WO2021063375A1 - 反馈信息处理方法及通信装置 - Google Patents

反馈信息处理方法及通信装置 Download PDF

Info

Publication number
WO2021063375A1
WO2021063375A1 PCT/CN2020/119103 CN2020119103W WO2021063375A1 WO 2021063375 A1 WO2021063375 A1 WO 2021063375A1 CN 2020119103 W CN2020119103 W CN 2020119103W WO 2021063375 A1 WO2021063375 A1 WO 2021063375A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
domain resource
time
shared channel
downlink shared
Prior art date
Application number
PCT/CN2020/119103
Other languages
English (en)
French (fr)
Inventor
刘显达
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021063375A1 publication Critical patent/WO2021063375A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • This application relates to the field of communication technology, and in particular to a feedback information processing method and communication device.
  • the terminal In the process of data transmission, in order to ensure the reliability of data transmission, the terminal needs to feed back hybrid automatic repeat request (HARQ)-acknowledgement (ACK) information to the data sent by the base station, so that the base station can confirm whether it needs to be retransmitted. Pass the data.
  • HARQ hybrid automatic repeat request
  • ACK acknowledgenowledgement
  • the terminal In order to obtain the HARQ-ACK information, the terminal needs to complete the following operations: channel estimation; demodulate data according to the result of the channel estimation; obtain feedback information based on the demodulation result and perform uplink modulation and coding.
  • the terminal In the repeated transmission mode, the terminal needs to complete the processing of the downlink shared channel for multiple repeated transmissions. Therefore, how to allocate feedback time domain resources for the terminal to ensure that the terminal device can report the feedback information in time after processing the above operations.
  • the reliability and timeliness of data transmission is extremely important.
  • the present application provides a feedback information processing method and a communication device, which help ensure the reliability and timeliness of data transmission.
  • this application provides a feedback information processing method.
  • the network device can determine the minimum time interval T according to the number of repeated transmissions of the downlink shared channel m 1 , where m 1 is greater than or equal to 2; and based on the minimum time interval T, determine the feedback time domain resources so that The terminal equipment reports the feedback information of the downlink shared channel.
  • the minimum time interval T is the minimum time interval between the end of repeated transmission of the downlink shared channel and the start time of feedback of the feedback information.
  • the minimum time interval is the minimum time interval during which the terminal device can report the feedback information after completing the related processing of the repeated transmission of the downlink shared channel. It can be seen that the embodiment of the present application can determine the feedback time domain resource based on the minimum time interval in the repeated transmission mode, which is beneficial to ensure that the terminal device reports effective feedback information while achieving feedback as soon as possible, thereby helping to ensure the reliability and reliability of data transmission. Timeliness.
  • the network device determines the minimum time interval T according to the number of repeated transmissions of the downlink shared channel m 1.
  • the value of m 1 is an integer greater than or equal to 1.
  • repeated transmission of a downlink shared channel frequency and m2 is greater than equal to twice the m 1, the minimum time repeated transmission of a downlink shared channel number m corresponding to an interval T1 is not greater than the repeat transmission downlink shared channel number m2 The corresponding minimum time interval T2.
  • the minimum time interval of the downlink shared channel of non-repetitive transmission is T1
  • the minimum time interval of the downlink shared channel of two repeated transmissions is T2
  • T2 is less than T1.
  • the minimum time interval T is equal to T1 + Y, where Y is greater than or equal to (m 1 /2)*X and less than (m 1 -1)*T1.
  • X is the number of repeated transmission of downlink shared channel m 1 is equal to the minimum time interval of 2 and repeated transmission of a downlink shared channel number m 1 1 equal to the minimum time interval difference between T1.
  • the prerequisite for each of the foregoing designs is that the total time domain resources occupied by the downlink shared channel for repeated transmission m 1 times remain unchanged.
  • the network device determines the minimum time interval T according to the number of repeated transmissions m 1 and the number of time units included in the time domain resources occupied by the downlink shared channel for one repeated transmission.
  • the minimum time interval T when the number of repeated transmissions of the downlink shared channel m 1 is greater than 1, the greater the number of time units included in the time domain resource occupied by the repeated transmission, the smaller the minimum time interval T.
  • the minimum time interval T when the number of repeated transmissions m 1 is equal to 2 and the number of time units included in the time domain resource occupied by one repeated transmission is equal to 2 symbols, the minimum time interval T is equal to T1+X.
  • the minimum time interval T is equal to T1+Z. Among them, Z is less than X.
  • the minimum time interval is T1. If the number of repeated transmissions of the downlink shared channel m 1 is greater than 1, and the number of time units included in the time domain resources occupied by the repeated transmission of the downlink shared channel once is greater than or equal to the first preset value, the minimum time interval is equal to T1; When the number of times m 1 of the downlink shared channel transmission is greater than 1, and the number of time units included in the time domain resource occupied by the repeated transmission of the downlink shared channel once is less than the first preset value, the minimum time interval is greater than T1.
  • the first preset value may be equal to 4.
  • the network device is based on the number of repeated transmissions of the downlink shared channel m 1 , the number of time units included in the time domain resources occupied by the repeated transmission of the downlink shared channel once, and two repeated transmissions of the downlink shared channel. Determine the minimum time interval T for the time interval between the time domain resources occupied by each time. Wherein, the time interval between two repeated transmissions does not carry the downlink shared channel.
  • the fourth preset value may be equal to 2.
  • the minimum time interval T is obtained by adding one or more processing delays, and the one or more processing delays include the first processing delay d1.1.
  • the value of the first processing delay d1.1 is different.
  • the first time domain resource is the total time domain resource occupied by the downlink shared channel that is repeatedly transmitted m 1 times.
  • the first time domain resource also includes the time interval between two repeated transmissions. That is, the first time domain resource refers to the time domain resource from the start time domain position of the first repeated transmission to the end time domain position of the last repeated transmission.
  • the first time domain resource does not include the time interval between two repeated transmissions. That is, the first time domain resources are all used to carry the downlink shared channel.
  • the first processing delay d1.1 when the first time domain resource includes K4 time units, or when the number of time units in the first time domain resource is greater than K4, the first processing delay d1.1 is equal to zero; or , When the first time domain resource includes K3 time units, or when the number of time units in the first time domain resource is greater than K2 and less than K4, the first processing delay d1.1 is equal to the preset value, The preset value is greater than zero.
  • the network device determines the first time domain resource according to the number of time units included in the first time domain resource, and the time domain position relationship between the first time domain resource and the third time domain resource. Processing delay d1.1; wherein, the third time domain resource is a time domain resource occupied by a control resource set associated with the downlink control information DCI, and the DCI is used to schedule the downlink shared channel.
  • the first time domain resource includes K2 time units, or the number of time units in the first time domain resource is less than K2:
  • the first processing delay d1.1 is equal to the number of time units included in the third time domain resource
  • the first processing delay d1.1 is equal to the time included in the overlapping time domain resource between the first time domain resource and the third time domain resource
  • the number of units may be equal to the number of time units included in the overlapping time domain resource between the first time domain resource and the second time domain resource.
  • the first condition is that the first time domain resource and the third time domain resource have the same starting time domain position, and the number of time units included in the third time domain resource is greater than or equal to all. ⁇ K2. It can be seen that the minimum time interval T determined in this implementation manner takes into account the delay required for the terminal device to detect DCI based on the control resource set, so that it can ensure that the terminal device reports feedback information in time while ensuring that the effective feedback information is reported.
  • the first time domain resource includes K3 time units, or when the number of time units in the first time domain resource is greater than K2 and less than K4, the first processing delay d1.1 Equal to the number of time units included in the overlapping time domain resource between the first time domain resource and the third time domain resource; or,
  • the first processing delay d1.1 is equal to the preset value + the second processing delay d
  • the preset value is greater than zero
  • the second processing delay d is equal to the number of time units included in the overlapping time domain resource between the first time domain resource and the third time domain resource.
  • the minimum time interval considers the overlap between the first time domain resource and the third time domain resource, which is beneficial for the terminal device to obtain feedback information based on the DCI after demodulating the DCI based on the third time domain resource. . This helps to ensure that the terminal device reports effective feedback information.
  • the network device determines the number of time units included in the first time domain resource, and the time domain position relationship between the first time domain resource and the second time domain resource.
  • the first processing time delay is d1.1.
  • the second time domain resource is a time domain resource where the DCI is located, and the DCI is used to schedule the downlink shared channel.
  • the first time domain resource includes K3 time units, and the first processing delay d1.1 is equal to the overlap time between the first time domain resource and the second time domain resource.
  • K2 is equal to 2
  • K3 is equal to 4
  • the preset value is equal to 3.
  • this embodiment considers that the terminal device needs to demodulate the DCI in order to obtain feedback information, which is beneficial to ensure that the terminal device reports in a timely manner while reporting effective feedback information.
  • the network device determines the minimum time interval T according to the downlink shared channel processing capability of the terminal device and the number of time units included in the first time domain resource.
  • the optional downlink shared channel processing capability of the terminal equipment includes the downlink shared channel processing capability 1 and the downlink shared channel processing capability 2.
  • the network device can determine the minimum time interval T according to the downlink shared channel processing capability of the terminal device in combination with any one or more of the foregoing implementation manners.
  • the first processing delay d1.1 is equal to zero
  • the first processing delay d1.1 is equal to a preset value, and the preset value is greater than zero;
  • the first time domain resource includes K2 time units
  • the first processing delay d1.1 is equal to a preset value + a second processing delay d
  • the preset value is greater than zero
  • the second processing delay d is equal to the number of time units included in the overlapping time domain resource between the first time domain resource and the second time domain resource, or equal to the overlapping time domain between the first time domain resource and the third time domain resource The number of time units included in the resource.
  • the first processing delay d1.1 is equal to zero
  • the first time domain resource includes K3 time units, and the first processing delay d1.1 is equal to the time unit included in the overlapping time domain resource between the first time domain resource and the third time domain resource Or equal to the number of time units included in the overlapping time domain resource between the first time domain resource and the second time domain resource;
  • the first time domain resource includes K2 time units: when the first time domain resource satisfies a first condition, the first processing delay d1.1 is equal to the number of time units included in the third time domain resource Or, when the first time domain resource does not meet the first condition, the first processing delay d1.1 is equal to the overlapping time domain resource between the first time domain resource and the third time domain resource The number of time units included, or equal to the number of time units included in the overlapping time domain resource between the first time domain resource and the second time domain resource;
  • the first condition is that the first time domain resource and the third time domain resource have the same starting time domain position, and the number of time units included in the third time domain resource is greater than or Equal to the K2;
  • the second time domain resource is a time domain resource where the DCI is located.
  • the second time domain resource is the time domain resource occupied by the search space set corresponding to the DCI.
  • the number of time units of the second time domain resource is not greater than the number of time units of the third time domain resource.
  • K2, K3, and K4 are all integers greater than or equal to 1, for example, K2 is equal to 2, K3 is equal to 4, and K4 is equal to 7.
  • the default value is a value greater than zero.
  • the demodulation reference signal (DMRS) and cell-specific reference signal (Cell-specific RS, CRS) in the first time domain resource can also be considered. Whether the time domain resources occupied by other signals such as resource sets conflict or not, etc., to further adjust the above-mentioned minimum time interval. That is, the network device determines the minimum time interval T according to the time domain position occupied by the first demodulation reference signal DMRS.
  • the minimum time interval T includes a third processing delay
  • the network device determines the third processing delay according to the time domain position occupied by the first demodulation reference signal DMRS.
  • the network device adjusts the minimum time interval T determined in the foregoing embodiments according to the time domain position occupied by the first demodulation reference signal DMRS.
  • the network device determines the time domain position occupied by the first DMRS according to the time domain position occupied by the first signal.
  • the time domain resource or time-frequency resource occupied by the first DMRS does not include the first signal;
  • the first signal includes the cell-specific reference signal CRS, the control resource set CORESET, the synchronization signal block SSB, and the channel state One or more of the information reference signal CSI-RS.
  • the terminal device may receive configuration information of a cell-specific reference signal CRS, a control resource set CORESET, a synchronization signal block SSB, and a channel state information reference signal CSI-RS.
  • the minimum time interval when the time domain position occupied by the first DMRS is the first time domain position, the minimum time interval is T1; when the time domain position occupied by the first DMRS is the second time domain position, the minimum time interval is The time interval T is equal to T1 + the third processing delay.
  • the first DMRS is the DMRS in the first time domain resource, and the first time domain position is the first k symbols or the nth symbol in the time domain resources occupied by the downlink shared channel for each repeated transmission;
  • the DMRS is the DMRS in the time domain resources occupied by the downlink shared channels of the other repeated transmissions except the first repeated transmission, and the first time domain position is the time domain resources occupied by the downlink shared channels of the other repeated transmissions The first k symbols or the nth symbol in.
  • the second time domain position includes at least one adjacent time unit after the time domain position where the first signal is located.
  • the third processing delay is the number of time units in the time domain resource occupied by the first signal.
  • the DMRS of the repetitive transmission mode can be simplified. Accordingly, the minimum time interval described above can also be appropriately reduced on the basis of the foregoing embodiments or implementations. Since the amount of processing for channel estimation in the entire repeated transmission process is reduced, this embodiment is beneficial to reduce the processing complexity of the downlink shared channel.
  • the network device may further adjust or determine the minimum time interval according to the capabilities of the terminal device. For example, the network device receives the capability information reported by the terminal device; the network device determines the minimum time interval in the repeated transmission mode according to the capability information.
  • this application also provides a feedback information processing method.
  • the feedback information processing method is explained from the perspective of the terminal device.
  • the terminal device can execute any one or more of the implementation manners for determining the minimum time interval described in the first aspect, which will not be described in detail here.
  • the terminal equipment can determine the feedback information of the downlink shared channel according to the minimum time interval T and the feedback time interval. For example, the terminal device may determine to report valid feedback information when the minimum time interval T is greater than or equal to the feedback time interval.
  • the feedback time interval is an actual feedback time interval determined based on the feedback time domain resource indicated by the network device. That is, the feedback time interval is the actual time interval between the end of repeated transmission of the downlink shared channel and the start time of feedback of the feedback information.
  • the present application also provides a communication device that can implement part or all of the functions of the terminal in the method example described in the second aspect.
  • the function of the communication device may have part or all of the functions in the application.
  • the functions in the embodiments may also have the functions of independently implementing any of the embodiments in this application.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the communication device and other devices.
  • the communication device may further include a storage unit for coupling with the processing unit and the sending unit, which stores program instructions and data necessary for the communication device.
  • the communication device includes:
  • a processing unit configured to determine the minimum time interval T according to the number of repeated transmissions of the downlink shared channel m 1;
  • the processing unit is further configured to determine the feedback information of the downlink shared channel according to the minimum time interval T and the feedback time interval.
  • the minimum time interval T is the minimum time interval between the end of repeated transmission of the downlink shared channel and the start time of feedback of the feedback information; the feedback time interval is the repeated transmission of the downlink shared channel The actual time interval between the end time and the feedback start time of the feedback information.
  • the communication device may further include a communication unit configured to report feedback information of the downlink shared channel.
  • the processing unit may be a processor
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory.
  • the communication device includes:
  • a processor configured to determine the minimum time interval T according to the number of repeated transmissions of the downlink shared channel m 1;
  • the processor is further configured to determine the feedback information of the downlink shared channel according to the minimum time interval T and the feedback time interval.
  • the minimum time interval T is the minimum time interval between the end of repeated transmission of the downlink shared channel and the start time of feedback of the feedback information; the feedback time interval is the repeated transmission of the downlink shared channel The actual time interval between the end time and the feedback start time of the feedback information.
  • the communication device may further include a transceiver, and the transceiver is used to report feedback information of the downlink shared channel.
  • the transceiver may also be a communication interface.
  • this application also provides a communication device.
  • the communication device has some or all of the functions of the network device in the method example described in the first aspect.
  • the function of the communication device may have the function of some or all of the embodiments of the network device in this application, or it may have the function of independently implementing any of the embodiments in this application.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the communication unit is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the communication device and other devices, such as communication with terminal devices.
  • the communication device may further include a storage unit for coupling with the acquiring unit and the sending unit, which stores program instructions and data necessary for the communication device.
  • the communication device includes:
  • a processing unit configured to determine the minimum time interval T according to the number of repeated transmissions of the downlink shared channel m 1 , where m 1 is greater than or equal to 2;
  • the processing unit is further configured to determine a feedback time domain resource according to the minimum time interval T, where the feedback time domain resource is used to carry feedback information of the downlink shared channel;
  • the minimum time interval T is the minimum time interval between the end time of repeated transmission of the downlink shared channel and the start time of feedback of the feedback information.
  • the communication device may further include a communication unit configured to receive feedback information of the downlink shared channel carried by the feedback time domain resource.
  • the processing unit may be a processor
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory.
  • the communication device includes:
  • the processor is configured to determine the minimum time interval T according to the number of repeated transmissions of the downlink shared channel m 1 , where m 1 is greater than or equal to 2;
  • the processor is further configured to determine a feedback time domain resource according to the minimum time interval T, where the feedback time domain resource is used to carry feedback information of the downlink shared channel;
  • the minimum time interval T is the minimum time interval between the end time of repeated transmission of the downlink shared channel and the start time of feedback of the feedback information.
  • the communication device may further include a transceiver, and the transceiver is configured to receive feedback information of the downlink shared channel carried by the feedback time domain resource.
  • the transceiver can also be a communication interface.
  • the processor can be used to perform, for example, but not limited to, baseband related processing
  • the transceiver can be used to perform, for example, but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on separate chips, or at least part or all of them may be arranged on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be called a system on chip. Whether each device is arranged independently on different chips or integrated on one or more chips often depends on the specific needs of product design. The embodiment of the present application does not limit the specific implementation form of the foregoing device.
  • the present application also provides a processor for executing the above-mentioned various methods.
  • the processes of sending the above information and receiving the above information in the above methods can be understood as the process of outputting the above information by the processor, and the process of receiving the input of the above information by the processor.
  • the processor when outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver.
  • other processing may be required before it reaches the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to undergo other processing before being input to the processor.
  • the receiving feedback information mentioned in the foregoing method can be understood as the processor inputting feedback information.
  • sending feedback information can be understood as the processor outputting feedback information.
  • the processor outputs and receives, inputs and other operations, instead of transmitting, sending and receiving directly by the radio frequency circuit and antenna.
  • the foregoing processor may be a processor specifically used to execute these methods, or a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory may be a non-transitory memory, such as a read only memory (ROM), which may be integrated with the processor on the same chip, or may be separately arranged on different chips.
  • ROM read only memory
  • an embodiment of the present application provides a computer-readable storage medium for storing computer software instructions used by the aforementioned terminal, which includes a program used to execute the second aspect of the aforementioned method.
  • an embodiment of the present application provides a computer-readable storage medium for storing computer software instructions used by the above-mentioned network device, which includes a program for executing the first aspect of the above-mentioned method.
  • the present application also provides a computer program product including instructions, which when run on a computer, cause the computer to execute the method described in the first aspect.
  • the present application also provides a computer program product including instructions, which when run on a computer, cause the computer to execute the method described in the second aspect.
  • this application provides a chip system that includes a processor and an interface, and is used to support the terminal to implement the functions involved in the first aspect, for example, to determine or process the data and information involved in the above method At least one of.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • this application provides a chip system that includes a processor and an interface, and is used to support network devices to implement the functions involved in the second aspect, for example, to determine or process the data and data involved in the above methods. At least one of the information.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is an example diagram of a V2N system provided by an embodiment of the present application
  • Fig. 2 is an exemplary diagram of a communication system provided by an embodiment of the present application.
  • FIG. 3 is an example diagram of repeated transmission of a downlink shared channel provided by an embodiment of the present application.
  • FIG. 5 is another example diagram of a downlink shared channel in a repeated transmission mode provided by an embodiment of the present application.
  • FIG. 6 is another example diagram of a downlink shared channel in a repeated transmission mode provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a feedback information processing method provided by an embodiment of the present application.
  • FIG. 8 is an example diagram of downlink shared channel processing when the number of repeated transmissions is one according to an embodiment of the present application.
  • FIG. 9 is another example diagram of downlink shared channel processing in repeated transmission mode according to an embodiment of the present application.
  • FIG. 10 is another example diagram of downlink shared channel processing in repeated transmission mode according to an embodiment of the present application.
  • FIG. 11 is another example diagram of downlink shared channel processing in repeated transmission mode according to an embodiment of the present application.
  • FIG. 12 is another example diagram of downlink shared channel processing in repeated transmission mode according to an embodiment of the present application.
  • FIG. 13 is a diagram of another example of repeated transmission of a downlink shared channel provided by an embodiment of the present application.
  • FIG. 14 is a diagram of another example of repeated transmission of a downlink shared channel provided by an embodiment of the present application.
  • FIG. 15 is a diagram of another example of repeated transmission of a downlink shared channel provided by an embodiment of the present application.
  • FIG. 16 is a diagram of another example of a downlink shared channel in a repeated transmission mode provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the technical solution of the present application can be specifically applied to various communication systems.
  • the technical solution of this application can also be used in future networks, such as 5G systems, or new radio (NR) systems; or device-to-device (device to device).
  • 5G systems or new radio (NR) systems
  • NR new radio
  • device-to-device device to device
  • D2D device-to-device
  • M2M machine to machine
  • V2X communication is aimed at high-speed devices represented by vehicles. It is the basic technology and key technology applied in scenarios with very high communication delay requirements in the future, such as smart cars, autonomous driving, intelligent transportation systems and other scenarios.
  • the V2X communication includes: communication between vehicles and vehicles (V2V), communication between vehicles and roadside infrastructure (V2I), and communication between vehicles and pedestrians. pedestrian, V2P) or vehicle to network (V2N) communication, etc.
  • the communication between the terminal devices involved in the V2X system is widely referred to as slide link (SL) communication.
  • the terminal described in this application may also be a vehicle or a vehicle component applied to a vehicle.
  • Fig. 1 is a schematic diagram of a V2X system involved in an embodiment of the present application.
  • the schematic diagram includes V2V communication, V2P communication, and V2I/N communication.
  • vehicles or vehicle components communicate through V2V.
  • Vehicles or vehicle components can broadcast their own speed, driving direction, specific location, whether they have stepped on emergency brakes and other information to surrounding vehicles.
  • Drivers of surrounding vehicles can better perceive traffic conditions outside the line of sight by obtaining this type of information.
  • vehicles or vehicle components communicate with roadside infrastructure through V2I, and roadside infrastructure can provide various types of service information and data network access for vehicles or vehicle components .
  • roadside infrastructure for example, roadside unit (RSU) includes two types: one is a terminal equipment type RSU.
  • the RSU of this terminal equipment type is in a non-mobile state, and mobility does not need to be considered; the other is the RSU of network equipment type.
  • the RSU of this network device type can provide timing synchronization and resource scheduling for vehicles or vehicle components that communicate with network devices. Vehicles or vehicle components communicate with people through V2P; vehicles or vehicle components communicate with the network through V2N.
  • V2P vehicles or vehicle components communicate with the network through V2N.
  • the network architecture and business scenarios described in the embodiments disclosed in this application are intended to more clearly illustrate the technical solutions of the embodiments disclosed in this application, and do not constitute a limitation on the technical solutions provided in the embodiments disclosed in this application.
  • a person of ordinary skill can know that with the evolution of network architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments disclosed in this application are equally applicable to similar technical problems.
  • FIG. 2 is an example diagram of a communication system provided by an embodiment of the application.
  • the communication system may include, but is not limited to, two network devices and one terminal device.
  • the number and form of the devices shown in FIG. 2 are used as examples and do not constitute a limitation to the embodiment of this application.
  • Practical applications may include more than two network devices. , Two or more terminal devices.
  • the network device may be a device with a wireless transceiver function or a chip that can be installed in the device.
  • the network device includes, but is not limited to: evolved node B (evolved node B, eNB), radio network controller (radio network controller).
  • RNC node B
  • BSC base station controller
  • BSC base transceiver station
  • BTS home base station
  • BBU baseband unit
  • wireless fidelity wireless fidelity, WIFI
  • access point access point, AP
  • wireless relay node wireless backhaul node
  • transmission point transmission and Reception point, TRP or transmission point, TP
  • gNB in NR system
  • TRP or TP transmission point
  • a group including multiple antenna panels
  • antenna panels or, it can also be a network node that constitutes a gNB or transmission point, such as a baseband unit (BBU), or a distributed unit (DU, distributed unit), or a pico base station (Picocell), or Femtocell (Femtocell), or,
  • BBU baseband unit
  • DU distributed unit
  • Picocell pico base station
  • Femtocell Femtocell
  • the gNB or transmission point may include a centralized unit (CU) and a distributed unit (DU, distributed unit).
  • the gNB or transmission point may also include a radio unit (RU).
  • the CU implements part of the functions of the gNB or transmission point, and the DU implements some of the functions of the gNB or transmission point.
  • the CU implements radio resource control (RRC) and the packet data convergence protocol (PDCP) layer.
  • Function, DU realizes radio link control (RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • Function, DU realizes radio link control (RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, and the CU can also be divided into network equipment in the core network (core network, CN), which is not limited here.
  • the device used to implement the function of the network device may be a network device; it may also be a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device used to implement the functions of the network equipment is the network equipment, and taking the network equipment as the base station as an example, the technical solutions provided in the embodiments disclosed in the present application are described.
  • terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, user agent or
  • UE user equipment
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile equipment user terminal
  • user agent user agent
  • the user device can be applied to 5G, 6G and even 7G systems.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( The wireless terminal in transportation safety, the wireless terminal in the smart city, the wireless terminal in the smart home, the wireless terminal in the aforementioned V2X car networking, or the wireless terminal type RSU, etc.
  • the term "exemplary” is used to indicate an example, illustration, or illustration. Any embodiment or design solution described as an "example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, the term example is used to present the concept in a concrete way.
  • At least one can also be described as one or more, and the multiple can be two, three, four or more, which is not limited by this application.
  • the embodiments disclosed in this application for a technical feature, it is distinguished by "first”, “second”, “third”, “A”, “B”, “C”, and “D”.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” have no order or size order.
  • TRP1 and TRP2 can communicate with each other directly or indirectly through a backhaul interface.
  • TRP1 and TRP2 can schedule the same terminal, that is, a multi-station coordinated transmission scenario, and repeat the same downlink shared channel multiple times between or within a time unit.
  • the downlink shared channels repeatedly transmitted on multiple time-frequency resources respectively carry the same transport block (TB), or respectively carry the same data bit (or called data). , Or respectively carry the same original data bit after different encoding.
  • the downlink shared channel received by the terminal equipment on multiple time-frequency resources can perform soft combining operations, such as combining the data carried by the downlink shared channels received on multiple time-frequency resources with the maximum likelihood ratio before performing the decision. .
