest priority (or the lowest priority) is located from the at least one BWP, or, in other words, the first terminal may select the highest priority (or the lowest priority) from the at least one BWP.
  • the BWP where the PSSCH is located is used as the BWP for sending the PSFCH.
  • the first terminal determines the BWP for sending the PSFCH from at least one BWP according to the time sequence of the received PSCCH or PSSCH. Specifically, the first terminal may determine the BWP for sending the PSFCH from at least one BWP according to the reception time of the sideline data. The first terminal may use the BWP where the sideline data received first is located as the BWP for sending the PSFCH, or the BWP where the sideline data received last is located as the BWP for sending the PSFCH.
  • the first terminal receives sidelink data from the second terminal on multiple carriers; the first terminal determines the BWP for sending the PSFCH from the multiple carriers according to the measurement information of the resource pool in the BWP.
  • the first terminal may determine the BWP for sending the PSFCH according to the received measurement result of the resource pool in the BWP where the PSCCH/PSSCH is located.
  • the measurement information of the resource pool in the BWP includes the channel busy rate CBR of the resource pool in the BWP.
  • the first terminal may select a BWP for sending the PSFCH from a BWP set of multiple carriers according to the CBR of the resource pool in the BWP in ascending order of the CBR of the resource pool in the BWP.
  • the first terminal may, according to the CBR of the resource pool in the BWP, determine at least one BWP in the BWP whose CBR of the resource pool is less than the CBR threshold from the BWP sets of multiple carriers, and select from the at least one BWP Select the BWP that sends the PSFCH. Specifically, the first terminal may select a BWP for sending the PSFCH from the at least one BWP in an ascending order of CBRs of the resource pool in the BWP.
  • the BWP for sending the PSFCH when determining the BWP for sending the PSFCH, it may not be limited to selecting only from the BWP where the PSCCH/PSSCH is received, and all the BWPs in all carriers can be used as the BWP for sending the PSFCH.
  • the first terminal receives sidelink data from the second terminal on multiple carriers; the first terminal determines the BWP for sending the PSFCH from the multiple carriers according to the second indication information.
  • the second indication information is used to instruct the first terminal to transmit at least one BWP of the PSFCH.
  • the second indication information may be carried in sideline control information SCI, PC5 radio resource control RRC signaling or medium access control layer control element MAC CE.
  • the second indication information includes index information.
  • the first terminal determines the BWP for sending the PSFCH from multiple carriers according to the second indication information, including: selecting the BWP corresponding to the index information as the BWP for sending the PSFCH. That is, according to the index information in the second indication information, the first terminal selects the BWP corresponding to the index information as the BWP for sending the PSFCH.
  • configuration information such as respective BWP configuration information
  • the BWP configuration information includes index information corresponding to the BWP. Therefore, when the two terminals perform sidelink communication, the sending terminal may instruct the receiving terminal to send the BWP of the PSFCH through the second indication information.
  • the index information in the second indication information includes: BWP index and/or carrier index.
  • the index information includes a BWP index
  • the first terminal determines the BWP for sending the PSFCH from multiple carriers according to the second indication information, including: selecting the BWP corresponding to the BWP index in the second indication information as the transmission BWP of PSFCH.
  • the index information includes a carrier index
  • the first terminal determines, according to the second indication information, a BWP for sending the PSFCH from multiple carriers, including: from the second indication information, the carrier corresponding to the carrier index includes: The BWP that transmits the PSFCH is selected from the BWP.
  • the index information includes a BWP index (first index) and a carrier index (second index), and the first terminal determines the BWP for sending the PSFCH from multiple carriers according to the second indication information, including: The BWP corresponding to the BWP index (first index) on the carrier corresponding to the carrier index (second index) in the second indication information is selected as the BWP for sending the PSFCH.
  • the sending terminal may instruct the receiving terminal to send the BWP and/or carrier of the PSFCH through the second indication information.
  • the first terminal receives sidelink data from the second terminal on multiple carriers; the first terminal determines the BWP for sending the PSFCH from the multiple carriers according to the PSFCH configuration information.
  • the PSFCH configuration information includes information for configuring a PSFCH format.
  • the PSFCH format includes at least one of a plurality of PSFCH formats. Wherein, any two PSFCH formats among the multiple PSFCH formats are different in at least one of the following: the number of PRBs occupied by the PSFCH, the number of time domain symbols occupied by the PSFCH, or the maximum number of bits carried by the PSFCH.
  • the configuration of the PSFCH format reference may be made to the above embodiments, and details are not repeated here.
  • the first terminal determines the BWP for sending the PSFCH from multiple carriers according to the PSFCH configuration information, including: the first terminal according to the PSFCH
  • the configuration information is used to determine the PSFCH formats supported by the BWPs in the multiple carriers, and determine the BWP for sending the PSFCH from the BWPs that support the first PSFCH format.
  • the first PSFCH format may be any one of the PSFCH formats in the PSFCH format configuration.
  • the BWP in the above-mentioned multiple carriers may refer to the BWP of the multiple carriers where the first terminal receives the sideline data (that is, the BWP of the multiple carriers where the first terminal receives the PSCCH/PSSCH), or may refer to the BWP of the multiple carriers where the first terminal receives the PSCCH/PSSCH.
  • the BWPs of all carriers for sideline transmission may also refer to the BWPs of all carriers available for sideline transmission by the first terminal or the second terminal, which is not limited in this embodiment of the present application.
  • the PSFCH configuration information includes information for configuring PSFCH transmission resources.
  • the PSFCH configuration information includes at least one of a first parameter and a second parameter, where the first parameter is used to indicate a PRB that can be used to transmit the PSFCH in the PSFCH time slot, and the second parameter is used to indicate a cyclic shift pair (Cyclic Shift Pair).
  • the first terminal determines the BWP for sending the PSFCH from multiple carriers according to the PSFCH configuration information, including: the first terminal selects and sends the PSFCH according to the number of PSFCH transmission resources included in the BWP in the multiple carriers BWP.
  • the BWP in the above-mentioned multiple carriers may refer to the BWP of the multiple carriers where the first terminal receives the sideline data (that is, the BWP of the multiple carriers where the first terminal receives the PSCCH/PSSCH), or may refer to the BWP of the multiple carriers where the first terminal receives the PSCCH/PSSCH.
  • the BWPs of all carriers for sideline transmission may also refer to the BWPs of all carriers available for sideline transmission by the first terminal or the second terminal, which is not limited in this embodiment of the present application.
  • the first terminal uses the BWP with the largest first parameter among all the BWPs of the multiple carriers as the BWP for sending the PSFCH.
  • the first terminal uses the BWP with the largest second parameter among all the BWPs of the multiple carriers as the BWP for sending the PSFCH.
  • the first terminal uses the BWP with the largest product of the first parameter and the second parameter among all the BWPs of the multiple carriers as the BWP for sending the PSFCH.
  • the first terminal determines the BWP for sending the PSFCH from multiple carriers according to the PSFCH configuration information, including: the first terminal determines, according to the PSFCH configuration information, the BWP configured with the PSFCH transmission resources in the multiple carriers Set, the BWP for sending the PSFCH is determined from the set of BWPs configured with PSFCH transmission resources.
  • the above-mentioned multiple carriers may refer to multiple carriers where the first terminal receives sideline data (that is, multiple carriers where the first terminal receives PSCCH/PSSCH), or may refer to all carriers that can be used for sideline transmission, It may also refer to all carriers available for sideline transmission by the first terminal or the second terminal, which is not limited in this embodiment of the present application.
  • the PSFCH configuration information includes resources that can be used to transmit the PSFCH, such as a carrier set and/or a BWP set that can be used to transmit the PSFCH.
  • the PSFCH configuration information in any of the foregoing embodiments may be pre-configuration information or network configuration information.
  • the configuration information may be carried in System Information Blocks (SIB), Radio Resource Control (RRC) signaling or Downlink Control Information (DCI) ) signaling.
  • SIB System Information Blocks
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the above-mentioned pre-configuration information or network configuration information includes a carrier set supported by sideline transmission.
  • One or more of the carriers can be used to transmit PSCCH or PSSCH.
  • the receiving terminal receives the PSCCH/PSSCH on the side carrier, it can only select the BWP for sending the PSFCH from one or more configured carriers that can be used to transmit the PSFCH.
  • FIG. 20 is a schematic structural diagram of a resource selection apparatus provided by an embodiment of the present application.
  • the resource selection apparatus 500 provided by this embodiment includes: a receiving module 501 and a processing module 502 .
  • a receiving module 501 configured to receive sideline data from the second terminal on multiple carriers
  • the processing module 502 is configured to determine, from the multiple carriers, a resource pool for sending the physical sideline feedback channel PSFCH.
  • the multiple carriers include:
  • the first terminal performs sideline transmission of available carriers, or,
  • the second terminal performs sideline transmission of available carriers, or,
  • the first terminal receives the carrier on which the sideline data from the second terminal is located.
  • the processing module 502 is specifically configured to: according to at least one of the resource pool where the sideline data is located, the PSFCH configuration information, the measurement information of the resource pool, and the first indication information, determining a resource pool for transmitting the PSFCH from the plurality of carriers;
  • the first indication information is used to indicate at least one resource pool for transmitting the PSFCH.
  • the processing module 502 is specifically configured to: acquire at least one resource pool in which the PSCCH or PSSCH received from the second terminal and received on the multiple carriers is located, The resource pool for sending the PSFCH is determined in at least one resource pool.
  • processing module 502 is specifically configured to:
  • the resource pool for sending the PSFCH is determined from the at least one resource pool according to the time sequence of the received PSCCH or PSSCH.
  • the measurement information of the resource pool includes the channel busy rate CBR of the resource pool; the processing module 502 is specifically configured to:
  • the resource pool for sending the PSFCH is selected from the resource pool set of the multiple carriers in order of CBR from low to high.
  • the measurement information of the resource pool includes the CBR of the resource pool; the processing module 502 is specifically configured to:
  • At least one resource pool whose CBR is smaller than the CBR threshold is determined from the resource pool set of the multiple carriers, and a resource pool for sending the PSFCH is selected from the at least one resource pool.
  • processing module 502 is specifically configured to:
  • the resource pool for sending the PSFCH is selected from the at least one resource pool in order of CBR from low to high.
  • the first indication information includes index information; the processing module 502 is specifically configured to: select a resource pool corresponding to the index information as a resource pool for sending the PSFCH.
  • the index information includes a resource pool index and/or a carrier index
  • the resource pool index includes an index of a sending resource pool and/or an index of a receiving resource pool.
  • the first indication information is carried in sideline control information SCI, PC5 radio resource control RRC signaling or medium access control layer control element MAC CE.
  • the PSFCH configuration information includes information for configuring a PSFCH format.
  • the PSFCH format includes at least one of multiple PSFCH formats, and any two PSFCH formats among the multiple PSFCH formats are different in at least one of the following:
  • the number of PRBs of physical resource blocks occupied by the PSFCH the number of time domain symbols occupied by the PSFCH, or the maximum number of bits carried by the PSFCH.
  • the processing module 502 determines that the format for sending the PSFCH is the first PSFCH format, the processing module 502 is specifically configured to:
  • the PSFCH formats supported by the resource pools in the multiple carriers are determined, and the resource pool for sending the PSFCH is determined from the resource pools supporting the first PSFCH format.
  • the PSFCH configuration information includes information for configuring PSFCH transmission resources; the processing module 502 is specifically configured to:
  • the resource pool for sending the PSFCH is selected according to the number of PSFCH transmission resources included in the resource pools of the multiple carriers.
  • the PSFCH configuration information includes at least one of a first parameter and a second parameter
  • the first parameter is used to indicate the PRBs in the PSFCH slot that can be used to transmit the PSFCH
  • the second parameter is used to indicate a cyclic shift pair.
  • processing module 502 is specifically configured to:
  • the resource pool with the largest product of the first parameter and the second parameter among all the resource pools of the multiple carriers is used as the resource pool for sending the PSFCH.
  • processing module 502 is specifically configured to:
  • a set of resource pools configured with PSFCH transmission resources in the multiple carriers is determined, and a resource pool for sending PSFCH is determined from the set of resource pools configured with PSFCH transmission resources.
  • the sideline data from the second terminal received on multiple carriers includes: sideline data from the second terminal at the same time, and/or at different times Side row data.
  • the sideline data received from the second terminal on multiple carriers belong to the same transport block TB or different transport blocks.
  • the sideline feedback information corresponding to the sideline data received from the second terminal received on multiple carriers is carried on one PSFCH, or is carried on different PSFCHs.
  • the resource pool in which the first sideline data received from the second terminal on multiple carriers is located is different from the resource pool in which the PSFCH corresponding to the first sideline data is transmitted a resource pool, and/or, the carrier where the first sideline data is located and the carrier that transmits the PSFCH corresponding to the first sideline data are different carriers;
  • the first sideline data is one sideline data among the sideline data received from the second terminal on multiple carriers.
  • the resource selection apparatus provided in the embodiment of the present application is used to execute the technical solution executed by the first terminal in the foregoing method embodiment, and its implementation principle and technical effect are similar, and details are not described herein again.
  • each module of the resource selection apparatus is only a division of logical functions, and may be fully or partially integrated into one physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in hardware.
  • the processing module may be a separately established processing element, or may be integrated into a certain chip of the above-mentioned device to be implemented, in addition, it may also be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device Call and execute the function of the above determined module.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated together, and can also be implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capability.
  • each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital) signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA), etc.
  • ASIC application specific integrated circuits
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the processing element may be a general-purpose processor, such as a central processing unit (central processing unit, CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • FIG. 21 is a schematic diagram of the hardware structure of an electronic device provided by an embodiment of the present application. As shown in FIG. 21 , the electronic device 600 provided by this embodiment may include:
  • the memory 602 is used for storing computer programs; the processor 601 is used for executing the computer programs stored in the memory 602 to implement the method executed by the first terminal in any of the above method embodiments.
  • the communication interface 603 is used for data communication or signal communication with other devices.
  • the memory 602 may be independent or integrated with the processor 601 .
  • the electronic device 600 may further include: a bus 604 for connecting the memory 602 and the processor 601 .
  • the processing module 502 in FIG. 20 may be integrated in the processor 601 and implemented, and the receiving module 501 in FIG. 20 may be integrated in the communication interface 603 and implemented.
  • the electronic device provided in this embodiment can be used to execute the method executed by the first terminal in any of the above method embodiments, and its implementation principle and technical effect are similar, and details are not repeated here.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement the first method in any of the foregoing method embodiments.
  • a technical solution for a terminal is provided.
  • the embodiment of the present application further provides a computer program, which is used to execute the technical solution of the first terminal in any of the foregoing method embodiments when the computer program is executed by the processor.
  • Embodiments of the present application further provide a computer program product, including program instructions, where the program instructions are used to implement the technical solution of the first terminal in any of the foregoing method embodiments.
  • Embodiments of the present application further provide a chip, including: a processing module and a communication interface, where the processing module can execute the technical solutions of the first terminal in the foregoing method embodiments.
  • the chip also includes a storage module (eg, memory), the storage module is used for storing instructions, the processing module is used for executing the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute any of the foregoing.
  • a storage module eg, memory
  • the storage module is used for storing instructions
  • the processing module is used for executing the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute any of the foregoing.
  • At least two means two or more, and "a plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects before and after are an “or” relationship; in the formula, the character “/” indicates that the related objects are a “division” relationship.
  • “At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple indivual.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种资源选取方法、装置、设备及存储介质,可用于侧行通信系统,以提升侧行多载波传输的性能。其中,资源选取方法包括:第一终端在多个载波上接收来自第二终端的侧行数据,第一终端可以从侧行数据所在的多个载波,或者所有可用于侧行传输的多个载波中,选取用于发送PSFCH的资源池。通过上述资源选取方案,实现多载波传输的侧行反馈资源的选取,提升侧行多载波传输的性能。

