WO2018018461A1 - 一种上行数据传输方法及设备、系统 - Google Patents

一种上行数据传输方法及设备、系统 Download PDF

Info

Publication number
WO2018018461A1
WO2018018461A1 PCT/CN2016/091886 CN2016091886W WO2018018461A1 WO 2018018461 A1 WO2018018461 A1 WO 2018018461A1 CN 2016091886 W CN2016091886 W CN 2016091886W WO 2018018461 A1 WO2018018461 A1 WO 2018018461A1
Authority
WO
WIPO (PCT)
Prior art keywords
ttis
terminal device
access network
uplink data
network device
Prior art date
Application number
PCT/CN2016/091886
Other languages
English (en)
French (fr)
Inventor
郑娟
官磊
马莎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/091886 priority Critical patent/WO2018018461A1/zh
Publication of WO2018018461A1 publication Critical patent/WO2018018461A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the embodiments of the present invention relate to the field of wireless communications technologies, and in particular, to an uplink data transmission method, device, and system.
  • the Long Term Evolution (LTE) system can be in the unlicensed band (also known as the "unlicensed band").
  • the transmission of data is implemented on the resource.
  • LBT Listen Before Talk
  • the LBT rule requires the communication device to detect before using the unlicensed band resource for data transmission. Listening to whether the corresponding channel is idle. If yes, there is a limit to the time for data transmission on the corresponding channel and data transmission on the corresponding channel.
  • the terminal devices are all carrying uplink grant (UL Grant) information.
  • UL Grant uplink grant
  • the subframe in which the uplink data transmission is located, and the subframe can be represented by the subframe number.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • PHICH Physical Hybrid Automatic Repeat Request Indicator Channel
  • the terminal device may send the uplink data in the subframe n+4, wherein the time information for determining the HARQ may be as shown in FIG. 1, and FIG. 1 is a time for determining the HARQ disclosed in the prior art. Schematic diagram of the relationship of information. That is, for uplink data transmission, it is sent from the access network device.
  • the delay between the uplink data of the scheduling information scheduling terminal device and the terminal device transmitting the uplink data on the scheduled time-frequency resource is not less than 4 ms; the uplink data is sent from the terminal device to the acknowledgment response (ACK) returned by the access network device. , the Acknowledge) or the negative acknowledgement (NACK, Non-Acknowledge) delay is not less than 4ms; the delay between the transmission of the uplink data from the terminal device to the reception of the scheduling information (such as uplink grant, etc.) for the uplink data Not less than 4ms.
  • the non-preemptive data transmission opportunity will cause the scheduled uplink data transmission on the terminal device to fail, and the access network device also needs to go through the uplink data transmission for the terminal device for 4ms.
  • the uplink authorization, and the terminal device also needs to determine whether the unlicensed band resource can be preempted through the competition mechanism, which increases the transmission delay of the uplink data that is not successfully transmitted on the terminal device, and reduces the use efficiency of the unlicensed band resource.
  • the embodiment of the invention discloses an uplink data transmission method, device and system, which can reduce the transmission delay of uplink data and improve the use efficiency of the unlicensed band resources.
  • the first aspect of the embodiment of the present invention discloses an uplink data transmission method, which may include the following operations:
  • the access network device After the first scheduling information is sent to the terminal device by using the Kth transmission time interval (TTI), the access network device detects whether the terminal device preempts the unlicensed band resource in the K+M TTIs, when the detection result is If not, the access network device sends the second scheduling information to the terminal device at the K+M+N TTIs, and the access network device receives the second uplink data sent by the terminal device at the K+M+N+L TTIs. When the detection result is yes, the access network device sends the first uplink data to the terminal device at the K+M TTIs.
  • TTI transmission time interval
  • the first scheduling information is used to indicate that the terminal device sends the first uplink data in the K+M TTIs, where K and M are positive integers, and M is greater than or equal to a preset value.
  • the second scheduling information is used to instruct the terminal device to send the second uplink data in the K+M+N+L TTIs, where N and L are positive integers, and N is less than a preset value.
  • the first scheduling information or the second scheduling information may be used as one type of downlink data, and is data sent by the access network device to the terminal device.
  • the preset value is used to indicate the number of transmission time intervals from the time when the first network scheduling information is sent by the access network device to the terminal device, and the terminal device sends the first uplink data. For example, the preset value may be 4 or 7. Wait.
  • the second uplink data may be retransmission data for the first uplink data.
  • the HARQ process identifier of the second uplink data is the same as the HARQ process identifier of the first uplink data.
  • the first uplink data or the second uplink data may be used as one of uplink data, and is data sent by the terminal device to the access network device.
  • the TTI may include: one subframe, one slot, or at least one Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the access network device sends the first scheduling information to the terminal device in the Kth TTI, and after receiving the first scheduling information, the terminal device can preempt the unlicensed band resource through the contention mechanism, and the access network device detects When the terminal device does not preempt the unlicensed band resources in the K+M TTIs, the access network device needs to perform the uplink authorization for the uplink data transmission to the terminal device again, that is, the access network device is at the K+M+N TTIs.
  • the terminal device may preempt the unlicensed band resource through the contention mechanism, and when the terminal device preempts the unlicensed band resource in the K+M+N+L TTIs
  • the terminal device may send the second uplink data to the access network device.
  • the N is less than the preset value, and the delay between the time when the terminal device is not preempted to the unlicensed band resource and the second scheduling information sent by the access network device is less than a preset value, and the embodiment of the present invention accesses
  • the second scheduling information sent by the network device can dynamically configure the delay between receiving the second scheduling information and sending the second uplink data to the access network device, thereby reducing the transmission delay of the uplink data and improving the unlicensed frequency band.
  • the efficiency of the use of resources may also be smaller than a preset value.
  • the second uplink data is retransmission data for the first uplink data
  • the terminal device since the terminal device has completed processing the first uplink data when preparing to transmit the first uplink data, when the second uplink is performed
  • the data is the retransmission data of the first uplink data
  • the time delay between the moments, ie, L TTIs may be less than a predetermined threshold, such as less than four.
  • the access network device detects whether the terminal device preempts the unlicensed frequency band resource in the K+M TTIs, where the access network device detects whether the terminal device sends the information in the K+M TTIs.
  • the demodulation reference signal when the demodulation reference signal is not received in the K+M TTIs, the access network device determines that the terminal device does not preempt the unlicensed band resources in the K+M TTIs; When receiving the demodulation reference signal in K+M TTIs, the access network device determines that the terminal device is at the K+M Unlicensed band resources are seized within one TTI.
  • the terminal device may determine, by using a Clear Channel Assessment (CCA), whether the unlicensed band resources can be contending in the K+M TTIs. The use opportunity, or to determine whether the first uplink data can be transmitted using the unlicensed band resource within the K+M TTIs. If the terminal device does not compete for the unlicensed band resource within the K+M TTIs, the terminal device cannot send the first uplink data to the access network device within the K+M TTIs, if the first uplink data is carried on the PUSCH. If the data is on, the terminal device cannot send the uplink demodulation reference signal (DMRS) to the access network device in the K+M TTIs. Accordingly, if the access network device is in the K+M TTIs If no DMRS is detected, the access network device can determine that the terminal device does not preempt the unlicensed band resources in the K+M TTIs.
  • CCA Clear Channel Assessment
  • the access network device detects whether the terminal device preempts the unlicensed band resource in the K+M TTI, and specifically: the access network device detects whether it is in the first frequency band from K+M to K+ Receiving the first indication information sent by the terminal device in any one or more TTIs between the M+N-1 TTIs, when the K+M to the K+M+N-1 TTIs in the first frequency band When the first indication information is received in any one or more TTIs, the access network device determines that the terminal device does not preempt the unlicensed band resources in the K+M TTIs; when the K+ in the first frequency band When the first indication information is not received in any one or more TTIs between M and K+M+N-1 TTIs, the access network device determines that the terminal device preempts the license in the K+M TTIs. Band resources.
  • the first frequency band is different from the frequency band in which the first uplink data is located, and the first indication information is used to indicate that the terminal device does not preempt the unlicensed frequency band resource in the K+M TTIs.
  • the frequency band in which the first uplink data is located refers to the transmission frequency band in which the first uplink data is scheduled.
  • the access network device detects whether the terminal device preempts the unlicensed band resource in the K+M TTI, and specifically: the access network device detects whether it is in the first frequency band from K+M to K+ Receiving the first indication information sent by the terminal device in any one or more TTIs between the M+N-1 TTIs, when the K+M to the K+M+N-1 TTIs in the first frequency band
  • the access network device determines that the terminal device does not preempt the unlicensed band resources in the K+M TTIs
  • the access network device detects whether it is in the first Receiving a second transmission by the terminal device in any one or more TTIs between the K+M and the K+M+N-1 TTIs of the frequency band Instructing information, when receiving the second indication information in any one or more TTIs between the K+M and the K+M+N-1 TTIs of the first frequency band, the access network device determines that the terminal device is Unlicensed band
  • the first indication information is used to indicate that the terminal device does not preempt the unlicensed band resource in the K+M TTIs
  • the second indication information is used to indicate that the terminal device preempts the unlicensed band resource in the K+M TTIs.
  • the access network device detects whether the terminal device preempts the unlicensed band resource in the K+M TTIs, where the access network device detects whether the K+M+1 to the second frequency band are in the K+M+1 ⁇ Receiving the first indication information sent by the terminal device in any one or more TTIs between K+M+N-1 TTIs, when in the second frequency band, K+M+1 ⁇ K+M+N - When receiving the first indication information in any one or more TTIs between 1 TTIs, the access network device determines that the terminal device does not preempt the unlicensed band resources in the K+M TTIs; when in the second frequency band When the first indication information is not received in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs, the access network device determines that the terminal device is at the K+Mth Unlicensed band resources are seized within the TTI.
  • the second frequency band is the same as the frequency band in which the first uplink data is located, and the first indication information is used to indicate that the terminal device does not preempt the unlicensed frequency band resource in the K+M TTIs.
  • the terminal device may determine, by using the CCA, whether the user may compete for the use of the unlicensed band resources in the K+M TTIs, or determine that the first Whether the first uplink data can be transmitted in the K+M TTIs using the unlicensed band resources. If the terminal device does not compete for the unlicensed band resource within the K+M TTIs, the terminal device may be any one of the K+M+1 to K+M+N-1 TTIs of the second frequency band. Within the multiple TTIs, the first indication information is sent to the access network device.
  • the access network device detects whether the terminal device preempts the unlicensed band resource in the K+M TTIs, where the access network device detects whether the K+M+1 to the second frequency band are in the K+M+1 ⁇ Receiving the first indication information sent by the terminal device in any one or more TTIs between K+M+N-1 TTIs, when in the second frequency band, K+M+1 ⁇ K+M+N
  • the access network device determines that the terminal device does not preempt the unlicensed band resources in the K+M TTIs; the access network device detects Whether the first transmission is received in the terminal device by any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band.
  • the second indication information is that when the second indication information is received in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band, the access network device determines The terminal device preempts the unlicensed band resources within the K+M TTIs.
  • the second aspect of the embodiment of the present invention discloses an uplink data transmission method, which may include the following operations:
  • the terminal device receives the first scheduling information sent by the access network device at the Kth TTI, and receives the second scheduling information sent by the access network device at the K+M+N TTIs, and according to the second scheduling information, at the Kth +M+N+L TTIs transmit the second uplink data.
  • the first scheduling information is used to indicate that the terminal device sends the first uplink data in the K+M TTIs, where K and M are positive integers, and M is greater than or equal to a preset value.
  • the second scheduling information is used to indicate that the terminal device sends the second uplink data in the K+M+N+L TTIs, and the HARQ process identifier of the second uplink data is the same as the HARQ process identifier of the first uplink data, N, L Both are positive integers, and N is less than the preset value.
  • the terminal device may determine that the terminal device does not preempt the unlicensed band resources in the K+M TTIs.
  • the terminal device does not send the demodulation reference signal in the K+M TTIs.
  • the terminal device sends the first indication information to the access network device in any one or more TTIs between the K+M and the K+M+N-1 TTIs of the first frequency band, the first The frequency band is different from the frequency band in which the first uplink data is located, and the first indication information is used to indicate that the terminal device does not preempt the unlicensed frequency band resource in the K+M TTIs.
  • the terminal device sends the second indication information to the access network device in any one or more TTIs between the K+M and the K+M+N-1 TTIs of the first frequency band, where The frequency band is different from the frequency band in which the first uplink data is located, and the second indication information is used to indicate that the terminal device preempts the unlicensed frequency band resource in the K+M TTIs.
  • the terminal device sends the first indication information to the access network device in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band.
  • the second frequency band is the same as the frequency band in which the first uplink data is located.
  • the terminal device sends the second indication information to the access network device in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band.
  • the second frequency band is the same as the frequency band in which the first uplink data is located, and the second indication information is used to indicate that the terminal device robs in the K+M TTIs. Occupy unlicensed band resources.
  • the third aspect of the embodiment of the present invention discloses an access network device, where the access network device includes a module for performing an uplink data transmission method disclosed in the first aspect of the embodiment of the present invention.
  • a fourth aspect of the embodiments of the present invention discloses an access network device, where the access network device may include a processor, a memory, a transmitter, and a receiver, where:
  • a transmitter configured to send first scheduling information to the terminal device at the Kth TTI, where the first scheduling information is used to instruct the terminal device to send the first uplink data in the K+M TTIs, where K and M are positive integers, M Greater than or equal to the preset value.
  • the processor calls the program code stored in the memory to perform the following operations:
  • the second uplink data is sent by the TTI, and the HARQ process identifier of the second uplink data is the same as the HARQ process identifier of the first uplink data, where N and L are positive integers, and N is less than a preset value.
  • the transmitter is further configured to send the second scheduling information to the terminal device at the K+M+N TTIs.
  • the receiver is configured to receive second uplink data that is sent by the terminal device at the K+M+N+L TTIs.
  • the processor detects whether the terminal device preempts the unlicensed band resource in the K+M TTIs, and specifically: detecting whether the demodulation reference signal sent by the terminal device is received in the K+M TTIs, When the demodulation reference signal is not received within the K+M TTIs, it is determined that the terminal device does not preempt the unlicensed band resources within the K+M TTIs; when demodulation is received within the K+M TTIs When the signal is referenced, it is determined that the terminal device preempts the unlicensed band resource within the K+M TTIs.
  • the processor detects whether the terminal device preempts the unlicensed band resource in the K+M TTIs, and specifically: detecting whether the K+M to K+M+N-1 in the first frequency band are Receiving, in any one or more TTIs between the TTIs, the first indication information sent by the terminal device, when any one of the K+M to the K+M+N-1 TTIs in the first frequency band or When the first indication information is received in multiple TTIs, it is determined that the terminal device does not preempt the unlicensed band resources in the K+M TTIs; when in the first frequency band, K+M to K+M+N-1 When the first indication information is not received in any one or more TTIs between the TTIs, it is determined that the terminal equipment preempts the unlicensed band resources in the K+M TTIs.
  • the first frequency band is different from the frequency band in which the first uplink data is located, and the first indication information is used to indicate that the terminal device does not preempt the unlicensed frequency band resource in the K+
  • the processor detects whether the terminal device preempts the unlicensed band resource in the K+M TTIs, and specifically: detecting whether the K+M to K+M+N-1 in the first frequency band are Receiving, in any one or more TTIs between the TTIs, the first indication information sent by the terminal device, when any one of the K+M to the K+M+N-1 TTIs in the first frequency band or When the first indication information is received in multiple TTIs, it is determined that the terminal device does not preempt the unlicensed frequency band resources in the K+M TTIs; whether it is in the first frequency band from K+M to K+M+N- Receiving, in any one or more TTIs between the one TTIs, the second indication information sent by the terminal device, when between the K+M and the K+M+N-1 TTIs in the first frequency band When the second indication information is received in one or more TTIs, it is determined that the terminal device preempts the unlicensed band resources in the K+M TTIs.
  • the first indication information is used to indicate that the terminal device does not preempt the unlicensed band resource in the K+M TTIs
  • the second indication information is used to indicate that the terminal device preempts the unlicensed band resource in the K+M TTIs.
  • the processor detects whether the terminal device preempts the unlicensed band resource in the K+M TTIs, and specifically: detecting whether the K+M+1 to K+M+N in the second frequency band are Receiving, in any one or more TTIs between one TTI, the first indication information sent by the terminal device, when between K+M+1 and K+M+N-1 TTIs of the second frequency band
  • the processor detects whether the terminal device preempts the unlicensed band resource in the K+M TTIs, and specifically: detecting whether the K+M+1 to K+M+N in the second frequency band are Receiving, in any one or more TTIs between one TTI, the first indication information sent by the terminal device, when between K+M+1 and K+M+N-1 TTIs of the second frequency band.
  • the processor detects whether the terminal device preempts the unlicensed band resource in the K+M TTIs, and specifically: detecting whether the K+M+1 to K+M+N in the second frequency band are Receiving, in any one or more TTIs between one TTI, the first indication information sent by the terminal device, when between K+M+1 and K+M+N-1 TTIs of the second frequency band
  • the first indication information is received in any one or more TTIs
  • it is determined that the terminal device does not preempt the unlicensed band resources in the K+M TTIs whether it is in the K+M+1 to the second frequency band
  • the second indication information sent by the terminal device is received, when the K+M+1 ⁇ K+M+N in the second frequency band
  • the second indication information is received in any one or more TTIs between 1 TTIs, it is determined that the terminal equipment preempts the unlicensed band resources in the K+M TTIs.
  • a fifth aspect of the embodiments of the present invention discloses a terminal device, where the terminal device includes a module for performing an uplink data transmission method disclosed in the second aspect of the embodiment of the present invention.
  • a sixth aspect of the embodiments of the present invention discloses a terminal device, which may include a processor, a memory, a transmitter, and a receiver, where:
  • a receiver configured to receive first scheduling information sent by the access network device in the Kth TTI, where the first scheduling information is used to instruct the transmitter to send the first uplink data in the K+M TTIs, where K and M are positive Integer, M is greater than or equal to the preset value.
  • the receiver is further configured to receive second scheduling information sent by the access network device at the K+M+N TTIs, where the second scheduling information is used to indicate that the transmitter sends the second information in the K+M+N+L TTIs.
  • the uplink data, the HARQ process identifier of the second uplink data is the same as the HARQ process identifier of the first uplink data, and N and L are positive integers, and N is less than a preset value.
  • the transmitter transmits the second uplink data at the K+M+N+L TTIs according to the second scheduling information.
  • the processor may perform the following operations:
  • the terminal device does not preempt the unlicensed band resources within the K+M TTIs.
  • the transmitter does not transmit the demodulation reference signal within the K+M TTIs.
  • the transmitter sends the first indication information to the access network device in any one or more TTIs between the K+M and the K+M+N-1 TTIs of the first frequency band, the first The frequency band is different from the frequency band in which the first uplink data is located, and the first indication information is used to indicate that the terminal device does not preempt the unlicensed frequency band resource in the K+M TTIs.
  • the transmitter sends the second indication information to the access network device in any one or more TTIs between the K+M and the K+M+N-1 TTIs of the first frequency band, the first The frequency band is different from the frequency band in which the first uplink data is located, and the second indication information is used to indicate that the terminal device preempts the unlicensed frequency band resource in the K+M TTIs.
  • the transmitter sends the first indication information to the access network device in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band.
  • the second frequency band is the same as the frequency band in which the first uplink data is located.
  • the transmitter sends the second indication information to the access network device in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band.
  • Second frequency band and first uplink number According to the same frequency band, the second indication information is used to indicate that the terminal device preempts the unlicensed band resources in the K+M TTIs.
  • the seventh aspect of the embodiments of the present invention discloses an uplink data transmission system, where the system may include a terminal device and an access network device, where:
  • the access network device is configured to send the first scheduling information to the terminal device in the Kth TTI, where the first scheduling information is used to instruct the terminal device to send the first uplink data in the K+M TTIs, where K and M are positive integers. , M is greater than or equal to the preset value.
  • the access network device is further configured to detect whether the terminal device preempts the unlicensed band resource in the K+M TTIs.