  • the downlink shared channels on multiple time-frequency resources correspond to the same hybrid automatic repeat request-acknowledgment (HARQ-ACK) process, or HARQ process number, or the same set of HARQ-ACK bits. That is, the terminal device can send feedback information, such as positive feedback (ACK) or negative feedback (NACK), for the downlink shared channel that is repeatedly transmitted multiple times.
  • the multiple time-frequency resources respectively occupied by the repeated transmission may not overlap each other in the time domain.
  • the downlink control channel described herein is a control channel for scheduling a downlink shared channel for repeated transmission.
  • the downlink shared channel is a shared channel that is repeatedly transmitted, and the number of repeated transmissions m 1 of the downlink shared channel may be equal to or greater than one.
  • the downlink shared channel can be transmitted multiple times.
  • the first transmission of the downlink shared channel is referred to as the first repeated transmission.
  • the second repeated transmission of the downlink shared channel is referred to as the second repeated transmission.
  • Repeated transmission of the downlink shared channel is abbreviated as each repeated transmission, the number of repeated transmissions of the downlink shared channel is abbreviated as the number of repeated transmissions, and so on.
  • FIG. 3 takes the time unit as a slot as an example, and the slot includes symbols 0 to 13, a total of 14 symbols.
  • the downlink shared channel is repeatedly transmitted twice in the slot, and each transmission occupies four symbols.
  • the first repeated transmission of the downlink shared channel occupies symbols 3 to 6; the second repeated transmission of the downlink shared channel Occupy symbols 7 to 10.
  • the time length of the symbol is related to the subcarrier spacing.
  • the first repeated transmission and the second repeated transmission may correspond to different antenna port quasi co-location (QCL), for example, TRP1 and TRP2 are transmitted respectively.
  • QCL quasi co-location
  • the QCL relationship is used to indicate that multiple resources have one or more identical or similar communication characteristics. For example, if two antenna ports have a quasi co-location relationship, then the large-scale characteristics of the channel for one port to transmit a signal can be inferred from the large-scale characteristics of the channel for the other port to transmit a signal.
  • the first repeated transmission and the second repeated transmission may correspond to the same QCL, that is, the downlink shared channel is repeatedly transmitted twice by one TRP.
  • the terminal device needs to perform one or more operations such as DCI reception and decoding, channel estimation for DMRS, receiving data according to the channel estimation result, generating the data reception result, completing the uplink transmission process, and reporting feedback information. Therefore, the network device is the terminal
  • the starting time domain position of the feedback time domain resource of the device configuration needs to be after the minimum time interval, and the minimum time interval is set in consideration of the above operation setting.
  • the minimum time interval is the minimum time interval between the end time of downlink shared channel transmission and the start time of feedback of feedback information.
  • the downlink shared channel is a physical downlink share channel (PDSCH) as an example.
  • PDSCH physical downlink share channel
  • the PDSCH is repeatedly transmitted twice in time slot k.
  • the PDSCH related processing that the terminal needs to complete includes: channel estimation (CE), and solution based on the result of channel estimation.
  • CE channel estimation
  • Modulate PDSCH abbreviation: demodulation (demodulation), decoding (decode)
  • demodulation demodulation
  • decode decoding
  • uplink control information abbreviation: uplink control information
  • the next processing operation can be performed after the operation of each processing operation is completed.
  • the demodulation and decoding processing can be performed after the CE processing is completed.
  • the PDSCH repeatedly transmitted for the next time can be processed.
  • the CE performs channel estimation on the PDSCH repeatedly transmitted for the first time
  • it can perform channel estimation on the PDSCH repeatedly transmitted for the second time.
  • the processing time of each processing operation in FIG. 4 is the same.
  • the processing time of each processing operation is the same as an example for illustration, but these drawings are not used to limit the implementation of this application.
  • the processing duration of each processing operation in the example is the same.
  • the network device needs to determine the minimum time interval T to determine the feedback time domain resources occupied by the feedback information.
  • the feedback time domain resource is the physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • the starting time domain position of the PUCCH shown in the dashed box in time slot k+2 needs to be after the minimum time interval before the terminal device can report valid feedback information.
  • the feedback time interval is an actual feedback time interval determined based on the feedback time domain resource indicated by the network device. That is, the feedback time interval is the actual time interval between the end of repeated transmission of the downlink shared channel and the start time of feedback of the feedback information.
  • the feedback start time stated when determining the minimum time interval is the start time at which the terminal device can report the feedback information after completing the relevant processing of the downlink shared channel for repeated transmission.
  • the feedback start time stated in determining the feedback time interval is the actual feedback start time determined based on the feedback time domain resource indicated by the network device.
  • the relevant parameters in the repeated transmission mode may include: the number of repeated transmissions m 1 , the start time domain position of each repeated transmission, and the number of time units included in the time domain resources occupied by each repeated transmission. These parameters can be indicated by, but not limited to, the following three embodiments.
  • the network device notifies the terminal device of the number of repeated transmissions m1 through media access control-control element (MAC-CE) signaling or high-layer signaling.
  • the time domain position indication field in the downlink control information can be used to indicate the start time domain position (or called the start symbol position) of the first repeated transmission and the time unit included in the time domain resources occupied by the first repeated transmission. Quantity (or called length, or number of symbols).
  • time domain position indication shown in Table 1 may be configured through predefined or signaling, and the actual indication may include some of the columns in Table 1.
  • the first column is the value indicated by the time domain position indication field in the downlink control information, and is the row index.
  • the second column is the downlink shared channel mapping type, including mapping types A and B.
  • Mapping type A means that the start time domain position of the first repeated transmission is the first adjacent symbol after the symbol occupied by the downlink control channel, or in other words, the start time domain position of the first repeated transmission is limited to one slot The first three symbols within. As shown in FIG. 5, the symbols occupied by the downlink control channel are symbols 0 to 2, and the start time domain position of the first repeated transmission is symbol 3 adjacent to symbol 2.
  • the mapping type B indicates that the start time domain position of the first repeated transmission is not limited within a slot, and can be any symbol in the time slot where the downlink control channel is located.
  • the symbols occupied by the downlink control channel are symbols 0 to 2, and the start time domain position of the first repeated transmission is symbol 2 of the time slot.
  • the two rows of symbols shown in FIG. 6 are symbols of the same time slot, so as to indicate that the symbols occupied by different channels can overlap.
  • the third column K 0 is the timing offset of the downlink shared channel for the first repeated transmission after the downlink control channel.
  • K 0 is equal to 0, indicating that the timing offset of the start time domain position of the first repeated transmission after the downlink control channel is 0, that is, the downlink shared channel and the downlink control channel are located in the same time slot.
  • the fourth column S 0 is the starting time domain position of the first repeated transmission in the time slot determined based on the third column. For example, S 0 is equal to 2, which indicates that the start time domain position of the first repeated transmission in the time slot is symbol 2.
  • the fifth column L 0 is the symbol length or the number of symbols occupied in the time slot determined based on the third column for the first repeated transmission. For example, L 0 is equal to 4, which means that the first repeated transmission occupies 4 symbols.
  • the start time domain position of the first repeated transmission is the first symbol after the time domain position of the downlink control channel, that is, the mapping type is A; downlink sharing The channel and the downlink control channel occupy the same time slot, that is, K 0 is equal to 0; the initial time domain position of the downlink shared channel in the time slot is symbol 3, that is, S 0 is equal to 3; a repeated transmission occupies 4 symbols, that is, L 0 is equal to 4.
  • the number of repeated transmissions m 1 is associated with the row indicated by each candidate time domain position indicator, as shown in Table 2. In this way, the values of different time domain position indicators are different based on the downlink control information. , The corresponding number of repeated transmissions m 1 can be obtained based on Table 2.
  • the number of repeated transmissions can be limited to one slot.
  • the row index is 1, it means that the transmission is repeated twice in a time slot, and the downlink shared channel of repeated transmission and the downlink control channel occupy the same time slot, that is, K 0 is equal to 0; the downlink shared channel of the first repeated transmission
  • the initial time domain position in the time slot is symbol 3, that is, S 0 is equal to 3; the first repeated transmission occupies 4 symbols, that is, L 0 is equal to 4.
  • the row index is 1, it means that the transmission is repeated once in a time slot, and the downlink shared channel of repeated transmission and the downlink control channel occupy the same time slot, that is, K 0 is equal to 0; the downlink of the first repeated transmission
  • the initial time domain position of the shared channel in the time slot is symbol 2, that is, S 0 is equal to 3; the first repeated transmission occupies 10 symbols, that is, L 0 is equal to 10.
  • the time domain position indication field in the downlink control information can be used to indicate the starting time domain position of the time domain resource occupied by a complete repeated transmission process, the number of time units included in the time domain resource, and a complete repetition. The number of repeated transmissions corresponding to the transmission process.
  • m 1 repetitive transmission in the time domain is m 1 repetitive transmission in the time domain.
  • Figure 5 and Figure 6 a complete repeated transmission process is two repeated transmissions of the downlink shared channel in the time domain.
  • the time domain position indication shown in Table 3 can be configured through predefined or signaling.
  • the first column is the value indicated by the time domain position indication field in the downlink control information, and is the row index.
  • the second column is the downlink shared channel mapping type, including mapping types A and B.
  • the mapping type A indicates that the start time domain position of a complete repeated transmission process is the first adjacent symbol after the symbol occupied by the downlink control channel.
  • the symbols occupied by the downlink control channel are symbols 0 to 2
  • the starting time domain position of a complete repetitive transmission process is symbol 3 of the time slot.
  • the mapping type B indicates that the starting time domain position of a complete repetitive transmission process is not limited within a slot, and can be any symbol in the time slot where the downlink control channel is located.
  • the symbols occupied by the downlink control channel are symbols 0 to 2
  • the starting time domain position of a complete repetitive transmission process is symbol 2 of the time slot.
  • the two rows of symbols shown in FIG. 6 are symbols of the same time slot, which are illustrated as two rows to facilitate distinguishing the number of symbols occupied by different channels.
  • the third column K 1 is the timing offset of a complete repeated transmission process after the downlink control channel.
  • K 1 is equal to 0, indicating that the timing offset of the start time domain position of a complete repeated transmission process after the downlink control channel is 0, that is, the downlink shared channel and the downlink control channel are located in the same time slot.
  • the fourth column S 1 is at the starting position of a full time-domain transmission process is repeated in a time slot determined based on the third column. For example, S is equal to 2, which means that the start time domain position of a complete repetitive transmission process is symbol 2 in the time slot.
  • L is the number 1 in the fifth column is repeated a full time slot transmission based on the determined share of the third column of the symbol length or symbol. For example, L 1 is equal to 12, which means that a complete repeated transmission process occupies twelve symbols.
  • the sixth column m 1 is the number of repeated transmissions corresponding to a complete repeated transmission process.
  • m 1 is equal to 2, which means that one complete repeated transmission process corresponds to two repeated transmissions, and two consecutive repeated transmissions correspond to the same or different QCL assumptions.
  • the time-frequency resources occupied by each repeated transmission do not overlap in the time domain.
  • the starting time domain position of a complete repeated transmission process is the first symbol after the time domain position where the downlink control channel is located, that is, the mapping type is A;
  • the repeated transmission process and the downlink control channel occupy the same time slot, that is, K 1 is equal to 0;
  • the starting time domain position of a complete repeated transmission process in the time slot is symbol 3, that is, S is equal to 3;
  • a complete repeated transmission process occupies 8 Symbols, that is, L 1 is equal to 8; the number of repeated transmissions corresponding to a complete repetitive transmission process is 2, that is, m 1 is equal to 2.
  • the network device sends downlink control information, and when the value of the time domain position indication field in the downlink control information is 1, the terminal device can determine the above-mentioned mapping type, K 1 , S 1 , L 1 , and K 1 according to the downlink control information.
  • the relevant parameters of the repeated transmission mode can be obtained: the number of repeated transmissions m 1 is equal to 2, and the starting time domain position of each repeated transmission is symbol 3, symbol 7 and the time unit included in the time domain resources occupied by each repeated transmission. The number is 4 symbols.
  • the first time domain resource, the second time domain resource, and the third time domain resource 4. The first time domain resource, the second time domain resource, and the third time domain resource
  • the first time domain resource is the total time domain resource occupied by repeated transmission of the downlink shared channel for m 1 times.
  • the time interval between the time domain resources occupied by the two repeated transmissions may be N time units, and the N may be equal to zero or greater than zero.
  • the first time domain resource also includes the time interval between two repeated transmissions. That is, the first time domain resource refers to the time domain resource from the start time domain position of the first repeated transmission to the end time domain position of the last repeated transmission. That is, the time interval between two repeated transmissions in the first time domain resource is not used to carry the transport block, and other time domain resources are used to carry the transport block.
  • the time domain resource between the end time domain position of the k1th repetitive transmission and the start time domain position of the k1+1th repetitive transmission does not include other repetitive transmissions, and there is an interval of m symbols, then the m symbols are The time interval between two repeated transmissions.
  • the time interval between the start time domain position of the first repeated transmission and the end time domain position of the last repeated transmission may include m 1 -1 time intervals, such as (m 1- 1) xm symbols.
  • the time interval between the first repeated transmission and the second repeated transmission is 1 symbol
  • the first time domain resource includes: the time domain resource occupied by the first repeated transmission, that is, the symbol 3 to symbol 6; time domain resources occupied by the second repeated transmission, namely symbol 8 to symbol 11; the time interval between the first repeated transmission and the second repeated transmission, namely symbol 7. Therefore, in FIG. 16, the first time domain resource includes 9 symbols.
  • the first time domain resource is the total time domain resource occupied by repeated transmission of the downlink shared channel for m 1 times.
  • the design does not include the time interval between the time domain resources occupied by two repeated transmissions.
  • the first time domain resources are all used to carry the transport block.
  • the time interval between the time domain resources occupied by two repeated transmissions may be predefined. For example, when the QCL assumptions of two adjacent repeated transmissions are not the same, the time interval exists , Otherwise, there is no such time interval.
  • the time interval between the time domain resources occupied by the two repeated transmissions is configured by the network device through signaling, or determined according to preset conditions.
  • the preset condition includes whether there are uplink symbols in the time domain resources occupied by repeated transmission, or whether there are cell common reference signals in the time domain resources occupied by repeated transmission.
  • the second time domain resource is the time domain resource where the DCI is located, and the DCI is used for scheduling the downlink shared channel.
  • the second time domain resource may also be a time domain resource occupied by a downlink control channel, and the DCI carried by the downlink control channel is used for scheduling a downlink shared channel.
  • the second time domain resource may also be a time domain resource occupied by a search space or a set of search spaces corresponding to DCI.
  • the search space or search space set is used to indicate the number of time-frequency resources occupied by the DCI to be detected in the control resource set. Each DCI to be detected corresponds to a specific search space or set of search spaces.
  • the control resource set is used to instruct the terminal device to detect DCI on part of the system time-frequency resources.
  • the control resource set includes the number and location of frequency domain resources where the DCI to be detected is located, and the number of OFDM symbols in a slot.
  • the time domain resources occupied by the control resource set are 1 to 3 symbols in a slot or sub-slot.
  • a control resource set may be associated with one or more search spaces or search space sets, and the frequency domain resources occupied by a control resource set may include 6N RBs, and N is greater than or equal to 1.
  • the time slot or sub-slot where the DCI is located is determined according to the search space or search space set.
  • the terminal device may determine the time-frequency resource location of the DCI to be detected according to the control resource set.
  • the third time domain resource is used to carry DCI, and the DCI is used to schedule the downlink shared channel. That is, the second time domain resource is the time domain resource where the DCI is actually detected, and the third time domain resource is the time domain resource included in the control resource set where the DCI is located, and is the time-frequency resource pool where the DCI to be detected is located.
  • the terminal device needs to determine the time-frequency resource location for detecting the DCI based on the third time-domain resource, so as to detect the time-domain resource where the DCI is actually delivered by the network device.
  • the minimum time interval T, T1 each processing time delay, time interval, timing offset, feedback time interval, or the unit of each preset value may be a time unit.
  • the time unit may be one or more radio frames, one or more subframes, one or more time slots, one or more mini slots, and one or more orthogonal frequency divisions.
  • Multiplexing orthogonal frequency division multiplexing, OFDM) symbols, discrete Fourier transform spreading orthogonal frequency division multiplexing (discrete fourier transform spread spectrum, orthogonal frequency division multiplexing, DFT-S-OFDM) symbols, etc., can also be multiple A time window formed by frames or subframes, such as a system information (SI) window.
  • SI system information
  • the time unit may include an integer number of symbols in the time domain.
  • the time unit may refer to a subframe, or a time slot (slot), or a radio frame, a mini-slot (mini slot or sub-slot), Multiple aggregated time slots, multiple aggregated subframes, symbols, etc., may also be referred to as transmission time interval (TTI).
  • TTI transmission time interval
  • a time unit may include an integer number of another time unit in the time domain, or the duration of a time unit in the time domain is equal to an integer number of another time unit in the time domain, for example, a mini-slot /Subslot/slot/subframe/radio frame contains an integer number of symbols, a slot/subframe/radio frame contains an integer number of mini-slots, a subframe/radio frame contains an integer number of time slots, one
  • the radio frame includes an integer number of subframes, etc., and other include examples may also exist, which are not limited in this application.
  • the unit of the minimum time interval T, T1, each processing time delay, time interval, feedback time interval, or each preset value may also be an absolute time, and the unit of the absolute time is milliseconds or microseconds.
  • the time unit is taken as an example for description.
  • the time unit can be converted into absolute time according to different conditions. For example, when the subcarrier interval is 15 kHz, a time slot can include 14 OFDM symbols, corresponding to 1 ms.
  • FIG. 7 is a schematic flowchart of a feedback information processing method provided by an embodiment of the present application.
  • the feedback information processing method includes but is not limited to the following steps:
  • the network device determines the minimum time interval according to the number of repeated transmissions of the downlink shared channel m 1 , and m 1 is greater than or equal to 2;
  • the network device determines a feedback time domain resource according to the minimum time interval, where the feedback time domain resource is used to feed back feedback information of the downlink shared channel;
  • the minimum time interval is the minimum time interval between the end time of repeated transmission of the downlink shared channel and the start time of feedback of the feedback information. Specifically, the relevant description of the minimum time interval can be referred to above, and the details are not described herein again.
  • the feedback time domain resource determined by the network device according to the minimum time interval may be the feedback time domain resource indicated to the terminal device by the network device according to actual resource configuration.
  • the terminal device can receive the minimum time interval from the network device or perform the related implementation of 101 like the network device to determine the minimum time interval; further, the terminal device can determine the downlink shared channel according to the minimum time interval and the feedback time interval Feedback information. Among them, the terminal device may determine the feedback time interval according to the feedback time domain resource.
  • the feedback time interval is the actual time interval between the end of repeated transmission of the downlink shared channel and the start time of feedback of the feedback information.
  • the PUCCH resource shown in the dashed box is the feedback time domain resource indicated by the network device for the terminal device
  • the feedback time interval is the time interval between the end time of repeated transmission and the start time of the PUCCH resource.
  • the terminal device can determine the effective feedback information of the downlink shared channel when the feedback time interval is greater than the minimum time interval.
  • the end time of the PDSCH is the last symbol occupied by the PDSCH
  • the start time of feedback is the first symbol of the slot occupied by the PUCCH, or the first symbol occupied by the PUCCH resource.
  • the minimum time interval refers to the first symbol after the end time of the PDSCH to the last symbol before the start time of feedback.
  • the PUCCH on the feedback time domain resource is used to carry feedback information.
  • the network device may indicate a reasonable feedback start time according to the minimum time interval, so that the terminal device completes the processing procedures of all the aforementioned downlink shared channels. That is, before the start time domain position of the feedback time domain resource, the terminal device can complete the related processing of the downlink shared channel to obtain feedback information.
  • the following describes how to determine the minimum time interval from several embodiments.
  • the following embodiments or implementation manners may be executed by a network device, or may be executed by a terminal device.
  • the following content takes the network device as the main body of execution as an example.
  • the network device determines the minimum time interval based on related parameters in the repeated transmission mode.
  • the network device determines the relationship between the minimum time interval and T1 according to the relevant parameters of the repeated transmission mode, where T1 is when the number of repeated transmissions is 1, that is, the minimum time interval in the non-repetitive transmission mode.
  • the minimum time interval T is related to the number of repeated transmissions of the downlink shared channel.
  • FIG. 8 is an example diagram of downlink shared channel processing when the number of repeated transmissions is one according to an embodiment of the present application.
  • the difference between FIG. 8 and FIG. 4 is that the number of repeated transmissions of the PDSCH is different.
  • the CE needs to process the channel estimation for the first repeated transmission before processing the channel estimation for the second repeated transmission, that is, the PDSCH processing start time in Figure 8 is earlier than the second repeated transmission in Figure 4
  • the processing start time therefore, the processing end time of UL processing in FIG. 8 is earlier than the processing end time of UL processing for the second repeated transmission in FIG. 4, and therefore, T in FIG. 4 is greater than T in FIG.
  • the total time domain length occupied by the repeated transmission of the downlink shared channel or the number of time units included in the occupied time domain resources remain unchanged.
  • the greater the number of repeated transmissions of the downlink shared channel m 1 the minimum time interval T is also larger.
  • the minimum time interval where the number of repeated transmissions is 2 is greater than the minimum time interval where the number of repeated transmissions is 1.
  • the minimum time interval T is not increased by m 1 times relative to the minimum time interval when the number of repeated transmissions is 1.
  • the minimum time interval in the non-repetitive transmission mode is T1; when the number of repeated transmissions is 2, the minimum time interval T is equal to T1+X, then X is greater than zero and less than T1.
  • the number of repeated transmissions in FIG. 4 is twice the number of repeated transmissions in FIG. 8, but the minimum time interval in FIG. 4 is less than twice the minimum time interval in FIG.
  • the minimum time interval T is increased relative to the minimum time interval when the number of repeated transmissions is 1.
  • the minimum time interval T is the same as the minimum time interval when the number of repeated transmissions is 1.
  • the minimum time interval T is equal to T1 + Y, where Y is greater than or equal to (m 1 /2)*X and less than (m 1 -1)*T1.
  • X is the number of repeated transmission of downlink shared channel m 1 is equal to the minimum time interval of 2 and repeated transmission of a downlink shared channel number m 1 1 equal to the minimum time interval difference between T1.
  • the increased processing delay may also be a multiple of the increased processing delay when the number of repeated transmissions is 2, such as Y equals (m 1 / 2) *X, or greater than the doubled value, for example, Y is greater than (m 1 /2)*X.
  • the difference between FIG. 9 and FIG. 4 is that the number of repeated transmissions of the PDSCH is different. Since in Figure 9, the CE needs to process the channel estimation of the first repeated transmission and then process the second, third, and fourth channel estimations in sequence, the processing start time of the fourth repeated transmission in Figure 9 is It is much later than the processing start time of the second repeated transmission in Figure 4, so the processing end time of the UL processing for the fourth repeated transmission in Figure 9 is much later than the UL processing for the second repeated transmission in Figure 4 The processing end time, so T in FIG. 9 is greater than T in FIG. 4. Assuming that T in Fig. 9 is equal to T1+Y, and T in Fig. 4 is equal to T1+X, since the number of repeated transmissions in Fig. 9 is twice that of Fig. 4, the processing delay of T increased in Fig. 9 is X in FIG. 4 is twice or greater than twice the value of X in FIG. 4, that is, Y is greater than or equal to 2X.
  • the minimum time interval is related to the number of time units included in the time domain resource occupied by the repeated transmission of the downlink shared channel once.
  • the network device determines the minimum time interval T, comprising: a time-domain resource repeated transmission times m 1 and repeat transmission of a downlink shared channel occupied by a unit of time comprises Quantity, determine the minimum time interval T.
  • the number of time units included in the time domain resource occupied by the repeated transmission of the downlink shared channel once, as shown in FIG. 3, is 4 symbols.
  • the minimum time interval T As shown in Figure 4, assuming that the number of repeated transmissions remains the same, but the time domain resources occupied by one time becomes smaller, the starting time of the processing procedure of two repeated transmissions needs to be shifted back. Correspondingly, the feedback of the minimum time interval T starts The start time is also moved backward, so in this case, the minimum time interval T is larger than before. For example, if the number of repeated transmissions is also 2, when the length of each repeated transmission becomes larger, the value of the minimum time interval T becomes smaller.
  • the minimum time interval T when the number of repeated transmissions of the downlink shared channel m 1 is greater than 1, the greater the number of time units included in the time domain resource occupied by the repeated transmission, the smaller the minimum time interval T.
  • the minimum time interval T when the number of repeated transmissions m 1 is equal to 1, the minimum time interval is T1.
  • the minimum time interval T is equal to T1+X.
  • the minimum time interval T is equal to T1+Z. Among them, Z is less than X.
  • the difference between FIG. 10 and FIG. 4 is that the number of time units included in the time domain resources occupied by repeated PDSCH transmission once in FIG. 10 is greater than the time occupied by repeated PDSCH transmission once in FIG. The number of time units included in the domain resource. Since the number of time units included in the time domain resources occupied by the repeated transmission of the PDSCH once in FIG. 10 is relatively large, compared to FIG. 4, the CE can process the channel estimation for the first and second repeated transmissions in advance. Therefore, the processing start time of the second repeated transmission of PDSCH in Fig. 10 is much earlier than the processing start time of the second repeated transmission in Fig. 4. Correspondingly, the processing end of UL processing in Fig. 10 is earlier than that in Fig. 4. The processing end time of the UL processing for the second repeated transmission in FIG. 10, that is, the minimum time interval in FIG. 10 is smaller than the minimum time interval in FIG. 4.
  • the minimum time interval is T1. If the number of repeated transmissions of the downlink shared channel m 1 is greater than 1, and the number of time units included in the time domain resources occupied by the repeated transmission of the downlink shared channel once is greater than or equal to the first preset value, the minimum time interval is equal to T1; When the number of times m 1 of the downlink shared channel transmission is greater than 1, and the number of time units included in the time domain resource occupied by the repeated transmission of the downlink shared channel once is less than the first preset value, the minimum time interval is greater than T1.
  • the minimum time interval is T1. If the number of repeated transmissions of the downlink shared channel m 1 is greater than 1 and the number of time units L included in the time domain resources occupied by the repeated transmission of the downlink shared channel once is greater than the second preset value, the minimum time interval T is equal to T1; if the transmission is repeated When the number of times m 1 of the downlink shared channel is greater than 1, and the number L of time units included in the time domain resource occupied by the repeated transmission of the downlink shared channel once is less than the second preset value, the minimum time interval T is greater than T1.
  • the minimum time interval is T1. If the number of repeated transmissions of the downlink shared channel m 1 is greater than 1 and the number of time units included in the first time domain resource is greater than or equal to the third preset value, the minimum time interval is equal to T1; if the number of repeated transmissions of the downlink shared channel is m 1 When it is greater than 1 and the first time domain resource is less than the third preset value, the minimum time interval is greater than T1.
  • the terminal device can already process the repeated transmission of the PDSCH in parallel before the end of the repeated transmission of the downlink shared channel. Therefore, compared with T1, the minimum time interval may not increase; if the number of time units included in the time domain resources occupied by the repeated transmission of the downlink shared channel at one time is small, the terminal equipment still exists after the end of the repeated transmission of the downlink shared channel There are more unprocessed PDSCHs, so the minimum time interval increases compared to T1.
  • the first preset value may be equal to 4 symbols.
  • the minimum time interval T is related to the time interval between the time domain resources respectively occupied by two repeated transmissions.
  • the minimum time interval T is determined according to the number of repeated transmissions of the downlink shared channel m 1 , including: according to the number of repeated transmissions of the downlink shared channel m 1 , the time occupied by the repeated transmission of the downlink shared channel once
  • the minimum time interval T is determined by the number of time units included in the domain resource and the time interval between the time domain resources occupied by repeated transmission of the downlink shared channel twice.
  • the difference between FIG. 11 and FIG. 4 is that the time interval between the time domain resources occupied by repeated PDSCH transmission twice in FIG. 11 is greater than zero. Since the PDSCH for the first repeated transmission in Fig. 11 is relatively forward, the CE can process the channel estimation for the first and second repeated transmissions in advance, so the processing of the second repeated transmission of the PDSCH in Fig. 11 starts much earlier. In Figure 4, the processing start time of the second repeated transmission. Correspondingly, the processing end time of UL processing in FIG. 11 is earlier than the processing end time of UL processing for the second repeated transmission in FIG. 4, that is, the minimum time interval in FIG. 10 is smaller than the minimum time interval in FIG.
  • the minimum time interval is T1. If the number of repeated transmissions of the downlink shared channel m 1 is greater than 1, and the time interval between the time domain resources occupied by the two repeated transmissions of the PDSCH is greater than or equal to the fourth preset value, the minimum time interval is equal to T1; if the transmission is repeated When the number of times m 1 of the downlink shared channel is greater than 1, and the time interval between the time domain resources occupied by the repeated transmission of the PDSCH twice is less than the fourth preset value, the minimum time interval is greater than T1.