Description

资源选取方法、装置、设备及存储介质 技术领域
本申请实施例涉及无线通信技术领域,尤其涉及一种资源选取方法、装置、设备及存储介质。
背景技术
在新空口(New Radio,NR)车到设备(vehicle to everything,V2X)通信中引入了物理侧行反馈信道PSFCH,用于传输侧行反馈信息,以提高侧行通信的可靠性。通常情况下,接收终端接收发送终端发送的侧行数据,可根据各个载波的信道占用率,选取信道占用率最低的载波进行侧行反馈。
为了提高侧行传输系统的吞吐量,在侧行链路(sidelink,SL)上引入侧行多载波传输,即发送终端或接收终端可以在多个载波上进行数据传输。针对上述侧行反馈,接收终端如何确定发送PSFCH的资源是目前亟待解决的问题。
发明内容
本申请实施例提供一种资源选取方法、装置、设备及存储介质,提升侧行多载波传输的性能。
第一方面,本申请实施例提供一种资源选取方法,该方法包括:第一终端在多个载波上接收来自第二终端的侧行数据,第一终端从所述多个载波中确定物理侧行反馈信道PSFCH的资源池。
第二方面,本申请实施例提供一种资源选取装置,该装置包括:接收模块和处理模块。其中,接收模块用于在多个载波上接收来自第二终端的侧行数据,处理模块用于从所述多个载波中确定发送物理侧行反馈信道PSFCH的资源池。
第三方面,本申请实施例提供一种电子设备,该设备包括:存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器运行所述计算机程序执行本申请第一方面所述的方法。
第四方面,本申请实施例提供一种计算机存储介质,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行本申请第一方面所述的方法。
第五方面,本申请实施例提供一种计算机程序,所述计算机程序被处理器执行时,用于执行本申请第一方面所述的方法。
第六方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行本申请第一方面所述的方法。
第七方面,本申请实施例提供一种芯片,包括:处理模块与通信接口,所述处理模块用于从存储器中调用并运行所述存储器中存储的计算机程序,执行本申请第一方面所述的方法。
本申请实施例提供一种资源选取方法、装置、设备及存储介质,可用于侧行通信系统,以提升侧行多载波传输的性能。其中,资源选取方法包括:第一终端在多个载波上接收来自第二终端的侧行数据,第一终端可以从侧行数据所在的多个载波,或者所有可用于侧行传输的多个载波中,选取用于发送PSFCH的资源池。通过上述资源选取方案,实现多载波传输的侧行反馈资源的选取,提升侧行多载波传输的性能。
附图说明
图1为本申请实施例提供的一种应用场景示意图;
图2为本申请实施例提供的一种应用场景示意图;
图3为本申请实施例提供的一种应用场景示意图;
图4为本申请实施例提供的载波、SL BWP以及资源池之间的关系示意图;
图5为本申请实施例提供的侧行通信的时隙结构的示意图一;
图6为本申请实施例提供的侧行通信的时隙结构的示意图二;
图7为本申请实施例提供的侧行通信的时隙结构的示意图三;
图8为本申请实施例提供的PSFCH资源的示意图;
图9为本申请实施例提供的PSFCH和PSSCH的传输资源的对应关系示意图;
图10为本申请实施例提供的PSFCH与多载波发送PSCCH/PSSCH的示意图一;
图11为本申请实施例提供的资源选取方法的流程示意图一;
图12为本申请实施例提供的资源选取方法的流程示意图二;
图13为本申请实施例提供的PSFCH与多载波发送PSCCH/PSSCH的示意图二;
图14为本申请实施例提供的PSFCH与多载波发送PSCCH/PSSCH的示意图三;
图15为本申请实施例提供的PSFCH与多载波发送PSCCH/PSSCH的示意图四;
图16为本申请实施例提供的资源选取方法的流程示意图三;
图17为本申请实施例提供的PSFCH与多载波发送PSCCH/PSSCH的示意图五;
图18为本申请实施例提供的资源选取方法的流程示意图四;
图19为本申请实施例提供的资源选取方法的流程示意图五;
图20为本申请实施例提供的一种资源选取装置的结构示意图;
图21为本申请实施例提供的一种电子设备的硬件结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
在介绍本申请实施例提供的技术方案之前,首先对本申请实施例可能的应用场景进行说明。
示例性的,图1为本申请实施例提供的一种应用场景示意图。图1所示的通信系统中包括一个网络设备101以及两个终端设备,分别为终端设备102和103,终端设备102和终端设备103均处于网络设备101的覆盖范围内。网络设备101分别与终端设备102、终端设备103通信连接,终端设备102与终端设备103通信连接。示例性的,终端设备102可以通过网络设备101向终端设备103发送通信消息,终端设备102还可以直接向终端设备103发送通信消息。其中,终端设备102与终端设备103之间直接通信的链路称为设备到设备(device-to-device,D2D)链路,也可以称为临近服务(proximity service,ProSe)链路、侧行链路等。D2D链路上的传输资源可以由网络设备分配。
示例性的,图2为本申请实施例提供的一种应用场景示意图。图2所示的通信系统同样包括一个网络设备101以两个终端设备,与图1不同的是,终端设备103处于网络设备101的覆盖范围内,终端设备104在网络设备101的覆盖范围之外。网络设备101与终端设备103通信连接,终端设备103与终端设备104通信连接。示例性的,终端设备103可以接收网络设备101发送的配置信息,根据配置信息进行侧行通信。由于终端设备104无法接收网络设备101发送的配置信息,终端设备104可以根据预配置(pre-configuration)信息以及终端设备103发送的侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)中携带的信息,进行侧行通信。
示例性的,图3为本申请实施例提供的一种应用场景示意图。图3所示的终端设备104和终端设备105均在网络设备101的覆盖范围之外。终端设备104与终端设备105均可以根据预配置信息确定侧行配置,进行侧行通信。
本申请实施例涉及到的终端设备还可以称为终端,可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE),其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例涉及到的网络设备包括基站(base station,BS),可以是一种部署在无线接入网中能够和终端进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的基站可以是第五代移动通信(5th generation mobile networks,5G)中的基站或LTE中的基站,其中,5G中的基站还可以称为发送接收点(transmission reception point,TRP) 或gNB。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
本申请实施例的技术方案主要应用于基于NR技术的通信系统,例如5G通信系统、NR-V2X、NR-V2V通信系统等。也可以应用于其它的通信系统,只要该通信系统中存在实体之间的资源调度即可,例如可以应用在网络设备和终端设备之间的资源调度,或者两个终端设备之间的资源调度,其中一个终端设备承担接入网络的功能等。
需要说明的是,本申请实施例描述的系统架构以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的问题,同样适用。
关于侧行通信,在3GPP协议定义了两种传输模式:第一传输模式和第二传输模式。
第一传输模式:终端设备的传输资源是由基站分配的,终端设备根据基站分配的资源在侧行链路上进行数据传输。基站可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源。
示例性的,图1中,终端设备102位于网络设备101覆盖范围内,网络设备101为终端设备102分配侧行传输使用的传输资源。
第二传输模式:(1)终端设备如果具备侦听能力,可采用侦听和预留的方式传输数据或采用随机选取资源的方式传输数据。具体的,上述侦听和预留的方式是指终端设备可以在网络配置或预配置的资源池中,通过侦听的方式获取可用的资源集合,从可用的资源集合中随机选取一个资源进行数据传输。(2)终端设备如果不具备侦听能力,可直接在资源池中随机选取传输资源。
上述侦听是指终端设备接收其他终端设备发送的第一侧行控制信息,根据第一侧行控制信息的指示获知其他终端设备预留的资源,通过在资源选择时排除其他终端设备预留的资源,避免与其他终端设备发生资源碰撞。
示例性的,图1所示的终端设备102可以在网络配置的资源池中自主选取传输资源进行侧行传输。图3所示的终端设备104和105均位于网络设备101覆盖范围外,终端设备104和105可以在预配置的资源池中自主选取传输资源进行侧行传输。
NR-V2X是基于侧行链路进行通信的一种通信场景,在NR-V2X通信中,X可以泛指任意具有无线接收和发送能力的设备,包括但不限于慢速移动的无线装置,快速移动的车载设备,具有无线发射接收能力的网络控制节点等。NR-V2X通信支持单播、组播、广播的传输方式。对于单播传输,发送终端发送数据,接收终端只有一个。对于组播传输,发送终端发送数据,接收终端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端。对于广播传输,发送终端发送数据,接收终端是发送终端周围的任意一个终端。
与NR Uu接口类似,在NR-V2X载波上也支持侧行带宽部分(sidelink bandwidth part,SL BWP)配置,由于侧行通信中存在广播和组播业务,一个UE需要面向多个接收UE发送侧行信号,一个UE也可能需要同时接收多个UE发送的侧行信号,在一个载波上,最多只能配置一个SL BWP,且该SL BWP同时应用于侧行发送和侧行接收。
NR-V2X中也存在资源池(Resource Pool,RP)的配置,资源池限定了侧行通信的时频资源范围。资源池配置的最小时域粒度为一个时隙,资源池内可以包含时间上不连续的时隙;最小频域粒度为一个子信道(Sub-channel),子信道是频域上连续的多个物理资源块(Physical Resource Block,PRB),在NR-V2X中一个子信道可以为10、12、15、20、25、50、75或100个PRB。
示例性的,图4为本申请实施例提供的载波、SL BWP以及资源池之间的关系示意图,如图4所示,载波包括至少一个SL BWP(图4仅示出一个SL BWP),该SL BWP包括至少一个资源池(图4仅示出一个资源池)。
下面对NR-V2X通信中的时隙结构进行详细介绍。
示例性的,图5为本申请实施例提供的侧行通信的时隙结构的示意图一,如图5所示,该时隙不包括物理侧行反馈信道PSFCH的符号,该时隙的第一个侧行符号通常用作自动增益控制(Automatic Gain Control,AGC),在AGC符号上,终端设备复制第二个符号上发送的数据,AGC符号上的数据通常不用于数据解调。该时隙的最后一个侧行符号为保护间隔(Guard Period,GP),用于收发转换,用于终端设备从发送(或接收)状态转换到接收(或发送)状态。在该时隙的剩余侧行符号中,物理侧行控制信道PSCCH可以占用从第二个侧行符号开始的两个或三个OFDM符号,在频域上PSCCH可占用{10,12 15,20,25}个PRB。为了降低终端设备对PSCCH的盲检测的复杂度,在一个资源池内只允许配置一个PSCCH符号个数和PRB个数。另外,因为子信道为NR-V2X中PSSCH资源分配的最小粒度,PSCCH占用的PRB个数必须小于或等于资源池内一个子信道中包含的PRB个数,以免对PSSCH资源选择或 分配造成额外的限制。物理侧行共享信道PSSCH可占用从该时隙的第二个侧行符号开始,直至该时隙最后一个GP符号之前的符号。PSSCH在频域上占据K个子信道,每个子信道包括M个连续的PRB。
示例性的,图6为本申请实施例提供的侧行通信的时隙结构的示意图二,如图6所示,与图5不同的是,该时隙结构包括PSFCH的时域符号,在该时隙结构中倒数第二个和倒数第三个符号用于传输PSFCH,倒数第三个符号之前的一个时域符号用作GP符号。可选的,在一些实施例中,图6所示的时隙结构中倒数第三个符号的数据和倒数第二个符号的数据相同,倒数第三个符号用作AGC。
NR-V2X通信中,引入2阶侧行控制信息(Sidelink Control Information,SCI)。第一阶SCI(或称为第一侧行控制信息)承载在PSCCH中,用于指示PSSCH的传输资源、预留资源信息、调制与编码策略(Modulation and Coding Scheme,MCS)等级、优先级等信息。第二阶SCI(或称为第二侧行控制信息)承载在PSSCH中,用于指示源ID、目的ID、混合自动重传HARQ ID、新数据指示NDI等用于数据解调的信息。终端设备利用PSSCH的解调参考信号(Demodulation Reference Signal,DMRS)进行解调,第二阶SCI从PSSCH的第一个DMRS符号开始映射,先频域再时域映射。示例性的,图7为本申请实施例提供的侧行通信的时隙结构的示意图三,如图7所示,PSCCH占据3个符号,例如图7中的符号1、2、3,PSSCH的DMRS占据符号4、11,第二阶SCI从符号4开始映射,在符号4上和DMRS频分复用,第二阶SCI映射到符号4、5、6,第二阶SCI占据的资源大小取决于第二阶SCI的比特数。
