WO2021088080A1 - 一种数据的发送、接收方法、参考信号的发送方法及装置 - Google Patents

一种数据的发送、接收方法、参考信号的发送方法及装置 Download PDF

Info

Publication number
WO2021088080A1
WO2021088080A1 PCT/CN2019/116880 CN2019116880W WO2021088080A1 WO 2021088080 A1 WO2021088080 A1 WO 2021088080A1 CN 2019116880 W CN2019116880 W CN 2019116880W WO 2021088080 A1 WO2021088080 A1 WO 2021088080A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
control information
data
parameter
information
Prior art date
Application number
PCT/CN2019/116880
Other languages
English (en)
French (fr)
Inventor
黎超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980101415.9A priority Critical patent/CN114600523A/zh
Priority to PCT/CN2019/116880 priority patent/WO2021088080A1/zh
Publication of WO2021088080A1 publication Critical patent/WO2021088080A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for sending and receiving data, and a method and device for sending a reference signal.
  • V2X vehicle-to-everything
  • V2X includes direct communication between vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P), and Vehicle-to-network (V2N) communication interaction. Except for V2N vehicles and network communication which use uplink and downlink, the other V2V/V2I/V2P data communication uses sidelink (SL) for communication.
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2P vehicle-to-pedestrian
  • V2N Vehicle-to-network
  • SL sidelink
  • data and control information related to V2X can be scrambled using pseudo-random sequences so that unrelated devices cannot be demodulated.
  • the cell ID is usually used as the initial value of the pseudo-random sequence, and then the data is scrambled according to the generated pseudo-random sequence or the reference signal sequence is generated according to the cell ID to meet the privacy of data and services, and Avoid interference between data.
  • V2X communication when sidelink communication is performed between devices, they may be in different cells. Each device does not know each other’s cell ID. Therefore, it cannot be generated based on the cell ID in the cellular link.
  • the pseudo-random sequence method performs scrambling or generates a reference signal sequence, and even during side-link communication, there may be no network coverage and no cell identity. Therefore, the prior art solution cannot be applied to V2X communication.
  • both the originating device and the receiving device may be in-vehicle devices, devices used by users, road-side units, network-side devices, and so on.
  • a method for sending data determines a first sequence according to a first parameter, where the first parameter includes information indicated by the first control information and/or information indicated by the second control information; the originating device The device scrambles the data according to the first sequence; wherein the first control information, the second control information, and the data are located in the same time unit, and the first control information is used to indicate the data The first transmission parameter, the second control information is used to indicate the second transmission parameter of the data; the originating device sends the scrambled data.
  • the first control information used by different data, or at least one of the second control information is different, therefore, by including the information indicated by the first control information and/or the information indicated by the second control information
  • the first parameter of determines the first sequence, and then scrambles the data, which can effectively increase the randomness of the scrambling between the data, and reduce or solve the conflict between the resources for transmitting the data, and ensure the efficient and accurate transmission of the data , Improve the reliability of the transmission link.
  • the originating device determines the parameters of the first sequence according to the first parameters; the parameters of the first sequence include at least one of the following: the initial value of the first sequence; The initial position of a sequence; the root sequence number of the first sequence; the cyclic shift value of the first sequence; the covering orthogonal code of the first sequence.
  • the parameters of different first sequences can be determined according to the first parameters, which effectively improves the randomness of the generation of the first sequence and improves the scrambling performance.
  • the originating device determines a second sequence according to a second parameter, and the second parameter includes the information indicated by the first control information; the originating device performs processing on the second control information according to the second sequence. Perform scrambling; the originating device sends the scrambled second control information.
  • the second control information can be scrambled, and through the second parameter different from the first parameter, the determined second sequence is also different from the first sequence, thereby realizing the data scrambling and the second sequence.
  • the scrambling of the control information can be different, which improves the privacy of the data and the second control information.
  • the receiving device needs to descramble the second control information first, and then receive the data through the second control information, in this scenario
  • the difference between the first sequence and the second sequence can be used to improve the effective verification of data, thereby increasing the reliability and privacy of the transmission link.
  • the originating device determines the parameters of the second sequence according to the second parameters; the parameters of the second sequence include at least one of the following: the initial value of the second sequence; The initial position of the second sequence; the root sequence number of the second sequence; the cyclic shift value of the second sequence; the covering orthogonal code of the second sequence.
  • different parameters of the second sequence can be determined according to the second parameters, which effectively improves the randomness of the second sequence generation and improves the scrambling performance.
  • the originating device determines the third sequence according to the third identifier; the value of the third identifier is an integer greater than 1007 and less than 1024; the originating device performs a check on the third sequence according to the third sequence.
  • the first control information is scrambled; the originating device sends the scrambled first control information.
  • the cell identifier is used for scrambling, which results in the inability to scramble control information or data in the side link. Identify and determine a different third sequence, avoiding the possibility of the same scenario in the scrambling sequence between the cellular link and the side link, and effectively improving the scrambling performance.
  • the originating device determines the parameters of the third sequence according to the third identifier; the parameters of the third sequence include at least one of the following: the initial value of the third sequence; The initial position of the three sequence; the root sequence number of the third sequence; the cyclic shift value of the third sequence; the covering orthogonal code of the third sequence.
  • the parameters of different third sequences can be determined according to the third identifier, which effectively improves the randomness of the third sequence generation and improves the scrambling performance.
  • the information indicated by the first control information includes at least one of the following: priority information of the data; modulation and coding mode of the data; Indication information; the type or format of the second control information; indication information used to indicate the transmission resource of the data; indication information used to indicate the transmission interval of the initial transmission or retransmission of the data; The indication information of the data transmission resource reservation.
  • the information indicated by the second control information includes at least one of the following: a source identifier, a destination identifier, a process number of a hybrid automatic repeat request, and indication information of a retransmission or redundancy version.
  • the originating device Position indication information, minimum communication distance indication information, channel status indication information, and channel status indication reference signal indication information.
  • the first parameter including the information indicated by the first control information and/or the information indicated by the second control information is used to determine Then scramble the data, or by including the information indicated by the first control information according to the second parameter, determine the second sequence, and then scramble the second control information, which can effectively increase the data Or scrambling between the second control information or generating a reference signal is used to transmit the randomness of the data, and reduce or solve the conflict between the resources for transmitting the data or the control information, and improve the reliability of the transmission link.
  • the first parameter further includes at least one of the following: a CRC mask used to transmit the first control information; a CRC check bit used to transmit the first control information; 2. The CRC mask of the control information; the CRC check bit of the second control information; the time unit number used to transmit the data; the first identifier, wherein the value of the first identifier is greater than 1007 and less than 1024 Integer.
  • the second parameter further includes at least one of the following: a CRC mask used to transmit the first control information; a CRC check bit used to transmit the first control information; 2. The time unit number of the control information; the second identifier; wherein the value of the second identifier is an integer greater than 1007 and less than 1024.
  • the selection range of the first parameter and the second parameter is increased, and the randomness of the first sequence and the second sequence can be improved, and the reliability of scrambling or generating a reference signal for data transmission can be improved.
  • the total number of bits of the parameter of the first sequence is not greater than a preset value; the total number of bits of the parameter of the second sequence is not greater than the preset value; the total number of bits of the parameter of the third sequence Not greater than the preset value.
  • a communication device in a second aspect, is provided, and the device has the function of realizing the behavior in the method example of the first aspect.
  • the device may be located in the originating device or the receiving device, or be the originating device or the receiving device.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processing unit and a transceiving unit, and these units can execute the corresponding steps or functions in the above-mentioned method example of the first aspect, including the transceiving unit and the processing unit.
  • the processing unit is configured to determine a first sequence by the originating device according to a first parameter, where the first parameter includes information indicated by the first control information and/or information indicated by the second control information; the originating device is configured according to the first parameter
  • the data is scrambled in a sequence; wherein the first control information, the second control information and the data are located in the same time unit, and the first control information is used to indicate the first transmission parameter of the data,
  • the second control information is used to indicate a second transmission parameter of the data; the originating device sends the scrambled data.
  • the processing unit is configured to determine the parameters of the first sequence according to the first parameters; the parameters of the first sequence include at least one of the following: the initial value of the first sequence; The initial position of the first sequence; the root sequence number of the first sequence; the cyclic shift value of the first sequence; the covering orthogonal code of the first sequence.
  • the processing unit is configured to determine a second sequence according to a second parameter, where the second parameter includes information indicated by the first control information; Second, the control information is scrambled; the transceiver unit is used to send the scrambled second control information.
  • the processing unit is configured to determine the parameters of the second sequence according to the second parameters; the parameters of the second sequence include at least one of the following: the initial value of the second sequence; The initial position of the second sequence; the root sequence number of the second sequence; the cyclic shift value of the second sequence; the covering orthogonal code of the second sequence.
  • the processing unit is configured to determine a third sequence according to a third identifier; the value of the third identifier is an integer greater than 1007 and less than 1024; the originating device is based on the third sequence, Scramble the first control information; the transceiver unit is configured to send the scrambled first control information.