  • the terminal device can already process the repeated transmission of the PDSCH in parallel before the end of the repeated transmission of the downlink shared channel.
  • the minimum time interval does not increase; if the time interval between the time domain resources occupied by the two repeated transmissions of the PDSCH is smaller, the terminal device will still return after the end of the repeated transmission of the downlink shared channel. There are more unprocessed PDSCHs, so the minimum time interval increases.
  • the fifth preset value may be 2 symbols.
  • the network device or terminal device can define the minimum time interval T according to the relevant parameters of the repeated transmission mode; or, the network device or terminal device can determine the minimum time interval T according to the relevant parameters of the repeated transmission mode. The relationship with the minimum time interval T1.
  • the embodiments of the present application are not limited to the characteristics between the minimum time interval T and the relevant parameters of the repetitive transmission mode described in the foregoing embodiments.
  • the embodiment of the present application further includes the following implementation manner: when the number of repeated transmissions of the downlink shared channel m 1 is equal to 1, the minimum time interval is T1. When the number of repeated transmissions of the downlink shared channel m 1 is greater than the sixth preset value, the minimum time interval is greater than T1, and the minimum time interval can be determined according to the time domain resources occupied by the repeated transmission of the downlink shared channel once.
  • the minimum time interval T It is greater than T1
  • the minimum time interval can be determined according to the time domain resources occupied by the repeated transmission of the downlink shared channel once.
  • the number of repeated transmissions m 1 When the number of time units included in the time domain resource occupied by the time domain resource occupied by 1 is greater than the seventh preset value and repeated transmission of the PDSCH once is less than the eighth preset value, the minimum time interval is greater than T1, but the difference between the minimum time interval and T1 may be Determined based on the requirements of terminal processing complexity.
  • this embodiment can redefine the minimum time interval or the relationship between the minimum time interval and T1 according to the relevant parameters in the repeated transmission mode.
  • T1 is the minimum time interval in non-repetitive transmission mode.
  • the minimum time interval is obtained by adding one or more processing delays, and the one or more processing delays include the first processing delay d1.1 and the downlink shared channel processing delay N1.
  • the minimum time interval T1 can be obtained using the following formula (1):
  • the formula (1) indicates that under a certain subcarrier interval, in the non-repetitive transmission mode shown in FIG. 7, the minimum time interval T1 is determined based on N1 and d1.1. Among them, the units of T1, N1, and d1.1 are symbols. If the absolute time T 1 ′ corresponding to T1 needs to be obtained, it can be obtained based on the following formula (2):
  • T 1 ′ T1 ⁇ (2048+144) ⁇ 2 - ⁇ ⁇ T c (2)
  • the unit of the absolute time T 1 ′ is milliseconds or microseconds.
  • N1 is related to the downlink shared channel processing capability of the terminal; d1.1 is related to the downlink shared channel processing capability of the terminal and the size of the time domain resources occupied by the downlink shared channel.
  • a terminal device with two types of downlink shared channel processing capabilities are marked as Cap1 capability and Cap2 capability, respectively. Since the terminal device with Cap2 capability requires a relatively short time to perform the foregoing processing operations, the terminal device with Cap2 capability requires a smaller minimum time interval than the terminal device with Cap1.
  • N1 can be obtained from Table 4 and Table 5.
  • N1 is determined based on Table 4.
  • the first column is the subcarrier interval ⁇ of the time unit where the downlink shared channel is located.
  • the N1 is also related to whether the downlink shared channel has additional DMRS.
  • the second column in Table 4 applies to the case where there is no additional DMRS for the downlink shared channel and the mapping types A and B of the downlink shared channel.
  • the third column is applicable In the downlink shared channel, there are additional DMRS and downlink shared channel mapping types A and B.
  • N1 is determined based on Table 5.
  • the first column is the subcarrier interval ⁇ of the time unit where the downlink shared channel is located.
  • the second column is applicable to situations where there is no additional DMRS and downlink shared channel mapping types A and B.
  • N1 in the repeated transmission mode can be pre-defined or configured by high-level signaling.
  • a table can also be used to pre-defined or high-level signaling to configure one or more optional values of N1 in the repeated transmission mode.
  • the predefined or high-level signaling configuration is as shown in Table 4 and Table 5, so that the network device or terminal device can determine the repetitive transmission mode by looking up the table. N1.
  • the downlink shared channel for each repeated transmission does not have an additional DMRS. In this way, the third column can be removed from Table 4.
  • d1.1 in formula (1) is related to the size of the time domain resources occupied by the downlink shared channel and whether the aforementioned downlink shared channel processing capability possessed by the terminal is Cap 1 capability or Cap 2 capability.
  • the minimum time interval T1 may remain unchanged according to conditions.
  • the condition is that the time domain resource occupied by the downlink control channel for scheduling the downlink shared channel is related to the positional relationship of the time domain resource occupied by the downlink shared channel in the time domain.
  • time domain resource occupied by the downlink shared channel includes 7 symbols, or when the time domain resource occupied by the downlink shared channel includes 4 or 2 symbols and the time domain resource occupied by the downlink shared channel is related to scheduling the downlink shared channel
  • d1.1 0.
  • a predefined or high-level signaling configuration of one or more repeated transmission modes d1.
  • the repeated transmission of a downlink shared channel frequency and m2 is greater than equal to twice the m 1 is repeated transmitting downlink shared channel number m minimum time a corresponding interval T1 is not greater than the repeat transmission downlink shared
  • the minimum time interval T2 corresponding to the channel times m2.
  • the minimum time interval of the downlink shared channel for non-repetitive transmission is T1, then:
  • d1.1 is increased by X in the minimum time interval, where X is greater than zero and less than T1;
  • d1.1 increases by Y in the minimum time interval, where Y is greater than or equal to (m 1 /2)*X and less than (m1-1)*T1.
  • N1 can also be determined based on Table 4, Table 5 and the downlink shared channel processing capability of the terminal device.
  • the value of d1.1 in the minimum time interval is determined based on the above definition of the non-repetitive transmission mode.
  • d1.1 may also be determined based on other implementation manners in the first embodiment, which will not be described in detail here.
  • N1 and d1.1 included in the minimum time interval T1 (as described above for T1); repeated transmission In the mode, the optional value of N1 in the minimum time interval T, or the increment of N1 in the minimum time interval T relative to N1 in the minimum time interval T1, or d1.1 in the minimum time interval T relative to d1 in the minimum time interval T1 .1 increments.
  • This embodiment is different from the method of determining the increment of the first processing delay d1.1 in the foregoing embodiment 2.
  • the first processing delay d1.1 is redefined, and N1 can also be obtained based on Table 4 or Table 5. , Or obtained based on Table 4 or Table 5 redefined in Example 1 or 2.
  • the first processing delay d1.1 is determined based on the first time domain resource. Or, the first processing delay d1.1 is related to the first time domain resource. Alternatively, the first processing delay d1.1 is determined based on the number of time units included in the first time domain resource. Or, when the number of time units included in the first time domain resource is different, the value of the first processing delay d1.1 is different.
  • the first processing delay d1.1 when the first time domain resource includes K4 time units, or when the number of time units in the first time domain resource is greater than K4, the first processing delay d1.1 is equal to zero; or When the first time domain resource includes K3 time units, or the number of time units in the first time domain resource is greater than K2 and less than K4, or the number of time units in the first time domain resource is greater than or equal to K3 and less than K4 When the first processing delay d1.1 is equal to a preset value, the preset value is greater than zero.
  • the network device determines the first time domain resource according to the number of time units included in the first time domain resource, and the time domain position relationship between the first time domain resource and the third time domain resource. Processing delay d1.1; wherein, the third time domain resource is a time domain resource occupied by a control resource set associated with the downlink control information DCI, and the DCI is used to schedule the downlink shared channel.
  • the first time domain resource when the first time domain resource includes K2 time units, or when the number of time units in the first time domain resource is less than K2, or when the number of time units included in the first time domain resource is less than K3:
  • the first processing delay d1.1 is equal to the number of time units included in the third time domain resource
  • the first processing delay d1.1 is equal to the time included in the overlapping time domain resource between the first time domain resource and the third time domain resource
  • the number of units may be equal to the number of time units included in the overlapping time domain resource between the first time domain resource and the second time domain resource.
  • the first condition is that the first time domain resource and the third time domain resource have the same starting time domain position, and the number of time units included in the third time domain resource is greater than or equal to all. ⁇ K2. It can be seen that the minimum time interval T determined in this implementation manner takes into account the delay required for the terminal device to detect DCI based on the control resource set, so that it can ensure that the terminal device reports feedback information in time while ensuring that the effective feedback information is reported.
  • the first time domain resource includes K3 time units, or the number of time units in the first time domain resource is greater than K2 and less than K4, or when the number of time units in the first time domain resource is When the number is greater than or equal to K3 and less than K4, the first processing delay d1.1 is equal to the number of time units included in the overlapping time domain resource between the first time domain resource and the third time domain resource; or ,
  • the first time domain resource includes K2 time units or the number of time units in the first time domain resource is less than or equal to K2, or when the number of time units included in the first time domain resource is less than K3, the first time domain resource includes K2 time units.
  • a processing delay d1.1 is equal to a preset value + a second processing delay d, the preset value is greater than zero, and the second processing delay d is equal to the first time domain resource and the third time domain Overlapping resources The number of time units included in time domain resources.
  • the minimum time interval considers the overlap between the first time domain resource and the third time domain resource, which is beneficial for the terminal device to obtain feedback information based on the DCI after demodulating the DCI based on the third time domain resource. . This helps to ensure that the terminal device reports effective feedback information.
  • the network device determines the number of time units included in the first time domain resource, and the time domain position relationship between the first time domain resource and the second time domain resource.
  • the first processing time delay is d1.1.
  • the second time domain resource is a time domain resource where the DCI is located, and the DCI is used to schedule the downlink shared channel.
  • the first time domain resource includes K3 time units, and the first processing delay d1.1 is equal to the overlap time between the first time domain resource and the second time domain resource.
  • K2 is equal to 2
  • K3 is equal to 4
  • the preset value is equal to 3.
  • this embodiment considers that the terminal device needs to demodulate the DCI in order to obtain feedback information, which is beneficial to ensuring that the terminal device reports in a timely manner while reporting effective feedback information.
  • the network device determines the minimum time interval T according to the downlink shared channel processing capability of the terminal device and the number of time units included in the first time domain resource.
  • the optional downlink shared channel processing capability of the terminal equipment includes the downlink shared channel processing capability 1 and the downlink shared channel processing capability 2.
  • the network device can determine the minimum time interval T according to the downlink shared channel processing capability of the terminal device in combination with any one or more of the foregoing implementation manners.
  • the first processing delay d1.1 is equal to zero
  • the first processing delay d1.1 is equal to a preset value, and the preset value is greater than zero;
  • the first time domain resource includes K2 time units
  • the first processing delay d1.1 is equal to a preset value + a second processing delay d
  • the preset value is greater than zero
  • the second processing delay d is equal to the number of time units included in the overlapping time domain resource between the first time domain resource and the second time domain resource, or equal to the overlapping time domain between the first time domain resource and the third time domain resource The number of time units included in the resource.
  • the first processing delay d1.1 is equal to zero
  • the first time domain resource includes K3 time units, and the first processing delay d1.1 is equal to the time unit included in the overlapping time domain resource between the first time domain resource and the third time domain resource Or equal to the number of time units included in the overlapping time domain resource between the first time domain resource and the second time domain resource;
  • the first time domain resource includes K2 time units: when the first time domain resource satisfies a first condition, the first processing delay d1.1 is equal to the number of time units included in the third time domain resource Or, when the first time domain resource does not meet the first condition, the first processing delay d1.1 is equal to the overlapping time domain resource between the first time domain resource and the third time domain resource The number of time units included, or equal to the number of time units included in the overlapping time domain resource between the first time domain resource and the second time domain resource;
  • the first condition is that the first time domain resource and the third time domain resource have the same starting time domain position, and the number of time units included in the third time domain resource is greater than or Equal to the K2;
  • the second time domain resource is a time domain resource where the DCI is located.
  • the first time domain resource includes the time interval between the time domain resources occupied by the downlink shared channel for two repeated transmissions
  • the first time domain resource includes the time interval between the time domain resources occupied by the downlink shared channel for two repeated transmissions
  • the first time domain resource is greater than K2 and less than K3, greater than K3 And when it is less than K4, or when it is equal to K3, the first processing delay d1.1 is equal to d'.
  • K2, K3, and K4 are all integers greater than or equal to 1, for example, K2 is equal to 2, K3 is equal to 4, and K4 is equal to 7.
  • the default value is a value greater than zero.
  • d1.1 3+d, where d is the third time domain resource and the The number of time units included in the overlapping time domain resource between the first time domain resources; or, d is the number of time units included in the overlapping time domain resource between the first time domain resource and the second time domain resource.
  • d1.1 d, where d is the third time domain resource and the The number of time units included in the overlapping time domain resource between the first time domain resources, or the number of time units included in the overlapping time domain resource between the second time domain resource and the first time domain resource.
  • d1.1 d'
  • d' is the third time domain resource
  • the number of time units carrying downlink data in the overlapping time domain resource with the first time domain resource, or d' is the overlapping time domain resource between the second time domain resource and the first time domain resource carrying downlink
  • the number of time units of data is 4, or greater than 4 and less than 7, or greater than 2 and less than or equal to 4.
  • the start time domain position of the third time domain resource is the same as the start time domain position of the first time domain resource
  • the start time domain position of the third time domain resource is different from the start time domain position of the first time domain resource
  • the downlink is carried in the time domain resource
  • the number of data symbols, or d' is the number of symbols carrying downlink data in the overlapping time domain resource between the second time domain resource and the first time domain resource.
  • the first processing delay d1.1 in the repeated transmission mode can be redefined.
  • the optional value of d1.1 may be pre-defined or configured in higher layer signaling based on the foregoing implementation manners.
  • the minimum time interval T can be determined.
  • the network device or the terminal device may also be based on the time domain resources occupied by the demodulation reference signal (DMRS) in the first time domain resource and Whether the time domain resources occupied by the first signal conflict or not determines the minimum time interval. That is to say, the following describes how to define the minimum time interval when the DMRS conflicts with the first signal.
  • DMRS demodulation reference signal
  • the first signal includes but is not limited to: cell-specific RS (CRS), control resource set (CORESET), synchronization signal block (synchronisation signal block, SSB), channel state information reference signal (channelstate information) information reference resource, CSI-RS), etc.
  • CRS is used for multiple users in a cell to perform channel estimation reference signals for data reception or measurement reference signals for performing channel state information feedback
  • CORESET is a time-frequency resource that carries downlink control information, and usually occupies multiple RBs in the frequency domain.
  • CORESET will associate one or more search spaces, each search space is used to configure the detection behavior or detection process or detection period of the terminal device to detect DCI;
  • CSI-RS is the terminal
  • the device-specific reference signal used to measure the channel usually reports the measurement result to the base station based on the measurement.
  • each repeated transmission includes a DMRS for demodulating the repeated transmission of the PDSCH, and the DMRS will occupy a specific one or more symbols in the time domain resource occupied by each repeated transmission.
  • each DMRS occupies the nth symbol in the time domain resource occupied by each repeated transmission.
  • the DMRS in the first retransmission occupies the first symbol in the time domain resource occupied by the first retransmission, namely symbol 3.
  • the DMRS in the second retransmission occupies the second repetition The first symbol in the time domain resources occupied by the transmission, namely symbol 7.
  • the symbols occupied by the DMRS in each repeated transmission are the first k symbols in the time domain resources occupied by each repeated transmission, and k can be 1 or 2.
  • k is 1.
  • the first DMRS is the DMRS in the first time domain resource, and the first time domain position is the first k symbols or the nth symbol in the time domain resources occupied by the downlink shared channel for each repeated transmission;
  • the first DMRS is the DMRS in the time domain resources occupied by the downlink shared channels of the other repeated transmissions except the first repeated transmission, and the first time domain position is the time occupied by the downlink shared channels of the other repeated transmissions.
  • the first k symbols or the nth symbol in the domain resource is the DMRS in the first time domain resource, and the first time domain position is the first k symbols or the nth symbol in the time domain resources occupied by the downlink shared channel for each repeated transmission;
  • the location of the time domain resource occupied by the first DMRS is a preset location.
  • the relative position of the time domain resource position occupied by the first DMRS and the PDSCH is preset.
  • the minimum time interval T includes a third processing delay
  • the network device determines the third processing delay according to the time domain position occupied by the first demodulation reference signal DMRS.
  • the network device adjusts the minimum time interval T determined in the foregoing embodiments according to the time domain position occupied by the first demodulation reference signal DMRS.
  • the network device determines the time domain position occupied by the first DMRS according to the time domain position occupied by the first signal.
  • the minimum time interval is T1; when the time domain position occupied by the first DMRS is the second time domain position, the minimum time interval is The time interval T is equal to T1 + the third processing delay.
  • the first DMRS is the DMRS in the first time domain resource
  • the first time domain position is the first k symbols or the nth symbol in the time domain resources occupied by the downlink shared channel for each repeated transmission
  • the first DMRS is the DMRS in the time domain resources occupied by the downlink shared channels of the other repeated transmissions except the first repeated transmission
  • the first time domain position is the time occupied by the downlink shared channels of the other repeated transmissions.
  • the first k symbols or the nth symbol in the domain resource is the DMRS in the first time domain resource.
  • the second time domain position includes the time domain position adjacent to the time domain position where the first signal is located.
  • the third processing delay is the number of time units in the time domain resource occupied by the first signal.
  • the time domain position of the first DMRS will be adjusted to avoid conflicts with others.
  • the signal conflicts which affects the data demodulation performance.
  • the starting time domain position of the time domain resources occupied by the first DMRS is adjusted to that occupied by CRS or SSB The first symbol after the end of the time domain resource.
  • the first DMRS is the DMRS in the time domain resources occupied by the PDSCH of the second repeated transmission.
  • the first time of the first DMRS is The domain position is symbol 6, because there is a CRS on symbol 6, so according to the CRS on symbol 6, the time domain position of the first DMRS is determined to be the second time domain position, that is, symbol 7.
  • the minimum time interval T is equal to the minimum time interval T1 corresponding to the repeated transmission shown in the upper row of FIG. 14 plus 1.
  • T1 is the minimum time interval defined when the first DMRS is not affected by the CRS or the SSB or is the first.
  • d1.1 is determined, and then N1 is determined according to the above-mentioned Table 4 or Table 5, and then T1 is obtained based on the formula (1).
  • the network device may increase the minimum time interval T1 by a third processing delay to determine the minimum time interval T.
  • the third processing delay is the number of time units included in the time domain resource occupied by the first signal.
  • the processing of the CE may be shifted backward because the DMRS is shifted backward. Therefore, in this case, the minimum time interval T is increased, for example, one symbol is added.
  • the start time domain position of the k-th repeated transmission is adjusted to the next symbol of the end symbol position of the first signal.
  • the minimum time interval is determined according to the number of time units included between the start time domain position of the first repeated transmission and the adjusted end time domain position of the last repeated transmission. That is to say, in this embodiment, the first time domain resource is the time unit from the start time domain position of the first repeated transmission to the adjusted end time domain position of the last repeated transmission is determined to be the first time domain. Resources.
  • this implementation manner may determine the minimum time interval according to the first time domain resource and the relevant implementation manner described in the third embodiment above.
  • the minimum time interval T is equal to T1 + the third processing delay.
  • the T1 is the minimum time interval when the time domain resources occupied by the k-th repeatedly transmitted DMRS and the time domain resources occupied by the first signal do not conflict, or when the k-th repeatedly transmitted DMRS is not affected by the first signal.
  • the third processing delay is the time unit offset between the start time domain position of the kth repeated transmission and the position to which the start time domain position of the kth repeated transmission is adjusted.
  • the time domain resources occupied by the control resource set are symbols 0, 1, 6, and 7, which conflict with the time domain resources occupied by the DMRS for the second repeated transmission, so the second repeated transmission
  • the start time domain position of is adjusted to the next symbol of the end time domain position occupied by the control resource set, that is, symbol 8.
  • the adjusted time domain resources occupied by the second repeated transmission are symbol 8 to symbol 11.
  • the first time domain resource is symbol 2 to symbol 11.
  • the minimum time interval may be determined based on the first time domain resource.
  • it can be determined that the third processing delay in FIG. 15 is equal to 2, so that the minimum time interval when not affected by the control resource set can be increased by 2 to obtain the adjusted minimum time interval.
  • the foregoing embodiments or implementations are based on the consideration that there is one DMRS for each repeated transmission. As shown in the foregoing Figures 13 to 15, correspondingly, the CE is executed at least from the end of the DMRS transmission. In yet another implementation manner, the DMRS of the repetitive transmission mode can be simplified. Accordingly, the minimum time interval described above can also be appropriately reduced on the basis of the foregoing embodiments or implementations. Since the amount of processing for channel estimation in the entire repeated transmission process is reduced, this embodiment is beneficial to reduce the processing complexity of the downlink shared channel.
  • the network device may further adjust or determine the minimum time interval according to the capabilities of the terminal device. For example, the network device receives the capability information reported by the terminal device; the network device determines the minimum time interval in the repeated transmission mode according to the capability information.
  • the capability information may be the number of carriers reported by the terminal equipment in the non-repetitive transmission mode.
  • the number of carriers characterizes the parallel processing capability of the terminal equipment. For example, the number of carriers is 4 carriers, which means that the parallel processing capability of the terminal device is 4. Therefore, if the network device configures the terminal device with half the number of carriers reported by the terminal device according to the number of carriers reported by the terminal device, the network device can assume that the terminal device can perform parallel processing on multiple downlink shared channels in the same carrier. .
  • the terminal device can process the PDSCH for the first repeated transmission and the PDSCH for the second repeated transmission in parallel. PDSCH.
  • the minimum time interval in FIG. 12 is determined by the processing of the second repeated transmission, which is the same as the processing shown in FIG. 8 in the non-repetitive transmission mode (the number of repeated transmissions m 1 is equal to 1), so the repeated transmission mode
  • the minimum time interval can be determined as the minimum time interval T1 when the number of repeated transmissions m 1 is equal to 1.
  • this implementation manner may also adjust the minimum time interval set forth in the foregoing implementation manners or embodiments based on the parallel processing capability of the terminal device.
  • the methods provided in the embodiments of the present application are introduced from the perspective of network equipment, terminal, and interaction between the network equipment and the terminal.
  • the network device and the terminal may include a hardware structure and a software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • One of the above-mentioned functions may be executed in a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 17 is a schematic structural diagram of an apparatus provided by an embodiment of the application.
  • the device can be used to implement the method described in the foregoing method embodiment, and for details, please refer to the description in the foregoing method embodiment.
  • the apparatus may include one or more processors 1701.
  • the processor 1701 may also be referred to as a processing unit, and may implement the functions of the network device or the terminal device in the method provided in the embodiment of the present application.
  • the processor 1701 may be a general-purpose processor or a special-purpose processor.
  • the processor 1701 may be referred to as a processing unit, and controls the device 1700.
  • the processor 1701 may also store an instruction 1703, and the instruction 1703 may be executed by the processor, so that the apparatus 1200 executes the method described in the foregoing method embodiment.
  • the processor 1701 may include a communication unit for implementing receiving and sending functions.
  • the communication unit may be a transceiver circuit, or an interface, or an interface circuit.
  • the processor 1701 may implement the method executed by the network device or the method executed by the terminal device in the method provided in the embodiments of the present application through the communication unit.
  • the device 1700 may include one or more memories 1702, on which instructions 1704 may be stored.
  • the instructions may be executed on the processor, so that the apparatus 1700 executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • the processor 1701 and the memory 1702 can be provided separately or integrated together.
  • the device 1700 may further include a transceiver 1705 and an antenna 1706.
  • the transceiver 1705 may be referred to as a communication unit, a transceiver, a communication interface, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function.
  • an apparatus 1700 for example, a chip, an integrated circuit, a wireless device, a circuit module, or a terminal in a terminal
  • a processing unit configured to determine the minimum time interval T according to the number of repeated transmissions of the downlink shared channel m 1;
  • the processing unit is further configured to determine the feedback information of the downlink shared channel according to the minimum time interval T and the feedback time interval.
  • the minimum time interval T is the minimum time interval between the end of repeated transmission of the downlink shared channel and the start time of feedback of the feedback information; the feedback time interval is the repeated transmission of the downlink shared channel The actual time interval between the end time and the feedback start time of the feedback information.
  • the communication device may further include a communication unit configured to report feedback information of the downlink shared channel.
  • an apparatus 1700 for example, network equipment, base station, DU or CU, TRP or baseband chip
  • an apparatus 1700 includes:
  • a processing unit configured to determine the minimum time interval T according to the number of repeated transmissions of the downlink shared channel m 1 , where m 1 is greater than or equal to 2;
  • the processing unit is further configured to determine a feedback time domain resource according to the minimum time interval T, where the feedback time domain resource is used to carry feedback information of the downlink shared channel;
  • the minimum time interval T is the minimum time interval between the end time of repeated transmission of the downlink shared channel and the start time of feedback of the feedback information.
  • the communication device may further include a communication unit configured to receive feedback information of the downlink shared channel carried by the feedback time domain resource.
  • a device 1700 for example, a chip, an integrated circuit, a wireless device, a circuit module, or a terminal in a terminal
  • a device 1700 may include:
  • the processor 1701 is configured to determine the minimum time interval T according to the number of repeated transmissions of the downlink shared channel m 1;
  • the processor 1701 is further configured to determine the feedback information of the downlink shared channel according to the minimum time interval T and the feedback time interval.
  • the minimum time interval T is the minimum time interval between the end of repeated transmission of the downlink shared channel and the start time of feedback of the feedback information; the feedback time interval is the repeated transmission of the downlink shared channel The actual time interval between the end time and the feedback start time of the feedback information.
  • the communication device may further include a transceiver 1705, and the transceiver 1705 is configured to report feedback information of the downlink shared channel.
  • a device 1700 may include:
  • the processor 1701 is configured to determine the minimum time interval T according to the number of repeated transmissions of the downlink shared channel m 1 , where m 1 is greater than or equal to 2;
  • the processor 1701 is further configured to determine a feedback time domain resource according to the minimum time interval T, where the feedback time domain resource is used to carry feedback information of the downlink shared channel;
  • the minimum time interval T is the minimum time interval between the end time of repeated transmission of the downlink shared channel and the start time of feedback of the feedback information.
  • the communication device may further include a transceiver 1705, and the transceiver 1705 is configured to receive feedback information of the downlink shared channel carried by the feedback time domain resource.
  • Figure 18 provides a schematic structural diagram of a terminal device.
  • the terminal device can be applied to the scenarios shown in Figure 1 and Figure 2.
  • FIG. 18 only shows the main components of the terminal device.
  • the terminal equipment includes a processor 1812, a memory, a control circuit, an antenna, and an input and output device.
  • the processor 1812 is mainly used to process the communication protocol and communication data, and to control the entire terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor 1812 can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and performs processing on the data. deal with.
  • FIG. 18 only shows a memory and a processor 1812. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor 1812 may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device. Execute the software program and process the data of the software program.
  • the terminal device may include multiple baseband processors to adapt to different network standards
  • the terminal device may include multiple central processors to enhance its processing capabilities
  • the various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with the transceiver function can be regarded as the communication unit 1811 of the terminal device, and the processor with the processing function can be regarded as the processing unit 1812 of the terminal device.
  • the terminal device includes a communication unit 1811 and a processing unit 1812.
  • the communication unit may also be referred to as a transceiver, transceiver, transceiving device, and so on.
  • the device for implementing the receiving function in the communication unit 1811 can be regarded as the receiving unit, and the device for implementing the sending function in the communication unit 1811 as the sending unit, that is, the communication unit 1811 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the foregoing receiving unit and sending unit may be an integrated unit or multiple independent units.
  • the above-mentioned receiving unit and sending unit may be located in one geographic location, or may be scattered in multiple geographic locations.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.

