WO2022141593A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022141593A1
WO2022141593A1 PCT/CN2020/142548 CN2020142548W WO2022141593A1 WO 2022141593 A1 WO2022141593 A1 WO 2022141593A1 CN 2020142548 W CN2020142548 W CN 2020142548W WO 2022141593 A1 WO2022141593 A1 WO 2022141593A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
terminal device
transmission resource
message
resource pool
Prior art date
Application number
PCT/CN2020/142548
Other languages
English (en)
French (fr)
Inventor
董蕾
苏宏家
郭文婷
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20967931.5A priority Critical patent/EP4250842A4/en
Priority to MX2023007799A priority patent/MX2023007799A/es
Priority to PCT/CN2020/142548 priority patent/WO2022141593A1/zh
Priority to CN202080103231.9A priority patent/CN115918204A/zh
Publication of WO2022141593A1 publication Critical patent/WO2022141593A1/zh
Priority to US18/342,198 priority patent/US20230345423A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and apparatus.
  • D2D device to device
  • the application of D2D technology can reduce the burden of cellular networks, reduce battery power consumption of user equipment, increase data rates, and can well meet the needs of proximity services.
  • the D2D technology allows multiple D2D-enabled user equipment (UE) to perform direct discovery and direct communication with or without network infrastructure.
  • UE D2D-enabled user equipment
  • V2X communication refers to the communication between vehicles and anything in the outside world, including vehicle-to-vehicle (V2V) communication, vehicle-to-people (V2P) communication, vehicle-infrastructure (vehicle to vehicle, V2P) communication to infrastructure, V2I) communication, and vehicle to network (V2N) communication.
  • V2V vehicle-to-vehicle
  • V2P vehicle-to-people
  • V2P vehicle-infrastructure
  • V2P vehicle to vehicle
  • V2P vehicle-infrastructure communication to vehicle, V2P) communication to infrastructure
  • V2I vehicle to network
  • V2N vehicle to network
  • the resource allocation mode of the base station is mainly applied to V2X communication under the condition of network coverage.
  • the resources allocated by the base station include initial resources and/or retransmission resources.
  • the transmission resources sent by the UE do not depend on the base station, and the UE selects the transmission resources for communication in the pre-configured resource pool. This mode is not limited by network coverage, and in the case of no network coverage, the sending UE can also use this mode to communicate.
  • User-selected resources include initial resources and/or retransmission resources.
  • the sending UE may listen to idle resources in a preconfigured resource pool, and then use the idle resources to communicate with the receiving UE.
  • a UE coordination (inter-UE coordination) mechanism is further proposed, that is, the sending UE can select resources under the cooperation of other UEs.
  • the cooperative UE here may be the receiving end UE, or may be other UEs close to the receiving end UE. Using the cooperation message sent by the cooperative UE, the sending UE can more accurately determine the transmission resources in the preconfigured resource pool, reduce the interference of the system, and improve the transmission efficiency.
  • the UE cooperation mechanism can be divided into two mechanisms: based on explicit triggering and based on non-explicit triggering.
  • the sending UE first sends a trigger message to the cooperative UE, and then the cooperative UE sends the cooperation message to the sending UE.
  • the cooperative UE directly sends the cooperative message to the sending UE.
  • the trigger message and the cooperation message are sent in a preconfigured resource pool, which is the same resource pool as the resource pool for transmitting SL information between the UE and the receiving UE in the above-mentioned user-selected resource mode, That is, the sending UE and the cooperative UE send the trigger message and the cooperative message in the SL resource pool.
  • a preconfigured resource pool which is the same resource pool as the resource pool for transmitting SL information between the UE and the receiving UE in the above-mentioned user-selected resource mode, That is, the sending UE and the cooperative UE send the trigger message and the cooperative message in the SL resource pool.
  • the transmission requirements of the existing sidelink one transmission needs to occupy the entire time slot. That is, the transmission of the trigger message and the cooperation message needs to occupy the entire time slot in the SL resource pool. If the number of bits included in the trigger message or the cooperation message is small, further resource waste may be caused.
  • the present application provides a communication method and apparatus to reduce waste of time domain resources.
  • a communication method comprising: a first terminal device determining a first transmission resource in a first resource pool, the first transmission resource is used to transmit a first message, and a first transmission resource in the first resource pool Each transmission resource occupies part or all of the symbols of a time slot in the time domain, and each transmission resource in the first resource pool occupies one or more subchannels in the frequency domain; the first terminal device uses the The first transmission resource sends the first message to the second terminal device.
  • a resource pool is separately configured, namely the first resource pool, the resource pool is specially used to transmit trigger messages or cooperation messages, and a time slot in the resource pool includes multiple transmission resources, and the transmission of trigger messages or cooperation messages
  • One transmission resource is occupied at a time, that is, the resource occupied by the trigger message or cooperation message in the time domain is less than one time slot.
  • the transmission of trigger messages or coordination messages needs to occupy a time slot, which can reduce the time domain resources occupied by trigger messages or coordination messages and improve the utilization rate of time domain resources.
  • the above method further includes: the first terminal device determines at least one transmission resource in the first resource pool, and the first resource pool is also used to transmit the second message; The first terminal device receives the second message from the second terminal device on the at least one transmission resource.
  • the second message is used by the first terminal device to determine the first message
  • the first message is used by the second terminal device to determine the third transmission resource in the second resource pool
  • the third transmission resource is used for the second terminal device to send a third message; wherein, the third message may be carried in the physical sideline control channel PSCCH, the physical sideline shared channel PSSCH, or the physical sideline feedback channel PSFCH
  • the time-domain starting position and/or the number of occupied time-domain symbols of each transmission resource in the first resource pool is preconfigured in the first terminal device, or the first terminal device According to the configuration signaling from the network device, the time domain starting position and/or the occupied time domain symbol quantity of each transmission resource is determined.
  • the configuration signaling is system message block SIB, radio resource control RRC signaling, or physical layer control information.
  • the first time domain symbol occupied by each transmission resource in the first resource pool is used for automatic gain control AGC adjustment at the receiving end.
  • the first resource pool and the second resource pool are time-division multiplexed.
  • the first terminal device determining the first transmission resource in the first resource pool includes: the first terminal device determines the first transmission resource according to the index of the first terminal device and/or the second terminal device The index corresponding to the first transmission resource is determined; in the first resource pool, the transmission resource corresponding to the index is the transmission resource used for sending the first message.
  • the first terminal device and the second terminal device can determine the index in the first terminal device according to the identification of the first terminal device and/or the identification of the second terminal device, so the first terminal device or the second terminal device can determine the index in the first terminal device.
  • the device does not need to additionally determine the resources for sending trigger messages or cooperation messages according to the listening reservation process, which can reduce the power of the terminal device and achieve the effect of energy saving, which is especially suitable for the terminal device with limited power. And it can avoid the enhancement of system complexity and interference caused by the listening reservation process.
  • the first terminal device determining at least one transmission resource in the first resource pool includes: the first terminal device determining at least one transmission resource according to an index of the first terminal device An index of a transmission resource; in the first resource pool, at least one transmission resource corresponding to the index is a transmission resource used for receiving the second message.
  • the determining, by the first terminal device, at least one transmission resource in the first resource pool includes: the first terminal device determining the at least one transmission resource according to the index of the first terminal device and the first The index of the second terminal device determines the index of the second transmission resource; in the first resource pool, the transmission resource corresponding to the index is the transmission resource used for receiving the second message.
  • a communication method including: a second terminal device determines at least one transmission resource in a first resource pool; and the second terminal device receives information from the first terminal device on the at least one transmission resource the first message, the first resource pool is used to transmit the first message, each transmission resource in the first resource pool occupies part or all of a time slot symbol Each transmission resource in the frequency domain occupies one or more sub-channels.
  • the method further includes: the first resource pool is also used to transmit a second message; the second terminal device is in the first resource pool and determines a second transmission resource; the second terminal device uses the the second transmission resource, and send the second message to the first terminal device.
  • the second message is used by the first terminal device to determine the first message
  • the first message is used by the second terminal device to determine the third transmission resource in the second resource pool
  • the third transmission resource is used for the second terminal device to send a third message; wherein, the third message is carried in the physical sideline control channel PSCCH, the physical sideline shared channel PSSCH, or the physical sideline feedback channel PSFCH
  • the time-domain starting position and/or the number of occupied time-domain symbols of each transmission resource in the first resource pool is pre-configured in the second terminal device, or the second terminal device According to the configuration signaling from the network device, the time domain starting position and/or the occupied time domain symbol quantity of each transmission resource is determined.
  • the configuration signaling is system message block SIB, radio resource control RRC signaling, or physical layer control signaling.
  • the first time domain symbol occupied by each transmission resource in the first resource pool is used for automatic gain control AGC adjustment at the receiving end.
  • the first resource pool and the second resource pool are time-division multiplexed.
  • the second terminal device determining at least one transmission resource in the first resource pool includes: determining, by the second terminal device, according to the index of the second terminal device, for receiving the first message The transmission resource index; in the first resource pool, the transmission resource corresponding to the index is the transmission resource used for receiving the first message.
  • determining, by the second terminal device, at least one transmission resource in the first resource pool includes: determining, by the second terminal device, the first terminal device according to the index of the second terminal device and the index of the first terminal device.
  • An index of a transmission resource; in the first resource pool, the transmission resource corresponding to the index is the transmission resource used for receiving the first message.
  • the second terminal device determining the second transmission resource in the first resource pool includes: the second terminal device, according to the index of the first terminal device and the index of the second terminal device, An index of the second transmission resource is determined; in the first resource pool, the transmission resource corresponding to the index is the transmission resource used for sending the second message.
  • a communication apparatus including an apparatus for implementing any one of the above-mentioned first aspect or the second aspect.
  • a communication device comprising a processor and an interface circuit
  • the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the processor or send signals from the processor to
  • the processor is used to implement the method in the implementation manner of any one of the first aspect or the second aspect through logic circuits or executing code instructions.
  • a computer-readable storage medium is provided, and a computer program or instruction is stored in the computer-readable storage medium, and when the computer program or instruction is executed, any one of the foregoing first aspect or the second aspect is realized A method in an implementation of an aspect.
  • a computer program product comprising instructions that, when executed, implement the method in the implementation of any one of the foregoing first or second aspects.
  • a chip system in a seventh aspect, includes a processor, and may further include a memory, for implementing the method of any one of the foregoing first aspect or second aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of V2X communication provided by an embodiment of the present application.
  • FIG. 2a and FIG. 2b are a flowchart of cooperation of a coordinated UE provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 5 is a schematic configuration diagram of a dedicated resource pool provided by an embodiment of the present application.
  • FIG. 6 is a schematic configuration diagram of a dedicated resource pool and an SL resource pool provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of co-configuration of a dedicated resource pool and an SL resource pool provided by an embodiment of the present application
  • FIG. 8 is a schematic diagram of individually configuring a dedicated resource pool according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of frequency division multiplexing of a dedicated resource pool and an SL resource pool provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of sorting transmission resource indexes in a dedicated resource pool provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a time slot n and a transmission resource index provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a resource listening window and a resource selection window provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of candidate resources provided by an embodiment of the present application.
  • 15 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • FIG. 16 is another schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • Terminal equipment which can be referred to as terminal for short, is a device with wireless transceiver functions. Terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); In the air (eg on airplanes, balloons and satellites, etc.).
  • the terminal device may be a mobile phone, a tablet computer, a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and a wireless terminal in industrial control (industrial control).
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, end devices in future fifth generation (5G) networks or future evolved public land mobile communication networks ( Terminal equipment in public land mobile network, PLMN), etc.
  • Terminal equipment may also sometimes be referred to as user equipment (UE), access terminal equipment, in-vehicle terminal equipment, industrial control terminal equipment, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, wireless communication equipment, UE proxy or UE device, etc.
  • Terminal devices can also be stationary or mobile. This embodiment of the present application does not limit this.
  • the terminal device may also be an in-vehicle terminal device, or an in-vehicle communication module or other embedded communication module embedded in the in-vehicle terminal device, or a user-held communication device, including a mobile phone, a tablet computer, and the like.
  • the sidelink is used for communication between terminal devices and may include a physical sidelink shared channel (PSSCH) and a physical sidelink control channel (PSCCH).
  • PSSCH is used to carry sidelink data (SL data)
  • PSCCH is used to carry sidelink control information (SCI)
  • SCI may also be called sidelink scheduling allocation (sidelink scheduling allocation).
  • SL SA is information related to data scheduling, for example, information such as resource allocation and/or modulation and coding scheme (modulation and coding scheme, MCS) for carrying PSSCH.
  • the sidelink communication may further include: a physical sidelink feedback channel (PSFCH).
  • the physical sidelink feedback channel may also be simply referred to as a sidelink feedback channel.
  • the physical sidelink feedback channel may be used to transmit sidelink feedback control information (SFCI), and the sidelink feedback control information may also be referred to as sidelink feedback information for short.
  • the sidelink feedback control information may include one or more of channel state information (channel state information, CSI) and hybrid automatic repeat request (hybrid automatic repeat request, HARQ) and other information.
  • the HARQ information may include positive acknowledgement information (acknowledgement, ACK) or negative acknowledgement (negative acknowledgement, NACK).
  • Mode 1 There are two modes for resource allocation of SL, namely mode 1 (mode-1) and mode 2 (mode-2). Since this application is primarily related to Mode 2, Mode 2 is focused. Mode 2 is also called the user-selected resource mode.
  • the transmission resources of the UE do not depend on network equipment, and the sending UE selects the transmission resources for communication. This mode is not limited by the coverage of network equipment, and the sending UE can also use this mode to communicate without network coverage.
  • the resources selected by the user include initial transmission resources and/or retransmission resources.
  • UE cooperation can be divided into two types of cooperation mechanisms: trigger-based and non-trigger-based.
  • trigger-based cooperation mechanism if the sending terminal needs a cooperation message of the cooperation terminal, the sending terminal must first explicitly send a trigger message to the cooperation terminal, so as to trigger the cooperation terminal to feed back the cooperation message to the sending terminal, as shown in Figure 2a. Show. At this time, the mechanism of UE cooperation can be actively triggered by the coordinated terminal, that is, the sending terminal.
  • the sending terminal does not need to actively send a trigger message to the cooperation terminal, and the cooperation terminal spontaneously feeds back the cooperation message to the sending terminal, as shown in Figure 2b.
  • the collaboration message sent by the collaboration terminal may be triggered by an event (event trigger), or based on some predefined conditions and other manners, which are not limited in this application.
  • event trigger event trigger
  • UE cooperation may also be triggered by the network device through signaling or periodically triggered, etc., which is not limited in this application.
  • terminals can cooperate with each other for various stages of SL communication.
  • the cooperative terminal can assist the sending terminal in resource selection.
  • the sending terminal can also transmit on the sidelink resources under the cooperation of other terminals.
  • the sending terminal sends the information to the cooperation terminal or to the cooperation terminal based on the cooperation message from the cooperation terminal.
  • the other terminal outside sends sideline data.
  • the cooperation message from the cooperating terminal may be used to assist the sidelink transmission of the coordinated terminal.
  • the cooperation message may include indication information of the sidelink resources that can be used and/or the information of the sidelink resources that cannot be used. Instructions.
  • the unavailable sidelink resources indicated by the cooperative terminal through the cooperation message may be resources that the cooperative terminal detects that have been reserved (reserved) by other terminals, or resources that the cooperative terminal itself uses to send or receive data.
  • the available sidelink resources indicated in the cooperation message may be determined by the cooperative terminal according to sensing and/or resources used by itself to send or receive data. The remaining resources after the reserved resources.
  • the sending terminal (or referred to as the coordinated terminal) can select resources more effectively by using the above information provided by the cooperating terminal, avoid interference, and improve the throughput of the system.
  • At least one item(s) below or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one (a) of a, b, or c can represent: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • FIG. 3 is a possible network architecture applicable to the embodiment of the present application, including a terminal device 300 .
  • the number of terminal devices 300 is two or more, and different terminal devices can communicate through SL, and the communication mode can include unicast, multicast, and/or broadcast.
  • a network device 310 may also be included.
  • the terminal device 300 and the network device 310 can communicate through the Uu air interface.
  • the Uu air interface can be understood as the interface between the universal user equipment (user equipment, UE) and the network (universal UE to network interface).
  • Transmission over the Uu air interface may include uplink transmission and downlink transmission.
  • Uplink transmission means that a terminal device sends information to a network device, and the information transmitted in the uplink may be referred to as uplink information or uplink signal.
  • the uplink information or the uplink signal may include one or more of an uplink data signal, an uplink control signal, or a sounding reference signal (sounding reference signal, SRS).
  • Downlink transmission means that the network device sends information to the terminal device, and the information transmitted in the downlink may be downlink information or downlink signals.
  • Downlink information or downlink signals may include one or more of a downlink data signal, a downlink control signal, a channel state information reference signal (CSI-RS), or a phase tracking reference signal (PTRS) indivual.
  • CSI-RS channel state information reference signal
  • PTRS phase tracking reference signal
  • V2X vehicle to everything
  • D2D device to device
  • terminal equipment such as vehicle to everything (V2X), device to device (D2D), and terminal equipment.
  • V2X vehicle to everything
  • D2D device to device
  • terminal equipment such as vehicle to everything (V2X), device to device (D2D), and terminal equipment.
  • the two terminal devices may be within the coverage of the network device, or may be outside the coverage of the network device.
  • two terminal devices may be located within the coverage of the network equipment at the same time, or either one of the two terminal devices may be located within the coverage of the network, and the other terminal device may be located outside the coverage of the network, or both Each terminal device is located outside the coverage area of the network device.
