WO2023131010A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2023131010A1
WO2023131010A1 PCT/CN2022/142457 CN2022142457W WO2023131010A1 WO 2023131010 A1 WO2023131010 A1 WO 2023131010A1 CN 2022142457 W CN2022142457 W CN 2022142457W WO 2023131010 A1 WO2023131010 A1 WO 2023131010A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback information
tbs
comb
prbs
upper limit
Prior art date
Application number
PCT/CN2022/142457
Other languages
English (en)
French (fr)
Inventor
刘云
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210191913.0A external-priority patent/CN116455528A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023131010A1 publication Critical patent/WO2023131010A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • the present application relates to the technical field of communications, and in particular to a data transmission method and device.
  • the reliability of data transmission can be improved through a hybrid automatic repeat request (HARQ) mechanism.
  • HARQ hybrid automatic repeat request
  • the receiving device receives data information from the sending device, and can feed back the decoding status of the data information to the sending device, and the sending device determines whether to retransmit the data information according to the decoding status of the receiving device.
  • the data information may be transmitted in a transmission block (transmission block, TB) format.
  • the receiving device can successfully decode the data information (TB), the receiving device feeds back a HARQ acknowledgment message (acknowledgment, ACK) to the sending device, and the sending device can learn the data information based on the HARQ-ACK (referred to as ACK). It is successfully decoded, so the data information will not be retransmitted. Conversely, if the decoding of the data information fails, the receiving device feeds back a HARQ negative acknowledgment message (non-acknowledgment, NACK) to the sending device, and the sending device can know that the decoding of the data information failed based on the HARQ-NACK (which can be referred to as NACK), and then retransmit Data information.
  • HARQ acknowledgment HARQ acknowledgment
  • terminals After introducing a sidelink (sidelink, SL) scenario, terminals can directly communicate with each other, and one terminal may communicate with multiple terminals at the same time. If SL communication is performed through unlicensed spectrum, the receiving device usually needs to send ACK or NACK for multiple TBs. Multiple TBs may come from the same or different sending devices, which requires high data transmission performance.
  • the above-mentioned traditional HARQ mechanism cannot To meet the communication requirements of the SL scenario, it is urgent to propose a HARQ mechanism suitable for the SL scenario, so as to improve the communication performance between terminals in the SL scenario.
  • the present application provides a data transmission method and device, which can improve the performance of communication between terminals in an SL scenario.
  • a data transmission method which can be applied to an electronic device or a device (such as a chip system) for realizing the function of the electronic device, and the method includes:
  • the receiving device receives N transmission blocks TB, the receiving device obtains the upper limit of transmission times of the feedback channel and the parameters of the comb teeth, and according to the parameters of the comb teeth and the upper limit of the number of transmission times, sends the Feedback information of M TBs in N TBs.
  • the N is a positive integer
  • the M is a positive integer
  • the M is less than or equal to the N
  • the M is less than or equal to the upper limit P of the number of feedback information sent by the receiving device
  • the upper limit P of the number is based on the The upper limit of the transmission times and the parameters of the comb teeth are determined, and the P is a positive integer.
  • the receiving device no longer performs feedback for each received TB, so the signaling overhead in the HARQ process can be reduced; on the other hand, the receiving device
  • the number of feedback information sent by the device is less than or equal to the upper limit P (P is determined according to the comb parameter and the upper limit of transmission times), so that the receiving device can transmit as much feedback as possible when the upper limit of transmission times and the comb parameter are satisfied information, thus, can improve the reliability of the HARQ process.
  • P is determined according to the comb parameter and the upper limit of transmission times
  • the parameters of the comb include the interval between adjacent PRBs in the comb and/or the number of PRBs in the comb.
  • the upper limit P of the number satisfies the following conditions:
  • L represents the upper limit of the transmission times
  • GAP indicates the interval between adjacent PRBs in the comb
  • the sending the feedback information includes:
  • the comb teeth include the first comb teeth.
  • the PRB included in the first comb is larger than Q.
  • the feedback information may be transmitted through the 4 or 5 PRBs of the first comb. If 5 PRBs of the first comb are occupied, the reliability of the feedback information can be improved by repeatedly transmitting the feedback information on more PRBs. If the 4 PRBs of the first comb teeth are occupied, more feedback information can be transmitted by reducing the number of repeated transmissions of each feedback information.
  • the method further includes:
  • Feedback information is sent through PRBs other than the Q PRBs in the first comb, where X represents the number of PRBs included in the first comb.
  • the upper limit P of the number satisfies the following relationship:
  • L represents the upper limit of the transmission times
  • GAP indicates the interval between adjacent PRBs in the comb
  • sending feedback information includes:
  • R is a positive integer
  • the R PRBs at least include a PRB with the highest frequency band and a PRB with the lowest frequency band in the second comb, and the comb includes the second comb.
  • At least the feedback information is transmitted through the PRBs of the highest frequency band and the lowest frequency band of the comb teeth, which can ensure that the data transmission meets the bandwidth occupation requirements. While ensuring the communication bandwidth of the terminals, it is convenient for terminals to detect each other.
  • the upper limit P of the number satisfies the following relationship: or
  • N interlace represents the number of comb teeth available for the feedback channel
  • L represents the upper limit of the transmission times
  • sending the feedback information includes: sending the feedback information through the PRB with the highest frequency band and the PRB with the lowest frequency band in the first comb.
  • the value range of M satisfies the following conditions:
  • N CS represents the upper limit of the number of available sequence pairs of the feedback channel, and each sequence pair includes two sequences.
  • the value range of M can be determined from the perspective of resources, so that the receiving device can determine the number of feedback information that needs to be fed back according to the value range of M.
  • the method further includes:
  • the indication information is used to indicate the upper limit of M.
  • the indication information is also used to indicate the end positions of the N TBs in the time domain.
  • the sequence pair is determined according to the M-1 feedback information corresponding to the M-1 TBs among the M TBs, and the sequence pair is used to carry the M - 1 TB of said feedback information;
  • the sequence is determined according to feedback information other than the M-1 feedback information among the M feedback information corresponding to the M TBs, and the sequence is used to carry the M-1 feedback information among the M feedback information
  • the sequence pair includes the sequence.
  • the sequence is determined according to the M pieces of feedback information corresponding to the M TBs, and the sequence is used to carry the M pieces of feedback information.
  • sequence pair is determined according to the following formula:
  • P ID represents the source identification of the physical layer
  • M ID represents the parameter related to the propagation type
  • k' is the parameter related to the M-1 feedback information in the M feedback information
  • N CS represents the available sequence pair of the feedback channel
  • mod represents the modulo operator
  • sequence pairs are determined according to M-1 pieces of feedback information among the M pieces of feedback information, so that the sequence pairs can represent or indicate or carry M-1 feedback information.
  • a sequence is determined from the sequence pair, so that the determined sequence can bear or represent the piece of feedback information.
  • the sequence is determined according to the following formula:
  • P ID represents the source identification of the physical layer
  • M ID represents the parameter related to the propagation type
  • k is the parameter related to the M feedback information
  • Indicates the number of available sequences for the feedback channel Indicates the number of available PRBs of the feedback channel
  • b is related to the number of sequences used in one PRB.
  • the number of TBs that fail to be decoded among the N TBs is S;
  • the M TBs are the P TBs that fail to be decoded among the N TBs, and the feedback information corresponding to the M TBs is NACK for the P TBs; or, S ⁇ P
  • the feedback information corresponding to the M TBs includes NACKs for the S TBs.
  • the receiving device when there are many TBs that fail to be decoded (more than the upper limit P of the number of feedback information), the receiving device feeds back the feedback information for the first P TBs that fail to be decoded at most. When there are fewer TBs that fail to be decoded (less than the upper limit P of the number of feedback information), the receiving device may feed back NACKs for all TBs that fail to be decoded.
  • the M TBs are the last TBs in the N TBs, and the feedback information corresponding to the M TBs is ACK for the last TB.
  • the effect of feedback for decoding situations of more than P TBs is achieved by feeding back as many NACKs as possible.
  • the receiving device only sends one NACK for TB#4 to the sending device, so that the sending device can know the decoding status of the remaining multiple TBs by the receiving device, and the signaling overhead in the transmission process is relatively small. That is to say, the decoding results of more TBs (for example, the decoding results of TB#1-TB#8) can be carried with less feedback information (for example, only the feedback information of TB#4).
  • a data transmission method which can be applied to a sending device or a device (such as a chip system) that implements the function of the sending device.
  • the sending device executing the method as an example, the method includes:
  • the sending device sends N transport blocks TB, where N is a positive integer
  • M Receive feedback information for M TBs among the N TBs through comb teeth, where M is a positive integer, where M is less than or equal to N, and M is less than or equal to the number of feedback information sent by the receiving device
  • the upper limit P of the number, the upper limit P of the number is determined according to the upper limit of the transmission times and the parameters of the comb teeth, and the P is a positive integer.
  • the sending the feedback information includes:
  • the comb teeth include the first comb teeth.
  • the method further includes:
  • Feedback information is sent through PRBs other than the Q PRBs in the first comb, where X represents the number of PRBs included in the first comb.
  • sending feedback information includes:
  • R is a positive integer
  • the R PRBs at least include a PRB with the highest frequency band and a PRB with the lowest frequency band in the second comb, and the comb includes the second comb.
  • the method further includes:
  • the indication information is used to indicate the upper limit of M.
  • a communication device which may be an electronic device or a device (such as a system on a chip) that realizes the function of an electronic device, and the device includes:
  • a communication interface configured to receive N transport blocks TB;
  • a processor configured for the receiving device to acquire the upper limit of the number of transmissions of the feedback channel and the parameters of the comb teeth
  • a communication interface configured to send feedback information for M TBs among the N TBs through the combs according to the parameters of the combs and the upper limit of transmission times.
  • the N is a positive integer
  • the M is a positive integer
  • the M is less than or equal to the N
  • the M is less than or equal to the upper limit P of the number of feedback information sent by the receiving device
  • the upper limit P of the number is based on the The upper limit of the transmission times and the parameters of the comb teeth are determined, and the P is a positive integer.
  • the parameters of the comb include the interval between adjacent PRBs in the comb and/or the number of PRBs in the comb.
  • the upper limit P of the number satisfies the following conditions:
  • L represents the upper limit of the transmission times
  • GAP indicates the interval between adjacent PRBs in the comb
  • the sending the feedback information includes:
  • the comb teeth include the first comb teeth.
  • the PRB included in the first comb is larger than Q.
  • the communication interface is further configured to send feedback information through PRBs in the first comb except for the Q PRBs in the case of Q ⁇ X, the X represents the number of PRBs included in the first comb.
  • the upper limit P of the number satisfies the following relationship:
  • L represents the upper limit of the transmission times
  • GAP indicates the interval between adjacent PRBs in the comb
  • sending feedback information includes:
  • R is a positive integer
  • the R PRBs at least include a PRB with the highest frequency band and a PRB with the lowest frequency band in the second comb, and the comb includes the second comb.
  • the upper limit P of the number satisfies the following relationship: or
  • N interlace represents the number of comb teeth available for the feedback channel
  • L represents the upper limit of the transmission times
  • sending the feedback information includes: sending the feedback information through the PRB with the highest frequency band and the PRB with the lowest frequency band in the first comb.
  • the value range of M satisfies the following conditions:
  • N CS represents the upper limit of the number of available sequence pairs of the feedback channel, and each sequence pair includes two sequences.
  • the communication interface is further configured to receive indication information; the indication information is used to indicate the upper limit of M.
  • the indication information is also used to indicate the end positions of the N TBs in the time domain.
  • the sequence pair is determined according to the M-1 feedback information corresponding to the M-1 TBs among the M TBs, and the sequence pair is used to carry the M - 1 TB of said feedback information;
  • the sequence is determined according to feedback information other than the M-1 feedback information among the M feedback information corresponding to the M TBs, and the sequence is used to carry the M-1 feedback information among the M feedback information
  • the sequence pair includes the sequence.
  • the sequence is determined according to the M pieces of feedback information corresponding to the M TBs, and the sequence is used to bear the M pieces of feedback information.
  • sequence pair is determined according to the following formula:
  • P ID represents the source identification of the physical layer
  • M ID represents the parameter related to the propagation type
  • k' is the parameter related to the M-1 feedback information in the M feedback information
  • N CS represents the available sequence pair of the feedback channel
  • mod represents the modulo operator
  • P ID represents the source identification of the physical layer
  • M ID represents the parameter related to the propagation type
  • k is the parameter related to the M feedback information
  • Indicates the number of available sequences for the feedback channel Indicates the number of available PRBs of the feedback channel
  • b is related to the number of sequences used in one PRB.
  • the number of TBs that fail to be decoded among the N TBs is S;
  • the M TBs are the P TBs that fail to be decoded among the N TBs, and the feedback information corresponding to the M TBs is NACK for the P TBs; or, S ⁇ P
  • the feedback information corresponding to the M TBs includes NACKs for the S TBs.
  • the M TBs are the last TBs in the N TBs, and the feedback information corresponding to the M TBs is ACK for the last TB.
  • a communication device which may be a sending device or a device (such as a chip system) that realizes the function of a sending device, and the device includes:
  • the communication interface is configured to send N transmission blocks TB, and receive feedback information for M TBs in the N TBs through comb teeth.
  • the N is a positive integer
  • the M is a positive integer
  • the M is less than or equal to the N
  • the M is less than or equal to the upper limit P of the number of feedback information sent by the receiving device
  • the upper limit P of the number is based on the transmission
  • the upper limit of the number of times and the parameters of the comb teeth are determined, and the P is a positive integer.
  • the sending the feedback information includes:
  • the comb teeth include the first comb teeth.
  • the communication interface is further configured to send feedback information through PRBs in the first comb except for the Q PRBs in the case of Q ⁇ X, where X represents The number of PRBs included in the first comb.
  • sending feedback information includes:
  • R is a positive integer
  • the R PRBs at least include a PRB with the highest frequency band and a PRB with the lowest frequency band in the second comb, and the comb includes the second comb.
  • the communication interface is further configured to receive indication information; the indication information is used to indicate the upper limit of M.
  • the embodiment of the present application provides a communication device, and the device has a function of implementing the data transmission method in any one of the above-mentioned aspects.
  • This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a communication device including: a processor and a memory; the memory is used to store computer-executable instructions, and when the communication device is running, the processor executes the computer-executable instructions stored in the memory, so that the communication
  • the device executes the data transmission method according to any one of the above aspects.
  • a communication device including: a processor; the processor is configured to be coupled to a memory, and after reading instructions in the memory, execute the data transmission method according to any one of the above aspects according to the instructions.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium is run on a computer, the computer can execute the data transmission method in any one of the above-mentioned aspects.
  • a computer program product including instructions, which, when run on a computer, enable the computer to execute the data transmission method in any one of the above-mentioned aspects.
  • a circuit system in a tenth aspect, includes a processing circuit configured to execute the data transmission method according to any one of the above aspects.
  • a chip in the eleventh aspect, includes a processor, the processor is coupled to a memory, the memory stores program instructions, and when the program instructions stored in the memory are executed by the processor, the data transmission method of any one of the above-mentioned aspects is implemented .
  • a communication system in a twelfth aspect, includes the sending device in any one of the above aspects, and the receiving device in any one of the above aspects.
  • the technical effect brought by any one of the design methods in the second aspect to the twelfth aspect can refer to the technical effect brought by different design methods in the first aspect, and will not be repeated here.
  • FIG. 1 is a schematic diagram of a method for determining a cyclic shift sequence in the related art
  • FIG. 2 is a schematic diagram of a method for determining a channel busy ratio in the related art
  • FIG. 3 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another architecture of a communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a data transmission method provided in an embodiment of the present application.
  • Fig. 7-Fig. 12 are schematic diagrams of the method for transmitting data through comb teeth provided by the embodiment of the present application.
  • FIG. 13 is another schematic flowchart of the data transmission method provided by the embodiment of the present application.
  • FIG. 14 is a schematic diagram of a method for determining a cyclic shift sequence provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of another method for determining a cyclic shift sequence provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a method for transmitting data through a comb provided in an embodiment of the present application.
  • 17-20 are schematic diagrams of the HARQ process provided by the embodiment of the present application.
  • FIG. 21 is another schematic flowchart of the data transmission method provided by the embodiment of the present application.
  • FIG. 22 is another schematic flowchart of the data transmission method provided by the embodiment of the present application.
  • FIG. 23 is a schematic diagram of a method for transmitting data through a comb provided in an embodiment of the present application.
  • FIG. 24 is another schematic flowchart of the data transmission method provided by the embodiment of the present application.
  • FIG. 25 is a schematic diagram of a method for determining a channel busy ratio provided by an embodiment of the present application.
  • FIG. 26 is another schematic diagram of a method for determining a channel busy ratio provided by an embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • a and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists alone, Wherein A and B can be singular or plural.
  • the character "/" generally indicates that the contextual objects are an "or" relationship.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • the term “connected” includes both direct and indirect connections, unless otherwise stated.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • sidelink communication can be performed between terminals, that is, direct communication can be performed between terminals without forwarding by the base station.
  • the link directly connected between terminals is called SL.
  • Physical sidelink control channel used to carry sidelink control information (sidelink control information, SCI).
  • SCI sidelink control information
  • the SCI can be used to indicate at least one of the encoding and modulation format of the sidelink data information, time-frequency resources, resource reservation information, retransmission indication, terminal source address, terminal target address, hybrid automatic repeat request (Hybrid automatic repeat request, HARQ) information, etc.
  • the receiving device of the sidelink communication receives and analyzes the SCI on the PSCCH, and then receives and analyzes the sidelink data information according to the analyzed SCI.
  • PSSCH Physical sidelink share channel
  • SL scenarios include but are not limited to vehicle-to-everything (V2X), vehicle-to-vehicle (V2V), device-to-device (D2D) and other scenarios.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • D2D device-to-device
  • Resource pool is a logical concept.
  • a resource pool may include multiple physical resources, and any physical resource in the resource pool may be used to transmit data.
  • the resource selection may be that the terminal selects a resource from a resource pool according to the instruction information of the network device, and uses the resource for data transmission, or the terminal may independently select a resource from the resource pool, and use the resource for data transmission.
  • each resource pool contains one or more subchannels.
  • the frequency domain resources occupied by each subchannel such as the same number of physical resource blocks (physical resource blocks, PRBs), in each subchannel belonging to different resource pools, the frequency domain resources occupied by each subchannel Resources may vary. It should be noted that the embodiment of the present application does not limit the number of frequency domain resources occupied by each subchannel.
  • the main content of SL-U is to use unlicensed spectrum for SL transmission.
  • terminals need to detect each other’s existence during communication. If a certain terminal has a low communication bandwidth, it is difficult for other terminals to recognize the terminal. In addition, the low communication bandwidth of the terminal will also affect the transmission efficiency of the terminal. For this reason, some rules need to be followed when using unlicensed spectrum. For example, within a bandwidth with a granularity of 20MHz, at least 80% of the spectrum in the bandwidth is occupied, so as to increase communication bandwidth, facilitate mutual identification between terminals, and improve terminal transmission efficiency.
  • NR new radio unlicensed band, NR-U
  • unlicensed spectrum can be used for NR transmission.
  • interlaces are used for transport.
  • Each comb tooth may include multiple PRBs.
  • the terminal may transmit data on some or all of the multiple PRBs.
  • PSFCH can be used to carry the above ACK or NACK.
  • the above HARQ feedback process is supported in unicast and multicast scenarios.
  • the receiving device if the received TB is successfully decoded, the receiving device feeds back an ACK to the sending device; if the decoding fails, the receiving device feeds back a NACK.
  • the receiving device determines whether to send HARQ feedback according to the distance between the receiving device (TX UE) and the transmitting device (RX UE) and/or parameters such as reference signal receiver power (RSRP).
  • RSRP reference signal receiver power
  • the HARQ feedback has the following two options:
  • Option 1 If TB decoding fails, NACK is fed back, and no signal is transmitted in other cases. Option 1 supports all receiving devices in a group to share PSFCH resources.
  • Option 2 If the TB decoding is successful, the receiving device will feedback ACK; if the TB decoding fails, the receiving device will feedback NACK. Option 2 supports the use of separate PSFCH resources for each receiving device.
  • PSFCH of at least 1 symbol is supported in unicast and multicast option 1 and option 2, and the PSFCH channel can multiplex the sequence of format 0 of the physical uplink control channel (PUCCH) Bearer information.
  • PUCCH physical uplink control channel
  • PSFCH resources appear periodically, and the value of the period includes but not limited to 1, 2 and 4 time slots.
  • the PSSCH received by the terminal within a time period needs to be fed back on the PSFCH within the corresponding period.
  • a is the smallest integer greater than or equal to parameter K.
  • the parameter K is related to processing delay. Assuming that K of all terminals is the same value, when PSFCH resources appear in a period of T1, there will be T1 time slots corresponding to PSFCH resources of PSSCH in one time slot.
  • Cyclic shift pair (cyclic shift pair, CS pair), cyclic shift sequence
  • the ACK or NACK described above may be carried using a cyclic shift sequence.
  • the terminal may determine the cyclic shift sequence used for sending the PSFCH in the following manner.
  • the terminal can determine a set of resource blocks (resource block, RB) according to the configuration information sl-PSFCH-RB-Set, that is, terminal from middle division It is used for the jth subchannel among the N subch subchannels (subchannels) on the ith time slot.
  • the order in which PRBs are allocated starts in descending order of i, and is determined in descending order of j after the end.
  • the PSFCH may occupy two consecutive symbols on the i th time slot.
  • the terminal determines that the PSFCH resource set is in, is the number of cyclic shift pairs, determined by the configuration information sl-NumMuxCS-Pair.
  • the value of is the value 1, that is, the resource of PSFCH corresponds to the initial subchannel of PSSCH.
  • the terminal according to A cyclic shift pair for transmitting the PSFCH is determined.
  • the P ID is the source ID of the physical layer, which can be determined by the SCI carried by the PSSCH, and the M ID is determined by the propagation type.
  • a cyclic shift pair includes two cyclic shift sequences.
  • the terminal determines the cyclic shift sequence used to send the PSFCH from the cyclic shift pair according to the decoding result.