Abstract

本申请提供一种反馈信息处理方法及通信装置。该反馈信息处理方法中,可根据重复传输模式的相关参数,重新定义最小时间间隔,或最小时间间隔中的下行共享信道处理时延N1,或最小时间间隔中的第一处理时延d1.1,或最小时间间隔中的N1和d1.1。其中,该最小时间间隔是数据重复传输结束到反馈信息的反馈起始时刻之间的最小时间间隔。另外,本申请还提供了在重复传输中DMRS与CRS、控制资源集合等冲突的情况下,如何确定最小时间间隔。因此,本申请有利于尽可能及时的上报反馈信息,有利于保证数据传输的可靠性和时效性。

Description

反馈信息处理方法及通信装置
本申请要求于2019年9月30日提交中国专利局、申请号为201910944745.6、申请名称为“反馈信息处理方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种反馈信息处理方法及通信装置。
背景技术
在数据传输过程中,为了保证数据传输的可靠性,终端需要对基站发送的数据,反馈混合自动重传请求(hybrid automatic repeat request,HARQ)-确认(ACK)信息,以使得基站确认是否需要重传该数据。为了获得该HARQ-ACK信息,终端需要完成以下操作:信道估计;根据信道估计的结果解调数据;基于解调结果获得反馈信息并进行上行的调制编码。而在重复传输模式下,终端需要完成多次重复传输的下行共享信道的处理,因此,如何为终端分配反馈时域资源,以保证终端设备处理完上述操作的同时还能够及时上报反馈信息,对于数据传输的可靠性和时效性来说极其重要。
发明内容
本申请提供了一种反馈信息处理方法及通信装置,有利于保证数据传输的可靠性和时效性。
第一方面,本申请提供一种反馈信息处理方法。该反馈信息处理方法中,网络设备可根据重复传输下行共享信道的次数m 1,确定最小时间间隔T,m 1大于或等于2;并基于该最小时间间隔T,确定反馈时域资源,以使终端设备上报下行共享信道的反馈信息。其中,最小时间间隔T是下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的最小时间间隔。
也就是说,该最小时间间隔是终端设备完成重复传输的下行共享信道的相关处理后,能够上报反馈信息的最小时间间隔。可见,本申请实施例能够基于重复传输模式下的最小时间间隔来确定反馈时域资源,有利于保证终端设备上报有效的反馈信息的同时,实现尽快反馈,从而有利于保证数据传输的可靠性和时效性。
在一种实施方式中,网络设备根据重复传输下行共享信道的次数m 1,确定最小时间间隔T。其中,m 1的取值为大于等于1的整数。
另一种可能的设计中,重复传输下行共享信道的次数m2大于等于m 1的两倍时,重复传输下行共享信道的次数m 1对应的最小时间间隔T1不大于重复传输下行共享信道的次数m2对应的最小时间间隔T2。例如,非重复传输的下行共享信道的最小时间间隔为T1,两次重复传输的下行共享信道的最小时间间隔为T2,则T2小于T1。
在又一种可能的设计中,重复传输下行共享信道的次数m 1大于2时,最小时间间隔T等于T1+Y,其中,Y大于或等于(m 1/2)*X,且小于(m 1-1)*T1。X为重复传输下行共享信道 的次数m 1等于2时的最小时间间隔与重复传输下行共享信道的次数m 1等于1时的最小时间间隔T1之间的差值。
在又一种可能的设计中,上述各设计的前提条件是重复传输m 1次下行共享信道所占的总的时域资源不变。在另一种实施方式中,网络设备根据重复传输的次数m 1和重复传输下行共享信道一次所占的时域资源包括的时间单元的数量,确定最小时间间隔T。
一种可能的设计中,重复传输下行共享信道一次所占的时域资源包括的时间单元的数量越小,最小时间间隔T越大。
另一种可能的设计中,当重复传输下行共享信道的次数m 1大于1时,重复传输一次所占的时域资源包括的时间单元的数量越大,最小时间间隔T越小。例如但不限于,重复传输的次数m 1等于2且重复传输一次所占的时域资源包括的时间单元的数量等于2个符号时,最小时间间隔T等于T1+X。重复传输的次数m 1等于2且重复传输一次所占的时域资源包括的时间单元的数量等于4个符号时,最小时间间隔T等于T1+Z。其中,Z小于X。
在又一种可能的设计中,重复传输下行共享信道的次数m 1等于1时,最小时间间隔为T1。若重复传输下行共享信道的次数m 1大于1,且重复传输下行共享信道一次所占的时域资源包括的时间单元的数量大于或等于第一预设值时,最小时间间隔等于T1;若重复传输下行共享信道的次数m 1大于1,且重复传输下行共享信道一次所占的时域资源包括的时间单元的数量小于第一预设值时,最小时间间隔大于T1。可选的,该第一预设值可等于4。
在又一种实施方式中,网络设备根据重复传输下行共享信道的次数m 1、重复传输所述下行共享信道一次所占的时域资源包括的时间单元的数量以及重复传输所述下行共享信道两次分别所占的时域资源之间的时间间隔,确定最小时间间隔T。其中,两次重复传输之间的时间间隔不承载所述下行共享信道。
一种可能的设计中,重复传输所述下行共享信道两次分别所占的时域资源之间的时间间隔越大,最小时间间隔越小。
在另一种可能的设计中,若重复传输下行共享信道的次数m 1大于1,且重复传输PDSCH两次分别所占的时域资源之间的时间间隔大于或等于第四预设值时,最小时间间隔等于T1;若重复传输下行共享信道的次数m 1大于1,且重复传输PDSCH两次分别所占的时域资源之间的时间间隔小于第四预设值时,最小时间间隔大于T1。可选的,该第四预设值可等于2。
在又一种实施方式中,最小时间间隔T是由一个或多个处理时延相加获得的,所述一个或多个处理时延包括第一处理时延d1.1。在所述第一时域资源包括的时间单元数量不同的情况下,所述第一处理时延d1.1的取值不同。第一时域资源为重复传输m 1次下行共享信道所占的总的时域资源。
在一种可能的设计中,第一时域资源还包括两次重复传输之间的时间间隔。也就是说,第一时域资源是指第一次重复传输的起始时域位置到最后一次重复传输的结束时域位置的时域资源。
在另一种可能的设计中,第一时域资源不包括两次重复传输之间的时间间隔。也就是说,第一时域资源均用于承载所述下行共享信道。
在一种实施方式中,所述第一时域资源包括K4个时间单元时,或者,第一时域资源 中时间单元的数量大于K4时,所述第一处理时延d1.1等于零;或者,所述第一时域资源包括K3个时间单元时,或者第一时域资源中时间单元的数量大于K2且小于K4时,所述第一处理时延d1.1等于预设值,所述预设值大于零。
在另一种实施方式中,网络设备根据所述第一时域资源包括的时间单元数量、所述第一时域资源与第三时域资源之间的时域位置关系,确定所述第一处理时延d1.1;其中,所述第三时域资源为下行控制信息DCI关联的控制资源集合所占的时域资源,所述DCI用于调度所述下行共享信道。
在一种可能的设计中,第一时域资源包括K2个时间单元,或者第一时域资源中时间单元的数量小于K2时:
所述第一时域资源满足第一条件时,所述第一处理时延d1.1等于所述第三时域资源包括的时间单元的数量;
所述第一时域资源不满足第一条件时,所述第一处理时延d1.1等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量,或者等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量。
所述第一条件为所述第一时域资源与所述第三时域资源之间具有相同的起始时域位置,且所述第三时域资源包括的时间单元的数量大于或等于所述K2。可见,该实施方式确定的最小时间间隔T考虑了终端设备基于控制资源集合检测DCI所需的时延,从而能够在保证终端设备及时上报反馈信息的同时,保证上报有效的反馈信息。
在另一种可能的设计中,所述第一时域资源包括K3个时间单元,或者第一时域资源中时间单元的数量大于K2且小于K4时,所述第一处理时延d1.1等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量;或者,
所述第一时域资源包括K2个时间单元或者所述第一时域资源中时间单元的数量小于K2时,所述第一处理时延d1.1等于预设值+第二处理时延d,所述预设值大于零,所述第二处理时延d等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量。
可见,该实施方式中,最小时间间隔考虑第一时域资源与第三时域资源之间的重叠情况,有利于终端设备能够基于第三时域资源解调出DCI后,基于DCI获得反馈信息。从而有利于保证终端设备上报有效的反馈信息。
在又一种实施方式中,网络设备根据所述第一时域资源包括的时间单元数量、所述第一时域资源与所述第二时域资源之间的时域位置关系,确定所述第一处理时延d1.1。第二时域资源为DCI所在的时域资源,该DCI用于调度所述下行共享信道。
在一种可能的设计中,所述第一时域资源包括K3个时间单元,所述第一处理时延d1.1等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量;或者,所述第一时域资源包括K2个时间单元,所述第一处理时延d1.1等于预设值+第二处理时延d,所述预设值大于零,所述第二处理时延d等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量。
可选的,K2等于2,K3等于4,预设值等于3。
可见,该实施方式考虑终端设备需要解调出DCI,才能进而获得反馈信息,从而有利 于保证终端设备及时上报的同时,上报有效的反馈信息。
在又一种实施方式中,网络设备根据终端设备的下行共享信道处理能力和第一时域资源包括的时间单元的数量,确定最小时间间隔T。
在一种可能的设计中,终端设备可选的下行共享信道处理能力包括下行共享信道处理能力1和下行共享信道处理能力2。该设计中,网络设备可根据终端设备具有的下行共享信道处理能力,结合上述任一或多个实施方式,确定最小时间间隔T。
在另一种可能的设计中,针对具有下行共享信道处理能力1的终端设备:
所述第一时域资源包括K4个时间单元时,第一处理时延d1.1等于零;
所述第一时域资源包括K3个时间单元时,所述第一处理时延d1.1等于预设值,所述预设值大于零;
所述第一时域资源包括K2个时间单元,所述第一处理时延d1.1等于预设值+第二处理时延d,所述预设值大于零,所述第二处理时延d等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量,或者等于所述第一时域资源与第三时域资源之间的重叠时域资源包括的时间单元的数量。
针对具有下行共享信道处理能力2的终端设备:
所述第一时域资源包括K4个时间单元时,第一处理时延d1.1等于零;
所述第一时域资源包括K3个时间单元,所述第一处理时延d1.1等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量,或者等于所述第一时域资源与所述第二时域资源之间的重叠时域资源包括的时间单元的数量;
所述第一时域资源包括K2个时间单元:所述第一时域资源满足第一条件时,所述第一处理时延d1.1等于所述第三时域资源包括的时间单元的数量;或者,所述第一时域资源不满足第一条件时,所述第一处理时延d1.1等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量,或者等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量;
其中,所述第一条件为所述第一时域资源与所述第三时域资源之间具有相同的起始时域位置,且所述第三时域资源包括的时间单元的数量大于或等于所述K2;
所述第二时域资源为所述DCI所在的时域资源。例如,第二时域资源为所述DCI对应的搜索空间集合所占的时域资源。可选的,在一个时隙或者子时隙内,第二时域资源的时间单元数量不大于第三时域资源的时间单元数量。
可选的,上述K2、K3、K4均为大于或等于1的整数,例如,K2等于2,K3等于4,K4等于7。预设值为大于零的值。
在上述各实施方式确定的最小时间间隔T的基础上,还可考虑第一时域资源中解调参考信号(demodulation reference signal,DMRS)与小区专用参考信号(Cell-specific RS,CRS)、控制资源集合等其他信号所占的时域资源是否冲突等,以进一步调整上述所述的最小时间间隔。也就是说,网络设备根据第一解调参考信号DMRS所占的时域位置,确定最小时间间隔T。
在一种可能的设计中,该最小时间间隔T包括第三处理时延,网络设备根据第一解调参考信号DMRS所占的时域位置确定该第三处理时延。
在另一种可能的设计中,网络设备根据第一解调参考信号DMRS所占的时域位置,调整上述各实施方式所确定的最小时间间隔T。
在又一种可能的设计中,所述网络设备根据第一信号所占的时域位置,确定所述第一DMRS所占的时域位置。其中,所述第一DMRS所占的时域资源或时频资源中不包括所述第一信号;所述第一信号包括小区专用参考信号CRS、控制资源集合CORESET、同步信号块SSB、信道状态信息参考信号CSI-RS中的一个或多个。
在一种可能的设计中,所述终端设备可接收小区专用参考信号CRS、控制资源集合CORESET、同步信号块SSB、信道状态信息参考信号CSI-RS的配置信息。
在又一种可能的设计中,第一DMRS所占的时域位置为第一时域位置时,最小时间间隔为T1;第一DMRS所占的时域位置为第二时域位置时,最小时间间隔T等于T1+第三处理时延。
其中,第一DMRS为第一时域资源中的DMRS,则该第一时域位置为每次重复传输下行共享信道所占的时域资源中的前k个符号或第n个符号;第一DMRS为除第一次重复传输外其他次重复传输的下行共享信道所占的时域资源中的DMRS,则该第一时域位置为所述其他次重复传输下行共享信道所占的时域资源中的前k个符号或第n个符号。
其中,第二时域位置包括第一信号所在的时域位置之后相邻的至少一个时间单元。第三处理时延为第一信号所占的时域资源中时间单元的数量。
在又一种实施方式中,重复传输模式所具有的DMRS可以精简,相应的,上述所述的最小时间间隔也能够在上述各实施例或各实施方式的基础上适当的进行减小。由于整个重复传输过程的信道估计的处理数量减小,因此,该实施方式有利于降低下行共享信道的处理复杂度。
在又一种实施方式中,网络设备可根据终端设备能力,进一步调整或确定最小时间间隔。比如,网络设备接收终端设备上报的能力信息;网络设备根据该能力信息确定重复传输模式下的最小时间间隔。
第二方面,本申请还提供一种反馈信息处理方法。该反馈信息处理方法是从终端设备的角度阐述的。可选的,终端设备可执行上述第一方面所述的确定最小时间间隔的任一或多种实施方式,此处不再详述。
其中,终端设备可根据最小时间间隔T和反馈时间间隔,确定下行共享信道的反馈信息。比如,终端设备在最小时间间隔T大于或等于反馈时间间隔时,可确定上报有效的反馈信息。
其中,反馈时间间隔是基于网络设备指示的反馈时域资源而确定的实际反馈时间间隔。也就是说,该反馈时间间隔是下行共享信道的重复传输结束时刻到反馈信息的反馈起始时刻之间的实际时间间隔。
第三方面,本申请还提供了一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中终端的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和发送单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
处理单元,用于根据重复传输下行共享信道的次数m 1,确定最小时间间隔T;
所述处理单元,还用于根据所述最小时间间隔T和反馈时间间隔,确定所述下行共享信道的反馈信息。
其中,所述最小时间间隔T是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的最小时间间隔;所述反馈时间间隔是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的实际时间间隔。
其中,该通信装置还可以包括通信单元,所述通信单元用于上报所述下行共享信道的反馈信息。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。
一种实施方式中,所述通信装置包括:
处理器,用于根据重复传输下行共享信道的次数m 1,确定最小时间间隔T;
所述处理器,还用于根据所述最小时间间隔T和反馈时间间隔,确定所述下行共享信道的反馈信息。
其中,所述最小时间间隔T是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的最小时间间隔;所述反馈时间间隔是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的实际时间间隔。
其中,该通信装置还可以包括收发器,所述收发器用于上报所述下行共享信道的反馈信息。可选的,该收发器还可以为通信接口。
第四方面,本申请还提供了一种通信装置。该通信装置具有实现上述第一方面所述的方法示例中网络设备的部分或全部功能。比如,通信装置的功能可具备本申请中网络设备的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述通信单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备之间的通信,如与终端设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与获取单元和发送单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
处理单元,用于根据重复传输下行共享信道的次数m 1,确定最小时间间隔T,m 1大于或等于2;
所述处理单元,还用于根据所述最小时间间隔T,确定反馈时域资源,所述反馈时域资源用于承载所述下行共享信道的反馈信息;
其中,所述最小时间间隔T是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的最小时间间隔。
可选的,该通信装置还可以包括通信单元,所述通信单元用于接收所述反馈时域资源承载的所述下行共享信道的反馈信息。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。
一种实施方式中,所述通信装置包括:
处理器,用于根据重复传输下行共享信道的次数m 1,确定最小时间间隔T,m 1大于或等于2;
所述处理器,还用于根据所述最小时间间隔T,确定反馈时域资源,所述反馈时域资源用于承载所述下行共享信道的反馈信息;
其中,所述最小时间间隔T是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的最小时间间隔。
可选的,该通信装置还可以包括收发器,所述收发器用于接收所述反馈时域资源承载的所述下行共享信道的反馈信息。其中,收发器还可以为通信接口。
在具体实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本申请实施例对上述器件的具体实现形式不做限定。
第五方面,本申请还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息过程。具体来说,在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。更进一步的,该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的接收反馈信息可以理解为处理器输入反馈信息。又例如,发送反馈信息可以理解为处理器输出反馈信息。
如此一来,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执 行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第六方面,本申请实施例提供了一种计算机可读存储介质,用于储存为上述终端所用的计算机软件指令,其包括用于执行上述方法的第二方面所涉及的程序。
第七方面,本申请实施例提供了一种计算机可读存储介质,用于储存为上述网络设备所用的计算机软件指令,其包括用于执行上述方法的第一方面所涉及的程序。
第八方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第九方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持终端实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十一方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是本申请实施例提供的一种V2N系统的示例图;
图2是本申请实施例提供的一种通信系统的示例图;
图3是本申请实施例提供的重复传输下行共享信道的一示例图;
图4是本申请实施例提供的重复传输模式下行共享信道处理的一示例图;
图5是本申请实施例提供的重复传输模式下行共享信道的另一示例图;
图6是本申请实施例提供的重复传输模式下行共享信道的又一示例图;
图7是本申请实施例提供的一种反馈信息处理方法的流程示意图;
图8是本申请实施例提供的重复传输的次数为1时下行共享信道处理的一示例图。
图9是本申请实施例提供的重复传输模式下行共享信道处理的又一示例图;
图10是本申请实施例提供的重复传输模式下行共享信道处理的又一示例图;
图11是本申请实施例提供的重复传输模式下行共享信道处理的又一示例图;
图12是本申请实施例提供的重复传输模式下行共享信道处理的又一示例图;
图13是本申请实施例提供的重复传输下行共享信道的又一示例图;
图14是本申请实施例提供的重复传输下行共享信道的又一示例图;
图15是本申请实施例提供的重复传输下行共享信道的又一示例图;
图16是本申请实施例提供的重复传输模式下行共享信道的又一示例图;
图17是本申请实施例提供的一种装置的结构示意图;
图18是本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的技术方案可具体应用于各种通信系统中。例如,随着通信技术的不断发展,本申请的技术方案还可用于未来网络,如5G系统,也可以称为新无线(new radio,NR)系统;或者还可用于设备到设备(device to device,D2D)系统,机器到机器(machine to machine,M2M)系统等等。
本申请的技术方案还可应用到车联网,即车与万物连接(vehicle to everything,V2X)技术(X代表任何事物)中,V2X系统中的通信方式统称为V2X通信。V2X通信针对以车辆为代表的高速设备,是未来对通信时延要求非常高的场景下应用的基础技术和关键技术,如智能汽车、自动驾驶、智能交通运输系统等场景。例如,该V2X通信包括:车辆与车辆(vehicle to vehicle,V2V)之间的通信,车辆与路边基础设施(vehicle to infrastructure,V2I)之间的通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)之间的通信等。V2X系统中所涉及的终端设备之间进行的通信被广泛称为侧行链路(slidelink,SL)通信。也就是说,本申请所述的终端也可以为车辆或应用于车辆中的车辆组件。
图1是本申请实施例涉及的V2X系统的示意图。该示意图包括V2V通信、V2P通信以及V2I/N通信。
如图1所示,车辆或车辆组件之间通过V2V通信。车辆或车辆组件可以将自身的车速、行驶方向、具体位置、是否踩了紧急刹车等信息广播给周围车辆,周围车辆的驾驶员通过获取该类信息,可以更好的感知视距外的交通状况,从而对危险状况做出提前预判进而做出避让;车辆或车辆组件与路侧基础设施通过V2I通信,路边基础设施,可以为车辆或车辆组件提供各类服务信息和数据网络的接入。其中,不停车收费、车内娱乐等功能都极大的提高了交通智能化。路边基础设施,例如,路侧单元(road side unit,RSU)包括两种类型:一种是终端设备类型的RSU。由于RSU分布在路边,该终端设备类型的RSU处于非移动状态,不需要考虑移动性;另一种是网络设备类型的RSU。该网络设备类型的RSU可以给与网络设备通信的车辆或车辆组件提供定时同步及资源调度。车辆或车辆组件与人通过V2P通信;车辆或车辆组件与网络通过V2N通信。其中,本申请公开的实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请公开的实施例的技术方案,并不构成对于本申请公开的实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请公开的实施例提供的技术方案对于类似的技术问题,同样适用。
请参见图2,图2为本申请实施例提供的一种通信系统的示例图。该通信系统可包括但不限于两个网络设备和一个终端设备,图2所示的设备数量和形态用于举例并不构成对 本申请实施例的限定,实际应用中可以包括两个以上的网络设备,两个或两个以上的终端设备。
本申请中,网络设备可为具有无线收发功能的设备或可设置于该设备的芯片,该网络设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G、6G甚至7G系统中使用的设备,如,NR系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit),或微微基站(Picocell),或毫微微基站(Femtocell),或,车联网(vehicle to everything,V2X)或者智能驾驶场景中的路侧单元(road side unit,RSU)。
在一些部署中,gNB或传输点可以包括集中式单元(centralized unit,CU)和分布式单元(DU,distributed unit)等。gNB或传输点还可以包括射频单元(radio unit,RU)。CU实现gNB或传输点的部分功能,DU实现gNB或传输点的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成物理层的信息,或者,由物理层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,在此不做限制。
本申请公开的实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
在本申请公开的实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请公开的实施例提供的技术方案。
本申请中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、用户代理或用户装置,可以应用于5G、6G甚至7G系统。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、前述的V2X车联网中的无线终端或无线终端类型的RSU等等。
为了便于理解本申请公开的实施例,作出以下几点说明。
(1)本申请公开的实施例中部分场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请公开的实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
(2)本申请公开的实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
(3)在本申请公开的实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
(4)本申请公开的实施例中,“的(of)”,“相应的(relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
(5)本申请公开的实施例中,至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请公开的实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
首先对本申请中涉及的重复传输场景、相关术语以及重复传输模式下相关参数的指示方式进行阐述。
1、重复传输场景
在图2所示的通信系统中,TRP1与TRP2之间可以通过回程(backhaul)接口,直接地或者间接地,相互通信。TRP1与TRP2可以调度同一个终端,即多站协作传输场景,在时间单元之间或时间单元内重复传输同一下行共享信道多次。
本申请实施例中,在多个时频资源上重复传输的下行共享信道,分别承载的是同一个传输块(transport block,TB),或者分别承载的是同一个数据比特(或称为数据),或者分别承载的是同一个原始数据比特经过不同的编码后的比特。终端设备在多个时频资源上接收到的下行共享信道,可以执行软合并操作,比如将多个时频资源上接收到的下行共享信道所承载的数据进行最大似然比合并之后再执行判决。应理解的,多个时频资源上的下行共享信道对应同一个混合自动重传请求确认(hybrid automatic repeat request-acknowledgment,HARQ-ACK)进程,或者HARQ进程号,或者同一组HARQ-ACK比特。即终端设备可针对多次重复传输的下行共享信道发送反馈信息,如肯定反馈(ACK)或否定反馈(NACK)。该重复传输分别所占的多个时频资源可以是在时域上互不重叠的。
为便于理解,本文所述的下行控制信道为调度重复传输的下行共享信道的控制信道。下行共享信道为重复传输的共享信道,该下行共享信道的重复传输次数m 1可以等于或大于1。
可以理解,下行共享信道可以传输多次,本文中将第一次传输下行共享信道简称为第 一次重复传输,相应的,第二次重复传输下行共享信道简称为第二次重复传输,每次重复传输下行共享信道简称为每次重复传输,重复传输下行共享信道的次数简称为重复传输的次数,等等。
请参阅图3,图3以时间单元为一个时隙(slot)为例,该时隙包括符号0至符号13,共14个符号。如图3所示,下行共享信道在slot内重复传输两次,每次传输占用四个符号,例如下行共享信道的第一次重复传输占用符号3至6;下行共享信道的第二次重复传输占用符号7至10。其中,符号的时间长度和子载波间隔相关。
