WO2021027815A1 - 一种反馈信息传输方法及装置 - Google Patents

一种反馈信息传输方法及装置 Download PDF

Info

Publication number
WO2021027815A1
WO2021027815A1 PCT/CN2020/108461 CN2020108461W WO2021027815A1 WO 2021027815 A1 WO2021027815 A1 WO 2021027815A1 CN 2020108461 W CN2020108461 W CN 2020108461W WO 2021027815 A1 WO2021027815 A1 WO 2021027815A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback
frequency domain
domain resource
data
index
Prior art date
Application number
PCT/CN2020/108461
Other languages
English (en)
French (fr)
Inventor
黎超
王俊伟
黄海宁
刘哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021027815A1 publication Critical patent/WO2021027815A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to the field of wireless communication technology, and in particular to a method and device for transmitting feedback information.
  • the direct communication between devices includes device-to-device (D2D) communication, vehicle-to-everything (V2X) communication, and V2X includes vehicle-to-vehicle (V2V) communication, Vehicle to pedestrian (Vehicle to Pedestrian, V2P) communication or vehicle to infrastructure/network (Vehicle to Infrastructure/Network, V2I/N) communication.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • V2X includes vehicle-to-vehicle (V2V) communication, Vehicle to pedestrian (Vehicle to Pedestrian, V2P) communication or vehicle to infrastructure/network (Vehicle to Infrastructure/Network, V2I/N) communication.
  • V2V Vehicle to pedestrian
  • V2I/N Vehicle to Infrastructure/Network
  • the receiver also called receiving device
  • the transmitter also called sending device
  • a data receiver will send feedback information to the data transmitter accordingly.
  • data transmission resources are selected by the user equipment in a predefined resource set.
  • the data transmission resources selected by different devices may be different or the same.
  • the feedback resources selected by different devices for sending feedback may be the same or different.
  • different devices are simultaneously sending data and/or feedback. At this time, feedback resources may overlap or conflict. If the problem of feedback resource conflict is not resolved, the effect of improving transmission reliability through feedback will not be achieved, but unnecessary retransmissions will be caused, which reduces the reliability and efficiency of transmission.
  • the present invention provides a feedback information transmission method and device, which are helpful to solve the problem of feedback resource conflict, thereby ensuring the reliability and efficiency of data transmission.
  • a feedback information transmission method includes: a first device determines a feedback resource of feedback information corresponding to the first data according to a first resource index of the received first data, the feedback resource Includes one or more of time domain resources, frequency domain resources, and sequence resources; the first device sends the feedback information through the feedback resource; the second device receives the feedback information through the feedback resource .
  • the feedback information of the first data when the feedback information of the first data is located in the same time slot, at least one of the time domain resources, frequency domain resources and sequence resources in the feedback resources occupied by the feedback information The species are different.
  • Both the first device and the second device may be vehicle-mounted devices, devices used by users, roadside units, network devices, and the like.
  • the resource index includes one or more of a time domain resource index (such as a time slot index), a frequency domain resource index, and a sequence indicator index.
  • the resource index may be used to indicate the resource used when carrying data and/or control information.
  • time domain resources include slots, mini-slots (that is, slots with a number of symbols less than the number of symbols in a complete slot), symbols, or other time domain granularity (such as system Frame, sub-frame).
  • Frequency domain resources include sub-channels, bands, carriers, bandwidth parts (BWP), resource blocks (RB), or resource pools.
  • BWP bandwidth parts
  • RB resource blocks
  • Sequence resources also called code domain resources, are related parameters used to indicate sequences.
  • the parameters of the sequence include the starting position of the sequence, the length of the sequence, and the initial value of the sequence; for low-bee-average ratio sequences (such as ZC sequences), the parameters of the sequence include root sequence, mask, scrambling code, and cyclic shift Or orthogonal cover codes, etc.
  • the second device receives the first data through the first resource, and the first device receives the first data through the first resource.
  • the process of determining the feedback resource of the feedback information by the second device is basically the same as the process of determining the feedback resource of the feedback information by the first device.
  • the first device determines different feedback resources for feedback information on consecutive N time slots in the same feedback period according to the resource index of the first data, and transmits them through different feedback resources.
  • Feedback information therefore, this method reduces or resolves conflicts between feedback resources, ensures efficient and accurate data transmission, and improves the reliability of the transmission link.
  • the feedback information is used to feed back affirmative responses or negative responses, or only used to feed back positive responses, or only used to feed back negative responses.
  • the positive response may also be called ACK, and the negative response may also be called NACK.
  • the first device determining the feedback resource of the feedback information corresponding to the first data according to the first resource index of the received first data includes one or more of the following methods:
  • the first device determines the second time slot index of the feedback information corresponding to the first data (such as the second time slot index) according to the first time slot index (such as the first time slot number) where the first data is located and the feedback period N. Slot number);
  • the first device determines the second frequency domain resource index of the feedback information corresponding to the first data according to the first frequency domain resource index where the first data is located;
  • the first device determines a sequence of feedback information corresponding to the first data according to the first time slot index and/or the first frequency domain resource index where the first data is located.
  • the first device determines one or more of the second time slot index of the feedback information, the second frequency domain resource index of the feedback information, and the sequence of the feedback information to ensure that the data transmitted in different time slots are First data.
  • the feedback information of these first data is in the same time slot for feedback, at least one of the time domain resources, frequency domain resources, and sequence resources of the feedback resources occupied by the feedback information is different, thereby reducing or solving feedback resources Conflict between.
  • the second frequency domain resource where the feedback information is located belongs to the first feedback resource subset, and the frequency domain feedback resource on the time slot where the feedback information is located includes at least two feedback resource subsets,
  • the first feedback resource subset is one of the at least two feedback resource subsets.
  • the time slot where the feedback information is located is the time slot indicated by the second time slot index.
  • the units of the first frequency domain resource where the first data is located and the second frequency domain resource where the feedback information is located are the same or different.
  • the at least two feedback resource subsets are N feedback resource subsets, and different feedback resource subsets correspond to feedback resource locations where the first data on different time slots are located.
  • the at least two feedback resource subsets correspond to at least two different feedback modes
  • the at least two different feedback modes include at least two of the following: feedback only affirmative response, feedback affirmative response or negative Reply, and only feedback a negative reply.
  • At least two different feedback messages include:
  • frequency domain resources belonging to different feedback resource subsets do not conflict when feedback information, thereby realizing the transmission of feedback information.
  • the feedback resources corresponding to the data in different time slots are corresponded to different subsets of the feedback resources in the same feedback time slot, so as to avoid interference between the feedback resources corresponding to the data in different time slots.
  • the first device determining the second frequency domain resource index of the feedback information corresponding to the first data according to the first frequency domain resource index where the first data is located includes:
  • the first device determines the second frequency domain resource index of the feedback information corresponding to the first data according to the first frequency domain resource index where the first data is located and the first parameter, where the first parameter includes One or more of the following: feedback period, first time slot index of the first data, preset first value, second time slot index where the feedback information corresponding to the first data is located, frequency domain The offset value, the feedback delay of the first device, and the total number of frequency-domain feedback resources on the time slot where the feedback information is located, where the feedback delay is from the first device receiving the first data to sending the The minimum time interval for feedback information.
  • the frequency domain offset value may be a pre-configured specific frequency domain offset value, or may correspond to the slot position where the first data is located, that is, the frequency domain offset value corresponding to different timeslot mappings, that is, It is said that the frequency domain offset value of the feedback information is related to the first time slot where the first data corresponding to the feedback information is located.
  • the first device determines the corresponding second frequency domain resource index for the feedback information of the first data in different time slots, so that the frequency domain resources of the feedback information are different, so as to resolve the conflict between the feedback resources.
  • the first device to determine the second frequency domain resource index of the feedback information corresponding to the first data according to the first frequency domain resource index where the first data is located and the first parameter includes :
  • the first device determines a third frequency domain resource index according to the ratio of the first frequency domain resource index to the feedback period; the first device determines a second frequency domain according to the third frequency domain resource index Resource index; or,
  • the first device determines a third frequency domain resource index according to the difference between the second time slot index and the first time slot index, the feedback period, and the first frequency domain resource index; the first The device determines the second frequency domain resource index according to the third frequency domain resource index; or,
  • the first device determines a third frequency domain resource according to the difference between the second time slot index and the first time slot index, the feedback delay, the feedback period, and the first frequency domain resource index Index; the first device determines a second frequency domain resource index according to the third frequency domain resource index; or,
  • the first device determines the third frequency domain resource index according to the difference between the second time slot index and the first time slot index, and the ratio of the first frequency domain resource index to the feedback period
  • the first device determines the second frequency domain resource index according to the third frequency domain resource index
  • the first device determines the third according to the difference between the second time slot index and the first time slot index, the feedback delay, and the ratio of the first frequency domain resource index to the feedback period. Frequency domain resource index; the first device determines a second frequency domain resource index according to the third frequency domain resource index; or,
  • the first device determines a third frequency domain resource index according to the first time slot index, the first frequency domain resource index, and the frequency domain offset value; the first device determines a third frequency domain resource index according to the third frequency The domain resource index determines the second frequency domain resource index.
  • the determining, by the first device, the second frequency domain resource index according to the third frequency domain resource index includes:
  • the first device determines the third frequency domain resource index as the second frequency domain resource index; or,
  • the first device modulates the third frequency domain resource request to the total number of frequency domain feedback resources, and determines the second frequency domain resource index according to the result of the modulus; or,
  • the first device rounds up the third frequency domain resource index, and determines the second frequency domain resource index according to the result of the round up; or,
  • the first device rounds down the third frequency domain resource index, and determines the second frequency domain resource index according to a result of the round down.
  • the first device determines the corresponding second frequency domain resource index for the feedback information of the first data in different time slots, so that the frequency domain resources of the feedback information are different, so as to resolve the conflict between the feedback resources.
  • the second frequency domain resource index includes the index of the feedback resource subset of the second frequency domain resource in the time slot where the feedback information is located, and/or the index of the feedback resource The second frequency domain resource index in the set.
  • the second frequency domain resource index in the feedback resource subset includes the index of the subchannel, PRB, or RE (Resource Element, RE) in the first feedback resource subset.
  • the feedback resource subset includes PRBs or REs
  • the feedback resource subset includes continuous PRBs or REs for carrying information, or discontinuously spaced PRBs or REs in the frequency domain.
  • Information PRB or RE includes PRBs or REs
  • the first device determining the sequence of feedback information corresponding to the first data according to the first time slot index and/or the first frequency domain resource index where the first data is located includes:
  • the first device determines the sequence parameter of the sequence of feedback information corresponding to the first data according to the first time slot index and/or the first frequency domain resource index where the first data is located;
  • the sequence parameter determines the sequence that carries the feedback information.
  • the sequence parameter includes one or more of the following: the initial value of the sequence, the initial position of the sequence, the root sequence number of the sequence, the cyclic shift value of the sequence, and the sequence The orthogonal cover code.
  • this manner can be combined with the second frequency domain resource index determination process in the foregoing manner to further ensure that there is no conflict between feedback resources. Even when the feedback frequency domain resources occupied on different time slots for sending data are the same, interference between sequences can be eliminated.
  • the first device determines the corresponding sequence parameters for the feedback information of the first data in different time slots, so that the sequence of the feedback information is different, so as to resolve the conflict between the feedback resources.
  • the first device determines the sequence parameter of the sequence of the feedback information corresponding to the first data includes :
  • the first device determines the root sequence number of the sequence according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the second parameter, and the first parameter includes one of the following One or more types: a preset second value, the second time slot number, the number of root sequence numbers, and the second frequency domain resource index of the feedback information.
  • the first device determines the corresponding root sequence numbers for the feedback information of the first data in different time slots, so that the sequence of the feedback information is different, so as to resolve the conflict between the feedback resources.
  • the first device determines the sequence parameter of the sequence of the feedback information corresponding to the first data includes :
  • the first device determines the cyclic shift value and/or the orthogonal cover code of the sequence according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the third parameter.
  • the third parameter includes one or more of the following: a preset third value, the second time slot number, the number of cyclic shift values, the number of orthogonal cover codes, the feedback period, the first 2. Frequency domain resource index and the feedback delay.
  • the first device determines the cyclic shift value of the sequence according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the third parameter.
  • the first device determines the orthogonal cover code of the sequence according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the third parameter.
  • the first device determines the cyclic shift value and the orthogonal cover code of the sequence according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the third parameter.
  • the first device determines the corresponding cyclic shift value and/or orthogonal cover code for the feedback information of the first data in different time slots, so that the sequence of the feedback information is different, so as to solve the problem between feedback resources. conflict.
  • the first device determines the cyclic shift and/or the sequence according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the third parameter Orthogonal cover codes include:
  • the first device determines the fourth value according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the third parameter;
  • the first device determines the fourth value as the cyclic shift value and/or the orthogonal cover code of the sequence; or, the first device compares the fourth value to the number of cyclic shift values and /Or the number of orthogonal cover codes is modulated, and the cyclic shift value and/or orthogonal cover code of the sequence is determined according to the result of the modulus.
  • the first device determines the fourth value as the cyclic shift value of the sequence.
  • the first device determines the fourth value as an orthogonal cover code.
  • the first device modulates the number of cyclic shift values by the fourth value, and determines the cyclic shift value of the sequence according to the result of the modulus.
  • the first device modulates the number of orthogonal cover codes by the fourth value to determine the orthogonal cover codes of the sequence according to the result of the modulation.
  • the first device determines the corresponding cyclic shift value and/or orthogonal cover code for the feedback information of the first data in different time slots, so that the sequence of the feedback information is different, so as to solve the problem between feedback resources. conflict.
  • the first device determines the sequence parameter of the sequence of the feedback information corresponding to the first data includes :
  • the first device modulates the first time slot index to the total number of cyclic shifts, and determines the cyclic shift value according to the modulo result; or,
  • the first device determines the cyclic shift value according to the difference between the first time slot index and the second time slot index; or,
  • the first device modulates the total number of cyclic shifts based on the difference between the first time slot index and the second time slot index, and determines a cyclic shift value according to the result of the modulus.
  • the first device determines the corresponding cyclic shift value for the feedback information of the first data in different time slots, so that the sequence of the feedback information is different, so as to resolve the conflict between the feedback resources.
  • the sequence parameter further includes at least two different sequence parameter subgroups, the different sequence parameter subgroups corresponding to at least two different feedback modes, and the at least two different feedback modes It includes one or more of the following: feedback only positive response, feedback positive response or negative response, and feedback only negative response.
  • the feedback resources include at least two groups, and the at least two groups of feedback resources respectively correspond to different processing capabilities.
  • the at least two sets of feedback resources include: a first set of feedback resources and a second set of feedback resources;
  • the first feedback resource set corresponds to the first feedback processing capability
  • the second feedback resource set corresponds to the second feedback processing capability.
  • the first feedback processing capability and the second feedback processing capability both refer to the processing capability of the first device that sends the feedback information, and the processing capability of the first device corresponding to the first feedback processing capability corresponds to the first feedback processing capability corresponding to the second feedback processing capability.
  • the processing power of the equipment is different.
  • the at least two groups of feedback resources include:
  • the first frequency domain resource and the second frequency domain resource are connected to each other.
  • the first sequence group and the second sequence group are the first sequence group and the second sequence group.
  • the first cyclic shift value group and the second cyclic shift value group are identical to each other.
  • the first orthogonal cover code group and the second orthogonal cover code group are identical to each other; or,
  • the first device determines the feedback resource set to which the processing capability belongs according to the processing capability
  • the first device sends the feedback information according to the feedback resource set to which it belongs and the feedback resource.
  • this method can be combined with the second frequency domain resource index determination process in the foregoing manner, and/or the sequence determination process in the foregoing manner, to further ensure that there is no conflict between feedback resources.
  • the feedback resources on each feedback slot are divided into multiple groups, so as to avoid overlapping feedback resources of first devices with different processing capabilities and causing corresponding interference.
  • a feedback information transmission method includes: a second device determines a feedback resource of feedback information corresponding to the first data according to a first resource index of the first data, and the feedback resource includes time One or more of domain resources, frequency domain resources, and sequence resources; the second device receives the feedback information through the feedback resource.
  • the feedback information of the first data when the feedback information of the first data is located in the same time slot, at least one of the time domain resources, frequency domain resources and sequence resources in the feedback resources occupied by the feedback information The species are different.
  • the second device determines different feedback resources for the feedback information on consecutive N time slots in the same feedback cycle according to the resource index of the first data, and transmits them through different feedback resources. Feedback information, therefore, this method reduces or resolves conflicts between feedback resources and ensures efficient and accurate data transmission.
  • the feedback information is used to feed back affirmative responses or negative responses, or only used to feed back positive responses, or only used to feed back negative responses.
  • the second device determining the feedback resource of the feedback information corresponding to the first data according to the first resource index of the received first data includes one or more of the following methods:
  • the second device determines the second time slot index of the feedback information corresponding to the first data according to the first time slot index where the first data is located and the feedback period N;
  • the second device determines the second frequency domain resource index of the feedback information corresponding to the first data according to the first frequency domain resource index where the first data is located;
  • the second device determines a sequence of feedback information corresponding to the first data according to the first time slot index and/or the first frequency domain resource index where the first data is located.
  • the second device determines one or more of the second time slot index of the feedback information, the second frequency domain resource index of the feedback information, and the sequence of the feedback information to ensure that the data transmitted in different time slots are First data.
  • the feedback information of these first data is in the same time slot for feedback, at least one of the time domain resources, frequency domain resources, and sequence resources of the feedback resources occupied by the feedback information is different, thereby reducing or solving feedback resources Conflict between.
  • the second frequency domain resource where the feedback information is located belongs to the first feedback resource subset, and the frequency domain feedback resource on the time slot where the feedback information is located includes at least two feedback resource subsets,
  • the first feedback resource subset is one of the at least two feedback resource subsets.
  • the at least two feedback resource subsets are N feedback resource subsets, and different feedback resource subsets correspond to feedback resource locations where the first data on different time slots are located.
  • the at least two feedback resource subsets correspond to at least two different feedback modes
  • the at least two different feedback modes include at least two of the following: feedback only affirmative response, feedback affirmative response or negative Reply, and only feedback a negative reply.
  • frequency domain resources belonging to different feedback resource subsets do not conflict when feedback information, thereby realizing the transmission of feedback information.
  • the second device determining the second frequency domain resource index of the feedback information corresponding to the first data according to the first frequency domain resource index where the first data is located includes:
  • the second device determines the second frequency domain resource index of the feedback information corresponding to the first data according to the first frequency domain resource index where the first data is located and the first parameter, where the first parameter includes One or more of the following: feedback period, first time slot index of the first data, preset first value, second time slot index where the feedback information corresponding to the first data is located, frequency domain The offset value, the feedback delay of the first device, and the total number of frequency-domain feedback resources on the time slot where the feedback information is located, where the feedback delay is from the first device receiving the first data to sending the The minimum time interval for feedback information.
  • the frequency domain offset value may be a pre-configured specific frequency domain offset value, or may correspond to the slot position where the first data is located, that is, the frequency domain offset value corresponding to different timeslot mappings, that is, It is said that the frequency domain offset value of the feedback information is related to the first time slot where the first data corresponding to the feedback information is located.
  • the second device determines the corresponding second frequency domain resource index for the feedback information of the first data in different time slots, so that the frequency domain resources of the feedback information are different, so as to resolve the conflict between the feedback resources.
  • the second device determining the second frequency domain resource index of the feedback information corresponding to the first data according to the first frequency domain resource index where the first data is located and the first parameter includes :
  • the second device determines a third frequency domain resource index according to the ratio of the first frequency domain resource index to the feedback period; the second device determines a second frequency domain according to the third frequency domain resource index Resource index; or,
  • the second device determines a third frequency domain resource index according to the difference between the second time slot index and the first time slot index, the feedback period, and the first frequency domain resource index; the second The device determines the second frequency domain resource index according to the third frequency domain resource index; or,
  • the second device determines a third frequency domain resource according to the difference between the second time slot index and the first time slot index, the feedback delay, the feedback period, and the first frequency domain resource index Index; the second device determines a second frequency domain resource index according to the third frequency domain resource index; or,
  • the second device determines the third frequency domain resource index according to the difference between the second time slot index and the first time slot index, and the ratio of the first frequency domain resource index to the feedback period
  • the second device determines the second frequency domain resource index according to the third frequency domain resource index
  • the second device determines the third according to the difference between the second time slot index and the first time slot index, the feedback delay, and the ratio of the first frequency domain resource index to the feedback period. Frequency domain resource index; the second device determines a second frequency domain resource index according to the third frequency domain resource index; or,
  • the second device determines a third frequency domain resource index according to the first time slot index, the first frequency domain resource index, and the frequency domain offset value; the second device determines a third frequency domain resource index according to the third The frequency domain resource index determines the second frequency domain resource index.
  • the second device determining the second frequency domain resource index according to the third frequency domain resource index includes:
  • the second device determines the third frequency domain resource index as the second frequency domain resource index; or,
  • the second device modulates the third frequency domain resource request to the total number of frequency domain feedback resources, and determines the second frequency domain resource index according to the result of the modulus; or,
  • the second device rounds up the third frequency domain resource index, and determines the second frequency domain resource index according to the result of the round up; or,
  • the second device rounds down the third frequency domain resource index, and determines the second frequency domain resource index according to a result of the round down.
  • the second device determines the corresponding second frequency domain resource index for the feedback information of the first data in different time slots, so that the frequency domain resources of the feedback information are different, so as to resolve the conflict between the feedback resources.
  • the second frequency domain resource index includes the index of the feedback resource subset of the second frequency domain resource in the time slot where the feedback information is located, and/or the index of the feedback resource The second frequency domain resource index in the set.
  • the feedback resource subset includes PRBs or REs
  • the feedback resource subset includes continuous PRBs or REs for carrying information, or discontinuously spaced PRBs or REs in the frequency domain.
  • Information PRB or RE includes PRBs or REs
  • the second device determining the sequence of feedback information corresponding to the first data according to the first time slot index and/or the first frequency domain resource index where the first data is located includes:
  • the second device determines the sequence parameter of the sequence of feedback information corresponding to the first data according to the first time slot index and/or the first frequency domain resource index where the first data is located;
  • the sequence parameter determines the sequence that carries the feedback information.
  • the sequence parameter includes one or more of the following: the initial value of the sequence, the initial position of the sequence, the root sequence number of the sequence, the cyclic shift value of the sequence, and the sequence The orthogonal cover code.
  • this manner can be combined with the second frequency domain resource index determination process in the foregoing manner to further ensure that there is no conflict between feedback resources.
  • the second device determines corresponding sequence parameters for the feedback information of the first data in different time slots, so that the sequence of the feedback information is different, so as to resolve the conflict between the feedback resources.
  • the second device determines the sequence parameter of the sequence of the feedback information corresponding to the first data includes :
  • the second device determines the root sequence number of the sequence according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the second parameter, and the first parameter includes one of the following One or more types: a preset second value, the second time slot number, the number of root sequence numbers, and the second frequency domain resource index of the feedback information.
  • the second device determines the corresponding root sequence numbers for the feedback information of the first data in different time slots, so that the sequence of the feedback information is different, so as to resolve the conflict between the feedback resources.
  • the second device determines the sequence parameter of the sequence of the feedback information corresponding to the first data includes :
  • the second device determines the cyclic shift value and/or the orthogonal cover code of the sequence according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the third parameter.
  • the third parameter includes one or more of the following: a preset third value, the second time slot number, the number of cyclic shift values, the number of orthogonal cover codes, the feedback period, the first 2. Frequency domain resource index and the feedback delay.
  • the second device determines the corresponding cyclic shift value and/or orthogonal cover code for the feedback information of the first data in different time slots, so that the sequence of the feedback information is different, so as to solve the problem of feedback resources. conflict.
  • the second device determines the cyclic shift and/or the sequence according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the third parameter Orthogonal cover codes include:
  • the second device determines the fourth value according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the third parameter;
  • the second device determines the fourth value as the cyclic shift value and/or orthogonal cover code of the sequence; or, the first device compares the fourth value to the number of cyclic shift values and /Or the number of orthogonal cover codes is modulated, and the cyclic shift value and/or orthogonal cover code of the sequence is determined according to the result of the modulus.
  • the second device determines the corresponding cyclic shift value and/or orthogonal cover code for the feedback information of the first data in different time slots, so that the sequence of the feedback information is different, so as to solve the problem of feedback resources. conflict.
  • the second device determines the sequence parameter of the sequence of the feedback information corresponding to the first data includes :
  • the second device modulates the first time slot index to the total number of cyclic shifts, and determines the cyclic shift value according to the result of the modulo; or,
  • the second device determines the cyclic shift value according to the difference between the first time slot index and the second time slot index; or,
  • the second device modulates the total number of cyclic shifts based on the difference between the first time slot index and the second time slot index, and determines a cyclic shift value according to the result of the modulus.
  • the second device determines the corresponding cyclic shift value for the feedback information of the first data in different time slots, so that the sequence of the feedback information is different, so as to resolve the conflict between the feedback resources.
  • the sequence parameter further includes at least two different sequence parameter subgroups, the different sequence parameter subgroups corresponding to at least two different feedback modes, and the at least two different feedback modes It includes one or more of the following: feedback only positive response, feedback positive response or negative response, and feedback only negative response.
  • the feedback resources include at least two groups, and the at least two groups of feedback resources respectively correspond to different processing capabilities.
  • the at least two sets of feedback resources include: a first set of feedback resources and a second set of feedback resources;
  • the first feedback resource set corresponds to the first feedback processing capability
  • the second feedback resource set corresponds to the second feedback processing capability.
  • the first feedback processing capability and the second feedback processing capability both refer to the processing capability of the first device that sends the feedback information, and the processing capability of the first device corresponding to the first feedback processing capability corresponds to the first feedback processing capability corresponding to the second feedback processing capability.
  • the processing power of the equipment is different.
  • the at least two groups of feedback resources include:
  • the first frequency domain resource and the second frequency domain resource are connected to each other.
  • the first sequence group and the second sequence group are the first sequence group and the second sequence group.
  • the first cyclic shift value group and the second cyclic shift value group are identical to each other.
  • the first orthogonal cover code group and the second orthogonal cover code group are identical to each other; or,
  • the second device determines the feedback resource set to which the processing capability belongs according to the processing capability
  • the second device receives the feedback information according to the feedback resource set to which it belongs and the feedback resource.
  • this method can be combined with the second frequency domain resource index determination process in the foregoing manner, and/or the sequence determination process in the foregoing manner, to further ensure that there is no conflict between feedback resources.
  • the second device detects the feedback information in the at least two sets of feedback resources, and when the first device detects negative response feedback information in any set of feedback resources, The second device retransmits the first data.
  • a method for sending information includes: a third device determines a first symbol set and a second symbol set that carry first information, wherein the bandwidth of the first symbol set is not less than a preset value The third device sends the first symbol set and the second symbol set; the fourth device receives the first symbol set and the second symbol set, and the fourth device passes the first symbol Set and the second symbol set to obtain the first information.
  • the first information is a data packet, instruction information or feedback information when sending data.
  • the preset value is 2, 4, or 8 PRBs, or the number of PRBs corresponding to the preset value is a positive integer not less than 10, for example, the preset value is 10, 12, or 20 PRBs.
  • the first symbol set is used for the receiver of the first information to perform automatic gain control.
  • the first information can be sent and received, and the AGC detection can be supported.
  • the first information carried by the first symbol set is the same as the first information carried by the second symbol set, or the first information carried by the first symbol set is the second A subset of the first information carried by the symbol set.
  • the first symbol set and the second symbol set are adjacent in the time domain, and the second symbol set is after the first symbol set.
  • the first symbol set includes at least one symbol
  • the second symbol set includes at least one symbol
  • the number of symbols in the second symbol set is not less than the first symbol The number of symbols in the set.
  • the first symbol set is the first symbol for sending the first information
  • the second symbol set is the symbol that carries the first information after the first symbol set .
  • the method further includes:
  • the bandwidth of the first symbol set is the same as the bandwidth of the second symbol set, and is continuously mapped in the frequency domain; or,
  • the bandwidth of the first symbol set is the same as the bandwidth of the second symbol set, and is not continuously mapped at equal intervals in the frequency domain; or,
  • the bandwidth of the first symbol set is greater than the bandwidth of the second symbol set.
  • the bandwidth of the first symbol set is the same as the bandwidth of the second symbol set
  • the discontinuous mapping at equal intervals in the frequency domain includes:
  • every M REs are mapped to one RE carrying the first information, and no data or signals are mapped on the other M-1 REs.
  • the value of M is 10, 12, or the number of physical resource blocks corresponding to the preset value.
  • bandwidth of the first symbol set is the same as the bandwidth of the second symbol set includes:
  • REs in each symbol in the first symbol set are a subset of REs in each symbol in the second symbol set; or,
  • the first symbol set and the second symbol set completely carry the encoded transmission block of the first information.
  • the bandwidth of the first symbol set being greater than the bandwidth of the second symbol set includes:
  • each M RE is mapped to an RE that carries the first information, and no data or signal is mapped on the other M-1 REs, and each of the second symbols is The symbols are continuously mapped in the frequency domain.
  • the method further includes:
  • the signal of each RE on at least one symbol in the first symbol set corresponds to the same signal on each RE on at least one symbol in the second symbol set.
  • a method for sending information includes: a fourth device receiving a first symbol set and a second symbol set, wherein the first symbol set and the second symbol set carry first information , The bandwidth of the first symbol set is not less than a preset value; the fourth device obtains the first information through the first symbol set and the second symbol set.
  • the first information is a data packet, instruction information or feedback information when sending data.
  • the preset value is 2, 4, or 8 PRBs, or the number of PRBs corresponding to the preset value is a positive integer not less than 10, for example, the preset value is 10, 12, or 20 PRBs.
  • the fourth device performs automatic gain control according to the first symbol set.
  • the first information can be sent and received, and the AGC detection can be supported.
  • the first information carried by the first symbol set is the same as the first information carried by the second symbol set, or the first information carried by the first symbol set is the second A subset of the first information carried by the symbol set.
  • the first symbol set and the second symbol set are adjacent in the time domain, and the second symbol set is after the first symbol set.
  • the first symbol set includes at least one symbol
  • the second symbol set includes at least one symbol
  • the number of symbols in the second symbol set is not less than the first symbol The number of symbols in the set.
  • the first symbol set is the first symbol for sending the first information
  • the second symbol set is the symbol that carries the first information after the first symbol set .
  • the method further includes:
  • the bandwidth of the first symbol set is the same as the bandwidth of the second symbol set, and is continuously mapped in the frequency domain; or,
  • the bandwidth of the first symbol set is the same as the bandwidth of the second symbol set, and is not continuously mapped at equal intervals in the frequency domain; or,
  • the bandwidth of the first symbol set is greater than the bandwidth of the second symbol set.
  • the bandwidth of the first symbol set is the same as the bandwidth of the second symbol set
  • the discontinuous mapping at equal intervals in the frequency domain includes:
  • every M REs are mapped to one RE carrying the first information, and no data or signals are mapped on the other M-1 REs.
  • the value of M is 10, 12, or the number of physical resource blocks corresponding to the preset value.
  • bandwidth of the first symbol set is the same as the bandwidth of the second symbol set includes:
  • REs in each symbol in the first symbol set are a subset of REs in each symbol in the second symbol set; or,
  • the first symbol set and the second symbol set completely carry the encoded transmission block of the first information.
  • the bandwidth of the first symbol set being greater than the bandwidth of the second symbol set includes:
  • each M RE is mapped to an RE that carries the first information, and no data or signal is mapped on the other M-1 REs, and each of the second symbols is The symbols are continuously mapped in the frequency domain.
  • the method further includes:
  • the signal of each RE on at least one symbol in the first symbol set corresponds to the same signal on each RE on at least one symbol in the second symbol set.
  • a feedback information transmission device in a fifth aspect, has the function of implementing the behavior in the method example of the first aspect or the second aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processing unit and a transceiver unit, and these units can perform the corresponding steps or functions in the method examples of the first aspect or the second aspect. For details, refer to the detailed description in the method examples. Do not repeat them here.
  • the apparatus may be located in the first device or the second device, or be the first device or the second device.
  • a feedback information transmission device in a sixth aspect, has the function of implementing the first device or the second device described in the foregoing method aspect, and includes the function for implementing any one of the first aspect, the second aspect, the first aspect, or the second aspect Means corresponding to the steps or functions described in any of the possible implementation modes.
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the device may be the first device or the second device.
  • the foregoing apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform the corresponding function of the first device or the second device in the foregoing method.
  • the device may further include one or more memories, where the memory is used for coupling with the processor and stores necessary program instructions and/or data for the device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the foregoing device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the device executes the first aspect, the second aspect, and the first aspect Any one of the possible implementation manners, or the method completed by the first device or the second device in any one of the possible implementation manners of the second aspect.
  • the foregoing apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the first device or the second device in the foregoing method.
  • the apparatus may further include one or more memories, where the memories are configured to be coupled with the processor and store necessary program instructions and/or data for the terminal device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the device may be located in the first device or the second device, or be the first device or the second device.
  • the foregoing device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store computer programs
  • the processor is used to run the computer programs in the memory so that the device executes the first aspect, the second aspect, and the first aspect. Any possible implementation manner, or a method completed by the first device or the second device in any possible implementation manner of the second aspect.
  • a computer-readable storage medium for storing a computer program.
  • the computer program includes methods for executing any one of the first aspect, the second aspect, the first aspect, or the second aspect Instructions for the method in any one of the possible implementation modes.
  • a computer program product comprising: computer program code, when the computer program code runs on a computer, the computer executes the first aspect, the second aspect, and the first aspect. Any one of the possible implementation manners, or any one of the possible implementation manners of the second aspect.
  • a feedback information transmission device such as a chip system, etc., which is connected to a memory and is used to read and execute the software program stored in the memory, and execute the above-mentioned first, second, and first aspects.
  • a method in any possible implementation manner in one aspect, or any possible implementation manner in the second aspect.
  • an information transmission device is provided, and the device has the function of realizing the behavior in the method example of the first aspect or the second aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processing unit and a transceiver unit, and these units can perform the corresponding steps or functions in the method examples of the first aspect or the second aspect. For details, refer to the detailed description in the method examples. Do not repeat them here.
  • the device may be located in the third device or the fourth device, or be the third device or the fourth device.
  • an information transmission device has the function of implementing the third device or the fourth device described in the foregoing method aspect, and includes the function for implementing any one of the third aspect, the fourth aspect, and the third aspect, or the fourth aspect Means corresponding to the steps or functions described in any one of the possible implementation modes.
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the device may be a third device or a fourth device.
  • the foregoing apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the third device or the fourth device in the foregoing method.
  • the device may further include one or more memories, where the memory is used for coupling with the processor and stores necessary program instructions and/or data for the device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the foregoing device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the device executes the third aspect, the fourth aspect, and the third aspect Any one of the possible implementation manners, or the method completed by the third device or the fourth device in any one of the fourth aspect possible implementation manners.
  • the foregoing apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the third device or the fourth device in the foregoing method.
  • the apparatus may further include one or more memories, where the memories are configured to be coupled with the processor and store necessary program instructions and/or data for the terminal device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the device may be located in the third device or the fourth device, or be the third device or the fourth device.
  • the foregoing device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store computer programs
  • the processor is used to run the computer programs in the memory so that the device executes the third, fourth, and third aspects. Any possible implementation manner, or a method completed by the third device or the fourth device in any possible implementation manner of the fourth aspect.
  • a computer-readable storage medium for storing a computer program.
  • the computer program includes a method for executing any one of the third aspect, the fourth aspect, and the third aspect, or the fourth aspect. Any one of the possible implementations of the method in the aspect.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the aforementioned third, fourth, and third aspects.
  • an information transmission device such as a chip system, which is connected to a memory, and is used to read and execute the software program stored in the memory, and execute the above-mentioned third, fourth, and fourth aspects.
  • the method in any one of the possible implementation manners of the three aspects, or any one of the possible implementation manners of the fourth aspect.
  • Figure 1 is a schematic diagram of different feedback periods of feedback information
  • Figure 2 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a data transmission process provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a flow of feedback information transmission provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of feedback information transmission provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of feedback information transmission provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of feedback information transmission provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of feedback information transmission provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of feedback information transmission provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of feedback information transmission provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a data transmission process provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a data channel provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a data channel provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a data channel provided by an embodiment of the present application.
  • 15 is a schematic structural diagram of a feedback information transmission device provided by an embodiment of the present application.
  • 16 is a schematic structural diagram of a feedback information transmission device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of an information transmission device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of an information transmission device provided by an embodiment of the present application.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, such as the fourth generation (4th Generation, 4G), 4G systems including LTE systems, and worldwide interoperability for microwave access (WiMAX) communication systems, Future 5th Generation (5G) systems, such as NR, and future communication systems, such as 6G systems.
  • 4G fourth generation
  • 5G Future 5th Generation
  • 6G future communication systems
  • the technical solutions provided by the embodiments of the present application can be applied to cellular links, and can also be applied to links between devices, such as device-to-device (D2D) links.
  • the D2D link or the V2X link may also be called a side link (SL), where the side link may also be called a side link or a secondary link.
  • the aforementioned terms all refer to links established between devices of the same type, and have the same meaning.
  • the so-called devices of the same type can be the link between the terminal device and the terminal device, the link between the base station and the base station, and the link between the relay node and the relay node.
  • This application The embodiment does not limit this.
  • D2D links defined by 3GPP version (Rel)-12/13, and there are also car-to-car, car-to-mobile, or car-to-any entity defined by 3GPP for the Internet of Vehicles.
  • V2X link including Rel-14/15. It also includes the V2X link based on the NR system of Rel-16 and subsequent versions that are currently being studied by 3GPP.
  • the term "exemplary” is used to indicate an example, illustration, or illustration. Any embodiment or design solution described as an "example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. Rather, the term example is used to present the concept in a concrete way.
  • Terminal devices include devices that provide users with voice and/or data connectivity. For example, they may include handheld devices with a wireless connection function or processing devices connected to a wireless modem.
  • the device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point (access point, AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), aircraft (such as drones, manned aircraft, hot air balloons, etc.), user terminal equipment (user terminal), user agent (user agent), or user equipment (user device), etc.
  • UE user equipment
  • wireless terminal equipment mobile terminal equipment
  • mobile terminal equipment subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point (access point, AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), aircraft (such as drones, manned aircraft, hot air balloons, etc.), user terminal equipment (user terminal), user agent (user agent), or user equipment (user device), etc.
  • it may include mobile phones (or "cellular"
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • the device may also be a wearable device or the like.
  • Wearable devices can also be called wearable smart devices. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the vehicle-mounted terminal equipment is, for example, also called on-board unit (OBU) ; If it is located on a roadside terminal device (for example, placed in a roadside unit or installed in a roadside unit), it can be regarded as a roadside terminal device.
  • the roadside terminal device is also called a roadside unit (RSU). ).
  • the terminal device of the present application may also be an on-board module, on-board module, on-board component, on-board chip, or on-board unit built into a vehicle as one or more components or units. The vehicle passes through the built-in on-board module, on-board module, An on-board component, on-board chip, or on-board unit can implement the method of the present application.
