WO2021032003A1 - 上行控制信息传输方法及通信装置 - Google Patents

上行控制信息传输方法及通信装置 Download PDF

Info

Publication number
WO2021032003A1
WO2021032003A1 PCT/CN2020/109230 CN2020109230W WO2021032003A1 WO 2021032003 A1 WO2021032003 A1 WO 2021032003A1 CN 2020109230 W CN2020109230 W CN 2020109230W WO 2021032003 A1 WO2021032003 A1 WO 2021032003A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback information
control channel
uplink control
channel resource
csi
Prior art date
Application number
PCT/CN2020/109230
Other languages
English (en)
French (fr)
Inventor
杭海存
纪刘榴
施弘哲
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021032003A1 publication Critical patent/WO2021032003A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • This application relates to the field of communication technology, and in particular to an uplink control information transmission method and communication device.
  • the coordinated multipoint communication technology can improve system performance and spectrum efficiency at the edge of a cell, whether in uplink transmission or downlink transmission.
  • different network devices can send different downlink control information to the same terminal device, and the terminal device can send uplink control information (UCI) to the corresponding network according to each downlink control information.
  • UCI uplink control information
  • the terminal device can send uplink control information (UCI) to the corresponding network according to each downlink control information.
  • the UCI sent to each network device may all include hybrid automatic repeat request (HARQ)-acknowledgement (ACK) information and channel state information.
  • HARQ hybrid automatic repeat request
  • ACK acknowledgenowledgement
  • This application provides an uplink control information transmission method and communication device.
  • this application provides an uplink control information transmission method.
  • the terminal may determine the first feedback information from the N pieces of feedback information, and the first uplink control channel resource corresponding to the first feedback information and the uplink control channel resource corresponding to the first CSI exist in the time domain Overlapping, the terminal can multiplex the first feedback information and the first CSI on the target uplink control channel resource for transmission.
  • the target uplink control channel resource is determined based on downlink control related parameters associated with the first feedback information. It can be seen that this embodiment can perform resource reselection for the feedback information and CSI where the uplink control channel resources overlap, thereby helping to achieve the maximum performance improvement.
  • the terminal can obtain information from the N pieces of feedback information.
  • One piece of feedback information is selected from the feedback information to be multiplexed with the first CSI as the first feedback information, and a target uplink control channel resource for multiplexing is determined.
  • the terminal may obtain information from the at least one piece of feedback information.
  • the CSI it is determined that the uplink control channel resource and the uplink control channel resource of the first feedback information have overlapping first CSI in the time domain, so that the first feedback information and the first CSI can be multiplexed on the target uplink control channel Sent on the resource.
  • the target uplink control channel resource is determined based on a downlink control related parameter associated with the first feedback information.
  • the uplink control channel resources corresponding to the N pieces of feedback information may overlap in the time domain, or may not overlap, or may partially overlap.
  • the terminal may process the N pieces of feedback information based on the foregoing implementation manner.
  • the first feedback information may be feedback information selected from the N pieces of feedback information according to certain conditions, or may be any one of the N pieces of feedback information.
  • the N pieces of feedback information further include second feedback information; the second uplink control channel resource corresponding to the second feedback information corresponds to the first uplink control channel resource and the first CSI At least one of the uplink control channel resources of, overlaps in the time domain.
  • the terminal selects the first feedback information and the first CSI for multiplexing.
  • the terminal for the first uplink control channel resource corresponding to the first feedback information and the second uplink control channel resource corresponding to the second feedback information, the terminal according to the starting position of the uplink control channel resource in the time domain
  • the first feedback information is selected at the front or the back, and the largest or smallest occupied time domain resources.
  • the terminal selects the first feedback information according to the starting position in the time domain at the front or the back, or the time domain resource occupied is the largest or smallest.
  • the first feedback information satisfies one or more of the following conditions: the identifier or index number of the downlink control related parameter associated with the first feedback information is the smallest; the DCI associated with the first feedback information The start position of the occupied resources is the first in the time domain; the CCE start position is the first among the resources occupied by the DCI associated with the first feedback information; the control resource associated with the DCI associated with the first feedback information The identifier or index number associated with the set is the smallest; the value of the uplink control channel resource indication field in the DCI associated with the first feedback information is the smallest.
  • the DCI associated with the feedback information is determined based on the PDCCH detection timing of one or more DCIs corresponding to the feedback information or based on the PDCCH detection timing of one or more DCIs corresponding to the feedback information and the associated cell identity.
  • the DCI associated with the feedback information refers to the DCI carried by the PDCCH with the lowest PDCCH detection timing among the one or more DCIs corresponding to the feedback information, or the PDCCH with the lowest PDCCH detection timing and the largest associated cell identity.
  • the DCI associated with the feedback information refers to the DCI carried by the PDCCH with the lowest PDCCH detection timing among the one or more DCIs corresponding to the feedback information, or the PDCCH with the lowest PDCCH detection timing and the largest associated cell identity.
  • the first CSI includes multiple CSIs, and uplink control channel resources corresponding to the multiple CSIs overlap in the time domain; the uplink control channel resources corresponding to the first CSI are used for carrying The multiple CSI after multiplexing.
  • the terminal may multiplex the CSI that can be multiplexed, and then determine based on the overlap between the uplink control channel resources used to carry the multiplexed CSI and the uplink control channel resources for each feedback information Multiplexed with one of the feedback messages and sent.
  • the target uplink control channel resource is determined based on the total number of bits and the downlink control related parameters associated with the first feedback information; the total number of bits is the first feedback information and the second The total bits of a CSI. That is, based on the total number of bits, an uplink control channel resource set is selected from the resource pool configured by the high-level signaling, so that the target uplink control channel resource is determined based on the downlink control related parameters associated with the first feedback information.
  • the terminal multiplexes the second CSI on the target control channel resource to send; the uplink control channel resource corresponding to the second CSI is the same as the first uplink control channel resource and the target control channel resource. At least one of the uplink control channel resources corresponding to the first CSI overlaps in the time domain.
  • the terminal after the terminal selects the first feedback information, it can sequentially select at least one CSI that overlaps the first uplink control channel resource in the time domain from at least one CSI in the uplink time unit; and then select the remaining CSI Selecting at least one CSI that overlaps the uplink control channel resource of the at least one CSI, and so on, so that the selected CSI and the first feedback information can be multiplexed on the target uplink control channel resource for transmission.
  • the target uplink control channel resource is determined based on the first feedback information and the total number of bits of all multiplexed CSI, and the downlink control related parameters associated with the first feedback information.
  • the terminal may select the first feedback information from the N pieces of feedback information according to the above implementation manner. . From the N pieces of feedback information, the terminal selects the feedback information with the longest time domain resource occupied by the uplink control channel resource in the time domain as the first feedback information. Alternatively, the terminal selects the first feedback information from the N pieces of feedback information according to the starting position of the uplink control channel resource in the time domain. Alternatively, the terminal selects the first feedback information according to the longest time domain resource occupied by the uplink control channel resource and the start position of the uplink control channel resource in the time domain is the first.
  • the terminal selects the feedback information with the longest time domain resource occupied by the uplink control channel resource in the time domain from the N feedback information; then selects the feedback information with the highest starting position of the uplink control channel resource in the time domain from the feedback information, as The first feedback information. Or, from the N pieces of feedback information, the terminal first selects the feedback information with the uplink control channel resource starting position first in the time domain; and then selects the uplink control channel resource with the longest time domain resource in the time domain.
  • the feedback information is the first feedback information.
  • the first feedback information may also be selected based on the DCI or downlink control related parameters respectively associated with the N pieces of feedback information.
  • the terminal may also determine whether to send the second feedback information according to the overlap between the target uplink control channel resource and the second uplink control channel resource of the second feedback information.
  • the uplink control channel resource corresponding to the second feedback information is called the second uplink control channel resource.
  • the terminal When the target uplink control channel resource and the second uplink control channel resource overlap in the time domain, the terminal does not send the second feedback information on the second uplink control channel resource; or the target uplink control channel resource and the second uplink control channel resource When control channel resources do not overlap in the time domain, the terminal sends the second feedback information on the second uplink control channel resource; or, the target uplink control channel resource and the second uplink control channel Resources overlap in the time domain, and the time-frequency resources of the overlapping part do not affect the demodulation reference signal of the uplink control channel carrying the second feedback information, the terminal may send the second feedback information on the second uplink control channel resource. It can be seen that, in this implementation manner, in addition to sending the multiplexed first feedback information and the first CSI on the target uplink control channel resource, the second feedback information is sent as much as possible, which is conducive to maximizing performance improvement.
  • the terminal selects the first feedback information to multiplex the first CSI, it can continue to select the second feedback information from the N-1 pieces of feedback information; based on the uplink control corresponding to the second feedback information
  • the overlap of the channel resource and the target uplink control channel resource is used to determine whether to send or not to send the second feedback information.
  • the terminal may also determine whether to multiplex the second feedback information on the target uplink control channel according to the overlap between the target uplink control channel resource and the second uplink control channel resource of the second feedback information Resources.
  • the target uplink control channel resource is determined based on the total number of bits and the downlink control related parameters associated with the first feedback information; the total number of bits is the first feedback information, the second Feedback information and the total bits of the first CSI.
  • the uplink control information after multiplexing in the foregoing embodiments includes at most one feedback information.
  • the multiplexed uplink control information may include multiple feedback information. Therefore, for scenarios where the interaction delay between network devices is short, the network devices can obtain the scheduling status of each other and the total number of bits of feedback information in time, etc., so that the network devices can correctly interpret multiple multiplexed feedback information. code.
  • this application also provides an uplink control information transmission method.
  • the terminal determines N pieces of feedback information and the first CSI.
  • any one of the uplink control channel resources is associated with at least one other uplink control channel resource. Channel resources overlap in the time domain.
  • the terminal determines the first feedback information from the multiple pieces of feedback information; the terminal multiplexes the N pieces of feedback information and the first CSI on the target uplink control channel resource for transmission.
  • the target uplink control channel resource is determined based on downlink control related parameters associated with the first feedback information.
  • the downlink control related parameters respectively associated with the N pieces of feedback information are different.
  • N is an integer greater than or equal to 2.
  • the target uplink control channel resource is determined based on a total number of bits and a downlink control related parameter associated with the first feedback information; the total number of bits is the total bits of the N feedback information and the first CSI.
  • the N pieces of feedback information further include second feedback information; the second uplink control channel resource corresponding to the second feedback information is different from the first uplink control channel resource and the first uplink control channel resource. At least one of the uplink control channel resources corresponding to the CSI overlaps in the time domain.
  • the terminal determines the first feedback information from the N pieces of feedback information, including: the terminal according to the starting position of the uplink control channel resource in the time domain is the first or the last, and the occupied time
  • the domain resource is the largest or the smallest, and the first uplink control channel resource is selected from the uplink control channel resources corresponding to the N feedback information; or the terminal is the first or the last according to the starting position of the uplink control channel resource in the time domain, Or the time domain resource occupied is the largest or the smallest, and the first uplink control channel resource is selected from the uplink control channel resources corresponding to the N pieces of feedback information; the feedback information corresponding to the first uplink control channel resource is the first feedback information.
  • the first feedback information satisfies one or more of the following conditions: the identifier or index number of the downlink control related parameter associated with the first feedback information is the smallest; the DCI associated with the first feedback information The start position of the occupied resources is the first in the time domain; the CCE start position is the first among the resources occupied by the DCI associated with the first feedback information; the control of the DCI association associated with the first feedback information The identifier or index number associated with the resource set is the smallest; the value of the uplink control channel resource indication field in the DCI associated with the first feedback information is the smallest.
  • the terminal when the target uplink control channel resource and the second uplink control channel resource corresponding to the second feedback information overlap in the time domain, the terminal also multiplexes the second feedback information in the The target uplink control channel resource is sent.
  • the target uplink control channel resource is determined based on the total number of bits and the downlink control related parameters associated with the first feedback information; the total number of bits is the N feedback information, the second Feedback information and the total bits of the first CSI.
  • the terminal multiplexes the second CSI on the target control channel resource to send; the uplink control channel resource corresponding to the second CSI is the same as the N+1 uplink control channel resources At least one of the overlaps in the time domain.
  • the N+1 uplink control channel resources are uplink control channel resources corresponding to the N feedback information and the first CSI respectively.
  • the target uplink control channel resource is determined based on the total number of bits and the downlink control related parameters associated with the first feedback information; the total number of bits is the N pieces of feedback information, the first Total bits of CSI and second CSI.
  • the first CSI includes multiple CSIs, and uplink control channel resources corresponding to the multiple CSIs overlap in the time domain; the uplink control channel resources corresponding to the first CSI are used for Bear the multiplexed CSI.
  • the terminal may multiplex the CSI that can be multiplexed, and then determine based on the overlap between the uplink control channel resources used to carry the multiplexed CSI and the uplink control channel resources for each feedback information Multiplexed with N feedback information and sent.
  • this application also provides an uplink control information transmission method.
  • the uplink control information transmission method is characterized by comprising: the first uplink control channel resource and the uplink control channel resource corresponding to the first CSI are present in time When there is overlap in the domain, the first network device receives the first feedback information and the first CSI sent by the terminal on the target uplink control channel resource; the target uplink control channel resource is related to the downlink control associated with the first feedback information The parameter is determined; or the first network device receives the first feedback information sent by the terminal on the uplink control channel resource corresponding to the first feedback information.
  • the target uplink control channel resource is determined based on the total number of bits and the downlink control related parameters associated with the first feedback information; the total number of bits is the first feedback information and the Total bits of the first CSI.
  • the second uplink control channel resource corresponding to the second feedback information, at least one of the uplink control channel resource corresponding to the first uplink control channel resource and the first CSI is in the time domain If there is overlap, the method further includes: the first network device receives the second feedback information multiplexed by the terminal on the target control channel resource; and the first network device receives the second feedback information Send to the second network device.
  • the target uplink control channel resource is determined based on the total number of bits and the downlink control related parameters associated with the first feedback information; the total number of bits is the first feedback information, the second feedback information, and the Total bits of the first CSI.
  • the first network device receives the second CSI multiplexed by the terminal on the target control channel resource; the uplink control channel resource corresponding to the second CSI is the same as the first uplink At least one of the control channel resources and the uplink control channel resources corresponding to the first CSI overlaps in the time domain.
  • the first CSI includes multiple CSIs, and uplink control channel resources corresponding to the multiple CSIs overlap in the time domain; the uplink control channel resources corresponding to the first CSI are used for Bear the multiplexed CSI.
  • this application also provides a method for transmitting uplink control information.
  • the network device determines N pieces of feedback information and the first CSI, and any one of the pieces of uplink control channel resources corresponding to the N pieces of feedback information and the first CSI respectively
  • the uplink control channel resource overlaps with at least one other uplink control channel resource in the time domain.
  • the network device determines the first feedback information from the multiple pieces of feedback information; the network device determines that the terminal multiplexes the N pieces of feedback information and the first CSI on the target uplink control channel resource.
  • the target uplink control channel resource is determined based on downlink control related parameters associated with the first feedback information.
  • the downlink control related parameters respectively associated with the N pieces of feedback information are different.
  • N is an integer greater than or equal to 2.
  • the target uplink control channel resource is determined based on a total number of bits and a downlink control related parameter associated with the first feedback information; the total number of bits is the total bits of the N feedback information and the first CSI.
  • the N pieces of feedback information further include second feedback information; the second uplink control channel resource corresponding to the second feedback information is different from the first uplink control channel resource and the first uplink control channel resource. At least one of the uplink control channel resources corresponding to the CSI overlaps in the time domain.
  • the network device determines the first feedback information from the N pieces of feedback information, including: the network device determines the first feedback information according to the starting position of the uplink control channel resource in the time domain, and The first uplink control channel resource is selected from the uplink control channel resources corresponding to the N feedback information respectively; or the network equipment is the most advanced or the most advanced according to the starting position of the uplink control channel resource in the time domain. Later, or the time domain resource occupied is the largest or the smallest, the first uplink control channel resource is selected from the uplink control channel resources corresponding to the N pieces of feedback information; the feedback information corresponding to the first uplink control channel resource is the first feedback information.
  • the first feedback information satisfies one or more of the following conditions: the identifier or index number of the downlink control related parameter associated with the first feedback information is the smallest; the DCI associated with the first feedback information The start position of the occupied resources is the first in the time domain; the CCE start position is the first among the resources occupied by the DCI associated with the first feedback information; the control of the DCI association associated with the first feedback information The identifier or index number associated with the resource set is the smallest; the value of the uplink control channel resource indication field in the DCI associated with the first feedback information is the smallest.
  • the terminal when the target uplink control channel resource and the second uplink control channel resource corresponding to the second feedback information overlap in the time domain, the terminal also multiplexes the second feedback information in the The target uplink control channel resource is sent.
  • the target uplink control channel resource is determined based on the total number of bits and the downlink control related parameters associated with the first feedback information; the total number of bits is the N feedback information, the second Feedback information and the total bits of the first CSI.
  • the network device may determine that the second CSI is multiplexed and sent on the target control channel resource; the uplink control channel resource corresponding to the second CSI is the same as the above N+1 uplink control channel resources At least one of them overlaps in the time domain.
  • the N+1 uplink control channel resources are uplink control channel resources corresponding to the N feedback information and the first CSI respectively.
  • the target uplink control channel resource is determined based on the total number of bits and the downlink control related parameters associated with the first feedback information; the total number of bits is the N pieces of feedback information, the first Total bits of CSI and second CSI.
  • the first CSI includes multiple CSIs, and uplink control channel resources corresponding to the multiple CSIs overlap in the time domain; the uplink control channel resources corresponding to the first CSI are used for Bear the multiplexed CSI.
  • the network device can determine that the terminal multiplexes the CSI that can be multiplexed, and then based on the overlap between the uplink control channel resources used to carry the multiplexed CSI and the uplink control channel resources of each feedback information. In case, it is multiplexed with N feedback information.
  • the present application also provides a communication device that has some or all of the functions of the terminal in the method examples described in the first aspect to the second aspect.
  • the function of the communication device may have the functions described in the application. Part or all of the functions in the embodiments may also have the functions of independently implementing any of the embodiments in the present application.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the communication device and other devices.
  • the communication device may further include a storage unit, which is configured to be coupled with the processing unit and the sending unit, and stores necessary program instructions and data for the terminal.
  • the communication device includes:
  • a processing unit configured to determine the first feedback information from the N pieces of feedback information; the N is an integer greater than or equal to 2; the respective downlink control related parameters associated with the N pieces of feedback information are different;
  • the communication unit is configured to multiplex the first feedback information and the first channel state information CSI on a target uplink control channel resource for transmission; the first uplink control channel resource corresponding to the first feedback information and the first CSI The corresponding uplink control channel resources overlap in the time domain;
  • the processing unit is further configured to determine the target uplink control channel resource based on a downlink control related parameter associated with the first feedback information.
  • the communication device includes:
  • the processing unit is configured to determine N pieces of feedback information and the first CSI.
  • the uplink control channel resources corresponding to the N pieces of feedback information and the first CSI any one of the uplink control channel resources and at least one other uplink control channel resource are in time There is overlap in the domain;
  • the processing unit is further configured to determine the first feedback information from the multiple feedback information
  • the communication unit is configured to multiplex the N pieces of feedback information and the first CSI on a target uplink control channel resource for transmission.
  • the target uplink control channel resource is determined based on downlink control related parameters associated with the first feedback information.
  • the downlink control related parameters respectively associated with the N pieces of feedback information are different.
  • N is an integer greater than or equal to 2.
  • the processing unit may be a processor
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory.
  • the communication device includes:
  • a processor configured to determine the first feedback information from the N pieces of feedback information; the N is an integer greater than or equal to 2; the respective downlink control related parameters associated with the N pieces of feedback information are different;
  • the transceiver is configured to multiplex the first feedback information and the first channel state information CSI on a target uplink control channel resource for transmission; the first uplink control channel resource corresponding to the first feedback information and the first CSI The corresponding uplink control channel resources overlap in the time domain;
  • the processor is further configured to determine the target uplink control channel resource based on a downlink control related parameter associated with the first feedback information.
  • the communication device includes:
  • the processor is configured to determine N pieces of feedback information and the first CSI.
  • the uplink control channel resources corresponding to the N pieces of feedback information and the first CSI any one of the uplink control channel resources and at least one other uplink control channel resource are in time There is overlap in the domain;
  • the processor is further configured to determine the first feedback information from the multiple feedback information
  • the transceiver is configured to multiplex the N pieces of feedback information and the first CSI on a target uplink control channel resource for transmission.
  • the target uplink control channel resource is determined based on downlink control related parameters associated with the first feedback information.
  • the downlink control related parameters respectively associated with the N pieces of feedback information are different.
  • N is an integer greater than or equal to 2.
  • this application also provides another communication device.
  • the communication device has some or all of the functions of the network device in the method examples described in the third aspect and the fourth aspect.
  • the function of the communication device may have the function of some or all of the embodiments of the network device in the present application, or may have the function of independently implementing any of the embodiments of the present application.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the communication unit is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the communication device and other devices.
  • the communication device may further include a storage unit for coupling with the acquiring unit and the sending unit, and storing program instructions and data necessary for the communication device.
  • the communication device includes:
  • a processing unit configured to, when the first uplink control channel resource and the uplink control channel resource corresponding to the first CSI overlap in the time domain, determine that the terminal sends the first feedback information and the first feedback information on the target uplink control channel resource A CSI; a communication unit, configured to receive first feedback information and first CSI sent by the terminal on a target uplink control channel resource, where the target uplink control channel resource is related to downlink control associated with the first feedback information Determined by parameters; or
  • a processing unit configured to determine that the terminal is on the uplink control channel resource corresponding to the first feedback information when the first uplink control channel resource and the uplink control channel resource corresponding to the first CSI overlap in the time domain Sending the first feedback information;
  • the communication unit is configured to receive the first feedback information sent by the terminal on the uplink control channel resource corresponding to the first feedback information.
  • the communication device includes:
  • the processing unit is configured to determine N pieces of feedback information and the first CSI.
  • the uplink control channel resources corresponding to the N pieces of feedback information and the first CSI any one of the uplink control channel resources and at least one other uplink control channel resource are in time There is an overlap in the domain.
  • a processing unit configured to determine first feedback information from the multiple feedback information
  • a processing unit configured to determine that the terminal multiplexes the N pieces of feedback information and the first CSI on a target uplink control channel resource to send;
  • the communication unit is configured to receive the N pieces of feedback information and the first CSI sent by the terminal on the target uplink control channel resource.
  • the target uplink control channel resource is determined based on downlink control related parameters associated with the first feedback information.
  • the downlink control related parameters respectively associated with the N pieces of feedback information are different.
  • N is an integer greater than or equal to 2.
  • the communication unit may be a transceiver or a communication interface.
  • the communication device includes:
  • a processor configured to, when the first uplink control channel resource and the uplink control channel resource corresponding to the first CSI overlap in the time domain, determine that the terminal sends the first feedback information and the first feedback information on the target uplink control channel resource A CSI; a communication unit, configured to receive first feedback information and first CSI sent by the terminal on a target uplink control channel resource, where the target uplink control channel resource is related to downlink control associated with the first feedback information Determined by parameters; or
  • a processor configured to determine that the terminal is on the uplink control channel resource corresponding to the first feedback information when the first uplink control channel resource and the uplink control channel resource corresponding to the first CSI overlap in the time domain Sending the first feedback information;
  • the transceiver is configured to receive the first feedback information sent by the terminal on the uplink control channel resource corresponding to the first feedback information.
  • the communication device includes:
  • the processor is configured to determine N pieces of feedback information and the first CSI.
  • the uplink control channel resources corresponding to the N pieces of feedback information and the first CSI any one of the uplink control channel resources and at least one other uplink control channel resource are in time There is an overlap in the domain.
  • a processor configured to determine first feedback information from the multiple feedback information
  • a processor configured to determine that the terminal multiplexes the N pieces of feedback information and the first CSI on a target uplink control channel resource to send;
  • the transceiver is configured to receive the N pieces of feedback information and the first CSI sent by the terminal on the target uplink control channel resource.
  • the target uplink control channel resource is determined based on downlink control related parameters associated with the first feedback information.
  • the downlink control related parameters respectively associated with the N pieces of feedback information are different.
  • N is an integer greater than or equal to 2.
  • the processor can be used to perform, for example, but not limited to, baseband related processing
  • the transceiver can be used to perform, for example, but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on independent chips, or at least partly or fully arranged on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be called a system chip (System on Chip). Whether each device is independently arranged on different chips or integrated on one or more chips often depends on the specific needs of product design. The embodiment of the present invention does not limit the specific implementation form of the foregoing device.
  • the present application also provides a processor, configured to execute the foregoing various methods.
  • the processes of sending and receiving the information in the foregoing methods can be understood as the process of outputting the foregoing information by the processor and the process of receiving the input of the foregoing information by the processor.
  • the processor when outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver. Furthermore, after the above-mentioned information is output by the processor, other processing may be required before it reaches the transceiver.
  • the transceiver receives the aforementioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to undergo other processing before being input to the processor.
  • the receiving TCI information mentioned in the foregoing method can be understood as the processor inputting TCI information.
  • sending TCI information can be understood as the processor outputting TCI information.
  • the processor outputs and receives, inputs and other operations, instead of transmitting, sending and receiving directly by the radio frequency circuit and antenna.
  • the foregoing processor may be a processor dedicated to executing these methods, or a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory may be a non-transitory (non-transitory) memory, such as a read only memory (Read Only Memory, ROM), which can be integrated with the processor on the same chip, or can be set on different chips.
  • ROM read only memory
  • the embodiment does not limit the type of the memory and the setting mode of the memory and the processor.
  • an embodiment of the present invention provides a computer-readable storage medium for storing computer software instructions used by the aforementioned terminal, which includes a program for executing the first aspect or the second aspect of the aforementioned method.
  • an embodiment of the present invention provides a computer-readable storage medium for storing computer software instructions used by the above-mentioned network device, which includes a program for executing the third or fourth aspect of the above-mentioned method .
  • the present application also provides a computer program product including instructions, which when run on a computer, cause the computer to execute the method described in the first aspect or the second aspect.
  • this application also provides a computer program product including instructions, which when run on a computer, cause the computer to execute the method described in the third or fourth aspect.
  • this application provides a chip system that includes a processor and an interface, and is used to support the terminal to implement the functions involved in the first aspect or the second aspect, for example, to determine or process At least one of the data and information.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system, which includes a processor and an interface, and is used to support the network device to implement the functions involved in the third or fourth aspect, for example, to determine or process the above-mentioned methods. At least one of the data and information involved.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Fig. 1 is an example diagram of a V2X system provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of HARQ-ACK feedback provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another HARQ-ACK feedback provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another HARQ-ACK feedback provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of an uplink control information transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of overlapping multiple uplink control channel resources provided by an embodiment of the present application.