  • the interface between the terminal device and the network device is a Uu air interface, and the interface for SL communication between different terminal devices is a PC5 interface.
  • Embodiments of the present application provide a communication method and device, the principle of which is as follows: a resource pool is separately configured, the resource pool is specially used to transmit a trigger message or a cooperation message, a time slot in the resource pool includes multiple transmission resources, and the trigger The transmission of the message or the coordination message occupies one transmission resource at a time, that is, the resource occupied by the trigger message or the coordination message in the time domain is less than one time slot. Compared with the transmission of trigger messages or coordination messages in the SL resource pool, the transmission of trigger messages or coordination messages needs to occupy a time slot, which can reduce the time domain resources occupied by trigger messages or coordination messages and improve the utilization rate of time domain resources.
  • the resource pool configured for trigger messages and/or collaboration messages is introduced.
  • the resource pool used for transmitting trigger messages and/or collaboration messages is described. It is called the first resource pool.
  • the first resource pool may also be referred to as a dedicated resource pool (dedicated resource pool), a collaborative resource pool, or a dedicated collaborative resource pool, or the like.
  • the resource pool used for sidelink transmission in the prior art may be referred to as the second resource pool.
  • the terminal device may transmit some or all of the sidelink data information, control information, and feedback information on the second resource pool.
  • Each transmission resource in the second resource pool occupies part or all of the symbols of a time slot in the time domain.
  • the first resource pool includes a plurality of transmission resources, and the transmission resources may also be referred to as cooperative resources, each transmission resource may be used to send a trigger message and/or a cooperative message, and each transmission resource occupies one transmission resource in the time domain.
  • the transmission resources may also be referred to as cooperative resources
  • each transmission resource may be used to send a trigger message and/or a cooperative message
  • each transmission resource occupies one transmission resource in the time domain.
  • Part or all of the symbols of a time slot occupy one or more sub-channels in the frequency domain.
  • each transmission resource occupying part or all of the symbols of a time slot in the time domain the following description can be made: if a transmission resource occupies all the symbols of a time slot in the time domain, a time slot includes one transmission resource.
  • the number of transmission resources included in a slot mainly depends on the number of symbols included in a slot and the number of symbols occupied by each transmission resource. Taking 14 symbols included in a time slot as an example, if one transmission resource occupies 13 symbols, only one transmission resource is included in the time slot.
  • a time slot may further include 3 transmission resources, as shown in FIG. 11 , the number of symbols occupied by the 3 transmission resources in the time domain are 4 symbols, 5 symbols and 5 symbols respectively.
  • the number of symbols occupied by any two transmission resources in the multiple transmission resources included in the first resource pool may be the same or different in the time domain.
  • the first resource pool includes 35 transmission resources, and the number of symbols occupied by any one of the 35 transmission resources may be 4 or 5.
  • the number of sub-channels occupied by any two transmissions in the above-mentioned first resource pool in the frequency domain may be the same or different.
  • all transmission resources in the first resource pool occupy only one subchannel in the frequency domain.
  • the starting positions of all transmission resources included in a time slot and/or the number of symbols occupied in the time domain may be pre-configured in the terminal device, or may be issued by the network device through configuration signaling.
  • Terminal Equipment The configuration signaling may be system information block (system information block, SIB), radio resource control (radio resource control, RRC) or physical layer control information.
  • SIB system information block
  • RRC radio resource control
  • the first symbol occupied by each transmission resource is used for automatic generation control (AGC) adjustment at the receiving end.
  • AGC adjustment refers to an automatic control method in which the gain of the amplifier circuit at the receiving end is automatically adjusted according to the signal strength. So that when the input signal voltage changes greatly, the output voltage of the receiver is kept constant or basically unchanged.
  • the linear amplifier circuit works to ensure the strength of the output signal; when the input signal is very strong, the compression amplifier circuit is activated to reduce the strength of the output signal.
  • the total number of symbols of all transmission resources included in a time slot should not exceed the total number of symbols included in the time slot.
  • a time slot includes 14 symbols, and 3 transmission resources can be configured in this time slot, and the 3 transmission resources are called the first transmission in sequence from left to right resource, a second transmission resource, and a third transmission resource.
  • the symbols occupied by the above three transmission resources may be the same or different, and are not limited.
  • the first transmission resource among the above-mentioned three transmission resources may occupy 4 symbols, and the second transmission resource and the third transmission resource may occupy 5 symbols respectively.
  • the first symbol occupied by the above three transmission resources may be an AGC symbol, which is used for the receiver to perform AGC adjustment.
  • the symbols used for AGC adjustment in each transmission resource can be referred to as long bars filled with slanted lines.
  • three transmission resources are configured in one time slot. If it is set that the entire first resource pool includes 4 subchannels, and one transmission resource occupies one subchannel, the entire first resource pool includes 12 transmission resources in one time slot.
  • SCI is usually used for transmission. Because SCI can be divided into first-level SCI and second-level SCI. Therefore, each transmission resource can be specifically divided into resources for transmitting AGC, resources for transmitting first-level SCI, resources for transmitting second-level SCI, etc., as shown in FIG. 5 for details.
  • the time slots occupied by the first resource pool in the time domain may be defined in a bitmap manner. for example, It can be used to represent the time domain configuration of the first resource pool.
  • the time domain configuration of the first resource pool may be based on the existing second resource pool, that is, the time domain resources in the first resource pool completely belong to the second resource pool.
  • the time domain configuration of the first resource pool may be independent of the second resource pool, that is, the time domain resources occupied by the first resource pool and the second resource pool do not overlap.
  • the time domain configuration of the first resource pool partially overlaps with the second resource pool, that is, some time domain resources of the first resource pool belong to the second resource pool, but another part of the time domain resources do not belong to the second resource pool. In this case Not shown schematically in FIG. 6 .
  • the number of time slots belonging to the second resource pool is 100, and the first resource pool may be configured within the above-mentioned 100 SL resources.
  • the length of the first resource pool bitmap is defined.
  • every ten time slots in the existing second resource pool can be regarded as a group, there are 10 groups in total, and the first, fourth, seventh, eighth, and tenth resources in each group can be regarded as the first resource.
  • the length of the bitmap of the existing second resource pool L bitmap 160, which belongs to The number of time slots in the second resource pool is 100, and the number of time slots that do not belong to the second resource pool is 60.
  • the first resource pool may be configured in the above-mentioned 60 time slots that do not belong to the second resource pool in the time domain.
  • each time slot includes 12 transmission resources
  • a time slot in the first resource pool may include multiple transmission resources, and the first symbol of each transmission resource is used for AGC, when the first resource pool and the second resource pool are frequency-division multiplexed, This will cause the transmission power of the transmission signal in the second resource pool to change, and the terminal equipment in the second resource pool cannot receive normally.
  • a bandwidth part includes two resource pools, one of which is the first resource pool for transmitting trigger messages and/or cooperation messages, and a time slot in the first resource pool may include Three transmission resources, each of which occupies a part of a time slot symbol in the time domain, UE-3, UE-4 and UE-5 respectively communicate on these three transmission resources.
  • the other is the resource pool used for sidelink transmission in the prior art, that is, the second resource pool.
  • the first resource pool and the second resource pool are frequency-division multiplexed, and they occupy the same time domain resources
  • the first resource pool Occupying the same time domain resources as the second resource pool will cause the received power of UE-2 to change within one time slot. Since UE-2 only performs AGC on the first symbol when receiving the data sent by UE-1, UE-2 expects the received power in the entire time slot to be constant. However, because UE-4 and UE-5 send data in a certain symbol in the middle of a time slot, the received power in the entire time slot changes, and when UE-2 does not have additional AGC processing, it will cause UE-2 to fail to receive. . Therefore, the first resource pool should avoid frequency division multiplexing with the second resource pool, that is, the first resource pool should be time division multiplexed with the second resource pool.
  • the configuration of the first resource pool for transmitting trigger messages and/or cooperation messages proposed by the embodiments of the present application allows one or more transmission resources to be configured in one time slot, that is, each transmission resource is configured in the time domain Occupies part or all of the symbols in a slot.
  • the method can effectively utilize transmission resources, avoid resource waste, reduce the interference caused by cooperative signaling to SL data transmission, reduce transmission collisions, and improve system transmission delay and reliability.
  • a communication method including: the first terminal device determines the first transmission resource in the first resource pool, and the first resource pool uses for transmitting the first message; the first terminal device uses the first transmission resource to send the first message to the second terminal device.
  • the first terminal device is a cooperative UE
  • the second terminal device is a sending UE
  • the first message is a cooperation message
  • the second message is a trigger message as an example for description.
  • the relationship among the sending UE, the cooperating UE, and the receiving UE is: SL communication is performed between the sending UE and the receiving UE, and the resources in the second resource pool can be used between the two to transmit a third message, and the third message can be carried on the PSCCH , PSSCH, or PSFCH on at least one channel.
  • the cooperating UE can assist the sending UE to monitor the available idle resources and/or other UE reservations in the second resource pool and send the listening result to the sending UE in the form of a cooperation message, or the cooperative UE may send the resources it needs to send or the resources it receives to the sending UE in the form of a cooperation message.
  • the cooperative UE may be a receiving UE, or other UEs near the receiving UE, or other UEs, which are not limited in this application.
  • a flow chart of a communication method including at least:
  • Step 101 The cooperating UE determines a first transmission resource in a first resource pool.
  • Step 102 The cooperating UE sends a coordination message to the sending UE by using the first transmission resource.
  • the method shown in the flowchart of FIG. 10 can be applied to the cooperation mechanism based on display trigger shown in FIG. 2a and the cooperation mechanism based on non-display trigger shown in FIG. 2b. If the method shown in the flowchart of FIG. 10 is applied to the cooperation mechanism based on display trigger shown in FIG. 2a, before the above step 101, it may further include:
  • Step 100a The sending UE determines the second transmission resource in the first resource pool.
  • Step 100b The sending UE uses the second transmission resource to send a trigger message to the cooperative UE.
  • the cooperative UE sends a cooperative message to the sending UE.
  • the above trigger message is used for the coordinated UE to determine the coordination message, and the coordination message is used to send the UE to determine the third transmission resource in the second resource pool, and the third transmission resource is used to send the UE to send Third message.
  • the third message is carried on at least one channel of PSCCH, PSSCH, or PSFCH.
  • SL communication is performed between UE1 and UE2, UE1 is used as a transmitter, and UE2 is used as a receiver.
  • the transmission resources are determined in the second resource pool.
  • UE1 may be used as the sending UE, and the cooperative UE may be UE2, or may be other UEs, which is not limited.
  • the cooperative UE is UE3.
  • UE3 may first determine transmission resources in the first resource pool, and send a coordination message to the sending UE, that is, to UE1, on the above-mentioned transmission resources.
  • UE1 may determine available resources in the second resource pool, and use the available resources to send an SL message to UE2, where the SL message is the above-mentioned third message.
  • the sender is the sending UE, and the receiver is the cooperative UE.
  • the sender is the cooperative UE, and the receiver is the sender UE.
  • the sender determines the transmission resource in the first resource pool configured for the trigger message and/or the cooperation message. And how the receiver receives related messages in the transmission resource.
  • the transmitting end determines the index of the transmission resource according to the index of the transmitting end and/or the index of the receiving end; in the first resource pool, the transmission resource corresponding to the index is the resource for the transmitting end to send the trigger message and/or the cooperation message.
  • the sender may use the sender ID plus the receiver ID to modulate the total number of a group of transmission resources in the first resource pool to determine the index of the transmission resource.
  • C-ID (S-ID+D-ID)mod(N*M*K)
  • C-ID represents the index of the transmission resource
  • S-ID represents the sender index
  • D-ID represents the receiver index
  • mod represents a modulo operation
  • N*M*K represents the total number of a group of transmission resources in the first resource pool.
  • the transmission resources in the first resource pool may be sorted in the order of the frequency domain first and then the time domain, or in the order of the time domain and then the frequency domain. The above sorting order is only an example, and this application does not limit it.
  • Each transmission resource corresponds to an index.
  • the transmission resources in the first resource pool are sorted in the order of the frequency domain first and then the time domain. See FIG. 11 for the sorting result of the transmission resources in the first resource pool.
  • the determined index of the C-ID is 10
  • the sender can use the transmission resource with the index 10 in the above-mentioned FIG. 11 to send a message.
  • the message may be a trigger message or a collaboration message, etc., which will not be repeated here.
  • N*M*K represents the total number of a group of transmission resources in the first resource pool.
  • a group of transmission resources may be defined as follows, which refers to the total number of dedicated transmission resources included in the time-domain bitmap configuration of a group of first resource pools. Among them, N represents the number of sub-channels included in the frequency domain of a transmission resource in the first resource pool, M represents the number of time slots allocated to the first resource pool in a set of time-domain bitmap configurations, and K represents the configuration in a time slot the number of transmission resources.
  • the time-domain bitmaps of the first resource pool may repeatedly appear periodically in the time domain, and each group of bitmap configurations corresponds to a group of transmission resources.
  • the sending end is the sending UE and the receiving end is the cooperative UE
  • the transmission resource index of the trigger message is determined by adding the ID of the sending UE and the ID of the cooperative UE, and the ID of the sending UE is the S-ID
  • the ID of the cooperative UE is D-ID.
  • the sender is the cooperative UE
  • the receiver is the sending UE
  • the transmission resource index of the cooperative message is determined by the ID of the cooperative UE plus the ID of the sending UE
  • the ID of the cooperative UE is S-ID
  • the ID of the sending UE is D- ID.
  • the ID of the sending UE may be fixed as the S-ID and the ID of the cooperating UE as the D-ID, or the ID of the sending UE may be fixed as the D-ID and the ID of the cooperating UE as the D-ID. S-ID.
  • the trigger message and the cooperation message will correspond to the same transmission resources, because the probability of the trigger message and the cooperation message being sent at the same time is small, and the utilization rate of resources can be improved by this method.
  • the S-ID and D-ID may be all of the UE's device ID, or a part of the UE's device ID.
  • the ID length of the device ID of the UE is used to determine the ID of the transmission resource, which can reduce the complexity of blind detection.
  • the first K1 bits, the last K1 bits, or the middle K1 bits of the S-ID, the first K2 bits of the D-ID, the last K2 bits, or the middle K2 bits can be used to determine the ID of the transmission resource, K1 and K2
  • the value of is a positive integer, and the values of K1 and K2 are the same or different.
  • the first 4 bits of the S-ID and D-ID may be used to determine the index of the transmission resource, respectively.
  • the first 4 bits of the ID of the transmitting UE are 0010
  • the first 4 bits of the ID of the cooperative UE are 0011.
  • the transmission resource index is determined by the above method, it may happen that the moment when the sender determines that the transmission resource for sending the trigger message or the cooperation message is located after the actual transmission resource, then the sender can use the next group closest to the current time slot.
  • the trigger message or the cooperation message is sent on the transmission resource corresponding to the same index in the transmission resource.
  • the sending UE starts to determine the transmission resource at time slot n, and according to the mapping relationship between S-ID and D-ID, the index of the transmission resource is obtained as 35. Since the time slot n is located after the transmission resource whose index is 35 in the current group of transmission resources, the sender can send a trigger message or a cooperation message on the transmission resource whose index is 35 in the next group of transmission resources.
  • an index is not distinguished from an ID, an identifier, etc., and can be replaced with each other.
  • the index of the transmitting end or the receiving end in this embodiment of the present application may refer to the identification of the device itself, for example, the identification of the data or service sent by the device, which may be all or part of the identification carried at the physical layer. Specifically, for example, the source identification (Source ID) and the destination (Destination ID) carried in the second-level SCI.
  • the receiving end determines the process of transmitting resources in the first resource pool.
  • the receiving end needs to be discussed in two cases. The first is that the receiving end has already obtained the information of the sending end, and the receiving end can uniquely determine the transmission resources that need to receive the relevant message. Second, if the receiving end does not know the information of the transmitting end, the receiving end may not be able to uniquely determine the transmission resource for receiving the relevant message, and needs to receive on multiple transmission resources.
  • the receiver has already learned the information of the sender. For example, the receiver and the sender have established or established a link, and the receiver can obtain the device index ID of the sender. ID, which determines the index of the transmission resource; in the first resource pool, the transmission resource corresponding to the index is the transmission resource used for transmitting the trigger message or the cooperation message.
  • the receiving end can use the index ID of the transmitting end device and the index ID of the receiving end device to modulo the total number of a group of transmission resources to determine the transmission resources used for receiving the trigger message or the cooperation message in the first resource pool index.
  • the receiving end When the receiving end is a cooperative UE, the receiving end needs to determine the corresponding transmission resource index according to its own ID and the ID of the sending UE, and receive the trigger message.
  • the receiving end When the receiving end is the sending UE, the sending UE needs to determine the corresponding transmission resource index according to its own ID and the ID of the cooperating UE, and receive the cooperation message.
  • the receiving end does not know the information of the sending end. For example, the receiving end and the sending end have not established or have not established a link, and the receiving end cannot obtain the device index ID of the sending end. Blind detection is performed on possible transmission resources. For example, the receiving end needs to determine the index of at least one possible transmission resource according to the index ID of the receiving end's own device; in the first resource pool, at least one transmission resource corresponding to the index of the at least one transmission resource is required by the receiving end A transport resource to receive trigger messages or collaboration messages.
  • C-ID represents the receiving end
  • D-ID represents the index of the receiving end
  • n represents the number of bits included in the sending device index ID
  • M*N*K represents the total number of transmission resources in a group
  • the value of j is A positive integer between 0 and 2 n -1.
  • a transmission resource index can be calculated respectively.
  • the 16 values of j correspond to 16 transmission resources, and the receiving end blindly detects the trigger message or cooperation on the 16 transmission resources. If a trigger message or a cooperation message is successfully received on a certain transmission resource in the above-mentioned 16 transmission resources, the index ID of the sending device can be determined according to the time-frequency position of the transmission resource.
  • the embodiment of the present application provides a specific mapping method for the transmission resources in the first resource pool.
  • the transmission resources are implicitly determined, so the sending UE or cooperating UE does not need to additionally determine the resources for sending trigger messages or cooperation messages according to the listening reservation process, which can reduce the power of the UE and achieve the effect of energy saving. limited terminal equipment. And it can avoid the enhancement of system complexity and interference caused by the listening reservation process.