  • the processing unit is configured to determine the parameters of the third sequence according to the third identifier; the parameters of the third sequence include at least one of the following: the initial value of the third sequence; The initial position of the third sequence; the root sequence number of the third sequence; the cyclic shift value of the third sequence; the covering orthogonal code of the third sequence.
  • a receiving device receives scrambled data; the receiving device determines a first sequence according to a first parameter, and the first parameter includes information indicated by first control information and / Or information indicated by the second control information; wherein the first control information, the second control information, and the data are located in the same time unit, and the first control information is used to indicate the first transmission of the data Parameter, the second control information is used to indicate a second transmission parameter of the data; the receiving device descrambles the scrambled data according to the first sequence.
  • the first sequence is determined according to the first parameter including the information indicated by the first control information and/or the information indicated by the second control information, and then the data is descrambled, which improves the reliability of data transmission.
  • the receiving device determines the parameters of the first sequence according to the first parameters; the parameters of the first sequence include at least one of the following: the initial value of the first sequence; the The initial position of the first sequence; the root sequence number of the first sequence; the cyclic shift value of the first sequence; the covering orthogonal code of the first sequence.
  • the receiving end device receives the scrambled second control information; the receiving end device determines the second sequence according to the second parameter, and the second parameter includes the information indicated by the first control information; The originating device descrambles the scrambled second control information according to the second sequence.
  • the receiving device determines the parameters of the second sequence according to the second parameters; the parameters of the second sequence include at least one of the following: the initial value of the second sequence; the The initial position of the second sequence; the root sequence number of the second sequence; the cyclic shift value of the second sequence; the covering orthogonal code of the second sequence.
  • the receiving end device receives the scrambled first control information; the receiving end device determines the third sequence according to the third identifier; the value of the third identifier is an integer greater than 1007 and less than 1024 The receiving end device descrambles the scrambled first control information according to the third sequence.
  • the receiving device determines the parameters of the third sequence according to the third identifier; the parameters of the third sequence include at least one of the following: the initial value of the third sequence; The initial position of the third sequence; the root sequence number of the third sequence; the cyclic shift value of the third sequence; the covering orthogonal code of the third sequence.
  • the method for determining the first control information, the second control information, the first parameter, and the second parameter can refer to the corresponding steps in the method example of the first aspect, which will not be repeated here.
  • a communication device in a fourth aspect, has a function of realizing the behavior in the method example of the third aspect.
  • the device may be located in the originating device or the receiving device, or be the originating device or the receiving device.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processing unit and a transceiving unit.
  • These units can perform the corresponding steps or functions in the above-mentioned method example of the third aspect, including: a transceiving unit and a processing unit, wherein the transceiving unit Unit for receiving scrambled data; the processing unit for determining a first sequence according to a first parameter, the first parameter including information indicated by the first control information and/or information indicated by the second control information Wherein, the first control information, the second control information and the data are located in the same time unit, the first control information is used to indicate the first transmission parameter of the data, and the second control information is used To indicate the second transmission parameter of the data; descrambling the scrambled data according to the first sequence.
  • the processing unit is configured to determine the parameters of the first sequence according to the first parameters; the parameters of the first sequence include at least one of the following: the initial value of the first sequence; The initial position of the first sequence; the root sequence number of the first sequence; the cyclic shift value of the first sequence; the covering orthogonal code of the first sequence.
  • the transceiver unit is configured to receive the scrambled second control information; the processing unit is configured to determine the second sequence according to the second parameter, and the second parameter includes the information indicated by the first control information. Information; the originating device descrambles the scrambled second control information according to the second sequence.
  • the processing unit is configured to determine the parameters of the second sequence according to the second parameters; the parameters of the second sequence include at least one of the following: the initial value of the second sequence; The initial position of the second sequence; the root sequence number of the second sequence; the cyclic shift value of the second sequence; the covering orthogonal code of the second sequence.
  • the transceiver unit is configured to receive scrambled first control information; the processing unit is configured to determine a third sequence according to a third identifier; the value of the third identifier is greater than 1007 and An integer less than 1024; the receiving device descrambles the scrambled first control information according to the third sequence.
  • the processing unit is configured to determine the parameters of the third sequence according to the third identifier; the parameters of the third sequence include at least one of the following: the initial value of the third sequence; The initial position of the third sequence; the root sequence number of the third sequence; the cyclic shift value of the third sequence; the covering orthogonal code of the third sequence.
  • the beneficial effects of the implementation manners of the first aspect and the third aspect can be referred to, and details are not described herein again.
  • the method for determining the first sequence based on the first parameter, the method for determining the second sequence based on the second parameter, and the method for determining the third sequence based on the third identifier, and the first control information, the second control information, and the The method for determining the first parameter and the second parameter can refer to the corresponding steps in the method examples of the first aspect and the third aspect, which will not be repeated here.
  • a method for sending a reference signal determines a first sequence according to a first parameter, where the first parameter includes information indicated by the first control information and/or information indicated by the second control information;
  • the originating device determines the first reference signal according to the first sequence; wherein, the first control information, the second control information, and the data are located in the same time unit, and the first control information is used to indicate the data
  • the first transmission parameter of the second control information is used to indicate the second transmission parameter of the data; the originating device sends the first reference signal.
  • the first sequence is determined by the first parameter including the information indicated by the first control information and/or the information indicated by the second control information, and then the first reference signal for modulating the data is generated, which can effectively increase the data
  • the randomness of the reference signal thereby improving the demodulation of the data, reducing or solving the conflict between the resources of the transmission data, ensuring the efficient and accurate transmission of the data, and improving the reliability of the transmission link.
  • the originating device determines a second sequence according to a second parameter, and the second parameter includes information indicated by the first control information; the originating device determines a second reference signal according to the second sequence; The second reference signal is used by the originating device to modulate the second control information; the originating device sends the second reference signal.
  • the second sequence is determined by the second parameter including the information indicated by the first control information, and then the second reference signal modulating the second control information is generated, which can effectively increase the reference signal of the second control information. Randomness, thereby improving the demodulation of the second control information, reducing or solving the conflict between data transmission resources, ensuring the efficient and accurate transmission of the second control information and data, and improving the reliability of the transmission link .
  • the originating device determines a third sequence according to a third identifier; the originating device determines a third reference signal according to the third sequence; the third reference signal is used by the originating device to Modulation of the first control information; the originating device sends the third reference signal.
  • the third sequence is determined by the third identifier, and then the third reference signal modulating the first control information is generated, which can effectively increase the randomness of the reference signal of the third control information and the reference signal of the first control information. , Thereby improving the security and demodulation of the first control information and the second control information, reducing or solving the conflict between data transmission resources, and improving the reliability of the transmission link.
  • the method for determining the first control information, the second control information, the first parameter, and the second parameter can refer to the corresponding steps in the method example of the first aspect, which will not be repeated here.
  • the first sequence determined by the fifth aspect may be different from the first sequence determined by the first aspect/third aspect
  • the second sequence determined by the seventh aspect may be different from the first sequence determined by the first aspect/third aspect.
  • a sequence is different
  • the third sequence determined in the seventh aspect may be different from the third sequence determined in the first aspect/third aspect, which is not limited here.
  • a communication device in a sixth aspect, has a function of realizing the behavior in the method example of the fifth aspect.
  • the device may be located in the originating device or the receiving device, or be the originating device or the receiving device.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processing unit and a transceiving unit.
  • These units can perform the corresponding steps or functions in the above-mentioned method example of the fifth aspect, including: a transceiving unit and a processing unit, wherein the processing unit, It is used to determine a first sequence according to a first parameter, where the first parameter includes information indicated by the first control information and/or information indicated by the second control information; the first reference signal is determined according to the first sequence; The first control information, the second control information, and the data are in the same time unit, the first control information is used to indicate the first transmission parameter of the data, and the second control information is used to indicate the The second transmission parameter of the data; the transceiver unit is used to send the first reference signal.
  • the processing unit is configured to determine a second sequence according to a second parameter, where the second parameter includes information indicated by the first control information; determine a second reference signal according to the second sequence; the The second reference signal is used for the originating device to modulate the second control information; the transceiver unit is used for sending the second reference signal.
  • the processing unit is configured to determine a third sequence according to a third identifier; the originating device determines a third reference signal according to the third sequence; the third reference signal is used for the originating device Modulate the first control information; the transceiver unit is configured to send the third reference signal.
  • the beneficial effects of the implementation manners of the fifth aspect can be referred to, and details are not described herein again.
  • the method for determining the first sequence based on the first parameter, the method for determining the second sequence based on the second parameter, and the method for determining the third sequence based on the third identifier, and the first control information, the second control information, and the The method for determining the first parameter and the second parameter can refer to the corresponding steps in the method examples of the first aspect, the third aspect, and the fifth aspect, which will not be repeated here.