  • the device may also include a network device, and the network device includes an access network (access network, AN) device, such as a base station (for example, an access point), which may refer to an or Multiple cells communicate with wireless terminal devices, or, for example, a network device in a V2X technology is a roadside unit (RSU).
  • the base station can be used to convert the received air frame and Internet Protocol (IP) packets to each other, as a router between the terminal device and the rest of the access network, where the rest of the access network may include an IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), or It can also include the next generation node B (gNB) in the 5G NR system, or it can also include the centralized unit (CU) and distributed unit in the cloud radio access network (CloudRAN) system.
  • Distributed unit (DU) is not limited in the embodiment of the present application.
  • the present invention can be used for links between devices of the same type, and can also be used for links between terminals and network devices, which is not limited by the present invention.
  • the transmitter also called the transmitting device, corresponds to the receiver.
  • the transmitter is used to transmit information, such as data packets, control information, instruction information, or feedback information.
  • a receiver also called a receiving device, corresponds to a transmitter.
  • the receiver is used to receive information sent by the transmitter, and the receiver is also used to send feedback information to the transmitter, that is, the receiver can be understood as sending feedback information
  • the transmitter means that a device can be used as both a transmitter and a receiver.
  • Transmission link including the side link between two devices and the uplink and downlink between the terminal device and the network device.
  • Sidelink mainly refers to the link established between devices of the same type, and can also be called side link, secondary link or auxiliary link, etc. This name is not used in the embodiments of this application. limited.
  • the equipment of the same type can be a link between a terminal device and a terminal device, a link between a base station and a base station, or a link between a relay node and a relay node, etc.
  • the implementation of this application The example does not limit this.
  • V2X technology is an application of D2D technology in the Internet of Vehicles, or V2X is a specific D2D or sidelink technology.
  • the side link is a direct link connection between two V2X terminals
  • the V2X terminal is a terminal with a V2X function, such as the same type of equipment mentioned above.
  • SL transmission the data transmission of two V2X terminals on the side link is called SL transmission.
  • Two V2X terminals can establish a side link connection before SL transmission.
  • the V2X terminal as the initiator sends a request to establish a side link connection to the network device. If the network device agrees to the V2X terminal to establish a side link connection, it sends configuration information for establishing a side link connection to the V2X terminal , The V2X terminal establishes a side link connection with another V2X terminal according to the configuration information sent by the network device.
  • the resource index includes one or more of a time slot index, a frequency domain resource index, and a sequence indicator index.
  • the resource index is used to indicate the resource used when carrying data and/or control information.
  • the resource index corresponding to the first data is the first resource index
  • the resource index corresponding to the feedback information of the first data is the second resource index.
  • Feedback resources include at least one of time domain resources, frequency domain resources and sequence resources.
  • Time domain resources including slots, mini-slots (that is, time slots whose number of symbols is less than the number of symbols in a complete slot), symbols or other time-domain granularities (such as system frames, sub-slots) Frame), one of the time slots may include at least one symbol, for example, 14 symbols, or 12 symbols.
  • a slot can be composed of at least one of symbols used for downlink transmission, flexible symbols, and symbols used for uplink transmission.
  • the composition of such a slot is called a different slot format (slot format).
  • slot format format, SF
  • the time slot can have different time slot types, and the number of symbols included in different time slot types is different. For example, a mini slot contains less than 7 symbols, and a normal slot contains 7 symbols or 14 symbols. Symbols etc. Depending on the subcarrier spacing, the length of each symbol can be different, so the slot length can be different.
  • time slot aggregation technology is also introduced, that is, network equipment can allocate multiple time slots to the same terminal for data transmission.
  • the terminal can perform uplink data scheduling on multiple allocated time slots, such as physical uplink shared channel (PUSCH) scheduling, or can perform downlink data scheduling on multiple allocated time slots, such as physical uplink shared channel.
  • PUSCH physical uplink shared channel
  • PDSCH physical Downlink Shared CHannel
  • Frequency domain resources include sub-channels, bands, carriers, bandwidth parts (Band Width Part, BWP), resource blocks (Resource Block, RB), or resource pools.
  • BWP Band Width Part
  • RB Resource Block
  • a subchannel is the smallest unit of frequency domain resources occupied by a physical side-line shared channel.
  • a subchannel may include one or more resource blocks (RB).
  • the bandwidth of the wireless communication system in the frequency domain may include multiple RBs.
  • the included PRBs may be 6, 15, 25, 50, etc.
  • one RB can include several sub-carriers.
  • one RB includes 12 sub-carriers, where each sub-carrier interval can be 15 kHz.
  • other sub-carrier intervals can also be used, such as 3.75 kHz. , 30kHz, 60kHz or 120kHz sub-carrier spacing, there is no limitation here.
  • Sequence resources also called code domain resources, are related parameters used to indicate sequences.
  • the parameters of the sequence include the starting position of the sequence, the length of the sequence, and the initial value of the sequence; for low-bee-average ratio sequences (such as ZC (Zadoff–Chu) sequences), the parameters of the sequence include root sequence, mask, scrambling Code, Cyclic Shift (CS) or Orthogonal Cover Code (OCC), etc.
  • the initial value of the sequence refers to the initial value of the shift register that generates the sequence for a random sequence (such as Gold sequence, m sequence).
  • the random sequence used in transmission a is the starting position of the random sequence, L is the length of the random sequence, generally a is a non-negative integer, such as a is 0, or a is 2, etc., where n is each symbol of the determined sequence
  • the intermediate variable is used.
  • V2X data transmission method In V2X, it is mainly the communication between terminal equipment and terminal equipment.
  • the current standard protocols support broadcast, multicast, and unicast.
  • the broadcast mode means that the terminal device as the sender uses broadcast mode to send data.
  • Multiple terminal device ends can receive sidelink control information (SCI) from the sender or carried on the side link Data information on the sidelink shared channel (SSCH).
  • SCI is sometimes referred to as scheduling assignment (Schedule Assignment, SA). In the present invention, unless otherwise specified, the two are equivalent.
  • the way to ensure that all terminal devices parse the control information from the sender is that the sender does not scramble the control information, or the sender uses a scrambling code known to all terminal devices to scramble the control information .
  • the multicast mode is similar to broadcast transmission.
  • the terminal device as the sender uses the multicast mode for data transmission, and a group of terminal devices can parse SCI or SSCH.
  • the unicast mode is one terminal device sending data to another terminal device, and other terminal devices do not need or cannot parse the data.
  • Feedback information including the feedback information that the terminal device needs to receive and/or the feedback information that needs to be sent, where the feedback information that the terminal device needs to receive is sent to the terminal device by other devices, and the feedback information that the terminal device needs to send is sent by the terminal device Send to other devices.
  • the other devices may be other terminal devices or network devices.
  • the specific feedback information includes hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) feedback information, etc.
  • HARQ Hybrid Automatic Repeat reQuest
  • the present invention is applied to a side link, the feedback information for data is usually used in unicast or multicast transmission.
  • PSFCH Physical Sidelink Feedback Channel
  • the ZC sequence also called Zadoff–Chu, Frank–Zadoff–Chu (FZC) sequence or Chu sequence, is one of the perfect sequences. This sequence has ideal periodic autocorrelation characteristics.
  • the main parameters for generating the ZC sequence include one or more of the root sequence number of the sequence, the cyclic shift value and the orthogonal cover code.
  • the sequence used in the present invention can be a pseudo-random sequence, a ZC sequence, or other low-peak ratio sequences (such as a sequence with a length of 6, 12, 18, 24 defined in the LTE or NR Rel-15 protocol).
  • Reference signal which sends a physical signal carrying a sequence to realize a specific function. According to different functions, there are different types of reference signals.
  • the reference signal When the reference signal is used to send feedback information, it may be a demodulation reference signal used to carry feedback information, or it may be a sequence directly used to carry feedback information. It mainly refers to a reference signal that transmits feedback information for data.
  • the device that sends the reference signal can be the first device that sends the feedback information, the second device that sends the first data, or the device that performs measurement or provides a synchronization source.
  • the reference signal has the following purposes: used for data demodulation, carrying information, channel state information (Channel State Information, CSI), radio resource management (Radio Resource Management, RRM) or radio link monitoring (Radio Link Monitoring, RLM) measurement , Synchronization, phase noise tracking, etc.
  • CSI Channel State Information
  • RRM Radio Resource Management
  • RLM Radio Link Monitoring
  • the reference signal may be a demodulation reference signal (Demodulation Reference Signal, DMRS) used by a Physical Sidelink Shared Channel (PSSCH), and may be a Physical Sidelink Control Channel (Physical Sidelink Control Channel).
  • DMRS Demodulation Reference Signal
  • PSSCH Physical Sidelink Shared Channel
  • Physical Sidelink Control Channel Physical Sidelink Control Channel
  • the reference signal when the reference channel is used for CSI, RRM, or RLM measurement, the reference signal can be RS, or channel sounding reference signal (Sounding Reference Signal, SRS), or CSI-RS, etc.; when the reference signal is synchronized, the reference signal It may be a reference signal used by a physical sidelink broadcast channel (PSBCH). In addition, the reference signal in the embodiment of the present application may also be a reference signal used for scrambling during data or control information transmission.
  • SRS channel sounding reference signal
  • CSI-RS Channel sounding Reference Signal
  • “System” and “network” in the embodiments of this application can be used interchangeably.
  • “Multiple” refers to two or more. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application.
  • “At least one” can be understood as one or more, for example, one, two or more. For example, including at least one means including one, two or more, and it does not limit which ones are included. For example, if at least one of A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C are included. In the same way, the understanding of "at least one" and other descriptions is similar.
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects.
  • first time slot and the second time slot are only for distinguishing different time slots, but not to limit the priority or importance of the two time slots.
  • the Internet of Things is a network that is extended and expanded on the basis of the Internet provided by the communication system. It can collect any needs through various devices and technologies such as various information sensors, radio frequency identification technology, global positioning system, infrared sensors, laser scanners, etc.
  • the objects or processes that are monitored, connected, and interacted are connected through various possible networks to realize the ubiquitous connection between things and people.
  • the core and foundation of the Internet of Things is still the Internet, which is a network extended and expanded on the basis of the Internet, and its user end extends and extends to any information exchange and communication between things.
  • the application field of the Internet of Things involves all aspects, such as the application in intelligent transportation.
  • the Internet of Vehicles mainly refers to the on-vehicle equipment on the vehicle to effectively route the dynamic information of all vehicles in the information network platform through wireless communication technology, and to provide different functional services in the operation of the vehicle connection, aiming to improve the safety of the vehicle and automate driving. And improve traffic efficiency.
  • the realization of the Internet of Vehicles mainly relies on the V2X technology.
  • the core of the V2X technology is to realize the interconnection of the vehicle connection and everything. It is mainly used in the vehicle to everything (V2X) scene.
  • V2X specifically includes the vehicle and the vehicle to Vehicle, V2V), Vehicle-to-Pedestrian (V2P), Vehicle-to-Infrastructure (V2I), Vehicle-to-Network (V2N) four applications Scenes.
  • V2V refers to the communication between vehicles;
  • V2P refers to the communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers);
  • V2I refers to the communication between vehicles and roadside units (RSU), and
  • V2N refers to It is the communication between the vehicle and the base station/network.
  • FIG 2 is a schematic diagram of an application scenario.
  • the application scenario shown in Figure 2 is a V2X scenario, which includes vehicle-mounted equipment (including UE1, UE2 and UE3 as shown in Figure 2), and roadside units (as shown in Figure 2).
  • 2 includes RSU1), base station equipment (including eNB and gNB, etc. as shown in Figure 2), and global navigation satellite system (including GNSS as shown in Figure 2).
  • Each device in this scenario can be one or more .
  • Vehicle-mounted devices can communicate with each other to realize information exchange and information sharing. For example, vehicle-connected state information including vehicle location and driving speed can be used to judge road traffic conditions.
  • RSU can communicate with various vehicle-mounted equipment and/or base station equipment, and can be used to detect road surface conditions and guide vehicles to choose the best driving path.
  • the base station equipment communicates with each vehicle-mounted equipment and/or RSU, and GNSS can provide positioning and timing information for other network elements.
  • the in-vehicle equipment in the Internet of Vehicles can also communicate with people. Specific users can communicate with the vehicle through wireless communication means such as Wi-Fi, Bluetooth, and cellular, so that the user can monitor and control the vehicle through the corresponding mobile terminal device.
  • the base station equipment in FIG. 2 is optional. If there is a base station equipment, it is a scene with network coverage; if there is no base station equipment, it is a scene without network coverage.
  • Each of the above-mentioned devices can communicate with each other through the side link and the uplink and downlink, and the spectrum of the cellular link can be used for communication, and the intelligent traffic spectrum near 5.9 GHz can also be used.
  • the technology for each device to communicate with each other can be enhanced based on the communication network protocol (such as the LTE protocol), and can be enhanced based on the D2D technology.
  • V2X In the V2X technology being studied by 3GPP, it is required to support highly reliable data transmission. To achieve high reliability of the entire transmission, it is necessary to support both high-reliability transmission of control information and high-reliability transmission of data. For example, V2X must achieve the end-to-end transmission delay requirement of no more than 3ms, and URLLC must implement the end-to-end delay requirement of no more than 10ms. In terms of reliability, V2X requires 99.999%. Therefore, how to achieve low-time-frequency and high-reliability transmission is a key technology in 5G. In order to achieve highly reliable transmission, a feasible way is for the receiver to make corresponding feedback to the data sent by the transmitter, thereby ensuring the high reliability of the communication link. A common communication scenario is shown in Figure 3.
  • Device 1 sends data information to device 2. At this time, device 1 is equivalent to a transmitter, and device 2 is equivalent to a receiver; after device 2 receives the data information, it sends data to device 1. Regarding the feedback information of data information, device 1 is equivalent to a receiver at this time, and device 2 is equivalent to a transmitter.
  • device 2 gives feedback on the data information sent by device 1, it is fed back on the determined feedback resource according to the set feedback cycle.
  • the feedback cycle of feedback information is N, which means that the feedback information on N consecutive time slots is in one time slot.
  • the receiver When the receiver (as a feedback transmitter) makes feedback, it feeds back on the determined feedback resource according to the set feedback period.
  • this application proposes a feedback information transmission method to determine the feedback resources of the feedback information (including time domain resources, frequency domain resources and sequence One or more of the resources) to reduce or avoid the feedback information of multiple consecutive time slots from conflicting on the feedback resources of the same time slot.
  • the embodiment of the present application provides a feedback information transmission method.
  • the method can be applied in the scenario shown in FIG. 2 or in other scenarios where feedback resources may conflict.
  • the feedback information will be described in detail below with reference to FIG. 4
  • the specific process of the transmission method As shown in Figure 4, the process includes:
  • Step 401 The second device sends the first data to the first device.
  • the first data includes one or more of data packets, instruction information, and control information.
  • the second device may also be referred to as a transmitter of the first data.
  • the second device determines the first resource used to transmit the first data, and sends the first data through the first resource.
  • the first resource includes the first time slot where the first data is located (or the first time slot occupied by the first data), the first frequency domain resource where the first data is located (or the first time slot occupied by the first data). Frequency domain resources) and one or more of the first sequence resources used to carry the first data.
  • the first resource can be uniquely identified by the first resource index (indicated by n in this embodiment of the application).
  • the first time slot in which the first data is located can be uniquely identified by the first time slot index, and the first data
  • the first frequency domain resource where it is located can be used for the first frequency domain resource index (indicated by F subc (n) in the embodiment of the present application) to uniquely identify.
  • Step 402 The first device receives the first data.
  • the first device may also be referred to as a receiver of the first data.
  • the first device determines a first resource for the user to receive the first data, and receives the first data through the first resource.
  • Step 403 The first device determines the feedback resource of the feedback information corresponding to the first data.
  • the feedback information corresponding to the first data is feedback information for the first data sent by the first device.
  • the feedback information is used to feed back an affirmative response or a negative response, or the feedback information is only used to feed back a positive response, or the feedback information is only used to feed back a negative response.
  • the positive response may also be referred to as ACK
  • the negative response may also be referred to as NACK.
  • the feedback resources of the feedback information include one or more of time domain resources, frequency domain resources and sequence resources.
  • the feedback information of the first data when the feedback information of the first data is located in the same time slot, at least one of the time domain resources, frequency domain resources and sequence resources in the feedback resources occupied by the feedback information The species are different.
  • the first device determines the feedback resource of the feedback information corresponding to the first data according to the first resource index of the first data.
  • the first device can determine the time domain resource of the feedback information in the following manner: the first device determines the second time slot index of the feedback information according to the first time slot index where the first data is located and the feedback period N (used in this embodiment of the application). m means).
  • the second time slot index of the feedback information is used to uniquely identify the second time slot where the feedback information is located, and the second time slot where the feedback information is located is the second time slot occupied by the feedback information.
  • the first device may determine the frequency domain resource of the feedback information in the following manner: the first device determines the second frequency domain resource index of the feedback information according to the first frequency domain resource index where the first data is located (in this application, F SFCI ( m) means).
  • the second frequency domain resource index of the feedback information is used to uniquely identify the second frequency domain resource where the feedback information is located, and the second frequency domain resource where the feedback information is located is the second frequency domain resource occupied by the feedback information.
  • the first device may determine the sequence resource of the feedback information in the following manner: the first device determines the sequence of the feedback information according to the first time slot index and/or the first frequency domain resource index where the first data is located.
  • the sequence of the feedback information is the second sequence resource used to carry the feedback information.
  • the first device can determine different feedback resources to reduce or avoid the conflict of feedback information of multiple consecutive time slots on the feedback resources of the same time slot, that is, the feedback information of multiple time slots determined by the first device Among the feedback resources, at least one of the time domain resource, the frequency domain resource, and the sequence is different.
  • the feedback resources at least one of the time domain resource, the frequency domain resource, and the sequence is different.
  • Step 404 The first device sends the feedback information through the feedback resource.
  • the first device sends the feedback information in the sequence at the second time-frequency position of the feedback information, and the time-frequency position of the feedback information is the second time slot where the feedback information is located and the first time slot where the feedback information is located.
  • the sequence is the sequence of feedback information determined in step 403 above.
  • Step 405 The second device determines the feedback resource of the feedback information corresponding to the first data.
  • the process of determining the feedback resource of the feedback information by the second device is the same as the process of determining the feedback resource of the feedback information by the first device, and can refer to step 403, which will not be repeated here.
  • step 405 and step 403 is not limited.
  • Step 405 The second device receives the feedback information through the feedback resource.
  • the second device receives the feedback information through the sequence at the second time-frequency position of the feedback information.
  • the first device determines different feedback resources for feedback information on consecutive N time slots in the same feedback period according to the resource index of the first data, and transmits feedback through different feedback resources. Therefore, this method reduces or resolves conflicts between feedback resources and ensures efficient and accurate data transmission.
  • the embodiment of the present application describes in detail the process of determining the feedback resource of the foregoing feedback information, so as to determine different feedback resources.
  • Embodiment 1 The frequency domain feedback resource on the time slot where the feedback information is located is divided into at least two feedback resource subsets, that is, the frequency domain feedback resource on the time slot where the feedback information is located includes at least two feedback resource subsets. Specifically, The time slot where the feedback information is located is the second time slot where the feedback information is located.
  • the at least two feedback resource subsets include a first feedback resource subset, that is, the first feedback resource subset is one of the at least two feedback resource subsets, and the second frequency domain resource where the feedback information is located belongs to the first resource Feedback subset.
  • the unit (also called granularity) of the second frequency domain resource where the feedback information is located is the same as the unit (also called granularity) of the first frequency domain resource where the first data is located.
  • both are subchannels or physical resource blocks (PRBs). ).
  • the unit of the second frequency domain resource where the feedback information is located is different from the unit of the first frequency domain resource where the first data is located, for example, one is a subchannel and the other is a PRB, that is, the unit of the second frequency domain resource where the feedback information is located is For the subchannel, the unit of the first frequency domain resource where the first data is located is PRB, or the unit of the second frequency domain resource where the feedback information is located is PRB, and the unit of the first frequency domain resource where the first data is located is the subchannel.
  • the second frequency domain resource index may include the second frequency domain resource index in the time slot where the feedback information is located.
  • the index of the feedback resource subset above, that is, the second frequency domain resource is the same as the first feedback resource subset, and the second frequency domain resource index is the index of the first feedback resource subset.
  • the second frequency domain resource index may include the second frequency domain resource in the feedback resource subset.
  • Domain resource index that is, the second frequency domain resource is part of the first feedback resource subset, and the second frequency domain resource index includes the index of the sub-channel, PRB, or resource element (Resource Element, RE) in the first feedback resource subset .
  • the feedback resource subset includes PRBs or REs, and the feedback resource subset includes continuous PRBs or REs used to carry information, or PRBs or REs used to carry information at equal intervals in the frequency domain, detailed description See the subsequent examples.
  • the index of the second frequency domain resource may be an index indicating the corresponding RE and/or PRB.
  • Dividing the frequency domain feedback resource on the time slot where the feedback information is located into at least two feedback resource subsets includes at least the following implementation modes:
  • the at least two feedback resource subsets are N feedback resource subsets, and different feedback resource subsets correspond to feedback resource locations where the first data on different time slots are located. That is, the number of the at least two feedback resource subsets is N, that is, the number of the at least two feedback resource subsets is the same as the value corresponding to the feedback period.
  • the feedback period N is 4, the feedback resources of the feedback information in 4 consecutive time slots will be mapped to the same feedback time slot.
  • the feedback resource location of the feedback information corresponding to each first data corresponds to each feedback resource subset one-to-one.
  • the feedback information corresponding to the first data of time slot 1 is fed back on the first feedback resource subset 1
  • the feedback information corresponding to the first data of time slot 2 is fed back on the first feedback resource subset 2.
  • the feedback information corresponding to the first data of 3 is fed back on the first feedback resource subset 3, and the feedback information corresponding to the first data of time slot 4 is fed back on the first feedback resource subset 4.
  • the first data of each time slot needs to be the nearest time slot after the processing time delay K of the time slot where it is located.
  • K 1, the first time slots where the first data is located are 0, 1, 2, 3, and 4, respectively.
  • Time slots 1 to 4 are time slots in the same feedback period.
  • Slots 0 to 4 are all the first data (the example in Figure 5 includes SA and DATA, but the SA part is optional, and the present invention does not mandate that when sending data, there must be an SA that must be sent at the same time)
  • the feedback information corresponding to the first data of time slot 1 is fed back on the first feedback resource subset 1
  • the feedback information corresponding to the first data of time slot 1 is fed back on the first feedback resource subset 2
  • the first data of time slot 2 corresponds to
  • the feedback information is fed back on the first feedback resource subset 3
  • the feedback information corresponding to the first data in time slot 3 is fed back on the first feedback resource subset 4
  • the feedback information corresponding to the first data in time slot 4 will be in the next Feedback cycle for feedback.
  • the sequence resource of the feedback information of the first data can also be determined, so that the code division method can be used to realize the code division of the feedback information corresponding to multiple data on the same feedback resource. Reuse to avoid conflicts between feedback resources.
  • sequence resources For the detailed process of determining sequence resources, refer to the subsequent embodiments.
  • the example in FIG. 6 includes SA and DATA, but the SA part is optional, and the present invention does not mandate that when sending data, there must be an SA that is sent at the same time.
  • the feedback resource location of the feedback information corresponding to each first data corresponds to the second frequency domain resource in each feedback resource subset in a one-to-one correspondence.
  • the unit of the second frequency domain resource where the feedback information is located is different from the unit of the first frequency domain resource where the first data is located.
  • the second frequency domain resource index may include the second frequency domain resource index in the feedback resource subset, that is, the first frequency domain resource index.
  • the second frequency domain resources are part of the first feedback resource subset.
  • the number of subchannels occupied by the first data does not correspond to the number of frequency domain positions occupied by the feedback information one-to-one.
  • the unit of the first frequency domain resource where the first data is located is a subchannel, and the size of a subchannel is multiple PRBs, such as 4 PRBs, 5 PRBs, 6 PRBs, or 10 PRBs, etc., where the feedback information is located
  • the unit of the second frequency domain resource is one PRB, or discretely placed locations in the frequency domain according to REs, or the bandwidth occupied by the PSFCH is 10 PRBs and is placed at equal intervals of REs.
  • the number of frequency domain positions occupied by the feedback information is more than the number of subchannels occupied by the first data.
  • the first data occupies Md subchannels (for example, Md is 10, 20, or 30, etc.), and the number of frequency domain positions occupied by feedback information is Mf (for example, Mf is 8, 10, 12, 20, 40, or 100, etc.).
  • the second frequency domain resource index includes the second frequency domain resource index in the feedback resource subset.
  • the frequency domain position occupied by the feedback information is on the bandwidth of the entire frequency domain resource.
  • the at least two feedback resource subsets correspond to at least two different feedback manners
  • the at least two different feedback manners include at least two (ie, multiple) of the following: feedback only positive responses, feedback Affirmative response or negative response, and feedback only negative response.
  • Feedback-only acknowledgement means that when the data receiver correctly detects the data, it sends and receives the correct acknowledgement ACK. When the data receiver does not correctly detect the data or decodes the data, it does not send any response.
  • only feedback a negative response means that when the data receiver correctly detects the data, it does not send any response; when the data receiver detects a data decoding error, it sends a negative response NACK.
  • the feedback positive response or negative response means that when the data receiver correctly detects the data, it sends and receives the correct positive response ACK; when the data receiver detects the data decoding error, it sends a negative response NACK.
  • the at least two different feedback methods include: feedback only a positive response, and feedback of a positive response or a negative response; or,
  • the at least two different feedback methods include: feedback only positive responses and only negative responses; or,
  • the at least two different feedback methods include: feedback positive or negative responses, and feedback only negative responses; or,
  • the at least two different ways of feedback include: feedback only positive response, feedback positive response or negative response, and feedback only negative response.
  • the first device determines the first feedback resource subset of the feedback information according to the feedback manner of the feedback information corresponding to the first data. For example, if the at least two different feedback methods include feedback only positive responses, and feedback positive responses or negative responses, the feedback method of the feedback information corresponding to the first data is only feedback positive responses, and the first device determines that only feedback positive responses correspond to The first feedback resource subset of is the first feedback resource subset of the feedback information.
  • the first device determines the feedback corresponding to the first data according to the first frequency domain resource index where the first data is located.
  • the second frequency domain resource index of the information is located.
  • the first device determining the second frequency domain resource index of the feedback information corresponding to the first data according to the first frequency domain resource index where the first data is located includes:
  • the first device determines the second frequency domain resource index of the feedback information corresponding to the first data according to the first frequency domain resource index where the first data is located and the first parameter, where the first parameter includes One or more of the following: the feedback period N, the first time slot index n of the first data, the preset first value (represented by a in the embodiment of this application), the first data corresponding The second time slot index where the feedback information is located, the frequency domain offset value (indicated by offset in this embodiment of the application), the feedback delay K of the first device, and the frequency domain feedback resource on the time slot where the feedback information is located.
  • the total number represented by M in the embodiment of this application
  • the feedback delay K is the minimum time interval between the first device receiving the first data and sending the feedback information
  • the total number of frequency domain feedback resources M Is the total number of feedback subchannels in the time slot where the feedback information is located, or is the total number of feedback subchannels in a feedback resource subset obtained by dividing the time slot where the feedback resource of the feedback information is located.
  • the frequency domain offset value offset may be a pre-configured specific frequency domain offset value, or may be a frequency domain offset value corresponding to the slot position where the first data is located, that is, the mapping corresponding to different slots
  • the frequency domain offset value, that is, the frequency domain offset value of the feedback information is related to the first time slot where the first data corresponding to the feedback information is located.
  • the magnitude of the frequency domain offset value offset is related to the granularity of the RE or PRB of the feedback resource.
  • the Offset may be predefined, may be pre-configured, or directly configured by the base station to the first device.
  • the frequency domain offset value offset is related to the position of the time slot where the first data is located, different time slots are mapped to different offset values, and the frequency domain positions of each sub-channel on adjacent time slots will not be aligned one by one, thus feedback information
  • the second frequency domain resources are different, which avoids the overlap between feedback resources. As shown in FIG. 8, the second frequency domain resources of the feedback information of Data1 on time slot n, Data1 on time slot n+1, and Data1 on time slot n+2 are not aligned.
  • the first device determines the second frequency domain resource index of the feedback information corresponding to the first data according to the first frequency domain resource index and the frequency domain offset value where the first data is located, that is, the first device corresponds to The sub-channels of each time slot on adjacent time slots are placed according to the corresponding offset when placed in the frequency domain.
  • the first device determines the third frequency domain resource index according to the first frequency domain resource index where the first data is located and the first parameter, and the first device determines the third frequency domain resource index according to the third frequency domain resource index.
  • the second frequency domain resource index of the feedback information corresponding to the data is determined.
  • the first device may determine the third frequency domain resource index of the feedback information according to the first frequency domain resource index where the first data is located and the first parameter in any of the following ways:
  • the first device determines the third frequency domain resource index according to the ratio of the first frequency domain resource index to the feedback period N.
  • the first frequency domain resource of the first data on the time slot n can be compressed according to the feedback period N to be mapped to one of at least two feedback resource subsets.
  • the third frequency domain resource index is (F subc (n)+a)/N.
  • F subc (n) represents the index of the first frequency domain resource on the time slot n; a is an integer, and as an optional embodiment, a may take the value 0.
  • F subc (n) has the same meaning as in this mode.
  • N is a positive integer, such as 1, 2, 4, etc.
  • the first device determines the third frequency domain according to the difference between the second time slot index m and the first time slot index n, the feedback period N, and the first frequency domain resource index Resource index.
  • this method can compress the first frequency domain resource of the first data on the time slot n according to the feedback period N, and map forward from the last of the at least two feedback resource subsets, such as The feedback information corresponding to the first data in the first time slot is mapped to the last second frequency domain resource in the at least two feedback resource subsets.
  • the third frequency domain resource index is (mn)*((F subc (n)+a)/N).
  • the first device according to the difference between the second time slot index m and the first time slot index n, the feedback delay K, the feedback period N, and the first frequency domain resource Index to determine the third frequency domain resource index.
  • the first device determines the difference between the second time slot index m and the first time slot index n, and the ratio of the first frequency domain resource index to the feedback period N.
  • the third frequency domain resource index is 1.1.4.
  • the third frequency domain resource index is (mn)*((F subc (n)+a)/N), or the third frequency domain resource index is (N+n-m+1)*((F subc ( n)+a)/N).
  • the first frequency domain resource of the first data on time slot n is compressed according to the feedback period N, and the first frequency domain resource between at least two feedback resources is compressed.
  • a backward mapping for example, the feedback information corresponding to the first data in the first time slot is mapped to the first second frequency domain resource in the at least two feedback resource subsets.
  • the first device according to the difference between the second time slot index m and the first time slot index n, the feedback delay K, and the first frequency domain resource index and the feedback The ratio of the period N determines the third frequency domain resource index.
  • the third frequency domain resource index is (mn-K+1)*((F subc (n)+a)/N), or the third frequency domain resource index is (N+n-m+K)*( (F subc (n)+a)/N).
  • the first device determines a third frequency domain resource index according to the first time slot index n, the first frequency domain resource index, and the frequency domain offset value.
  • the frequency domain offset value may be a specific frequency domain offset value configured in advance.
  • the third frequency domain resource index is F subc (n)+n*offset, or the third frequency domain resource index is F subc (n)+(mn)*offset, or the third frequency domain resource index is F subc (n )+(mn-K+1)*offset, or the third frequency domain resource index is F subc (n)+(N+n-m+1)*offset, or the third frequency domain resource index is F subc (n )+(N+n-m+K)*offset.
  • the first device determines the second frequency domain resource index according to the third frequency domain resource index in one of the following ways:
  • the first device determines the third frequency domain resource index as the second frequency domain resource index.
  • the first device modulates the third frequency domain resource request to the total number M of frequency domain feedback resources, and determines the second frequency domain resource index according to the result of the modulus.
  • This method can prevent the determined position of the second frequency domain resource from exceeding the total number of frequency domain feedback resources by modulating the total number M of frequency domain feedback resources in the feedback time slot.
  • the second frequency domain resource index is mod((F subc (n)+a)/N,M).
  • the second frequency domain resource index is (mn)*mod((F subc (n)+a)/N,M).
  • the second frequency domain resource index is (mn)*mod((F subc (n)+a)/N,M), or the second frequency domain resource index is (N +n-m+1)*mod((F subc (n)+a)/N),M).
  • the second frequency domain resource index is (mn-K+1)*mod(Floor((F subc (n)+a)/N),M), or the second The frequency domain resource index is (N+n-m+K)*mod(Floor((F subc (n)+a)/N),M).
  • the second frequency domain resource index is mod(F subc (n)+n*offset,M), or the second frequency domain resource index is mod(F subc (n)+ (mn)*offset,M), or the second frequency domain resource index is mod(F subc (n)+(mn-K+1)*offset,M), or the second frequency domain resource index is mod(F subc (n)+(N+n-m+1)*offset,M), or the second frequency domain resource index is mod(F subc (n)+(N+n-m+K)*offset,M).
  • the first device rounds up the third frequency domain resource index, and determines the second frequency domain resource index according to the round up result. ceil(x), which means that the logarithm x is rounded up.
  • the second frequency domain resource index is ceil((F subc (n)+a)/N).
  • the second frequency domain resource index is (mn)*ceil((F subc (n)+a)/N).
  • the second frequency domain resource index is (mn)*ceil((F subc (n)+a)/N), or the second frequency domain resource index is (N+n -m+1)*ceil((F subc (n)+a)/N).
  • the second frequency domain resource index is (mn-K+1)*ceil((F subc (n)+a)/N), or the second frequency domain resource index is (N+n-m+K)*ceil((F subc (n)+a)/N).
  • the second frequency domain resource index is mod(ceil(F subc (n)+n*offset),M), or the second frequency domain resource index is mod(ceil(F subc (n)+(mn)*offset),M), or the second frequency domain resource index is mod(ceil(F subc (n)+(mn-K+1)*offset),M), or the second The frequency domain resource index is mod(ceil(F subc (n)+(N+n-m+1)*offset),M), or the second frequency domain resource index is mod(ceil(F subc (n)+( N+n-m+K)*offset,M)).
  • the first device rounds down the third frequency domain resource index, and determines the second frequency domain resource index according to the rounding down result.
  • Floor(x) means that the logarithm x is rounded down.
  • the second frequency domain resource index is Floor((F subc (n)+a)/N).
  • the second frequency domain resource index is (mn)*Floor((F subc (n)+a)/N).
  • the second frequency domain resource index is (mn)*Floor((F subc (n)+a)/N), or the second frequency domain resource index is (N+n -m+1)*Floor((F subc (n)+a)/N).
  • the second frequency domain resource index is (mn-K+1)*Floor((F subc (n)+a)/N), or the second frequency domain resource index is (N+n-m+K)*Floor((F subc (n)+a)/N).
  • the second frequency domain resource index is Floor(F subc (n)+n*offset), or the second frequency domain resource index is Floor(F subc (n)+(mn )*offset), or the second frequency domain resource index is Floor(F subc (n)+(mn-K+1)*offset), or the second frequency domain resource index is Floor(F subc (n)+(N +n-m+1)*offset), or the second frequency domain resource index is Floor(F subc (n)+(N+n-m+K)*offset).
  • offset is an integer.
  • offset can take the value 1.
  • mode 1.2.2 and mode 1.2.3 can be used in combination, or mode 1.2.2 and mode 1.2.4 can be used in combination.
  • the second frequency domain resource index is mod(ceil((F subc (n)+a)/N),M), or the second frequency domain resource index is ( mn)*mod(ceil((F subc (n)+a)/N),M), or the second frequency domain resource index is (N+n-m+1)*mod(ceil((F subc (n )+a)/N),M), or the second frequency domain resource index is (mn-K+1)*mod(ceil((F subc (n)+a)/N),M), or the second The frequency domain resource index is (N+n-m+K)*mod(ceil((F subc (n)+a)/N),M), or the second frequency domain resource index is mod(ceil(F subc ( n)+n*offset),M), or the second frequency domain resource index is mod(ceil(F subc (n)+(mn)*offset),M), or the second frequency domain resource index is mod(ceil(F subc (n)+(m
  • the second frequency domain resource index is mod(Floor((F subc (n)+a)/N),M), or the second frequency domain resource index is ( mn)*mod(Floor((F subc (n)+a)/N),M), or the second frequency domain resource index is (N+n-m+1)*mod(Floor((F subc (n )+a)/N),M), or the second frequency domain resource index is (mn-K+1)*mod(Floor((F subc (n)+a)/N),M), or the second The frequency domain resource index is (N+n-m+K)*mod(Floor((F subc (n)+a)/N),M), or the second frequency domain resource index is mod(Floor(F subc ( n)+n*offset),M), or the second frequency domain resource index is mod(Floor(F subc (n)+(mn)*offset),M), or the second frequency domain resource index is mod(Floor(F subc (n)+(m
  • the first device may also determine the feedback information feedback resource in the following manner:
  • the first device determines the frequency domain position of the subchannel where the feedback information is located according to the frequency domain position of the subchannel where the first data is located;
  • the first device determines the position of the PRB of the feedback information in the subchannel according to the position of the time slot where the first data is located and the frequency domain position of the subchannel where the feedback information is located.
  • the frequency domain position of the subchannel where the first data is located may be the start position, the middle position, or the end position of the subchannel where the first data is located.
  • Embodiment 2 Perform code division on feedback resources, that is, determine sequence parameters according to the first time slot index and/or the first frequency domain resource index, and determine different sequences according to the determined different sequence parameters, thereby reducing or solving feedback resources. Conflict between.
  • different feedback information values correspond to different sequence parameters
  • the first device determines the sequence that carries the feedback information according to the sequence parameters corresponding to the feedback information values.
  • the different content of the feedback information feedback corresponds to different feedback information values.
  • the feedback information corresponding to only the positive response of the feedback information is 00
  • the feedback information corresponding to the feedback information only the negative answer is 01
  • the feedback information feedback positive answer or In a negative response the feedback information value corresponding to the feedback positive response is 10
  • the feedback information value corresponding to the feedback negative response is 11.
  • one or more sequence parameters of the generated sequence are determined according to different feedback states or values. Among them, in the embodiments of the present application, sequence parameters are also referred to as sequence parameters.
  • the first device carries the feedback information on the sequence in a spread spectrum manner, thereby determining the sequence that carries the feedback information.
  • the feedback resources are the same, they can also be distinguished by sequence to resolve conflicts between the feedback resources.
  • the feedback information corresponding to the first data on the consecutive N time slots is multiplexed with the same frequency domain resource, and the conflict between the feedback resources can be resolved by determining different sequence feedback data.
  • the first device determining the sequence of the feedback information corresponding to the first data according to the first time slot index and/or the first frequency domain resource index where the first data is located includes:
  • the first device determines the sequence parameter of the sequence of feedback information corresponding to the first data according to the first time slot index and/or the first frequency domain resource index where the first data is located;
  • the sequence parameter determines the sequence that carries the feedback information.
  • the sequence parameter includes one or more of the following: the initial value of the sequence; the initial position of the sequence; the root sequence number of the sequence; the cyclic shift value CS of the sequence; And the orthogonal cover code OCC of the sequence.
  • the first device specifically determines the sequence of the feedback information corresponding to the first data in any of the following ways:
  • the first device determines the sequence parameters of the sequence of the feedback information corresponding to the first data, including:
  • the first device determines the root sequence number of the sequence according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the second parameter, and the first parameter includes one of the following One or more: a preset second value (indicated by b in the embodiment of this application), the second time slot number m, the number of root sequence numbers (indicated by Mu in the embodiment of this application), and the feedback The second frequency domain resource index of the information.
  • the number of root sequence numbers is the total number of root sequences available, and the preset second value may be an integer.
  • the root sequence number of the sequence is mod(F subc (n),Mu), or the root sequence number of the sequence is mod(F subc (n)+b,Mu), or the root sequence number of the sequence is mod(F subc (n)+F SFCI (m),Mu), or the root sequence number of the sequence is mod(F subc (n)+F SFCI (m)+b,Mu), or the root sequence number of the sequence is mod(m, Mu), or the root sequence number of the sequence is mod(m+F subc (n), Mu).
  • b is an integer, and the value of b can be 0.
  • the first device determines the sequence group hop and/or sequence hop according to any one of the methods 2.1 for determining sequence parameters, and then generates a root sequence number according to the sequence group hop and/or sequence hop.
  • u (f gh + f ss + g 1 (x)) mod30, where the root sequence number is u.
  • This method can mainly target low PAPR sequences, such as ZC sequences.
  • g1(x), g2(x) and g3(x) can be determined using method 2.1, c is a random sequence, Is the time slot number corresponding to the sub-carrier interval ⁇ , m is the time slot number, n hop represents the indication information of frequency hopping, and the value is 1 during frequency hopping, otherwise it is 0.
  • n ID is the identifier configured or predefined by the base station, or the transmitter Identity, or the receiver’s identity.
  • the first device determines the sequence parameters of the sequence of the feedback information corresponding to the first data, including:
  • the first device determines the cyclic shift value and/or the orthogonal cover code of the sequence according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the third parameter.
  • the third parameter includes one or more of the following: a preset third value (represented by c in the embodiment of this application), the second slot number m, and the number of cyclic shift values (in the embodiment of this application) (Indicated by Mc), the number of orthogonal cover codes (indicated by Mo in the embodiment of this application), the feedback period N, the second frequency domain resource index, and the feedback delay K.
  • the number of cyclic shift values is the total number of available cyclic shift values, such as 4, 6, 8, 12, etc.
  • the cyclic shift value of the sequence is F subc (n)*c, or the cyclic shift value of the sequence is (F subc (n)+F SFCI (m))*c, or the cyclic shift value of the sequence is ( F subc (n)+d)*c, or the cyclic shift value of the sequence is (F subc (n)+F SFCI (m)+d)*c.
  • d is a preset fifth value
  • the preset fifth value may be an integer.
  • c and d are integers, for example, 0, 1, 2, 3, 4, etc.
  • the orthogonal cover code of the sequence is F subc (n)*c, or the cyclic shift value of the sequence is (F subc (n)+F SFCI (m))*c, or the cyclic shift value of the sequence is ( F subc (n)+d)*c, or the cyclic shift value of the sequence is (F subc (n)+F SFCI (m)+d)*c.
  • d is a preset fifth value
  • the preset fifth value may be an integer.
  • c and d are integers, for example, 0, 1, 2, 3, 4, etc.
  • the first device determines the cyclic shift and/or orthogonal cover code of the sequence according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the third parameter include:
  • the first device determines the fourth value according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the third parameter;
  • the first device determines the fourth value as the cyclic shift value and/or orthogonal cover code of the sequence; or, the first device compares the fourth value to the number of cyclic shift values Mc And/or the number of orthogonal cover codes Mo is modulated, and the cyclic shift value and/or orthogonal cover code of the sequence is determined according to the result of the modulus.
  • the first device determines the fourth value as the cyclic shift value of the sequence, and/or, the first device determines the fourth value as the orthogonal cover code of the sequence.
  • the first device modulates the fourth value to the number of cyclic shift values Mc, and/or the first device modulates the fourth value to the number of orthogonal cover codes Mo.
  • the cyclic shift value of the sequence is mod(F subc (n),Mc)*c, or the cyclic shift value of the sequence is mod(F subc (n)+F SFCI (m),Mc)*c, or The cyclic shift value of the sequence is mod(F subc (n)+d,Mc)*c, or the cyclic shift value of the sequence is mod(F subc (n)+F SFCI (m)+d,Mc)*c .
  • d is a preset fifth value
  • the preset fifth value may be an integer.
  • c and d are integers, for example, 0, 1, 2, 3, 4, etc.
  • the orthogonal cover code of the sequence is mod(F subc (n),Mo)*c
  • the cyclic shift value of the sequence is mod(F subc (n)+F SFCI (m),Mo)*c
  • the cyclic shift value of the sequence is mod(F subc (n)+d,Mo)*c
  • the cyclic shift value of the sequence is mod(F subc (n)+F SFCI (m)+d,Mo)*c
  • d is a preset fifth value
  • the preset fifth value may be an integer.
  • c and d are integers, for example, 0, 1, 2, 3, 4, etc.
  • the cyclic shift value or orthogonal cover code determined in this manner can be the cyclic shift value or the value of the orthogonal cover code, or the index of the cyclic shift value or the orthogonal cover code.
  • the first device determines the value of the cyclic shift or the value of the orthogonal cover code according to the index of the cyclic shift value or the orthogonal cover code.
  • the first device generates a cyclic shift value according to the cyclic shift value, and generates a corresponding reference signal according to the cyclic shift value.
  • the cyclic shift value is generated according to the following formula: Where h(n) is the cyclic shift value, ⁇ is the cyclic shift value, where N is the length of the sequence, which is a positive integer;
  • the first device generates the value of the orthogonal cover code according to the orthogonal cover code, and generates the corresponding reference signal according to the value of the orthogonal cover code.
  • the first device determines the sequence parameter of the sequence of feedback information corresponding to the first data in the following manner according to the first time slot index and/or the first frequency domain resource index where the first data is located:
  • the first device modulates the first time slot index to the total number of cyclic shifts Mc, and determines a cyclic shift value according to the result of the modulus.
  • the cyclic shift value is mod(n,Mc)*e
  • e is the preset sixth value
  • e is an integer
  • e 1/Mc
  • N is the feedback period.
  • the first device determines a cyclic shift value according to the difference between the first time slot index n and the second time slot index m.
  • the cyclic shift value is mod(mn,Mx)*e, or the cyclic shift value is mod(mn-K+1,Mx)*e, or the cyclic shift value is mod(N+n-m+1 ,Mx)*e, or the cyclic shift value is mod(N+n-m+K,Mx)*e.
  • the first device modulates the total number of cyclic shifts Mc based on the difference between the first time slot index n and the second time slot index m, and determines the cyclic shift value according to the result of the modulus.
  • the cyclic shift value is mod(mn,Mc)*e, or the cyclic shift value is mod(mn-K+1,Mc)*e, or the cyclic shift value is mod(N+n-m+1 ,Mc)*e, or the cyclic shift value is mod(N+n-m+K,Mc)*e.
  • the first device determines the cyclic shift value according to the first frequency domain resource index.
  • the cyclic shift value is mod(F subc (n)+n,Mx)*e, or the cyclic shift value is mod(F subc (n)+mn,Mx)*e, or the cyclic shift value is mod (F subc (n)+mn-K+1,Mx)*e, or the cyclic shift value is mod(F subc (n)+N+n-m+1,Mx)*e, or the cyclic shift value It is mod(F subc (n)+N+n-m+K,Mx)*e.
  • the first device determines the cyclic shift value according to the second frequency domain resource index.
  • the cyclic shift value is mod(F SFCI (m)+n,Mx)*e, or the cyclic shift value is mod(F SFCI (m)+mn,Mx)*e, or the cyclic shift value is mod (F SFCI (m)+mn-K+1,Mx)*e, or the cyclic shift value is mod(F SFCI (m)+N+n-m+1,Mx)*e, or the cyclic shift value It is mod(F SFCI (m)+N+n-m+K,Mx)*e.
  • F SFCI (m) has the same meaning as in this manner, and is the second frequency domain resource index on the time slot m where the feedback resource is located.
  • the cyclic shift value or orthogonal cover code determined in this manner can be the cyclic shift value or the value of the orthogonal cover code, or the index of the cyclic shift value or the orthogonal cover code.
  • the first device determines the value of the cyclic shift or the value of the orthogonal cover code according to the index of the cyclic shift value or the orthogonal cover code.
  • the second device when there are hidden nodes, the second device (that is, the transmitter of the first data, the receiver of the feedback information) will be interfered in the feedback resources, so the feedback resources can be processed according to different feedback modes.
  • the sequence parameter also includes at least two different sequence parameter subgroups, the different sequence parameter subgroups correspond to at least two different feedback modes, and the at least two different feedback modes include one or more of the following: feedback only Affirmative response, feedback positive response or negative response, and feedback only negative response.
  • At least two different ways of feedback include feedback of affirmative response or negative response, and feedback of only negative response.
  • it may include option 1 and option 2.
  • the feedback of option 1 refers to the feedback mode of HARQ NACK under multicast
  • the feedback of option 2 refers to the feedback mode of HARQ NACK or ACK under multicast.
  • the feedback modes for option 1 and option 2 are usually carried out for data packets in different feedback modes, so the sequence parameters used by them should be different, and preferably orthogonal to each other.
  • the feedback resources for designing option 1 and option 2 feedback modes can be as follows:
  • the sequence parameters are determined according to the first frequency domain resource where the first data is located, and then the different sequence parameters are divided into two sets, one set is used for option 1, and the other set is used for option 2. This can ensure that when the time domain and/or frequency domain resources of the data sent are the same, option 1 has only a part of the sequence parameters, and the feedback of option 2 will also use the other part of the sequence parameters to generate the sequence, so that the two options correspond to the set
  • the generated sequence will be orthogonal.
  • the root sequence number u is divided into 2 groups, such as one group is 0 to M/2-1, and the other group is M/2 to M-1, where M is the largest root sequence number.
  • divide the cyclic shift values into two groups and divide the usable Mc cyclic shift values into different two groups.
  • the value of Mc can be: 2, 4, 6, 8, or 12.
  • one group is 0 to 3, the other group is 6 to 9.
  • one group of cyclic shift values is 0 or 6; another group of cyclic shift values is 3 or 9.
  • one group of cyclic shift value is 0; another group of cyclic shift value is 6.
  • option 2 corresponds to multiple different first UEs, that is, the second device of the same data source corresponds to different feedback first devices, and different Rx UE IDs (ie, the identification information of the receiving device) can be used for partitioning .
  • Embodiment 3 The feedback resources are divided into at least two groups, that is, the feedback resources include at least two groups, and the at least two groups of feedback resources respectively correspond to different processing capabilities.
  • the processing capability refers to the processing capability of the first device that sends the feedback information.
  • this third embodiment can be used in combination with the foregoing first and second embodiments to further ensure that there is no conflict between feedback resources.
  • the slot position of the feedback resource that is, the second slot index
  • nf m*N
  • the processing capability of the first device UE1 of Data1 on time slot n+1 is 1, and its corresponding feedback resource is on the time slot of time slot n+2, and that of Data1 on time slot n+2 is
  • the processing capability of the first device UE2 is 1, and its corresponding feedback resource is in the time slot n+3, and the processing capability of the first device UE3 of Data1 in the time slot n+1 is 2, and its corresponding feedback resource
  • the data feedback resources of time slot n+1 and time slot n+2 may appear in the same time slot n+3 , Resulting in conflicts between feedback resources.
  • the frequency domain positions of the data on the time slot n+1 and the time slot n+2 are the same, it may cause the data on different time slots to have exactly the same feedback resources due to different processing capabilities.
  • the first device determines the actual feedback resource of the feedback information according to the feedback resource set to which the processing capability of the first device belongs and the feedback resource determined in the first and second embodiments above. Therefore, interference caused by overlapping feedback resources of devices with different processing capabilities is avoided, especially when there are overlapping conflicts in the feedback resources determined in Embodiment 1 and Embodiment 2, further avoiding conflicts between feedback resources.
  • the first device determines the feedback resource set to which the processing capability belongs according to the processing capability
  • the first device sends the feedback information according to the feedback resource set to which it belongs and the feedback resource.
  • the at least two groups of feedback resources include: a first feedback resource set and a second feedback resource set; the first feedback resource set corresponds to a first feedback processing capability; the second feedback resource set corresponds to a second feedback processing ability.
  • the first feedback processing capability and the second feedback processing capability both refer to the processing capability of the first device that sends the feedback information, and the processing capability of the first device corresponding to the first feedback processing capability corresponds to the first feedback processing capability corresponding to the second feedback processing capability.
  • the processing power of the equipment is different.
  • the at least two groups of feedback resources include:
  • the first frequency domain resource and the second frequency domain resource are connected to each other.
  • the first sequence group and the second sequence group are the first sequence group and the second sequence group.
  • the first cyclic shift value group and the second cyclic shift value group are identical to each other.
  • the first orthogonal cover code group and the second orthogonal cover code group are identical to each other; or,
  • the frequency domain resources can be divided into two groups, the two groups of frequency domain resources occupy different PRBs, different subchannels or different REs; or, one of the two sets of frequency domain resources is mapped from the low frequency, one Groups are mapped from high frequencies.
  • the second frequency domain resources can be divided into two groups.
  • the frequency domain resources for feedback are divided by PRB, that is, each feedback channel occupies one PRB, and there are a total of S PRBs, then the first to S/2 PRBs are the first group; the S/2+1 to the first S PRBs are the second group.
  • the frequency domain resources for feedback may also have different RE positions within the PRB, and different RE positions correspond to different feedback channels.
  • the odd RE position is the first group of feedback resources; the even RE position is the other group of feedback resources.
  • the 1st RE to the 6th RE in the PRB are the first group of feedback resources, and the 7th RE to the 12th RE are another group of feedback resources.
  • the feedback resources of different groups may include different root sequence numbers, different cyclic shift values, or different orthogonal cover codes.
  • CS (F subc (n)+Gi* ⁇ )mod 4
  • u (m+F subc (n)+ Gi* ⁇ )mod Mu
  • is a positive integer.
  • the first device when the first device sends the feedback information, it is sent on the feedback resource corresponding to the processing capability, and the second device, as the receiver of the feedback information, can simultaneously detect the feedback resources corresponding to the two sets of feedback sets to completely determine
  • the feedback information of the first data sent is also taking the above-mentioned Figure 10 as an example.
  • the second device that sends the first data on time slot n+1 can simultaneously use the feedback resources of time slot n+2 and time slot n+3. Feedback information on detection.
  • the second device determines that the received feedback information feeds back a negative response, the second device retransmits the first data.
  • the second device detects feedback information on feedback resources corresponding to feedback time slots corresponding to different processing capabilities according to the processing capabilities of one or more first devices.
  • the first device can only confirm that the first data transmission is correct when the first device simultaneously detects the affirmative responses fed back by the first devices with various processing capabilities. As long as the first device detects any negative response fed back by the first device with different processing capabilities, the first device can confirm the first data transmission error, and thus can directly initiate the retransmission of the first data.
  • This processing method can minimize the transmission delay of data sent by the second device and improve the performance of the system.
  • the second device For example: if the second device detects the positive response information ACK of the first data in the first feedback time slot that arrives first, and also detects the positive response information of the first data in the second feedback time slot that arrives later ACK, the second device considers that the first data transmission is correct. If the second device detects the positive response information ACK of the first data in the first feedback slot that arrives first, and detects the negative response information NACK of the first data in the second feedback slot that arrives later, then The second device considers that the first data is transmitted incorrectly; at this time, the second device can initiate a retransmission of the first data.
  • the second device If the second device detects the negative acknowledgement information NACK of the first data in the first feedback slot that arrives first, the second device does not have to wait for the response of the first data in the second slot that arrives later, but considers the first data Data transmission error, directly initiate the retransmission of the first data.
  • the embodiment of the present application also provides a method for transmitting information, which is implemented based on the time domain resource format of the transmission channel (including the feedback channel and/or the data channel) provided by the embodiment of the present application.
  • this method can also be regarded as a way of mapping time-frequency resources of the transmission channel.
  • the information transmission method can be applied to the feedback information transmission method in the foregoing embodiment, can also be used in the SCI transmission method, and can also be used in the data transmission method, which is not limited in the present invention.
  • the information transmission method provided in the embodiment of this application may also be the same as the foregoing feedback information transmission method. In conjunction with.
  • Step 1101 The third device determines the first symbol set and the second symbol set that carry the first information, wherein the bandwidth of the first symbol set is not less than a preset value.
  • the first information is a data packet, instruction information or feedback information when sending data.
  • the format of the time domain resource of the transmission channel based on the third device is that the transmission channel includes a first symbol set and a second symbol set, and the first symbol set and the second symbol set are used to carry the first information.
  • the first symbol set is used for the receiver of the first information (that is, the fourth device) for automatic gain control, that is to say, the first symbol set includes symbols for AGC, for example, includes the start symbol for AGC .
  • the second symbol set includes symbols used to transmit the first information, for example, includes SFCI, SCI or data symbols used to transmit feedback information.
  • the transmission channel further includes a null symbol for transmitting and receiving conversion at the beginning of the transmission channel, and a null symbol for transmitting and receiving conversion at the end of the transmission channel.
  • the preset value is 2, 4, or 8 PRBs, or the number of PRBs corresponding to the preset value is a positive integer not less than 10, for example, the preset value is 10, 12, or 20 PRBs.
  • the first symbol set and the second symbol set are adjacent in the time domain, and the second symbol set is after the first symbol set.
  • the first symbol set includes at least one symbol
  • the second symbol set includes at least one symbol
  • the number of symbols in the second symbol set is not less than the number of symbols in the first symbol set.
  • the symbol content in the first symbol set may be the content on any one or more symbols in the second symbol set.
  • the first information carried by the first symbol set is the same as the first information carried by the second symbol set.
  • the first information carried in the first symbol set is also called content in the first symbol set, and the first information carried in the second symbol set is also called content in the second symbol set.
  • the transmission channel includes a feedback channel.
  • the first symbol set occupies one symbol, and the second symbol set also occupies one symbol.
  • the content carried or the signal sent in the first symbol set can be the same as the content carried or signal sent in the second symbol set. the same.
  • the first information carried by the first symbol set is a subset of the first information carried by the second symbol set.
  • the transmission channel includes a feedback channel.
  • the first symbol set occupies one symbol, and the second symbol set occupies two symbols.
  • the content of the first symbol set or the transmitted signal can be the same as that of the first symbol in the first symbol set.
  • the content or signal serves as the content or signal of the first symbol set.
  • the transmission channel includes a data channel, and a slot contains 14 symbols, and the first 13 symbols carry first information.
  • the first symbol is used for the fourth device to perform an AGC operation, and the content or signal sent on the first symbol is the same as the content or signal sent on the second symbol.
  • the first symbol set is the first symbol for sending the first information
  • the second symbol set is the symbol that carries the first information after the first symbol set.
  • the third device determines the first symbol set and the second symbol set in the following manner, that is, the bandwidth of the first symbol set and the bandwidth of the second symbol set in the transmission channel satisfy one of the following conditions:
  • the bandwidth of the first symbol set is the same as the bandwidth of the second symbol set, and is continuously mapped in the frequency domain.
  • the bandwidth of the first symbol set being the same as the bandwidth of the second symbol set includes:
  • REs in each symbol in the first symbol set are a subset of REs in each symbol in the second symbol set; or, the first symbol set and the second symbol set completely carry the first information
  • the encoded transport block
  • the bandwidth of the first symbol set and the bandwidth of the second symbol set are not less than (that is, greater than or equal to) 10 PRBs.
  • the length of the sequence where the first symbol set and the second symbol set are located at this time is not less than 120.
  • one resource pool may include multiple data resource pools and/or multiple feedback resource pools.
  • a resource pool includes three feedback resource pools, and G1 is a null symbol at the start of the feedback channel for transceiving conversion. G2 is the null symbol at the end of the feedback channel for transmitting and receiving conversion, AGC is the first symbol set, the first symbol set is used for automatic gain control of the fourth device, SFCI is the second symbol set, and the second symbol set carries There is the first information SFCI. The symbols in the first symbol set and the second symbol set are continuously mapped in the frequency domain.
  • the bandwidth of the first symbol set is the same as the bandwidth of the second symbol set, and is not continuously mapped at equal intervals in the frequency domain.
  • the bandwidth of the first symbol set and the bandwidth of the second symbol set are not less than 10 PRBs, and the first symbol set and the second symbol set are placed at equal intervals in the frequency domain, but not on the middle RE of the interval. Place data or signals.
  • the RE in the first symbol set comes from the RE in the corresponding frequency domain in the second symbol set.
  • the bandwidth of the first symbol set and the bandwidth of the second symbol set are both 10 PRBs
  • the interval is 10 REs in the frequency domain
  • the length of the feedback sequence is 12, so there is a total of data on the 10 PRBs
  • the bandwidth of the first symbol set and the bandwidth of the second symbol set are both 12 PRBs
  • the interval is 12 REs in the frequency domain
  • the length of the feedback sequence is 12, so there are a total of REs with data on the 12 PRBs.
  • the bandwidth of the first symbol set and the bandwidth of the second symbol set are both 10 PRBs
  • the interval is 12 REs in the frequency domain
  • the length of the feedback sequence is 10 then there are a total of REs with data on the 12 PRBs.
  • the bandwidth of the first symbol set is greater than the bandwidth of the second symbol set.
  • every M RE is mapped to an RE that carries the first information, and no data or signal is mapped on the other M-1 REs, and the second symbol is Each symbol of is continuously mapped in the frequency domain.
  • the value of M is 10, 12, or the number of physical resource blocks corresponding to the preset value. If M is 10 or 12, the problem of resource overlap may occur.
  • the bandwidth of the second symbol set is 1 PRB
  • the bandwidth of the first symbol set is not less than 10 PRBs
  • the first symbol set is placed at equal intervals in the frequency domain, and no data is placed on the RE in the middle of the interval.
  • the corresponding feedback information in the second symbol set is also at a different frequency domain position.
  • the position of the symbol in the first symbol set is the position of the RE
  • the symbol in the second symbol set is the position of the PRB or the subchannel.
  • the RE in the first symbol set comes from the RE in the corresponding frequency domain in the second symbol set.
  • Step 1102 The third device sends the first symbol set and the second symbol set.
  • Step 1103 The fourth device receives the first symbol set and the second symbol set, where the first symbol set and the second symbol set carry first information, and the bandwidth of the first symbol set is not less than a preset value .
  • Step 1104 The fourth device obtains first information through the first symbol set and the second symbol set.
  • the first symbol set is used for the receiver (ie, the fourth device) of the first information to perform automatic gain control, and the fourth device also performs automatic gain control according to the first symbol set of the first information.
  • the process in which the fourth device obtains the first information through the first symbol set and the second symbol set can be regarded as the inverse process of the third device determining the first symbol set and the second symbol set carrying the first information, which will not be repeated here. .
  • the embodiment of the present application also provides a feedback information transmission device, as shown in FIG. 15 It is shown that the feedback information transmission device 1500 includes a processing unit 1501 and a transceiver unit 1502, and the device 1500 can be used to implement the method described in the foregoing method embodiment applied to the first device or the second device.
  • the apparatus 1500 may be located in the first device or the second device, or be the first device or the second device.
  • the apparatus in the foregoing embodiment may be the first device or the second device, or may be a chip applied to the first device or the second device, or other combinations with the above terminal device functions Devices, components, etc.
  • the transceiving unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, for example, a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver unit may be an input/output interface of the chip system
  • the processing module may be a processor of the chip system.
  • the apparatus 1500 is applied to the first device.
  • the processing unit 1501 is configured to determine the feedback resource of the feedback information corresponding to the first data according to the first resource index of the received first data, and the feedback resource includes time domain resources, frequency domain resources and sequence One or more of the resources;
  • the transceiver unit 1502 is configured to send the feedback information through the feedback resource.
  • the feedback information is used to feed back a positive response or a negative response, or only used to feed back a positive response, or only used to feed back a negative response.
  • the processing unit 1501 is specifically configured to determine the feedback resource of the feedback information corresponding to the first data according to the first resource index of the received first data, including one or more of the following manners:
  • the sequence of the feedback information corresponding to the first data is determined according to the first time slot index and/or the first frequency domain resource index where the first data is located.
  • the second frequency domain resource where the feedback information is located belongs to the first feedback resource subset, wherein the frequency domain feedback resource on the time slot where the feedback information is located includes at least two feedback resource subsets, and The first feedback resource subset is one of the at least two feedback resource subsets.
  • the at least two feedback resource subsets are N feedback resource subsets, and different feedback resource subsets correspond to feedback resource locations where the first data on different time slots are located; or,
  • the at least two feedback resource subsets correspond to at least two different feedback modes, and the at least two different feedback modes include at least two of the following: feedback only positive response, feedback positive or negative response, and feedback only Negative answer.
  • the processing unit 1501 is specifically configured to determine the second frequency domain resource index of the feedback information corresponding to the first data according to the first frequency domain resource index where the first data is located and the first parameter,
  • the first parameter includes one or more of the following: a feedback period, a first time slot index of the first data, a preset first value, and the location of the feedback information corresponding to the first data
  • the second time slot index, the frequency domain offset value, the feedback delay of the first device, and the total number of frequency domain feedback resources on the time slot where the feedback information is located, wherein the feedback delay is the value received by the first device The minimum time interval from the first data to sending the feedback information.
  • the frequency domain offset value corresponds to the slot position where the first data is located.
  • the processing unit 1501 is specifically configured to determine a third frequency domain resource index according to the ratio of the first frequency domain resource index to the feedback period; the first device according to the third frequency domain Resource index to determine a second frequency domain resource index; or, according to the difference between the second time slot index and the first time slot index, the feedback period, and the first frequency domain resource index, determine the third frequency Domain resource index; the first device determines a second frequency domain resource index according to the third frequency domain resource index; or, according to the difference between the second time slot index and the first time slot index, the Feedback delay, the feedback period, and the first frequency domain resource index to determine a third frequency domain resource index; the first device determines a second frequency domain resource index according to the third frequency domain resource index; or Determining the third frequency domain resource index according to the difference between the second time slot index and the first time slot index, and the ratio of the first frequency domain resource index to the feedback period; A device determines a second frequency domain resource index according to the third frequency domain resource index; or, according to the difference between the second time slot index and
  • the processing unit 1501 is specifically configured to determine the third frequency domain resource index as the second frequency domain resource index; or, to request the third frequency domain resource to feed back to the frequency domain Take the modulus of the total number of resources, and determine the second frequency domain resource index according to the result of the modulus; or, round up the third frequency domain resource index, and determine the second frequency domain resource index according to the round up result; or , Rounding down the third frequency domain resource index, and determining the second frequency domain resource index according to a result of the rounding down.
  • the second frequency domain resource index includes the index of the feedback resource subset of the second frequency domain resource in the time slot where the feedback information is located, and/or is in the feedback resource subset The second frequency domain resource index.
  • the feedback resource subset includes physical resource block PRBs or resource element REs, and the feedback resource subset includes continuous PRBs or REs for carrying information, or non-continuous at equal intervals in the frequency domain. PRB or RE used to carry information.
  • the processing unit 1501 is specifically configured to determine the sequence parameter of the sequence of the feedback information corresponding to the first data according to the first time slot index and/or the first frequency domain resource index where the first data is located;
  • the first device determines the sequence carrying the feedback information according to the sequence parameter, and the sequence parameter includes one or more of the following: the initial value of the sequence, the initial position of the sequence, the root sequence number of the sequence, The cyclic shift value of the sequence and the orthogonal cover code of the sequence.
  • the processing unit 1501 is specifically configured to determine the root sequence number of the sequence according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the second parameter.
  • the first parameter includes one or more of the following: a preset second value, the second time slot number, the number of root sequence numbers, and the second frequency domain resource index of the feedback information.
  • the processing unit 1501 is specifically configured to determine the cyclic shift value and/or the cyclic shift value of the sequence according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the third parameter.
  • the third parameter includes one or more of the following: a preset third value, the second slot number, the number of cyclic shift values, the number of orthogonal cover codes, The feedback period, the second frequency domain resource index, and the feedback delay.
  • the processing unit 1501 is specifically configured to determine the fourth value of the first time slot index and/or the first frequency domain resource index where the first data is located, and the third parameter; and determine the fourth value Is the cyclic shift value and/or orthogonal cover code of the sequence; or, the first device modulates the fourth value to the number of cyclic shift values and/or the number of orthogonal cover codes, according to The modulo result determines the cyclic shift value and/or the orthogonal cover code of the sequence.
  • the processing unit 1501 is specifically configured to take the first time slot index modulo the total number of cyclic shifts, and determine the cyclic shift value according to the modulo result; or, according to the first time slot index and The difference between the second time slot index determines the cyclic shift value; or, the difference between the first time slot index and the second time slot index is modulo the total number of cyclic shifts, and the result is determined according to the modulo result Rotation value.
  • the sequence parameter further includes at least two different sequence parameter subgroups, the different sequence parameter subgroups corresponding to at least two different feedback modes, and the at least two different feedback modes include the following One or more of: feedback only positive response, feedback positive or negative response, and feedback only negative response.
  • the feedback resources include at least two groups, and the at least two groups of feedback resources respectively correspond to different processing capabilities.
  • the at least two sets of feedback resources include: a first set of feedback resources and a second set of feedback resources;
  • the first feedback resource set corresponds to the first feedback processing capability
  • the second feedback resource set corresponds to the second feedback processing capability.
  • the at least two groups of feedback resources include:
  • the first frequency domain resource and the second frequency domain resource are connected to each other.
  • the first sequence group and the second sequence group are the first sequence group and the second sequence group.
  • the first cyclic shift value group and the second cyclic shift value group are identical to each other.
  • the first orthogonal cover code group and the second orthogonal cover code group are identical to each other; or,
  • the processing unit 1501 is further configured to determine the feedback resource set to which the processing capability belongs according to the processing capability; and send the feedback information according to the feedback resource set to which it belongs and the feedback resource.
  • the apparatus 1500 is applied to the second device.
  • the processing unit 1501 is configured to determine the feedback resource of the feedback information corresponding to the first data according to the first resource index of the received first data, and the feedback resource includes time domain resources, frequency domain resources and sequence One or more of the resources;
  • the transceiver unit 1502 is configured to receive the feedback information through the feedback resource.
  • the feedback information is used to feed back a positive response or a negative response, or only used to feed back a positive response, or only used to feed back a negative response.
  • the processing unit 1501 is specifically configured to determine the feedback resource of the feedback information corresponding to the first data according to the first resource index of the received first data, including one or more of the following manners:
  • the sequence of the feedback information corresponding to the first data is determined according to the first time slot index and/or the first frequency domain resource index where the first data is located.
  • the second frequency domain resource where the feedback information is located belongs to the first feedback resource subset, wherein the frequency domain feedback resource on the time slot where the feedback information is located includes at least two feedback resource subsets, and The first feedback resource subset is one of the at least two feedback resource subsets.
  • the at least two feedback resource subsets are N feedback resource subsets, and different feedback resource subsets correspond to feedback resource locations where the first data on different time slots are located; or,
  • the at least two feedback resource subsets correspond to at least two different feedback modes, and the at least two different feedback modes include at least two of the following: feedback only positive response, feedback positive or negative response, and feedback only Negative answer.
  • the processing unit 1501 is specifically configured to determine the second frequency domain resource index of the feedback information corresponding to the first data according to the first frequency domain resource index where the first data is located and the first parameter,
  • the first parameter includes one or more of the following: a feedback period, a first time slot index of the first data, a preset first value, and the location of the feedback information corresponding to the first data
  • the second time slot index, the frequency domain offset value, the feedback delay of the first device, and the total number of frequency domain feedback resources on the time slot where the feedback information is located, wherein the feedback delay is the value received by the first device The minimum time interval from the first data to sending the feedback information.
  • the frequency domain offset value corresponds to the slot position where the first data is located.
  • the processing unit 1501 is specifically configured to determine a third frequency domain resource index according to the ratio of the first frequency domain resource index to the feedback period N; the second device according to the third frequency Domain resource index to determine a second frequency domain resource index; or, according to the difference between the second time slot index m and the first time slot index n, the feedback period N, and the first frequency domain resource index, Determine a third frequency domain resource index; the second device determines a second frequency domain resource index according to the third frequency domain resource index; or, according to the second time slot index m and the first time slot index the difference of n, the feedback delay K, the feedback period N, and the first frequency domain resource index determine a third frequency domain resource index; the second device determines according to the third frequency domain resource index The second frequency domain resource index; or, according to the difference between the second time slot index m and the first time slot index n, and the ratio of the first frequency domain resource index to the feedback period N, determine the The third frequency domain resource index; the second device determines the second frequency domain resource index according to the difference between
  • the processing unit 1501 is specifically configured to determine the third frequency domain resource index as the second frequency domain resource index; or, to request the third frequency domain resource to feed back to the frequency domain Take the modulus of the total number of resources M, and determine the second frequency domain resource index according to the result of the modulus; or, round up the third frequency domain resource index, and determine the second frequency domain resource index according to the round up result; Alternatively, the third frequency domain resource index is rounded down, and the second frequency domain resource index is determined according to the rounding down result.
  • the second frequency domain resource index includes the index of the feedback resource subset of the second frequency domain resource in the time slot where the feedback information is located, and/or is in the feedback resource subset The second frequency domain resource index.
  • the feedback resource subset includes physical resource block PRBs or resource element REs, and the feedback resource subset includes continuous PRBs or REs for carrying information, or non-continuous at equal intervals in the frequency domain. PRB or RE used to carry information.
  • the processing unit 1501 is specifically configured to determine the sequence parameter of the sequence of the feedback information corresponding to the first data according to the first time slot index and/or the first frequency domain resource index where the first data is located;
  • the second device determines the sequence carrying the feedback information according to the sequence parameter, and the sequence parameter includes one or more of the following: the initial value of the sequence, the initial position of the sequence, the root sequence number of the sequence, The cyclic shift value of the sequence and the orthogonal cover code of the sequence.
  • the processing unit 1501 is specifically configured to determine the root sequence number of the sequence according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the second parameter.
  • the first parameter includes one or more of the following: a preset second value, the second time slot number, the number of root sequence numbers, and the second frequency domain resource index of the feedback information.
  • the processing unit 1501 is specifically configured to determine the cyclic shift value and/or the cyclic shift value of the sequence according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the third parameter.
  • the third parameter includes one or more of the following: a preset third value, the second slot number, the number of cyclic shift values, the number of orthogonal cover codes, The feedback period, the second frequency domain resource index, and the feedback delay.
  • the processing unit 1501 is specifically configured to determine the fourth value according to the first time slot index and/or the first frequency domain resource index where the first data is located, and the third parameter; Determined as the cyclic shift value and/or orthogonal cover code of the sequence; or, the first device modulates the fourth value to the number of cyclic shift values and/or the number of orthogonal cover codes, The cyclic shift value and/or orthogonal cover code of the sequence is determined according to the result of the modulus.
  • the processing unit 1501 is specifically configured to take the first time slot index modulo the total number of cyclic shifts Mc, and determine the cyclic shift value according to the result of the modulus; or, according to the first time slot index Determine the cyclic shift value based on the difference between the index of the second time slot and the index of the second time slot; alternatively, the difference between the index of the first time slot and the index of the second time slot is modulo the total number of cyclic shifts, and the result Determine the cyclic shift value.
  • the sequence parameter further includes at least two different sequence parameter subgroups, the different sequence parameter subgroups corresponding to at least two different feedback modes, and the at least two different feedback modes include the following One or more of: feedback only positive response, feedback positive or negative response, and feedback only negative response.
  • the feedback resources include at least two groups, and the at least two groups of feedback resources respectively correspond to different processing capabilities.
  • the at least two sets of feedback resources include: a first set of feedback resources and a second set of feedback resources;
  • the first feedback resource set corresponds to the first feedback processing capability
  • the second feedback resource set corresponds to the second feedback processing capability.
  • the at least two groups of feedback resources include:
  • the first frequency domain resource and the second frequency domain resource are connected to each other.
  • the first sequence group and the second sequence group are the first sequence group and the second sequence group.
  • the first cyclic shift value group and the second cyclic shift value group are identical to each other.
  • the first orthogonal cover code group and the second orthogonal cover code group are identical to each other; or,
  • the processing unit 1501 is further configured to determine the feedback resource set to which the processing capability belongs according to the processing capability; and receive the feedback information according to the feedback resource set to which it belongs and the feedback resource.
  • the transceiver unit 1502 is further configured to detect the feedback information in the at least two groups of feedback resources.
  • the second device retransmits the first data.
  • each functional unit in each embodiment of this application It can be integrated into one processing unit, or it can exist alone physically, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including a number of instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • an embodiment of the present application also provides a schematic structural diagram of a feedback information transmission device 1600.
  • the apparatus 1600 can be used to implement the method described in the above method embodiment applied to the first device or the second device. For details, please refer to the description in the above method embodiment.
  • the apparatus 1600 can be located in the first device or the second device. It can be the first device or the second device.
  • the device 1600 includes one or more processors 1601.
  • the processor 1601 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, terminals, or chips, etc.), execute software programs, and process software program data.
  • the communication device may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the apparatus 1600 includes one or more processors 1601, and the one or more processors 1601 can implement the method of the first device or the second device in the above-mentioned embodiment.
  • the processor 1601 may implement other functions in addition to implementing the methods in the above-mentioned embodiments.
  • the processor 1601 may execute instructions to make the apparatus 1600 execute the method described in the foregoing method embodiments.
  • the instructions may be stored in the processor in whole or in part, such as the instruction 1603, or in the memory 1602 coupled to the processor, in whole or in part, such as the instruction 1604, or through the instructions 1603 and 1604.
  • the apparatus 1600 executes the method described in the foregoing method embodiment.
  • the communication device 1600 may also include a circuit, and the circuit may implement the function of the terminal device in the foregoing method embodiment.
  • the apparatus 1600 may include one or more memories 1602, on which instructions 1604 are stored, and the instructions may be executed on the processor, so that the apparatus 1600 executes the foregoing The method described in the method embodiment.
  • data may also be stored in the memory.
  • the optional processor may also store instructions and/or data.
  • the one or more memories 1602 may store the corresponding relationship described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and memory can be provided separately or integrated together.
  • the device 1600 may further include a transceiver unit 1605.
  • the processor 1601 may be referred to as a processing unit, which controls a device (terminal or base station).
  • the transceiving unit 1605 may be called a transceiver, a transceiving circuit, or a transceiver, etc., for implementing the transceiving of the device.
  • the apparatus 1600 may include a transceiver unit 1605.
  • the device 1600 may further include a transceiver unit 1605 and an antenna 1606.
  • the processor 1601 may be referred to as a processing unit, which controls a device (terminal or base station).
  • the transceiving unit 1605 may be called a transceiver, a transceiving circuit, or a transceiver, etc., and is used to implement the transceiving function of the device through the antenna 1606.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the embodiment of the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the feedback information described in any method embodiment applied to the first device or the second device is realized Transmission method.
  • the embodiment of the present application also provides a computer program product that, when executed by a computer, implements the feedback information transmission method described in any method embodiment applied to the first device or the second device.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD)) etc.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the feedback information transmission method described in any method embodiment applied to the first device or the second device.
  • the foregoing processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, At this time, the processor may be a general-purpose processor, which is implemented by reading the software code stored in the memory, and the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • the information transmission method of the embodiment of the present application is described in detail above with reference to FIG. 11 to FIG. 14, including the method for sending information and the method for receiving information. Based on the same inventive concept as the foregoing information transmission method, the embodiment of the present application also provides a As shown in FIG. 17, the information transmission device 1700 includes a processing unit 1701 and a transceiving unit 1702. The device 1700 can be used to implement the method described in the above method embodiment applied to the third device or the fourth device. The apparatus 1700 may be located in the third device or the fourth device, or be the third device or the fourth device.
  • the apparatus in the foregoing embodiment may be a third device or a fourth device, or may be a chip applied to the third device or the fourth device, or other combinations with the functions of the foregoing terminal devices.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit, and the processing module may be a processor.
  • the transceiver unit may be an input/output interface of the chip system, and the processing module may be a processor of the chip system.
  • the apparatus 1700 is applied to a third device.
  • the processing unit 1701 is configured to determine a first symbol set and a second symbol set that carry first information, wherein the bandwidth of the first symbol set is not less than a preset value;
  • the transceiver unit 1702 is configured to send the first symbol set and the second symbol set.
  • the first information is a data packet, instruction information or feedback information when sending data.
  • the first information carried by the first symbol set is the same as the first information carried by the second symbol set, or the first information carried by the first symbol set is the second symbol set A subset of the first information carried.
  • the first symbol set and the second symbol set are adjacent in the time domain, and the second symbol set is after the first symbol set.
  • the first symbol set includes at least one symbol
  • the second symbol set includes at least one symbol
  • the number of symbols in the second symbol set is not less than that in the first symbol set. Number of symbols.
  • the first symbol set is a first symbol for transmitting the first information
  • the second symbol set is a symbol that carries the first information after the first symbol set.
  • the number of physical resource blocks corresponding to the preset value is a positive integer not less than 10.
  • the bandwidth of the first symbol set is the same as the bandwidth of the second symbol set and is continuously mapped in the frequency domain; or, the bandwidth of the first symbol set is the same as the bandwidth of the second symbol set.
  • the bandwidth is the same, and is not continuously mapped at equal intervals in the frequency domain; or, the bandwidth of the first symbol set is greater than the bandwidth of the second symbol set.
  • the first symbol set and the second symbol set are In each symbol, every M REs are mapped to one RE carrying the first information, and no data or signals are mapped on the other M-1 REs.
  • the REs in each symbol in the first symbol set are the same as the REs in each symbol in the second symbol set.
  • Subset; or, the first symbol set and the second symbol set completely carry the encoded transport block of the first information.
  • the bandwidth of the first symbol set is greater than the bandwidth of the second symbol set, in each symbol in the first symbol set, every M REs are mapped to one carrying the first information RE, no data or signal is mapped on the other M-1 REs, and each of the second symbols is continuously mapped in the frequency domain.
  • the signal of each RE on at least one symbol in the first symbol set corresponds to the same signal on each RE on at least one symbol in the second symbol set.
  • the value of M is 10, 12, or the number of physical resource blocks corresponding to the preset value.
  • the first symbol set is used for the receiver of the first information to perform automatic gain control.
  • the apparatus 1700 is applied to the fourth device.
  • the transceiver unit 1702 is configured to receive a first symbol set and a second symbol set, wherein the first symbol set and the second symbol set carry first information, and the bandwidth of the first symbol set is not less than default value;
  • the processing unit 1701 is configured to obtain first information through the first symbol set and the second symbol set.
  • the first information is a data packet, instruction information or feedback information when sending data.
  • the first information carried by the first symbol set is the same as the first information carried by the second symbol set, or the first information carried by the first symbol set is the second symbol set A subset of the first information carried.
  • the first symbol set and the second symbol set are adjacent in the time domain, and the second symbol set is after the first symbol set.
  • the first symbol set includes at least one symbol
  • the second symbol set includes at least one symbol
  • the number of symbols in the second symbol set is not less than that in the first symbol set. Number of symbols.
  • the first symbol set is a first symbol for transmitting the first information
  • the second symbol set is a symbol that carries the first information after the first symbol set.
  • the number of physical resource blocks corresponding to the preset value is a positive integer not less than 10.
  • the bandwidth of the first symbol set is the same as the bandwidth of the second symbol set and is continuously mapped in the frequency domain; or, the bandwidth of the first symbol set is the same as the bandwidth of the second symbol set.
  • the bandwidth is the same, and is not continuously mapped at equal intervals in the frequency domain; or, the bandwidth of the first symbol set is greater than the bandwidth of the second symbol set.
  • the first symbol set and the second symbol set are In each symbol, every M REs are mapped to one RE carrying the first information, and no data or signals are mapped on the other M-1 REs.
  • the REs in each symbol in the first symbol set are the same as the REs in each symbol in the second symbol set.
  • Subset; or, the first symbol set and the second symbol set completely carry the encoded transport block of the first information.
  • the bandwidth of the first symbol set is greater than the bandwidth of the second symbol set, in each symbol in the first symbol set, every M REs are mapped to one carrying the first information RE, no data or signal is mapped on the other M-1 REs, and each of the second symbols is continuously mapped in the frequency domain.
  • the signal of each RE on at least one symbol in the first symbol set corresponds to the same signal on each RE on at least one symbol in the second symbol set.
  • the value of M is 10, 12, or the number of physical resource blocks corresponding to the preset value.
  • the processing unit 1701 is further configured to perform automatic gain control according to the first symbol set.
  • each functional unit in each embodiment of this application It can be integrated into one processing unit, or it can exist alone physically, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including a number of instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • an embodiment of the present application also provides a schematic structural diagram of an information transmission device 1800.
  • the apparatus 1800 may be used to implement the method described in the above method embodiment applied to the third device or the fourth device. For details, please refer to the description in the above method embodiment.
  • the apparatus 1800 may be located in the third device or the fourth device. It can be the third device or the fourth device.
  • the apparatus 1800 includes one or more processors 1801.
  • the processor 1801 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, terminals, or chips, etc.), execute software programs, and process software program data.
  • the communication device may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the apparatus 1800 includes one or more processors 1801, and the one or more processors 1801 can implement the method of the third device or the fourth device in the above-mentioned embodiment.
  • the processor 1801 may implement other functions in addition to implementing the methods in the above-mentioned embodiments.
  • the processor 1801 may execute instructions to cause the apparatus 1800 to execute the method described in the foregoing method embodiment.
  • the instructions may be stored in the processor in whole or in part, such as the instruction 1803, or in the memory 1802 coupled to the processor, in whole or in part, such as the instruction 1804, or the instructions 1803 and 1804 may be used together to make The apparatus 1800 executes the method described in the foregoing method embodiment.
  • the communication device 1800 may also include a circuit, and the circuit may implement the function of the terminal device in the foregoing method embodiment.
  • the apparatus 1800 may include one or more memories 1802, on which instructions 1804 are stored, and the instructions may be executed on the processor, so that the apparatus 1800 executes the foregoing The method described in the method embodiment.
  • data may also be stored in the memory.
  • the optional processor may also store instructions and/or data.
  • the one or more memories 1802 may store the corresponding relationship described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and memory can be provided separately or integrated together.
  • the device 1800 may further include a transceiver unit 1805.
  • the processor 1801 may be referred to as a processing unit, which controls a device (terminal or base station).
  • the transceiving unit 1805 may be called a transceiver, a transceiving circuit, or a transceiver, etc., for implementing the transceiving of the device.
  • the apparatus 1800 may include a transceiver unit 1805.
  • the device 1800 may further include a transceiver unit 1805 and an antenna 1806.
  • the processor 1801 may be referred to as a processing unit, which controls a device (terminal or base station).
  • the transceiver unit 1805 may be called a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement the transceiver function of the device through the antenna 1806.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the embodiment of the present application also provides a computer-readable medium on which a computer program is stored.
  • the computer program is executed by a computer, the information transmission described in any method embodiment applied to the third device or the fourth device is realized. method.
  • the embodiments of the present application also provide a computer program product that, when executed by a computer, implements the information transmission method described in any method embodiment applied to the third device or the fourth device.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD)) etc.
  • An embodiment of the present application also provides a processing device including a processor and an interface; the processor is configured to execute the information transmission method described in any method embodiment applied to the third device or the fourth device.
  • the foregoing processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, At this time, the processor may be a general-purpose processor, which is implemented by reading the software code stored in the memory, and the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a computer.
  • computer readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data structures
  • Any connection can suitably become a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , Fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless and microwave are included in the fixing of the media.
  • Disk and disc include compact discs (CD), laser discs, optical discs, digital versatile discs (DVD), floppy discs and Blu-ray discs. Disks usually copy data magnetically, while discs The laser is used to optically copy data. The above combination should also be included in the protection scope of the computer-readable medium.

