WO2022141578A1 - 通信方法、装置及系统 - Google Patents

通信方法、装置及系统 Download PDF

Info

Publication number
WO2022141578A1
WO2022141578A1 PCT/CN2020/142516 CN2020142516W WO2022141578A1 WO 2022141578 A1 WO2022141578 A1 WO 2022141578A1 CN 2020142516 W CN2020142516 W CN 2020142516W WO 2022141578 A1 WO2022141578 A1 WO 2022141578A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
time
time slot
terminal device
information
Prior art date
Application number
PCT/CN2020/142516
Other languages
English (en)
French (fr)
Inventor
郭文婷
苏宏家
董蕾
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023540199A priority Critical patent/JP2024502053A/ja
Priority to MX2023007891A priority patent/MX2023007891A/es
Priority to PCT/CN2020/142516 priority patent/WO2022141578A1/zh
Priority to CN202080107234.XA priority patent/CN116458231A/zh
Priority to EP20967916.6A priority patent/EP4258775A4/en
Publication of WO2022141578A1 publication Critical patent/WO2022141578A1/zh
Priority to US18/344,067 priority patent/US20230345512A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method, device, and system.
  • V2X vehicle-to-everything
  • transmission modes of V2X communication include transmission mode 1 based on base station scheduling, and transmission mode 2 in which user equipment (UE) autonomously selects SL transmission resources.
  • the base station uniformly allocates sidelink (SL) transmission resources according to the buffer status report (BSR) of each UE.
  • BSR buffer status report
  • the advantage of transmission mode 1 is that the SL transmission resources of each UE are uniformly scheduled by the base station, so resource collision can be avoided.
  • the sender UE first selects its SL transmission resource from the V2X communication resource pool, and then sends a physical sidelink control channel to the receiver UE on the SL transmission resource selected by itself. , PSCCH) and physical sidelink shared channel (PSSCH). Since the UE selects the SL transmission resource based on the result of its own listening and no longer depends on the scheduling of the base station, the transmission mode 2 is not limited by network coverage, that is, the sender UE can also communicate without network coverage.
  • the transmitting end UE-B and the transmitting end UE-C are far away and cannot hear the signals sent by each other, but the receiving end UE-A is between them.
  • the signals sent by the transmitter UE-B and the transmitter UE-C can be received. If the transmission mode 2 of the existing V2X communication is used, since the sender UE-B and the sender UE-C cannot sense the existence of each other through listening, when the sender UE-B sends a signal to the receiver UE-A 1.
  • the transmitting end UE-C sends signal 2 to the receiving end UE-A
  • the SL transmission resources of signal 1 and the SL transmission resources of signal 2 may overlap, resulting in a collision between signal 1 and signal 2, which in turn affects the receiving end UE-A.
  • A's signal is received.
  • the receiving end UE-A can send auxiliary information to the transmitting end UE-B to assist the transmitting end UE-B to select SL transmission resources; or, the receiving end UE-A can send the auxiliary information to the transmitting end UE-C.
  • the auxiliary information is used to assist the sending end UE-C to select SL transmission resources.
  • auxiliary information is transmitted through PSSCH and/or PSCCH in the V2X communication resource pool, because one PSSCH and/or PSCCH Occupies at least one subchannel of one SL time slot, so each auxiliary information needs at least one SL transmission resource of one subchannel of one SL time slot.
  • the resource overhead of transmitting auxiliary information is relatively large, especially when multiple auxiliary information needs to be transmitted, a large amount of physical resources will be occupied, and the efficiency of other information transmission will be affected.
  • Embodiments of the present application provide a communication method, device, and system, which are used to save resource overhead for sending auxiliary information.
  • a communication method is provided, and a communication device executing the communication method may be a first terminal device or a module applied in the first terminal device, such as a chip or a chip system.
  • the following description will be given by taking the execution subject as the first terminal device as an example.
  • the first terminal device determines auxiliary information, where the auxiliary information is used to assist the second terminal device in determining sideline transmission resources.
  • the first terminal device sends the auxiliary information to the second terminal device, wherein a sequence carrying the auxiliary information is mapped on a first time-frequency resource, the first time-frequency resource is a subset of the second time-frequency resource, and the first time-frequency resource is a subset of the second time-frequency resource.
  • the two time-frequency resources and the physical sideline feedback resources overlap in the time domain and are orthogonal in the frequency domain. Since the physical sideline feedback resource is less than one SL transmission time slot in the time domain, the auxiliary information is sent by using a subset of the second time-frequency resource that overlaps with the physical sideline feedback resource in the time domain. It needs to occupy part of the time domain resources in an SL transmission time slot, instead of occupying at least one sub-channel in the entire time slot, so that the resource overhead of transmitting and sending auxiliary information can be saved, especially when there are multiple auxiliary information to be transmitted and sent. It can ensure the transmission efficiency of other information transmission.
  • the time slot where the second time-frequency resource is located is after the first time slot, and the distance from the last symbol of the first time slot is greater than K 1 time slots
  • the time slot where the first reserved resource is located, the first reserved resource is the reserved resource closest to the first time slot, and K 1 or K 2 is the minimum time interval for sending the auxiliary information configured by the upper layer.
  • the time slot where the second time-frequency resource determined by K 1 is located is before the time slot where the second time-frequency resource determined by K 2 is located, select the time slot where the second time-frequency resource determined by K 1 is located to send auxiliary
  • the advantage of the information is that it can prompt the second terminal device as soon as possible, so as to trigger the second terminal device to perform SL resource selection, reselection or collision confirmation as soon as possible, and select the time slot where the second time-frequency resource determined by K 2 is located to send auxiliary information.
  • the advantage is that more time can be given to the first terminal device so that the first terminal device can generate more comprehensive and reliable auxiliary information.
  • the second time-frequency resources include J*M third time-frequency resources, and the J*M third time-frequency resources are arranged in the frequency domain first and then the time domain are sequentially allocated to M sub-channels in the J time slots, the J time slots are the time slots corresponding to the second time-frequency resource determined according to K 1 or K 2 , and the M is the sub-channels configured in the resource pool quantity.
  • each third time-frequency resource is continuous in the frequency domain of the second time-frequency resource, the time-domain peak-to-average ratio of the signal to be sent can be reduced, so that when the auxiliary information is sent, the Increase the average power of the signal, thereby increasing the actual power of each transmission sequence, and finally achieve the technical effect of expanding the coverage of the signal.
  • the first time-frequency resource includes M 1 third time-frequency resources in the J*M third time-frequency resources, where M 1 is the first time-frequency resource.
  • the two terminal devices transmit the number of sub-channels occupied by the physical side channel in the first time slot, and M 1 is a positive integer less than or equal to M.
  • the third time-frequency resource is the minimum granularity of the second time-frequency resource. Since the first time-frequency resource includes M 1 third time-frequency resources, it can be used for each subchannel of each time slot occupied by the transmission physical side channel channel. One third time-frequency resource is allocated, so the rationality of resource allocation for transmitting auxiliary information can be guaranteed.
  • the auxiliary information includes first information, and the first information is used to indicate the resource usage status on the first time slot, wherein the second terminal device is in the first time slot.
  • the physical side channel is sent on a time slot. Since the first information is used to indicate the resource usage status on the first time slot, when the second terminal device subsequently performs resource selection, it can select transmission resources not occupied by other terminal devices, or select the priority of data occupied by other terminal devices lower transmission resources, and it is not necessary to exclude all candidate resources in the corresponding time slot of the physical side channel transmission time slot of the second terminal device in the resource selection window to avoid possible resource conflicts, thereby improving the utilization of resources Rate.
  • the first information is used to indicate the resource usage status on the first time slot, including: the first information is used to indicate M subchannels on the first time slot The resource usage status of , where M is the number of sub-channels configured in the resource pool; or, the first information is used to indicate the resource usage status of sub-channels other than M sub - channels in the M sub-channels on the first time slot, M is the number of sub-channels configured in the resource pool, and M 1 is the number of sub-channels occupied by the second terminal device for sending the physical side channel on the first time slot.
  • the first information can use M bits or MM 1 bits.
  • the auxiliary information further includes second information, where the second information is used to indicate that the first reserved resource of the second terminal device collides with the reserved resources of other terminal devices , wherein the first reserved resource is the reserved resource closest to the first time slot, and the second terminal device transmits the physical side channel on the first time slot.
  • the first terminal device may determine auxiliary information including the second information to trigger the second terminal device to perform collision confirmation or re-selection of transmission resources, thereby achieving the technical effect of reducing the collision probability.
  • the first reserved resource is used for retransmission of the first transport block TB in the physical side channel of the second terminal device; and/or, the first reserved resource The resource is used for new transmission in the next cycle of the service to which the second TB belongs in the physical side channel of the second terminal device. Since the first reserved resource can be used for retransmission of the same TB or new transmission of different TBs, the communication method provided in this application is suitable for multiple transmission scenarios of TBs.
  • the first reserved resources include reserved M 3 sub-channel resources.
  • the first reserved resource is indicated by the time domain reservation indication value TRIV in the physical side channel of the second terminal device; or, the first reserved resource is indicated by the The resource reservation period indication in the physical side channel of the second terminal device.
  • the first reserved resource may be indicated by multiple parameters.
  • the auxiliary information further includes indication information, where the indication information is used to indicate that the auxiliary information includes the first information and/or the second information, wherein the first information is used for Indicates the resource usage status on the first time slot, and the second information is used to indicate that the first reserved resource of the second terminal device collides with the reserved resources of other terminal devices, and the first reserved resource is the closest to the first time slot. the reserved resource, the second terminal device transmits the physical side channel on the first time slot.
  • the second terminal device can be made to identify different types contained in the received auxiliary information, and identify the corresponding auxiliary information according to the types, so as to select the sideline transmission resources according to the auxiliary information, thereby The technical effect of improving resource utilization and/or reducing collision probability is achieved.
  • a communication method is provided, and a communication device executing the communication method may be a second terminal device or a module applied in the second terminal device, such as a chip or a chip system.
  • the following description will be given by taking the execution subject as the second terminal device as an example.
  • the second terminal device receives auxiliary information from the first terminal device, wherein the sequence carrying the auxiliary information is mapped on the first time-frequency resource, the first time-frequency resource is a subset of the second time-frequency resource, and the second time-frequency resource is a subset of the second time-frequency resource.
  • the time-frequency resources and the physical sideline feedback resources overlap in the time domain and are orthogonal in the frequency domain.
  • the second terminal device determines sideline transmission resources according to the auxiliary information.
  • the time slot where the second time-frequency resource is located is after the first time slot, and the distance from the last symbol of the first time slot is greater than K 1 time slots
  • the time slot where the first reserved resource is located, the first reserved resource is the reserved resource closest to the first time slot, and K 1 or K 2 is the minimum time interval for sending the auxiliary information configured by the upper layer.
  • the second time-frequency resources include J*M third time-frequency resources, and the J*M third time-frequency resources are arranged in the frequency domain first and then the time domain are sequentially allocated to M sub-channels in the J time slots, the J time slots are the time slots corresponding to the second time-frequency resource determined according to K 1 or K 2 , and the M is the sub-channels configured in the resource pool quantity.
  • the first time-frequency resource includes M 1 third time-frequency resources in the J*M third time-frequency resources, where M 1 is the first time-frequency resource.
  • the two terminal devices transmit the number of sub-channels occupied by the physical side channel in the first time slot, and M 1 is a positive integer less than or equal to M.
  • the auxiliary information includes first information, and the first information is used to indicate the resource usage status on the first time slot, wherein the second terminal device is in the first time slot.
  • the physical side channel is sent on a time slot.
  • the first information is used to indicate the resource usage status on the first time slot, including: the first information is used to indicate the M subchannels on the first time slot The resource usage status of , where M is the number of sub-channels configured in the resource pool; or, the first information is used to indicate the resource usage status of sub-channels other than M sub - channels in the M sub-channels on the first time slot, M is the number of sub-channels configured in the resource pool, and M 1 is the number of sub-channels occupied by the second terminal device for sending the physical side channel on the first time slot.
  • the auxiliary information further includes second information, where the second information is used to indicate that the first reserved resource of the second terminal device collides with the reserved resources of other terminal devices , wherein the first reserved resource is the reserved resource closest to the first time slot, and the second terminal device transmits the physical side channel on the first time slot.
  • the first reserved resource is used for retransmission of the first transport block TB in the physical side channel of the second terminal device; and/or, the first reserved resource The resource is used for new transmission in the next cycle of the service to which the second TB belongs in the physical side channel of the second terminal device.
  • the first reserved resources include reserved M 3 sub-channel resources.
  • the first reserved resource is indicated by the time domain reservation indication value TRIV in the physical side channel of the second terminal device; or, the first reserved resource is indicated by the The resource reservation period indication in the physical side channel of the second terminal device.
  • the auxiliary information further includes indication information, where the indication information is used to indicate that the auxiliary information includes the first information and/or the second information, wherein the first information is used for Indicates the resource usage status on the first time slot, and the second information is used to indicate that the first reserved resource of the second terminal device collides with the reserved resources of other terminal devices, and the first reserved resource is the closest to the first time slot. the reserved resource, the second terminal device transmits the physical side channel on the first time slot.
  • a communication device for implementing the above method.
  • the communication device includes corresponding modules, units, or means (means) for implementing the above method, and the modules, units, or means may be implemented by hardware, software, or hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes: a transceiver module and a processing module; the processing module is configured to determine auxiliary information, where the auxiliary information is used to assist the second terminal device in determining sideline transmission resource; the transceiver module is configured to send the auxiliary information to the second terminal device, wherein the sequence carrying the auxiliary information is mapped on the first time-frequency resource, and the first time-frequency resource is a subset of the second time-frequency resource , the second time-frequency resource and the physical sideline feedback resource overlap in the time domain and are orthogonal in the frequency domain.
  • the time slot where the second time-frequency resource is located is after the first time slot, and the distance from the last symbol of the first time slot is greater than K 1 time slots
  • the time slot where the first reserved resource is located, the first reserved resource is the reserved resource closest to the first time slot, and K 1 or K 2 is the minimum time interval for sending the auxiliary information configured by the upper layer.
  • the second time-frequency resources include J*M third time-frequency resources, and the J*M third time-frequency resources are arranged in the frequency domain first and then the time domain are sequentially allocated to M sub-channels in the J time slots, the J time slots are the time slots corresponding to the second time-frequency resource determined according to K 1 or K 2 , and the M is the sub-channels configured in the resource pool quantity.
  • the first time-frequency resource includes M 1 third time-frequency resources in the J*M third time-frequency resources, where M 1 is the first time-frequency resource.
  • the two terminal devices transmit the number of sub-channels occupied by the physical side channel in the first time slot, and M 1 is a positive integer less than or equal to M.
  • the auxiliary information includes first information, and the first information is used to indicate the resource usage status on the first time slot, wherein the second terminal device is in the first time slot.
  • the physical side channel is sent on a time slot.
  • the first information is used to indicate the resource usage state on the first time slot, including: the first information is used to indicate M subchannels on the first time slot The resource usage status of , where M is the number of sub-channels configured in the resource pool; or, the first information is used to indicate the resource usage status of sub-channels other than M sub - channels in the M sub-channels on the first time slot, M is the number of sub-channels configured in the resource pool, and M 1 is the number of sub-channels occupied by the second terminal device for sending the physical side channel on the first time slot.
  • the auxiliary information further includes second information, where the second information is used to indicate that the first reserved resource of the second terminal device collides with the reserved resources of other terminal devices , wherein the first reserved resource is the reserved resource closest to the first time slot, and the second terminal device transmits the physical side channel on the first time slot.
  • the first reserved resource is used for retransmission of the first transport block TB in the physical side channel of the second terminal device; and/or, the first reserved resource The resource is used for new transmission in the next cycle of the service to which the second TB belongs in the physical side channel of the second terminal device.
  • the first reserved resources include reserved M 3 sub-channel resources.
  • the first reserved resource is indicated by the time domain reservation indication value TRIV in the physical sideline channel of the second terminal device; or, the first reserved resource is indicated by the The resource reservation period indication in the physical side channel of the second terminal device.
  • the auxiliary information further includes indication information, where the indication information is used to indicate that the auxiliary information includes the first information and/or the second information, wherein the first information is used for Indicates the resource usage status on the first time slot, and the second information is used to indicate that the first reserved resource of the second terminal device collides with the reserved resources of other terminal devices, and the first reserved resource is the closest to the first time slot. the reserved resource, the second terminal device transmits the physical side channel on the first time slot.
  • the processing module may be a processor
  • the transceiver module may be a communication module connected via a communication interface.
  • a communication device for implementing the above method.
  • the communication device includes corresponding modules, units, or means (means) for implementing the above method, and the modules, units, or means may be implemented by hardware, software, or hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes: a transceiver module and a processing module; the transceiver module is configured to receive auxiliary information from the first terminal device, wherein a sequence that carries the auxiliary information mapping on a first time-frequency resource, where the first time-frequency resource is a subset of a second time-frequency resource, and the second time-frequency resource and the physical sideline feedback resource overlap in the time domain and are orthogonal in the frequency domain;
  • the processing module is configured to determine sideline transmission resources according to the auxiliary information.
  • the time slot where the second time-frequency resource is located is after the first time slot, and the distance from the last symbol of the first time slot is greater than K 1 time slots
  • the time slot where the first reserved resource is located, the first reserved resource is the reserved resource closest to the first time slot, and K 1 or K 2 is the minimum time interval for sending the auxiliary information configured by the upper layer.
  • the second time-frequency resources include J*M third time-frequency resources, and the J*M third time-frequency resources are arranged in the frequency domain first and then the time domain are sequentially allocated to M sub-channels in the J time slots, the J time slots are the time slots corresponding to the second time-frequency resource determined according to K 1 or K 2 , and the M is the sub-channels configured in the resource pool quantity.
  • the first time-frequency resource includes M 1 third time-frequency resources in the J*M third time-frequency resources, where M 1 is the first time-frequency resource.
  • the two terminal devices transmit the number of sub-channels occupied by the physical side channel in the first time slot, and M 1 is a positive integer less than or equal to M.
  • the auxiliary information includes first information, and the first information is used to indicate the resource usage status on the first time slot, wherein the second terminal device is in the first time slot.
  • the physical side channel is sent on a time slot.
  • the first information is used to indicate the resource usage status on the first time slot, including: the first information is used to indicate M subchannels on the first time slot The resource usage status of , where M is the number of sub-channels configured in the resource pool; or, the first information is used to indicate the resource usage status of sub-channels other than M sub - channels in the M sub-channels on the first time slot, M is the number of sub-channels configured in the resource pool, and M 1 is the number of sub-channels occupied by the second terminal device for sending the physical side channel on the first time slot.
  • the auxiliary information further includes second information, where the second information is used to indicate that the first reserved resource of the second terminal device collides with the reserved resources of other terminal devices , wherein the first reserved resource is the reserved resource closest to the first time slot, and the second terminal device transmits the physical side channel on the first time slot.
  • the first reservation resource is used for retransmission of the first transport block TB in the physical side channel of the second terminal device; and/or, the first reservation The resource is used for new transmission in the next cycle of the service to which the second TB belongs in the physical side channel of the second terminal device.
  • the first reserved resource includes reserved M 3 sub-channel resources.
  • the first reserved resource is indicated by the time domain reservation indication value TRIV in the physical sideline channel of the second terminal device; or, the first reserved resource is indicated by the The resource reservation period indication in the physical side channel of the second terminal device.
  • the auxiliary information further includes indication information, where the indication information is used to indicate that the auxiliary information includes the first information and/or the second information, wherein the first information is used for Indicates the resource usage status on the first time slot, and the second information is used to indicate that the first reserved resource of the second terminal device collides with the reserved resources of other terminal devices, and the first reserved resource is the closest to the first time slot. the reserved resource, the second terminal device transmits the physical side channel on the first time slot.
  • a communication device comprising: a processor; the processor is configured to be coupled to a memory, and after reading computer instructions stored in the memory, execute the method according to any one of the preceding aspects according to the instructions.
  • the communication apparatus further includes a memory; the memory is used for storing computer instructions.
  • the communication apparatus further includes a communication interface; the communication interface is used for the communication apparatus to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, and the like.
  • the communication device may be a chip or a chip system.
  • the communication device when the communication device is a chip system, the communication device may be constituted by a chip, and may also include a chip and other discrete devices.
  • the above-mentioned communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit on the chip or a chip system , pins or related circuits, etc.
  • the processor described above may also be embodied as a processing circuit or a logic circuit.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium, when the computer-readable storage medium runs on a computer, the computer can perform the method described in any one of the above aspects.
  • a computer program product comprising instructions which, when run on a computer, enable the computer to perform the method of any of the preceding aspects.
  • a communication system in an eighth aspect, includes a first terminal device that executes the method of the first aspect, and a second terminal device that executes the method of the second aspect.
  • FIG. 1 is a schematic diagram of a scenario of a hidden terminal provided by an embodiment of the present application
  • Fig. 2 is the scene schematic diagram of V2V communication in the prior art
  • FIG. 3 is a schematic diagram of signal transmission under the transmission mode of V2X communication in the prior art
  • FIG. 4 is a schematic diagram 1 of the prior art that the base station uses a bitmap to indicate the time domain resources of the V2X communication resource pool;
  • Fig. 5a is a schematic diagram 2 of the prior art that the base station uses a bitmap to indicate the time domain resources of the V2X communication resource pool;
  • 5b is a schematic diagram of time-frequency domain resources in a V2X communication resource pool in the prior art
  • FIG. 6 is a schematic diagram of the configuration of PSFCH resources in one cycle in the prior art
  • [Corrected 14.01.2021 in accordance with Rule 91] 7 is a schematic diagram of a bitmap of PSFCH frequency domain resources configured in a V2X communication resource pool in the prior art
  • FIG. 9 is a schematic diagram of allocating PSFCH resources for each sub-channel in a bound PSSCH time slot according to the prior art in a manner of first in the time domain and then in the frequency domain;
  • FIG. 10 is a schematic diagram 1 of the selection of SL transmission resources in the prior art
  • 11 is a schematic diagram of candidate resources in the frequency domain resources of the V2X communication resource pool in the prior art
  • FIG. 12 is a schematic diagram 2 of the selection of SL transmission resources in the prior art
  • FIG. 13 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 15 provides a communication method according to an embodiment of the present application.
  • 16 is a schematic diagram of sending auxiliary information according to an embodiment of the present application.
  • 17 is another schematic diagram of sending auxiliary information according to an embodiment of the present application.
  • 18 is a schematic diagram of allocating resources for sending auxiliary information to each sub-channel in a bound PSSCH time slot in a manner of first frequency domain and then time domain according to an embodiment of the present application;
  • FIG. 19 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the SL transmission time slot is a time slot that can be used for SL transmission
  • the PSFCH resource is a resource that can be used to send PSFCH
  • the PSFCH time slot is a time slot that includes PSFCH resources.
  • transmission means Equivalent to “sending", for example, “transmission resource” can be understood as “transmission resource”, and “transmission time slot” can be understood as “transmission time slot”, which is described here uniformly and will not be repeated below.
  • D2D device to device
  • D2D communication allows multiple D2D capable UEs to perform direct discovery and direct communication with or without network equipment.
  • the application scenario of the Internet of Vehicles based on D2D communication is also proposed.
  • the existing D2D communication cannot technically meet the latency requirements in the Internet of Vehicles scenario.
  • V2V vehicle-to-vehicle
  • a typical scenario of V2V communication is shown in Figure 2.
  • a moving vehicle can directly interact with other nearby vehicles through V2V communication, so as to obtain the status information and road condition information of other vehicles in real time to better assist the driving of the vehicle. , and even achieve autonomous driving.
  • V2X communication can realize the interconnection between the vehicle and the outside world through devices (such as sensors, in-vehicle terminals, etc.) configured on the vehicle and various communication technologies.
  • V2X communication can include interconnected communication such as V2V, vehicle to pedestrian (V2P), and vehicle to roadway infrastructure (V2I).
  • V2V vehicle to pedestrian
  • V2I vehicle to roadway infrastructure
  • the transmission of information in V2X communication is based on SL transmission, which can be understood as the application of SL transmission in the Internet of Vehicles.
  • Transmission modes of V2X communication include transmission mode 1 based on base station scheduling and transmission mode 2 in which the UE autonomously selects SL transmission resources.
  • the base station uniformly allocates SL transmission resources according to the BSR of each UE.
  • the allocation mode of the SL transmission resource may be a dynamic mode or a pre-configured mode.
  • the base station can notify the sending end UE of the SL transmission resource through downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • the sending end UE sends to the receiving end UE on the SL transmission resource indicated by the DCI.
  • Downlink control information sidelink control information, SCI
  • SCI is transmitted through PSCCH
  • data is transmitted through PSSCH.
  • the advantage of transmission mode 1 is that the SL transmission resources of each UE are uniformly scheduled by the base station, so resource collision can be avoided. However, in the case where the UE at the transmitting end has no network coverage, the transmission mode 1 cannot be used.