  • the access network device is further configured to: when the detection result is no, send the second scheduling information to the terminal device at the K+M+N TTIs, where the second scheduling information is used to indicate that the terminal device is at the K+M+N+
  • the L-th TTIs transmit the second uplink data, and the HARQ process identifier of the second uplink data is the same as the HARQ process identifier of the first uplink data, where N and L are positive integers, and N is less than a preset value.
  • the terminal device is configured to send the second uplink data to the access network device at the K+M+N+L TTIs.
  • FIG. 1 is a schematic diagram showing the relationship between time information of a determined HARQ disclosed in the prior art
  • FIG. 2 is a schematic structural diagram of an application architecture disclosed in an embodiment of the present invention.
  • FIG. 3a is a schematic diagram of a TTI disclosed in an embodiment of the present invention.
  • FIG. 3b is a schematic diagram of a TTI according to another embodiment of the present invention.
  • FIG. 3c is a schematic diagram of a TTI according to another embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of an uplink data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of an uplink data transmission method according to another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of an uplink data transmission method according to another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of an uplink data transmission method according to another embodiment of the present invention.
  • FIG. 8 is a schematic flowchart diagram of an uplink data transmission method according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an access network device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an access network device according to another embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a terminal device according to another embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an uplink data transmission system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an application architecture according to an embodiment of the present invention.
  • the application architecture may include a terminal device and an access network device, where the terminal device and the access network device can communicate by using the licensed band resource, and can communicate by using the unlicensed band resource, and The LBT rules are followed when communicating with unlicensed band resources.
  • the application architecture can be deployed in a LAA-LTE system in which licensed carriers on licensed band resources and unlicensed carriers on unlicensed band resources are aggregated by CA technology, ie, licensed band resources or licensed band resources
  • the licensed carrier or the cell working on the licensed band resource is used as the primary cell (PCell, Primary Cell), and the unlicensed carrier on the unlicensed band resource or the unlicensed band resource or the cell working on the unlicensed band resource is used as the auxiliary a serving cell (SCell, Secondary Cell), wherein the primary serving cell and the secondary serving cell may be deployed in a common station or non-co-located, and an ideal backhaul path exists between the primary serving cell and the secondary serving cell;
  • It can also be deployed in an LTE system in which a licensed carrier on a licensed band resource and an unlicensed carrier on an unlicensed band resource are used together by a dual connectivity (DC, Dual Connectivity) technology, that is, a primary serving cell and a secondary serving cell.
  • DC Dual Connectivity
  • the application architecture can also be deployed in the use of unlicensed band resources
  • a standalone LTE system eg standalone LTE over unlicensed carrier system
  • services operating on unlicensed band resources The cell can directly provide independent access functions, and does not need to work in the cell of the licensed band resource.
  • the resource sharing on the unlicensed frequency band refers to the limitation on the use of the specific spectrum, such as the transmission power and the out-of-band leakage, to ensure that the basic coexistence requirements are met between multiple terminal devices that jointly use the frequency band.
  • the radio technology, operating company, and service life of the terminal equipment are not limited.
  • the access network device may be a device for communicating with the mobile station, and may be an access point (AP, Access Point) in a wireless local area network (WLAN), or a global mobile communication system (GSM, Global). System for Mobile Communication) or Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), and base station in Wideband Code Division Multiple Access (WCDMA) NB, NodeB), evolved base station (eNB, Evolutional Node B) in LTE system, relay station or access point, in-vehicle device, wearable device, access network device in future 5G network, and future evolved public land mobile network Any one of access network devices and the like in (PLMN, Public Land Mobile Network).
  • AP Access Point
  • WLAN wireless local area network
  • GSM Global mobile communication system
  • GSM Global
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • NB Wideband Code Division Multiple Access
  • eNB Evolutional Node B
  • LTE Long Term Evolution
  • the terminal device may also be referred to as a user equipment (UE, User Equipment), a mobile station, an access terminal, a subscriber unit, a subscriber station, a mobile station, a remote station, a remote terminal, a mobile device, a terminal, a wireless communication device, and a user agent.
  • UE User Equipment
  • a user device or the like which may specifically be a station (ST, Station) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP), a Wireless Local Loop (WLL) station, Personal digital processing (PDA, Personal Digital Assistant), handheld devices with wireless communication capabilities, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, mobile stations in future 5G networks, and future evolved PLMNs Any one of terminal devices and the like in the network.
  • ST Station
  • WLAN Wireless Local Loop
  • PDA Personal Digital Processing
  • a base station Whether it is a licensed band resource or an unlicensed band resource, one or more carriers may be included in the present invention, and one or more licensed carriers on the licensed band resource and one or more unlicensed carriers on the unlicensed band resource Carrier aggregation may be performed; the cell mentioned in the present invention may be a cell corresponding to the base station, and the cell may belong to a macro base station or a base station corresponding to a small cell, where the small cell may include a metro cell.
  • the carrier in the present invention can have multiple cells working at the same frequency at the same time.
  • the concept of the carrier and the cell can be considered to be equivalent.
  • the carrier identifier of the secondary carrier and the cell identifier (Cell ID, Cell Indentify) of the secondary cell working in the secondary carrier are carried in the same manner.
  • the concept of the carrier and the cell is equivalent, for example, the terminal device is connected. It is equivalent to enter a carrier and access a cell.
  • the concept of a cell will be introduced.
  • a device capable of performing data communication with a base station can be understood as a terminal device, and the present invention will be in a general sense. Terminal equipment to introduce.
  • the data includes at least one of the following: business data, control data, and reference signals.
  • the uplink data may include at least one of the following: the service data that can be carried on the physical uplink shared channel (PUSCH), and the control data that can be carried on the PUSCH, and can be carried on the physical uplink control channel (PUCCH, Physical Uplink). Control Channel), Up Demodulation Reference Signal (DMRS), Sounding Reference Signal (SRS).
  • PUSCH physical uplink shared channel
  • DMRS Up Demodulation Reference Signal
  • SRS Sounding Reference Signal
  • the downlink data can include data carried in the downlink physical channel, and/or a downlink reference signal.
  • the downlink physical channel may include at least one of the following: a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (PMCH), and a physical control format indication.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PMCH physical multicast channel
  • PCFICH Physical Control Format Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • PHICH Physical Hybrid ARQ Indicator Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • the downlink reference signal may include at least one of the following: a Cell-specific Reference Signal (CRS), and a Multimedia Broadcast Multicast Service Single Frequency Network Reference Signal (MBSFNRS).
  • CRS Cell-specific Reference Signal
  • MSFNRS Multimedia Broadcast Multicast Service Single Frequency Network Reference Signal
  • DM-RS De Modulation Reference Signal
  • US-RS UE-specific reference signal
  • CSI-RS Channel status information reference signal
  • the scheduling information may also be referred to as scheduling data, control information, or control data, and may be used to indicate at least one of the following: a transmission format of the uplink data, a resource allocation of the uplink data, and an uplink scheduling permission of the uplink data. , power control of uplink data or retransmission information of uplink data.
  • the scheduling information may be part of the Downlink Control Information (DCI), that is, a certain field included in the DCI, and the scheduling information may also be all the information fields included in the DCI.
  • the scheduling information may be carried in the PDCCH and/or the EPDCCH, or may be carried in other channels, which is not specifically limited in the present invention.
  • the scheduling information may include information for instructing the terminal device to transmit uplink data, such as a Modulation Coding Scheme (MCS), a frequency domain resource indication used to transmit uplink data, power control information, and the like.
  • MCS Modulation Coding Scheme
  • the scheduling information may be user-specific (UE specific) indication information, for example, only for a certain terminal device or a certain user group, and the scheduling information may also be cell-specific indication information, for example, in a cell. All link state terminal devices or all terminal devices (including link state and idle state terminal devices) that use the cell as a serving cell are valid.
  • UE specific user-specific
  • cell-specific indication information for example, in a cell. All link state terminal devices or all terminal devices (including link state and idle state terminal devices) that use the cell as a serving cell are valid.
  • the scheduling information may be uplink grant (UL grant) control information, and the scheduling information includes transmitting in DCI format 0 (DCI Format 0) or DCI format 4 (DCI Format 4). Control information.
  • the scheduling information may indicate that the terminal device sends uplink data in one TTI, or may instruct the terminal device to send uplink data in at least two TTIs. For example, one terminal device may be scheduled to transmit uplink data in one or more K+M TTIs by using one UL grant (or one DCI) in the Kth TTI.
  • the TTI can be understood as a time unit of one transmission, and the time unit can include a time unit of uplink data and/or downlink data transmission.
  • the length of one time unit can be arbitrarily set.
  • one TTI may be any of the following physical quantities: one subframe, one slot, one or more OFDM.
  • one TTI may be represented by one time slot, or one or more (for example, a positive integer less than 7 or A positive integer number of OFDM symbols less than 6, optionally, for example, 2 OFDM symbols.
  • S-TTI Short Transmission Time Interval
  • one TTI can be represented by one subframe. Among them, S-TTI is small in length TTI at 1 millisecond (ms).
  • the length of the time unit for information transmission may be 1 ms or less than 1 ms. Even for an LTE system that does not support S-TTI, when the TTI is represented by a subframe, the length of the downlink data transmission in the TTI may be 1 ms or less than 1 ms. Similarly, the TTI is used for uplink data. The length of the transmission can be 1ms or less than 1ms. Taking the schematic diagram of the TTI shown in FIG. 3a as an example, the length of the downlink data transmission in one TTI may be 1 ms; taking the schematic diagram of the TTI shown in FIG. 3b as an example, the length of the downlink data transmission in one TTI. For example, when the length of the downlink data transmission in one TTI is less than 1 ms, the other time range in the TTI may also include uplink data transmission.
  • FIG. 4 is a schematic flowchart of an uplink data transmission method according to an embodiment of the present invention. As shown in the figure, the uplink data transmission method in the embodiment of the present invention may include at least the following steps:
  • the access network device sends the first scheduling information to the terminal device in the Kth TTI, where the first scheduling information is used to instruct the terminal device to send the first uplink data in the K+M TTIs, where M is greater than or equal to a preset value.
  • the terminal device may receive the first scheduling information in the Kth TTI.
  • the sending time of the first scheduling information sent by the access network device and the receiving time of the first scheduling information received by the terminal device are different.
  • the propagation delay required for data transmission between the access network device and the terminal device is ignored.
  • the terminal device preempts the unlicensed band resource through a competition mechanism.
  • the access network device determines, according to the first indication information, that the terminal device does not preempt the unlicensed band resource in the K+M TTIs.
  • the access network device sends the second scheduling information to the terminal device in the K+M+N TTIs, where the second scheduling information is used to instruct the terminal device to send the second uplink data in the K+M+N+L TTIs.
  • N is less than the preset value.
  • the terminal device preempts the unlicensed band resource through a competition mechanism.
  • the terminal device preempts the unlicensed band resource in the K+M+N+L TTIs, the first indication information is not sent to the access network device.
  • the terminal device sends the second uplink data to the access network device at the K+M+N+L TTIs.
  • the embodiment of the present invention does not limit the sequential execution sequence of S407-S409.
  • S407 and S409 may be performed simultaneously, and S408 may be executed after S407.
  • S407 may be performed before S409, and S408 may be executed after S409.
  • S409 may be performed after S408; as S408 may be performed after S407, S409 may be performed after S407, S408 and S409 may be performed simultaneously, and the like, which are not specifically in the embodiment of the present invention. limits.
  • the access network device sends the first scheduling information to the terminal device at the Kth TTI, and the access network device receives the first transmission sent by the terminal device in the K+M TTIs.
  • the access network device sends the second scheduling information to the terminal device in the K+M+N TTIs, where the terminal device is in the Kth
  • the second uplink data is sent to the access network device. Since N is less than the preset value, the transmission delay of the uplink data can be reduced, and the use of the unlicensed band resources can be improved. effectiveness.
  • FIG. 5 is a schematic flowchart of an uplink data transmission method according to another embodiment of the present invention. As shown in the figure, the uplink data transmission method in the embodiment of the present invention may include at least the following steps:
  • the access network device sends the first scheduling information to the terminal device in the Kth TTI, where the first scheduling information is used to instruct the terminal device to send the first uplink data in the K+M TTIs, where M is greater than or equal to a preset value.
  • the terminal device preempts the unlicensed band resource through a competition mechanism.
  • a demodulation reference signal is sent to the access network device.
  • S504 When the access network device does not receive the demodulation reference signal sent by the terminal device in the K+M TTIs, determine that the terminal device does not preempt the unlicensed band resources in the K+M TTIs.
  • the access network device sends the second scheduling information to the terminal device in the K+M+N TTIs, where the second scheduling information is used to instruct the terminal device to send the second uplink data in the K+M+N+L TTIs.
  • N is less than the preset value.
  • the terminal device preempts the unlicensed band resource through a competition mechanism.
  • the demodulation reference signal is sent to the access network device.
  • the access network device determines, according to the demodulation reference signal, that the terminal device preempts the unlicensed band resource in the K+M+N+L TTIs.
  • the terminal device sends the second uplink data to the access network device at the K+M+N+L TTIs.
  • the embodiment of the present invention does not limit the sequential execution sequence of the S507-S509.
  • S507 and S509 may be performed simultaneously, and S508 may be executed after S507.
  • S507 may be executed before S509, and S508 may be executed after S509.
  • S509 may be performed after S508; as S508 may be performed after S507, S509 may be performed after S507, S508 and S509 may be simultaneously executed, etc., specifically not according to the embodiment of the present invention limits.
  • the access network device sends the first scheduling information to the terminal device in the Kth TTI, and the access network device does not receive the solution sent by the terminal device in the K+M TTIs.
  • the reference signal is adjusted, it is determined that the terminal device does not preempt the unlicensed band resource in the K+M TTIs, and the access network device sends the second scheduling information to the terminal device in the K+M+N TTIs, where the terminal device is in the After the K+M+N+L TTIs preempt the unlicensed band resources, the second uplink data is sent to the access network device. Since N is less than the preset value, the transmission delay of the uplink data can be reduced, and the unlicensed band resources are improved. Use efficiency.
  • FIG. 6 is a schematic flowchart of an uplink data transmission method according to another embodiment of the present invention.
  • the uplink data transmission method in the embodiment of the present invention may include at least the following steps:
  • the access network device sends the first scheduling information to the terminal device in the Kth TTI, where the first scheduling information is used to instruct the terminal device to send the first uplink data in the K+M TTIs, where M is greater than or equal to a preset value.
  • the terminal device preempts the unlicensed band resource through a competition mechanism.
  • the access network device determines, according to the first indication information, that the terminal device does not preempt the unlicensed band resource in the K+M TTIs.
  • the access network device sends the second scheduling information to the terminal device at the K+M+N TTIs, where the second scheduling information is used to instruct the terminal device to send the second uplink data in the K+M+N+L TTIs.
  • N is less than the preset value.
  • the terminal device preempts the unlicensed band resource through a competition mechanism.
  • the demodulation reference signal is sent to the access network device.
  • the access network device determines, according to the demodulation reference signal, that the terminal device preempts the unlicensed band resource in the K+M+N+L TTIs.
  • the terminal device sends the second uplink data to the access network device at the K+M+N+L TTIs.
  • the embodiment of the present invention does not limit the sequential execution sequence of S607-S609.
  • S607 and S609 may be performed simultaneously, and S608 may be executed after S607; as S607 may be performed before S609, and S608 may be executed after S609.
  • S608 may be performed after S607
  • S609 may be performed after S608; as S608 may be performed after S607, S609 may be performed after S607, S608 and S609 may be performed simultaneously, etc., specifically not according to the embodiment of the present invention limits.
  • the access network device sends the first scheduling information to the terminal device in the Kth TTI, and the access network device receives the first transmission sent by the terminal device in the K+M TTIs.
  • the access network device sends the second scheduling information to the terminal device in the K+M+N TTIs, where the terminal device is in the Kth
  • the second uplink data is sent to the access network device. Since N is less than the preset value, the transmission delay of the uplink data can be reduced, and the license-free is improved. The efficiency of the use of band resources.
  • FIG. 7 is a schematic flowchart of an uplink data transmission method according to another embodiment of the present invention.
  • the uplink data transmission method in the embodiment of the present invention may include at least the following steps:
  • the access network device sends the first scheduling information to the terminal device in the Kth TTI, where the first scheduling information is used to instruct the terminal device to send the first uplink data in the K+M TTIs, where M is greater than or equal to a preset value.
  • the terminal device preempts the unlicensed band resource through a competition mechanism.
  • the access network device sends the second scheduling information to the terminal device in the K+M+N TTIs, where the second scheduling information is used to instruct the terminal device to send the second uplink data in the K+M+N+L TTIs.
  • N is less than the preset value.
  • S706 The terminal device preempts the unlicensed band resource through a competition mechanism.
  • the terminal device sends the second uplink data to the access network device at the K+M+N+L TTIs.
  • the embodiment of the present invention does not limit the sequential execution sequence of S707-S709.
  • S707 and S709 may be performed simultaneously, and S708 may be performed after S707; for example, S707 may be performed before S709, and S708 may be executed after S709.
  • S708 may be performed after S707
  • S709 may be performed after S708; as S708 may be performed after S707, S709 may be performed after S707, S708 and S709 may be performed simultaneously, etc., specifically not according to embodiments of the present invention limits.
  • the access network device sends the first scheduling information to the terminal device in the Kth TTI, and the access network device does not receive the solution sent by the terminal device in the K+M TTIs.
  • the reference signal is adjusted, it is determined that the terminal device does not preempt the unlicensed band resource in the K+M TTIs, and the access network device sends the second scheduling information to the terminal device in the K+M+N TTIs, where the terminal device is in the After the K+M+N+L TTIs preempt the unlicensed band resources, the second uplink data is sent to the access network device. Since N is less than the preset value, the transmission delay of the uplink data can be reduced, and the unlicensed band resources are improved. Use efficiency.
  • FIG. 8 is a schematic flowchart of an uplink data transmission method according to another embodiment of the present invention.
  • the uplink data transmission method in the embodiment of the present invention may include at least the following steps:
  • the access network device sends the first scheduling information to the terminal device in the Kth TTI, where the first scheduling information is used to instruct the terminal device to send the first uplink data in the K+M TTIs, where M is greater than or equal to a preset value.
  • the terminal device preempts the unlicensed band resource through a competition mechanism.
  • the access network device determines, according to the first indication information, that the terminal device does not preempt the unlicensed band resource in the K+M TTIs.
  • the access network device sends the second scheduling information to the terminal device at the K+M+N TTIs, where the second scheduling information is used to instruct the terminal device to send the second uplink data in the K+M+N+L TTIs.
  • N is less than the preset value.
  • the terminal device preempts the unlicensed band resource through a competition mechanism.
  • the access network device determines, according to the second indication information, that the terminal device preempts the unlicensed band resource in the K+M+N+L TTIs.
  • the terminal device sends the second uplink data to the access network device at the K+M+N+L TTIs.
  • the embodiment of the present invention does not limit the sequential execution sequence of S807-S809, for example, S807 and S809 may be performed simultaneously, S808 may be performed after S807; as S807 may be performed before S809, S808 may be performed after S809; as S808 may be performed after S807, S809 may be executed after S808; Executed after S807, S809 may be performed after S807, S808 and S809 may be performed simultaneously, and the like, and are not specifically limited by the embodiment of the present invention.
  • the access network device sends the first scheduling information to the terminal device at the Kth TTI, and the access network device determines, according to the received first indication information, that the terminal device is at the K+ The M-TTI does not preempt the unlicensed band resources, and the access network device sends the second scheduling information to the terminal device at the K+M+N TTIs, and the terminal device determines the K+M according to the received second indication information.
  • +N+L TTIs preempt the unlicensed band resources and send the second uplink data to the access network device. Since N is smaller than the preset value, the transmission delay of the uplink data can be reduced, and the use efficiency of the unlicensed band resources can be improved. .
  • the access network device may determine whether the terminal device preempts the unlicensed band resource by using the first indication information, or may be carried by the second indication information.
  • the content determines whether the terminal device preempts the unlicensed band resource.
  • the terminal device preempts the unlicensed band resource, which may be that the terminal device can use the unlicensed band resource for data transmission.