Abstract

本申请实施例涉及一种反馈信息传输方法及装置,用以解决反馈周期大于1时反馈资源之间的冲突,保证反馈信息传输的可靠性和准确性,可以应用于车联网,例如V2X、LTE-V、V2V等,或可以用于智能驾驶,智能网联车等领域,该方法为:第一设备根据接收到的第一数据的第一资源索引,确定所述第一数据对应的反馈信息的反馈资源,所述反馈资源包括时域资源、频域资源和序列资源中的一种或多种;所述第一设备通过所述反馈资源发送所述反馈信息,其中对于不同时隙中传输的第一数据,这些第一数据的反馈信息位于同一时隙反馈时,这些反馈信息占用的反馈资源中的时域资源、频域资源和序列资源中的至少一种是不同的。

Description

一种反馈信息传输方法及装置
相关申请的交叉引用
本申请要求在2019年08月15日提交中国专利局、申请号为201910755703.8、申请名称为“一种反馈信息传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种反馈信息传输方法及装置。
背景技术
设备之间能够直接进行通信包括设备到设备(Device to Device,D2D)通信,车与任何事物(vehicle to everything,V2X)之间的通信,V2X包括车与车(Vehicle to Vehicle,V2V)通信、车与行人(Vehicle to Pedestrian,V2P)通信或车与基建/网络(Vehicle to Infrastructure/Network,V2I/N)通信。
3GPP正在研究的V2X技术中,要求支持低时延高可靠的传输。为了实现高可靠的传输,一种可行的方式是接收机(也称接收设备)针对发射机(也称发送设备)发送的数据做出相应的反馈,从而保证通信链路的高可靠性。
在V2X链路中,一个数据的接收射机会相应的去发送反馈信息给数据的发射机。在无基站的场景下,数据的传输资源是要用户设备在预定义的资源集中去选取的。不同的设备选择的数据传输的资源可能不同,也可能相同。对应的,不同的发送反馈的设备选择的反馈资源可能相同,也可能不同。特别地,在一个地理区域,在无基站管理和调度的情况下,不同的设备同时在做数据和/或反馈的发送。此时反馈资源可能会发生重叠或冲突。如果不解决反馈资源冲突的问题,非但起不到通过反馈来提升传输可靠性的效果,反而会引起不必要的重传,降低了传输的可靠性和传输的效率。
发明内容
本发明提供了一种反馈信息传输方法及装置,有助于解决反馈资源冲突的问题,从而保证了数据传输的可靠性和效率。
第一方面,提供一种反馈信息传输方法,该方法包括:第一设备根据接收到的第一数据的第一资源索引,确定所述第一数据对应的反馈信息的反馈资源,所述反馈资源包括时域资源、频域资源和序列资源中的一种或多种;所述第一设备通过所述反馈资源发送所述反馈信息;所述第二设备通过所述反馈资源接收所述反馈信息。
其中,对于不同时隙中传输的第一数据,这些第一数据的反馈信息位于同一时隙反馈时,这些反馈信息占用的反馈资源中的时域资源、频域资源和序列资源中的至少一种是不同的。
第一设备和第二设备均可以是车载设备、用户使用的设备、路侧单元、网络设备等。
资源索引包括时域资源索引(如时隙索引)、频域资源索引以及序列的指示索引中的 一种或多种,资源索引可以用来指示承载数据和/或控制信息时所使用的资源。
可选的,时域资源包括时隙(slot),迷你时隙(mini-slot,即符号数小于一个完整时隙的符号数的时隙),符号(symbol)或其他时域粒度(如系统帧、子帧)。
频域资源,包括子信道、频段(band)、载波(carrier)、带宽部分(BWP)、资源块(RB)或资源池等。
序列资源,又称码域资源,为用来指示序列的相关参数。对于随机序列,序列的参数包括序列的开始位置,序列的长度,序列的初始值;对于低蜂均比序列(例如ZC序列),序列的参数包括根序列、掩码、扰码、循环移位或正交覆盖码等。
具体的,第二设备通过第一资源接收第一数据,第一设备通过第一资源接收第一数据。
第二设备确定反馈信息的反馈资源的过程与第一设备确定反馈信息的反馈资源的过程基本相同。
通过本申请实施例提供的方案,对于不同时隙中传输的第一数据,这些第一数据的反馈信息位于同一时隙反馈时,这些反馈信息占用的反馈资源中的时域资源、频域资源和序列资源中的至少一种是不同的,第一设备根据第一数据的资源索引,为同一个反馈周期内连续N个时隙上的反馈信息确定不同的反馈资源,通过不同的反馈资源传输反馈信息,因此通过该方法减少或解决了反馈资源之间的冲突,保证了数据高效准确的传输,提高了传输链路的可靠性。
在一种可能的实现中,所述反馈信息用于反馈肯定应答或否定应答、或者,仅用于反馈肯定应答,或者,仅用于反馈否定应答。
示例的,肯定应答也可以称为ACK,否定应答也可以称为NACK。
在一种可能的实现中,所述第一设备根据接收到的第一数据的第一资源索引,确定所述第一数据对应的反馈信息的反馈资源包括以下方式中的一种或多种:
所述第一设备根据第一数据所在的第一时隙索引(如第一时隙号)和反馈周期N,确定所述第一数据对应的反馈信息的第二时隙索引(如第二时隙号);
所述第一设备根据第一数据所在的第一频域资源索引,确定所述第一数据对应的反馈信息的第二频域资源索引;
所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列。
在该实现中,第一设备通过确定反馈信息的第二时隙索引、反馈信息的第二频域资源索引和反馈信息的序列中的一种或多种,来保证对于不同时隙中传输的第一数据,这些第一数据的反馈信息位于同一时隙反馈时,这些反馈信息占用的反馈资源中的时域资源、频域资源和序列资源中的至少一种不同,从而减少或解决反馈资源之间的冲突。
在一种可能的实现中,所述反馈信息所在的第二频域资源属于第一反馈资源子集,其中所述反馈信息所在时隙上的频域反馈资源包括至少两个反馈资源子集,所述第一反馈资源子集为所述至少两个反馈资源子集中的一个。
其中,所述反馈信息所在时隙即为第二时隙索引指示的时隙。
可选的,第一数据所在的第一频域资源与反馈信息所在的第二频域资源的单位相同,或者不同。
示例的,所述至少两个反馈资源子集为N个反馈资源子集,且不同的反馈资源子集对应不同时隙上的第一数据所在的反馈资源位置。
即可以理解为将反馈信息所在时隙上的频域反馈资源划分为与反馈周期N相同数量的反馈资源子集。
又一示例的,所述至少两个反馈资源子集对应至少两种不同的反馈方式,所述至少两种不同的反馈方式包括以下中的至少两个:仅反馈肯定应答,反馈肯定应答或否定应答,以及仅反馈否定应答。
具体的,至少两个不同的反馈信息包括:
仅反馈肯定应答,及反馈肯定应答或否定应答;或者,
反馈肯定应答或否定应答,以及仅反馈否定应答;或者,
仅反馈肯定应答,以及仅反馈否定应答;或者,
仅反馈肯定应答,反馈肯定应答或否定应答,以及仅反馈否定应答。
在该实现中,通过对时隙上的频域反馈资源进行频分,属于不同反馈资源子集的频域资源在反馈信息时不产生冲突,从而实现反馈信息的传输。将不同时隙上的数据对应的反馈资源对应到同一个反馈时隙上的反馈资源的不同子集,避免了不同时隙上的数据对应的反馈资源之间的干扰。
在一种可能的实现中,所述第一设备根据第一数据所在的第一频域资源索引,确定所述第一数据对应的反馈信息的第二频域资源索引包括:
所述第一设备根据所述第一数据所在的第一频域资源索引及第一参数,确定所述第一数据对应的反馈信息的第二频域资源索引,其中,所述第一参数包括以下中的一种或多种:反馈周期、所述第一数据的第一时隙索引、预设的第一数值、所述第一数据对应的反馈信息所在的第二时隙索引、频域偏移值、所述第一设备的反馈时延和反馈信息所在时隙上的频域反馈资源总数,其中所述反馈时延为所述第一设备接收到所述第一数据到发送所述反馈信息的最小时间间隔。
可选的,频域偏移值可以为预先配置的特定的频域偏移值,或者可以与第一数据所在的时隙位置对应,即不同时隙映射对应的频域偏移值,也就是说反馈信息的频域偏移值与该反馈信息对应的第一数据所在的第一时隙相关。设置频域偏移值可以让N个相邻时隙上的SA/data在频域上分开,且能够与PSFCH的频域资源实现一一对应,从而解决连续N个时隙上的反馈资源重叠的问题,避免了反馈资源之间的重叠和相互干扰,即通过增加在频域的offset值,避免与相邻时隙上的反馈资源直接重叠,从而避免了序列间的相互干扰。
在该实现中,第一设备为不同时隙上的第一数据的反馈信息确定对应的第二频域资源索引,从而使得反馈信息的频域资源不同,以解决反馈资源之间的冲突。
在一种可能的实现中,所述第一设备根据所述第一数据所在的第一频域资源索引及第一参数,确定所述第一数据对应的反馈信息的第二频域资源索引包括:
所述第一设备根据所述第一频域资源索引与所述反馈周期的比值,确定第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引;或者,
所述第一设备根据所述第二时隙索引与所述第一时隙索引的差、所述反馈周期以及所述第一频域资源索引,确定第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引;或者,
所述第一设备根据所述第二时隙索引与所述第一时隙索引的差、所述反馈时延、所述反馈周期以及所述第一频域资源索引,确定第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引;或者,
所述第一设备根据所述第二时隙索引与所述第一时隙索引的差,以及所述第一频域资源索引与所述反馈周期的比值,确定所述第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引;或者,
所述第一设备根据所述第二时隙索引与所述第一时隙索引的差、所述反馈时延,以及所述第一频域资源索引与所述反馈周期的比值,确定第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引;或者,
所述第一设备根据所述第一时隙索引、所述第一频域资源索引以及所述频域偏移值,确定第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引。
在一种可能的实现中,所述第一设备根据所述第三频域资源索引确定所述第二频域资源索引包括:
所述第一设备将所述第三频域资源索引确定为所述第二频域资源索引;或者,
所述第一设备将所述第三频域资源索对所述频域反馈资源总数取模,根据取模结果确定所述第二频域资源索引;或者,
所述第一设备将所述第三频域资源索引向上取整,根据向上取整结果确定所述第二频域资源索引;或者,
所述第一设备将所述第三频域资源索引向下取整,根据向下取整结果确定所述第二频域资源索引。
在该实现中,第一设备为不同时隙上的第一数据的反馈信息确定对应的第二频域资源索引,从而使得反馈信息的频域资源不同,以解决反馈资源之间的冲突。
在一种可能的实现中,所述第二频域资源索引包括所述第二频域资源在所述反馈信息所在时隙上的反馈资源子集的索引,和/或在所述反馈资源子集内的第二频域资源索引。
在所述反馈资源子集内的第二频域资源索引包括第一反馈资源子集内的子信道、PRB或RE(Resource Element,RE)的索引。
在一种可能的实现中,所述反馈资源子集内包括PRB或RE,所述反馈资源子集包括连续的用于承载信息的PRB或RE,或者在频域等间隔不连续的用于承载信息的PRB或RE。
在一种可能的实现中,所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列包括:
所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数;所述第一设备根据所述序列参数,确定承载所述反馈信息的序列,所述序列参数包括以下中的一种或多种:序列的初始值、序列的初始位置、序列的根序列号、序列的循环移位值及序列的正交覆盖码。
可选的,该方式可以与上述方式中第二频域资源索引确定过程结合,以进一步保证反馈资源之间不产生冲突。即使当不同的发送数据的时隙上占用的反馈的频域资源相同时,可以使用消除序列之间的干扰。
在该实现中,第一设备为不同时隙上的第一数据的反馈信息确定对应的序列参数,从而使得反馈信息的序列不同,以解决反馈资源之间的冲突。
在一种可能的实现中,所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数包括:
所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第二参数,确定所述序列的根序列号,所述第一参数包括以下中的一种或多种:预设的第二数值、所述第二时隙号、根序列号的数量和所述反馈信息的第二频域资源索引。
在该实现中,第一设备为不同时隙上的第一数据的反馈信息确定对应的根序列号,从而使得反馈信息的序列不同,以解决反馈资源之间的冲突。
在一种可能的实现中,所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数包括:
所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定所述序列的循环移位值和/或正交覆盖码,所述第三参数包括以下中的一种或多种:预设的第三数值、所述第二时隙号、循环移位值的数量、正交覆盖码的数量、所述反馈周期、所述第二频域资源索引、所述反馈时延。
具体的,第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定所述序列的循环移位值。
或者,第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定所述序列的正交覆盖码。
或者,第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定所述序列的循环移位值和正交覆盖码。
在该实现中,第一设备为不同时隙上的第一数据的反馈信息确定对应的循环移位值和/或正交覆盖码,从而使得反馈信息的序列不同,以解决反馈资源之间的冲突。
在一种可能的实现中,所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定所述序列的循环移位和/或正交覆盖码包括:
所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定第四数值;
所述第一设备将所述第四数值确定为所述序列的循环移位值和/或正交覆盖码;或者,所述第一设备将所述第四数值对循环移位值的数量和/或正交覆盖码的数量取模,根据取模结果确定所述序列的循环移位值和/或正交覆盖码。
具体的,所述第一设备将所述第四数值确定为所述序列的循环移位值。
或者,所述第一设备将所述第四数值确定为正交覆盖码。
或者,所述第一设备将所述第四数值对循环移位值的数量取模,根据取模结果确定所述序列的循环移位值。
或者,所述第一设备将所述第四数值对正交覆盖码的数量取模根据取模结果确定所述序列的正交覆盖码。
在该实现中,第一设备为不同时隙上的第一数据的反馈信息确定对应的循环移位值和/或正交覆盖码,从而使得反馈信息的序列不同,以解决反馈资源之间的冲突。
在一种可能的实现中,所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数包括:
所述第一设备将所述第一时隙索引对循环移位总数取模,根据取模结果确定循环移位值;或者,
所述第一设备根据所述第一时隙索引与所述第二时隙索引的差,确定循环移位值;或者,
所述第一设备将所述第一时隙索引与所述第二时隙索引的差,对循环移位总数取模,根据取模结果确定循环移位值。
在该实现中,第一设备为不同时隙上的第一数据的反馈信息确定对应的循环移位值,从而使得反馈信息的序列不同,以解决反馈资源之间的冲突。
在一种可能的实现中,所述序列参数还包括至少两个不同的序列参数子组,所述不同的序列参数子组对应至少两种不同的反馈方式,所述至少两种不同的反馈方式包括以下中的一种或多种:仅反馈肯定应答,反馈肯定应答或否定应答,以及仅反馈否定应答。
在一种可能的实现中,所述反馈资源包括至少两组,所述至少两组反馈资源分别对应不同的处理能力。
在一种可能的实现中,所述至少两组反馈资源包括:第一反馈资源集合和第二反馈资源集合;
所述第一反馈资源集合对应第一反馈处理能力;
所述第二反馈资源集合对应第二反馈处理能力。
其中,第一反馈处理能力和第二反馈处理能力均指为发送反馈信息的第一设备的处理能力,第一反馈处理能力对应的第一设备的处理能力与第二反馈处理能力对应的第一设备的处理能力不同。
在一种可能的实现中,所述至少两组反馈资源包括:
第一频域资源和第二频域资源;或者,
第一根序列组和第二根序列组;或者,
第一循环移位值组和第二循环移位值组;或者,
第一正交覆盖码组和第二正交覆盖码组;或者,
第一序列初始值和第二序列初始值;或者,
第一序列初位置和第二序列初始位置。
在一种可能的实现中,所述第一设备根据所述处理能力,确定所述处理能力所属的反馈资源集合;
所述第一设备根据所属的反馈资源集合和所述反馈资源,发送所述反馈信息。
可选的,该方式可以与上述方式中第二频域资源索引确定过程,和/或上述方式中序列确定过程结合,以进一步保证反馈资源之间不产生冲突。并且将每个反馈时隙上的反馈资源分成了多个组,以此来避免不同处理能力的第一设备的反馈资源重叠后产生相应的干扰。
第二方面,提供了一种反馈信息传输方法,该方法包括:第二设备根据第一数据的第一资源索引,确定所述第一数据对应的反馈信息的反馈资源,所述反馈资源包括时域资源、频域资源和序列资源中的一种或多种;所述第二设备通过所述反馈资源接收所述反馈信息。
其中,对于不同时隙中传输的第一数据,这些第一数据的反馈信息位于同一时隙反馈时,这些反馈信息占用的反馈资源中的时域资源、频域资源和序列资源中的至少一种是不同的。
通过本申请实施例提供的方案,对于不同时隙中传输的第一数据,这些第一数据的反馈信息位于同一时隙反馈时,这些反馈信息占用的反馈资源中的时域资源、频域资源和序列资源中的至少一种是不同的,第二设备根据第一数据的资源索引,为同一个反馈周期内连续N个时隙上的反馈信息确定不同的反馈资源,通过不同的反馈资源传输反馈信息,因此通过该方法减少或解决了反馈资源之间的冲突,保证了数据高效准确的传输。
在一种可能的实现中,所述反馈信息用于反馈肯定应答或否定应答、或者,仅用于反馈肯定应答,或者,仅用于反馈否定应答。
在一种可能的实现中,所述第二设备根据接收到的第一数据的第一资源索引,确定所述第一数据对应的反馈信息的反馈资源包括以下方式中的一种或多种:
所述第二设备根据第一数据所在的第一时隙索引和反馈周期N,确定所述第一数据对应的反馈信息的第二时隙索引;
所述第二设备根据第一数据所在的第一频域资源索引,确定所述第一数据对应的反馈信息的第二频域资源索引;
所述第二设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列。
在该实现中,第二设备通过确定反馈信息的第二时隙索引、反馈信息的第二频域资源索引和反馈信息的序列中的一种或多种,来保证对于不同时隙中传输的第一数据,这些第一数据的反馈信息位于同一时隙反馈时,这些反馈信息占用的反馈资源中的时域资源、频域资源和序列资源中的至少一种不同,从而减少或解决反馈资源之间的冲突。
在一种可能的实现中,所述反馈信息所在的第二频域资源属于第一反馈资源子集,其中所述反馈信息所在时隙上的频域反馈资源包括至少两个反馈资源子集,所述第一反馈资源子集为所述至少两个反馈资源子集中的一个。
示例的,所述至少两个反馈资源子集为N个反馈资源子集,且不同的反馈资源子集对应不同时隙上的第一数据所在的反馈资源位置。
又一示例的,所述至少两个反馈资源子集对应至少两种不同的反馈方式,所述至少两种不同的反馈方式包括以下中的至少两个:仅反馈肯定应答,反馈肯定应答或否定应答,以及仅反馈否定应答。
在该实现中,通过对时隙上的频域反馈资源进行频分,属于不同反馈资源子集的频域资源在反馈信息时不产生冲突,从而实现反馈信息的传输。
在一种可能的实现中,所述第二设备根据第一数据所在的第一频域资源索引,确定所述第一数据对应的反馈信息的第二频域资源索引包括:
所述第二设备根据所述第一数据所在的第一频域资源索引及第一参数,确定所述第一数据对应的反馈信息的第二频域资源索引,其中,所述第一参数包括以下中的一种或多种:反馈周期、所述第一数据的第一时隙索引、预设的第一数值、所述第一数据对应的反馈信息所在的第二时隙索引、频域偏移值、所述第一设备的反馈时延和反馈信息所在时隙上的频域反馈资源总数,其中所述反馈时延为所述第一设备接收到所述第一数据到发送所述反馈信息的最小时间间隔。
可选的,频域偏移值可以为预先配置的特定的频域偏移值,或者可以与第一数据所在的时隙位置对应,即不同时隙映射对应的频域偏移值,也就是说反馈信息的频域偏移值与该反馈信息对应的第一数据所在的第一时隙相关。
在该实现中,第二设备为不同时隙上的第一数据的反馈信息确定对应的第二频域资源索引,从而使得反馈信息的频域资源不同,以解决反馈资源之间的冲突。
在一种可能的实现中,所述第二设备根据所述第一数据所在的第一频域资源索引及第一参数,确定所述第一数据对应的反馈信息的第二频域资源索引包括:
所述第二设备根据所述第一频域资源索引与所述反馈周期的比值,确定第三频域资源 索引;所述第二设备根据所述第三频域资源索引,确定第二频域资源索引;或者,
所述第二设备根据所述第二时隙索引与所述第一时隙索引的差、所述反馈周期以及所述第一频域资源索引,确定第三频域资源索引;所述第二设备根据所述第三频域资源索引,确定第二频域资源索引;或者,
所述第二设备根据所述第二时隙索引与所述第一时隙索引的差、所述反馈时延、所述反馈周期以及所述第一频域资源索引,确定第三频域资源索引;所述第二设备根据所述第三频域资源索引,确定第二频域资源索引;或者,
所述第二设备根据所述第二时隙索引与所述第一时隙索引的差,以及所述第一频域资源索引与所述反馈周期的比值,确定所述第三频域资源索引;所述第二设备根据所述第三频域资源索引,确定第二频域资源索引;或者,
所述第二设备根据所述第二时隙索引与所述第一时隙索引的差、所述反馈时延,以及所述第一频域资源索引与所述反馈周期的比值,确定第三频域资源索引;所述第二设备根据所述第三频域资源索引,确定第二频域资源索引;或者,
所述第二设备根据所述第一时隙索引、所述第一频域资源索引、以及所述频域偏移值,确定第三频域资源索引;所述第二设备根据所述第三频域资源索引,确定第二频域资源索引。
在一种可能的实现中,所述第二设备根据所述第三频域资源索引确定所述第二频域资源索引包括:
所述第二设备将所述第三频域资源索引确定为所述第二频域资源索引;或者,
所述第二设备将所述第三频域资源索对所述频域反馈资源总数取模,根据取模结果确定所述第二频域资源索引;或者,
所述第二设备将所述第三频域资源索引向上取整,根据向上取整结果确定所述第二频域资源索引;或者,
所述第二设备将所述第三频域资源索引向下取整,根据向下取整结果确定所述第二频域资源索引。
在该实现中,第二设备为不同时隙上的第一数据的反馈信息确定对应的第二频域资源索引,从而使得反馈信息的频域资源不同,以解决反馈资源之间的冲突。
在一种可能的实现中,所述第二频域资源索引包括所述第二频域资源在所述反馈信息所在时隙上的反馈资源子集的索引,和/或在所述反馈资源子集内的第二频域资源索引。
在一种可能的实现中,所述反馈资源子集内包括PRB或RE,所述反馈资源子集包括连续的用于承载信息的PRB或RE,或者在频域等间隔不连续的用于承载信息的PRB或RE。
在一种可能的实现中,所述所述第二设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列包括:
所述第二设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数;所述第二设备根据所述序列参数,确定承载所述反馈信息的序列,所述序列参数包括以下中的一种或多种:序列的初始值、序列的初始位置、序列的根序列号、序列的循环移位值及序列的正交覆盖码。
可选的,该方式可以与上述方式中第二频域资源索引确定过程结合,以进一步保证反馈资源之间不产生冲突。
在该实现中,第二设备为不同时隙上的第一数据的反馈信息确定对应的序列参数,从而使得反馈信息的序列不同,以解决反馈资源之间的冲突。
在一种可能的实现中,所述第二设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数包括:
所述第二设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第二参数,确定所述序列的根序列号,所述第一参数包括以下中的一种或多种:预设的第二数值、所述第二时隙号、根序列号的数量和所述反馈信息的第二频域资源索引。
在该实现中,第二设备为不同时隙上的第一数据的反馈信息确定对应的根序列号,从而使得反馈信息的序列不同,以解决反馈资源之间的冲突。
在一种可能的实现中,所述第二设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数包括:
所述第二设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定所述序列的循环移位值和/或正交覆盖码,所述第三参数包括以下中的一种或多种:预设的第三数值、所述第二时隙号、循环移位值的数量、正交覆盖码的数量、所述反馈周期、所述第二频域资源索引、所述反馈时延。
在该实现中,第二设备为不同时隙上的第一数据的反馈信息确定对应的循环移位值和/或正交覆盖码,从而使得反馈信息的序列不同,以解决反馈资源之间的冲突。
在一种可能的实现中,所述第二设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定所述序列的循环移位和/或正交覆盖码包括:
所述第二设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定第四数值;
所述第二设备将所述第四数值确定为所述序列的循环移位值和/或正交覆盖码;或者,所述第一设备将所述第四数值对循环移位值的数量和/或正交覆盖码的数量取模,根据取模结果确定所述序列的循环移位值和/或正交覆盖码。
在该实现中,第二设备为不同时隙上的第一数据的反馈信息确定对应的循环移位值和/或正交覆盖码,从而使得反馈信息的序列不同,以解决反馈资源之间的冲突。
在一种可能的实现中,所述第二设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数包括:
所述第二设备将所述第一时隙索引对循环移位总数取模,根据取模结果确定循环移位值;或者,
所述第二设备根据所述第一时隙索引与所述第二时隙索引的差,确定循环移位值;或者,
所述第二设备将所述第一时隙索引与所述第二时隙索引的差,对循环移位总数取模,根据取模结果确定循环移位值。
在该实现中,第二设备为不同时隙上的第一数据的反馈信息确定对应的循环移位值,从而使得反馈信息的序列不同,以解决反馈资源之间的冲突。
在一种可能的实现中,所述序列参数还包括至少两个不同的序列参数子组,所述不同的序列参数子组对应至少两种不同的反馈方式,所述至少两种不同的反馈方式包括以下中的一种或多种:仅反馈肯定应答,反馈肯定应答或否定应答,以及仅反馈否定应答。
在一种可能的实现中,所述反馈资源包括至少两组,所述至少两组反馈资源分别对应 不同的处理能力。
在一种可能的实现中,所述至少两组反馈资源包括:第一反馈资源集合和第二反馈资源集合;
所述第一反馈资源集合对应第一反馈处理能力;
所述第二反馈资源集合对应第二反馈处理能力。
其中,第一反馈处理能力和第二反馈处理能力均指为发送反馈信息的第一设备的处理能力,第一反馈处理能力对应的第一设备的处理能力与第二反馈处理能力对应的第一设备的处理能力不同。
在一种可能的实现中,所述至少两组反馈资源包括:
第一频域资源和第二频域资源;或者,
第一根序列组和第二根序列组;或者,
第一循环移位值组和第二循环移位值组;或者,
第一正交覆盖码组和第二正交覆盖码组;或者,
第一序列初始值和第二序列初始值;或者,
第一序列初位置和第二序列初始位置。
在一种可能的实现中,所述第二设备根据所述处理能力,确定所述处理能力所属的反馈资源集合;
所述第二设备根据所属的反馈资源集合和所述反馈资源,接收所述反馈信息。
可选的,该方式可以与上述方式中第二频域资源索引确定过程,和/或上述方式中序列确定过程结合,以进一步保证反馈资源之间不产生冲突。
在一种可能的实现中,所述第二设备在所述至少两组反馈资源中检测所述反馈信息,当所述第一设备在任意一组反馈资源中检测到否定应答的反馈信息时,所述第二设备重传所述第一数据。
第三方面,提供了一种信息的发送方法,该方法包括:第三设备确定承载第一信息的第一符号集和第二符号集,其中所述第一符号集的带宽不小于预设值;所述第三设备发送所述第一符号集和所述第二符号集;所述第四设备接收所述第一符号集和第二符号集,所述第四设备通过所述第一符号集和第二符号集获取第一信息。
可选的,所述第一信息为数据包、发送数据时的指示信息或反馈信息。
可选的,预设值为2,4或8个PRB,或者预设值对应的PRB的数量为不小于10的正整数,例如预设值为10,12或20个PRB等。
示例的,所述第一符号集用于所述第一信息的接收机做自动增益控制。
通过本申请提供的信息发送方法,可以实现第一信息的收发,支持AGC的检测。
在一种可能的实现中,所述第一符号集承载的第一信息与所述第二符号集承载的第一信息相同,或所述第一符号集承载的第一信息为所述第二符号集承载的第一信息的子集。
在一种可能的实现中,所述第一符号集与所述第二符号集在时域上相邻,并且所述第二符号集在所述第一符号集之后。
在一种可能的实现中,所述第一符号集包括至少1个符号,所述第二符号集包括至少1个符号,且所述第二符号集中的符号数量不少于所述第一符号集中的符号数量。
在一种可能的实现中,所述第一符号集为发送所述第一信息的第一个符号,所述第二符号集为所述第一符号集之后的承载所述第一信息的符号。
在一种可能的实现中,所述方法还包括:
所述第一符号集的带宽与所述第二符号集的带宽相同,且在频域连续映射;或者,
所述第一符号集的带宽与所述第二符号集的带宽相同,且在频域等间隔不连续映射;或者,
所述第一符号集的带宽大于所述第二符号集的带宽。
在一种可能的实现中,所述第一符号集的带宽与所述第二符号集的带宽相同,且在频域等间隔不连续映射包括:
所述第一符号集与所述第二符号集中的每个符号中,每M个RE映射一个承载所述第一信息的RE,其它M-1个RE上不映射数据或信号。
其中,所述M取值为10、12或所述预设值对应的物理资源块数量。
在一种可能的实现中,所述第一符号集的带宽与所述第二符号集的带宽相同包括:
所述第一符号集中各个符号中的RE为所述第二符号集中各个符号中的RE的子集;或者,
所述第一符号集和所述第二符号集完整地承载所述第一信息的编码后的传输块。
在一种可能的实现中,所述第一符号集的带宽大于所述第二符号集的带宽包括:
所述第一符号集中的每个符号中,每M个RE映射一个承载所述第一信息的RE,其它M-1个RE上不映射数据或信号,并且所述第二符号中的每个符号在频域连续映射。
在一种可能的实现中,所述方法还包括:
所述第一符号集中的至少一个符号上各个RE的信号,与所述第二符号集中至少一个符号上各个RE上的信号对应相同。
第四方面,提供了一种信息的发送方法,该方法包括:第四设备接收第一符号集和第二符号集,其中,所述第一符号集和所述第二符号集承载第一信息,所述第一符号集的带宽不小于预设值;所述第四设备通过所述第一符号集和所述第二符号集获取第一信息。
可选的,所述第一信息为数据包、发送数据时的指示信息或反馈信息。
可选的,预设值为2,4或8个PRB,或者预设值对应的PRB的数量为不小于10的正整数,例如预设值为10,12或20个PRB等。
示例的,所述第四设备根据所述第一符号集执行自动增益控制。
通过本申请提供的信息发送方法,可以实现第一信息的收发,支持AGC的检测。
在一种可能的实现中,所述第一符号集承载的第一信息与所述第二符号集承载的第一信息相同,或所述第一符号集承载的第一信息为所述第二符号集承载的第一信息的子集。
在一种可能的实现中,所述第一符号集与所述第二符号集在时域上相邻,并且所述第二符号集在所述第一符号集之后。
在一种可能的实现中,所述第一符号集包括至少1个符号,所述第二符号集包括至少1个符号,且所述第二符号集中的符号数量不少于所述第一符号集中的符号数量。
在一种可能的实现中,所述第一符号集为发送所述第一信息的第一个符号,所述第二符号集为所述第一符号集之后的承载所述第一信息的符号。
在一种可能的实现中,所述方法还包括:
所述第一符号集的带宽与所述第二符号集的带宽相同,且在频域连续映射;或者,
所述第一符号集的带宽与所述第二符号集的带宽相同,且在频域等间隔不连续映射;或者,
所述第一符号集的带宽大于所述第二符号集的带宽。
在一种可能的实现中,所述第一符号集的带宽与所述第二符号集的带宽相同,且在频域等间隔不连续映射包括:
所述第一符号集与所述第二符号集中的每个符号中,每M个RE映射一个承载所述第一信息的RE,其它M-1个RE上不映射数据或信号。
其中,所述M取值为10、12或所述预设值对应的物理资源块数量。
在一种可能的实现中,所述第一符号集的带宽与所述第二符号集的带宽相同包括:
所述第一符号集中各个符号中的RE为所述第二符号集中各个符号中的RE的子集;或者,
所述第一符号集和所述第二符号集完整地承载所述第一信息的编码后的传输块。
在一种可能的实现中,所述第一符号集的带宽大于所述第二符号集的带宽包括:
所述第一符号集中的每个符号中,每M个RE映射一个承载所述第一信息的RE,其它M-1个RE上不映射数据或信号,并且所述第二符号中的每个符号在频域连续映射。
在一种可能的实现中,所述方法还包括:
所述第一符号集中的至少一个符号上各个RE的信号,与所述第二符号集中至少一个符号上各个RE上的信号对应相同。
第五方面,提供了一种反馈信息传输装置,所述装置具有实现上述第一方面或第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的实现中,所述装置的结构中包括处理单元和收发单元,这些单元可以执行上述第一方面或第二方面方法示例中的相应步骤或功能,具体参见方法示例中的详细描述,此处不做赘述。
所述装置可以位于第一设备或第二设备中,或为第一设备或第二设备。
第六方面,提供了一种反馈信息传输装置。本申请提供的装置具有实现上述方法方面所述第一设备或第二设备的功能,其包括用于执行第一方面、第二方面、第一方面中任一种可能实现方式、或第二方面中任一种可能实现方式所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。其中,所述装置可以为第一设备或第二设备。
在一种可能的实现中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中第一设备或第二相应的功能。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
另一个可能的实现中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第一方面、第二方面、第一方面中任一种可能实现方式、或第二方面中任一种可能实现方式中第一设备或第二设备完成的方法。
在一种可能的实现中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中第一设备或第二设备相应的功能。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存终端设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起, 也可以与处理器分离设置。本申请并不限定。
所述装置可以位于第一设备或第二设备中,或为第一设备或第二设备。
另一个可能的实现中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第一方面、第二方面、第一方面中任一种可能实现方式、或第二方面中任一种可能实现方式中第一设备或第二设备完成的方法。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面、第二方面、第一方面中任一种可能实现方式、或第二方面中任一种可能实现方式中的方法的指令。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面、第二方面、第一方面中任一种可能实现方式中、或第二方面中任一种可能实现方式的方法。
第九方面,提供了一种反馈信息传输装置,例如芯片系统等,该装置与存储器相连,用于读取并执行所述存储器中存储的软件程序,执行上述第一方面、第二方面、第一方面中任一种可能实现方式、或第二方面中任一种可能实现方式中的方法。
第十方面,提供了一种信息传输装置,所述装置具有实现上述第一方面或第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的实现中,所述装置的结构中包括处理单元和收发单元,这些单元可以执行上述第一方面或第二方面方法示例中的相应步骤或功能,具体参见方法示例中的详细描述,此处不做赘述。
所述装置可以位于第三设备或第四设备中,或为第三设备或第四设备。
第十一方面,提供了一种信息传输装置。本申请提供的装置具有实现上述方法方面所述第三设备或第四设备的功能,其包括用于执行第三方面、第四方面、第三方面中任一种可能实现方式、或第四方面中任一种可能实现方式所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。其中,所述装置可以为第三设备或第四设备。
在一种可能的实现中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中第三设备或第四设备相应的功能。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
另一个可能的实现中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第三方面、第四方面、第三方面中任一种可能实现方式、或第四方面中任一种可能实现方式中第三设备或第四设备完成的方法。
在一种可能的实现中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中第三设备或第四设备相应的功能。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存终端设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以位于第三设备或第四设备中,或为第三设备或第四设备。
另一个可能的实现中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第三方面、第四方面、第三方面中任一种可能实现方式、或第四方面中任一种可能实现方式中第三设备或第四设备完成的方法。
第十二方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第三方面、第四方面、第三方面中任一种可能实现方式、或第四方面中任一种可能实现方式中的方法的指令。
第十三方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第三方面、第四方面、第三方面中任一种可能实现方式中、或第四方面中任一种可能实现方式的方法。
第十四方面,提供了一种信息传输装置,例如芯片系统等,该装置与存储器相连,用于读取并执行所述存储器中存储的软件程序,执行上述第三方面、第四方面、第三方面中任一种可能实现方式、或第四方面中任一种可能实现方式中的方法。
附图说明
图1为一种反馈信息不同反馈周期的示意图;
图2为一种本申请实施例提供的应用场景的示意图;
图3为一种本申请实施例提供的数据传输的流程示意图;
图4为一种本申请实施例提供的反馈信息传输的流程示意图;
图5为一种本申请实施例提供的反馈信息传输的示意图;
图6为一种本申请实施例提供的反馈信息传输的示意图;
图7为一种本申请实施例提供的反馈信息传输的示意图;
图8为一种本申请实施例提供的反馈信息传输的示意图;
图9为一种本申请实施例提供的反馈信息传输的示意图;
图10为一种本申请实施例提供的反馈信息传输的示意图;
图11为一种本申请实施例提供的数据传输的流程示意图;
图12为一种本申请实施例提供的数据信道的结构示意图;
图13为一种本申请实施例提供的数据信道的结构示意图;
图14为一种本申请实施例提供的数据信道的结构示意图;
图15为一种本申请实施例提供的反馈信息传输装置的结构示意图;
图16为一种本申请实施例提供的反馈信息传输装置的结构示意图;
图17为一种本申请实施例提供的信息传输装置的结构示意图;
图18为一种本申请实施例提供的信息传输装置的结构示意图。
具体实施方式
下面将结合附图对本发明作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第四代(4th Generation,4G),4G系统包括LTE系统,全球互联微波接入(worldwide interoperability for microwave  access,WiMAX)通信系统,未来的第五代(5th Generation,5G)系统,如NR,及未来的通信系统,如6G系统等。另外,本申请实施例提供的技术方案可以应用于蜂窝链路,也可以应用于设备间的链路,例如设备到设备(device to device,D2D)链路。D2D链路或V2X链路,也可以称为侧行链路(sidelink,SL),其中侧行链路也可以称为边链路或副链路等。在本申请实施例中,上述的术语都是指相同类型的设备之间建立的链路,其含义相同。所谓相同类型的设备,可以是终端设备到终端设备之间的链路,也可以是基站到基站之间的链路,还可以是中继节点到中继节点之间的链路等,本申请实施例对此不做限定。对于终端设备和终端设备之间的链路,有3GPP的版本(Rel)-12/13定义的D2D链路,也有3GPP为车联网定义的车到车、车到手机、或车到任何实体的V2X链路,包括Rel-14/15。还包括目前3GPP正在研究的Rel-16及后续版本的基于NR系统的V2X链路等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景(或应用场景)是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)设备,包括终端设备和网络设备。终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、飞行器(如无人机、有人飞机、热气球等)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该设备还可以是可穿戴设备等。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或 是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU);如果位于路侧终端设备上(例如放置在路侧单元内或安装在路侧单元内),都可以认为是路侧终端设备,路侧终端设备也称为路侧单元(Road Side Unit,RSU)。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
在本申请实施例中,设备还可以包括网络设备,网络设备包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G NR系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
本发明可以用于相同类型设备间的链路,也可以用于终端与网络设备之间的链路,本发明对此不做限定。
2)发射机,也称发送设备,与接收机对应,该发射机用于发送信息,如数据包、控制信息、指示信息或反馈信息等。
3)接收机,也称接收设备,与发射机对应,该接收机用于接收发射机发送的信息,该接收机还用于向发射机发送反馈信息,即该接收机可以理解为发送反馈信息的发射机,也就是说一个设备既可以作为发射机也可以作为接收机。
4)传输链路,包括两个设备之间的侧行链路,以及终端设备与网络设备之间的上下行链路等。
5)侧行链路(sidelink,SL),主要指相同类型的设备之间建立的链路,也可以称为边链路、副链路或辅助链路等,本申请实施例对此名称不作限定。相同类型的设备,可以是终端设备到终端设备之间的链路,也可以是基站到基站之间的链路,还可以是中继节点到中继节点之间的链路等,本申请实施例对此不做限定。V2X技术为D2D技术在车联网中的一种应用,或者说V2X是一种具体的D2D或sidelink技术。在V2X场景中,侧行链路为两V2X终端之间的直连链路连接,V2X终端为具有V2X功能的终端,例如上述相同类型的设备。
6)SL传输,两个V2X终端在侧行链路上的数据传输,称为SL传输。
两个V2X终端在进行SL传输之前,可以建立侧行链路连接。比如,作为发起方的V2X终端向网络设备发送建立侧行链路连接的请求,网络设备如果同意该V2X终端建立侧行链路连接,则向该V2X终端发送建立侧行链路连接的配置信息,该V2X终端根据网络设备发送的配置信息与另一V2X终端建立侧行链路连接。
7)资源索引,包括时隙索引、频域资源索引和序列的指示索引中的一种或多种,该资源索引用于指示承载数据和/或控制信息时所使用的资源。本申请实施例中第一数据对应的资源索引为第一资源索引,第一数据的反馈信息对应的资源索引为第二资源索引。
8)反馈资源,包括时域资源、频域资源和序列资源中的至少一种。
时域资源,包括时隙(slot),迷你时隙(mini-slot,即符号数小于一个完整时隙的符号数的时隙),符号(symbol)或其他时域粒度(如系统帧、子帧),其中一个时隙可以包括至少一个符号,例如14个符号,或者12个符号。