一种情况,第一次重复传输与第二次重复传输可以对应不同的天线端口准共址(quasi co location,QCL),例如,分别由TRP1和TRP2传输。其中,QCL关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征。例如,如果两个天线端口具有准共址关系,那么一个端口传送一个信号的信道大尺度特性可以从另一个端口传送一个信号的信道大尺度特性推断出来。
另一种情况,第一次重复传输和第二次重复传输可以对应同一个QCL,即由一个TRP重复传输两次该下行共享信道。
2、下行共享信道的相关处理、最小时间间隔、反馈时间间隔
终端设备需要执行DCI接收和译码、针对DMRS做信道估计、根据信道估计结果接收数据、生成数据接收结果、完成上行传输过程等一项或多项操作以上报反馈信息,因此,网络设备为终端设备配置的反馈时域资源的起始时域位置需要在最小时间间隔之后,最小时间间隔的设定就是考虑到上述操作设定的。本申请实施例中,最小时间间隔是下行共享信道传输结束时刻到反馈信息的反馈起始时刻之间的最小时间间隔。
以下行共享信道为物理下行共享信道(physical downlink sharechannel,PDSCH)为例,如图4所示,该PDSCH在时隙k内重复传输两次。从终端设备接收到PDSCH携带的DMRS的时刻到终端设备能够上报反馈信息的起始时刻之间,终端需要完成的PDSCH的相关处理包括:信道估计(channel estimation,CE)、根据信道估计的结果解调PDSCH(简称:解调(demodulation)、译码(decode))、根据解调的结果生成反馈信息以及进行上行控制信息的调制编码等(简称:上行链路处理(uplink processing,UL processing))。
其中,图4中,每个处理操作的操作结束后才能进行下一个处理操作,比如,针对第一次重复传输的处理过程,CE处理完毕,才能进行解调译码处理。并且每个处理操作对第一次重复传输的PDSCH处理结束后,才能对下一次重复传输的PDSCH进行处理。例如,CE对第一次重复传输的PDSCH进行信道估计后,才能对第二次重复传输的PDSCH进行信道估计。其中,为便于图示,图4中各处理操作的处理时长相同,同样的后续图示中也以各处理操作的处理时长相同为例,进行阐述,但这些附图并不用于限定本申请实施例中各处理操作的处理时长相同。
因此,如图4所示,网络设备需要确定最小时间间隔T,以确定反馈信息所占用的反馈时域资源,如以反馈时域资源为物理上行控制信道(physical uplink control channel,PUCCH)为例,时隙k+2中虚线框所示的PUCCH的起始时域位置需在该最小时间间隔之后,终端设备才能上报有效的反馈信息。
本申请实施例中,反馈时间间隔是基于网络设备指示的反馈时域资源而确定的实际反馈时间间隔。也就是说,该反馈时间间隔是下行共享信道的重复传输结束时刻到反馈信息的反馈起始时刻之间的实际时间间隔。
也就是说,确定最小时间间隔时所阐述的反馈起始时刻为终端设备完成重复传输的下行共享信道的相关处理后,能够上报反馈信息的起始时刻。确定反馈时间间隔所阐述的反馈起始时刻为基于网络设备指示的反馈时域资源而确定的实际反馈起始时刻。
3、重复传输模式下的相关参数
本申请实施例中,重复传输模式下的相关参数可包括:重复传输次数m 1、每次重复传输的起始时域位置和每次重复传输所占的时域资源包括的时间单元的数量。这些参数可通过但不限于,以下三种实施方式进行指示。
一种实施方式中,网络设备通过媒体接入控制控制元素(media access control-control element,MAC-CE)信令或高层信令通知终端设备重复传输次数m1。下行控制信息中的时域位置指示字段可用于指示第一次重复传输的起始时域位置(或称为起始符号位置)和第一次重复传输所占的时域资源包括的时间单元的数量(或称为长度、或符号数)。
例如,可通过预定义或信令配置如表1所示的时域位置指示,实际指示可以包括表1中的部分列。
表1 下行共享信道的时域位置指示
行索引 下行共享信道映射类型 K 0 S 0 L 0
1 Type A 0 3 4
2 Type A 0 2 10
3 Type A 0 2 9
4 Type A 0 2 7
5 Type A 0 2 5
6 Type B 0 9 4
7 Type B 0 4 4
8 Type B 0 5 7
9 Type B 0 5 2
10 Type B 0 9 2
11 Type B 0 12 2
12 Type A 0 1 13
13 Type A 0 1 6
14 Type A 0 2 4
15 Type B 0 4 7
16 Type B 0 8 4
第一列为下行控制信息中时域位置指示字段所指示的值,为行索引。
第二列为下行共享信道映射类型,包括映射类型A、B。映射类型A表示第一次重复传输的起始时域位置是下行控制信道所占的符号之后相邻的第一个符号,或者说,第一次重复传输的起始时域位置局限于一个slot内的前三个符号。如图5所示,下行控制信道所占的符号分别为符号0至2,第一次重复传输的起始时域位置是符号2相邻的符号3。映射类型B表示第一次重复传输的起始时域位置在一个slot内不做限定,可为下行控制信道所在时隙中的任一符号。如图6所示,下行控制信道所占的符号分别为符号0至2,第一次重复传输的起始时域位置是该时隙的符号2。其中,图6所示的两行符号是同一时隙的符号,以便于表示不同信道所占的符号可以重叠。
第三列K 0为第一次重复传输的下行共享信道在下行控制信道之后的时序偏移。比如,K 0等于0,表示第一次重复传输的起始时域位置在下行控制信道之后的时序偏移为0,即下行共享信道与下行控制信道位于同一个时隙。
第四列S 0为第一次重复传输在基于第三列确定的时隙中的起始时域位置。比如,S 0等于2,标示第一次重复传输的起始时域位置在时隙中的起始时域位置为符号2。
第五列L 0为第一次重复传输在基于第三列确定的时隙中所占的符号长度或符号数量。比如,L 0等于4,表示第一次重复传输占用4个符号。
该实施方式中,如图5所示的重复传输示意图,第一次重复传输的起始时域位置在下行控制信道所在的时域位置之后的第一个符号,即映射类型为A;下行共享信道与下行控制信道占用同一个时隙,即K 0等于0;下行共享信道在时隙中的起始时域位置为符号3,即S 0等于3;一次重复传输占用4个符号,即L 0等于4。也就是说,网络设备发送下行控制信息,该下行控制信息中时域位置指示字段的值为1时,终端设备可根据表1、表2确定出下行共享信道的映射类型、K 0、S 0、L 0的值;并且根据MAC-CE信令或高层信令配置的重复传输次数2,可确定,如图5所示,下行控制信道的重复传输的相关参数:重复传输次数m 1=2、每次重复传输的起始时域位置分别是符号3、符号7和每次重复传输所占的时域资源包括的时间单元的数量为4个符号,此时协议会预先规定每次重复传输之间的没有时间间隔,而是连续排列的,同时,连续两次重复传输可以对应不同的QCL假设。
针对表1,在一种可能的设计中,以重复传输限定为位于一个slot内为例,假设MAC-CE信令或高层信令通知的重复传输次数m 1=2,则表1中行索引为1可以表示在一个slot内执行重复传输,但对于行索引为2则无法在一个slot内执行重复传输,此时终端设备可以认为仅有一次重复传输。在另一种可能的设计中,不排除重复传输跨越slot边界的情况,比如,表1中行索引为2也可以执行两次重复传输,此时,第二次重复传输可能跨越slot边界,也可能仅承载于第二个slot内。
另一种实施方式中,重复传输的次数m 1与每一个候选时域位置指示所指示的行相关联,如表2所示,这样,基于下行控制信息中不同的时域位置指示的值不同,可基于表2获知相应的重复传输的次数m 1
其中,表2与表1的不同之处在于,新增了一列重复传输的次数m 1
在一种可能的设计中,该重复传输的次数可限定在一个slot内。比如,行索引为1时,表示在一个时隙内重复传输2次,重复传输的下行共享信道与下行控制信道占用同一个时隙,即K 0等于0;第一次重复传输的下行共享信道在时隙中的起始时域位置为符号3,即 S 0等于3;第一次重复传输占用4个符号,即L 0等于4。再比如,行索引为1时,表示在一个时隙内重复传输1次,重复传输的下行共享信道与下行控制信道占用同一个时隙,即即K 0等于0;第一次重复传输的下行共享信道在时隙中的起始时域位置为符号2,即S 0等于3;第一次重复传输占用10个符号,即L 0等于10。
表2 下行共享信道的时域位置指示
行索引 下行共享信道映射类型 K 0 S 0 L 0 m 1
1 Type A 0 3 4 2
2 Type A 0 2 10 1
3 Type A 0 2 9 1
4 Type A 0 2 7 1
5 Type A 0 2 5 2
6 Type B 0 9 4 1
7 Type B 0 4 4 2
8 Type B 0 5 7 1
9 Type B 0 5 2 4
10 Type B 0 9 2 2
11 Type B 0 12 2 1
12 Type A 0 1 13 1
13 Type A 0 1 6 2
14 Type A 0 2 4 3
15 Type B 0 4 7 1
16 Type B 0 8 4 1
又一种实施方式中,下行控制信息中的时域位置指示字段可用于指示一次完整重复传输过程所占时域资源的起始时域位置、时域资源包括的时间单元的数量、一次完整重复传输过程对应的重复传输次数。
其中,一次完整重复传输过程为时域上的m 1次重复传输。如图3、图5、图6所示,一次完整重复传输过程为下行共享信道在时域上的两次重复传输。
例如,可通过预定义或信令配置如表3所示的时域位置指示。
表3 下行共享信道的时域位置指示
行索引 下行共享信道映射类型 K 1 S 1 L 1 m 1
1 Type A 0 3 8 2
2 Type A 0 2 10 2
3 Type B 0 9 4 2
4 Type B 0 4 4 2
5 Type B 0 5 7 1
表3中:
第一列为下行控制信息中时域位置指示字段所指示的值,为行索引。
第二列为下行共享信道映射类型,包括映射类型A、B。该实施方式中,映射类型A表示一次完整重复传输过程的起始时域位置是下行控制信道所占的符号之后相邻的第一个符号。如图5所示,下行控制信道所占的符号分别为符号0至2,一次完整重复传输过程的起始时域位置是该时隙的符号3。映射类型B表示一次完整重复传输过程的起始时域位置在一个slot内不做限定,可为下行控制信道所在时隙中的任一符号。如图6所示,下行控制信道所占的符号分别为符号0至2,一次完整重复传输过程的起始时域位置是该时隙的符号2。其中,图6所示的两行符号是同一时隙的符号,为便于区分不同信道所占的符号数而示意为两行表示。
第三列K 1为一次完整重复传输过程在下行控制信道之后的时序偏移。比如,K 1等于0,表示一次完整重复传输过程的起始时域位置在下行控制信道之后的时序偏移为0,即下行共享信道与下行控制信道位于同一个时隙。
第四列S 1为一次完整重复传输过程在基于第三列确定的时隙中的起始时域位置。比如,S等于2,表示一次完整重复传输过程的起始时域位置在时隙中的起始时域位置为符号2。
第五列L 1为一次完整重复传输过程在基于第三列确定的时隙中所占的符号长度或符号数量。比如,L 1等于12,表示一次完整重复传输过程占用十二个符号。
第六列m 1为一次完整重复传输过程对应的重复传输次数。比如,m 1等于2,表示一次完整重复传输过程对应2次重复传输,连续两次重复传输对应相同的或者不同的QCL假设。
可选的,每次重复传输占用的时频资源在时域上不重叠。
该实施方式中,如图5所示的重复传输示意图,一次完整重复传输过程的起始时域位置在下行控制信道所在的时域位置之后的第一个符号,即映射类型为A;一次完整重复传输过程与下行控制信道占用同一个时隙,即K 1等于0;一次完整重复传输过程在时隙中的起始时域位置为符号3,即S等于3;一次完整重复传输过程占用8个符号,即L 1等于8;一次完整重复传输过程对应重复传输的次数为2次,即m 1等于2。也就是说,网络设备发送下行控制信息,该下行控制信息中时域位置指示字段的值为1时,终端设备可根据该下行控制信息确定出上述映射类型、K 1、S 1、L 1、m 1的值。即可获得重复传输模式的相关参数:重复传输次数m 1等于2、每次重复传输的起始时域位置分别是符号3、符号7和每次重复传输所占的时域资源包括的时间单元的数量为4个符号。
4、第一时域资源、第二时域资源、第三时域资源
本申请实施例中,第一时域资源为重复传输m 1次下行共享信道所占的总的时域资源。两次重复传输分别所占的时域资源之间的时间间隔可以为N个时间单元,该N可等于零或大于零。
在一种可能的设计中,第一时域资源还包括两次重复传输之间的时间间隔。也就是说,第一时域资源是指第一次重复传输的起始时域位置到最后一次重复传输的结束时域位置的时域资源。也就是说,第一时域资源中两次重复传输之间的时间间隔不用于承载传输块,而其他时域资源用于承载传输块。
比如,第k1次重复传输的结束时域位置到第k1+1次重复传输的起始时域位置之间的时域资源上不包括其他重复传输,且间隔m个符号,则m个符号为两次重复传输之间的时间间隔。可选的,若重复传输m 1次,则第一次重复传输的起始时域位置到最后一次重复传输的结束时域位置之间可以包括m 1-1个时间间隔,比如(m 1-1)ⅹm个符号。
例如,如图16所示,第一次重复传输与第二次重复传输之间的时间间隔为1个符号,第一时域资源包括:第一次重复传输所占的时域资源,即符号3至符号6;第二次重复传输所占的时域资源,即符号8至符号11;第一次重复传输与第二次重复传输之间的时间间隔,即符号7。因此,图16中,第一时域资源包括9个符号。
在另一种可能的设计中,第一时域资源为重复传输m 1次下行共享信道所占的总的时域资源。该设计不包括两次重复传输分别所占的时域资源之间的时间间隔。也就是说,第一时域资源均用于承载传输块。在一种可能的设计中,两次重复传输所占的时域资源之间的时间间隔可以是预先定义的,比如,当两次相邻的重复传输的QCL假设不相同时,存在该时间间隔,否则,不存在该时间间隔。或者两次重复传输所占的时域资源之间的时间间隔是网络设备通过信令配置的,或者是根据预设条件确定的。所述预设条件包括重复传输占用的时域资源中是否存在上行符号,或者,重复传输占用的时域资源中是否存在小区公共参考信号。
本申请实施例中,第二时域资源为DCI所在的时域资源,该DCI用于调度下行共享信道。可选的,该第二时域资源也可以为下行控制信道所占的时域资源,该下行控制信道承载的DCI用于调度下行共享信道。可选的,该第二时域资源也可以为DCI对应的搜索空间或者搜索空间集合所占的时域资源。搜索空间或者搜索空间集合用于指示待检测DCI在控制资源集合中所占的时频资源数量。每个待检测DCI均会对应特定的搜索空间或者搜索空间集合。控制资源集合用于指示终端设备在系统时频资源中的部分时频资源上检测DCI。例如,控制资源集合中包括待检测DCI所在的频域资源的数量和位置,以及在一个slot内的OFDM符号数量。例如,所述控制资源集合所占时域资源为一个时隙或子时隙中的1到3个符号。一个控制资源集合可以关联一个或多个搜索空间或搜索空间集合,一个控制资源集合所占的频域资源可以包括6N个RB,N大于或等于1。所述DCI所在的时隙或子时隙是根据搜索空间或搜索空间集合确定的。终端设备可以根据控制资源集合确定待检测该DCI的时频资源位置。
本申请实施例中,第三时域资源用于承载DCI,该DCI用于调度下行共享信道。也就是说,第二时域资源是检测到DCI实际所在的时域资源,第三时域资源是该DCI所在的控制资源集合包括的时域资源,是待检测DCI所在的时频资源池。终端设备需要基于第三时域资源确定检测该DCI的时频资源位置,从而检测到网络设备下发该DCI实际所在的时域资源。
5、时间单位
在一种实施方式中,最小时间间隔T、T1、各处理时延、时间间隔、时序偏移、反馈时间间隔或各预设值的单位可以为时间单元。
本申请实施例中,时间单元可以是一个或多个无线帧,一个或多个子帧,一个或多个 时隙,一个或多个微时隙(mini slot),一个或多个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、离散傅里叶变换扩频的正交频分复用(discrete fourier transform spread spectrum orthogonal frequency division multiplexing,DFT-S-OFDM)符号等,也可以是多个帧或子帧构成的时间窗口,例如系统信息(system information,SI)窗口。
例如,时间单元在时域内可包含整数个符号,如该时间单位可以是指子帧,也可以是指时隙(slot),还可是指无线帧、微时隙(mini slot或sub slot)、多个聚合的时隙、多个聚合的子帧、符号等等,还可以是指传输时间间隔(Transmission Time Interval,TTI)。其中,一种时间单元在时域内可包含整数个另一种时间单位,或者,一种时间单位在时域内的时长等于整数个另一种时间单元在时域内的时长,例如,一个微时隙/子时隙/时隙/子帧/无线帧内包含整数个符号,一个时隙/子帧/无线帧内包含整数个微时隙,一个子帧/无线帧内包含整数个时隙,一个无线帧包含整数个子帧等,也可以存在其余包含举例,本申请不做限定。
在另一种实施方式中,最小时间间隔T、T1、各处理时延、时间间隔、反馈时间间隔或各预设值的单位也可以为绝对时间,绝对时间的单位为毫秒或者微秒。本申请中均以时间单元为例进行说明,时间单元可以根据不同的条件换算为绝对时间,例如,在子载波间隔为15kHz的情况下,一个时隙可以包括14个OFDM符号,对应1ms。
基于上述相关阐述,以下结合附图对本申请提供的反馈信息处理方法进行阐述。
请参阅图7,图7是本申请实施例提供的一种反馈信息处理方法的流程示意图。如图7所示,该反馈信息处理方法,包括但不限于以下步骤:
101、网络设备根据重复传输下行共享信道的次数m 1,确定最小时间间隔,m 1大于或等于2;
102、网络设备根据所述最小时间间隔,确定反馈时域资源,所述反馈时域资源用于反馈所述下行共享信道的反馈信息;
其中,最小时间间隔是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的最小时间间隔。具体的,该最小时间间隔的相关阐述可参见上文,此处不再详述。
在一种实施方式中,网络设备根据最小时间间隔,确定的反馈时域资源,可以为网络设备根据实际资源配置情况,向终端设备指示的反馈时域资源。相应的,终端设备可以从网络设备接收该最小时间间隔或与网络设备一样执行101的相关实施方式确定最小时间间隔;进而,终端设备可根据该最小时间间隔和反馈时间间隔,确定该下行共享信道的反馈信息。其中,终端设备可根据反馈时域资源确定反馈时间间隔。
其中,反馈时间间隔是下行共享信道的重复传输结束时刻到反馈信息的反馈起始时刻之间的实际时间间隔。例如,图4中,假设虚线框所示的PUCCH资源为网络设备为终端设备指示的反馈时域资源,则反馈时间间隔为重复传输结束时刻与该PUCCH资源的起始时刻之间的时间间隔。相应的,终端设备可在反馈时间间隔大于该最小时间间隔时,确定该下行共享信道的有效的反馈信息。
其中,PDSCH的结束时刻为PDSCH所占的最后一个符号,反馈的起始时刻为PUCCH 所占的slot的第一个符号,或者为PUCCH资源所占的第一符号。最小时间间隔是指,PDSCH的结束时刻之后的第一个符号到反馈的起始时刻之前的最后一个符号。
其中,该反馈时域资源上的PUCCH用于承载反馈信息。该实施方式中,为了使得终端设备可以上报有效反馈信息,网络设备可以根据最小时间间隔指示合理的反馈起始时刻,以使终端设备完成上述所有下行共享信道的处理流程。即在该反馈时域资源的起始时域位置之前,终端设备能够完成下行共享信道的相关处理,获得反馈信息。
以下从几个实施例阐述如何确定最小时间间隔,以下各实施例或实施方式可由网络设备执行,也可以由终端设备执行。以下内容以网络设备作为执行主体为例进行阐述。
实施例一
该实施例中,网络设备基于重复传输模式下的相关参数确定最小时间间隔。或者,网络设备根据重复传输模式的相关参数,确定最小时间间隔与T1之间的关系,该T1为重复传输次数为1时,即非重复传输模式下的最小时间间隔。
实施方式一最小时间间隔T与重复传输下行共享信道的次数相关。
在一种可能的设计中,重复传输下行共享信道的次数m 1越大,最小时间间隔T也越大。
如图8所示,图8是本申请实施例提供的重复传输的次数为1时下行共享信道处理的一示例图。图8与图4的不同之处在于,PDSCH的重复传输的次数不同。由于图4中,CE需处理完第一次重复传输的信道估计后再处理第二次重复传输的信道估计,即图8中PDSCH的处理开始时刻要早于图4中第二次重复传输的处理开始时刻,故图8中UL processing的处理结束时刻要早于图4中第二次重复传输的UL processing的处理结束时刻,因此,图4中的T要大于图8中的T。
在另一种可能的设计中,重复传输下行共享信道所占的总时域长度或所占时域资源包括的时间单元数量不变,重复传输下行共享信道的次数m 1越大,最小时间间隔T也越大。比如,上述示例中,重复传输的次数为1时的总时域长度为8个符号,重复传输的次数为2时的总时域长度也为8个符号,但重复传输的次数为2,该情况下,重复传输的次数为2的最小时间间隔大于重复传输的次数为1的最小时间间隔。
在又一种可能的设计中,重复传输下行共享信道的次数m 1,最小时间间隔T相对于重复传输的次数为1次时的最小时间间隔不增加m 1倍。比如,重复传输次数为1时,即非重复传输模式下的最小时间间隔为T1;重复传输次数为2时,该最小时间间隔T等于T1+X,则X大于零且小于T1。例如,图4的重复传输次数是图8的重复传输次数的两倍,但图4中的最小时间间隔小于图8中的最小时间间隔的两倍。
在又一种可能的设计中,当重复传输下行共享信道的次数m 1大于或者等于预设次数时,最小时间间隔T相对于重复传输次数为1时的最小时间间隔增加,当重复传输下行共享信道的次数m 1小于预设次数时,最小时间间隔T与重复传输次数为1时的最小时间间隔相同。
在又一种可能的设计中,重复传输下行共享信道的次数m 1大于2时,最小时间间隔T等于T1+Y,其中,Y大于或等于(m 1/2)*X,且小于(m 1-1)*T1。X为重复传输下行共享信道的次数m 1等于2时的最小时间间隔与重复传输下行共享信道的次数m 1等于1时的最小时间间隔T1之间的差值。
也就是说,重复传输次数大于2时,重复传输次数是2的倍数,增加的处理时延也可 能是重复传输的次数为2次时增加的处理时延的倍数,如Y等于(m 1/2)*X,或者大于翻倍后的值,如Y大于(m 1/2)*X。
如图9所示,图9与图4的不同之处在于,PDSCH的重复传输的次数不同。由于图9中,CE需处理完第一次重复传输的信道估计后再依次处理第二次、第三次、第四次的信道估计,故图9中第四次重复传输的处理开始时刻要远远晚于图4中第二次重复传输的处理开始时刻,故图9中第四次重复传输的UL processing的处理结束时刻要远远晚于图4中第二次重复传输的UL processing的处理结束时刻,故图9中的T大于图4中的T。假设图9中的T等于T1+Y,图4中的T等于T1+X,则由于图9的重复传输次数是图4的重复次数的2倍,故图9中T增加的处理时延是图4中的X的两倍或大于图4中的X的两倍的值,即Y大于或等于2X。
在又一种可能的设计中,重复传输包括的总时间单元数量相同的情况下,重复次数越多,相应的最小时间间隔越大。
实施方式二最小时间间隔与重复传输下行共享信道一次所占的时域资源包括的时间单元的数量有关。
在一种可能的设计中,网络设备根据重复传输的次数m 1,确定最小时间间隔T,包括:根据重复传输的次数m 1和重复传输下行共享信道一次所占的时域资源包括的时间单元数量,确定最小时间间隔T。其中,重复传输下行共享信道一次所占的时域资源包括的时间单元数量,如图3所示,为4个符号。
其中,在重复传输次数不变的情况下,重复传输下行共享信道一次所占的时域资源包括的时间单元的数量越小,最小时间间隔T越大。如图4所示,假设重复传输次数不变,但一次所占的时域资源变小,则两次重复传输的处理过程的开始时刻均需要后移,相应的,最小时间间隔T的反馈起始时刻也后移,故该情况下,最小时间间隔T相比之前是增大的。比如,同样是重复传输次数为2,当每次重复传输的长度变大时,最小时间间隔T的取值变小。
在另一种可能的设计中,当重复传输下行共享信道的次数m 1大于1时,重复传输一次所占的时域资源包括的时间单元的数量越大,最小时间间隔T越小。例如,重复传输的次数m 1等于1时,最小时间间隔为T1。重复传输的次数m 1等于2且重复传输一次所占的时域资源包括的时间单元的数量等于2个符号时,最小时间间隔T等于T1+X。重复传输的次数m 1等于2且重复传输一次所占的时域资源包括的时间单元的数量等于4个符号时,最小时间间隔T等于T1+Z。其中,Z小于X。
如图10所示,图10与图4相比不同之处在于,图10中重复传输PDSCH一次所占的时域资源包括的时间单元的数量要大于图4中重复传输PDSCH一次所占的时域资源包括的时间单元的数量。由于图10中重复传输PDSCH一次所占的时域资源包括的时间单元的数量相对较大,故相比于图4,CE能够提前处理第一次、第二次重复传输的信道估计。因此,图10中第二次重复传输PDSCH的处理开始时刻要远远早于图4中第二次重复传输的处理开始时刻,相应的,图10中UL processing的处理结束时刻要早于图4中第二次重复传输的UL processing的处理结束时刻,即图10中的最小时间间隔小于图4中的最小时间间隔。
在又一种可能的设计中,重复传输下行共享信道的次数m 1等于1时,最小时间间隔为T1。若重复传输下行共享信道的次数m 1大于1,且重复传输下行共享信道一次所占的时域资源包括的时间单元的数量大于或等于第一预设值时,最小时间间隔等于T1;若重复传输下行共享信道的次数m 1大于1,且重复传输下行共享信道一次所占的时域资源包括的时间单元的数量小于第一预设值时,最小时间间隔大于T1。
在又一种可能的设计中,重复传输下行共享信道的次数m 1等于1且重复传输下行共享信道一次所占的时域资源包括的时间单元的数量为L时,最小时间间隔为T1。若重复传输下行共享信道的次数m 1大于1且重复传输下行共享信道一次所占的时域资源包括的时间单元的数量L大于第二预设值时,最小时间间隔T等于T1;若重复传输下行共享信道的次数m 1大于1且重复传输下行共享信道一次所占的时域资源包括的时间单元的数量L小于第二预设值时,最小时间间隔T大于T1。
在又一种可能的设计中,重复传输下行共享信道的次数m 1等于1且重复传输下行共享信道一次所占的时域资源包括的时间单元的数量时,最小时间间隔为T1。若重复传输下行共享信道的次数m 1大于1且第一时域资源所包括的时间单元的数量大于等于第三预设值时,最小时间间隔等于T1;若重复传输下行共享信道的次数m 1大于1且第一时域资源小于第三预设值时,最小时间间隔大于T1。
也就是说,若重复传输下行共享信道一次所占的时域资源包括的时间单元的数量较大,则终端设备在下行共享信道的重复传输结束时刻之前,就已经能够并行处理重复传输的PDSCH,故与T1相比,最小时间间隔可不增加;若重复传输下行共享信道一次所占的时域资源包括的时间单元的数量较小,则在下行共享信道的重复传输结束时刻之后,终端设备还存在更多未处理完的PDSCH,故与T1相比,最小时间间隔增加。可选的,该情况下,第一预设值可以等于4个符号。
实施方式三最小时间间隔T与两次重复传输分别所占的时域资源之间的时间间隔有关。
在一种可能的设计中,根据重复传输下行共享信道的次数m 1,确定最小时间间隔T,包括:根据重复传输下行共享信道的次数m 1、重复传输所述下行共享信道一次所占的时域资源包括的时间单元的数量以及重复传输所述下行共享信道两次分别所占的时域资源之间的时间间隔,确定最小时间间隔T。
一种情况,该设计中,重复传输所述下行共享信道两次分别所占的时域资源之间的时间间隔越大,最小时间间隔越小。
如图11所示,图11与图4相比不同之处在于,图11中重复传输PDSCH两次分别所占的时域资源之间的时间间隔大于零。由于图11中第一次重复传输的PDSCH相对靠前,CE能够提前处理第一次、第二次重复传输的信道估计,故图11中第二次重复传输PDSCH的处理开始时刻要远远早于图4中第二次重复传输的处理开始时刻。相应的,图11中UL processing的处理结束时刻要早于图4中第二次重复传输的UL processing的处理结束时刻,即图10中的最小时间间隔小于图4中的最小时间间隔。
另一种情况,该设计中,重复传输下行共享信道的次数m 1等于1时,最小时间间隔为T1。若重复传输下行共享信道的次数m 1大于1,且重复传输PDSCH两次分别所占的时域资源之间的时间间隔大于或等于第四预设值时,最小时间间隔等于T1;若重复传输下行共 享信道的次数m 1大于1,且重复传输PDSCH两次分别所占的时域资源之间的时间间隔小于第四预设值时,最小时间间隔大于T1。
也就是说,若重复传输PDSCH两次分别所占的时域资源之间的时间间隔较大,则终端设备在下行共享信道的重复传输结束时刻之前,就已经能够并行处理重复传输的PDSCH,故与最小时间间隔T1相比,最小时间间隔不增加;若重复传输PDSCH两次分别所占的时域资源之间的时间间隔较小,则在下行共享信道的重复传输结束时刻之后,终端设备还存在更多未处理完的PDSCH,故最小时间间隔增加。可选的,该情况下,第五预设值可以为2个符号。
可见,上述各实施方式中,网络设备或终端设备可根据重复传输模式的相关参数,定义了最小时间间隔T;或者,网络设备或终端设备可根据重复传输模式的相关参数,确定最小时间间隔T与最小时间间隔T1之间的关系。
本申请实施例不限于上述各实施方式所述的最小时间间隔T与重复传输模式的相关参数之间的特征。比如,本申请实施例还包括以下实施方式:重复传输下行共享信道的次数m 1等于1时,最小时间间隔为T1。重复传输下行共享信道的次数m 1大于第六预设值时,最小时间间隔大于T1,且该最小时间间隔可根据重复传输下行共享信道一次所占的时域资源确定。或者,重复传输下行共享信道的次数m 1大于1且重复传输下行共享信道一次所占的时域资源包括的时间单元的数量小于第七预设值(比如4个符号)时,最小时间间隔T大于T1,且该最小时间间隔可根据重复传输下行共享信道一次所占的时域资源确定。
在又一种实施方式中,为了降低最小时间间隔确定的复杂度,且在某些情况下的PDSCH处理时延的要求相差不大,则可以预定义或高层信令配置:在重复传输次数m 1大于第七预设值且重复传输PDSCH一次所占的时域资源包括的时间单元的数量小于第八预设值的情况,最小时间间隔大于T1,但该最小时间间隔与T1的差值可基于终端处理复杂度的要求来确定。