  • the terminal device preempts the unlicensed band resource in the K+M TTIs, which may mean that the terminal device can use the unlicensed band resources for data transmission in K+M TTIs.
  • the frequency band resource used by the terminal device to transmit the first uplink data may be the same as the frequency band resource used for transmitting the second uplink data, or may be different, for example, the terminal device transmits the first uplink data.
  • the frequency band resource used is F1
  • the frequency band resource used for transmitting the second uplink data may be F1 or F2, which is not specifically limited herein.
  • the frequency band resource used by the terminal device to transmit the first indication information may be the same as the frequency band resource used by the terminal device to transmit the first uplink data, or may be different, and the second uplink data is used by the terminal device.
  • the frequency band resources may be the same or different; the second indication information has the same description, and will not be described here.
  • the description of the used frequency band resources is the same as above, and will not be described here.
  • FIG. 9 is a schematic structural diagram of an access network device according to an embodiment of the present invention.
  • an access network device in an embodiment of the present invention may include at least a scheduling information sending module 901.
  • the scheduling information sending module 901 is configured to send the first scheduling information to the terminal device in the Kth TTI, where the first scheduling information is used to instruct the terminal device to send the first uplink data in the K+M TTIs, where K and M are positive. Integer, M is greater than or equal to the preset value.
  • the detecting module 902 is configured to detect whether the terminal device preempts the unlicensed band resource in the K+M TTIs.
  • the scheduling information sending module 901 is further configured to: when the detection result is no, send the second scheduling information to the terminal device at the K+M+N TTIs, where the second scheduling information is used to indicate that the terminal device is at the K+M+N +L TTIs transmit the second uplink data, and the HARQ process identifier of the second uplink data is the same as the HARQ process identifier of the first uplink data, where N and L are positive integers, and N is less than a preset value.
  • the data receiving module 903 is configured to receive second uplink data that is sent by the terminal device at the K+M+N+L TTIs.
  • the detecting module 902 is specifically configured to: detect whether the demodulation reference signal sent by the terminal device is received in the K+M TTIs; when the demodulation reference signal is not received in the K+M TTIs, Determining that the terminal device does not preempt the unlicensed band resource in the K+M TTIs; when receiving the demodulation reference signal in the K+M TTIs, determining that the terminal device preempts in the K+M TTIs Licensed band resources.
  • the detecting module 902 is specifically configured to: detect whether the terminal device sends the signal in any one or more TTIs between the K+M and the K+M+N-1 TTIs of the first frequency band.
  • the first indication information is that the first frequency band is different from the frequency band in which the first uplink data is located, and the first indication information is used to indicate that the terminal device does not preempt the unlicensed frequency band resource in the K+M TTIs;
  • the first indication information is received in any one or more TTIs between K+M and K+M+N-1 TTIs, it is determined that the terminal device does not preempt the unlicensed band resources in the K+M TTIs. .
  • the detecting module 902 is further configured to: when the first indication information is not received in any one or more TTIs between the K+M and the K+M+N-1 TTIs of the first frequency band And determining that the terminal device preempts the unlicensed band resource in the K+M TTIs.
  • the detecting module 902 is specifically configured to: detect whether the first frequency band is K+M-the first Receiving, in any one or more TTIs between K+M+N-1 TTIs, the second indication information sent by the terminal device, when in the first frequency band, K+M ⁇ K+M+N-1
  • the second indication information is received in any one or more TTIs between the TTIs, it is determined that the terminal device preempts the unlicensed band resources in the K+M TTIs, and the second indication information is used to indicate that the terminal device is in the Kth +M TTIs preempt the unlicensed band resources.
  • the detecting module 902 is specifically configured to: detect whether the receiving terminal device sends any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band.
  • First indication information the second frequency band is the same as the frequency band in which the first uplink data is located; when any one or more of the K+M+1 to K+M+N-1 TTIs in the second frequency band.
  • the first indication information is received in the TTI, it is determined that the terminal device does not preempt the unlicensed band resource within the K+M TTIs.
  • the detecting module 902 is further configured to: when the first indication is not received in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band In the case of information, it is determined that the terminal device preempts the unlicensed band resource within the K+M TTIs.
  • the detecting module 902 is specifically configured to: detect whether the receiving terminal device sends any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band.
  • the second indication information when the second indication information is received in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band, determining the terminal device Unlicensed band resources are preempted within the K+M TTIs.
  • the scheduling information sending module 901 sends the first scheduling information to the terminal device in the Kth TTI, where the first scheduling information is used to instruct the terminal device to send the first in the K+M TTIs.
  • the uplink data, M is greater than or equal to the preset value.
  • the second scheduling information is used to indicate that the terminal device sends the second uplink data in the K+M+N+L TTIs, and the data receiving module 903 receives the terminal device in the K+M+N+
  • the second uplink data sent by the L TTIs can reduce the transmission delay of the uplink data and improve the use efficiency of the unlicensed band resources because the N is smaller than the preset value.
  • FIG. 10 is a schematic structural diagram of another access network device according to an embodiment of the present invention.
  • the access network device may include: a processor 1001, a memory 1002, and a transmitter 1003.
  • the memory 1002 may be a high-speed RAM memory, or may be a non-volatile memory, such as at least one disk memory.
  • the memory 1002 may be at least one remote from the processor 1001. Storage device. among them:
  • the transmitter 1003 is configured to send the first scheduling information to the terminal device in the Kth TTI, where the first scheduling information is used to instruct the terminal device to send the first uplink data in the K+M TTIs, where K and M are positive integers. M is greater than or equal to the preset value.
  • the processor 1001 calls the program code stored in the memory to perform the following operations:
  • the second uplink data is sent by the TTI, and the HARQ process identifier of the second uplink data is the same as the HARQ process identifier of the first uplink data, where N and L are positive integers, and N is less than a preset value.
  • the transmitter 1003 is further configured to send the second scheduling information to the terminal device at the K+M+N TTIs.
  • the receiver 1004 is configured to receive second uplink data that is sent by the terminal device at the K+M+N+L TTIs.
  • the processor 1001 detects whether the terminal device preempts the unlicensed band resource in the K+M TTIs, and specifically: detecting whether the demodulation reference signal sent by the terminal device is received in the K+M TTIs.
  • the demodulation reference signal is not received in the K+M TTIs, it is determined that the terminal device does not preempt the unlicensed band resources in the K+M TTIs; when the solution is received in the K+M TTIs
  • the reference signal is adjusted, it is determined that the terminal device preempts the unlicensed band resource within the K+M TTIs.
  • the processor 1001 detects whether the terminal device preempts the unlicensed band resource in the K+M TTIs, and specifically: detecting whether the K+M to K+M+N-1 in the first frequency band are Receiving the first indication information sent by the terminal device in any one or more TTIs between the TTIs, when any one of the K+M to the K+M+N-1 TTIs in the first frequency band
  • the first indication information is received in multiple TTIs, it is determined that the terminal device does not preempt the unlicensed band resources in the K+M TTIs; when in the first frequency band, K+M to K+M+N-
  • the terminal equipment preempts the unlicensed band resources in the K+M TTIs.
  • the first frequency band is different from the frequency band in which the first uplink data is located, and the first indication information is used to indicate that the terminal device does not preempt the unlicensed frequency band resource in the K+M TTIs.
  • the processor 1001 detects whether the terminal device preempts the unlicensed band resource in the K+M TTIs, and specifically: detecting whether the K+M to K+M+N-1 in the first frequency band are Receiving the first indication information sent by the terminal device in any one or more TTIs between the TTIs, when any one of the K+M to the K+M+N-1 TTIs in the first frequency band
  • the first indication information is received in the multiple TTIs, it is determined that the terminal device does not preempt the unlicensed band resources in the K+M TTIs; whether the K+M to K+M+N in the first frequency band are detected.
  • the second indication information sent by the terminal device, between the K+M and the K+M+N-1 TTIs of the first frequency band.
  • the second indication information is received in any one or more TTIs, it is determined that the terminal device preempts the unlicensed band resources in the K+M TTIs.
  • the first indication information is used to indicate that the terminal device does not preempt the unlicensed band resource in the K+M TTIs
  • the second indication information is used to indicate that the terminal device preempts the unlicensed band resource in the K+M TTIs. .
  • the processor 1001 detects whether the terminal device preempts the unlicensed band resource in the K+M TTIs, and specifically: detecting whether the K+M+1 to K+M+N in the second frequency band Receiving, in any one or more TTIs between the TTIs, the first indication information sent by the terminal device, when in the second frequency band, from K+M+1 to K+M+N-1 TTIs When the first indication information is received in any one or more TTIs, it is determined that the terminal device does not preempt the unlicensed band resources in the K+M TTIs; when in the second frequency band, K+M+1 ⁇ When the first indication information is not received in any one or more TTIs between K+M+N-1 TTIs, it is determined that the terminal equipment preempts the unlicensed band resources in the K+M TTIs.
  • the second frequency band is the same as the frequency band in which the first uplink data is located, and the first indication information is used to indicate that the terminal device does not preempt the unlicensed frequency band resource in the
  • the processor 1001 detects whether the terminal device preempts the unlicensed band resource in the K+M TTIs, and specifically: detecting whether the K+M+1 to K+M+N in the second frequency band Receiving, in any one or more TTIs between the TTIs, the first indication information sent by the terminal device, when in the second frequency band, from K+M+1 to K+M+N-1 TTIs When the first indication information is received in any one or more TTIs, it is determined that the terminal device does not preempt the unlicensed band resources in the K+M TTIs; whether the K+M+1 in the second frequency band is detected Receiving, in any one or more TTIs between the K+M+N-1 TTIs, the second indication information sent by the terminal device, when in the second frequency band, K+M+1 ⁇ K+M+ When the second indication information is received in any one or more TTIs between the N-1 TTIs, it is determined that the terminal device preempts the unlicensed band resources in the K+M TTIs.
  • the access network device introduced in the embodiment of the present invention may be used to implement some or all of the processes in the method embodiments introduced in conjunction with FIG. 4 to FIG.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device in the embodiment of the present invention may include at least a scheduling information receiving module 1101 and a data sending module 1102, where :
  • the scheduling information receiving module 1101 is configured to receive the first scheduling information sent by the access network device in the Kth TTI, where the first scheduling information is used to instruct the terminal device to send the first uplink data in the K+M TTIs, K, M All are positive integers, and M is greater than or equal to the preset value.
  • the scheduling information receiving module 1101 is further configured to receive second scheduling information sent by the access network device at the K+M+N TTIs, where the second scheduling information is used to indicate that the terminal device is at the K+M+N+L TTIs.
  • the second uplink data is sent, and the HARQ process identifier of the second uplink data is the same as the HARQ process identifier of the first uplink data, where N and L are positive integers, and N is less than a preset value.
  • the data sending module 1102 is configured to send second uplink data in the K+M+N+L TTIs according to the second scheduling information.
  • the terminal device in the embodiment of the present invention may further include:
  • the determining module 1103 is configured to: before the K+M+N TTIs receive the second scheduling information sent by the access network device, determine, by the scheduling information receiving module 1101, that the terminal device does not preempt the unlicensed frequency band in the K+M TTIs. Resources.
  • the determining module 1103 is specifically configured to not send the demodulation reference signal in the K+M TTIs.
  • the determining module 1103 is configured to send, to the access network device, any one or more TTIs between the K+M and the K+M+N-1 TTIs of the first frequency band.
  • the determining module 1103 is configured to send, to the access network device, any one or more TTIs between the K+M and the K+M+N-1 TTIs of the first frequency band.
  • the second indication information is that the first frequency band is different from the frequency band in which the first uplink data is located, and the second indication information is used to indicate that the terminal device preempts the unlicensed frequency band resource in the K+M TTIs.
  • the determining module 1103 is specifically configured to: in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band, to the access network device
  • the first indication information is sent, and the second frequency band is the same as the frequency band in which the first uplink data is located.
  • the determining module 1103 is specifically configured to: in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band, to the access network device Sending the second indication information, where the second indication information is used to indicate that the terminal device preempts the unlicensed band resource in the K+M TTIs.
  • the scheduling information receiving module 1101 receives the first scheduling information sent by the access network device at the Kth TTI, where the first scheduling information is used to indicate that the terminal device sends the K+M TTIs.
  • An uplink data, and receiving the second scheduling information sent by the access network device at the K+M+N TTIs, where the second scheduling information is used to instruct the terminal device to send the second uplink in the K+M+N+L TTIs The data, the M is greater than or equal to the preset value, and the N is smaller than the preset value.
  • the data sending module 1102 sends the second uplink data in the K+M+N+L TTIs according to the second scheduling information, because N is less than the preset value. It can reduce the transmission delay of uplink data and improve the efficiency of the use of unlicensed band resources.
  • FIG. 12 is a schematic structural diagram of another terminal device according to an embodiment of the present invention.
  • the terminal device may include: a processor 1201, a memory 1202, a transmitter 1203, and a receiver 1204.
  • the memory 1202 may be a high-speed RAM memory or a non-volatile memory, such as At least one disk storage, optionally, the memory 1202 may also be at least one storage device located remotely from the processor 1201. among them:
  • the receiver 1204 is configured to receive the first scheduling information sent by the access network device in the Kth TTI, where the first scheduling information is used to instruct the transmitter to send the first uplink data in the K+M TTIs, where K and M are A positive integer, M is greater than or equal to the preset value.
  • the receiver 1204 is further configured to receive second scheduling information sent by the access network device at the K+M+N TTIs, where the second scheduling information is used to indicate that the transmitter sends the first K+M+N+L TTIs.
  • the uplink data of the second uplink data is the same as the HARQ process identifier of the first uplink data, where N and L are positive integers, and N is less than a preset value.
  • the transmitter 1203 is configured to send the second uplink data at the K+M+N+L TTIs according to the second scheduling information.
  • the receiver 1204 receives the second tone sent by the access network device at the K+M+N TTIs.
  • the processor 1201 can perform the following operations:
  • the terminal device does not preempt the unlicensed band resources within the K+M TTIs.
  • the transmitter 1203 does not transmit the demodulation reference signal within the K+M TTIs.
  • the transmitter 1203 sends the first indication information to the access network device in any one or more TTIs between the K+M and the K+M+N-1 TTIs of the first frequency band.
  • the first indicator is used to indicate that the terminal device does not preempt the unlicensed band resources in the K+M TTIs.
  • the transmitter 1203 sends the second indication information to the access network device in any one or more TTIs between the K+M and the K+M+N-1 TTIs of the first frequency band.
  • the first indicator is different from the frequency band in which the first uplink data is located, and the second indication information is used to indicate that the terminal device preempts the unlicensed band resource in the K+M TTIs.
  • the transmitter 1203 sends the first indication information to the access network device in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band.
  • the second frequency band is the same as the frequency band in which the first uplink data is located.
  • the transmitter 1203 sends the second indication information to the access network device in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band.
  • the second frequency band is the same as the frequency band in which the first uplink data is located, and the second indication information is used to indicate that the terminal device preempts the unlicensed frequency band resource in the K+M TTIs.
  • terminal device introduced in the embodiment of the present invention may be used to implement some or all of the processes in the method embodiments introduced in conjunction with FIG. 4 to FIG.
  • FIG. 13 is a schematic structural diagram of an uplink data transmission system according to an embodiment of the present invention.
  • the uplink data transmission system may include a terminal device 1301 and an access network device 1302, where:
  • the access network device 1302 is configured to send the first scheduling information to the terminal device 1301 in the Kth TTI, where the first scheduling information is used to instruct the terminal device 1301 to send the first uplink data in the K+M TTIs, where K and M are both Is a positive integer, M is greater than or equal to the preset value.
  • the access network device 1302 is further configured to detect whether the terminal device 1301 preempts the unlicensed band resource in the K+M TTIs.
  • the access network device 1301 is further configured to: when the detection result is no, send the second scheduling information to the terminal device 1302 at the K+M+N TTIs, where the second scheduling information is used to indicate that the terminal device 1301 is at the K+M +N+L TTIs transmit the second uplink data, and the HARQ process identifier of the second uplink data is the same as the HARQ process identifier of the first uplink data, where N and L are positive integers, and N is less than a preset value.
  • the terminal device 1301 is configured to send the second uplink data to the access network device 1302 at the K+M+N+L TTIs.
  • the access network device 1302 detects whether the terminal device 1301 preempts the unlicensed band resources in the K+M TTIs, including:
  • the access network device 1302 detects whether the demodulation reference signal transmitted by the terminal device 1301 is received within the K+M TTIs, and when the demodulation reference signal is not received within the K+M TTIs, the access network device 1302 Determining that the terminal device 1301 does not preempt the unlicensed band resource within the K+M TTIs; when receiving the demodulation reference signal within the K+M TTIs, the access network device 1302 determines that the terminal device 1301 is at the K+ Unlicensed band resources are preempted within M TTIs.
  • the access network device 1302 detects whether the terminal device 1301 preempts the unlicensed band resources in the K+M TTIs, including:
  • the access network device 1302 detects whether the first indication information sent by the terminal device 1301 is received in any one or more TTIs between the K+M and the K+M+N-1 TTIs of the first frequency band.
  • the first frequency band is different from the frequency band in which the first uplink data is located, and the first indication information is used to indicate that the terminal device 1301 does not preempt the unlicensed frequency band resource in the K+M TTIs, when the K+M in the first frequency band is
  • the access network device 1302 determines that the terminal device 1301 does not preempt the license-free within the K+M TTIs. Band resources.
  • the access network device 1302 detects whether the first one sent by the terminal device is received in any one or more TTIs between the K+M and the K+M+N-1 TTIs of the first frequency band. After the instructions, it also includes:
  • the access network device 1302 determines that the terminal device is in the first Unlicensed band resources are preempted within K+M TTIs.
  • the access network device 1302 detects whether the terminal device 1301 is robbed in the K+M TTIs. Represents unlicensed band resources, including:
  • the access network device 1302 detects whether the second indication information sent by the terminal device 1301 is received in any one or more TTIs between the K+M and the K+M+N-1 TTIs of the first frequency band. When receiving the second indication information in any one or more TTIs between the K+M and the K+M+N-1 TTIs of the first frequency band, the access network device 1302 determines that the terminal device is at the Kth +M TTIs preempt the unlicensed band resources, and the second indication information is used to indicate that the terminal device preempts the unlicensed band resources in the K+M TTIs.
  • the access network device 1302 detects whether the terminal device preempts the unlicensed band resources in the K+M TTIs, including:
  • the access network device 1302 detects whether the first indication sent by the terminal device 1301 is received in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band.
  • Information, the second frequency band is the same as the frequency band in which the first uplink data is located, and is received in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band.
  • the access network device 1302 determines that the terminal device 1301 does not preempt the unlicensed band resources within the K+M TTIs.
  • the access network device 1302 detects whether it is sent by the terminal device 1301 in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band. After the first indication information, when the first indication information is not received in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band, The network access device 1302 determines that the terminal device 1301 preempts the unlicensed band resources within the K+M TTIs.
  • the access network device 1302 detects whether the terminal device preempts the unlicensed band resources in the K+M TTIs, including:
  • the access network device 1302 detects whether the second indication sent by the terminal device 1301 is received in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band. Information, when receiving the second indication information in any one or more TTIs between the K+M+1 and the K+M+N-1 TTIs of the second frequency band, the access network device 1302 determines the terminal. The device 1301 preempts the unlicensed band resources within the K+M TTIs.
  • terminal device 1301 and the access network device 1302 introduced in the embodiments of the present invention may be used to implement some or all of the processes in the method embodiments introduced in conjunction with FIG. 4 to FIG.
  • the modules in the device of the embodiment of the present invention may be combined, divided, and deleted according to actual needs.
  • the module in the embodiment of the present invention may be implemented by a general-purpose integrated circuit, such as a CPU (Central Processing Unit) or an ASIC (Application Specific Integrated Circuit).
  • a general-purpose integrated circuit such as a CPU (Central Processing Unit) or an ASIC (Application Specific Integrated Circuit).
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种上行数据传输方法及设备、系统,该方法包括接入网设备在第K个TTI向终端设备发送第一调度信息,第一调度信息用于指示终端设备在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值;当终端设备在第K+M个TTI内未抢占到免许可频段资源时,接入网设备在第K+M+N个TTI向终端设备发送第二调度信息,第二调度信息用于指示所述终端设备在第K+M+N+L个TTI发送第二上行数据,第二上行数据的HARQ进程标识与第一上行数据的HARQ进程标识相同,N小于预设数值;接入网设备接收终端设备在第K+M+N+L个TTI发送的第二上行数据。实施本发明实施例可减少上行数据的传输时延,提升免许可频段资源的使用效率。