  • FIG. 8 is another schematic diagram of overlapping multiple uplink control channel resources provided by an embodiment of the present application.
  • FIG. 9 is another schematic diagram of overlapping multiple uplink control channel resources provided by an embodiment of the present application.
  • FIG. 10 is another schematic diagram of overlapping multiple uplink control channel resources provided by an embodiment of the present application.
  • FIG. 11 is another schematic diagram of overlapping multiple uplink control channel resources provided by an embodiment of the present application.
  • FIG. 12 is another schematic diagram of overlapping multiple uplink control channel resources provided by an embodiment of the present application.
  • FIG. 13 is another schematic diagram of overlapping multiple uplink control channel resources provided by an embodiment of the present application.
  • FIG. 14 is another schematic diagram of overlapping multiple uplink control channel resources provided by an embodiment of the present application.
  • 15 is a schematic flowchart of another method for transmitting uplink control information according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the technical solution of the present application can be specifically applied to various communication systems.
  • the technical solution of this application can also be used in future networks, such as 5G systems, or new radio (NR) systems; or device to device (device to device). , D2D) system, machine to machine (M2M) system and so on.
  • 5G systems or new radio (NR) systems
  • NR new radio
  • device to device device to device
  • M2M machine to machine
  • V2X communication is aimed at high-speed devices represented by vehicles. It is the basic technology and key technology applied in scenarios with very high communication delay requirements in the future, such as smart cars, autonomous driving, and intelligent transportation systems.
  • the V2X communication includes: vehicle-to-vehicle (V2V) communication, vehicle to roadside infrastructure (vehicle to infrastructure, V2I) communication, vehicle to pedestrian communication (vehicle to vehicle, V2V) pedestrian, V2P) or vehicle-to-network (V2N) communication, etc.
  • V2V vehicle-to-vehicle
  • V2I vehicle to roadside infrastructure
  • V2P vehicle to pedestrian communication
  • V2N vehicle-to-network
  • the communication between the terminal devices involved in the V2X system is widely referred to as slide link (SL) communication.
  • the terminal described in this application may also be a vehicle or a vehicle component applied to a vehicle.
  • Fig. 1 is a schematic diagram of a V2X system involved in an embodiment of the present application.
  • the diagram includes V2V communication, V2P communication, and V2I/N communication.
  • vehicles or vehicle components communicate through V2V.
  • Vehicles or vehicle components can broadcast their own speed, driving direction, specific location, whether emergency brakes are stepped on, and other information to surrounding vehicles.
  • Drivers of surrounding vehicles can better perceive traffic conditions outside the line of sight by obtaining such information , So as to make advance judgments of dangerous situations and make avoidance;
  • vehicles or vehicle components communicate with roadside infrastructure through V2I, and roadside infrastructure can provide various types of service information and data network access for vehicles or vehicle components .
  • non-stop charging, in-car entertainment and other functions have greatly improved traffic intelligence.
  • Roadside infrastructure for example, roadside unit (RSU) includes two types: one is a terminal device type RSU.
  • the RSU of this terminal equipment type Since the RSU is distributed on the roadside, the RSU of this terminal equipment type is in a non-mobile state, and there is no need to consider mobility; the other is the RSU of the network equipment type.
  • the RSU of this network device type can provide timing synchronization and resource scheduling for vehicles or vehicle components communicating with network devices. Vehicles or vehicle components communicate with people through V2P; vehicles or vehicle components communicate with the network through V2N.
  • V2P vehicles or vehicle components communicate with the network through V2N.
  • the network architecture and business scenarios described in the embodiments disclosed in this application are intended to more clearly illustrate the technical solutions of the embodiments disclosed in this application, and do not constitute a limitation on the technical solutions provided in the embodiments disclosed in this application. Ordinary technicians can know that with the evolution of network architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments disclosed in this application are equally applicable to similar technical problems.
  • the network devices involved in the embodiments disclosed in this application include a base station (BS), which may be a device that is deployed in a wireless access network and can communicate with a terminal wirelessly.
  • the base station may have many forms, such as macro base stations, micro base stations, relay stations, and access points.
  • the base station involved in the embodiment disclosed in this application may be a base station in 5G or a base station in LTE, where the base station in 5G may also be called a transmission reception point (TRP).
  • TRP transmission reception point
  • the network equipment may include a centralized unit (CU) and a distributed unit (DU, distributed unit).
  • the network device may also include a radio unit (RU).
  • CU implements some functions of base stations
  • DU implements some functions of network equipment, for example, CU implements radio resource control (RRC), packet data convergence protocol (PDCP) layer functions
  • DU implements wireless Link control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions. Since the RRC layer information will eventually become the physical layer information, or be transformed from the physical layer information, under this architecture, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also It is considered to be sent by DU or DU+RU.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless Link control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions. Since the RRC layer information will
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network devices in the access network RAN, or the CU can be divided into network devices in the core network (core network, CN), which is not limited here.
  • the device used to implement the function of the network device may be a network device; it may also be a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device used to implement the functions of the network equipment is a network device, and taking the network equipment as a base station as an example, the technical solutions provided in the embodiments disclosed in this application are described.
  • terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, user agent or User device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in unmanned driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( The wireless terminal in transportation safety, the wireless terminal in the smart city, the wireless terminal in the smart home, the wireless terminal in the aforementioned V2X car networking, or the wireless terminal type RSU, etc.
  • At least one can also be described as one or more, and the multiple can be two, three, four or more, which is not limited in this application.
  • the embodiments disclosed in the present application for a technical feature, it is distinguished by "first”, “second”, “third”, “A”, “B”, “C”, and “D”.
  • the technical features in the technical features, the “first”, “second”, “third”, “A”, “B”, “C” and “D” describe the technical features in no order or size order.
  • FIG. 2 As an example to illustrate the uplink control information transmission method described in the embodiments disclosed in this application.
  • FIG. 2 is a schematic diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system may include: multiple network devices (for example, TRP), and one or more terminals.
  • the network device can be used to communicate with the terminal through a wireless interface under the control of a network device controller (not shown).
  • the network device controller may be a part of the core network, or may be integrated into the network device.
  • the network devices can be used to transmit control information or user data to the core network through a backhaul interface.
  • TRP1 and TRP2 communicate with each other directly or indirectly through a backhaul interface.
  • multiple network devices can schedule the same terminal, that is, a multi-station coordinated transmission scenario.
  • Multi-station cooperative transmission scenarios can be divided into two categories.
  • One is the ideal backhaul (IB) scenario.
  • IB ideal backhaul
  • NIB non-ideal backhaul
  • uplink control information may include hybrid automatic repeat request (HARQ)-acknowledgement (ACK) information and channel state information (CSI).
  • CSI can include periodic channel state information (P-CSI), aperiodic channel state information (AP-CSI), semi-persistent channel state information (SP) -CSI) etc.
  • TRP1 and TRP2 can respectively send different downlink control information to the terminal to schedule each downlink data, and different downlink control information is carried on different physical downlink control channels (PDCCH) on.
  • the terminal feeds back hybrid automatic repeat request (HARQ)-acknowledgement (ACK) information according to the decoding result of each downlink data.
  • HARQ-ACK information is used to give positive (ACK) or negative (NACK) feedback to received data, such as data carried by the physical downlink share channel (physical downlink share channel, PDSCH), so that lost or erroneous data can be recovered. Perform fast retransmission.
  • the terminal When the terminal feeds back the HARQ-ACK information, it will put one or more HARQ-ACK information bits corresponding to the downlink data in a HARQ-ACK codebook and feed it back to the TRP.
  • the TRP can indicate the timing offset between the downlink time unit where the PDSCH is located and the uplink time unit for HARQ feedback through high-level signaling or a combination of high-level signaling and downlink control information (DCI).
  • DCI downlink control information
  • the terminal can learn the correspondence between the uplink time unit for feeding back HARQ-ACK information bits and the downlink time unit for transmitting downlink data.
  • the terminal may place the HARQ-ACK information bits of the downlink data transmitted by the corresponding downlink time unit with the same uplink time unit in the same HARQ-ACK codebook for feedback.
  • the high-level signaling indicates a timing offset value K1
  • the terminal device can obtain the correspondence between an uplink time unit and a downlink time unit, so that the terminal can transmit the HARQ-ACK of the downlink data transmitted by the downlink time unit.
  • the information bits are fed back on the uplink time unit.
  • the time unit obtained by the uplink time unit-K1 (that is, the K1 time unit counted forward by the uplink time unit) is the downlink time unit.
  • the timing offset value may also be a time domain indicator value, a feedback timing indicator, and the like.
  • TRP also needs to combine the feedback timing indicator in DCI (such as the PDSCH-to-HARQ feedback timing indicator (PDSCH-to-HARQ feedback timing indicator)) k i , To inform the terminal of the uplink time unit used when the HARQ-ACK information bit of the PDSCH scheduled by the DCI is fed back.
  • DCI such as the PDSCH-to-HARQ feedback timing indicator (PDSCH-to-HARQ feedback timing indicator)
  • the semi-static HARQ-ACK codebook means that the size of the HARQ-ACK codebook does not change with the actual situation of data scheduling.
  • the dynamic HARQ-ACK codebook means that the size of the HARQ-ACK codebook changes as the actual situation of data scheduling changes.
  • the size of the semi-static HARQ-ACK codebook is determined by the timing offset value indicated by the higher layer signaling. Even if there is no DCI to schedule the PDSCH corresponding to the timing offset value, NACK needs to be fed back on the uplink time unit corresponding to the timing offset value.
  • the dynamic HARQ-ACK codebook when there is no DCI to schedule the PDSCH corresponding to the timing offset value, there is no need to feed back NACK on the uplink time unit corresponding to the timing offset value.
  • TRP1 takes multiple DCI-scheduled downlink data sent by TRP1 as an example to illustrate the semi-static HARQ-ACK codebook and the dynamic HARQ-ACK codebook.
  • TRP1 uses DCI0 to schedule PDSCH0, where PDSCH0 is transmitted on slot0 and DCI0 is carried on PDCCH0, and according to the indication of PDSCH-to-HARQ feedback timing indicator in DCI0 Make sure that the timing offset value is 4.
  • TRP1 uses DCI1 to schedule PDSCH1, where PDSCH1 is transmitted on slot1, and DCI1 is carried on PDCCH1, and the timing offset value is determined to be 3 according to the indication of the PDSCH-to-HARQ feedback timing indicator in DCI1.
  • TRP1 does not schedule slot 2 to transmit any downlink data.
  • the HARQ-ACK codebook 1 corresponding to TRP1 in uplink time slot 4 needs to include the HARQ-ACK information bits of scheduled PDSCH0 and PDSCH1, and does not need to include the unscheduled time slot 2 corresponding NACK.
  • the terminal can put the HARQ-ACK information bits generated for PDSCH0 and the HARQ-ACK information bits generated for PDSCH1 in a HARQ-ACK codebook 1 in a semi-static HARQ-ACK codebook or a dynamic HARQ-ACK codebook.
  • TRP1 interprets the HARQ-ACK codebook information sent on slot 4 to know whether the HARQ-ACK information bit corresponding to each PDSCH is ACK or NACK.
  • the terminal may also feed back HARQ-ACK information bits of the downlink data respectively transmitted by the TRP2 scheduling multiple time units in one HARQ-ACK codebook. Since TRP1 and TRP2 schedule each downlink data relatively independently, for the terminal, different network devices can send different HARQ-ACK codebooks, so there may be multiple HARQ-ACK codes in one uplink time slot In this case, the downlink control related parameters respectively associated with the multiple HARQ-ACK codebooks are different, that is, the TRPs respectively associated with the multiple HARQ-ACK codebooks are different.
  • TRP1 is transmitted on slot0 through PDSCH0 scheduled by DCI0, and PDSCH1 is scheduled for transmission on slot1 through DCI1.
  • the terminal is based on the above-mentioned high-level signaling indication or high-level signaling combined with DCI indication, and semi-static
  • the HARQ-ACK codebook or the signaling indication of the dynamic HARQ-ACK codebook can obtain the HARQ-ACK codebook 1 fed back on slot4.
  • the HARQ-ACK codebook 1 includes the HARQ-ACK information bits of PDSCH0 and the HARQ-ACK information bits of PDSCH1.
  • TRP2 schedules PDSCH2 to be transmitted on slot0 through DCI2, and schedules PDSCH3 to be transmitted on slot1 through DCI3, based on the above-mentioned high-level signaling indication or high-level signaling combined with DCI indication, and semi-static HARQ-ACK codebook or dynamic HARQ-ACK
  • the codebook signaling indicates that the HARQ-ACK codebook 2 that needs to be fed back on slot4 can be obtained.
  • the HARQ-ACK codebook 2 includes HARQ-ACK information bits of PDSCH2 and HARQ-ACK information bits of PDSCH3.
  • the channel state information reported by the terminal is also reported in the uplink time unit.
  • the channel state information reported by the terminal is also reported in the uplink time unit.
  • the CSI may include P-CSI, AP- CSI, SP-CSI, etc.
  • the terminal uses respective corresponding uplink control channel resources. Therefore, for the terminal, the uplink control channel resources corresponding to one or more HARQ-ACK codebooks and one or more channel state information may overlap in the same uplink time unit.
  • the overlap may be an overlap in the time domain, an overlap in the frequency domain, or an overlap in the time-frequency domain.
  • the terminal can use the HARQ-ACK codebook and the one or more channel states
  • the information is multiplexed and sent on the same uplink control channel resource.
  • the multiplexed uplink control channel resource may be determined according to the value of the PUCCH resource indication field in the downlink control information corresponding to the HARQ-ACK codebook and the number of UCI information bits after multiplexing.
  • the TRP can also learn the rules for selecting the multiplexed uplink control channel resources of the terminal, so the TRP can correctly decode the HARQ-ACK codebook and channel status after receiving the uplink control information on the corresponding resources.
  • Information optionally, the channel state information can be sent to the corresponding other TRPs through the backhaul interface.
  • this application provides an uplink control information transmission method, which can solve the problem of how to transmit uplink control information in the case of multiple HARQ-ACK codebooks.
  • the NIB scenario and the IB scenario are respectively.
  • the information exchange delay between TRPs is different.
  • the uplink control information transmission method provided in this application can multiplex channel state information and one of the feedback information on the same uplink control channel resource for transmission in a NIB scenario.
  • the uplink control information transmission method can determine whether to send another feedback information based on the time-frequency relationship between the multiplexed uplink control channel resource and the uplink control channel resource corresponding to another feedback information.
  • Another uplink control information transmission method provided by this application can multiplex each uplink control information contained in a time unit on the same uplink control channel resource and send it in an IB scenario. The following is described in conjunction with the drawings.
  • Downlink control related parameters are mainly used to distinguish the characteristics of DCI. DCIs with the same downlink control related parameters can be classified as a kind of DCI. Downlink control related parameters include but are not limited to the following examples.
  • Downlink control related parameters may include physical downlink control channel configuration (PDCCH-Config), control resource sets (CORESET), control resource sets group (CORESET group), or CORESET
  • the parameters included in the PDCCH-Config are used to detect a candidate downlink control channel (physical downlink control channel, PDCCH).
  • CORESET can be called a set of control resources, that is, the time-frequency resources of CORESET, such as the size of the resource block occupied by the frequency domain, and the number of symbols occupied by the time domain.
  • the CORESET group may include one or more index numbers of control resource sets, and a control resource set may be represented by an index number or an identifier.
  • different CORESETs can correspond to different high-level parameter indexes.
  • this parameter index can be used to distinguish different network devices.
  • the terminal can distinguish which DCI corresponding HARQ-ACK information bits belong to different HARQ-ACK codebooks, and which DCI corresponding HARQ-ACK information bits belong to the same one according to the difference of these downlink control related parameters associated with the received DCI HARQ-ACK codebook.
  • the relevant downlink control parameters associated with HARQ-ACK codebook 1 are DCI0, PDCCH-Config, CORESET, CORESET group, etc. corresponding to DCI1.
  • the related downlink control parameters associated with HARQ-ACK codebook 2 are DCI2, PDCCH-Config, CORESET, CORESET group, etc. corresponding to DCI3. It can be seen that for the multi-station coordination scenario, the terminal can determine the HARQ-ACK codebook corresponding to each station according to the above-mentioned downlink control related parameters, and which DCI-scheduled PDSCH HARQ-ACK information bits can be placed in a HARQ-ACK codebook Feedback.
  • the feedback information in this application may be a HARQ-ACK codebook, and one HARQ-ACK codebook is called one feedback information.
  • One piece of feedback information includes one or more HARQ-ACK information bits.
  • Each HARQ-ACK information bit corresponds to one PDSCH transmission, and each PDSCH transmission is scheduled by the corresponding DCI. Therefore, the feedback information specifically corresponds to one or more DCI.
  • the downlink control related parameters associated with one or more DCIs corresponding to the same feedback information are the same.
  • Each DCI includes a PUCCH resource indication field, but the uplink control channel resource corresponding to the feedback information or the uplink control channel resource used by the terminal to send the feedback information is determined according to the last DCI corresponding to the feedback information.
  • the last DCI corresponding to the feedback information is the DCI carried by the PDCCH with the lowest PDCCH detection opportunity among the one or more DCIs corresponding to the feedback information.
  • the DCI carried by the PDCCH with the largest or smallest cell identity may be selected as the last DCI of the feedback information. Therefore, unless otherwise specified herein, each feedback information association or corresponding DCI refers to the last DCI corresponding to the feedback information.
  • the PDCCH detection timing is determined according to CORESET and search space.
  • HARQ-ACK codebook 1 includes the DCI0 carried by TRP1 through PDCCH0, the HARQ-ACK information bits of PDSCH0 scheduled for slot0 transmission, and the DCI1 carried by TRP1 through PDCCH1, and the HARQ-ACK information bits of PDSCH1 scheduled for slot1 transmission. . Therefore, for HARQ-ACK codebook 1, the DCI associated with transmission of HARQ-ACK codebook 1 can be determined based on PDCCH detection timing 0 and PDCCH detection timing 1. Among them, PDCCH detection timing 0 is the detection timing when PDDCH0 is detected. PDCCH detection timing 1 is the detection timing when PDDCH1 is detected.
  • the DCI associated with the HARQ-ACK codebook 1 is used to determine the uplink control information resource for transmitting the HARQ-ACK codebook 1.
  • the DCI detected at the PDCCH detection timing with the last PDCCH detection timing is the DCI associated with the HARQ-ACK codebook.
  • the DCI that transmits HARQ-ACK codebook 1 is determined according to DCI1.
  • Uplink control channel resources it can be considered that the DCI associated with HARQ-ACK codebook 1 is DCI1.
  • the HARQ-ACK codebook 2 in FIG. 4 can be determined based on the PDCCH detection timings corresponding to PDCCH2 and PDCCH3, or based on the cell identifiers associated with PDCCH2 and PDCCH3, respectively, to determine the DCI associated with the HARQ-ACK codebook 2.
  • the DCI carried by the PDCCH with the lowest PDCCH detection timing is the DCI associated with the HARQ-ACK codebook.
  • the DCI associated with the HARQ-ACK codebook 2 is DCI3.
  • the time unit may be one or more radio frames, one or more subframes, one or more time slots, one or more mini slots, one or more sub-times.
  • a sub-slot, one or more symbols may also be a time window formed by multiple frames or sub-frames, such as a system information (SI) window.
  • SI system information
  • the embodiment of the present application does not limit the time length of a symbol.
  • the length of a symbol can be different.
  • Symbols can include uplink symbols and downlink symbols.
  • the uplink symbols can be referred to as single carrier-frequency division multiple access (SC-FDMA) symbols or orthogonal frequency division multiple access (orthogonal frequency division multiple access, OFDM). )
  • the downlink symbol may be an OFDM symbol.
  • High-level signaling configures an uplink control channel resource pool for the terminal.
  • the uplink control channel resource pool includes multiple uplink control channel resource sets. Different sets of uplink control channel resources correspond to different uplink control information bit intervals. Therefore, when the HARQ-ACK codebook needs to be fed back, the terminal can select an uplink control channel resource set from the uplink control channel resource pool based on the number of bits of the feedback information. Furthermore, the terminal can determine an uplink control channel resource from the set of selected uplink control channel resources based on the value in the PUCCH resource indicator field in the DCI associated with the feedback information, and the uplink control channel resource is the uplink corresponding to the feedback information. Control channel resources.
  • the terminal can determine an uplink control channel resource according to the PUCCH resource indication field and the control channel element (CCE) position where the DCI is located.
  • CCE control channel element
  • an uplink control channel resource set includes 32 uplink control channel resources; the PUCCH resource indicator field is 3 bits, which can represent 8 uplink control channel resources; the uplink control channel resource set can be divided into four sub-sets, each of which is different CCE location to indicate.
  • the process for the terminal to determine from the set of uplink control channel resources to select the uplink control channel resource corresponding to the feedback information based on the number of bits of the feedback information may be as follows: the terminal can first select an uplink control channel resource by using the CCE location where the DCI associated with the feedback information is The uplink control channel resource subset includes 8 uplink control channel resources; further, the terminal can determine the uniqueness from the uplink control channel resource subset based on the 3-bit value in the PUCCH resource indicator field in the DCI associated with the feedback information An uplink control channel resource of is used as the uplink control channel resource corresponding to the feedback information.
  • one PDCCH carrying DCI may occupy one or more CCEs.
  • a CCE is composed of 6 resource-element groups (REG), and the resource of a REG is composed of a resource block (RB) in the frequency domain and a symbol in the time domain.
  • REG resource-element groups
  • RB resource block
  • the uplink control channel resource corresponding to the channel state information is indicated by the channel state information reporting configuration corresponding to the channel state information, and is also selected from the above-mentioned uplink control channel resource pool.
  • the uplink control channel resource corresponding to the channel state information is the uplink control channel resource used to carry the multiplexed CSI.
  • the uplink control channel resource can be configured by the uplink control channel resource configuration. Similarly, it is also selected from the above-mentioned uplink control channel resource pool.
  • the uplink control information that exists or needs to be fed back in an uplink time unit includes first feedback information, second feedback information, first CSI, and second CSI.
  • the first feedback information is feedback information associated with the first network device or the first downlink control related parameter;
  • the second feedback information is feedback information associated with the second network device or the second downlink control parameter.
  • the uplink control channel resource corresponding to the first feedback information is called the first uplink control channel resource;
  • the uplink control channel resource corresponding to the second feedback information is called the second uplink control channel resource.
  • FIG. 6 is a schematic flowchart of an uplink control information transmission method according to an embodiment of the present application.
  • the uplink control information transmission method may include:
  • the terminal determines first feedback information from N pieces of feedback information.
  • the N is an integer greater than or equal to 2; the downlink control related parameters respectively associated with the N pieces of feedback information are different.
  • the terminal multiplexes the first feedback information and the first channel state information CSI on a target uplink control channel resource for transmission.
  • the target uplink control channel resource is determined based on downlink control related parameters associated with the first feedback information. For example, the target uplink control channel resource is determined based on the PUCCH resource indicator field in the DCI associated with the first feedback information, or is based on the CCE position occupied by the PDCCH of the DCI associated with the first feedback information and the PUCCH resource indicator field in the DCI definite. In addition, since the first feedback information and the first CSI are multiplexed on the same target uplink control channel resource, the target uplink control channel resource is from the first feedback information and the uplink control channel resource set corresponding to the total number of bits of the first CSI Selected.
  • the first network device receives the first feedback information and the first CSI sent by the terminal on the target uplink control channel resource.
  • the first network device can learn that the uplink control channel resources corresponding to the first feedback information and the first CSI respectively overlap in the time domain. Therefore, the first network device can determine the target uplink control channel resource multiplexed by the two by using the aforementioned rules, and then perform correct decoding to obtain the first feedback information and the first CSI.
  • the terminal also needs to determine the first CSI, where the uplink control channel resource corresponding to the first CSI overlaps the first uplink control channel resource in the time domain.
  • the uplink control information transmission method shown in FIG. 6 can send at least the first feedback information and the first CSI when there are multiple feedback information and CSI in one uplink time unit, so as to avoid simply discarding once overlapped. The performance drops.
  • the first network device it can learn the overlap of its own feedback information and the uplink control channel resources corresponding to the CSI, so that it can also correctly receive the uplink control information fed back by the terminal.
  • the terminal determining the first CSI includes: the terminal determining multiple CSIs, the uplink control channel resource corresponding to each CSI of the multiple CSIs and the uplink control channel resource corresponding to at least one other CSI of the multiple CSIs There is overlap in the time domain, or overlap with the first uplink control channel resource in the time domain; any CSI in the plurality of CSI is used as the first CSI.
  • the terminal determines multiple CSIs, including: for the presence of M CSIs (M is an integer greater than 2) on the uplink time unit, the terminal may first select the uplink control channel resource and the first uplink control channel resource from the M CSIs There are overlapping M1 CSIs in the time domain; the terminal then selects from the remaining M-M1 CSI, the uplink control channel resource is at least one of the uplink control channel resources corresponding to the M1 CSI. There are M2 overlapping CSIs in the domain; until all overlapping CSI sets in the time domain are found.
  • the uplink control channel resource of any CSI in the CSI set overlaps with the uplink control channel resource of at least one other CSI in the CSI set, or with the first uplink control channel resource in the time domain.
  • the terminal can multiplex each CSI in the CSI set with the first feedback information on the target uplink control channel resource for transmission.
  • the target uplink control channel resource is determined according to the total number of bits of all CSI and the first feedback information in the CSI set, and the downlink control related parameters associated with the first feedback information.
  • the uplink control channel resource corresponding to HARQ-ACK codebook 1 is called PUCCH resource 1; the uplink control channel resource corresponding to HARQ-ACK codebook 2 is called PUCCH resource 2.
  • the uplink control channel resource corresponding to CSI-1 is called PUCCH resource CSI-1; the uplink control channel resource corresponding to CSI-2 is called PUCCH resource CSI-2.
  • Figure 7 illustrates that the PUCCH resource 1 of HARQ-ACK codebook 1 and the PUCCH resource CSI-1 of CSI-1 overlap in the time domain, but does not illustrate the uplink control channels of other uplink control information.
  • the overlap of resources regardless of the overlap of the uplink control channel resources of other uplink control information, the terminal can multiplex HARQ-ACK codebook 1 and CSI-1 before sending. And the multiplexed uplink control channel resources are determined based on the DCI1 associated with the HARQ-ACK codebook 1, or based on the DCI1 associated with the HARQ-ACK codebook 1 and the CCE position occupied by the PDCCH1 carrying the DCI1.
  • this implementation avoids performance degradation caused by simply discarding once the uplink control channel resources of the feedback information overlap with the uplink control channel resources of the channel state information.
  • TRP1 it can learn about the overlap of the uplink control channel resources corresponding to its own HARQ-ACK codebook 1 and CSI-1, so that it can also correctly receive the uplink control information fed back by the terminal.
  • the N pieces of feedback information further include second feedback information; the second uplink control channel resource corresponding to the second feedback information, the uplink control channel resource corresponding to the first CSI is in the time domain
  • the terminal can randomly select one feedback information from the N feedback information as the first feedback information.
  • the uplink control channel resources corresponding to the N pieces of feedback information respectively overlap with the uplink control channel resources of the first CSI.
  • the terminal determines the first feedback information from the N pieces of feedback information, including: the terminal according to the starting position of the uplink control channel resource in the time domain is the first or the back, and the occupied time domain
  • the resource is the largest or smallest, and the first uplink control channel resource is selected from the uplink control channel resources corresponding to the N feedback information; or the terminal is the first or the last according to the starting position of the uplink control channel resource in the time domain, or
  • the occupied time domain resource is the largest or the smallest
  • the first uplink control channel resource is selected from the uplink control channel resources corresponding to the N pieces of feedback information; the feedback information corresponding to the first uplink control channel resource is the first feedback information.
  • PUCCH resource 1 of HARQ-ACK codebook 1 and PUCCH resource CSI-1 of CSI-1 overlap in the time domain
  • PUCCH resource 2 of HARQ-ACK codebook 2 is also overlapped with PUCCH resource CSI-1 of CSI-1.
  • Resource CSI-1 overlaps in the time domain, and the terminal needs to select one piece of feedback information from HARQ-ACK codebook 1 and HARQ-ACK codebook 2, and multiplex it with CSI-1.
  • the terminal device may determine the first feedback information according to the starting position of the uplink control channel resource of the feedback information in the time domain and the size of the time domain resources occupied. For example, the terminal device first selects the feedback information with the highest starting position of the uplink control channel resource in the time domain from the N pieces of feedback information; then, from the selected feedback information, further selects the uplink control channel resource to occupy in the time domain. The feedback information with the largest time domain resource is used as the first feedback information. For another example, the terminal device first selects the feedback information that the uplink control channel resource occupies the largest time domain resource in the time domain from the N pieces of feedback information; then, from the selected feedback information, further selects the uplink control channel resource in the time domain The first feedback information of the starting position.
  • PUCCH resource 1 of HARQ-ACK codebook 1 is compared with PUCCH resource 2 of HARQ-ACK codebook 2, and PUCCH resource 1 has the first starting position in the time domain and the time occupied in the time domain.
  • the domain resources are the largest. Therefore, the terminal device selects HARQ-ACK codebook 1 as the first feedback information, and CSI-1 as the first CSI, and adopts the above-mentioned implementation manner to multiplex HARQ-ACK codebook 1 and CSI-1 for transmission.
  • the target uplink control channel resource is determined based on the downlink control related parameters associated with HARQ-ACK codebook 1. As shown in FIG.
  • the downlink control information associated with the HARQ-ACK codebook 1 is: as described above, the terminal device determines the DCI1 based on the PDCCH detection timing. Therefore, the target uplink control channel resource is determined based on the PUCCH resource indicator field in DCI1, or based on the PUCCH resource indicator field in DCI1 and the CCE position occupied by the PDCCH carrying DCI1. In addition, the target uplink control channel resource is selected from the set of uplink control channel resources corresponding to the total number of bits of HARQ-ACK codebook 1 and CSI1.
  • the terminal device selects the first feedback information according to the lowest starting position of the uplink control channel resource in the time domain and the smallest occupied time domain resource.
  • PUCCH resource 2 of HARQ-ACK codebook 2 is compared with PUCCH resource 1 of HARQ-ACK codebook 1, and PUCCH resource 2 of HARQ-ACK codebook 2 has the last start position in the time domain and The time domain resources are the smallest in the time domain. Therefore, the terminal device selects HARQ-ACK codebook 2 as the first feedback information and CSI-1 as the first CSI, and adopts the above-mentioned implementation manner to multiplex HARQ-ACK codebook 2 and CSI-1 for transmission.
  • the target uplink control channel resource is determined based on the downlink control related parameters associated with the HARQ-ACK codebook 2. As shown in FIG.
  • the downlink control information associated with the HARQ-ACK codebook 2 is: DCI3 determined by the terminal device based on the PDCCH detection timing. Therefore, the target uplink control channel resource is determined based on the PUCCH resource indicator field in DCI3, or the PUCCH resource indicator field in DCI3 and the CCE position occupied by the PDCCH carrying DCI3. In addition, the target uplink control channel resource is selected from the uplink control channel resource set corresponding to the total number of bits of HARQ-ACK codebook 2 and CSI-1.
  • the terminal device selects the first feedback information according to the starting position of the uplink control channel resource in the time domain. For example, in Figure 8, from HARQ-ACK codebook 1 and HARQ-ACK codebook 2, the feedback information with the lowest starting position of uplink control channel resources in the time domain is selected, that is, HARQ-ACK codebook 2 as The first feedback information.
  • the terminal device selects the first feedback information from the N pieces of feedback information according to the first starting position of the uplink control channel resource in the time domain. For example, in Figure 8, from HARQ-ACK codebook 1 and HARQ-ACK codebook 2, the feedback information with the highest starting position of uplink control channel resources in the time domain is selected, that is, HARQ-ACK codebook 1 as The first feedback information.