  • the decoding result is a decoding failure
  • the cyclic shift sequence corresponding to the decoding failure (for example, corresponding to 1) is determined from the cyclic shift pair.
  • the cyclic shift sequence (for example, corresponding to 0) corresponding to the successful decoding is determined from the cyclic shift pair.
  • CBR is used to describe the busyness of the channel.
  • LTE V2X and R16 V2X it is necessary to judge the CBR value when transmitting PSSCH in order to measure the communication quality of the channel where the terminal is located. If the CBR is high, it means that the channel where the current resource pool is located is very busy, for example, most of the sub-channels are occupied, then the terminal can wait for the CBR to decrease before transmitting the PSSCH, or the terminal can send the PSSCH through other resource pools to avoid cause resource conflicts.
  • CBR can be defined as: the time slot within 100ms starts from the second symbol, and the proportion of subchannels whose received signal strength indicator (RSSI) exceeds the threshold.
  • RSSI received signal strength indicator
  • FIG. 2 the specific calculation method of CBR is shown in FIG. 2 , when the terminal is preparing to transmit on resource 1 at time n, it needs to calculate CBR at time n-U. Specifically, the RSSI value of each subchannel within 100 ms before time n-U is used as a sensing result, and these sensing results are used to calculate the CBR.
  • the ratio of the number of RSSIs higher than the RSSI threshold to 400 is CBR.
  • the definition of U is related to the processing delay of the terminal.
  • Unlicensed spectrum access methods include frame-based equipment (frame-based equipment, FBE) access and listen before talk (listen before talk, LBT) access.
  • FBE access that is, before the start of each time slot, perform channel idle detection, and access when the channel is determined to be idle.
  • LBT access means to perform channel detection and access at any time when there is a transmission demand.
  • the manner of detecting the channel from the second symbol is based on FBE access.
  • the purpose is to measure the resource occupation of devices of the same system in a resource pool.
  • the embodiment of the present application provides a data transmission method .
  • the communication method can be applied to SL scenarios, including scenarios of direct communication between various terminal devices. Examples include but are not limited to V2X, D2D communication, V2V communication, etc.
  • V2X is mainly taken as an example, but this does not constitute a limitation on the applicable scenarios of the embodiments of the present application.
  • the spectrum used in the SL scenario includes but is not limited to unlicensed spectrum, and the unlicensed spectrum includes a frequency band near 2.4 GHz, a frequency band near 5.8 GHz, and the like.
  • FIG. 3 is a V2X communication system provided by the embodiment of the present application.
  • the V2X communication system may include: a plurality of terminal devices (terminal device 1, terminal device 2, and terminal device 3 ).
  • a direct communication link can be established between the terminal device and surrounding terminal devices to realize direct communication, for example, terminal device 1 and terminal device 2 can communicate directly.
  • a direct communication link established between terminal devices may be defined as an SL, and an interface for direct communication between a terminal device and surrounding terminal devices may be called a PC5 port.
  • the V2X communication system shown in FIG. 3 may further include a network device.
  • the terminal device can send the V2X message to the peer terminal device or access the network through the network device, for example: the terminal device 1 can send the V2X message to the network device, and the network device sends the V2X message to the terminal device 2 .
  • the interface between the terminal device and the network device may be called a Uu interface.
  • the network architecture shown in FIG. 3 is only an exemplary architecture diagram, and this embodiment of the present application does not limit the number of network elements included in the V2X communication system shown in FIG. 3 .
  • the network shown in FIG. 3 may also include other functional entities, such as: application server (application server), core network equipment, etc., without limitation.
  • the network devices in FIG. 3 are mainly used to implement wireless physical control functions, resource scheduling and wireless resource management, wireless access control, and mobility management functions.
  • the network device may be an access network (access network, AN)/radio access network (radio access network, RAN) device, or a device composed of multiple 5G-AN/5G-RAN nodes, or a Base station (nodeB, NB), evolved base station (evolution nodeB, eNB), next-generation base station (generation nodeB, gNB), transceiver point (transmission receive point, TRP), transmission point (transmission point, TP) and some other interface any of the incoming nodes.
  • access network access network
  • AN access network
  • RAN radio access network
  • RAN radio access network
  • a device composed of multiple 5G-AN/5G-RAN nodes or a Base station (nodeB, NB), evolved base station (evolution nodeB, eNB), next-generation base station (generation nodeB, gNB), transcei
  • the device for realizing the function of the network device may be a network device, or may be a device capable of supporting the network device to realize the function, such as a chip system.
  • the technical solution provided by the embodiment of the present application is described by taking the apparatus for realizing the function of the network device as an example of the network device.
  • the above-mentioned terminal device is a terminal that accesses the above-mentioned V2X communication system and has a wireless transceiver function or a chip that can be set on the terminal.
  • the terminal device can be a vehicle as shown in Figure 3, and the vehicle is not limited to any type of vehicle such as automobiles, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.
  • the vehicle can include A vehicle-mounted device for communication, the vehicle-mounted device may be called a user equipment (user equipment, UE) or a terminal device (terminal).
  • the terminal device may also be a user device, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) ) terminal equipment, vehicle user equipment (VUE), wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, vehicle-mounted terminals, terminals with terminal functions RSU, etc.
  • a virtual reality (virtual reality, VR) terminal device an augmented reality (augmented reality, AR) terminal equipment
  • VUE vehicle user equipment
  • wireless terminals in industrial control wireless terminals in self driving, wireless terminals in remote medical, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, vehicle-mounted terminals, terminals with terminal functions RSU, etc.
  • the terminal device of the present application can also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip, or vehicle-mounted unit built into the vehicle as one or more components or units.
  • the communication method provided by this application can be implemented by the on-board chip or on-board unit.
  • Fig. 4 shows another example of an SL scenario to which this embodiment of the present application applies.
  • the mobile phone and the smart glasses can communicate according to the data transmission method provided by the embodiment of the present application.
  • the device for realizing the function of the terminal device may be the terminal device itself, or may be a device capable of supporting the terminal device to realize the function, such as a chip system.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • FIG. 5 is a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • the communication device 400 includes at least one processor 401 , a memory 403 and at least one communication interface 404 .
  • the memory 403 may also be included in the processor 401 .
  • the processor 401 can be formed by one or more processing units, and the processing unit can be a central processing unit (central processing unit, CPU), a specific application integrated circuit (application-specific integrated circuit, ASIC), or one or more for controlling This application programs the implementation of integrated circuits.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication interface 404 is used for communicating with other devices.
  • the communication interface may be a module, a circuit, an interface or other devices capable of implementing a communication function, and is used for communicating with other devices.
  • the communication interface can be an independently configured transmitter, which can be used to send information to other devices, and the communication interface can also be an independently configured receiver, which can be used to receive information from other devices.
  • the communication interface may also be a component that integrates functions of sending and receiving information, and this embodiment of the present application does not limit the specific implementation of the communication interface.
  • the memory 403 can be a read-only memory (read-only memory, ROM) or other types of storage modules that can store static information and instructions, random access memory (random access memory, RAM) or other types that can dynamically store information and instructions
  • the storage module can also be an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), an optical disc, a magnetic disk, or other magnetic storage devices.
  • the memory may exist independently and be connected to the processor through a communication line. Memory can also be integrated with the processor.
  • the memory 403 is used for storing computer-executable instructions, and the computer-executable instructions can be invoked by one or more processing units in the processor 401 to execute corresponding steps in various methods provided in the following embodiments.
  • the computer-executed instructions in the embodiments of the present application may also be called application program codes, instructions, computer programs or other names, which are not specifically limited in the embodiments of the present application.
  • the communication device 400 may include multiple processors, for example, the processor 401 and the processor 407 in FIG. 5 . Each of these processors can be a single-core processor or a multi-core processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication device 400 may further include an output device 405 and an input device 406 .
  • Output device 405 is in communication with processor 401 and may display information in a variety of ways.
  • the output device 405 can be a liquid crystal display (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector) wait.
  • the input device 406 communicates with the processor 401 and can receive user input in various ways.
  • the input device 406 may be a mouse, a keyboard, a touch screen device, or a sensing device, among others.
  • FIG. 5 is an exemplary structural diagram of a communication device. It should be understood that the illustrated communication device is only an example, and in actual application the communication device may have more or fewer components than those shown in FIG. 5, and two or more components may be combined, Or can have a different component configuration.
  • the aforementioned communication device 400 may be a general-purpose device or a special-purpose device, and the embodiment of the present application does not limit the type of the communication device 400 .
  • the terminal device may be a device having a structure similar to that shown in FIG. 5 .
  • the embodiment of the present application is mainly applied in an SL scenario, that is, in a process in which terminal devices communicate through a PC5 interface.
  • the communication method provided by the embodiment of the present application includes the following steps:
  • the sending device sends N TBs to the receiving device.
  • the receiving device receives N TBs from the sending device.
  • the N is a positive integer.
  • the receiving device acquires the upper limit of the number of transmissions of the feedback channel and the parameters of the comb teeth.
  • the feedback channel may be PSFCH.
  • the parameters of the comb teeth include the interval between adjacent PRBs in the comb teeth and/or the number of PRBs in the comb teeth.
  • the interval between adjacent PRBs in the comb refers to the number of PRBs that are separated between adjacent PRBs. Exemplarily, as shown in FIG. 7 , the number of PRBs spaced between adjacent PRBs (such as PRB1 and PRB26 ) in the comb is 25.
  • the purpose of setting the PRB interval is to occupy 80% of the frequency band in the comb teeth while occupying as few PRBs as possible.
  • the upper limit of the number of transmissions may depend on the capability of the receiving device itself, or may be configured by a network device (such as a base station) for the receiving device, or the upper limit of the number of transmissions is a parameter pre-configured in the receiving device.
  • the upper limit of transmission times can be determined by the psfch-FormatZeroSidelink parameter. Values of the upper limit of transmission times include but are not limited to 4, 8, and 16.
  • this embodiment of the present application does not limit the sequence of execution between S102 and S101.
  • the receiving device may determine the upper limit P of the number of feedback information to be sent according to the upper limit of transmission times and the parameters of the comb teeth, where P is a positive integer .
  • the foregoing feedback information is feedback information of the receiving device for the M TBs in the foregoing N TBs.
  • the M is a positive integer, the M is less than or equal to the N, and the M is less than or equal to the upper limit P of the number of feedback information sent by the receiving device.
  • the calculation method of the upper limit P of the number of feedback information sent by the receiving device is introduced in several cases as follows.
  • L represents the upper limit of the transmission times
  • GAP indicates the interval between adjacent PRBs in a comb.
  • the number of transmissions indicates the number of cyclic shift sequences sent by the receiving device at the same time.
  • the bandwidth occupied by data transmission may also be referred to as communication bandwidth.
  • Indicates rounding down Indicates rounding up.
  • the number of PRBs included in one comb may be a preconfigured value, such as 2.
  • Case 2 The upper limit P of the number satisfies the following relationship: or or Wherein, L represents the upper limit of the transmission times, Indicates the number of PRBs within the bandwidth occupied by data transmission, GAP indicates the interval between adjacent PRBs in the comb, Indicates the number of PRBs in the comb.
  • N interlace represents the number of comb teeth available for the feedback channel, or the number of comb teeth that can be used to send feedback information
  • L represents the upper limit of the transmission times.
  • the receiving device decodes the N TBs.
  • the decoding conditions of the TB by the receiving device include the following: all of the N TBs fail to be decoded, or all the N TBs are successfully decoded, or the N TBs include both TBs that fail to be decoded and TBs that are successfully decoded.
  • the receiving device sends feedback information for M TBs among the N TBs according to the parameters of the comb teeth and the upper limit of transmission times.
  • the M is a positive integer, the M is less than or equal to the N, and the M is less than or equal to the upper limit P of the number of feedback information sent by the receiving device.
  • P may also be referred to as the maximum number of PSFCH feedbacks, the upper limit of transmission capability, the maximum number of feedbacks, and the like.
  • the receiving device decodes the N TBs, it can determine the upper limit P of the number of feedback information to be sent according to the upper limit of transmission times and the parameters of the comb teeth, and determine the number M of feedback information to be fed back to the sending device according to the upper limit of the number P, and send it to the sending device
  • the device feeds back M pieces of feedback information, so as to feed back the decoding situation to the sending device.
  • the sending of the feedback information by the receiving device may be implemented as: sending the feedback information through Q PRBs of the first comb, where the comb includes the first comb.
  • the Q is a positive integer; or Or Q is a pre-configured parameter, such as 2.
  • GAP indicates the interval between adjacent PRBs in a comb. That is to say, for a certain comb, Q PRBs among the plurality of PRBs included in the comb may be occupied to send feedback information.
  • the communication bandwidth is 20 MHz (the number of PRBs included in the communication bandwidth is is 106), the number of RBs (that is, GAP) between PRBs in the comb is 25, and the receiving device supports sending PSFCH up to 12 times (that is, the upper limit of the number of transmissions L is 12).
  • the comb can include 5 PRBs.
  • the receiving device sends a feedback message (ACK or NACK) through the comb, occupying at least PRB, that is, the feedback information needs to be sent through the 4 PRBs of the comb teeth. That is to say, each feedback information needs to be repeatedly sent 4 times on 4 PRBs, and every 4 PSFCH transmissions are used to support feedback of one piece of feedback information.
  • 12 PSFCH transmissions are actually used to support feedback at most feedback information, that is, the receiving device may determine to support a maximum of 3 feedback information (that is, the upper limit of the number of feedback information is 3).
  • This formula calculates the upper limit P of the number of feedback information as an example. In other embodiments, it can also be calculated according to This formula calculates P, which is
  • the receiving device sends a feedback message through the comb teeth, occupying PRBs. That is, the receiving device needs to send feedback information through 5 PRBs of the comb teeth, and each feedback information needs to be repeatedly sent 5 times.
  • 12 PSFCH transmissions (ie L) are actually used to support feedback at most feedback information.
  • the receiving device may complete the remaining two PSFCH transmissions on combs with idle PRBs.
  • the remaining two PSFCH transmissions can be completed on the idle PRB101 and idle PRB77 in FIG. 9 .
  • the receiving device can also be based on This formula calculates P, which is
  • the receiving device can also be based on This formula calculates P.
  • L 12, hour,
  • the receiving device may send feedback information through some or all of the PRBs included in the comb. That is to say, for a comb, the number of PRBs included in the comb may be different from or the same as the number of PRBs used to send feedback information in the comb.
  • considering the number of PRBs in the communication bandwidth (ie ) may not be able to divide the number of PRBs (ie GAP) between adjacent PRBs in the comb teeth, which will cause some comb teeth to occupy a PRB for feedback, and the other comb teeth occupy PRB for feedback.
  • the receiving device in order to send as much feedback information as possible, when the PRBs included in a comb are greater than Q, the receiving device can only send feedback information on the Q PRBs in the comb, and the rest of the PRBs in the comb Feedback information is not sent.
  • the comb teeth include a PRB greater than
  • the receiving device is only at the comb Send feedback information on PRBs, which can be implemented as: in the front of the comb Send feedback information on a PRB; or, after the comb Send feedback information on a PRB; or, in any of the comb teeth Send feedback information on a PRB, optionally, the comb used to send feedback information
  • a PRB includes the PRB of the highest frequency band and the PRB of the lowest frequency band in the comb; or, in the two PRBs including the lowest frequency domain position and the highest frequency domain position Send feedback information on PRBs, that is, in addition to the PRB of the highest frequency band and the PRB of the lowest frequency band,
  • the rest of the PRBs can be arbitrary.
  • comb tooth 1 includes 5 PRBs, and the receiving device may only send feedback information through 4 PRBs (PRB1, PRB26, PRB51, PRB76) in the comb tooth.
  • Comb 2 includes 5 PRBs, and feedback information is sent only through 4 PRBs (PRB2, PRB27, PRB52, PRB77) in the comb.
  • PRB2 PRB27, PRB52, PRB77
  • two feedback information can be fed back.
  • the technical solution corresponding to Figure 7 when the number of available PRBs is the same, since each feedback information occupies Fewer PRBs, therefore, can feed back 3 pieces of feedback information, that is, the solution corresponding to FIG. 7 can feed back more feedback information.
  • the receiving device in addition to sending feedback information through the Q PRBs in the first comb, may also divide the Q PRBs in the first comb The PRBs other than the X represent the number of PRBs included in the first comb.
  • the receiving device can The upper limit P of the number of feedback information of the receiving device is preliminarily calculated.
  • the upper limit P of the number of feedback information is 3.
  • the receiving device sends the first feedback information through the 4 PRBs in comb 1, the second feedback information through the 4 PRBs in comb 2, and the third feedback information through the 4 PRBs in comb 3 , the three feedback information needs to perform 12 PSFCH transmissions in total, so there is still 1 PSFCH transmission capacity left.
  • the receiving device can select a PRB from the remaining PRBs in comb 1-comb 3 to perform a PSFCH transmission, that is, send a feedback information. For example, as shown in (b) of FIG. 9 , the receiving device may select the PRB30 in the comb tooth 3, and perform the fifth transmission of the feedback information 3 on the PRB30.
  • the receiving device can Some PRBs are randomly selected on the PRBs for PSFCH transmission, or some PRBs are selected from idle PRBs according to a certain strategy.
  • the embodiment of the present application does not limit the specific implementation of selecting PRBs.
  • sending the feedback information by the receiving device may be implemented as: sending the feedback information through R PRBs of the second comb.
  • R is a positive integer
  • the R PRBs at least include a PRB with the highest frequency band and a PRB with the lowest frequency band in the second comb, and the comb includes the second comb.
  • the upper limit L of the number of transmissions is 12.
  • the receiving device calculates the upper limit P of the number of feedback information that can be sent for 10 PSFCH transmissions. That is, the receiving device according to the It is calculated that the upper limit P of the number of feedback information is 3.
  • any 4 PRBs in comb 1 are used to send feedback Information 1
  • any 4 PRBs in comb 2 are used to send feedback information 2
  • PRB5 in the highest frequency band and PRB 105 in the lowest frequency band in comb 3 are used to send feedback information 3
  • comb Any two PRBs (such as PRB30 and PRB80) in tooth 3 except the PRBs of the highest frequency band and the lowest frequency band are used to send feedback information.
  • the receiving device according to Calculate the upper limit P of the number of feedback information to be 2.
  • 8 PRBs corresponding to 8 PSFCH transmissions (such as PRBs filled with black), 5 PRBs in comb 1 are used to send feedback information 1, and PRB 2 of the highest frequency band in comb 2
  • the PRB 102 with the lowest frequency band is used to send the feedback information 3
  • any one PRB (for example, PRB 27 ) in the comb 3 except the PRBs with the highest and lowest frequency bands is used to send the feedback information.
  • the receiving device can follow the formula It is calculated that the upper limit of the number of feedback information is 1, for example, the feedback information is sent through the PRB of the highest frequency band, the PRB of the lowest frequency band and another PRB of one comb.
  • sending the feedback information by the receiving device may be implemented as: sending the feedback information through the PRB with the highest frequency band and the PRB with the lowest frequency band in the first comb. That is, for a comb tooth, only the PRB with the highest frequency band and the PRB with the lowest frequency band in the comb tooth are occupied to send feedback information, and the remaining PRBs in the comb tooth do not send feedback information.
  • PRB1 with the highest frequency band in comb 1 and PRB 101 with the lowest frequency band are used to send feedback information 1
  • PRB 2 with the highest frequency band in comb 2 and PRB 102 with the lowest frequency band are used to send feedback information 2
  • PRB105 with the lowest frequency band is used to send feedback information 3 .
  • the receiving device no longer performs feedback for each received TB, so the signaling overhead in the HARQ process can be reduced; on the other hand, the number of feedback information sent by the receiving device is less than Or equal to the upper limit of the number P (P is determined according to the comb parameter and the upper limit of the number of transmissions), so that when the upper limit of the number of transmissions and the comb parameters are met, the receiving device can transmit as much feedback information as possible, so the HARQ process can be improved reliability. In general, data transmission performance can be improved.
  • the receiving device may determine to send feedback information for P TBs with service type priorities from high to low according to service type priorities.
  • S104 can be implemented as: S104a.
  • the receiving device sends a cyclic shift sequence according to the parameters of the comb teeth and the upper limit of the number of transmissions, where the sequence is used for Carries or represents feedback information.
  • Method 1 The receiving device first determines the sequence pair from the available communication resources of the feedback channel, and then determines the sequence from the determined sequence pair.
  • the sequence may include but not limited to a cyclic shift sequence.
  • the sequence is a cyclic shift sequence
  • the sequence pair is a cyclic shift pair
  • one cyclic shift pair includes two cyclic shift sequences.
  • the technical solution of the embodiment of the present application is described by taking the sequence as a cyclic shift sequence and the sequence pair as a cyclic shift pair as an example, but the embodiment of the present application is not limited thereto.
  • the cyclic shift pair is determined according to the M-1 feedback information corresponding to the M-1 TBs among the M TBs, and the cyclic shift pair is used to carry the M-1 TBs of the feedback information.
  • Each cyclic shift pair includes two cyclic shift sequences.
  • the cyclic shift pair is determined according to the following formula: (P ID +M ID +k') mod N CS ; wherein, P ID represents the source identifier of the physical layer, and M ID represents the parameters related to the propagation type , k' is a parameter related to M-1 feedback information among the M feedback information, N CS indicates the number of available cyclic shift pairs of the feedback channel, and mod indicates a modulo operator.
  • the M ID is the identifier of the receiving device, and in other scenarios such as unicast, the M ID can be 0.
  • the value of the M ID may be determined separately according to the scenario, which is not limited here.
  • the above formula (P ID +M ID +k')modN CS may also be replaced by the following form: (P ID +M ID +k'*a)modN CS .
  • is used to separate adjacent feedback channels, so as to reduce the correlation during channel detection.
  • available resources of the feedback channel include but are not limited to any one or more of the following resources: time domain resources, frequency domain resources, and code domain resources.
  • the receiving device determines the value k' of any M-1 pieces of feedback information in the M pieces of feedback information. For example, as shown in Figure 14, the receiving device determines the value of k' (for example, converting 1011 to a decimal value (11 ), the value 11 is taken as k'), after that, the receiving device substitutes the value of k' as the above formula (P ID +M ID +k')mod N CS , calculates the result, and according to the calculation result, from the available resources of the feedback channel Determine the cyclic shift pair in .