Description

一种上行数据传输方法及设备、系统 技术领域
本发明实施例涉及无线通信技术领域,具体涉及一种上行数据传输方法及设备、系统。
背景技术
为了解决日益增长的传输数据量与有限的许可频段(又称“授权频段”)资源之间的矛盾,长期演进(LTE,Long Term Evolution)系统可以在免许可频段(又称“非授权频段”)资源上实现数据的传输。对于使用免许可频段资源进行数据传输的LTE系统而言,其通信设备需遵循先听后说(LBT,Listen Before Talk)规则,LBT规则要求通信设备在使用免许可频段资源进行数据传输之前先侦听对应的信道是否空闲,若是,则在对应的信道上进行数据传输且在对应信道上进行数据传输的时间是有限制的,若否,则无法在对应的信道上进行数据传输,这使得LTE系统中通信设备在免许可频段资源上的数据传输均是机会性的。且在免许可频段资源上进行机会性数据传输的情况下,为了保证上行数据传输的有效性以及可靠性,确定上行混合自动重传请求(HARQ,Hybrid Automatic Repeat Request)的定时关系显得尤为重要。
当前,无论是使用频分双工(FDD,Frequency Division Duplex)的LTE系统,还是使用时分双工(TDD,Time Division Duplex)的LTE系统,终端设备都是通过承载上行授权(UL Grant)信息的子帧或者物理混合自动重传请求指示信道(PHICH,Physical Hybrid Automatic Repeat Request Indicator Channel)所在的子帧以及该子帧与被调度的上行数据传输所在子帧之间的时序关系,确定该被调度的上行数据传输所在的子帧,且子帧可以用子帧号表示。以使用FDD的LTE系统为例,在正常(Normal)的HARQ情况下,如果在子帧n检测到接入网设备为终端设备分配的上行数据传输的控制指令,或者在子帧n检测到终端设备的PHICH传输,则终端设备可以在子帧n+4发送上行数据,其中,确定出HARQ的时间信息可以如图1所示,图1是现有技术公开的一种确定出的HARQ的时间信息的关系示意图。即,对于上行数据传输,从接入网设备发送 调度信息调度终端设备的上行数据到终端设备在被调度的时频资源上发送上行数据之间的时延不小于4ms;从终端设备发送上行数据到接收到接入网设备返回的确认应答(ACK,Acknowledge)或否认应答(NACK,Non-Acknowledge)之间的时延不小于4ms;从终端设备发送上行数据到接收到针对该上行数据进行的调度信息(如上行授权等)之间的时延不小于4ms。
但是,由于免许可频段资源上机会性数据传输的特点,未抢占到数据传输机会会导致终端设备上被调度的上行数据发送失败,接入网设备也需要经历4ms再给终端设备进行上行数据传输的上行授权,且终端设备还需要通过竞争机制确定是否能够抢占到免许可频段资源,这增加了终端设备上未发送成功的上行数据的传输时延,降低了免许可频段资源的使用效率。
发明内容
本发明实施例公开了一种上行数据传输方法及设备、系统,可减少上行数据的传输时延,提升免许可频段资源的使用效率。
本发明实施例第一方面公开了一种上行数据传输方法,该方法可以包括以下操作:
接入网设备在第K个传输时间间隔(TTI,Transmission Time Interval)向终端设备发送第一调度信息之后,检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,当检测结果为否时,接入网设备在第K+M+N个TTI向终端设备发送第二调度信息,接入网设备接收终端设备在第K+M+N+L个TTI发送的第二上行数据;当检测结果为是时,接入网设备在第K+M个TTI向终端设备发送第一上行数据。
其中,第一调度信息用于指示终端设备在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值。第二调度信息用于指示终端设备在第K+M+N+L个TTI发送第二上行数据,N、L均为正整数,N小于预设数值。第一调度信息或者第二调度信息可以作为下行数据的一种,是由接入网设备发送给终端设备的数据。预设数值用于指示从接入网设备向终端设备发送第一调度信息开始至终端设备发送第一上行数据所经过的传输时间间隔的个数,示例性的,预设数值可以为4或者7等。
其中,第二上行数据可以是针对第一上行数据的重传数据。第二上行数据的HARQ进程标识与第一上行数据的HARQ进程标识相同。第一上行数据或者第二上行数据可以作为上行数据中的一种,是由终端设备发送给接入网设备的数据。
其中,TTI可以包括:一个子帧、一个时隙或者至少一个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号。
本发明实施例中,接入网设备在第K个TTI向终端设备发送第一调度信息,终端设备接收到第一调度信息之后可以通过竞争机制抢占免许可频段资源,当接入网设备检测到终端设备在第K+M个TTI内没有抢占到免许可频段资源时,接入网设备需要再次给终端设备进行上行数据传输的上行授权,即接入网设备在第K+M+N个TTI向终端设备发送第二调度信息,终端设备接收到第二调度信息之后可以通过竞争机制抢占免许可频段资源,当终端设备在第K+M+N+L个TTI内抢占到免许可频段资源时,终端设备可以向接入网设备发送第二上行数据。其中N小于预设数值,则从终端设备未抢占到免许可频段资源到接收到接入网设备发送的第二调度信息之间的时延小于预设数值,另外,本发明实施例通过接入网设备发送的第二调度信息可动态配置终端设备从接收到第二调度信息到向接入网设备发送第二上行数据之间的时延,进而减少上行数据的传输时延,提升免许可频段资源的使用效率。例如,在本发明实施例中,L也可以小于预设数值。这是因为,如果第二上行数据是针对第一上行数据的重传数据,那么由于终端设备在准备传输第一上行数据的时候,已经完成了对第一上行数据的处理,因此当第二上行数据是针对第一上行数据的重传数据时,相当于终端设备已经提前准备好了第二上行数据,因此接入网设备向终端设备发送第二调度信息的时刻与终端设备发送第二上行数据的时刻之间的时间延迟,即L个TTI可以小于预设阈值,例如小于4。
可选的,接入网设备检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,具体可以为:接入网设备检测是否在第K+M个TTI内接收到终端设备发送的解调参考信号,当在第K+M个TTI内未接收到解调参考信号时,接入网设备确定终端设备在第K+M个TTI内未抢占到免许可频段资源;当在第K+M个TTI内接收到解调参考信号时,接入网设备确定终端设备在第K+M 个TTI内抢占到免许可频段资源。
具体实现中,终端设备在第K+M个TTI发送第一上行数据之前,可以通过空闲信道评测(CCA,Clear Channel Assessment),确定在第K+M个TTI内是否可以竞争到免许可频段资源的使用机会,或者说,确定在第K+M个TTI内是否可以利用免许可频段资源传输第一上行数据。如果终端设备没有在第K+M个TTI内竞争到免许可频段资源,则终端设备无法在第K+M个TTI内向接入网设备发送第一上行数据,如果第一上行数据是承载在PUSCH上的数据,则终端设备也无法在第K+M个TTI内向接入网设备发送上行解调参考信号(DMRS,Demodulation Reference Signal),相应地,接入网设备如果在第K+M个TTI内没有检测到DMRS,则接入网设备可以确定终端设备在第K+M个TTI内没有抢占到免许可频段资源。
可选的,接入网设备检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,具体可以为:接入网设备检测是否在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第一指示信息,当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第一指示信息时,接入网设备确定终端设备在第K+M个TTI内未抢占到免许可频段资源;当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内未接收到第一指示信息时,接入网设备确定终端设备在第K+M个TTI内抢占到免许可频段资源。
其中,第一频段与第一上行数据所在的频段不同,第一指示信息用于指示终端设备在第K+M个TTI内未抢占到免许可频段资源。需要说明的是,第一上行数据所在的频段,是指第一上行数据被调度的发送频段。
可选的,接入网设备检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,具体可以为:接入网设备检测是否在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第一指示信息,当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第一指示信息时,接入网设备确定终端设备在第K+M个TTI内未抢占到免许可频段资源;接入网设备检测是否在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第二 指示信息,当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第二指示信息时,接入网设备确定终端设备在第K+M个TTI内抢占到免许可频段资源。
其中,第一指示信息用于指示终端设备在第K+M个TTI内未抢占到免许可频段资源,第二指示信息用于指示终端设备在第K+M个TTI内抢占到免许可频段资源。
可选的,接入网设备检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,具体可以为:接入网设备检测是否在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第一指示信息,当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第一指示信息时,接入网设备确定终端设备在第K+M个TTI内未抢占到免许可频段资源;当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内未接收到第一指示信息时,接入网设备确定终端设备在第K+M个TTI内抢占到免许可频段资源。
其中,第二频段与第一上行数据所在的频段相同,第一指示信息用于指示终端设备在第K+M个TTI内未抢占到免许可频段资源。
具体实现中,终端设备在第K+M个TTI发送第一上行数据之前,可以通过CCA确定在第K+M个TTI内是否可以竞争到免许可频段资源的使用机会,或者说,确定在第K+M个TTI内是否可以利用免许可频段资源传输第一上行数据。如果终端设备没有在第K+M个TTI内竞争到免许可频段资源,则终端设备可以在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第一指示信息。
可选的,接入网设备检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,具体可以为:接入网设备检测是否在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第一指示信息,当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第一指示信息时,接入网设备确定终端设备在第K+M个TTI内未抢占到免许可频段资源;接入网设备检测是否在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第 二指示信息,当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第二指示信息时,接入网设备确定终端设备在第K+M个TTI内抢占到免许可频段资源。
本发明实施例第二方面公开了一种上行数据传输方法,该方法可以包括以下操作:
终端设备在第K个TTI接收接入网设备发送的第一调度信息,在第K+M+N个TTI接收接入网设备发送的第二调度信息,并根据第二调度信息,在第K+M+N+L个TTI发送第二上行数据。其中,第一调度信息用于指示终端设备在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值。第二调度信息用于指示终端设备在第K+M+N+L个TTI发送第二上行数据,第二上行数据的HARQ进程标识与所述第一上行数据的HARQ进程标识相同,N、L均为正整数,N小于预设数值。
可选的,终端设备在第K+M+N个TTI接收接入网设备发送的第二调度信息之前,可以确定终端设备在第K+M个TTI内未抢占到免许可频段资源。
可选的,终端设备在第K+M个TTI内不发送解调参考信号。
可选的,终端设备在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第一指示信息,第一频段与第一上行数据所在的频段不同,第一指示信息用于指示终端设备在第K+M个TTI内未抢占到免许可频段资源。
可选的,终端设备在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第二指示信息,第一频段与第一上行数据所在的频段不同,第二指示信息用于指示终端设备在第K+M个TTI内抢占到免许可频段资源。
可选的,终端设备在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第一指示信息,第二频段与第一上行数据所在的频段相同。
可选的,终端设备在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第二指示信息,第二频段与第一上行数据所在的频段相同,第二指示信息用于指示终端设备在第K+M个TTI内抢 占到免许可频段资源。
本发明实施例第三方面公开了一种接入网设备,该接入网设备包括用于执行本发明实施例第一方面公开的上行数据传输方法的模块。
本发明实施例第四方面公开了一种接入网设备,该接入网设备可以包括处理器、存储器、发射器以及接收器,其中:
发射器,用于在第K个TTI向终端设备发送第一调度信息,第一调度信息用于指示终端设备在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值。
处理器调用存储器中存储的程序代码,用于执行以下操作:
检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,当检测结果为否时,生成第二调度信息,第二调度信息用于指示终端设备在第K+M+N+L个TTI发送第二上行数据,第二上行数据的HARQ进程标识与第一上行数据的HARQ进程标识相同,N、L均为正整数,N小于预设数值。
发射器,还用于在第K+M+N个TTI向终端设备发送第二调度信息。
接收器,用于接收终端设备在第K+M+N+L个TTI发送的第二上行数据。
可选的,处理器检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,具体可以为:检测是否在第K+M个TTI内接收到终端设备发送的解调参考信号,当在第K+M个TTI内未接收到解调参考信号时,确定终端设备在第K+M个TTI内未抢占到免许可频段资源;当在第K+M个TTI内接收到解调参考信号时,确定终端设备在第K+M个TTI内抢占到免许可频段资源。
可选的,处理器检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,具体可以为:检测是否在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第一指示信息,当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第一指示信息时,确定终端设备在第K+M个TTI内未抢占到免许可频段资源;当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内未接收到第一指示信息时,确定终端设备在第K+M个TTI内抢占到免许可频段资源。其中,第一频段与第一上行数据所在的频段不同,第一指示信息用于指示终端设备在第K+M个TTI内未抢占到免许可频段资源。
可选的,处理器检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,具体可以为:检测是否在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第一指示信息,当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第一指示信息时,确定终端设备在第K+M个TTI内未抢占到免许可频段资源;检测是否在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第二指示信息,当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第二指示信息时,确定终端设备在第K+M个TTI内抢占到免许可频段资源。其中,第一指示信息用于指示终端设备在第K+M个TTI内未抢占到免许可频段资源,第二指示信息用于指示终端设备在第K+M个TTI内抢占到免许可频段资源。
可选的,处理器检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,具体可以为:检测是否在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第一指示信息,当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第一指示信息时,确定终端设备在第K+M个TTI内未抢占到免许可频段资源;当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内未接收到第一指示信息时,确定终端设备在第K+M个TTI内抢占到免许可频段资源。其中,第二频段与第一上行数据所在的频段相同,第一指示信息用于指示终端设备在第K+M个TTI内未抢占到免许可频段资源。
可选的,处理器检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,具体可以为:检测是否在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第一指示信息,当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第一指示信息时,确定终端设备在第K+M个TTI内未抢占到免许可频段资源;检测是否在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第二指示信息,当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第二指示信息时,确定终端设备在第K+M个TTI内抢占到免许可频段资源。
本发明实施例第五方面公开了一种终端设备,该终端设备包括用于执行本发明实施例第二方面公开的上行数据传输方法的模块。
本发明实施例第六方面公开了一种终端设备,该终端设备可以包括处理器、存储器、发射器以及接收器,其中:
接收器,用于在第K个TTI接收接入网设备发送的第一调度信息,第一调度信息用于指示发射器在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值。
接收器,还用于在第K+M+N个TTI接收接入网设备发送的第二调度信息,第二调度信息用于指示发射器在第K+M+N+L个TTI发送第二上行数据,第二上行数据的HARQ进程标识与第一上行数据的HARQ进程标识相同,N、L均为正整数,N小于预设数值。
发射器根据第二调度信息,在第K+M+N+L个TTI发送第二上行数据。
可选的,接收器在第K+M+N个TTI接收接入网设备发送的第二调度信息之前,处理器可以执行以下操作:
确定终端设备在第K+M个TTI内未抢占到免许可频段资源。
可选的,发射器在第K+M个TTI内不发送解调参考信号。
可选的,发射器在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第一指示信息,第一频段与第一上行数据所在的频段不同,第一指示信息用于指示终端设备在第K+M个TTI内未抢占到免许可频段资源。
可选的,发射器在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第二指示信息,第一频段与第一上行数据所在的频段不同,第二指示信息用于指示终端设备在第K+M个TTI内抢占到免许可频段资源。
可选的,发射器在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第一指示信息,第二频段与第一上行数据所在的频段相同。
可选的,发射器在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第二指示信息,第二频段与第一上行数 据所在的频段相同,第二指示信息用于指示终端设备在第K+M个TTI内抢占到免许可频段资源。
本发明实施例第七方面公开了一种上行数据传输系统,该系统可以包括终端设备和接入网设备,其中:
接入网设备,用于在第K个TTI向终端设备发送第一调度信息,第一调度信息用于指示终端设备在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值。
接入网设备,还用于检测终端设备是否在第K+M个TTI内抢占到免许可频段资源。
接入网设备,还用于当检测结果为否时,在第K+M+N个TTI向终端设备发送第二调度信息,第二调度信息用于指示终端设备在第K+M+N+L个TTI发送第二上行数据,第二上行数据的HARQ进程标识与所述第一上行数据的HARQ进程标识相同,N、L均为正整数,N小于预设数值。
终端设备,用于在第K+M+N+L个TTI向接入网设备发送第二上行数据。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术公开的一种确定出的HARQ的时间信息的关系示意图;
图2是本发明实施例公开的一种应用架构的架构示意图;
图3a是本发明实施例公开的一种TTI的示意图;
图3b是本发明另一实施例公开的一种TTI的示意图;
图3c是本发明另一实施例公开的一种TTI的示意图;
图4是本发明实施例公开的一种上行数据传输方法的流程示意图;
图5是本发明另一实施例公开的一种上行数据传输方法的流程示意图;