  • a method for receiving data determines a first sequence according to a first parameter, where the first parameter includes information indicated by first control information and/or information indicated by second control information;
  • the receiving device receives a first reference signal; the receiving device receives data according to the first sequence and the first reference signal; wherein the first control information, the second control information, and the data are located in In the same time unit, the first control information is used to indicate the first transmission parameter of the data, and the second control information is used to indicate the second transmission parameter of the data.
  • the first sequence is determined by the first parameter including the information indicated by the first control information and/or the information indicated by the second control information, and then the data is performed according to the received first reference signal and the first sequence.
  • Demodulation can effectively improve the demodulation of data, reduce or resolve conflicts between data transmission resources, ensure efficient and accurate data transmission, and demodulate data through the first sequence and the first reference signal.
  • the premise is that the first control information is correctly received. Therefore, it is helpful to verify the security transmission of the data and ensure that the data can be demodulated correctly under the premise of the correct transmission of the first control information, which improves the transmission link. Reliability.
  • the receiving device receives a second reference signal; the receiving device determines a second sequence according to a second parameter, and the second parameter includes information indicated by the first control information; the receiving device Receiving the second control information according to the second sequence and the second reference signal.
  • the second sequence is determined by the second parameter including the information indicated by the first control information, and then the second control information is demodulated according to the received second reference signal and the second sequence, which can effectively improve the 2.
  • the demodulation of control information reduces or resolves conflicts between resources for transmitting data, and demodulates the second control information through the second sequence and the second reference signal, which is helpful for data security
  • the transmission is checked to ensure that the second control information can be demodulated correctly only on the premise that the first control information is correctly transmitted, which improves the reliability of the transmission link.
  • the receiving device receives a third reference signal; the receiving device determines a third sequence according to a third identifier, and the value of the third identifier is an integer greater than 1007 and less than 1024; The receiving device receives the first control information according to the third sequence and the third reference signal.
  • the third sequence is determined by the third identifier, and then the third reference signal modulating the first control information is generated, which can effectively increase the randomness of the reference signal of the third control information and the reference signal of the first control information. , Thereby improving the security and demodulation of the first control information and the second control information, reducing or solving the conflict between data transmission resources, and improving the reliability of the transmission link.
  • the first control information, the second control information, the first parameter, and the second parameter can be determined by referring to the corresponding steps in the method example of the first aspect, which will not be repeated here.
  • the first sequence determined by the seventh aspect may be different from the first sequence determined by the first aspect/third aspect
  • the second sequence determined by the seventh aspect may be different from the first sequence determined by the first/third aspect.
  • a sequence is different
  • the third sequence determined in the seventh aspect may be different from the third sequence determined in the first aspect/third aspect, which is not limited here.
  • a communication device in an eighth aspect, has a function of realizing the behavior in the method example of the fifth aspect.
  • the device may be located in the originating device or the receiving device, or be the originating device or the receiving device.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processing unit and a transceiving unit.
  • These units can perform the corresponding steps or functions in the above-mentioned method example of the fifth aspect, including: a transceiving unit and a processing unit, wherein the transceiving unit, For receiving a first reference signal; a processing unit for determining a first sequence according to a first parameter, where the first parameter includes information indicated by the first control information and/or information indicated by the second control information; A sequence and the first reference signal to receive data; wherein, the first control information, the second control information, and the data are located in the same time unit, and the first control information is used to indicate the first control information of the data A transmission parameter, and the second control information is used to indicate a second transmission parameter of the data.
  • a possible design is that the transceiver unit is used to receive the second reference signal; the processing unit is used to determine the second sequence according to the second parameter, and the second parameter includes the information indicated by the first control information; the receiving device Receiving the second control information according to the second sequence and the second reference signal.
  • the transceiver unit is configured to receive the third reference signal; the processing unit is configured to determine the third sequence according to the third identifier, and the value of the third identifier is an integer greater than 1007 and less than 1024; The receiving device receives the first control information according to the third sequence and the third reference signal.
  • a communication device in a ninth aspect, has the function of realizing the originating device or the receiving device described in the above method, and it includes any one of the first aspect, the third aspect, any one of the possible implementation manners of the first aspect, or any of the third aspect.
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the device may be a sending device or a receiving device.
  • the foregoing apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the originating device or the receiving device in the foregoing method.
  • the device may further include one or more memories, where the memory is used for coupling with the processor and stores program instructions and/or data necessary for the device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the foregoing device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the device executes the first aspect, the third aspect, and the first aspect Any one of the possible implementation manners, or the method completed by the originating device or the receiving device in any one of the possible implementation manners of the third aspect.
  • the foregoing apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the originating device or the receiving device in the foregoing method.
  • the apparatus may further include one or more memories, where the memories are used for coupling with the processor and store necessary program instructions and/or data for the terminal device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the device may be located in the originating device or the receiving device, or be the originating device or the receiving device.
  • the foregoing device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the device executes the first aspect, the third aspect, and the first aspect. Any one of the possible implementation manners, or the method completed by the originating device or the receiving device in any one of the possible implementation manners of the third aspect.
  • a computer-readable storage medium for storing a computer program, and the computer program includes a method for executing any one of the first aspect, the second aspect, the first aspect, or the second aspect Instructions for the method in any one of the possible implementation modes.
  • a computer program product includes computer program code, which when the computer program code runs on a computer, causes the computer to execute the first aspect, the third aspect, and the first aspect. Any one of the possible implementation manners of the aspect, or any one of the possible implementation manners of the third aspect.
  • a communication device such as a chip system, which is connected to a memory, and is used to read and execute software programs stored in the memory, and execute the above-mentioned first, third, and first aspects. Any one of the possible implementation manners of the aspect or the method in any one of the possible implementation manners of the third aspect.
  • a communication device in a thirteenth aspect, has the function of implementing the originating device or the receiving device described in the above method, and it includes functions for executing any one of the fifth aspect, the seventh aspect, and the fifth aspect, or the seventh aspect.
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the device may be a sending device or a receiving device.
  • the foregoing apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the originating device or the receiving device in the foregoing method.
  • the device may further include one or more memories, where the memory is used for coupling with the processor and stores necessary program instructions and/or data for the device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the foregoing device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the device executes the fifth aspect, the seventh aspect, and the fifth aspect Any one of the possible implementation manners, or the method completed by the originating device or the receiving device in any one of the seventh aspect possible implementation manners.
  • the foregoing apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the originating device or the receiving device in the foregoing method.
  • the apparatus may further include one or more memories, where the memories are used for coupling with the processor and store necessary program instructions and/or data for the terminal device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the device may be located in the originating device or the receiving device, or be the originating device or the receiving device.
  • the foregoing device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store computer programs
  • the processor is used to run the computer programs in the memory so that the device executes the fifth aspect, the seventh aspect, and the fifth aspect. Any one of the possible implementation manners, or the method completed by the originating device or the receiving device in any one of the seventh aspect possible implementation manners.
  • a computer-readable storage medium for storing a computer program, and the computer program includes a method for executing any one of the fifth aspect, the seventh aspect, and the fifth aspect, or the seventh aspect. Any one of the possible implementations of the method in the aspect.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the above-mentioned fifth aspect, seventh aspect, and fifth aspect. Any one of the possible implementation manners of the aspect, or any one of the possible implementation manners of the seventh aspect, or a method of any one of the possible implementation manners of the fourth aspect.
  • a communication device such as a chip system, etc., which is connected to a memory and is used to read and execute software programs stored in the memory, and execute the above-mentioned fifth, seventh, and fifth aspects. Any one of the possible implementation manners of the aspect, or the method in any one of the possible implementation manners of the seventh aspect.
  • FIGS. 1a-1d are schematic diagrams of a wireless communication system network architecture provided by an embodiment of the present application.
  • FIGS. 2a-2d are schematic diagrams of the structure of a data channel provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for sending data provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a method for receiving data provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for sending a reference signal according to an embodiment of the present application
  • FIG. 6 is a schematic flowchart of a method for receiving data provided by an embodiment of the present application.
  • FIGS. 7a-7c are schematic diagrams of the structure of a data channel provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as the fourth generation (4th Generation, 4G), 4G systems including LTE systems, and worldwide interoperability for microwave access (WiMAX) communication systems, Future 5th Generation (5G) systems, such as NR, and future communication systems, such as 6G systems.
  • 4G fourth generation
  • 5G Future 5th Generation
  • 6G future communication systems
  • the technical solutions provided by the embodiments of the present application can be applied to cellular links, and can also be applied to links between devices, such as device-to-device (D2D) links.
  • the D2D link or the V2X link may also be referred to as a side link (SL), where the side link may also be referred to as a side link or a secondary link.
  • the aforementioned terms all refer to links established between devices of the same type, and have the same meaning.
  • the so-called devices of the same type can be the link between the terminal device and the terminal device, the link between the base station and the base station, and the link between the relay node and the relay node.
  • This application The embodiment does not limit this.