  • the decimal value 11 converted from 1011 is used as k'.
  • k' can also be determined according to the decimal value 11, or k' can be determined in other ways.
  • the specific calculation of k' in the embodiment of the present application The method is not limited, as long as it is ensured that k' is associated with any M-1 bits of information in the M bits of information, so that the determined cyclic shift pair can carry or represent the M-1 bits of information.
  • k' can also be calculated in other ways according to M-1 feedback information, and the specific calculation method of k' is not limited in the embodiment of the present application.
  • the receiving device may determine a cyclic shift sequence from the determined cyclic shift pair.
  • the cyclic shift sequence is determined according to feedback information other than the M-1 feedback information among the M pieces of feedback information corresponding to the M TBs, and the cyclic shift sequence is used to carry the Feedback information other than the M-1 pieces of feedback information among the M pieces of feedback information. Different cyclic shift sequences represent different feedback information.
  • the receiving device determines the cyclic shift sequence from the determined cyclic shift pair according to the last bit information.
  • the receiving device determines the cyclic shift pair A (denoted as CSA) from the available resources of the feedback channel as an example, assuming that the CSA includes sequence A1 (denoted as SeqA1) and sequence A2 (denoted as SeqA2), in one example, the last If the bit information is 1, the receiving device determines to use SeqA1. If the last bit information is 0, the receiving device determines to use SeqA2.
  • the receiving device determines to use SeqA2, that is, SeqA2 represents 1. In this way, after receiving SeqA2 from the receiving device, the sending device can know that the last bit in the feedback information is 1. If the last bit information is 0, the receiving device determines to use SeqA1, and SeqA1 represents 0.
  • Method 2 The cyclic shift sequence is determined according to the M pieces of feedback information corresponding to the M TBs, and the cyclic shift sequence is used to bear the M pieces of feedback information.
  • cyclic shift sequence 1 represents bit combination A
  • cyclic shift sequence 2 represents bit combination B
  • cyclic shift sequence 3 represents bit combination C, and so on.
  • the sending device can determine the decoding status of the receiving device according to the correspondence between the cyclic shift sequence and the bit combination.
  • the cyclic shift sequence is determined according to the following formula: Wherein, P ID represents the source identification of the physical layer, M ID represents the parameter related to the propagation type, and k is the parameter related to the M feedback information, Indicates the number of available cyclic shift sequences for the feedback channel, Indicates the number of available PRBs of the feedback channel, and b is related to the number of sequences used in one PRB.
  • a cyclic shift pair contains two cyclic shift sequences, so the number of available cyclic shift sequences is:
  • b 12/ ⁇ .
  • represents the interval between available cyclic shift sequences.
  • the receiving device needs to calculate the value of k based on the 5 bits of 10111, for example, convert 10111 into The decimal number is 23, and 23 is used as k, or the value of k is determined according to the decimal number 23. After that, substitute k into the above formula A cyclic shift sequence for carrying feedback information is calculated.
  • method 1 and method 2 mainly illustrate the method of determining the cyclic shift sequence by taking the cyclic shift sequence as a short sequence as an example.
  • the cyclic shift sequence can also be is a long sequence.
  • the short sequence may refer to a sequence occupying one PRB.
  • a long sequence may refer to a sequence occupying multiple PRBs.
  • the long sequence includes but is not limited to the following sequences: a sequence occupying part or all of PRBs in one comb, and a sequence occupying multiple PRBs in multiple combs.
  • Method 3 Use long sequences to represent feedback information.
  • the number of resources occupied by the long sequence can be determined according to the number of PRBs. For example, if the available PRBs of the feedback channel are 10, the long sequence can occupy all REs (such as 120 REs) on the 10 PRBs. Among the 120 candidate long sequences corresponding to the above 120 REs, according to the above or Determine the sequence. Among them, k is determined according to M pieces of feedback information, That is, the number of available long sequences of the feedback channel is 120.
  • the receiving device After the receiving device determines the cyclic shift sequence used to represent the feedback information, it sends the cyclic shift sequence to the sending device through the comb teeth. After receiving the cyclic shift sequence, the sending device may determine the decoding status of the receiving device according to the cyclic shift sequence.
  • FIG. 16 shows an example of a cyclic shift sequence sent by a receiving device.
  • 5 bits corresponding to 5 feedback information are 10111, where 1 corresponds to NACK and 0 corresponds to ACK.
  • the receiving device may determine k' according to 4 bits (such as the 2nd to 5th bits) 0111 of the 5 bits, and determine the cyclic shift pair to be used according to k'.
  • the cyclic shift sequence to be used is determined from the cyclic shift pair.
  • k' is determined according to 4 bits among the 5 bits (for example, the first bit, the third bit-the fifth bit) 1111, and the used cyclic shift pair is determined according to k'.
  • the cyclic shift sequence to be used is determined from the cyclic shift pair according to the remaining 1 bit (for example, the second bit) among the 5 bits.
  • the sequence used to carry each bit is determined, and each sequence is sent on the corresponding comb teeth.
  • a value range that is, the upper limit of the number
  • the value range of the number of feedback information may also be given from other angles.
  • a value range for calculating the number of feedback information from a resource perspective is a value range for calculating the number of feedback information from a resource perspective.
  • the value range of M satisfies the following condition: 2 M-1 ⁇ N CS (inequality 1); and/or, satisfies the following condition: 2 M ⁇ N seq (inequality 2).
  • N CS represents the upper limit of the number of available cyclic shift pairs of the feedback channel, and each cyclic shift pair includes two cyclic shift sequences.
  • N seq represents the upper limit of the number of available cyclic shift sequences.
  • N slot indicates the number of time slots occupied by the N TBs.
  • M is determined by Ncs and/or N seq , that is, the maximum value satisfying Ncs and/or N seq is taken as M.
  • the number M of feedback information is at most 4.
  • the value range of M can be determined by any of the following methods:
  • Way 1 The sending device sends indication information to the receiving device; the indication information is used to indicate the value range of M.
  • the indication information may explicitly indicate the value range of M, or implicitly indicate the value range of M.
  • the indication information may be a radio resource control (radio resource control, RRC) message.
  • RRC radio resource control
  • the upper limit of M can be configured in the RRC message.
  • the indication information is also used to indicate the end positions of the N TBs in the time domain (for example, the time slot where the last TB among the N TBs is located). Therefore, the receiving device may determine that M pieces of feedback information need to be fed back to the sending device according to the end positions of the N TBs in the time domain.
  • the indication information may be carried by a control channel.
  • the sending device sends indication information to the receiving device through a control channel, indicating the time domain position of each TB (such as the time slot of each TB). Or, optionally, the sending device sends indication information to the receiving device through the control channel, indicating the upper limit of M.
  • the sending device sends indication information on the time slot of the Mth TB through a control channel or a data channel, and the receiving device learns the value range of M after receiving the indication information from the time slot where the Mth TB is located. For example, the sending device sends indication information in the time slot where the third TB is located, and the receiving device determines that the upper limit of M is 3 after receiving the indication information.
  • the receiving device may also determine the position of the feedback channel according to the end positions of the N TBs in the time domain.
  • Mode 2 The sending device sends N TBs to the receiving device, and the receiving device may determine that M pieces of feedback information need to be fed back to the sending device according to the N TBs and the periodicity of the PSFCH. Assuming that the period of PSFCH is 4 time slots, and the time interval between PSFCH and PSSCH is 2, then, in time slot n+2, the TBs received in the 4 time slots from n-1 to n-4 can be fed back.
  • the sending device sends a total of 6 TBs to the receiving device in time slots n-2, n-3 and n-4, then the receiving device can determine that it needs to transmit TB in time slot n+2 according to the periodicity of PSFCH Six pieces of feedback information are fed back for six TBs, that is, the value of M is determined to be six.
  • the PRB used to send the feedback information in the comb may also be determined from the perspective of resources.
  • there are multiple PRBs in the comb for sending feedback information and the feedback information is repeatedly transmitted on the multiple PRBs in the comb.
  • the repeated transmission of the feedback information on multiple PRBs in the comb means that the repeated transmission of the cyclic shift sequence on the multiple PRBs in the comb.
  • the number of repeated transmissions R repetition of the cyclic shift sequence satisfies the following conditions:
  • N subch represents the number of available sub-channels of the feedback channel.
  • the repeated transmission of the cyclic shift sequence on multiple PRBs can meet the transmission requirements of the OCB, and facilitate the terminals to detect each other while ensuring the communication bandwidth of the terminals.
  • cyclic shift hopping (cyclic shift hopping) can be performed, that is, in the R repetition transmission, the cyclic shift sequence used for the i-th transmission of the feedback information and the i+1th cyclic shift sequence
  • i is a positive integer.
  • PAPR peak to average power ratio
  • the receiving device may determine the number of feedback information to be transmitted to the sending device according to the value range of the number of feedback information, and send the feedback information accordingly.
  • the receiving device can select the value according to the number of feedback information range, as much as possible to send feedback information (such as NACK) for TBs that fail to be decoded.
  • NACK feedback information
  • the sending device can infer that the decoding results of other TBs are successful. That is, a TB for which no decoding result is fed back can be regarded as a successfully decoded TB.
  • the amount of feedback information can be reduced and the signaling overhead can be reduced.
  • the number of TBs that fail to be decoded is S.
  • the M TBs are P TBs that fail to be decoded among the N TBs, and the feedback information corresponding to the M TBs is NACK for the P TBs. It means that when there are many TBs that fail to be decoded, the receiving device sends as much feedback information as possible to the sending device for the TBs that failed to decode. Feedback information of TBs that failed to be decoded.
  • the decoding results of other TBs are ACK.
  • the decoding results of other TBs are all ACK, namely The decoding result of TB#2 is ACK.
  • the sending device after receiving the feedback information, when retransmitting TBs, the sending device retransmits the first P TBs whose decoding results are NACK.
  • the target TB since the receiving device does not feedback the decoding results of the TBs after the target TB, the sending device needs to retransmit the TBs after the target TB.
  • the sending device sends 8 TBs to the receiving device, and receives decoding result NACKs for TB#1 and TB#3 from the receiving device.
  • the sending device can deduce that the decoding result of TB#2 is ACK according to the received NACKs for TB#1 and TB#3.
  • the sending device needs to retransmit TB#1 and TB#3 for which the decoding result has been known and failed to decode, and also needs to retransmit TB#4-TB#8 for which the decoding result is not known.
  • the sending device can know that the decoding results of the second and fourth TBs are ACKs. Since the receiving device only feeds back the 6th TB, the sending device does not know the decoding results of the 7th and 8th TB. When retransmitting, the sending device needs to retransmit the TB# that has already known the decoding result and failed to decode. 1. For TB#3, TB#5, and TB#6, the seventh and eighth TB need to be retransmitted.
  • the receiving device feeds back the ACK corresponding to the eighth TB.
  • the M TBs include the S TBs
  • the feedback information corresponding to the M TBs includes NACKs for the S TBs. That is to say, when there are fewer TBs that fail to be decoded (less than the upper limit P of the number of feedback information), the receiving device may feed back NACKs for all TBs that fail to be decoded to the sending device.
  • the receiving device can enable the sending device to know the decoding status of the receiving device by feeding back fewer NACKs to the sending device, and can reduce the signaling overhead in the transmission process. After determining the decoding status of each TB, the sending end retransmits the TB#4 that fails to be decoded to the receiving device.
  • the sending device knows that the receiving device feeds back up to 4 PSFCHs (that is, 4 feedback information) at the same time, and the sending device receives NACKs for the first TB and the fourth TB, but does not receive NACKs for other TBs. feedback information, it can be learned that the decoding results of the other 6 TBs are all ACKs. After determining the decoding status of each TB, the sending device retransmits the TB#1 and TB#4 that failed to be decoded to the receiving device.
  • 4 PSFCHs that is, 4 feedback information
  • the receiving device can also feed back the ACK or NACK for the last TB in the N TBs to the sending device, so as to identify the last TB, indicating that before the last TB, except for the TB that feeds back NACK, the rest
  • the decoding results of TB are all ACK.
  • the receiving device feeds back to the sending device the feedback information of S TBs that failed to be decoded, and the ACK/NACK corresponding to the last TB among the N TBs. For example, feed back the NACK of the 1st TB, the NACK of the 5th TB, and the ACK of the 8th TB to indicate the end position of the TB received by the receiving device, and indicate that the TB before the TB except the TB that fed back the NACK, the other TBs
  • the decoding results are all ACK.
  • the sending device when retransmitting, the sending device only needs to retransmit the TB that fails to be decoded.
  • the above M TBs are the last TBs among the N TBs, and the feedback information corresponding to the M TBs is for the ACK for the last TB. That is to say, as shown in FIG. 20 , when all TBs are decoded successfully, the receiving device feeds back the ACK of the last TB (such as TB#8) among the N TBs to the sending device.
  • the sending device knows the upper limit P of the number of feedback information, and determine the decoding result of the receiving device according to the situation.
  • the sending device learns from the After receiving the feedback information of M TBs, the device directly determines the decoding status of all TBs before this TB according to the TB corresponding to the last feedback information among the M feedback information, and the decoding results of TBs after this TB are regarded as unknown , and retransmit the TB with unknown decoding result when retransmitting.
  • a decoding result of a TB with feedback information is NACK
  • a decoding result of a TB without feedback information is ACK.
  • the technical solution of the embodiment of the present application achieves the goal of targeting more than P pieces of TB by feeding back as many NACKs as possible. The effect of feedback on the decoding situation.
  • the receiving device only sends one NACK for TB#4 to the sending device, so that the sending device can know the decoding status of the other multiple TBs by the receiving device, and the signaling in the transmission process Less overhead. That is to say, the decoding results of more TBs (for example, the decoding results of TB#1-TB#8) can be carried with less feedback information (for example, only the feedback information of TB#4).
  • the embodiment of the present application also provides a data transmission method, which includes the following steps:
  • the sending device sends N TBs to the receiving device.
  • the receiving device receives N TBs from the sending device.
  • the N is a positive integer.
  • the receiving device decodes the N TBs.
  • step S202 reference may be made to the above S103, which will not be repeated here.
  • the receiving device sends a sequence associated with the feedback information of M TBs in the N TBs according to the decoding results of the N TBs.
  • sending the feedback information by the receiving device may be implemented as: the receiving device sends a sequence.
  • the sequence is determined according to the feedback information of M TBs, and the sequence is used to represent the feedback information of the TBs. Because the sequence is determined according to the feedback information of M TBs and can represent the feedback information of M TBs, after the sending device receives the sequence from the receiving device, it can determine the feedback of the receiving device according to the relationship between the sequence and the feedback information
  • the information is ACK/NACK in order to determine the decoding situation of the receiving device.
  • the sequence is determined according to the feedback information of M TBs, and there are two ways.
  • One way is to first determine the cyclic shift pair according to the M-1 feedback information corresponding to the M-1 TBs among the M TBs, and the cyclic shift pair is used to carry the M-1 TBs The feedback information of TB.
  • a cyclic shift sequence is determined according to feedback information other than the M-1 pieces of feedback information among the M pieces of feedback information corresponding to the M TBs.
  • the cyclic shift sequence is used to carry feedback information in the M pieces of feedback information except for the M-1 pieces of feedback information.
  • Another manner is to determine a cyclic shift sequence directly according to the M pieces of feedback information corresponding to the M TBs, and the cyclic shift sequence is used to bear the M pieces of feedback information.
  • the relevant steps such as step S104a in the first embodiment above, which will not be repeated here.
  • the multiple PSFCH time slots are determined according to the last one or more PSSCH time slots.
  • multiple time slots for feedback information are determined according to time slots of the last one or more TBs.
  • the receiving device After receiving the last TB#8, the receiving device sends feedback information to the sending device through the feedback channel at least T time slots later.
  • the time interval T is related to the subcarrier interval.
  • the time interval T is 1 time slot.
  • the receiving device may also determine the value range of M, and feed back M in the N TBs to the sending device according to the value range of M and the decoding results of the N TBs.
  • the sequence associated with the feedback information of TB may be determined before performing S203.
  • the upper limit P of the number of feedback information may be determined according to the comb teeth parameters, and M needs to be less than or equal to P.
  • P For the specific calculation method of P, refer to the relevant steps of the first embodiment above (such as step S104).
  • the receiving device when the receiving device transmits data using the comb teeth or does not use the comb teeth to transmit data, the receiving device can determine the value range of M according to the communication resources. For example, the value range of M satisfies the following condition: 2 M-1 ⁇ N CS ; and/or, satisfies the following condition: 2 M ⁇ N seq .
  • the value range of M satisfies the following condition: 2 M-1 ⁇ N CS ; and/or, satisfies the following condition: 2 M ⁇ N seq .
  • the receiving device uses comb teeth to send feedback information, which may be implemented as: sending feedback information through part or all of the PRBs of the comb teeth.
  • comb teeth may be implemented as: sending feedback information through part or all of the PRBs of the comb teeth.
  • the feedback information is sent through at least the PRB of the highest frequency band and the PRB of the lowest frequency band of the comb teeth.
  • the number of TBs that fail to be decoded among the N TBs is S; in the case of S ⁇ P, the M TBs are the P ones that fail to be decoded among the N TBs TB, the feedback information corresponding to the M TBs is NACK for the P TBs. It means that when there are many TBs that fail to be decoded (more than the upper limit P of the number of feedback information), the receiving device feeds back the feedback information for the first P TBs that fail to be decoded at most.
  • the M TBs include the S TBs, and the feedback information corresponding to the M TBs includes NACKs for the S TBs. It means that when there are fewer TBs that fail to be decoded (less than the upper limit P of the number of feedback information), the receiving device can feed back NACKs for all TBs that fail to be decoded.
  • the M TBs are the last TBs in the N TBs, and the feedback information corresponding to the M TBs is for all Describe the ACK of the last TB. It means that, in the case that all the N TBs are successfully decoded, the receiving device only feeds back one ACK for the last TB among the N TBs.
  • the sending device determines the decoding result of the receiving device according to the sequence.
  • the sending device performs correlation detection on the above 2M-1 cyclic shift pairs, and determines the cyclic shift sequence with the highest correlation degree higher than the threshold from these cyclic shift pairs, so as to determine the cyclic shift sequence Specific values of the M pieces of feedback information represented by the bit sequence.
  • the embodiment of this application also provides a data transmission method, including:
  • the sending device sends N TBs to the receiving device.
  • the receiving device receives N TBs from the sending device.
  • the N is a positive integer.
  • the receiving device decodes the N TBs.
  • step S402 reference may be made to the above S103, which will not be repeated here.
  • the receiving device sends feedback information through comb-teeth PRBs.
  • the occupied PRB is determined according to the feedback information. That is, in this solution, the receiving device may determine the PRB used to transmit the feedback information in one comb according to one or more pieces of feedback information, and transmit the feedback information through the determined PRB. In this case, after receiving the feedback information, the sending device can obtain specific feedback information according to the PRBs occupied by the comb teeth.
  • the sending device will feed back ACK when occupying the 4 PRBs of the lowest frequency band.
  • the feedback information can be known as 10111.
  • the sequence on the PRB of the highest frequency band and the lowest frequency band of the comb teeth is used to carry or indicate 1 piece of feedback information among the M pieces of feedback information.
  • the 1 piece of feedback information it can also be based on the above
  • the other part or all of the feedback information other than one piece of feedback information is used to determine whether to occupy the rest of the PRBs except the highest frequency band and the lowest frequency band PRB.
  • the comb teeth include PRB1, PRB26, PRB51, PRB76 and PRB101.
  • the sequences on PRB1 and PRB101 of the comb teeth are used to carry or indicate one of the M feedback information, and the remaining part or all of the M feedback information except the above-mentioned one feedback information is used to determine whether Occupies PRB26, PRB51, PRB76.
  • 2 feedback information in other feedback information is 00, indicating that PRB26 and PRB51 are occupied; 2 feedback information is 01, indicating that PRB51 and PRB76 are occupied; 2 feedback information is 10, indicating that PRB26 and PRB76 are occupied; the other 2 feedback information
  • the information is 11, indicating that PRB51, PRB76 and PRB101 are occupied.
  • the feedback information is represented or carried or indicated by a sequence, and the meaning of the feedback information is different when using a different sequence or sequence pair.
  • the feedback information is represented, carried or indicated by a PRB, occupying the For different PRBs, the feedback information has different meanings.
  • the feedback information may also be jointly represented or carried or indicated based on the PRB and the sequence. For example, if the first 4 PRBs of comb tooth 1 and comb tooth 2 are also occupied, when sequence 1 is sent through the first 4 PRBs of comb tooth 1, it means feedback NACK; when sequence 2 is sent through the first 4 PRBs of comb tooth 2, it means Feedback ACK. For another example, when sequence 3 is fed back through the first 4 PRBs of comb tooth 3, it means ACK is fed back, and when sequence 3 is fed back through the last 4 PRBs of comb tooth 4, it means NACK is fed back.
  • the embodiment of this application also provides a data transmission method, including:
  • the sending device sends N TBs to the receiving device.
  • the receiving device receives N TBs from the sending device.
  • the N is a positive integer.
  • the receiving device decodes the N TBs.
  • step S302 reference may be made to the above S103, which will not be repeated here.
  • the receiving device sends feedback information to the sending device according to the decoding results of the N TBs.
  • S303 may include the following situations:
  • the receiving device sends NACKs of P TBs that fail to be decoded among the S TBs.
  • S is the number of TBs that fail to be decoded among the N TBs.
  • P is the upper limit of the number of feedback information.
  • the receiving device feeds back the feedback information for the first P TBs that fail to be decoded at most.
  • the value range of P satisfies the following condition: 2 P-1 ⁇ N CS , and/or satisfies the following condition: 2 P ⁇ N seq . That is to say, it is necessary to ensure that the available sequence is sufficient to represent P NACKs.
  • the receiving device sends NACKs of S TBs among the N TBs.
  • the receiving device can feed back NACKs for all TBs that fail to be decoded.
  • the value range of S satisfies the following condition: 2 S-1 ⁇ N CS . That is to say, it is necessary to ensure that the available sequence is sufficient to represent S NACKs.