可见,该实施例可根据重复传输模式下的相关参数,重新定义最小时间间隔或最小时间间隔与T1的关系。其中,T1是非重复传输模式下的最小时间间隔。
实施例二
该实施例中,最小时间间隔是由一个或多个处理时延相加获得的,该一个或多个处理时延包括第一处理时延d1.1和下行共享信道处理时延N1。
例如,当下行共享信道只传输一次,也即重复传输次数m 1等于1时,最小时间间隔T1可采用如下公式(1)获得:
T1=N1+d1.1   (1)
该公式(1)表示在某个特定子载波间隔下,图7所示的非重复传输模式下,最小时间间隔T1是基于N1和d1.1确定的。其中,T1、N1、d1.1的单位为符号。若需获得该T1对应的绝对时间T 1′,则可基于如下公式(2)获得:
T 1′=T1×(2048+144)·κ2 ·T c  (2)
其中,T c=1/(Δf max·N f)表征了时间粒度,Δf max=480·10 3Hz,N f=4096。κ=T s/T c=64是一个恒定值,T s=1/(Δf ref·N f,ref),Δf ref=15·10 3Hz,N f,ref=2048。其中,绝对时间T 1′的单位为毫秒或者微秒。
其中,N1与终端的下行共享信道处理能力有关;d1.1与终端的下行共享信道处理能力和下行共享信道所占的时域资源大小有关。比如,具有两种下行共享信道处理能力的终端设备,分别标记为Cap1能力和Cap2能力。由于具有Cap2能力的终端设备在执行上述各处理操作时所需的时间均比较短,因此,Cap2能力的终端设备相比于Cap1的终端设备,所需的最小时间间隔更小。例如,N1可通过表4、表5获得的。
表4 适用于下行共享信道处理能力1
Figure PCTCN2020119103-appb-000001
表5 适用于下行共享信道处理能力2
Figure PCTCN2020119103-appb-000002
其中,终端具有下行共享信道处理能力1时,基于表4确定N1。表4中,第一列为下行共享信道所在时间单元的子载波间隔μ。该N1还与下行共享信道是否具有附加DMRS有关,表4中第二列适用于下行共享信道没有附加解调参考信号(additional DMRS)以及下行共享信道映射类型A、B的情况,第三列适用于下行共享信道有附加DMRS以及下行共享信道映射类型A、B的情况。终端设备具有下行共享信道处理能力2时,基于表5确定N1。表5中,第一列为下行共享信道所在时间单元的子载波间隔μ。第二列适用于没有附加DMRS以及下行共享信道映射类型A、B的情况。
因此,一种实施方式中,可根据实施例一中各重复传输模式下的最小时间间隔与最小时间间隔T1之间的关系,预定义或高层信令配置重复传输模式下的N1。
也就是说,该实施方式中也可以采用表格的方式,预定义或高层信令配置一个或多个 重复传输模式下,N1的可选值。比如,基于上述实施例一所述的各实施方式,预定义或高层信令配置如表4、表5所示的表格,使得网络设备或终端设备可通过查表的方式确定重复传输模式下的N1。可选的,在重复传输模式下,每次重复传输的下行共享信道不具有附加DMRS,这样,表4中可去除第三列。
在非重复传输模式下,公式(1)中的d1.1与下行共享信道所占的时域资源的大小和终端具有的上述下行共享信道处理能力属于Cap 1能力还是Cap 2能力有关。
例如,对于Cap 1能力的终端设备,随着下行共享信道所占的时域资源的变小,最小时间间隔T1会依据条件变大。因此,当下行共享信道所占的时域资源为7个符号时,d1.1=0;当下行共享信道所占的时域资源为4个符号时,d1.1=3;当下行共享信道所占的时域资源为2个符号时,d1.1=3+d,d是下行控制信道所占的时域资源与该下行共享信道所占的时域资源之间的重叠时域资源包括的时间单元的数量。
再例如,对于Cap 2能力的终端设备,随着下行共享信道所占的时域资源的变小,最小时间间隔T1依据条件可以保持不变。该条件为调度该下行共享信道的下行控制信道所占的时域资源与该下行共享信道所占的时域资源在时域上的位置关系有关。
比如,当下行共享信道所占的时域资源包括7个符号时,或者当下行共享信道所占的时域资源包括4或2个符号且下行共享信道所占的时域资源与调度该下行共享信道的下行控制信道所占的时域资源不重叠时,d1.1=0。当下行共享信道所占的时域资源包括4个符号且下行共享信道所占的时域资源与调度该下行共享信道的下行控制信道所占的时域资源在时域上重叠时,d1.1等于重叠时域资源包括的符号数;当下行共享信道所占的时域资源包括2个符号且下行共享信道所占的时域资源与调度该下行共享信道的下行控制信道所占的时域资源具有相同的起始时域位置,且下行控制信道所占的时域资源包括3个符号时,d1.1=3。
因此,另一种实施方式中,可以基于上述实施例一中各重复传输模式下最小时间间隔T与T1之间的关系,预定义或高层信令配置一个或多个重复传输模式下,d1.1的可选值。
例如,上述实施例一中的一设计方式,重复传输下行共享信道的次数m2大于等于m 1的两倍时,重复传输下行共享信道的次数m 1对应的最小时间间隔T1不大于重复传输下行共享信道的次数m2对应的最小时间间隔T2。再例如,非重复传输的下行共享信道的最小时间间隔为T1,那么:
重复传输下行共享信道的次数m 1等于2时,最小时间间隔中d1.1增加X,其中,X大于零且小于T1;
重复传输下行共享信道的次数m 1大于2时,最小时间间隔中d1.1增加Y,其中,Y大于或等于(m 1/2)*X,且小于(m1-1)*T1。
其中,N1的值还可以基于表4、表5和终端设备的下行共享信道处理能力确定。最小时间间隔中d1.1的值基于上述非重复传输模式的定义确定。
本申请实施例,还可以基于实施例一中的其他实施方式确定d1.1,此处不再详述。
综上所述,该实施例中,可通过协议预定义或高层信令配置:非重复传输模式下,最小时间间隔T1中包括的N1和d1.1(如上述对T1的阐述);重复传输模式下,最小时间间隔T中N1的可选值,或者最小时间间隔T中N1相对于最小时间间隔T1中N1的增量, 或者最小时间间隔T中d1.1相对于最小时间间隔T1中d1.1的增量。
实施例三
该实施例与上述实施例二中确定第一处理时延d1.1的增量的方式不同,该实施例中重新定义第一处理时延d1.1,N1还可基于表4或表5获得,或者基于实施例一或二重新定义的表4或表5获得。
在一种实施方式中,第一处理时延d1.1是基于第一时域资源确定的。或者,第一处理时延d1.1与第一时域资源有关。或者,第一处理时延d1.1是基于第一时域资源包括的时间单元的数量确定的。或者,在所述第一时域资源包括的时间单元数量不同的情况下,所述第一处理时延d1.1的取值不同。
在一种实施方式中,所述第一时域资源包括K4个时间单元时,或者,第一时域资源中时间单元的数量大于K4时,所述第一处理时延d1.1等于零;或者,所述第一时域资源包括K3个时间单元时,或者第一时域资源中时间单元的数量大于K2且小于K4时,或者第一时域资源中时间单元的数量大于等于K3且小于K4时,所述第一处理时延d1.1等于预设值,所述预设值大于零。
在另一种实施方式中,网络设备根据所述第一时域资源包括的时间单元数量、所述第一时域资源与第三时域资源之间的时域位置关系,确定所述第一处理时延d1.1;其中,所述第三时域资源为下行控制信息DCI关联的控制资源集合所占的时域资源,所述DCI用于调度所述下行共享信道。
在一种可能的设计中,第一时域资源包括K2个时间单元,或者第一时域资源中时间单元的数量小于K2时,或者,第一时域资源包括的时间单元数量小于K3时:
所述第一时域资源满足第一条件时,所述第一处理时延d1.1等于所述第三时域资源包括的时间单元的数量;
所述第一时域资源不满足第一条件时,所述第一处理时延d1.1等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量,或者等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量。
所述第一条件为所述第一时域资源与所述第三时域资源之间具有相同的起始时域位置,且所述第三时域资源包括的时间单元的数量大于或等于所述K2。可见,该实施方式确定的最小时间间隔T考虑了终端设备基于控制资源集合检测DCI所需的时延,从而能够在保证终端设备及时上报反馈信息的同时,保证上报有效的反馈信息。
在另一种可能的设计中,所述第一时域资源包括K3个时间单元,或者第一时域资源中时间单元的数量大于K2且小于K4时,或者第一时域资源中时间单元的数量大于等于K3且小于K4时,所述第一处理时延d1.1等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量;或者,
所述第一时域资源包括K2个时间单元或者所述第一时域资源中时间单元的数量小于或者等于K2时,或者,第一时域资源包括的时间单元数量小于K3时,所述第一处理时延d1.1等于预设值+第二处理时延d,所述预设值大于零,所述第二处理时延d等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量。
可见,该实施方式中,最小时间间隔考虑第一时域资源与第三时域资源之间的重叠情况,有利于终端设备能够基于第三时域资源解调出DCI后,基于DCI获得反馈信息。从而有利于保证终端设备上报有效的反馈信息。
在又一种实施方式中,网络设备根据所述第一时域资源包括的时间单元数量、所述第一时域资源与所述第二时域资源之间的时域位置关系,确定所述第一处理时延d1.1。第二时域资源为DCI所在的时域资源,该DCI用于调度所述下行共享信道。
在一种可能的设计中,所述第一时域资源包括K3个时间单元,所述第一处理时延d1.1等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量;或者,所述第一时域资源包括K2个时间单元,所述第一处理时延d1.1等于预设值+第二处理时延d,所述预设值大于零,所述第二处理时延d等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量。
可选的,K2等于2,K3等于4,预设值等于3。
可见,该实施方式考虑终端设备需要解调出DCI,才能进而获得反馈信息,从而有利于保证终端设备及时上报的同时,上报有效的反馈信息。
在又一种实施方式中,网络设备根据终端设备的下行共享信道处理能力和第一时域资源包括的时间单元的数量,确定最小时间间隔T。
在一种可能的设计中,终端设备可选的下行共享信道处理能力包括下行共享信道处理能力1和下行共享信道处理能力2。该设计中,网络设备可根据终端设备具有的下行共享信道处理能力,结合上述任一或多个实施方式,确定最小时间间隔T。
在另一种可能的设计中,针对具有下行共享信道处理能力1的终端设备:
所述第一时域资源包括K4个时间单元时,第一处理时延d1.1等于零;
所述第一时域资源包括K3个时间单元时,所述第一处理时延d1.1等于预设值,所述预设值大于零;
所述第一时域资源包括K2个时间单元,所述第一处理时延d1.1等于预设值+第二处理时延d,所述预设值大于零,所述第二处理时延d等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量,或者等于所述第一时域资源与第三时域资源之间的重叠时域资源包括的时间单元的数量。
针对具有下行共享信道处理能力2的终端设备:
所述第一时域资源包括K4个时间单元时,第一处理时延d1.1等于零;
所述第一时域资源包括K3个时间单元,所述第一处理时延d1.1等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量,或者等于所述第一时域资源与所述第二时域资源之间的重叠时域资源包括的时间单元的数量;
所述第一时域资源包括K2个时间单元:所述第一时域资源满足第一条件时,所述第一处理时延d1.1等于所述第三时域资源包括的时间单元的数量;或者,所述第一时域资源不满足第一条件时,所述第一处理时延d1.1等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量,或者等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量;
其中,所述第一条件为所述第一时域资源与所述第三时域资源之间具有相同的起始时 域位置,且所述第三时域资源包括的时间单元的数量大于或等于所述K2;
所述第二时域资源为所述DCI所在的时域资源。在又一实施方式中,在第一时域资源包括两次重复传输的下行共享信道所占的时域资源之间的时间间隔时,第一时域资源大于K2且小于K3时,大于K3且小于K4时,或者等于K3时,第一处理时延d1.1=预设值-d’,d’等于第一时域资源与第三时域资源之间的重叠时域资源中承载该下行共享信道的时间单元的数量;或等于第一时域资源与第二时域资源之间的重叠时域资源中承载下行数据的时间单元的数量。
在又一种实施方式中,在第一时域资源包括两次重复传输的下行共享信道所占的时域资源之间的时间间隔时,第一时域资源大于K2且小于K3时,大于K3且小于K4时,或者等于K3时,第一处理时延d1.1等于d’。
可选的,上述K2、K3、K4均为大于或等于1的整数,例如,K2等于2,K3等于4,K4等于7。预设值为大于零的值。
在又一种实施方式中,
对于具有Cap 1能力的终端设备:
可选的,在第一时域资源包括的符号数量为7,或者大于7,或者大于4且小于等于7,或者大于4时,d1.1=0。
可选的,在第一时域资源包括的符号数量为4,或者大于4且小于7,或者大于2且小于等于4时,d1.1=3。
可选的,在第一时域资源包括的符号数量为2时,或者大于2且小于4时,或者小于2时,d1.1=3+d,其中,d为第三时域资源与该第一时域资源之间的重叠时域资源包括的时间单元的数量;或者,d为第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量。
对于具有Cap 2能力的终端设备:
可选的,在第一时域资源包括的符号数量为7,或者大于7,或者大于4且小于等于7,或者大于4时,d1.1=0。
可选的,在第一时域资源包括的符号数量为4,或者大于4且小于7,或者大于2且小于等于4时,d1.1=d,其中,d为第三时域资源与该第一时域资源之间的重叠时域资源包括的时间单元的数量,或者为第二时域资源与该第一时域资源之间的重叠时域资源包括的时间单元的数量。
可选的,在第一时域资源对应的符号数量为4,或者大于4且小于7,或者大于2且小于等于4时,d1.1=d’,其中,d’为第三时域资源与该第一时域资源之间的重叠时域资源中承载下行数据的时间单元的数量,或d’为第二时域资源与该第一时域资源之间的重叠时域资源中承载下行数据的时间单元的数量。
可选的,在第一时域资源对应的符号数量为2或者大于2且小于4时,且第三时域资源的起始时域位置和第一时域资源的起始时域位置相同,以及第三时域资源包括的符号的数量大于或等于2时,d1.1=d”,d”为第三时域资源包括的符号的数量或为第三时域资源中承载下行数据符号的数量。
可选的,在第一时域资源对应的符号数量为2或者大于2且小于4时,但第三时域资 源的起始时域位置和第一时域资源的起始时域位置不相同,或第三时域资源包括的符号的数量小于2时,d1.1=d’,其中,d’为第三时域资源与该第一时域资源之间的重叠时域资源中承载下行数据的符号的数量,或d’为第二时域资源与该第一时域资源之间的重叠时域资源中承载下行数据的符号的数量。
可见,该实施例中,可重新定义重复传输模式下的第一处理时延d1.1。可选的,可基于上述各实施方式,预定义或高层信令配置d1.1的可选值。进而,可确定最小时间间隔T。
实施例四
在上述实施例一至实施例三确定的最小时间间隔T的基础上,网络设备或终端设备还可基于第一时域资源中解调参考信号(demodulation reference signal,DMRS)所占的时域资源与第一信号所占的时域资源是否冲突确定所述最小时间间隔。也就是说,以下阐述当DMRS与第一信号冲突时如何定义最小时间间隔。
可选的,第一信号包括但不限于:小区专用参考信号(cell-specific RS,CRS)、控制资源集合(CORESET)、同步信号块(synchronisation signal block,SSB)、信道状态信息参考信号(channelstate information reference resource,CSI-RS)等。其中,CRS用于小区内的多个用户执行数据接收的信道估计的参考信号或者执行信道状态信息反馈的测量参考信号;CORESET为承载下行控制信息的时频资源,通常占用频域上多个RB,在时域上可以占用1-3个符号,CORESET会关联一个或者多个搜索空间,每个搜索空间用于配置终端设备检测DCI的检测行为或者检测进程或者检测周期等;CSI-RS为终端设备专用的用于测量信道的参考信号,通常会基于测量上报测量结果给基站。
本申请实施例中,每次重复传输中均包含用于解调该重复传输PDSCH的DMRS,DMRS会占用每次重复传输所占的时域资源中特定的一个或者多个符号。
一种示例为,每个DMRS均占用每次重复传输所占的时域资源中的第n个符号。如图13所示,第一次重复传输中的DMRS占用第一次重复传输所占的时域资源中的第1个符号,即符号3;第二次重复传输中的DMRS占用第二次重复传输所占的时域资源中的第1个符号,即符号7。
另一种示例为,每次重复传输中DMRS占用的符号为每次重复传输占用的时域资源中的前k个符号,k可以取1或者2。例如,针对图13,k取1。
也就是说,第一DMRS为第一时域资源中的DMRS,则该第一时域位置为每次重复传输下行共享信道所占的时域资源中的前k个符号或第n个符号;第一DMRS为除第一次重复传输外其他次重复传输的下行共享信道所占的时域资源中的DMRS,则该第一时域位置为所述其他次重复传输下行共享信道所占的时域资源中的前k个符号或第n个符号。
在一种可能的设计中,该第一DMRS占用的时域资源位置为预设的位置。在一种可能的设计中,该第一DMRS占用的时域资源位置与PDSCH的相对位置是预设的。
在一种可能的设计中,该最小时间间隔T包括第三处理时延,网络设备根据第一解调参考信号DMRS所占的时域位置确定该第三处理时延。
在另一种可能的设计中,网络设备根据第一解调参考信号DMRS所占的时域位置,调整上述各实施方式所确定的最小时间间隔T。
在又一种可能的设计中,所述网络设备根据第一信号所占的时域位置,确定所述第一DMRS所占的时域位置。在又一种可能的设计中,第一DMRS所占的时域位置为第一时域位置时,最小时间间隔为T1;第一DMRS所占的时域位置为第二时域位置时,最小时间间隔T等于T1+第三处理时延。
其中,第一DMRS为第一时域资源中的DMRS,则该第一时域位置为每次重复传输下行共享信道所占的时域资源中的前k个符号或第n个符号,或者,第一DMRS为除第一次重复传输外其他次重复传输的下行共享信道所占的时域资源中的DMRS,则该第一时域位置为所述其他次重复传输下行共享信道所占的时域资源中的前k个符号或第n个符号。
其中,第二时域位置包括第一信号所在的时域位置之后相邻的时域位置。第三处理时延为第一信号所占的时域资源中时间单元的数量。
也就是说,该实施方式中,当第一DMRS所占的时域资源与上述所述的第一信号所占的时域资源冲突时,第一DMRS的时域位置会进行调整以避免和其他信号发生冲突,从而影响数据解调性能。
例如,当第一DMRS所占的时域资源与上述所述的其他信号所占的时域资源冲突时,第一DMRS所占的时域资源的起始时域位置调整为CRS或者SSB占用的时域资源结束后的第一个符号。如图14中,两次重复传输分别占用符号2-5和符号6-9,第一DMRS为第二次重复传输的PDSCH所占的时域资源中的DMRS,该第一DMRS的第一时域位置为符号6,由于符号6上有CRS,故根据该符号6上的CRS,确定第一DMRS的时域位置为第二时域位置,即符号7。相应的,图14中,最小时间间隔T等于图14中上一行所示的重复传输对应的最小时间间隔T1加1。
也就是说,当第一DMRS的时域位置受到CRS或者SSB的影响而后移时,最小时间间隔T大于T1。其中,T1为第一DMRS未受到CRS或者SSB影响时定义的最小时间间隔或者为第一。比如,根据实施例三中第一时域资源与第一处理时延的关系,确定d1.1,再根据上述表4或表5确定N1,进而基于公式(1)获得T1。该实施方式中,网络设备可将所述最小时间间隔T1增加第三处理时延,从而确定最小时间间隔T。该第三处理时延是第一信号所占的时域资源包括的时间单元的数量。
如图14所示,重复传输下行共享信道2次中的两个DMRS中,第二次重复传输的DMRS所占的时域资源与CRS所占的时域资源冲突,则该DMRS后移一个符号。由于DMRS后移,引起第二次重复传输的处理过程中,CE的处理可能因为该DMRS后移而后移,故该情况下,最小时间间隔T增加,比如,增加一个符号。
在另一种可能的设计中,当第k次重复传输的DMRS所占的时域资源与第一信号所占的时域资源冲突时,将第k次重复传输以及第k次重复传输之后的所有重复传输均后移。
可选的,将第k次重复传输的起始时域位置调整到第一信号的结束符号位置的下一个符号。相应的,最小时间间隔是根据第一次重复传输的起始时域位置到调整后的最后一次重复传输的结束时域位置之间所包括的时间单元的数量确定的。也就是说,该实施方式中,第一时域资源为第一次重复传输的起始时域位置到调整后的最后一次重复传输的结束时域位置所包括的时间单元确定为第一时域资源。
在一种可能的设计中,该实施方式,可根据该第一时域资源,采用上述实施例三所述 的相关实施方式确定最小时间间隔。
在另一种可能的设计中,该实施方式中,最小时间间隔T等于T1+第三处理时延。该T1为第k次重复传输的DMRS所占的时域资源与第一信号所占的时域资源未冲突时,或第k次重复传输的DMRS未受到第一信号影响时的最小时间间隔。该第三处理时延是第k次重复传输的起始时域位置与该第k次重复传输的起始时域位置被调整到的位置之间的时间单元偏移量。
例如,图15所示,控制资源集合所占的时域资源分别是符号0、1、6、7,与第二次重复传输的DMRS所占的时域资源冲突,故将第二次重复传输的起始时域位置调整到该控制资源集合所占的结束时域位置的下一个符号,即符号8。调整后的第二次重复传输所占的时域资源为符号8至符号11。相应的,第一时域资源为符号2至符号11。可选的,可基于该第一时域资源确定最小时间间隔。可选的,可确定图15中第三处理时延等于2,从而可将未受控制资源集合影响时的最小时间间隔增加2,以获得调整后的最小时间间隔。
上述各实施例或各实施方式是基于每次重复传输均具有一个DMRS考虑的,如上述图13至图15所示,相应的,CE至少是从DMRS传输的结束时刻开始执行的。在又一种实施方式中,重复传输模式所具有的DMRS可以精简,相应的,上述所述的最小时间间隔也能够在上述各实施例或各实施方式的基础上适当的进行减小。由于整个重复传输过程的信道估计的处理数量减小,因此,该实施方式有利于降低下行共享信道的处理复杂度。
在又一种实施方式中,网络设备可根据终端设备能力,进一步调整或确定最小时间间隔。比如,网络设备接收终端设备上报的能力信息;网络设备根据该能力信息确定重复传输模式下的最小时间间隔。
其中,该能力信息可以为非重复传输模式下终端设备上报的载波数量。该载波数量表征了终端设备的并行处理能力。比如,该载波数量为4个载波,表示终端设备的并行处理能力为4。因此,若网络设备根据终端设备上报的载波数量,为终端设备配置的载波数量为该上报的载波数量的一半时,网络设备可假定终端设备可对同一载波内的多个下行共享信道进行并行处理。
如图12所示,图12与图4具有相同的重复传输模式的相关参数以及重复传输结束时刻,但图12中,终端设备可并行处理第一次重复传输的PDSCH和第二次重复传输的PDSCH。这样,图12中的最小时间间隔由第二次重复传输的处理过程确定,与非重复传输模式(重复传输次数m 1等于1)时如图8所示的处理过程相同,故该重复传输模式下,根据终端设备的能力信息可确定最小时间间隔为重复传输次数m 1等于1时的最小时间间隔T1。同理,该实施方式还可以基于终端设备的并行处理能力,对上述各实施方式或各实施例中阐述的最小时间间隔进行调整。
上述本申请提供的实施例中,分别从网络设备、终端、以及网络设备和终端之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、 软件模块、或者硬件结构加软件模块的方式来执行。
请参阅图17,图17为本申请实施例提供的一种装置的结构示意图。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述装置可以包括一个或多个处理器1701。所述处理器1701也可以称为处理单元,可以实现本申请实施例提供的方法中网络设备或终端设备的功能。所述处理器1701可以是通用处理器或者专用处理器等。所述处理器1701可以称为处理单元,对所述装置1700进行控制。
在一种可选的设计中,处理器1701也可以存有指令1703,所述指令1703可以被所述处理器运行,使得所述装置1200执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器1701中可以包括用于实现接收和发送功能的通信单元。例如,该通信单元可以是收发电路,或者是接口,或者是接口电路。该处理器1701可通过该通信单元实现本申请实施例提供的方法中网络设备所执行的方法,或者终端设备所执行的方法。
可选的,所述装置1700中可以包括一个或多个存储器1702,其上可以存有指令1704。所述指令可在所述处理器上被运行,使得所述装置1700执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。所述处理器1701和存储器1702可以单独设置,也可以集成在一起。
可选的,所述装置1700还可以包括收发器1705、天线1706。所述收发器1705可以称为通信单元、收发机、通信接口、收发电路或者收发器等,用于实现收发功能。
一种实施方式中,一种装置1700(例如,终端中的芯片、集成电路、无线设备、电路模块,或终端)包括:
处理单元,用于根据重复传输下行共享信道的次数m 1,确定最小时间间隔T;
所述处理单元,还用于根据所述最小时间间隔T和反馈时间间隔,确定所述下行共享信道的反馈信息。
其中,所述最小时间间隔T是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的最小时间间隔;所述反馈时间间隔是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的实际时间间隔。
其中,该通信装置还可以包括通信单元,所述通信单元用于上报所述下行共享信道的反馈信息。
一种实施方式中,一种装置1700(例如,网络设备、基站、DU或CU、TRP或基带芯片)包括:
处理单元,用于根据重复传输下行共享信道的次数m 1,确定最小时间间隔T,m 1大于或等于2;
所述处理单元,还用于根据所述最小时间间隔T,确定反馈时域资源,所述反馈时域资源用于承载所述下行共享信道的反馈信息;
其中,所述最小时间间隔T是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的最小时间间隔。
可选的,该通信装置还可以包括通信单元,所述通信单元用于接收所述反馈时域资源 承载的所述下行共享信道的反馈信息。
在一种可能的设计中,一种装置1700(例如,终端中的芯片、集成电路、无线设备、电路模块,或终端)可包括:
处理器1701,用于根据重复传输下行共享信道的次数m 1,确定最小时间间隔T;
所述处理器1701,还用于根据所述最小时间间隔T和反馈时间间隔,确定所述下行共享信道的反馈信息。
其中,所述最小时间间隔T是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的最小时间间隔;所述反馈时间间隔是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的实际时间间隔。
其中,该通信装置还可以包括收发器1705,所述收发器1705用于上报所述下行共享信道的反馈信息。
在一种可能的设计中,一种装置1700(例如,网络设备、基站、DU或CU、TRP或基带芯片)可包括:
处理器1701,用于根据重复传输下行共享信道的次数m 1,确定最小时间间隔T,m 1大于或等于2;
所述处理器1701,还用于根据所述最小时间间隔T,确定反馈时域资源,所述反馈时域资源用于承载所述下行共享信道的反馈信息;
其中,所述最小时间间隔T是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的最小时间间隔。
可选的,该通信装置还可以包括收发器1705,所述收发器1705用于接收所述反馈时域资源承载的所述下行共享信道的反馈信息。
图18提供了一种终端设备的结构示意图。该终端设备可适用于图1、图2所示出的场景中。为了便于说明,图18仅示出了终端设备的主要部件。如图18所示,终端设备包括处理器1812、存储器、控制电路、天线以及输入输出装置。处理器1812主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器1812可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图18仅示出了一个存储器和处理器1812。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器1812可以包括基带处理器和中央处理器,基带处理 器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备的通信单元1811,将具有处理功能的处理器视为终端设备的处理单元1812。如图18所示,终端设备包括通信单元1811和处理单元1812。通信单元也可以称为收发器、收发机、收发装置等。可选的,可以将通信单元1811中用于实现接收功能的器件视为接收单元,将通信单元1811中用于实现发送功能的器件视为发送单元,即通信单元1811包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数 字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (69)