  • the terminal device selects the first feedback information from the N pieces of feedback information according to the time domain resource occupied by the uplink control channel resource in the time domain.
  • the terminal device selects the first feedback information from the N pieces of feedback information according to the time domain resources occupied by the uplink control channel resource in the time domain is the smallest.
  • the terminal device selects the first feedback information from the N pieces of feedback information according to the lowest starting position of the uplink control channel resource in the time domain and the largest time domain resource in the time domain.
  • the terminal device selects the first feedback information from the N pieces of feedback information according to the first start position of the uplink control channel resource in the time domain and the largest time domain resource in the time domain, and so on.
  • the selection mechanism for the first feedback information in the embodiment of the present application does not limit the foregoing implementation manners.
  • the N pieces of feedback information further include second feedback information.
  • the second uplink control channel resource corresponding to the second feedback information and the first uplink control channel resource corresponding to the first feedback information overlap in the time domain.
  • the terminal device selects feedback information that overlaps with the CSI, performs the operations of steps 102 and 103 above, and multiplexes the first feedback information with the first CSI before sending.
  • PUCCH resource 1 of HARQ-ACK codebook 1 and PUCCH resource 2 of HARQ-ACK codebook 2 overlap in the time domain, and there is overlap in the time domain between the terminal device selection and CSI-1.
  • HARQ-ACK codebook 1 which multiplexes HARQ-ACK codebook 1 and CSI-1 before sending.
  • the N pieces of feedback information further include second feedback information.
  • the second uplink control channel resource corresponding to the second feedback information, the first uplink control channel resource corresponding to the first feedback information, and the uplink control channel resource corresponding to the first CSI all overlap in the time domain.
  • the terminal device selects the first feedback information from the N pieces of feedback information to multiplex the first CSI according to one of the above-mentioned various selection mechanisms, and then sends the multiplexed.
  • PUCCH resource 1 of HARQ-ACK codebook 1 and PUCCH resource 2 of HARQ-ACK codebook 2 and PUCCH resource CSI-1 of CSI-1 overlap in the time domain, and the terminal device will HARQ- ACK codebook 1 and CSI-1 are multiplexed and sent.
  • the terminal device selects the feedback information that the starting position of the uplink control channel resource in the time domain is the first or the time domain resource is the largest, that is, HARQ-ACK codebook 1; further, the terminal device selects the HARQ-ACK codebook 1 Send after multiplexing with CSI-1.
  • the terminal device selects the feedback information with the lowest starting position of the uplink control channel resource in the time domain or the smallest time domain resource, that is, HARQ-ACK codebook 2; further, the terminal device uses the HARQ-ACK codebook 2 Send after multiplexing with CSI-1.
  • the selection mechanism for selecting the first feedback information from the N pieces of feedback information may be based on the uplink control channel resources of each feedback information mentioned above, and may also be based on the downlink control related parameters associated with each feedback information. select.
  • the first feedback information satisfies one or more of the following conditions: the identifier or index number of the downlink control related parameter associated with the first feedback information is the smallest; the DCI associated with the first feedback information The start position of the occupied resources is the first in the time domain; the CCE start position is the first among the resources occupied by the DCI associated with the first feedback information; the control resource associated with the DCI associated with the first feedback information The identifier or index number associated with the set is the smallest; the value of the uplink control channel resource indication field in the DCI associated with the first feedback information is the smallest.
  • the relevant downlink control parameters associated with HARQ-ACK codebook 1 are the high-level parameters contained in PDCCH0 carrying DCI0, PDCCH-Config, CORESET, CORESET group, and CORESET associated with PDCCH1 carrying DCI1 ( higher layer index).
  • the related downlink control parameters associated with HARQ-ACK codebook 2 are the higher layer index included in the PDCCH2 carrying DCI2 and the PDCCH-Config, CORESET, CORESET group, and CORESET associated with the PDCCH3 carrying DCI3.
  • the start position of the resource occupied by the DCI1 associated with the HARQ-ACK codebook 1 in the time domain is before the start position of the resource occupied by the DCI3 associated with the HARQ-ACK codebook 2 in the time domain.
  • the start position of the CCE in the resource occupied by the DCI1 associated with the HARQ-ACK codebook 1 is before the start position of the CCE in the resource occupied by the DCI3 associated with the HARQ-ACK codebook 2.
  • the index number of CORESET associated with DCI1 associated with HARQ-ACK codebook 1 is smaller than the index number of CORESET associated with DCI3 associated with HARQ-ACK codebook 2.
  • the value in the PUCCH resource indicator field in DCI1 associated with HARQ-ACK codebook 1 is smaller than the value in the PUCCH resource indicator field in DCI3 associated with HARQ-ACK codebook 2.
  • HARQ-ACK codebook 1 satisfies the above multiple conditions. Therefore, the terminal device can determine that the first feedback information is HARQ-ACK codebook 1, and then multiplex HARQ-ACK codebook 1 and CSI-1 on the same uplink control channel resource.
  • the foregoing embodiments describe how the terminal device selects or determines the first feedback information from the N pieces of feedback information, and how to send the relevant content after multiplexing with the first CSI.
  • the terminal device may perform the following operations: the target uplink control channel resource and the second uplink control channel resource corresponding to the second feedback information are in the time domain When there is an overlap, the terminal device does not send the second feedback information on the second uplink control channel resource corresponding to the second feedback information; or the target uplink control channel resource corresponds to the second feedback information When the second uplink control channel resources overlap in the time domain, but the overlapped resources do not affect the demodulation reference signal (DMRS) of the uplink control channel corresponding to the second feedback information, the terminal device is in the The second feedback information is sent on the second uplink control channel resource corresponding to the second feedback information; or the target uplink control channel resource and the second uplink control channel resource corresponding to the second feedback information do not exist in the time domain When overlapped, the terminal device sends the second feedback information on the second uplink control channel resource corresponding to the second feedback information.
  • DMRS demodulation reference signal
  • TRP2 associated with the second feedback information either receives the second feedback information on the second uplink control channel resource or cannot receive the second feedback information.
  • the terminal device selects HARQ-ACK codebook 1 and CSI-1 for multiplexing transmission, then TRP2 will either receive HARQ-ACK codebook 2 on PUCCH resource 2, or fail to receive HARQ-ACK codebook 2.
  • the second uplink control channel resource of the second feedback information may also overlap with other CSI uplink control channel resources in the time domain. Therefore, the terminal device may also adopt the embodiment shown in FIG. 6 for the second feedback information and other CSI, and multiplex the second feedback information with other CSI and send it.
  • the target uplink control channel resource used at this time is determined based on the downlink control related parameters associated with the second feedback information.
  • the PUCCH resource is determined based on the DCI associated with HARQ-ACK codebook 2, the PUCCH resource indicator field in DCI3 as described above, or the PUCCH resource indicator field in DCI3 and the CCE position occupied by PDCCH3 carrying DCI3.
  • the uplink control channel resource set where the PUCCH resource is located is selected from the above-mentioned uplink control channel resource pool based on the total number of bits of HARQ-ACK codebook 2 and CSI-2.
  • the uplink control channel resource corresponding to the second CSI overlaps with the first uplink control channel resource in the time domain.
  • the terminal device may multiplex the second CSI on the target control channel resource for transmission.
  • the target uplink control channel resource is selected from the uplink control channel resource set corresponding to the total number of bits of the first feedback information, the first CSI, and the second CSI.
  • the terminal device may determine from the uplink control channel resource set based on the downlink control related parameters associated with the first feedback information.
  • the PUCCH resource CSI-2 of CSI-2 and the PUCCH resource 1 of HARQ-ACK codebook 1 overlap in the time domain, and the PUCCH resource CSI-1 of CSI-1 and HARQ-ACK codebook 1
  • the PUCCH resource 1 also overlaps in the time domain, and the terminal device can multiplex the CSI-1, CSI-2, and HARQ-ACK codebook 1 on the target uplink control channel resource for transmission.
  • the set of uplink control channel resources where the target uplink control channel resource is located is: based on the total number of bits of CSI-1, CSI-2, and HARQ-ACK codebook 1, selected from the above-mentioned uplink control channel resource pool .
  • the terminal device can determine the target uplink from the selected uplink control channel resource set based on the PUCCH resource indicator field in DCI1 associated with HARQ-ACK codebook 1, or based on the PUCCH resource indicator field in DCI1 and the CCE position occupied by PDCCH1 carrying DCI1 Control channel resources.
  • the uplink control channel resources corresponding to the second CSI and the uplink control channel resources corresponding to the first CSI overlap in the time domain.
  • the terminal device can perform the related operations of the foregoing implementation manners to send the second CSI.
  • the PUCCH resource CSI-2 of CSI-2 and the PUCCH resource CSI-1 of CSI-1 overlap in the time domain, and the terminal device can use CSI-1, CSI-2, and HARQ-ACK codebooks.
  • 1 Multiplexed and sent on the target uplink control channel resource.
  • the uplink control channel resources corresponding to the second CSI overlap with the first uplink control channel resources and the uplink control channel resources corresponding to the first CSI in the time domain.
  • the PUCCH resource CSI-2 of CSI-2 and the PUCCH resource 1 of HARQ-ACK codebook 1 and the PUCCH resource CSI-1 of CSI-1 overlap in the time domain, and the terminal device can set the CSI -1, CSI-2 and HARQ-ACK codebook 1 are multiplexed on the target uplink control channel resource for transmission.
  • the terminal device multiplexes the first feedback information, the first CSI, and the second CSI on the target uplink control channel resource before sending it, and then multiplexes each channel state information with the first feedback information.
  • the first CSI may include multiple CSIs, and uplink control channel resources corresponding to the multiple CSIs overlap in the time domain.
  • the terminal device can use the uplink control channel resource used to carry the multiplexed CSI in the uplink control channel resource pool configured by the high-level signaling as the uplink control channel resource corresponding to the first CSI.
  • the terminal device multiplexes the first CSI and the first feedback information.
  • the terminal device can multiplex CSI-1 and CSI-2 on the PUCCH resource CSI.
  • the PUCCH resource CSI is a PUCCH resource configured by high-layer signaling for carrying multiplexed CSI.
  • the terminal device executes the aforementioned CSI-1, CSI-2, and HARQ-ACK codebook 1 to multiplex the target uplink control channel resource Send on.
  • the terminal device can send HARQ-ACK codebook 1 on PUCCH resource 1, and send the multiplexed CSI-1 on PUCCH resource CSI , CSI-2.
  • each UCI is sent according to the corresponding implementation. That is to say, an embodiment may include at least one or more implementation manners shown in Figs. 7-14.
  • the first network device can at least learn the overlap between the first uplink control channel resource of the first feedback information and other CSI. Therefore, the first network device can learn the multiplexing based on the foregoing multiplexing related rules. The total number of bits of UCI used. Therefore, the first network device selects the target uplink control channel resource based on the DCI associated with the first feedback information, and then receives the UCI multiplexed by the terminal device on the target uplink control channel resource, and correctly decodes each UCI.
  • the second network device can learn whether the second uplink control channel resource of the second feedback information overlaps with the uplink control channel resources of other CSI.
  • the second network device can learn the total number of multiplexed UCI bits based on the above-mentioned multiplexing related rules Therefore, the target uplink control channel resource is selected based on the DCI associated with the second feedback information, and the UCI multiplexed by the terminal device on the target uplink control channel resource is received, and each UCI is decoded.
  • the second network device when the second uplink control channel resource of the second feedback information and the target uplink control channel resource do not overlap in the time domain, the second network device receives the terminal device's second uplink control channel resource The second feedback message sent on.
  • the second network device cannot receive the second feedback information, that is, the terminal device may not be in the second uplink control channel resource Send the second feedback message.
  • the second network device may The receiving terminal device sends the second feedback information on the second uplink control channel resource. Therefore, the second network device may or may not receive the second feedback information.
  • the uplink control information transmission method shown in FIG. 6 further includes:
  • the terminal device sends the second feedback information on the second uplink control channel resource; or the terminal device does not send the second feedback information; or the terminal device multiplexes the second feedback information and other CSI on another target uplink control channel resource send.
  • the second network device receives the second feedback information sent by the terminal device on the second uplink control channel resource; or cannot receive the second feedback information; or receives the second feedback information sent by the terminal device on another target uplink control channel resource. Feedback information and other CSI.
  • both the detection complexity of the first network device and the second network device can be effectively controlled to avoid the situation that the terminal device cannot process multiple feedback information, which causes the problem of excessive detection complexity of the network device.
  • the terminal device may perform the following implementation process to transmit the uplink control information.
  • the implementation process is the same in principle as the foregoing embodiments, and specific implementation operations may be different.
  • the terminal device selects the first feedback information from N pieces of feedback information according to the above-mentioned optional selection principle of the first feedback information; the terminal device then selects the uplink control channel resource and the first uplink control channel resource from the M CSI There are overlapping M1 CSIs in the time domain; the terminal equipment then selects from the remaining M-M1 CSIs, the uplink control channel resource and at least one of the uplink control channel resources corresponding to the M1 CSI There are M2 overlapping CSIs in the time domain; until all overlapping CSI sets are found in the time domain.
  • the uplink control channel resource of any CSI in the CSI set overlaps with the uplink control channel resource of at least one other CSI in the CSI set, or with the first uplink control channel resource in the time domain. Therefore, the terminal device can multiplex each CSI in the CSI set with the first feedback information on the target uplink control channel resource for transmission.
  • the target uplink control channel resource is determined according to the total number of bits of all CSI and the first feedback information in the CSI set, and the downlink control related parameters associated with the first feedback information.
  • the UCI multiplexed and sent on the target uplink control channel resource only includes one piece of feedback information.
  • this implementation manner can enable at least one network device to correctly receive feedback information, so that the real-time requirements for feedback information are high, and the interaction delay between network devices is large, such as the NIB scenario, which can be maximized Performance improvement.
  • the UCI transmission method provided in the embodiment of the present application can also reduce the detection complexity on the network device side.
  • FIG. 15 is a schematic flowchart of another method for transmitting uplink control information according to an embodiment of the present application.
  • the uplink control information transmission method may include:
  • the terminal device determines first feedback information from N pieces of feedback information.
  • the terminal device multiplexes the first feedback information, the second feedback information, and the first channel state information CSI on the target uplink control channel resource for transmission.
  • the first network device receives the first feedback information, the second feedback information, and the first CSI sent by the terminal device on the target uplink control channel resource.
  • the first network device sends the second feedback information to the second network device; the second network device receives the second feedback information.
  • both the first network device and the second network device may receive the multiplexed UCI sent by the terminal device on the target uplink control channel resource.
  • the N pieces of feedback information include first feedback information and second feedback information.
  • the first uplink control channel resource corresponding to the first feedback information and the uplink control channel resource corresponding to the first CSI overlap in the time domain.
  • the second uplink control channel resource corresponding to the second feedback information overlaps in the time domain with at least one of the first uplink control channel resource and the uplink control channel resource corresponding to the first CSI.
  • step 202 may be performed before step 201. That is, the terminal device first determines that the multiplexed first feedback information and second feedback information are multiplexed with the first CSI, and then selects the first feedback information from the first feedback information and the second feedback information. Therefore, the downlink control related parameters associated with the first feedback information can be used to determine the target uplink control channel resource.
  • the target uplink control channel resource is determined based on downlink control related parameters associated with the first feedback information. For example, the target uplink control channel resource is determined based on the PUCCH resource indicator field in the DCI associated with the first feedback information, or is based on the CCE position occupied by the PDCCH of the DCI associated with the first feedback information and the PUCCH resource indicator field in the DCI definite. In addition, the target uplink control channel resource is selected from the uplink control channel resource set corresponding to the first feedback information, the second feedback information, and the total number of bits of the first CSI.
  • HARQ-ACK codebook 1, HARQ-ACK codebook 2, and CSI-1 can be multiplexed on the same uplink control channel resource for transmission.
  • the target uplink control channel resources are determined based on the PUCCH resource indicator field in DCI1 associated with HARQ-ACK codebook 1, or based on the PUCCH resource indicator field in DCI1 and the CCE position occupied by PDCCH1 carrying DCI1.
  • the selection principle of the first feedback information may also adopt the selection principle described in FIGS. 6 to 15 above.
  • the terminal device selects the first from the uplink control channel resources corresponding to the N pieces of feedback information.
  • An uplink control channel resource; or the terminal equipment according to the starting position of the uplink control channel resource in the time domain is the first or the last, or the time domain resource occupied is the largest or the smallest, the uplink control corresponding to the N feedback information respectively
  • the first uplink control channel resource is selected from the channel resources; the feedback information corresponding to the first uplink control channel resource is the first feedback information.
  • the first feedback information satisfies one or more of the following conditions: the identifier or index number of the downlink control related parameter associated with the first feedback information is the smallest; and the resource occupied by the DCI associated with the first feedback information is in the time domain
  • the starting position of the above is the most forward; the CCE starting position is the first among the resources occupied by the DCI associated with the first feedback information; the identifier or index associated with the control resource set associated with the DCI associated with the first feedback information
  • the number is the smallest; the value of the uplink control channel resource indication field in the DCI associated with the first feedback information is the smallest.
  • the terminal device may also multiplex the second CSI on the target uplink control channel resource for transmission.
  • the terminal device multiplexes the second CSI on the target control channel resource to send; the uplink control channel resource corresponding to the second CSI is the same as the first uplink control channel resource and the target control channel resource.
  • At least one of the uplink control channel resources corresponding to the first CSI overlaps in the time domain.
  • the first CSI includes multiple CSIs, and uplink control channel resources corresponding to the multiple CSIs overlap in the time domain; the uplink control channel resources corresponding to the first CSI are used for Bear the multiplexed CSI.
  • CSI-2, CSI-1, HARQ-ACK codebook 1 and HARQ-ACK codebook 2 can all be multiplexed on the target uplink control channel resources.
  • the target uplink control channel resource is selected from the uplink control channel resource set corresponding to the total number of bits of CSI-2, CSI-1, HARQ-ACK codebook 1 and HARQ-ACK codebook 2.
  • CSI-2, CSI-1, and HARQ-ACK codebook 1 can be multiplexed on the target uplink control channel resources.
  • the target uplink control channel resource is selected from the uplink control channel resource set corresponding to the total number of bits of the CSI-2, CSI-1, and HARQ-ACK codebook 1.
  • the first network device and the second network device can timely learn the uplink control channel resources of the feedback information of the two Situation and the target uplink control channel resource finally selected by the terminal equipment. Therefore, the first network device and the second network device can respectively receive the multiplexed UCI sent by the terminal device on the target uplink control channel resource. Or, after one of the network devices receives the multiplexed UCI sent by the terminal device on the target uplink control channel resource, it sends it to another network device. It can be seen that the embodiments of the present application can maximize performance improvement and control the detection complexity on the network device side.
  • the methods provided in the embodiments of the present application are respectively introduced from the perspective of network equipment, terminal equipment, and interaction between the network equipment and the terminal equipment.
  • the network device and the terminal device may include a hardware structure and a software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • One of the above-mentioned functions can be executed in a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 16 is a schematic structural diagram of an apparatus provided by an embodiment of the application.
  • the device can be used to implement the method described in the foregoing method embodiment, and for details, please refer to the description in the foregoing method embodiment.
  • the apparatus may include one or more processors 1601.
  • the processor 1601 may also be referred to as a processing unit, and may implement the functions of the network device or the terminal device in the method provided in the embodiment of the present application.
  • the processor 1601 may be a general-purpose processor or a special-purpose processor.
  • the processor 1601 may also store instructions and/or data 1603, and the instructions and/or data 1603 may be executed by the processor, so that the apparatus 1600 executes the above method embodiments. Described method.
  • the processor 1601 may include a communication unit for implementing receiving and sending functions.
  • the communication unit may be a communication interface, or a transceiver circuit, or an interface, or an interface circuit.
  • the processor 1601 can implement the method executed by the network device or the method executed by the terminal device in the method provided in the embodiments of the present application through the communication unit.
  • the device 1600 may include one or more memories 1602, on which instructions 1604 may be stored.
  • the instructions may be executed on the processor, so that the apparatus 1600 executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and memory can be provided separately or integrated together.
  • the apparatus 1600 may further include a transceiver 1605 and an antenna 1606.
  • the processor 1601 may be referred to as a processing unit, and controls the device 1600.
  • the transceiver 1605 may be referred to as a communication interface, a communication unit, a transceiver, a transceiver circuit or a transceiver, etc., for implementing the transceiver function.
  • the device may be a terminal device or a component of a terminal device (for example, an integrated circuit, a chip, etc.).
  • an apparatus 2000 for example, an integrated circuit, a wireless device, a circuit module, or a terminal device, etc.
  • an apparatus 2000 may include:
  • a processing unit configured to determine the first feedback information from the N pieces of feedback information; the N is an integer greater than or equal to 2; the respective downlink control related parameters associated with the N pieces of feedback information are different;
  • the communication unit is configured to multiplex the first feedback information and the first channel state information CSI on a target uplink control channel resource for transmission; the first uplink control channel resource corresponding to the first feedback information and the first CSI The corresponding uplink control channel resources overlap in the time domain;
  • the processing unit is further configured to determine the target uplink control channel resource based on a downlink control related parameter associated with the first feedback information.
  • the device can feed back at least one piece of feedback information when there are N pieces of feedback information in one time unit, thereby maximizing performance improvement when resources overlap.
  • a device for example, an integrated circuit, a wireless device, a circuit module, or a terminal device, etc.
  • a device may include:
  • the processing unit is configured to determine N pieces of feedback information and the first CSI.
  • the uplink control channel resources corresponding to the N pieces of feedback information and the first CSI any one of the uplink control channel resources and at least one other uplink control channel resource are in time There is overlap in the domain;
  • the processing unit is further configured to determine the first feedback information from the multiple feedback information
  • the communication unit is configured to multiplex the N pieces of feedback information and the first CSI on a target uplink control channel resource for transmission.
  • the target uplink control channel resource is determined based on downlink control related parameters associated with the first feedback information.
  • the downlink control related parameters respectively associated with the N pieces of feedback information are different.
  • N is an integer greater than or equal to 2.
  • the device can multiplex and send feedback information and CSI with all overlapping resources for the situation that there are N pieces of feedback information in one time unit, and when the interaction delay between network devices is short, so as to maximize the performance. Improvement.
  • the device may also be a network device, or a component of a network device (for example, an integrated circuit, a chip, etc.).
  • the device may also be another communication unit for implementing the method in the embodiment of the present application.
  • a device may include:
  • a processing unit configured to, when the first uplink control channel resource and the uplink control channel resource corresponding to the first CSI overlap in the time domain, determine that the terminal device sends the first feedback information and information on the target uplink control channel resource The first CSI; a communication unit, configured to receive first feedback information and first CSI sent by the terminal equipment on a target uplink control channel resource, where the target uplink control channel resource is a downlink associated with the first feedback information Control related parameters are determined; or
  • a processing unit configured to determine the uplink control channel resource corresponding to the first feedback information of the terminal device when the first uplink control channel resource and the uplink control channel resource corresponding to the first CSI overlap in the time domain Sending the first feedback information on;
  • the communication unit is configured to receive the first feedback information sent by the terminal equipment on the uplink control channel resource corresponding to the first feedback information.
  • a device may include:
  • the processing unit is configured to determine N pieces of feedback information and the first CSI.
  • the uplink control channel resources corresponding to the N pieces of feedback information and the first CSI any one of the uplink control channel resources and at least one other uplink control channel resource are in time There is an overlap in the domain.
  • a processing unit configured to determine first feedback information from the multiple feedback information
  • a processing unit configured to determine that the terminal equipment multiplexes the N pieces of feedback information and the first CSI on a target uplink control channel resource to send;
  • the communication unit is configured to receive the N pieces of feedback information and the first CSI sent by the terminal equipment on the target uplink control channel resource.
  • the target uplink control channel resource is determined based on downlink control related parameters associated with the first feedback information.
  • the downlink control related parameters respectively associated with the N pieces of feedback information are different.
  • N is an integer greater than or equal to 2.
  • a device 1600 for example, an integrated circuit, a wireless device, a circuit module, or a terminal device, etc.
  • a device 1600 may include:
  • the processor 1601 is configured to determine first feedback information from N pieces of feedback information; where N is an integer greater than or equal to 2; and the N pieces of feedback information are respectively associated with different downlink control related parameters;
  • the transceiver 1605 is configured to multiplex the first feedback information and the first channel state information CSI on the target uplink control channel resource for transmission; the first uplink control channel resource corresponding to the first feedback information is the same as the first uplink control channel resource.
  • the uplink control channel resources corresponding to CSI overlap in the time domain;
  • the processor 1601 is further configured to determine the target uplink control channel resource based on a downlink control related parameter associated with the first feedback information.
  • the device can perform resource reselection for the feedback information and CSI where the uplink control channel resources overlap. This helps to achieve maximum performance improvement.
  • how the processor selects the first feedback information and how to determine the target uplink control channel resource can refer to the relevant content of the above method embodiment.
  • the device can also execute the methods described in FIG. 6 and FIG. 15. No more details here.
  • a device 1600 for example, an integrated circuit, a wireless device, a circuit module, or a terminal device, etc.
  • a device 1600 may include:
  • the processor 1601 is configured to determine N pieces of feedback information and first CSI. Among the uplink control channel resources corresponding to the N pieces of feedback information and the first CSI, any one of the uplink control channel resources and at least one other uplink control channel resource are There is overlap in the time domain;
  • the processor 1601 is further configured to determine first feedback information from the multiple feedback information
  • the transceiver 1605 is configured to multiplex the N pieces of feedback information and the first CSI on a target uplink control channel resource for transmission.
  • the target uplink control channel resource is determined based on downlink control related parameters associated with the first feedback information.
  • the downlink control related parameters respectively associated with the N pieces of feedback information are different.
  • N is an integer greater than or equal to 2.
  • the device can multiplex multiple feedback information and CSI with overlapping uplink control channel resources on the target uplink control channel resource to send, thereby solving the problem of multiple feedback information that cannot be processed by the terminal equipment, and the maximum Achieve performance improvements.
  • a device 1600 for example, a network device, a base station, or a baseband chip
  • a device 1600 may include:
  • the processor 1601 is configured to determine that the terminal device sends first feedback information on the target uplink control channel resource when the first uplink control channel resource and the uplink control channel resource corresponding to the first CSI overlap in the time domain And the first CSI; a communication unit for receiving the first feedback information and the first CSI sent by the terminal equipment on a target uplink control channel resource, the target uplink control channel resource being associated based on the first feedback information The relevant parameters of downlink control are determined; or
  • the processor 1601 is configured to, when the first uplink control channel resource and the uplink control channel resource corresponding to the first CSI overlap in the time domain, determine that the terminal device is in the uplink control channel corresponding to the first feedback information Sending the first feedback information on the resource;
  • the transceiver 1605 is configured to receive the first feedback information sent by the terminal equipment on the uplink control channel resource corresponding to the first feedback information.
  • how the processor selects the first feedback information and how to determine the target uplink control channel resource can refer to the relevant content of the above method embodiment.
  • a device 1600 for example, a network device, a base station, or a baseband chip
  • a device 1600 may include:
  • the processor 1601 is configured to determine N pieces of feedback information and first CSI. Among the uplink control channel resources corresponding to the N pieces of feedback information and the first CSI, any one of the uplink control channel resources and at least one other uplink control channel resource are There is overlap in the time domain.
  • the processor 1601 is configured to determine first feedback information from the multiple feedback information
  • the processor 1601 is configured to determine that the terminal equipment multiplexes the N pieces of feedback information and the first CSI on a target uplink control channel resource to send;
  • the transceiver 1605 is configured to receive the N pieces of feedback information and the first CSI sent by the terminal equipment on the target uplink control channel resource.
  • the target uplink control channel resource is determined based on downlink control related parameters associated with the first feedback information.
  • the downlink control related parameters respectively associated with the N pieces of feedback information are different.
  • N is an integer greater than or equal to 2.
  • Figure 17 provides a schematic structural diagram of a terminal device.
  • the terminal device can be applied to the scenarios shown in Figure 1 and Figure 2.
  • FIG. 17 only shows the main components of the terminal device.
  • the terminal equipment includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal out in the form of electromagnetic waves through the antenna. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and performs processing on the data. deal with.
  • FIG. 17 only shows a memory and a processor. In actual terminal devices, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device and execute Software program, processing the data of the software program.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with the transceiver function may be regarded as the communication unit 1711 of the terminal device, and the processor with the processing function may be regarded as the processing unit 1712 of the terminal device.
  • the terminal device includes a communication unit 1711 and a processing unit 1712.
  • the communication unit may also be referred to as a transceiver, transceiver, transceiving device, and so on.
  • the device for implementing the receiving function in the communication unit 1711 can be regarded as the receiving unit, and the device for implementing the sending function in the communication unit 1711 as the sending unit, that is, the communication unit 1711 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the foregoing receiving unit and sending unit may be an integrated unit or multiple independent units.
  • the above-mentioned receiving unit and sending unit may be in one geographic location, or may be scattered in multiple geographic locations.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function, for storing program instructions and/or data.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种上行控制信息传输方法及通信装置。在NIB场景,由于反馈信息的实时性要求较高而网络设备之间的交互时延较大,故终端设备在目标上行控制信道资源上复用的UCI仅包括一个反馈信息。从而能够使得至少一个网络设备正确接收到反馈信息,最大化的实现性能改善。在IB场景,由于网络设备之间交互的时延较短,网络设备之间能够及时获知一个上行时间单元上反馈信息对应的上行控制信道资源,因此,终端设备可在目标上行控制信道资源上复用的UCI包括多个反馈信息,以最大化的实现性能改善。可见,本申请与网络设备无法获知终端设备的上行控制信息传输的方式相比,也能够降低网络设备侧的检测复杂度。