  • the sender determines the resources available for transmitting the trigger message or the cooperation message according to the listening result in the first resource pool. Specifically, the sender may select transmission resources for communication within the resource selection window according to the result of its own listening, and at this time, the sender may also be referred to as a listening UE.
  • the selection method is similar to the process in which the UE selects resources by itself in the prior art. Will Defined as a set of time slots belonging to the first resource pool. As shown in FIG. 13 , assuming that the listening UE triggers resource selection in time slot n, the listening UE continues to listen to all the time slots belonging to the first resource pool in this window, except for the time slot that the listening UE itself transmits, all remaining time slots.
  • the resources that have been reserved by other UEs are excluded from all the time slots belonging to the first resource pool in the resource selection window, and then the UE is sent to report the set of candidate resources obtained after the exclusion to the higher layers of the terminal, The upper layer then determines the final resource for sending the trigger message and/or the cooperation message.
  • the specific resource exclusion process is as follows:
  • the resource selection window is defined as the time slot corresponding to [n+T 1 , n+T 2 ] after the resource selection trigger n.
  • the corresponding set of sub-channels is A candidate resource R x,y is defined as a time slot belonging to the first resource pool within the resource selection window [n+T 1 , n+T 2 ] in the time domain
  • a set of subchannels located in subchannels x+j in the frequency domain, where j 0,...,L subCH -1, that is, a set of consecutive subchannels with a length equal to L subCH in the frequency domain
  • L subCH is the number of subchannels occupied by the trigger message or cooperation message corresponding to the data to be transmitted, therefore, the total number of candidate resources in each time slot is N subCH - L subCH +1. Any set of consecutive sub-channel sets that meet the above conditions and whose length is
  • the resource listening window can be defined as Among them, T 0 is configured by the high-level parameter t0_SensingWindow, Determined by Table-1.
  • ⁇ SL is the sub-carrier spacing (SCS) configuration corresponding to the SL BWP, which is determined by Table-2.
  • Th prioTX, prioRX Define the thresholds Th prioTX, prioRX as a function of the priority corresponding to the data indicated in the received SCI and the priority corresponding to the data to be sent by the listening UE.
  • the candidate resource Rx ,y should be excluded from the set SA :
  • the listening UE does not have a listening slot That is to listen to the UE itself in the time slot has been transmitted;
  • P′ rsvp_TX is the detection Listen to the logical value obtained by converting the resource reservation interval P rsvp_TX of the UE from the unit of milliseconds (ms) to the unit of logical time slot, which can also be called a logical period .
  • P' rsvp_RX is a logical value obtained by converting the received resource reservation interval P rsvp_RX indicated in the SCI of other terminals into logical time slots.
  • T scal is the interval corresponding to the resource selection window length T 2 , in ms;
  • the candidate resource Rx ,y should be excluded from the set SA :
  • the field "Resource reservation period” in the SCI indicates the value P rsvp_RX
  • the field "Priority” in the SCI indicates the value prio RX
  • the value P rsvp_RX is The physical cycle resource reservation interval of the PSSCH corresponding to the SCI, in milliseconds (ms)
  • the value prio RX is the priority value of the PSSCH corresponding to the SCI.
  • the reference signal receiving power (RSRP) measurement result of the trigger message or cooperation message determined by the SCI is higher than the threshold Th prioTX,prioRX , where the threshold Th prioTX,prioRX is the data indicated in the received SCI.
  • RSRP reference signal receiving power
  • slot n belongs to the first resource pool, then otherwise is the first time slot belonging to the first resource pool after time slot n.
  • T scal is the value obtained by converting the selection window length T 2 into milliseconds (ms). It should be understood that converting a value in milliseconds (ms) into a logical time slot represents calculating the number of resources for sending trigger messages and/or cooperation messages included in the duration corresponding to the value.
  • the configuration of X% is from Select from high-level configuration parameters or predefined parameters.
  • the listening UE reports the candidate resource set SA to the upper layer, and the higher layer then completes the final resource selection from the set SA .
  • the time-frequency resource determined by the listening UE according to the received SCI is the reserved resource indicated by the SCI, which is located after the sending time slot of the SCI in the time domain, and other UEs will send trigger messages or cooperation messages on the reserved resources.
  • the SCIs sent by UE1 to 4 respectively indicate their reserved resources (the reserved resources are marked with the name of the corresponding sending terminal, such as UE1), and the reserved resources of UE1 to 4 are located in the selection Within the window, the listening UE needs to exclude candidate resources that overlap with these reserved resources from the candidate resource set SA .
  • the receiver is in the first resource pool and receives a trigger message or a collaboration message
  • the receiving end performs blind detection in all transmission resources in the first resource pool that may transmit the trigger message or the cooperation message, and receives the trigger message or the cooperation message.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspective of interaction between the first terminal device and the second terminal device.
  • the first terminal device and the second terminal device may include hardware structures and/or software units, and are implemented in the form of hardware structures, software units, or hardware structures plus software units the above functions. Whether a certain function of the above functions is performed by a hardware structure, a software unit, or a hardware structure plus a software unit depends on the specific application and design constraints of the technical solution.
  • FIG. 15 is a schematic block diagram of an apparatus 1500 provided by an embodiment of the present application, which is used to implement the function of the first terminal device or the second terminal device in the foregoing method.
  • the apparatus may be a software unit or a system-on-a-chip.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • the apparatus includes a communication unit 1501 and may further include a processing unit 1502 .
  • the communication unit 1501 can communicate with the department.
  • the processing unit 1502 is used for processing.
  • the apparatus 1500 is configured to implement the function of the above-mentioned first terminal device.
  • the processing unit 1502 is configured to determine, in the first resource pool, a first transmission resource, where the first transmission resource is used to transmit the first message, and each transmission resource in the first resource pool is in the time domain Occupying part or all of the symbols of a time slot, each transmission resource in the first resource pool occupies one or more sub-channels in the frequency domain; the communication unit 1501 is configured to use the first transmission resource to transmit to the second The terminal device sends the first message.
  • the processing unit 1502 is further configured to determine at least one transmission resource in the first resource pool, and the first resource pool is further configured to transmit a second message; the communication unit 1501 is further configured to determine at least one transmission resource in the first resource pool. On at least one transmission resource, a second message from the second terminal device is received.
  • the second message is used by the first terminal device to determine the first message
  • the first message is used by the second terminal device to determine the third transmission resource in the second resource pool
  • the third transmission resource is used for the second terminal device to send a third message; wherein, the third message may be carried on the physical sideline control channel PSCCH, the physical sideline shared channel PSSCH, or the physical sideline feedback channel PSFCH
  • the third message may be carried on the physical sideline control channel PSCCH, the physical sideline shared channel PSSCH, or the physical sideline feedback channel PSFCH
  • the time-domain starting position and/or the number of occupied time-domain symbols of each transmission resource in the first resource pool is preconfigured in the first terminal device, or the first terminal device According to the configuration signaling from the network device, the time domain starting position and/or the occupied time domain symbol quantity of each transmission resource is determined.
  • the configuration signaling is system message block SIB, radio resource control RRC signaling, or physical layer control information.
  • the first time domain symbol occupied by each transmission resource in the first resource pool is used for automatic gain control AGC adjustment at the receiving end.
  • the first resource pool and the second resource pool are time-division multiplexed.
  • the processing unit 1502 determining the first transmission resource in the first resource pool includes: determining an index corresponding to the first transmission resource according to the index of the first terminal device and/or the index of the second terminal device; the In the first resource pool, the transmission resource corresponding to the index is the transmission resource used for sending the first message.
  • the processing unit 1502 determining at least one transmission resource in the first resource pool includes: determining an index of at least one transmission resource according to the index of the first terminal device; in the first resource pool, The at least one transmission resource corresponding to the index is a transmission resource used for receiving the second message.
  • the processing unit 1502 determines at least one transmission resource in the first resource pool, including: determining the index of the second transmission resource according to the index of the first terminal device and the index of the second terminal device; In the first resource pool, the transmission resource corresponding to the index is the transmission resource used for receiving the second message.
  • the apparatus 1500 may implement the function of the second terminal device.
  • the processing unit 1502 is configured to determine at least one transmission resource in the first resource pool; the communication unit 1501 is configured to receive, on the at least one transmission resource, a first message from a first terminal device, the first message
  • a resource pool is used to transmit the first message, each transmission resource in the first resource pool occupies part or all of the symbols of a time slot in the time domain, and each transmission resource in the first resource pool is in the frequency domain
  • One or more sub-channels are occupied on the domain.
  • the first resource pool is further configured to transmit a second message; the processing unit 1502 is further configured to determine a second transmission resource in the first resource pool; the communication unit 1501 is further configured to utilize the second message transmission resources, and send the second message to the first terminal device.
  • the second message is used by the first terminal device to determine the first message
  • the first message is used by the second terminal device to determine the third transmission resource in the second resource pool
  • the third transmission resource is used for the second terminal device to send a third message; wherein, the third message is carried in the physical sideline control channel PSCCH, the physical sideline shared channel PSSCH, or the physical sideline feedback channel PSFCH
  • the third message is carried in the physical sideline control channel PSCCH, the physical sideline shared channel PSSCH, or the physical sideline feedback channel PSFCH
  • the time-domain starting position and/or the number of occupied time-domain symbols of each transmission resource in the first resource pool is pre-configured in the second terminal device, or the second terminal device According to the configuration signaling from the network device, the time domain starting position and/or the occupied time domain symbol quantity of each transmission resource is determined.
  • the configuration signaling is system message block SIB, radio resource control RRC signaling, or physical layer control signaling.
  • the first time domain symbol occupied by each transmission resource in the first resource pool is used for automatic gain control AGC adjustment at the receiving end.
  • the first resource pool and the second resource pool are time-division multiplexed.
  • the processing unit 1502 determines at least one transmission resource in the first resource pool, including: determining, according to an index of the second terminal device, a transmission resource index for receiving the first message; In a resource pool, the transmission resource corresponding to the index is the transmission resource used for receiving the first message.
  • the processing unit 1502 determines at least one transmission resource in the first resource pool, including: determining the index of the first transmission resource according to the index of the second terminal device and the index of the first terminal device; In the first resource pool, the transmission resource corresponding to the index is the transmission resource used for receiving the first message.
  • the processing unit 1502 determines the second transmission resource in the first resource pool, including: determining the index of the second transmission resource according to the index of the first terminal device and the index of the second terminal device; In the first resource pool, the transmission resource corresponding to the index is the transmission resource used for sending the second message.
  • the division of units in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit. In the device, it can also exist physically alone, or two or more units can be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the function of the communication unit in the above embodiments may be implemented by a transceiver, and the function of the processing unit may be implemented by a processor.
  • the transceiver may include a transmitter and/or a receiver, etc., for respectively implementing the functions of the transmitting unit and/or the receiving unit.
  • FIG. 16 The following description is given with reference to FIG. 16 as an example.
  • FIG. 16 is a schematic block diagram of an apparatus 1600 provided by an embodiment of the present application.
  • the apparatus 1600 shown in FIG. 16 may be a hardware circuit implementation of the apparatus shown in FIG. 15 .
  • FIG. 16 only shows the main components of the communication device.
  • the communication apparatus 1600 shown in FIG. 16 includes at least one processor 1601 .
  • Communication apparatus 1600 may also include at least one memory 1602 for storing program instructions and/or data.
  • Memory 1602 and processor 1601 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1601 may cooperate with the memory 1602, the processor 1601 may execute program instructions stored in the memory 1602, and at least one of the at least one memory 1602 may be included in the processor 1601.
  • the apparatus 1600 may also include a communication interface 1603 for communicating with other devices through a transmission medium, so that the communication apparatus 1600 may communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; it may also be a transceiver integrating a transceiver function, or an interface circuit.
  • connection medium between the processor 1601, the memory 1602, and the communication interface 1603 is not limited in this embodiment of the present application.
  • the memory 1602, the processor 1601, and the communication interface 1603 are connected through a communication bus 1604 in FIG. 16.
  • the bus is represented by a thick line in FIG. 16, and the connection between other components is only a schematic illustration. , not as a limitation.
  • the bus may include an address bus, a data bus, a control bus, and the like. For convenience of presentation, only one thick line is used in FIG. 16, but it does not mean that there is only one bus or one type of bus or the like.
  • the apparatus 1600 is configured to implement the function of the above-mentioned first terminal device.
  • the processor 1601 is configured to determine, in the first resource pool, a first transmission resource, where the first transmission resource is used to transmit the first message, and each transmission resource in the first resource pool is in the time domain Occupies part or all of the symbols of a time slot, and each transmission resource in the first resource pool occupies one or more sub-channels in the frequency domain; the communication interface 1603 is configured to use the first transmission resource to transmit to the second The terminal device sends the first message.
  • the processor 1601 is further configured to determine at least one transmission resource in the first resource pool, and the first resource pool is further configured to transmit a second message; the communication interface 1603 is further configured to On at least one transmission resource, a second message from the second terminal device is received.
  • the second message is used by the first terminal device to determine the first message
  • the first message is used by the second terminal device to determine the third transmission resource in the second resource pool
  • the third transmission resource is used for the second terminal device to send a third message; wherein, the third message may be carried on the physical sideline control channel PSCCH, the physical sideline shared channel PSSCH, or the physical sideline feedback channel PSFCH
  • the time-domain starting position and/or the number of occupied time-domain symbols of each transmission resource in the first resource pool is preconfigured in the first terminal device, or the first terminal device According to the configuration signaling from the network device, the time domain starting position and/or the occupied time domain symbol quantity of each transmission resource is determined.
  • the configuration signaling is system message block SIB, radio resource control RRC signaling, or physical layer control information.
  • the first time domain symbol occupied by each transmission resource in the first resource pool is used for automatic gain control AGC adjustment at the receiving end.
  • the first resource pool and the second resource pool are time-division multiplexed.
  • the processor 1601 determining the first transmission resource in the first resource pool includes: determining an index corresponding to the first transmission resource according to the index of the first terminal device and/or the index of the second terminal device; the In the first resource pool, the transmission resource corresponding to the index is the transmission resource used for sending the first message.
  • the processor 1601 determining at least one transmission resource in the first resource pool includes: determining an index of at least one transmission resource according to the index of the first terminal device; in the first resource pool, The at least one transmission resource corresponding to the index is a transmission resource used for receiving the second message.
  • the processor 1601 determines at least one transmission resource in the first resource pool, including: determining the index of the second transmission resource according to the index of the first terminal device and the index of the second terminal device; In the first resource pool, the transmission resource corresponding to the index is the transmission resource used for receiving the second message.
  • the apparatus 1600 is used to implement the function of the second terminal device.
  • the processor 1601 is configured to determine at least one transmission resource in the first resource pool; the communication interface 1603 is configured to receive, on the at least one transmission resource, a first message from a first terminal device, the first message
  • a resource pool is used to transmit the first message, each transmission resource in the first resource pool occupies part or all of the symbols of a time slot in the time domain, and each transmission resource in the first resource pool is in the frequency domain
  • One or more sub-channels are occupied on the domain.
  • the second message is used by the first terminal device to determine the first message
  • the first message is used by the second terminal device to determine the third transmission resource in the second resource pool
  • the third transmission resource is used for the second terminal device to send a third message; wherein, the third message is carried in the physical sideline control channel PSCCH, the physical sideline shared channel PSSCH, or the physical sideline feedback channel PSFCH
  • the time-domain starting position and/or the number of occupied time-domain symbols of each transmission resource in the first resource pool is pre-configured in the second terminal device, or the second terminal device According to the configuration signaling from the network device, the time domain starting position and/or the occupied time domain symbol quantity of each transmission resource is determined.
  • the configuration signaling is system message block SIB, radio resource control RRC signaling, or physical layer control signaling.
  • the first time domain symbol occupied by each transmission resource in the first resource pool is used for automatic gain control AGC adjustment at the receiving end.
  • the first resource pool and the second resource pool are time-division multiplexed.
  • the processor 1601 determining at least one transmission resource in the first resource pool includes: determining, according to an index of the second terminal device, a transmission resource index for receiving the first message; In a resource pool, the transmission resource corresponding to the index is the transmission resource used for receiving the first message.
  • the processor 1601 determines at least one transmission resource in the first resource pool, including: determining the index of the first transmission resource according to the index of the second terminal device and the index of the first terminal device; In the first resource pool, the transmission resource corresponding to the index is the transmission resource used for receiving the first message.
  • the processor 1601 determining the second transmission resource in the first resource pool includes: determining the index of the second transmission resource according to the index of the first terminal device and the index of the second terminal device; In the first resource pool, the transmission resource corresponding to the index is the transmission resource used for sending the second message.
  • embodiments of the present application further provide a computer-readable storage medium, including a program, and when the program is executed by a processor, the methods in the above method embodiments are executed.
  • a computer program product comprising computer program code, when the computer program code is run on a computer, causes the computer to implement the methods in the above method embodiments.
  • a chip comprising: a processor, the processor is coupled with a memory, the memory is used for storing a program or an instruction, when the program or instruction is executed by the processor, the device causes the apparatus to perform the above method embodiments Methods.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may be implemented or executed
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may also be a volatile memory (volatile memory), for example Random-access memory (RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center by wire (eg coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available media that can be accessed by a computer, or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, digital video discs (DVD)), or semiconductor media (eg, SSDs), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