  • the receiving device may also feed back to the sending device an ACK or NACK for the last TB in the N TBs, so as to identify the last TB, indicating that before the last TB, except for the TB that feeds back NACK, the decoding results of other TBs are all ACK.
  • the receiving device sends an ACK of the last TB of the N TBs.
  • the receiving device only feeds back one ACK for the last TB among the N TBs.
  • the sending of the feedback information by the receiving device may be implemented as: sending the feedback information through some or all of the comb-teeth PRBs.
  • the comb PRBs to send feedback information.
  • the teeth of the comb PRBs to send feedback information.
  • the feedback information is sent through at least the PRB of the highest frequency band and the PRB of the lowest frequency band of the comb teeth.
  • sending the feedback information by the receiving device may be implemented as: sending a sequence, where the sequence is used to carry or represent the feedback information.
  • the receiving device may determine sequence pairs according to P-1 pieces of feedback information among the P pieces of feedback information. 1 piece of feedback information to determine the sequence from the determined sequence pair.
  • the receiving device may directly determine the sequence according to the P pieces of feedback information.
  • the receiving device may determine the sequence pair according to the S-1 feedback information among the S feedback information, and in addition to the above S-1 feedback information according to the S feedback information 1 feedback information of , determine the sequence from the determined sequence pair.
  • the receiving device can directly determine the sequence according to the S pieces of feedback information.
  • a method of calculating CBR is mentioned above, which can sense the RSSI of the sub-channel from the second symbol within 100ms, and calculate the CBR according to the sensing result.
  • This CBR calculation method is suitable for calculating the CBR by a device or system (such as NR) based on a frame or a time slot.
  • a device or system such as NR
  • Wi-Fi Wi-Fi
  • the above-mentioned CBR calculation scheme is no longer applicable, and this embodiment of the present application provides a new method for determining CBR.
  • the method can be used in transmission scenarios such as PSSCH, PSCCH, and PSFCH. After the CBR value is calculated, it may be determined whether to perform corresponding data or signaling transmission according to the CBR value.
  • the CBR can be calculated according to the following formula:
  • the above time window may also be referred to as a CBR window (window).
  • a busy sub-channel is associated with a time unit, and a busy sub-channel means that the sub-channel is busy within a certain time unit.
  • a time unit including but not limited to a sensing slot (sensing slot) of an unlicensed spectrum. Taking the sensing time slot as an example, the duration of a sensing time slot can be, for example, but not limited to 9us, and the terminal uses 9us as the time granularity for statistics as well as
  • sub-channel 1 is busy in sensing time slot 2 and sensing time slot 5, and so on, busy sub-channels include: sub-channel 1 in sensing time slot 2, sub-channel in sensing time slot 5 1..., and sub-channel 4 in sensing time slot 5, there are 6 busy sub-channels in total.
  • the terminal in order to avoid the terminal power consumption caused by the sensing time unit (such as 9us sensing time slot) in the process of calculating CBR, the terminal can access through Type 1 (that is, LBT access), and multiplex the type 1 access process The slot sensing result, and the CBR is calculated according to the sensing result. In this way, by multiplexing the time slot sensing results in the Type 1 access process, the terminal does not need additional sensing time slots, thereby avoiding additional sensing power consumption.
  • Type 1 that is, LBT access
  • the terminal decides to access by monitoring whether the channel is idle. If the channel is busy, the terminal retreats for a certain period of time before accessing.
  • the backoff duration is one sensing time slot V.
  • the terminal needs to continuously detect whether each sensing slot is busy, and every time an idle sensing slot (idle slot) is detected, the backoff number is reduced by one until the backoff number reaches 0, indicating that the channel is idle and the terminal accesses the channel .
  • the backoff number is reduced by one until the backoff number reaches 0, indicating that the channel is idle and the terminal accesses the channel .
  • each Type 1 access can be counted as well as And calculate the CBR according to the statistical results.
  • Embodiment 5 may be combined with any of the foregoing embodiments from Embodiment 1 to Embodiment 4.
  • the receiving end transmits data or signaling.
  • step S102 there is no limitation on the execution sequence between step S102 and step S103.
  • steps in the method embodiments may be equivalently replaced by other possible steps.
  • some steps in the method embodiments may be optional, and may be deleted in some usage scenarios.
  • other possible steps may be added in the method embodiments.
  • the network elements in the embodiments of the present application include hardware structures and/or software modules corresponding to each function.
  • the embodiments of this application can be implemented in hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the technical solutions of the embodiments of the present application.
  • the embodiments of the present application may divide the network elements into functional units according to the above method example, for example, each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units. It should be noted that the division of units in the embodiment of the present application is schematic, and is only a logical function division, and there may be another division manner in actual implementation.
  • Fig. 27 shows a schematic block diagram of a communication device provided in an embodiment of the present application, and the communication device may be the above-mentioned receiving device or sending device.
  • the communication device 1700 may exist in the form of software, and may also be a chip that can be used in a device.
  • the communication device 1700 includes: a processing unit 1702 and a communication unit 1703 .
  • the communication unit 1703 may also be divided into a sending unit (not shown in FIG. 27 ) and a receiving unit (not shown in FIG. 27 ).
  • the sending unit is configured to support the communication device 1700 to send information to other network elements.
  • the receiving unit is configured to support the communication device 1700 to receive information from other network elements.
  • the communication device 1700 may further include a storage unit 1701 for storing program codes and data of the communication device 1700, and the data may include but not limited to original data or intermediate data.
  • the processing unit 1702 may be used to support the receiving device to execute steps such as S102 and S103 in FIG. 6 , and/or other processes for the solutions described herein.
  • the communication unit 1703 is used to support communication between the receiving device and other network elements (such as the above-mentioned sending device, etc.), for example, supporting the receiving device to execute S101, S104, etc. in FIG. 6 .
  • the processing unit 1702 may be configured to support the sending device to execute S204 in FIG. 21 , and/or other processes for the solution described herein.
  • the communication unit 1703 is used to support communication between the sending device and other network elements (such as the above receiving device, etc.), for example, supporting the sending device to execute S203 in FIG. 21 , and so on.
  • the processing unit 1702 may be a controller or the processor 401 and/or the processor 407 shown in FIG. Processing (Digital Signal Processing, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC), field programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and so on.
  • the communication unit 1703 may be the communication interface 404 shown in FIG. 5 , or may also be a transceiver circuit, a transceiver, a radio frequency device, and the like.
  • the storage unit 1701 may be the memory 403 shown in FIG. 5 .
  • the embodiment of the present application also provides a communication device, including one or more processors and one or more memories.
  • the one or more memories are coupled with one or more processors, and the one or more memories are used to store computer program codes, the computer program codes include computer instructions, and when the one or more processors execute the computer instructions, cause the communication device to perform
  • the above related method steps implement the data transmission method in the above embodiment.
  • the embodiment of the present application also provides a chip system, including: a processor, the processor is coupled with a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor, the The system on chip implements the method in any one of the foregoing method embodiments.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be realized by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software codes stored in a memory.
  • the memory can be integrated with the processor, or can be set separately from the processor, which is not limited in this application.
  • the memory can be a non-transitory processor, such as a read-only memory ROM, which can be integrated with the processor on the same chip, or can be respectively arranged on different chips.
  • the setting method of the processor is not specifically limited.
  • the chip system may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), or It can be a central processing unit (central processor unit, CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • each step in the foregoing method embodiments may be implemented by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application can be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the embodiment of the present application also provides a computer-readable storage medium, in which computer instructions are stored in the computer-readable storage medium, and when the computer instructions are run on the communication device, the communication device is made to perform the above-mentioned related method steps to realize the above-mentioned embodiments. data transfer method.
  • An embodiment of the present application further provides a computer program product, which, when running on a computer, causes the computer to execute the above-mentioned related steps, so as to implement the data transmission method in the above-mentioned embodiment.
  • the embodiments of the present application also provide a device, which may specifically be a component or a module, and the device may include a connected processor and a memory; wherein, the memory is used to store computer-executable instructions, and when the device is running, the processor The computer-executable instructions stored in the memory can be executed, so that the device executes the data transmission method in the above-mentioned method embodiments.
  • the communication device, computer-readable storage medium, computer program product or chip provided in the embodiments of the present application are all used to execute the corresponding method provided above, therefore, the beneficial effects it can achieve can refer to the above-mentioned The beneficial effects of the corresponding method will not be repeated here.
  • the electronic device includes hardware and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions in combination with the embodiments for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the functional modules of the electronic device may be divided according to the above method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules may be implemented in the form of hardware. It should be noted that the division of modules in this embodiment is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • the disclosed method may be implemented in other ways.