Description

上行控制信息传输方法及通信装置
本申请要求于2019年8月16日提交中国专利局、申请号为201910760955.X、申请名称为“上行控制信息传输方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种上行控制信息传输方法及通信装置。
背景技术
随着移动通信的快速发展,在系统性能和频谱效率等方面有了更高的要求。目前,协同多点通信技术无论是在上行传输,还是在下行传输中,都可以提高系统性能,改善小区边缘的频谱效率。
在协同多点通信技术中,不同的网络设备可以发送不同的下行控制信息给同一个终端设备,该终端设备可根据各下行控制信息分别发送上行控制信息(uplink control information,UCI)给相应的网络设备。比如,向各网络设备发送的UCI中可均包括混合自动重传请求(hybrid automatic repeat request,HARQ)-确认(ACK)信息以及信道状态信息等。
同一终端设备向多个网络设备反馈上述上行控制信息时,需要采用同一个资源池中的多个物理上行控制信道(physical uplink control channel,PUCCH)资源,有可能出现该多个PUCCH资源在时域上存在重叠的情况,因此,如何传输这些上行控制信息成为一个亟待解决的问题。
发明内容
本申请提供了一种上行控制信息传输方法及通信装置。
第一方面,本申请提供了一种上行控制信息传输方法。该上行控制信息传输方法中,终端可从N个反馈信息中确定第一反馈信息,该第一反馈信息对应的第一上行控制信道资源与第一CSI对应的上行控制信道资源在时域上存在重叠,终端能够将第一反馈信息与第一CSI复用在目标上行控制信道资源上发送。其中,该目标上行控制信道资源为基于第一反馈信息关联的下行控制相关参数确定的。可见,该实施方式能够针对上行控制信道资源发生重叠的反馈信息和CSI进行资源重选,从而有利于实现最大化的性能改善。
在一种实施方式中,针对一上行时间单元存在的N个反馈信息以及第一CSI,当N个反馈信息的上行控制信道资源与CSI对应的上行控制信道资源发生重叠时,终端能够从N个反馈信息中选择一个反馈信息,作为第一反馈信息与该第一CSI复用,并确定复用的目标上行控制信道资源。
在另一种实施方式中,针对一上行时间单元存在的N个反馈信息以及至少一个CSI中的每个反馈信息,例如,该N个反馈信息中的第一反馈信息,终端可从该至少一个CSI中,确定上行控制信道资源与该第一反馈信息的上行控制信道资源在时域上存在重叠的第一CSI,从而,可将该第一反馈信息与第一CSI复用在目标上行控制信道资源上发送。其中, 该目标上行控制信道资源为基于该第一反馈信息关联的下行控制相关参数确定的。
也就是说,N个反馈信息分别对应的上行控制信道资源在时域上可能存在重叠,也可能不存在重叠,也可能部分重叠。终端可基于上述实施方式对该N个反馈信息进行处理。第一反馈信息可以为根据一定条件从N个反馈信息中选择的反馈信息,也可以为该N个反馈信息中的任一个反馈信息。
在一种实施方式中,N个反馈信息中还包括第二反馈信息;所述第二反馈信息对应的第二上行控制信道资源,与所述第一上行控制信道资源和所述第一CSI对应的上行控制信道资源中的至少一个,在时域上存在重叠。该实施方式中,终端从中选择第一反馈信息与第一CSI进行复用。
在一种实施方式中,针对所述第一反馈信息对应的第一上行控制信道资源、第二反馈信息对应的第二上行控制信道资源,终端根据上行控制信道资源在时域上的起始位置最靠前或最靠后,和所占时域资源最大或最小选择第一反馈信息。或者终端根据在时域上的起始位置最靠前或最靠后,或者所占时域资源最大或最小选择第一反馈信息。
在一种实施方式中,所述第一反馈信息满足以下一个或多个条件:所述第一反馈信息关联的下行控制相关参数的标识或索引号最小;所述第一反馈信息关联的DCI所占的资源在时域上的起始位置最靠前;所述第一反馈信息关联的DCI所占的资源中CCE起始位置最靠前;所述第一反馈信息关联的DCI关联的控制资源集合关联的标识或索引号最小;所述第一反馈信息关联的DCI中上行控制信道资源指示域的值最小。
反馈信息关联的DCI是根据反馈信息对应的一个或多个DCI的PDCCH检测时机或根据反馈信息对应的一个或多个DCI的PDCCH检测时机和关联的小区标识确定的。比如,反馈信息关联的DCI是指反馈信息对应的一个或多个DCI中PDCCH检测时机最靠后,或者PDCCH检测时机最靠后以及关联的小区标识最大的PDCCH承载的DCI。比如,反馈信息关联的DCI是指反馈信息对应的一个或多个DCI中PDCCH检测时机最靠后,或者PDCCH检测时机最靠后以及关联的小区标识最大的PDCCH承载的DCI。
在一种实施方式中,所述第一CSI包含多个CSI,所述多个CSI分别对应的上行控制信道资源在时域上存在重叠;所述第一CSI对应的上行控制信道资源用于承载复用后的所述多个CSI。也就是说,终端可将能够复用的CSI进行复用后,再基于用于承载复用后的多个CSI的上行控制信道资源与各反馈信息的上行控制信道资源之间的重叠情况,确定与其中一个反馈信息进行复用并发送。
上述各实施方式中,所述目标上行控制信道资源为基于总比特数和所述第一反馈信息关联的下行控制相关参数确定的;所述总比特数为所述第一反馈信息和所述第一CSI的总比特。即基于该总比特数从高层信令配置的资源池中选择一上行控制信道资源集合,从而基于第一反馈信息关联的下行控制相关参数确定目标上行控制信道资源。
在另一种实施方式中,所述终端将第二CSI复用在所述目标控制信道资源上发送;所述第二CSI对应的上行控制信道资源,与所述第一上行控制信道资源和所述第一CSI对应的上行控制信道资源中的至少一个在时域上存在重叠。也就是说,终端选择第一反馈信息后,可从上行时间单元中的至少一个CSI中,依次选择与第一上行控制信道资源在时域上存在重叠的至少一个CSI;之后再从剩余的CSI中,选择与该至少一个CSI的上行控制信 道资源存在重叠的至少一个CSI,等等,从而可将选择的这些CSI与第一反馈信息复用在目标上行控制信道资源上发送。其中,该目标上行控制信道资源是基于第一反馈信息以及所有复用的CSI的总比特数,和第一反馈信息关联的下行控制相关参数确定的。
在一种实施方式中,针对N个反馈信息,该N个反馈信息分别对应的上行控制信道资源均与第一CSI重叠时,终端可根据上述实施方式从N个反馈信息中选择第一反馈信息。终端从N个反馈信息中,选择上行控制信道资源在时域上所占时域资源最长的反馈信息,作为第一反馈信息。或者,终端根据上行控制信道资源在时域上的起始位置最靠前,从N个反馈信息中选择第一反馈信息。或者,终端根据上行控制信道资源所占时域资源最长和上行控制信道资源在时域上的起始位置最靠前选择第一反馈信息。终端从N个反馈信息中选择上行控制信道资源在时域上所占时域资源最长的反馈信息;再从中选择上行控制信道资源在时域上的起始位置最靠前的反馈信息,作为第一反馈信息。或者,终端从N个反馈信息中,先选择上行控制信道资源在时域上的起始位置最靠前的反馈信息;再从中选择上行控制信道资源在时域上所占时域资源最长的反馈信息,作为第一反馈信息。同理,也可以基于N个反馈信息分别关联的DCI或下行控制相关参数来选择第一反馈信息。
终端还可以根据目标上行控制信道资源与第二反馈信息的第二上行控制信道资源之间的重叠情况,确定第二反馈信息是否发送。其中,第二反馈信息对应的上行控制信道资源称为第二上行控制信道资源。目标上行控制信道资源与第二上行控制信道资源在时域上存在重叠时,终端在第二上行控制信道资源上不发送所述第二反馈信息;或者所述目标上行控制信道资源与第二上行控制信道资源在时域上不存在重叠时,所述终端在所述第二上行控制信道资源上发送所述第二反馈信息;或者,所述目标上行控制信道资源与所述第二上行控制信道资源在时域上存在重叠,且重叠部分的时频资源不影响承载第二反馈信息的上行控制信道的解调参考信号,则终端可在第二上行控制信道资源上发送第二反馈信息。可见,该实施方式,在目标上行控制信道资源上发送复用的第一反馈信息和第一CSI外,尽可能的发送第二反馈信息,有利于最大化的实现性能改善。
可见,针对N个反馈信息,终端从中选择第一反馈信息与第一CSI复用后,还可继续从N-1个反馈信息中,选择第二反馈信息;基于第二反馈信息对应的上行控制信道资源与目标上行控制信道资源的重叠情况,来确定发送或不发送第二反馈信息。
在另一种实施方式中,终端还可以根据目标上行控制信道资源与第二反馈信息的第二上行控制信道资源之间的重叠情况,确定是否将第二反馈信息也复用在目标上行控制信道资源上。该实施方式中,所述目标上行控制信道资源为基于总比特数和所述第一反馈信息关联的下行控制相关参数确定的;所述总比特数为所述第一反馈信息、所述第二反馈信息和所述第一CSI的总比特。
也就是说,上述各实施方式中复用后的上行控制信息中至多包含一个反馈信息。而该实施方式中,复用后的上行控制信息中可以包含多个反馈信息。从而对于网络设备之间交互时延较短的场景,网络设备之间可以及时获得彼此调度情况以及反馈信息的总比特数,等等,从而网络设备能够针对复用的多个反馈信息进行正确译码。
第二方面,本申请还提供一种上行控制信息传输方法。该上行控制信息传输方法中,终端确定N个反馈信息和第一CSI,所述N个反馈信息和第一CSI分别对应的上行控制信 道资源中,任一上行控制信道资源与其他至少一个上行控制信道资源在时域上存在重叠。终端从该多个反馈信息中确定第一反馈信息;终端将所述N个反馈信息和所述第一CSI复用在目标上行控制信道资源上发送。该目标上行控制信道资源是基于第一反馈信息关联的下行控制相关参数确定的。N个反馈信息分别关联的下行控制相关参数不同。N为大于或等于2的整数。
可见,上行控制信道资源存在重叠的多个反馈信息和CSI复用在目标上行控制信道资源上发送,从而解决了多个反馈信息,终端无法处理的问题,以及能够最大化的实现性能改善。
所述目标上行控制信道资源为基于总比特数和所述第一反馈信息关联的下行控制相关参数确定的;所述总比特数为所述N个反馈信息和所述第一CSI的总比特。
在一种实施方式中,所述N个反馈信息中还包括第二反馈信息;所述第二反馈信息对应的第二上行控制信道资源,与所述第一上行控制信道资源和所述第一CSI对应的上行控制信道资源中的至少一个,在时域上存在重叠。
在一种实施方式中,所述终端从N个反馈信息中确定第一反馈信息,包括:终端根据上行控制信道资源在时域上的起始位置最靠前或最靠后,和所占时域资源最大或最小,从N个反馈信息分别对应的上行控制信道资源中选择第一上行控制信道资源;或者终端根据上行控制信道资源在时域上的起始位置最靠前或最靠后,或者所占时域资源最大或最小,从N个反馈信息分别对应的上行控制信道资源中选择第一上行控制信道资源;所述第一上行控制信道资源对应的反馈信息为第一反馈信息。
在另一种实施方式中,所述第一反馈信息满足以下一个或多个条件:所述第一反馈信息关联的下行控制相关参数的标识或索引号最小;所述第一反馈信息关联的DCI所占的资源在时域上的起始位置最靠前;所述第一反馈信息关联的DCI所占的资源中CCE起始位置最靠前;所述第一反馈信息关联的DCI关联的控制资源集合关联的标识或索引号最小;所述第一反馈信息关联的DCI中上行控制信道资源指示域的值最小。
在一种实施方式中,所述目标上行控制信道资源与第二反馈信息对应的第二上行控制信道资源在时域上存在重叠时,所述终端将所述第二反馈信息也复用在所述目标上行控制信道资源上发送。该实施方式中,所述目标上行控制信道资源为基于总比特数和所述第一反馈信息关联的下行控制相关参数确定的;所述总比特数为所述N个反馈信息、所述第二反馈信息和所述第一CSI的总比特。
在一种实施方式中,所述终端将第二CSI复用在所述目标控制信道资源上发送;所述第二CSI对应的上行控制信道资源,与所述N+1个上行控制信道资源中的至少一个在时域上存在重叠。该N+1个上行控制信道资源为N个反馈信息和第一CSI分别对应的上行控制信道资源。该实施方式中,所述目标上行控制信道资源为基于总比特数和所述第一反馈信息关联的下行控制相关参数确定的;所述总比特数为所述N个反馈信息、所述第一CSI和第二CSI的总比特。
在另一种实施方式中,所述第一CSI包含多个CSI,所述多个CSI分别对应的上行控制信道资源在时域上存在重叠;所述第一CSI对应的上行控制信道资源用于承载复用后的所述多个CSI。也就是说,终端可将能够复用的CSI进行复用后,再基于用于承载复用后 的多个CSI的上行控制信道资源与各反馈信息的上行控制信道资源之间的重叠情况,确定与N个反馈信息进行复用并发送。
第三方面,本申请还提供一种上行控制信息传输方法,上行控制信息传输方法,其特征在于,包括:所述第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠时,第一网络设备接收终端在目标上行控制信道资源上发送的第一反馈信息和第一CSI;所述目标上行控制信道资源为基于所述第一反馈信息关联的下行控制相关参数确定的;或者所述第一网络设备接收终端在所述第一反馈信息对应的上行控制信道资源上发送的所述第一反馈信息。
在一种实施方式中,所述目标上行控制信道资源为基于总比特数和所述第一反馈信息关联的下行控制相关参数确定的;所述总比特数为所述第一反馈信息和所述第一CSI的总比特。
在另一种实施方式中,第二反馈信息对应的第二上行控制信道资源,与所述第一上行控制信道资源和所述第一CSI对应的上行控制信道资源中的至少一个在时域上存在重叠,所述方法还包括:所述第一网络设备接收所述终端复用在所述目标控制信道资源上的所述第二反馈信息;所述第一网络设备将所述第二反馈信息发送给第二网络设备。所述目标上行控制信道资源为基于总比特数和所述第一反馈信息关联的下行控制相关参数确定的;所述总比特数为所述第一反馈信息、所述第二反馈信息和所述第一CSI的总比特。
在一种实施方式中,所述第一网络设备接收所述终端复用在所述目标控制信道资源上的第二CSI;所述第二CSI对应的上行控制信道资源,与所述第一上行控制信道资源和所述第一CSI对应的上行控制信道资源中的至少一个在时域上存在重叠。
在另一种实施方式中,所述第一CSI包含多个CSI,所述多个CSI分别对应的上行控制信道资源在时域上存在重叠;所述第一CSI对应的上行控制信道资源用于承载复用后的所述多个CSI。
其中,该方面的内容也可参见第一方面的相关阐述,此处不再详述。
第四方面,本申请还提供一种上行控制信息传输方法。该上行控制信息传输方法中,该上行控制信息传输方法中,网络设备确定N个反馈信息和第一CSI,所述N个反馈信息和第一CSI分别对应的个上行控制信道资源中,任一上行控制信道资源与其他至少一个上行控制信道资源在时域上存在重叠。网络设备从该多个反馈信息中确定第一反馈信息;网络设备确定终端将所述N个反馈信息和所述第一CSI复用在目标上行控制信道资源上。该目标上行控制信道资源是基于第一反馈信息关联的下行控制相关参数确定的。N个反馈信息分别关联的下行控制相关参数不同。N为大于或等于2的整数。
所述目标上行控制信道资源为基于总比特数和所述第一反馈信息关联的下行控制相关参数确定的;所述总比特数为所述N个反馈信息和所述第一CSI的总比特。
在一种实施方式中,所述N个反馈信息中还包括第二反馈信息;所述第二反馈信息对应的第二上行控制信道资源,与所述第一上行控制信道资源和所述第一CSI对应的上行控制信道资源中的至少一个,在时域上存在重叠。
在一种实施方式中,所述网络设备从N个反馈信息中确定第一反馈信息,包括:网络设备根据上行控制信道资源在时域上的起始位置最靠前或最靠后,和所占时域资源最大或 最小,从N个反馈信息分别对应的上行控制信道资源中选择第一上行控制信道资源;或者网络设备根据上行控制信道资源在时域上的起始位置最靠前或最靠后,或者所占时域资源最大或最小,从N个反馈信息分别对应的上行控制信道资源中选择第一上行控制信道资源;所述第一上行控制信道资源对应的反馈信息为第一反馈信息。
在另一种实施方式中,所述第一反馈信息满足以下一个或多个条件:所述第一反馈信息关联的下行控制相关参数的标识或索引号最小;所述第一反馈信息关联的DCI所占的资源在时域上的起始位置最靠前;所述第一反馈信息关联的DCI所占的资源中CCE起始位置最靠前;所述第一反馈信息关联的DCI关联的控制资源集合关联的标识或索引号最小;所述第一反馈信息关联的DCI中上行控制信道资源指示域的值最小。
在一种实施方式中,所述目标上行控制信道资源与第二反馈信息对应的第二上行控制信道资源在时域上存在重叠时,所述终端将所述第二反馈信息也复用在所述目标上行控制信道资源上发送。该实施方式中,所述目标上行控制信道资源为基于总比特数和所述第一反馈信息关联的下行控制相关参数确定的;所述总比特数为所述N个反馈信息、所述第二反馈信息和所述第一CSI的总比特。
在一种实施方式中,所述网络设备可确定第二CSI复用在所述目标控制信道资源上发送;所述第二CSI对应的上行控制信道资源,与上述N+1个上行控制信道资源中的至少一个在时域上存在重叠。该N+1个上行控制信道资源为N个反馈信息和第一CSI分别对应的上行控制信道资源。该实施方式中,所述目标上行控制信道资源为基于总比特数和所述第一反馈信息关联的下行控制相关参数确定的;所述总比特数为所述N个反馈信息、所述第一CSI和第二CSI的总比特。
在另一种实施方式中,所述第一CSI包含多个CSI,所述多个CSI分别对应的上行控制信道资源在时域上存在重叠;所述第一CSI对应的上行控制信道资源用于承载复用后的所述多个CSI。也就是说,网络设备可确定终端将能够复用的CSI进行复用后,再基于用于承载复用后的多个CSI的上行控制信道资源与各反馈信息的上行控制信道资源之间的重叠情况,与N个反馈信息进行复用。
第五方面,本申请还提供了一种通信装置,该终端具有实现上述第一方面至第二方面所述的方法示例中终端的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和发送单元耦合,其保存终端必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
处理单元,用于从N个反馈信息中确定第一反馈信息;所述N为大于或等于2的整数;所述N个反馈信息分别关联的下行控制相关参数不同;
通信单元,用于将所述第一反馈信息与第一信道状态信息CSI复用在目标上行控制信 道资源上发送;所述第一反馈信息对应的第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠;
所述处理单元,还用于基于所述第一反馈信息关联的下行控制相关参数确定所述目标上行控制信道资源。
在另一种实施方式中,所述通信装置包括:
处理单元,用于确定N个反馈信息和第一CSI,所述N个反馈信息和第一CSI分别对应的上行控制信道资源中,任一上行控制信道资源与其他至少一个上行控制信道资源在时域上存在重叠;
所述处理单元,还用于从该多个反馈信息中确定第一反馈信息;
通信单元,用于将所述N个反馈信息和所述第一CSI复用在目标上行控制信道资源上发送。该目标上行控制信道资源是基于第一反馈信息关联的下行控制相关参数确定的。N个反馈信息分别关联的下行控制相关参数不同。N为大于或等于2的整数。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。
一种实施方式中,所述通信装置包括:
处理器,用于从N个反馈信息中确定第一反馈信息;所述N为大于或等于2的整数;所述N个反馈信息分别关联的下行控制相关参数不同;
收发器,用于将所述第一反馈信息与第一信道状态信息CSI复用在目标上行控制信道资源上发送;所述第一反馈信息对应的第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠;
所述处理器,还用于基于所述第一反馈信息关联的下行控制相关参数确定所述目标上行控制信道资源。
在另一种实施方式中,所述通信装置包括:
处理器,用于确定N个反馈信息和第一CSI,所述N个反馈信息和第一CSI分别对应的上行控制信道资源中,任一上行控制信道资源与其他至少一个上行控制信道资源在时域上存在重叠;
所述处理器,还用于从该多个反馈信息中确定第一反馈信息;
收发器,用于将所述N个反馈信息和所述第一CSI复用在目标上行控制信道资源上发送。该目标上行控制信道资源是基于第一反馈信息关联的下行控制相关参数确定的。N个反馈信息分别关联的下行控制相关参数不同。N为大于或等于2的整数。
第六方面,本申请还提供了另一种通信装置。该通信装置具有实现上述第三方面、第四方面所述的方法示例中网络设备的部分或全部功能。比如,通信装置的功能可具备本申请中网络设备的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述通信单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与获取单元 和发送单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
处理单元,用于在所述第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠时,确定终端在目标上行控制信道资源上发送第一反馈信息和第一CSI;通信单元,用于接收所述终端在目标上行控制信道资源上发送的第一反馈信息和第一CSI,所述目标上行控制信道资源为基于所述第一反馈信息关联的下行控制相关参数确定的;或者
处理单元,用于在所述第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠时,确定终端在所述第一反馈信息对应的上行控制信道资源上发送所述第一反馈信息;
通信单元,用于接收终端在所述第一反馈信息对应的上行控制信道资源上发送的所述第一反馈信息。
在另一种实施方式中,所述通信装置包括:
处理单元,用于确定N个反馈信息和第一CSI,所述N个反馈信息和第一CSI分别对应的上行控制信道资源中,任一上行控制信道资源与其他至少一个上行控制信道资源在时域上存在重叠。
处理单元,用于从该多个反馈信息中确定第一反馈信息;
处理单元,用于确定终端将所述N个反馈信息和所述第一CSI复用在目标上行控制信道资源上发送;
通信单元,用于接收终端在目标上行控制信道资源上发送的所述N个反馈信息和所述第一CSI。
该目标上行控制信道资源是基于第一反馈信息关联的下行控制相关参数确定的。N个反馈信息分别关联的下行控制相关参数不同。N为大于或等于2的整数。
作为示例,通信单元可以为收发器或通信接口。
一种实施方式中,所述通信装置包括:
处理器,用于在所述第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠时,确定终端在目标上行控制信道资源上发送第一反馈信息和第一CSI;通信单元,用于接收所述终端在目标上行控制信道资源上发送的第一反馈信息和第一CSI,所述目标上行控制信道资源为基于所述第一反馈信息关联的下行控制相关参数确定的;或者
处理器,用于在所述第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠时,确定终端在所述第一反馈信息对应的上行控制信道资源上发送所述第一反馈信息;
收发器,用于接收终端在所述第一反馈信息对应的上行控制信道资源上发送的所述第一反馈信息。
另一种实施方式中,所述通信装置包括:
处理器,用于确定N个反馈信息和第一CSI,所述N个反馈信息和第一CSI分别对应的上行控制信道资源中,任一上行控制信道资源与其他至少一个上行控制信道资源在时域 上存在重叠。
处理器,用于从该多个反馈信息中确定第一反馈信息;
处理器,用于确定终端将所述N个反馈信息和所述第一CSI复用在目标上行控制信道资源上发送;
收发器,用于接收终端在目标上行控制信道资源上发送的所述N个反馈信息和所述第一CSI。
该目标上行控制信道资源是基于第一反馈信息关联的下行控制相关参数确定的。N个反馈信息分别关联的下行控制相关参数不同。N为大于或等于2的整数。
在具体实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本发明实施例对上述器件的具体实现形式不做限定。
第七方面,本申请还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息过程。具体来说,在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。更进一步的,该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的接收TCI信息可以理解为处理器输入TCI信息。又例如,发送TCI信息可以理解为处理器输出TCI信息。
如此一来,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本发明实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第八方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述终端所用的计算机软件指令,其包括用于执行上述方法的第一方面或第二方面所涉及的程序。
第九方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述网络设备 所用的计算机软件指令,其包括用于执行上述方法的第三方面或第四方面所涉及的程序。
第十方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面所述的方法。
第十一方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第三方面或第四方面所述的方法。
第十二方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持终端实现第一方面或第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十三方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持网络设备实现第三方面或第四方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是本申请实施例提供的一种V2X系统的示例图;
图2是本申请实施例提供的一种无线通信系统的示意图;
图3是本申请实施例提供的一种HARQ-ACK反馈的示意图;