在5G NR中,一个时隙可以由用作下行传输的符号、用作灵活的符号、用作上行传输的符号等其中的至少一个组成,这样时隙的构成称为不同的时隙格式(slot format,SF),时隙格式最多可能有256种。
时隙可以有不同的时隙类型,不同的时隙类型包括的符号个数不一样,如迷你时隙(mini slot)包含小于7个符号,普通时隙(slot)包含7个符号或14个符号等。根据子载波间隔不同,每个符号长度可以不同,因此时隙长度可以不同。
在5G NR中,还引入了时隙聚合技术,即网络设备可以将多个时隙分配给同一个终端用于传输数据。比如,终端可以在分配的多个时隙上进行上行数据调度,比如物理上行共享信道(physical uplink shared channel,PUSCH)的调度,也可以在分配的多个时隙上进行下行数据调度,比如物理下行共享信道(physical Downlink Shared CHannel,PDSCH)的调度等。
频域资源,包括子信道、频段(band)、载波(carrier)、带宽部分(BandWidth Part,BWP)、资源块(Resource Block,RB)或资源池等。
子信道,是物理侧行共享信道占用频域资源的最小单位,一个子信道可以包括一个或多个资源块(resource block,RB)。无线通信系统在频域上的带宽可以包括多个RB,例如,在LTE系统的各可能的带宽中,包括的PRB可以为6个、15个、25个、50个等。在频域上,一个RB可以包括若干个子载波,例如,在LTE系统中,一个RB包括12个子载波,其中,每个子载波间隔可以为15kHz,当然,也可以采用其他子载波间隔,例如3.75kHz、30kHz、60kHz或120kHz子载波间隔,在此不作限制。
序列资源,又称码域资源,为用来指示序列的相关参数。对于随机序列,序列的参数包括序列的开始位置,序列的长度,序列的初始值;对于低蜂均比序列(例如ZC(Zadoff–Chu)序列),序列的参数包括根序列、掩码、扰码、循环移位(Cyclic shift,CS)或正交覆盖码(Orthogonal Cover Code,OCC)等。
序列的初始值,指对于随机序列(如Gold序列,m序列)来说,生成序列的移位寄存器的初始值。
序列的开始位置与用于传输时使用的随机序列之间满足:c(n)=c(n+a),n=0,1,2,…,L-1,其中c(n)为用于传输时使用的随机序列,a为随机序列的开始位置,L为随机序列的长度,一般a为非负的整数,如a为0,或a为2等,其中n为确定序列各个码元的中间 变量。
9)V2X的数据传输方式。在V2X中,主要是终端设备和终端设备之间的通信。对于终端设备和终端设备之间的传输模式,当前标准协议支持的有广播方式,组播方式,和单播方式。
广播方式:广播方式是指作为发送端的终端设备采用广播的模式进行数据发送,多个终端设备端均能接收来自发送端的侧行链路控制信息(sidelink control information,SCI)或承载在侧行链路共享信道(sidelink shared channel,SSCH)上的数据信息。SCI有时候选也称为调度分配(Schedule Assignment,SA),在本发明中,若无特殊说明,这两者等同。
在侧行链路中,保证所有的终端设备都解析来自发送端的控制信息的方式是,发送端不对控制信息加扰,或者发送端使用所有的终端设备都已知的扰码对控制信息加扰。
组播方式:组播方式和广播发送相似,作为发送端的终端设备采用组播的模式进行数据发送,一组终端设备均能解析SCI或SSCH。
单播方式:单播方式是一个终端设备向另外一个终端设备发送数据,其它终端设备不需要或者不能够解析该数据。
10)反馈信息:包括终端设备需要接收的反馈信息和/或需要发送的反馈信息,其中终端设备需要接收的反馈信息由其他设备发送给该终端设备,终端设备需要发送的反馈信息由该终端设备发送给其他设备。其中,其他设备可以为其它终端设备或网络设备。具体的反馈信息包括混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)反馈信息等。可选的,当本发明用于侧行链路时,对数据所做的反馈信息通常用于单播或组播的传输方式中。
11)物理侧行链路反馈信道(Physical Sidelink Feedback Channel,PSFCH),是指在需要反馈的场景下终端设备在侧行链路(sidelink)上承载侧行链路反馈控制信息(Sidelink Feedback Control Information,SFCI)的信道。
12)ZC序列,也称为Zadoff–Chu,Frank–Zadoff–Chu(FZC)序列或者Chu序列,是完美序列中的一种。这个序列具有理想的周期自相关特性。生成ZC序列的主要参数有序列的根序列号,循环移位值和正交覆盖码中的一种或多种。本发明使用的序列,可以是伪随机序列,ZC序列,或其他低峰值比的序列(如LTE或NR Rel-15协议中定义的长度为6,12,18,24的序列)。
13)参考信号,为实现特定功能而发送承载序列的物理信号。根据功能不同,有不同类型的参考信号。当参考信号用于发送反馈信息时,可以是用于承载反馈信息的解调参考信号,也可以是直接用来承载反馈信息的序列。主要指传输针对数据的反馈信息的参考信号,发送参考信号的设备可以为发送反馈信息的第一设备,可以为发送第一数据的第二设备,也可以为进行测量或提供同步源的设备。参考信号有以下用途:用于数据解调、承载信息,进行信道状态信息(Channel State Information,CSI)、无线资源管理(Radio Resource Management,RRM)或无线链路监控(Radio Link Monitoring,RLM)测量、同步、相位噪声跟踪等。参考信号在承载反馈信息时,可以是用序列承载,也可以是用反馈信道中的控制信息编码比特来承载。具体地,参考信号可以为物理侧行链路共享信道(Physical Sidelink Shared Channel,PSSCH)使用的解调参考信号(Demodulation Reference Signal,DMRS),可以为物理侧行链路控制信道(Physical Sidelink Control Channel,PSCCH);参 考信道在进行CSI、RRM或RLM测量时,参考信号可以为RS,或信道探测参考信号(Sounding Reference Signal,SRS),或CSI-RS等;参考信号在进行同步时,参考信号可以为物理侧行链路广播信道(Physical sidelink broadcast Channel,PSBCH)使用的参考信号等。另外,在本申请实施例中参考信号还可以为用于数据或控制信息传输时做加扰的参考信号。
11)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如第一时隙和第二时隙,只是为了区分不同的时隙,并不是限制这两个时隙的优先级或重要程度等。
为了便于理解本申请实施例,下面对本申请的应用场景进行说明。
物联网是在通信系统提供的互联网的基础上延伸和扩展的网络,通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实现采集任何需要监控、连接、互动的物体或过程,通过各类可能的网络接入,实现物与物、物与人之间的泛在连接。简单来说,物联网的核心和基础仍然是互联网,是在互联网基础上延伸和扩展的网络,其用户端延伸和扩展到了任何物与物之间的信息交换和通信。
物联网的应用领域涉及到方方面面,比如在智能交通中的应用,而随着交通信息化和智能交通的行业发展,车联网的概念被提出。车联网主要指车辆上的车载设备通过无线通信技术,对信息网络平台中的所有车辆的动态信息进行有效路由,在车联运行中提供不同的功能服务,旨在提升汽车安全性、自动化驾驶,并提升交通效率。车联网的实现主要依赖于V2X技术,V2X技术核心在于实现车联与万事万物的互连,主要应用在车与外界(vehicle to everything,V2X)场景,其中,V2X具体又包括车与车(Vehicle to Vehicle,V2V)、车与行人(Vehicle-to-Pedestrian,V2P)、车与路侧基础设施(Vehicle-to-Infrastructure,V2I)、车与网络(Vehicle-to-Network,V2N)四种应用场景。V2V指的是车辆间通信;V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客)的通信;V2I指的是车辆与路侧单元(RSU)的通信,V2N指的是车辆与基站/网络的通信。
如图2所示为一种应用场景的示意图,图2所示的应用场景为V2X场景,该场景中包括车载设备(如图2所示包括UE1、UE2和UE3),路侧单元(如图2所示包括RSU1),基站设备(如图2所示包括eNB和gNB等),以及全球导航卫星系统(如图2所示包括GNSS),该场景中的各设备均可以为一个或多个。车载设备之间可以相互通信,实现信息交流与信息共享,如包括车辆位置、行驶速度等车联状态信息,可用于判断道路车流状况。RSU可以与各个车载设备和/或基站设备通信,进可用于检测道路路面状况,引导车辆选择最佳行驶路径。基站设备与各个车载设备和/或RSU通信,GNSS可以为其他的网元提供 定位授时的信息。此外,该车联网中车载设备还可以与人通信,具体的用户可以通过Wi-Fi、蓝牙、蜂窝等无线通信手段与车辆进行信息沟通,使用户能通过对应的移动终端设备监测并控制车辆。图2中的基站设备是可选的,如果有基站设备,则是有网络覆盖的场景;如果无基站设备则是属于无网络覆盖的场景。
上述各设备之间都可以通过侧行链路和上下行链路进行相互通信,通信时可以使用蜂窝链路的频谱,也可以使用5.9GHz附近的智能交通频谱。各设备相互通信的技术可以基于通信网络协议(如LTE协议)进行增强,可以基于D2D技术进行增强。
在3GPP正在研究的V2X技术中,要求支持数据高可靠地传输。要实现整个传输的高可靠性,需要同时支持控制信息的高可靠传输和数据的高可靠传输。例如,V2X要实现端到端传输时延不超过3ms的要求,URLLC要实现不超过10ms的端到端的时延要求。在可靠性方面,V2X要求达到99.999%。因此,如何实现低时频、高可靠的传输,是5G中的关键技术。为了实现高可靠的传输,一种可行的方式是接收机针对发射机发送的数据做出相应的反馈,从而保证通信链路的高可靠性。一种常见的通信场景如图3所示,设备1将数据信息发送给设备2,此时设备1相当于发射机,设备2相当于接收机;设备2接收到数据信息之后,向设备1发送针对数据信息的反馈信息,此时设备1相当于接收机,设备2相当于发射机。设备2针对设备1发送的数据信息做出反馈时,是按照设定的反馈周期在确定的反馈资源上反馈,反馈信息的反馈周期为N表示连续N个时隙上的反馈信息在一个时隙的反馈资源上反馈,N为大于或等于1的正整数,如N=1、N=2或者N=4等。接收机(作为反馈的发射机)做出反馈时,是按照设定的反馈周期在确定的反馈资源上反馈。如图1所示,反馈周期N=1每个时隙上都有反馈资源;反馈周期N=2表示每两个时隙就有一个时隙上有反馈资源;反馈周期N=4表示每四个时隙就有一个时隙上有反馈资源。因此在数据包的反馈周期N大于1时,连续多个时隙(如N个时隙)上的数据对应的反馈信息可能会出现在同一个时隙的反馈资源上,造成反馈资源之间的冲突,降低了反馈信息传输的可靠性,并降低了通信链路的可靠性。
鉴于此,为了解决反馈信息时反馈资源之间产生的冲突,高效准确地传输反馈信息,本申请提出一种反馈信息传输方法来确定反馈信息的反馈资源(包括时域资源、频域资源和序列资源中的一种或多种),以减少或避免连续多个时隙的反馈信息在同一时隙的反馈资源上产生冲突。
本申请实施例提供了一种反馈信息传输方法,该方法可以应用于如图2所示的场景中,也可以应用在反馈资源可能产生冲突的其他场景中,下面参考图4,详细说明反馈信息传输方法的具体过程。如图4所示,该过程包括:
步骤401:第二设备将第一数据发送给第一设备。第一数据包括数据包、指示信息和控制信息等中的一种或多种。
第二设备也可以称为第一数据的发射机。
具体的,第二设备确定用于传输该第一数据的第一资源,通过该第一资源发送该第一数据。示例性的,该第一资源包括第一数据所在的第一时隙(或者第一数据占用的第一时隙)、第一数据所在的第一频域资源(或者第一数据占用的第一频域资源)以及用于承载该第一数据的第一序列资源中的一种或多种。第一资源可以用第一资源索引(在本申请实施例中用n表示)来唯一标识,如该第一数据所在的第一时隙可以用第一时隙索引来唯一标识,该第一数据所在的第一频域资源可以用于第一频域资源索引(在本申请实施例中用 F subc(n)表示)来唯一标识。
步骤402:第一设备接收第一数据。
第一设备也可以称为第一数据的接收机。
具体的,第一设备确定用户接收该第一数据的第一资源,通过该第一资源接收该第一数据。
步骤403:第一设备确定所述第一数据对应的反馈信息的反馈资源。所述第一数据对应的反馈信息为所述第一设备发送的针对所述第一数据的反馈信息。所述反馈信息用于反馈肯定应答或否定应答,或者所述反馈信息仅用于反馈肯定应答,或者所述反馈信息仅用于反馈否定应答。在本申请实施例中肯定应答也可以称为ACK,否定应答也可以称为NACK。所述反馈信息的反馈资源包括时域资源、频域资源和序列资源中的一种或多种。
其中,对于不同时隙中传输的第一数据,这些第一数据的反馈信息位于同一时隙反馈时,这些反馈信息占用的反馈资源中的时域资源、频域资源和序列资源中的至少一种是不同的。
具体的,第一设备根据第一数据的第一资源索引,确定第一数据对应的反馈信息的反馈资源。
第一设备可以通过如下方式确定反馈信息的时域资源:第一设备根据第一数据所在的第一时隙索引和反馈周期N,确定反馈信息的第二时隙索引(本申请实施例中用m表示)。该反馈信息的第二时隙索引用来唯一标识反馈信息所在的第二时隙,反馈信息所在的第二时隙即反馈信息占用的第二时隙。
第一设备可以通过如下方式确定反馈信息的频域资源:第一设备根据第一数据所在的第一频域资源索引,确定反馈信息的第二频域资源索引(在本申请中用F SFCI(m)表示)。该反馈信息的第二频域资源索引用来唯一标识反馈信息所在的第二频域资源,反馈信息所在的第二频域资源即反馈信息占用的第二频域资源。
第一设备可以通过如下方式确定反馈信息的序列资源:第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定反馈信息的序列。该反馈信息的序列为用于承载该反馈信息的第二序列资源。
第一设备可以通过确定不同的反馈资源,来减少或避免连续多个时隙的反馈信息在同一时隙上的反馈资源上产生的冲突,即第一设备确定的多个时隙的反馈信息的反馈资源中,时域资源、频域资源和序列中的至少一种存在不同,详尽过程参见下述实施例说明。
步骤404:第一设备通过所述反馈资源发送所述反馈信息。
具体的,第一设备在该反馈信息的第二时频位置上以所述序列发送该反馈信息,该反馈信息的时频位置为该反馈信息所在的第二时隙和该反馈信息所在的第二频域资源,所述序列为上述步骤403中确定的反馈信息的序列。
步骤405:第二设备确定所述第一数据对应的反馈信息的反馈资源。
第二设备确定反馈信息的反馈资源的过程与第一设备确定反馈信息的反馈资源的过程相同,可以参见步骤403,在此不做赘述。
其中,步骤405和步骤403的先后顺序不做限制。
步骤405:第二设备通过所述反馈资源接收所述反馈信息。
具体的,第二设备在该反馈信息的第二时频位置上通过所述序列接收该反馈信息。
通过本申请实施例提供的方案,对于不同时隙中传输的第一数据,这些第一数据的反 馈信息位于同一时隙反馈时,这些反馈信息占用的反馈资源中的时域资源、频域资源和序列资源中的至少一种不相同,第一设备根据第一数据的资源索引,为同一个反馈周期内连续N个时隙上的反馈信息确定不同的反馈资源,通过不同的反馈资源传输反馈信息,因此通过该方法减少或解决了反馈资源之间的冲突,保证了数据高效准确的传输。
在图4的基础上,本申请实施例详细说明上述反馈信息的反馈资源的确定过程,从而确定不同的反馈资源。
实施例一、将反馈信息所在时隙上的频域反馈资源划分为至少两个反馈资源子集,即反馈信息所在时隙上的频域反馈资源包括至少两个反馈资源子集,具体的,反馈信息所在时隙为反馈信息所在的第二时隙。所述至少两个反馈资源子集中包括第一反馈资源子集,即第一反馈资源子集为所述至少两个反馈资源子集中的一个,反馈信息所在的第二频域资源属于第一资源反馈子集。
可选的,反馈信息所在的第二频域资源与第一数据所在的第一频域资源的单位(也称为颗粒度)相同,例如都是子信道或者物理资源块(Physical Resource Block,PRB)。或者,反馈信息所在的第二频域资源与第一数据所在的第一频域资源的单位不同,例如一个为子信道,另一个为PRB,即反馈信息所在的第二频域资源的单位为子信道,第一数据所在的第一频域资源的单位为PRB,或者,反馈信息所在的第二频域资源的单位为PRB,第一数据所在的第一频域资源的单位为子信道。
示例的,如果反馈信息所在的第二频域资源与第一数据所在的第一频域资源的单位相同,第二频域资源索引可以包括第二频域资源索引在所述反馈信息所在时隙上的反馈资源子集的索引,即第二频域资源与第一反馈资源子集相同,第二频域资源索引为第一反馈资源子集的索引。
又一示例的,如果反馈信息所在的第二频域资源与第一数据所在的第一频域资源的单位不同,第二频域资源索引可以包括在所述反馈资源子集内的第二频域资源索引,即第二频域资源为第一反馈资源子集的部分,第二频域资源索引包括第一反馈资源子集内的子信道、PRB或资源元(Resource Element,RE)的索引。
所述反馈资源子集内包括PRB或RE,所述反馈资源子集包括连续的用于承载信息的PRB或RE,或者在频域等间隔不连续的用于承载信息的PRB或RE,详细说明参见后续实施例。当反馈资源内用不连续的资源(即存在间隔的资源)来承载时,第二频域资源的索引可以是指示相应的RE和/或PRB的索引。
将反馈信息所在时隙上的频域反馈资源划分为至少两个反馈资源子集包括至少包括下述几种实现方式:
在一个实现方式中,该至少两个反馈资源子集为N个反馈资源子集,且不同的反馈资源子集对应不同时隙上的第一数据所在的反馈资源位置。即该至少两个反馈资源子集的数量为N,也就是说该至少两个反馈资源子集的数量与反馈周期对应的数值相同。
以反馈周期N=4进行说明,反馈周期N为4时,会有连续4个时隙上的反馈信息的反馈资源映射到同一个反馈时隙上。
每个第一数据对应的反馈信息的反馈资源位置与每个反馈资源子集一一对应。如图5所示,第一数据所在的第一时隙分别为0,1,2,3和4,其中时隙1至时隙4为同一反馈周期内的时隙,时隙0至时隙4中均为第一数据(DATA)所在的第一时隙,第一数据对 应的反馈信息所在的第二时隙为时隙4,例如m=4,在时隙1至时隙4所在的反馈周期内,时隙1的第一数据对应的反馈信息在第一反馈资源子集1上反馈,时隙2的第一数据对应的反馈信息在第一反馈资源子集2上反馈,时隙3的第一数据对应的反馈信息在第一反馈资源子集3上反馈,时隙4的第一数据对应的反馈信息在第一反馈资源子集4上反馈。
或者,考虑到第一设备处理数据时存在处理时延(本申请实施例中用K表示),每个时隙的第一数据需在其所在时隙的处理时延K之后最近的一个时隙上发送反馈,即m>=n+K,其中K为所述第一设备接收到所述第一数据到发送所述反馈信息的最小时间间隔,处理时延K的单位可以为时隙或符号或毫秒(ms)。如图6所示,假设K=1,第一数据所在的第一时隙分别为0,1,2,3和4,其中时隙1至时隙4为同一反馈周期内的时隙,时隙0至时隙4中均为第一数据(图5的示例中包括SA和DATA,但SA部分是可选的,本发明并不强制要求发送数据的时候一定要有同时发送的SA出现)所在的第一时隙,由于存在处理时延K=1,时隙0至时隙3的第一数据对应的反馈信息所在的第二时隙为时隙4,即m=4,时隙0的第一数据对应的反馈信息在第一反馈资源子集1上反馈,时隙1的第一数据对应的反馈信息在第一反馈资源子集2上反馈,时隙2的第一数据对应的反馈信息在第一反馈资源子集3上反馈,时隙3的第一数据对应的反馈信息在第一反馈资源子集4上反馈,而时隙4的第一数据对应的反馈信息将在下一反馈周期进行反馈。
如图6所示,可能出现一种情况,就是多个不同频域位置的第一数据,对应到同一个反馈信息所在的频域反馈资源;多个反馈信息共用一个相同的反馈资源可能导致反馈信息间的冲突,因此对于这种情况,还可以确定这些第一数据的反馈信息的序列资源,从而使用码分的方式实现多个数据对应的反馈信息之间在同一个反馈资源上的码分复用,从而避免反馈资源之间的冲突。确定序列资源的详细过程参见后续实施例。图6的示例中包括SA和DATA,但SA部分是可选的,本发明并不强制要求发送数据的时候一定有同时发送的SA出现。
又或者,每个第一数据对应的反馈信息的反馈资源位置与每个反馈资源子集内的第二频域资源一一对应。反馈信息所在的第二频域资源与第一数据所在的第一频域资源的单位不同,第二频域资源索引可以包括在所述反馈资源子集内的第二频域资源索引,即第二频域资源为第一反馈资源子集的部分。
第一数据占用的子信道的数量与反馈信息占用的频域位置的数量并非一一对应。
例如,第一数据所在的第一频域资源的单位为子信道,一个子信道的大小为多个PRB,如为4个PRB、5个PRB、6个PRB或10个PRB等,反馈信息所在的第二频域资源的单位为一个PRB,或者在频域按RE离散放置的位置,又或者PSFCH占用的带宽为10个PRB且按等间隔的RE进行放置。
可选的,如图7所示,反馈信息占用的频域位置的数量多于第一数据占用的子信道的数量。例如第一数据占用Md个子信道(如Md为10,20或30等),反馈信息占用的频域位置的数量为Mf个(如Mf为8,10,12,20,40或100等)。
示例的,如果反馈信息占用的频域位置在一个反馈资源子集内,则第二频域资源索引包括在反馈资源子集内的第二频域资源索引。
又一示例的,反馈信息占用的频域位置在整个频域资源的带宽上。
在另一个实现方式中,该至少两个反馈资源子集对应至少两个不同的反馈方式,该至少两个不同的反馈方式包括以下中至少两个(即多个):仅反馈肯定应答,反馈肯定应答 或否定应答,以及仅反馈否定应答。仅反馈肯定应答是指当数据的接收机正确检测到数据时,发送接收正确的肯定应答ACK,当数据的接收机未正确检测到数据或译码数据出错时,不发送任何应答。相应的,仅反馈否定应答是指当数据的接收机正确检测到数据时,不发送任何应答;而当数据的接收机检测数据译码出错时,发送接发送否定的应答NACK。反馈肯定应答或否定应答是指,当数据的接收机正确检测到数据时,发送接收正确的肯定应答ACK;而当数据的接收机检测数据译码出错时,发送接发送否定的应答NACK。
具体的,该至少两个不同的反馈方式包括:仅反馈肯定应答、以及反馈肯定应答或否定应答;或者,
该至少两个不同的反馈方式包括:仅反馈肯定应答、以及仅反馈否定应答;或者,
该至少两个不同的反馈方式包括:反馈肯定应答或否定应答,以及仅反馈否定应答;或者,
该至少两个不同的反馈方式包括:仅反馈肯定应答、反馈肯定应答或否定应答,以及仅反馈否定应答。
示例的,第一设备根据第一数据对应的反馈信息的反馈方式,确定该反馈信息的第一反馈资源子集。例如,如果该至少两个不同的反馈方式包括仅反馈肯定应答、以及反馈肯定应答或否定应答,第一数据对应的反馈信息的反馈方式为仅反馈肯定应答,第一设备确定仅反馈肯定应答对应的第一反馈资源子集为该反馈信息的第一反馈资源子集。
在上述将反馈信息所在时隙上的频域反馈资源划分为至少两个反馈资源子集的基础上,第一设备根据第一数据所在的第一频域资源索引,确定第一数据对应的反馈信息的第二频域资源索引。
具体的,所述第一设备根据第一数据所在的第一频域资源索引,确定所述第一数据对应的反馈信息的第二频域资源索引包括:
所述第一设备根据所述第一数据所在的第一频域资源索引及第一参数,确定所述第一数据对应的反馈信息的第二频域资源索引,其中,所述第一参数包括以下中的一种或多种:反馈周期N、所述第一数据的第一时隙索引n、预设的第一数值(在本申请实施例中用a表示)、所述第一数据对应的反馈信息所在的第二时隙索引、频域偏移值(在本申请实施例中用offset表示)、所述第一设备的反馈时延K和反馈信息所在时隙上的频域反馈资源总数(在本申请实施例中用M表示),其中所述反馈时延K为所述第一设备接收到所述第一数据到发送所述反馈信息的最小时间间隔,频域反馈资源总数M为反馈信息所在时隙上的总反馈子信道数,或者为反馈信息的反馈资源所在时隙上划分得到的一个反馈资源子集中的总反馈子信道数。
可选的,频域偏移值offset可以为预先配置的特定的频域偏移值,或者可以为与第一数据所在的时隙位置对应的频域偏移值,即不同时隙映射对应的频域偏移值,也就是说反馈信息的频域偏移值与该反馈信息对应的第一数据所在的第一时隙相关。
频域偏移值offset的大小与反馈资源的RE或PRB的颗粒度相关。Offset可以是预定义的,可以是预先配置的,也可以是基站直接配置给第一设备的。
如果频域偏移值offset与第一数据所在的时隙位置相关,则不同时隙映射不同的offset值,相邻时隙上各个子信道的频域位置不会一一地对齐,从而反馈信息的第二频域资源各不相同,避免了反馈资源之间的重叠。如图8所示,时隙n上的Data1,时隙n+1上的Data1和时隙n+2上的Data1的反馈信息的第二频域资源未对齐。
在一种实现方式中,第一设备根据第一数据所在的第一频域资源索引和频域偏移值,确定第一数据对应的反馈信息的第二频域资源索引,即第一设备对应相邻时隙上的每个时隙的子信道在频域放置时按照对应的offset进行放置。
在另一种实现方式中,第一设备根据第一数据所在的第一频域资源索引以及第一参数,确定第三频域资源索引,第一设备根据该第三频域资源索引,确定第一数据对应的反馈信息的第二频域资源索引。
第一设备可以通过如下方式中的任意一种根据第一数据所在的第一频域资源索引及第一参数,确定反馈信息的第三频域资源索引:
1.1.1、第一设备根据第一频域资源索引与反馈周期N的比值,确定第三频域资源索引。
该方式可以将时隙n上的第一数据的第一频域资源按照反馈周期N进行压缩,以映射到至少两个反馈资源子集中的一个。例如,第三频域资源索引为(F subc(n)+a)/N。其中,F subc(n)表示为第一频域资源在时隙n上的索引;a为整数,作为一种可选的实施例,a可以取值为0。在本发明中,如未做说明,F subc(n)的含义与本方式中的相同。可选的,N为正整数,例如1,2,4等。
1.1.2、所述第一设备根据所述第二时隙索引m与所述第一时隙索引n的差、所述反馈周期N以及所述第一频域资源索引,确定第三频域资源索引。
与上述方式1.1.1相比,该方式可以将时隙n上的第一数据的第一频域资源按照反馈周期N进行压缩,从至少两个反馈资源子集中的最后一个向前映射,如第一个时隙上的第一数据对应的反馈信息映射到至少两个反馈资源子集中最后一个第二频域资源上。例如,第三频域资源索引为(m-n)*((F subc(n)+a)/N)。
1.1.3、所述第一设备根据所述第二时隙索引m与所述第一时隙索引n的差、所述反馈时延K、所述反馈周期N以及所述第一频域资源索引,确定第三频域资源索引。
与上述方式1.1.1和方式1.1.2相比,该方式中考虑到处理时延K的影响。
1.1.4、所述第一设备根据所述第二时隙索引m与所述第一时隙索引n的差,以及所述第一频域资源索引与所述反馈周期N的比值,确定所述第三频域资源索引。
例如,第三频域资源索引为(m-n)*((F subc(n)+a)/N),或者第三频域资源索引为(N+n-m+1)*((F subc(n)+a)/N)。与上述方式1.1.2中的公式相比,该方式中则是将时隙n上的第一数据的第一频域资源按照反馈周期N进行压缩,从至少两个反馈资源之间中的第一个向后映射,如第一个时隙上的第一数据对应的反馈信息映射到至少两个反馈资源子集中的第一个第二频域资源上。
1.1.5、所述第一设备根据所述第二时隙索引m与所述第一时隙索引n的差、所述反馈时延K,以及所述第一频域资源索引与所述反馈周期N的比值,确定第三频域资源索引。
与上述方式1.1.4相比,该方式中考虑到处理时延K的影响。例如,第三频域资源索引为(m-n-K+1)*((F subc(n)+a)/N),或者第三频域资源索引为(N+n-m+K)*((F subc(n)+a)/N)。
1.1.6、所述第一设备根据所述第一时隙索引n、所述第一频域资源索引、以及所述频域偏移值,确定第三频域资源索引。
所述频域偏移值可以为预先配置的特定的频域偏移值。
例如第三频域资源索引为F subc(n)+n*offset,或者第三频域资源索引为F subc(n)+(m-n)*offset,或者第三频域资源索引为F subc(n)+(m-n-K+1)*offset,或者第三频域资源索引为F subc(n)+(N+n-m+1)*offset,或者第三频域资源索引为F subc(n)+(N+n-m+K)*offset。
在上述确定反馈信息的第三频域资源索引的基础上,第一设备通过如下方式中的一种根据第三频域资源索引确定第二频域资源索引:
1.2.1、所述第一设备将所述第三频域资源索引确定为所述第二频域资源索引。
1.2.2、所述第一设备将所述第三频域资源索对所述频域反馈资源总数M取模,根据取模结果确定所述第二频域资源索引。
该方式通过对反馈时隙上的频域反馈资源总数M取模,能够防止确定的第二频域资源的位置超过了频域反馈资源总数。
例如,在上述方式1.1.1的基础上,第二频域资源索引为mod((F subc(n)+a)/N,M)。
例如,在上述方式1.1.2的基础上,第二频域资源索引为(m-n)*mod((F subc(n)+a)/N,M)。
例如,在上述方式1.1.4的基础上,第二频域资源索引为(m-n)*mod((F subc(n)+a)/N,M),或者第二频域资源索引为(N+n-m+1)*mod((F subc(n)+a)/N),M)。
例如,在上述方式1.1.5的基础上,第二频域资源索引为(m-n-K+1)*mod(Floor((F subc(n)+a)/N),M),或者第二频域资源索引为(N+n-m+K)*mod(Floor((F subc(n)+a)/N),M)。
例如,在上述方式1.1.6的基础上,第二频域资源索引为mod(F subc(n)+n*offset,M),或者第二频域资源索引为mod(F subc(n)+(m-n)*offset,M),或者第二频域资源索引为mod(F subc(n)+(m-n-K+1)*offset,M),或者第二频域资源索引为mod(F subc(n)+(N+n-m+1)*offset,M),或者第二频域资源索引为mod(F subc(n)+(N+n-m+K)*offset,M)。
1.2.3所述第一设备将所述第三频域资源索引向上取整,根据向上取整结果确定所述第二频域资源索引。ceil(x),表示对数x做向上取整操作。
例如,在上述方式1.1.1的基础上,第二频域资源索引为ceil((F subc(n)+a)/N)。
例如,在上述方式1.1.2的基础上,第二频域资源索引为(m-n)*ceil((F subc(n)+a)/N)。
例如,在上述方式1.1.4的基础上,第二频域资源索引为(m-n)*ceil((F subc(n)+a)/N),或者第二频域资源索引为(N+n-m+1)*ceil((F subc(n)+a)/N)。
例如,在上述方式1.1.5的基础上,第二频域资源索引为(m-n-K+1)*ceil((F subc(n)+a)/N),或者第二频域资源索引为(N+n-m+K)*ceil((F subc(n)+a)/N)。
例如,在上述方式1.1.6的基础上,第二频域资源索引为mod(ceil(F subc(n)+n*offset),M),或者第二频域资源索引为mod(ceil(F subc(n)+(m-n)*offset),M),或者第二频域资源索引为mod(ceil(F subc(n)+(m-n-K+1)*offset),M),或者第二频域资源索引为mod(ceil(F subc(n)+(N+n-m+1)*offset),M),或者第二频域资源索引为mod(ceil(F subc(n)+(N+n-m+K)*offset,M))。
1.2.4所述第一设备将所述第三频域资源索引向下取整,根据向下取整结果确定所述第二频域资源索引。Floor(x),表示对数x做向下取整操作。
例如,在上述方式1.1.1的基础上,第二频域资源索引为Floor((F subc(n)+a)/N)。
例如,在上述方式1.1.2的基础上,第二频域资源索引为(m-n)*Floor((F subc(n)+a)/N)。
例如,在上述方式1.1.4的基础上,第二频域资源索引为(m-n)*Floor((F subc(n)+a)/N),或者第二频域资源索引为(N+n-m+1)*Floor((F subc(n)+a)/N)。
例如,在上述方式1.1.5的基础上,第二频域资源索引为(m-n-K+1)*Floor((F subc(n)+a)/N),或者第二频域资源索引为(N+n-m+K)*Floor((F subc(n)+a)/N)。
例如,在上述方式1.1.6的基础上,第二频域资源索引为Floor(F subc(n)+n*offset),或者第二频域资源索引为Floor(F subc(n)+(m-n)*offset),或者第二频域资源索引为Floor(F subc(n)+(m-n-K+1)*offset),或者第二频域资源索引为Floor(F subc(n)+(N+n-m+1)*offset),或者第二频域资源索引为Floor(F subc(n)+(N+n-m+K)*offset)。可选的,offset为整数。可选的,offset可以取值为1。
可选的,方式1.2.2与方式1.2.3可以结合使用,或者方式1.2.2与方式1.2.4可以结合使用。
例如,方式1.2.2与方式1.2.3结合使用,第二频域资源索引为mod(ceil((F subc(n)+a)/N),M),或者第二频域资源索引为(m-n)*mod(ceil((F subc(n)+a)/N),M),或者第二频域资源索引为(N+n-m+1)*mod(ceil((F subc(n)+a)/N),M),或者第二频域资源索引为(m-n-K+1)*mod(ceil((F subc(n)+a)/N),M),或者第二频域资源索引为(N+n-m+K)*mod(ceil((F subc(n)+a)/N),M),或者第二频域资源索引为mod(ceil(F subc(n)+n*offset),M),或者第二频域资源索引为mod(ceil(F subc(n)+(m-n)*offset),M),或者第二频域资源索引为mod(ceil(F subc(n)+(m-n-K+1)*offset),M),或者第二频域资源索引为mod(ceil(F subc(n)+(N+n-m+1)*offset),M),或者第二频域资源索引为mod(ceil(F subc(n)+(N+n-m+K)*offset),M)。可选的,offset为整数。可选的,offset可以取值为1。
例如,方式1.2.2与方式1.2.4结合使用,第二频域资源索引为mod(Floor((F subc(n)+a)/N),M),或者第二频域资源索引为(m-n)*mod(Floor((F subc(n)+a)/N),M),或者第二频域资源索引为(N+n-m+1)*mod(Floor((F subc(n)+a)/N),M),或者第二频域资源索引为(m-n-K+1)*mod(Floor((F subc(n)+a)/N),M),或者第二频域资源索引为(N+n-m+K)*mod(Floor((F subc(n)+a)/N),M),或者第二频域资源索引为mod(Floor(F subc(n)+n*offset),M),或者第二频域资源索引为mod(Floor(F subc(n)+(m-n)*offset),M),或者第二频域资源索引为mod(Floor(F subc(n)+(m-n-K+1)*offset),M),或者第二频域资源索引为mod(Floor(F subc(n)+(N+n-m+1)*offset),M),或者第二频域资源索引为mod(Floor(F subc(n)+(N+n-m+K)*offset),M)。可选的,offset为整数。可选的,offset可以取值为1。
在又一种实现方式中,如果反馈信息所在的第二频域资源与第一数据所在的第一频域资源的单位不同,第一设备还可以通过如下方式确定反馈信息反馈资源:
第一设备根据第一数据所在的子信道的频域位置,确定反馈信息所在的子信道的频域位置;
第一设备根据第一数据所在的时隙位置和反馈信息所在的子信道的频域位置,确定反馈信息在子信道内的PRB的位置。
可选的,第一数据所在的子信道的频域位置可以为第一数据所在的子信道的开始位置、中间位置或结束位置等。
例如,反馈信息所在的子信道的频域位置F SFCI(m,sub)=F subc(n)+i,或者F SFCI(m,sub)=mod(F subc(n)+i,Mf)。
反馈信息在子信道内的PRB的位置F SFCI(m,sub,PRB)=f(n)+F SFCI(m,sub)。
其中,f(n)是时隙n的函数,例如:f(n)=j,或者f(n)=j*(m-n),或者f(n)=j*(m-n-K+1), 或者f(n)=j*(N+n-m+1),或者f(n)=(N+n-m+K),这里j为整数,例如,j=1,2,3,4,或12/N,N为反馈资源的周期。
实施例二、对反馈资源进行码分,即根据第一时隙索引和/或第一频域资源索引确定序列参数,根据确定的不同的序列参数确定不同的序列,从而减少或解决反馈资源之间的冲突。
在一个实现方式中,不同的反馈信息值对应不同的序列参数,第一设备根据反馈信息值对应的序列参数确定承载反馈信息的序列。示例的,反馈信息反馈的不同内容对应不同的反馈信息值,例如反馈信息仅反馈肯定应答对应的反馈信息值为00,反馈信息仅反馈否定应答对应的反馈信息为01,反馈信息反馈肯定应答或否定应答时,反馈肯定应答对应的反馈信息值为10,反馈否定应答对应的反馈信息为11。可选的,根据不同的反馈状态或取值来确定生成序列的一种或多种序列参数。其中,在本申请实施例中,序列参数也称为序列的参数。
在另一个实现方式中,第一设备将反馈信息以扩频的方式承载在序列上,从而确定承载反馈信息的序列。在反馈资源相同时,还可以通过序列进行区分,以解决反馈资源之间的冲突。
如图9所示,连续N个时隙上的第一数据对应的反馈信息复用一个相同的频域资源,通过确定不同的序列反馈数据可以解决反馈资源之间的冲突。
具体的,所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列包括:
所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数;所述第一设备根据所述序列参数,确定承载所述反馈信息的序列,所述序列参数包括以下中的一种或多种:序列的初始值;序列的初始位置;序列的根序列号;序列的循环移位值CS;及序列的正交覆盖码OCC。
第一设备具体通过如下方式中的任意一种确定所述第一数据对应的反馈信息的序列:
2.1、所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数包括:
所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第二参数,确定所述序列的根序列号,所述第一参数包括以下中的一种或多种:预设的第二数值(本申请实施例中用b表示)、所述第二时隙号m、根序列号的数量(本申请实施例中用Mu标识)和所述反馈信息的第二频域资源索引。其中,根序列号的数量即为可用的总根序列数,预设的第二数值可以为整数。
例如,序列的根序列号为mod(F subc(n),Mu),或者序列的根序列号为mod(F subc(n)+b,Mu),或者序列的根序列号为mod(F subc(n)+F SFCI(m),Mu),或者序列的根序列号为mod(F subc(n)+F SFCI(m)+b,Mu),或者序列的根序列号为mod(m,Mu),或者序列的根序列号为mod(m+F subc(n),Mu)。可选的,此处中b为整数,b取值可以为0。
2.2、所述第一设备根据确定序列参数的方式2.1中的任意一种来确定序列组跳和/或序列跳,然后根据序列组跳和/或序列跳生成根序列号。
如u=(f gh+f ss+g 1(x))mod30,其中根序列号为u。
该方式可以主要针对低PAPR序列,如ZC序列。
例如,序列组跳f gh
Figure PCTCN2020108461-appb-000001
序列跳f ss分别为f ss=(n ID+g 3(x))mod30。
例如,序列组跳f gh
Figure PCTCN2020108461-appb-000002
序列跳f ss分别为f ss=(n ID+g 3(x))mod30。
其中,g1(x),g2(x)和g3(x)可以采用方式2.1确定,c为随机序列,
Figure PCTCN2020108461-appb-000003
为子载波间隔μ对应的时隙号,m为时隙号,n hop表示跳频的指示信息,跳频时取值为1,否则为0。
该方式中通过序列组跳和序列跳生成根序列号,可以进一步对序列进行扩频,从而进一步解决反馈资源之间的冲突,n ID为基站配置的或预定义的标识,或者是发射机的标识,或者是接收机的标识。
2.3、所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数包括:
所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定所述序列的循环移位值和/或正交覆盖码,所述第三参数包括以下中的一种或多种:预设的第三数值(本申请实施例中用c表示)、所述第二时隙号m、循环移位值的数量(本申请实施例中用Mc表示)、正交覆盖码的数量(本申请实施例中用Mo表示)、所述反馈周期N、所述第二频域资源索引、所述反馈时延K。其中,循环移位值的数量即为可用的循环移位值的总数,例如为4,6,8,12等,预设的第三数值可以为正整数,例如c=1,c=2,c=3,c=6等。
例如,序列的循环移位值为F subc(n)*c,或者序列的循环移位值为(F subc(n)+F SFCI(m))*c,或者序列的循环移位值为(F subc(n)+d)*c,或者序列的循环移位值为(F subc(n)+F SFCI(m)+d)*c。其中,d为预设的第五数值,该预设的第五数值可以为整数。可选的,此处中c和d为整数,例如,0,1,2,3,4等。
例如,序列的正交覆盖码为F subc(n)*c,或者序列的循环移位值为(F subc(n)+F SFCI(m))*c,或者序列的循环移位值为(F subc(n)+d)*c,或者序列的循环移位值为(F subc(n)+F SFCI(m)+d)*c。其中,d为预设的第五数值,该预设的第五数值可以为整数。可选的,此处中c和d为整数,例如,0,1,2,3,4等。
可选的,所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定所述序列的循环移位和/或正交覆盖码包括:
所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定第四数值;
所述第一设备将所述第四数值确定为所述序列的循环移位值和/或正交覆盖码;或者,所述第一设备将所述第四数值对循环移位值的数量Mc和/或正交覆盖码的数量Mo取模,根据取模结果确定所述序列的循环移位值和/或正交覆盖码。
示例的,第一设备将第四数值确定为序列的循环移位值,和/或,第一设备将第四数值确定为序列的正交覆盖码。
又一示例的,第一设备将第四数值对循环移位值的数量Mc取模,和/或,第一设备将 第四数值对正交覆盖码的数量Mo取模。
例如,序列的循环移位值为mod(F subc(n),Mc)*c,或者序列的循环移位值为mod(F subc(n)+F SFCI(m),Mc)*c,或者序列的循环移位值为mod(F subc(n)+d,Mc)*c,或者序列的循环移位值为mod(F subc(n)+F SFCI(m)+d,Mc)*c。其中,d为预设的第五数值,该预设的第五数值可以为整数。可选的,此处中c和d为整数,例如,0,1,2,3,4等。
例如,序列的正交覆盖码为mod(F subc(n),Mo)*c,或者序列的循环移位值为mod(F subc(n)+F SFCI(m),Mo)*c,或者序列的循环移位值为mod(F subc(n)+d,Mo)*c,或者序列的循环移位值为mod(F subc(n)+F SFCI(m)+d,Mo)*c。其中,d为预设的第五数值,该预设的第五数值可以为整数。可选的,此处中c和d为整数,例如,0,1,2,3,4等。
可选的,该方式中确定的循环移位值或正交覆盖码,可以是循环移位值或正交覆盖码的数值,也可以为循环移位值或正交覆盖码的索引(index),第一设备再根据该循环移位值或正交覆盖码的index,确定循环移位值或正交覆盖码的数值。
示例的,第一设备根据循环移位值生成循环移位的数值,根据循环移位的数值生成对应的参考信号。
例如,根据下述公式生成循环移位的数值:
Figure PCTCN2020108461-appb-000004
其中h(n)为循环移位值,α为循环移位的数值,其中此处N为序列的长度,为正整数;
根据下述公式生成参考信号:
Figure PCTCN2020108461-appb-000005
0≤n<Mc),其中r u,v(n)为原序列,其中Mc为参考信号使用的序列的长度,为正整数。
示例的,第一设备根据正交覆盖码生成正交覆盖码的数值,根据正交覆盖码的数值生成对应的参考信号。
例如,根据下述公式生成正交覆盖码的数值:n_occ=q(x)mod Ko,其中Ko为正交序列的总数,q(x)为正交覆盖码。
2.4、所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,通过以下方式确定所述第一数据对应的反馈信息的序列的序列参数:
2.4.1、所述第一设备将所述第一时隙索引对循环移位总数Mc取模,根据取模结果确定循环移位值。
例如,循环移位值为mod(n,Mc)*e,e为预设的第六数值,e为整数,e=1/Mc,a=Mc/N,e为1,2,3或6等,N为反馈周期。
2.4.2、所述第一设备根据所述第一时隙索引n与所述第二时隙索引m的差,确定循环移位值。
例如,循环移位值为mod(m-n,Mx)*e,或者循环移位值为mod(m-n-K+1,Mx)*e,或者循环移位值为mod(N+n-m+1,Mx)*e,或者循环移位值为mod(N+n-m+K,Mx)*e。
可选的,Mx可以为反馈周期N,可以根据反馈周期N和/或处理时延K确定,如Mx=N+K,或者Mx=K+e。其中,e为1,2,3或6等。
2.4.3、所述第一设备将所述第一时隙索引n与所述第二时隙索引m的差,对循环移位总数Mc取模,根据取模结果确定循环移位值。
例如,循环移位值为mod(m-n,Mc)*e,或者循环移位值为mod(m-n-K+1,Mc)*e,或者 循环移位值为mod(N+n-m+1,Mc)*e,或者循环移位值为mod(N+n-m+K,Mc)*e。
2.4.4、所述第一设备根据第一频域资源索引,确定循环移位值。
例如,循环移位值为mod(F subc(n)+n,Mx)*e,或者循环移位值为mod(F subc(n)+m-n,Mx)*e,或者循环移位值为mod(F subc(n)+m-n-K+1,Mx)*e,或者循环移位值为mod(F subc(n)+N+n-m+1,Mx)*e,或者循环移位值为mod(F subc(n)+N+n-m+K,Mx)*e。
2.4.5、所述第一设备根据第二频域资源索引,确定循环移位值。
例如,循环移位值为mod(F SFCI(m)+n,Mx)*e,或者循环移位值为mod(F SFCI(m)+m-n,Mx)*e,或者循环移位值为mod(F SFCI(m)+m-n-K+1,Mx)*e,或者循环移位值为mod(F SFCI(m)+N+n-m+1,Mx)*e,或者循环移位值为mod(F SFCI(m)+N+n-m+K,Mx)*e。在本发明中,如未做说明,F SFCI(m)的含义与本方式中的相同,为在反馈资源所在的时隙m上的第二频域资源索引。
可选的,该方式中确定的循环移位值或正交覆盖码,可以是循环移位值或正交覆盖码的数值,也可以为循环移位值或正交覆盖码的索引(index),第一设备再根据该循环移位值或正交覆盖码的index,确定循环移位值或正交覆盖码的数值。
在又一个实现方式中,当存在隐藏节点时,第二设备(即第一数据的发射机,反馈信息的接收机)在反馈资源上会受到干扰,因此可以根据反馈方式的不同将反馈资源进行区分。例如,序列参数还包括至少两个不同的序列参数子组,不同的序列参数子组对应至少两种不同的反馈方式,至少两种不同的反馈方式包括以下中的一种或多种:仅反馈肯定应答,反馈肯定应答或否定应答,以及仅反馈否定应答。
示例的,至少两种不同的反馈方式包括反馈肯定应答或否定应答,以及仅反馈否定应答。具体的可以包括option1和option2,option 1的反馈是指在组播下,反馈HARQ NACK的反馈方式,option 2的反馈是指在组播下,能够反馈HARQ NACK或ACK的反馈方式。于option 1和option 2的反馈方式,通常是针对不同的反馈模式上的数据包进行的,所以它们所使用的序列参数应该不同,且最好是相互正交。
示例的,区分设计option 1和option 2反馈方式的反馈资源可以如下:
根据第一数据所在的第一频域资源确定序列参数,然后将不同的序列参数划分为两个集合,一个集合用于option 1,另一个集合用于option 2。这样能够保证当发送的数据时域和/或频域资源相同时,option 1只有一部分的序列参数,而option 2的反馈也会使用另一部分的序列参数来生成序列,从而2种option对应的集合生成的序列就会正交。
例如,对于根序列号u分成2组,如一组是0到M/2-1,另一组是M/2到M-1,其中M为最大的根序列数。又如,将循环移位值分成两组,将可使用的Mc个循环移位值分成不同的两组。例如Mc的取值可以为:2,4,6,8或12。例如:一组为0到3,另一组为6到9。或者,再如,一组循环移位值为0或6;另一组循环移位值为3或9。再如,一组循环移位值为0;另一组循环移位值为6。
可选的,option 2对应多个不同的第一UE,即同一个数据源的第二设备对应不同反馈的第一设备,可以使用不同的Rx UE ID(即接收设备的标识信息)来进行分区。
实施例三、将反馈资源划分为至少两组,即所述反馈资源包括至少两组,至少两组反馈资源分别对应不同的处理能力。
处理能力指为发送反馈信息的第一设备的处理能力。
可选的,该实施例三可以与上述实施例一和实施例二结合使用,以进一步保证反馈资源之间不产生冲突。
由于不同处理能力的设备在相同反馈资源上可能发生重叠产生冲突。示例的,反馈资源的时隙位置即第二时隙索引的确定方式为nf≥(n+Ki),并且nf=m*N,即:时隙n上的数据的反馈资源的时隙位置nf不能小于n+Ki,并且出现在以周期N重复出现的反馈时隙上。其中Ki表示不同的处理能力,如能力为1对应K1,即K1=1,能力为2对应K2,即K2=2。
如图10所示,时隙n+1上的Data1的第一设备UE1的处理能力为1,其对应的反馈资源在时隙n+2的时隙上,时隙n+2上的Data1的第一设备UE2的处理能力为1,其对应的反馈资源在时隙n+3的时隙上,时隙n+1上的Data1的第一设备UE3的处理能力为2,其对应的反馈资源在时隙n+3的时隙上,也就说由于UE1和UE2的处理能力不同,时隙n+1和时隙n+2的数据的反馈资源可能出现在相同的时隙n+3上,导致反馈资源之间的冲突。尤其是当时隙n+1与时隙n+2上的数据的频域位置相同时,可以导致不同时隙上的数据因不同处理能力而发生反馈资源完全相同的情况。
在该实施例中通过划分至少两组反馈资源,第一设备根据第一设备的处理能力所属的反馈资源集合,和上述实施例一和二确定的反馈资源,共同确定反馈信息的实际反馈资源,从而避免不同处理能力的设备的反馈资源重叠后产生的干扰,尤其是在实施例一和实施例二确定的反馈资源如果存在重叠冲突时,进一步避免了反馈资源之间的冲突。
具体的,还包括:
所述第一设备根据所述处理能力,确定所述处理能力所属的反馈资源集合;
所述第一设备根据所属的反馈资源集合和所述反馈资源,发送所述反馈信息。
示例的,所述至少两组反馈资源包括:第一反馈资源集合和第二反馈资源集合;所述第一反馈资源集合对应第一反馈处理能力;所述第二反馈资源集合对应第二反馈处理能力。
其中,第一反馈处理能力和第二反馈处理能力均指为发送反馈信息的第一设备的处理能力,第一反馈处理能力对应的第一设备的处理能力与第二反馈处理能力对应的第一设备的处理能力不同。
具体的,所述至少两组反馈资源包括:
第一频域资源和第二频域资源;或者,
第一根序列组和第二根序列组;或者,
第一循环移位值组和第二循环移位值组;或者,
第一正交覆盖码组和第二正交覆盖码组;或者,
第一序列初始值和第二序列初始值;或者,
第一序列初位置和第二序列初始位置。
示例的,可以将频域资源分成两组,该两组频域资源占用不同的PRB、不同的子信道或不同的RE;或者是,该两组频域资源中一组从低频开始映射,一组从高频开始映射。可选的,可以将第二频域资源分成两组。例如,反馈的频域资源按PRB来划分,即每个反馈信道占用一个PRB,一共有S个PRB,则第1个到S/2个PRB为第一组;第S/2+1到第S个PRB为第二组。又如,反馈的频域资源按在PRB内还可以有不同的RE位置,不同的RE位置对应不同的反馈信道。则例如,奇数RE位置为第一组反馈资源;偶数RE位置为 另一组反馈资源。又如,PRB内的第1个RE到第6个RE为第一组反馈资源,第7个RE到第12个RE为另一组反馈资源。
示例的,可以是不同组的反馈资源可以包括不同的根序列号、不同循环移位值、或不同的正交覆盖码。
具体的,CS=(F subc(n)+Gi*Δ)mod 4,Gi=i(例如,对于2组处理能力,i=0,1),或者u=(m+F subc(n)+Gi*Δ)mod Mu,或者n_OCC=Gi,例如:如果2个符号用于反馈信息,则Gi=0,n_OCC=[+1,+1],Gi=1,n_OCC=[+1,-1]。其中Δ为正整数。
在一种实现方式中,第一设备发送反馈信息时在处理能力对应的反馈资源上发送,而第二设备作为反馈信息的接收机可以同时检测两组反馈集合对应的反馈资源,以完整地确定发送的第一数据的反馈信息,还以上述图10为例,发送时隙n+1上的第一数据的第二设备,可以同时在时隙n+2和时隙n+3的反馈资源上检测反馈信息。
还包括:
如果所述第二设备确定接收到的反馈信息反馈了否定应答,所述第二设备重传所述第一数据。
具体的,第二设备根据一个或多个第一设备的处理能力,在不同处理能力对应的反馈时隙对应的反馈资源上分别检测反馈信息。第一设备只有在同时检测到各种不同处理能力的第一设备反馈的肯定的应答,第一设备才能确认第一数据传输正确。第一设备只要检测到任意一种不同处理能力的第一设备反馈的否定的应答,第一设备就可以确认第一数据传输错误,从而可以直接发起第一数据的重传。这种处理方式可以最大程度地降低第二设备发送数据的传输时延,提升系统的性能。
例如:如果第二设备在先到达的第一反馈时隙上检测到第一数据的肯定的应答信息ACK,并在后到达的第二反馈时隙上也检测第一数据的到肯定的应答信息ACK,则第二设备认为第一数据传输正确。如果第二设备在先到达的第一反馈时隙上检测到第一数据的肯定的应答信息ACK,并在后到达的第二反馈时隙上检测第一数据的到否定的应答信息NACK,则第二设备认为第一数据传输错误;此时第二设备可以发起第一数据的重传。如果第二设备在先到达的第一反馈时隙上检测到第一数据的否定应答信息NACK,则第二设备不必等待后到达的第二时隙上的第一数据的应答,而认为第一数据传输错误,直接发起第一数据的重传。
另外,本申请实施例中还提供了一种信息的传输方法,该信息的传输方法基于本申请实施例提供的传输信道(包括反馈信道和/或数据信道)的时域资源的格式实现,用以支持自动增益控制(automatic gain control,AGC)的检测性能,因此该方法也可以看作是传输信道的时频资源的映射方式。该信息传输方法可以应用于上述实施例中的反馈信息传输方法中,也可以用于SCI的传输方法中,还可以用于数据的传输方法中,本发明对此不做限定。
可选的,由于本申请实施例中确定的发送信息时信道传输的格式,因此与上述反馈信息传输方法不冲突,因此本申请实施例提供的信息的传输方法还可以与上述反馈信息的传输方法结合使用。
下面参考图11,详细说明信息传输方法的具体过程。如图11所示,该过程包括:
步骤1101:第三设备确定承载第一信息的第一符号集和第二符号集,其中所述第一符号集的带宽不小于预设值。所述第一信息为数据包、发送数据时的指示信息或反馈信息。
具体的,第三设备基于的传输信道的时域资源的格式为传输信道包括第一符号集和第二符号集,第一符号集和第二符号集用于承载第一信息。
示例的,第一符号集用于所述第一信息的接收机(即第四设备)做自动增益控制,也就是说第一符号集包括用于AGC的符号,例如包括用于AGC的开始符号。
示例的,第二符号集包括用于传输第一信息的符号,例如包括用于传输反馈信息的SFCI,SCI或数据的符号。
可选的,传输信道还包括位于传输信道起始位置的用于收发转换的空符号,以及位于传输信道结尾位置的用于发收转换的空符号。
可选的,预设值为2,4或8个PRB,或者预设值对应的PRB的数量为不小于10的正整数,例如预设值为10,12或20个PRB等。
具体的,所述第一符号集与所述第二符号集在时域上相邻,并且所述第二符号集在所述第一符号集之后。
所述第一符号集包括至少1个符号,所述第二符号集包括至少1个符号,且所述第二符号集中的符号数量不少于所述第一符号集中的符号数量。第一符号集中的符号内容可以为第二符号集中任意一个或多个符号上的内容。
在一种实现方式中,所述第一符号集承载的第一信息与所述第二符号集承载的第一信息相同。第一符号集承载的第一信息也称第一符号集中的内容,第二符号集承载的第一信息也称第二符号集中的内容。
例如,传输信道包括反馈信道,第一符号集占用一个符号,第二符号集也占用一个符号,则第一符号集中承载的内容或发送的信号可以与第二符号集中承载的内容或发送的信号相同。
在另一种实现方式中,所述第一符号集承载的第一信息为所述第二符号集承载的第一信息的子集。
例如,传输信道包括反馈信道,第一符号集占用一个符号,第二符号集占用两个符号,则第一符号集的内容或发送的信号可以与第二符号集中开头的第一个符号中的内容或信号作为第一符号集的内容或信号。
例如,传输信道包括数据信道,一个时隙中含有14个符号,前13个符号承载第一信息。其中第一个符号用于第四设备执行AGC操作,第一符号上的内容或发送的信号与第2个符号上的内容或发送的信号相同。
示例的,所述第一符号集为发送所述第一信息的第一个符号,所述第二符号集为所述第一符号集之后的承载所述第一信息的符号。
第三设备通过以下方式确定第一符号集和第二符号集,即传输信道中的第一符号集的带宽和第二符号集的带宽满足以下条件中的一种:
3.1、所述第一符号集的带宽与所述第二符号集的带宽相同,且在频域连续映射。
具体的,所述第一符号集的带宽与所述第二符号集的带宽相同包括:
所述第一符号集中各个符号中的RE为所述第二符号集中各个符号中的RE的子集;或者,所述第一符号集和所述第二符号集完整地承载所述第一信息的编码后的传输块。
示例的,第一符号集的带宽和第二符号集的带宽均不小于(即大于或等于)10个PRB。可选的,此时第一符号集合和第二符号集合所在序列的长度不小于120。
可选的,一个资源池中,可以包括多个数据资源池和/或多个反馈资源池。
以一个资源池中包括多个反馈资源池为例进行说明,如图12所示,一个资源池中包括3个反馈资源池,G1为位于反馈信道起始位置的用于收发转换的空符号,G2为位于反馈信道结尾位置的用于发收转换的空符号,AGC为第一符号集,第一符号集用于第四设备做自动增益控制,SFCI为第二符号集,第二符号集中承载有第一信息SFCI。第一符号集合第二符号集中的符号在频域连续映射。
3.2、所述第一符号集的带宽与所述第二符号集的带宽相同,且在频域等间隔不连续映射。
示例的,第一符号集的带宽和第二符号集的带宽均不小于10个PRB,并且第一符号集和第二符号集以频域等间隔地方式放置,而在间隔的中间RE上不放置数据或信号。
可选的,第一符号集中的RE来自于第二符号集中相应频域的RE。
如图13所示,第一符号集的带宽和第二符号集的带宽均为10个PRB,在频域上间隔为10个RE,反馈序列的长度为12,则10个PRB上总共有数据的RE的数量为10*12/10=12。又如,第一符号集的带宽和第二符号集的带宽均为12个PRB,在频域上间隔为12个RE,反馈序列的长度为12,则12个PRB上总共有数据的RE的数量为12*12/12=12。又如,第一符号集的带宽和第二符号集的带宽均为10个PRB,在频域上间隔为12个RE,反馈序列的长度为10,则12个PRB上总共有数据的RE的数量为10*12/12=10。
3.3、所述第一符号集的带宽大于所述第二符号集的带宽。
具体的,所述第一符号集中的每个符号中,每M个RE映射一个承载所述第一信息的RE,其它M-1个RE上不映射数据或信号,并且所述第二符号中的每个符号在频域连续映射。
可选的,所述M取值为10、12或所述预设值对应的物理资源块数量。如果M为10或12时,可能会出现资源重叠的问题。
示例的,第二符号集的带宽为1个PRB,第一符号集的带宽不小于10个PRB,第一符号集在频域上等间隔放置,在间隔的中间RE上不放置数据。
如图14所示,第一符号集的带宽为10个PRB,在频域上间隔为10个RE,反馈序列的长度为12,则10个PRB上总共有数据的RE的数量为10*12/10=12。又如,第一符号集的带宽为12个PRB,在频域上间隔为12个RE,则12个PRB上总共有数据的RE的数量为12*12/12=12。又如,第一符号集的带宽为10个PRB,在频域上间隔为12个RE,则12个PRB上总共有数据的RE的数量为10*12/12=10。
当第一符号集中的数据在不同的频域位置时,对应的第二符号集中的反馈信息也在不同的频域位置。可选地,第一符号集中的符号的位置为RE的位置,第二符号集中的符号的是PRB或子信道的位置。
可选的,第一符号集中的RE来自于第二符号集中相应频域的RE。
步骤1102:所述第三设备发送所述第一符号集和所述第二符号集。
步骤1103:第四设备接收第一符号集和第二符号集,其中,所述第一符号集和所述第二符号集承载第一信息,所述第一符号集的带宽不小于预设值。
步骤1104:所述第四设备通过所述第一符号集和所述第二符号集获取第一信息。
示例的,第一符号集用于所述第一信息的接收机(即第四设备)做自动增益控制,所述第四设备还根据所述第一信息的第一符号集做自动增益控制。
第四设备通过第一符号集和第二符号集获取第一信息的过程可以看作是第三设备确 定承载第一信息的第一符号集和第二符号集的逆过程,在此不做赘述。
以上结合图4至图10详细说明了本申请实施例的反馈信息传输方法,基于与上述反馈信息传输方法的同一发明构思,本申请实施例还提供了一种反馈信息传输装置,如图15所示,所述反馈信息传输装置1500中包含处理单元1501和收发单元1502,装置1500可用于实现上述应用于第一设备或第二设备的方法实施例中描述的方法。装置1500可以位于第一设备或第二设备内,或为第一设备或第二设备。
需要说明的是,上述实施例中的装置即所述装置1500可以是第一设备或第二设备,也可以是应用于第一设备或第二设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当装置是第一设备或第二设备时收发单元可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。当装置是具有上述第一设备或第二设备功能的部件时,收发单元可以是射频单元,处理模块可以是处理器。当装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理模块可以是芯片系统的处理器。
在一个实施例中,装置1500应用于第一设备。
具体的,处理单元1501,用于根据接收到的第一数据的第一资源索引,确定所述第一数据对应的反馈信息的反馈资源,所述反馈资源包括时域资源、频域资源和序列资源中的一种或多种;
收发单元1502,用于通过所述反馈资源发送所述反馈信息。
在一个实现方式中,所述反馈信息用于反馈肯定应答或否定应答、或者,仅用于反馈肯定应答,或者,仅用于反馈否定应答。
在一个实现方式中,处理单元1501,具体用于根据接收到的第一数据的第一资源索引,确定所述第一数据对应的反馈信息的反馈资源包括以下方式中的一种或多种:
根据第一数据所在的第一时隙索引和反馈周期N,确定所述第一数据对应的反馈信息的第二时隙索引;
根据第一数据所在的第一频域资源索引,确定所述第一数据对应的反馈信息的第二频域资源索引;
根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列。
在一个实现方式中,所述反馈信息所在的第二频域资源属于第一反馈资源子集,其中所述反馈信息所在时隙上的频域反馈资源包括至少两个反馈资源子集,所述第一反馈资源子集为所述至少两个反馈资源子集中的一个。
在一个实现方式中,所述至少两个反馈资源子集为N个反馈资源子集,且不同的反馈资源子集对应不同时隙上的第一数据所在的反馈资源位置;或者,
所述至少两个反馈资源子集对应至少两种不同的反馈方式,所述至少两种不同的反馈方式包括以下中的至少两个:仅反馈肯定应答,反馈肯定应答或否定应答,以及仅反馈否定应答。
在一个实现方式中,处理单元1501,具体用于根据所述第一数据所在的第一频域资源索引及第一参数,确定所述第一数据对应的反馈信息的第二频域资源索引,其中,所述第 一参数包括以下中的一种或多种:反馈周期、所述第一数据的第一时隙索引、预设的第一数值、所述第一数据对应的反馈信息所在的第二时隙索引、频域偏移值、所述第一设备的反馈时延和反馈信息所在时隙上的频域反馈资源总数,其中所述反馈时延为所述第一设备接收到所述第一数据到发送所述反馈信息的最小时间间隔。
在一个实现方式中,所述频域偏移值与第一数据所在的时隙位置对应。
在一个实现方式中,处理单元1501,具体用于根据所述第一频域资源索引与所述反馈周期的比值,确定第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引;或者,根据所述第二时隙索引与所述第一时隙索引的差、所述反馈周期以及所述第一频域资源索引,确定第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引;或者,根据所述第二时隙索引与所述第一时隙索引的差、所述反馈时延、所述反馈周期以及所述第一频域资源索引,确定第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引;或者,根据所述第二时隙索引与所述第一时隙索引的差,以及所述第一频域资源索引与所述反馈周期的比值,确定所述第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引;或者,根据所述第二时隙索引与所述第一时隙索引的差、所述反馈时延,以及所述第一频域资源索引与所述反馈周期的比值,确定第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引;或者,根据所述第一时隙索引、所述第一频域资源索引以及所述频域偏移值,确定第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引。
在一个实现方式中,处理单元1501,具体用于将所述第三频域资源索引确定为所述第二频域资源索引;或者,将所述第三频域资源索对所述频域反馈资源总数取模,根据取模结果确定所述第二频域资源索引;或者,将所述第三频域资源索引向上取整,根据向上取整结果确定所述第二频域资源索引;或者,将所述第三频域资源索引向下取整,根据向下取整结果确定所述第二频域资源索引。
在一个实现方式中,所述第二频域资源索引包括所述第二频域资源在所述反馈信息所在时隙上的反馈资源子集的索引,和/或在所述反馈资源子集内的第二频域资源索引。
在一个实现方式中,所述反馈资源子集内包括物理资源块PRB或资源元RE,所述反馈资源子集包括连续的用于承载信息的PRB或RE,或者在频域等间隔不连续的用于承载信息的PRB或RE。
在一个实现方式中,处理单元1501,具体用于根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数;所述第一设备根据所述序列参数,确定承载所述反馈信息的序列,所述序列参数包括以下中的一种或多种:序列的初始值、序列的初始位置、序列的根序列号、序列的循环移位值及序列的正交覆盖码。
在一个实现方式中,处理单元1501,具体用于根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第二参数,确定所述序列的根序列号,所述第一参数包括以下中的一种或多种:预设的第二数值、所述第二时隙号、根序列号的数量和所述反馈信息的第二频域资源索引。
在一个实现方式中,处理单元1501,具体用于根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定所述序列的循环移位值和/或正交覆盖码,所述 第三参数包括以下中的一种或多种:预设的第三数值、所述第二时隙号、循环移位值的数量、正交覆盖码的数量、所述反馈周期、所述第二频域资源索引、所述反馈时延。
在一个实现方式中,处理单元1501,具体用于第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定第四数值;将所述第四数值确定为所述序列的循环移位值和/或正交覆盖码;或者,所述第一设备将所述第四数值对循环移位值的数量和/或正交覆盖码的数量取模,根据取模结果确定所述序列的循环移位值和/或正交覆盖码。
在一个实现方式中,处理单元1501,具体用于将所述第一时隙索引对循环移位总数取模,根据取模结果确定循环移位值;或者,根据所述第一时隙索引与所述第二时隙索引的差,确定循环移位值;或者,将所述第一时隙索引与所述第二时隙索引的差,对循环移位总数取模,根据取模结果确定循环移位值。
在一个实现方式中,所述序列参数还包括至少两个不同的序列参数子组,所述不同的序列参数子组对应至少两种不同的反馈方式,所述至少两种不同的反馈方式包括以下中的一种或多种:仅反馈肯定应答,反馈肯定应答或否定应答,以及仅反馈否定应答。
在一个实现方式中,所述反馈资源包括至少两组,所述至少两组反馈资源分别对应不同的处理能力。
在一个实现方式中,所述至少两组反馈资源包括:第一反馈资源集合和第二反馈资源集合;
所述第一反馈资源集合对应第一反馈处理能力;
所述第二反馈资源集合对应第二反馈处理能力。
在一个实现方式中,所述至少两组反馈资源包括:
第一频域资源和第二频域资源;或者,
第一根序列组和第二根序列组;或者,
第一循环移位值组和第二循环移位值组;或者,
第一正交覆盖码组和第二正交覆盖码组;或者,
第一序列初始值和第二序列初始值;或者,
第一序列初位置和第二序列初始位置。
在一个实现方式中,处理单元1501,还用于根据所述处理能力,确定所述处理能力所属的反馈资源集合;根据所属的反馈资源集合和所述反馈资源,发送所述反馈信息。
在一个实施例中,装置1500应用于第二设备。
具体的,处理单元1501,用于根据接收到的第一数据的第一资源索引,确定所述第一数据对应的反馈信息的反馈资源,所述反馈资源包括时域资源、频域资源和序列资源中的一种或多种;
收发单元1502,用于通过所述反馈资源接收所述反馈信息。
在一个实现方式中,所述反馈信息用于反馈肯定应答或否定应答、或者,仅用于反馈肯定应答,或者,仅用于反馈否定应答。
在一个实现方式中,处理单元1501,具体用于根据接收到的第一数据的第一资源索引,确定所述第一数据对应的反馈信息的反馈资源包括以下方式中的一种或多种:
根据第一数据所在的第一时隙索引和反馈周期N,确定所述第一数据对应的反馈信息的第二时隙索引;
根据第一数据所在的第一频域资源索引,确定所述第一数据对应的反馈信息的第二频 域资源索引;
根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列。
在一个实现方式中,所述反馈信息所在的第二频域资源属于第一反馈资源子集,其中所述反馈信息所在时隙上的频域反馈资源包括至少两个反馈资源子集,所述第一反馈资源子集为所述至少两个反馈资源子集中的一个。
在一个实现方式中,所述至少两个反馈资源子集为N个反馈资源子集,且不同的反馈资源子集对应不同时隙上的第一数据所在的反馈资源位置;或者,
所述至少两个反馈资源子集对应至少两种不同的反馈方式,所述至少两种不同的反馈方式包括以下中的至少两个:仅反馈肯定应答,反馈肯定应答或否定应答,以及仅反馈否定应答。
在一个实现方式中,处理单元1501,具体用于根据所述第一数据所在的第一频域资源索引及第一参数,确定所述第一数据对应的反馈信息的第二频域资源索引,其中,所述第一参数包括以下中的一种或多种:反馈周期、所述第一数据的第一时隙索引、预设的第一数值、所述第一数据对应的反馈信息所在的第二时隙索引、频域偏移值、所述第一设备的反馈时延和反馈信息所在时隙上的频域反馈资源总数,其中所述反馈时延为所述第一设备接收到所述第一数据到发送所述反馈信息的最小时间间隔。
在一个实现方式中,所述频域偏移值与第一数据所在的时隙位置对应。
在一个实现方式中,处理单元1501,具体用于根据所述第一频域资源索引与所述反馈周期N的比值,确定第三频域资源索引;所述第二设备根据所述第三频域资源索引,确定第二频域资源索引;或者,根据所述第二时隙索引m与所述第一时隙索引n的差、所述反馈周期N以及所述第一频域资源索引,确定第三频域资源索引;所述第二设备根据所述第三频域资源索引,确定第二频域资源索引;或者,根据所述第二时隙索引m与所述第一时隙索引n的差、所述反馈时延K、所述反馈周期N以及所述第一频域资源索引,确定第三频域资源索引;所述第二设备根据所述第三频域资源索引,确定第二频域资源索引;或者,根据所述第二时隙索引m与所述第一时隙索引n的差,以及所述第一频域资源索引与所述反馈周期N的比值,确定所述第三频域资源索引;所述第二设备根据所述第三频域资源索引,确定第二频域资源索引;或者,根据所述第二时隙索引m与所述第一时隙索引n的差、所述反馈时延K,以及所述第一频域资源索引与所述反馈周期N的比值,确定第三频域资源索引;所述第二设备根据所述第三频域资源索引,确定第二频域资源索引;或者,根据所述第一时隙索引n、所述第一频域资源索引、以及所述频域偏移值,确定第三频域资源索引;所述第二设备根据所述第三频域资源索引,确定第二频域资源索引。
在一个实现方式中,处理单元1501,具体用于将所述第三频域资源索引确定为所述第二频域资源索引;或者,将所述第三频域资源索对所述频域反馈资源总数M取模,根据取模结果确定所述第二频域资源索引;或者,将所述第三频域资源索引向上取整,根据向上取整结果确定所述第二频域资源索引;或者,将所述第三频域资源索引向下取整,根据向下取整结果确定所述第二频域资源索引。
在一个实现方式中,所述第二频域资源索引包括所述第二频域资源在所述反馈信息所在时隙上的反馈资源子集的索引,和/或在所述反馈资源子集内的第二频域资源索引。
在一个实现方式中,所述反馈资源子集内包括物理资源块PRB或资源元RE,所述反 馈资源子集包括连续的用于承载信息的PRB或RE,或者在频域等间隔不连续的用于承载信息的PRB或RE。
在一个实现方式中,处理单元1501,具体用于根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数;所述第二设备根据所述序列参数,确定承载所述反馈信息的序列,所述序列参数包括以下中的一种或多种:序列的初始值、序列的初始位置、序列的根序列号、序列的循环移位值及序列的正交覆盖码。
在一个实现方式中,处理单元1501,具体用于根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第二参数,确定所述序列的根序列号,所述第一参数包括以下中的一种或多种:预设的第二数值、所述第二时隙号、根序列号的数量和所述反馈信息的第二频域资源索引。
在一个实现方式中,处理单元1501,具体用于根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定所述序列的循环移位值和/或正交覆盖码,所述第三参数包括以下中的一种或多种:预设的第三数值、所述第二时隙号、循环移位值的数量、正交覆盖码的数量、所述反馈周期、所述第二频域资源索引、所述反馈时延。
在一个实现方式中,处理单元1501,具体用于根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定第四数值;将所述第四数值确定为所述序列的循环移位值和/或正交覆盖码;或者,所述第一设备将所述第四数值对循环移位值的数量和/或正交覆盖码的数量取模,根据取模结果确定所述序列的循环移位值和/或正交覆盖码。
在一个实现方式中,处理单元1501,具体用于将所述第一时隙索引对循环移位总数Mc取模,根据取模结果确定循环移位值;或者,根据所述第一时隙索引与所述第二时隙索引的差,确定循环移位值;或者,将所述第一时隙索引与所述第二时隙索引的差,对循环移位总数取模,根据取模结果确定循环移位值。
在一个实现方式中,所述序列参数还包括至少两个不同的序列参数子组,所述不同的序列参数子组对应至少两种不同的反馈方式,所述至少两种不同的反馈方式包括以下中的一种或多种:仅反馈肯定应答,反馈肯定应答或否定应答,以及仅反馈否定应答。
在一个实现方式中,所述反馈资源包括至少两组,所述至少两组反馈资源分别对应不同的处理能力。
在一个实现方式中,所述至少两组反馈资源包括:第一反馈资源集合和第二反馈资源集合;
所述第一反馈资源集合对应第一反馈处理能力;
所述第二反馈资源集合对应第二反馈处理能力。
在一个实现方式中,所述至少两组反馈资源包括:
第一频域资源和第二频域资源;或者,
第一根序列组和第二根序列组;或者,
第一循环移位值组和第二循环移位值组;或者,
第一正交覆盖码组和第二正交覆盖码组;或者,
第一序列初始值和第二序列初始值;或者,
第一序列初位置和第二序列初始位置。
在一个实现方式中,处理单元1501,还用于根据所述处理能力,确定所述处理能力所 属的反馈资源集合;根据所属的反馈资源集合和所述反馈资源,接收所述反馈信息。
在一个实现方式中,收发单元1502,还用于在所述至少两组反馈资源中检测所述反馈信息,当所述第一设备在任意一组反馈资源中检测到否定应答的反馈信息时,所述第二设备重传所述第一数据。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于与上述反馈信息传输方法相同的构思,如图16所示,本申请实施例还提供了一种反馈信息传输装置1600的结构示意图。装置1600可用于实现上述应用于第一设备或第二设备的方法实施例中描述的方法,可以参见上述方法实施例中的说明,其中所述装置1600可以位于第一设备或第二设备中,可以为第一设备或第二设备。
所述装置1600包括一个或多个处理器1601。所述处理器1601可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,所述收发单元可以为收发器,射频芯片等。
所述装置1600包括一个或多个所述处理器1601,所述一个或多个处理器1601可实现上述所示的实施例中第一设备或第二设备的方法。
可选的,处理器1601除了实现上述所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器1601可以执行指令,使得所述装置1600执行上述方法实施例中描述的方法。所述指令可以全部或部分存储在所述处理器内,如指令1603,也可以全部或部分存储在与所述处理器耦合的存储器1602中,如指令1604,也可以通过指令1603和1604共同使得装置1600执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置1600也可以包括电路,所述电路可以实现前述方法实施例中终端设备的功能。
在又一种可能的设计中,所述装置1600中可以包括一个或多个存储器1602,其上存有指令1604,所述指令可在所述处理器上被运行,使得所述装置1600执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器1602可以存储上述实施例中所描述的对应 关系,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述装置1600还可以包括收发单元1605。所述处理器1601可以称为处理单元,对装置(终端或者基站)进行控制。所述收发单元1605可以称为收发机、收发电路、或者收发器等,用于实现装置的收发。
例如,如果所述装置1600为应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等,所述装置1600中可以包括收发单元1605。
在又一种可能的设计中,所述装置1600还可以包括收发单元1605以及天线1606。所述处理器1601可以称为处理单元,对装置(终端或者基站)进行控制。所述收发单元1605可以称为收发机、收发电路、或者收发器等,用于通过天线1606实现装置的收发功能。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述应用于第一设备或第二设备的任一方法实施例所述的反馈信息传输方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现 上述应用于第一设备或第二设备的任一方法实施例所述的反馈信息传输方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述应用于第一设备或第二设备的任一方法实施例所述的反馈信息传输方法。
应理解,上述处理装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
以上结合图11至图14详细说明了本申请实施例的信息传输方法,包括信息的发送方法和信息的接收方法,基于与上述信息传输方法的同一发明构思,本申请实施例还提供了一种信息传输装置,如图17所示,所述信息传输装置1700中包含处理单元1701和收发单元1702,装置1700可用于实现上述应用于第三设备或第四设备的方法实施例中描述的方法。装置1700可以位于第三设备或第四设备内,或为第三设备或第四设备。
需要说明的是,上述实施例中的装置即所述装置1700可以是第三设备或第四设备,也可以是应用于第三设备或第四设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当装置是第三设备或第四设备时收发单元可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。当装置是具有上述第三设备或第四设备功能的部件时,收发单元可以是射频单元,处理模块可以是处理器。当装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理模块可以是芯片系统的处理器。
在一个实施例中,装置1700应用于第三设备。
具体的,处理单元1701,用于确定承载第一信息的第一符号集和第二符号集,其中所述第一符号集的带宽不小于预设值;
收发单元1702,用于发送所述第一符号集和所述第二符号集。
在一个实现方式中,所述第一信息为数据包、发送数据时的指示信息或反馈信息。
在一个实现方式中,所述第一符号集承载的第一信息与所述第二符号集承载的第一信 息相同,或所述第一符号集承载的第一信息为所述第二符号集承载的第一信息的子集。
在一个实现方式中,所述第一符号集与所述第二符号集在时域上相邻,并且所述第二符号集在所述第一符号集之后。
在一个实现方式中,所述第一符号集包括至少1个符号,所述第二符号集包括至少1个符号,且所述第二符号集中的符号数量不少于所述第一符号集中的符号数量。
在一个实现方式中,所述第一符号集为发送所述第一信息的第一个符号,所述第二符号集为所述第一符号集之后的承载所述第一信息的符号。
在一个实现方式中,所述预设值对应的物理资源块数量为不小于10的正整数。
在一个实现方式中,所述第一符号集的带宽与所述第二符号集的带宽相同,且在频域连续映射;或者,所述第一符号集的带宽与所述第二符号集的带宽相同,且在频域等间隔不连续映射;或者,所述第一符号集的带宽大于所述第二符号集的带宽。
在一个实现方式中,若所述第一符号集的带宽与所述第二符号集的带宽相同,且在频域等间隔不连续映射,所述第一符号集与所述第二符号集中的每个符号中,每M个RE映射一个承载所述第一信息的RE,其它M-1个RE上不映射数据或信号。
在一个实现方式中,若所述第一符号集的带宽与所述第二符号集的带宽相同,所述第一符号集中各个符号中的RE为所述第二符号集中各个符号中的RE的子集;或者,所述第一符号集和所述第二符号集完整地承载所述第一信息的编码后的传输块。
在一个实现方式中,若所述第一符号集的带宽大于所述第二符号集的带宽,所述第一符号集中的每个符号中,每M个RE映射一个承载所述第一信息的RE,其它M-1个RE上不映射数据或信号,并且所述第二符号中的每个符号在频域连续映射。
在一个实现方式中,所述第一符号集中的至少一个符号上各个RE的信号,与所述第二符号集中至少一个符号上各个RE上的信号对应相同。
在一个实现方式中,所述M取值为10、12或所述预设值对应的物理资源块数量。
在一个实现方式中,所述第一符号集用于所述第一信息的接收机做自动增益控制。
在一个实施例中,装置1700应用于第四设备。
具体的,收发单元1702,用于接收第一符号集和第二符号集,其中,所述第一符号集和所述第二符号集承载第一信息,所述第一符号集的带宽不小于预设值;
处理单元1701,用于通过所述第一符号集和所述第二符号集获取第一信息。
在一个实现方式中,所述第一信息为数据包、发送数据时的指示信息或反馈信息。
在一个实现方式中,所述第一符号集承载的第一信息与所述第二符号集承载的第一信息相同,或所述第一符号集承载的第一信息为所述第二符号集承载的第一信息的子集。
在一个实现方式中,所述第一符号集与所述第二符号集在时域上相邻,并且所述第二符号集在所述第一符号集之后。
在一个实现方式中,所述第一符号集包括至少1个符号,所述第二符号集包括至少1个符号,且所述第二符号集中的符号数量不少于所述第一符号集中的符号数量。
在一个实现方式中,所述第一符号集为发送所述第一信息的第一个符号,所述第二符号集为所述第一符号集之后的承载所述第一信息的符号。
在一个实现方式中,所述预设值对应的物理资源块数量为不小于10的正整数。
在一个实现方式中,所述第一符号集的带宽与所述第二符号集的带宽相同,且在频域连续映射;或者,所述第一符号集的带宽与所述第二符号集的带宽相同,且在频域等间隔 不连续映射;或者,所述第一符号集的带宽大于所述第二符号集的带宽。
在一个实现方式中,若所述第一符号集的带宽与所述第二符号集的带宽相同,且在频域等间隔不连续映射,所述第一符号集与所述第二符号集中的每个符号中,每M个RE映射一个承载所述第一信息的RE,其它M-1个RE上不映射数据或信号。
在一个实现方式中,若所述第一符号集的带宽与所述第二符号集的带宽相同,所述第一符号集中各个符号中的RE为所述第二符号集中各个符号中的RE的子集;或者,所述第一符号集和所述第二符号集完整地承载所述第一信息的编码后的传输块。
在一个实现方式中,若所述第一符号集的带宽大于所述第二符号集的带宽,所述第一符号集中的每个符号中,每M个RE映射一个承载所述第一信息的RE,其它M-1个RE上不映射数据或信号,并且所述第二符号中的每个符号在频域连续映射。
在一个实现方式中,所述第一符号集中的至少一个符号上各个RE的信号,与所述第二符号集中至少一个符号上各个RE上的信号对应相同。
在一个实现方式中,所述M取值为10、12或所述预设值对应的物理资源块数量。
在一个实现方式中,处理单元1701,还用于根据所述第一符号集执行自动增益控制。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于与上述信息传输方法相同的构思,如图18所示,本申请实施例还提供了一种信息传输装置1800的结构示意图。装置1800可用于实现上述应用于第三设备或第四设备的方法实施例中描述的方法,可以参见上述方法实施例中的说明,其中所述装置1800可以位于第三设备或第四设备中,可以为第三设备或第四设备。
所述装置1800包括一个或多个处理器1801。所述处理器1801可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,所述收发单元可以为收发器,射频芯片等。
所述装置1800包括一个或多个所述处理器1801,所述一个或多个处理器1801可实现上述所示的实施例中第三设备或第四设备的方法。
可选的,处理器1801除了实现上述所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器1801可以执行指令,使得所述装置1800执行上述方法实施例中描述的方法。所述指令可以全部或部分存储在所述处理器内,如指令1803,也可以全部或部分存储在与所述处理器耦合的存储器1802中,如指令1804,也可以通过指令1803和1804共同使得装置1800执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置1800也可以包括电路,所述电路可以实现前述方法实施例中终端设备的功能。
在又一种可能的设计中,所述装置1800中可以包括一个或多个存储器1802,其上存有指令1804,所述指令可在所述处理器上被运行,使得所述装置1800执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器1802可以存储上述实施例中所描述的对应关系,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述装置1800还可以包括收发单元1805。所述处理器1801可以称为处理单元,对装置(终端或者基站)进行控制。所述收发单元1805可以称为收发机、收发电路、或者收发器等,用于实现装置的收发。
例如,如果所述装置1800为应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等,所述装置1800中可以包括收发单元1805。
在又一种可能的设计中,所述装置1800还可以包括收发单元1805以及天线1806。所述处理器1801可以称为处理单元,对装置(终端或者基站)进行控制。所述收发单元1805可以称为收发机、收发电路、或者收发器等,用于通过天线1806实现装置的收发功能。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机 存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述应用于第三设备或第四设备的任一方法实施例所述的信息传输方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述应用于第三设备或第四设备的任一方法实施例所述的信息传输方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述应用于第三设备或第四设备的任一方法实施例所述的信息传输方法。
应理解,上述处理装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (30)