  1. 一种反馈信息处理方法,其特征在于,包括:
    网络设备根据重复传输下行共享信道的次数m 1,确定最小时间间隔T,m 1大于或等于2;
    所述网络设备根据所述最小时间间隔T,确定反馈时域资源,所述反馈时域资源用于承载所述下行共享信道的反馈信息;
    所述最小时间间隔T是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的最小时间间隔。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备根据重复传输下行共享信道的次数m 1,确定最小时间间隔T,包括:
    网络设备根据第一时域资源,确定最小时间间隔T;
    所述第一时域资源是重复传输m 1次下行共享信道所占的总的时域资源。
  3. 根据权利要求1所述的方法,其特征在于,所述网络设备根据重复传输下行共享信道的次数m 1,确定最小时间间隔T,包括:
    网络设备根据重复传输下行共享信道的次数m 1和重复传输所述下行共享信道一次所占的时域资源,确定最小时间间隔T。
  4. 根据权利要求1所述的方法,其特征在于,所述网络设备根据重复传输下行共享信道的次数m 1,确定最小时间间隔T,包括:
    网络设备根据重复传输下行共享信道的次数m 1、重复传输所述下行共享信道一次所占的时域资源以及重复传输所述下行共享信道两次分别所占的时域资源之间的时间间隔,确定最小时间间隔T。
  5. 根据权利要求2所述的方法,其特征在于,所述最小时间间隔T是由一个或多个处理时延相加获得的,所述一个或多个处理时延包括第一处理时延d1.1;
    在所述第一时域资源包括的时间单元数量不同的情况下,所述第一处理时延d1.1的取值不同。
  6. 根据权利要求5所述的方法,其特征在于,所述网络设备根据第一时域资源,确定最小时间间隔T,包括:
    所述网络设备根据所述第一时域资源包括的时间单元数量、所述第一时域资源与第三时域资源之间的时域位置关系,确定所述第一处理时延d1.1;
    其中,所述第三时域资源为下行控制信息DCI关联的控制资源集合所占的时域资源,所述DCI用于调度所述下行共享信道。
  7. 根据权利要求6所述的方法,其特征在于,所述第一时域资源包括K2个时间单元;
    所述第一时域资源满足第一条件时,所述第一处理时延d1.1等于所述第三时域资源包括的时间单元的数量;或者,
    所述第一时域资源不满足第一条件时,所述第一处理时延d1.1等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量,或者等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量;
    所述K2为大于或等于1的整数,所述第一条件为所述第一时域资源与所述第三时域资源之间具有相同的起始时域位置,且所述第三时域资源包括的时间单元的数量大于或等于所述K2;
    所述第二时域资源为所述DCI所在的时域资源。
  8. 根据权利要求6所述的方法,其特征在于,
    所述第一时域资源包括K3个时间单元,所述第一处理时延d1.1等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量;或者,
    所述第一时域资源包括K2个时间单元,所述第一处理时延d1.1等于预设值+第二处理时延d,所述预设值大于零,所述第二处理时延d等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量;
    所述K3为大于或等于1的整数。
  9. 根据权利要求5所述的方法,其特征在于,所述网络设备根据第一时域资源,确定最小时间间隔T,包括:
    所述网络设备根据所述第一时域资源包括的时间单元数量、所述第一时域资源与所述第二时域资源之间的时域位置关系,确定所述第一处理时延d1.1;
    所述第二时域资源为DCI所在的时域资源,所述DCI用于调度所述下行共享信道。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第一时域资源包括K3个时间单元,所述第一处理时延d1.1等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量;或者,
    所述第一时域资源包括K2个时间单元,所述第一处理时延d1.1等于预设值+第二处理时延d,所述预设值大于零,所述第二处理时延d等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量;
    所述K2为大于或等于1的整数,所述K3为大于或等于1的整数。
  11. 根据权利要求5所述的方法,其特征在于,
    所述第一时域资源包括K4个时间单元时,所述第一处理时延d1.1等于零;或者,
    所述第一时域资源包括K3个时间单元时,所述第一处理时延d1.1等于预设值,所述预设值大于零;
    所述K3为大于或等于1的整数,所述K4为大于或等于1的整数。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据第一解调参考信号DMRS所占的时域位置,确定所述最小时间间隔T;
    所述第一DMRS为所述第一时域资源中的DMRS,或者为除第一次重复传输所占的时域资源之外的其他次重复传输所占的时域资源中的DMRS。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据第一信号所占的时域位置,确定所述第一DMRS所占的时域位置;
    其中,所述第一DMRS所占的时域资源或时频资源中不包括所述第一信号;
    所述第一信号包括小区专用参考信号CRS、控制资源集合CORESET、同步信号块SSB、信道状态信息参考信号CSI-RS中的一个或多个。
  14. 根据权利要求1所述的方法,其特征在于,所述最小时间间隔T是由一个或多个处理时延相加获得的,所述一个或多个处理时延包括第一处理时延d1.1;
    所述网络设备根据重复传输下行共享信道的次数m 1,确定最小时间间隔T,包括:
    网络设备根据第四时域资源,确定所述第一处理时延d1.1;
    所述第四时域资源为重复传输下行共享信道m 1次中,其中一次所占的时域资源。
  15. 根据权利要求1所述的方法,其特征在于,
    在所述次数m 1大于1时,所述最小时间间隔T等于T 1与第五处理时延的和;T 1为所述次数m 1等于1时的最小时间间隔;
    所述第五处理时延是预定义的或高层信令配置的。
  16. 一种反馈信息处理方法,其特征在于,包括:
    终端设备根据重复传输下行共享信道的次数m 1,确定最小时间间隔T;
    所述终端设备根据所述最小时间间隔T和反馈时间间隔,确定所述下行共享信道的反馈信息;
    所述最小时间间隔T是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的最小时间间隔;
    所述反馈时间间隔是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的实际时间间隔。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述反馈时间间隔不小于所述最小时间间隔T时,确定所述下行共享信道的有效反馈信息。
  18. 根据权利要求16或17所述的方法,其特征在于,所述终端设备根据重复传输下 行共享信道的次数m 1,确定最小时间间隔T,包括:
    终端设备根据第一时域资源,确定最小时间间隔T;
    所述第一时域资源是重复传输m 1次下行共享信道所占的总的时域资源。
  19. 根据权利要求16或17所述的方法,其特征在于,所述终端设备根据重复传输下行共享信道的次数m 1,确定最小时间间隔T,包括:
    终端设备根据重复传输下行共享信道的次数m 1和重复传输所述下行共享信道一次所占的时域资源,确定最小时间间隔T。
  20. 根据权利要求16或17所述的方法,其特征在于,所述终端设备根据重复传输下行共享信道的次数m 1,确定最小时间间隔T,包括:
    终端设备根据重复传输下行共享信道的次数m 1、重复传输所述下行共享信道一次所占的时域资源以及重复传输所述下行共享信道两次分别所占的时域资源之间的时间间隔,确定最小时间间隔T。
  21. 根据权利要求18所述的方法,其特征在于,所述最小时间间隔T是由一个或多个处理时延相加获得的,所述一个或多个处理时延包括第一处理时延d1.1;
    在所述第一时域资源包括的时间单元数量不同的情况下,所述第一处理时延d1.1的取值不同。
  22. 根据权利要求21所述的方法,其特征在于,所述终端设备根据第一时域资源,确定最小时间间隔T,包括:
    所述终端设备根据所述第一时域资源包括的时间单元数量、所述第一时域资源与第三时域资源之间的时域位置关系,确定所述第一处理时延d1.1;
    其中,所述第三时域资源为下行控制信息DCI关联的控制资源集合所占的时域资源,所述DCI用于调度所述下行共享信道。
  23. 根据权利要求22所述的方法,其特征在于,所述第一时域资源包括K2个时间单元;
    所述第一时域资源满足第一条件时,所述第一处理时延d1.1等于所述第三时域资源包括的时间单元的数量;或者,
    所述第一时域资源不满足第一条件时,所述第一处理时延d1.1等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量,或者等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量;
    所述K2为大于或等于1的整数,所述第一条件为所述第一时域资源与所述第三时域资源之间具有相同的起始时域位置,且所述第三时域资源包括的时间单元的数量大于或等于所述K2。
  24. 根据权利要求22所述的方法,其特征在于,
    所述第一时域资源包括K3个时间单元,所述第一处理时延d1.1等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量;或者,
    所述第一时域资源包括K2个时间单元,所述第一处理时延d1.1等于预设值+第二处理时延d,所述预设值大于零,所述第二处理时延d等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量。
  25. 根据权利要求21所述的方法,其特征在于,所述终端设备根据第一时域资源,确定最小时间间隔T,包括:
    所述终端设备根据所述第一时域资源包括的时间单元数量、所述第一时域资源与所述第二时域资源之间的时域位置关系,确定所述第一处理时延d1.1。
  26. 根据权利要求25所述的方法,其特征在于,
    所述第一时域资源包括K3个时间单元,所述第一处理时延d1.1等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量;或者,
    所述第一时域资源包括K2个时间单元,所述第一处理时延d1.1等于预设值+第二处理时延d,所述预设值大于零,所述第二处理时延d等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量。
  27. 根据权利要求21所述的方法,其特征在于,
    所述第一时域资源包括K4个时间单元时,所述第一处理时延d1.1等于零;或者,
    所述第一时域资源包括K3个时间单元时,所述第一处理时延d1.1等于预设值,所述预设值大于零。
  28. 根据权利要求16至27任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据第一解调参考信号DMRS所占的时域位置,确定所述最小时间间隔T;
    所述第一DMRS为所述第一时域资源中的DMRS,或者为除第一次重复传输所占的时域资源之外的其他次重复传输所占的时域资源中的DMRS。
  29. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据第一信号所占的时域位置,确定所述第一DMRS所占的时域位置;
    其中,所述第一DMRS所占的时域资源或时频资源中不包括所述第一信号;
    所述第一信号包括小区专用参考信号CRS、控制资源集合CORESET、同步信号块SSB、信道状态信息参考信号CSI-RS中的一个或多个。
  30. 根据权利要求16或17所述的方法,其特征在于,所述最小时间间隔T是由一个或多个处理时延相加获得的,所述一个或多个处理时延包括第一处理时延d1.1;
    所述终端设备根据重复传输下行共享信道的次数m 1,确定最小时间间隔T,包括:
    终端设备根据第四时域资源,确定所述第一处理时延d1.1;
    所述第四时域资源为重复传输下行共享信道m 1次中,其中一次所占的时域资源。
  31. 根据权利要求16或17所述的方法,其特征在于,
    在所述次数m 1大于1时,所述最小时间间隔T等于T 1与第五处理时延的和;T 1为所述次数m 1等于1时的最小时间间隔;
    所述第五处理时延是预定义的或高层信令配置的。
  32. 一种通信装置,其特征在于,包括:
    处理单元,用于根据重复传输下行共享信道的次数m 1,确定最小时间间隔T,m 1大于或等于2;
    所述处理单元,还用于根据所述最小时间间隔T,确定反馈时域资源,所述反馈时域资源用于承载所述下行共享信道的反馈信息;
    通信单元,用于接收所述反馈时域资源承载的所述下行共享信道的反馈信息;
    所述最小时间间隔T是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的最小时间间隔。
  33. 根据权利要求32所述的通信装置,其特征在于,
    所述处理单元,用于根据第一时域资源,确定最小时间间隔T;所述第一时域资源是重复传输m 1次下行共享信道所占的总的时域资源。
  34. 根据权利要求32所述的通信装置,其特征在于,
    所述处理单元,用于根据重复传输下行共享信道的次数m 1和重复传输所述下行共享信道一次所占的时域资源,确定最小时间间隔T。
  35. 根据权利要求32所述的通信装置,其特征在于,
    所述处理单元,用于根据重复传输下行共享信道的次数m 1、重复传输所述下行共享信道一次所占的时域资源以及重复传输所述下行共享信道两次分别所占的时域资源之间的时间间隔,确定最小时间间隔T。
  36. 根据权利要求33所述的通信装置,其特征在于,所述最小时间间隔T是由一个或多个处理时延相加获得的,所述一个或多个处理时延包括第一处理时延d1.1;
    在所述第一时域资源包括的时间单元数量不同的情况下,所述第一处理时延d1.1的取值不同。
  37. 根据权利要求36所述的通信装置,其特征在于,
    所述处理单元,用于根据所述第一时域资源包括的时间单元数量、所述第一时域资源 与第三时域资源之间的时域位置关系,确定所述第一处理时延d1.1;
    其中,所述第三时域资源为下行控制信息DCI关联的控制资源集合所占的时域资源,所述DCI用于调度所述下行共享信道。
  38. 根据权利要求37所述的通信装置,其特征在于,所述第一时域资源包括K2个时间单元;
    所述第一时域资源满足第一条件时,所述第一处理时延d1.1等于所述第三时域资源包括的时间单元的数量;或者,
    所述第一时域资源不满足第一条件时,所述第一处理时延d1.1等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量,或者等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量;
    所述K2为大于或等于1的整数,所述第一条件为所述第一时域资源与所述第三时域资源之间具有相同的起始时域位置,且所述第三时域资源包括的时间单元的数量大于或等于所述K2。
  39. 根据权利要求37所述的通信装置,其特征在于,
    所述第一时域资源包括K3个时间单元,所述第一处理时延d1.1等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量;或者,
    所述第一时域资源包括K2个时间单元,所述第一处理时延d1.1等于预设值+第二处理时延d,所述预设值大于零,所述第二处理时延d等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量。
  40. 根据权利要求36所述的通信装置,其特征在于,
    所述处理单元,用于根据所述第一时域资源包括的时间单元数量、所述第一时域资源与所述第二时域资源之间的时域位置关系,确定所述第一处理时延d1.1。
  41. 根据权利要求39所述的通信装置,其特征在于,
    所述第一时域资源包括K3个时间单元,所述第一处理时延d1.1等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量;或者,
    所述第一时域资源包括K2个时间单元,所述第一处理时延d1.1等于预设值+第二处理时延d,所述预设值大于零,所述第二处理时延d等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量。
  42. 根据权利要求36所述的通信装置,其特征在于,
    所述第一时域资源包括K4个时间单元时,所述第一处理时延d1.1等于零;或者,
    所述第一时域资源包括K3个时间单元时,所述第一处理时延d1.1等于预设值,所述预设值大于零。
  43. 根据权利要求32至42任一项所述的通信装置,其特征在于,
    所述处理单元,还用于根据第一解调参考信号DMRS所占的时域位置,确定所述最小时间间隔T;
    所述第一DMRS为所述第一时域资源中的DMRS,或者为除第一次重复传输所占的时域资源之外的其他次重复传输所占的时域资源中的DMRS。
  44. 根据权利要求43所述的通信装置,其特征在于,
    所述处理单元,还用于根据第一信号所占的时域位置,确定所述第一DMRS所占的时域位置;
    其中,所述第一DMRS所占的时域资源或时频资源中不包括所述第一信号;
    所述第一信号包括小区专用参考信号CRS、控制资源集合CORESET、同步信号块SSB、信道状态信息参考信号CSI-RS中的一个或多个。
  45. 根据权利要求32所述的通信装置,其特征在于,所述最小时间间隔T是由一个或多个处理时延相加获得的,所述一个或多个处理时延包括第一处理时延d1.1;
    所述处理单元,用于根据第四时域资源,确定所述第一处理时延d1.1;
    所述第四时域资源为重复传输下行共享信道m 1次中,其中一次所占的时域资源。
  46. 根据权利要求32所述的通信装置,其特征在于,
    在所述次数m 1大于1时,所述最小时间间隔T等于T 1与第五处理时延的和;T 1为所述次数m 1等于1时的最小时间间隔;
    所述第五处理时延是预定义的或高层信令配置的。
  47. 一种通信装置,其特征在于,包括:
    处理单元,用于根据重复传输下行共享信道的次数m 1,确定最小时间间隔T;
    所述处理单元,还用于根据所述最小时间间隔T和反馈时间间隔,确定所述下行共享信道的反馈信息;
    通信单元,用于上报所述下行共享信道的反馈信息;
    所述最小时间间隔T是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的最小时间间隔;
    所述反馈时间间隔是所述下行共享信道的重复传输结束时刻到所述反馈信息的反馈起始时刻之间的实际时间间隔。
  48. 根据权利要求47所述的通信装置,其特征在于,
    所述处理单元,还用于在所述反馈时间间隔不小于所述最小时间间隔T时,确定所述下行共享信道的有效反馈信息。
  49. 根据权利要求47或48所述的通信装置,其特征在于,
    所述处理单元,用于根据第一时域资源,确定最小时间间隔T;
    所述第一时域资源是重复传输m 1次下行共享信道所占的总的时域资源。
  50. 根据权利要求47或48所述的通信装置,其特征在于,
    所述处理单元,用于根据重复传输下行共享信道的次数m 1和重复传输所述下行共享信道一次所占的时域资源,确定最小时间间隔T。
  51. 根据权利要求47或48所述的通信装置,其特征在于,
    所述处理单元,用于根据重复传输下行共享信道的次数m 1、重复传输所述下行共享信道一次所占的时域资源以及重复传输所述下行共享信道两次分别所占的时域资源之间的时间间隔,确定最小时间间隔T。
  52. 根据权利要求49所述的通信装置,其特征在于,所述最小时间间隔T是由一个或多个处理时延相加获得的,所述一个或多个处理时延包括第一处理时延d1.1;
    在所述第一时域资源包括的时间单元数量不同的情况下,所述第一处理时延d1.1的取值不同。
  53. 根据权利要求52所述的通信装置,其特征在于,
    所述处理单元,用于根据所述第一时域资源包括的时间单元数量、所述第一时域资源与第三时域资源之间的时域位置关系,确定所述第一处理时延d1.1;
    其中,所述第三时域资源为下行控制信息DCI关联的控制资源集合所占的时域资源,所述DCI用于调度所述下行共享信道。
  54. 根据权利要求53所述的通信装置,其特征在于,所述第一时域资源包括K2个时间单元;
    所述第一时域资源满足第一条件时,所述第一处理时延d1.1等于所述第三时域资源包括的时间单元的数量;或者,
    所述第一时域资源不满足第一条件时,所述第一处理时延d1.1等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量,或者等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量;
    所述K2为大于或等于1的整数,所述第一条件为所述第一时域资源与所述第三时域资源之间具有相同的起始时域位置,且所述第三时域资源包括的时间单元的数量大于或等于所述K2。
  55. 根据权利要求53所述的通信装置,其特征在于,
    所述第一时域资源包括K3个时间单元,所述第一处理时延d1.1等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量;或者,
    所述第一时域资源包括K2个时间单元,所述第一处理时延d1.1等于预设值+第二处理 时延d,所述预设值大于零,所述第二处理时延d等于所述第一时域资源与所述第三时域资源之间的重叠时域资源包括的时间单元的数量。
  56. 根据权利要求52所述的通信装置,其特征在于,
    所述处理单元,用于根据所述第一时域资源包括的时间单元数量、所述第一时域资源与所述第二时域资源之间的时域位置关系,确定所述第一处理时延d1.1。
  57. 根据权利要求56所述的通信装置,其特征在于,
    所述第一时域资源包括K3个时间单元,所述第一处理时延d1.1等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量;或者,
    所述第一时域资源包括K2个时间单元,所述第一处理时延d1.1等于预设值+第二处理时延d,所述预设值大于零,所述第二处理时延d等于所述第一时域资源与第二时域资源之间的重叠时域资源包括的时间单元的数量。
  58. 根据权利要求52所述的通信装置,其特征在于,
    所述第一时域资源包括K4个时间单元时,所述第一处理时延d1.1等于零;或者,
    所述第一时域资源包括K3个时间单元时,所述第一处理时延d1.1等于预设值,所述预设值大于零。
  59. 根据权利要求47至58任一项所述的通信装置,其特征在于,
    所述处理单元,还用于根据第一解调参考信号DMRS所占的时域位置,确定所述最小时间间隔T;
    所述第一DMRS为所述第一时域资源中的DMRS,或者为除第一次重复传输所占的时域资源之外的其他次重复传输所占的时域资源中的DMRS。
  60. 根据权利要求59所述的通信装置,其特征在于,
    所述处理单元,还用于根据第一信号所占的时域位置,确定所述第一DMRS所占的时域位置;
    其中,所述第一DMRS所占的时域资源或时频资源中不包括所述第一信号;
    所述第一信号包括小区专用参考信号CRS、控制资源集合CORESET、同步信号块SSB、信道状态信息参考信号CSI-RS中的一个或多个。
  61. 根据权利要求47或48所述的通信装置,其特征在于,所述最小时间间隔T是由一个或多个处理时延相加获得的,所述一个或多个处理时延包括第一处理时延d1.1;
    所述处理单元,还用于根据第四时域资源,确定所述第一处理时延d1.1;
    所述第四时域资源为重复传输下行共享信道m 1次中,其中一次所占的时域资源。
  62. 根据权利要求47或48所述的通信装置,其特征在于,
    在所述次数m 1大于1时,所述最小时间间隔T等于T 1与第五处理时延的和;T 1为所述次数m 1等于1时的最小时间间隔;
    所述第五处理时延是预定义的或高层信令配置的。
  63. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至15任一项所述的方法,或,执行如权利要求16至31任一项所述的方法。
  64. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于与其它通信装置进行通信;所述处理器用于运行程序,以使得所述通信装置实现权利要求1至15任一项所述的方法,或者权利要求16至31任一项所述的方法。
  65. 一种装置,其特征在于,用于实现如权利要求1至15任一项所述的方法,或者权利要求16至31任一项所述的方法。
  66. 一种装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求1至15任一项所述的方法,或者权利要求16至31任一项所述的方法。
  67. 一种通信系统,其特征在于,包括权利要求32至46任一项所述的装置,和权利要求47至62任一项所述的装置。
  68. 一种计算机程序产品,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至15任一项所述的方法;或者使得计算机执行权利要求16至31任一项所述的方法。
  69. 一种芯片,其特征在于,包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以执行权利要求1至15任一项所述的方法;或者以执行权利要16至31任一项所述的方法。
PCT/CN2020/119103 2019-09-30 2020-09-29 反馈信息处理方法及通信装置 WO2021063375A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910944745.6A CN112583536B (zh) 2019-09-30 2019-09-30 反馈信息处理方法及通信装置
CN201910944745.6 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021063375A1 true WO2021063375A1 (zh) 2021-04-08