NR-V2X通信需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。为了提高通信的可靠性,在NR-V2X中引入了物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)。
对于单播传输,发送终端向接收终端发送侧行数据,包括物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)和物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH),接收终端向发送终端发送混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)的反馈信息,发送终端根据接收终端的反馈信息判断是否需要进行数据重传。其中,HARQ的反馈信息承载在PSFCH中。
终端设备可以通过预配置信息或网络配置信息激活或去激活侧行反馈。如果侧行反馈被激活,接收终端接收发送终端发送的侧行数据,需要根据检测结果向发送终端反馈HARQ ACK/NACK(确认/不确认),发送终端根据接收终端的反馈信息决定发送重传数据或新数据。如果侧行反馈被去激活,接收终端不需要发送反馈信息,发送终端通常采用盲重传的方式发送数据,例如发送终端对每个侧行数据重复发送预设的重传次数。
目前,在NR-V2X通信中,PSFCH只承载1比特的HARQ ACK信息,在时域上占据2个时域符号(其中,第二个符号承载侧行反馈信息,第一个符号上的数据是第二个符号上数据的复制,第一个符号用作AGC),在频域上占据1个PRB。PSFCH在一个时隙结构的位置示意可参见附图6。
对于组播传输,支持如下两种侧行反馈方式:
方式1:在一定距离范围内的终端接收发送终端的侧行数据,如果检测结果是NACK,则需要发送侧行反馈;如果检测结果是ACK,则不需要发送侧行反馈。在该距离范围外的终端,无论检测结果是什么都不需要发送侧行反馈。
方式2:对于一个通信组,所有的接收终端都需要发送侧行反馈。例如,一个通信组包括P个终端,当一个终端作为发送终端发送侧行数据时,其他的P-1个终端都需要发送侧行反馈信息。
为了降低PSFCH信道的开销,可定义侧行反馈资源的周期,例如周期为N个时隙slot,N取1、2、4等,参数N可以是预配置或网络配置的。
示例性的,图8为本申请实施例提供的PSFCH资源的示意图,如图8所示,PSFCH的周期为4个时隙。其中时隙2、3、4、5中传输的PSSCH,其反馈信息都是在时隙7中传输,因此可以把时隙2、3、4、5看作一个时隙集合,该时隙集合中传输的PSSCH,其对应的PSFCH是在相同的时隙(时隙7)中。
侧行反馈信息的资源可以根据侧行数据PSSCH所在的时隙、以及占用的子带的起始位置确定。示例性的,图9为本申请实施例提供的PSFCH和PSSCH的传输资源的对应关系示意图,如图9所示,PSFCH的周期为4个时隙,在不同时隙相同子带起始位置传输的PSSCH,分别对应反馈时隙中的不同的PSFCH资源。
目前协议中,侧行链路的资源池(SL-ResourcePool)配置信息包括:PSCCH/PSSCH的传输资源,以及PSFCH的传输资源。发送终端在为其配置的发送资源池中发送PSCCH/PSSCH。接收终端在为其配置的接收资源池中检测是否存在其他终端发送的PSCCH/PSSCH,如果检测到,接收终端根据PSCCH/PSSCH的传输资源以及接收资源池中PSFCH的配置信息确定发送PSFCH的传输资源。发送终端发送PSCCH/PSSCH后,会根据发送资源池中的PSFCH配置信息确定接收PSFCH的资源,并进行 PSFCH的检测。为了让发送终端和接收终端能够正常进行数据传输,通常为发送终端配置的发送资源池与为接收终端配置的接收资源池相同,从而使得发送终端和接收终端根据PSSCH传输资源以及各自资源池中的PSFCH的配置信息可以确定相同的PSFCH传输资源。
为了提高侧行传输系统的吞吐量,在侧行链路上可以支持多载波传输。在Rel-15车联网系统中,引入了多载波传输方案,终端的数据可以在一个或者多个载波上进行传输,因此存在传输载波选取的问题,一种方式是根据各个载波的信道繁忙率(channel busy ratio,CBR),终端选取CBR最低的载波进行数据传输。其中CBR反映的是过去100ms或100个时隙内的信道占用情况:CBR越低,表示系统资源占用率越低,可用资源越多;CBR越高,表示系统资源占用率越高,越拥塞,容易发生传输冲突和干扰。
若在NR SL系统中引入侧行多载波传输,发送终端在多个载波上发送PSCCH/PSSCH,对于每个发送PSCCH/PSSCH的载波,发送终端都是在该发送终端的发送资源池中发送PSCCH/PSSCH,接收终端在该接收终端的接收资源池中检测其他终端发送的PSCCH/PSSCH,如果检测到,会发送PSFCH。若接收终端在多个载波上检测到PSCCH/PSSCH,可能会在一个载波或者多个载波上发送PSFCH,而且发送PSFCH的载波和检测到PSCCH/PSSCH的载波可能是相同的载波,也可能是不同的载波。此时,接收终端如何在多个载波中确定发送PSFCH的资源池是目前亟待解决的问题。
为了解决上述问题,本申请实施例提供一种资源选取方案,用于确定发送PSFCH的资源。该方案主要针对侧行链路多载波传输场景,即发送终端可以在同一时刻或不同时刻发送相同或不同的侧行数据,发送终端还可以在多个载波上发送上述侧行数据,相应的,接收终端可以在同一时刻或不同时刻接收多个载波上的侧行数据。针对上述侧行数据,接收终端发送侧行反馈信息,该侧行反馈信息承载在PSFCH中,接收终端可以在一个或多个载波发送PSFCH。多个侧行数据对应的侧行反馈信息可以承载在一个PSFCH上,或者,每个侧行数据对应的侧行反馈信息分别承载在单独的PSFCH中。
示例性的,图10为本申请实施例提供的PSFCH与多载波发送PSCCH/PSSCH的示意图一,如图10所示,侧行通信系统配置了4个侧行载波,即载波0-3,在每个载波上包括2个发送资源池,每个发送资源池对应一个接收资源池,因此每个载波上可以有2个接收资源池。发送终端在时隙a、b、c、d上发送PSCCH/PSSCH,其对应的PSFCH都在时隙k上,即反馈时隙k对应于PSSCH的时隙集合{a,b,c,d}。
图10中发送终端在时隙a、b、c分别在4个载波上发送侧行数据。发送终端利用多个载波发送侧行数据,发送终端可以在多个载波上同一时刻发送侧行数据,例如在时隙c的载波2和载波3上同时发送侧行数据,发送终端还可以在多个载波上不同时刻发送侧行数据,例如在时隙a的载波0上发送侧行数据,在时隙b的载波1上发送侧行数据。另外,需要指出的是,在多个载波上可以发送相同的侧行数据(如相同传输块(Transmission Block,TB)的不同冗余版本),也可以发送不同的侧行数据,本申请实施例不作任何限制。
图10中每个PSCCH/PSSCH分别对应一个PSFCH。
图10中接收终端在时隙k发送针对时隙a、b、c上的侧行数据的侧行反馈信息。接收终端可以在一个或多个载波上发送PSFCH。
在一种可选的实施方式中,接收终端可以在两个载波上发送PSFCH,例如在载波0和载波2上发送PSFCH。如图10所示,发送终端在时隙a使用载波0、时隙b使用载波1发送PSCCH/PSSCH,其对应的PSFCH都位于载波0,发送终端在时隙c使用载波2和载波3同时发送PSCCH/PSSCH,其对应的PSFCH都位于载波2。
在另一种可选的实施方式中,接收终端可以将所有的侧行数据的侧行反馈信息承载在一个PSFCH中,此时接收终端只需要在时隙k发送一个PSFCH,例如仅在时隙k的载波0上发送一个PSFCH。
基于上述的传输方案,本申请提出如下几种资源选取方案:
方案1、接收终端根据侧行数据所在的资源池,选取发送PSFCH的资源池。
方案2、接收终端根据PSFCH配置信息,选取发送PSFCH的资源池。其中,PSFCH配置信息包括用于配置PSFCH格式的信息,配置PSFCH传输资源的信息的至少一项。
方案3、接收终端根据资源池的测量信息,选取发送PFSCH的资源池。其中,资源池的测量信息包括资源池的CBR测量结果。
方案4、接收终端根据来自其他设备的第一指示信息,选取发送PFSCH的资源池。其中,其它设备可以是发送终端,也可以是网络设备。
在实际应用中,除了基于上述任意一种方案确定发送PSFCH的资源之外,还可以通过上述几种方案的组合确定发送PSFCH的资源池:
方案1、接收终端根据侧行数据所在的资源池,以及侧行数据所在的资源池的PSFCH配置信息,选取发送PSFCH的资源池。
方案2、接收终端根据侧行数据所在的资源池,以及侧行数据所在的资源池的测量信息,选取发送PSFCH的资源池。
方案3、接收终端根据侧行数据所在的资源池,以及其他设备的第一指示信息,选取发送PSFCH的资源池。即选取第一指示信息指示的属于侧行数据所在的资源池的资源池作为发送PSFCH的资源池。
通过本申请提出的上述任意一种资源选取方案,可实现对侧行多载波传输中侧行反馈信息的传输资源的合理选取,提高侧行通信的传输性能,降低侧行通信的传输冲突和干扰。
下面通过具体实施例对本申请实施例提供的技术方案进行详细说明。需要说明的是,本申请实施例提供的技术方案可以包括以下内容中的部分或全部,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图11为本申请实施例提供的资源选取方法的流程示意图一。如图11所示,本实施例提供的资源选取方法,包括如下几个步骤:
步骤10、第一终端在多个载波上接收来自第二终端的侧行数据。
步骤11、从多个载波中确定发送PSFCH的资源池。
第一终端为侧行链路中的侧行数据接收终端,第二终端为侧行链路中的侧行数据发送终端。
在本申请实施例中,多个载波包括以下任意一项:
可用于侧行传输的所有载波;所述第一终端进行侧行传输可用的载波;所述第二终端进行侧行传输可用的载波;所述第一终端接收来自所述第二终端的侧行数据所在的载波。其中,侧行传输包括侧行发送或侧行接收。
在本申请实施例中,侧行数据包括PSCCH和PSSCH。
在本申请实施例中,第一终端在多个载波上接收到的侧行数据可以是相同的侧行数据,也可以是不同的侧行数据,对此本申请实施例不作任何限制。即第一终端在多个载波上接收到的侧行数据属于相同的传输块(Transmission Block,TB)或不同的传输块。其中相同的传输块可以对应不同的冗余版本(Redundancy version,RV)。例如,第一终端分别在载波0和载波1上接收侧行传输块1,载波0和载波1上分别对应侧行传输块1的冗余版本0和冗余版本2。又例如,第一终端在载波0上接收侧行传输块1,在载波2上接收侧行传输块2。
在本申请实施例中,第一终端在多个载波上接收来自第二终端的侧行数据,包括:第二终端在同一时刻发送的侧行数据,和/或,第二终端在不同时刻发送的侧行数据。具体的,第一终端可能在同一时刻接收不同载波上的侧行数据,也可能在不同时刻接收同一载波或不同载波上的侧行数据,对此本申请实施例不作任何限制。例如,第一终端在时隙a接收载波0上的侧行数据1,同时接收载波1上的侧行数据2。又例如,第一终端在时隙a接收载波0上的侧行数据1,在时隙b接收载波0上的侧行数据1。再例如,第一终端在时隙a接收载波0上的侧行数据1,在时隙b接收载波1上的侧行数据2。
在本申请的一个实施例中,第一终端在多个载波上接收的来自第二终端的侧行数据对应的侧行反馈信息承载在一个PSFCH上。
在本申请的一个实施例中,第一终端在多个载波上接收的来自第二终端的侧行数据对应的侧行反馈信息承载在不同的PSFCH上。
在本申请的一个实施例中,第一终端在多个载波上接收的来自第二终端的第一侧行数据所在的资源池与传输第一侧行数据对应的PSFCH的资源池是不同的资源池。
其中,第一侧行数据是第一终端在多个载波上接收来自第二终端的侧行数据中的一个侧行数据。
示例性的,第一终端在载波0和载波1上发送PSSCH,载波0和载波1上的PSSCH对应的PSFCH在载波1上发送,那么,在载波0上接收的侧行数据所在的资源池与传输PSFCH的资源池是不同的资源池。
在本申请的一个实施例中,第一侧行数据所在的载波与传输第一侧行数据对应的PSFCH的载波是不同的载波。
在本申请的一个实施例中,第一终端在多个载波上接收的来自第二终端的第一侧行数据所在的资源池与传输第一侧行数据对应的PSFCH的资源池是同一资源池。
在本申请的一个实施例中,第一侧行数据所在的载波与传输第一侧行数据对应的PSFCH的载波是同一载波。
在本申请的一个实施例中,第一终端在多个载波上接收的来自第二终端的第一侧行数据所在的资源池与传输第一侧行数据对应的PSFCH的资源池是同一资源池,且第一侧行数据所在的载波与传输第一侧行数据对应的PSFCH的载波是同一载波。
上述实施例中,第一终端在多个载波上接收来自第二终端的侧行数据,接收侧行数据的多个载波具体可以是用于侧行传输的所有载波中的多个载波,也可以是第二终端用于侧行传输的所有载波的多个载波,还可以是第一终端用于侧行传输的所有载波的多个载波。
从上述实施例可知,第一终端可以从所有可用于侧行传输的载波,或者第一终端可用于侧行传输的所有载波,或者第二终端可用于侧行传输的所有载波,或者从第一终端接收来自第二终端侧行数据所在的多个载波,确定发送PSFCH的资源池。
通过上述方案实现对侧行多载波传输中侧行反馈信息的传输资源的合理选取,提高侧行通信的传输性能,降低侧行通信的传输冲突和干扰。
图11为本申请实施例提供的资源选取方法的流程示意图二。如图12所示,本实施例提供的资源选取方法,包括如下几个步骤:
步骤101、第一终端在多个载波上接收来自第二终端的侧行数据。
步骤102、第一终端根据侧行数据所在的资源池,从多个载波中确定发送PSFCH的资源池。