  • the UE selects SL transmission resources from the V2X communication resource pool for communication, and no longer depends on the unified allocation of the base station. Specifically, the sender UE first selects its SL transmission resources from the V2X communication resource pool, and then sends the SCI and data to the receiver UE on the SL transmission resources selected by itself. Among them, SCI is transmitted through PSCCH, and data is transmitted through PSSCH. Since the UE selects the SL transmission resource based on the result of its own listening and no longer depends on the scheduling of the base station, the transmission mode 2 is not limited by network coverage, that is, the sender UE can also communicate without network coverage. However, in this transmission mode, each UE performs monitoring and selection of SL transmission resources respectively, so resource collision may occur.
  • the SL transmission resources include initial SL transmission resources and/or retransmission resources, which are uniformly described here, and will not be repeated below.
  • the time-frequency resources required for V2X communication can be configured based on the V2X communication resource pool.
  • the V2X communication resource pool can be regarded as a collection of time domain resources and frequency domain resources for V2X communication.
  • the base station adopts a bitmap, and repeats the bitmap periodically to indicate the set of subframes used for V2X communication in all subframes in the communication system.
  • the length of the bitmap is 8 bits and is periodically repeated over N subframes.
  • the number of symbols occupied by SL transmission in each subframe is a fixed number of M symbols, and M may be regarded as the time domain transmission duration or time domain transmission unit of one SL transmission.
  • the value of the bitmap in Fig. 5a may be "11001110", where "1" represents a subframe used for V2X communication, and "0" represents a normal subframe.
  • subframes 0 to 7 when the value of the bitmap is "11001110", it means that subframes 0, 1, 4, 5 or 6 can be used for V2X communication, and the remaining subframes 2, 3 or 7 are common subframes. frame, which cannot be used for V2X communication.
  • the base station may divide the frequency domain resources for V2V communication into several sub-channels, and each sub-channel may contain a fixed number of physical resource blocks (PRBs).
  • PRBs physical resource blocks
  • the frequency resources used for V2X communication belong to the V2X communication resource pool, and there are N subch subchannels in the V2X communication resource pool, and each subchannel includes n ch PRBs.
  • the sequence number of the starting PRB of the frequency resource used for V2X communication may be indicated by the base station. Since the granularity of the frequency resources of the V2X communication resource pool may be sub-channels, one SL transmission may occupy one or more sub-channels.
  • V2X communication supports physical layer HARQ-ACK feedback. That is to say, for a PSSCH and PSCCH transmission, if the transmitting UE carries the HARQ-ACK feedback enable information in the SCI included in the PSCCH, the receiving UE needs to feed back the corresponding confirmation/not based on the decoding result of the PSSCH this time.
  • Acknowledgement/negative acknowledgement (ACK/NACK) information wherein the ACK/NACK information is transmitted through a physical sidelink feedback channel (PSFCH).
  • PSFCH physical sidelink feedback channel
  • the V2X communication resource pool configures periodic time domain resources for PSFCH resources, and its periodic configuration parameters can be 0, 1, 2, or 4.
  • Every Each SL transmission slot contains one PSFCH slot.
  • Figure 6 shows the configuration of PSFCH resources in one cycle, when , each SL transmission slot includes a PSFCH slot; when When , every two SL transmission time slots include one PSFCH time slot; when When , every four SL transmission slots include one PSFCH slot.
  • the PSFCH time slot occupies the last two orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols before the gap (GAP).
  • the V2X communication resource pool of the NR system is each sub-system.
  • the channel is configured with PSFCH resources. Specifically, the determination process of the PSFCH resource corresponding to each subchannel is as follows:
  • a bitmap of PSFCH frequency domain resources is configured in the V2X communication resource pool, and the bitmap is used to indicate whether each PRB is a PSFCH resource available for HARQ-ACK feedback in the frequency domain resources of the V2X communication resource pool. That is, the length of the bit information included in the bitmap is equal to the number of PRBs in the communication resource pool. "1" in the bitmap indicates that the corresponding PRB is a PSFCH resource available for HARQ-ACK feedback, whereas "0" in the bitmap indicates that the corresponding PRB is not a PSFCH resource.
  • the bitmap indicates that the first 4 PRBs of each subchannel can be used for the PSFCH to send ACK/NACK signals.
  • each SL transmission slot includes one PSFCH slot, so for a V2X communication resource pool containing N subch subchannels, the number of PRBs of the PSFCH resource corresponding to each subchannel satisfies the following formula (1):
  • the bitmap with a length of 30 has a total of 12 bits with the value "1”, so The value of is 12, the number of sub-channels N subch is 3, assuming the period configuration parameter If the value is 4, then the calculated The value of is 1, that is to say, the V2X communication resource pool configures the PSFCH resource of 1 PRB for each subchannel of each SL transmission time slot.
  • the specific time slot where the PSFCH resource used for HARQ-ACK feedback is located is determined according to the minimum time interval K.
  • a minimum time interval K can be defined, and its value is configured by the V2X communication resource pool. That is, the PSFCH is sent on the first available time slot containing the PSFCH resource, and the time slot is at least K time slots apart from the time slot where the PSSCH is located.
  • K the PSSCH carried on the SL transmission time slot 0 or 1
  • the PSSCH carried on 4 or 5 can be fed back on the PSFCH resource of SL transmission slot 7. Since the PSSCH carried on timeslots 2, 3, 4 or 5 can be fed back on the PSFCH resources of the same timeslot, the SL transmission timeslots 2, 3, 4 and 5 can be referred to as a PSSCH binding window.
  • the PSFCH resources in one PSFCH time slot are sequentially allocated to each sub-channel in the PSSCH bundling window in a manner of first in the time domain and then in the frequency domain.
  • the PSFCH resources corresponding to each sub-channel in the four bound PSSCH time slots are shown as numbers 0-11 in the figure. That is to say, the V2X communication resource pool allocates PSFCH resources of one PRB to each subchannel of each SL transmission time slot.
  • the PSSCH numbered 0 can be fed back on the PSFCH resource also numbered 0, and the PSSCH numbered 6 can be fed back on the PSFCH resource also numbered 6, wherein the PSFCH resources of the PSSCH are subchannel numbered 0 and 6.
  • SL transmission slot number 0 starts and is indicated by the bitmap.
  • the sub-channel number is j.
  • the PSFCH resource set corresponding to channel j is:
  • the transmitting end UE-B occupies two subchannels to transmit PSSCH, for example, PSSCHs numbered 5 and 9, the corresponding PSFCH resources are also numbered 5 and 9, which are discontinuous in the frequency domain.
  • V2X communication supports unicast, multicast, and broadcast, where multicast includes two scenarios, multicast 1 and multicast 2.
  • multicast includes two scenarios, multicast 1 and multicast 2.
  • a sender UE and a receiver UE can form a unicast connection pair.
  • HARQ-ACK feedback is enabled on the unicast link, in the case that the UE at the receiving end can correctly decode the PSCCH corresponding to the PSSCH, if the decoding of the PSSCH is correct, the UE at the receiving end feeds back the PSFCH carrying the ACK information to the UE at the transmitting end If the PSSCH is decoded incorrectly, the receiving end UE feeds back the PSFCH sequence carrying the NACK information to the transmitting end UE.
  • the receiving UE in the group can correctly decode the PSCCH corresponding to the PSSCH, if the PSSCH is decoded incorrectly, Then, the UE at the receiving end feeds back the PSFCH sequence carrying the NACK information to the UE at the sending end. If the PSSCH decoding is correct, the UE at the receiving end feeds back no information to the UE at the sending end.
  • the receiving UE in the group can correctly decode the PSCCH corresponding to the PSSCH, if the PSSCH is decoded correctly, The receiving end UE feeds back the PSFCH sequence carrying the ACK information to the transmitting end UE, and if the PSSCH is decoded incorrectly, the receiving end UE feeds back the PSFCH sequence carrying the NACK information to the transmitting end UE.
  • the PSFCH sequence can be generated based on a low peak-to-average ratio ZC sequence, which occupies two consecutive orthogonal OFDM symbols in the time domain and can be one PRB in the frequency domain.
  • the generation method of the PSFCH sequence is as follows:
  • a basic sequence r(n) can be generated according to the sequence length, 0 ⁇ n ⁇ M ZC , and then the basic sequence r(n) can be phase-rotated to obtain a low peak-to-average ratio sequence that can be reused.
  • the ratio sequence satisfies the following formula (2):
  • M ZC 12
  • ⁇ 1 represents the phase rotation value. That is, multiple users can use different phase rotation values ⁇ l to generate different PSFCH sequences, and each PSFCH sequence can be code-division multiplexed on one PRB for transmission. Since the UE at the receiving end needs to feed back the ACK/NACK information, each user needs to be allocated at least two sequences corresponding to ⁇ l with different values respectively.
  • the phase rotation value ⁇ l can satisfy the following formula (3):
  • mod() means taking the remainder, Indicates the number of the SL transmission time slot corresponding to the current subcarrier interval ⁇ in a radio frame.
  • l' represents the symbol index relative to the first OFDM symbol on the current PSFCH transmission slot.
  • m 0 represents the phase of the ACK in a PSFCH resource pair.
  • m cs represents the phase offset of the NACK sequence relative to the ACK sequence in a PSFCH resource pair, where the feedback resource pair can be used for HARQ-ACK feedback, where one sequence can be used to feed back ACK, and the other sequence can be used to feed back NACK.
  • V2X communication in unicast and multicast scenarios supports physical layer HARQ-ACK feedback.
  • the value of m cs can be determined according to Table 1 and Table 2.
  • Table 1 shows the phase mapping relationship of a PSFCH resource pair in the unicast and multicast 2 scenarios
  • Table 2 shows the physical uplink control channel (physical uplink control channel, PUCCH) in the multicast 1 scenario.
  • Format 0 format0 has The phase mapping relationship of a PSFCH resource pair when a scheduling request (scheduling request, SR) is used.
  • c in represents the number of consecutive time-domain symbols in a SL transmission slot, in an NR system, The value of can be 14, and m is an integer between 0 and 7.
  • c(i) represents the value of the serial number i in the pseudo-random sequence.
  • the specific generation process of c(n) is as follows:
  • x 1 (k+31) (x 1 (k+3)+x 1 (k))mod 2
  • x 2 (k+31) (x 2 (k+3)+x 2 (k+2)+x 2 (k+1)+x 2 (k))mod 2
  • N c 1600
  • the PSSCH corresponds to PSFCH resource pairs, where, Indicates the number of PSFCH sequence pairs that can be multiplexed on the PSFCH resources of one PRB configured in the V2X communication resource pool. As mentioned earlier, Indicates the number of PRBs of the PSFCH resources allocated by the V2X communication resource pool for each subchannel.
  • the V2X communication resource pool can also be configured by To limit the PSFCH resources that can be used by the receiving UE receiving the PSSCH, there are the following two schemes:
  • the receiving UE receiving the PSSCH can only use the PSFCH resource corresponding to the first subchannel occupied by the PSSCH, and the number of PSFCH resource pairs corresponding to the PSSCH is For example, as shown in FIG. 9 , when the PSSCH occupies two sub-channels numbered 5 and 9 to transmit data, the UE receiving the PSSCH can only use the PSFCH resource numbered 5 for feedback.
  • the receiving UE receiving the PSSCH can use the PSFCH resources corresponding to all sub-channels occupied by the PSSCH, and the number of PSFCH resource pairs corresponding to the PSSCH is For example, as shown in FIG. 9 , when the PSSCH occupies two subchannels numbered 5 and 9 to transmit data, the UE receiving the PSSCH can use the PSFCH resources numbered 5 and 9 for feedback.
  • the receiving end UE selects the first
  • Each PSFCH resource pair feeds back the PSFCH corresponding to the resource, where the PID represents the physical layer source address ID carried in the SCI.
  • M ID represents the ID configured by the upper layer of each receiver UE for this PSSCH transmission
  • M ID 0.
  • all PSFCH sequences can be arranged in increasing order according to the frequency domain index first and the code domain index last. That is, the PRB index of the PSFCH resource pair is In this PRB, m 0 of the PSFCH resource pair is given by and cyclic shift index to be determined jointly, indicating rounding down.
  • the value of m 0 of the PSFCH resource pair in one PRB is shown in Table 3.
  • each UE in the group uses a different pair of PSFCH resources for feedback due to different M IDs .
  • the UE at the transmitting end will also receive each resource pair separately.
  • M ID 0, for PSSCH with the same source address P ID , each UE in the group uses the same PSFCH to feed back NACK information.
  • This part mainly introduces the process of selecting the SL transmission resource by the UE at the transmitting end under the transmission mode 2 of the V2X communication in the NR system.
  • SL transmission supports reservation of SL transmission resources, that is, the SCI sent by a certain sender UE carries the reservation information of SL transmission resources in a future period of time. After receiving the SL transmission resource reservation information of the SCI, other UEs exclude the reserved SL transmission resources, so as to avoid resource collision.
  • the SCI includes reservation information of SL transmission resources, priority information of data sent by PSSCH this time, source address ID and destination address ID sent by PSSCH this time, and the like.
  • the UE at the transmitting end triggers the selection of SL transmission resources at time slot n, that is, in the time slot n, the UE at the transmitting end has data to send to the UE at the receiving end.
  • the resource listening window may be the time slot corresponding to [nT 0 , nT proc, 0 before time slot n
  • the resource selection window may be the time slot corresponding to [n+T 1 , n+T 2 ] after time slot n,
  • T 0 , T proc,0 , T 1 and T 2 are all parameters configured by high layers.
  • the sender UE listens to the SCIs sent by other UEs in the frequency domain resource pool, and then excludes the corresponding candidate resources in the resource selection window based on the listening results, and finally selects the remaining resources.
  • the SL transmission resource of the UE is used to send the data to be sent to the receiving end UE through the SL transmission resource.
  • the UE at the transmitting end senses the SCIs sent by UE1, UE2, UE3 and UE4 in the resource listening window and the reference signal received power (RSRP) of the resources reserved by them and located in the resource selection window If the measurement result is higher than the threshold Th prioTX,prioRX , in the resource selection window, the UE at the transmitting end excludes the resources reserved by UE1, UE2, UE3 and UE4.
  • the specific process of selecting the SL transmission resource by the UE at the transmitting end is as follows:
  • the resource selection window may be defined as the time slot corresponding to [n+T 1 , n+T 2 ] after the trigger time slot n of the SL transmission resource selection.
  • the candidate SL transmission resource Rx ,y is embodied in the frequency domain as a set of a group of consecutive subchannels with a length equal to L subch , where L subch is the number of subchannels occupied by PSSCH/PSCCH to be transmitted. Therefore, the total number of candidate resources on each SL transmission slot is N subch - L subch +1. Any set of consecutive sub-channels with length equal to L subch that meets the above conditions can be regarded as a candidate SL transmission resource R x,y , and the number of all candidate SL transmission resources is M total .
  • the resource listening window can be defined as the time slot corresponding to [nT 0 ,nT proc,0 ] before the trigger time slot n of the SL transmission resource selection.
  • T 0 can be configured by the high-level parameter t0_SensingWindow, and T proc,0 can be determined from Table 4.
  • the value of ⁇ SL is related to the sub-carrier spacing (sub-carrier spacing, SCS) ⁇ f corresponding to the SL transmission sub-bandwidth (bandwidth part, BWP), as shown in Table 5.
  • the thresholds Th prioTX, prioRX may be defined as a function of the priority corresponding to the data indicated in the SCI received by the transmitting end UE and the priority corresponding to the data to be sent by the transmitting end UE.
  • a set including all M total candidate SL transmission resources can be defined as S A .
  • the candidate resource R x, y can be excluded from the set SA:
  • the UE at the transmitting end does not have a listening time slot, that is, the UE at the transmitting end itself has sent PSSCH/PSCCH on the SL transmission time slot.
  • the sender UE can also send data. Since the SL transmission system is half-duplex, that is to say, the UE can only be in one of the sending state or the receiving state, so the sending end UE cannot listen by receiving signals sent by other UEs when it is in the sending state.
  • the V2X communication resource pool considers that the SCI sent by other UEs in this time slot includes all possible service periods, and reserves periodic SL transmission resources. Therefore, the transmitting end UE first excludes all the candidate SL transmission resources Rx ,y in the corresponding time slot of its own PSSCH/PSCCH transmission time slot in the SL transmission resource selection window, so as to exclude all possible conflicting SL transmission resources.
  • UE-B sends a PSSCH/PSCCH on time slot m, that is, the sending time slot of the PSSCH/PSCCH of the UE at the transmitting end is m, and the PSSCH/PSCCH occupies sub-channel 4 and sub-channel in the frequency domain 5. If time slot m is located in the resource listening window, even if there is no other UE sending information on time slot m except UE-B, UE-B needs to exclude time slot m from being in the resource selection window when selecting SL transmission resources subsequently. All SL transmission resources on the corresponding time slot within the period, including sub-channels 0-9.
  • P' rsvp_TX represents the logical cycle corresponding to the physical cycle P rsvp_TX of the transmitting UE
  • n' can be obtained in the following way: if time slot n belongs to the V2X communication resource pool, then If time slot n does not belong to the V2X communication resource pool, then is the first time slot belonging to the V2X communication resource pool after time slot n, in which the Defined as a set of SL transmission time slots belonging to the V2X communication resource pool.
  • P rsvp_TX represents the reservation period of the transmission resources of the transmitting end UE
  • the unit of P rsvp_TX can be milliseconds
  • the value can be provided by high-level parameters, that is, P rsvp_TX represents the physical cycle, which can include A time slot in a non-V2X communication resource pool.
  • P' rsvp_TX represents the logical period corresponding to the physical period P rsvp_TX , that is, P' rsvp_TX only includes time slots belonging to the V2X communication resource pool.
  • P rsvp_RX represents the resource reservation period of other UEs monitored by the UE at the transmitting end.
  • the unit of P rsvp_RX can be ms, and the value can be provided by the resource reservation period parameter in the SCI received by the UE at the transmitting end.
  • P rsvp_RX represents the physical cycle, which may include time slots in the non-V2X communication resource pool.
  • P' rsvp_RX represents the logical cycle corresponding to the physical cycle P rsvp_RX , that is, P' rsvp_RX only includes time slots belonging to the V2X communication resource pool.
  • the conversion relationship between the physical cycle P rsvp and the logical cycle P' rsvp is as follows:
  • P rsvp represents P rsvp_TX or P rsvp_RX
  • P' rsvp represents P' rsvp_TX or P' rsvp_RX .
  • a time slot configuration period is Pms, which is provided by the parameter uplink-downlink transmission period DL-UL-TransmissionPeriodicity in the time division multiplexing uplink-downlink conventional configuration tdd-UL-DL-ConfigurationCommon high-level signaling.
  • N represents the number of time slots available for SL transmission included in 20ms under a certain uplink-downlink time slot configuration.
  • the candidate resource R x, y can be excluded from the set SA:
  • the sender UE is listening to the time slot SCIs sent by other UEs are received, and when the resource reservation period parameter is present, if the sending UE is expected to be in the slot Time-frequency resources and candidate resources determined by the received SCI Coincidence, wherein, the meanings represented by P' rsvp_TX , P' rsvp_RX , q and j are the same as those represented by the corresponding parameters in the fifth step, and are not repeated here.
  • the sender UE is listening to the time slot SCIs sent by other UEs are received, then prio RX is decoded, and when the resource reservation period parameter is present, P rsvp_RX is decoded therefrom, where prio RX represents the priority of the data indicated in the SCI. If the RSRP measurement result of the candidate resource determined by the SCI is higher than the threshold Th prioTX,prioRX , the candidate resource can be excluded from the resource selection window, where the threshold Th prioTX,prioRX is the one indicated in the SCI received by the UE at the transmitting end A function of the priority of the data and the priority of the data to be sent by the sender UE.
  • the seventh step if the remaining candidate resources in the candidate resource set SA are less than X% of M total , then increase the preset RSRP threshold by 3dB, and then repeat the first to fourth steps, where the value of X is The value can be 20, 35 or 50.
  • the transmitting end UE reports the candidate resource set SA to the upper layer, and the upper layer completes the final resource selection from the set SA .
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and execution order, and the words “first” and “second” are not necessarily different.
  • the embodiments of the present application may be applicable to the LTE system or the NR system, and may also be applicable to other future-oriented new systems, etc., which are not specifically limited in the embodiments of the present application.
  • system can be used interchangeably with "network”.
  • a communication system 130 is provided in an embodiment of the present application.
  • the communication system 130 includes a first terminal device 1301 and a second terminal device 1302 .
  • the first terminal device 1301 is used to determine auxiliary information and send the auxiliary information to the second terminal device 1302 .
  • the second terminal device 1302 is configured to receive auxiliary information from the first terminal device 1301, and determine sideline transmission resources according to the auxiliary information.
  • the sequence carrying the auxiliary information is mapped on the first time-frequency resource, the first time-frequency resource is a subset of the second time-frequency resource, the second time-frequency resource and the physical sideline feedback resource overlap in the time domain, and the frequency Orthogonal on the domain.
  • the communication system 130 provided in this embodiment of the present application may further include a network device 1303 .
  • the network device 1303 is used to communicate with the first terminal device 1301 and/or the second terminal device 1302.
  • the first terminal device 1301 or the second terminal device 1302 ensures a discontinuous reception (discontinuous reception, Other terminal devices required by DRX) can receive the broadcast signal, and can send relevant request information to the network device 1303, which is not specifically limited in this embodiment of the present application.
  • the network device 1303 in this embodiment of the present application is a device that connects a terminal device (including the above-mentioned first terminal device 1301 or the second terminal device 1302) to a wireless network, and may be a base station (base station) , Evolved NodeB (eNodeB), transmission reception point (TRP), next generation NodeB (gNB) in 5G mobile communication system, base station in future mobile communication system or wireless fidelity (wireless-fidelity, Wi-Fi) access node in the system, etc.; it can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (central unit, CU), or a distributed unit ( distributed unit, DU).
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • network devices refer to wireless access network devices.
  • the terminal device in this embodiment of the present application may be a vehicle, or may be a vehicle-mounted terminal installed on a vehicle and used to assist the driving of the vehicle, Or the chip in the vehicle terminal.
  • the terminal device in this embodiment of the present application may be a device for implementing a wireless communication function, such as a terminal or a chip usable in the terminal.
  • the above-mentioned vehicle terminal or terminal may be UE, access terminal, terminal unit, terminal station, mobile station, mobile station, remote station, Remote terminal, mobile device, wireless communication device, terminal agent or terminal device, etc.
  • the access terminal may be a cellular telephone, a cordless telephone, a session initiation protocol (SIP) telephone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices or wearable devices, virtual reality (VR) end devices, augmented reality (AR) end devices, industrial control (industrial) wireless terminal in control) or wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal device (including the above-mentioned first terminal device 1301 or the second terminal device 1302) may be in a fixed position or may be movable, which is not specifically limited in this embodiment of the present application.
  • the terminal device includes a hardware layer, an operating system layer running on the hardware layer, and an operating system layer running on the operating system layer.
  • application layer includes hardware such as central processing unit (CPU), memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program that records the codes of the methods provided by the embodiments of the present application can be executed to provide the methods provided by the embodiments of the present application. method to communicate.
  • the execution body of the method provided in this embodiment of the present application may be a terminal device (including the above-mentioned first terminal device 1301 or the second terminal device 1302 ), or a terminal device (including the above-mentioned first terminal device 1301 and the second terminal device 1302 ) 1302) can call the program and execute the function module of the program.
  • the related functions of the terminal device in this embodiment of the present application may be implemented by one device, or may be implemented jointly by multiple devices, or may be implemented by one device within one device. This is not specifically limited in this embodiment of the present application. It is to be understood that the above-mentioned functions can be either network elements in hardware devices, or software functions running on dedicated hardware, or a combination of hardware and software, or instantiated on a platform (eg, a cloud platform). Virtualization capabilities.
  • the related functions of the terminal device in the embodiment of the present application may be implemented by the communication device 140 in FIG. 14 .
  • FIG. 14 is a schematic structural diagram of a communication apparatus 140 according to an embodiment of the present application.
  • the communication device 140 includes one or more processors 141, a communication line 142, and at least one communication interface (in FIG. 14, it is only an example to include a communication interface 144 and a processor 141 for illustration), optional
  • the memory 143 may also be included.
  • the processor 141 may be a CPU, a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the programs of the present application.
  • ASIC application-specific integrated circuit
  • Communication line 142 may include a path for connecting the various components.
  • the communication interface 144 can be a transceiver module for communicating with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (wireless local area networks, WLAN) and the like.
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 144 may also be a transceiver circuit located in the processor 141 to implement signal input and signal output of the processor.
  • the memory 143 may be a device having a storage function. For example, it may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) or other types of storage devices that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disk storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being stored by a computer any other medium taken, but not limited to this.
  • the memory may exist independently and be connected to the processor through communication line 142 .
  • the memory can also be integrated with the processor.
  • the memory 143 is used for storing computer-executed instructions for executing the solution of the present application, and the execution is controlled by the processor 141 .
  • the processor 141 is configured to execute the computer-executed instructions stored in the memory 143, thereby implementing the communication method provided in the embodiments of the present application.
  • the processor 141 may also perform processing-related functions in the communication methods provided in the following embodiments of the present application, and the communication interface 144 is responsible for communicating with other devices or communication networks.
  • the communication interface 144 is responsible for communicating with other devices or communication networks.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 141 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 14 .
  • the communication apparatus 140 may include multiple processors, such as the processor 141 and the processor 147 in FIG. 14 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication apparatus 140 may further include an output device 145 and an input device 146 .
  • the output device 145 is in communication with the processor 141 and can display information in a variety of ways.
  • the above-mentioned communication device 140 may be a general-purpose device or a dedicated device.
  • the communication device 140 can be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, a vehicle terminal device, an embedded device, or a similar structure in FIG. 14 . equipment.
  • PDA personal digital assistant
  • This embodiment of the present application does not limit the type of the communication device 140 .
  • a communication method provided by an embodiment of the present application includes the following steps:
  • the first terminal device determines auxiliary information.
  • the auxiliary information is used to assist the second terminal device in determining sideline transmission resources.
  • the auxiliary information includes first information, where the first information is used to indicate a resource usage state on the first time slot, wherein the second terminal device sends the physical sidelink channel on the first time slot.
  • the physical side channel channels include PSSCH and/or PSCCH.
  • the first information is used to indicate the resource usage state on the first time slot, including: the first information is used to indicate the resource usage state of the M subchannels on the first time slot, where M is a subchannel configured in the resource pool or, the first information is used to indicate the resource usage status of the subchannels except the M1 subchannels among the M subchannels on the first time slot, where M is the number of subchannels configured in the resource pool, and M1 is the second terminal
  • the device transmits the number of sub-channels occupied by the physical side channel on the first time slot.
  • the above-mentioned resource pool is the V2X communication resource pool where the first terminal device and the second terminal device are located, which is described in a unified manner here, and will not be repeated below.
  • the resource usage states of the M subchannels may be indicated by M bits.
  • M the value of M
  • the first information is "1010001011”
  • the high bits to the low bits correspond to subchannel 0 respectively.
  • 1010001011 can be represented on the first time slot, the sub-channel Channels 0, 2, 6, 8, and 9 cannot be used, and sub-channels 1, 3, 4, 5, and 7 can be used.
  • the resource usage status of the subchannels other than the M1 subchannels among the M subchannels may be indicated by MM1 bits, and the value and meaning of each bit are as described above, and will not be repeated here.
  • the value of the bit in the first information indicates whether a terminal device transmits PSSCH and/or PSCCH on the subchannel of the first time slot. Specifically, when a terminal device sends PSSCH and/or PSCCH on the subchannel of the first time slot, that is, the subchannel is already occupied and cannot be used. Therefore, the value of the corresponding bit in the first information is "1", otherwise, when no terminal device sends PSSCH and/or PSCCH on the subchannel of the first time slot, the value of the corresponding bit in the first information is "0".
  • the value of the bit in the first information indicates whether the RSRP measured on the subchannel of the first time slot exceeds a preset threshold, wherein the preset threshold may be based on the data sent by the second terminal device on the first time slot.
  • the priority of the data in the PSSCH is determined, or the preset threshold may also be determined by the V2X communication resource pool.
  • the preset threshold may be based on the data sent by the second terminal device on the first time slot.
  • the priority of the data in the PSSCH is determined, or the preset threshold may also be determined by the V2X communication resource pool.
  • the value of the corresponding bit in the first information is "1".
  • the value of the corresponding bit in the first information is "0".