Family

ID=75116721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119103 WO2021063375A1 (zh) 2019-09-30 2020-09-29 反馈信息处理方法及通信装置

Country Status (2)

Country Link
CN (1) CN112583536B (zh)
WO (1) WO2021063375A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113452485B (zh) * 2021-06-28 2022-07-19 中信科移动通信技术股份有限公司 一种下行harq反馈机制的实现方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2983306A1 (en) * 2013-04-05 2016-02-10 LG Electronics Inc. Method for transmitting uplink control information in wireless access system and apparatus therefor
CN109391377A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 通信方法、接入网设备和终端
CN109803430A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种无线通信方法及设备
CN110167181A (zh) * 2018-02-12 2019-08-23 北京三星通信技术研究有限公司 一种信号的传输方法和设备
CN110169093A (zh) * 2019-04-09 2019-08-23 北京小米移动软件有限公司 直连通信的重传反馈方法、装置及存储介质
CN110535609A (zh) * 2019-08-02 2019-12-03 中兴通讯股份有限公司 目标参数的确定方法、通信节点和存储介质
CN110677222A (zh) * 2018-07-03 2020-01-10 电信科学技术研究院有限公司 一种pdsch重复传输的harq反馈方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9955524B2 (en) * 2013-01-28 2018-04-24 Lg Electronics Inc. Communication method and device of terminal in wireless communication system
CN106559187B (zh) * 2015-09-25 2021-11-05 北京三星通信技术研究有限公司 Harq-ack信息的反馈和接收方法及设备
JP6692536B2 (ja) * 2016-02-05 2020-05-13 華為技術有限公司Huawei Technologies Co.,Ltd. フィードバック情報を送信するための方法および装置
CN109392141B (zh) * 2017-08-11 2021-07-09 华为技术有限公司 一种调整频域资源和发送指示信息的方法、装置及系统
CN110278062B (zh) * 2018-03-14 2021-03-09 电信科学技术研究院有限公司 资源指示、确定方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2983306A1 (en) * 2013-04-05 2016-02-10 LG Electronics Inc. Method for transmitting uplink control information in wireless access system and apparatus therefor
CN109391377A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 通信方法、接入网设备和终端
CN109803430A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种无线通信方法及设备
CN110167181A (zh) * 2018-02-12 2019-08-23 北京三星通信技术研究有限公司 一种信号的传输方法和设备
CN110677222A (zh) * 2018-07-03 2020-01-10 电信科学技术研究院有限公司 一种pdsch重复传输的harq反馈方法及装置
CN110169093A (zh) * 2019-04-09 2019-08-23 北京小米移动软件有限公司 直连通信的重传反馈方法、装置及存储介质
CN110535609A (zh) * 2019-08-02 2019-12-03 中兴通讯股份有限公司 目标参数的确定方法、通信节点和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Corrections on carrier aggregation and bandwidth part operation", 3GPP DRAFT; R1-1808381, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, 11 August 2018 (2018-08-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 14, XP051515763 *
HUAWEI, HISILICON: "Remaining issues on HARQ management", 3GPP DRAFT; R1-1802697, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20180226 - 20180302, 17 February 2018 (2018-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051398130 *

Also Published As

Publication number Publication date
CN112583536B (zh) 2022-10-11
CN112583536A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
US11445501B2 (en) Method and apparatus for determining resource pool
US20220190983A1 (en) Method for data transmission and terminal device
US20200280981A1 (en) Method and apparatus for managing resource pool in wireless communication system
US9999066B2 (en) Method and device of resource allocations for scheduling assignments in device to device communications
WO2020199957A1 (zh) 一种重传资源的调度方法及设备
CN108292983A (zh) 业务传输的方法和装置
TWI676398B (zh) 一種資料傳輸方法及裝置
US20220217679A1 (en) Method performed by user equipment, and user equipment
TW202013996A (zh) 配置訊息的傳輸方法和終端設備
WO2021032015A1 (zh) 反馈信息传输方法及通信装置
WO2016123772A1 (zh) 一种传输业务数据的方法和装置
EP4054104A1 (en) Method and device for repeatedly transmitting uplink control channel in wireless cellular communication system
WO2018171352A1 (zh) 一种数据传输方法及终端
WO2020015494A1 (zh) 一种数据传输方法、网络设备、通信设备及存储介质
WO2021027815A1 (zh) 一种反馈信息传输方法及装置
WO2021032003A1 (zh) 上行控制信息传输方法及通信装置
US20220279525A1 (en) Method performed by user equipment, and user equipment
WO2021027946A1 (zh) Tci状态确定方法、信道传输方法及相关设备
WO2021063375A1 (zh) 反馈信息处理方法及通信装置
WO2021000937A1 (zh) 多时间单元传输方法及相关装置
CN111294940B (zh) 发射功率的分配方法及装置、存储介质、终端
US20230276473A1 (en) Method performed by user equipment, and user equipment
CN114390698A (zh) 一种数据传输的方法、装置、介质以及程序产品
WO2018201880A1 (zh) 信息发送和接收方法、装置、设备及存储介质
WO2023130993A1 (zh) 通信方法及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872691

Country of ref document: EP

Kind code of ref document: A1