  • D2D links defined by 3GPP version (Rel)-12/13, and there are also car-to-car, car-to-mobile, or car-to-any entity defined by 3GPP for the Internet of Vehicles.
  • V2X link including Rel-14/15. It also includes the V2X link based on the NR system of Rel-16 and subsequent versions that are currently being studied by 3GPP.
  • the word "exemplary” is used to mean serving as an example, illustration, or illustration. Any embodiment or design solution described as an "example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, the term example is used to present the concept in a concrete way.
  • Terminal devices including devices that provide users with voice and/or data connectivity, such as handheld devices with wireless connection functions, or processing devices connected to wireless modems.
  • the device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • the equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point (access point, AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), or user equipment (user device) and so on.
  • it can include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, handheld, and computer-built mobile devices, smart wearable devices, terminal devices in the future 5G network, or Terminal equipment in the PLMN network that will evolve in the future, etc.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the device may also be a wearable device or the like.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be regarded as vehicle-mounted terminal equipment, for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU). ); if it is located on a roadside terminal device (for example, placed in a roadside unit or installed in a roadside unit), it can be regarded as a roadside terminal device.
  • the roadside terminal device is also called a roadside unit (Road Side Unit, RSU).
  • the terminal device of the present application may also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip, or vehicle-mounted unit built into a vehicle as one or more components or units. The vehicle passes through the built-in vehicle-mounted module, vehicle-mounted module, On-board components, on-board chips, or on-board units can implement the method of the present application.
  • Network-side equipment including access network (AN) equipment, such as a base station (for example, an access point), which can refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network
  • AN access network
  • a network side device in a V2X technology is a road side unit (RSU).
  • the base station can be used to convert received air frames and Internet Protocol (IP) packets into each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network may include an IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network side equipment can also coordinate the attribute management of the air interface.
  • the network side equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), Or it can also include the next generation node B (gNB) in the 5G NR system, or it can also include the centralized unit (CU) and the centralized unit (CU) in the cloud radio access network (CloudRAN) system.
  • a distributed unit (DU) is not limited in the embodiment of the present application.
  • the network device can be an access network device (or called an access website point).
  • the access network equipment refers to equipment that provides network access functions, such as a radio access network (RAN) base station and so on.
  • the network equipment may specifically include a base station (base station, BS), or include a base station and a radio resource management device for controlling the base station, and so on.
  • the network equipment may also include relay stations (relay equipment), access points, and base stations in the future 5G network, base stations in the future evolved PLMN network, or NR base stations, etc.
  • the network device can be a wearable device or a vehicle-mounted device or an RSU.
  • the network device can also be a communication chip with a communication module.
  • network equipment includes but is not limited to: next-generation base stations (gnodeB, gNB) in 5G, evolved node B (evolved node B, eNB) in LTE system, radio network controller (RNC), Node B (NB) in WCDMA system, wireless controller under CRAN system, base station controller (BSC), base transceiver station (BTS) in GSM system or CDMA system, Home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (BBU), transmission point (TRP), transmission point (TP), mobile switching center, etc. .
  • next-generation base stations gnodeB, gNB
  • gNB next-generation base stations
  • gNB next-generation base stations
  • gNB next-generation base stations
  • gNB next-generation base stations
  • gNB next-generation base stations
  • gNB next-generation base stations
  • gNB next-generation base stations
  • gNB next-generation base stations
  • gNB next-generation base stations
  • the transmitter also called the transmitting device, corresponds to the receiver.
  • the transmitter is used to transmit information, such as data packets, control information, and instruction information.
  • a receiver also called a receiving device, corresponds to a transmitter.
  • the receiver is used to receive the information sent by the transmitter.
  • the receiver can also send feedback information to the transmitter. That is to say, a device can be both a transmitter and a transmitter. Can be used as a receiver.
  • the transmission link includes the side link between two devices and the uplink and downlink between the terminal device and the network side device.
  • Sidelink mainly refers to the link established between devices of the same type, and can also be called side link, secondary link or auxiliary link, etc. This name is not used in the embodiments of this application. limited.
  • the equipment of the same type can be a link between a terminal device and a terminal device, a link between a base station and a base station, or a link between a relay node and a relay node, etc.
  • the implementation of this application The example does not limit this.
  • V2X technology is an application of D2D technology in the Internet of Vehicles, or V2X is a specific D2D or sidelink technology.
  • the side link is a direct link connection between two V2X terminals
  • the V2X terminal is a terminal with a V2X function, such as the same type of equipment described above.
  • SL transmission the data transmission of two V2X terminals on the side link is called SL transmission.
  • a side link connection can be established.
  • the V2X terminal as the initiator sends a request to establish a side link connection to the network side device. If the network side device agrees to the V2X terminal to establish a side link connection, it will send a request to establish a side link connection to the V2X terminal. Configuration information, the V2X terminal establishes a side link connection with another V2X terminal according to the configuration information sent by the network side device.
  • Time domain resources including time units, time units can be slots, mini-slots, symbols or other time domain granularities (such as system frames, subframes), one of which can be It includes at least one symbol, for example, 14 symbols, or 12 symbols.
  • This application uses a time slot as an example for description, but it is not limited to the implementation of the time slot.
  • a time slot can be composed of at least one of symbols used for downlink transmission, flexible symbols, and symbols used for uplink transmission.
  • the composition of such a time slot is called a different slot format (slot format).
  • slot format format, SF
  • Timeslots can have different timeslot types, and different timeslot types include different numbers of symbols. For example, a mini slot contains less than 7 symbols, 2 symbols, 3 symbols, 4 symbols, etc. Ordinary time slot (slot) contains 7 symbols or 14 symbols and so on. Depending on the subcarrier spacing, the length of each symbol can be different, so the length of the slot can be different.
  • Sub-carrier spacing is the spacing value between the center positions or peak positions of two adjacent sub-carriers in the frequency domain in the OFDM system.
  • SCS Sub-carrier spacing
  • the baseline is 15kHz, which can be 15kHz ⁇ 2n, and n is an integer, ranging from 3.75, 7.5 to 480kHz.
  • Table 1 For example, regarding the subcarrier spacing, refer to the following Table 1:
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] 0 15 1 30 2 60 3 120 4 240
  • is used to indicate the sub-carrier spacing.
  • the sub-carrier spacing is 15 kHz
  • the sub-carrier spacing is 30 kHz.
  • the length of a time slot corresponding to different subcarrier intervals is different.
  • the length of a time slot corresponding to the subcarrier interval of 15kHz is 0.5ms
  • the length of a time slot corresponding to the subcarrier interval of 60kHz is 0.125ms, etc.
  • the length of a symbol corresponding to different subcarrier intervals is also different.
  • the bandwidth part (BWP) is defined in a carrier, which can also be called the carrier bandwidth part (carrier bandwidth part).
  • the BWP includes several consecutive resource units in the frequency domain, such as a resource block (resource block, RB).
  • the bandwidth part may be a downlink or uplink bandwidth part, and the terminal device receives or sends data on the data channel in the activated bandwidth part.
  • Frequency domain resources include sub-channels, bands, carriers, bandwidth parts (Band Width Part, BWP), resource blocks (Resource Block, RB), or resource pools, etc.
  • a subchannel is the smallest unit of frequency domain resources occupied by a physical side-line shared channel, and a subchannel may include one or more resource blocks (RB).
  • the bandwidth of the wireless communication system in the frequency domain may include multiple RBs.
  • the included PRBs may be 6, 15, 25, 50, and so on.
  • one RB can include several subcarriers.
  • one RB includes 12 subcarriers, where each subcarrier interval can be 15kHz.
  • other subcarrier intervals can also be used, such as 3.75kHz. , 30kHz, 60kHz or 120kHz sub-carrier spacing, there is no limitation here.
  • Sequence resources also called code domain resources, are related parameters used to indicate sequences.
  • the parameters of the sequence include the initial position of the sequence, the length of the sequence, and the initial value of the sequence; for the low-bee-average ratio sequence (such as ZC (Zadoff–Chu) sequence), the parameters of the sequence include the root sequence, mask, and scramble. Code, Cyclic Shift (CS) or Orthogonal Cover Code (OCC), etc.
  • the initial value of the sequence refers to the initial value of the shift register that generates the sequence for a random sequence (such as Gold sequence, m sequence).
  • the random sequence used in transmission a is the initial position of the random sequence, L is the length of the random sequence, generally a is a non-negative integer, such as a is 0, or a is 2, etc.
  • V2X data transmission method In V2X, it is mainly the communication between terminal equipment and terminal equipment. For the transmission mode between terminal equipment and terminal equipment, the current standard protocols support broadcast, multicast, and unicast.
  • the broadcast mode means that the terminal device as the sender uses the broadcast mode to send data.
  • Multiple terminal device ends can receive sidelink control information (SCI) from the sender or carried on the side link Data information on the sidelink shared channel (SSCH).