在本申请的一个实施例中,第一终端根据侧行数据所在的资源池,从多个载波中确定发送PSFCH的资源池,包括:第一终端获取在多个载波上接收到的来自第二终端的PSCCH或者PSSCH所在的至少一个资源池,从该至少一个资源池中确定发送PSFCH的资源池。
可选的,第一终端在多个载波接收到来自第二终端的侧行数据时,可以首先从多个载波中确定用于发送PSFCH的第一载波,然后获取侧行数据所在的至少一个资源池,选取第一载波上与侧行数据所在的至少一个资源池对应的资源池作为发送PSFCH的资源池。
其中,第一终端可通过如下方式从多个载波中确定发送PSFCH的第一载波。
一种可选的实施方式中,第一终端可根据载波的CBR,从多个载波中选取CBR最低的载波作为发送PSFCH的第一载波。
一种可选的实施方式中,第一终端可根据其他设备发送的第一指示信息,确定发送PSFCH的第一载波。其他设备包括第二终端或网络设备,第一指示信息可用于指示第一终端发送PSFCH的载波信息。
一种可选的实施方式中,第一终端可根据PSFCH配置信息,确定发送PSFCH的第一载波。PSFCH配置信息至少包括侧行传输支持的载波集合,载波集合至少包括用于传输PSFCH的载波。
应理解,本申请实施例对第一终端如何确定发送PSFCH的第一载波的方式不作任何限制。
示例性的,图13为本申请实施例提供的PSFCH与多载波发送PSCCH/PSSCH的示意图二,如图13所示,发送终端在时隙a载波0上的资源池1发送PSCCH1/PSSCH1,在时隙b载波1上的资源池2发送PSCCH2/PSSCH2,接收终端确定在载波0上发送针对上述两个侧行数据的侧行反馈信息,该侧行反馈信息可以复用一个PSFCH,或者使用独立的PSFCH分别反馈(如图13所示)。由于接收终端在资源池1中接收到发送终端发送的PSCCH1/PSSCH1,因此,当接收终端确定在时隙k的载波0上发送PSFCH的资源池时,可以根据时隙k待发送的侧行反馈信息所对应的PSCCH/PSSCH所在的资源池,确定发送PSFCH的资源池。如图13所示,若接收终端在时隙k需要发送2个PSFCH,分别对应PSCCH1/PSSCH1和PSCCH2/PSSCH2,并且接收终端确定在载波0上发送PSFCH,而接收终端在载波0上的资源池1接收到PSCCH1/PSSCH1,因此,接收终端确定在载波0上的资源池1中发送2个PSFCH。
示例性的,图14为本申请实施例提供的PSFCH与多载波发送PSCCH/PSSCH的示意图三,如图14所示,发送终端在时隙a载波0上的资源池1发送PSCCH1/PSSCH1,在时隙b载波0上的资源池2发送PSCCH2/PSSCH2,接收终端确定在载波0上发送针对上述两个侧行数据的侧行反馈信息。接收终端针对两个侧行数据,分别发送PSFCH以承载两个侧行数据各自的侧行反馈信息,此时,可以根据每个侧行数据所在的资源池,确定每个侧行数据对应的PSFCH的资源池。如图14所示,PSCCH1/PSSCH1对应的PSFCH在载波0的资源池1发送,PSCCH2/PSSCH2对应的PSFCH在载波0的资源池2发送。
在本申请的一个实施例中,第一终端确定发送PSFCH的资源池为一个资源池时,可通过如下两种方式从至少一个资源池中,确定发送PSFCH的一个资源池。
在一种可选的实施方式中,第一终端根据优先级信息从至少一个资源池中确定发送PSFCH的资源池。具体的,第一终端可根据侧行数据的优先级信息,从至少一个资源池中确定发送PSFCH的资源池。侧行控制信息SCI中携带侧行数据的优先级信息。第一终端可以从至少一个资源池中选取优先级最高(或优先级最低)的侧行数据所在的资源池,或者说,第一终端可以从至少一个资源池中选取优先级最高(或优先级最低)的PSSCH所在的资源池,将该资源池作为发送PSFCH的资源池。
在一种可选的实施方式中,第一终端根据接收到的PSCCH或PSSCH的时间顺序从至少一个资源池中确定发送PSFCH的资源池。具体的,第一终端可根据侧行数据的接收时间,从至少一个资源池中确定发送PSFCH的资源池。第一终端可以将最先接收到的侧行数据所在的资源池作为发送PSFCH的资源池,或者将最后接收到的侧行数据所在的资源池作为发送PSFCH的资源池。
示例性的,图15为本申请实施例提供的PSFCH与多载波发送PSCCH/PSSCH的示意图四,如图15所示,发送终端在时隙a载波0上的资源池1发送PSCCH1/PSSCH1,在时隙b载波0上的资源池2发送PSCCH2/PSSCH2。若接收终端确定在载波0上发送针对上述两个侧行数据的PSFCH。
一种情况,如图15所示,若接收终端在载波0上的资源池1中先收到PSCCH1/PSSCH1,随后在载波0上的资源池2中收到PSCCH2/PSSCH2,接收终端确定载波0的资源池1为发送PSFCH的资源池。图15示出了针对两个侧行数据的侧行反馈信息分别承载在载波0上的资源池1的两个PSFCH中。在一些实施例中,也可以将针对两个侧行数据的侧行反馈信息承载在载波0上的资源池1的一个PSFCH中(图中未示出)。
另一种情况,若接收终端在载波0上的资源池1中接收到的侧行数据的优先级大于在载波0上的资源池2中接收到的侧行数据的优先级,接收终端确定载波0的资源池1为发送PSFCH的资源池。如图15所示,针对两个侧行数据的侧行反馈信息分别承载在载波0上的资源池1的两个PSFCH中。在一些实施例中,也可以将针对两个侧行数据的侧行反馈信息承载在载波0上的资源池1的一个PSFCH中(图中未示出)。
本申请实施例提供的资源选取方法,第一终端通过接收来自第二终端在多个载波上发送的侧行数据,根据侧行数据所在的资源池,从侧行数据所在的多个载波中确定发送PSFCH的资源池。通过上述方案实现对侧行多载波传输中侧行反馈信息的传输资源的合理选取,提高侧行通信的传输性能,降低侧行通信的传输冲突和干扰。
图15为本申请实施例提供的资源选取方法的流程示意图三。如图16所示,本实施例提供的资源选取方法,包括如下几个步骤:
步骤201、第一终端在多个载波上接收来自第二终端的侧行数据。
步骤202、第一终端根据资源池的测量信息,从多个载波中确定发送PSFCH的资源池。
在本申请的一个实施例中,第一终端可根据接收到的PSCCH/PSSCH所在的资源池(和/或载波)的测量结果,确定发送PSFCH的资源池(和/或载波)。
在本申请的一个实施例中,资源池的测量信息包括资源池的信道繁忙率CBR。
在本申请的一个实施例中,第一终端可根据资源池的CBR,从多个载波的资源池集合中按照CBR从低到高的顺序选取发送PSFCH的资源池。
示例性的,图17为本申请实施例提供的PSFCH与多载波发送PSCCH/PSSCH的示意图五,如图17所示,发送终端在时隙a载波0上的资源池1发送PSCCH1/PSSCH1,在时隙b载波2上的资源池2发送PSCCH2/PSSCH2,在时隙c载波1上的资源池2发送PSCCH3/PSSCH3。接收终端分别测量载波0上资源池1的CBR1,载波2上资源池2的CBR2以及载波1上资源池2的CBR3,若CBR3<CBR1<CBR2,接收终端确定在一个载波上发送针对上述三个侧行数据的PSFCH,则接收终端可确定利用载波1上资源池2发送PSFCH。在一些实施例中,接收终端确定在两个载波上发送针对上述三个侧行数据的PSFCH时,由于CBR3<CBR1<CBR2,可确定在载波1和载波0的资源池上发送PSFCH,即接收终端可利用载波1上资源池2以及载波0上资源池1发送PSFCH。
在本申请的一个实施例中,第一终端可根据资源池的CBR,从多个载波的资源池集合中确定CBR小于CBR门限的至少一个资源池,从该至少一个资源池中选取发送PSFCH的资源池。具体的,第一终端可按照CBR从低到高的顺序,从该至少一个资源池中选取发送PSFCH的资源池。该实施例中,第一终端根据资源池的CBR以及CBR门限,从多个载波的资源池集合中选取发送PSFCH的资源池。
本实施例中,CBR门限是通过预配置或网络配置的,只有当资源池的CBR小于CBR门限时,资源池才有可能作为用于传输PSFCH的候选资源池(candidate resource pool)。随后,第一终端在候选资源池中按照CBR从低到高的顺序选取用于传输PSFCH的资源池。
示例性的,网络通过RRC信令配置CBR_thd(即CBR门限),如图17所示,接收终端测量载波0的资源池1的CBR1<CBR_thd,测量载波2的资源池2的CBR2>CBR_thd,测量载波1的资源池2的CBR3<CBR_thd,因此,接收终端将载波0的资源池1和载波1的资源池2作为传输PSFCH的候选资源池,由于CBR3<CBR1,因此,接收终端最终确定载波1的资源池2作为传输PSFCH的资源池。
可选的,在一些实施例中,确定发送PSFCH的资源池时,可以不限定于只从接收到
PSCCH/PSSCH的资源池中选取,所有载波中的所有资源池都可以作为发送PSFCH的资源池。示例性的,如图17所示,接收终端可以测量所有4个载波中的所有资源池的CBR,然后根据所有的CBR测量结果,按照从低到高的顺序选取发送PSFCH的资源池。
本实施例提供的资源选取方法,第一终端通过接收来自第二终端在多个载波上发送的侧行数据,可根据侧行数据所在的资源池的测量信息,从侧行数据所在的资源池中确定发送PSFCH的资源池;或者根据所有资源池的测量信息,从所有资源池中确定发送PSFCH的资源池。其中所有资源池包括可用于侧行传输的所有资源池,或者第一终端可用于侧行传输的所有资源池,或者第二终端可用于侧行传输的所有资源池。通过上述方案实现对侧行多载波传输中侧行反馈信息的传输资源的合理选取,提高侧行通信的传输性能,降低侧行通信的传输冲突和干扰。
图17为本申请实施例提供的资源选取方法的流程示意图四。如图18所示,本实施例提供的资源选取方法,包括如下几个步骤:
步骤301、第一终端在多个载波上接收来自第二终端的侧行数据。
步骤302、第一终端根据第一指示信息,从多个载波中确定发送PSFCH的资源池。
其中,第一指示信息用于指示第一终端传输PSFCH的至少一个资源池。
可选的,第一指示信息可以承载在侧行控制信息SCI、PC5无线资源控制RRC信令或介质访问控制层控制单元MAC CE中。
示例性的,第一终端接收第二终端发送的PSCCH/PSSCH,在PSCCH承载的SCI,或在PSSCH承载的第二阶SCI或MAC CE中承载第一指示信息。
在本申请的一个实施例中,第一指示信息包括索引信息。第一终端根据第一指示信息,从多个载波中确定发送PSFCH的资源池,包括:选取索引信息对应的资源池为发送PSFCH的资源池。即第一终端根据第一指示信息中的索引信息,选取索引信息对应的资源池为发送PSFCH的资源池。
在本申请的一个实施例中,当发送终端和接收终端建立侧行通信链路时,会通过PC5RRC交互配置信息,例如各自的资源池配置信息。资源池配置信息中包括资源池对应的索引信息,例如接收终端的资源池配置信息包括接收终端的发送资源池和/或接收资源池对应的索引信息,发送终端的资源池配置信息包括发送终端的发送资源池和/或接收资源池对应的索引信息。因此,当两个终端进行侧行通信时,发送终端可以通过第一指示信息指示接收终端发送PSFCH的资源池。
可选的,在一些实施例中,第一指示信息中的索引信息包括:资源池索引和/或载波索引,资源池索引包括发送资源池的索引和/或接收资源池的索引。
在本申请的一个实施例中,索引信息包括资源池索引,第一终端根据第一指示信息,从多个载波中确定发送PSFCH的资源池,包括:选取第一指示信息中资源池索引对应的资源池作为发送PSFCH的资源池。
在本申请的一个实施例中,索引信息包括载波索引,第一终端根据第一指示信息,从多个载波中确定发送PSFCH的资源池,包括:从第一指示信息中载波索引对应的载波包括的资源池中选取发送PSFCH的资源池。
在本申请的一个实施例中,索引信息包括资源池索引(第一索引)和载波索引(第二索引),第一终端根据第一指示信息,从多个载波中确定发送PSFCH的资源池,包括:选取第一指示信息中载波索引(第二索引)对应的载波上资源池索引(第一索引)对应的资源池为发送PSFCH的资源池。
从上述几个实施例的描述可知,当两个终端进行侧行通信时,发送终端可以通过第一指示信息指示接收终端发送PSFCH的资源池和/或载波。
示例性的,如图13所示,发送终端在时隙a载波0上的资源池1发送PSSCH1,并且在PSSCH1的第二阶SCI中携带第一指示信息,指示第一终端在载波0的资源池1中发送PSFCH。另外,发送终端在时隙b载波1上的资源池2发送PSSCH2,并且在PSSCH2的第二阶SCI中携带第一指示信息,指示第一终端在载波0的资源池1中发送PSFCH。则接收终端可根据来自第二终端的第一指示信息,确定在载波0的资源池1中发送针对上述两个侧行数据的PSFCH。具体的,可以复用在一个PSFCH中,或者使用独立的PSFCH分别反馈,本实施例不作任何限制。
需要说明的是,在现有NR SL中,只会对发送资源池(TX RP)配置资源池索引(resource pool identity),没有对接收资源池(RX RP)配置资源池索引。接收终端在接收资源池中检测是否存在PSCCH/PSSCH,如果检测成功,接收终端会发送相应的PSFCH,即也是在接收资源池中发送PSFCH,因此,需要为接收资源池也配置资源池索引,从而使得发送端终端可以通过资源池索引指示接收端终端发送PSFCH的资源池。
本实施例提供的资源选取方法,第一终端通过接收来自第二终端在多个载波上发送的侧行数据,根据第二终端的第一指示信息,从所有可用于侧行传输的载波,或者第一终端可用于侧行传输的所有载波,或者第二终端可用于侧行传输的所有载波,或者从第一终端接收来自第二终端侧行数据所在的多个载波,确定发送PSFCH的资源池。通过上述方案实现对侧行多载波传输中侧行反馈信息的传输资源的合理选取,提高侧行通信的传输性能,降低侧行通信的传输冲突和干扰。
图18为本申请实施例提供的资源选取方法的流程示意图五。如图19所示,本实施例提供的资源选取方法,包括如下几个步骤:
步骤401、第一终端在多个载波上接收来自第二终端的侧行数据。
步骤402、第一终端根据PSFCH配置信息,从多个载波中确定发送PSFCH的资源池。
在本申请的一个实施例中,PSFCH配置信息包括用于配置PSFCH格式的信息。
PSFCH格式包括多种PSFCH格式中的至少一种。
其中,多种PSFCH格式中的任意两种PSFCH格式之间的以下至少一项不同:
PSFCH占用的物理资源块PRB个数、PSFCH占用的时域符号个数或PSFCH承载的最大比特数。
需要说明的是,PSFCH占用的PRB个数可以理解为一个PSFCH信道可以占据的PRB个数,例如一个PSFCH占据1个PRB或4个PRB。
在一种可能的配置中,系统定义至少两种PSFCH格式,示例性的,PSFCH格式0承载1比特侧行反馈信息,PSFCH格式1承载N比特的侧行反馈信息,其中N为大于1的正整数。
可选的,在一些实施例中,在资源池配置信息中包括该资源池支持的PSFCH格式的指示信息,接收终端可根据资源池支持的PSFCH格式确定发送PSFCH的资源池。具体的,当接收终端确定在一个时隙需要发送多于1比特的侧行反馈信息时,接收终端选取支持PSFCH格式1的资源池作为发送PSFCH的资源池。当接收终端确定在一个时隙发送1比特的侧行反馈信息时,接收终端选取支持PSFCH格式0的资源池作为发送PSFCH的资源池。
示例性的,如图17所示,发送终端发送3个PSCCH/PSSCH,接收终端在时隙k需要发送针对这3个PSCCH/PSSCH的侧行反馈信息,并且承载在一个PSFCH上。若载波0上的资源池1和资源池2支持PSFCH格式0,载波1上的资源池2支持PSFCH格式1,则接收终端选取载波1上的资源池2作为发送PSFCH的资源池。
在一种可能的配置中,系统定义至少两种PSFCH格式,示例性的,PSFCH格式0占用的PRB个数小于或等于第一阈值(例如第一阈值为1),PSFCH格式1占用的PRB个数大于第一阈值。当然,还可以根据实际需求设置多个PRB个数的阈值,对此本申请实施例不作任何限制。
在一种可能的配置中,系统定义至少两种PSFCH格式,示例性的,PSFCH格式0占用的时域符号个数小于或等于第二阈值(例如第二阈值为2),PSFCH格式1占用的时域符号个数大于第二阈值。当然,还可以根据实际需求设置多个时域符号个数的阈值,对此本申请实施例不作任何限制。
在本申请的一个实施例中,若第一终端确定发送PSFCH的格式为第一PSFCH格式,第一终端根据PSFCH配置信息,从多个载波中确定发送PSFCH的资源池,包括:第一终端根据PSFCH配置信息,确定多个载波中的资源池支持的PSFCH格式,从支持第一PSFCH格式的资源池中确定发送PSFCH的资源池。
其中,第一PSFCH格式可以是上述任意一种配置中的任意一个PSFCH格式。
可选的,上述多个载波中的资源池可以指第一终端接收侧行数据所在的多个载波的资源池(即第一终端接收PSCCH/PSSCH所在的多个载波的资源池),也可以指可用于侧行传输的所有载波的资源池,还可以指第一终端或第二终端进行侧行传输可用的所有载波的资源池,对此本申请实施例不作任何限制。
示例性的,如图17所示,若载波0上的资源池1和资源池2也支持PSFCH格式1,则接收终端可以从载波0的资源池1和资源池2,以及载波1的资源池2中,选取其中一个作为发送PSFCH的资源池。
上述实施例的资源选取方法,第一终端通过接收来自第二终端在多个载波上发送的侧行数据,根据资源池配置信息中资源池支持的PSFCH格式,从所有可用于侧行传输的载波,或者第一终端可用于侧行传输的所有载波,或者第二终端可用于侧行传输的所有载波,或者从第一终端接收来自第二终端侧行数据所在的多个载波,确定发送PSFCH的资源池。通过上述方案实现对侧行多载波传输中侧行反馈信息的传输资源的合理选取,提高侧行通信的传输性能,降低侧行通信的传输冲突和干扰。
在本申请的一个实施例中,PSFCH配置信息包括配置PSFCH传输资源的信息。
PSFCH配置信息包括第一参数以及第二参数的至少一项;
第一参数用于指示PSFCH时隙中可用于传输PSFCH的PRB,第二参数用于指示循环移位对(Cyclic Shift Pair)。
示例性的,第一参数为参数sl-PSFCH-RB-Set,指示频域上可用于传输PSFCH的PRB个数。需要说明的是,第一参数表示资源池中可用于PSFCH传输的PRB集合,例如系统带宽包括100PRB,通过第一参数指示其中50个PRB可用于传输PSFCH,根据PSFCH格式的不同,每个PSFCH占据1个PRB或4个PRB。
示例性的,第二参数为参数sl-NumMuxCS-Pair,指示循环移位对(Cyclic Shift Pair)。第二参数具体指示PSFCH占据的PRB内通过码分多路复用CDM方式复用PSFCH的个数。上述两个参数可用于决定传输PSFCH的资源数量。
在本申请的一个实施例中,第一终端根据PSFCH配置信息,从多个载波中确定发送PSFCH的资源池,包括:第一终端根据多个载波中的资源池包括的PSFCH传输资源的数量选取发送PSFCH的资源池。应理解,PSFCH的资源数量越多,PSFCH之间的干扰越低,越能保证PSFCH的传输性能。
可选的,上述多个载波中的资源池可以指第一终端接收侧行数据所在的多个载波的资源池(即第一终端接收PSCCH/PSSCH所在的多个载波的资源池),也可以指可用于侧行传输的所有载波的资源池,还可以指第一终端或第二终端进行侧行传输可用的所有载波的资源池,对此本申请实施例不作任何限制。
在一种可能的实施方式中,第一终端将多个载波的所有资源池中第一参数最大的资源池作为发送PSFCH的资源池。即选取参数sl-PSFCH-RB-Set包括的PRB数量最多的资源池作为发送PSFCH的资源池。
在一种可能的实施方式中,第一终端将多个载波的所有资源池中第二参数最大的资源池作为发送PSFCH的资源池。即选取参数sl-NumMuxCS-Pair包括的循环移位对数量最多的资源池作为发送PSFCH的资源池。
在一种可能的实施方式中,第一终端将多个载波的所有资源池中第一参数和第二参数的乘积最大的资源池作为发送PSFCH的资源池。即选取参数sl-PSFCH-RB-Set包括的PRB数量最多,且选取参数sl-NumMuxCS-Pair包括的循环移位对数量最多的资源池作为发送PSFCH的资源池。
上述实施例的资源选取方法,第一终端通过接收来自第二终端在多个载波上发送的侧行数据,根据资源池配置信息中资源池的PSFCH传输资源数量,从所有可用于侧行传输的载波,或者第一终端可用于侧行传输的所有载波,或者第二终端可用于侧行传输的所有载波,或者从第一终端接收来自第二终端侧行数据所在的多个载波,确定发送PSFCH的资源池。通过上述方案实现对侧行多载波传输中侧行反馈信息的传输资源的合理选取,提高侧行通信的传输性能,降低侧行通信的传输冲突和干扰。
在本申请的一个实施例中,第一终端根据PSFCH配置信息,从多个载波中确定发送PSFCH的资源池,包括:第一终端根据PSFCH配置信息,确定多个载波中配置了PSFCH传输资源的资源池集合,从配置了PSFCH传输资源的资源池集合中确定发送PSFCH的资源池。
可选的,上述多个载波可以指第一终端接收侧行数据所在的多个载波(即第一终端接收PSCCH/PSSCH所在的多个载波),也可以指可用于侧行传输的所有载波,还可以指第一终端或第二终端进行侧行传输可用的所有载波,对此本申请实施例不作任何限制。
在本实施例中,PSFCH配置信息包括可用于传输PSFCH的资源,例如可用于传输PSFCH的载波集合和/或资源池集合。
可选的,上述任一实施例中的PSFCH配置信息可以是预配置信息或网络配置信息。当PSFCH配置信息是网络配置时,该配置信息可以承载在系统信息块(System Information Blocks,SIB)、无线资源控制(Radio Resource Control,RRC)信令或下行链路控制信息(Downlink Control Information,DCI)信令中。
可选的,在一些实施例中,上述预配置信息或网络配置信息包括侧行传输支持的载波集合,除了配置该载波集合中的一个或多个载波可用于传输PSFCH,还配置该载波集合中的一个或多个载波可用于传输PSCCH或PSSCH。接收终端在侧行载波上接收到PSCCH/PSSCH时,只能在配置的可用于传输PSFCH的一个或多个载波中选取发送PSFCH的资源池。
示例性的,网络通过RRC信令配置侧行传输支持4个载波,例如载波0-3,并且配置载波0和载波1是用于发送PSFCH的载波。接收终端在载波0-3上接收到PSCCH/PSSCH时,只能在载 波0和载波1中选取1个或2个用于发送PSFCH的载波。
示例性的,网络通过RRC信令配置侧行传输支持4个载波,例如载波0-3,并且通过RRC信令配置各个载波上的资源池,只在载波0和载波3上的资源池配置了PSFCH传输资源,则接收终端在各个载波上接收到PSCCH/PSSCH时,只能使用载波0和载波3上的资源池发送PSFCH。
上述实施例的资源选取方法,第一终端通过接收来自第二终端在多个载波上发送的侧行数据,根据PSFCH配置信息中可用于传输PSFCH的载波集合,从所有可用于侧行传输的载波,或者第一终端可用于侧行传输的所有载波,或者第二终端可用于侧行传输的所有载波,或者从第一终端接收来自第二终端侧行数据所在的多个载波,确定发送PSFCH的资源池。通过上述方案实现对侧行多载波传输中侧行反馈信息的传输资源的合理选取,提高侧行通信的传输性能,降低侧行通信的传输冲突和干扰。
应理解,本申请实施例的方法还可以适用于确定发送PSFCH的带宽部分(Bandwidth Part,BWP)。
下面针对接收终端如何确定PSFCH的BWP进行详细说明。
在本申请的一个实施例中,第一终端在多个载波上接收来自第二终端的侧行数据,第一终端从多个载波中确定发送PSFCH的BWP。
可选的,在多个载波中的每个载波配置至少一个BWP。
可选的,第一终端根据侧行数据所在的BWP、PSFCH配置信息、BWP中资源池的测量信息以及第二指示信息中的至少一项,从多个载波中确定发送PSFCH的BWP。其中,第二指示信息用于指示发送PSFCH的至少一个BWP。
可选的,第一终端在多个载波上接收的来自第二终端的第一侧行数据所在的BWP与传输第一侧行数据对应的PSFCH的BWP是不同的BWP。其中,第一侧行数据是第一终端在多个载波上接收来自第二终端的侧行数据中的一个侧行数据。
可选的,第一侧行数据所在的载波与传输第一侧行数据对应的PSFCH的载波是不同的载波。
可选的,第一终端在多个载波上接收的来自第二终端的第一侧行数据所在的BWP与传输第一侧行数据对应的PSFCH的BWP是同一BWP。
可选的,第一侧行数据所在的载波与传输第一侧行数据对应的PSFCH的载波是同一载波。
可选的,第一终端在多个载波上接收的来自第二终端的第一侧行数据所在的BWP与传输第一侧行数据对应的PSFCH的BWP是同一BWP,且第一侧行数据所在的载波与传输第一侧行数据对应的PSFCH的载波是同一载波。
在本申请的一个实施例中,第一终端在多个载波上接收来自第二终端的侧行数据;第一终端根据侧行数据所在的BWP,从多个载波中确定发送PSFCH的BWP。
在本申请的一个实施例中,第一终端根据侧行数据所在的BWP,从多个载波中确定发送PSFCH的BWP,包括:第一终端获取在多个载波上接收到的来自第二终端的PSCCH或者PSSCH所在的至少一个BWP,从该至少一个BWP中确定发送PSFCH的BWP。
可选的,第一终端在多个载波接收到来自第二终端的侧行数据时,可以首先从多个载波中确定用于发送PSFCH的第一载波,然后获取侧行数据所在的至少一个BWP,选取第一载波上与侧行数据所在的至少一个BWP对应的BWP作为发送PSFCH的BWP。
在本申请的一个实施例中,第一终端确定发送PSFCH的BWP为一个BWP时,可通过如下两种方式从至少一个BWP中,确定发送PSFCH的一个BWP。
在一种可选的实施方式中,第一终端根据优先级信息从至少一个BWP中确定发送PSFCH的BWP。具体的,第一终端可根据侧行数据的优先级信息,从至少一个BWP中确定发送PSFCH的BWP。侧行控制信息SCI中携带侧行数据的优先级信息。第一终端可以从至少一个BWP中选取优先级最高(或优先级最低)的侧行数据所在的BWP,或者说,第一终端可以从至少一个BWP中选取优先级最高(或优先级最低)的PSSCH所在的BWP,将该BWP作为发送PSFCH的BWP。
在一种可选的实施方式中,第一终端根据接收到的PSCCH或PSSCH的时间顺序从至少一个BWP中确定发送PSFCH的BWP。具体的,第一终端可根据侧行数据的接收时间,从至少一个BWP中确定发送PSFCH的BWP。第一终端可以将最先接收到的侧行数据所在的BWP作为发送PSFCH的BWP,或者将最后接收到的侧行数据所在的BWP作为发送PSFCH的BWP。
在本申请的一个实施例中,第一终端在多个载波上接收来自第二终端的侧行数据;第一终端根据BWP中资源池的测量信息,从多个载波中确定发送PSFCH的BWP。
在本申请的一个实施例中,第一终端可根据接收到的PSCCH/PSSCH所在的BWP中资源池的测量结果,确定发送PSFCH的BWP。
可选的,BWP中资源池的测量信息包括BWP中资源池的信道繁忙率CBR。
在本申请的一个实施例中,第一终端可根据BWP中资源池的CBR,从多个载波的BWP集合中按照BWP中资源池的CBR从低到高的顺序选取发送PSFCH的BWP。
在本申请的一个实施例中,第一终端可根据BWP中资源池的CBR,从多个载波的BWP集合中确定BWP中资源池的CBR小于CBR门限的至少一个BWP,从该至少一个BWP中选取发送PSFCH的BWP。具体的,第一终端可按照BWP中资源池的CBR从低到高的顺序,从该至少一个BWP中选取发送PSFCH的BWP。
可选的,在一些实施例中,确定发送PSFCH的BWP时,可以不限定于只从接收到PSCCH/PSSCH所在的BWP中选取,所有载波中的所有BWP都可以作为发送PSFCH的BWP。