一种通信方法及装置,该方法包括:第一终端设备在第一资源池中,确定第一传输资源,所述第一传输资源用于传输第一消息,所述第一资源池中的每个传输资源在时域上占用一个时隙的部分或全部符号,所述第一资源池中的每个传输资源在频域上占用一个或多个子信道;所述第一终端设备利用所述第一传输资源,向第二终端设备发送第一消息;采用本申请实施例的方法及装置,可减少第一消息占用的时域资源,提高时域资源的利用率。

Description

一种通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
随着无线通信技术的发展,人们对高数据速率和用户体验的需求日益增长,同时人们对了解周边人或事物并与之通信的邻近服务的需求逐渐增加,因此设备到设备(device to device,D2D)技术应运而生。D2D技术的应用,可以减轻蜂窝网络的负担、减少用户设备的电池功耗、提高数据速率,并能很好地满足邻近服务的需求。D2D技术允许多个支持D2D功能的用户设备(user equipment,UE)在有网络基础设施或无网络基础设施的情况下进行直接发现和直接通信。鉴于D2D技术的特点和优势,基于D2D技术的车联网应用场景被提出,但是因涉及安全性的考虑,这种场景对时延的要求非常高,现有的D2D技术无法实现。
因此,在第三代合作伙伴计划(the 3 rd generation partnership project,3GPP)提供的长期演进(long term evolution,LTE)技术的网络下,车与任何事物(vehicle to everything,V2X)的车联网技术被提出。如图1所示,V2X通信是指车辆与外界的任何事物的通信,包括车与车(vehicle to vehicle,V2V)通信、车与行人(vehicle to people,V2P)通信、车与基础设施(vehicle to infrastructure,V2I)通信、和车与网络(vehicle to network,V2N)通信。
在新空口车与任何事物(new radio vehicle to everything,NR-V2X)中有关侧行链路(sidelink,SL)的资源分配存在两种模式,分别为基站分配资源模式,还称为模式-1(mode-1),和用户自选资源模式,还称为模式-2(mode-2)。其中,基站分配资源模式主要应用于有网络覆盖的情况下的V2X通信,基站统一根据UE的缓存状态报告(buffer status report,BSR)上报情况,集中进行资源分配。基站分配的资源包括初始资源和/或重传资源。在用户自选资源模式下,发送UE的传输资源不依赖于基站,UE在预配置的资源池中自己选择传输资源进行通信。该模式不受限于网络覆盖,在没有网络覆盖的情况下,发送UE也可以用该模式进行通信。用户自选的资源包括初始资源和/或重传资源。
在用户自选资源模式下,发送UE可在预配置的资源池中,侦听空闲资源,之后利用空闲资源与接收UE进行通信。为了提高用户自选资源模式的资源分配性能,进一步提出了UE协作(inter-UE coordination)机制,即发送UE可在其它UE的协作下进行资源的选择。这里的协作UE可以是收端UE,也可以是靠近收端UE的其它UE。利用协作UE发送的协作消息,发送UE可以在预配置的资源池中,更加准确的确定出传输资源,减少系统的干扰,提高传输效率。UE协作机制具体可以分为基于显式触发和基于非显式触发两种机制。对于基于显示触发的协作机制,发送UE先向协作UE发送触发消息,协作UE再向发送UE发送协作消息。对于基于非显式触发机制,协作UE直接向发送UE发送协作消息。
在现有的方案中,在预配置的资源池中发送触发消息和协作消息,该资源池与上述基于用户自选资源模式中发送UE与接收UE间传输SL信息的资源池是同一个资源池,即发 送UE和协作UE在SL资源池中发送触发消息和协作消息。且按照现有侧行链路的传输要求,一次传输需要占用整个时隙。也就是触发消息和协作消息的传输,需要占用SL资源池中的整个时隙。如果触发消息或者协作消息所包括的比特数量较小,可能导致进一步的资源浪费。
发明内容
本申请提供一种通信方法及装置,以减少时域资源的浪费。
第一方面,提供一种通信方法,包括:第一终端设备在第一资源池中,确定第一传输资源,所述第一传输资源用于传输第一消息,所述第一资源池中的每个传输资源在时域上占用一个时隙的部分或全部符号,所述第一资源池中的每个传输资源在频域上占用一个或多个子信道;所述第一终端设备利用所述第一传输资源,向第二终端设备发送第一消息。
通过上述方法,单独配置一个资源池,即第一资源池,该资源池专门用于传输触发消息或协作消息,该资源池中一个时隙包括可多个传输资源,触发消息或协作消息的传输一次占用一个传输资源,即触发消息或协作消息在时域上占用的资源小于一个时隙。相对于,在SL资源池中传输触发消息或协作消息,触发消息或协作消息的传输需要占用一个时隙,可减少触发消息或协作消息占用的时域资源,提高时域资源利用率。
在一种可能的实现方式中,上述方法还包括:所述第一终端设备在所述第一资源池中,确定至少一个传输资源,所述第一资源池还用于传输第二消息;所述第一终端设备在所述至少一个传输资源上,接收来自所述第二终端设备的第二消息。
示例的,所述第二消息用于所述第一终端设备确定所述第一消息,所述第一消息用于所述第二终端设备在第二资源池中,确定第三传输资源,所述第三传输资源用于所述第二终端设备发送第三消息;其中,所述第三消息可以承载在物理侧行控制信道PSCCH,物理侧行共享信道PSSCH,或物理侧行反馈信道PSFCH中的至少一种信道,所述第二资源池中的每个传输资源在时域上占用一个时隙的部分或全部符号。
可选的,所述第一资源池中的每个传输资源的时域起始位置和/或占用的时域符号数量预配置在所述第一终端设备中,或者,所述第一终端设备根据来自网络设备的配置信令,确定每个传输资源的时域起始位置和/或占用的时域符号数量。
可选的,所述配置信令为系统消息块SIB、无线资源控制RRC信令,或物理层控制信息。
可选的,所述第一资源池中的每个传输资源占用的第一个时域符号用于接收端自动增益控制AGC调整。
可选的,所述第一资源池与第二资源池时分复用。
在一种可能的实现方式中,所述第一终端设备在第一资源池中,确定第一传输资源,包括:所述第一终端设备根据第一终端设备的索引和/或第二终端设备的索引,确定第一传输资源对应的索引;所述第一资源池中,该索引对应的传输资源,为用于发送所述第一消息的传输资源。
通过实施上述方法,第一终端设备和第二终端设备可根据第一终端设备的标识和/或第二终端设备的标识,确定第一终端设备中的索引,因此第一终端设备或第二终端设备无需再额外根据侦听预约流程来确定发送触发消息或协作消息的资源,可以降低终端设备的功率,达到节能的效果,尤其适用于对本身功率受限的终端设备。并且可以避免由侦听预约 流程导致的系统复杂度以及干扰的增强。
在一种可能的实现方式中,所述第一终端设备在所述第一资源池中,确定至少一个传输资源,包括:所述第一终端设备根据所述第一终端设备的索引,确定至少一个传输资源的索引;所述第一资源池中,该索引对应的至少一个传输资源,为用于接收所述第二消息的传输资源。
在另一种可能的实现方式中,所述第一终端设备在所述第一资源池中,确定至少一个传输资源,包括:所述第一终端设备根据所述第一终端设备的索引和第二终端设备的索引,确定第二传输资源的索引;所述第一资源池中,该索引对应的传输资源,为用于接收所述第二消息的传输资源。
第二方面,提供一种通信方法,包括:第二终端设备在第一资源池中,确定至少一个传输资源;所述第二终端设备在所述至少一个传输资源上,接收来自第一终端设备的第一消息,所述第一资源池用于传输第一消息,所述第一资源池中的每个传输资源在时域上占用一个时隙的部分或全部符号,所述第一资源池中的每个传输资源在频域上占用一个或多个子信道。
可选的,该方法还包括:所述第一资源池还用于传输第二消息;所述第二终端设备在第一资源池中,确定第二传输资源;所述第二终端设备利用所述第二传输资源,向所述第一终端设备发送所述第二消息。
可选的,所述第二消息用于所述第一终端设备确定所述第一消息,所述第一消息用于所述第二终端设备在第二资源池中,确定第三传输资源,所述第三传输资源用于所述第二终端设备发送第三消息;其中,所述第三消息承载在物理侧行控制信道PSCCH,物理侧行共享信道PSSCH,或物理侧行反馈信道PSFCH中的至少一种信道,所述第二资源池中的每个传输资源在时域上占用一个时隙的部分或全部符号。
可选的,所述第一资源池中的每个传输资源的时域起始位置和/或占用的时域符号数量预配置在所述第二终端设备中,或者,所述第二终端设备根据来自网络设备的配置信令,确定每个传输资源的时域起始位置和/或占用的时域符号数量。
可选的,所述配置信令为系统消息块SIB、无线资源控制RRC信令,或物理层控制信令。
可选的,所述第一资源池中的每个传输资源占用的第一个时域符号用于接收端自动增益控制AGC调整。
可选的,所述第一资源池与第二资源池时分复用。
可选的,所述第二终端设备在第一资源池中,确定至少一个传输资源,包括:所述第二终端设备根据所述第二终端备的索引,确定用于接收所述第一消息的传输资源索引;在所述第一资源池中,该索引对应的传输资源,为用于接收所述第一消息的传输资源。
可选的,所述第二终端设备在第一资源池中,确定至少一个传输资源,包括:所述第二终端设备根据所述第二终端设备的索引和第一终端设备的索引,确定第一传输资源的索引;在所述第一资源池中,该索引对应的传输资源,为用于接收所述第一消息的传输资源。
可选的,所述第二终端设备在第一资源池中,确定第二传输资源,包括:所述第二终端设备根据所述第一终端设备的索引和所述第二终端备的索引,确定第二传输资源的索引;所述第一资源池中,该索引对应的传输资源,为用于发送第二消息的传输资源。
第三方面,提供一种通信装置,包括用于实现上述第一方面或第二方面中任一方面的装置。
第四方面,提供一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面或第二方面的任一方面的实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现前述第一方面或第二方面的任一种方面的实现方式中的方法。
第六方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现前述第一方面或第二方面的任一种方面的实现方式中的方法。
第七方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第一方面或第二方面描述的任一方面的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1为本申请实施例提供的V2X通信的示意图;
图2a和图2b为本申请实施例提供的协作UE的协作流程图;
图3为本申请实施例提供的通信系统的示意图;
图4为本申请实施例提供的应用场景的示意图;
图5为本申请实施例提供的专有资源池的配置示意图;
图6为本申请实施例提供的专有资源池与SL资源池的配置示意图;
图7为本申请实施例提供的专有资源池与SL资源池共配置的示意图;
图8为本申请实施例提供的单独配置专有资源池的示意图;
图9为本申请实施例提供的专有资源池与SL资源池频分复用的示意图;
图10为本申请实施例提供的通信方法的示意图;
图11为本申请实施例提供的专有资源池中传输资源索引的排序示意图;
图12为本申请实施例提供的时隙n与传输资源索引的示意图;
图13为本申请实施例提供的资源侦听窗口与资源选择窗口的示意图;
图14为本申请实施例提供的候选资源的示意图;
图15为本申请实施例提供的装置的一结构示意图;
图16为本申请实施例提供的装置的另一结构示意图。
具体实施方式
为了便于理解,示例的给出了与本申请相关概念的说明以供参考,如下所示:
1、终端设备
终端设备可以简称为终端,是一种具有无线收发功能的设备,终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机、平板电脑、带无线收发 功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶中的无线终端设备、远程医疗中的无线终端设备、智能电网中的无线终端设备、运输安全中的无线终端设备、智慧城市中的无线终端设备、或智慧家庭中的无线终端设备等。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(seesion initiation protocol,SIP)电话、无线本地环路(wirelees local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来第五代(the 5th generation,5G)网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。终端设备有时也可以称为用户设备(user equipment,UE)、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。本申请实施例对此并不限定。
考虑到侧行链路空口传输,无线通信的收发端都是终端设备。终端设备还可以是车载终端设备,或者嵌入车载终端设备中的车载通信模块或其它嵌入式通信模块等,也可以是用户手持通信设备,包括手机、平板电脑等。
2、侧行链路(sidelink,SL)
侧行链路用于终端设备与终端设备之间的通信,可以包括物理侧行链路共享信道(physical sidelink shared channel,PSSCH)和物理侧行链路控制信道(physical sidelink control channel,PSCCH)。其中,PSSCH用于承载侧行链路数据(SL data),PSCCH用于承载侧行链路控制信息(sidelink control information,SCI),所述SCI也可以称为侧行链路调度分配(sidelink scheduling assigment,SL SA)。SL SA是用于数据调度相关的信息,比如,用于承载PSSCH的资源分配和/或调制编码机制(modulation and coding scheme,MCS)等信息。
可选的,侧行链路通信还可以包括:物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH)。物理侧行链路反馈信道也可以简称为侧行链路反馈信道。物理侧行链路反馈信道可以用于传输侧行链路反馈控制信息(sidelink feedback control information,SFCI),侧行链路反馈控制信息也可以简称为侧行链路反馈信息。其中,侧行链路反馈控制信息可以包括信道状态信息(channel state information,CSI)和混合自动重传请求(hybrid automatic repeat request,HARQ)等信息中的一个或多个。其中,HARQ信息中可以包括肯定确认信息(acknowledgement,ACK)或否定性确认(negtive acknowledgement,NACK)等。
3、SL的资源分配
关于SL的资源分配存在两种模式,分别为模式1(mode-1)和模式2(mode-2)。由于本申请主要与模式2相关,因此重点介绍模式2。模式2又称为用户自选资源模式,UE的传输资源不依赖于网络设备,发送UE自己选择传输资源进行通信。该模式不受限于网络设备的覆盖,在没有网络覆盖的情况下,发送UE也可以用该模式进行通信。用户自选的资源包括初传资源和/或重传资源。
为了提高模式2资源分配的性能,3GPP标准组织在release 17立项了用户设备间协作(Inter-UE coordination)机制,标准讨论了UE协作机制的基本需求,但具体的应用还没有被规定。UE协作可以分为基于触发和基于非触发两种协作机制。示例性的,对于基于 触发的协作机制,若发送终端需要协作终端的协作消息,发送终端要先向协作终端显式地发送触发消息,以触发协作终端向发送终端反馈协作消息,如图2a所示。此时UE协作的机制可以由被协作终端,也就是发送终端,来主动的触发。对于基于非触发的协作机制,发送终端不需要主动发送触发消息给协作终端,协作终端自发的向发送终端反馈协作消息,如图2b所示。此时协作终端发送协作消息可以是由事件触发(event trigger)的,或基于一些预定义的条件等其他方式,本申请对此不做限定。除了上述的触发和非触发方式,UE协作还可以是网络设备通过信令触发的或周期性触发的等等,本申请对此也不做限定。在UE协作机制下终端之间可以针对SL通信的各个阶段进行互相协作,例如协作终端可以协助发送终端进行资源选择。发送终端还可在其他终端的协作下在侧行链路资源上进行传输,例如在图2a和图2b所示的交互流程中发送终端基于来自协作终端的协作消息向协作终端或除协作终端之外的其他终端发送侧行数据。具体地,来自协作终端的协作消息可以用于辅助被协作终端的侧行传输,比如协作消息可以包括可以使用的侧行链路资源的指示信息和/或不可以使用的侧行链路资源的指示信息。其中协作终端通过协作消息指示的不可以使用的侧行链路资源,可以是协作终端检测到已经被其他终端预约(reserve)的资源,或者协作终端自身要用于发送或接收数据的资源等。相应的,协作消息中指示的可以使用的侧行链路资源可以是协作终端根据侦听(sensing)和/或自身用于发送或接收数据的资源确定的,例如侧行资源池中排除上述被预留的资源之后剩余的资源。发送终端(或称为被协作终端)通过协作终端提供的上述信息,可以更加有效的进行资源选择,避免干扰,提高系统的吞吐量。
应当指出,本申请实施例中的“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
图3为本申请实施例适用的一种可能的网络架构,包括终端设备300。
其中,终端设备300的数量为两个或两个以上,且不同的终端设备可通过SL通信,通信方式可包括单播、组播和/或广播等。
可选的,还可包括网络设备310。终端设备300与网络设备310之间可通过Uu空口通信。Uu空口可以理解为通用的用户设备(user equipment,UE)和网络之间的接口(universal UE to network interface)。Uu空口的传输可以包括上行传输和下行传输,上行传输是指终端设备向网络设备发送信息,上行传输的信息可称为上行信息或上行信号。上行信息或上行信号中可以包括上行数据信号、上行控制信号、或探测参考信号(sounding reference signal,SRS)中的一个或多个。下行传输是指网络设备向终端设备发送信息,下行传输的信息可以为下行信息或下行信号。下行信息或下行信号可以包括下行数据信号、下行控制信号、信道状态信息参考信号(channel state information reference signal,CSI-RS),或相位跟踪参考信号(phase tracking reference signal,PTRS)中的一个或多个。
需要说明的是,上述网络架构仅为示意性说明,并不作为对本申请实施例的限定。本领域普通技术人员可知,随着网络架构和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
应当指出,本申请实施例提供的技术方案,可应用于车与任何事物(vehicle to everything,V2X)、设备到设备(device to device,D2D)等终端设备和终端设备直接通信的系统中,适用于有网络覆盖和无网络覆盖的通信场景,两个终端设备可在网络设备覆盖范围内,也可以在网络设备覆盖范围外。
如图4所示,两个终端设备可同时位于网络设备覆盖范围内,或者,两个终端设备中的任一个终端设备位于网络覆盖范围内,另一个终端设备位于网络覆盖范围外,或者,两个终端设备均位于网络设备覆盖范围外。其中,终端设备与网络设备间的接口为Uu空口,不同终端设备间进行SL通信的接口为PC5接口。