  • SCI sidelink control information
  • SSCH sidelink shared channel
  • the way to ensure that all terminal devices can parse the control information from the sender is that the sender does not scramble the control information, or the sender uses a scrambling code known to all terminal devices to add control information to the control information. Disturb.
  • the multicast mode is similar to broadcast transmission.
  • the terminal device as the sender uses the multicast mode for data transmission, and a group of terminal devices can parse SCI or SSCH.
  • the unicast mode is that one terminal device sends data to another terminal device, and other terminal devices do not need or cannot parse the data.
  • Reference signal mainly refers to the transmission of reference signal for data modulation and demodulation.
  • the device sending the reference signal can be the originating device sending control information and the first data, or it can be the device that performs measurement or provides a synchronization source.
  • Reference signals are used for the following purposes: carrying control information and data for transmission, performing channel state information (Channel State Information, CSI), radio resource management (Radio Resource Management, RRM) or radio link monitoring (Radio Link Monitoring, RLM) measurement, Perform synchronization, etc.
  • CSI Channel State Information
  • RRM Radio Resource Management
  • RLM Radio Link Monitoring
  • the specific reference signal can be a Physical Sidelink Shared Channel (PSSCH)
  • the demodulation reference signal (Demodulation Reference Signal, DMRS) used can be the Physical Sidelink Control Channel (PSCCH); when the reference channel is used for CSI, RRM or RLM measurement, the reference signal can be RS, Or channel sounding reference signal (Sounding Reference Signal, SRS), or CSI-RS, etc.; when the reference signal is synchronized, the reference signal can be the reference signal used by the physical sidelink broadcast channel (PSBCH), etc. .
  • channel state information reference signal channel state information-reference signal, CSI-RS sequence
  • CSI-RS channel state information-reference signal
  • the sequence of the demodulation reference signal (DMRS) can be generated as follows:
  • the ZC sequence also known as Zadoff–Chu, Frank–Zadoff–Chu (FZC) sequence or Chu sequence, is one of the perfect sequences. This sequence has ideal periodic autocorrelation characteristics.
  • the main parameters for generating the ZC sequence include one or more of the root sequence number of the sequence, the cyclic shift value and the orthogonal cover code.
  • the terms “system” and “network” in the embodiments of this application can be used interchangeably.
  • “Multiple” refers to two or more than two. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application.
  • “At least one” can be understood as one or more, for example, one, two or more. For example, including at least one means including one, two or more, and it does not limit which ones are included. For example, if at least one of A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C are included. In the same way, the understanding of "at least one" and other descriptions is similar.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects.
  • first time slot and the second time slot are only used to distinguish different time slots, but not to limit the priority or importance of the two time slots.
  • the Internet of Things is a network that is extended and expanded on the basis of the Internet provided by the communication system. It can collect any needs through various devices and technologies such as various information sensors, radio frequency identification technology, global positioning system, infrared sensors, laser scanners, etc.
  • the core and foundation of the Internet of Things is still the Internet, which is a network extended and expanded on the basis of the Internet, and its user end extends and extends to any information exchange and communication between things.
  • the application field of the Internet of Things involves all aspects, such as the application in intelligent transportation.
  • the Internet of Vehicles mainly refers to that the on-vehicle equipment on the vehicle effectively routes the dynamic information of all vehicles in the information network platform through wireless communication technology, and provides different functional services in the operation of the vehicle connection, aiming to improve the safety of the vehicle and automate driving. And improve traffic efficiency.
  • the realization of the Internet of Vehicles mainly relies on the V2X technology.
  • the core of the V2X technology is to realize the interconnection of the vehicle connection and everything. It is mainly used in the vehicle to everything (V2X) scene.
  • V2X specifically includes the vehicle and the vehicle (Vehicle).
  • V2V Vehicle-to-Pedestrian
  • V2I Vehicle-to-Infrastructure
  • V2N Vehicle-to-Network
  • V2V refers to the communication between vehicles
  • V2P refers to the communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers)
  • V2I refers to the communication between the vehicle and the roadside unit (RSU)
  • V2N refers to the communication between the vehicle and the roadside unit (RSU). It is the communication between the vehicle and the base station/network.
  • the network device 102 can schedule data of the terminal 101 through the first control information and the second control information.
  • the first control information may be first downlink control information (downlink control information, DCI) or first uplink control information (uplink control information, UCI)
  • the second control information may be second DCI or second UCI.
  • the first DCI and the second DCI may be used to schedule downlink data sent by the network device 102 to the terminal 101, and the downlink data may be carried on a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the first UCI and the second UCI may be used to schedule downlink data sent by the terminal 101 to the network device 102, and the downlink data may be carried on a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • FIG. 1b is a schematic diagram of another wireless communication system network architecture provided by an embodiment of this application.
  • the wireless communication system may include a terminal 103 and a terminal 104, and sidelink (SL) communication may be performed between the terminal 103 and the terminal 104.
  • the terminal 103 can be used as a sending device, and the terminal 104 can be used as a receiving device.
  • the terminal 104 may be used as a sending device, and the terminal 103 may be used as a receiving device.
  • the terminal 103 can schedule data of the terminal 104 through the first control information and the second control information.
  • the first control information may be a first SCI
  • the second control information may be a second SCI, where the first SCI and the second SCI may be used to schedule data sent by the terminal 103 to the terminal 104, and/ Or, used to schedule data sent from the terminal 104 to the terminal 103.
  • the data transmitted between the terminal 103 and the terminal 104 may be carried on a physical sidelink shared channel (PSSCH).
  • PSSCH physical sidelink shared channel
  • the terminal 103 and the terminal 104 may be user equipment, terminal, RSU, access terminal, terminal unit, terminal station, mobile station, remote station, remote terminal, mobile terminal, wireless communication equipment, terminal agent or terminal equipment, etc., specifically Please refer to the description of the terminal 101 above.
  • the terminal 103 can also access the access network device, so that the access network device can configure the SL link between the terminal 103 and the terminal 104, and the SL link is used for the SL communication between the terminal 103 and the terminal 104 .
  • the access network device may be a device such as a RAN base station.
  • the terminal 104 can access the access network device shown in FIG. 1b, or access other access network devices not shown in FIG. 1b.
  • FIG. 3 is a schematic diagram of another wireless communication system network architecture provided by an embodiment of this application.
  • the wireless communication system includes: multiple vehicle-mounted devices (UE1, UE2, UE3 as shown in Figure 1c), which can communicate with each other; one or more RSUs, which can communicate with each vehicle-mounted device and /Or eNB for communication; one or more LTE base station equipment (eNB), which can communicate with each vehicle-mounted equipment and/or RSU; one or more NR base station equipment (gNB), which can communicate with each vehicle-mounted equipment and/or RSU communicates; one or more global navigation satellite systems (Global Navigation Satellite System, GNSS), which can provide positioning and timing information for other network elements in the general information system.
  • the vehicle-mounted equipment can move with the vehicle at a high speed, for example, when UE1 and UE2 move relative to each other, they have the maximum relative moving speed.
  • the various devices shown in FIG. 1c can communicate with each other, and the spectrum of the cellular link can be used for communication, and the intelligent traffic spectrum around 5.9 GHz can also be used.
  • the technology for each device to communicate with each other can be enhanced based on the LTE protocol, or it can be enhanced based on the D2D technology.
  • the first control information and the second control information can be used to schedule data between the two devices.
  • the first DCI and the second DCI can be used to schedule the downlink data sent by the gNB/eNB/RSU to the UE1/UE2/UE3, and the downlink data can be carried on the PDSCH.
  • the first UCI and the second UCI can be used to schedule uplink data sent by UE1/UE2/UE3 to gNB/eNB/RSU, and the uplink data can be carried on the PUSCH.
  • UE1 can schedule the data of terminal UE2/UE3 through the first SCI and the second SCI. The data transmitted between UE1 and UE2/UE3 can be carried on the PSSCH.
  • the eNB and/or gNB are optional. When there is an eNB and/or gNB, it is a V2X scenario with network coverage, and if there is no eNB and/or gNB, it is a V2X scenario without network coverage.
  • embodiments of the present application provide a control information sending method and a receiving method, which are used to determine the transmission resource of the second control information in the two-level control information. In order to realize data transmission between the sending device and the receiving device according to the two-level control information.
  • Figure 1d is a schematic diagram of an application scenario.
  • the application scenario shown in Figure 1d is a V2X scenario, which includes vehicle-mounted equipment (including UE1, UE2, and UE3 as shown in Figure 1d), and roadside units (as shown in Figure 1d).
  • 1d includes RSU1), base station equipment (including eNB and gNB as shown in Figure 1d), and global navigation satellite system (including GNSS as shown in Figure 1d).
  • Each device in this scenario can be one or more .
  • Vehicle-mounted devices can communicate with each other to realize information exchange and information sharing. For example, vehicle-connected state information including vehicle location and driving speed can be used to determine road traffic conditions.