图4是本申请实施例提供的另一种HARQ-ACK反馈的示意图;
图5是本申请实施例提供的又一种HARQ-ACK反馈的示意图;
图6是本申请实施例提供的一种上行控制信息传输方法的流程示意图;
图7是本申请实施例提供的多个上行控制信道资源重叠的一种示意图;
图8是本申请实施例提供的多个上行控制信道资源重叠的另一种示意图;
图9是本申请实施例提供的多个上行控制信道资源重叠的又一种示意图;
图10是本申请实施例提供的多个上行控制信道资源重叠的又一种示意图;
图11是本申请实施例提供的多个上行控制信道资源重叠的又一种示意图;
图12是本申请实施例提供的多个上行控制信道资源重叠的又一种示意图;
图13是本申请实施例提供的多个上行控制信道资源重叠的又一种示意图;
图14是本申请实施例提供的多个上行控制信道资源重叠的又一种示意图;
图15是本申请实施例提供的另一种上行控制信息传输方法的流程示意图;
图16是本申请实施例提供的一种装置的结构示意图;
图17是本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的技术方案可具体应用于各种通信系统中。例如,随着通信技术的不断发展,本申请的技术方案还可用于未来网络,如5G系统,也可以称为新空口(new radio,NR)系统;或者还可用于设备到设备(device to device,D2D)系统,机器到机器(machine to machine,M2M)系统等等。
本申请的技术方案还可应用到车联网(vehicle to everything,V2X)技术(X代表任何事物)中,V2X系统中的通信方式统称为V2X通信。V2X通信针对以车辆为代表的高速设备,是未来对通信时延要求非常高的场景下应用的基础技术和关键技术,如智能汽车、自动驾驶、智能交通运输系统等场景。例如,该V2X通信包括:车辆与车辆(vehicle to vehicle,V2V)之间的通信,车辆与路边基础设施(vehicle to infrastructure,V2I)之间的通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)之间的通信等。V2X系统中所涉及的终端设备之间进行的通信被广泛称为侧行链路(slidelink,SL)通信。也就是说,本申请所述的终端也可以为车辆或应用于车辆中的车辆组件。
图1是本申请实施例涉及的V2X系统的示意图。该示意图包括V2V通信、V2P通信以及V2I/N通信。
如图1所示,车辆或车辆组件之间通过V2V通信。车辆或车辆组件可以将自身的车速、行驶方向、具体位置、是否踩了紧急刹车等信息广播给周围车辆,周围车辆的驾驶员通过获取该类信息,可以更好的感知视距外的交通状况,从而对危险状况做出提前预判进而做出避让;车辆或车辆组件与路侧基础设施通过V2I通信,路边基础设施,可以为车辆或车辆组件提供各类服务信息和数据网络的接入。其中,不停车收费、车内娱乐等功能都极大的提高了交通智能化。路边基础设施,例如,路侧单元(road side unit,RSU)包括两种类型:一种是终端设备类型的RSU。由于RSU分布在路边,该终端设备类型的RSU处于非移动状态,不需要考虑移动性;另一种是网络设备类型的RSU。该网络设备类型的RSU可以给与网络设备通信的车辆或车辆组件提供定时同步及资源调度。车辆或车辆组件与人通过V2P通信;车辆或车辆组件与网络通过V2N通信。其中,本申请公开的实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请公开的实施例的技术方案,并不构成对于本申请公开的实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请公开的实施例提供的技术方案对于类似的技术问题,同样适用。
本申请公开的实施例涉及到的网络设备包括基站(base station,BS),可以是一种部署在无线接入网中能够和终端进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请公开的实施例涉及到的基站可以是5G中的基站或LTE中的基站,其中,5G中的基站还可以称为传输接收点(transmission reception point,TRP)。
在一些部署中,网络设备可以包括集中式单元(centralized unit,CU)和分布式单元(DU,distributed unit)等。网络设备还可以包括射频单元(radio unit,RU)。CU实现基站的部分功能,DU实现网络设备的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实 现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成物理层的信息,或者,由物理层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,在此不做限制。
本申请公开的实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
在本申请公开的实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请公开的实施例提供的技术方案。
本申请中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、前述的V2X车联网中的无线终端或无线终端类型的RSU等等。
为了便于理解本申请公开的实施例,作出以下几点说明。
(1)本申请公开的实施例中部分场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请公开的实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
(2)本申请公开的实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
(3)在本申请公开的实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
(4)本申请公开的实施例中,“的(of)”,“相应的(relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
(5)本申请公开的实施例中,至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请公开的实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
为便于理解本申请公开的实施例,下面部分实施方式以图2为例,说明本申请公开的实施例所述的上行控制信息传输方法。
请参阅图2,图2是本申请实施例提供的一种无线通信系统的示意图。如图2所示,无线通信系统可包括:多个网络设备(例如TRP),一个或多个终端。其中:网络设备可用于在网络设备控制器(未示出)的控制下,通过无线接口与终端通信。在一些实施例中,所述网络设备控制器可以是核心网的一部分,也可以集成到网络设备中。网络设备之间可用于通过回程(backhaul)接口向核心网传输控制信息或者用户数据。具体的,如图2所示,TRP1与TRP2之间通过回程(backhaul)接口,直接地或者间接地,相互通信。另外,多个网络设备可以调度同一个终端,即多站协作传输场景。
多站协作传输场景可分为两类。一类是理想回程(ideal backhaul,IB)场景。该IB场景下,网络设备(比如TRP1和TRP2)之间的信息交互时延较短,传输容量较大。另一类是非理想回程(non-ideal backhaul,NIB)场景。该NIB场景下,网络设备(比如TRP1和TRP2)之间的信息交互时延较长,传输容量受限。
本申请实施例中,上行控制信息(uplink control information,UCI)可包括混合自动重传请求(hybrid automatic repeat request,HARQ)-确认(ACK)信息和信道状态信息(channel state information,CSI)。CSI可包括周期性信道状态信息(periodic channel state information,P-CSI)、非周期性信道状态信息(aperiodic channel state information,AP-CSI),半静态信道状态信息(semi-persistent channel state information,SP-CSI)等。
如图2所示的无线通信系统中,TRP1和TRP2可分别发送不同的下行控制信息给终端调度各下行数据,不同的下行控制信息承载在不同的物理下行控制信道(physical downlink control channel,PDCCH)上。终端根据各下行数据的译码结果,反馈混合自动重传请求(hybrid automatic repeat request,HARQ)-确认(ACK)信息。该HARQ-ACK信息用于对接收的数据,如物理下行共享信道(physical downlink share channel,PDSCH)承载的数据,进行肯定(ACK)或否定(NACK)的反馈,以便于丢失或出错的数据能进行快速重传。
终端在反馈HARQ-ACK信息时,会把一个或多个下行数据分别对应的HARQ-ACK信息比特,放在一个HARQ-ACK码本中反馈给该TRP。例如,TRP可通过高层信令,或者高层信令结合下行控制信息(downlink control information,DCI)的方式,指示PDSCH所在的下行时间单元到进行HARQ反馈的上行时间单元之间的时序偏移。这样,终端能够获知反馈HARQ-ACK信息比特的上行时间单元与传输下行数据的下行时间单元之间的对应关系。进而,终端可将对应的上行时间单元相同的下行时间单元所传输的下行数据的HARQ-ACK信息比特放在同一个HARQ-ACK码本中反馈。
例如,高层信令指示一个时序偏移值K1,终端设备则能够获得一上行时间单元与一下行时间单元之间的对应关系,从而,终端可将该下行时间单元传输的下行数据的HARQ-ACK信息比特在该上行时间单元上反馈。其中,该上行时间单元-K1获得的时间单元(即该上行时间单元向前数第K1个时间单元),为该下行时间单元。其中,时序偏移值也可以为时域指示值、反馈时序指示等。
再例如,高层信令指示多个时序偏移值,则TRP还需结合DCI中的反馈时序指示(如 PDSCH到进行HARQ反馈的时间单元指示(PDSCH-to-HARQ feedback timing indicator))k i,来告知终端该DCI调度的PDSCH的HARQ-ACK信息比特进行反馈时采用的上行时间单元。例如,以时间单元为时隙为例,高层信令指示的两个时序偏移值K1{k0=4,k1=3},以及DCI调度slot0时其PDSCH-to-HARQ feedback timing indicator等于4,则DCI调度slot0传输的PDSCH的HARQ-ACK信息比特进行反馈所采用的上行时间单元为:slot0+4获得的时隙4(即该slot0向后数第4个时隙)。
HARQ-ACK码本有两种类型。一种是半静态HARQ-ACK码本。一种是动态HARQ-ACK码本。半静态HARQ-ACK码本是指HARQ-ACK码本的大小不随着数据调度的实际情况的改变而改变。动态HARQ-ACK码本是指HARQ-ACK码本的大小随着数据调度的实际情况的改变而改变。比如,半静态HARQ-ACK码本的大小是由高层信令指示的时序偏移值确定的。即使没有DCI调度该时序偏移值对应的PDSCH,也需在该时序偏移值对应的上行时间单元上反馈NACK。而动态HARQ-ACK码本中,没有DCI调度该时序偏移值对应的PDSCH时,就不需在该时序偏移值应的上行时间单元上反馈NACK。
以下以TRP1发送的多个DCI调度的下行数据为例,阐述半静态HARQ-ACK码本和动态HARQ-ACK码本。假设高层信令指示的时序偏移值K1{k0=4,k1=3,k2=2}。如图3所示,假设上下行的时隙配置参数相同,TRP1采用DCI0调度PDSCH0,其中,PDSCH0在slot0上传输,DCI0承载在PDCCH0上,并且根据DCI0中PDSCH-to-HARQ feedback timing indicator的指示确定时序偏移值为4。TRP1采用DCI1调度PDSCH1,其中,PDSCH1在slot1上传输,DCI1承载在PDCCH1上,并且根据DCI1中PDSCH-to-HARQ feedback timing indicator的指示确定时序偏移值为3。TRP1没有调度slot2传输任何下行数据。则对于半静态码本来说,上行时隙4上该TRP1对应的HARQ-ACK码本1需要包括PDSCH0、PDSCH1的HARQ-ACK信息比特外,还需包括k2=2,即时隙2对应的NACK。但对于动态码本反馈来说,上行时隙4上该TRP1对应的HARQ-ACK码本1需包括调度的PDSCH0、PDSCH1的HARQ-ACK信息比特即可,不需包括未调度的时隙2对应的NACK。终端可将针对PDSCH0生成的HARQ-ACK信息比特和针对PDSCH1生成的HARQ-ACK信息比特,以半静态HARQ-ACK码本或动态HARQ-ACK码本的方式放在一个HARQ-ACK码本1中,在时隙slot4上发送给TRP1。TRP1通过解读该slot4上发送的HARQ-ACK码本信息,从而知道各PDSCH对应的HARQ-ACK信息比特是ACK,还是NACK。
在图2所示的场景中,终端可以将TRP2调度多个时间单元分别传输的下行数据的HARQ-ACK信息比特也在一个HARQ-ACK码本中反馈。由于TRP1和TRP2是相对独立的调度各下行数据的,对于终端来说,对不同的网络设备可以发送不同的HARQ-ACK码本,因此,可能存在一个上行时隙中具有多个HARQ-ACK码本的情况,且该多个HARQ-ACK码本分别关联的下行控制相关参数不同,即该多个HARQ-ACK码本分别关联的TRP不同。
例如,如图4所示,TRP1通过DCI0调度的PDSCH0在slot0上传输,通过DCI1调度PDSCH1在slot1上传输,终端基于上述所述的高层信令指示或高层信令结合DCI的指示,以及半静态HARQ-ACK码本或动态HARQ-ACK码本的信令指示,可获得在slot4上反馈的HARQ-ACK码本1。该HARQ-ACK码本1包括PDSCH0的HARQ-ACK信息比特以及 PDSCH1的HARQ-ACK信息比特。TRP2通过DCI2调度PDSCH2在slot0上传输,通过DCI3调度PDSCH3在slot1上传输,基于上述所述的高层信令指示或高层信令结合DCI的指示,以及半静态HARQ-ACK码本或动态HARQ-ACK码本的信令指示,可获得需在slot4上反馈的HARQ-ACK码本2。该HARQ-ACK码本2包括PDSCH2的HARQ-ACK信息比特以及PDSCH3的HARQ-ACK信息比特。
另外,终端上报信道状态信息也是在上行时间单元中上报的。例如,如图5所示,与图4相比,时隙4上不仅需发送HARQ-ACK码本1、HARQ-ACK码本2,还需要发送CSI,该CSI可包括P-CSI,AP-CSI、SP-CSI等。
终端在上行时间单元上发送多个独立的HARQ-ACK码本、多个信道状态信息时,终端分别采用各自对应的上行控制信道资源。因此,对于终端来说,同一个上行时间单元,一个或多个HARQ-ACK码本以及一个或多个信道状态信息分别对应的上行控制信道资源可能存在重叠。例如,该重叠可能为时域上的重叠,频域上的重叠或时频域上的重叠。
对于一个上行时间单元中存在一个HARQ-ACK码本以及一个或多个信道状态信息的情况,当它们分别对应的上行控制信道资源存在重叠,由于信道状态信息的实时性要求相对不高,以及TRP能够获知它自身的HARQ-ACK码本对应的上行控制信道资源,与信道状态信息对应的上行控制信道资源的重叠情况,因此,终端可将该HARQ-ACK码本以及该一个或多个信道状态信息复用在同一个上行控制信道资源上发送。其中,复用的该上行控制信道资源可根据该HARQ-ACK码本对应的下行控制信息中PUCCH资源指示域的值和复用后的UCI信息比特数来确定。相应的,TRP也能获知终端的复用后的上行控制信道资源选择的规则,故TRP可以在相应的资源上接收到该上行控制信息后,能够正确译码出HARQ-ACK码本和信道状态信息,可选的,可将信道状态信息通过回程接口发送给相应的其他TRP。
但对于一个上行时间单元中存在多个HARQ-ACK码本以及一个或多个信道状态信息的情况,一旦它们分别对应的上行控制信道资源存在重叠,由于HARQ-ACK码本对实时性要求高且各HARQ-ACK码本对应的下行控制信息不同,因此,本申请提供一种上行控制信息传输方法,能够针对多个HARQ-ACK码本的情况,解决如何传输上行控制信息的问题。
多站协作场景中,如图2所示,根据TRP1和TRP2之间的回程接口的种类,分别NIB场景和IB场景。NIB场景和IB场景中,TRP之间的信息交互时延大小不同。
本申请提供的一种上行控制信息传输方法能够在NIB场景下,将信道状态信息与其中一个反馈信息复用到同一个上行控制信道资源上发送。针对另一个反馈信息,该上行控制信息传输方法能够基于复用的上行控制信道资源与另一个反馈信息对应的上行控制信道资源之间的时频关系,确定是否发送另一个反馈信息。
本申请提供的另一种上行控制信息传输方法,能够在IB场景下,将一个时间单元上包含的各上行控制信息复用在同一个上行控制信道资源上发送。以下结合附图进行阐述。
为阐述方便,先对本申请实施例涉及的几个概念进行阐述。
1、下行控制相关参数
下行控制相关参数主要是用来区分DCI的特性的,可以将下行控制相关参数相同的 DCI归为一种DCI。下行控制相关参数包括但不限于以下的几个例子。
下行控制相关参数可以包括物理下行控制信道配置参数(physical downlink control channel config,PDCCH-Config)、控制资源集合(control resource sets,CORESET)、控制资源集合组(control resource sets group,CORESET group)或者CORESET中包含的高层参数索引(higher layer index)等等。PDCCH-Config包括的参数用于检测候选的下行控制信道(physical downlink control channel,PDCCH)。CORESET可以称为控制资源集合,即CORESET的时频资源,如频域所占的资源块大小,时域所占的符号数等。CORESET group可以包括一个或多个控制资源集合的索引号,一个控制资源集合可以用一个索引号或者一个标识表示。CORESET中包含的高层参数索引中,不同的CORESET可以对应不同的高层参数索引,可选的,该参数索引可以用来区分不同的网络设备。
这样,终端可根据接收的DCI所关联的这些下行控制相关参数的不同,区分出哪些DCI对应的HARQ-ACK信息比特属于不同的HARQ-ACK码本,哪些DCI对应HARQ-ACK信息比特属于同一个HARQ-ACK码本。
图4或图5中,HARQ-ACK码本1关联的下行控制相关参数为DCI0、DCI1对应的PDCCH-Config、CORESET、CORESET group等。HARQ-ACK码本2关联的下行控制相关参数为DCI2、DCI3对应的PDCCH-Config、CORESET、CORESET group等。可见,对于多站协作场景,终端可根据上述下行控制相关参数,确定各站点对应的HARQ-ACK码本,以及哪些DCI调度的PDSCH的HARQ-ACK信息比特可以放在一个HARQ-ACK码本中反馈。
2、反馈信息关联的DCI
本申请的反馈信息可以是HARQ-ACK码本,将一个HARQ-ACK码本称为一个反馈信息。一个反馈信息中包括一个或多个HARQ-ACK信息比特,每个HARQ-ACK信息比特对应一个PDSCH传输,而每个PDSCH传输由相应的DCI调度,因此,该反馈信息具体是对应一个或多个DCI的。同一个反馈信息对应的一个或多个DCI关联的下行控制相关参数相同。每个DCI中均包括PUCCH资源指示域,但反馈信息对应的上行控制信道资源或者终端发送该反馈信息所采用的上行控制信道资源是根据该反馈信息对应的最后一个DCI确定的。
反馈信息对应的最后一个DCI,是该反馈信息对应的一个或多个DCI中PDCCH检测时机最靠后的PDCCH承载的DCI。相应的,若PDCCH检测时机相同的PDCCH有多个,还可以基于该多个PDCCH关联的小区标识,从中选择小区标识最大的或最小的PDCCH承载的DCI作为该反馈信息的最后一个DCI。因此,本文若无特别指明,各反馈信息关联或对应的DCI均指该反馈信息对应的最后一个DCI。
其中,PDCCH检测时机是根据CORESET和搜索空间确定的。
例如,图4中HARQ-ACK码本1包括TRP1通过PDCCH0承载的DCI0,调度slot0传输的PDSCH0的HARQ-ACK信息比特,以及TRP1通过PDCCH1承载的DCI1,调度slot1传输的PDSCH1的HARQ-ACK信息比特。因此,针对HARQ-ACK码本1,可基于PDCCH检测时机0和PDCCH检测时机1来确定传输HARQ-ACK码本1关联的DCI。其中,PDCCH检测时机0为检测到PDDCH0的检测时机。PDCCH检测时机1为检测到 PDDCH1的检测时机。该HARQ-ACK码本1关联的DCI用于确定传输该HARQ-ACK码本1的上行控制信息资源。比如,PDCCH检测时机最靠后的PDCCH检测时机上检测的DCI为HARQ-ACK码本关联的DCI,其中,假设PDCCH1的PDCCH检测时机最靠后,则根据DCI1确定传输HARQ-ACK码本1的上行控制信道资源。下文中可以认为,HARQ-ACK码本1关联的DCI为DCI1。
同理,图4中HARQ-ACK码本2,可基于PDCCH2和PDCCH3分别对应的PDCCH检测时机,或者基于PDCCH2和PDCCH3分别关联的小区标识,确定HARQ-ACK码本2关联的DCI。比如,PDCCH检测时机最靠后的PDCCH承载的DCI为HARQ-ACK码本关联的DCI,假设PDCCH3的PDCCH检测时机最靠后,则HARQ-ACK码本2关联的DCI为DCI3。
3、时间单元
本申请公开的实施例中,时间单元可以是一个或多个无线帧,一个或多个子帧,一个或多个时隙,一个或多个微时隙(mini slot),一个或多个次时隙(sub slot),一个或多个符号,也可以是多个帧或子帧构成的时间窗口,例如系统信息(system information,SI)窗口。本申请实施例对一个符号的时间长度不做限制。针对不同的子载波间隔,一个符号的长度可以有所不同。符号可以包括上行符号和下行符号,其中,上行符号可以称为单载波频分多址(single carrier-frequency division multiple access,SC-FDMA)符号或正交频分多址(orthogonal frequency division multiplexing,OFDM)符号;下行符号可以为OFDM符号。
4、反馈信息对应的上行控制信道资源
高层信令,如RRC信令,为终端配置一个上行控制信道资源池。该上行控制信道资源池包括多个上行控制信道资源集合。不同上行控制信道资源集合对应不同的上行控制信息比特区间。因此,当需要反馈HARQ-ACK码本时,终端可基于反馈信息的比特数,从该上行控制信道资源池中选择一个上行控制信道资源集合。进而,终端可基于该反馈信息关联的DCI中PUCCH资源指示域中的值可从选择的上行控制信道资源集合中,确定一上行控制信道资源,该上行控制信道资源就为该反馈信息对应的上行控制信道资源。
上述多个上行控制信道资源集合中,若某个上个控制信道资源集合中包括的上行控制信道资源数大于一个预设值,例如,预设值为8,DCI中PUCCH资源指示域无法指示完各上行控制信道资源,则终端可以根据该PUCCH资源指示域以及DCI所在的控制信道元素(control channel element,CCE)位置来确定一上行控制信道资源。
比如,一上行控制信道资源集合包括32个上行控制信道资源;PUCCH资源指示域为3比特,可分别表示8个上行控制信道资源;该上行控制信道资源集合可划分为四个子集合,分别由不同的CCE位置来指示。这样,终端基于反馈信息的比特数确定从该上行控制信道资源集合选择反馈信息对应的上行控制信道资源的过程可以为:终端可先利用反馈信息关联的DCI所在的CCE位置选择一上行控制信道资源子集合,该上行控制信道资源子集合包括8个上行控制信道资源;进而,终端可基于反馈信息关联的DCI中的PUCCH资源指示域中3比特的值,从该上行控制信道资源子集合确定唯一的一个上行控制信道资源,作为该反馈信息对应的上行控制信道资源。
本申请实施例中,承载DCI的一个PDCCH可占据一个或多个CCE。占据的CCE越多, 则PDCCH的可靠性越高。一个CCE是由6个资源元素组(resource-element group,REG)组成的,一个REG的资源是由频域上的一个资源块(resource block,RB)和时域上的一个符号组成的。各REG与各CCE之间具有映射关系,可以是直接映射,比如连续的6个REG组成一个CCE;或者可以是交织映射,比如将REG进行交织后映射到CCE等。因此,不同的PDCCH所占据的CCE位置不同。
5、信道状态信息对应的上行控制信道资源
一种情况,信道状态信息对应的上行控制信道资源是由信道状态信息对应的信道状态信息上报配置中指示的,也是从上述上行控制信道资源池中选择的。
另一种情况,信道状态信息对应的上行控制信道资源是用于承载复用后的CSI的上行控制信道资源。该上行控制信道资源可由上行控制信道资源配置进行配置。同样,也是从上述上行控制信道资源池中选择的。
假设一个上行时间单元上存在或需要反馈的上行控制信息包括第一反馈信息、第二反馈信息、第一CSI以及第二CSI。其中,第一反馈信息为第一网络设备关联的或者第一下行控制相关参数关联的反馈信息;第二反馈信息为第二网络设备关联的或者第二下行控制相关参数关联的反馈信息。第一反馈信息对应的上行控制信道资源称为第一上行控制信道资源;第二反馈信息对应的上行控制信道资源称为第二上行控制信道资源。以下结合附图对本申请进行阐述。
请参阅图6,图6是本申请实施例提供的一种上行控制信息传输方法的流程示意图。如图6所示,该上行控制信息传输方法可以包括:
101、终端从N个反馈信息中确定第一反馈信息。