在本申请的一个实施例中,第一终端在多个载波上接收来自第二终端的侧行数据;第一终端根据第二指示信息,从多个载波中确定发送PSFCH的BWP。
其中,第二指示信息用于指示第一终端传输PSFCH的至少一个BWP。
可选的,第二指示信息可以承载在侧行控制信息SCI、PC5无线资源控制RRC信令或介质访问控制层控制单元MAC CE中。
在本申请的一个实施例中,第二指示信息包括索引信息。第一终端根据第二指示信息,从多个载波中确定发送PSFCH的BWP,包括:选取索引信息对应的BWP为发送PSFCH的BWP。即第一终端根据第二指示信息中的索引信息,选取索引信息对应的BWP为发送PSFCH的BWP。
在本申请的一个实施例中,当发送终端和接收终端建立侧行通信链路时,会通过PC5RRC交互配置信息,例如各自的BWP配置信息。BWP配置信息中包括BWP对应的索引信息。因此,当两个终端进行侧行通信时,发送终端可以通过第二指示信息指示接收终端发送PSFCH的BWP。
可选的,在一些实施例中,第二指示信息中的索引信息包括:BWP索引和/或载波索引。
在本申请的一个实施例中,索引信息包括BWP索引,第一终端根据第二指示信息,从多个载波中确定发送PSFCH的BWP,包括:选取第二指示信息中BWP索引对应的BWP作为发送PSFCH的BWP。
在本申请的一个实施例中,索引信息包括载波索引,第一终端根据第二指示信息,从多个载波中确定发送PSFCH的BWP,包括:从第二指示信息中载波索引对应的载波包括的BWP中选取发送PSFCH的BWP。
在本申请的一个实施例中,索引信息包括BWP索引(第一索引)和载波索引(第二索引),第一终端根据第二指示信息,从多个载波中确定发送PSFCH的BWP,包括:选取第二指示信息中载波索引(第二索引)对应的载波上BWP索引(第一索引)对应的BWP为发送PSFCH的BWP。
从上述几个实施例的描述可知,当两个终端进行侧行通信时,发送终端可以通过第二指示信息指示接收终端发送PSFCH的BWP和/或载波。
在本申请的一个实施例中,第一终端在多个载波上接收来自第二终端的侧行数据;第一终端根据PSFCH配置信息,从多个载波中确定发送PSFCH的BWP。
可选的,PSFCH配置信息包括用于配置PSFCH格式的信息。PSFCH格式包括多种PSFCH格式中的至少一种。其中,多种PSFCH格式中的任意两种PSFCH格式之间的以下至少一项不同:PSFCH占用的物理资源块PRB个数、PSFCH占用的时域符号个数或PSFCH承载的最大比特数。PSFCH格式的配置可参见上文实施例,此处不再赘述。
在本申请的一个实施例中,若第一终端确定发送PSFCH的格式为第一PSFCH格式,第一终端根据PSFCH配置信息,从多个载波中确定发送PSFCH的BWP,包括:第一终端根据PSFCH配置信息,确定多个载波中的BWP支持的PSFCH格式,从支持第一PSFCH格式的BWP中确定发送PSFCH的BWP。
其中,第一PSFCH格式可以是PSFCH格式配置中的任意一个PSFCH格式。
可选的,上述多个载波中的BWP可以指第一终端接收侧行数据所在的多个载波的BWP(即第一终端接收PSCCH/PSSCH所在的多个载波的BWP),也可以指可用于侧行传输的所有载波的BWP,还可以指第一终端或第二终端进行侧行传输可用的所有载波的BWP,对此本申请实施例不作任何限制。
可选的,PSFCH配置信息包括配置PSFCH传输资源的信息。示例性的,PSFCH配置信息包括第一参数以及第二参数的至少一项,其中第一参数用于指示PSFCH时隙中可用于传输PSFCH的PRB,第二参数用于指示循环移位对(Cyclic Shift Pair)。
在本申请的一个实施例中,第一终端根据PSFCH配置信息,从多个载波中确定发送PSFCH的BWP,包括:第一终端根据多个载波中的BWP包括的PSFCH传输资源的数量选取发送PSFCH 的BWP。
可选的,上述多个载波中的BWP可以指第一终端接收侧行数据所在的多个载波的BWP(即第一终端接收PSCCH/PSSCH所在的多个载波的BWP),也可以指可用于侧行传输的所有载波的BWP,还可以指第一终端或第二终端进行侧行传输可用的所有载波的BWP,对此本申请实施例不作任何限制。
在一种可能的实施方式中,第一终端将多个载波的所有BWP中第一参数最大的BWP作为发送PSFCH的BWP。
在一种可能的实施方式中,第一终端将多个载波的所有BWP中第二参数最大的BWP作为发送PSFCH的BWP。
在一种可能的实施方式中,第一终端将多个载波的所有BWP中第一参数和第二参数的乘积最大的BWP作为发送PSFCH的BWP。
在本申请的一个实施例中,第一终端根据PSFCH配置信息,从多个载波中确定发送PSFCH的BWP,包括:第一终端根据PSFCH配置信息,确定多个载波中配置了PSFCH传输资源的BWP集合,从配置了PSFCH传输资源的BWP集合中确定发送PSFCH的BWP。
可选的,上述多个载波可以指第一终端接收侧行数据所在的多个载波(即第一终端接收PSCCH/PSSCH所在的多个载波),也可以指可用于侧行传输的所有载波,还可以指第一终端或第二终端进行侧行传输可用的所有载波,对此本申请实施例不作任何限制。
可选的,PSFCH配置信息包括可用于传输PSFCH的资源,例如可用于传输PSFCH的载波集合和/或BWP集合。
可选的,上述任一实施例中的PSFCH配置信息可以是预配置信息或网络配置信息。当PSFCH配置信息是网络配置时,该配置信息可以承载在系统信息块(System Information Blocks,SIB)、无线资源控制(Radio Resource Control,RRC)信令或下行链路控制信息(Downlink Control Information,DCI)信令中。
可选的,在一些实施例中,上述预配置信息或网络配置信息包括侧行传输支持的载波集合,除了配置该载波集合中的一个或多个载波可用于传输PSFCH,还配置该载波集合中的一个或多个载波可用于传输PSCCH或PSSCH。接收终端在侧行载波上接收到PSCCH/PSSCH时,只能在配置的可用于传输PSFCH的一个或多个载波中选取发送PSFCH的BWP。
示例性的,图20为本申请实施例提供的一种资源选取装置的结构示意图,如图20所示,本实施例提供的资源选取装置500,包括:接收模块501和处理模块502。
接收模块501,用于在多个载波上接收来自第二终端的侧行数据;
处理模块502,用于从所述多个载波中确定发送物理侧行反馈信道PSFCH的资源池。
在本申请的一个实施例中,所述多个载波包括:
可用于侧行传输的所有载波,或者,
第一终端进行侧行传输可用的载波,或者,
所述第二终端进行侧行传输可用的载波,或者,
所述第一终端接收来自所述第二终端的侧行数据所在的载波。
在本申请的一个实施例中,所述处理模块502,具体用于:根据所述侧行数据所在的资源池、PSFCH配置信息、资源池的测量信息以及第一指示信息中的至少一项,从所述多个载波中确定发送PSFCH的资源池;
其中,所述第一指示信息用于指示传输所述PSFCH的至少一个资源池。
在本申请的一个实施例中,所述处理模块502,具体用于:获取在所述多个载波上接收到的来自所述第二终端的PSCCH或者PSSCH所在的至少一个资源池,从所述至少一个资源池中确定发送PSFCH的资源池。
在本申请的一个实施例中,所述处理模块502,具体用于:
根据优先级信息从所述至少一个资源池中确定发送PSFCH的资源池;或者,
根据接收到的PSCCH或PSSCH的时间顺序从所述至少一个资源池中确定发送PSFCH的资源池。
在本申请的一个实施例中,所述资源池的测量信息包括资源池的信道繁忙率CBR;所述处理模块502,具体用于:
根据资源池的CBR,从所述多个载波的资源池集合中按照CBR从低到高的顺序选取发送PSFCH的资源池。
在本申请的一个实施例中,所述资源池的测量信息包括资源池的CBR;所述处理模块502, 具体用于:
根据资源池的CBR,从所述多个载波的资源池集合中确定CBR小于CBR门限的至少一个资源池,从所述至少一个资源池中选取发送PSFCH的资源池。
在本申请的一个实施例中,所述处理模块502,具体用于:
按照CBR从低到高的顺序从所述至少一个资源池中选取发送PSFCH的资源池。
在本申请的一个实施例中,所述第一指示信息包括索引信息;所述处理模块502,具体用于:选取所述索引信息对应的资源池为发送PSFCH的资源池。
在本申请的一个实施例中,所述索引信息包括资源池索引和/或载波索引,所述资源池索引包括发送资源池的索引和/或接收资源池的索引。
在本申请的一个实施例中,所述第一指示信息承载在侧行控制信息SCI、PC5无线资源控制RRC信令或介质访问控制层控制单元MAC CE中。
在本申请的一个实施例中,所述PSFCH配置信息包括用于配置PSFCH格式的信息。
在本申请的一个实施例中,所述PSFCH格式包括多种PSFCH格式中的至少一种,所述多种PSFCH格式中的任意两种PSFCH格式之间的以下至少一项不同:
PSFCH占用的物理资源块PRB个数、PSFCH占用的时域符号个数或PSFCH承载的最大比特数。
在本申请的一个实施例中,若所述处理模块502确定发送PSFCH的格式为第一PSFCH格式,所述处理模块502,具体用于:
根据所述PSFCH配置信息,确定所述多个载波中的资源池支持的PSFCH格式,从支持所述第一PSFCH格式的资源池中确定发送PSFCH的资源池。
在本申请的一个实施例中,所述PSFCH配置信息包括配置PSFCH传输资源的信息;所述处理模块502,具体用于:
根据所述多个载波中的资源池包括的PSFCH传输资源的数量选取发送PSFCH的资源池。
在本申请的一个实施例中,所述PSFCH配置信息包括第一参数以及第二参数的至少一项;
所述第一参数用于指示PSFCH时隙中可用于传输PSFCH的PRB,所述第二参数用于指示循环移位对。
在本申请的一个实施例中,所述处理模块502,具体用于:
将所述多个载波的所有资源池中第一参数最大的资源池作为发送PSFCH的资源池;或者
将所述多个载波的所有资源池中第二参数最大的资源池作为发送PSFCH的资源池;或者
将所述多个载波的所有资源池中第一参数和第二参数的乘积最大的资源池作为发送PSFCH的资源池。
在本申请的一个实施例中,所述处理模块502,具体用于:
根据所述PSFCH配置信息,确定所述多个载波中配置了PSFCH传输资源的资源池集合,从所述配置了PSFCH传输资源的资源池集合中确定发送PSFCH的资源池。
在本申请的一个实施例中,所述在多个载波上接收的来自第二终端的侧行数据,包括:来自所述第二终端的同一时刻的侧行数据,和/或,不同时刻的侧行数据。
在本申请的一个实施例中,所述在多个载波上接收的来自第二终端的侧行数据属于相同的传输块TB或不同的传输块。
在本申请的一个实施例中,所述在多个载波上接收的来自第二终端的侧行数据对应的侧行反馈信息承载在一个PSFCH上,或者,承载在不同的PSFCH上。
在本申请的一个实施例中,所述在多个载波上接收的来自第二终端的第一侧行数据所在的资源池与传输所述第一侧行数据对应的PSFCH的资源池是不同的资源池,和/或,所述第一侧行数据所在的载波与传输所述第一侧行数据对应的PSFCH的载波是不同的载波;
其中,所述第一侧行数据是所述在多个载波上接收来自第二终端的侧行数据中的一个侧行数据。
本申请实施例提供的资源选取装置,用于执行前述方法实施例中第一终端执行的技术方案,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上资源选取装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个 处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
图21为本申请实施例提供的一种电子设备的硬件结构示意图,如图21所示,本实施例提供的电子设备600,可以包括:
处理器601、存储器602和通信接口603。其中,存储器602,用于存储计算机程序;处理器601,用于执行存储器602存储的计算机程序,以实现上述任一方法实施例中第一终端所执行的方法。通信接口603,用于与其他设备进行数据通信或者信号通信。
可选的,存储器602既可以是独立的,也可以跟处理器601集成在一起。当所述存储器602是独立于处理器601之外的器件时,所述电子设备600还可以包括:总线604,用于连接所述存储器602和处理器601。
在一种可能的实施方式中,图20中的处理模块502可以集成在处理器601中实现,图20中的接收模块501可以集成在通信接口603中实现。
本实施例提供的电子设备,可用于执行上述任一方法实施例中第一终端所执行的方法,其实现原理和技术效果类似,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中第一终端的技术方案。
本申请实施例还提供一种计算机程序,当该计算机程序被处理器执行时,用于执行前述任一方法实施例中第一终端的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中第一终端的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中第一终端的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行前述任一方法实施例中第一终端的技术方案。
本申请中,“至少两个”是指两个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中,a,b,c可以是单个,也可以是多个。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (47)