图6是本发明另一实施例公开的一种上行数据传输方法的流程示意图;
图7是本发明另一实施例公开的一种上行数据传输方法的流程示意图;
图8是本发明另一实施例公开的一种上行数据传输方法的流程示意图;
图9是本发明实施例公开的一种接入网设备的结构示意图;
图10是本发明另一实施例公开的一种接入网设备的结构示意图;
图11是本发明实施例公开的一种终端设备的结构示意图;
图12是本发明另一实施例公开的一种终端设备的结构示意图;
图13是本发明实施例公开的一种上行数据传输系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了更好的理解本发明实施例公开的一种上行数据传输方法及设备、系统,下面首先对本发明实施例适用的应用架构进行描述。请参见图2,图2是本发明实施例公开的一种应用架构的架构示意图。如图2所示,该应用架构可以包括终端设备和接入网设备,其中,终端设备与接入网设备之间既可以利用许可频段资源进行通信,又能够利用免许可频段资源进行通信,且在使用免许可频段资源进行通信时需遵循LBT规则。该应用架构可以部署在将许可频段资源上的许可载波以及免许可频段资源上的免许可载波通过CA技术聚合在一起使用的LAA-LTE系统中,即:将许可频段资源或者许可频段资源上的许可载波或者工作在许可频段资源上的小区作为主服务小区(PCell,Primary Cell),并将免许可频段资源或免许可频段资源上的免许可载波或者工作在免许可频段资源上的小区作为辅服务小区(SCell,Secondary Cell),其中,主服务小区和辅服务小区可以共站部署,也可以非共站部署,且主服务小区和辅服务小区之间有理想的回传路径;该应用架构也可以部署在将许可频段资源上的许可载波以及免许可频段资源上的免许可载波通过双连接(DC,Dual Connectivity)技术在一起使用的LTE系统中,即:主服务小区与辅服务小区之间没有理想的回传路径;该应用架构还可以部署在使用免许可频段资源的独立的LTE系统中(例如standalone LTE over unlicensed carrier系统),工作在免许可频段资源上的服务 小区可以直接提供独立接入功能,不需要工作在许可频段资源上小区的辅助。
其中,免许可频段上的资源共享是指对特定频谱的使用只规定发射功率、带外泄露等指标上的限制,以保证共同使用该频段的多个终端设备之间满足基本的共存要求,而不限定终端设备的无线电技术、运营企业和使用年限等。
其中,接入网设备可以是用于与移动台通信的设备,具体可以是无线局域网(WLAN,Wireless Local Area Networks)中的接入点(AP,Access Point)、全球移动通信系统(GSM,Global System for Mobile Communication)或码分多址(CDMA,Code Division Multiple Access)中的基站收发信台(BTS,Base Transceiver Station)、宽带码分多址(WCDMA,Wideband Code Division Multiple Access)中的基站(NB,NodeB)、LTE系统中的演进型基站(eNB,Evolutional Node B)、中继站或接入点、车载设备、可穿戴设备、未来5G网络中的接入网设备以及未来演进的公共陆地移动网络(PLMN,Public Land Mobile Network)中的接入网设备等中的任意一种。
其中,终端设备也可以称为用户设备(UE,User Equipment)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理或用户装置等,其具体可以是WLAN中的站点(ST,Station)、蜂窝电话、无绳电话、会话启动协议(SIP,Session Initiation Protocol)电话、无线本地环路(WLL,Wireless Local Loop)站、个人数字处理(PDA、Personal Digital Assistant)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的PLMN网络中的终端设备等中的任意一种。
在介绍本发明的具体实施例之前,首先对本发明中可能涉及到的基站、小区、频段及载波等概念进行一些简单说明。无论是许可频段资源还是免许可频段资源,在本发明中都可以包括一个或多个载波,且许可频段资源上的一个或多个许可载波和非许可频段资源上的一个或多个免许可载波可以进行载波聚合;本发明中提到的小区可以是基站对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)以及毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数 据传输服务的场景;本发明中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为载波与小区的概念等同,例如,在CA场景下,当为终端设备配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(Cell ID,Cell Indentify),在这种情况下,载波与小区的概念等同,比如终端设备接入一个载波和接入一个小区是等同的,本发明中将以小区的概念来介绍;本发明中,能够和基站进行数据通信的设备均可以理解为终端设备,本发明将以一般意义上的终端设备来介绍。
在介绍本发明的具体实施例之前,首先对本发明中可能涉及到的数据进行一些简单说明。数据包括以下至少一项:业务数据、控制数据、参考信号。例如上行数据可以包括以下至少一项:可以承载在物理上行共享信道(PUSCH,Physical Uplink Shared Channel)的业务数据,可以承载在PUSCH上的控制数据,可以承载在物理上行控制信道(PUCCH,Physical Uplink Control Channel)的控制数据,上行解调参考信号(DMRS,Demodulation Reference Signal),探测参考信号(SRS,Sounding Reference Signal)。
又例如,下行数据可以包括承载在下行物理信道中的数据,和/或下行参考信号。下行物理信道可以包括以下至少一项:物理下行共享信道(PDSCH,Physical Downlink Shared Channel),物理广播信道(PBCH,Physical Broadcast Channel),物理多播信道(PMCH,Physical Multicast Channel),物理控制格式指示信道(PCFICH,Physical Control Format Indicator Channel),物理下行控制信道(PDCCH,Physical Downlink Control Channel),物理混合自动重传请求指示信道(PHICH,Physical Hybrid ARQ Indicator Channel),增强物理下行控制信道(EPDCCH,Enhanced Physical Downlink Control Channel),MTC物理下行控制信道(MPDCCH,MTC Physical Downlink Control Channel)。下行参考信号可以包括以下至少一项:小区特定参考信号(CRS,Cell-specific Reference Signal),多媒体广播多播服务单频网络参考信号(MBSFNRS,Multimedia Broadcast Multicast Service Single Frequency Network Reference Signal),用于解调PDSCH承载数据的用户设备特定参考信号(US-RS,UE-specific Reference Signal),用于解调EPDCCH或MPDCCH承载数据的参考信号(DM-RS,De Modulation Reference Signal),定位参考信号(PRS, Positioning Reference Signal),信道状态信息参考信号(CSI-RS,CSI Reference Signal)。
在本发明实施例中,调度信息也可以称为调度数据、控制信息或控制数据等,可以用于指示以下至少一项:上行数据的传输格式、上行数据的资源分配、上行数据的上行调度许可、上行数据的功率控制或上行数据的重传信息等。
其中,调度信息可以是下行控制信息(DCI,Downlink Control Information)中的一部分,即DCI包括的某个字段,调度信息也可以就是DCI包括的全部信息字段。调度信息可以承载在PDCCH和/或EPDCCH中,也可以承载在其他信道,本发明不做具体限定。另外,调度信息可以包括用于指示终端设备传输上行数据的信息,例如调制编码方案(MCS,Modulation Coding Scheme)、传输上行数据所使用的频域资源指示、功率控制信息等。另外,调度信息可以是用户特定(UE specific)的指示信息,例如只对某个终端设备或者某个用户群组有效,调度信息还可以是小区特定(Cell specific)的指示信息,例如对小区内所有链接态的终端设备或者所有将该小区作为服务小区的终端设备(包括链接态和空闲态的终端设备)有效。
可选地,在本发明实施例中,调度信息可以是上行准许(UL grant,Uplink Grant)控制信息,调度信息包括以DCI格式0(DCI Format 0)或者以DCI格式4(DCI Format 4)传输的控制信息。调度信息可以指示终端设备在一个TTI内发送上行数据,或者,也可以指示终端设备在至少两个TTI内发送上行数据。例如,可以通过第K个TTI中的1个UL grant(或者1个DCI)调度一个终端设备在一个或多个第K+M个TTI发送上行数据。
本发明实施例中,TTI可以理解为一次传输的时间单位,时间单位可以包括上行数据和/或下行数据传输的时间单位,在本发明实施例中,一个时间单位的长度可以任意设定,本发明并未特别限定,例如,一个TTI可以为以下任一物理量:一个子帧,一个时隙,一个或多个OFDM。例如,对于支持短传输时间间隔(S-TTI,Short Transmission Time Interval)的LTE系统而言,一个TTI可以用一个时隙表示,也可以用一个或多个(例如,小于7的正整数个或小于6的正整数个)OFDM符号表示,可选地,例如为2个OFDM符号。对于不支持S-TTI的LTE系统而言,一个TTI可以用一个子帧表示。其中,S-TTI是长度小 于1毫秒(ms)的TTI。
需要说明的是,在本发明实施例中,时间单位用于信息传输的长度(或者说,信息传输时长)可以是1ms,也可以小于1ms。即使对于不支持S-TTI的LTE系统而言,当TTI用子帧表示时,该TTI内用于下行数据传输的长度可以是1ms,也可以小于1ms,同样地,该TTI内用于上行数据传输的长度可以是1ms,也可以小于1ms。以图3a所示的TTI的示意图为例,1个TTI中用于下行数据传输的长度可以是1ms;以图3b所示的TTI的示意图为例,1个TTI中用于下行数据传输的长度可以小于1ms;以图3c所示的TTI的示意图为例,当1个TTI中用于下行数据传输的长度小于1ms时,该TTI中的其他时间范围还可以包括上行数据的传输。
请参见图4,图4是本发明实施例提供的一种上行数据传输方法的流程示意图,如图所示,本发明实施例中的上行数据传输方法至少可以包括以下步骤:
S401,接入网设备在第K个TTI向终端设备发送第一调度信息,第一调度信息用于指示终端设备在第K+M个TTI发送第一上行数据,M大于或者等于预设数值。
接入网设备在第K个TTI向终端设备发送第一调度信息之后,终端设备可以在第K个TTI接收该第一调度信息。需要说明的是,由于第一调度信息存在传输时延,则接入网设备发送第一调度信息的发送时间和终端设备接收第一调度信息的接收时间是不相同的。在本发明实施例中,为了便于描述,忽略了接入网设备和终端设备之间数据传输所需要的传播时延。
S402,终端设备通过竞争机制抢占免许可频段资源。
S403,当终端设备在第K+M个TTI内没有抢占到免许可频段资源时,向接入网设备发送第一指示信息。
S404,接入网设备根据第一指示信息确定终端设备在第K+M个TTI内没有抢占到免许可频段资源。
S405,接入网设备在第K+M+N个TTI向终端设备发送第二调度信息,第二调度信息用于指示终端设备在第K+M+N+L个TTI发送第二上行数据,N小于预设数值。
S406,终端设备通过竞争机制抢占免许可频段资源。
S407,当终端设备在第K+M+N+L个TTI内抢占到免许可频段资源时,不向接入网设备发送第一指示信息。
S408,接入网设备在第K+M+N+L个TTI内没有接收到终端设备发送的第一指示信息时,确定终端设备在第K+M+N+L个TTI内抢占到免许可频段资源。
S409,终端设备在第K+M+N+L个TTI向接入网设备发送第二上行数据。
需要说明的是,本发明实施例并不局限S407-S409的先后执行顺序,例如可以同时执行S407与S409,S408可以在S407之后执行;又如S407可以在S409之前执行,S408可以在S409之后执行;又如S408可以在S407之后执行,S409可以在S408之后执行;又如S408可以在S407之后执行,S409可以在S407之后执行,S408和S409可以同时执行,等等,具体不受本发明实施例的限制。
在图4所示的上行数据传输方法中,接入网设备在第K个TTI向终端设备发送第一调度信息,接入网设备在第K+M个TTI内接收到终端设备发送的第一指示信息时,确定终端设备在第K+M个TTI内没有抢占到免许可频段资源,接入网设备在第K+M+N个TTI向终端设备发送第二调度信息,终端设备在第K+M+N+L个TTI内抢占到免许可频段资源之后向接入网设备发送第二上行数据,由于N小于预设数值,可减少上行数据的传输时延,提升免许可频段资源的使用效率。
请参见图5,图5是本发明另一实施例提供的一种上行数据传输方法的流程示意图,如图所示,本发明实施例中的上行数据传输方法至少可以包括以下步骤:
S501,接入网设备在第K个TTI向终端设备发送第一调度信息,第一调度信息用于指示终端设备在第K+M个TTI发送第一上行数据,M大于或者等于预设数值。
S502,终端设备通过竞争机制抢占免许可频段资源。
S503,当终端设备在第K+M个TTI内没有抢占到免许可频段资源时,不 向接入网设备发送解调参考信号。
S504,接入网设备在第K+M个TTI内没有接收到终端设备发送的解调参考信号时,确定终端设备在第K+M个TTI内没有抢占到免许可频段资源。
S505,接入网设备在第K+M+N个TTI向终端设备发送第二调度信息,第二调度信息用于指示终端设备在第K+M+N+L个TTI发送第二上行数据,N小于预设数值。
S506,终端设备通过竞争机制抢占免许可频段资源。
S507,当终端设备在第K+M+N+L个TTI内抢占到免许可频段资源时,向接入网设备发送解调参考信号。
S508,接入网设备根据解调参考信号确定终端设备在第K+M+N+L个TTI内抢占到免许可频段资源。
S509,终端设备在第K+M+N+L个TTI向接入网设备发送第二上行数据。
需要说明的是,本发明实施例并不局限S507-S509的先后执行顺序,例如可以同时执行S507与S509,S508可以在S507之后执行;又如S507可以在S509之前执行,S508可以在S509之后执行;又如S508可以在S507之后执行,S509可以在S508之后执行;又如S508可以在S507之后执行,S509可以在S507之后执行,S508和S509可以同时执行,等等,具体不受本发明实施例的限制。
在图5所示的上行数据传输方法中,接入网设备在第K个TTI向终端设备发送第一调度信息,接入网设备在第K+M个TTI内没有接收到终端设备发送的解调参考信号时,确定终端设备在第K+M个TTI内没有抢占到免许可频段资源,接入网设备在第K+M+N个TTI向终端设备发送第二调度信息,终端设备在第K+M+N+L个TTI内抢占到免许可频段资源之后向接入网设备发送第二上行数据,由于N小于预设数值,可减少上行数据的传输时延,提升免许可频段资源的使用效率。
请参见图6,图6是本发明另一实施例提供的一种上行数据传输方法的流程示意图,如图所示,本发明实施例中的上行数据传输方法至少可以包括以下步骤:
S601,接入网设备在第K个TTI向终端设备发送第一调度信息,第一调度信息用于指示终端设备在第K+M个TTI发送第一上行数据,M大于或者等于预设数值。
S602,终端设备通过竞争机制抢占免许可频段资源。
S603,当终端设备在第K+M个TTI内没有抢占到免许可频段资源时,向接入网设备发送第一指示信息。
S604,接入网设备根据第一指示信息确定终端设备在第K+M个TTI内没有抢占到免许可频段资源。
S605,接入网设备在第K+M+N个TTI向终端设备发送第二调度信息,第二调度信息用于指示终端设备在第K+M+N+L个TTI发送第二上行数据,N小于预设数值。
S606,终端设备通过竞争机制抢占免许可频段资源。
S607,当终端设备在第K+M+N+L个TTI内抢占到免许可频段资源时,向接入网设备发送解调参考信号。
S608,接入网设备根据解调参考信号确定终端设备在第K+M+N+L个TTI内抢占到免许可频段资源。
S609,终端设备在第K+M+N+L个TTI向接入网设备发送第二上行数据。
需要说明的是,本发明实施例并不局限S607-S609的先后执行顺序,例如可以同时执行S607与S609,S608可以在S607之后执行;又如S607可以在S609之前执行,S608可以在S609之后执行;又如S608可以在S607之后执行,S609可以在S608之后执行;又如S608可以在S607之后执行,S609可以在S607之后执行,S608和S609可以同时执行,等等,具体不受本发明实施例的限制。
在图6所示的上行数据传输方法中,接入网设备在第K个TTI向终端设备发送第一调度信息,接入网设备在第K+M个TTI内接收到终端设备发送的第一指示信息时,确定终端设备在第K+M个TTI内没有抢占到免许可频段资源,接入网设备在第K+M+N个TTI向终端设备发送第二调度信息,终端设备在第K+M+N+L个TTI内抢占到免许可频段资源之后向接入网设备发送第二上行数据,由于N小于预设数值,可减少上行数据的传输时延,提升免许可 频段资源的使用效率。
请参见图7,图7是本发明另一实施例提供的一种上行数据传输方法的流程示意图,如图所示,本发明实施例中的上行数据传输方法至少可以包括以下步骤:
S701,接入网设备在第K个TTI向终端设备发送第一调度信息,第一调度信息用于指示终端设备在第K+M个TTI发送第一上行数据,M大于或者等于预设数值。
S702,终端设备通过竞争机制抢占免许可频段资源。
S703,当终端设备在第K+M个TTI内没有抢占到免许可频段资源时,不向接入网设备发送解调参考信号。
S704,接入网设备在第K+M个TTI内没有接收到终端设备发送的解调参考信号时,确定终端设备在第K+M个TTI内没有抢占到免许可频段资源。
S705,接入网设备在第K+M+N个TTI向终端设备发送第二调度信息,第二调度信息用于指示终端设备在第K+M+N+L个TTI发送第二上行数据,N小于预设数值。
S706,终端设备通过竞争机制抢占免许可频段资源。
S707,当终端设备在第K+M+N+L个TTI内抢占到免许可频段资源时,不向接入网设备发送第一指示信息。
S708,接入网设备在第K+M+N+L个TTI内没有接收到终端设备发送的第一指示信息时,确定终端设备在第K+M+N+L个TTI内抢占到免许可频段资源。
S709,终端设备在第K+M+N+L个TTI向接入网设备发送第二上行数据。
需要说明的是,本发明实施例并不局限S707-S709的先后执行顺序,例如可以同时执行S707与S709,S708可以在S707之后执行;又如S707可以在S709之前执行,S708可以在S709之后执行;又如S708可以在S707之后执行,S709可以在S708之后执行;又如S708可以在S707之后执行,S709可以在S707之后执行,S708和S709可以同时执行,等等,具体不受本发明实施例的限制。
在图7所示的上行数据传输方法中,接入网设备在第K个TTI向终端设备发送第一调度信息,接入网设备在第K+M个TTI内没有接收到终端设备发送的解调参考信号时,确定终端设备在第K+M个TTI内没有抢占到免许可频段资源,接入网设备在第K+M+N个TTI向终端设备发送第二调度信息,终端设备在第K+M+N+L个TTI内抢占到免许可频段资源之后向接入网设备发送第二上行数据,由于N小于预设数值,可减少上行数据的传输时延,提升免许可频段资源的使用效率。
请参见图8,图8是本发明另一实施例提供的一种上行数据传输方法的流程示意图,如图所示,本发明实施例中的上行数据传输方法至少可以包括以下步骤:
S801,接入网设备在第K个TTI向终端设备发送第一调度信息,第一调度信息用于指示终端设备在第K+M个TTI发送第一上行数据,M大于或者等于预设数值。
S802,终端设备通过竞争机制抢占免许可频段资源。
S803,当终端设备在第K+M个TTI内没有抢占到免许可频段资源时,向接入网设备发送第一指示信息。
S804,接入网设备根据第一指示信息,确定终端设备在第K+M个TTI内没有抢占到免许可频段资源。
S805,接入网设备在第K+M+N个TTI向终端设备发送第二调度信息,第二调度信息用于指示终端设备在第K+M+N+L个TTI发送第二上行数据,N小于预设数值。
S806,终端设备通过竞争机制抢占免许可频段资源。
S807,当终端设备在第K+M+N+L个TTI内抢占到免许可频段资源时,向接入网设备发送第二指示信息。
S808,接入网设备根据第二指示信息,确定终端设备在第K+M+N+L个TTI内抢占到免许可频段资源。
S809,终端设备在第K+M+N+L个TTI向接入网设备发送第二上行数据。
需要说明的是,本发明实施例并不局限S807-S809的先后执行顺序,例如 可以同时执行S807与S809,S808可以在S807之后执行;又如S807可以在S809之前执行,S808可以在S809之后执行;又如S808可以在S807之后执行,S809可以在S808之后执行;又如S808可以在S807之后执行,S809可以在S807之后执行,S808和S809可以同时执行,等等,具体不受本发明实施例的限制。
在图8所示的上行数据传输方法中,接入网设备在第K个TTI向终端设备发送第一调度信息,接入网设备根据接收到的第一指示信息,确定终端设备在第K+M个TTI内没有抢占到免许可频段资源,接入网设备在第K+M+N个TTI向终端设备发送第二调度信息,终端设备根据接收到的第二指示信息确定在第K+M+N+L个TTI内抢占到免许可频段资源,并向接入网设备发送第二上行数据,由于N小于预设数值,可减少上行数据的传输时延,提升免许可频段资源的使用效率。