  • the terminal device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of modules or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage medium includes: flash memory, removable hard disk, read-only memory, random access memory, magnetic disk or optical disk, and other various media that can store program instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法及装置,涉及通信技术领域,可以提升侧行链路场景中的通信性能,该方法包括:接收设备接收N个传输块TB,所述N为正整数;所述接收设备获取反馈信道的传输次数上限和梳齿的参数,并根据所述梳齿的参数以及所述传输次数上限,通过所述梳齿发送针对所述N个TB中M个TB的反馈信息,所述M为正整数,所述M小于或等于所述N,且所述M小于或等于所述接收设备发送反馈信息的数目上限P,所述数目上限P根据所述传输次数上限以及所述梳齿的参数确定,所述P为正整数。

Description

一种数据传输方法及装置
本申请要求于2022年01月05日提交国家知识产权局、申请号为202210007015.5、发明名称为“一种承载多个TB反馈信息的PSFCH信道”的中国专利申请以及于2022年02月28日提交国家知识产权局、申请号为202210191913.0、发明名称为“一种数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
目前,对于通信的发送设备和接收设备来说,可以通过混合自动重传请求(hybrid automatic repeat request,HARQ)机制提升数据传输的可靠性。具体的,对于接收设备来说,接收设备从发送设备接收数据信息,并可以向发送设备反馈数据信息的解码情况,发送设备根据接收设备的解码情况确定是否重传数据信息。其中,数据信息可以以传输块(transmission block,TB)格式进行传输。在一些方案中,若接收设备能够成功解码数据信息(TB),则接收设备向发送设备反馈HARQ确认消息(acknowledgment,ACK),发送设备可以据此HARQ-ACK(可简称为ACK)获知数据信息被解码成功,于是不再重传数据信息。反之,若数据信息解码失败,则接收设备向发送设备反馈HARQ否定应答消息(non-acknowledgment,NACK),发送设备可以据此HARQ-NACK(可简称为NACK)获知数据信息解码失败,于是重传数据信息。
在引入侧行链路(sidelink,SL)场景后,终端之间可以直接通信,并且一个终端可能同时与多个终端进行通信。如果通过非授权频谱进行SL通信,则接收设备通常需要针对多个TB发送ACK或NACK,多个TB可能来自相同或不同发送设备,对数据传输性能的要求较高,上述传统的HARQ机制并不能满足SL场景的通信需求,因此,亟待提出一种适用于SL场景的HARQ机制,以便提升SL场景下终端之间通信的性能。
发明内容
本申请提供一种数据传输方法及装置,可以提升SL场景下终端之间通信的性能。
为了实现上述目的,本申请实施例提供了以下技术方案:
第一方面,提供一种数据传输方法,可以应用于电子设备或实现电子设备功能的装置(比如芯片系统)中,该方法包括:
接收设备接收N个传输块TB,所述接收设备获取反馈信道的传输次数上限和梳齿的参数,并根据所述梳齿的参数以及所述传输次数上限,通过所述梳齿发送针对所述N个TB中M个TB的反馈信息。
所述N为正整数;所述M为正整数,所述M小于或等于所述N,且所述M小于或等于所述接收设备发送反馈信息的数目上限P,所述数目上限P根据所述传输次数上限以及所述梳齿的参数确定,所述P为正整数。
本申请实施例的数据传输方法中,一方面,在某些场景中,接收设备不再针对接 收的每个TB均进行反馈,因此,可以降低HARQ过程中的信令开销;另一方面,接收设备发送的反馈信息的数目小于或等于数目上限P(P是根据梳齿参数和传输次数上限确定的),使得满足传输次数上限和梳齿参数的情况下,接收设备能够尽可能多的传输反馈信息,因此,能够提升HARQ过程的可靠性。综合来讲,能够提升数据传输性能。
所述梳齿的参数包括所述梳齿内相邻物理资源块PRB之间的间隔和/或梳齿内的PRB数目。
在第一方面的一种可能的设计中,所述数目上限P满足如下条件:
Figure PCTCN2022142457-appb-000001
Figure PCTCN2022142457-appb-000002
Figure PCTCN2022142457-appb-000003
Figure PCTCN2022142457-appb-000004
Figure PCTCN2022142457-appb-000005
Figure PCTCN2022142457-appb-000006
其中,L表示所述传输次数上限,
Figure PCTCN2022142457-appb-000007
表示数据传输所占用带宽内的PRB数目,GAP表示梳齿内相邻PRB之间的间隔,
Figure PCTCN2022142457-appb-000008
表示梳齿内的PRB数目。
在第一方面的一种可能的设计中,所述发送反馈信息,包括:
通过第一梳齿的Q个PRB发送反馈信息;所述Q为正整数;
Figure PCTCN2022142457-appb-000009
Figure PCTCN2022142457-appb-000010
所述梳齿包括所述第一梳齿。
在第一方面的一种可能的设计中,
Figure PCTCN2022142457-appb-000011
的情况下,所述第一梳齿包括的PRB大于Q。
示例性的,Q=4,第一梳齿包括的PRB为5个,则可以通过该第一梳齿的4个或5个PRB传输反馈信息。若占用第一梳齿的5个PRB,则可以通过在更多的PRB上重复传输反馈信息,提升反馈信息的可靠性。若占用第一梳齿的4个PRB,则可以通过降低每个反馈信息的重复传输次数,实现传输更多的反馈信息。
在第一方面的一种可能的设计中,若Q<X,所述方法还包括:
通过第一梳齿内除所述Q个PRB之外的PRB发送反馈信息,所述X表示所述第一梳齿包括的PRB数目。
在第一方面的一种可能的设计中,所述数目上限P满足如下关系:
Figure PCTCN2022142457-appb-000012
Figure PCTCN2022142457-appb-000013
Figure PCTCN2022142457-appb-000014
其中,L表示所述传输次数上限,
Figure PCTCN2022142457-appb-000015
表示数据传输所占用带宽内的PRB数目,GAP表示梳齿内相邻PRB之间的间隔,
Figure PCTCN2022142457-appb-000016
表示梳齿内的PRB数目。
在第一方面的一种可能的设计中,发送反馈信息,包括:
通过第二梳齿的R个PRB发送反馈信息;
其中,R为正整数,所述R个PRB至少包括所述第二梳齿内频段最高的PRB以及频段最低的PRB,所述梳齿包括所述第二梳齿。
此种方式中,至少通过梳齿的最高频段以及最低频段的PRB传输反馈信息,能够保证数据传输满足带宽占用需求,在保证终端通信带宽的同时,便于终端之间相互进 行检测。
在第一方面的一种可能的设计中,所述数目上限P满足如下关系:
Figure PCTCN2022142457-appb-000017
Figure PCTCN2022142457-appb-000018
Figure PCTCN2022142457-appb-000019
其中,N interlace表示反馈信道可用的梳齿数目,L表示所述传输次数上限。
在第一方面的一种可能的设计中,发送反馈信息,包括:通过第一梳齿中频段最高的PRB以及频段最低的PRB发送反馈信息。
此种方式中,仅通过梳齿的最高频段以及最低频段的PRB,一方面,能够满足占用信道带宽(occupied channel bandwidth,OCB)需求,另一方面,能够降低每个反馈信息的重复传输次数,实现发送更多的反馈信息。
在第一方面的一种可能的设计中,M的取值范围满足如下条件:
2 M-1≤N CS
其中,N CS表示反馈信道的可用序列对的数目上限,每个序列对包括两个序列。
通过该方式,可以从资源角度确定M的取值范围,以便接收设备根据M的取值范围确定需要反馈的反馈信息数目。
在第一方面的一种可能的设计中,所述方法还包括:
接收指示信息;所述指示信息用于指示所述M的上限。
在第一方面的一种可能的设计中,所述指示信息还用于指示所述N个TB的时域结束位置。
在第一方面的一种可能的设计中,序列对是根据所述M个TB中M-1个TB对应的M-1个所述反馈信息确定的,所述序列对用于承载所述M-1个TB的所述反馈信息;
序列是根据所述M个TB对应的M个反馈信息中除所述M-1个反馈信息之外的反馈信息确定的,所述序列用于承载所述M个反馈信息中除所述M-1个反馈信息之外的反馈信息,所述序列对包括所述序列。
在第一方面的一种可能的设计中,序列是根据所述M个TB对应的M个所述反馈信息确定的,所述序列用于承载所述M个反馈信息。
在第一方面的一种可能的设计中,所述序列对是根据如下公式确定的:
(P ID+M ID+k’)mod N CS
其中,P ID表示物理层的源标识,M ID表示传播类型相关的参数,k’为与所述M个反馈信息中M-1个反馈信息相关的参数,N CS表示反馈信道的可用序列对的数目,mod表示取模运算符。
此种方式中,根据M个反馈信息中M-1个反馈信息,确定序列对,使得序列对能够表示或指示或承载M-1反馈信息。根据其余1个反馈信息,从序列对中确定序列,使得确定出的该序列能够承载或表示该1个反馈信息。接收设备通过向发送设备发送序列,可以使得发送设备获知序列所承载的反馈信息。
在第一方面的一种可能的设计中,所述序列是根据如下公式确定的:
Figure PCTCN2022142457-appb-000020
其中,P ID表示物理层的源标识,M ID表示传播类型相关的参数,k为与所述M个反馈信息相关的参数,
Figure PCTCN2022142457-appb-000021
表示反馈信道的可用序列的数目,
Figure PCTCN2022142457-appb-000022
表示反馈信道的可用PRB个数,b与一个PRB内使用的序列的数目有关。
在第一方面的一种可能的设计中,所述N个TB中解码失败的TB的数目为S;
S≥P的情况下,所述M个TB为所述N个TB中解码失败的P个TB,所述M个TB对应的反馈信息为针对所述P个TB的NACK;或,S<P的情况下,所述M个TB包括所述S个TB,所述M个TB对应的反馈信息包括针对所述S个TB的NACK。
也就是说,在解码失败的TB较多(多于反馈信息的数目上限P)时,接收设备最多反馈针对前P个解码失败的TB的反馈信息。在解码失败的TB较少(少于反馈信息的数目上限P)时,接收设备可以反馈针对全部解码失败的TB的NACK。
在第一方面的一种可能的设计中,若所述N个TB均解码成功,则所述M个TB为所述N个TB中的最后一个TB,所述M个TB对应的反馈信息为针对所述最后一个TB的ACK。
该方案中,通过尽可能多的反馈NACK,达到针对多于P个TB的解码情况进行反馈的效果。比如,在一些示例中,接收设备仅向发送设备发送针对TB#4的1个NACK,就能使得发送设备获知接收设备对其余多个TB的解码情况,传输过程中的信令开销较小。也就是说,通过较少的反馈信息(比如仅TB#4的反馈信息),就能承载较多TB的解码结果(比如承载TB#1-TB#8的解码结果)。
第二方面,提供一种数据传输方法,可以应用于发送设备或实现发送设备功能的装置(比如芯片系统)中,以发送设备执行该方法为例,该方法包括:
发送设备发送N个传输块TB,所述N为正整数;
通过梳齿接收针对所述N个TB中M个TB的反馈信息,所述M为正整数,所述M小于或等于所述N,且所述M小于或等于所述接收设备发送反馈信息的数目上限P,所述数目上限P根据传输次数上限以及梳齿的参数确定,所述P为正整数。
在第二方面的一种可能的设计中,所述发送反馈信息,包括:
通过第一梳齿的Q个PRB发送反馈信息;所述Q为正整数;
Figure PCTCN2022142457-appb-000023
Figure PCTCN2022142457-appb-000024
所述梳齿包括所述第一梳齿。
在第二方面的一种可能的设计中,若Q<X,所述方法还包括:
通过第一梳齿内除所述Q个PRB之外的PRB发送反馈信息,所述X表示所述第一梳齿包括的PRB数目。
在第二方面的一种可能的设计中,发送反馈信息,包括:
通过第二梳齿的R个PRB发送反馈信息;
其中,R为正整数,所述R个PRB至少包括所述第二梳齿内频段最高的PRB以及频段最低的PRB,所述梳齿包括所述第二梳齿。
在第二方面的一种可能的设计中,所述方法还包括:
接收指示信息;所述指示信息用于指示所述M的上限。
第二方面中,其他技术特征的描述,可以参见第一方面中的相关描述。比如,数目上限P的计算方式可参见第一方面中相关内容的记载。
第三方面,提供一种通信装置,可以是电子设备或实现电子设备功能的装置(比如芯片系统),该装置包括:
通信接口,用于接收N个传输块TB;
处理器,用于所述接收设备获取反馈信道的传输次数上限和梳齿的参数;
通信接口,用于根据所述梳齿的参数以及所述传输次数上限,通过所述梳齿发送针对所述N个TB中M个TB的反馈信息。
所述N为正整数;所述M为正整数,所述M小于或等于所述N,且所述M小于或等于所述接收设备发送反馈信息的数目上限P,所述数目上限P根据所述传输次数上限以及所述梳齿的参数确定,所述P为正整数。
可选的,所述梳齿的参数包括所述梳齿内相邻物理资源块PRB之间的间隔和/或梳齿内的PRB数目。
在第三方面的一种可能的设计中,所述数目上限P满足如下条件:
Figure PCTCN2022142457-appb-000025
Figure PCTCN2022142457-appb-000026
Figure PCTCN2022142457-appb-000027
Figure PCTCN2022142457-appb-000028
Figure PCTCN2022142457-appb-000029
Figure PCTCN2022142457-appb-000030
其中,L表示所述传输次数上限,
Figure PCTCN2022142457-appb-000031
表示数据传输所占用带宽内的PRB数目,GAP表示梳齿内相邻PRB之间的间隔,
Figure PCTCN2022142457-appb-000032
表示梳齿内的PRB数目。
在第三方面的一种可能的设计中,所述发送反馈信息,包括:
通过第一梳齿的Q个PRB发送反馈信息;所述Q为正整数;
Figure PCTCN2022142457-appb-000033
Figure PCTCN2022142457-appb-000034
所述梳齿包括所述第一梳齿。
在第三方面的一种可能的设计中,
Figure PCTCN2022142457-appb-000035
的情况下,所述第一梳齿包括的PRB大于Q。
在第三方面的一种可能的设计中,所述通信接口,还用于在Q<X的情况下,通过第一梳齿内除所述Q个PRB之外的PRB发送反馈信息,所述X表示所述第一梳齿包括的PRB数目。
在第三方面的一种可能的设计中,所述数目上限P满足如下关系:
Figure PCTCN2022142457-appb-000036
Figure PCTCN2022142457-appb-000037
Figure PCTCN2022142457-appb-000038
其中,L表示所述传输次数上限,
Figure PCTCN2022142457-appb-000039
表示数据传输所占用带宽内的PRB数目,GAP表示梳齿内相邻PRB之间的间隔,
Figure PCTCN2022142457-appb-000040
表示梳齿内的PRB数目。
在第三方面的一种可能的设计中,发送反馈信息,包括:
通过第二梳齿的R个PRB发送反馈信息;
其中,R为正整数,所述R个PRB至少包括所述第二梳齿内频段最高的PRB以及频段最低的PRB,所述梳齿包括所述第二梳齿。
在第三方面的一种可能的设计中,所述数目上限P满足如下关系:
Figure PCTCN2022142457-appb-000041
Figure PCTCN2022142457-appb-000042
Figure PCTCN2022142457-appb-000043
其中,N interlace表示反馈信道可用的梳齿数目,L表示所述传输次数上限。
在第三方面的一种可能的设计中,发送反馈信息,包括:通过第一梳齿中频段最 高的PRB以及频段最低的PRB发送反馈信息。
在第三方面的一种可能的设计中,M的取值范围满足如下条件:
2 M-1≤N CS
其中,N CS表示反馈信道的可用序列对的数目上限,每个序列对包括两个序列。
在第三方面的一种可能的设计中,所述通信接口,还用于接收指示信息;所述指示信息用于指示所述M的上限。
在第三方面的一种可能的设计中,所述指示信息还用于指示所述N个TB的时域结束位置。
在第三方面的一种可能的设计中,序列对是根据所述M个TB中M-1个TB对应的M-1个所述反馈信息确定的,所述序列对用于承载所述M-1个TB的所述反馈信息;
序列是根据所述M个TB对应的M个反馈信息中除所述M-1个反馈信息之外的反馈信息确定的,所述序列用于承载所述M个反馈信息中除所述M-1个反馈信息之外的反馈信息,所述序列对包括所述序列。
在第三方面的一种可能的设计中,序列是根据所述M个TB对应的M个所述反馈信息确定的,所述序列用于承载所述M个反馈信息。
在第三方面的一种可能的设计中,所述序列对是根据如下公式确定的:
(P ID+M ID+k’)mod N CS
其中,P ID表示物理层的源标识,M ID表示传播类型相关的参数,k’为与所述M个反馈信息中M-1个反馈信息相关的参数,N CS表示反馈信道的可用序列对的数目,mod表示取模运算符。
在第三方面的一种可能的设计中,所述序列是根据如下公式确定的:
Figure PCTCN2022142457-appb-000044
其中,P ID表示物理层的源标识,M ID表示传播类型相关的参数,k为与所述M个反馈信息相关的参数,
Figure PCTCN2022142457-appb-000045
表示反馈信道的可用序列的数目,
Figure PCTCN2022142457-appb-000046
表示反馈信道的可用PRB个数,b与一个PRB内使用的序列的数目有关。
在第三方面的一种可能的设计中,所述N个TB中解码失败的TB的数目为S;
S≥P的情况下,所述M个TB为所述N个TB中解码失败的P个TB,所述M个TB对应的反馈信息为针对所述P个TB的NACK;或,S<P的情况下,所述M个TB包括所述S个TB,所述M个TB对应的反馈信息包括针对所述S个TB的NACK。
在第三方面的一种可能的设计中,若所述N个TB均解码成功,则所述M个TB为所述N个TB中的最后一个TB,所述M个TB对应的反馈信息为针对所述最后一个TB的ACK。
第四方面,提供一种通信装置,可以是发送设备或实现发送设备功能的装置(比如芯片系统),该装置包括:
通信接口,用于发送N个传输块TB,并通过梳齿接收针对所述N个TB中M个TB的反馈信息。
所述N为正整数;所述M为正整数,所述M小于或等于所述N,且所述M小于或等于所述接收设备发送反馈信息的数目上限P,所述数目上限P根据传输次数上限以及梳齿的参数确定,所述P为正整数。
在第四方面的一种可能的设计中,所述发送反馈信息,包括:
通过第一梳齿的Q个PRB发送反馈信息;所述Q为正整数;
Figure PCTCN2022142457-appb-000047
Figure PCTCN2022142457-appb-000048
所述梳齿包括所述第一梳齿。
在第四方面的一种可能的设计中,通信接口,还用于在Q<X的情况下,通过第一梳齿内除所述Q个PRB之外的PRB发送反馈信息,所述X表示所述第一梳齿包括的PRB数目。
在第四方面的一种可能的设计中,发送反馈信息,包括:
通过第二梳齿的R个PRB发送反馈信息;
其中,R为正整数,所述R个PRB至少包括所述第二梳齿内频段最高的PRB以及频段最低的PRB,所述梳齿包括所述第二梳齿。
在第四方面的一种可能的设计中,所述通信接口,还用于接收指示信息;所述指示信息用于指示所述M的上限。
第四方面中,其他技术特征的描述,可以参见第三方面中的相关描述。比如,数目上限P的计算方式可参见第三方面中相关内容的记载。
第五方面,本申请实施例提供一种通信装置,该装置具有实现上述任一方面中任一项的数据传输方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第六方面,提供一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述任一方面中任一项的数据传输方法。
第七方面,提供一种通信装置,包括:处理器;处理器用于与存储器耦合,并读取存储器中的指令之后,根据指令执行如上述任一方面中任一项的数据传输方法。
第八方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的数据传输方法。
第九方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的数据传输方法。
第十方面,提供一种电路系统,电路系统包括处理电路,处理电路被配置为执行如上述任一方面中任一项的数据传输方法。
第十一方面,提供一种芯片,芯片包括处理器,处理器和存储器耦合,存储器存储有程序指令,当存储器存储的程序指令被处理器执行时实现上述任一方面任意一项的数据传输方法。
第十二方面,提供一种通信系统,通信系统包括上述各个方面中任一方面中的发送设备、任一方面中的接收设备。
其中,第二方面至第十二方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为相关技术中确定循环移位序列方法的示意图;
图2为相关技术中确定信道繁忙比例方法的示意图;
图3为本申请实施例提供的通信系统的架构示意图;
图4为本申请实施例提供的通信系统的另一架构示意图;
图5为本申请实施例提供的通信设备的结构示意图;
图6为本申请实施例提供的数据传输方法的流程示意图;
图7-图12为本申请实施例提供的通过梳齿传输数据的方法示意图;
图13为本申请实施例提供的数据传输方法的另一流程示意图;
图14为本申请实施例提供的确定循环移位序列的方法示意图;
图15为本申请实施例提供的确定循环移位序列的另一方法示意图;
图16为本申请实施例提供的通过梳齿传输数据的方法示意图;
图17-图20为本申请实施例提供的HARQ过程的示意图;
图21为本申请实施例提供的数据传输方法的另一流程示意图;
图22为本申请实施例提供的数据传输方法的另一流程示意图;
图23为本申请实施例提供的通过梳齿传输数据的方法示意图;
图24为本申请实施例提供的数据传输方法的另一流程示意图;
图25为本申请实施例提供的确定信道繁忙比例方法的示意图;
图26为本申请实施例提供的确定信道繁忙比例方法的另一示意图。
图27为本申请实施例提供的通信装置的结构示意图。
具体实施方式
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个或两个以上(包含两个)。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。术语“连接”包括直接连接和间接连接,除非另外说明。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性地”或者“例如”等词旨在以具体方式呈现相关概念。
首先,介绍本申请实施例涉及的一些技术术语:
1.侧行链路(sidelink,SL)
在一些场景中,终端之间可以进行侧行通信,即终端之间可以进行直连通信,无需基站的转发。此时,终端之间彼此直连的链路称为SL。
物理侧行控制信道(physical sidelink control channel,PSCCH):用于承载侧行控制信息(sidelink control information,SCI)。SCI可用于指示侧行数据信息的编码调制格式、时频资源、资源预约信息、重传指示、终端源地址、终端目标地址、混合自动重传请求(Hybrid automatic repeat request,HARQ)信息等至少一种信息,侧行通信的接收设备接收和解析PSCCH上的SCI,进而根据解析出的SCI接收和解析侧行数据信息。
物理侧行共享信道(physical sidelink share channel,PSSCH):用于承载侧行数据信息,其中侧行数据信息为侧行通信时的业务数据信息。
SL场景包括但不限于车到一切(vehicle-to-everything,V2X)、车到车(vehicle to vehicle,V2V)、设备到设备(device to device,D2D)等场景。
2.SL资源池(resouce pool)
在新无线电(new radio,NR)SL中,终端可以基于资源池进行传输。资源池,是逻辑上的概念。一个资源池可以包括多个物理资源,资源池中的任意一个物理资源可以用于传输数据。终端进行数据传输时,需要从资源池中选择资源。该资源选择可以是终端根据网络设备的指示信息,从资源池中选择资源,并使用该资源进行数据传输,或者,终端可以自主从资源池中选择资源,并使用该资源进行数据传输。
在一些示例中,每个资源池包含一个或多个子信道(subchannel)。可选的,一个资源池内,各子信道占用的频域资源,比如物理资源块(physical resource block,PRB)个数相同,在属于不同资源池的各子信道中,各子信道占用的频域资源可能不同。需要说明的是,本申请实施例对各子信道占用的频域资源数目不做限制。
3.非授权频谱上的SL(sidelink unlicensed band,SL-U)
作为R18标准中的重要课题,SL-U主要内容是使用非授权频谱进行SL传输。
通常,终端通信时需要检测彼此是否存在,如果某个终端通信带宽较低,则其他终端不易识别出该终端,另外,该终端的通信带宽较低,也会影响该终端的传输效率。基于该原因,对于非授权频谱,使用时需要遵循一些规则。比如,在20MHz为粒度的带宽内,占用带宽中的至少80%的频谱,以便增加通信带宽,便于终端之间互相识别以及利于提升终端的传输效率。
4.非授权频谱上的NR(new radio unlicensed band,NR-U)
在NR-U技术中,可以使用非授权频谱进行NR传输。在一些方案中,采用梳齿(interlace)进行传输。每个梳齿可包括多个PRB。终端可在多个PRB中的部分或全部PRB上传输数据。
5.物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH)
5.1在一些方案中,可以利用PSFCH承载上述ACK或NACK。
目前,支持在单播和组播场景下进行上述HARQ反馈过程。其中,单播场景中,若接收的TB解码成功,则接收设备向发送设备反馈ACK;若解码失败,则接收设备反馈NACK。
组播场景中,接收设备根据接收设备(TX UE)与发送设备(RX UE)之间的距离和/或参考信号接收功率(reference signal receiver power,RSRP)等参数,判断是否发送HARQ反馈。具体的,组播场景中,HARQ反馈有以下两个选项:
选项(Option)1:若TB解码失败,则反馈NACK,其他情况下不传输信号。选项1支持一组内的所有接收设备共享PSFCH资源。
Option 2:若TB解码成功,则接收设备反馈ACK,若TB解码失败,则接收设备反馈NACK。选项2支持每个接收设备使用单独的PSFCH资源。
可选的,在单播和组播选项1和选项2中支持至少1个符号的PSFCH,该PSFCH信道可以复用物理上行控制信道(physical uplink control channel,PUCCH)的格式(format)0的序列承载信息。
5.2 PSFCH的周期性
在资源池中,PSFCH的资源以周期出现,周期的取值包括但不限于1、2和4个时隙。终端在一个时间段内接收的PSSCH,需要在对应周期内的PSFCH上进行反馈。
示例性的,对于一个出现在时隙(slot)n的PSSCH,与之对应的PSFCH出现在slot n+a上。a是大于或等于参数K的最小整数。可选的,参数K与处理时延有关。假设所有终端的K是一样的数值,则当PSFCH的资源以周期T1出现时,会有T1个时隙上的PSSCH相应的PSFCH资源在一个时隙上。
6.循环移位对(cyclic shift pair,CS pair)、循环移位序列
在一些示例中,可以使用循环移位序列承载上述ACK或NACK。
在一些方案中,终端可以按照如下方式,确定用于发送PSFCH的循环移位序列。
终端可以根据配置信息sl-PSFCH-RB-Set,确定一组资源块(resource block,RB),即