本申请实施例提供一种通信方法及装置,其原理为:单独配置一个资源池,该资源池专门用于传输触发消息或协作消息,该资源池中一个时隙包括可多个传输资源,触发消息或协作消息的传输一次占用一个传输资源,即触发消息或协作消息在时域上占用的资源小于一个时隙。相对于,在SL资源池中传输触发消息或协作消息,触发消息或协作消息的传输需要占用一个时隙,可减少触发消息或协作消息占用的时域资源,提高时域资源利用率。
实施例一
首先介绍为触发消息和/或协作消息配置的资源池,为了区别跟现有技术中sidelink资源池的区别,在本申请的描述中,将该用于传输触发消息和/或协作消息的资源池称为第一资源池。可选的,第一资源池还可称为专有资源池(dedicated resource pool)、协作资源池或专有协作资源池等。将现有技术中用于sidelink传输的资源池可称为第二资源池。终端设备可以在第二资源池上传输sidelink数据信息,控制信息,反馈信息中的部分或全部。所述第二资源池中的每个传输资源在时域上占用一个时隙的部分或全部符号。
示例的,该第一资源池中包括多个传输资源,传输资源还可称为协作资源,每个传输资源可以用于发送触发消息和/或协作消息,每个传输资源在时域上占用一个时隙的部分或全部符号,在频域上占用一个或多个子信道。关于每个传输资源在时域上占用一个时隙的部分或全部符号,可以作如下说明:如果一个传输资源在时域上占用一个时隙的全部符号,则一个时隙内包括一个传输资源。如果一个传输资源在时域上占用一个时隙的部分符号,则一个时隙内包括传输资源的数量主要取决于一个时隙中包括符号的数量以及每个传输资源占用的符号数量。以一个时隙内包括14个符号为例,若一个传输资源占用13个符号,则该时隙内仅包括一个传输资源。或者,一个时隙内还可以包括3个传输资源,可参见图11所示,该3个传输资源在时域上占用的符号数量分别为4符号、5符号和5符号。
应当指出,在本申请实施例中,上述第一资源池中包括的多个传输资源中的任两个传输资源在时域上占用的符号数量可以相同或不同。比如,如图11所示,第一资源池中包括35个传输资源,该35个传输资源中任一个传输资源所占用的符号数量可以为4或5。上述第一资源池中的任两个传输在频域上占用的子信道数量可以相同或不同。比如,在图11中,第一资源池中的所有传输资源在频域上仅占用一个子信道。
示例,在本申请中,一个时隙内包括的所有传输资源的起始位置和/或时域上占用的符号数量可以预配置在终端设备中,也可以由网络设备通过配置信令下发给终端设备。其中,配置信令可以为系统消息块(system information block,SIB)、无线资源控制(radio resource control,RRC)或物理层控制信息。每个传输资源占用的第一个符号用于接收端进行自动增益控制(automatic generation control,AGC)调整,自动增益控制调整是指接收端的放大电路的增益自动随信号强度而调整的自动控制方式,使得当输入信号电压变化很大时,保持接收机输出电压恒定或基本不变。具体地说,当输入信号很弱时,线性放大电路工作,保证输出信号的强度;当输入信号很强时,启动压缩放大电路,使得输出信号的强度降低。可选的,在上述第一资源池内,一个时隙内包括的所有传输资源的总符号个数不应该超过该时隙包括符号的总数。
在一种可能的实现方式中,如图5所示,一个时隙包括14个符号,可在该时隙内配置3个传输资源,该3个传输资源从左至右依次称为第一传输资源、第二传输资源和第三传输资源。上述3个传输资源占用的符号可相同或不同,不作限定。在一些实施例中,上述3个传输资源中的第一个传输资源可占用4个符号,第二个传输资源和第三个传输资源可分别占用5个符号。可选的,上述3个传输资源所占用的第一个符号可为AGC符号,用于接收机进行AGC调整。在图5中,每个传输资源中用于AGC调整的符号可参见斜线填充的长条。通过该示例的时域配置,在一个时隙内配置3个传输资源。如设定整个第一资源池中包括4个子信道,而一个传输资源占用一个子信道,那么整个第一资源池在一个时隙内包括12个传输资源。
需要说明的是,由于触发消息和/或协作消息,通常用SCI传输。由于SCI可分为第一级SCI和第二级SCI。因此,每个传输资源可具体分为传输AGC的资源,传输第一级SCI的资源和传输第二级SCI的资源等,具体可参见图5所示。
在一些实施例中,第一资源池在时域上占用的时隙可以用比特映射(bitmap)的方式来定义。比如,
Figure PCTCN2020142548-appb-000001
可以用来表示第一资源池的时域配置,L bitmap′表示比特映射的长度,当b k=1时,表示该时隙属于第一资源池,当b k=0时,表示该时隙不属于第一资源池。
如图6所示,第一资源池的时域配置可以基于现有的第二资源池,即第一资源池中的时域资源完全属于第二资源池。或者,第一资源池的时域配置可以独立于第二资源池,即第一资源池与第二资源池所占用的时域资源并不重叠。或者,第一资源池的时域配置与第二资源池部分重叠,即第一资源池的一部分时域资源属于第二资源池,但另一部分时域资源不属于第二资源池,该种情况在图6中并未示意的画出。
在一些实施例中,如图7所示,当第一资源池的时域配置属于第二资源池的一部分时,假设第二资源池的配置周期bitmap的长度为L bitmap=160,即第二资源池以160个时隙为配置周期的。其中,属于第二资源池的时隙为100个,第一资源池可以配置在上述100个SL资源内。定义第一资源池bitmap的长度
Figure PCTCN2020142548-appb-000002
则现有第二资源池的每十个时隙可视为一组,共10组,每组中第1个,第4个,第7个, 第8个,第10个资源可作为第一资源池中的时域资源。结合上述图5中的例子,每个时隙中包括12个传输资源,那么一组第一资源池配置中共包括5*12=60个传输资源。
在另一些实施例中,如图8所示,当第一资源池与现有第二资源池在时域上独立配置时,假设现有第二资源池bitmap的长度L bitmap=160,其中属于第二资源池的时隙为100个,不属于第二资源池的时隙为60个。第一资源池在时域上可以配置在上述60个不属于第二资源池的时隙内。定义第一资源池bitmap的长度
Figure PCTCN2020142548-appb-000003
Figure PCTCN2020142548-appb-000004
则上述不属于第二资源池的60个时隙中的每十个时隙可视为一组,共6组,每组中第1个,第4个,第7个,第8个,第10个资源可作为第一资源池中的时域资源。结合上述图5中的例子,每个时隙包括12个传输资源,一组第一资源池配置中共包括5*12=60个传输资源。
可选的,由于第一资源池内一个时隙中可以包括多个传输资源,每个传输资源的第一个符号用于AGC,因此当第一资源池与第二资源池频分复用时,会导致第二资源池内传输信号的传输功率发生变化,处于第二资源池内的终端设备无法正常接收。
如图9所示,假设一个带宽部分(bandwidth part,BWP)包括两个资源池,其中一个为用于传输触发消息和/或协作消息的第一资源池,第一资源池内一个时隙可以包括3个传输资源,每个传输资源在时域上占用一个时隙的部分符号,UE-3,UE-4和UE-5分别在这三个传输资源上进行通信。另一个为现有技术中用于sidelink传输的资源池,即第二资源池。
假设第一资源池与第二资源池频分复用,两者占用相同的时域资源,则当UE-4和UE-5在一时隙内中间某个符号发送数据时,由于第一资源池与第二资源池占用相同的时域资源,会导致UE-2的接收功率在一个时隙内发生变化。由于UE-2在接收到UE-1发送的数据时,只在第一个符号进行AGC,所以UE-2希望整个时隙上的接收功率恒定不变。但是由于UE-4和UE-5在一时隙内中间某个符号发送数据,导致整个时隙上的接收功率发生变化,当UE-2没有额外的AGC处理时,会导致UE-2的接收失败。因此,第一资源池应当避免与第二资源池频分复用,即第一资源池应与第二资源池时分复用。
通过上述可以看出,本申请实施例提出的用于传输触发消息和/或协作消息的第一资源池配置,允许一个时隙内配置一个或多个传输资源,即每个传输资源在时域上占用一个时隙的部分或全部符号。通过该方法可以有效的利用传输资源,避免资源浪费,同时减少了协作信令对SL数据传输造成的干扰,减少了传输的碰撞,提高了系统传输的时延和可靠性。
实施例二
利用上述实施例一为触发消息和/或协作消息配置的第一资源池,提供一种通信方法,包括:第一终端设备在第一资源池中,确定第一传输资源,第一资源池用于传输第一消息;第一终端设备利用第一传输资源,向第二终端设备发送第一消息。
为了便于理解,在以下实施例中,以第一终端设备为协作UE,第二终端设备为发送UE,第一消息为协作消息,第二消息为触发消息为例进行描述。发送UE、协作UE和接 收UE三者的关系为:发送UE与接收UE间进行SL通信,两者间可利用第二资源池中的资源,传输第三消息,该第三消息可承载在PSCCH、PSSCH、或PSFCH中的至少一种信道上。若发送UE需要协作UE的协助,用于确定第二资源池中用于发送第三消息的资源,则协作UE可协助发送UE侦听第二资源池中可用的空闲资源和/或其他UE预约的资源,并将侦听结果以协作消息的形式发送给发送UE,或者协作UE可将自身需要发送的资源或接收的资源以协作消息的形式发送给发送UE。其中,协作UE可以是接收UE,或者接收UE附近的其它UE等,或者其他UE,本申请不作限定。
如图10所示,提供一种通信方法的流程图,至少包括:
步骤101:协作UE在第一资源池中,确定第一传输资源。
步骤102:协作UE利用第一传输资源,向发送UE发送协作消息。
应当指出,上述图10流程所示的方法,可应用于上述图2a所示的基于显示触发的协作机制,也可以应用于上述图2b所示的基于非显示触发的协作机制。若上述图10流程所示的方法,应用于上述图2a所示的基于显示触发的协作机制,在上述步骤101之前,还可包括:
步骤100a:发送UE在第一资源池中,确定第二传输资源。
步骤100b:发送UE利用第二传输资源,向协作UE发送触发消息。协作UE在接收到上述触发消息时,再向发送UE发送协作消息。
在本申请实施例中,上述触发消息用于所述协作UE确定协作消息,协作消息用于发送UE在第二资源池中,确定第三传输资源,所述第三传输资源用于发送UE发送第三消息。其中,所述第三消息承载在PSCCH,PSSCH,或PSFCH中的至少一种信道上。
举例来说,UE1与UE2间进行SL通信,UE1作为发送端,UE2作为接收端。假如UE1需要其它UE的协作,在第二资源池中,确定传输资源。UE1可作为发送UE,协作UE可以为UE2,也可以为其它UE不作限定。比如,协作UE为UE3。UE3可首先在第一资源池中,确定传输资源,在上述传输资源上,向发送UE,即向UE1发送协作消息。UE1根据该协作消息,可确定第二资源池中的可用的资源,利用该可用的资源向UE2发送SL消息,该SL消息即为上述第三消息。
应当指出,对于触发消息,发送端为发送UE,接收端为协作UE。对于协作消息,发送端为协作UE,接收端为发送UE。在以下实施例中,将描述发送端如何在为触发消息和/或协作消息配置的第一资源池中,确定传输资源的情况。以及接收端如何在该传输资源中,接收相关消息。
示例一
1、发送端在为触发消息和/或协作消息配置的第一资源池中,确定传输资源的过程。
发送端根据发送端的索引和/或接收端的索引,确定传输资源的索引;在第一资源池中,该索引对应的传输资源即为发送端发送触发消息和/或协作消息的资源。
例如,发送端可以利用发送端ID加接收端ID对第一资源池中一组传输资源的总数取模来确定传输资源的索引。例如,C-ID=(S-ID+D-ID)mod(N*M*K),C-ID表示传输资源的索引,S-ID表示发送端索引,D-ID表示接收端索引,mod表示取模运算,N*M*K表示第一资源池中一组传输资源的总数。第一资源池中的传输资源可以按照先频域后时域的顺序排序,或者按照先时域后频域的顺序排序,上述排序顺序只作为示例,本申请不对其进 行限制。每个传输资源对应一个索引。以一个时隙中包括12个传输资源,第一资源池中的传输资源按照先频域后时域的顺序排序为例,第一资源池中的传输资源的排序结果可参见图11所示。例如,在一些实施例中,利用上述算法,确定的C-ID的索引为10,那么发送端可以利用上述图11中的索引为10的传输资源发送消息。其中,该消息可以为触发消息或协作消息等,不再赘述。
应当指出,上述N*M*K表示第一资源池中一组传输资源的总数。关于一组传输资源可作如下定义,指在一组第一资源池的时域bitmap配置中包括专有传输资源的总数量。其中,N表示第一资源池中的一个传输资源在频域上包括的子信道数量,M表示一组时域bitmap配置中配置给第一资源池的时隙数量,K表示一个时隙内配置的传输资源的数量。第一资源池的时域bitmap可以在时域上按照周期重复出现,每组bitmap配置对应一组传输资源。沿用上述举例,定义第一资源池的时域bitmap的长度L bitmap′=10,
Figure PCTCN2020142548-appb-000005
则在一组第一资源池的时域bitmap配置中可将M=5个时隙配置给第一资源池。沿用上述举例,一个时隙内可包括K=3个传输资源,且第一资源池中的一个传输资源在频域上包括N=4个子信道,第一资源池中一组传输资源中共包括N*M*K=4*5*3=60个传输资源。
在一些实施例中,针对触发消息,发送端为发送UE,接收端为协作UE,那么触发消息的传输资源索引由发送UE的ID加协作UE的ID确定,发送UE的ID为S-ID,协作UE的ID为D-ID。针对协作消息,发送端为协作UE,接收端为发送UE,协作消息的传输资源索引由协作UE的ID加发送UE的ID确定,协作UE的ID为S-ID,发送UE的ID为D-ID。
可选的,作为另外一种实现方式,可以固定将发送UE的ID作为S-ID,协作UE的ID作为D-ID,或者,固定将发送UE的ID作为D-ID,协作UE的ID作为S-ID。其中,关于发送UE和协作UE可参见上文方法实施例中的说明。在该实现方式中,触发消息和协作消息会对应相同的传输资源,因为触发消息和协作消息同时发送的概率较小,通过本方式可以提高资源的利用率。
需要说明的是,在确定上述传输资源的ID时,关于S-ID和D-ID可以取UE的设备ID的全部,也可以取UE的设备ID的部分。可选的,采用UE的设备ID的部分ID长度,确定传输资源的ID,可以减少盲检的复杂度。示例的,可以采用S-ID的前K1比特,后K1比特,或者中间的K1比特,D-ID的前K2比特,后K2比特,或者中间的K2比特,确定传输资源的ID,K1与K2的取值为正整数,且K1与K2的取值相同或不同。在一些实施例中,例如,可分别采用S-ID和D-ID的前4比特,确定传输资源的索引。例如,发送UE的ID的前4比特为0010,协作UE的ID的前4比特为0011。则传输资源的索引为C-ID=(00100011)mod(60)=35。
应当指出,利用上述方式确定传输资源索引时,可能会出现发送端确定发送触发消息或协作消息的传输资源的时刻位于实际的传输资源之后,那么发送端可在离当前时隙最近的下一组传输资源中的相同索引对应的传输资源上发送触发消息或协作消息。如图12所示,发送UE在时隙n开始确定传输资源,根据S-ID和D-ID的映射关系,得到传输资源 的索引为35。由于时隙n位于当前这组传输资源中索引为35的传输资源之后,所以发送端可在下一组传输资源中索引为35的传输资源上发送触发消息或协作消息。
需要说明的是,在本申请实施例的描述中,索引与ID,标识等不作区分,可相互替换。本申请实施例中的发送端或接收端的索引,可以指设备本身的标识,例如设备发送数据或业务的标识,其承载在物理层可以是标识的全部或部分等。具体地,例如第二级SCI中携带的源标识(Source ID)和目的(Destination ID)。
2、接收端在第一资源池中,确定传输资源的过程。
针对接收端要分两种情况讨论,第一种,接收端已经获知发送端的信息,则接收端可唯一确定需要接收相关消息的传输资源。第二种,接收端未获知发送端的信息,则接收端可能不能唯一确定接收相关消息的传输资源,需要在多个传输资源上进行接收。
第一种情况,接收端已经获知发送端的信息,例如接收端与发送端已建立或建立过链接,接收端可获取发送端设备索引ID,则接收端根据发送端设备索引ID与接收端设备索引ID,确定传输资源的索引;在第一资源池中,该索引对应的传输资源为用于传输触发消息或协作消息的传输资源。具体的方式,与上述相似,接收端可用发送端设备索引ID加接收端设备索引ID对一组传输资源的总数取模来确定在第一资源池中用于接收触发消息或协作消息的传输资源索引。当接收端为协作UE时,接收端需要根据自己的ID和发送UE的ID,确定相应的传输资源索引,并接收触发消息。当接收端为发送UE时,发送UE需要根据自己的ID和协作UE的ID,确定相应的传输资源索引,并接收协作消息。
第二种情况,接收端未获知发送端的信息,例如接收端与发送端未建立或未建立过链接,接收端无法获取发送端设备索引ID,接收端需要在与接收端设备索引ID相关的所有可能的传输资源上进行盲检。例如,接收端需要根据接收端自己设备的索引ID,确定至少一个可能的传输资源的索引;在第一资源池中,该至少一个传输资源的索引所对应的至少一个传输资源,为接收端需要接收触发消息或协作消息的传输资源。
例如,接收端需要接收触发消息或协作消息的传输资源索引可能满足以下公式:C-ID=(D-ID+2 nj)mod(M*N*K);其中,C-ID表示接收端需要接收触发消息或协作消息的传输资源索引,D-ID表示接收端的索引,n表示发送设备索引ID包括的比特位数,M*N*K表示一组传输资源的总数,j的取值为0至2 n-1间的正整数。例如,接收UE的设备索引ID包括4位,具体为0011,发送设备索引ID包括4位,则接收端需要接收的传输资源的索引为(3+16j)mod(60),j=0,1,2….,15。例如,当j取值为0至15时,可分别计算出一个传输资源索引,该16个j的取值,对应于16个传输资源,接收端在16个传输资源上盲检触发消息或协作消息,如果在上述16个传输资源内的某个传输资源上成功接收到触发消息或协作消息,则可以根据传输资源的时频位置确定出发送设备的索引ID。
本申请实施例给出了第一资源池中的传输资源的具体映射方式,通过将传输资源的索引跟发送UE的ID,协作UE的ID以及一组传输资源的个数进行取模运算,可以隐式的确定传输资源,因此发送UE或协作UE无需再额外根据侦听预约流程来确定发送触发消息或协作消息的资源,可以降低UE的功率,达到节能的效果,尤其适用于对本身功率受限的终端设备。并且可以避免由侦听预约流程导致的系统复杂度以及干扰的增强。
示例二
1、发送端在为触发消息和/或协作消息配置的第一资源池中,确定传输资源的过程。
发送端根据在第一资源池的侦听结果,确定可用于传输触发消息或协作消息的资源。 具体来说,发送端可根据自身侦听的结果在资源选择窗口内自行选择传输资源进行通信,此时发送端也可称为侦听UE。选择方法与现有技术中UE自行选择资源的流程类似。将
Figure PCTCN2020142548-appb-000006
定义为属于第一资源池的时隙集合。如图13所示,假设侦听UE在时隙n触发资源选择,侦听UE持续侦听该窗口内所有属于第一资源池的时隙中除侦听UE自身进行传输的时隙之外,剩余的所有时隙。再根据侦听的结果从资源选择窗口内所有属于第一资源池的时隙中排除已经被其它UE预约的资源,然后发送UE将排除后得到的候选资源集合上报给终端高层(higher layers),高层再从中确定最终的发送触发消息和/或协作消息的资源。
具体的资源排除流程如下:
1)如图13所示,定义资源选择窗口为资源选择触发n之后的[n+T 1,n+T 2]对应的时隙。假设第一资源池的频域资源所包括的子信道个数为N subCH,对应的子信道集合为
Figure PCTCN2020142548-appb-000007
一个候选资源R x,y被定义为在时域上位于资源选择窗口[n+T 1,n+T 2]内属于第一资源池的时隙
Figure PCTCN2020142548-appb-000008