其中,所述N为大于或等于2的整数;所述N个反馈信息分别关联的下行控制相关参数不同。
102、终端将所述第一反馈信息与第一信道状态信息CSI复用在目标上行控制信道资源上发送。
所述第一反馈信息对应的第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠。
其中,所述目标上行控制信道资源为基于所述第一反馈信息关联的下行控制相关参数确定的。比如,该目标上行控制信道资源是基于第一反馈信息关联的DCI中PUCCH资源指示域确定的,或者是基于第一反馈信息关联的DCI的PDCCH所占据的CCE位置和该DCI中PUCCH资源指示域确定的。另外,由于第一反馈信息和第一CSI复用在同一目标上行控制信道资源上,目标上行控制信道资源是从第一反馈信息和该第一CSI的总比特数对应的上行控制信道资源集合中选择的。
103、第一网络设备接收终端在目标上行控制信道资源上发送的第一反馈信息和第一CSI。
其中,第一网络设备能够获知第一反馈信息和第一CSI分别对应的上行控制信道资源在时域上存在重叠。因此,第一网络设备能够采用上述规则确定出两者复用的目标上行控制信道资源,进而进行正确译码,获得第一反馈信息和第一CSI。
在一种实施方式中,终端还需确定第一CSI,其中,该第一CSI对应的上行控制信道资源与第一上行控制信道资源在时域上存在重叠。可见,图6所示的上行控制信息传输方法能够在一个上行时间单元存在多个反馈信息以及CSI的情况下,至少发送第一反馈信息和第一CSI,从而避免一旦重叠简单抛弃,所带来的性能下降。另外,对于第一网络设备来说,能够获知自身的反馈信息与CSI分别对应的上行控制信道资源的重叠情况,从而也能够正确接收终端反馈的上行控制信息。
在一种实施方式中,终端确定第一CSI包括:终端确定多个CSI,该多个CSI中每个CSI对应的上行控制信道资源与该多个CSI中至少一个其他CSI对应的上行控制信道资源在时域上存在重叠,或与第一上行控制信道资源在时域上存在重叠;该多个CSI中的任一CSI作为第一CSI。
其中,终端确定多个CSI,包括:针对该上行时间单元上存在M个CSI(M为大于2的整数),终端可首先从M个CSI中,选择上行控制信道资源与第一上行控制信道资源在时域上存在重叠的M1个CSI;终端再从剩下的M-M1个CSI中,选择上行控制信道资源与该M1个CSI对应的上行控制信道资源中的至少一个上行控制信道资源在时域上存在重叠的M2个CSI;直至找到所有时域上存在重叠的CSI集合。其中,该CSI集合中任一CSI的上行控制信道资源与该CSI集合中至少一个其他CSI的上行控制信道资源,或与第一上行控制信道资源在时域上存在重叠。
从而,终端可将该CSI集合中的各CSI与第一反馈信息复用在目标上行控制信道资源上发送。该目标上行控制信道资源是根据该CSI集合中所有CSI与第一反馈信息的总比特数,以及第一反馈信息关联的下行控制相关参数确定的。
上述图5中,假设HARQ-ACK码本1对应的上行控制信道资源称为PUCCH资源1;HARQ-ACK码本2对应的上行控制信道资源称为PUCCH资源2。CSI-1对应的上行控制信道资源称为PUCCH资源CSI-1;CSI-2对应的上行控制信道资源称为PUCCH资源CSI-2。
如图7所示,图7示例出了HARQ-ACK码本1的PUCCH资源1与CSI-1的PUCCH资源CSI-1在时域上存在重叠,而没有示例出其他上行控制信息的上行控制信道资源的重叠情况。但针对图7,无论其他上行控制信息的上行控制信道资源的重叠情况如何,终端可将HARQ-ACK码本1与CSI-1进行复用后发送。并且复用的上行控制信道资源是基于HARQ-ACK码本1关联的DCI1,或者基于HARQ-ACK码本1关联的DCI1以及承载DCI1的PDCCH1所占据的CCE位置确定的。可见,该实施方式避免一旦反馈信息的上行控制信道资源与信道状态信息的上行控制信道资源重叠时简单抛弃所带来的性能下降。另外,对于TRP1来说,能够获知自身的HARQ-ACK码本1与CSI-1分别对应的上行控制信道资源的重叠情况,从而也能够正确接收终端反馈的上行控制信息。
在一种实施方式中,该N个反馈信息中还包括第二反馈信息;所述第二反馈信息对应的第二上行控制信道资源,与所述第一CSI对应的上行控制信道资源在时域上存在重叠时,终端可从N个反馈信息中任意选择一个反馈信息作为第一反馈信息。其中,该N个反馈信息分别对应的上行控制信道资源均与该第一CSI的上行控制信道资源存在重叠。
在另一种实施方式中,终端从N个反馈信息中确定第一反馈信息,包括:终端根据上行控制信道资源在时域上的起始位置最靠前或最靠后,和所占时域资源最大或最小,从N 个反馈信息分别对应的上行控制信道资源中选择第一上行控制信道资源;或者终端根据上行控制信道资源在时域上的起始位置最靠前或最靠后,或者所占时域资源最大或最小,从N个反馈信息分别对应的上行控制信道资源中选择第一上行控制信道资源;所述第一上行控制信道资源对应的反馈信息为第一反馈信息。
例如,图8中,HARQ-ACK码本1的PUCCH资源1与CSI-1的PUCCH资源CSI-1在时域上存在重叠,HARQ-ACK码本2的PUCCH资源2也与CSI-1的PUCCH资源CSI-1在时域上存在重叠,则终端需要从HARQ-ACK码本1、HARQ-ACK码本2中选择一个反馈信息,与CSI-1复用。
可选的,终端设备可以根据反馈信息的上行控制信道资源在时域上的起始位置和所占时域资源大小确定第一反馈信息。比如,终端设备先从N个反馈信息中选择上行控制信道资源在时域上的起始位置最靠前的反馈信息;再从选择的反馈信息中,进一步选择上行控制信道资源在时域所占时域资源最大的反馈信息,作为第一反馈信息。再比如,终端设备先从N个反馈信息中,选择上行控制信道资源在时域上所占时域资源最大的反馈信息;再从选择的反馈信息中,进一步选择上行控制信道资源在时域上的起始位置最靠前的反馈信息。
图8中,HARQ-ACK码本1的PUCCH资源1与HARQ-ACK码本2的PUCCH资源2相比,PUCCH资源1在时域上的起始位置最靠前以及在时域上所占时域资源最大。因此,终端设备选择HARQ-ACK码本1作为第一反馈信息,CSI-1作为第一CSI,采用上述实施方式,将HARQ-ACK码本1和CSI-1进行复用后发送。其中,目标上行控制信道资源是基于HARQ-ACK码本1关联的下行控制相关参数确定的。如图4所示,该HARQ-ACK码本1关联的下行控制信息为:如上所述,终端设备基于PDCCH检测时机确定的DCI1。故目标上行控制信道资源是基于DCI1中的PUCCH资源指示域,或者基于DCI1中的PUCCH资源指示域以及承载DCI1的PDCCH所占据的CCE位置确定的。另外,目标上行控制信道资源是从HARQ-ACK码本1和CSI1的总比特数对应的上行控制信道资源集合中选择的。
或者,终端设备根据上行控制信道资源在时域上的起始位置最靠后以及所占时域资源最小选择第一反馈信息。
图8中,HARQ-ACK码本2的PUCCH资源2与HARQ-ACK码本1的PUCCH资源1相比,HARQ-ACK码本2的PUCCH资源2在时域上的起始位置最靠后以及在时域上所占时域资源最小。因此,终端设备选择HARQ-ACK码本2作为第一反馈信息,CSI-1作为第一CSI,采用上述实施方式,将HARQ-ACK码本2和CSI-1进行复用后发送。相应的,目标上行控制信道资源是基于HARQ-ACK码本2关联的下行控制相关参数确定的。如图4所示,该HARQ-ACK码本2关联的下行控制信息为:终端设备基于PDCCH检测时机确定的DCI3。故目标上行控制信道资源是基于DCI3中的PUCCH资源指示域,或者基于DCI3中的PUCCH资源指示域以及承载DCI3的PDCCH所占据的CCE位置确定的。另外,目标上行控制信道资源是从HARQ-ACK码本2和CSI-1的总比特数对应的上行控制信道资源集合中选择的。
或者,终端设备根据上行控制信道资源在时域上的起始位置最靠后选择第一反馈信息。例如,图8中,从HARQ-ACK码本1和HARQ-ACK码本2中,选择上行控制信道资源在 时域上的起始位置最靠后的反馈信息,即HARQ-ACK码本2作为第一反馈信息。
或者,终端设备根据上行控制信道资源在时域上的起始位置最靠前,从N个反馈信息中选择第一反馈信息。例如,图8中,从HARQ-ACK码本1和HARQ-ACK码本2中,选择上行控制信道资源在时域上的起始位置最靠前的反馈信息,即HARQ-ACK码本1作为第一反馈信息。
或者,终端设备根据上行控制信道资源在时域上所占时域资源最大,从N个反馈信息中选择第一反馈信息。或者,终端设备根据上行控制信道资源在时域上所占时域资源最小,从N个反馈信息中选择第一反馈信息。或者,终端设备根据上行控制信道资源在时域上的起始位置最靠后和在时域上所占时域资源最大,从N个反馈信息中选择第一反馈信息。或者,终端设备根据上行控制信道资源在时域上的起始位置最靠前和在时域上所占时域资源最大,从N个反馈信息中选择第一反馈信息,等等。本申请实施例针对第一反馈信息的选择机制不限定上述各实施方式。
在另一种实施方式中,该N个反馈信息中还包括第二反馈信息。所述第二反馈信息对应的第二上行控制信道资源,与所述第一反馈信息对应的第一上行控制信道资源在时域上存在重叠。该实施方式中,终端设备选择与CSI之间存在重叠的反馈信息,执行上述步骤102、103的操作,将第一反馈信息与第一CSI进行复用后发送。
如图9所示,HARQ-ACK码本1的PUCCH资源1与HARQ-ACK码本2的PUCCH资源2在时域上重叠,则终端设备选择与CSI-1之间在时域上存在重叠的HARQ-ACK码本1,将HARQ-ACK码本1与CSI-1进行复用后发送。
在又一种实施方式中,该N个反馈信息中还包括第二反馈信息。所述第二反馈信息对应的第二上行控制信道资源,与所述第一反馈信息对应的第一上行控制信道资源以及第一CSI对应的上行控制信道资源在时域上均存在重叠。该实施方式中,终端设备根据上述各种选择机制中的一种,从N个反馈信息中选择第一反馈信息与第一CSI进行复用后发送。
如图10所示,HARQ-ACK码本1的PUCCH资源1与HARQ-ACK码本2的PUCCH资源2以及CSI-1的PUCCH资源CSI-1在时域上均重叠,则终端设备将HARQ-ACK码本1与CSI-1进行复用后发送。例如,终端设备选择上行控制信道资源在时域上的起始位置最靠前或所占时域资源最大的反馈信息,即HARQ-ACK码本1;进而,终端设备将HARQ-ACK码本1与CSI-1进行复用后发送。再例如,终端设备选择上行控制信道资源在时域上的起始位置最靠后或所占时域资源最小的反馈信息,即HARQ-ACK码本2;进而,终端设备将HARQ-ACK码本2与CSI-1进行复用后发送。
本申请公开的实施例中,从N个反馈信息中选择第一反馈信息的选择机制除了基于上述各反馈信息的上行控制信道资源来选择外,还可以基于各反馈信息关联的下行控制相关参数来选择。
在一种实施方式中,所述第一反馈信息满足以下一个或多个条件:所述第一反馈信息关联的下行控制相关参数的标识或索引号最小;所述第一反馈信息关联的DCI所占的资源在时域上的起始位置最靠前;所述第一反馈信息关联的DCI所占的资源中CCE起始位置最靠前;所述第一反馈信息关联的DCI关联的控制资源集合关联的标识或索引号最小;所述第一反馈信息关联的DCI中上行控制信道资源指示域的值最小。
例如,上述图4或图5中,HARQ-ACK码本1关联的下行控制相关参数为承载DCI0的PDCCH0、承载DCI1的PDCCH1关联的PDCCH-Config、CORESET、CORESET group、CORESET中包含的高层参数(higher layer index)。HARQ-ACK码本2关联的下行控制相关参数为承载DCI2的PDCCH2以及承载DCI3的PDCCH3关联的PDCCH-Config、CORESET、CORESET group、CORESET中包含的higher layer index。HARQ-ACK码本1关联的DCI1所占的资源在时域上的起始位置,在HARQ-ACK码本2关联的DCI3所占的资源在时域上的起始位置之前。或者,HARQ-ACK码本1关联的DCI1所占的资源中CCE的起始位置,在HARQ-ACK码本2关联的DCI3所占的资源中CCE的起始位置之前。或者,HARQ-ACK码本1关联的DCI1关联的CORESET的索引号,小于HARQ-ACK码本2关联的DCI3关联的CORESET的索引号。或者,HARQ-ACK码本1关联的DCI1中PUCCH资源指示域中的值,小于HARQ-ACK码本2关联的DCI3中PUCCH资源指示域中的值。或者,HARQ-ACK码本1满足上述多个条件。因此,终端设备可确定第一反馈信息为HARQ-ACK码本1,则将HARQ-ACK码本1与CSI-1复用在同一个上行控制信道资源上。
上述各实施方式,阐述了终端设备如何从N个反馈信息中选择或确定第一反馈信息,并与第一CSI进行复用后如何发送的相关内容。
对于该N个反馈信息中的其他反馈信息,比如第二反馈信息,终端设备可执行如下操作:所述目标上行控制信道资源与所述第二反馈信息对应的第二上行控制信道资源在时域上存在重叠时,所述终端设备在所述第二反馈信息对应的第二上行控制信道资源上不发送所述第二反馈信息;或者所述目标上行控制信道资源与所述第二反馈信息对应的第二上行控制信道资源在时域上存在重叠时,但重叠的资源不影响第二反馈信息对应的上行控制信道的解调参考信号(demodulation reference signal,DMRS),所述终端设备在所述第二反馈信息对应的第二上行控制信道资源上发送所述第二反馈信息;或者所述目标上行控制信道资源与所述第二反馈信息对应的第二上行控制信道资源在时域上不存在重叠时,所述终端设备在所述第二反馈信息对应的第二上行控制信道资源上发送所述第二反馈信息。
相应的,第二反馈信息关联的TRP2要么在第二上行控制信道资源上接收第二反馈信息,要么接收不到该第二反馈信息。比如,上述图7至图10中,终端设备选择了HARQ-ACK码本1与CSI-1进行复用发送,则TRP2要么在PUCCH资源2上接收到HARQ-ACK码本2,要么接收不到HARQ-ACK码本2。
在另一实施方式中,第二反馈信息的第二上行控制信道资源也可能与其他CSI的上行控制信道资源在时域上存在重叠。因此,终端设备可针对第二反馈信息和其他CSI也采用上述图6所示的实施例,将第二反馈信息与其他CSI进行复用后发送。此时所采用的目标上行控制信道资源为基于第二反馈信息关联的下行控制相关参数确定的。
例如,如图11所示,与图9相比,HARQ-ACK码本2的PUCCH资源2与CSI-2的PUCCH资源CSI-2在时域上存在重叠,则终端设备可将HARQ-ACK码本2与CSI-2复用在一PUCCH资源上发送。其中,该PUCCH资源是基于HARQ-ACK码本2关联的DCI,如上所述DCI3中的PUCCH资源指示域,或者DCI3中PUCCH资源指示域以及承载DCI3的PDCCH3所占据的CCE位置确定的。该PUCCH资源所在的上行控制信道资源集合是基于HARQ-ACK码本2和CSI-2的总比特数从上述所述的上行控制信道资源池中选择的。
一种实施方式,所述第二CSI对应的上行控制信道资源,与所述第一上行控制信道资源在时域上存在重叠。图6所示的上行控制信息传输方法中,终端设备可以将第二CSI复用在所述目标控制信道资源上发送。该情况下,目标上行控制信道资源是从第一反馈信息、第一CSI以及第二CSI的总比特数对应的上行控制信道资源集合中选择的。如上所述,终端设备可基于第一反馈信息关联的下行控制相关参数从该上行控制信道资源集合中确定。
例如,图12所示,CSI-2的PUCCH资源CSI-2与HARQ-ACK码本1的PUCCH资源1在时域上存在重叠,CSI-1的PUCCH资源CSI-1与HARQ-ACK码本1的PUCCH资源1在时域上也存在重叠,则终端设备可将CSI-1、CSI-2以及HARQ-ACK码本1复用在目标上行控制信道资源上发送。其中,该目标上行控制信道资源所在的上行控制信道资源集合为:基于CSI-1、CSI-2以及HARQ-ACK码本1的总比特数,从上述所述的上行控制信道资源池中选择的。终端设备可基于HARQ-ACK码本1关联的DCI1中PUCCH资源指示域,或者基于DCI1中PUCCH资源指示域以及承载DCI1的PDCCH1所占据的CCE位置,从选择的上行控制信道资源集合中确定目标上行控制信道资源。
另一种实施方式,所述第二CSI对应的上行控制信道资源,与所述第一CSI对应的上行控制信道资源在时域上存在重叠。图6所示的上行控制信息传输方法中,终端设备可以执行上述实施方式的相关操作,来发送该第二CSI。
如图13所示,CSI-2的PUCCH资源CSI-2与CSI-1的PUCCH资源CSI-1在时域上存在重叠,则终端设备可将CSI-1、CSI-2以及HARQ-ACK码本1复用在目标上行控制信道资源上发送。
又一种实施方式,所述第二CSI对应的上行控制信道资源,与所述第一上行控制信道资源、所述第一CSI对应的上行控制信道资源在时域上均存在重叠。如图14所示,CSI-2的PUCCH资源CSI-2与HARQ-ACK码本1的PUCCH资源1、CSI-1的PUCCH资源CSI-1在时域上均存在重叠,则终端设备可将CSI-1、CSI-2以及HARQ-ACK码本1复用在目标上行控制信道资源上发送。
上述实施方式中,终端设备将第一反馈信息、第一CSI、第二CSI复用在目标上行控制信道资源上发送之前,可先将各信道状态信息进行复用后,再与第一反馈信息进行复用。比如,第一CSI中可包括多个CSI,所述多个CSI分别对应的上行控制信道资源在时域上存在重叠。这样,终端设备可将高层信令配置的上行控制信道资源池中用于承载复用后的CSI的上行控制信道资源,作为该第一CSI对应的上行控制信道资源。进而,终端设备在该第一CSI对应的上行控制信道资源与第一上行控制信道资源在时域上存在重叠时,将第一CSI与第一反馈信息进行复用发送。
如上述图12至图14所示的重叠情况,终端设备可将CSI-1和CSI-2复用在PUCCH资源CSI上。该PUCCH资源CSI为高层信令配置的用于承载复用后的CSI的PUCCH资源。终端设备在PUCCH资源1与该PUCCH资源CSI在时域上存在重叠时,终端设备执行上述所述的将该CSI-1、CSI-2以及HARQ-ACK码本1复用在目标上行控制信道资源上发送。终端设备在PUCCH资源1与该PUCCH资源CSI在时域上不存在重叠时,终端设备就可以在PUCCH资源1上发送HARQ-ACK码本1,在PUCCH资源CSI上发送复用后的CSI-1、CSI-2。
需要说明的是,一个上行时间单元上的上行控制信息UCI可为更多个,但只要部分UCI的上行控制信道资源满足上述图7至图14所示的上行控制信道资源重叠情况,就可以采用相对应的实施方式来发送各UCI。也就是说,一个实施例中,可包括上述图7-图14所示的至少一种或多种实施方式。
另外,对于上述各实施方式,第一网络设备能够至少获知第一反馈信息的第一上行控制信道资源与其他CSI的重叠情况,因此,第一网络设备能够基于上述复用的相关规则,获知复用的UCI的总比特数。从而第一网络设备基于第一反馈信息关联的DCI选择出目标上行控制信道资源,进而接收终端设备在该目标上行控制信道资源上复用的UCI,并正确译码出各UCI。
在一种实施方式中,对于第二网络设备,第二网络设备能够获知第二反馈信息的第二上行控制信道资源是否与其他CSI的上行控制信道资源重叠。当第二反馈信息的第二上行控制信道资源与其他CSI的上行控制信道资源在时域上存在重叠,则第二网络设备可基于上述复用的相关规则,获知复用的UCI的总比特数,从而基于第二反馈信息关联的DCI选择出目标上行控制信道资源,进而接收终端设备在该目标上行控制信道资源上复用的UCI,并译码出各UCI。
在另一种实施方式中,当第二反馈信息的第二上行控制信道资源与上述目标上行控制信道资源在时域上不存在重叠时,第二网络设备接收终端设备在第二上行控制信道资源上发送的第二反馈信息。当第二反馈信息的第二上行控制信道资源与上述目标上行控制信道资源在时域上存在重叠时,第二网络设备接收不到第二反馈信息,即终端设备可能不在第二上行控制信道资源上发送第二反馈信息。当第二反馈信息的第二上行控制信道资源与上述目标上行控制信道资源在时域上存在重叠,但重叠的资源不影响传输第二反馈信息的上行控制信道的DMRS,则第二网络设备可接收终端设备在第二上行控制信道资源上发送第二反馈信息。因此,第二网络设备可能接收到第二反馈信息,也可能接收不到第二反馈信息。
可见,图6所示的上行控制信息传输方法中,还包括:
104、终端设备在第二上行控制信道资源上发送第二反馈信息;或者终端设备不发送第二反馈信息;或者终端设备将第二反馈信息和其他CSI复用在另一目标上行控制信道资源上发送。
105、第二网络设备接收终端设备在第二上行控制信道资源上发送的第二反馈信息;或者接收不到第二反馈信息;或者接收终端设备在另一目标上行控制信道资源上发送的第二反馈信息和其他CSI。
可见,第一网路设备和第二网络设备的检测复杂度均能够得到有效控制,避免终端设备无法处理多反馈信息的情况,所导致网络设备的检测复杂度过高的问题。
上述各实施方式,针对一个上行时间单元中上行控制信息包括N个反馈信息、M个CSI的场景,终端设备可以执行以下实现过程进行上行控制信息的传输。该实现过程与上述各实施方式的原理相同,具体实现操作可能不同。例如,终端设备根据上述第一反馈信息的可选的选择原则,从N个反馈信息中选择第一反馈信息;终端设备再从M个CSI中,选择上行控制信道资源与第一上行控制信道资源在时域上存在重叠的M1个CSI;终端设备 再从剩下的M-M1个CSI中,选择上行控制信道资源与该M1个CSI对应的上行控制信道资源中的至少一个上行控制信道资源在时域上存在重叠的M2个CSI;直至找到所有时域上存在重叠的CSI集合。其中,该CSI集合中任一CSI的上行控制信道资源与该CSI集合中至少一个其他CSI的上行控制信道资源,或与第一上行控制信道资源在时域上存在重叠。从而,终端设备可将该CSI集合中的各CSI与第一反馈信息复用在目标上行控制信道资源上发送。该目标上行控制信道资源是根据该CSI集合中所有CSI与第一反馈信息的总比特数,以及第一反馈信息关联的下行控制相关参数确定的。
综上所述,在目标上行控制信道资源上复用发送的UCI仅包括一个反馈信息。该实施方式一方面能够使得至少一个网络设备正确接收到反馈信息,从而,对于反馈信息的实时性要求较高、网络设备之间交互延迟大,如NIB场景,本申请实施例能够最大化的实现性能改善。另外,与网络设备无法获知终端设备的反馈机制相比,本申请实施例提供的UCI传输方法也能够降低网络设备侧的检测复杂度。
请参阅图15,图15是本申请实施例提供的另一种上行控制信息传输方法的流程示意图。如图15所示,该上行控制信息传输方法可包括:
201、终端设备从N个反馈信息中确定第一反馈信息。
202、终端设备将所述第一反馈信息、第二反馈信息与第一信道状态信息CSI复用在目标上行控制信道资源上发送。
203、第一网络设备接收终端设备在目标上行控制信道资源上发送的第一反馈信息、第二反馈信息和第一CSI。
204、第一网络设备将第二反馈信息发送给第二网络设备;第二网络设备接收第二反馈信息。
可选的,203中,第一网络设备和第二网络设备均可以接收终端设备在目标上行控制信道资源上发送的复用后的UCI。
该N个反馈信息包括第一反馈信息和第二反馈信息。所述第一反馈信息对应的第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠。第二反馈信息对应的第二上行控制信道资源与第一上行控制信道资源、第一CSI对应的上行控制信道资源中的至少一个在时域上存在重叠。
可选的,上述步骤202可以在步骤201之前执行。即终端设备先确定复用的第一反馈信息、第二反馈信息与第一CSI进行复用,然后从第一反馈信息和第二反馈信息中选择第一反馈信息。从而可利用第一反馈信息关联的下行控制相关参数来确定目标上行控制信道资源。
其中,所述目标上行控制信道资源为基于所述第一反馈信息关联的下行控制相关参数确定的。比如,该目标上行控制信道资源是基于第一反馈信息关联的DCI中PUCCH资源指示域确定的,或者是基于第一反馈信息关联的DCI的PDCCH所占据的CCE位置和该DCI中PUCCH资源指示域确定的。另外,目标上行控制信道资源是从第一反馈信息、第二反馈信息和该第一CSI的总比特数对应的上行控制信道资源集合中选择的。
例如,图8至图11中,HARQ-ACK码本1、HARQ-ACK码本2以及CSI-1可以复用在同一上行控制信道资源上发送。目标上行控制信道资源是基于HARQ-ACK码本1关联 的DCI1中PUCCH资源指示域,或者是基于DCI1中PUCCH资源指示域以及承载DCI1的PDCCH1所占据的CCE位置确定的。
本申请实施例中,第一反馈信息的选择原则也可以采用上述图6至图15阐述的选择原则。比如,终端设备根据上行控制信道资源在时域上的起始位置最靠前或最靠后,和所占时域资源最大或最小,从N个反馈信息分别对应的上行控制信道资源中选择第一上行控制信道资源;或者终端设备根据上行控制信道资源在时域上的起始位置最靠前或最靠后,或者所占时域资源最大或最小,从N个反馈信息分别对应的上行控制信道资源中选择第一上行控制信道资源;所述第一上行控制信道资源对应的反馈信息为第一反馈信息。再比如,第一反馈信息满足以下一个或多个条件:所述第一反馈信息关联的下行控制相关参数的标识或索引号最小;所述第一反馈信息关联的DCI所占的资源在时域上的起始位置最靠前;所述第一反馈信息关联的DCI所占的资源中CCE起始位置最靠前;所述第一反馈信息关联的DCI关联的控制资源集合关联的标识或索引号最小;所述第一反馈信息关联的DCI中上行控制信道资源指示域的值最小。具体的,可参见上述图6至图15中,第一反馈信息选择相关阐述,此处不再详述。
本申请实施例中,终端设备还可以将第二CSI复用在目标上行控制信道资源上发送。在一种实施方式中,所述终端设备将第二CSI复用在所述目标控制信道资源上发送;所述第二CSI对应的上行控制信道资源,与所述第一上行控制信道资源和所述第一CSI对应的上行控制信道资源中的其中至少一个在时域上存在重叠。在另一种实施方式中,所述第一CSI包含多个CSI,所述多个CSI分别对应的上行控制信道资源在时域上存在重叠;所述第一CSI对应的上行控制信道资源用于承载复用后的所述多个CSI。