  • the value of the bit in the first information indicates whether preemption is possible on the subchannel of the first time slot. Specifically, when there is an SCI indicating that there is PSSCH transmission on a sub-channel, but the PSSCH decoding fails, it is determined that the sub-channel can be preempted, or, when the PSSCH decoding on a sub-channel is correct, and if the sub-channel is correctly decoded on the first time slot.
  • the RSRP measured on the channel exceeds the preset threshold, but the priority of the data in the PSSCH is lower than the priority of the data in the PSSCH sent by the second terminal device on the first time slot, then it is judged that the sub-channel can be preempted, wherein,
  • the preset threshold is determined according to the priority of the data in the PSSCH sent by the second terminal device on the first time slot.
  • the sub-channel determined to be available for preemption is available, and therefore, the value of the corresponding bit in the first information is "0".
  • the value of the corresponding bit in the first information is "1".
  • the first terminal device in this embodiment of the present application may determine that the first terminal device includes the first information. Supplementary information.
  • the first information is used to indicate the resource usage status on the PSSCH and/or PSCCH transmission time slot of the second terminal device.
  • the second terminal device subsequently performs resource selection, it can select transmission resources that are not occupied by other terminal devices, or select transmission resources that are occupied by other devices but have a lower priority of data, without the need for PSSCH and/or data of the second terminal. Or all candidate resources on the corresponding time slot in the PSCCH transmission time slot in the resource selection window are excluded to avoid possible resource conflict. Therefore, based on this solution, the utilization rate of resources can be improved.
  • the auxiliary information further includes second information, where the second information is used to indicate that the first reserved resource of the second terminal device collides with the reserved resources of other terminal devices, wherein the first reserved resource is the distance The closest reserved resource of the first time slot, the second terminal device transmits the physical sidelink channel on the first time slot.
  • the first reserved resources include reserved M 3 sub-channel resources.
  • the first reserved resource is indicated by a time domain reservation indicator value (time domain resource indicator value, TRIV) in the physical side channel of the second terminal device; or, the first reserved resource is indicated by the physical side of the second terminal device.
  • a time domain reservation indicator value time domain resource indicator value, TRIV
  • TRIV time domain resource indicator value
  • the first reserved resource is used for retransmission of the first transport block TB in the physical sidelink channel of the second terminal device; and/or the first reserved resource is used for the physical transmission of the second terminal device. New transmission in the next cycle of the service to which the second TB belongs in the side channel.
  • the first reserved resource when the TRIV value is not 0 and the resource reservation period is 0, the first reserved resource may be the closest to the first time slot and used for the PSSCH and/or the second terminal device. or the reserved resource for the retransmission of the first TB in the PSCCH; when the value of TRIV is 0 and the value of the resource reservation period is not 0, the first reserved resource may be the closest to the first time slot and used for the second terminal device
  • the reserved resource for the retransmission of the first TB in the PSSCH and/or PSCCH of the second terminal device that is closest to the slot and used for the retransmission of the first TB in the PSSCH and/or PSCCH of the second terminal device, or the first reserved resource may be the closest to the
  • the reserved resources for new transmission in the next cycle of the service to which the second TB belongs may be the closest to the first time slot and are used in PSSCH and/or PSCCH of the second terminal device.
  • the transmitting end UE-B transmits PSSCH and/or PSCCH signals on sub-channels 3 and 4 on time slot n 1 and reserves the sub-channel on time slot n 1 +t.
  • the resources of channel 4 and sub-channel 5, ie M 3 2. Since the transmitting end UE - B cannot listen on the time slot n1, it cannot obtain the resource reservation information of other UEs. If the transmitting end UE-C also transmits PSSCH and/or PSCCH signals on subchannel 1 of time slot n 1 , and the transmitting end UE-C also reserves subchannel 4 and/or sub channel on time slot n 1 +t 5 resources.
  • the reserved resources of the transmitting end UE-B and the transmitting end UE-C on the time slot n 1 +t overlap in the frequency domain, or partially overlap in the frequency domain.
  • the transmitting end UE-B or the transmitting end UE-C cannot know that a collision may occur in the future. If the receiving end UE-A can detect the collision, the receiving end UE-A may use the second information to inform the transmitting end UE-B that the reserved resources collide with the reserved resources of other UEs (eg, the transmitting end UE-C) .
  • the second information may be used to indicate that the resources reserved by the transmitting end UE-B on the time slot n 1 +t collide with the reserved resources of other UEs (eg, the transmitting end UE-C).
  • the time slot for sending the second information may be time slot n 1 +k as shown in FIG. 16 .
  • the selection of the second information sending time slot may refer to the description in S1502, which will not be repeated here.
  • the reserved resources of the transmitting end UE-B and the transmitting end UE-C on the time slot n 1 +t overlap in the frequency domain, or partially overlap in the frequency domain.
  • the transmitting end UE-B or the transmitting end UE-C cannot know that a collision may occur in the future. If the receiving end UE-A can detect the collision, the receiving end UE-A may use the second information to inform the transmitting end UE-B that the reserved resources collide with the reserved resources of other UEs (eg, the transmitting end UE-C) .
  • the second information may be used to indicate that the resources reserved by the transmitting end UE-B on the time slot n 1 +t collide with the reserved resources of other UEs (eg, the transmitting end UE-C).
  • the time slot for sending the second information may be time slot n 1 +k as shown in FIG. 17 .
  • For the selection of the second information sending time slot reference may be made to the description in S1502, which will not be repeated here.
  • the length of the second information may be 1 bit, and is used to indicate whether the first reserved resource of the second terminal device collides with the reserved resources of other terminal devices.
  • the second information is used to indicate whether the reserved resources corresponding to the PSSCH and/or PSCCH sent by the transmitting end UE-B on time slot n 1 collide with the reserved resources of other UEs .
  • the second information length may also be M 3 bits, which are used to indicate whether each of the M 3 sub-channel resources reserved in the first reserved resources of the second terminal device is reserved with other terminal devices. Resources collide.
  • the second information is used to indicate whether the reserved M 3 sub-channel resources corresponding to the PSSCH and/or PSCCH sent by the transmitting end UE-B on time slot n 1 are the same as those of other UEs. The reserved resources collided.
  • the second information is "11", indicating that on time slot n 1 +t
  • the sender UE-B makes a reservation Both subchannels 4 and 5 of the UE-B will collide with the subchannel resources reserved by other UEs.
  • the second information is "10”, which means that on time slot n 1 +t, the subchannel 4 reserved by the transmitting end UE-B will collide with other UEs.
  • the reserved sub-channel resources collide, but the sub-channel 5 reserved by the transmitting end UE-B will not collide with the sub-channel resources reserved by other UEs.
  • the first reserved resources of the transmitting end UE-B (that is, subchannel 4 and subchannel 5 on time slot n 1 +t) can be used A retransmission of the same TB transmitted in the PSSCH and/or PSCCH sent on slot n1.
  • the first reserved resource of the transmitting end UE-B (ie, subchannel 4 and subchannel 5 on time slot n 1 +t) may be It is used for a new transmission in the next cycle of the service to which the TB transmitted in the PSSCH and/or PSCCH transmitted on the time slot n1.
  • the first reserved resource may be indicated by a resource reservation period (resource reservation period) of the first level control information corresponding to the PSSCH and/or PSCCH of the transmitting end UE-B.
  • resource reservation period resource reservation period
  • the first terminal in this embodiment of the present application may determine auxiliary information including the second information, where the second information is used to indicate the first reservation of the second terminal device
  • the resource collides with the reserved resources of other terminal devices, and the first reserved resource is the reserved resource closest to the transmission time slot of the physical side channel. Since the second terminal device and other terminal devices cannot sense the existence of each other through listening, when the second terminal device sends a signal 1 to the first terminal device, the other terminal device among the other terminal devices sends a signal to the first terminal device.
  • the transmission resources of the signal 1 and the transmission resources of the signal 2 may overlap, so that the signal 1 and the signal 2 collide, thereby affecting the signal reception of the first terminal device.
  • the first terminal device may determine auxiliary information including the second information to trigger the second terminal device or other terminal devices to perform collision confirmation or re-selection of transmission resources, thereby achieving the technical effect of reducing the collision probability.
  • the first terminal device may determine the auxiliary information according to the resource reservation information included in the physical sidelink channel sent by the second terminal device.
  • the first terminal device may only determine the first information, which is used to use the resource usage status on the first time slot Notifying the second terminal device to assist the second terminal device in selecting subsequent transmission resources.
  • the second terminal device reserves the transmission resource in the physical sideline channel sent on the first time slot
  • the first terminal device may determine the second information for indicating the first reserved resource of the second terminal device and other terminal devices
  • the first terminal device may determine at least one of three types of auxiliary information.
  • the three types of auxiliary information respectively correspond to two possible implementation manners of the first information and the second information.
  • the auxiliary information configured in the V2X communication resource pool includes three types of auxiliary information
  • the auxiliary information may also include indication information, and the indication information is used to indicate that the auxiliary information includes the above-mentioned first information and/or the above-mentioned
  • the second information that is, the indication information, is used to indicate whether the auxiliary information includes valid auxiliary information of the first type, whether it includes valid auxiliary information of the second type, or whether it includes valid auxiliary information of the third type.
  • the value of the bit is 1 to indicate that it contains valid auxiliary information of the first type, auxiliary information of the second type or auxiliary information of the third type, auxiliary information of the first type, auxiliary information of the second type or auxiliary information of the third type.
  • the bits corresponding to the information are sorted from high to low, and the indication information takes a value of "100", indicating that the first terminal device only determines the auxiliary information of the first type, and the indication information is "101", indicating that the first terminal device has determined A first type of auxiliary information and a third type of auxiliary information.
  • the indication information may be located before the three types of auxiliary information, so that the second terminal device can identify different types contained in the received auxiliary information, and select transmission resources according to the auxiliary information, so as to improve resources. utilisation and/or the technical effect of reducing the probability of a collision.
  • the type of auxiliary information determined by a terminal device, and its value may be 1, 2 or 3.
  • the first terminal device sends auxiliary information to the second terminal device.
  • the second terminal device receives the auxiliary information from the first terminal device.
  • the sequence carrying the auxiliary information is mapped on the first time-frequency resource, the first time-frequency resource is a subset of the second time-frequency resource, the second time-frequency resource and the physical sideline feedback resource overlap in the time domain, and the frequency Orthogonal on the domain.
  • the time slot where the second time-frequency resource is located is after the first time slot, and the distance from the last symbol of the first time slot is greater than the first physical sideline feedback of K 1 time slots.
  • the time slot where the second time-frequency resource is located is before the second time slot, and the distance from the first symbol of the second time slot is greater than the first physical side of K 2 time slots.
  • the time slot where the line feedback resource is located wherein the second time slot is the time slot where the first reserved resource of the second terminal device is located, the first reserved resource is the reserved resource closest to the first time slot, and K 1 or K 2 is The minimum time interval for sending auxiliary information configured by the high layer; or K 1 or K 2 is the minimum time interval K for HARQ-ACK feedback in the prior art.
  • the transmission time slot determined by K 1 or the transmission time slot determined by K 2 may be selected to transmit auxiliary information.
  • the transmission time slot determined by K1 precedes the transmission time slot determined by K2.
  • the advantage of selecting the transmission time slot determined by K 1 to transmit the auxiliary information is that the second terminal device can be prompted as soon as possible to trigger the second terminal device to perform SL resource selection, reselection or collision confirmation as soon as possible.
  • the advantage of selecting the transmission time slot determined by K 2 to transmit the auxiliary information is that more time can be given to the first terminal device so that the first terminal device can generate more comprehensive and reliable auxiliary information.
  • the transmission time slot determined by K 1 is more suitable for transmitting auxiliary information including the first information
  • the transmission time slot determined by K 2 is more suitable for transmitting auxiliary information including the second information.
  • the auxiliary information including the second information may also be sent through the transmission time slot determined by K 1
  • the auxiliary information including the first information may be sent through the transmission time slot determined by K 2 , which is not specifically limited in this embodiment of the present application .
  • the second time-frequency resources include J*M third time-frequency resources, and the J*M third time-frequency resources are sequentially allocated to the M subs in the J time slots in a manner of first frequency domain and then time domain.
  • J time slots are time slots corresponding to the second time-frequency resource determined according to K 1 or K 2
  • M is the number of sub-channels configured in the resource pool.
  • the second time-frequency resource includes J*M third time-frequency resources, which can be understood as the second time-frequency resource is composed of J*M third time-frequency resources, or the bandwidth of the second time-frequency resource is equally divided into J*M third time-frequency resources.
  • the first time-frequency resource includes M 1 third time-frequency resources among the J*M third time-frequency resources.
  • M 1 is the number of sub-channels occupied by the second terminal device in the first time slot for transmission and transmission of the physical sideline channel, and M 1 is a positive integer less than or equal to M.
  • the time slot where the physical sideline feedback resource is located may be the PSFCH time slot corresponding to the PSSCH and/or PSCCH sent by the second terminal device.
  • mapping the sequence carrying the auxiliary information on the first time-frequency resource mainly includes the following steps:
  • the sequence carrying the auxiliary information is determined.
  • a method similar to that in Table 1 above can be used. That is, 2 sequences can be generated based on the values of 2 m cs to correspond to different values of the same bit.
  • the auxiliary information with the length of S bits to be sent requires a total of 2*S sequences, which may also be referred to as S sequence pairs.
  • Each sequence pair contains two sequences corresponding to bit values "0" and "1", respectively.
  • the sequence Seq(2*i) may be a sequence corresponding to a bit value of "0”
  • the sequence Seq(2*i+1) may be a sequence corresponding to a bit value of "1".
  • the first terminal device may select S sequences from the S sequence pairs to send according to the auxiliary information to be sent.
  • auxiliary information with the length of S bits to be sent requires a total of 4*ceil(S/2) sequences, which may also be referred to as ceil(S/2) sequence sets, where ceil means rounding up.
  • Each sequence set contains four sequences corresponding to the bit values "00", “01”, “11” and “10” respectively, wherein the sequence Seq(4*i) can be corresponding to the bit value
  • the sequence Seq(4*i+1) may be the sequence corresponding to the bit value of "01”
  • the sequence Seq(4*i+2) may be the sequence corresponding to the bit value of "11”
  • the sequence, and the sequence Seq(4*i+3) may be a sequence corresponding to a bit value of "10".
  • the first terminal device may select ceil(S/2) sequences from the ceil(S/2) sequence set to send according to the auxiliary information to be sent.
  • the calculation amount of the two implementations is basically equal.
  • the method of selecting ceil(S/2) sequences from the ceil(S/2) sequence set for transmission requires that compared with the method of selecting S sequences from S sequence pairs to transmit The number of sequences sent can be cut in half.
  • the time domain location of the second time-frequency resource is determined.
  • the first time-frequency resource is a subset of the second time-frequency resource, and the second time-frequency resource and the physical sideline feedback resource are in the time domain It is coincident in the above and orthogonal in the frequency domain, so this step is equivalent to determining the transmission time slot of the auxiliary information.
  • the time slot for sending auxiliary information may be time slot n 1 +k as shown in FIG. 16
  • time slot n 1 +k is the UE at the transmitting end -
  • n 1 +k is the PSFCH slot closest to n 1 after the PSSCH and/or PSCCH transmission slot n 1 of the transmitting end UE-B.
  • the time slot for sending auxiliary information may also be time slot n 1 +k as shown in FIG. 17 , and time slot n 1 +k is the time slot for sending Before the time slot n 1 +t where the first reserved resource of the end UE-B is located, the first PSFCH time slot whose interval from the first symbol of n 1 +t is greater than K 2 time slots.
  • K 2 is the minimum time interval for sending auxiliary information.
  • the frequency domain position of the second time-frequency resource is determined.
  • the second time-frequency resource is orthogonal to the PSFCH resource used for sending HARQ-ACK information in the prior art in the frequency domain.
  • the V2X communication resource pool configures a bitmap for HARQ-ACK feedback, which is used to indicate whether each PRB is a PSFCH resource that can be used for HARQ-ACK feedback, if the bitmap is in the bitmap
  • the "1" of the bit indicates that the corresponding PRB is a PSFCH resource that can be used for HARQ-ACK feedback, then in the embodiment of this application, a bit "0" is used to indicate that the corresponding PRB can be used for sending auxiliary information.
  • the first time-frequency resource can be understood as the set of PRBs numbered 4 and 5 on the PSFCH timeslot
  • the second time-frequency resource can be understood as the PRBs numbered 0-15 on the PSFCH timeslot.
  • the second time-frequency resource includes 15 third time-frequency resources, and each third time-frequency resource includes one PRB.
  • J*M third time-frequency resources are sequentially allocated to M subchannels in the J time slots in a manner of first frequency domain and then time domain, where M is the number of subchannels configured in the resource pool, and J
  • the time slot is the time slot corresponding to the second time-frequency resource determined according to K 1 or K 2 .
  • K 1 or K 2 may be the minimum time interval K for HARQ-ACK feedback in the prior art.
  • Second time-frequency resources and period configuration parameters Therefore, J is related to the period configuration parameter of the PSFCH resource related, a possibility, a possibility That is to say, the J time slots are all or part of the time slots within the binding window indicated by the bitmap configured in the V2X communication resource pool.
  • N subch is the V2X communication
  • P ⁇ J*N subch , floor() means rounded down.
  • the UE-B at the transmitting end occupies two sub-channels in the second SL transmission time slot to send the PSSCH, for example, the PSSCHs numbered 4 and 5, then the corresponding auxiliary information is carried by the UE-B.
  • the first time-frequency resource of the sequence is a set of the fourth third time-frequency resource and the fifth third time-frequency resource.
  • the fourth Q PRB resource is the third time-frequency resource numbered 4
  • the third time-frequency resource numbered 4 and the third time-frequency resource numbered 5 are continuous in the frequency domain of the second time-frequency resource, while in the prior art shown in FIG. 9 , , the PSFCH resources corresponding to the PSSCHs numbered 5 and 9 are discontinuous in the frequency domain.
  • each third time-frequency resource of the sequence carrying auxiliary information corresponding to each PSSCH is in the frequency domain due to the method of first frequency domain and then time domain. Therefore, the peak-to-average ratio in the time domain of the signal to be sent can be reduced, so that when the auxiliary information is sent, the average power of the signal is increased, thereby increasing the actual power of each transmission sequence, and finally the technical effect of expanding the signal coverage is achieved.
  • mapping position ie, the first time-frequency resource
  • the essence of determining the first time-frequency resource is to determine the PRB in the second time-frequency resource that can be used to carry the sequence of auxiliary information.
  • the receiving end UE-A may use Q PRBs to transmit auxiliary information.
  • the receiving end UE-A can use Q*Z PRBs to send auxiliary information, and the Q*Z PRBs are in the second time-frequency
  • the resources are continuous in the frequency domain.
  • the number of sequence resource sets that carry auxiliary information is in, The number of cyclic shift sequence pairs that can be multiplexed in one PRB configured for the V2X communication resource pool.
  • the sequences Seq(2*i) and Seq(2*i+1) that carry auxiliary information correspond to PRB resources are The cyclic shift index value is And the m 0 value of the sequence is determined from Table 3, and the m CS value of the sequence is determined according to Table 6 below.
  • the PRB resources corresponding to the sequences Seq(2*i) and Seq(2*i+1) carrying auxiliary information are (i)mod(Q*Z), and the cyclic shift index value is for And the m 0 value of the sequence is determined from Table 3, and the m CS value of the sequence is determined according to Table 6 below.
  • the UE-A at the transmitting end maps the sequence of the auxiliary information to be sent on the physical resource set of the PSFCH time slot in the code domain first and then the frequency domain.
  • the mapping is performed in the frequency domain first and then in the code domain.
  • m CS and m 0 can be respectively according to the following table 7 and table 8 OK.
  • receiver UEs can also send auxiliary information to the sender UE-B.
  • the number of receiver UEs that assist the sender UE-B More, because the second time-frequency resource is limited, there may be a situation that the first time-frequency resource cannot be allocated to each receiver UE.
  • multiple receiver UEs may jointly use the same first time-frequency resource to send auxiliary information, and in order to avoid ambiguity on the side of the sender UE-B receiving the auxiliary information, multiple receiver UEs may only use the same first time-frequency resource to transmit auxiliary information.
  • the sequence corresponding to the feedback bit "1" and the process of determining the specific mapping position of the sequence is the same as the above example of selecting ceil(S/2) sequences from the ceil(S/2) sequence set for transmission and the pair of S sequences.
  • the process of determining the specific mapping position of the sequence bearing the auxiliary information in the example of the manner of selecting S sequences for transmission is the same, and will not be repeated here.
  • the second terminal device determines sideline transmission resources according to the auxiliary information.
  • the second terminal device may select, according to the assistance information, transmission resources that are not occupied by other UEs, or select transmission resources that are occupied by other UEs but have a lower priority of data.
  • the second terminal device may trigger a collision confirmation or a transmission resource reselection process according to the resource collision result indicated in the auxiliary information.
  • the sequence carrying the auxiliary information is mapped on the first time-frequency resource, the first time-frequency resource is a subset of the second time-frequency resource, and the second time-frequency resource and the physical sideline feedback resource are in the time domain Coincident and orthogonal in the frequency domain. Since the physical sideline feedback resource is less than one SL transmission slot in the time domain, only one SL transmission slot needs to be occupied to transmit the auxiliary information by using the subset of the second time-frequency resource that overlaps with the PSFCH resource in the time domain It does not need to occupy at least one sub-channel in the entire time slot, so that the resource overhead of sending auxiliary information can be saved, especially when multiple auxiliary information needs to be sent, the transmission efficiency of other information can be guaranteed. .
  • the methods and/or steps implemented by the first terminal device may also be implemented by components (such as chips or circuits) that can be used in the first terminal device;
  • the methods and/or steps may also be implemented by components (eg, chips or circuits) usable in the second terminal device.
  • an embodiment of the present application further provides a communication device, where the communication device is used to implement the above-mentioned various methods.
  • the communication device may be the first terminal device in the foregoing method embodiments, or a device including the foregoing first terminal device, or a component usable for the first terminal device; or, the communication device may be the first terminal device in the foregoing method embodiments
  • the second terminal device or a device including the above-mentioned second terminal device, or a component usable for the second terminal device.
  • the communication apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or in the form of a combination of hardware and computer software, in conjunction with the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the communication device may be divided into functional modules according to the above method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 19 shows a schematic structural diagram of a communication device 190 .
  • the communication device 190 includes a transceiver module 191 and a processing module 192 .
  • the transceiver module 191 may also be called a transceiver unit to implement a transceiver function, for example, a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module 192 is configured to determine auxiliary information, where the auxiliary information is used to assist the second terminal device in determining side channel resources.
  • the transceiver module 191 is configured to send auxiliary information to the second terminal device, wherein the sequence carrying the auxiliary information is mapped on the first time-frequency resource, the first time-frequency resource is a subset of the second time-frequency resource, and the second time-frequency resource is a subset of the second time-frequency resource.
  • the resources and the physical sideline feedback resources overlap in the time domain and are orthogonal in the frequency domain.
  • the transceiver module 191 is configured to receive auxiliary information from the first terminal device, wherein the sequence carrying the auxiliary information is mapped on the first time-frequency resource, the first time-frequency resource is a subset of the second time-frequency resource, and the second time-frequency resource is a subset of the second time-frequency resource.
  • the frequency resources and the physical sideline feedback resources overlap in the time domain and are orthogonal in the frequency domain.
  • the processing module 192 is configured to determine the sideline transmission resource according to the auxiliary information.
  • the communication apparatus 190 is presented in the form of dividing each functional module in an integrated manner.
  • Module herein may refer to a specific ASIC, circuit, processor and memory executing one or more software or firmware programs, integrated logic circuit, and/or other device that may provide the functions described above.
  • the communication device 190 is the first terminal device in the above method embodiment, in a simple embodiment, those skilled in the art can think that the communication device 190 can take the form shown in FIG. 14 .
  • the processor 141 or 147 in the first terminal device shown in FIG. 14 may invoke the computer execution instructions stored in the memory 143 to cause the first terminal device to execute the communication method in the above method embodiment.
  • the functions/implementation process of the transceiver module 191 and the processing module 192 in FIG. 19 can be implemented by the processor 141 or 147 in the first terminal device shown in FIG. 14 calling the computer execution instructions stored in the memory.
  • the function/implementation process of the processing module 192 in FIG. 10 may be implemented by the processor 141 or 147 in the first terminal device shown in FIG. 14 calling the computer-executed instructions stored in the memory, and the transceiver module 191 in FIG. 19
  • the function/implementation process of the can be realized through the communication interface 144 shown in FIG. 14 .
  • the communication device 190 is the second terminal device in the above method embodiment
  • the communication device 190 may also adopt the form shown in FIG. 14 .
  • the specific implementation is the same as the above-mentioned case where the communication device 190 is the first terminal device, and details are not repeated here.
  • the communication apparatus 190 provided in this embodiment can execute the above communication method, the technical effects that can be obtained by the communication apparatus 190 may refer to the above method embodiments, which will not be repeated here.
  • one or more of the above modules or units may be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and implement the above method flow.
  • the processor can be built into a SoC (system on chip) or an ASIC, or it can be an independent semiconductor chip.
  • SoC system on chip
  • ASIC application specific integrated circuit
  • the internal processing of the processor may further include necessary hardware accelerators, such as field programmable gate array (FPGA), PLD (Programmable Logic Device) , or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD Programmable Logic Device
  • the hardware can be CPU, microprocessor, digital signal processing (DSP) chip, microcontroller unit (MCU), artificial intelligence processor, ASIC, Any or any combination of SoCs, FPGAs, PLDs, dedicated digital circuits, hardware accelerators, or non-integrated discrete devices that may or may not run the necessary software to perform the above method flows.
  • DSP digital signal processing
  • MCU microcontroller unit
  • ASIC any or any combination of SoCs, FPGAs, PLDs, dedicated digital circuits, hardware accelerators, or non-integrated discrete devices that may or may not run the necessary software to perform the above method flows.
  • an embodiment of the present application further provides a chip system, including: at least one processor and an interface, the at least one processor is coupled to the memory through the interface, and when the at least one processor executes the computer program or instruction in the memory , the method in any of the above method embodiments is executed.
  • the communication device further includes a memory.
  • the chip system may be composed of chips, or may include chips and other discrete devices, which are not specifically limited in this embodiment of the present application.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or data storage devices including one or more servers, data centers, etc. that can be integrated with the medium.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供通信方法、装置及系统,用于节省发送辅助信息的资源开销。方法包括 : 第一终端装置确定辅助信息,辅助信息用于辅助第二终端装置确定侧行发送资源; 第一终端装置向第二终端装置发送辅助信息,其中,承载辅助信息的序列映射在第一时频资源上,第一时频资源为第二时频资源的子集,第二时频资源与物理侧行反馈资源在时域上重合,在频域上正交。