Figure PCTCN2022142457-appb-000049
终端从
Figure PCTCN2022142457-appb-000050
中划分
Figure PCTCN2022142457-appb-000051
Figure PCTCN2022142457-appb-000052
用于第i个时隙上N subch个子信道(subchannel)中的第j个子信道。
其中,
Figure PCTCN2022142457-appb-000053
划分PRB的顺序以i的降序开始,结束后以j的降序确定。对于第i个时隙来说,在该第i个时隙上,PSFCH可以占用两个连续的符号。
终端确定PSFCH的资源集合为
Figure PCTCN2022142457-appb-000054
其中,
Figure PCTCN2022142457-appb-000055
是循环移位对的个数,由配置信息sl-NumMuxCS-Pair确定。
Figure PCTCN2022142457-appb-000056
的取值有两种可能性,一种可能是取值1,即PSFCH的资源与PSSCH的起始子信道对应。另一种取值
Figure PCTCN2022142457-appb-000057
这种情况下,
Figure PCTCN2022142457-appb-000058
是PSSCH占用的PRB。
接下来,如图1的①,终端根据
Figure PCTCN2022142457-appb-000059
确定用于发送PSFCH的循环移位对。其中,P ID是物理层的源头ID,可以由PSSCH承载的SCI确定,M ID由传播类型确定。一个循环移位对包括两个循环移位序列。
之后,如图1的②,终端根据解码结果,从循环移位对中确定用于发送PSFCH的循环移位序列。示例性的,若解码结果为解码失败,则从循环移位对中确定解码失败对应的循环移位序列(比如对应1)。或者,若解码结果为解码成功,则从循环移位对中确定解码成功对应的循环移位序列(比如对应0)。
7.信道繁忙比例(channel busy ratio,CBR)
CBR用于描述信道繁忙程度,在LTE V2X和R16 V2X中,在传输PSSCH时需要 判断CBR值,以便衡量终端所在信道的通信质量。如果CBR较高,意味着当前资源池所在的信道非常繁忙,比如,大部分子信道都被占用了,那么,终端可以等待CBR降低时,传输PSSCH,或者,终端通过其他资源池发送PSSCH,以免造成资源冲突。
可选的,CBR可定义为:100ms内的时隙从第二个符号开始,接收信号强度指示(received signal strength indicator,RSSI)超过门限的子信道比例。示例性的,CBR的具体计算方式如图2所示,当终端准备在时刻n的资源1上传输时,需要在时刻n-U计算CBR。具体的,将n-U时刻之前的100ms内,每个子信道的RSSI值作为感知结果,这些感知结果被用作计算CBR。以时间范围是100ms内,频率范围是4个子信道为例,假设每1ms,对每个子信道的RSSI计算一次,则每1ms内,需针对4个子信道计算4个RSSI,于是,100ms内,需针对4个子信道计算400个RSSI。其中,高于RSSI门限值的RSSI个数与400的比值,即CBR。其中,U的定义和终端的处理时延有关。
8.非授权频谱的接入方式
非授权频谱的接入方式包括基于帧的设备(frame-based equipment,FBE)接入和先听后发(listen before talk,LBT)接入。FBE接入,即在每个时隙开始之前,进行信道空闲检测,并在确定信道空闲的情况下接入。LBT接入,即在有传输需求时,随时进行信道检测并接入。
其中,上述CBR计算方案中从第二个符号开始检测信道的方式基于FBE接入。目的是衡量相同系统的设备在一个资源池内的资源占用情况。
传统的HARQ机制中,接收设备需要对接收的每个TB分别发送反馈信息,信令开销较大,不满足SL场景的通信需求,为了解决上述技术问题,本申请实施例提供一种数据传输方法。该通信方法可以应用于SL场景,包括各种终端设备之间直接通信的场景。比如包括但不限于V2X、D2D通信、V2V通信等。如下,主要以应用在V2X中为例,但这并不构成对本申请实施例所适用场景的限制。
可选的,SL场景使用的频谱包括但不限于非授权频谱,非授权频谱包括2.4GHz附近的频带、5.8GHz附近的频带等。
图3为本申请实施例提供的一种V2X通信系统,如图3所示,该V2X通信系统可以包括:多个终端设备(如图3所示的终端设备1、终端设备2、终端设备3……)。终端设备与周围终端设备之间可以进行建立直连通信链路,实现直连通信,如:终端设备1与终端设备2之间可以直连通信。示例性的,终端设备与终端设备间建立的直连通信链路可以被定义为SL,终端设备与周围终端设备直连通信的接口可以称为PC5口。
可选的,图3所示V2X通信系统还可以包括网络设备。终端设备可以采用网络设备中转的方式向对端终端设备发送V2X消息或者通过网络设备接入网络,如:终端设备1可以将V2X消息发送给网络设备,由网络设备将V2X消息发送给终端设备2。示例性的,终端设备与网络设备之间的接口可以称为Uu接口。
可选的,图3所示网络架构仅为示例性架构图,本申请实施例不限定图3所示V2X通信系统包括的网元的数量。此外,虽然未示出,但除图3所示网络功能实体外,图3所示网络还可以包括其他功能实体,如:应用服务器(application server)、核心网设备等,不予限制。
图3中的网络设备主要用于实现无线物理控制功能、资源调度和无线资源管理、无线接入控制以及移动性管理等功能。该网络设备可以为接入网(access network,AN)/无线接入网(radio access network,RAN)设备,还可以为由多个5G-AN/5G-RAN节点组成的设备,又可以为者基站(nodeB,NB)、演进型基站(evolution nodeB,eNB)、下一代基站(generation nodeB,gNB)、收发点(transmission receive point,TRP)、传输点(transmission point,TP)以及某种其它接入节点中的任一节点。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例描述本申请实施例提供的技术方案。
上述终端设备为接入上述V2X通信系统,且具有无线收发功能的终端或可设置于该终端的芯片。示例性的,终端设备可以为图3所示车辆,车辆不限定于为汽车、自行车、电动车、飞机、船舶、火车、高铁等任一类型的车辆,该车辆可以包括能够与其他设备直连通信的车载设备,该车载设备可以称为用户设备(user equipment,UE)或者终端设备(terminal)。
该终端设备也可以是用户装置、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。比如,本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、车辆用户设备(vehicle user equipment,VUE)、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的RSU等。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请提供的通信方法。
图4示出了本申请实施例适用的SL场景的另一种示例。手机和智能眼镜之间可以根据本申请实施例提供的数据传输方法进行通信。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备本身,也可以是能够支持终端设备实现该功能的装置,例如芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请描述的系统架构及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对于本申请提供的技术方案的唯一限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
可选的,本申请实施例中的终端设备或网络设备可以通过具有图5所描述结构的通信设备来实现。图5所示为本申请实施例提供的通信设备的硬件结构示意图。该通信设备400包括至少一个处理器401,存储器403以及至少一个通信接口404。其中,存储器403还可以包括于处理器401中。
处理器401可以由一个或多个处理单元构成,处理单元可以是中央处理器(central  processing unit,CPU),特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
在上述组件之间存在通信线路,用于在各组件之间传送信息。
通信接口404,用于与其他设备通信。在本申请实施例中,通信接口可以是模块、电路、接口或者其它能实现通信功能的装置,用于与其他设备通信。可选的,该通信接口可以为独立设置的发送器,该发送器可用于向其他设备发送信息,该通信接口也可以为独立设置的接收器,用于从其他设备接收信息。该通信接口也可以是将发送、接收信息功能集成在一起的部件,本申请实施例对通信接口的具体实现不做限制。
存储器403可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的存储模块,随机存取存储器(random access memory,RAM)或者可动态存储信息和指令的其他类型的存储模块,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、光盘、磁盘或者其他磁存储设备。存储器可以是独立存在,通过通信线路与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器403用于存储计算机执行指令,计算机执行指令可以由处理器401中的一个或多个处理单元调用以执行下述实施例提供的各个方法中的相应步骤。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码、指令、计算机程序或者其它名称,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,通信设备400可以包括多个处理器,例如图5中的处理器401和处理器407。这些处理器中的每一个可以是一个单核处理器,也可以是一个多核处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,若通信设备400为诸如手机等终端,则通信设备400还可以包括输出设备405和输入设备406。输出设备405和处理器401通信,可以以多种方式来显示信息。例如,输出设备405可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备406和处理器401通信,可以以多种方式接收用户的输入。例如,输入设备406可以是鼠标、键盘、触摸屏设备或传感设备等。
如图5所示为通信设备的示例性结构图。应该理解的是,图示通信设备仅是一个范例,并且在实际应用中通信设备可以具有比图5中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。
上述的通信设备400可以是一个通用设备或者是一个专用设备,本申请实施例不限定通信设备400的类型。终端设备可以为具有图5类似结构的设备。
以下结合附图说明本申请实施例提供的通信方法。
需要说明的是,本申请实施例主要应用在SL场景,也就是终端设备之间通过PC5接口通信的流程中。
实施例一
参见图6,本申请实施例提供的通信方法包括如下步骤:
S101、发送设备向接收设备发送N个TB。相应的,接收设备从发送设备接收N 个TB。其中,所述N为正整数。
S102、所述接收设备获取反馈信道的传输次数上限和梳齿的参数。
示例性的,反馈信道可以是PSFCH。可选的,所述梳齿的参数包括所述梳齿内相邻PRB之间的间隔和/或梳齿内的PRB数目。
梳齿内相邻PRB之间的间隔,指的是相邻PRB之间间隔的PRB数目。示例性的,如图7,梳齿内相邻PRB(比如PRB1与PRB26)之间间隔的PRB数目为25。设置PRB间隔是为了在占用尽可能少的PRB的情况下,占满梳齿内80%的频带。
作为一种可能的实现方式,传输次数上限可以取决于接收设备自身的能力,也可以是网络设备(比如基站)为接收设备配置的,或者,传输次数上限是接收设备中预配置的参数。
可选的,传输次数上限可由psfch-FormatZeroSidelink参数确定。传输次数上限的取值包括但不限于4,8,16。
可选的,本申请实施例并不限制S102和S101之间的执行先后顺序。
在本申请实施例中,接收设备在获取传输次数上限和梳齿的参数之后,可以根据所述传输次数上限以及所述梳齿的参数确定发送反馈信息的数目上限P,其中,P为正整数。示例性的,上述反馈信息为接收设备针对上述N个TB中M个TB的反馈信息。所述M为正整数,所述M小于或等于所述N,且所述M小于或等于所述接收设备发送反馈信息的数目上限P。
如下,分几种情况对接收设备发送反馈信息的数目上限P的计算方式进行介绍。
情况1:数目上限P满足如下条件:
Figure PCTCN2022142457-appb-000060
Figure PCTCN2022142457-appb-000061
Figure PCTCN2022142457-appb-000062
Figure PCTCN2022142457-appb-000063
Figure PCTCN2022142457-appb-000064
Figure PCTCN2022142457-appb-000065
或,
Figure PCTCN2022142457-appb-000066
其中,L表示所述传输次数上限,
Figure PCTCN2022142457-appb-000067
表示数据传输所占用带宽内的PRB数目,GAP表示一个梳齿内相邻PRB之间的间隔。传输次数,表示接收设备同一时刻支持发送的循环移位序列的次数。数据传输占用带宽还可称为通信带宽。
Figure PCTCN2022142457-appb-000068
表示向下取整,
Figure PCTCN2022142457-appb-000069
表示向上取整。
Figure PCTCN2022142457-appb-000070
表示一个梳齿包括的PRB数目。可选的,
Figure PCTCN2022142457-appb-000071
Figure PCTCN2022142457-appb-000072
或者,一个梳齿包括的PRB数目可以预配置的值,比如2。
情况2:所述数目上限P满足如下关系:
Figure PCTCN2022142457-appb-000073
Figure PCTCN2022142457-appb-000074
Figure PCTCN2022142457-appb-000075
其中,L表示所述传输次数上限,
Figure PCTCN2022142457-appb-000076
表示数据传输所占用带宽内的PRB数目,GAP表示梳齿内相邻PRB之间的间隔,
Figure PCTCN2022142457-appb-000077
表示梳齿内的PRB数目。
情况3:所述数目上限P满足如下关系:
Figure PCTCN2022142457-appb-000078
Figure PCTCN2022142457-appb-000079
Figure PCTCN2022142457-appb-000080
其中,N interlace表示反馈信道可用的梳齿数目,或者表示可用来发送反馈信息的梳齿数目,L表示所述传输次数上限。
Figure PCTCN2022142457-appb-000081
是对公式
Figure PCTCN2022142457-appb-000082
的变形。
Figure PCTCN2022142457-appb-000083
还可以有其他的变形形式,本申请对具体变形形式不做限制。
S103、接收设备对N个TB进行解码。
接收设备对TB的解码情况包括如下几种:N个TB均解码失败,或者,N个TB均解码成功,或者,N个TB中既包括解码失败的TB,又包括解码成功的TB。
S104、接收设备根据所述梳齿的参数以及所述传输次数上限,发送针对所述N个TB中M个TB的反馈信息。
其中,所述M为正整数,所述M小于或等于所述N,且所述M小于或等于所述接收设备发送反馈信息的数目上限P。
可选的,P还可以称为最大PSFCH反馈个数,传输能力上限,最大反馈次数等。
可以理解,接收设备对N个TB进行解码之后,可以根据传输次数上限以及梳齿的参数确定发送反馈信息的数目上限P,根据数目上限P确定向发送设备反馈的反馈信息数目M,并向发送设备反馈M个反馈信息,以便向发送设备反馈解码情况。示例性的,接收设备确定能够发送反馈信息的数目上限P=3,那么,后续接收设备在向发送设备反馈ACK或NACK时,至多向发送设备反馈3个反馈信息。
如下,结合上述情况1-情况3,对接收设备发送反馈信息的具体实现进行介绍。
对应于上述情况1,接收设备发送反馈信息,可以实现为:通过第一梳齿的Q个PRB发送反馈信息,所述梳齿包括所述第一梳齿。其中,所述Q为正整数;
Figure PCTCN2022142457-appb-000084
Figure PCTCN2022142457-appb-000085
Figure PCTCN2022142457-appb-000086
或者Q为预配置的参数,比如2。
其中,
Figure PCTCN2022142457-appb-000087
表示数据传输所占用带宽内的PRB数目,GAP表示一个梳齿内相邻PRB之间的间隔。也就是说,对于某个梳齿来说,可以占用该梳齿所包含的多个PRB中的Q个PRB发送反馈信息。
示例性的,以通信带宽为20MHz(该通信带宽内包括的PRB数目即
Figure PCTCN2022142457-appb-000088
为106),梳齿内PRB之间间隔的RB个数(即GAP)为25,接收设备最多支持发送12次PSFCH(即传输次数上限L为12)为例,如图7,梳齿可包括5个PRB。接收设备通过梳齿发送一个反馈信息(ACK或NACK),至少要占用
Figure PCTCN2022142457-appb-000089
个PRB,即需要通过梳齿的4个PRB发送反馈信息。也就是说,每个反馈信息需要在4个PRB上重复发送4次,每4次PSFCH传输用于支持反馈一个反馈信息。
于是,12次PSFCH传输(即L)实际最多用于支持反馈
Figure PCTCN2022142457-appb-000090
个反馈信息,即,接收设备可以确定最多支持3个反馈信息(即反馈信息的数目上限为3)。
上述以根据
Figure PCTCN2022142457-appb-000091
这一公式计算反馈信息的数目上限P为例,在另一些 实施例中,也可以根据
Figure PCTCN2022142457-appb-000092
这一公式计算P,即
Figure PCTCN2022142457-appb-000093
Figure PCTCN2022142457-appb-000094
再示例性的,如图8,接收设备通过梳齿发送一个反馈信息,占用
Figure PCTCN2022142457-appb-000095
Figure PCTCN2022142457-appb-000096
个PRB。即接收设备需要通过梳齿的5个PRB发送反馈信息,每个反馈信息需要重复发送5次。
于是,如图8,12次PSFCH传输(即L)实际最多用于支持反馈
Figure PCTCN2022142457-appb-000097
Figure PCTCN2022142457-appb-000098
个反馈信息。此种情况下,可以剩余两次PSFCH传输,接收设备可以在有空闲PRB的梳齿上完成剩余的两次PSFCH传输。比如,可以在图9的空闲PRB101、空闲PRB77上完成剩余的两次PSFCH传输。
或者,接收设备也可以根据
Figure PCTCN2022142457-appb-000099
这一公式计算P,即
Figure PCTCN2022142457-appb-000100
Figure PCTCN2022142457-appb-000101
或者,接收设备也可以根据
Figure PCTCN2022142457-appb-000102
这一公式计算P。比如,L=12,
Figure PCTCN2022142457-appb-000103
Figure PCTCN2022142457-appb-000104
时,
Figure PCTCN2022142457-appb-000105
在一些实施例中,在
Figure PCTCN2022142457-appb-000106
且第一梳齿包括的PRB(记做X)大于Q的情况下,接收设备可以通过该梳齿所包含PRB中的部分或全部PRB发送反馈信息。也就是说,对于梳齿来说,该梳齿包括的PRB数目,与该梳齿内用于发送反馈信息的PRB数目,可以不同或相同。
可选的,在一些示例中,考虑到通信带宽内的PRB个数(即
Figure PCTCN2022142457-appb-000107
)不一定能够整除梳齿内相邻PRB之间间隔的PRB个数(即GAP),会造成某些梳齿占用
Figure PCTCN2022142457-appb-000108
Figure PCTCN2022142457-appb-000109
个PRB进行反馈,另外梳齿占用
Figure PCTCN2022142457-appb-000110
个PRB进行反馈。在
Figure PCTCN2022142457-appb-000111
Figure PCTCN2022142457-appb-000112
的情况下,为了尽可能多的发送反馈信息,接收设备可以在一个梳齿包括的PRB大于Q时,仅在该梳齿中的Q个PRB上发送反馈信息,在该梳齿中的其余PRB不发送反馈信息。
可选的,在梳齿包括的PRB大于
Figure PCTCN2022142457-appb-000113
时,接收设备仅在该梳齿的
Figure PCTCN2022142457-appb-000114
个PRB上发送反馈信息,可以实现为:在该梳齿的前
Figure PCTCN2022142457-appb-000115
个PRB上发送反馈信息;或者,在该梳齿的后
Figure PCTCN2022142457-appb-000116
个PRB上发送反馈信息;或者,在该梳齿的任
Figure PCTCN2022142457-appb-000117
个PRB上发送反馈信息,可选的,该梳齿内用于发送反馈信息的
Figure PCTCN2022142457-appb-000118
个PRB包括该梳齿内最高频段的PRB以及最低频段的PRB;或者,在包括频域位置最低和频域位置最高的两个PRB的
Figure PCTCN2022142457-appb-000119
个PRB上发送反馈信息,即,除了最高频段的PRB和最低频段的PRB之外,
Figure PCTCN2022142457-appb-000120
中其余的PRB可以任意。
示例性的,如图7,梳齿1包括5个PRB,接收设备可以仅通过梳齿内的4个PRB(PRB1、PRB26、PRB51、PRB76)发送反馈信息。梳齿2包括5个PRB,仅通过梳齿内的4个PRB(PRB2、PRB27、PRB52、PRB77)发送反馈信息。可以看出,相比于图8中占用梳齿内的全部PRB发送反馈信息,可以反馈2个反馈信息,图7对应的技术方案中,在可用的PRB数目相同时,由于每个反馈信息占用更少的PRB,因此,能够反馈3个反馈信息,即图7对应的方案可以反馈更多的反馈信息。
可选的,在另一些示例中,Q<X的情况下,接收设备在通过第一梳齿内的Q个PRB发送反馈信息之外,还可以通过第一梳齿内除所述Q个PRB之外的PRB发送反馈信息,所述X表示所述第一梳齿包括的PRB数目。
示例性的,如图9的(a),若
Figure PCTCN2022142457-appb-000121
PSFCH传输次数上限(即L)为13,则接收设备可以根据上述公式
Figure PCTCN2022142457-appb-000122
初步计算出接收设备的反馈信息的数目上限P。其中,反馈信息的数目上限P为3。假设接收设备通过梳齿1内的4个PRB发送第一个反馈信息,通过梳齿2内的4个PRB发送第二个反馈信息,通过梳齿3内的4个PRB发送第三个反馈信息,三个反馈信息共需进行12次PSFCH传输,则还剩余1次PSFCH传输能力。
为了充分利用PSFCH传输能力,以及提升发送反馈信息的可靠性,接收设备可以在梳齿1-梳齿3中剩余的PRB中选择一个PRB,用于进行一次PSFCH传输,即发送一次反馈信息。比如,如图9的(b),接收设备可以选择梳齿3中的PRB30,并在PRB30上对反馈信息3进行第五次传输。
可选的,在梳齿内有空闲PRB(比如图9中,空闲PRB包括梳齿1中的PRB101、梳齿2中的PRB77、梳齿3中的PRB30)的情况下,接收设备可以在空闲PRB上随机选取部分PRB进行PSFCH传输,或按照一定策略从空闲PRB中选取部分PRB,本申请实施例对选取PRB的具体实现不做限制。
对应于上述情况2,作为一种可能的实现方式,接收设备发送反馈信息,可以实现为:通过第二梳齿的R个PRB发送反馈信息。
其中,R为正整数,所述R个PRB至少包括所述第二梳齿内频段最高的PRB以及频段最低的PRB,所述梳齿包括所述第二梳齿。
示例性的,如图10的(a),传输次数上限L为12,排除某个梳齿(比如梳齿3)中最高频段以及最低频段的PRB(对应两次PSFCH传输)之后,传输次数剩余10次,接收设备计算10次PSFCH传输能够发送的反馈信息数目上限P。即,接收设备根据
Figure PCTCN2022142457-appb-000123
计算出反馈信息的数目上限P为3。
如图10的(b),对应于12次PSFCH传输的12个PRB(比如以黑色填充的PRB),梳齿1中的任意4个PRB(比如PRB1、PRB26、PRB51、PRB76)用来发送反馈信息1,梳齿2中的任意4个PRB(比如PRB2、PRB27、PRB52、PRB102)用来发送反馈信息2,梳齿3中最高频段的PRB5和最低频段的PRB105用来发送反馈信息3,梳齿3中除最高频段以及最低频段的PRB之外的任意2个PRB(比如PRB30、PRB80)用来发送反馈信息。
可见,如图10对应的技术方案中,对于接收设备所使用的多个梳齿中的至少一个梳齿(即梳齿3)来说,能够保证至少占用该梳齿的最高频带的PRB和最低频带的PRB,以符合OCB的带宽占用需求。
再示例性的,如图11的(a),接收设备根据
Figure PCTCN2022142457-appb-000124
计算出反馈信息的数目上限P为2。
如图11的(b),对应于8次PSFCH传输的8个PRB(比如以黑色填充的PRB),梳齿1中的5个PRB用来发送反馈信息1,梳齿2中最高频段的PRB2和最低频段的PRB102用来发送反馈信息3,梳齿3中除最高频段以及最低频段的PRB之外的任意1个PRB(比如PRB27)用来发送反馈信息。
再示例性的,若L低于一个梳齿包括的PRB个数,比如,L=3,则接收设备可以按照公式
Figure PCTCN2022142457-appb-000125
计算出反馈信息的数目上限为1,比如,通过一个梳齿的最高频段的PRB、最低频段的PRB以及另一个PRB发送反馈信息。
对应于上述情况3,接收设备发送反馈信息,可以实现为:通过第一梳齿中频段最高的PRB以及频段最低的PRB发送反馈信息。即对于某个梳齿来说,仅占用该梳齿中频段最高的PRB和频段最低的PRB发送反馈信息,该梳齿的其余PRB不发送反馈信息。
示例性的,如图12,假设传输次数上限L=6,可用来发送反馈信息的梳齿的数目上限N interlace为12,则接收设备能够的反馈信息的数目上限
Figure PCTCN2022142457-appb-000126
Figure PCTCN2022142457-appb-000127
其中,梳齿1中频段最高的PRB1以及频段最低的PRB101用来发送反馈信息1,梳齿2中频段最高的PRB2以及频段最低的PRB102用来发送反馈信息2,梳齿3中频段最高的PRB5以及频段最低的PRB105用来发送反馈信息3。
可见,一方面,在某些场景中,接收设备不再针对接收的每个TB均进行反馈,因此,可以降低HARQ过程中的信令开销;另一方面,接收设备发送的反馈信息的数目小于或等于数目上限P(P是根据梳齿参数和传输次数上限确定的),使得满足传输次数上限和梳齿参数的情况下,接收设备能够尽可能多的传输反馈信息,因此,能够提升HARQ过程的可靠性。综合来讲,能够提升数据传输性能。
示例性的,假设接收设备最多同时反馈4个反馈信息(即P=4),且接收设备接收到的8个TB的译码结果分别为(1,0,0,0,1,0,0,0),其中,“1”对应NACK,“0”对应ACK。那么,接收设备在接收并解码8个TB之后,最多向发送设备反馈4个反馈信息。