如上述图11中,CSI-2、CSI-1、HARQ-ACK码本1以及HARQ-ACK码本2均可以复用在目标上行控制信道资源上。此时,该目标上行控制信道资源是从CSI-2、CSI-1、HARQ-ACK码本1以及HARQ-ACK码本2的总比特数对应的上行控制信道资源集合中选择的。
如上述图12至图14中,CSI-2、CSI-1、HARQ-ACK码本1可以复用在目标上行控制信道资源上。此时,该目标上行控制信道资源是从CSI-2、CSI-1以及HARQ-ACK码本1的总比特数对应的上行控制信道资源集合中选择的。
综上所述,第一网络设备与第二网络设备之间的交互实时性较好的情况,如IB场景,第一网络设备和第二网络设备能够及时获知两者反馈信息的上行控制信道资源情况以及终端设备最终选择的目标上行控制信道资源。从而,第一网络设备和第二网络设备能够分别接收终端设备在目标上行控制信道资源上发送的复用的UCI。或者,其中一个网络设备接收终端设备在目标上行控制信道资源上发送的复用的UCI后,发送给另一网络设备。可见,本申请实施例能够最大化的实现性能改善,并控制网络设备侧的检测复杂度。
上述本申请提供的实施例中,分别从网络设备、终端设备、以及网络设备和终端设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以 以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参阅图16,图16为本申请实施例提供的一种装置的结构示意图。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述装置可以包括一个或多个处理器1601。所述处理器1601也可以称为处理单元,可以实现本申请实施例提供的方法中网络设备或终端设备的功能。所述处理器1601可以是通用处理器或者专用处理器等。
在一种可选的设计中,处理器1601也可以存有指令和/或数据1603,所述指令和/或数据1603可以被所述处理器运行,使得所述装置1600执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器1601中可以包括用于实现接收和发送功能的通信单元。例如,该通信单元可以是通信接口,或者收发电路,或者是接口,或者是接口电路。该处理器1601可通过该通信单元实现本申请实施例提供的方法中网络设备所执行的方法,或者终端设备所执行的方法。
可选的,所述装置1600中可以包括一个或多个存储器1602,其上可以存有指令1604。所述指令可在所述处理器上被运行,使得所述装置1600执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选的,所述装置1600还可以包括收发器1605、天线1606。所述处理器1601可以称为处理单元,对所述装置1600进行控制。所述收发器1605可以称为通信接口、通信单元、收发机、收发电路或者收发器等,用于实现收发功能。
该装置可以是终端设备,也可以是终端设备的部件(例如,集成电路,芯片等等)。
在一种可能的设计中,一种装置2000(例如,集成电路、无线设备、电路模块,或终端设备等),可包括:
处理单元,用于从N个反馈信息中确定第一反馈信息;所述N为大于或等于2的整数;所述N个反馈信息分别关联的下行控制相关参数不同;
通信单元,用于将所述第一反馈信息与第一信道状态信息CSI复用在目标上行控制信道资源上发送;所述第一反馈信息对应的第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠;
所述处理单元,还用于基于所述第一反馈信息关联的下行控制相关参数确定所述目标上行控制信道资源。
该装置能够针对一个时间单元中存在N个反馈信息的情况,反馈至少一个反馈信息,从而在资源发生重叠时,最大化的实现性能的改善。
在另一种可能的设计中,一种装置(例如,集成电路、无线设备、电路模块,或终端设备等)可包括:
处理单元,用于确定N个反馈信息和第一CSI,所述N个反馈信息和第一CSI分别对应的上行控制信道资源中,任一上行控制信道资源与其他至少一个上行控制信道资源在时域上存在重叠;
所述处理单元,还用于从该多个反馈信息中确定第一反馈信息;
通信单元,用于将所述N个反馈信息和所述第一CSI复用在目标上行控制信道资源上 发送。该目标上行控制信道资源是基于第一反馈信息关联的下行控制相关参数确定的。N个反馈信息分别关联的下行控制相关参数不同。N为大于或等于2的整数。
该装置能够针对一个时间单元中存在N个反馈信息的情况,在网络设备之间的交互时延较短的情况,能够将所有资源重叠的反馈信息和CSI复用发送,从而最大化的实现性能的改善。
该装置还可以是网络设备,也可以是网络设备的部件(例如,集成电路,芯片等等)。该装置也可以是其他通信单元,用于实现本申请实施例中的方法。
在一种可能的设计中,一种装置可包括:
处理单元,用于在所述第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠时,确定终端设备在目标上行控制信道资源上发送第一反馈信息和第一CSI;通信单元,用于接收所述终端设备在目标上行控制信道资源上发送的第一反馈信息和第一CSI,所述目标上行控制信道资源为基于所述第一反馈信息关联的下行控制相关参数确定的;或者
处理单元,用于在所述第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠时,确定终端设备在所述第一反馈信息对应的上行控制信道资源上发送所述第一反馈信息;
通信单元,用于接收终端设备在所述第一反馈信息对应的上行控制信道资源上发送的所述第一反馈信息。
在另一种可能的设计中,一种装置可包括:
处理单元,用于确定N个反馈信息和第一CSI,所述N个反馈信息和第一CSI分别对应的上行控制信道资源中,任一上行控制信道资源与其他至少一个上行控制信道资源在时域上存在重叠。
处理单元,用于从该多个反馈信息中确定第一反馈信息;
处理单元,用于确定终端设备将所述N个反馈信息和所述第一CSI复用在目标上行控制信道资源上发送;
通信单元,用于接收终端设备在目标上行控制信道资源上发送的所述N个反馈信息和所述第一CSI。
该目标上行控制信道资源是基于第一反馈信息关联的下行控制相关参数确定的。N个反馈信息分别关联的下行控制相关参数不同。N为大于或等于2的整数。
在一种可能的设计中,一种装置1600(例如,集成电路、无线设备、电路模块,或终端设备等)可包括:
处理器1601,用于从N个反馈信息中确定第一反馈信息;所述N为大于或等于2的整数;所述N个反馈信息分别关联的下行控制相关参数不同;
收发器1605,用于将所述第一反馈信息与第一信道状态信息CSI复用在目标上行控制信道资源上发送;所述第一反馈信息对应的第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠;
所述处理器1601,还用于基于所述第一反馈信息关联的下行控制相关参数确定所述目标上行控制信道资源。
从而,该装置能够针对上行控制信道资源发生重叠的反馈信息和CSI进行资源重选。从而有利于实现最大化的性能改善。
另外,该设计中,处理器如何选择第一反馈信息,如何确定目标上行控制信道资源可以参见上述方法实施例的相关内容。该装置还可以执行图6、图15所述的方法。此处不再详述。
在一种可能的设计中,一种装置1600(例如,集成电路、无线设备、电路模块,或终端设备等)可包括:
处理器1601,用于确定N个反馈信息和第一CSI,所述N个反馈信息和第一CSI分别对应的上行控制信道资源中,任一上行控制信道资源与其他至少一个上行控制信道资源在时域上存在重叠;
所述处理器1601,还用于从该多个反馈信息中确定第一反馈信息;
收发器1605,用于将所述N个反馈信息和所述第一CSI复用在目标上行控制信道资源上发送。该目标上行控制信道资源是基于第一反馈信息关联的下行控制相关参数确定的。N个反馈信息分别关联的下行控制相关参数不同。N为大于或等于2的整数。
可见,该装置可将上行控制信道资源存在重叠的多个反馈信息和CSI复用在目标上行控制信道资源上发送,从而解决了多个反馈信息,终端设备无法处理的问题,以及能够最大化的实现性能改善。
在又一种可能的设计中,一种装置1600(例如,网络设备、基站、或基带芯片)可包括:
处理器1601,用于在所述第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠时,确定终端设备在目标上行控制信道资源上发送第一反馈信息和第一CSI;通信单元,用于接收所述终端设备在目标上行控制信道资源上发送的第一反馈信息和第一CSI,所述目标上行控制信道资源为基于所述第一反馈信息关联的下行控制相关参数确定的;或者
处理器1601,用于在所述第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠时,确定终端设备在所述第一反馈信息对应的上行控制信道资源上发送所述第一反馈信息;
收发器1605,用于接收终端设备在所述第一反馈信息对应的上行控制信道资源上发送的所述第一反馈信息。
另外,该设计中,处理器如何选择第一反馈信息,如何确定目标上行控制信道资源可以参见上述方法实施例的相关内容。
在又一种可能的设计中,一种装置1600(例如,网络设备、基站、或基带芯片)可包括:
处理器1601,用于确定N个反馈信息和第一CSI,所述N个反馈信息和第一CSI分别对应的上行控制信道资源中,任一上行控制信道资源与其他至少一个上行控制信道资源在时域上存在重叠。
处理器1601,用于从该多个反馈信息中确定第一反馈信息;
处理器1601,用于确定终端设备将所述N个反馈信息和所述第一CSI复用在目标上行 控制信道资源上发送;
收发器1605,用于接收终端设备在目标上行控制信道资源上发送的所述N个反馈信息和所述第一CSI。
该目标上行控制信道资源是基于第一反馈信息关联的下行控制相关参数确定的。N个反馈信息分别关联的下行控制相关参数不同。N为大于或等于2的整数。
图17提供了一种终端设备的结构示意图。该终端设备可适用于图1、图2所示出的场景中。为了便于说明,图17仅示出了终端设备的主要部件。如图17所示,终端设备包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图17仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备的通信单元1711,将具有处理功能的处理器视为终端设备的处理单元1712。如图17所示,终端设备包括通信单元1711和处理单元1712。通信单元也可以称为收发器、收发机、收发装置等。可选的,可以将通信单元1711中用于实现接收功能的器件视为接收单元,将通信单元1711中用于实现发送功能的器件视为发送单元,即通信单元1711包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种上行控制信息传输方法,其特征在于,包括:
    终端设备从N个反馈信息中确定第一反馈信息;所述N为大于或等于2的整数;所述N个反馈信息分别关联的下行控制相关参数不同;
    所述终端设备将所述第一反馈信息与第一信道状态信息CSI复用在目标上行控制信道资源上发送;所述第一反馈信息对应的第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠;
    所述目标上行控制信道资源为基于所述第一反馈信息关联的下行控制相关参数确定的。
  2. 如权利要求1所述的方法,其特征在于,所述N个反馈信息中还包括第二反馈信息;所述第二反馈信息对应的第二上行控制信道资源,与所述第一上行控制信道资源和所述第一CSI对应的上行控制信道资源中的至少一个,在时域上存在重叠。
  3. 如权利要求2所述的方法,其特征在于,所述终端设备从N个反馈信息中确定第一反馈信息,包括:
    终端设备根据上行控制信道资源在时域上的起始位置最靠前或最靠后,和所占时域资源最大或最小,从N个反馈信息分别对应的上行控制信道资源中,选择第一上行控制信道资源;或者
    终端设备根据上行控制信道资源在时域上的起始位置最靠前或最靠后,或者所占时域资源最大或最小,从N个反馈信息分别对应的上行控制信道资源中,选择第一上行控制信道资源;
    所述第一上行控制信道资源对应的反馈信息为第一反馈信息。
  4. 如权利要求1所述的方法,其特征在于,所述第一反馈信息满足以下一个或多个条件:
    所述第一反馈信息关联的下行控制相关参数的标识或索引号最小;
    所述第一反馈信息关联的DCI所占的资源在时域上的起始位置最靠前;
    所述第一反馈信息关联的DCI所占的资源中CCE起始位置最靠前;
    所述第一反馈信息关联的DCI关联的控制资源集合关联的标识或索引号最小;
    所述第一反馈信息关联的DCI中上行控制信道资源指示域的值最小。
  5. 如权利要求1至4所述的方法,其特征在于,所述N个反馈信息中还包括第二反馈信息,所述方法还包括:
    所述目标上行控制信道资源与所述第二反馈信息对应的第二上行控制信道资源在时域上存在重叠时,所述终端设备在所述第二反馈信息对应的第二上行控制信道资源上不发送所述第二反馈信息;或者
    所述目标上行控制信道资源与所述第二反馈信息对应的第二上行控制信道资源在时域 上不存在重叠时,所述终端设备在所述第二反馈信息对应的第二上行控制信道资源上发送所述第二反馈信息。
  6. 如权利要求1至4任一项所述的方法,其特征在于,所述N个反馈信息还包括第二反馈信息,所述方法还包括:
    所述终端设备将所述第二反馈信息也复用在所述目标上行控制信道资源上发送。
  7. 如权利要求1至6任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备将第二CSI复用在所述目标控制信道资源上发送;
    所述第二CSI对应的上行控制信道资源,与所述第一上行控制信道资源和所述第一CSI对应的上行控制信道资源中的至少一个在时域上存在重叠。
  8. 如权利要求1至6任一项所述的方法,其特征在于,所述第一CSI包含多个CSI,所述多个CSI分别对应的上行控制信道资源在时域上存在重叠;
    所述第一CSI对应的上行控制信道资源用于承载复用后的所述多个CSI。
  9. 如权利要求1至4任一项所述的方法,其特征在于,所述目标上行控制信道资源为基于总比特数和所述第一反馈信息关联的下行控制相关参数确定的;
    所述总比特数为所述第一反馈信息和所述第一CSI的总比特。
  10. 如权利要求6所述的方法,其特征在于,
    所述目标上行控制信道资源为基于总比特数和所述第一反馈信息关联的下行控制相关参数确定的;
    所述总比特数为所述第一反馈信息、所述第二反馈信息和所述第一CSI的总比特。
  11. 一种上行控制信息传输方法,其特征在于,包括:
    所述第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠时,
    第一网络设备接收终端设备在目标上行控制信道资源上发送的第一反馈信息和第一CSI;所述目标上行控制信道资源为基于所述第一反馈信息关联的下行控制相关参数确定的;或者所述第一网络设备接收终端设备在所述第一反馈信息对应的上行控制信道资源上发送的所述第一反馈信息。
  12. 如权利要求11所述的方法,其特征在于,第二反馈信息对应的第二上行控制信道资源,与所述第一上行控制信道资源和所述第一CSI对应的上行控制信道资源中的至少一个在时域上存在重叠,所述方法还包括:
    所述第一网络设备接收所述终端设备复用在所述目标控制信道资源上的所述第二反馈信息;
    所述第一网络设备将所述第二反馈信息发送给第二网络设备。
  13. 如权利要求11或12所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备接收所述终端设备复用在所述目标控制信道资源上的第二CSI;
    所述第二CSI对应的上行控制信道资源,与所述第一上行控制信道资源和所述第一CSI对应的上行控制信道资源中的至少一个在时域上存在重叠。
  14. 如权利要求11或12所述的方法,其特征在于,所述第一CSI包含多个CSI,所述多个CSI分别对应的上行控制信道资源在时域上存在重叠;
    所述第一CSI对应的上行控制信道资源用于承载复用后的所述多个CSI。
  15. 如权利要求11所述的方法,其特征在于,所述目标上行控制信道资源为基于总比特数和所述第一反馈信息关联的下行控制相关参数确定的;
    所述总比特数为所述第一反馈信息和所述第一CSI的总比特。
  16. 如权利要求12所述的方法,其特征在于,
    所述目标上行控制信道资源为基于总比特数和所述第一反馈信息关联的下行控制相关参数确定的;
    所述总比特数为所述第一反馈信息、所述第二反馈信息和所述第一CSI的总比特。
  17. 一种通信装置,其特征在于,包括:
    处理单元,用于从N个反馈信息中确定第一反馈信息;所述N为大于或等于2的整数;所述N个反馈信息分别关联的下行控制相关参数不同;
    通信单元,用于将所述第一反馈信息与第一信道状态信息CSI复用在目标上行控制信道资源上发送;所述第一反馈信息对应的第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠;
    所述处理单元,还用于基于所述第一反馈信息关联的下行控制相关参数确定所述目标上行控制信道资源。
  18. 如权利要求17所述的通信装置,其特征在于,所述N个反馈信息中还包括第二反馈信息;所述第二反馈信息对应的第二上行控制信道资源,与所述第一上行控制信道资源和所述第一CSI对应的上行控制信道资源中的至少一个,在时域上存在重叠。
  19. 如权利要求18所述的通信装置,其特征在于,
    所述处理单元,还用于根据上行控制信道资源在时域上的起始位置最靠前或最靠后,和所占时域资源最大或最小,从N个反馈信息分别对应的上行控制信道资源中选择第一上行控制信道资源;或者
    所述处理单元,还用于根据上行控制信道资源在时域上的起始位置最靠前或最靠后, 或者所占时域资源最大或最小,从N个反馈信息分别对应的上行控制信道资源中选择第一上行控制信道资源;
    所述第一上行控制信道资源对应的反馈信息为第一反馈信息。
  20. 如权利要求19所述的通信装置,其特征在于,所述第一反馈信息满足以下一个或多个条件:
    所述第一反馈信息关联的下行控制相关参数的标识或索引号最小;
    所述第一反馈信息关联的DCI所占的资源在时域上的起始位置最靠前;
    所述第一反馈信息关联的DCI所占的资源中CCE起始位置最靠前;
    所述第一反馈信息关联的DCI关联的控制资源集合关联的标识或索引号最小;
    所述第一反馈信息关联的DCI中上行控制信道资源指示域的值最小。
  21. 如权利要求17至20所述的通信装置,其特征在于,所述N个反馈信息中还包括第二反馈信息,
    所述处理单元,用于在所述目标上行控制信道资源与所述第二反馈信息对应的第二上行控制信道资源在时域上存在重叠时,确定在所述第二反馈信息对应的第二上行控制信道资源上不发送所述第二反馈信息;或者
    所述处理单元,用于在所述目标上行控制信道资源与所述第二反馈信息对应的第二上行控制信道资源在时域上不存在重叠时,确定在所述第二反馈信息对应的第二上行控制信道资源上发送所述第二反馈信息;所述通信单元,用于在所述第二反馈信息对应的第二上行控制信道资源上发送所述第二反馈信息。
  22. 如权利要求17至20任一项所述的通信装置,其特征在于,所述N个反馈信息还包括第二反馈信息,
    所述通信单元,还用于将所述第二反馈信息也复用在所述目标上行控制信道资源上发送。
  23. 如权利要求17至22任一项所述的通信装置,其特征在于,
    所述通信单元,还用于将第二CSI复用在所述目标控制信道资源上发送;
    所述第二CSI对应的上行控制信道资源,与所述第一上行控制信道资源和所述第一CSI对应的上行控制信道资源中的至少一个在时域上存在重叠。
  24. 如权利要求17至22任一项所述的通信装置,其特征在于,所述第一CSI包含多个CSI,所述多个CSI分别对应的上行控制信道资源在时域上存在重叠;
    所述第一CSI对应的上行控制信道资源用于承载复用后的所述多个CSI。
  25. 如权利要求17至20任一项所述的通信装置,其特征在于,所述处理单元,还用于基于总比特数和所述第一反馈信息关联的下行控制相关参数确定所述目标上行控制信道 资源;
    所述总比特数为所述第一反馈信息和所述第一CSI的总比特。
  26. 如权利要求22所述的通信装置,其特征在于,
    所述处理单元,还用于基于总比特数和所述第一反馈信息关联的下行控制相关参数确定所述目标上行控制信道资源;
    所述总比特数为所述第一反馈信息、所述第二反馈信息和所述第一CSI的总比特。
  27. 一种通信装置,其特征在于,包括:
    处理单元,用于在所述第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠时,确定终端设备在目标上行控制信道资源上发送第一反馈信息和第一CSI;
    通信单元,用于接收所述终端设备在目标上行控制信道资源上发送的第一反馈信息和第一CSI,所述目标上行控制信道资源为基于所述第一反馈信息关联的下行控制相关参数确定的;或者
    所述处理单元,用于在所述第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠时,确定终端设备在所述第一反馈信息对应的上行控制信道资源上发送所述第一反馈信息;
    所述通信单元,用于接收终端设备在所述第一反馈信息对应的上行控制信道资源上发送的所述第一反馈信息。
  28. 如权利要求27所述的通信装置,其特征在于,
    所述处理单元,用于在第二反馈信息对应的第二上行控制信道资源,与所述第一上行控制信道资源和所述第一CSI对应的上行控制信道资源中的至少一个在时域上存在重叠时,确定所述终端设备将所述第二反馈信息复用在所述目标控制信道资源上;
    所述通信单元,用于接收所述终端设备复用在所述目标控制信道资源上的所述第二反馈信息;
    所述通信单元,还用于将所述第二反馈信息发送给第二网络设备。
  29. 如权利要求27或28所述的通信装置,其特征在于,
    所述处理单元,用于在所述第二CSI对应的上行控制信道资源,与所述第一上行控制信道资源和所述第一CSI对应的上行控制信道资源中的至少一个在时域上存在重叠时,确定所述终端设备将所述第二CSI复用在所述目标控制信道资源上;
    所述通信单元,还用于接收所述终端设备复用在所述目标控制信道资源上的第二CSI。
  30. 如权利要求27或28所述的通信装置,其特征在于,所述第一CSI包含多个CSI,所述多个CSI分别对应的上行控制信道资源在时域上存在重叠;
    所述第一CSI对应的上行控制信道资源用于承载复用后的所述多个CSI。
  31. 如权利要求27所述的通信装置,其特征在于,
    所述处理单元,还用于基于总比特数和所述第一反馈信息关联的下行控制相关参数确定所述目标上行控制信道资源;
    所述总比特数为所述第一反馈信息和所述第一CSI的总比特。
  32. 如权利要求28所述的通信装置,其特征在于,
    所述处理单元,还用于基于总比特数和所述第一反馈信息关联的下行控制相关参数确定所述目标上行控制信道资源;
    所述总比特数为所述第一反馈信息、所述第二反馈信息和所述第一CSI的总比特。
  33. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至10任一项所述的方法,或,执行如权利要求11至16任一项所述的方法。
  34. 一种装置,其特征在于,用于实现如权利要求1至10任一项所述的方法。
  35. 一种装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求1至10任一项所述的方法。
  36. 一种装置,包括处理器和通信接口,
    所述处理器,用于从N个反馈信息中确定第一反馈信息;所述N为大于或等于2的整数;所述N个反馈信息分别关联的下行控制相关参数不同;
    所述通信接口,用于将所述第一反馈信息与第一信道状态信息CSI复用在目标上行控制信道资源上发送;所述第一反馈信息对应的第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠;
    所述目标上行控制信道资源为基于所述第一反馈信息关联的下行控制相关参数确定的。
  37. 一种装置,其特征在于,用于实现如权利要求11至16任一项所述的方法。
  38. 一种装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求11至16任一项所述的方法。
  39. 一种装置,其特征在于,包括处理器和通信接口,
    所述通信接口,用于在所述第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠时,接收终端设备在目标上行控制信道资源上发送的第一反馈信息和第一CSI;所述目标上行控制信道资源为基于所述第一反馈信息关联的下行控制相关 参数确定的;
    或者所述通信接口,用于在所述第一上行控制信道资源与所述第一CSI对应的上行控制信道资源在时域上存在重叠时,接收终端设备在所述第一反馈信息对应的上行控制信道资源上发送的所述第一反馈信息。
  40. 一种通信系统,其特征在于,包括权利要求17至26任一项所述的装置,和权利要求27至32任一项所述的装置。
  41. 一种计算机程序产品,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至10任一项所述的方法;或者使得计算机执行权利要求11至16任一项所述的方法。
PCT/CN2020/109230 2019-08-16 2020-08-14 上行控制信息传输方法及通信装置 WO2021032003A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910760955.XA CN112399621B (zh) 2019-08-16 2019-08-16 上行控制信息传输方法及通信装置
CN201910760955.X 2019-08-16