需要说明的是,在本发明实施例中,可选地,接入网设备可以通过第一指示信息的有无来确定终端设备是否抢占到免许可频段资源,也可以通过第二指示信息承载的内容确定终端设备是否抢占到免许可频段资源。
需要说明的是,在本发明实施例中,终端设备抢占免许可频段资源,可以是指终端设备可以利用免许可频段资源进行数据传输。例如终端设备在第K+M个TTI内抢占到免许可频段资源,可以是指终端设备可以在K+M个TTI内利用免许可频段资源进行数据传输。
需要说明的是,在本发明实施例中,终端设备传输第一上行数据所利用的频段资源与传输第二上行数据所利用的频段资源可以相同,也可以不同,例如终端设备传输第一上行数据所利用的频段资源为F1,那么传输第二上行数据所利用的频段资源可以是F1、也可以是F2,在此不做具体限定。
需要说明的是,终端设备传输第一指示信息所利用的频段资源可以与该终端设备传输第一上行数据所利用的频段资源可以相同,也可以不同,与该终端设备传输第二上行数据所利用的频段资源可以相同,也可以不同;对于第二指示信息有同样的说明,在此不做赘述。所利用的频段资源描述同上,在此不做赘述。
请参见图9,图9是本发明实施例提供的一种接入网设备的结构示意图,如图所示,本发明实施例中的接入网设备至少可以包括调度信息发送模块901、
调度信息发送模块901,用于在第K个TTI向终端设备发送第一调度信息,第一调度信息用于指示终端设备在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值。
检测模块902,用于检测终端设备是否在第K+M个TTI内抢占到免许可频段资源。
调度信息发送模块901,还用于当检测结果为否时,在第K+M+N个TTI向终端设备发送第二调度信息,第二调度信息用于指示终端设备在第K+M+N+L个TTI发送第二上行数据,第二上行数据的HARQ进程标识与第一上行数据的HARQ进程标识相同,N、L均为正整数,N小于预设数值。
数据接收模块903,用于接收终端设备在第K+M+N+L个TTI发送的第二上行数据。
可选的,检测模块902具体用于:检测是否在第K+M个TTI内接收到终端设备发送的解调参考信号;当在第K+M个TTI内未接收到解调参考信号时,确定终端设备在第K+M个TTI内未抢占到免许可频段资源;当在第K+M个TTI内接收到解调参考信号时,确定终端设备在第K+M个TTI内抢占到免许可频段资源。
可选的,检测模块902具体用于:检测是否在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第一指示信息,第一频段与第一上行数据所在的频段不同,第一指示信息用于指示终端设备在第K+M个TTI内未抢占到免许可频段资源;当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第一指示信息时,确定终端设备在第K+M个TTI内未抢占到免许可频段资源。
可选的,检测模块902还用于:当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内未接收到第一指示信息时,确定终端设备在第K+M个TTI内抢占到免许可频段资源。
可选的,检测模块902具体用于:检测是否在第一频段的第K+M~第 K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第二指示信息,当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第二指示信息时,确定终端设备在第K+M个TTI内抢占到免许可频段资源,第二指示信息用于指示终端设备在第K+M个TTI内抢占到免许可频段资源。
可选的,检测模块902具体用于:检测是否在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收终端设备发送的第一指示信息,第二频段与第一上行数据所在的频段相同;当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第一指示信息时,确定终端设备在第K+M个TTI内未抢占到免许可频段资源。
可选的,检测模块902还用于:当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内未接收到第一指示信息时,确定终端设备在第K+M个TTI内抢占到免许可频段资源。
可选的,检测模块902具体用于:检测是否在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收终端设备发送的第二指示信息,当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第二指示信息时,确定终端设备在所述第K+M个TTI内抢占到免许可频段资源。
在图9所示的接入网设备中,调度信息发送模块901在第K个TTI向终端设备发送第一调度信息,第一调度信息用于指示终端设备在第K+M个TTI发送第一上行数据,M大于或者等于预设数值,当检测模块902检测到终端设备在第K+M个TTI内没有抢占到免许可频段资源时,调度信息发送模块901在第K+M+N个TTI向终端设备发送第二调度信息,第二调度信息用于指示终端设备在第K+M+N+L个TTI发送第二上行数据,数据接收模块903接收终端设备在第K+M+N+L个TTI发送的第二上行数据,由于N小于预设数值,可减少上行数据的传输时延,提升免许可频段资源的使用效率。
请参见图10,图10是本发明实施例公开的另一种接入网设备的结构示意图。如图10所示,该接入网设备可以包括:处理器1001、存储器1002、发射器1003 以及接收器1004,存储器1002可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),如至少一个磁盘存储器,可选的,存储器1002还可以是至少一个位于远离前述处理器1001的存储装置。其中:
发射器1003,用于在第K个TTI向终端设备发送第一调度信息,第一调度信息用于指示终端设备在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值。
处理器1001调用存储器中存储的程序代码,用于执行以下操作:
检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,当检测结果为否时,生成第二调度信息,第二调度信息用于指示终端设备在第K+M+N+L个TTI发送第二上行数据,第二上行数据的HARQ进程标识与第一上行数据的HARQ进程标识相同,N、L均为正整数,N小于预设数值。
发射器1003,还用于在第K+M+N个TTI向终端设备发送第二调度信息。
接收器1004,用于接收终端设备在第K+M+N+L个TTI发送的第二上行数据。
可选的,处理器1001检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,具体可以为:检测是否在第K+M个TTI内接收到终端设备发送的解调参考信号,当在第K+M个TTI内未接收到解调参考信号时,确定终端设备在第K+M个TTI内未抢占到免许可频段资源;当在第K+M个TTI内接收到解调参考信号时,确定终端设备在第K+M个TTI内抢占到免许可频段资源。
可选的,处理器1001检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,具体可以为:检测是否在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第一指示信息,当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第一指示信息时,确定终端设备在第K+M个TTI内未抢占到免许可频段资源;当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内未接收到第一指示信息时,确定终端设备在第K+M个TTI内抢占到免许可频段资源。其中,第一频段与第一上行数据所在的频段不同,第一指示信息用于指示终端设备在第K+M个TTI内未抢占到免许可频段资源。
可选的,处理器1001检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,具体可以为:检测是否在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第一指示信息,当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第一指示信息时,确定终端设备在第K+M个TTI内未抢占到免许可频段资源;检测是否在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第二指示信息,当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第二指示信息时,确定终端设备在第K+M个TTI内抢占到免许可频段资源。其中,第一指示信息用于指示终端设备在第K+M个TTI内未抢占到免许可频段资源,第二指示信息用于指示终端设备在第K+M个TTI内抢占到免许可频段资源。
可选的,处理器1001检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,具体可以为:检测是否在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第一指示信息,当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第一指示信息时,确定终端设备在第K+M个TTI内未抢占到免许可频段资源;当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内未接收到第一指示信息时,确定终端设备在第K+M个TTI内抢占到免许可频段资源。其中,第二频段与第一上行数据所在的频段相同,第一指示信息用于指示终端设备在第K+M个TTI内未抢占到免许可频段资源。
可选的,处理器1001检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,具体可以为:检测是否在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第一指示信息,当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第一指示信息时,确定终端设备在第K+M个TTI内未抢占到免许可频段资源;检测是否在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第二指示信息,当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第二指示信息时,确定终端设备在第K+M个TTI内抢占到免许可频段资源。
具体的,本发明实施例中介绍的接入网设备可以用以实施本发明结合图4~图8介绍的方法实施例中的部分或全部流程。
请参见图11,图11是本发明实施例提供的一种终端设备的结构示意图,如图所示,本发明实施例中的终端设备至少可以包括调度信息接收模块1101以及数据发送模块1102,其中:
调度信息接收模块1101,用于在第K个TTI接收接入网设备发送的第一调度信息,第一调度信息用于指示终端设备在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值。
调度信息接收模块1101,还用于在第K+M+N个TTI接收接入网设备发送的第二调度信息,第二调度信息用于指示终端设备在第K+M+N+L个TTI发送第二上行数据,第二上行数据的HARQ进程标识与第一上行数据的HARQ进程标识相同,N、L均为正整数,N小于预设数值。
数据发送模块1102,用于根据第二调度信息,在第K+M+N+L个TTI发送第二上行数据。
可选的,本发明实施例中的终端设备还可以包括:
确定模块1103,用于调度信息接收模块1101在第K+M+N个TTI接收接入网设备发送的第二调度信息之前,确定终端设备在第K+M个TTI内未抢占到免许可频段资源。
可选的,确定模块1103,具体用于在第K+M个TTI内不发送解调参考信号。
可选的,确定模块1103,具体用于:在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第一指示信息,第一频段与第一上行数据所在的频段不同,第一指示信息用于指示终端设备在第K+M个TTI内未抢占到免许可频段资源。
可选的,确定模块1103,具体用于:在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第二指示信息,第一频段与第一上行数据所在的频段不同,第二指示信息用于指示终端设备在第K+M个TTI内抢占到免许可频段资源。
可选的,确定模块1103,具体用于:在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第一指示信息,第二频段与第一上行数据所在的频段相同。
可选的,确定模块1103,具体用于:在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第二指示信息,第二指示信息用于指示终端设备在第K+M个TTI内抢占到免许可频段资源。
在图11所示的终端设备中,调度信息接收模块1101在第K个TTI接收接入网设备发送的第一调度信息,第一调度信息用于指示终端设备在第K+M个TTI发送第一上行数据,并在第K+M+N个TTI接收接入网设备发送的第二调度信息,第二调度信息用于指示终端设备在第K+M+N+L个TTI发送第二上行数据,M大于或者等于预设数值,N小于预设数值,数据发送模块1102根据第二调度信息,在第K+M+N+L个TTI发送第二上行数据,由于N小于预设数值,可减少上行数据的传输时延,提升免许可频段资源的使用效率。
请参见图12,图12是本发明实施例公开的另一种终端设备的结构示意图。如图12所示,该终端设备可以包括:处理器1201、存储器1202、发射器1203以及接收器1204,存储器1202可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),如至少一个磁盘存储器,可选的,存储器1202还可以是至少一个位于远离前述处理器1201的存储装置。其中:
接收器1204,用于在第K个TTI接收接入网设备发送的第一调度信息,第一调度信息用于指示发射器在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值。
接收器1204,还用于在第K+M+N个TTI接收接入网设备发送的第二调度信息,第二调度信息用于指示发射器在第K+M+N+L个TTI发送第二上行数据,第二上行数据的HARQ进程标识与第一上行数据的HARQ进程标识相同,N、L均为正整数,N小于预设数值。
发射器1203,用于根据第二调度信息,在第K+M+N+L个TTI发送第二上行数据。
可选的,接收器1204在第K+M+N个TTI接收接入网设备发送的第二调 度信息之前,处理器1201可以执行以下操作:
确定终端设备在第K+M个TTI内未抢占到免许可频段资源。
可选的,发射器1203在第K+M个TTI内不发送解调参考信号。
可选的,发射器1203在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第一指示信息,第一频段与第一上行数据所在的频段不同,第一指示信息用于指示终端设备在第K+M个TTI内未抢占到免许可频段资源。
可选的,发射器1203在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第二指示信息,第一频段与第一上行数据所在的频段不同,第二指示信息用于指示终端设备在第K+M个TTI内抢占到免许可频段资源。
可选的,发射器1203在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第一指示信息,第二频段与第一上行数据所在的频段相同。
可选的,发射器1203在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,向接入网设备发送第二指示信息,第二频段与第一上行数据所在的频段相同,第二指示信息用于指示终端设备在第K+M个TTI内抢占到免许可频段资源。
具体的,本发明实施例中介绍的终端设备可以用以实施本发明结合图4~图8介绍的方法实施例中的部分或全部流程。
请参见图13,图13是本发明实施例公开的一种上行数据传输系统的结构示意图。如图13所示,该上行数据传输系统可以包括终端设备1301以及接入网设备1302,其中:
接入网设备1302,用于在第K个TTI向终端设备1301发送第一调度信息,第一调度信息用于指示终端设备1301在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值。
接入网设备1302,还用于检测终端设备1301是否在第K+M个TTI内抢占到免许可频段资源。
接入网设备1301,还用于当检测结果为否时,在第K+M+N个TTI向终端设备1302发送第二调度信息,第二调度信息用于指示终端设备1301在第K+M+N+L个TTI发送第二上行数据,第二上行数据的HARQ进程标识与第一上行数据的HARQ进程标识相同,N、L均为正整数,N小于预设数值。
终端设备1301,用于在第K+M+N+L个TTI向接入网设备1302发送第二上行数据。
可选的,接入网设备1302检测终端设备1301是否在第K+M个TTI内抢占到免许可频段资源,包括:
接入网设备1302检测是否在第K+M个TTI内接收到终端设备1301发送的解调参考信号,当在第K+M个TTI内未接收到解调参考信号时,接入网设备1302确定终端设备1301在第K+M个TTI内未抢占到免许可频段资源;当在第K+M个TTI内接收到解调参考信号时,接入网设备1302确定终端设备1301在第K+M个TTI内抢占到免许可频段资源。
可选的,接入网设备1302检测终端设备1301是否在第K+M个TTI内抢占到免许可频段资源,包括:
接入网设备1302检测是否在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备1301发送的第一指示信息,第一频段与第一上行数据所在的频段不同,第一指示信息用于指示终端设备1301在第K+M个TTI内未抢占到免许可频段资源,当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第一指示信息时,接入网设备1302确定终端设备1301在第K+M个TTI内未抢占到免许可频段资源。
可选的,接入网设备1302检测是否在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备发送的第一指示信息之后,还包括:
当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内未接收到第一指示信息时,接入网设备1302确定终端设备在第K+M个TTI内抢占到免许可频段资源。
可选的,接入网设备1302检测终端设备1301是否在第K+M个TTI内抢 占到免许可频段资源,包括:
接入网设备1302检测是否在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备1301发送的第二指示信息,当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第二指示信息时,接入网设备1302确定终端设备在第K+M个TTI内抢占到免许可频段资源,第二指示信息用于指示终端设备在第K+M个TTI内抢占到免许可频段资源。
可选的,接入网设备1302检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,包括:
接入网设备1302检测是否在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备1301发送的第一指示信息,第二频段与第一上行数据所在的频段相同,当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第一指示信息时,接入网设备1302确定终端设备1301在第K+M个TTI内未抢占到免许可频段资源。
可选的,接入网设备1302检测是否在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备1301发送的第一指示信息之后,当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内未接收到第一指示信息时,接入网设备1302确定终端设备1301在所述第K+M个TTI内抢占到免许可频段资源。
可选的,接入网设备1302检测终端设备是否在第K+M个TTI内抢占到免许可频段资源,包括:
接入网设备1302检测是否在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到终端设备1301发送的第二指示信息,当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到第二指示信息时,接入网设备1302确定终端设备1301在第K+M个TTI内抢占到免许可频段资源。
具体的,本发明实施例中介绍的终端设备1301和接入网设备1302可以用以实施本发明结合图4~图8介绍的方法实施例中的部分或全部流程。
需要说明的是,在上述实施例中,对各个实施例的描述都各有侧重,某个 实施例中没有详细描述的部分,可以参见其他实施例的相关描述。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例设备中的模块可以根据实际需要进行合并、划分和删减。
本发明实施例中所述模块,可以通过通用集成电路,例如CPU(Central Processing Unit,中央处理器),或通过ASIC(Application Specific Integrated Circuit,专用集成电路)来实现。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
总之,以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (37)