作为一种可能的实现方式,当需要发送的反馈信息的数目大于P时,接收设备可根据业务类型的优先级,确定针对业务类型优先级由高到低的P个TB发送反馈信息。
在本申请的一些实施例中,如图13所示,S104可以实现为:S104a、接收设备根据所述梳齿的参数以及所述传输次数上限,发送循环移位序列,其中,该序列用于承载或表示反馈信息。
如下,介绍几种确定序列的方法:
方法1:接收设备先从反馈信道的可用通信资源中确定序列对,再从所确定的序列对中确定该序列。其中,该序列可以包括但不限于循环移位序列。
在序列是循环移位序列的情况下,序列对是循环移位对,一个循环移位对包括两个循环移位序列。如下,以序列为循环移位序列,序列对为循环移位对为例对本申请实施例的技术方案进行说明,但本申请实施例不限于此。
可选的,循环移位对是根据所述M个TB中M-1个TB对应的M-1个所述反馈信息确定的,所述循环移位对用于承载所述M-1个TB的所述反馈信息。每个循环移位对包括两个循环移位序列。
可选的,所述循环移位对是根据如下公式确定的:(P ID+M ID+k’)mod N CS;其中,P ID表示物理层的源标识,M ID表示传播类型相关的参数,k’为与所述M个反馈信息中M-1个反馈信息相关的参数,N CS表示反馈信道的可用循环移位对的数目,mod表示取模运算符。
可选的,组播场景中,M ID是接收设备的标识,单播等其他场景中,M ID可以是0。或者,M ID的值还可以根据场景另行确定,这里不做限制。
可选的,上述公式(P ID+M ID+k’)modN CS还可以替换为如下形式:(P ID+M ID+k’*a)modN CS。其中,α用于间隔开相邻的反馈信道,以便减少信道检测时的相关度。
需要说明的是,公式(P ID+M ID+k’*a)modN CS中a取1时,演变成上述公式
(P ID+M ID+k’)modN CS
可选的,
Figure PCTCN2022142457-appb-000128
其中,
Figure PCTCN2022142457-appb-000129
表示反馈信道的可用资源的集合,N slot表示所述N个TB占用的时隙数目。可选的,反馈信道的可用资源包括但不限于如下任一种或多种资源:时域资源、频域资源、码域资源。
示例性的,假设接收设备向发送设备反馈M=5个反馈信息,1个反馈信息对应1比特,5个反馈信息对应的5比特为10111。首先,接收设备确定M个反馈信息中任意M-1个反馈信息的值k’。比如,如图14,接收设备将M=5个比特信息中的任意M-1=4比特信息(比如前4个比特信息1011)确定k’的值(比如,将1011转换为十进制数值(11),数值11作为k’),之后,接收设备将k’的值代如上述公式(P ID+M ID+k’)mod N CS,计算结果,并根据计算结果,从反馈信道的可用资源中确定循环移位对。
这里,以将1011转换后的十进制数值11作为k’,在另一些实施例中,还可以根据十进制数值11确定k’,或按照其他方式确定k’,本申请实施例对k’的具体计算方式不做限制,只要保证k’与M个比特信息中任M-1个比特信息有关联,使得所确定的循环移位对能够承载或表示该M-1比特信息即可。
其中,每个循环移位对可以用于表示一种比特组合。如图14,4个比特构成的比特组合总共有2 4=16种。每个比特组合可以用一个循环移位对表示。比如,比特组合1011可以用循环移位对A表示。
该示例中,仅举出k’的一种可能的计算方式,还可以根据M-1个反馈信息,采用其他方式计算k’,本申请实施例对k’的具体计算方式不做限制。
从反馈信道的可用资源中确定循环移位对之后,接收设备可以从所确定的循环移位对中确定循环移位序列。可选的,循环移位序列是根据所述M个TB对应的M个反馈信息中除所述M-1个反馈信息之外的反馈信息确定的,所述循环移位序列用于承载所述M个反馈信息中除所述M-1个反馈信息之外的反馈信息。不同循环移位序列表示不同的反馈信息。
仍参见图14,接收设备根据前4个比特信息1011确定循环移位对之后,根据最后一个比特信息,从所确定的循环移位对中确定循环移位序列。以接收设备从反馈信道的可用资源中确定循环移位对A(记做CSA)为例,假设CSA包括序列A1(记做SeqA1)和序列A2(记做SeqA2),在一个示例中,最后一个比特信息是1,则接收设备确定使用SeqA1。若最后一个比特信息是0,则接收设备确定使用SeqA2。
在另外的示例中,最后一个比特信息是1,则接收设备确定使用SeqA2,即,通过SeqA2表示1。如此,发送设备从接收设备接收SeqA2之后,可以获知反馈信息中最后一个比特是1。若最后一个比特信息是0,则接收设备确定使用SeqA1,通过SeqA1表示0。
需要说明的是,本申请实施例对反馈信息与循环移位序列之间的具体对应关系不做限制。
方法2:循环移位序列是根据所述M个TB对应的M个所述反馈信息确定的,所述循环移位序列用于承载所述M个反馈信息。
该实现方式中,不再沿用循环移位对的概念,接收设备可以直接确定循环移位序列。不同循环移位序列表示不同的比特组合。不同比特组合表示不同的解码情况。示例性的,循环移位序列1表示比特组合A,循环移位序列2表示比特组合B,循环移位序列3表示比特组合C,以此类推。如此,发送设备从接收设备接收循环移位序列之后,可以根据循环移位序列与比特组合之间的对应关系,确定接收设备的解码情况。
可选的,所述循环移位序列是根据如下公式确定的:
Figure PCTCN2022142457-appb-000130
Figure PCTCN2022142457-appb-000131
其中,P ID表示物理层的源标识,M ID表示传播类型相关的参数,k为与所述M个反馈信息相关的参数,
Figure PCTCN2022142457-appb-000132
表示反馈信道的可用循环移位序列的数目,
Figure PCTCN2022142457-appb-000133
表示反馈信道的可用PRB个数,b与一个PRB内使用的序列的数目有关。
可选的,
Figure PCTCN2022142457-appb-000134
可以理解为一个循环移位对包含两个循环移位序列,因而可用的循环移位序列的数目是:
Figure PCTCN2022142457-appb-000135
可选的,b=12/Δ。其中,Δ表示可用循环移位序列之间的间隔。
可选的,上述公式
Figure PCTCN2022142457-appb-000136
还可以替换为如下形式:
Figure PCTCN2022142457-appb-000137
Figure PCTCN2022142457-appb-000138
示例性的,如图15,假设接收设备向发送设备反馈M=5个比特,5个比特分别是10111,则接收设备需要根据10111这5个比特计算k的取值,比如,将10111转换为十进制数23,并将23作为k,或者根据十进制数23确定k的值。之后,将k代入上述公式
Figure PCTCN2022142457-appb-000139
计算用于承载反馈信息的循环移位序列。
需要说明的是,方法1、方法2主要以循环移位序列是短序列为例对确定循环移位序列的方法进行说明,在另一些实施例中(对应方法3),循环移位序列还可以是长序列。
其中,短序列可以指占用一个PRB的序列。长序列可以指占用多个PRB的序列。可选的,长序列包括但不限于如下序列:占用一个梳齿内部分或全部PRB的序列、占用多个梳齿内的多个PRB的序列。
方法3:使用长序列表示反馈信息。可选的,长序列占用的资源数可以根据PRB个数确定,比如反馈信道的可用PRB为10个,则长序列可以占用10个PRB上的所有RE(比如120个RE)。在上述120个RE对应的120个候选的长序列中,根据上述
Figure PCTCN2022142457-appb-000140
Figure PCTCN2022142457-appb-000141
确定序列。其中,k根据M个反馈信息确定,
Figure PCTCN2022142457-appb-000142
即反馈信道的可用的长序列的数目是120。
接收设备确定用于表示反馈信息的循环移位序列之后,通过梳齿向发送设备发送循环移位序列。发送设备接收循环移位序列之后,可以根据循环移位序列确定接收设备的解码情况。
示例性的,图16给出了接收设备发送的循环移位序列的示例。假设5个反馈信息对应的5个比特是10111,其中,1对应NACK,0对应ACK。示例性的,接收设备可以根据这5个比特中的4个比特(比如第2个至第5个比特)0111确定k’,并根据k’确定使用的循环移位对。接下来,根据其余1个比特(比如第1个比特),从循环移位对中确定使用的循环移位序列。类似的,根据5个比特中的4个比特(比如第1个比特、第3个比特-第5个比特)1111确定k’,并根据k’确定使用的循环移位对。接下来,根据5个比特中的其余1个比特(比如第2个比特),从循环移位对中确定使用的循环移位序列。以此类推,确定用于承载各比特的序列,并在相应梳齿上发送各序列。
上述实施例中,主要从梳齿结构角度给出了反馈信息数目的一种取值范围(即数目上限)的几种计算方式。在本申请的另一些实施例中,还可以从其他角度给出反馈信息数目的取值范围。
可选的,从资源角度计算反馈信息数目的取值范围。可选的,为了保证有充足的用于表示反馈信息的循环移位序列。M的取值范围满足如下条件:2 M-1≤N CS(不等式一);和/或,满足如下条件:2 M≤N seq(不等式二)。
其中,N CS表示反馈信道的可用循环移位对的数目上限,每个循环移位对包括两个循环移位序列。N seq表示可用循环移位序列的数目上限。
可选的,
Figure PCTCN2022142457-appb-000143
其中,
Figure PCTCN2022142457-appb-000144
表示反馈信道的可用资源的集合,N slot表示所述N个TB占用的时隙数目。
简言之,M通过Ncs和/或N seq确定,即满足Ncs和/或N seq的最大值作为M。
示例性的,以可用循环移位对的数目上限(N CS)是15为例,为了保证反馈信息能够正确被表示,反馈信息的数目M最多为4。
在一些示例中,接收设备根据M=4个反馈信息中的3个反馈信息(比如前3个反馈信息)确定循环移位对。此过程中,需要确保可用循环移位对的个数大于2 3=8,由于循环移位对的数目上限是15,满足15>8,因此,能够确保有充足的可用循环移位对用来表示或承载3个反馈信息。之后,接收设备根据M=4个反馈信息中的剩余1个反馈信息(比如最后一个反馈信息),从所确定的循环移位对中确定循环移位序列。
在本申请实施例中,M的取值范围可以通过如下任意方式确定:
方式1:发送设备向接收设备发送指示信息;所述指示信息用于指示所述M的取值范围。可选的,指示信息可以是显式指示M的取值范围,也可以隐式指示M的取值范围。
可选的,指示信息可以是无线资源控制(radio resource control,RRC)消息。比如,可以在RRC消息中配置M的上限。
可选的,所述指示信息还用于指示所述N个TB的时域结束位置(比如N个TB中最后一个TB所在的时隙)。从而,接收设备可以根据N个TB的时域结束位置,确定需要向发送设备反馈M个反馈信息。该指示信息可通过控制信道承载。可选的,发送设备通过控制信道向接收设备发送指示信息,指示各TB的时域位置(比如各TB的时隙)。或者,可选的,发送设备通过控制信道向接收设备发送指示信息,指示M的上限。
可选的,发送设备通过控制信道或数据信道在第M个TB的时隙上发送指示信息,接收设备从第M个TB所在时隙上接收指示信息之后,获知M的取值范围。比如,发送设备在第3个TB所在时隙发送指示信息,则接收设备接收到该指示信息之后,确定M的上限是3。
可选的,接收设备还可以根据N个TB的时域结束位置,确定反馈信道的位置。
方式2:发送设备向接收设备发送N个TB,接收设备可以根据N个TB以及PSFCH的周期性,确定需要向发送设备反馈M个反馈信息。假设PSFCH周期为4个时隙,PSFCH与PSSCH之间的时间间隔为2,那么,可以在时隙n+2,对于n-1到n-4这4个时隙内接收的TB进行反馈。示例性的,如果发送设备在时隙n-2、n-3和n-4,向接收设备总共发送6个TB,那么,接收设备可以根据PSFCH的周期性,确定需要在时隙n+2针对6个TB反馈6个反馈信息,即确定M的取值为6。
上述主要从梳齿参数的角度,确定梳齿内用于发送反馈信息的PRB为例进行说明。在本申请的另一些实施例中,还可以从资源角度,确定梳齿内用于发送反馈信息的PRB。其中,作为一种可能的实现方式,梳齿内用于发送反馈信息的PRB为多个,在梳齿内的该多个PRB上重复传输反馈信息。在利用循环移位序列承载反馈信息的方案中,在梳齿内的多个PRB上重复传输反馈信息,意味着在梳齿内的多个PRB上重复传输循环移位序列。循环移位序列的重复传输次数R repetition满足如下条件:
Figure PCTCN2022142457-appb-000145
其中,
Figure PCTCN2022142457-appb-000146
表示反馈信道的可用资源的集合,
Figure PCTCN2022142457-appb-000147
表示反馈信道占用的子信 道个数,
Figure PCTCN2022142457-appb-000148
表示循环移位对的数目,
Figure PCTCN2022142457-appb-000149
表示在一个子信道一个时隙上反馈信道的PRB个数。
可选的,
Figure PCTCN2022142457-appb-000150
其中,
Figure PCTCN2022142457-appb-000151
表示反馈信道的可用PRB的集合,
Figure PCTCN2022142457-appb-000152
根据参数sl-PSFCH-Period确定,N subch表示反馈信道可用的子信道的数目。
如此,在多个PRB上重复传输循环移位序列,能够满足OCB的传输要求,在保证终端通信带宽的同时,便于终端之间相互进行检测。
可选的,在重复传输循环移位序列时,可以进行循环移位跳变(cyclic shift hopping),即R repetition次传输中,第i次传输反馈信息所用的循环移位序列和第i+1次传输反馈信息所用的循环移位序列之间存在相位差。其中,i为正整数。如此,能够尽可能降低接收设备传输循环移位序列的峰值平均功率比(peak to average power ratio,PAPR),提升接收设备的通信性能。
在确定反馈信息数目的取值范围之后,接收设备可以根据反馈信息数目的取值范围,确定需要向发送设备传输的反馈信息的数目,并据此发送反馈信息。
可选的,考虑到正常通信场景中,解码失败的TB通常少于解码成功的TB,比如,某些场景中,数据传输成功率高达90%,因此,接收设备可以根据反馈信息数目的取值范围,尽可能多的发送针对解码失败的TB的反馈信息(比如NACK)。如此,发送设备接收到针对解码失败的TB的NACK之后,可以推知其他TB的解码结果为解码成功。即,未反馈解码结果的TB可视为解码成功的TB。该方案中,由于较多反馈NACK,而不发送或较少反馈ACK,因此,能够减少反馈信息的数量,降低信令开销。
在一些实施例中,假设接收设备接收的所述N个TB中,解码失败的TB的数目为S。
S≥P的情况下,所述M个TB为所述N个TB中解码失败的P个TB,所述M个TB对应的反馈信息为针对所述P个TB的NACK。意味着,在解码失败的TB较多时,接收设备尽可能多的向发送设备发送针对解码失败的TB的反馈信息,考虑到反馈信息的数目上限为P,接收设备最多向发送设备反馈针对前P个解码失败的TB的反馈信息。
其中,对于第P个解码结果为NACK的TB,该TB之前的全部TB中,除了解码结果为NACK的TB,其余TB的译码结果均为ACK。
示例性的,如图17,接收设备从发送设备接收8个TB,其中,3个TB(S=3)解码失败,5个TB解码成功,假设反馈信息的数目上限P=2,则接收设备最多向发送设备反馈针对前P=2个解码失败的TB的NACK。比如,接收设备向发送设备反馈针对TB#1的NACK,以及发送针对TB#3的NACK。其中,对于第2个解码结果为NACK的TB(即TB#3),该TB#3之前的全部TB中,除了解码结果为NACK的TB#1,其余TB的译码结果均为ACK,即TB#2的译码结果为ACK。
可选的,在该情况中,发送设备接收反馈信息之后,在重传TB时,重传前P个解码结果为NACK的TB。
其中,假设第P个解码结果为NACK的TB称为目标TB,则由于接收设备并未针对目标TB之后的TB的解码结果进行反馈,因此,发送设备需重传目标TB之后的 TB。
示例性的,如图17所示,在某次传输数据过程中,发送设备向接收设备发送8个TB,并从接收设备接收针对TB#1和TB#3的解码结果NACK。发送设备可以根据接收的针对TB#1和TB#3的NACK,推知TB#2的解码结果为ACK。之后,发送设备需要重传已获知解码结果且解码失败的TB#1和TB#3,还需重传未获知解码结果的TB#4-TB#8。
再示例性的,假设接收设备反馈信息的数目上限P=4,且接收的8个TB的译码结果为(1,0,1,0,1,1,0,1),则受限于最多反馈4个反馈信息,接收设备反馈第1、3、5、6个TB对应的NACK。根据这四个TB的NACK,发送设备可以获知第2、4个TB的译码结果为ACK。由于接收设备仅反馈到第6个TB,所以,发送设备不知道第7和第8个TB的译码结果,后续重传时,发送设备除了需要重传已获知解码结果且解码失败的TB#1、TB#3、TB#5、TB#6,还需要重传第7个和第8个TB。
再示例性的,当全部译码结果为ACK时,接收设备反馈第8个TB对应的ACK。
或者,S<P的情况下,所述M个TB包括所述S个TB,所述M个TB对应的反馈信息包括针对所述S个TB的NACK。也就是说,在解码失败的TB较少(少于反馈信息的数目上限P)时,接收设备可以向发送设备反馈针对全部解码失败的TB的NACK。
示例性的,假设发送设备和接收设备均知道反馈信息的数目上限P=2,如图18,接收设备从发送设备接收8个TB。其中,1个TB(TB#4)解码失败,解码失败的TB个数少于反馈信息的数目上限P,则接收设备向发送设备反馈针对全部解码失败的TB的NACK,即反馈TB#4的NACK。发送设备从接收设备接收针对TB#4的NACK之后,根据TB#4的解码情况,以及反馈信息的数目上限P,可以确定8个TB中仅TB#4解码失败,其余TB均解码成功。可见,本申请实施例的技术方案中,接收设备通过向发送设备反馈较少的NACK,就能够使得发送设备获知接收设备的解码情况,能够降低传输过程中的信令开销。发送端确定各TB的解码情况之后,向接收设备重传该解码失败的TB#4。
再示例性的,假设发送设备知道接收设备最多同时反馈4个PSFCH(即4个反馈信息),且发送设备接收到针对第1个TB、第4个TB反馈的NACK,未接到针对其他TB的反馈信息,则可以获知其他6个TB的解码结果均为ACK。发送设备确定各TB的解码情况之后,向接收设备重传该解码失败的TB#1和TB#4。
再示例性的,假设发送设备不知道反馈信息的数目上限P=2,仍如图18,接收设备从发送设备接收8个TB。其中,1个TB(TB#4)解码失败,解码失败的TB个数少于反馈信息的数目上限P,则接收设备向发送设备反馈针对全部解码失败的TB的NACK,即反馈TB#4的NACK。发送设备从接收设备接收针对TB#4的NACK之后,向接收设备重传该解码失败的TB#4,以及该解码失败的TB之后的所有TB,即TB#5-TB#8。
可选的,如图19,接收设备还可以向发送设备反馈针对N个TB中最后一个TB的ACK或NACK,以便标识最后一个TB,表示在该最后一个TB之前,除了反馈NACK的TB,其余TB的解码结果均为ACK。
再示例性的,S<P的情况下,接收设备向发送设备反馈解码失败的S个TB的反 馈信息,以及N个TB中最后一个TB对应的ACK/NACK。比如,反馈第1个TB的NACK、第5个TB的NACK和第8个TB的ACK,以表示接收设备接收到的TB的结束位置,并表示该TB之前除了反馈NACK的TB,其余TB的解码结果均为ACK。此种方案中,在重传时,发送设备重传解码失败的TB即可。
在一些实施例中,若接收设备接收的所述N个TB均解码成功,则上述M个TB为所述N个TB中的最后一个TB,所述M个TB对应的反馈信息为针对所述最后一个TB的ACK。也就是说,如图20所示,在全部TB均解码成功的情况下,接收设备向发送设备反馈N个TB中最后一个TB(比如TB#8)的ACK。
上述实施例中以发送设备是否知道反馈信息的数目上限P,并据此分情况确定接收设备的解码结果为例,在另一些实施例中,不再关注发送设备是否知道P,发送设备从接收设备接收M个TB的反馈信息之后,直接根据M个反馈信息中最后一个反馈信息对应的TB,确定该TB之前的全部TB的译码状态,而该TB之后的TB的译码结果视为未知,并在重传时重传未知解码结果的TB。可选的,该最后一个TB之前的全部TB中,有反馈信息的TB的解码结果为NACK,未有反馈信息的TB的译码结果为ACK。
相关技术中,若反馈信息的数目上限P=2,则只能针对2个TB的解码情况进行反馈,比如,仅能够反馈TB#1和TB#2的解码成功情况,不能反馈TB#3-TB#8的解码情况,与相关技术中P个反馈信息仅能承载P个TB的解码结果相比,本申请实施例的技术方案,通过尽可能多的反馈NACK,达到针对多于P个TB的解码情况进行反馈的效果。比如,在一些示例中,如图18,接收设备仅向发送设备发送针对TB#4的1个NACK,就能使得发送设备获知接收设备对其余多个TB的解码情况,传输过程中的信令开销较小。也就是说,通过较少的反馈信息(比如仅TB#4的反馈信息),就能承载较多TB的解码结果(比如承载TB#1-TB#8的解码结果)。
实施例二
如图21,本申请实施例还提供一种数据传输方法,该方法包括如下步骤:
S201、发送设备向接收设备发送N个TB。相应的,接收设备从发送设备接收N个TB。其中,所述N为正整数。
S202、接收设备对N个TB进行解码。
其中,步骤S202的具体实现方式可参见上述S103,这里不再赘述。
S203、接收设备根据N个TB的解码结果,发送与N个TB中M个TB的反馈信息相关联的序列。
也就是说,接收设备发送反馈信息,可以实现为:接收设备发送序列。其中,序列是根据M个TB的反馈信息确定的,序列用于表示TB的反馈信息。因为序列是根据M个TB的反馈信息确定的,并可以表示M个TB的反馈信息,所以,当发送设备从接收设备接收序列之后,可以根据序列与反馈信息的关联关系,确定接收设备的反馈信息是ACK/NACK,以便确定接收设备的解码情况。
序列根据M个TB的反馈信息确定,可以有两种方式。一种方式是,先根据所述M个TB中M-1个TB对应的M-1个所述反馈信息,确定循环移位对,所述循环移位对用于承载所述M-1个TB的所述反馈信息。之后,根据所述M个TB对应的M个反馈信息中除所述M-1个反馈信息之外的反馈信息,确定循环移位序列。所述循环移位 序列用于承载所述M个反馈信息中除所述M-1个反馈信息之外的反馈信息。另一种方式是,直接根据M个TB对应的M个所述反馈信息,确定循环移位序列,所述循环移位序列用于承载所述M个反馈信息。这两种确定循环移位序列的方式,其具体实现可参见上述实施例一的相关步骤(比如步骤S104a),此处不再赘述。
可选的,所述多个PSFCH的时隙是根据最后一个或多个PSSCH的时隙确定的。或者说,多个反馈信息的时隙,是根据最后一个或多个TB的时隙确定的。为了反馈的有效性,需要保证发送设备发送的最后一个TB的所在时隙与反馈信道的所在时隙至少间隔T个时隙。示例性的,如图20,接收设备接收最后一个TB#8之后,至少在T个时隙之后,通过反馈信道向发送设备发送反馈信息。
可选的,时间间隔T与子载波间隔有关,示例性的,子载波间隔是15kHz时,时间间隔T=1个时隙。
可选的,在一些实施例中,接收设备在执行S203之前,还可以确定M的取值范围,并根据M的取值范围以及N个TB的解码结果,向发送设备反馈N个TB中M个TB的反馈信息相关联的序列。
作为一种可能的实现方式,接收设备采用梳齿传输反馈信息时,可以根据梳齿参数确定反馈信息的数目上限P,M需要小于或等于P。P的具体计算方式可参见上述实施例一的相关步骤(比如步骤S104)。
作为一种可能的实现方式,接收设备采用梳齿传输数据,或不采用梳齿传输数据时,接收设备均可以根据通信资源,确定M的取值范围。比如,M的取值范围满足如下条件:2 M-1≤N CS;和/或,满足如下条件:2 M≤N seq。这两个公式中各参数的含义可参见实施例一的相关描述,不再赘述。
可选的,在一些实施例中,接收设备采用梳齿发送反馈信息,可以实现为:通过梳齿的部分或全部PRB发送反馈信息。示例性的,通过梳齿的
Figure PCTCN2022142457-appb-000153
个PRB发送反馈信息。或,通过梳齿的
Figure PCTCN2022142457-appb-000154
个PRB发送反馈信息。或,通过梳齿的至少最高频段的PRB以及最低频段的PRB发送反馈信息。
可选的,在一些实施例中,假设所述N个TB中解码失败的TB的数目为S;S≥P的情况下,所述M个TB为所述N个TB中解码失败的P个TB,所述M个TB对应的反馈信息为针对所述P个TB的NACK。意味着,在解码失败的TB较多(多于反馈信息的数目上限P)时,接收设备最多反馈针对前P个解码失败的TB的反馈信息。或,S<P的情况下,所述M个TB包括所述S个TB,所述M个TB对应的反馈信息包括针对所述S个TB的NACK。意味着,在解码失败的TB较少(少于反馈信息的数目上限P)时,接收设备可以反馈针对全部解码失败的TB的NACK。
可选的,在一些实施例中,若所述N个TB均解码成功,则所述M个TB为所述N个TB中的最后一个TB,所述M个TB对应的反馈信息为针对所述最后一个TB的ACK。意味着,在N个TB均解码成功的情况下,接收设备仅针对N个TB中最后一个TB反馈一个ACK。
S204、发送设备根据序列,确定接收设备的解码结果。
作为一种可能的实现方式,发送设备对上述2M-1个循环移位对进行相关检测, 从这些循环移位对中确定相关度高于门限且最高的循环移位序列,从而确定该循环移位序列所表示的M个反馈信息的具体取值。
示例性的,若M=3,即接收设备向发送设备反馈针对3个TB的反馈信息,则发送设备需要在23-1=4个循环移位对中,对23=8种循环移位序列进行相关度检测,以便确定接收设备的解码结果。
实施例三
如图22,本申请实施例还提供一种数据传输方法,包括:
S401、发送设备向接收设备发送N个TB。相应的,接收设备从发送设备接收N个TB。其中,所述N为正整数。
S402、接收设备对N个TB进行解码。
其中,步骤S402的具体实现方式可参见上述S103,这里不再赘述。
S403、根据N个TB的解码结果,接收设备通过梳齿的PRB发送反馈信息。
其中,占用的PRB是根据反馈信息确定的。即,该方案中,接收设备可以根据一个或多个反馈信息,确定在一个梳齿内用于传输反馈信息的PRB,并通过确定出的PRB传输反馈信息。此种情况下,发送设备接收反馈信息之后,可以根据梳齿中占用的PRB,获知具体的反馈信息。
示例性的,如图23,假设梳齿包括5个PRB,规定占用最高频段的4个PRB时反馈NACK,占用最低频段的4个PRB时反馈ACK,则发送设备在如图23所示的5个梳齿上接收到反馈信息之后,可以获知反馈信息为10111。
可选的,梳齿的最高频段以及最低频段的PRB上的序列用于承载或指示M个反馈信息中的1个反馈信息,除了该1个反馈信息,还可以根据M个反馈信息中除了上述1个反馈信息之外的其余部分或全部反馈信息,确定是否占用除最高频段、最低频段PRB之外的其余PRB。
示例性的,梳齿包括PRB1、PRB26、PRB51、PRB76和PRB101。该梳齿的PRB1和PRB101上的序列用于承载或指示M个反馈信息中的1个反馈信息,M个反馈信息中除了上述1个反馈信息之外的其余部分或全部反馈信息用于确定是否占用PRB26、PRB51、PRB76。比如,其他反馈信息中的2个反馈信息为00,表示占用PRB26和PRB51,2个反馈信息为01,表示占用PRB51和PRB76,2个反馈信息为10,表示占用PRB26和PRB76,其他2个反馈信息为11,表示占用PRB51、PRB76和PRB101。
上述实施例二中,以序列表示或承载或指示反馈信息,使用不同序列或序列对时,反馈信息的含义不同,本实施例三中,以PRB表示或承载或指示反馈信息,占用梳齿的不同PRB时,反馈信息的含义不同。
在另一些实施例中,还可以基于PRB和序列联合表示或承载或指示反馈信息。比如,同样占用梳齿1、梳齿2的前4个PRB,通过梳齿1的前4个PRB发送序列1时,表示反馈NACK,通过梳齿2的前4个PRB发送序列2时,表示反馈ACK。再比如,通过梳齿3的前4个PRB反馈序列3时,表示反馈ACK,通过梳齿4的后4个PRB反馈序列3时,表示反馈NACK。
实施例四
如图24,本申请实施例还提供一种数据传输方法,包括:
S301、发送设备向接收设备发送N个TB。相应的,接收设备从发送设备接收N 个TB。其中,所述N为正整数。
S302、接收设备对N个TB进行解码。