  • RSU can communicate with various vehicle-mounted equipment and/or base station equipment, and can be used to detect road surface conditions and guide vehicles to select the best driving path.
  • the base station equipment communicates with each vehicle-mounted equipment and/or RSU, and GNSS can provide positioning and timing information for other network elements.
  • the in-vehicle devices in the Internet of Vehicles can also communicate with people, and specific users can communicate with the vehicle through wireless communication means such as Wi-Fi, Bluetooth, and cellular, so that the user can monitor and control the vehicle through the corresponding mobile terminal device.
  • the base station equipment in Figure 1d is optional. If there is a base station equipment, it is a scene with network coverage; if there is no base station equipment, it is a scene without network coverage.
  • Each of the above-mentioned devices can communicate with each other through the side link and the uplink and the downlink, and the spectrum of the cellular link can be used for communication, and the intelligent traffic spectrum around 5.9 GHz can also be used.
  • the technology for each device to communicate with each other can be enhanced based on the communication network protocol (such as the LTE protocol), and can be enhanced based on the D2D technology.
  • FIG. 3 is a flowchart of a method for sending data provided by an embodiment of the present application.
  • the application of this method to the network architecture shown in FIG. 1a to FIG. 1d is taken as an example.
  • the method can be executed by two devices.
  • the two devices are, for example, an originating device and a receiving device.
  • the originating device can be a terminal device or a network side device, or can support the terminal device or network side device to implement the method.
  • the communication device or the originating device may be a communication chip (for example, a communication baseband chip system) that can support the terminal device or the network side device to implement the functions required by the method.
  • the receiving end device can be a terminal device or a network side device or a communication device that can support the terminal device or network side device to implement the functions required by the method, or the receiving end device can be a terminal device or a network side device.
  • a communication chip (such as a baseband communication chip system) that implements the functions required by the method on the side device.
  • the originating device can be the UE in Figure 1a-1d, and the receiving device can also be the UE in Figure 1a-1d.
  • the method is applied to Figure 1a-
  • the originating device can be any one of UE1-UE3, and the receiving device can be any UE other than the originating device among UE1-UE3, or it can be RSU1; or, the originating device It can be RSU1, and the receiving device can be any one of UE1-UE3.
  • the embodiments of the present application do not impose restrictions on the implementation manners of the originating device and the receiving device.
  • the embodiments of the present application only take execution through the originating device and the receiving device as an example, and are not limited to this scenario.
  • the originating device can be a network side device.
  • the network side device is a base station, and the receiving end device can also be a terminal device;
  • the originating device can be a terminal device.
  • the receiving device may be a network side device, for example, a base station.
  • the originating device can also be called a data transmitter. Specifically, the originating device determines a first resource for transmitting data, and sends the data through the first resource. In a possible manner, the originating device may indicate the first resource to the receiver receiving the data through control information, so that the receiving device receives the data according to the first resource.
  • the first resource can be configured by the base station for the originating device, can also be configured in a resource pool, or can be selected by the originating device in transmission resources, which is not limited here. Take the transmission resource including the first resource and the second resource as an example.
  • the first resource may be a resource used to send data, or a resource used to send control information.
  • the second resource may be a resource for receiving data, or a resource for receiving control information.
  • the originating device when the originating device is the originating device, it can send data to the receiving device on the first resource, or when the originating device is the receiving device, it can receive data from the originating device on the second resource; when the originating device is the originating device, it can When the control information is sent on the first resource, or the originating device is used as the receiving device, the control information from the originating device can be received on the second resource.
  • the control information here may be scheduling information indicating data transmission or HARQ response information.
  • the control information can carry the SCI on the PSCCH to indicate the first resource, and can carry data on the PSSCH.
  • the control information can be used to indicate the first resource by carrying DCI on the PDCCH.
  • the first resource may include the first time slot where the data is located (or the first time slot occupied by the data), the first frequency domain resource where the data is located (or the first frequency domain resource occupied by the data), and the At least one of the first reference signal sequence resource carrying the data and the scrambling sequence of the data.
  • the originating device sends control information for instructing the receiving device to receive data according to the control information.
  • the control information may include the first resource used to transmit data.
  • control information can be carried on the PDCCH, and data can be carried on the PDSCH.
  • control information can be carried on the PSCCH, and data can be carried on the PSSCH.
  • the PSCCH carrying control information may be located in the same time unit as the PSSCH carrying data, and the PSCCH carrying control information may also be located before the PSSCH carrying data, which is not limited here.
  • PSCCH may include PSCCH1 and PSCCH2, PSCCH1 is used to carry the first control information SCI-1, and PSCCH2 is used to carry the second control Information SCI-2.
  • the first control information may be used to indicate the resources necessary for the receiving device to receive the data.
  • PSCCH1 and PSCCH2 are located on different symbols
  • PSCCH1 and PSCCH2 are located on the same symbol
  • PSCCH1 and PSCCH2 are located on the same symbol, and in the same time slot, it can also include automatic Gain control (automatic gain control, AGC), empty symbols (gap, GP);
  • AGC automatic gain control
  • empty symbols gap, GP
  • PSCCH1 and PSCCH2 are located on the same symbol, and in the same time slot, it can also include AGC1, GP1, AGC2, Fundamental Channel physics Sidelink Feedback Channel (Physical Sidelink Feedback Channel, PSFCH), GP2.
  • the information indicated by the first control information may include at least one of the following:
  • the priority information of the data The modulation and coding mode of the data; the indication information used to indicate the reference signal sequence pattern of the reference signal; the type or format of the second control information; the information used to indicate the data Indication information of the transmission resource; Indication information used to indicate the transmission interval of the initial transmission or retransmission of the data; Indication information used to indicate the reservation of the transmission resource of the data.
  • the indication information of the first transmission resource may be used to indicate the resource for transmitting the data.
  • the priority of the data occupies 3 bits
  • the modulation and coding method of the data is MCS, occupies 5 bits
  • determines the DMRS pattern of the data occupies 1, 2 or 3 bits (bits);
  • determines the type of SCI-2 of the data Or format SCI-2 type or format
  • determines the frequency domain resource (size and position) indication information for the initial transmission of data or retransmission of data or an indication of resource reservation for data retransmission or sending redundant versions Information
  • indication information of the time interval of data transmission indication information of the time interval between initial transmission and retransmission of data.
  • the first control information includes one or more of the following information, which can be described as:
  • Priority (priority) information for example: used to indicate the priority of the first data, used to indicate the level, size or range of the first data's importance, urgency, delay requirements, and reliability requirements;
  • Modulation and coding scheme for example: used to indicate the MCS used when sending the first data and/or the second control information
  • DMRS Demodulation reference signal
  • pattern for example: used to indicate a predefined or pre-configured pattern in the DMRS pattern used when transmitting the first data and/or the second control information which type;
  • SCI-2 type or format The type or format of the second control information SCI-2 (SCI-2 type or format), or the transmission method of the first data, for example: used to indicate the CRC mask used by SCI-2, the size of SCI-2 , SCI-2 is used to indicate which of unicast, multicast or broadcast transmission the first data is used for;
  • the originating device can determine whether to send the first data first or control according to the priority of the first data and the priority of the second data information. Exemplarily, if the priority of the first data is higher than the priority of the second data, the originating device determines that the data with the higher priority is processed first, and sends the first data on the first resource, that is, the priority guarantee is more important The transmission of data reduces the impact on the communication services to be carried out.
  • the second control information is used to instruct the receiving device to perform corresponding operations according to the second control information, for example, perform channel measurement, send feedback information, and so on.
  • the second control information includes one or more of the following information, which can be described as:
  • source identifier source identifier
  • physical layer source identifier physical layer source identifier
  • Indication information (required minimun communication distance) of the required communication distance, for example, it can be used to indicate the minimum communication distance required for the first data transmission;
  • the receiving device determines whether the received data needs to be forwarded according to the source identification of the data and the destination identification of the data.
  • the receiving device receives the retransmitted data or the data corresponding to the redundant version according to the process number of the hybrid automatic retransmission request and the indication information of the retransmission or redundancy version.
  • the receiving device measures the channel according to the channel status indication information and the indication information of the channel status indication reference signal, and generates and sends feedback information according to the corresponding parameters.
  • the first resource determined by the originating device for data transmission is divided into the first transmission parameter and the second transmission parameter according to the information indicated in the first control information and the second control information. That is, the first control information is used to indicate the first transmission parameter of the data.
  • the first transmission parameter may include: priority information used to transmit data, a modulation and coding method used to transmit data, and The reference signal sequence pattern indication information of the transmission data, the indication information of the first transmission resource, the indication information of the transmission interval, and the indication information of the resource reservation.
  • the second control information is used to indicate the second transmission parameter of the data;
  • the second transmission parameter includes: source identification, destination identification, process number of hybrid automatic repeat request, indication information of retransmission or redundancy version, so State the indication information of the location of the originating device, the minimum communication distance indication information, the channel state indication information, and the indication information of the channel state indication reference signal.