  1. 一种资源选取方法,其特征在于,包括:
    第一终端在多个载波上接收来自第二终端的侧行数据;
    所述第一终端从所述多个载波中确定发送物理侧行反馈信道PSFCH的资源池。
  2. 根据权利要求1所述的方法,其特征在于,所述多个载波包括:
    可用于侧行传输的所有载波,或者,
    所述第一终端进行侧行传输可用的载波,或者,
    所述第二终端进行侧行传输可用的载波,或者,
    所述第一终端接收来自所述第二终端的侧行数据所在的载波。
  3. 根据权利要求1或2所述的方法,其特征在于,从所述多个载波中确定发送PSFCH的资源池,包括:
    所述第一终端根据所述侧行数据所在的资源池、PSFCH配置信息、资源池的测量信息以及第一指示信息中的至少一项,从所述多个载波中确定发送PSFCH的资源池;
    其中,所述第一指示信息用于指示传输所述PSFCH的至少一个资源池。
  4. 根据权利要求3所述的方法,其特征在于,所述第一终端根据所述侧行数据所在的资源池,从所述多个载波中确定发送PSFCH的资源池,包括:
    所述第一终端获取在所述多个载波上接收到的来自所述第二终端的PSCCH或者PSSCH所在的至少一个资源池,从所述至少一个资源池中确定发送PSFCH的资源池。
  5. 根据权利要求4所述的方法,其特征在于,所述第一终端从所述至少一个资源池中确定发送PSFCH的资源池,包括:
    所述第一终端根据优先级信息从所述至少一个资源池中确定发送PSFCH的资源池;或者,
    所述第一终端根据接收到的PSCCH或PSSCH的时间顺序从所述至少一个资源池中确定发送PSFCH的资源池。
  6. 根据权利要求3所述的方法,其特征在于,所述资源池的测量信息包括资源池的信道繁忙率CBR;所述第一终端根据所述资源池的测量信息,从所述多个载波中确定发送PSFCH的资源池,包括:
    所述第一终端根据资源池的CBR,从所述多个载波的资源池集合中按照CBR从低到高的顺序选取发送PSFCH的资源池。
  7. 根据权利要求3所述的方法,其特征在于,所述资源池的测量信息包括资源池的CBR;所述第一终端根据所述资源池的测量信息,从所述多个载波中确定发送PSFCH的资源池,包括:
    所述第一终端根据资源池的CBR,从所述多个载波的资源池集合中确定CBR小于CBR门限的至少一个资源池,从所述至少一个资源池中选取发送PSFCH的资源池。
  8. 根据权利要求7所述的方法,其特征在于,所述第一终端从所述至少一个资源池中选取发送PSFCH的资源池,包括:
    所述第一终端按照CBR从低到高的顺序从所述至少一个资源池中选取发送PSFCH的资源池。
  9. 根据权利要求3所述的方法,其特征在于,所述第一指示信息包括索引信息;所述第一终端根据所述第一指示信息,从所述多个载波中确定发送PSFCH的资源池,包括:
    所述第一终端选取所述索引信息对应的资源池为发送PSFCH的资源池。
  10. 根据权利要求9所述的方法,其特征在于,所述索引信息包括资源池索引和/或载波索引,所述资源池索引包括发送资源池的索引和/或接收资源池的索引。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一指示信息承载在侧行控制信息SCI、PC5无线资源控制RRC信令或介质访问控制层控制单元MAC CE中。
  12. 根据权利要求3所述的方法,其特征在于,所述PSFCH配置信息包括用于配置PSFCH格式的信息。
  13. 根据权利要求12所述的方法,其特征在于,所述PSFCH格式包括多种PSFCH格式中的至少一种,所述多种PSFCH格式中的任意两种PSFCH格式之间的以下至少一项不同:
    PSFCH占用的物理资源块PRB个数、PSFCH占用的时域符号个数或PSFCH承载的最大比特数。
  14. 根据权利要求3、12或13所述的方法,其特征在于,若所述第一终端确定发送PSFCH的格式为第一PSFCH格式,所述第一终端根据所述PSFCH配置信息,从所述多个载波中确定发送PSFCH的资源池,包括:
    所述第一终端根据所述PSFCH配置信息,确定所述多个载波中的资源池支持的PSFCH格式, 从支持所述第一PSFCH格式的资源池中确定发送PSFCH的资源池。
  15. 根据权利要求3所述的方法,其特征在于,所述PSFCH配置信息包括配置PSFCH传输资源的信息;所述第一终端根据所述PSFCH配置信息,从所述多个载波中确定发送PSFCH的资源池,包括:
    所述第一终端根据所述多个载波中的资源池包括的PSFCH传输资源的数量选取发送PSFCH的资源池。
  16. 根据权利要求15所述的方法,其特征在于,所述PSFCH配置信息包括第一参数以及第二参数的至少一项;
    所述第一参数用于指示PSFCH时隙中可用于传输PSFCH的PRB,所述第二参数用于指示循环移位对(Cyclic Shift Pair)。
  17. 根据权利要求16所述的方法,其特征在于,所述第一终端根据所述多个载波中的资源池包括的PSFCH传输资源的数量选取发送PSFCH的资源池,包括:
    所述第一终端将所述多个载波的所有资源池中第一参数最大的资源池作为发送PSFCH的资源池;或者
    将所述多个载波的所有资源池中第二参数最大的资源池作为发送PSFCH的资源池;或者
    将所述多个载波的所述资源池中第一参数和第二参数的乘积最大的资源池作为发送PSFCH的资源池。
  18. 根据权利要求3所述的方法,其特征在于,所述第一终端根据所述PSFCH配置信息,从所述多个载波中确定发送PSFCH的资源池,包括:
    所述第一终端根据所述PSFCH配置信息,确定所述多个载波中配置了PSFCH传输资源的资源池集合,从所述配置了PSFCH传输资源的资源池集合中确定发送PSFCH的资源池。
  19. 根据权利要求1-18任一项所述的方法,其特征在于,所述第一终端在多个载波上接收的来自第二终端的侧行数据,包括:来自所述第二终端的同一时刻的侧行数据,和/或,不同时刻的侧行数据。
  20. 根据权利要求1-19任一项所述的方法,其特征在于,所述第一终端在多个载波上接收的来自第二终端的侧行数据属于相同的传输块TB或不同的传输块。
  21. 根据权利要求1-20任一项所述的方法,其特征在于,所述第一终端在多个载波上接收的来自第二终端的侧行数据对应的侧行反馈信息承载在一个PSFCH上,或者,承载在不同的PSFCH上。
  22. 根据权利要求1-21任一项所述的方法,其特征在于,所述第一终端在多个载波上接收的来自第二终端的第一侧行数据所在的资源池与传输所述第一侧行数据对应的PSFCH的资源池是不同的资源池,和/或,所述第一侧行数据所在的载波与传输所述第一侧行数据对应的PSFCH的载波是不同的载波;
    其中,所述第一侧行数据是所述第一终端在多个载波上接收来自第二终端的侧行数据中的一个侧行数据。
  23. 一种资源选取装置,其特征在于,包括:
    接收模块,用于在多个载波上接收来自第二终端的侧行数据;
    处理模块,用于从所述多个载波中确定发送物理侧行反馈信道PSFCH的资源池。
  24. 根据权利要求23所述的装置,其特征在于,所述多个载波包括:
    可用于侧行传输的所有载波,或者,
    第一终端进行侧行传输可用的载波,或者,
    所述第二终端进行侧行传输可用的载波,或者,
    所述第一终端接收来自所述第二终端的侧行数据所在的载波。
  25. 根据权利要求23或24所述的装置,其特征在于,所述处理模块,具体用于:根据所述侧行数据所在的资源池、PSFCH配置信息、资源池的测量信息以及第一指示信息中的至少一项,从所述多个载波中确定发送PSFCH的资源池;
    其中,所述第一指示信息用于指示传输所述PSFCH的至少一个资源池。
  26. 根据权利要求25所述的装置,其特征在于,所述处理模块,具体用于:获取在所述多个载波上接收到的来自所述第二终端的PSCCH或者PSSCH所在的至少一个资源池,从所述至少一个资源池中确定发送PSFCH的资源池。
  27. 根据权利要求26所述的装置,其特征在于,所述处理模块,具体用于:
    根据优先级信息从所述至少一个资源池中确定发送PSFCH的资源池;或者,
    根据接收到的PSCCH或PSSCH的时间顺序从所述至少一个资源池中确定发送PSFCH的资源池。
  28. 根据权利要求25所述的装置,其特征在于,所述资源池的测量信息包括资源池的信道繁忙率CBR;所述处理模块,具体用于:
    根据资源池的CBR,从所述多个载波的资源池集合中按照CBR从低到高的顺序选取发送PSFCH的资源池。
  29. 根据权利要求25所述的装置,其特征在于,所述资源池的测量信息包括资源池的CBR;所述处理模块,具体用于:
    根据资源池的CBR,从所述多个载波的资源池集合中确定CBR小于CBR门限的至少一个资源池,从所述至少一个资源池中选取发送PSFCH的资源池。
  30. 根据权利要求29所述的装置,其特征在于,所述处理模块,具体用于:
    按照CBR从低到高的顺序从所述至少一个资源池中选取发送PSFCH的资源池。
  31. 根据权利要求25所述的装置,其特征在于,所述第一指示信息包括索引信息;所述处理模块,具体用于:
    选取所述索引信息对应的资源池为发送PSFCH的资源池。
  32. 根据权利要求31所述的装置,其特征在于,所述索引信息包括资源池索引和/或载波索引,所述资源池索引包括发送资源池的索引和/或接收资源池的索引。
  33. 根据权利要求31或32所述的装置,其特征在于,所述第一指示信息承载在侧行控制信息SCI、PC5无线资源控制RRC信令或介质访问控制层控制单元MAC CE中。
  34. 根据权利要求25所述的装置,其特征在于,所述PSFCH配置信息包括用于配置PSFCH格式的信息。
  35. 根据权利要求34所述的装置,其特征在于,所述PSFCH格式包括多种PSFCH格式中的至少一种,所述多种PSFCH格式中的任意两种PSFCH格式之间的以下至少一项不同:
    PSFCH占用的物理资源块PRB个数、PSFCH占用的时域符号个数或PSFCH承载的最大比特数。
  36. 根据权利要求25、34或35所述的装置,其特征在于,若所述处理模块确定发送PSFCH的格式为第一PSFCH格式,所述处理模块,具体用于:
    根据所述PSFCH配置信息,确定所述多个载波中的资源池支持的PSFCH格式,从支持所述第一PSFCH格式的资源池中确定发送PSFCH的资源池。
  37. 根据权利要求25所述的装置,其特征在于,所述PSFCH配置信息包括配置PSFCH传输资源的信息;所述处理模块,具体用于:
    根据所述多个载波中的资源池包括的PSFCH传输资源的数量选取发送PSFCH的资源池。
  38. 根据权利要求37所述的装置,其特征在于,所述PSFCH配置信息包括第一参数以及第二参数的至少一项;
    所述第一参数用于指示PSFCH时隙中可用于传输PSFCH的PRB,所述第二参数用于指示循环移位对(Cyclic Shift Pair)。
  39. 根据权利要求38所述的装置,其特征在于,所述处理模块,具体用于:
    将所述多个载波的所有资源池中第一参数最大的资源池作为发送PSFCH的资源池;或者
    将所述多个载波的所有资源池中第二参数最大的资源池作为发送PSFCH的资源池;或者
    将所述多个载波的所有资源池中第一参数和第二参数的乘积最大的资源池作为发送PSFCH的资源池。
  40. 根据权利要求25所述的装置,其特征在于,所述处理模块,具体用于:
    根据所述PSFCH配置信息,确定所述多个载波中配置了PSFCH传输资源的资源池集合,从所述配置了PSFCH传输资源的资源池集合中确定发送PSFCH的资源池。
  41. 根据权利要求23-40任一项所述的装置,其特征在于,所述在多个载波上接收的来自第二终端的侧行数据,包括:来自所述第二终端的同一时刻的侧行数据,和/或,不同时刻的侧行数据。
  42. 根据权利要求23-41任一项所述的装置,其特征在于,所述在多个载波上接收的来自第二终端的侧行数据属于相同的传输块TB或不同的传输块。
  43. 根据权利要求23-42任一项所述的装置,其特征在于,所述在多个载波上接收的来自第二终端的侧行数据对应的侧行反馈信息承载在一个PSFCH上,或者,承载在不同的PSFCH上。
  44. 根据权利要求23-43任一项所述的装置,其特征在于,所述在多个载波上接收的来自第 二终端的第一侧行数据所在的资源池与传输所述第一侧行数据对应的PSFCH的资源池是不同的资源池,和/或,所述第一侧行数据所在的载波与传输所述第一侧行数据对应的PSFCH的载波是不同的载波;
    其中,所述第一侧行数据是所述在多个载波上接收来自第二终端的侧行数据中的一个侧行数据。
  45. 一种电子设备,其特征在于,包括:存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器运行所述计算机程序执行如权利要求1-22中任一项所述的方法。
  46. 一种计算机存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-22中任一项所述的方法。
  47. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-22中任一项所述的方法。
PCT/CN2021/089051 2021-04-22 2021-04-22 资源选取方法、装置、设备及存储介质 WO2022222109A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21937347.9A EP4329227A1 (en) 2021-04-22 2021-04-22 Resource selection method and apparatus, device and storage medium
PCT/CN2021/089051 WO2022222109A1 (zh) 2021-04-22 2021-04-22 资源选取方法、装置、设备及存储介质
CN202180097066.5A CN117157925A (zh) 2021-04-22 2021-04-22 资源选取方法、装置、设备及存储介质
US18/381,343 US20240073867A1 (en) 2021-04-22 2023-10-18 Resource selection method and apparatus, device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/089051 WO2022222109A1 (zh) 2021-04-22 2021-04-22 资源选取方法、装置、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/381,343 Continuation US20240073867A1 (en) 2021-04-22 2023-10-18 Resource selection method and apparatus, device and storage medium