Description

通信方法、装置及系统 技术领域
本申请涉及通信技术领域,尤其涉及通信方法、装置及系统。
背景技术
随着无线通信技术的发展,车辆与外界(vehicle to everything,V2X)通信也越来越普及。利用V2X通信,可以实时地获取车辆周围的路况信息,从而更好地辅助车辆的驾驶甚至实现自动驾驶。
目前,V2X通信的传输模式包括基于基站调度的传输模式一,以及用户设备(user equipment,UE)自主选择SL传输资源的传输模式二。在传输模式一中,基站根据各个UE的缓存状态报告(buffer status report,BSR),统一进行侧行链路(sidelink,SL)传输资源的分配。传输模式一的优势在于,各个UE的SL传输资源由基站统一进行调度,因而可以避免资源碰撞。在传输模式二中,发送端UE首先从V2X通信资源池中自行选择其SL传输资源,然后在其自行选择的SL传输资源上向接收端UE发送物理侧行链路控制信道(physical sidelink control channel,PSCCH)和物理侧行链路共享信道(physical sidelink shared channel,PSSCH)。由于UE基于自身侦听的结果来选择SL传输资源,不再依赖于基站的调度,因此传输模式二不受限于网络覆盖,即在没有网络覆盖情况下,发送端UE也可以进行通信。
在如图1所示的隐藏终端的场景下,发送端UE-B和发送端UE-C距离较远,互相侦听不到对方发送的信号,但是接收端UE-A处于两者之间,可以接收到发送端UE-B和发送端UE-C发送的信号。如果使用现有的V2X通信的传输模式二,由于发送端UE-B和发送端UE-C无法通过侦听来感知到对方的存在,因此当发送端UE-B向接收端UE-A发送信号1,发送端UE-C向接收端UE-A发送信号2时,信号1的SL传输资源与信号2的SL传输资源可能重叠,从而导致信号1与信号2发生碰撞,进而影响接收端UE-A的信号接收。为解决该问题,接收端UE-A可以向发送端UE-B发送辅助信息,以辅助发送端UE-B进行SL传输资源的选择;或者,接收端UE-A可以向发送端UE-C发送辅助信息,以辅助发送端UE-C进行SL传输资源的选择。
目前,在现有V2X通信的传输模式二中,UE之间进行信息传输需要同时发送PSSCH和PSCCH,若辅助信息通过V2X通信资源池中的PSSCH和/或PSCCH传输,由于一个PSSCH和/或PSCCH占用一个SL时隙的至少一个子信道,因此每个辅助信息需要至少占用一个SL时隙的一个子信道的SL传输资源。这样,传输辅助信息的资源开销较大,尤其有多个辅助信息需要传输时,将会占用大量的物理资源,影响其他信息传输的效率。
发明内容
本申请实施例提供通信方法、装置及系统,用于节省发送辅助信息的资源开销。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种通信方法,执行该通信方法的通信装置可以为第一终端装置也可以为应用于第一终端装置中的模块,例如芯片或芯片系统。下面以执行主体为第一终端装置为例进行描述。第一终端装置确定辅助信息,该辅助信息用于辅助第二终端装置确定侧行发送资源。该第一终端装置向第二终端装置发送该辅助信息,其中,承载该辅助信息的序列映射在第一时频资源上,该第一时频资源为第二时频资源的子集,该第二时频资源与物理侧行反馈资源在时域上重合,在频域上正交。由于物理侧行反馈资源在时域上小于一个SL传输时隙,因此,使用在时域上与物理侧行反馈资源重合的第二时频资源的子集来发送辅助信息,辅助信息的发送仅需要占用一个SL传输时隙中的部分时域资源,而不需要占用整个时隙上的至少一个子信道,从而能够节省传输发送辅助信息的资源开销,尤其是在有多个辅助信息需要传输发送时,能够保证其他信息传输的发送效率。
结合上述第一方面,在一种可能的实现方式中,该第二时频资源所在的时隙为第一时隙之后,距离该第一时隙的最后一个符号,间隔大于K 1个时隙的第一个物理侧行反馈资源所在的时隙,其中,该第二终端装置在该第一时隙上发送物理侧行信道;或者,该第二时频资源所在的时隙为第二时隙之前,距离该第二时隙的第一个符号,间隔大于K 2个时隙的第一个物理侧行反馈资源所在的时隙,其中,该第二时隙为该第二终端装置的第一预约资源所在的时隙,该第一预约资源为距离该第一时隙最近的预约资源,K 1或K 2为高层配置的发送该辅助信息的最小时间间隔。如果由K 1确定的第二时频资源所在的时隙在由K 2确定的第二时频资源所在的时隙之前,选择由K 1确定的第二时频资源所在的时隙来发送辅助信息的优势在于,可以尽早提示第二终端装置,以触发第二终端装置尽早进行SL资源选择、重选或碰撞确认,选择由K 2确定的第二时频资源所在的时隙来发送辅助信息的优势在于,可以给予第一终端装置更多的时间,以便于第一终端装置生成更全面、更可靠的辅助信息。
结合上述第一方面,在一种可能的实现方式中,该第二时频资源中包括J*M个第三时频资源,该J*M个第三时频资源按照先频域后时域的方式顺序分配给J个时隙中的M个子信道,该J个时隙为根据K 1或K 2确定的该第二时频资源对应的时隙,该M为资源池中配置的子信道数量。由于先频域后时域的方式使得各个第三时频资源在第二时频资源的频域上是连续的,因此可以降低待发送信号的时域峰均比,从而在发送辅助信息时,增加信号的平均功率,进而增加每个发送序列的实际功率,最终达到扩大信号覆盖范围的技术效果。
结合上述第一方面,在一种可能的实现方式中,该第一时频资源包含该J*M个第三时频资源中的M 1个第三时频资源,其中,M 1为该第二终端装置在该第一时隙上传输发送物理侧行信道占用的子信道数量,M 1为小于或者等于M的正整数。第三时频资源是第二时频资源的最小粒度,由于第一时频资源中包含M 1个第三时频资源,可以为发送物理侧行信道占用的每个时隙的每个子信道都分配1个第三时频资源,因此能够保证用于发送辅助信息的资源分配的合理性。
结合上述第一方面,在一种可能的实现方式中,该辅助信息包括第一信息,该第一信息用于指示第一时隙上的资源使用状态,其中,该第二终端装置在该第一时隙上 发送物理侧行信道。由于第一信息用于指示第一时隙上的资源使用状态,因此第二终端装置后续进行资源选择时,可以选择其他终端装置未占用的传输资源,或者选择其他终端装置占用但数据的优先级较低的传输资源,而不需要将第二终端装置的物理侧行信道发送时隙在资源选择窗内对应时隙上的候选资源全部排除来避免可能产生的资源冲突,从而可以提高资源的利用率。
结合上述第一方面,在一种可能的实现方式中,该第一信息用于指示第一时隙上的资源使用状态,包括:该第一信息用于指示该第一时隙上M个子信道的资源使用状态,M为资源池中配置的子信道数量;或者,该第一信息用于指示该第一时隙上M个子信道中除M 1个子信道之外的子信道的资源使用状态,M为资源池中配置的子信道数量,M 1为该第二终端装置在该第一时隙上发送物理侧行信道占用的子信道数量。第一信息可以采用M个比特或M-M 1个比特,前者的优势在于能够更准确、更全面地指示第一时隙上的每个子信道的使用状态,后者的优势在于能够节约发送辅助所需的频域资源,进而节省发送辅助信息的资源开销。
结合上述第一方面,在一种可能的实现方式中,该辅助信息还包括第二信息,该第二信息用于指示该第二终端装置的第一预约资源与其他终端装置的预约资源发生碰撞,其中,该第一预约资源为距离第一时隙最近的预约资源,该第二终端装置在该第一时隙上发送物理侧行信道。换言之,该方案中,第一终端装置可以确定包括第二信息的辅助信息,以触发第二终端装置进行碰撞确认或者传输资源的重新选择,从而达到降低碰撞概率的技术效果。
结合上述第一方面,在一种可能的实现方式中,该第一预约资源用于该第二终端装置的物理侧行信道中第一传输块TB的重传;和/或,该第一预约资源用于该第二终端装置的物理侧行信道中第二TB所属业务下一个周期的新传。由于第一预约资源即可以用于同一TB的重传,也可以用于不同TB的新传,因此,本申请提供的通信方法适用于TB的多种传输场景。
结合上述第一方面,在一种可能的实现方式中,该第一预约资源包括预约的M 3个子信道资源。
结合上述第一方面,在一种可能的实现方式中,该第一预约资源通过该第二终端装置的物理侧行信道中的时域预约指示值TRIV指示;或者,该第一预约资源通过该第二终端装置的物理侧行信道中的资源预约周期指示。换言之,本申请实施例中,第一预约资源可以由多个参数指示。
结合上述第一方面,在一种可能的实现方式中,该辅助信息还包括指示信息,该指示信息用于指示该辅助信息包括第一信息和/或第二信息,其中,第一信息用于指示第一时隙上的资源使用状态,第二信息用于指示该第二终端装置的第一预约资源与其他终端装置的预约资源发生碰撞,该第一预约资源为距离该第一时隙最近的预约资源,该第二终端装置在该第一时隙上发送物理侧行信道。由于辅助信息中包括指示信息,因此能够使得第二终端装置识别出接收到的辅助信息中包含的不同类型,并且根据类型识别相应的辅助信息,以根据辅助信息进行侧行发送资源的选择,从而达到提高资源的利用率和/或降低碰撞概率的技术效果。
第二方面,提供了一种通信方法,执行该通信方法的通信装置可以为第二终端装 置也可以为应用于第二终端装置中的模块,例如芯片或芯片系统。下面以执行主体为第二终端装置为例进行描述。第二终端装置接收来自第一终端装置的辅助信息,其中,承载该辅助信息的序列映射在第一时频资源上,该第一时频资源为第二时频资源的子集,该第二时频资源与物理侧行反馈资源在时域上重合,在频域上正交。该第二终端装置根据该辅助信息确定侧行发送资源。
结合上述第二方面,在一种可能的实现方式中,该第二时频资源所在的时隙为第一时隙之后,距离该第一时隙的最后一个符号,间隔大于K 1个时隙的第一个物理侧行反馈资源所在的时隙,其中,该第二终端装置在该第一时隙上发送物理侧行信道;或者,该第二时频资源所在的时隙为第二时隙之前,距离该第二时隙的第一个符号,间隔大于K 2个时隙的第一个物理侧行反馈资源所在的时隙,其中,该第二时隙为该第二终端装置的第一预约资源所在的时隙,该第一预约资源为距离该第一时隙最近的预约资源,K 1或K 2为高层配置的发送该辅助信息的最小时间间隔。
结合上述第二方面,在一种可能的实现方式中,该第二时频资源中包括J*M个第三时频资源,该J*M个第三时频资源按照先频域后时域的方式顺序分配给J个时隙中的M个子信道,该J个时隙为根据K 1或K 2确定的该第二时频资源对应的时隙,该M为资源池中配置的子信道数量。
结合上述第二方面,在一种可能的实现方式中,该第一时频资源包含该J*M个第三时频资源中的M 1个第三时频资源,其中,M 1为该第二终端装置在该第一时隙上传输发送物理侧行信道占用的子信道数量,M 1为小于或者等于M的正整数。
结合上述第二方面,在一种可能的实现方式中,该辅助信息包括第一信息,该第一信息用于指示第一时隙上的资源使用状态,其中,该第二终端装置在该第一时隙上发送物理侧行信道。
结合上述第二方面,在一种可能的实现方式中,该第一信息用于指示第一时隙上的资源使用状态,包括:该第一信息用于指示该第一时隙上M个子信道的资源使用状态,M为资源池中配置的子信道数量;或者,该第一信息用于指示该第一时隙上M个子信道中除M 1个子信道之外的子信道的资源使用状态,M为资源池中配置的子信道数量,M 1为该第二终端装置在该第一时隙上发送物理侧行信道占用的子信道数量。
结合上述第二方面,在一种可能的实现方式中,该辅助信息还包括第二信息,该第二信息用于指示该第二终端装置的第一预约资源与其他终端装置的预约资源发生碰撞,其中,该第一预约资源为距离第一时隙最近的预约资源,该第二终端装置在该第一时隙上发送物理侧行信道。
结合上述第二方面,在一种可能的实现方式中,该第一预约资源用于该第二终端装置的物理侧行信道中第一传输块TB的重传;和/或,该第一预约资源用于该第二终端装置的物理侧行信道中第二TB所属业务下一个周期的新传。
结合上述第二方面,在一种可能的实现方式中,该第一预约资源包括预约的M 3个子信道资源。
结合上述第二方面,在一种可能的实现方式中,该第一预约资源通过该第二终端装置的物理侧行信道中的时域预约指示值TRIV指示;或者,该第一预约资源通过该第二终端装置的物理侧行信道中的资源预约周期指示。
结合上述第二方面,在一种可能的实现方式中,该辅助信息还包括指示信息,该指示信息用于指示该辅助信息包括第一信息和/或第二信息,其中,第一信息用于指示第一时隙上的资源使用状态,第二信息用于指示该第二终端装置的第一预约资源与其他终端装置的预约资源发生碰撞,该第一预约资源为距离该第一时隙最近的预约资源,该第二终端装置在该第一时隙上发送物理侧行信道。
第二方面中任一种可能的实现方式所带来的技术效果可参见上述第一方面中不同实现方式所带来的技术效果,此处不再赘述。
第三方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第三方面,在一种可能的实现方式中,该通信装置包括:收发模块和处理模块;该处理模块,用于确定辅助信息,该辅助信息用于辅助第二终端装置确定侧行发送资源;该收发模块,用于向第二终端装置发送该辅助信息,其中,承载该辅助信息的序列映射在第一时频资源上,该第一时频资源为第二时频资源的子集,该第二时频资源与物理侧行反馈资源在时域上重合,在频域上正交。
结合上述第三方面,在一种可能的实现方式中,该第二时频资源所在的时隙为第一时隙之后,距离该第一时隙的最后一个符号,间隔大于K 1个时隙的第一个物理侧行反馈资源所在的时隙,其中,该第二终端装置在该第一时隙上发送物理侧行信道;或者,该第二时频资源所在的时隙为第二时隙之前,距离该第二时隙的第一个符号,间隔大于K 2个时隙的第一个物理侧行反馈资源所在的时隙,其中,该第二时隙为该第二终端装置的第一预约资源所在的时隙,该第一预约资源为距离该第一时隙最近的预约资源,K 1或K 2为高层配置的发送该辅助信息的最小时间间隔。
结合上述第三方面,在一种可能的实现方式中,该第二时频资源中包括J*M个第三时频资源,该J*M个第三时频资源按照先频域后时域的方式顺序分配给J个时隙中的M个子信道,该J个时隙为根据K 1或K 2确定的该第二时频资源对应的时隙,该M为资源池中配置的子信道数量。
结合上述第三方面,在一种可能的实现方式中,该第一时频资源包含该J*M个第三时频资源中的M 1个第三时频资源,其中,M 1为该第二终端装置在该第一时隙上传输发送物理侧行信道占用的子信道数量,M 1为小于或者等于M的正整数。
结合上述第三方面,在一种可能的实现方式中,该辅助信息包括第一信息,该第一信息用于指示第一时隙上的资源使用状态,其中,该第二终端装置在该第一时隙上发送物理侧行信道。
结合上述第三方面,在一种可能的实现方式中,该第一信息用于指示第一时隙上的资源使用状态,包括:该第一信息用于指示该第一时隙上M个子信道的资源使用状态,M为资源池中配置的子信道数量;或者,该第一信息用于指示该第一时隙上M个子信道中除M 1个子信道之外的子信道的资源使用状态,M为资源池中配置的子信道数量,M 1为该第二终端装置在该第一时隙上发送物理侧行信道占用的子信道数量。
结合上述第三方面,在一种可能的实现方式中,该辅助信息还包括第二信息,该 第二信息用于指示该第二终端装置的第一预约资源与其他终端装置的预约资源发生碰撞,其中,该第一预约资源为距离第一时隙最近的预约资源,该第二终端装置在该第一时隙上发送物理侧行信道。
结合上述第三方面,在一种可能的实现方式中,该第一预约资源用于该第二终端装置的物理侧行信道中第一传输块TB的重传;和/或,该第一预约资源用于该第二终端装置的物理侧行信道中第二TB所属业务下一个周期的新传。
结合上述第三方面,在一种可能的实现方式中,该第一预约资源包括预约的M 3个子信道资源。
结合上述第三方面,在一种可能的实现方式中,该第一预约资源通过该第二终端装置的物理侧行信道中的时域预约指示值TRIV指示;或者,该第一预约资源通过该第二终端装置的物理侧行信道中的资源预约周期指示。
结合上述第三方面,在一种可能的实现方式中,该辅助信息还包括指示信息,该指示信息用于指示该辅助信息包括第一信息和/或第二信息,其中,第一信息用于指示第一时隙上的资源使用状态,第二信息用于指示该第二终端装置的第一预约资源与其他终端装置的预约资源发生碰撞,该第一预约资源为距离该第一时隙最近的预约资源,该第二终端装置在该第一时隙上发送物理侧行信道。
结合上述第三方面,在一种可能的实现方式中,处理模块可以为处理器,收发模块可以为经由通信接口连接的通信模块。
第四方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第四方面,在一种可能的实现方式中,该通信装置包括:收发模块和处理模块;该收发模块,用于接收来自第一终端装置的辅助信息,其中,承载该辅助信息的序列映射在第一时频资源上,该第一时频资源为第二时频资源的子集,该第二时频资源与物理侧行反馈资源在时域上重合,在频域上正交;该处理模块,用于根据该辅助信息确定侧行发送资源。
结合上述第四方面,在一种可能的实现方式中,该第二时频资源所在的时隙为第一时隙之后,距离该第一时隙的最后一个符号,间隔大于K 1个时隙的第一个物理侧行反馈资源所在的时隙,其中,该第二终端装置在该第一时隙上发送物理侧行信道;或者,该第二时频资源所在的时隙为第二时隙之前,距离该第二时隙的第一个符号,间隔大于K 2个时隙的第一个物理侧行反馈资源所在的时隙,其中,该第二时隙为该第二终端装置的第一预约资源所在的时隙,该第一预约资源为距离该第一时隙最近的预约资源,K 1或K 2为高层配置的发送该辅助信息的最小时间间隔。
结合上述第四方面,在一种可能的实现方式中,该第二时频资源中包括J*M个第三时频资源,该J*M个第三时频资源按照先频域后时域的方式顺序分配给J个时隙中的M个子信道,该J个时隙为根据K 1或K 2确定的该第二时频资源对应的时隙,该M为资源池中配置的子信道数量。
结合上述第四方面,在一种可能的实现方式中,该第一时频资源包含该J*M个第 三时频资源中的M 1个第三时频资源,其中,M 1为该第二终端装置在该第一时隙上传输发送物理侧行信道占用的子信道数量,M 1为小于或者等于M的正整数。
结合上述第四方面,在一种可能的实现方式中,该辅助信息包括第一信息,该第一信息用于指示第一时隙上的资源使用状态,其中,该第二终端装置在该第一时隙上发送物理侧行信道。
结合上述第四方面,在一种可能的实现方式中,该第一信息用于指示第一时隙上的资源使用状态,包括:该第一信息用于指示该第一时隙上M个子信道的资源使用状态,M为资源池中配置的子信道数量;或者,该第一信息用于指示该第一时隙上M个子信道中除M 1个子信道之外的子信道的资源使用状态,M为资源池中配置的子信道数量,M 1为该第二终端装置在该第一时隙上发送物理侧行信道占用的子信道数量。
结合上述第四方面,在一种可能的实现方式中,该辅助信息还包括第二信息,该第二信息用于指示该第二终端装置的第一预约资源与其他终端装置的预约资源发生碰撞,其中,该第一预约资源为距离第一时隙最近的预约资源,该第二终端装置在该第一时隙上发送物理侧行信道。
结合上述第四方面,在一种可能的实现方式中,该第一预约资源用于该第二终端装置的物理侧行信道中第一传输块TB的重传;和/或,该第一预约资源用于该第二终端装置的物理侧行信道中第二TB所属业务下一个周期的新传。
结合上述第四方面,在一种可能的实现方式中,该第一预约资源包括预约的M 3个子信道资源。
结合上述第四方面,在一种可能的实现方式中,该第一预约资源通过该第二终端装置的物理侧行信道中的时域预约指示值TRIV指示;或者,该第一预约资源通过该第二终端装置的物理侧行信道中的资源预约周期指示。
结合上述第四方面,在一种可能的实现方式中,该辅助信息还包括指示信息,该指示信息用于指示该辅助信息包括第一信息和/或第二信息,其中,第一信息用于指示第一时隙上的资源使用状态,第二信息用于指示该第二终端装置的第一预约资源与其他终端装置的预约资源发生碰撞,该第一预约资源为距离该第一时隙最近的预约资源,该第二终端装置在该第一时隙上发送物理侧行信道。
第五方面,提供了一种通信装置,包括:处理器;该处理器用于与存储器耦合,并读取存储器中存储的计算机指令之后,根据该指令执行如上述任一方面所述的方法。
结合上述第五方面,在一种可能的实现方式中,通信装置还包括存储器;该存储器用于存储计算机指令。
结合上述第五方面,在一种可能的实现方式中,通信装置还包括通信接口;该通信接口用于该通信装置与其它设备进行通信。示例性的,该通信接口可以为收发器、输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
结合上述第五方面,在一种可能的实现方式中,该通信装置可以是芯片或芯片系统。其中,当该通信装置是芯片系统时,该通信装置可以由芯片构成,也可以包含芯片和其他分立器件。
结合上述第五方面,在一种可能的实现方式中,当通信装置为芯片或芯片系统时,上述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电 路、管脚或相关电路等。上述处理器也可以体现为处理电路或逻辑电路。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
其中,第三方面至第七方面中任一种可能的实现方式所带来的技术效果可参见上述第一方面或第二方面中不同实现方式所带来的技术效果,此处不再赘述。
第八方面,提供了一种通信系统,该通信系统包括执行上述第一方面所述的方法的第一终端装置,以及执行上述第二方面所述的方法的第二终端装置。
附图说明
图1为本申请实施例提供的一种隐藏终端的场景示意图;
图2为现有技术中V2V通信的场景示意图;
图3为现有技术中V2X通信的传输模式一下信号传输的示意图;
图4为现有技术中基站采用比特地图来指示V2X通信资源池的时域资源的示意图一;
图5a为现有技术中基站采用比特地图来指示V2X通信资源池的时域资源的示意图二;
图5b为现有技术中V2X通信资源池的时频域资源的示意图;
图6为现有技术中一个周期中PSFCH资源的配置的示意图;
[根据细则91更正 14.01.2021] 
图7为现有技术中V2X通信资源池中配置的PSFCH频域资源的比特地图的示意图;
图8为现有技术中根据最小时间间隔K确定PSFCH资源所在的时隙的示意图;
图9为现有技术中按照先时域后频域的方式为绑定的PSSCH时隙中每个子信道分配PSFCH资源的示意图;
图10为现有技术中SL传输资源的选择的示意图一;
图11为现有技术中V2X通信资源池的频域资源中候选资源的示意图;
图12为现有技术中SL传输资源的选择的示意图二;
图13为本申请实施例提供的一种通信系统的架构示意图;
图14为本申请实施例提供的一种终端装置的结构示意图;
图15为本申请实施例提供的一种通信方法;
图16为本申请实施例提供的一种发送辅助信息的示意图;
图17为本申请实施例提供的另一种发送辅助信息的示意图;
图18为本申请实施例提供的按照先频域后时域的方式为绑定的PSSCH时隙中每个子信道分配用于发送辅助信息的资源的示意图;
图19为本申请实施例提供的通信装置的结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术或名词的简要 介绍如下。
本申请实施例中,SL传输时隙是可用于SL传输的时隙,PSFCH资源是可用于发送PSFCH的资源,PSFCH时隙是包含PSFCH资源的时隙,在某些表述中,“传输”含义相当于“发送”,例如,“传输资源”可以理解为“发送资源”,“传输时隙”可以理解为“发送时隙”,在此统一说明,以下不再赘述。
第一,设备与设备(device to device,D2D)通信
D2D通信允许多个支持D2D功能的UE在有网络设备或无网络设备的情况下进行直接发现和直接通信。相应地,基于D2D通信的车联网应用场景也被提出。但在车联网的应用场景下,为了保证行车安全,对通信的时延有非常高的要求。然而,现有的D2D通信在技术上无法达到车联网场景下的时延要求。
第二,车辆与车辆(vehicle to vehicle,V2V)通信
V2V通信的典型场景如图2所示,行驶中的车辆可以通过V2V通信来直接和附近的其他车辆交互信息,从而实时地获取其他车辆的状态信息以及路况信息,以更好地辅助车辆的驾驶,甚至实现自动驾驶。
第三,V2X通信
V2X通信可以通过配置在车辆上的装置(如传感器、车载终端等)以及各种通信技术来实现车辆与外界的互联。V2X通信可以包括V2V、车辆与行人(vehicle to pedestrian,V2P)和车辆与路边基础设施(vehicle to roadway infrastructure,V2I)等互联通信。其中,V2X通信中信息的传输均基于SL传输,可以理解为SL传输在车联网中的应用。
第四,V2X通信的传输模式
V2X通信的传输模式包括基于基站调度的传输模式一,以及UE自主选择SL传输资源的传输模式二。
在如图3所示的传输模式一中,基站根据各个UE的BSR,统一进行SL传输资源的分配。其中,SL传输资源的分配模式可以是动态模式或者预配置模式。然后,基站可以通过下行链路控制信息(downlink control information,DCI)将SL传输资源告知发送端UE,发送端UE接收到该DCI后,在该DCI指示的SL传输资源上向接收端UE发送侧行链路控制信息(sidelink control information,SCI)和数据。其中,SCI通过PSCCH传输,数据通过PSSCH传输。传输模式一的优势在于,各个UE的SL传输资源由基站统一进行调度,因而可以避免资源碰撞。然而,在发送端UE没有网络覆盖的情况下,无法使用传输模式一。