  • the originating device can send second control information.
  • the transmission resource used to transmit the second control information may be indicated by the first control information, or may be configured in a way of high-level signaling, or configured in a way of resource pool, which is not limited here.
  • the first control information may also include indication information of the second transmission resource, and the indication information of the second transmission resource is used to indicate the transmission resource of the second control information; in this case, the receiving device may The indicated transmission resource of the second control information receives the second control information.
  • the receiving device can receive the second control information according to the transmission resource of the second control information in the first control information; Data transmission resources, receiving the data.
  • PSCCH1 the position of PSCCH1 is earlier than PSCCH2, so that the receiving device can first obtain the first control information on PSCCH1, and then according to the transmission parameters of the second control information in the first control information and the resources of the second control information Indication information, determine PSCCH2, and then receive the second control information.
  • the PSCCH1 carrying the first control information and the PSCCH2 carrying the second control information may be located in the same time unit as the PSSCH carrying the data.
  • the PSCCH1 that carries the first control information may be located before the PSCCH2 that carries the second control information
  • the PSCCH2 that also carries the second control information may be located before the PSSCH that carries the data.
  • the transmission time unit can be determined according to needs. Make a limit.
  • control information and the data can be scrambled, and the corresponding scrambling method can be as follows: scramble the data according to the scrambling sequence.
  • a scrambling method can be in the following form:
  • c(i) is the scrambling sequence
  • b(i) is the data bit
  • the data here may be data before encoding, or data after channel encoding, which is not limited here.
  • the scrambling manner may also be any manner determined by the scrambling sequence in the prior art, and the foregoing embodiment is only an example.
  • the originating device may generate a scrambling sequence in a targeted manner according to the data to be sent. For example, the originating device sends first data to the receiving device, and the originating device sends second data to the originating device.
  • the originating device can generate a first scrambling sequence for the first data sent, and the originating device can be the second data sent.
  • the data generates a second scrambling sequence.
  • the first scrambling sequence and the second scrambling sequence may adopt the same sequence form, and different sequence parameters are selected to generate different scrambling sequences.
  • the scrambling sequence used for the data to be sent and the sequence used for generating the reference signal can be in the form of the random sequence that can be the same or different, and the random sequence can be based on the initial value and the non-zero value.
  • the initial state value is determined.
  • the non-zero initial state value may include: the initial position of the sequence, the root sequence number of the sequence, the cyclic shift value of the sequence, the covering orthogonal code of the sequence, and so on.
  • the embodiment of the present application provides a method for sending data.
  • the method can be applied to the scenarios shown in Figures 1a-1d, and can also be applied to other scenarios where transmission resources may conflict.
  • Step 301 The originating device determines the first sequence according to the first parameter
  • the originating device may first determine the form of the first sequence.
  • the first sequence is a cyclically shifted random sequence with a length of 31 bits.
  • the first sequence may be any of the scrambling sequences in the prior art, which is not limited here.
  • the originating device may determine the parameters of the first sequence according to the first parameters.
  • the first parameter may include at least one of the following: the initial value of the first sequence, the initial position of the first sequence, the root sequence number of the first sequence, and the cyclic shift value of the first sequence (cycle shift, CS), the Orthogonal Cover Code (OCC) of the first sequence.
  • the parameter of the first sequence may be the initial value of the first sequence.
  • the first sequence c(n) represents an initial sequence.
  • the first sequence c(n) can be generated based on a pseudo-random sequence, such as a small m sequence or a Gold sequence.
  • the sequence value of the sequence c(n) can be the initial value of the sequence C init to determine.
  • x 1 (n+31) (x 1 (n+3)+x 1 (n))mod 2
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod 2
  • N C 1600
  • the initial value of the second m sequence x 2 (n) is:
  • mod is the modulo operation, and mod2 represents the remainder of the logarithm divided by 2. According to the determined initial value c init of the first sequence c(n), the first sequence c(n) can be determined.
  • the parameter of the first sequence may be the initial value of the first sequence.
  • the initial value of the first sequence can be expressed as:
  • the parameter of the first sequence may be the initial position of the first sequence, for example, the first sequence c(n) may be used to generate the reference signal sequence.
  • different positions of the first sequence c(n) can be used as the initial positions of the reference signal sequence, so that different reference signal sequences can be obtained.
  • one reference signal sequence uses the position where the third element of the sequence c(n) starts as the initial position
  • another reference signal sequence uses the position where the fourth element of the sequence c(n) starts as the initial position.
  • the parameter of the first sequence may be the root sequence number of the first sequence.
  • the originating device determines the sequence group hop and/or sequence hop of the first sequence according to the first parameter, and then according to the sequence group hop and/or sequence hop The sequence jump generates the root sequence number of the first sequence.
  • u (f gh + f ss + g 1 (x)) mod 30, where the root sequence number is u.
  • This method can mainly target low PAPR sequences, such as ZC sequences.
  • g1(x), g2(x) and g3(x) can be determined according to the first parameter, c() is a random sequence, Is the time slot number corresponding to the sub-carrier interval ⁇ , m is the time slot number, n hop represents the indication information of frequency hopping, and the value is 1 during frequency hopping, otherwise it is 0.
  • n ID is the identifier configured or predefined by the base station, or the originating device ID, or the ID of the receiving device.
  • the parameter of the first sequence may be the cyclic shift value CS of the first sequence.
  • the first sequence is determined by the cyclic shift register according to the number of bits determined by the cyclic shift value by right-circulation or left-circulation.
  • the number of cyclic shift values is the total number of available cyclic shift values, for example, 4, 6, 8, 12, etc.
  • h(n) is the cyclic shift value
  • is the cyclic shift value
  • N is the length of the sequence, which is a positive integer
  • the reference signal sequence is generated according to the following formula by the cyclic shift value:
  • Mc is the length of the sequence used by the reference signal, which is a positive integer.
  • the parameter of the first sequence may be the covering orthogonal code of the first sequence.
  • Step 302 The originating device scrambles the data according to the first sequence
  • the first control information, the second control information, and the data are in the same time unit, the first control information is used to indicate the first transmission parameter of the data, and the second control information is used to Indicate the second transmission parameter of the data.
  • Step 303 The originating device sends the scrambled data.
  • the method for the sending device to send the scrambled data can be unicast, broadcast, multicast, etc., which are not limited here.
  • the embodiment of the present application provides a method for receiving data.
  • the method can be applied to the scenarios shown in Figures 1a-1d, and can also be applied to other scenarios where transmission resources may conflict.
  • Step 401 The receiving device receives the scrambled data.
  • the scrambled data received by the receiving device can be sent by the sending device to the receiving device through unicast, broadcast, multicast, etc., which is not limited here.
  • Step 402 The receiving device determines the first sequence according to the first parameter.
  • the receiving device determines the first parameter in a variety of ways. For example, it can be instructed by the sending device, it can be configured for the receiving device by high-level signaling, or it can be the first parameter configured in the resource pool. Not limited.
  • the way that the receiving device determines the first sequence according to the first parameter can also be the way indicated by the sending device, or it can be configured for the receiving device by high-level signaling, or it can be pre-set by the protocol, which is not limited here. .
  • Step 403 The receiving device descrambles the scrambled data according to the first sequence.
  • the method in which the receiving device descrambles the scrambled data through the first sequence may correspond to the manner in which the transmitting device scrambles the data through the first sequence.
  • the descrambled data may be determined in the following form data:
  • c(i) is the scrambling sequence
  • b(i) is the bit of the data after descrambling
  • the embodiment of the present application provides a method for sending a reference signal.
  • the method can be applied to the scenarios shown in Figs. 1a-1d, and can also be applied to other scenarios where transmission resources may conflict.
  • Figure 1d illustrates the specific process of the method in detail. As shown in Figure 5, the process includes:
  • Step 501 The originating device determines the first sequence according to the first parameter
  • the originating device may first determine the form of the first sequence.
  • the first sequence is a cyclically shifted random sequence with a length of 31 bits.
  • the first sequence may be any of the random sequences used to generate the reference signal sequence in the prior art, which is not limited here.
  • the originating device may determine the parameters of the first sequence according to the first parameters.
  • the first parameter may include: at least one of the following: the initial value of the first sequence, the initial position of the first sequence, the root sequence number of the first sequence, and the cyclic shift of the first sequence Value, the covering orthogonal code of the first sequence.
  • the first sequence for scrambling and determining data may be different from or the same as the first sequence used for the reference signal for modulating data, which is not limited here.
  • the random sequence selected for scrambling the data may be different from the random sequence used for the modulated reference signal, or may be the same.
  • the parameters of the first sequence used for generating the reference signal and the parameters of the first sequence used for scrambling may be different or the same, and are not limited here.
  • the first parameter of the first sequence used for generating the reference signal and the first parameter of the first sequence used for scrambling may be different or the same, which is not limited here.