Publications (1)

Publication Number Publication Date
WO2021032003A1 true WO2021032003A1 (zh) 2021-02-25

Family

ID=74603173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109230 WO2021032003A1 (zh) 2019-08-16 2020-08-14 上行控制信息传输方法及通信装置

Country Status (2)

Country Link
CN (1) CN112399621B (zh)
WO (1) WO2021032003A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022217446A1 (zh) * 2021-04-12 2022-10-20 Oppo广东移动通信有限公司 数据传输方法、装置、设备、存储介质、芯片及产品
WO2023155169A1 (en) * 2022-02-18 2023-08-24 Lenovo (Beijing) Limited Methods and apparatuses for harq-ack codebook determination per dci

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180310298A1 (en) * 2015-06-19 2018-10-25 Samsung Electronics Co., Ltd. Method for transmitting uplink control information
CN110035535A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种上行控制信息的传输方法、接入网设备以及终端设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9294230B2 (en) * 2012-07-02 2016-03-22 Intel Corporation Multiplexing of channel state information and hybrid automatic repeat request—acknowledgement information
CN110034885B (zh) * 2018-01-12 2021-02-19 维沃移动通信有限公司 一种上行控制信息发送的方法和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180310298A1 (en) * 2015-06-19 2018-10-25 Samsung Electronics Co., Ltd. Method for transmitting uplink control information
CN110035535A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种上行控制信息的传输方法、接入网设备以及终端设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On enhancements to UCI for eURLLC", 3GPP DRAFT; R1-1904306 INTEL - EURLLC UCI_ENH, vol. RAN WG1, 3 April 2019 (2019-04-03), Xi’an, China, pages 1 - 9, XP051707182 *
VIVO: "Further discussion on Multi-TRP/Panel transmission", 3GPP DRAFT; R1-1906159_FURTHER DISCUSSION ON MULTI-TRPPANEL TRANSMISSION_FINAL, vol. RAN WG1, 4 May 2019 (2019-05-04), Reno, USA, pages 1 - 18, XP051708200 *

Also Published As

Publication number Publication date
CN112399621B (zh) 2022-07-22
CN112399621A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
US20200403737A1 (en) Method and apparatus for transmission or reception of sidelink feedback in communication system
US11924849B2 (en) Method and apparatus for transmitting control and data information in wireless cellular communication system
WO2019128261A1 (zh) 一种数据传输方法及装置、计算机存储介质
CN108029120B (zh) 用于为低复杂度窄带终端指示对随机接入过程中的harq消息分配的资源的方法
CN113841348A (zh) 无线通信系统中发送控制信息的方法及设备
WO2019062840A1 (zh) 信息传输方法和装置
US11202305B2 (en) Method and apparatus for transmission and reception of data channel in wireless communication system
WO2021032015A1 (zh) 反馈信息传输方法及通信装置
US10790941B2 (en) Method and device for narrowband cellular communication
WO2019242710A1 (zh) 生成混合自动重传请求harq信息的方法和装置
WO2021197270A1 (zh) 信息传输方法、装置及系统
EP3751763A1 (en) Indication method, network device and user equipment
US11343021B2 (en) Infrastructure equipment, wireless telecommunications system and method
WO2021008434A1 (zh) 反馈信息处理方法及设备
WO2021017792A1 (zh) 一种反馈信息的传输方法及终端装置
WO2018171352A1 (zh) 一种数据传输方法及终端
WO2021032003A1 (zh) 上行控制信息传输方法及通信装置
WO2021063375A1 (zh) 反馈信息处理方法及通信装置
KR102362946B1 (ko) 이종 서비스 간 효율적인 송수신 기술
WO2021027946A1 (zh) Tci状态确定方法、信道传输方法及相关设备
US20230396391A1 (en) Method and corresponding device for uplink transmission
WO2020221344A1 (zh) 信道传输方法及相关设备
CN111788853A (zh) 上行控制信息传输方法及装置
WO2023130993A1 (zh) 通信方法及终端设备
WO2024032535A1 (zh) 一种传输块大小确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855814

Country of ref document: EP

Kind code of ref document: A1