在传输模式二中,UE从V2X通信资源池中自行选择SL传输资源进行通信,不再依赖于基站的统一分配。具体地,发送端UE首先从V2X通信资源池中自行选择其SL传输资源,然后在其自行选择的SL传输资源上向接收端UE发送SCI和数据。其中,SCI通过PSCCH传输,数据通过PSSCH传输。由于UE基于自身侦听的结果来选择SL传输资源,不再依赖于基站的调度,因此传输模式二不受限于网络覆盖,即在没有网络覆盖情况下,发送端UE也可以进行通信。但在该传输模式下,各个UE分别进行SL传输资源的侦听和选择,因而可能发生资源碰撞。
本申请实施例中,SL传输资源包括初始SL传输资源和/或重传资源,在此统一说 明,以下不再赘述。
第五,V2X通信资源池
V2X通信时所需要的时频资源可以基于V2X通信资源池来进行配置。V2X通信资源池可以看做是用于V2X通信的时域资源和频域资源的集合。
对于用于V2X通信的时域资源,基站采用一个比特地图,并且周期性地重复该比特地图来指示通信系统中所有子帧中用于V2X通信的子帧的集合。示例性的,如图4所示,比特地图的长度为8比特,并在N个子帧上周期性地重复。其中,每个子帧中SL传输占用的符号个数为固定的M个符号,可以将M视为一个SL传输的时域传输时长或者时域传输单元。示意性地,图5a中比特地图的取值可以为“11001110”,其中,“1”表示用于V2X通信的子帧,“0”表示普通子帧。以子帧0至7为例,当比特地图的取值为“11001110”时,表示子帧0、1、4、5或6可用于V2X通信,其余的子帧2、3或7是普通子帧,不能用于V2X通信。
对于用于V2V通信的频域资源,基站可以将V2V通信的频域资源分成若干个子信道,每个子信道可以包含固定数量的物理资源块(physical resource block,PRB)。示例性的,将图5a中的子帧4在频域上展开,可以得到图5b。其中,用于V2X通信的频率资源属于V2X通信资源池,该V2X通信资源池中共有N subch个子信道,每个子信道包含n ch个PRB。本申请实施例中,用于V2X通信的频率资源的起始PRB的序号可以由基站指示。由于调度V2X通信资源池的频率资源时,粒度可以为子信道,所以,一次SL传输可以占用一个或者多个子信道。
第六,混合自动重传请求-确认(hybrid automatic repeat request-acknowledgement,HARQ-ACK)反馈
在第五代(the fifth generation,5G)移动通信系统中的新无线(new radio,NR)系统中,V2X通信支持物理层HARQ-ACK反馈。也就是说,对于一次PSSCH和PSCCH传输,若发送端UE在PSCCH中包括的SCI中携带HARQ-ACK反馈使能信息,则接收端UE需要根据此次PSSCH的译码结果反馈相应的确认/不确认(acknowledgement/negative acknowledgement,ACK/NACK)信息,其中,ACK/NACK信息通过物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH)传输。
在NR系统中,V2X通信资源池为PSFCH资源配置周期性的时域资源,其周期配置参数
Figure PCTCN2020142516-appb-000001
的取值可以是0、1、2或4。
Figure PCTCN2020142516-appb-000002
表示该通信资源池中没有PSFCH资源配置,即,该通信资源池中的资源不能用于发送PSFCH,也就是说,该通信系统不支持物理层HARQ-ACK反馈。
Figure PCTCN2020142516-appb-000003
表示每
Figure PCTCN2020142516-appb-000004
个SL传输时隙包含一个PSFCH时隙。图6示出了一个周期中PSFCH资源的配置,当
Figure PCTCN2020142516-appb-000005
时,每个SL传输时隙中都包含一个PSFCH时隙;当
Figure PCTCN2020142516-appb-000006
时,每两个SL传输时隙中包含一个PSFCH时隙;当
Figure PCTCN2020142516-appb-000007
时,每四个SL传输时隙中包含一个PSFCH时隙。其中,如图6所示,在PSFCH资源所在时隙上,PSFCH时隙占用间隙(GAP)前的最后两个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
由于在V2X通信的传输模式二场景下,UE需要基于自身侦听结果,自行选择SL传输资源,因此,为了简化PSFCH资源的选择过程,在频域上,NR系统的V2X通信资源池为每个子信道配置了PSFCH资源。具体地,每个子信道对应的PSFCH资源的 确定过程如下:
首先,配置PSFCH频域资源的比特地图。
具体地,在V2X通信资源池中配置PSFCH频域资源的比特地图,该比特地图用于指示该V2X通信资源池的频域资源中,每个PRB是否为可用于HARQ-ACK反馈的PSFCH资源。也就是说,比特地图包含的比特信息的长度与该通信资源池中PRB的个数相等。比特地图中的“1”表示对应的PRB是可用于HARQ-ACK反馈的PSFCH资源,反之,比特地图中的“0”表示对应的PRB不是PSFCH资源。示例性的,假设V2X通信资源池中共有3个子信道,并且每个子信道包含10个PRB,即N subch=3且n ch=10,将图6中包含PSFCH时隙的一个SL传输时隙在时域和频域上展开,可以得到图7。其中,PSFCH频域资源的比特地图共包含3×10=30个比特,即,比特地图包含的比特信息的长度为30,每个比特用于指示对应的PRB是否可以用于发送ACK/NACK信号。在图7所示的PSFCH资源配置示意图中,比特地图指示每个子信道的前4个PRB可以用于PSFCH发送ACK/NACK信号。
其次,确定每个子信道对应的PSFCH资源的PRB数量。
由于每
Figure PCTCN2020142516-appb-000008
个SL传输时隙包含一个PSFCH时隙,因此对于包含N subch个子信道的V2X通信资源池,每个子信道对应的PSFCH资源的PRB数量满足如下公式(1):
Figure PCTCN2020142516-appb-000009
其中,
Figure PCTCN2020142516-appb-000010
表示可用于PSFCH发送的频域资源的PRB个数,即PSFCH频域资源的比特地图中取值为“1”的比特个数之和。以图7为例,长度为30的比特地图中取值为“1”的共有12个比特,因此
Figure PCTCN2020142516-appb-000011
的取值为12,子信道数N subch为3,假设周期配置参数
Figure PCTCN2020142516-appb-000012
取值为4,那么经计算得
Figure PCTCN2020142516-appb-000013
的值为1,也就是说,V2X通信资源池为每个SL传输时隙的每个子信道配置1个PRB的PSFCH资源。
[根据细则91更正 14.01.2021] 
然后,根据最小时间间隔K确定用于HARQ-ACK反馈的PSFCH资源具体所在的时隙。
考虑到接收端UE译码能力的限制,接收端UE不能在接收到PSSCH后立即对其进行反馈,因此,可以定义最小时间间隔K,其取值由V2X通信资源池配置。也就是说,在包含PSFCH资源的第一个可用的时隙上发送PSFCH,该时隙与PSSCH所在时隙至少间隔K个时隙。以图6中
Figure PCTCN2020142516-appb-000014
的情况为例,如图8所示,当K=2时,SL传输时隙0或1上承载的PSSCH可以在SL传输时隙3的PSFCH资源上进行反馈,SL传输时隙2、3、4或5上承载的PSSCH可以在SL传输时隙7的PSFCH资源上进行反馈。由于时隙2、3、4或5上承载的PSSCH可以在同一个时隙的PSFCH资源上进行反馈,因此,可以将SL传输时隙2、3、4和5称为一个PSSCH绑定窗。
最后,将一个PSFCH时隙内的PSFCH资源按照先时域后频域的方式,顺序分配给PSSCH绑定窗内的每个子信道。
示例性的,结合图7和图8,如图9所示,当
Figure PCTCN2020142516-appb-000015
时,4个绑定的PSSCH时隙中每个子信道对应的PSFCH资源如图中的编号0-11所示。也就是说,V2X通信资源池为每个SL传输时隙的每个子信道分配一个PRB的PSFCH资源。例如,编号为0的PSSCH可以在编号同样为0的PSFCH资源上进行反馈,编号为6的PSSCH可以在编号同样为6的PSFCH资源上进行反馈,其中,PSSCH的PSFCH资源以子信道编号 0和SL传输时隙编号0开始,并且由比特地图进行指示。用公式表示,对于绑定的PSSCH时隙中的第i个SL传输时隙,若该SL传输时隙上V2X通信资源池中子信道的编号为j,那么在上述SL传输时隙上,子信道j对应的PSFCH资源集合为:
Figure PCTCN2020142516-appb-000016
其中,
Figure PCTCN2020142516-appb-000017
0≤j<N subch
由图9可知,若发送端UE-B占用两个子信道发送PSSCH,例如编号为5和9的PSSCH,那么其对应的PSFCH资源的编号也是5和9,它们在频域上是不连续的。
第七,支持PSFCH反馈的业务场景
在NR系统中,V2X通信支持单播、组播和广播,其中,组播包括组播1和组播2两种场景。单播和组播场景下支持物理层HARQ-ACK反馈。
单播场景下,一个发送端UE和一个接收端UE可以组成一个单播连接对。在单播链路使能HARQ-ACK反馈时,在接收端UE能够正确地译码PSSCH对应的PSCCH的情况下,若PSSCH译码正确,则接收端UE向发送端UE反馈携带ACK信息的PSFCH序列,若PSSCH译码错误,则接收端UE向发送端UE反馈携带NACK信息的PSFCH序列。
组播1(NACK-only)场景下,在组播链路使能HARQ-ACK反馈时,在组内的接收端UE能够正确地译码PSSCH对应的PSCCH的情况下,若PSSCH译码错误,那么接收端UE向发送端UE反馈携带NACK信息的PSFCH序列,若PSSCH译码正确,接收端UE不向发送端UE反馈任何信息。
组播2(NACK/ACK)场景下,在组播链路使能HARQ-ACK反馈时,在组内的接收端UE能够正确地译码PSSCH对应的PSCCH的情况下,若PSSCH译码正确,则接收端UE向发送端UE反馈携带ACK信息的PSFCH序列,若PSSCH译码错误,则接收端UE向发送端UE反馈携带NACK信息的PSFCH序列。
第八,PSFCH序列的生成
PSFCH序列可以基于低峰均比的ZC序列生成,其在时域上占用两个连续的正交OFDM符号,在频域上可以是一个PRB。具体地,PSFCH序列的生成方式如下:
首先,可以根据序列长度生成一个基础序列r(n),0≤n≤M ZC,然后对该基础序列r(n)进行相位旋转,得到可以复用的低峰均比序列,该低峰均比序列满足如下公式(2):
Figure PCTCN2020142516-appb-000018
其中,M ZC=12,l表示PSFCH传输时隙上的OFDM符号的编号,例如,l=0表示当前PSFCH传输时隙上的第一个OFDM符号,α l表示相位旋转值。也就是说,多个用户可以采用不同的相位旋转值α l,以生成不同的PSFCH序列,并且可以将各个PSFCH序列码分复用在一个PRB上进行发送。由于接收端UE需要反馈ACK/NACK信息,因此需要给每个用户分配分别对应于不同取值的α l的至少两个序列。相位旋转值α l可以满足如下公式(3):
Figure PCTCN2020142516-appb-000019
其中,
Figure PCTCN2020142516-appb-000020
表示一个PRB中的子载波个数,NR系统中
Figure PCTCN2020142516-appb-000021
的取值可以为12。mod()表示取余,
Figure PCTCN2020142516-appb-000022
表示在一个无线帧中当前子载波间隔μ对应的SL传输时隙的编号。 l′表示当前PSFCH传输时隙上相对于第一个OFDM符号的符号索引。m 0表示一个PSFCH资源对中ACK的相位。m cs表示一个PSFCH资源对中NACK序列相对于ACK序列的相位偏移,其中,反馈资源对可以用于HARQ-ACK反馈,其中一个序列可以用于反馈ACK,另一个序列用于反馈NACK。如上所述,在NR系统中,单播和组播场景下的V2X通信支持物理层HARQ-ACK反馈。针对不同的业务类型,可以按照表1和表2确定m cs的取值。其中,表1为单播和组播2场景下一个PSFCH资源对的相位映射关系,表2为组播1场景下物理上行链路控制信道(physical uplink control channel,PUCCH)格式0(format0)有调度请求(scheduling request,SR)时,一个PSFCH资源对的相位映射关系。
表1
HARQ-ACK值 0 1
序列循环移位 m cs=0 m cs=6
表2
HARQ-ACK值 0 1
序列循环移位 m cs=0 N/A
函数
Figure PCTCN2020142516-appb-000023
可以满足如下公式(4):
Figure PCTCN2020142516-appb-000024
其中,
Figure PCTCN2020142516-appb-000025
表示一个SL传输时隙中连续时域符号的数量,在NR系统中,
Figure PCTCN2020142516-appb-000026
的取值可以为14,m为取值在0至7之间的整数。c(i)表示伪随机序列中序号i的数值,生成伪随机序列的初始值为c init=n ID,n ID由高层配置,如果高层没有配置n ID,则n ID=0。
长度为M PN的伪随机序列c(n)可以由长度为31的gold序列循环移位生成,n=0,1,...,M PN-1,其中,gold序列为两个m序列x 1(n)和x 2(n)。c(n)的具体生成过程如下:
c(n)=(x 1(n+N c)+x 2(n+N c))mod 2
x 1(k+31)=(x 1(k+3)+x 1(k))mod 2
x 2(k+31)=(x 2(k+3)+x 2(k+2)+x 2(k+1)+x 2(k))mod 2
其中,N c=1600,x 1(0)=1,x 1(n)=0,n=1,2,…,30,x 2(n)可以由
Figure PCTCN2020142516-appb-000027
确定。
第九,PSFCH资源位置
如果一个PSSCH占用
Figure PCTCN2020142516-appb-000028
个子信道,那么该PSSCH对应
Figure PCTCN2020142516-appb-000029
个PSFCH资源对,其中,
Figure PCTCN2020142516-appb-000030
表示V2X通信资源池配置的一个PRB的PSFCH资源上可以复用的PSFCH序列对的数量。如前所述,
Figure PCTCN2020142516-appb-000031
表示V2X通信资源池为每个子信道分配的PSFCH资源的PRB数量。此外,V2X通信资源池还可以通过配置
Figure PCTCN2020142516-appb-000032
来限制接收PSSCH的接收端UE可以使用的PSFCH资源,有如下两种方案:
若V2X通信资源池配置
Figure PCTCN2020142516-appb-000033
这意味着接收PSSCH的接收端UE只能使用该PSSCH占用的第一个子信道对应的PSFCH资源,该PSSCH对应的PSFCH资源对个数为
Figure PCTCN2020142516-appb-000034
例如,如图9所示,当PSSCH占用编号为5和9的两个子信道传输数据时,接收该PSSCH的接收端UE只能使用编号为5的PSFCH资源进行反馈。
若V2X通信资源池配置
Figure PCTCN2020142516-appb-000035
这意味着接收PSSCH的接收端UE可以使用该PSSCH占用的所有子信道对应的PSFCH资源,该PSSCH对应的PSFCH资源对个数为
Figure PCTCN2020142516-appb-000036
例如,如图9所示,当PSSCH占用编号为5和9的两个子信道传输数据时,接收该PSSCH的接收端UE可以使用编号为5和9的PSFCH资源进行反馈。
接收端UE选择第
Figure PCTCN2020142516-appb-000037
个PSFCH资源对所对应的资源来反馈PSFCH,其中,P ID表示SCI中承载的物理层源地址ID。对于组播2来说,M ID表示每个接收端UE的高层为本次PSSCH传输配置的ID,对于组播1或单播来说,M ID=0。
Figure PCTCN2020142516-appb-000038
个PSFCH资源对可以按照先频域索引,后码域索引来增序排列所有的PSFCH序列。也就是说,PSFCH资源对的PRB索引为
Figure PCTCN2020142516-appb-000039
在该PRB中,PSFCH资源对的m 0
Figure PCTCN2020142516-appb-000040
和循环移位索引
Figure PCTCN2020142516-appb-000041
来共同确定,表示向下取整。其中,一个PRB中PSFCH资源对的m 0取值如表3所示。
表3
Figure PCTCN2020142516-appb-000042
由上述分析可以得出,对于组播2来说,由于M ID不同,因此组内每个UE使用不同的PSFCH资源对进行反馈。相应地,在组内各个UE知道组内其他UE的M ID的前提下,发送端UE也会对每个资源对分别接收。对于组播1来说,由于M ID=0,因此对于同一源地址P ID的PSSCH,组内每个UE采用相同的PSFCH来反馈NACK信息。
第十,SL传输资源的选择过程
本部分主要介绍NR系统中V2X通信的传输模式二下,发送端UE选择SL传输资源的过程。
SL传输支持SL传输资源的预约,即在某个发送端UE发送的SCI中携带未来一段时间内的SL传输资源预约信息。其他UE接收到该SCI的SL传输资源预约信息以后,排除该预约的SL传输资源,从而可以避免资源碰撞。其中,SCI中包含SL传输资源的预约信息、本次PSSCH发送的数据的优先级信息、本次PSSCH发送的源地址ID和目的地址ID等。
如图10所示,发送端UE在时隙n触发SL传输资源的选择,也就是说,在时隙n上,发送端UE有数据要发送给接收端UE。资源侦听窗口可以是时隙n之前的[n-T 0,n-T proc,0对应的时隙,资源选择窗口可以是时隙n之后的[n+T 1,n+T 2]对应的时隙,其中,T 0、T proc,0、T 1和T 2均为由高层配置的参数。在资源侦听窗口内,发送端UE对频域资源池内其他UE发送的SCI进行侦听,然后基于侦听结果,在资源选择窗口中排除相对应的候选资源,最后在剩余的资源中选择出UE的SL传输资源,以通过该SL传输资源向接收端UE发送待发送的数据。示例性地,如果发送端UE在资源侦听窗口侦听到了UE1、UE2、UE3和UE4发送的SCI并且它们预约的位于资源选择窗口内的资源的参考信号接收功率(reference signal received power,RSRP)测量结果高于门限Th prioTX,prioRX,那么在资源选择窗口内,发送端UE将UE1、UE2、UE3和UE4预约的资源排除。具体地,发送端UE选择SL传输资源的具体过程如下:
第一步,可以将资源选择窗口定义为SL传输资源选择的触发时隙n之后的[n+T 1,n+T 2]对应的时隙。
假设V2X资源池的频率资源中共有N subc个子信道,对应的子信道集合为S={S 0,S 1,...,S Nsubch-1}。可以将一个候选SL传输资源R x,y定义为在时域上位于资源选择窗口[n+T 1,n+T 2]内并且属于V2X资源池的SL传输时隙
Figure PCTCN2020142516-appb-000043
在频域上位于子信道x+j的子信道集合,其中,j=0,...,L subch-1。也就是说,候选SL传输资源R x,y在频域上体现为长度等于L subch的一组连续子信道的集合,其中,L subch是待传输的PSSCH/PSCCH占用的子信道个数。因此,每个SL传输时隙上的候选资源总数为N subch-L subch+1。任何一组符合上述条件的、长度等于L subch的连续子信道的集合都可以被认为是一个候选SL传输资源R x,y,全部候选SL传输资源的个数为M total
如图11所示,若V2X资源池的频率资源中包含的子信道个数N subch为8,对应的子信道集合为S={S 0,S 1,...,S 7},待传输的PSSCH/PSCCH占用的子信道的个数L subch为2,那么,每个SL传输时隙上的候选SL传输资源总数为N subch-L subch+1=7。
第二步,可以将资源侦听窗口定义为SL传输资源选择的触发时隙n之前的[n-T 0,n-T proc,0]对应的时隙。
T 0可以由高层的参数t0_SensingWindow配置,T proc,0可以由表4确定。其中,μ SL的取值与SL传输子带宽(bandwidth part,BWP)对应的子载波间隔(sub-carrier spacing,SCS)Δf有关,如表5所示。
表4
Figure PCTCN2020142516-appb-000044
表5
Figure PCTCN2020142516-appb-000045
第三步,可以将门限Th prioTX,prioRX定义为发送端UE接收到的SCI中所指示的数据对应的优先级和发送端UE的待发送数据对应的优先级的函数。
第四步,可以将包括所有M total个候选SL传输资源的集合定义为S A
第五步,如果同时满足以下条件,那么可以将候选资源R x,y从集合S A中排除:
1)发送端UE没有侦听时隙,即发送端UE自身在SL传输时隙上发送过PSSCH/PSCCH。
在资源侦听窗口内,发送端UE也可以发送数据。由于SL传输系统是半双工的,也就是说,UE只能处于发送状态或者接收状态之一,因此发送端UE在处于发送状态时无法通过接收其他UE发送的信号来进行侦听。此时,V2X通信资源池认为其他UE在该时隙上发送的SCI中包含所有可能的业务周期,并且预约周期性的SL传输资源。因此,发送端UE首先将其自身PSSCH/PSCCH的发送时隙在SL传输资源选择窗内对应时隙上的候选SL传输资源R x,y全部排除,以排除所有可能产生冲突的SL传输资源。
如图12所示,UE-B在时隙m上发送了一个PSSCH/PSCCH,即发送端UE的PSSCH/PSCCH的发送时隙为m,该PSSCH/PSCCH在频域上占用子信道4和子信道5。若时隙m位于资源侦听窗口内,即便在时隙m上除了UE-B以外没有其他UE发送信息,UE-B在后续进行SL传输资源选择时,也需要排除时隙m在资源选择窗口内对应时隙上的所有SL传输资源,包括子信道0-9。
2)存在整数j,满足y+j×P′ rsvp_TX=m+q×P′ rsvp_RX
其中,q=1,2,...,Q,j=0,1,...,C resel-1,C resel表示由高层配置的发送端UE预约的周期性SL传输资源的预约次数。P′ rsvp_TX表示发送端UE的物理周期P rsvp_TX所对应的逻辑周期,P′ rsvp_RX表示接收到的SCI指示的物理周期P rsvp_RX所对应的逻辑周期。如果P rsvp_RX<T sca,并且n′-m≤P′ rsvp_RX,那么
Figure PCTCN2020142516-appb-000046
否则,Q=1,其中,T scal为资源选择窗口的参数T 2对应的间隔,单位为ms。其中,n′可以通过如下方式获得:如果时隙n属于V2X通信资源池,那么
Figure PCTCN2020142516-appb-000047
如果时隙n不属于V2X通信资源池,那么
Figure PCTCN2020142516-appb-000048
为时隙n之后第一个属于V2X通信资源池的时隙,其中,可以将
Figure PCTCN2020142516-appb-000049
定义为属于V2X通信资源池的SL传输时隙的集合。
在上述过程中,P rsvp_TX表示发送端UE的传输资源的预约周期,P rsvp_TX的单位可以是毫秒ms,取值可以由高层参数提供,也就是说,P rsvp_TX表示的是物理周期,其可以包括非V2X通信资源池内的时隙。P′ rsvp_TX表示物理周期P rsvp_TX所对应的逻辑周期, 即P′ rsvp_TX只包括属于V2X通信资源池内的时隙。同理,P rsvp_RX表示发送端UE侦听到的其他UE的资源预约周期,P rsvp_RX的单位可以是ms,取值可以由发送端UE接收到的SCI中资源预约周期(resource reservation period)参数提供,也就是说,P rsvp_RX表示的是物理周期,其可以包括非V2X通信资源池内的时隙。P′ rsvp_RX表示物理周期P rsvp_RX所对应的逻辑周期,即P′ rsvp_RX只包括属于V2X通信资源池内的时隙。物理周期P rsvp和逻辑周期P′ rsvp的转换关系如下:
Figure PCTCN2020142516-appb-000050