  1. 一种上行数据传输方法,其特征在于,所述方法包括:
    接入网设备在第K个传输时间间隔TTI向终端设备发送第一调度信息,所述第一调度信息用于指示所述终端设备在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值;
    当所述终端设备在所述第K+M个TTI内未抢占到免许可频段资源时,所述接入网设备在第K+M+N个TTI向所述终端设备发送第二调度信息,所述第二调度信息用于指示所述终端设备在第K+M+N+L个TTI发送第二上行数据,所述第二上行数据的上行混合自动重传请求HARQ进程标识与所述第一上行数据的HARQ进程标识相同,N、L均为正整数,N小于所述预设数值;
    所述接入网设备接收所述终端设备在所述第K+M+N+L个TTI发送的所述第二上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述接入网设备在第K个TTI向终端设备发送第一调度信息之后,还包括:
    当所述接入网设备在所述第K+M个TTI内未接收到所述终端设备发送的解调参考信号时,所述接入网设备确定所述终端设备在所述第K+M个TTI内未抢占到免许可频段资源;
    当所述接入网设备在所述第K+M个TTI内接收到所述终端设备发送的解调参考信号时,所述接入网设备确定所述终端设备在所述第K+M个TTI内抢占到免许可频段资源。
  3. 根据权利要求1所述的方法,其特征在于,所述接入网设备在第K个TTI向终端设备发送第一调度信息之后,还包括:
    当所述接入网设备在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到所述终端设备发送的第一指示信息时,所述接入网设备确定所述终端设备在所述第K+M个TTI内未抢占到免许可频段资源,其中所述第一频段与所述第一上行数据所在的频段不同,所述第一指示信息用于指示所述终端设备在所述第K+M个TTI内未抢占到免许可频段资源。
  4. 根据权利要求1所述的方法,其特征在于,所述接入网设备在第K个TTI向终端设备发送第一调度信息之后,还包括:
    当所述接入网设备在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,未接收到所述终端设备发送的第一指示信息时,所述接入网设备确定所述终端设备在所述第K+M个TTI内抢占到免许可频段资源。
  5. 根据权利要求1所述的方法,其特征在于,所述接入网设备在第K个TTI向终端设备发送第一调度信息之后,还包括:
    当所述接入网设备在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到所述终端设备发送的第二指示信息时,所述接入网设备确定所述终端设备在所述第K+M个TTI内抢占到免许可频段资源,其中所述第二指示信息用于指示所述终端设备在所述第K+M个TTI内抢占到免许可频段资源。
  6. 根据权利要求1所述的方法,其特征在于,所述接入网设备在第K个TTI向终端设备发送第一调度信息之后,还包括:
    当所述接入网设备在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到所述终端设备发送的第一指示信息时,所述接入网设备确定所述终端设备在所述第K+M个TTI内未抢占到免许可频段资源,其中所述第二频段与所述第一上行数据所在的频段相同。
  7. 根据权利要求1所述的方法,其特征在于,所述接入网设备在第K个TTI向终端设备发送第一调度信息之后,还包括:
    当所述接入网设备在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,未接收到所述终端设备发送的第一指示信息时,所述接入网设备确定所述终端设备在所述第K+M个TTI内抢占到免许可频段资源。
  8. 根据权利要求1所述的方法,其特征在于,所述接入网设备在第K个 TTI向终端设备发送第一调度信息之后,还包括:
    当所述接入网设备在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到所述终端设备发送的第二指示信息时,所述接入网设备确定所述终端设备在所述第K+M个TTI内抢占到免许可频段资源。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述TTI包括:一个子帧、一个时隙或者至少一个正交频分复用OFDM。
  10. 一种上行数据传输方法,其特征在于,所述方法包括:
    终端设备在第K个TTI接收接入网设备发送的第一调度信息,所述第一调度信息用于指示所述终端设备在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值;
    所述终端设备在第K+M+N个TTI接收所述接入网设备发送的第二调度信息,所述第二调度信息用于指示所述终端设备在第K+M+N+L个TTI发送第二上行数据,所述第二上行数据的HARQ进程标识与所述第一上行数据的HARQ进程标识相同,N、L均为正整数,N小于所述预设数值;
    所述终端设备根据所述第二调度信息,在所述第K+M+N+L个TTI发送所述第二上行数据。
  11. 根据权利要求10所述的方法,其特征在于,所述终端设备在第K+M+N个TTI接收接入网设备发送的第二调度信息之前,还包括:
    所述终端设备确定所述终端设备在所述第K+M个TTI内未抢占到免许可频段资源。
  12. 根据权利要求11所述的方法,其特征在于,所述终端设备在第K+M个TTI内不发送解调参考信号。
  13. 根据权利要求11所述的方法,其特征在于,所述终端设备在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,向所述接入 网设备发送第一指示信息,所述第一频段与所述第一上行数据所在的频段不同,所述第一指示信息用于指示所述终端设备在所述第K+M个TTI内未抢占到免许可频段资源。
  14. 根据权利要求11所述的方法,其特征在于,所述终端设备在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,向所述接入网设备发送第二指示信息,所述第一频段与所述第一上行数据所在的频段不同,所述第二指示信息用于指示所述终端设备在所述第K+M个TTI内抢占到免许可频段资源。
  15. 根据权利要求11所述的方法,其特征在于,所述终端设备在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,向所述接入网设备发送第一指示信息,所述第二频段与所述第一上行数据所在的频段相同。
  16. 根据权利要求11所述的方法,其特征在于,所述终端设备在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,向所述接入网设备发送第二指示信息。
  17. 根据权利要求10-16任一项所述的方法,其特征在于,所述TTI包括:一个子帧、一个时隙或者至少一个OFDM。
  18. 一种接入网设备,其特征在于,所述接入网设备包括:
    调度信息发送模块,用于在第K个TTI向终端设备发送第一调度信息,所述第一调度信息用于指示所述终端设备在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值;
    所述调度信息发送模块,还用于当所述终端设备在所述第K+M个TTI内未抢占到免许可频段资源时,在第K+M+N个TTI向所述终端设备发送第二调度信息,所述第二调度信息用于指示所述终端设备在第K+M+N+L个TTI发 送第二上行数据,所述第二上行数据的HARQ进程标识与所述第一上行数据的HARQ进程标识相同,N、L均为正整数,N小于所述预设数值;
    数据接收模块,用于接收所述终端设备在所述第K+M+N+L个TTI发送的所述第二上行数据。
  19. 根据权利要求18所述的接入网设备,其特征在于,所述接入网设备还包括:
    确定模块,用于当在所述第K+M个TTI内未接收到所述终端设备发送的解调参考信号时,确定所述终端设备在所述第K+M个TTI内未抢占到免许可频段资源;当在所述第K+M个TTI内接收到所述终端设备发送的解调参考信号时,确定所述终端设备在所述第K+M个TTI内抢占到免许可频段资源。
  20. 根据权利要求18所述的接入网设备,其特征在于,所述接入网设备还包括:
    确定模块,用于当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内接收到所述终端设备发送的第一指示信息时,确定所述终端设备在所述第K+M个TTI内未抢占到免许可频段资源,其中所述第一频段与所述第一上行数据所在的频段不同,所述第一指示信息用于指示所述终端设备在所述第K+M个TTI内未抢占到免许可频段资源。
  21. 根据权利要求18所述的接入网设备,其特征在于,所述接入网设备还包括:
    确定模块,用于当在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内未接收到所述第一指示信息时,确定所述终端设备在所述第K+M个TTI内抢占到免许可频段资源。
  22. 根据权利要求18所述的接入网设备,其特征在于,所述接入网设备还包括:
    确定模块,用于当在第一频段的第K+M~第K+M+N-1个TTI之间的任意 一个或多个TTI内,接收到所述终端设备发送的第二指示信息时,确定所述终端设备在所述第K+M个TTI内抢占到免许可频段资源,其中所述第二指示信息用于指示所述终端设备在所述第K+M个TTI内抢占到免许可频段资源。
  23. 根据权利要求18所述的接入网设备,其特征在于,所述接入网设备还包括:
    确定模块,用于当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收所述终端设备发送的第一指示信息时,确定所述终端设备在所述第K+M个TTI内未抢占到免许可频段资源,其中所述第二频段与所述第一上行数据所在的频段相同。
  24. 根据权利要求18所述的接入网设备,其特征在于,所述接入网设备还包括:
    确定模块,用于当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内未接收到所述第一指示信息时,确定所述终端设备在所述第K+M个TTI内抢占到免许可频段资源。
  25. 根据权利要求18所述的接入网设备,其特征在于,所述接入网设备还包括:
    确定模块,用于当在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,接收到所述终端设备发送的第二指示信息时,确定所述终端设备在所述第K+M个TTI内抢占到免许可频段资源。
  26. 根据权利要求18-25任一项所述的接入网设备,其特征在于,所述TTI可以包括:一个子帧、一个时隙或者至少一个OFDM。
  27. 一种接入网设备,包括处理器、存储器、发射器以及接收器,其特征在于,所述存储器中存储一组程序代码,且所述处理器、发射器以及接收器调用所述存储器中存储的程序代码,用于执行以下操作:
    所述发射器在第K个TTI向终端设备发送第一调度信息,所述第一调度信息用于指示所述终端设备在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值;
    当所述终端设备在所述第K+M个TTI内未抢占到免许可频段资源时,所述发射器在第K+M+N个TTI向所述终端设备发送第二调度信息,所述第二调度信息用于指示所述终端设备在第K+M+N+L个TTI发送第二上行数据,所述第二上行数据的HARQ进程标识与所述第一上行数据的HARQ进程标识相同,N、L均为正整数,N小于所述预设数值;
    所述接收器接收所述终端设备在所述第K+M+N+L个TTI发送的所述第二上行数据。
  28. 一种终端设备,其特征在于,所述终端设备包括:
    调度信息接收模块,用于在第K个TTI接收接入网设备发送的第一调度信息,所述第一调度信息用于指示所述终端设备在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值;
    所述调度信息接收模块,还用于在第K+M+N个TTI接收所述接入网设备发送的第二调度信息,所述第二调度信息用于指示所述终端设备在第K+M+N+L个TTI发送第二上行数据,所述第二上行数据的HARQ进程标识与所述第一上行数据的HARQ进程标识相同,N、L均为正整数,N小于所述预设数值;
    数据发送模块,用于根据所述第二调度信息,在所述第K+M+N+L个TTI发送所述第二上行数据。
  29. 根据权利要求28所述的终端设备,其特征在于,所述终端设备还包括:
    确定模块,用于所述调度信息接收模块在所述第K+M+N个TTI接收所述接入网设备发送的第二调度信息之前,确定所述终端设备在所述第K+M个TTI内未抢占到免许可频段资源。
  30. 根据权利要求29所述的终端设备,其特征在于,所述确定模块,具体用于在第K+M个TTI内不发送解调参考信号。
  31. 根据权利要求29所述的终端设备,其特征在于,所述确定模块,具体用于:
    在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,向所述接入网设备发送第一指示信息,所述第一频段与所述第一上行数据所在的频段不同,所述第一指示信息用于指示所述终端设备在所述第K+M个TTI内未抢占到免许可频段资源。
  32. 根据权利要求29所述的终端设备,其特征在于,所述确定模块,具体用于:
    在第一频段的第K+M~第K+M+N-1个TTI之间的任意一个或多个TTI内,向所述接入网设备发送第二指示信息,所述第一频段与所述第一上行数据所在的频段不同,所述第二指示信息用于指示所述终端设备在所述第K+M个TTI内抢占到免许可频段资源。
  33. 根据权利要求29所述的方法,其特征在于,所述确定模块,具体用于:
    在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,向所述接入网设备发送第一指示信息,所述第二频段与所述第一上行数据所在的频段相同。
  34. 根据权利要求29所述的方法,其特征在于,所述确定模块,具体用于:
    在第二频段的第K+M+1~第K+M+N-1个TTI之间的任意一个或多个TTI内,向所述接入网设备发送第二指示信息。
  35. 根据权利要求28-34任一项所述的终端设备,其特征在于,所述TTI 可以包括:一个子帧、一个时隙或者至少一个OFDM。
  36. 一种终端设备,包括处理器、存储器、发射器以及接收器,所述存储器中存储一组程序代码,且所述处理器、发射器以及接收器调用所述存储器中存储的程序代码,用于执行以下操作:
    所述接收器在第K个TTI接收接入网设备发送的第一调度信息,所述第一调度信息用于指示所述发射器在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值;
    所述接收器在第K+M+N个TTI接收接入网设备发送的第二调度信息,所述第二调度信息用于指示所述发射器在第K+M+N+L个TTI发送第二上行数据,所述第二上行数据的HARQ进程标识与所述第一上行数据的HARQ进程标识相同,N、L均为正整数,N小于所述预设数值;
    所述发射器根据所述第二调度信息,在所述第K+M+N+L个TTI发送所述第二上行数据。
  37. 一种上行数据传输系统,其特征在于,所述系统包括终端设备以及接入网设备,其中:
    所述接入网设备,用于在第K个TTI向终端设备发送第一调度信息,所述第一调度信息用于指示所述终端设备在第K+M个TTI发送第一上行数据,K、M均为正整数,M大于或者等于预设数值;
    所述接入网设备,还用于当所述终端设备在所述第K+M个TTI内未抢占到免许可频段资源时,在第K+M+N个TTI向所述终端设备发送第二调度信息,所述第二调度信息用于指示所述终端设备在第K+M+N+L个TTI发送第二上行数据,所述第二上行数据的上行混合自动重传请求HARQ进程标识与所述第一上行数据的HARQ进程标识相同,N、L均为正整数,N小于所述预设数值;
    所述终端设备,用于在所述第K+M+N+L个TTI向所述接入网设备发送所述第二上行数据。
PCT/CN2016/091886 2016-07-27 2016-07-27 一种上行数据传输方法及设备、系统 WO2018018461A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/091886 WO2018018461A1 (zh) 2016-07-27 2016-07-27 一种上行数据传输方法及设备、系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/091886 WO2018018461A1 (zh) 2016-07-27 2016-07-27 一种上行数据传输方法及设备、系统