  1. 一种反馈信息传输方法,其特征在于,包括:
    第一设备根据接收到的第一数据的第一资源索引,确定所述第一数据对应的反馈信息的反馈资源,所述反馈资源包括时域资源、频域资源和序列资源中的一种或多种;
    所述第一设备通过所述反馈资源发送所述反馈信息。
  2. 如权利要求1所述的方法,其特征在于,所述反馈信息用于反馈肯定应答或否定应答、或者,仅用于反馈肯定应答,或者,仅用于反馈否定应答。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一设备根据接收到的第一数据的第一资源索引,确定所述第一数据对应的反馈信息的反馈资源包括以下方式中的一种或多种:
    所述第一设备根据第一数据所在的第一时隙索引和反馈周期N,确定所述第一数据对应的反馈信息的第二时隙索引;
    所述第一设备根据第一数据所在的第一频域资源索引,确定所述第一数据对应的反馈信息的第二频域资源索引;
    所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列。
  4. 如权利要求3所述的方法,其特征在于,所述反馈信息所在的第二频域资源属于第一反馈资源子集,其中所述反馈信息所在时隙上的频域反馈资源包括至少两个反馈资源子集,所述第一反馈资源子集为所述至少两个反馈资源子集中的一个。
  5. 如权利要求4所述的方法,其特征在于,所述至少两个反馈资源子集为N个反馈资源子集,且不同的反馈资源子集对应不同时隙上的第一数据所在的反馈资源位置;或者,
    所述至少两个反馈资源子集对应至少两种不同的反馈方式,所述至少两种不同的反馈方式包括以下中的至少两个:仅反馈肯定应答,反馈肯定应答或否定应答,以及仅反馈否定应答。
  6. 如权利要求3-5任一项所述的方法,其特征在于,所述第一设备根据第一数据所在的第一频域资源索引,确定所述第一数据对应的反馈信息的第二频域资源索引包括:
    所述第一设备根据所述第一数据所在的第一频域资源索引及第一参数,确定所述第一数据对应的反馈信息的第二频域资源索引,其中,所述第一参数包括以下中的一种或多种:反馈周期、所述第一数据的第一时隙索引、预设的第一数值、所述第一数据对应的反馈信息所在的第二时隙索引、频域偏移值、所述第一设备的反馈时延和反馈信息所在时隙上的频域反馈资源总数,其中所述反馈时延为所述第一设备接收到所述第一数据到发送所述反馈信息的最小时间间隔。
  7. 如权利要求6所述的方法,其特征在于,所述频域偏移值与第一数据所在的时隙位置对应。
  8. 如权利要求6所述的方法,其特征在于,所述第一设备根据所述第一数据所在的第一频域资源索引及第一参数,确定所述第一数据对应的反馈信息的第二频域资源索引包括:
    所述第一设备根据所述第一频域资源索引与所述反馈周期的比值,确定第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引;或者,
    所述第一设备根据所述第二时隙索引与所述第一时隙索引的差、所述反馈周期以及所述第一频域资源索引,确定第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引;或者,
    所述第一设备根据所述第二时隙索引与所述第一时隙索引的差、所述反馈时延、所述反馈周期以及所述第一频域资源索引,确定第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引;或者,
    所述第一设备根据所述第二时隙索引与所述第一时隙索引的差,以及所述第一频域资源索引与所述反馈周期的比值,确定所述第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引;或者,
    所述第一设备根据所述第二时隙索引与所述第一时隙索引的差、所述反馈时延,以及所述第一频域资源索引与所述反馈周期的比值,确定第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引;或者,
    所述第一设备根据所述第一时隙索引、所述第一频域资源索引以及所述频域偏移值,确定第三频域资源索引;所述第一设备根据所述第三频域资源索引,确定第二频域资源索引。
  9. 如权利要求8所述的方法,其特征在于,所述第一设备根据所述第三频域资源索引确定所述第二频域资源索引包括:
    所述第一设备将所述第三频域资源索引确定为所述第二频域资源索引;或者,
    所述第一设备将所述第三频域资源索对所述频域反馈资源总数取模,根据取模结果确定所述第二频域资源索引;或者,
    所述第一设备将所述第三频域资源索引向上取整,根据向上取整结果确定所述第二频域资源索引;或者,
    所述第一设备将所述第三频域资源索引向下取整,根据向下取整结果确定所述第二频域资源索引。
  10. 如权利要求3-9任一项所述的方法,其特征在于,所述第二频域资源索引包括所述第二频域资源在所述反馈信息所在时隙上的反馈资源子集的索引,和/或在所述反馈资源子集内的第二频域资源索引。
  11. 如权利要求10所述的方法,其特征在于,所述反馈资源子集内包括物理资源块PRB或资源元RE,所述反馈资源子集包括连续的用于承载信息的PRB或RE,或者在频域等间隔不连续的用于承载信息的PRB或RE。
  12. 如权利要求3-11任一项所述的方法,其特征在于,所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列包括:
    所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数;所述第一设备根据所述序列参数,确定承载所述反馈信息的序列,所述序列参数包括以下中的一种或多种:序列的初始值、序列的初始位置、序列的根序列号、序列的循环移位值及序列的正交覆盖码。
  13. 如权利要求12所述的方法,其特征在于,所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数包括:
    所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第二参 数,确定所述序列的根序列号,所述第一参数包括以下中的一种或多种:预设的第二数值、所述第二时隙号、根序列号的数量和所述反馈信息的第二频域资源索引。
  14. 如权利要求12或13所述的方法,其特征在于,所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数包括:
    所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定所述序列的循环移位值和/或正交覆盖码,所述第三参数包括以下中的一种或多种:预设的第三数值、所述第二时隙号、循环移位值的数量、正交覆盖码的数量、所述反馈周期、所述第二频域资源索引、所述反馈时延。
  15. 如权利要求14所述的方法,其特征在于,所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定所述序列的循环移位和/或正交覆盖码包括:
    所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,以及第三参数,确定第四数值;
    所述第一设备将所述第四数值确定为所述序列的循环移位值和/或正交覆盖码;或者,所述第一设备将所述第四数值对循环移位值的数量和/或正交覆盖码的数量取模,根据取模结果确定所述序列的循环移位值和/或正交覆盖码。
  16. 如权利要求12或13所述的方法,其特征在于,所述第一设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列的序列参数包括:
    所述第一设备将所述第一时隙索引对循环移位总数取模,根据取模结果确定循环移位值;或者,
    所述第一设备根据所述第一时隙索引与所述第二时隙索引的差,确定循环移位值;或者,
    所述第一设备将所述第一时隙索引与所述第二时隙索引的差,对循环移位总数取模,根据取模结果确定循环移位值。
  17. 如权利要求12-16任一项所述的方法,其特征在于,所述序列参数还包括至少两个不同的序列参数子组,所述不同的序列参数子组对应至少两种不同的反馈方式,所述至少两种不同的反馈方式包括以下中的一种或多种:仅反馈肯定应答,反馈肯定应答或否定应答,以及仅反馈否定应答。
  18. 如权利要求1-17任一项所述的方法,其特征在于,所述反馈资源包括至少两组,所述至少两组反馈资源分别对应不同的处理能力。
  19. 如权利要求18所述的方法,其特征在于,所述至少两组反馈资源包括:第一反馈资源集合和第二反馈资源集合;
    所述第一反馈资源集合对应第一反馈处理能力;
    所述第二反馈资源集合对应第二反馈处理能力。
  20. 如权利要求18或19所述的方法,其特征在于,所述至少两组反馈资源包括:
    第一频域资源和第二频域资源;或者,
    第一根序列组和第二根序列组;或者,
    第一循环移位值组和第二循环移位值组;或者,
    第一正交覆盖码组和第二正交覆盖码组;或者,
    第一序列初始值和第二序列初始值;或者,
    第一序列初位置和第二序列初始位置。
  21. 如权利要求19或20所述的方法,其特征在于,还包括:
    所述第一设备根据所述处理能力,确定所述处理能力所属的反馈资源集合;
    所述第一设备根据所属的反馈资源集合和所述反馈资源,发送所述反馈信息。
  22. 一种反馈信息传输方法,其特征在于,包括:
    第二设备根据第一数据的第一资源索引,确定所述第一数据对应的反馈信息的反馈资源,所述反馈资源包括时域资源、频域资源和序列资源中的一种或多种;
    所述第二设备通过所述反馈资源接收所述反馈信息。
  23. 如权利要求22所述的方法,其特征在于,所述反馈信息用于反馈肯定应答或否定应答、或者,仅用于反馈肯定应答,或者,仅用于反馈否定应答。
  24. 如权利要求22或23所述的方法,其特征在于,所述第二设备根据接收到的第一数据的第一资源索引,确定所述第一数据对应的反馈信息的反馈资源包括以下方式中的一种或多种:
    所述第二设备根据第一数据所在的第一时隙索引和反馈周期N,确定所述第一数据对应的反馈信息的第二时隙索引;
    所述第二设备根据第一数据所在的第一频域资源索引,确定所述第一数据对应的反馈信息的第二频域资源索引;
    所述第二设备根据第一数据所在的第一时隙索引和/或第一频域资源索引,确定所述第一数据对应的反馈信息的序列。
  25. 一种反馈信息传输装置,其特征在于,包括处理器和存储器,所述处理器与所述存储器耦合;
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1-21中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1-21中任意一项所述的方法被执行。
  27. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以执行权利要求1-21中任意一项所述的方法。
  28. 一种反馈信息传输装置,其特征在于,包括处理器和存储器,所述处理器与所述存储器耦合;
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求22-24中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求22-24中任意一项所述的方法被执行。
  30. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以执行权利要求22-24中任意一项所述的方法。
PCT/CN2020/108461 2019-08-15 2020-08-11 一种反馈信息传输方法及装置 WO2021027815A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910755703.8A CN112398616B (zh) 2019-08-15 2019-08-15 一种反馈信息传输方法及装置
CN201910755703.8 2019-08-15