其中,P rsvp表示P rsvp_TX或P rsvp_RX,P′ rsvp表示P′ rsvp_TX或P′ rsvp_RX。在NR系统的时隙配置中,时隙配置的格式是以20ms为单位进行重复的。一个时隙配置的周期为Pms,由时分复用上行-下行常规配置tdd-UL-DL-ConfigurationCommon高层信令中的参数上行-下行传输周期DL-UL-TransmissionPeriodicity提供。N表示在一定的上行-下行时隙配置下,20ms内包括的可用于SL传输的时隙的个数。
第六步,如果同时满足以下条件,那么可以将候选资源R x,y从集合S A中排除:
1)发送端UE在侦听时隙
Figure PCTCN2020142516-appb-000051
接收到其他UE发送的SCI,并且当资源预约周期(resource reservation period)参数存在时,如果预计发送端UE在时隙
Figure PCTCN2020142516-appb-000052
接收到的SCI所确定的时频资源与候选资源
Figure PCTCN2020142516-appb-000053
重合,其中,P′ rsvp_TX、P′ rsvp_RX、q和j表示的含义与第五步中对应参数表示的含义相同,在此不再赘述。
2)发送端UE在侦听时隙
Figure PCTCN2020142516-appb-000054
接收到其他UE发送的SCI,然后译码prio RX,并且当资源预约周期(resource reservation period)参数存在时,从其中译码P rsvp_RX,其中,prio RX表示该SCI中指示的数据的优先级。如果通过该SCI确定的候选资源的RSRP测量结果高于门限Th prioTX,prioRX,那么可以从资源选择窗口中排除该候选资源,其中,门限Th prioTX,prioRX为发送端UE接收到的SCI中指示的数据的优先级和发送端UE待发送的数据的优先级的函数。
第七步,如果候选资源集合S A中剩余的候选资源少于M total的X%,那么将预先设定的RSRP门限升高3dB,然后重复第一步至第四步,其中,X的取值可以为20、35或50。
第八步,发送端UE将候选资源集合S A汇报给高层,由高层从集合S A中完成最终的资源选择。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域 技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例可以适用于LTE系统或NR系统,也可以适用于其他面向未来的新系统等,本申请实施例对此不作具体限定。此外,术语“系统”可以和“网络”相互替换。
如图13所示,为本申请实施例提供的一种通信系统130。该通信系统130包括第一终端装置1301和第二终端装置1302。其中,第一终端装置1301,用于确定辅助信息,并向第二终端装置1302发送辅助信息。第二终端装置1302,用于接收来自第一终端装置1301的辅助信息,并根据辅助信息确定侧行发送资源。其中,承载辅助信息的序列映射在第一时频资源上,第一时频资源为第二时频资源的子集,第二时频资源与物理侧行反馈资源在时域上重合,在频域上正交。该方案的具体实现及技术效果将在后续方法实施例中详细描述,在此不予赘述。
可选的,如图13所示,本申请实施例提供的通信系统130还可以包括网络设备1303。网络设备1303用于与第一终端装置1301和/或第二终端装置1302通信,例如在广播场景下,第一终端装置1301或第二终端装置1302为确保有业务的非连续接收(discontinuous reception,DRX)需求的其他终端装置能够接收到广播信号,可以向网络设备1303发送相关的请求信息,本申请实施例对此不做具体限定。
可选的,本申请实施例中的网络设备1303,是一种将终端装置(包括上述第一终端装置1301或第二终端装置1302)接入到无线网络的设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或无线保真(wireless-fidelity,Wi-Fi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。在本申请中,如果无特殊说明,网络设备均指无线接入网设备。
可选的,本申请实施例中的终端装置(包括上述第一终端装置1301或第二终端装置1302)可以是车辆(vehicle),也可以是安装在车辆上用于辅助车辆行驶的车载终端,或者车载终端内的芯片。或者,本申请实施例中的终端装置(包括上述第一终端装置1301或第二终端装置1302)可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,上述车载终端或终端可以是5G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的UE、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端装置、增强现实(augmented reality,AR)终端装置、工业控制(industrial control)中的无线终端或无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端装置(包括上述第一终端装置1301或 第二终端装置1302)可以是固定位置的,也可以是可移动的,本申请实施例对此不做具体限定。
可选的,在本申请实施例中,终端装置(包括上述第一终端装置1301或第二终端装置1302)包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端装置(包括上述第一终端装置1301或第二终端装置1302),或者,是终端装置(包括上述第一终端装置1301和第二终端装置1302)中能够调用程序并执行程序的功能模块。
换言之,本申请实施例中的终端装置(包括上述第一终端装置1301或第二终端装置1302)的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例中的终端装置(包括上述第一终端装置1301或第二终端装置1302)的相关功能可以通过图14中的通信装置140来实现。
图14所示为本申请实施例提供的通信装置140的结构示意图。该通信装置140包括一个或多个处理器141,通信线路142,以及至少一个通信接口(图14中仅是示例性的以包括通信接口144,以及一个处理器141为例进行说明),可选的还可以包括存储器143。
处理器141可以是一个CPU,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路142可包括一通路,用于连接不同组件之间。
通信接口144,可以是收发模块用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,所述通信接口144也可以是位于处理器141内的收发电路,用以实现处理器的信号输入和信号输出。
存储器143可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形 式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路142与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器143用于存储执行本申请方案的计算机执行指令,并由处理器141来控制执行。处理器141用于执行存储器143中存储的计算机执行指令,从而实现本申请实施例中提供的通信方法。
或者,本申请实施例中,也可以是处理器141执行本申请下述实施例提供的通信方法中的处理相关的功能,通信接口144负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器141可以包括一个或多个CPU,例如图14中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置140可以包括多个处理器,例如图14中的处理器141和处理器147。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置140还可以包括输出设备145和输入设备146。输出设备145和处理器141通信,可以以多种方式来显示信息。
上述的通信装置140可以是一个通用装置或者是一个专用装置。例如通信装置140可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端装置、车载终端装置、嵌入式设备或具有图14中类似结构的设备。本申请实施例不限定通信装置140的类型。
下面将结合图1至图14对本申请实施例提供的通信方法进行具体阐述。
如图15所示,为本申请实施例提供的一种通信方法,该通信方法包括如下步骤:
S1501、第一终端装置确定辅助信息。该辅助信息用于辅助第二终端装置确定侧行发送资源。
一种可能的实现方式中,辅助信息包括第一信息,第一信息用于指示第一时隙上的资源使用状态,其中,第二终端装置在第一时隙上发送物理侧行信道。示例性的,在NR系统中,物理侧行信道包括PSSCH和/或PSCCH。
可选地,第一信息用于指示第一时隙上的资源使用状态,包括:第一信息用于指示第一时隙上M个子信道的资源使用状态,M为资源池中配置的子信道数量;或者,第一信息用于指示第一时隙上M个子信道中除M1个子信道之外的子信道的资源使用状态,M为资源池中配置的子信道数量,M 1为第二终端装置在第一时隙上传输物理侧行信道占用的子信道数量。其中,上述资源池为第一终端装置和第二终端装置所在的V2X通信资源池,在此统一说明,以下不再赘述。
可选地,M个子信道的资源使用状态可以由M个比特来指示,示例性地,假设M的取值为10,第一信息为“1010001011”,从高比特到低比特分别对应子信道0至子信道9,“1”表示第一时隙的子信道是不可以使用的,“0”表示第一时隙的子信道是可以使用的,则1010001011可以表示在第一时隙上,子信道0、2、6、8、9上是不 可以使用的,子信道1、3、4、5、7上是可以使用的。同样的,M个子信道中除M 1个子信道之外的子信道的资源使用状态可以由M-M 1个比特来指示,每个比特的取值和含义如前所述,在此不再赘述。换言之,假设第一信息中包含的比特数量为k 1,那么k 1=M或者k 1=M-M 1
下面结合几个具体示例来说明第一信息中比特取值为“0”或“1”的情形。
示例性的,第一信息中比特的取值指示第一时隙的子信道上是否有终端装置发送PSSCH和/或PSCCH。具体地,当第一时隙的子信道上有终端装置发送PSSCH和/或PSCCH时,也就是说,该子信道已经被占用,是不可使用的,因此,第一信息中对应比特的取值为“1”,反之,当第一时隙的子信道上没有终端装置发送PSSCH和/或PSCCH时,第一信息中对应比特的取值为“0”。
示例性的,第一信息中比特的取值指示第一时隙的子信道上测量得到的RSRP是否超过预设阈值,其中,预设阈值可以根据第二终端装置在第一时隙上发送的PSSCH中数据的优先级确定,或者预设阈值也可以由V2X通信资源池确定。示例性地,当第一时隙的子信道上测量得到的RSRP超过预设阈值时,也就是说,该子信道是不可使用的,因此,第一信息中对应比特的取值为“1”,反之,当第一时隙的子信道上测量得到的RSRP未超过预设阈值时,第一信息中对应比特的取值为“0”。
示例性的,第一信息中比特的取值指示第一时隙的子信道上是否可以抢占。具体地,当存在SCI指示一个子信道上有PSSCH发送,但是PSSCH译码失败,则判断该子信道可以抢占,或者,当一个子信道上PSSCH译码正确,且第一时隙上如果该子信道上测量得到的RSRP超过预设阈值,但该PSSCH中数据的优先级低于第二终端装置在第一时隙上发送的PSSCH中数据的优先级,则判断该子信道可以抢占,其中,预设阈值是根据第二终端装置在第一时隙上发送的PSSCH中数据的优先级确定的。此时,被判断为可以抢占的子信道是可以使用的,因此,第一信息中对应比特的取值为“0”。本示例中除上述情形的其他情形下,第一信息中对应比特的取值为“1”。
基于上述方案,在NR系统中,当第二终端装置在资源侦听窗口内的时隙上发送了PSSCH和/或PSCCH时,本申请实施例中的第一终端装置可以确定包括第一信息的辅助信息。其中,第一信息用于指示第二终端装置的PSSCH和/或PSCCH发送时隙上的资源使用状态。这样,第二终端装置后续进行资源选择时,可以选择其他终端装置未占用的传输资源,或者选择其他装置占用但数据的优先级较低的传输资源,而不需要将第二终端的PSSCH和/或PSCCH发送时隙在资源选择窗内对应时隙上的候选资源全部排除,来避免可能产生的资源冲突。因此基于该方案,可以提高资源的利用率。
另一种可能的实现方式中,辅助信息还包括第二信息,第二信息用于指示第二终端装置的第一预约资源与其他终端装置的预约资源发生碰撞,其中,第一预约资源为距离第一时隙最近的预约资源,第二终端装置在第一时隙上发送物理侧行信道。
可选的,第一预约资源包括预约的M 3个子信道资源。
可选地,第一预约资源通过第二终端装置的物理侧行信道中的时域预约指示值(time domain resource indicator value,TRIV)指示;或者,第一预约资源通过第二终端装置的物理侧行信道中的资源预约周期指示。
可选地,本申请实施例中,第一预约资源用于第二终端装置的物理侧行信道中第 一传输块TB的重传;和/或第一预约资源用于第二终端装置的物理侧行信道中第二TB所属业务下一个周期的新传。
示例性的,在NR系统中,当TRIV取值不为0且资源预约周期取值为0时,第一预约资源可以是距离第一时隙最近的并且用于第二终端装置的PSSCH和/或PSCCH中第一TB的重传的预约资源;当TRIV取值为0且资源预约周期取值不为0时,第一预约资源可以是距离第一时隙最近的并且用于第二终端装置的PSSCH和/或PSCCH中第二TB所属业务下一个周期的新传的预约资源;当TRIV取值不为0且资源预约周期取值不为0时,第一预约资源可以是距离第一时隙最近的并且用于第二终端装置的PSSCH和/或PSCCH中第一TB的重传的预约资源,或者,第一预约资源可以是距离第一时隙最近的并且用于第二终端装置的PSSCH和/或PSCCH中第二TB所属业务下一个周期的新传的预约资源,或者,第一预约资源可以是距离第一时隙最近的并且用于第二终端装置的PSSCH和/或PSCCH中第一TB的重传,以及距离第一时隙最近的并且用于第二终端装置的PSSCH和/或PSCCH中第二TB所属业务下一个周期的新传的预约资源。
示例性的,如图16所示,假设在时隙n 1上发送端UE-B在子信道3和4上发送了PSSCH和/或PSCCH信号,并且预约了在时隙n 1+t上子信道4和子信道5的资源,即M 3=2。由于发送端UE-B在时隙n 1上无法侦听,因此无法获取其他UE的资源预约信息。若发送端UE-C也在时隙n 1的子信道1上发送了PSSCH和/或PSCCH信号,并且发送端UE-C预约的也是时隙n 1+t上子信道4和/或子信道5的资源。也就是说,发送端UE-B和发送端UE-C在时隙n 1+t上的预约资源有频域重叠,或者部分频域重叠。此时,发送端UE-B或发送端UE-C无法得知未来可能会发生碰撞。如果接收端UE-A能够检测到该碰撞,那么接收端UE-A可以利用第二信息来告知发送端UE-B预约的资源与其他UE(例如,发送端UE-C)的预约资源发生碰撞。例如,第二信息可以用于指示发送端UE-B在时隙n 1+t上预约的资源与其他UE(例如,发送端UE-C)的预约资源发生碰撞。其中,第二信息的发送时隙可以是如图16所示的时隙n 1+k。其中,第二信息发送时隙的选择可以参照S1502中的描述,在此不再赘述。
或者,示例性的,如图17所示,假设在时隙n 1上发送端UE-B在子信道3和4上发送了PSSCH和/或PSCCH信号,并且预约了在时隙n 1+t上子信道4和子信道5的资源,即M 3=2。由于发送端UE-B在时隙n 1上无法侦听,因此无法获取其他UE的资源预约信息。若发送端UE-C在时隙n 1和时隙n 1+k之间的某个时隙上的子信道8上发送了PSSCH和/或PSCCH信号,并且发送端UE-C预约的也是时隙n 1+t上子信道4和/或子信道5的资源。也就是说,发送端UE-B和发送端UE-C在时隙n 1+t上的预约资源有频域重叠,或者部分频域重叠。此时,发送端UE-B或发送端UE-C无法得知未来可能会发生碰撞。如果接收端UE-A能够检测到该碰撞,那么接收端UE-A可以利用第二信息来告知发送端UE-B预约的资源与其他UE(例如,发送端UE-C)的预约资源发生碰撞。例如,第二信息可以用于指示发送端UE-B在时隙n 1+t上预约的资源与其他UE(例如,发送端UE-C)的预约资源发生碰撞。其中,第二信息的发送时隙可以是如图17所示的时隙n 1+k。第二信息发送时隙的选择可以参照S1502中的描述,在此不再赘述。
可选地,第二信息的长度可以是1比特,用于指示第二终端装置的第一预约资源与其他终端装置的预约资源是否发生碰撞。例如,结合图16或图17所示的示例,第二信息用于指示发送端UE-B在时隙n 1上发送的PSSCH和/或PSCCH对应的预约资源是否与其他UE的预约资源发生碰撞。
或者,可选地,第二信息长度还可以是M 3比特,用于指示第二终端装置的第一预约资源中预约的M 3个子信道资源中的每个子信道资源是否与其他终端装置的预约资源发生碰撞。例如,结合图16或图17所示的示例,第二信息用于指示发送端UE-B在时隙n 1上发送的PSSCH和/或PSCCH对应的预约的M 3个子信道资源是否与其他UE的预约资源发生碰撞。以比特取值为“1”表示发生碰撞,比特取值为“0”表示未发生碰撞为例,则第二信息为“11”表示在时隙n 1+t上,发送端UE-B预约的子信道4和5均会与其他UE预约的子信道资源发生碰撞,第二信息为“10”表示在时隙n 1+t上,发送端UE-B预约的子信道4会与其他UE预约的子信道资源发生碰撞,但发送端UE-B预约的子信道5不会与其他UE预约的子信道资源发生碰撞。
一种可能的实现方式中,在图16或图17所述的示例中,发送端UE-B的第一预约资源(即在时隙n 1+t上的子信道4和子信道5)可以用于在时隙n 1上发送的PSSCH和/或PSCCH中传输的同一个TB的重传。此时,第一预约资源可以通过发送端UE-B的PSSCH和/或PSCCH对应第一级控制信息的TRIV指示。在这种情况下,假设第二信息中包含的比特数量为k 2,那么k 2=1或者k 2=M 3
另一种可能的实现方式中,在图16或图17所述的示例中,发送端UE-B的第一预约资源(即在时隙n 1+t上的子信道4和子信道5)可以用于在时隙n 1上发送的PSSCH和/或PSCCH中传输的TB所属业务下一个周期的新传。此时,第一预约资源可以通过发送端UE-B的PSSCH和/或PSCCH对应第一级控制信息的资源预约周期(resource reservation period)指示。在这种情况下,假设第二信息中包含的比特数量为k 3,那么k 3=1或者k 3=M 3
由上可知,在图1所示的隐藏终端场景下,本申请实施例中的第一终端可以确定包括第二信息的辅助信息,其中,第二信息用于指示第二终端装置的第一预约资源与其他终端装置的预约资源发生碰撞,第一预约资源为距离物理侧行信道的发送时隙最近的预约资源。由于第二终端装置与其他终端装置之间无法通过侦听来感知到对方的存在,因此当第二终端装置向第一终端装置发送信号1,其他终端装置中的另一终端装置向第一终端装置发送信号2时,信号1的传输资源与信号2的传输资源可能重叠,从而导致信号1与信号2发生碰撞,进而影响第一终端装置的信号接收。在本申请实施例中,第一终端装置可以确定包括第二信息的辅助信息,以触发第二终端装置或者其他终端装置进行碰撞确认或者传输资源的重新选择,从而达到降低碰撞概率的技术效果。
第一终端装置可以根据第二终端装置发送的物理侧行信道中包含的资源预约信息来确定辅助信息。当第二终端装置在第一时隙上是单次发送,即,第二终端装置不预约资源时,第一终端装置可以只确定第一信息,用于将第一时隙上的资源使用状态告知第二终端装置,以辅助第二终端装置进行后续传输资源的选择。当第二终端装置在第一时隙上发送的物理侧行信道中预约了传输资源时,第一终端装置可以确定第二信息,用于指示第二终端装置的第一预约资源与其他终端装置的预约资源发生碰撞,此时包含以上两种可能的实现方式。假设辅助信息的长度为S比特,那么,S=k 1、S=k 2或者S=k 3
可选地,当第二终端装置存在预约资源时,第一终端装置可以确定三种类型的辅助信息中的至少一种。其中,三种类型的辅助信息分别对应于第一信息和第二信息的两种可能的实现方式。在一种可能的实现方式中,当V2X通信资源池配置的辅助信息包含三种类型的辅助信息,辅助信息还可以包括指示信息,指示信息用于指示辅助信息包括上述第一信息和/或上述第二信息,即指示信息用于指示辅助信息中是否包含有效的第一类型的辅助信息,是否包含有效的第二类型的辅助信息,是否包含有效的第三类型的辅助信息。假设比特取值为1表示包含有效的第一类型的辅助信息、第二类型的辅助信息或第三类型的辅助信息,第一类型的辅助信息、第二类型的辅助信息或第三类型的辅助信息对应的比特位由高至低排序,则指示信息取值为“100”,表示第一终端装置仅确定了第一类型的辅助信息,指示信息为“101”,表示第一终端装置确定了第一类型的辅助信息和第三类型的辅助信息。
可选地,指示信息可以位于三种类型的辅助信息之前,以使得第二终端装置能够识别出接收到的辅助信息中包含的不同类型,并且根据辅助信息进行传输资源的选择,从而达到提高资源的利用率和/或降低碰撞概率的技术效果。
当辅助信息还包括指示信息时,假设辅助信息的长度为S比特,指示信息的长度为p比特,那么,S=p+sum(k i),其中,sum()表示求和,i表示第一终端装置确定的辅助信息的类型,其取值可以为1、2或3。
S1502、第一终端装置向第二终端装置发送辅助信息。相应的,第二终端装置接收来自第一终端装置的辅助信息。其中,承载辅助信息的序列映射在第一时频资源上,第一时频资源为第二时频资源的子集,第二时频资源与物理侧行反馈资源在时域上重合,在频域上正交。
在一种可能的实现方式中,第二时频资源所在的时隙为第一时隙之后,距离第一时隙的最后一个符号,间隔大于K 1个时隙的第一个物理侧行反馈资源所在的时隙,其中,第二终端装置在第一时隙上发送物理侧行信道。
在另一种可能的实现方式中,第二时频资源所在的时隙为第二时隙之前,距离第二时隙的第一个符号,间隔大于K 2个时隙的第一个物理侧行反馈资源所在的时隙,其中,第二时隙为第二终端装置的第一预约资源所在的时隙,第一预约资源为距离第一时隙最近的预约资源,K 1或K 2为高层配置的发送辅助信息的最小时间间隔;或者K 1或K 2是现有技术中HARQ-ACK反馈的最小时间间隔K。
可选的,当高层同时配置了K 1和K 2时,可以选择由K 1确定的发送时隙或由K 2确定的发送时隙来发送辅助信息。在一种可能的实现方式中,由K 1确定的发送时隙在由K 2确定的发送时隙之前。进而选择由K 1确定的发送时隙来发送辅助信息的优势在于,可以尽早提示第二终端装置,以触发第二终端装置尽早进行SL资源选择、重选或碰撞确认。选择由K 2确定的发送时隙来发送辅助信息的优势在于,可以给予第一终端装置更多的时间,以便于第一终端装置生成更全面、更可靠的辅助信息。
需要说明的是,由K 1确定的发送时隙更适合于发送包含第一信息的辅助信息,由K 2确定的发送时隙更适合于发送包含第二信息的辅助信息。当然,也可以通过由K 1确定的发送时隙发送包含第二信息的辅助信息,通过由K 2确定的发送时隙发送包含第一信息的辅助信息,本申请实施例对此不做具体限定。
可选地,第二时频资源中包括J*M个第三时频资源,J*M个第三时频资源按照先频域后时域的方式顺序分配给J个时隙中的M个子信道,J个时隙为根据K 1或K 2确定的第二时频资源对应的时隙,M为资源池中配置的子信道数量。这里,第二时频资源中包括J*M个第三时频资源,可以理解为,第二时频资源由J*M个第三时频资源组成,或者第二时频资源带宽均等的分成J*M个第三时频资源。
可选地,第一时频资源包含J*M个第三时频资源中的M 1个第三时频资源。其中,M 1为第二终端装置在第一时隙上传输发送物理侧行信道占用的子信道数量,M 1为小于或者等于M的正整数。
示例性的,在NR系统中,物理侧行反馈资源所在的时隙可以为第二终端装置发送的PSSCH和/或PSCCH对应的PSFCH时隙。
具体地,将承载辅助信息的序列映射在第一时频资源上主要有如下步骤:
首先,确定承载辅助信息的序列。
示例性的,可以采用与上述表1类似的方法。即,可以基于2个m cs的取值生成2个序列,以对应于同一个比特的不同取值。此时,待发送的长度为S比特的辅助信息共需要2*S个序列,也可以称为S个序列对。每个序列对中包含分别对应于比特取值为“0”和“1”的两个序列。其中,序列Seq(2*i)可以是对应于比特取值为“0”的序列,序列Seq(2*i+1)可以是对应于比特取值为“1”的序列。其中,i表示序列对的序号,i=0,1,…,S-1。第一终端装置可以根据待发送的辅助信息在S个序列对中选择S个序列进行发送。