Publications (1)

Publication Number Publication Date
WO2018018461A1 true WO2018018461A1 (zh) 2018-02-01

Family

ID=61015332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091886 WO2018018461A1 (zh) 2016-07-27 2016-07-27 一种上行数据传输方法及设备、系统

Country Status (1)

Country Link
WO (1) WO2018018461A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392432A (zh) * 2018-04-20 2019-10-29 展讯通信(上海)有限公司 上行数据传输方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105187173A (zh) * 2015-09-08 2015-12-23 魅族科技(中国)有限公司 用于非授权频谱上的数据重传方法及装置
CN105323049A (zh) * 2014-06-13 2016-02-10 中兴通讯股份有限公司 一种非授权载波的调度方法、设备和系统
CN105450368A (zh) * 2014-09-24 2016-03-30 上海贝尔股份有限公司 Lte-laa系统中在免许可载波上的harq重传的方法和装置
WO2016072820A1 (en) * 2014-11-07 2016-05-12 Samsung Electronics Co., Ltd. Methods for performing hybrid repeat request (harq) in cellular operations over unlicensed bands
CN105682241A (zh) * 2014-11-21 2016-06-15 中兴通讯股份有限公司 一种非授权载波的占用方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105323049A (zh) * 2014-06-13 2016-02-10 中兴通讯股份有限公司 一种非授权载波的调度方法、设备和系统
CN105450368A (zh) * 2014-09-24 2016-03-30 上海贝尔股份有限公司 Lte-laa系统中在免许可载波上的harq重传的方法和装置
WO2016072820A1 (en) * 2014-11-07 2016-05-12 Samsung Electronics Co., Ltd. Methods for performing hybrid repeat request (harq) in cellular operations over unlicensed bands
CN105682241A (zh) * 2014-11-21 2016-06-15 中兴通讯股份有限公司 一种非授权载波的占用方法和设备
CN105187173A (zh) * 2015-09-08 2015-12-23 魅族科技(中国)有限公司 用于非授权频谱上的数据重传方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392432A (zh) * 2018-04-20 2019-10-29 展讯通信(上海)有限公司 上行数据传输方法及装置
CN110392432B (zh) * 2018-04-20 2023-04-25 展讯通信(上海)有限公司 上行数据传输方法及装置

Similar Documents

Publication Publication Date Title
JP6786665B2 (ja) アンライセンスバンドをサポートする無線アクセスシステムにおいて部分サブフレームを構成してスケジューリングする方法及びこれをサポートする装置
JP6557423B6 (ja) 非免許帯域を支援する無線通信システムにおいて上りリンク信号を送信する方法及びそれを支援する装置
US11272489B2 (en) Method and apparatus of handling device-to-device resource pool without physical sidelink feedback channel in a wireless communication system
US10856289B2 (en) Uplink information sending method and apparatus and uplink information receiving method and apparatus
US11722915B2 (en) V2X communication performance method performed by V2X terminal in wireless communication system, and terminal using the method
US11102817B2 (en) System and method for supporting bursty communications in wireless communications systems
CN109076569B (zh) 一种上行控制信息的传输方法和装置
US9413496B2 (en) Method for transceiving data in wireless communication system, and apparatus therefor
CN113783663B (zh) 传输信息的方法、终端设备和网络设备
WO2019213971A1 (zh) 上行信号的发送方法和终端设备
EP3198959B1 (en) A method and device of resource allocations for scheduling assignments in device to device communications
WO2018103607A1 (zh) 接收上行参考信号的方法和装置
US20190173646A1 (en) Method and apparatus for sending reference signal, and method and apparatus for receiving reference signal
CN113490278B (zh) 下行信号传输的方法和设备
WO2018082678A1 (zh) 通信方法和通信装置
WO2021027815A1 (zh) 一种反馈信息传输方法及装置
WO2017024467A1 (zh) 无线通信的方法、网络设备和终端设备
WO2018018461A1 (zh) 一种上行数据传输方法及设备、系统
WO2020199769A1 (zh) 控制信息的传输方法和装置
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
WO2020155181A1 (zh) 信道传输的方法和设备
US20220061034A1 (en) Method for information feedback, terminal device and network device
US11974265B2 (en) Use of priority mismatch indication for uplink transmission for wireless networks
US20210329658A1 (en) Use of priority mismatch indication for uplink transmission for wireless networks
US20240014948A1 (en) Method and device for supporting sidelink drx on basis of mode 1 cg resource in nr v2x

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910042

Country of ref document: EP

Kind code of ref document: A1