在频域上位于子信道x+j的子信道集合,其中j=0,...,L subCH-1,即在频域上体现为长度等于L subCH的一组连续子信道集合,L subCH为待传输数据所对应的触发消息或协作消息占用的子信道的个数,因此,每个时隙上的候选资源总数为N subCH-L subCH+1。任何一组符合上述条件的长度等于L subCH的连续子信道集合都被认为是一个候选资源R x,y,全部候选资源的个数为M total
如图14所示,假设频域资源池的最大子信道个数N subCH为8,对应的子信道集合为S={S 0,S 1,…,S 7},待传输的触发消息或协作消息占用的子信道的个数L subCH为2,则每个时隙上的候选资源总数为N subCH-L subCH+1=7。
2)如图13所示,资源侦听窗口可定义为
Figure PCTCN2020142548-appb-000009
其中,T 0由高层参数t0_SensingWindow配置,
Figure PCTCN2020142548-appb-000010
由表-1确定。μ SL为SL BWP对应的子载波间隔(sub-carrier spacing,SCS)配置,由表-2确定。
表-1
Figure PCTCN2020142548-appb-000011
Figure PCTCN2020142548-appb-000012
表-2 μ SL与子载波间隔的关系
μ SL Δf=2 μ·15[kHz]
0 15
1 30
2 60
3 120
4 240
3)定义门限Th prioTX,prioRX为接收到的SCI中所指示的数据对应的优先级和侦听UE的待发送数据对应的优先级的函数。
4)定义包括全部M total个候选资源的集合为S A
5)如果候选资源R x,y同时满足以下条件,则该候选资源R x,y应当从集合S A中排除:
-侦听UE没有侦听时隙
Figure PCTCN2020142548-appb-000013
即侦听UE自身在时隙
Figure PCTCN2020142548-appb-000014
进行过传输;
-存在整数j满足y+j×P′ rsvp_TX=m+q×P′ rsvp_RX,这里q=1,2,…,Q,j=0,1,…,C resel-1,P′ rsvp_TX为侦听UE的资源预留间隔P rsvp_TX由毫秒(ms)单位转换为逻辑时隙为单位得到的逻辑值,也可以称为逻辑周期,资源预留间隔P rsvp_TX可以由高层参数sl-ResourceReservePeriodList确定。P′ rsvp_RX为接收到的其他终端的SCI中指示的资源预留间隔P rsvp_RX转换为逻辑时隙为单位得到的逻辑值。如果P rsvp_RX<T scal并且n′-m≤P′ rsvp_RX
Figure PCTCN2020142548-appb-000015
否则,Q=1。其中,如果时隙n属于第一资源池,
Figure PCTCN2020142548-appb-000016
否则
Figure PCTCN2020142548-appb-000017
为时隙n之后第一个属于第一资源池的时隙,T scal为资源选择窗长T 2对应的间隔,单位为ms;
6)如果候选资源R x,y同时满足以下条件,则该候选资源R x,y应当从集合S A中排除:
-侦听UE在时隙
Figure PCTCN2020142548-appb-000018
收到SCI,该SCI中的字段"Resource reservation period"(若字段"Resource reservation period"存在)指示了值P rsvp_RX,并且该SCI中的字段"Priority"指示了值prio RX,其中值P rsvp_RX为该SCI对应的PSSCH的物理周期资源预留间隔,单位为毫秒(ms),值prio RX为该SCI对应的PSSCH的优先级值。
-通过该SCI确定的触发消息或协作消息的参考信号接收功率(reference signal receiving power,RSRP)测量结果高于门限Th prioTX,prioRX,其中门限Th prioTX,prioRX为接收到的SCI中所指示的数据对应的优先级和侦听UE的待发送数据对应的优先级的函数。
-侦听UE在时隙
Figure PCTCN2020142548-appb-000019
收到的SCI确定的时频资源与候选资源
Figure PCTCN2020142548-appb-000020
重合,或当SCI中的字段"Resource reservation period"存在时,侦听UE预期在
Figure PCTCN2020142548-appb-000021
时隙收到的SCI所确定的时频资源与候选资源
Figure PCTCN2020142548-appb-000022
重合。其中q=1,2,…,Q,j=0,1,…,C resel-1,P′ rsvp_TX为侦听UE的资源预留间隔P rsvp_TX由毫秒(ms)单位转换为逻辑时隙为单位得到的逻辑值,资源预留间隔(resource reservation interval)为高层提供的参数。P′ rsvp_RX为接收到SCI指示的资源预留间隔P rsvp_RX转换为逻辑时隙为单位得到的逻辑值。如果P rsvp_RX≤T scal并且n′-m≤P′ rsvp_RX
Figure PCTCN2020142548-appb-000023
否则,Q=1。其中如果时隙n属于第一资源池,那么
Figure PCTCN2020142548-appb-000024
否则
Figure PCTCN2020142548-appb-000025
为时隙n之后第一个属于第一资源池的时隙。T scal为选择窗长度T 2转换为以毫秒(ms)为单位后得到的值。应理解,将一个以毫秒(ms)为单位的值转换为逻辑时隙为单位表示计算该值对应的时长内包含的发送触发消息和/或协作消息的资源的个数。
7)如果候选资源集合S A中剩余的候选资源少于M total的X%,则将预先设定的RSRP门限Th prioTX,prioRX升高3dB,重复步骤4)至6),X%的配置从高层配置的参数或者预定义的参数中选取。
8)侦听UE将候选资源集合S A汇报给高层,高层再从集合S A中完成最终的资源选择。
侦听UE根据接收到的SCI确定的时频资源为SCI指示的预留资源,时域上位于SCI的发送时隙之后,其他UE将会在该预留的资源上发送触发消息或协作消息。在如图13所示的示例中,UE1~4发送的SCI分别指示了各自预留的资源(预留资源上标注了对应发送终端的名称,例如UE1),UE1~4的预留资源位于选择窗口内,则侦听UE需要将与这些预留资源重叠的候选资源从候选资源集合S A排除掉。
2、接收端在第一资源池中,接收触发消息或协作消息
例如,接收端在第一资源池中所有可能传输触发消息或协作消息的传输资源中,进行盲检,接收触发消息或协作消息等。
可以理解的是,上述本申请实施例提供的方法中,分别从第一终端设备和第二终端设备交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的功能,第一终端设备和第二终端设备可以包括硬件结构和/或软件单元,以硬件结构、软件单元,或硬件结构加软件单元的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件单元,还是硬件结构加软件单元的方式来执行,取决于技术方案的特定应用和设计约束条件。
以上结合图1至图14详细说明了本申请实施例提供的方法。以下结合图15和图16详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互 对应。因此,未详细描述的内容可参见上文方法实施例中的描述。
图15是本申请实施例提供的装置1500的示意性框图,用于实现上述方法中第一终端设备或第二终端设备的功能。例如,该装置可以为软件单元或芯片系统。所述芯片系统可以由芯片构成,也可以包括芯片和其它分立器件。该装置包括通信单元1501,还可包括处理单元1502。通信单元1501,可以与处部进行通信。处理单元1502,用于进行处理。
在一种示例中,装置1500用于实现上述第一终端设备的功能。
比如,处理单元1502,用于在第一资源池中,确定第一传输资源,所述第一传输资源用于传输第一消息,所述第一资源池中的每个传输资源在时域上占用一个时隙的部分或全部符号,所述第一资源池中的每个传输资源在频域上占用一个或多个子信道;通信单元1501,用于利用所述第一传输资源,向第二终端设备发送第一消息。
可选的,处理单元1502,还用于在所述第一资源池中,确定至少一个传输资源,所述第一资源池还用于传输第二消息;通信单元1501,还用于在所述至少一个传输资源上,接收来自所述第二终端设备的第二消息。
可选的,所述第二消息用于所述第一终端设备确定所述第一消息,所述第一消息用于所述第二终端设备在第二资源池中,确定第三传输资源,所述第三传输资源用于所述第二终端设备发送第三消息;其中,所述第三消息可以承载在物理侧行控制信道PSCCH,物理侧行共享信道PSSCH,或物理侧行反馈信道PSFCH中的至少一种信道,所述第二资源池中的每个传输资源在时域上占用一个时隙的全部符号。
可选的,所述第一资源池中的每个传输资源的时域起始位置和/或占用的时域符号数量预配置在所述第一终端设备中,或者,所述第一终端设备根据来自网络设备的配置信令,确定每个传输资源的时域起始位置和/或占用的时域符号数量。
可选的,所述配置信令为系统消息块SIB、无线资源控制RRC信令,或物理层控制信息。
可选的,所述第一资源池中的每个传输资源占用的第一个时域符号用于接收端自动增益控制AGC调整。
可选的,所述第一资源池与第二资源池时分复用。
可选的,处理单元1502在第一资源池中,确定第一传输资源,包括:根据第一终端设备的索引和/或第二终端设备的索引,确定第一传输资源对应的索引;所述第一资源池中,该索引对应的传输资源,为用于发送所述第一消息的传输资源。
可选的,处理单元1502在所述第一资源池中,确定至少一个传输资源,包括:根据所述第一终端设备的索引,确定至少一个传输资源的索引;所述第一资源池中,该索引对应的至少一个传输资源,为用于接收所述第二消息的传输资源。
可选的,处理单元1502在所述第一资源池中,确定至少一个传输资源,包括:根据所述第一终端设备的索引和第二终端设备的索引,确定第二传输资源的索引;所述第一资源池中,该索引对应的传输资源,为用于接收所述第二消息的传输资源。
在另一种示例中,装置1500可实现第二终端设备的功能。
比如,处理单元1502,用于在第一资源池中,确定至少一个传输资源;通信单元1501,用于在所述至少一个传输资源上,接收来自第一终端设备的第一消息,所述第一资源池用于传输第一消息,所述第一资源池中的每个传输资源在时域上占用一个时隙的部分或全部符号,所述第一资源池中的每个传输资源在频域上占用一个或多个子信道。
可选的,所述第一资源池还用于传输第二消息;处理单元1502,还用于在第一资源池中,确定第二传输资源;通信单元1501,还用于利用所述第二传输资源,向所述第一终端设备发送所述第二消息。
可选的,所述第二消息用于所述第一终端设备确定所述第一消息,所述第一消息用于所述第二终端设备在第二资源池中,确定第三传输资源,所述第三传输资源用于所述第二终端设备发送第三消息;其中,所述第三消息承载在物理侧行控制信道PSCCH,物理侧行共享信道PSSCH,或物理侧行反馈信道PSFCH中的至少一种信道,所述第二资源池中的每个传输资源在时域上占用一个时隙的全部符号。
可选的,所述第一资源池中的每个传输资源的时域起始位置和/或占用的时域符号数量预配置在所述第二终端设备中,或者,所述第二终端设备根据来自网络设备的配置信令,确定每个传输资源的时域起始位置和/或占用的时域符号数量。
可选的,所述配置信令为系统消息块SIB、无线资源控制RRC信令,或物理层控制信令。
可选的,所述第一资源池中的每个传输资源占用的第一个时域符号用于接收端自动增益控制AGC调整。
可选的,所述第一资源池与第二资源池时分复用。
可选的,处理单元1502在第一资源池中,确定至少一个传输资源,包括:根据所述第二终端备的索引,确定用于接收所述第一消息的传输资源索引;在所述第一资源池中,该索引对应的传输资源,为用于接收所述第一消息的传输资源。
可选的,处理单元1502在第一资源池中,确定至少一个传输资源,包括:根据所述第二终端设备的索引和第一终端设备的索引,确定第一传输资源的索引;在所述第一资源池中,该索引对应的传输资源,为用于接收所述第一消息的传输资源。
可选的,处理单元1502在第一资源池中,确定第二传输资源,包括:根据所述第一终端设备的索引和所述第二终端备的索引,确定第二传输资源的索引;所述第一资源池中,该索引对应的传输资源,为用于发送第二消息的传输资源。
本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
可以理解的是,上述实施例中的通信单元的功能可以由收发器实现,处理单元的功能可以由处理器实现。收发器可以包括发射器和/或接收器等,分别用于实现发送单元和/或接收单元的功能。以下结合图16举例进行说明。
图16是本申请实施例提供的装置1600的示意性框图,图16所示的装置1600可以为图15所示的装置的一种硬件电路的实现方式。为了便于说明,图16仅示出该通信装置的主要部件。
图16所示的通信装置1600包括至少一个处理器1601。通信装置1600还可以包括至少一个存储器1602,用于存储程序指令和/或数据。存储器1602和处理器1601耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性、机械性或其它的形式,用于装置、单元或模块之间的信息交互。处理器1601可以和存储器1602 协同操作,处理器1601可以执行存储器1602中存储的程序指令,所述至少一个存储器1602中的至少一个可以包括于处理器1601中。
装置1600还可以包括通信接口1603,用于通过传输介质和其它设备进行通信,从而用于通信装置1600可以和其它设备进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是接口电路。
应理解,本申请实施例中不限定上述处理器1601、存储器1602以及通信接口1603之间的连接介质。本申请实施例在图16中以存储器1602、处理器1601以及通信接口1603之间通过通信总线1604连接,总线在图16中以粗线表示,其它部件之间的连接方式,仅是示意性说明,并不作为限定。所述总线可以包括地址总线、数据总线、控制总线等。为了便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线等。
在一种示例中,装置1600用于实现上述第一终端设备的功能。
比如,处理器1601,用于在第一资源池中,确定第一传输资源,所述第一传输资源用于传输第一消息,所述第一资源池中的每个传输资源在时域上占用一个时隙的部分或全部符号,所述第一资源池中的每个传输资源在频域上占用一个或多个子信道;通信接口1603,用于利用所述第一传输资源,向第二终端设备发送第一消息。
可选的,处理器1601,还用于在所述第一资源池中,确定至少一个传输资源,所述第一资源池还用于传输第二消息;通信接口1603,还用于在所述至少一个传输资源上,接收来自所述第二终端设备的第二消息。
可选的,所述第二消息用于所述第一终端设备确定所述第一消息,所述第一消息用于所述第二终端设备在第二资源池中,确定第三传输资源,所述第三传输资源用于所述第二终端设备发送第三消息;其中,所述第三消息可以承载在物理侧行控制信道PSCCH,物理侧行共享信道PSSCH,或物理侧行反馈信道PSFCH中的至少一种信道,所述第二资源池中的每个传输资源在时域上占用一个时隙的部分或全部符号。
可选的,所述第一资源池中的每个传输资源的时域起始位置和/或占用的时域符号数量预配置在所述第一终端设备中,或者,所述第一终端设备根据来自网络设备的配置信令,确定每个传输资源的时域起始位置和/或占用的时域符号数量。
可选的,所述配置信令为系统消息块SIB、无线资源控制RRC信令,或物理层控制信息。
可选的,所述第一资源池中的每个传输资源占用的第一个时域符号用于接收端自动增益控制AGC调整。
可选的,所述第一资源池与第二资源池时分复用。
可选的,处理器1601在第一资源池中,确定第一传输资源,包括:根据第一终端设备的索引和/或第二终端设备的索引,确定第一传输资源对应的索引;所述第一资源池中,该索引对应的传输资源,为用于发送所述第一消息的传输资源。
可选的,处理器1601在所述第一资源池中,确定至少一个传输资源,包括:根据所述第一终端设备的索引,确定至少一个传输资源的索引;所述第一资源池中,该索引对应的至少一个传输资源,为用于接收所述第二消息的传输资源。
可选的,处理器1601在所述第一资源池中,确定至少一个传输资源,包括:根据所 述第一终端设备的索引和第二终端设备的索引,确定第二传输资源的索引;所述第一资源池中,该索引对应的传输资源,为用于接收所述第二消息的传输资源。
在一种示例中,装置1600用于实现第二终端设备的功能。
比如,处理器1601,用于在第一资源池中,确定至少一个传输资源;通信接口1603,用于在所述至少一个传输资源上,接收来自第一终端设备的第一消息,所述第一资源池用于传输第一消息,所述第一资源池中的每个传输资源在时域上占用一个时隙的部分或全部符号,所述第一资源池中的每个传输资源在频域上占用一个或多个子信道。
可选的,所述第一资源池还用于传输第二消息;处理器1601,还用于在第一资源池中,确定第二传输资源;通信接口1603,还用于利用所述第二传输资源,向所述第一终端设备发送所述第二消息。
可选的,所述第二消息用于所述第一终端设备确定所述第一消息,所述第一消息用于所述第二终端设备在第二资源池中,确定第三传输资源,所述第三传输资源用于所述第二终端设备发送第三消息;其中,所述第三消息承载在物理侧行控制信道PSCCH,物理侧行共享信道PSSCH,或物理侧行反馈信道PSFCH中的至少一种信道,所述第二资源池中的每个传输资源在时域上占用一个时隙的部分或全部符号。
可选的,所述第一资源池中的每个传输资源的时域起始位置和/或占用的时域符号数量预配置在所述第二终端设备中,或者,所述第二终端设备根据来自网络设备的配置信令,确定每个传输资源的时域起始位置和/或占用的时域符号数量。
可选的,所述配置信令为系统消息块SIB、无线资源控制RRC信令,或物理层控制信令。
可选的,所述第一资源池中的每个传输资源占用的第一个时域符号用于接收端自动增益控制AGC调整。
可选的,所述第一资源池与第二资源池时分复用。
可选的,处理器1601在第一资源池中,确定至少一个传输资源,包括:根据所述第二终端备的索引,确定用于接收所述第一消息的传输资源索引;在所述第一资源池中,该索引对应的传输资源,为用于接收所述第一消息的传输资源。
可选的,处理器1601在第一资源池中,确定至少一个传输资源,包括:根据所述第二终端设备的索引和第一终端设备的索引,确定第一传输资源的索引;在所述第一资源池中,该索引对应的传输资源,为用于接收所述第一消息的传输资源。
可选的,处理器1601在第一资源池中,确定第二传输资源,包括:根据所述第一终端设备的索引和所述第二终端备的索引,确定第二传输资源的索引;所述第一资源池中,该索引对应的传输资源,为用于发送第二消息的传输资源。
进一步的,本申请实施例还提供一种计算机可读存储介质,包括程序,当所述程序被处理器运行时,上文方法实施例中的方法被执行。
一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机实现上文方法实施例中的方法。
一种芯片,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得装置执行上文方法实施例中的方法。
本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可 以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (23)