Publications (1)

Publication Number Publication Date
WO2021027815A1 true WO2021027815A1 (zh) 2021-02-18

Family

ID=74569329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108461 WO2021027815A1 (zh) 2019-08-15 2020-08-11 一种反馈信息传输方法及装置

Country Status (2)

Country Link
CN (1) CN112398616B (zh)
WO (1) WO2021027815A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023056880A1 (zh) * 2021-10-08 2023-04-13 中兴通讯股份有限公司 反馈方法、通信节点及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266986A1 (zh) * 2021-06-25 2022-12-29 华为技术有限公司 一种通信方法及信息处理装置
CN114363831B (zh) * 2021-12-02 2023-05-26 北京万集科技股份有限公司 传输v2x消息的方法、设备以及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420293A (zh) * 2007-10-23 2009-04-29 华为技术有限公司 Ack/nack信息的指示和数据重传的方法及装置
US20130176920A1 (en) * 2010-09-17 2013-07-11 Lg Electronics Inc. Method and apparatus for transmitting a plurality of pieces of receipt acknowledgement information in a wireless communication system
CN103404063A (zh) * 2011-02-10 2013-11-20 Lg电子株式会社 在无线通信系统中发射接收确认的方法和装置
CN108075864A (zh) * 2016-11-15 2018-05-25 中国电信股份有限公司 Ack/nack的反馈方法、系统以及终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8204010B2 (en) * 2007-06-18 2012-06-19 Research In Motion Limited Method and system for dynamic ACK/NACK repetition for robust downlink MAC PDU transmission in LTE
US11005637B2 (en) * 2016-07-21 2021-05-11 Lg Electronics Inc. Method and user equipment for receiving downlink channel, and method and base station for transmitting downlink channel
KR20180013171A (ko) * 2016-07-28 2018-02-07 삼성전자주식회사 이동 통신 시스템에서 harq 프로세스 관리 방법 및 장치
CN110061822B (zh) * 2018-12-03 2021-03-02 中国信息通信研究院 一种车联网单播通信信道、通信方法和移动终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420293A (zh) * 2007-10-23 2009-04-29 华为技术有限公司 Ack/nack信息的指示和数据重传的方法及装置
US20130176920A1 (en) * 2010-09-17 2013-07-11 Lg Electronics Inc. Method and apparatus for transmitting a plurality of pieces of receipt acknowledgement information in a wireless communication system
CN103404063A (zh) * 2011-02-10 2013-11-20 Lg电子株式会社 在无线通信系统中发射接收确认的方法和装置
CN108075864A (zh) * 2016-11-15 2018-05-25 中国电信股份有限公司 Ack/nack的反馈方法、系统以及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Remaining issues for resource allocation for PUCCH", 3GPP TSG RAN WG1 MEETING AH 1801; R1-1800874, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Vancouver, Canada; 20180122 - 20180126, 13 January 2018 (2018-01-13), Vancouver, Canada; 20180122 - 20180126, XP051385144 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023056880A1 (zh) * 2021-10-08 2023-04-13 中兴通讯股份有限公司 反馈方法、通信节点及存储介质

Also Published As

Publication number Publication date
CN112398616A (zh) 2021-02-23
CN112398616B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
US20200403737A1 (en) Method and apparatus for transmission or reception of sidelink feedback in communication system
US20220190983A1 (en) Method for data transmission and terminal device
JP6663076B2 (ja) 情報送信方法及びユーザ装置
US11588581B2 (en) Method and apparatus for transmission and reception of sidelink control information in wireless communication system
WO2021027815A1 (zh) 一种反馈信息传输方法及装置
CN111867095A (zh) 一种通信方法与终端装置
CN116548039A (zh) 无线通信的方法和终端设备
CN110958095B (zh) 一种通信方法及装置
KR20210023711A (ko) 통신 시스템에서 사이드링크 자원들의 설정 방법
WO2021204128A1 (zh) 一种传输块尺寸确定方法及装置
CN112583536B (zh) 反馈信息处理方法及通信装置
WO2021088081A1 (zh) 一种控制信息发送方法、接收方法和通信装置
CN116261844A (zh) 一种侧行链路通信方法及装置
WO2021088080A1 (zh) 一种数据的发送、接收方法、参考信号的发送方法及装置
WO2018018461A1 (zh) 一种上行数据传输方法及设备、系统
WO2024061076A1 (zh) 侧行链路通信的方法及装置
WO2024067092A1 (zh) 通信方法和装置
WO2023093531A1 (zh) 一种通信方法及装置
WO2022267898A1 (zh) 一种资源指示方法和装置
CN111526598B (zh) 一种通信方法及装置
CN112970214B (zh) 用于侧链路的反馈信令
US20240049264A1 (en) Physical sidelink feedback channel (psfch) transmission method and terminal device
KR20210088228A (ko) 무선 통신 시스템에서 동기 및 비동기 데이터의 재전송 방법 및 장치
CN113543327A (zh) 一种数据发送、接收方法及装置
CN117750529A (zh) 侧行链路通信的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851802

Country of ref document: EP

Kind code of ref document: A1