Publications (1)

Publication Number Publication Date
WO2022222109A1 true WO2022222109A1 (zh) 2022-10-27

Family

ID=83723685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089051 WO2022222109A1 (zh) 2021-04-22 2021-04-22 资源选取方法、装置、设备及存储介质

Country Status (4)

Country Link
US (1) US20240073867A1 (zh)
EP (1) EP4329227A1 (zh)
CN (1) CN117157925A (zh)
WO (1) WO2022222109A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536445A (zh) * 2019-04-30 2019-12-03 中兴通讯股份有限公司 Ue信息的报告方法、车辆网资源配置方法及装置
CN111082908A (zh) * 2019-06-05 2020-04-28 中兴通讯股份有限公司 信息的传输方法、装置、存储介质及电子装置
CN111294175A (zh) * 2019-01-11 2020-06-16 北京展讯高科通信技术有限公司 一种信息资源确定方法、设备及存储介质
CN111342941A (zh) * 2018-12-19 2020-06-26 华为技术有限公司 反馈控制信道的配置方法及设备
CN111865505A (zh) * 2019-04-30 2020-10-30 中国移动通信有限公司研究院 一种资源选择方法及设备
WO2020222565A1 (en) * 2019-05-02 2020-11-05 Samsung Electronics Co., Ltd. Resource allocation method and apparatus in wireless communication system
WO2020263019A1 (ko) * 2019-06-27 2020-12-30 한양대학교 산학협력단 사이드링크 harq 피드백 전송 방법 및 그 장치
CN112398594A (zh) * 2019-08-14 2021-02-23 中国移动通信有限公司研究院 sidelink HARQ-ACK的发送方法、PSFCH资源确定的方法及设备
CN112448793A (zh) * 2019-09-03 2021-03-05 普天信息技术有限公司 混合自动重传请求信息传输方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342941A (zh) * 2018-12-19 2020-06-26 华为技术有限公司 反馈控制信道的配置方法及设备
CN111294175A (zh) * 2019-01-11 2020-06-16 北京展讯高科通信技术有限公司 一种信息资源确定方法、设备及存储介质
CN110536445A (zh) * 2019-04-30 2019-12-03 中兴通讯股份有限公司 Ue信息的报告方法、车辆网资源配置方法及装置
CN111865505A (zh) * 2019-04-30 2020-10-30 中国移动通信有限公司研究院 一种资源选择方法及设备
WO2020222565A1 (en) * 2019-05-02 2020-11-05 Samsung Electronics Co., Ltd. Resource allocation method and apparatus in wireless communication system
CN111082908A (zh) * 2019-06-05 2020-04-28 中兴通讯股份有限公司 信息的传输方法、装置、存储介质及电子装置
WO2020263019A1 (ko) * 2019-06-27 2020-12-30 한양대학교 산학협력단 사이드링크 harq 피드백 전송 방법 및 그 장치
CN112398594A (zh) * 2019-08-14 2021-02-23 中国移动通信有限公司研究院 sidelink HARQ-ACK的发送方法、PSFCH资源确定的方法及设备
CN112448793A (zh) * 2019-09-03 2021-03-05 普天信息技术有限公司 混合自动重传请求信息传输方法及装置

Also Published As

Publication number Publication date
CN117157925A (zh) 2023-12-01
EP4329227A1 (en) 2024-02-28
US20240073867A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
US20200403737A1 (en) Method and apparatus for transmission or reception of sidelink feedback in communication system
KR20200143271A (ko) 사이드 링크 통신 방법 및 장치
US11791937B2 (en) Method and apparatus for transmission and reception of sidelink control information in wireless communication system
JP2023515093A (ja) V2xシステムで端末の間の協力を通じるリソース割り当て方法及び装置
US20220417976A1 (en) Processing time determination method and device of terminal in wireless vehicle communication system
WO2018171352A1 (zh) 一种数据传输方法及终端
US11659565B2 (en) Method and apparatus of retransmission using adjacent configured grant resource in wireless communications systems
JP2022531281A (ja) マルチキャストフィードバック構成方法及び装置
US20220046696A1 (en) Method and apparatus for uplink data information transmission in wireless communication system
KR20200127827A (ko) 무선 통신 시스템에서 자원 할당 방법 및 장치
WO2022222106A1 (zh) 传输物理侧行反馈信道psfch的方法和终端设备
WO2022222109A1 (zh) 资源选取方法、装置、设备及存储介质
WO2022141578A1 (zh) 通信方法、装置及系统
CN117480830A (zh) 通信系统中通过侧链路ue间协作的资源分配的方法和装置
WO2021056222A1 (zh) 一种资源调度方法及装置
US20240155651A1 (en) Method and device for indicating resource collision, and computer readable storage medium
WO2022141593A1 (zh) 一种通信方法及装置
WO2022193282A1 (zh) 资源选取方法、装置、设备及存储介质
WO2024031463A1 (zh) Sl通信方法、装置、设备、存储介质及程序产品
WO2024016121A1 (zh) 侧行传输方法、终端和网络设备
WO2024092670A1 (zh) 侧行传输方法及终端设备
WO2022205370A1 (zh) 载波选择方法、装置、终端及存储介质
WO2024032535A1 (zh) 一种传输块大小确定方法及装置
WO2022141104A1 (zh) 资源选取方法、装置、设备及存储介质
CN117793674A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937347

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021937347

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021937347

Country of ref document: EP

Effective date: 20231122