或者,示例性的,可以采用4个序列对应于2比特辅助信息的承载方式。此时,待发送的长度为S比特的辅助信息共需要4*ceil(S/2)个序列,也可以称为ceil(S/2)个序列集合,ceil表示上取整。每个序列集合中包含分别对应于比特取值为“00”、“01”、“11”和“10”的四个序列,其中,序列Seq(4*i)可以是对应于比特取值为“00”的序列,序列Seq(4*i+1)可以是对应于比特取值为“01”的序列,序列Seq(4*i+2)可以是对应于比特取值为“11”的序列,以及序列Seq(4*i+3)可以是对应于比特取值为“10”的序列。其中,i表示序集合的序号,i=0,1,…,ceil(S/2)-1。第一终端装置可以根据待发送的辅助信息在ceil(S/2)个序列集合中选择ceil(S/2)个序列进行发送。
以上两个示例相比,在第二终端装置侧,由于需要对每个序列进行检测,因此,两种实现方式的计算量基本相等。但在第二终端装置侧,在ceil(S/2)个序列集合中选择ceil(S/2)个序列进行发送的方式相对于在S个序列对中选择S个序列进行发送的方式,需要发送的序列数量可以减少一半。
其次,确定第二时频资源的时域位置。
本申请实施例中,由于承载辅助信息的序列映射在第一时频资源上,第一时频资源为第二时频资源的子集,第二时频资源与物理侧行反馈资源在时域上重合,在频域上正交,因此本步骤相当于确定辅助信息的发送时隙。
在一种可能的实现方式中,以图16所述的示例为例,辅助信息的发送时隙可以是如图16所示的时隙n 1+k,时隙n 1+k是发送端UE-B的PSSCH和/或PSCCH发送时隙n 1之后,与n 1的最后一个符号间隔大于K 1个时隙的第一个PSFCH时隙。其中,K 1为 发送辅助信息的最小时间间隔。也就是说,k>=K 1,并且n 1+k是发送端UE-B的PSSCH和/或PSCCH发送时隙n 1之后,距离n 1最近的PSFCH时隙。
在另一种可能的实现方式中,以图16所述的示例为例,辅助信息的发送时隙还可以是如图17所示的时隙n 1+k,时隙n 1+k是发送端UE-B的第一预约资源所在的时隙n 1+t之前,与n 1+t的第一个符号间隔大于K 2个时隙的第一个PSFCH时隙。其中,K 2为发送辅助信息的最小时间间隔。第一预约资源可以由发送端UE-B的PSSCH和/或PSCCH对应第一级控制信息的TRIV或者资源预约周期来指示。也就是说,k<=t-K 2,并且n 1+k是发送端UE-B的第一预约资源所在的时隙n 1+t之前,距离n 1+t最近的PSFCH时隙。
然后,确定第二时频资源的频域位置。
本申请实施例中,第二时频资源与现有技术中用于发送HARQ-ACK信息的PSFCH资源在频域上正交。具体地,现有技术中,如前所述,V2X通信资源池为HARQ-ACK反馈配置比特地图,其用于指示每个PRB是否为可以用于HARQ-ACK反馈的PSFCH资源,如果比特地图中的“1”表示对应的PRB为可以用于HARQ-ACK反馈的PSFCH资源,那么在本申请的实施例中,使用比特“0”来表示对应的PRB可以用于发送辅助信息。
示例性的,如图18所示,第一时频资源可以理解为PSFCH时隙上编号为4和5的PRB的集合,第二时频资源可以理解为PSFCH时隙上编号为0-15的PRB的集合,第二时频资源包含15个第三时频资源,每个第三时频资源包含1个PRB。
本申请实施例中,J*M个第三时频资源按照先频域后时域的方式顺序分配给J个时隙中的M个子信道,M为资源池中配置的子信道数量,J个时隙为根据K 1或K 2确定的第二时频资源对应的时隙。可选地,由于K 1或K 2可以是现有技术中HARQ-ACK反馈的最小时间间隔K。第二时频资源与周期配置参数
Figure PCTCN2020142516-appb-000055
有关,因此,J与PSFCH资源的周期配置参数
Figure PCTCN2020142516-appb-000056
有关,
Figure PCTCN2020142516-appb-000057
一种可能,
Figure PCTCN2020142516-appb-000058
一种可能
Figure PCTCN2020142516-appb-000059
也就是说,J个时隙为V2X通信资源池配置的比特地图指示的绑定窗内的全部或部分时隙。用公式表示,假设第二时频资源中共包含P个PRB,那么,每个第三时频资源包含Q=floor(P/(J*N subch))个PRB资源,其中,N subch为V2X通信资源池配置的子信道数量,并且P≥J*N subch,floor()表示向下取整。对于绑定的PSSCH时隙中的第i个SL传输时隙,若该SL传输时隙上V2X通信资源池中子信道的编号为j,那么在上述SL传输时隙上,子信道j对应的第三时频资源为:
Figure PCTCN2020142516-appb-000060
其中,0≤i≤J,0≤j<N subch
本申请实施例中,由图18可知,若发送端UE-B在第2个SL传输时隙上占用两个子信道发送PSSCH,例如编号为4和5的PSSCH,那么其对应的承载辅助信息的序列的第一时频资源是第4个第三时频资源和第5个第三时频资源的集合。其中,第4个Q个PRB资源为编号为4的第三时频资源,第5个Q个PRB资源为编号为5的第三时频资源,Q=1。由图18可知,编号为4的第三时频资源和编号为5的第三时频资源在第二时频资源的频域上是连续的,而在如图9所示的现有技术中,编号为5和9的PSSCH对应的PSFCH资源在频域上是不连续的。
本申请实施例中,当比特地图中指示的比特“0”连续时,由于先频域后时域的方 式使得每个PSSCH对应的承载辅助信息的序列的各个第三时频资源在频域上是连续的,因此可以降低待发送信号的时域峰均比,从而在发送辅助信息时,增加信号的平均功率,进而增加每个发送序列的实际功率,最终达到扩大信号覆盖范围的技术效果。
最后,确定承载辅助信息的序列的具体映射位置(即第一时频资源)。
由上述实施例的分析可知,本申请实施例中,确定第一时频资源的实质在于确定第二时频资源中可用于承载辅助信息的序列的PRB。
如上所述,若发送端UE-B发送的PSSCH和/或PSCCH占用1个子信道,则接收端UE-A可以使用Q个PRB来发送辅助信息。相应地,若发送端UE-B发送的PSSCH和/或PSCCH占用Z个子信道,则接收端UE-A可以使用Q*Z个PRB来发送辅助信息,并且Q*Z个PRB在第二时频资源的频域上是连续的。承载辅助信息的序列资源集合包含的数量为
Figure PCTCN2020142516-appb-000061
其中,
Figure PCTCN2020142516-appb-000062
为V2X通信资源池配置的一个PRB中可以复用的循环移位序列对的数量。
在单播场景下,即只有接收端UE-A向发送端UE-B发送辅助信息。结合上述在S个序列对中选择S个序列进行发送的方式的示例,在一种可能的实现方式中,承载辅助信息的序列Seq(2*i)、Seq(2*i+1)对应的PRB资源为
Figure PCTCN2020142516-appb-000063
循环移位索引值为
Figure PCTCN2020142516-appb-000064
并且由表3确定序列的m 0值,再根据以下表6确定序列的m CS值。在另一种可能的实现方式中,携带辅助信息的序列Seq(2*i)、Seq(2*i+1)对应的PRB资源为(i)mod(Q*Z),循环移位索引值为
Figure PCTCN2020142516-appb-000065
并且由表3确定序列的m 0值,再根据以下表6确定序列的m CS值。
表6
Figure PCTCN2020142516-appb-000066
以上两种实现方式的差别在于,一种实现方式中,发送端UE-A将待发送的承载辅助信息的序列按照先码域后频域的方式顺序映射在PSFCH时隙的物理资源集合上,而在另一种实现方式中,映射的方式为先频域后码域的方式。
结合在ceil(S/2)个序列集合中选择ceil(S/2)个序列进行发送的示例,对于承载辅助信息的序列Seq(4*i)、Seq(4*i+1)、Seq(4*i+2)、Seq(4*i+3),PRB资源和循环移位索引值的确定过程与上述示例6中的确定过程相同,m CS和m 0可以分别按照以下表7和表8确定。
表7
Figure PCTCN2020142516-appb-000067
表8
Figure PCTCN2020142516-appb-000068
在组播或者广播场景下,即除了接收端UE-A之外,其他的接收端UE也可以向发送端UE-B发送辅助信息,此时,辅助发送端UE-B的接收端UE的数量较多,由于第二时频资源是有限的,因此,可能存在无法为每个接收端UE都分配第一时频资源的情况。在本申请实施例中,多个接收端UE可以共同使用相同的第一时频资源来发送辅助信息,并且为了避免接收辅助信息的发送端UE-B侧产生歧义,多个接收端UE可以只反馈比特“1”对应的序列,该序列的具体映射位置的确定过程与上述在ceil(S/2)个序列集合中选择ceil(S/2)个序列进行发送的示例和在S个序列对中选择S个序列进行发送的方式的示例中承载辅助信息的序列的具体映射位置的确定过程相同,在此不再赘述。
S1503、第二终端装置根据辅助信息确定侧行发送资源。
在一种可能的实现方式中,第二终端装置可以根据辅助信息选择其他UE未占用的传输资源,或者选择其他UE占用但数据的优先级较低的传输资源。
在另一种可能的实现方式中,第二终端装置可以根据辅助信息中指示的资源碰撞结果,触发碰撞确认或者传输资源的重选过程。
本申请实施例中,承载辅助信息的序列映射在第一时频资源上,第一时频资源为第二时频资源的子集,第二时频资源与物理侧行反馈资源在时域上重合,在频域上正交。由于物理侧行反馈资源在时域上小于一个SL传输时隙,因此,使用在时域上与PSFCH资源重合的第二时频资源的子集来发送辅助信息,仅需要占用一个SL传输时隙中的部分时域资源,而不需要占用整个时隙上的至少一个子信道,从而能够节省发送辅助信息的资源开销,尤其是在有多个辅助信息需要发送时,能够保证其他信息的发送效率。
可以理解的是,以上各个实施例中,由第一终端装置实现的方法和/或步骤,也可以由可用于第一终端装置的部件(例如芯片或者电路)实现;由第二终端装置实现的方法和/或步骤,也可以由可用于第二终端装置的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的第一终端装置,或者包含上述第一终端装置的装置,或者为可用于第一终端装置的部件;或者,该通信装置可以为上述方法实施例中的第二终端装置,或者包含上述第二终端装置的装置,或者为可用于第二终端装置的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来 实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图19示出了一种通信装置190的结构示意图。该通信装置190包括收发模块191和处理模块192。所述收发模块191,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
以通信装置190为上述方法实施例中的第一终端装置为例,则:
处理模块192,用于确定辅助信息,辅助信息用于辅助第二终端装置确定侧行信道资源。收发模块191,用于向第二终端装置发送辅助信息,其中,承载辅助信息的序列映射在第一时频资源上,第一时频资源为第二时频资源的子集,第二时频资源与物理侧行反馈资源在时域上重合,在频域上正交。
以通信装置190为上述方法实施例中的第二终端装置为例,则:
收发模块191,用于接收来自第一终端装置的辅助信息,其中,承载辅助信息的序列映射在第一时频资源上,第一时频资源为第二时频资源的子集,第二时频资源与物理侧行反馈资源在时域上重合,在频域上正交。处理模块192,用于根据辅助信息确定侧行传输资源。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置190以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
当通信装置190为上述方法实施例中的第一终端装置时,在一个简单的实施例中,本领域的技术人员可以想到该通信装置190可以采用图14所示的形式。
比如,图14所示的第一终端装置中的处理器141或147可以通过调用存储器143中存储的计算机执行指令,使得第一终端装置执行上述方法实施例中的通信方法。具体的,图19中的收发模块191和处理模块192的功能/实现过程可以通过图14所示的第一终端装置中的处理器141或147调用存储器中存储的计算机执行指令来实现。或者,图10中的处理模块192的功能/实现过程可以通过图14所示的第一终端装置中的处理器141或147调用存储器中存储的计算机执行指令来实现,图19中的收发模块191的功能/实现过程可以通过图14中所示的通信接口144来实现。
或者,当通信装置190为上述方法实施例中的第二终端装置时,在一个简单的实施例中,本领域的技术人员可以想到该通信装置190也可以采用图14所示的形式。具体实现方式与上述通信装置190为第一终端装置的情形相同,在此不再赘述。
由于本实施例提供的通信装置190可执行上述通信方法,因此其所能获得的技术效 果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种芯片系统,包括:至少一个处理器和接口,该至少一个处理器通过接口与存储器耦合,当该至少一个处理器执行存储器中的计算机程序或指令时,使得上述任一方法实施例中的方法被执行。在一种可能的实现方式中,该通信装置还包括存储器。可选的,该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅 仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一终端装置确定辅助信息,所述辅助信息用于辅助第二终端装置确定侧行发送资源;
    所述第一终端装置向第二终端装置发送所述辅助信息,其中,承载所述辅助信息的序列映射在第一时频资源上,所述第一时频资源为第二时频资源的子集,所述第二时频资源与物理侧行反馈资源在时域上重合,在频域上正交。
  2. 根据权利要求1所述的方法,其特征在于,所述第二时频资源所在的时隙为第一时隙之后,距离所述第一时隙的最后一个符号,间隔大于K 1个时隙的第一个物理侧行反馈资源所在的时隙,其中,所述第二终端装置在所述第一时隙上发送物理侧行信道;
    或者,所述第二时频资源所在的时隙为第二时隙之前,距离所述第二时隙的第一个符号,间隔大于K 2个时隙的第一个物理侧行反馈资源所在的时隙,其中,所述第二时隙为所述第二终端装置的第一预约资源所在的时隙,所述第一预约资源为距离所述第一时隙最近的预约资源,K 1或K 2为高层配置的发送所述辅助信息的最小时间间隔。
  3. 根据权利要求2所述的方法,其特征在于,所述第二时频资源中包括J*M个第三时频资源,所述J*M个第三时频资源按照先频域后时域的方式顺序分配给J个时隙中的M个子信道,所述J个时隙为根据所述K 1或所述K 2确定的所述第二时频资源对应的时隙,所述M为资源池中配置的子信道数量。
  4. 根据权利要求3所述的方法,其特征在于,所述第一时频资源包含所述J*M个第三时频资源中的M 1个第三时频资源,其中,M 1为所述第二终端装置在所述第一时隙上传输发送物理侧行信道占用的子信道数量,M 1为小于或者等于M的正整数。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述辅助信息包括第一信息,所述第一信息用于指示第一时隙上的资源使用状态,其中,所述第二终端装置在所述第一时隙上发送物理侧行信道。
  6. 根据权利要求5所述的方法,其特征在于,所述第一信息用于指示第一时隙上的资源使用状态,包括:
    所述第一信息用于指示所述第一时隙上M个子信道的资源使用状态,M为资源池中配置的子信道数量;
    或者,所述第一信息用于指示所述第一时隙上M个子信道中除M 1个子信道之外的子信道的资源使用状态,M为资源池中配置的子信道数量,M 1为所述第二终端装置在所述第一时隙上发送物理侧行信道占用的子信道数量。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述辅助信息还包括第二信息,所述第二信息用于指示所述第二终端装置的第一预约资源与其他终端装置的预约资源发生碰撞,其中,所述第一预约资源为距离第一时隙最近的预约资源,所述第二终端装置在所述第一时隙上发送物理侧行信道。
  8. 根据权利要求7所述的方法,其特征在于,所述第一预约资源用于所述第二终端装置的物理侧行信道中第一传输块TB的重传;和/或,
    所述第一预约资源用于所述第二终端装置的物理侧行信道中第二TB所属业务下 一个周期的新传。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一预约资源包括预约的M 3个子信道资源。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述第一预约资源通过所述第二终端装置的物理侧行信道中的时域预约指示值TRIV指示;
    或者,所述第一预约资源通过所述第二终端装置的物理侧行信道中的资源预约周期指示。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述辅助信息还包括指示信息,所述指示信息用于指示所述辅助信息包括第一信息和/或第二信息,其中,第一信息用于指示第一时隙上的资源使用状态,第二信息用于指示所述第二终端装置的第一预约资源与其他终端装置的预约资源发生碰撞,所述第一预约资源为距离所述第一时隙最近的预约资源,所述第二终端装置在所述第一时隙上发送物理侧行信道。
  12. 一种通信方法,其特征在于,所述方法包括:
    第二终端装置接收来自第一终端装置的辅助信息,其中,承载所述辅助信息的序列映射在第一时频资源上,所述第一时频资源为第二时频资源的子集,所述第二时频资源与物理侧行反馈资源在时域上重合,在频域上正交;
    所述第二终端装置根据所述辅助信息确定侧行发送资源。
  13. 根据权利要求12所述的方法,其特征在于,所述第二时频资源所在的时隙为第一时隙之后,距离所述第一时隙的最后一个符号,间隔大于K 1个时隙的第一个物理侧行反馈资源所在的时隙,其中,所述第二终端装置在所述第一时隙上发送物理侧行信道;
    或者,所述第二时频资源所在的时隙为第二时隙之前,距离所述第二时隙的第一个符号,间隔大于K 2个时隙的第一个物理侧行反馈资源所在的时隙,其中,所述第二时隙为所述第二终端装置的第一预约资源所在的时隙,所述第一预约资源为距离所述第一时隙最近的预约资源,K 1或K 2为高层配置的发送所述辅助信息的最小时间间隔。
  14. 根据权利要求13所述的方法,其特征在于,所述第二时频资源中包括J*M个第三时频资源,所述J*M个第三时频资源按照先频域后时域的方式顺序分配给J个时隙中的M个子信道,所述J个时隙为根据K 1或K 2确定的所述第二时频资源对应的时隙,所述M为资源池中配置的子信道数量。
  15. 根据权利要求14所述的方法,其特征在于,所述第一时频资源包含所述J*M个第三时频资源中的M 1个第三时频资源,其中,M 1为所述第二终端装置在所述第一时隙上传输发送物理侧行信道占用的子信道数量,M 1为小于或者等于M的正整数。
  16. 根据权利要求12-15任一项所述的方法,其特征在于,所述辅助信息包括第一信息,所述第一信息用于指示第一时隙上的资源使用状态,其中,所述第二终端装置在所述第一时隙上发送物理侧行信道。
  17. 根据权利要求16所述的方法,其特征在于,所述第一信息用于指示第一时隙上的资源使用状态,包括:
    所述第一信息用于指示所述第一时隙上M个子信道的资源使用状态,M为资源池中配置的子信道数量;
    或者,所述第一信息用于指示所述第一时隙上M个子信道中除M 1个子信道之外的子信道的资源使用状态,M为资源池中配置的子信道数量,M 1为所述第二终端装置在所述第一时隙上发送物理侧行信道占用的子信道数量。
  18. 根据权利要求12-17任一项所述的方法,其特征在于,所述辅助信息还包括第二信息,所述第二信息用于指示所述第二终端装置的第一预约资源与其他终端装置的预约资源发生碰撞,其中,所述第一预约资源为距离第一时隙最近的预约资源,所述第二终端装置在所述第一时隙上发送物理侧行信道。
  19. 根据权利要求18所述的方法,其特征在于,所述第一预约资源用于所述第二终端装置的物理侧行信道中第一传输块TB的重传;和/或,
    所述第一预约资源用于所述第二终端装置的物理侧行信道中第二TB所属业务下一个周期的新传。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一预约资源包括预约的M 3个子信道资源。
  21. 根据权利要求18-20任一项所述的方法,其特征在于,所述第一预约资源通过所述第二终端装置的物理侧行信道中的时域预约指示值TRIV指示;
    或者,所述第一预约资源通过所述第二终端装置的物理侧行信道中的资源预约周期指示。
  22. 根据权利要求12-21任一项所述的方法,其特征在于,所述辅助信息还包括指示信息,所述指示信息用于指示所述辅助信息包括第一信息和/或第二信息,其中,第一信息用于指示第一时隙上的资源使用状态,第二信息用于指示所述第二终端装置的第一预约资源与其他终端装置的预约资源发生碰撞,所述第一预约资源为距离所述第一时隙最近的预约资源,所述第二终端装置在所述第一时隙上发送物理侧行信道。
  23. 一种通信装置,其特征在于,所述通信装置包括:收发模块和处理模块;
    所述处理模块,用于确定辅助信息,所述辅助信息用于辅助第二终端装置确定侧行发送资源;
    所述收发模块,用于向第二终端装置发送所述辅助信息,其中,承载所述辅助信息的序列映射在第一时频资源上,所述第一时频资源为第二时频资源的子集,所述第二时频资源与物理侧行反馈资源在时域上重合,在频域上正交。
  24. 一种通信装置,其特征在于,所述通信装置包括:收发模块和处理模块;
    所述收发模块,用于接收来自第一终端装置的辅助信息,其中,承载所述辅助信息的序列映射在第一时频资源上,所述第一时频资源为第二时频资源的子集,所述第二时频资源与物理侧行反馈资源在时域上重合,在频域上正交;
    所述处理模块,用于根据所述辅助信息确定侧行发送资源。
  25. 一种通信装置,其特征在于,包括:
    存储器以及与所述存储器耦合的处理器,所述存储器用于存储程序,所述处理器用于执行所述存储器存储的所述程序;当所述通信装置运行时,所述处理器运行所述程序,使得所述通信装置执行上述权利要求1-11或12-22中任一项所述的方法。
  26. [根据细则91更正 14.01.2021] 
    一种计算机可读存储介质,其特征在于,其上存储有计算机程序,当所述计算机程序被计算机执行时使得所述计算机执行权利要求1-11或12-22中任一项所述的方法。
  27. [根据细则91更正 14.01.2021] 
    一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行权利要求1-11或12-22中任一项所述的方法。
  28. 一种通信系统,其特征在于,包括权利要求25所述的通信装置,以及与所述通信装置通信的至少一个权利要求24所述的通信装置。
PCT/CN2020/142516 2020-12-31 2020-12-31 通信方法、装置及系统 WO2022141578A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2023540199A JP2024502053A (ja) 2020-12-31 2020-12-31 通信方法、通信装置および通信システム
MX2023007891A MX2023007891A (es) 2020-12-31 2020-12-31 Metodo de comunicacion, aparato, medio de almacenamiento legible por computadora, producto y sistema.
PCT/CN2020/142516 WO2022141578A1 (zh) 2020-12-31 2020-12-31 通信方法、装置及系统
CN202080107234.XA CN116458231A (zh) 2020-12-31 2020-12-31 通信方法、装置及系统
EP20967916.6A EP4258775A4 (en) 2020-12-31 2020-12-31 COMMUNICATION METHOD, DEVICE AND SYSTEM
US18/344,067 US20230345512A1 (en) 2020-12-31 2023-06-29 Communication method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142516 WO2022141578A1 (zh) 2020-12-31 2020-12-31 通信方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/344,067 Continuation US20230345512A1 (en) 2020-12-31 2023-06-29 Communication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2022141578A1 true WO2022141578A1 (zh) 2022-07-07