其中,步骤S302的具体实现方式可参见上述S103,这里不再赘述。
S303、接收设备根据N个TB的解码结果,向发送设备发送反馈信息。
S303可包括如下几种情况:
S303a、根据N个TB的解码结果,在S≥P的情况下,接收设备发送S个TB中P个解码失败的TB的NACK。
其中,S是所述N个TB中解码失败的TB的数目。P是反馈信息的数目上限。P的计算方式,可参见上述实施例一中的相关描述,此处不再赘述。
意味着,在解码失败的TB较多(多于反馈信息的数目上限P)时,接收设备最多反馈针对前P个解码失败的TB的反馈信息。
可选的,在S≥P的情况下,P的取值范围满足如下条件:2 P-1≤N CS,和/或满足如下条件:2 P≤N seq。也就是说,需要保证可用序列足以用来表示P个NACK。
S303b、根据N个TB的解码结果,在S<P的情况下,接收设备发送N个TB中S个TB的NACK。
意味着,在解码失败的TB较少(少于反馈信息的数目上限P)时,接收设备可以反馈针对全部解码失败的TB的NACK。
可选的,在S<P的情况下,S的取值范围满足如下条件:2 S-1≤N CS。也就是说,需要保证可用序列足以用来表示S个NACK。
可选的,如图19,S<P的情况下,接收设备还可以向发送设备反馈针对N个TB中最后一个TB的ACK或NACK,以便标识最后一个TB,表示在该最后一个TB之前,除了反馈NACK的TB,其余TB的解码结果均为ACK。
S303c、根据N个TB的解码结果,在N个TB均解码成功的情况下,接收设备发送N个TB中最后一个TB的ACK。
意味着,在N个TB均解码成功的情况下,接收设备仅针对N个TB中最后一个TB反馈一个ACK。
可选的,在一些实施例中,接收设备发送反馈信息,可以实现为:通过梳齿的部分或全部PRB发送反馈信息。示例性的,通过梳齿的
Figure PCTCN2022142457-appb-000155
个PRB发送反馈信息。或,通过梳齿的
Figure PCTCN2022142457-appb-000156
个PRB发送反馈信息。或,通过梳齿的至少最高频段的PRB以及最低频段的PRB发送反馈信息。
可选的,在一些实施例中,接收设备发送反馈信息,可以实现为:发送序列,序列用于承载或表示反馈信息。其中,序列的确定方式包括两种,可参见上述实施例一的相关描述,不再赘述。示例性的,在S≥P的情况下,接收设备可以根据P个反馈信息中的P-1个反馈信息确定序列对,在根据P个反馈信息中除上述P-1个反馈信息之外的1个反馈信息,从确定出的序列对中确定序列。或者,接收设备可以根据P个反馈信息直接确定序列。再示例性的,在S<P的情况下,接收设备可以根据S个反馈信息中的S-1个反馈信息确定序列对,在根据S个反馈信息中除上述S-1个反馈信息之外的1个反馈信息,从确定出的序列对中确定序列。或者,接收设备可以根据S个 反馈信息直接确定序列。
实施例五
上文提及一种计算CBR的方法,可以从100ms内的第二个符号开始感知子信道的RSSI,并根据感知结果计算CBR。此种CBR计算方式适用于基于帧或时隙的设备或系统(比如NR)计算CBR。在引入非授权频谱之后,由于非授权频谱可能是非基于帧或时隙的其他系统(比如Wi-Fi)中的频谱,Wi-Fi并不按照NR的时隙结构发送,因此,上文提及的CBR计算方式存在风险。
考虑到NR系统和Wi-Fi系统不是同步系统,互相不知道时隙结构,不再适用上述CBR计算方案,本申请实施例提供一种新的CBR的确定方法。该方法可用于PSSCH、PSCCH、PSFCH等传输场景中。在计算CBR值之后,可根据CBR值判断是否进行相应数据或信令传输。
作为一种可能的实现方式,可按照如下公式计算CBR:
Figure PCTCN2022142457-appb-000157
其中,
Figure PCTCN2022142457-appb-000158
表示时间窗口内的繁忙子信道的数目,
Figure PCTCN2022142457-appb-000159
表示时间窗口内的全部子信道的数目。全部子信道包括上述繁忙子信道以及空闲子信道。
Figure PCTCN2022142457-appb-000160
其中,
Figure PCTCN2022142457-appb-000161
表示时间窗口内的空闲子信道的数目。
上述时间窗口,还可称为CBR窗口(window)。
本申请实施例中,繁忙子信道与时间单元关联,子信道繁忙,指的是子信道在某个时间单元内繁忙。时间单元,包括但不限于非授权频谱的感知时隙(sensing slot)。以感知时隙为例,一个感知时隙的时长比如可以但不限于是9us,终端以9us为时间粒度进行统计
Figure PCTCN2022142457-appb-000162
以及
Figure PCTCN2022142457-appb-000163
示例性的,如图25,子信道1在感知时隙2、感知时隙5繁忙,以此类推,繁忙子信道包括:感知时隙2内的子信道1、感知时隙5内的子信道1…,以及感知时隙5内的子信道4,总共6个繁忙子信道。
可选的,为避免计算CBR过程中因感知时间单元(比如9us感知时隙)导致的终端功耗,终端可以通过Type 1接入(即LBT接入),并复用type1接入过程中的时隙感知结果,根据该感知结果计算CBR。如此,通过复用Type 1接入过程中的时隙感知结果,终端可以无需额外感知时隙,从而避免额外的感知功耗。
作为一种可能的实现方式,Type 1接入过程中,终端通过监听信道是否空闲决定接入,如果信道繁忙,则终端退避一定时间再接入。可选的,退避的时长为一个感知时隙V。
在退避期间内,终端需要持续检测每个感知时隙是否繁忙,每检测到一个空闲感知时隙(idle slot),退避数减一,直到退避数到0时,说明信道空闲,终端接入信道。具体的Type1接入方式,可参见相关技术,这里不再赘述。
在时间窗口范围内,存在Type 1接入方式时统计
Figure PCTCN2022142457-appb-000164
以及
Figure PCTCN2022142457-appb-000165
并根据统计结果计算CBR,不存在Type1接入方式时,不统计
Figure PCTCN2022142457-appb-000166
以及
Figure PCTCN2022142457-appb-000167
不计算CBR。
如图26,一个时间窗口内可以有多次Type 1接入,每次Type 1接入时,均可统计
Figure PCTCN2022142457-appb-000168
以及
Figure PCTCN2022142457-appb-000169
并根据统计结果计算CBR。
实施例五可以与上述实施例一至实施例四中任意实施例进行组合。在确定CBR满足条件时,收发端传输数据或信令。
需要说明的是,上述各方法实施例的流程中的一些操作任选地被组合,并且/或者一些操作的顺序任选地被改变。并且,各流程的步骤之间的执行顺序仅是示例性的,并不构成对步骤之间执行顺序的限制,各步骤之间还可以是其他执行顺序。并非旨在表明所述执行次序是可以执行这些操作的唯一次序。本领域的普通技术人员会想到多种方式来对本文所述的操作进行重新排序。另外,应当指出的是,本文某个实施例涉及的过程细节同样以类似的方式适用于其他实施例,或者,不同实施例之间可以组合使用。
示例性的,各附图中,对于步骤S102和步骤S103之间的执行顺序不做限制。
此外,方法实施例中的某些步骤可等效替换成其他可能的步骤。或者,方法实施例中的某些步骤可以是可选的,在某些使用场景中可以删除。或者,可以在方法实施例中增加其他可能的步骤。
并且,上述各方法实施例之间可以单独实施,或结合起来实施。
可以理解的是,本申请实施例中的网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对网元进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图27示出了本申请实施例中提供的通信装置的一种示意性框图,该通信装置可以为上述的接收设备或发送设备。该通信装置1700可以以软件的形式存在,还可以为可用于设备的芯片。通信装置1700包括:处理单元1702和通信单元1703。可选的,通信单元1703还可以划分为发送单元(并未在图27中示出)和接收单元(并未在图27中示出)。其中,发送单元,用于支持通信装置1700向其他网元发送信息。接收单元,用于支持通信装置1700从其他网元接收信息。
可选的,通信装置1700还可以包括存储单元1701,用于存储通信装置1700的程序代码和数据,数据可以包括不限于原始数据或者中间数据等。
若通信装置1700为接收设备,处理单元1702可以用于支持接收设备执行诸如图6中的S102、S103等,和/或用于本文所描述的方案的其它过程。通信单元1703用于支持接收设备和其他网元(例如上述发送设备等)之间的通信,例如支持接收设备执 行图6中的S101、S104等。
若通信装置1700为发送设备,处理单元1702可以用于支持发送设备执行图21中的S204,和/或用于本文所描述的方案的其它过程。通信单元1703用于支持发送设备和其他网元(例如上述接收设备等)之间的通信,例如支持发送设备执行图21中的S203等。
一种可能的方式中,处理单元1702可以是控制器或图5所示的处理器401和/或处理器407,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理(Digital Signal Processing,DSP),应用专用集成电路(Application Specific Integrated Circuit,ASIC),现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
一种可能的方式中,通信单元1703可以是图5所示的通信接口404、还可以是收发电路、收发器、射频器件等。
一种可能的方式中,存储单元1701可以是图5所示的存储器403。
本申请实施例还提供一种通信设备,包括一个或多个处理器以及一个或多个存储器。该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得通信设备执行上述相关方法步骤实现上述实施例中的数据传输方法。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gatearray,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processorunit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
应理解,上述方法实施例中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处 理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当该计算机指令在通信设备上运行时,使得通信设备执行上述相关方法步骤实现上述实施例中的数据传输方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例中的数据传输方法。
另外,本申请的实施例还提供一种装置,该装置具体可以是组件或模块,该装置可包括相连的处理器和存储器;其中,存储器用于存储计算机执行指令,当装置运行时,处理器可执行存储器存储的计算机执行指令,以使装置执行上述各方法实施例中的数据传输方法。
其中,本申请实施例提供的通信设备、计算机可读存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
可以理解的是,为了实现上述功能,电子设备包含了执行各个功能相应的硬件和/或软件模块。结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以结合实施例对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本实施例可以根据上述方法示例对电子设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块可以采用硬件的形式实现。需要说明的是,本实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法,可以通过其它的方式实现。例如,以上所描述的终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成 的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序指令的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    接收设备接收N个传输块TB,所述N为正整数;
    所述接收设备获取反馈信道的传输次数上限和梳齿的参数,并根据所述梳齿的参数以及所述传输次数上限,通过所述梳齿发送针对所述N个TB中M个TB的反馈信息,所述M为正整数,所述M小于或等于所述N,且所述M小于或等于所述接收设备发送反馈信息的数目上限P,所述数目上限P根据所述传输次数上限以及所述梳齿的参数确定,所述P为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述梳齿的参数包括所述梳齿内相邻物理资源块PRB之间的间隔和/或梳齿内的PRB数目。
  3. 根据权利要求1或2所述的方法,其特征在于,所述数目上限P满足如下条件:
    Figure PCTCN2022142457-appb-100001
    Figure PCTCN2022142457-appb-100002
    Figure PCTCN2022142457-appb-100003
    Figure PCTCN2022142457-appb-100004
    Figure PCTCN2022142457-appb-100005
    Figure PCTCN2022142457-appb-100006
    其中,L表示所述传输次数上限,
    Figure PCTCN2022142457-appb-100007
    表示数据传输所占用带宽内的PRB数目,GAP表示梳齿内相邻PRB之间的间隔,
    Figure PCTCN2022142457-appb-100008
    表示梳齿内的PRB数目。
  4. 根据权利要求3所述的方法,其特征在于,所述发送反馈信息,包括:
    通过第一梳齿的Q个PRB发送反馈信息;所述Q为正整数;
    Figure PCTCN2022142457-appb-100009
    Figure PCTCN2022142457-appb-100010
    所述梳齿包括所述第一梳齿。
  5. 根据权利要求4所述的方法,其特征在于,
    Figure PCTCN2022142457-appb-100011
    的情况下,所述第一梳齿包括的PRB大于Q。
  6. 根据权利要求5所述的方法,其特征在于,若Q<X,所述方法还包括:
    通过第一梳齿内除所述Q个PRB之外的PRB发送反馈信息,所述X表示所述第一梳齿包括的PRB数目。
  7. 根据权利要求1或2所述的方法,其特征在于,所述数目上限P满足如下关系:
    Figure PCTCN2022142457-appb-100012
    Figure PCTCN2022142457-appb-100013
    Figure PCTCN2022142457-appb-100014
    其中,L表示所述传输次数上限,
    Figure PCTCN2022142457-appb-100015
    表示数据传输所占用带宽内的PRB数目,GAP表示梳齿内相邻PRB之间的间隔,
    Figure PCTCN2022142457-appb-100016
    表示梳齿内的PRB数目。
  8. 根据权利要求7所述的方法,其特征在于,发送反馈信息,包括:
    通过第二梳齿的R个PRB发送反馈信息;
    其中,R为正整数,所述R个PRB至少包括所述第二梳齿内频段最高的PRB以及频段最低的PRB,所述梳齿包括所述第二梳齿。
  9. 根据权利要求1或2所述的方法,其特征在于,所述数目上限P满足如下关系:
    Figure PCTCN2022142457-appb-100017
    Figure PCTCN2022142457-appb-100018
    其中,N interlace表示反馈信道可用的梳齿数目,L表示所述传输次数上限。
  10. 根据权利要求9所述的方法,其特征在于,发送反馈信息,包括:通过第一梳齿中频段最高的PRB以及频段最低的PRB发送反馈信息。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,M的取值范围满足如下条件:
    2 M-1≤N CS
    其中,N CS表示反馈信道的可用序列对的数目上限,每个序列对包括两个序列。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,所述方法还包括:
    接收指示信息;所述指示信息用于指示所述M的上限。
  13. 根据权利要求12所述的方法,其特征在于,所述指示信息还用于指示所述N个TB的时域结束位置。
  14. 根据权利要求1-13中任一项所述的方法,其特征在于,
    序列对是根据所述M个TB中M-1个TB对应的M-1个所述反馈信息确定的,所述序列对用于承载所述M-1个TB的所述反馈信息;
    序列是根据所述M个TB对应的M个反馈信息中除所述M-1个反馈信息之外的反馈信息确定的,所述序列用于承载所述M个反馈信息中除所述M-1个反馈信息之外的反馈信息,所述序列对包括所述序列。
  15. 根据权利要求1-13中任一项所述的方法,其特征在于,
    序列是根据所述M个TB对应的M个所述反馈信息确定的,所述序列用于承载所述M个反馈信息。
  16. 根据权利要求14所述的方法,其特征在于,所述序列对是根据如下公式确定的:
    (P ID+M ID+k’)mod N CS
    其中,P ID表示物理层的源标识,M ID表示传播类型相关的参数,k’为与所述M个反馈信息中M-1个反馈信息相关的参数,M CS表示反馈信道的可用序列对的数目,mod表示取模运算符。
  17. 根据权利要求15所述的方法,其特征在于,所述序列是根据如下公式确定的:
    Figure PCTCN2022142457-appb-100019
    其中,P ID表示物理层的源标识,M ID表示传播类型相关的参数,k为与所述M个反馈信息相关的参数,
    Figure PCTCN2022142457-appb-100020
    表示反馈信道的可用序列的数目,
    Figure PCTCN2022142457-appb-100021
    表示反馈信道的可用PRB个数,b与一个PRB内使用的序列的数目有关。
  18. 根据权利要求1-17中任一项所述的方法,其特征在于,
    所述N个TB中解码失败的TB的数目为S;
    S≥P的情况下,所述M个TB为所述N个TB中解码失败的P个TB,所述M个TB对应的反馈信息为针对所述P个TB的NACK;或,S<P的情况下,所述M个TB包括所述S个TB,所述M个TB对应的反馈信息包括针对所述S个TB的NACK。
  19. 根据权利要求1-17中任一项所述的方法,其特征在于,若所述N个TB均解码成功,则所述M个TB为所述N个TB中的最后一个TB,所述M个TB对应的反馈 信息为针对所述最后一个TB的ACK。
  20. 一种数据传输方法,其特征在于,所述方法包括:
    发送设备发送N个传输块TB,所述N为正整数;
    通过梳齿接收针对所述N个TB中M个TB的反馈信息,所述M为正整数,所述M小于或等于所述N,且所述M小于或等于所述接收设备发送反馈信息的数目上限P,所述数目上限P根据传输次数上限以及梳齿的参数确定,所述P为正整数。
  21. 根据权利要求20所述的方法,其特征在于,所述发送反馈信息,包括:
    通过第一梳齿的Q个PRB发送反馈信息;所述Q为正整数;
    Figure PCTCN2022142457-appb-100022
    Figure PCTCN2022142457-appb-100023
    所述梳齿包括所述第一梳齿。
  22. 根据权利要求21所述的方法,其特征在于,若Q<X,所述方法还包括:
    通过第一梳齿内除所述Q个PRB之外的PRB发送反馈信息,所述X表示所述第一梳齿包括的PRB数目。
  23. 根据权利要求20-22中任一项所述的方法,其特征在于,发送反馈信息,包括:
    通过第二梳齿的R个PRB发送反馈信息;
    其中,R为正整数,所述R个PRB至少包括所述第二梳齿内频段最高的PRB以及频段最低的PRB,所述梳齿包括所述第二梳齿。
  24. 根据权利要求20-23中任一项所述的方法,其特征在于,所述方法还包括:
    接收指示信息;所述指示信息用于指示所述M的上限。
  25. 一种通信装置,其特征在于,包括存储器,处理器和收发器,其中:
    所述存储器用于存储计算机指令;
    所述收发器,用于接收和发送信息;
    所述处理器,与所述存储器耦合,用于调用所述存储器中的计算机指令,以通过所述收发器执行如权利要求1-19中任一项所述的方法,或者执行如权利要求20-24中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时以执行如权利要求1-19中任一项所述的方法,或者执行如权利要求20-24中任一项所述的方法。
  27. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得如权利要求1-19中任一项所述的方法,或者如权利要求20-24中任一项所述的方法被执行。
  28. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-19中任一项所述的方法,或者实现如述权利要求20-24中任一项所述的方法。
PCT/CN2022/142457 2022-01-05 2022-12-27 一种数据传输方法及装置 WO2023131010A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210007015.5 2022-01-05
CN202210007015 2022-01-05
CN202210191913.0 2022-02-28
CN202210191913.0A CN116455528A (zh) 2022-01-05 2022-02-28 一种数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2023131010A1 true WO2023131010A1 (zh) 2023-07-13

Family

ID=87073096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142457 WO2023131010A1 (zh) 2022-01-05 2022-12-27 一种数据传输方法及装置

Country Status (1)

Country Link
WO (1) WO2023131010A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294158A (zh) * 2020-02-14 2020-06-16 惠州Tcl移动通信有限公司 数据传输方法、装置、存储介质及移动终端
CN112398597A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种反馈信息传输方法及装置
WO2021071329A1 (ko) * 2019-10-11 2021-04-15 엘지전자 주식회사 Nr v2x에서 harq 피드백을 디스에이블하는 방법 및 장치
WO2021079351A1 (en) * 2019-10-23 2021-04-29 Lenovo (Singapore) Pte. Ltd. Receiving sidelink feedback from a group of ues

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112398597A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种反馈信息传输方法及装置
WO2021071329A1 (ko) * 2019-10-11 2021-04-15 엘지전자 주식회사 Nr v2x에서 harq 피드백을 디스에이블하는 방법 및 장치
WO2021079351A1 (en) * 2019-10-23 2021-04-29 Lenovo (Singapore) Pte. Ltd. Receiving sidelink feedback from a group of ues
CN111294158A (zh) * 2020-02-14 2020-06-16 惠州Tcl移动通信有限公司 数据传输方法、装置、存储介质及移动终端

Similar Documents

Publication Publication Date Title
US11943168B2 (en) Method and apparatus for transmission and reception of sidelink feedback in wireless communication system
US20200403737A1 (en) Method and apparatus for transmission or reception of sidelink feedback in communication system
CN108029120B (zh) 用于为低复杂度窄带终端指示对随机接入过程中的harq消息分配的资源的方法
US11791937B2 (en) Method and apparatus for transmission and reception of sidelink control information in wireless communication system
US11252604B2 (en) Data transmission method, apparatus, and system
EP4096128A1 (en) Feedback method and device for hybrid automatic repeat request information
WO2018059173A1 (zh) 免授权的传输上行信息的方法、网络设备和终端设备
US20220417976A1 (en) Processing time determination method and device of terminal in wireless vehicle communication system
CN113767582B (zh) 用于通过第一链路指示第二链路重传的设备和方法
WO2020221259A1 (zh) 传输方式确定方法和装置
CN115225230A (zh) 通信方法及装置
WO2021017792A1 (zh) 一种反馈信息的传输方法及终端装置
WO2023131010A1 (zh) 一种数据传输方法及装置
WO2021164603A1 (zh) 辅链路控制信息的资源指示方法与装置、终端设备
CN116458231A (zh) 通信方法、装置及系统
CN116455528A (zh) 一种数据传输方法及装置
WO2018171504A1 (zh) 数据传输的方法和装置
WO2022141593A1 (zh) 一种通信方法及装置
WO2024032535A1 (zh) 一种传输块大小确定方法及装置
WO2022237465A1 (zh) 一种车联网设备间资源协调方法、装置和用户设备
WO2023207493A1 (zh) 通信的方法和装置
WO2024066975A1 (zh) 一种通信方法及装置
WO2022222109A1 (zh) 资源选取方法、装置、设备及存储介质
WO2024031646A1 (en) Wireless communication method and related devices
WO2022198643A1 (zh) 信息报告方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918452

Country of ref document: EP

Kind code of ref document: A1