  1. 一种通信方法,其特征在于,包括:
    第一终端设备在第一资源池中,确定第一传输资源,所述第一传输资源用于传输第一消息,所述第一资源池中的每个传输资源在时域上占用一个时隙的部分或全部符号,所述第一资源池中的每个传输资源在频域上占用一个或多个子信道;
    所述第一终端设备利用所述第一传输资源,向第二终端设备发送第一消息。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    所述第一终端设备在所述第一资源池中,确定至少一个传输资源,所述第一资源池还用于传输第二消息;
    所述第一终端设备在所述至少一个传输资源上,接收来自所述第二终端设备的第二消息。
  3. 如权利要求1或2所述的方法,其特征在于,所述第二消息用于所述第一终端设备确定所述第一消息,所述第一消息用于所述第二终端设备在第二资源池中,确定第三传输资源,所述第三传输资源用于所述第二终端设备发送第三消息;
    其中,所述第三消息可以承载在物理侧行控制信道PSCCH,物理侧行共享信道PSSCH,或物理侧行反馈信道PSFCH中的至少一种信道,所述第二资源池中的每个传输资源在时域上占用一个时隙的部分或全部符号。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述第一资源池中的每个传输资源的时域起始位置和/或占用的时域符号数量预配置在所述第一终端设备中,或者,所述第一终端设备根据来自网络设备的配置信令,确定每个传输资源的时域起始位置和/或占用的时域符号数量。
  5. 如权利要求4所述的方法,其特征在于,所述配置信令为系统消息块SIB、无线资源控制RRC信令,或物理层控制信息。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述第一资源池中的每个传输资源占用的第一个时域符号用于接收端自动增益控制AGC调整。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述第一资源池与第二资源池时分复用。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述第一终端设备在第一资源池中,确定第一传输资源,包括:
    所述第一终端设备根据第一终端设备的索引和/或第二终端设备的索引,确定第一传输资源对应的索引;
    所述第一资源池中,该索引对应的传输资源,为用于发送所述第一消息的传输资源。
  9. 如权利要求2至8中任一项所述的方法,其特征在于,所述第一终端设备在所述第一资源池中,确定至少一个传输资源,包括:
    所述第一终端设备根据所述第一终端设备的索引,确定至少一个传输资源的索引;
    所述第一资源池中,该索引对应的至少一个传输资源,为用于接收所述第二消息的传输资源。
  10. 如权利要求2至8中任一项所述的方法,其特征在于,所述第一终端设备在所述第一资源池中,确定至少一个传输资源,包括:
    所述第一终端设备根据所述第一终端设备的索引和第二终端设备的索引,确定第二传输资源的索引;
    所述第一资源池中,该索引对应的传输资源,为用于接收所述第二消息的传输资源。
  11. 一种通信方法,其特征在于,包括:
    第二终端设备在第一资源池中,确定至少一个传输资源;
    所述第二终端设备在所述至少一个传输资源上,接收来自第一终端设备的第一消息,所述第一资源池用于传输第一消息,所述第一资源池中的每个传输资源在时域上占用一个时隙的部分或全部符号,所述第一资源池中的每个传输资源在频域上占用一个或多个子信道。
  12. 如权利要求11所述的方法,其特征在于,还包括:
    所述第一资源池还用于传输第二消息;
    所述第二终端设备在第一资源池中,确定第二传输资源;
    所述第二终端设备利用所述第二传输资源,向所述第一终端设备发送所述第二消息。
  13. 如权利要求11或12所述的方法,其特征在于,所述第二消息用于所述第一终端设备确定所述第一消息,所述第一消息用于所述第二终端设备在第二资源池中,确定第三传输资源,所述第三传输资源用于所述第二终端设备发送第三消息;
    其中,所述第三消息承载在物理侧行控制信道PSCCH,物理侧行共享信道PSSCH,或物理侧行反馈信道PSFCH中的至少一种信道,所述第二资源池中的每个传输资源在时域上占用一个时隙的部分或全部符号。
  14. 如权利要求11至13中任一项所述的方法,其特征在于,所述第一资源池中的每个传输资源的时域起始位置和/或占用的时域符号数量预配置在所述第二终端设备中,或者,所述第二终端设备根据来自网络设备的配置信令,确定每个传输资源的时域起始位置和/或占用的时域符号数量。
  15. 如权利要求14所述的方法,其特征在于,所述配置信令为系统消息块SIB、无线资源控制RRC信令,或物理层控制信令。
  16. 如权利要求11至15中任一项所述的方法,其特征在于,所述第一资源池中的每个传输资源占用的第一个时域符号用于接收端自动增益控制AGC调整。
  17. 如权利要求11至16中任一项所述的方法,其特征在于,所述第一资源池与第二资源池时分复用。
  18. 如权利要求11至17中任一项所述的方法,其特征在于,所述第二终端设备在第一资源池中,确定至少一个传输资源,包括:
    所述第二终端设备根据所述第二终端备的索引,确定用于接收所述第一消息的传输资源索引;
    在所述第一资源池中,该索引对应的传输资源,为用于接收所述第一消息的传输资源。
  19. 如权利要求11至17中任一项所述的方法,其特征在于,所述第二终端设备在第一资源池中,确定至少一个传输资源,包括:
    所述第二终端设备根据所述第二终端设备的索引和第一终端设备的索引,确定第一传输资源的索引;
    在所述第一资源池中,该索引对应的传输资源,为用于接收所述第一消息的传输资源。
  20. 如权利要求12至19中任一项所述的方法,其特征在于,所述第二终端设备在第 一资源池中,确定第二传输资源,包括:
    所述第二终端设备根据所述第一终端设备的索引和所述第二终端备的索引,确定第二传输资源的索引;
    所述第一资源池中,该索引对应的传输资源,为用于发送第二消息的传输资源。
  21. 一种通信装置,其特征在于,包括用于实现权利要求1至10中任一项方法的单元,或者用于实现权利要求11至20中任一项方法的单元。
  22. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器中存储有指令,所述处理器执行所述指令时,使得所述装置执行权利要求1至10任一项所述的方法,或者执行权利要求11至20任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至10任一项所述的方法,或者执行权利要求11至20任一项所述的方法。
PCT/CN2020/142548 2020-12-31 2020-12-31 一种通信方法及装置 WO2022141593A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20967931.5A EP4250842A4 (en) 2020-12-31 2020-12-31 COMMUNICATION METHOD AND DEVICE
MX2023007799A MX2023007799A (es) 2020-12-31 2020-12-31 Metodo y aparato de comunicacion.
PCT/CN2020/142548 WO2022141593A1 (zh) 2020-12-31 2020-12-31 一种通信方法及装置
CN202080103231.9A CN115918204A (zh) 2020-12-31 2020-12-31 一种通信方法及装置
US18/342,198 US20230345423A1 (en) 2020-12-31 2023-06-27 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142548 WO2022141593A1 (zh) 2020-12-31 2020-12-31 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/342,198 Continuation US20230345423A1 (en) 2020-12-31 2023-06-27 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022141593A1 true WO2022141593A1 (zh) 2022-07-07