Family

ID=82260145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142516 WO2022141578A1 (zh) 2020-12-31 2020-12-31 通信方法、装置及系统

Country Status (6)

Country Link
US (1) US20230345512A1 (zh)
EP (1) EP4258775A4 (zh)
JP (1) JP2024502053A (zh)
CN (1) CN116458231A (zh)
MX (1) MX2023007891A (zh)
WO (1) WO2022141578A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220225288A1 (en) * 2021-01-14 2022-07-14 Kt Corporation Method and apparatus for transmitting and receiving coordination information for sidelink communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110545533A (zh) * 2019-08-16 2019-12-06 中国信息通信研究院 一种车联网反馈资源配置方法、终端设备
CN111934835A (zh) * 2020-08-06 2020-11-13 中兴通讯股份有限公司 一种资源选择、指示方法、装置、终端和存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110545533A (zh) * 2019-08-16 2019-12-06 中国信息通信研究院 一种车联网反馈资源配置方法、终端设备
CN111934835A (zh) * 2020-08-06 2020-11-13 中兴通讯股份有限公司 一种资源选择、指示方法、装置、终端和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OPPO: "Physical layer procedure for NR-V2X sidelink", 3GPP DRAFT; R1-1910375 PHY LAYER PROCEDURE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 8 October 2019 (2019-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 12, XP051789180 *
See also references of EP4258775A4 *

Also Published As

Publication number Publication date
EP4258775A4 (en) 2023-12-27
MX2023007891A (es) 2023-09-15
JP2024502053A (ja) 2024-01-17
EP4258775A1 (en) 2023-10-11
US20230345512A1 (en) 2023-10-26
CN116458231A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
US11424871B2 (en) Resource allocation method and apparatus in wireless communication system
US20200068534A1 (en) Method and user equipment for multi-carrier data transmission
EP4093132A1 (en) Method and apparatus for allocating resources through cooperation between terminals in v2x system
US11791937B2 (en) Method and apparatus for transmission and reception of sidelink control information in wireless communication system
US11647418B2 (en) Resource request method and device, method and device for processing resource request
US20230262660A1 (en) Communication method and device in wireless communication system supporting sidelink carrier aggregation
US20220110075A1 (en) Information transmission method and apparatus, and storage medium
US20230345512A1 (en) Communication method, apparatus, and system
KR20200127827A (ko) 무선 통신 시스템에서 자원 할당 방법 및 장치
US11963157B2 (en) Method and apparatus for using unlicensed band in communication system
US20220417919A1 (en) Method and apparatus for resource allocation by sidelink inter-ue coordination in communication system
WO2022028268A1 (zh) 通信方法及装置
WO2022141582A1 (zh) 无线通信的方法和装置
WO2022222109A1 (zh) 资源选取方法、装置、设备及存储介质
US20230224927A1 (en) Method and device for resource allocation in v2x system
WO2023206547A1 (zh) 相对位置的定位方法、装置、设备和介质
WO2023093531A1 (zh) 一种通信方法及装置
WO2022141593A1 (zh) 一种通信方法及装置
EP4304275A1 (en) Method and device for resource allocation in wireless communication system through sidelink inter-ue coordination
WO2024093832A1 (zh) 一种资源选择方法及装置
EP4373189A1 (en) Method and apparatus for inter-ue coordination of sidelink in wireless communication system
US20240008001A1 (en) Method for resource selection and first device
EP4358613A1 (en) Resource collision indication method and apparatus, device, and storage medium
WO2022147771A1 (zh) 资源调度的确定方法、装置及存储介质
CN116939864A (zh) 一种侧行链路的资源确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967916

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107234.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023540199

Country of ref document: JP

Ref document number: MX/A/2023/007891

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023013143

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020967916

Country of ref document: EP

Effective date: 20230704

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023013143

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230629