Family

ID=82260006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142548 WO2022141593A1 (zh) 2020-12-31 2020-12-31 一种通信方法及装置

Country Status (5)

Country Link
US (1) US20230345423A1 (zh)
EP (1) EP4250842A4 (zh)
CN (1) CN115918204A (zh)
MX (1) MX2023007799A (zh)
WO (1) WO2022141593A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117730605A (zh) * 2023-10-30 2024-03-19 上海移远通信技术股份有限公司 用于侧行通信的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200288467A1 (en) * 2015-09-25 2020-09-10 Innovative Technology Lab Co., Ltd. Method and apparatus for configuring dm-rs for v2x
CN111726871A (zh) * 2019-03-22 2020-09-29 华硕电脑股份有限公司 无线通信系统中用于侧链路传送的资源选择的方法和设备
CN111756476A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 通信方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200344574A1 (en) * 2019-04-24 2020-10-29 Lg Electronics Inc. Method of ue operation related to feedback resource determination in sidelink groupcast in communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200288467A1 (en) * 2015-09-25 2020-09-10 Innovative Technology Lab Co., Ltd. Method and apparatus for configuring dm-rs for v2x
CN111726871A (zh) * 2019-03-22 2020-09-29 华硕电脑股份有限公司 无线通信系统中用于侧链路传送的资源选择的方法和设备
CN111756476A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 通信方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Sidelink physical layer structure for NR V2X", 3GPP DRAFT; R1-1903943, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 2 April 2019 (2019-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 17, XP051707058 *
NOKIA, NOKIA SHANGHAI BELL: "Discussion of physical layer structure for sidelink", 3GPP DRAFT; R1-1910512-NOKIA-5G_V2X_NRSL-DISCUSSION OF PHYSICAL LAYER STRUCTURE FOR SIDELINK, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 8 October 2019 (2019-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 16, XP051789317 *
See also references of EP4250842A4 *

Also Published As

Publication number Publication date
CN115918204A8 (zh) 2024-05-10
EP4250842A1 (en) 2023-09-27
EP4250842A4 (en) 2023-11-29
MX2023007799A (es) 2023-07-11
CN115918204A (zh) 2023-04-04
US20230345423A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
US11943168B2 (en) Method and apparatus for transmission and reception of sidelink feedback in wireless communication system
US11791937B2 (en) Method and apparatus for transmission and reception of sidelink control information in wireless communication system
US11444729B2 (en) Transmitting feedback for data transmission through a sidelink
US20220330261A1 (en) Sidelink resource determination and sidelink signal transmission and reception method and device in wireless communication system
US20200275488A1 (en) Method and apparatus for identifying uplink signal transmission timing in wireless communication system
WO2024066145A1 (zh) 侧行通信的方法及装置
WO2020221343A1 (zh) 组播反馈配置方法及装置
CN113273112B (zh) 用于在无线通信系统中执行通信的方法和装置
US20220417976A1 (en) Processing time determination method and device of terminal in wireless vehicle communication system
WO2021017792A1 (zh) 一种反馈信息的传输方法及终端装置
CN113853823A (zh) 无线通信系统中控制ue的传输功率的方法和装置
WO2022143772A1 (zh) 数据传输方法、设备和存储介质
EP4093131A1 (en) Prioritization method and device for plurality of collision resources
US20230345423A1 (en) Communication method and apparatus
WO2022141578A1 (zh) 通信方法、装置及系统
WO2021032003A1 (zh) 上行控制信息传输方法及通信装置
KR20220014763A (ko) 무선 통신 시스템에서 사이드링크의 비연속적 수신을 지원하기 위한 방법 및 장치
WO2020164392A1 (zh) 一种通信方法及装置
WO2022222109A1 (zh) 资源选取方法、装置、设备及存储介质
WO2023131010A1 (zh) 一种数据传输方法及装置
US12041638B2 (en) Method and device for sidelink communication
WO2024031463A1 (zh) Sl通信方法、装置、设备、存储介质及程序产品
WO2023093531A1 (zh) 一种通信方法及装置
WO2024032444A1 (zh) 侧行链路通信方法和通信装置
WO2024067429A1 (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080103231.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/007799

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2020967931

Country of ref document: EP

Effective date: 20230621

NENP Non-entry into the national phase

Ref country code: DE