  • Step 502 The originating device determines a first reference signal according to the first sequence
  • the first control information, the second control information, and the data are in the same time unit, the first control information is used to indicate the first transmission parameter of the data, and the second control information is used to Indicate the second transmission parameter of the data; the first reference signal is used by the originating device to modulate the data.
  • Step 503 The originating device sends the first reference signal.
  • the originating device can also send data.
  • the data is data modulated according to the first reference signal.
  • the data may be the scrambled data in the foregoing embodiment, or may be unscrambled data, which is not limited here.
  • the embodiment of the present application provides a method for receiving data.
  • the method can be applied to the scenarios shown in Figures 1a-1d, and can also be applied to other scenarios where transmission resources may conflict.
  • Step 601 The receiving device receives the first reference signal.
  • Step 602 The receiving device determines the first sequence according to the first parameter.
  • the specific manner in which the receiving device determines the first sequence based on the first parameter is the same as the manner in which the transmitting device determines the first sequence based on the first parameter.
  • the manner in which the receiving device obtains the first parameter may be instructed by the originating device, or may be configured for the receiving device by high-level signaling, or may be the first parameter configured in the resource pool, which is not limited here.
  • Step 603 The receiving device receives data according to the first sequence and the first reference signal.
  • the receiving device may estimate the current channel according to the first sequence and the received first reference signal, and further, may demodulate the received signal to realize the reception of the data.
  • the specific demodulation method using the first sequence and the first reference signal reference may be made to the method in the prior art, and details are not described herein again.
  • the sending device can generate different scrambling sequences or reference signals according to different control information. The following descriptions are made according to specific scenarios.
  • Scenario 1 as shown in Fig. 7a, the originating device sends scrambled first control information.
  • the originating device can generate a scrambling sequence according to the third identifier.
  • the third identifier may be configured through high-level signaling, configured for the originating device through the base station, configured in the resource pool by the base station, or specified in the protocol, which is not limited here.
  • the originating device may generate the first sequence according to the third identifier configured in the resource pool.
  • the third identifier can be used to determine the parameters of the third sequence, and the parameters of the third sequence can include: the initial value of the third sequence, the initial position of the third sequence, the root sequence number of the third sequence, and the One or more of the cyclic shift value of the third sequence and the orthogonal cover code of the third sequence.
  • the pre-configured initial value of the third sequence may be a third identifier, and the third identifier may be a positive integer greater than 1007 and less than 1024.
  • the data transmitted in the downlink and the control information transmitted in the side-line may share the same transmission resource, so that the generated third sequence can be the same as that generated on the cellular link.
  • the scrambling sequence is different to avoid transmission conflicts between the side link and the cellular link.
  • Another possible implementation is to set different third identifiers for different resource configuration modes. For example, in side-line transmission, it can be divided into mode 1 and mode 2.
  • the base station is for each terminal
  • the determined time-frequency resources are allocated in the resource pool for the terminal to perform side-line transmission;
  • the terminal autonomously selects transmission resources in the resource pool at random, and randomly selects data resources in the data resource pool for side-line transmission.
  • the receiving device blindly detects the PSCCH in the resource pool to obtain the SCI, and then uses the time-frequency resource information indicated in the SCI to detect data on the corresponding resource in the data resource pool. Therefore, the third sequence under mode 1 transmission can be set to be different from the third sequence under mode 2 transmission, which increases the randomness between different resource configuration modes.
  • the receiving device receives the scrambled first control information.
  • the receiving device may obtain the preset third identifier, determine the third sequence through the third identifier, and then descramble the scrambled first control information through the third sequence to obtain the first control information
  • the method for the receiving end device to obtain the third identifier can be sent to the receiving end device through the sending end device, or configured by the base station for the receiving end device through high-level signaling, or it can be obtained by the receiving end device through the resource pool. Yes, it is not limited here.
  • the originating device sends a third reference signal.
  • the originating device may generate a third sequence according to the third identifier, and the originating device generates a third reference signal according to the third sequence, and sends the third reference signal.
  • the form of the reference signal sequence for generating the third reference signal according to the third sequence may be the form of the reference signal sequence in the prior art, which is not limited here.
  • the originating device modulates the first control information through the third reference signal, and uses code division to implement code division multiplexing between the first control information and other transmitted data or control information, thereby avoiding or reducing transmission resources. conflict.
  • the first control information may be the first control information scrambled by the third sequence determined according to the method in the foregoing embodiment, or may be the unscrambled first control information, which is not limited herein.
  • the third sequence as the DMRS sequence as an example
  • the total number of bits of the parameter of the third sequence is not greater than a preset value. Taking the initial value of the third sequence as an example, the total number of bits of the initial value of the third sequence may not be greater than 31 bits.
  • the initial value of the first sequence can be expressed as:
  • the value of n SCID can be 0 or 1.
  • the value of n SCID can correspond to the transmission mode.
  • the corresponding relationship can be set to 0 corresponds to NR V2X transmission mode 1, and 1 corresponds to NR V2X transmission mode 2, so as to realize the communication between different transmission modes. Anti-interference.
  • the parameters There can be multiple ways to determine.
  • One possible way is that the parameter The value range of is ⁇ 0, 1, 2, ..., 65535 ⁇ .
  • the parameters It can be configured to the originating device through high-level signaling, and the originating device can determine the parameters according to the high-level signaling Value.
  • the parameter Configured to the originating device according to the control information the originating device determines the parameters according to the acquired control information Value.
  • the base station sets the parameters Pre-configured on the resource pool, at this time, the originating device can determine the parameters according to the resource pool Value.
  • the resource pool can be distinguished according to the originating resource and the receiving resource, or not.
  • the first resource can be located in the first resource pool, and the first resource pool can be configured by the network side device for the originating device; the first resource pool can be configured with time-frequency resources and transmission parameters for transmitting the first control information, and the second resource pool can be configured with time-frequency resources and transmission parameters. Control information and data.
  • the second resource may be located in the second resource pool, and the second resource pool may be configured by the network side device for the receiving end device.
  • the second resource pool can be configured with time-frequency resources or transmission parameters for transmitting feedback information sent by the receiving end device, etc.
  • the network side device is configured with multiple resource pools, the originating device can select the first resource pool from the multiple resource pools, and the receiving device can select the second resource pool from the multiple resource pools.
  • Each resource pool can be a resource collection composed of time-frequency resources or transmission parameters, and the originating device and the receiving device can use the time-frequency resources or transmission parameters in the resource pool to perform V2X communication.
  • parameters The value can be selected for the originating device, and the value range can be greater than 1007 and less than 1028.
  • the generated reference signal sequence can be avoided, which is the same as the reference signal sequence generated on the cellular link through the cell identifier, and the interference between the cellular link and the side link can be avoided.
  • the originating device selection parameters You can also set different corresponding relationships according to the value of n SCID , that is, you can set different parameters in different transmission modes Value. For example, in mode 1, the value of n SCID is 0, and the parameter The value of is 1010; in mode 2, the value of n SCID is 1, the parameter The value is 1011. Furthermore, different initial values of reference signal sequences can be generated, thereby generating different reference signal sequences.
  • the receiving device receives the third reference signal, determines a third sequence according to the third identifier, and receives the first control information according to the third sequence and the third reference signal.
  • the receiving device can also be called a data receiver.
  • the receiving end device obtains the reference signal of the first control information, and is used for the receiving end device to receive the first control information.
  • the receiving end device may demodulate the signal on the PSCCH through the time window of the blind detection of the PSCCH and the received reference signal to obtain the first control information.
  • the scrambled first control information may be control information obtained by receiving the third reference signal and the third sequence corresponding to the third reference signal through the receiving device, and the demodulated control information is based on The first control information scrambled by the third sequence that scrambles the first control information in the foregoing embodiment. It may also be the first scrambled control information obtained after demodulating the reference signal in the prior art, which is not limited here.
  • Scenario 2 The originating device sends the scrambled data.
  • the receiver has already acquired the first control information before receiving the scrambled data from the originating device.
  • the first control information and the scrambled data are sent in the same time unit. Therefore, the originating device may scramble the sent data according to the information indicated by the first control information, or generate a reference signal sequence for modulating/demodulating the first data according to the information indicated by the first control information.
  • the first sequence scrambling sequence may be determined according to the first parameter. Since the different information indicated in the first control information can determine the parameters of different sequences, the originating device determines the scrambling sequence according to the determined parameters of the first sequence, thereby improving the randomness of the scrambling sequence generated by the originating device.
  • the parameters of the first sequence include at least one of the following: the initial value of the first sequence; the initial position of the first sequence; the root sequence number of the first sequence; the cyclic shift value of the first sequence; The covering orthogonal code of the first sequence.
  • the originating device may convert the information indicated in the first control information into a decimal number as the content in the parameter of the first sequence.
  • the DMRS pattern as an example, if 1 bit is used to indicate the DMRS pattern, the 0 in the DMRS pattern is converted into a decimal number and expressed as 0, and the 1 in the DMRS pattern is converted into a decimal number and expressed as 1.
  • the 00 in the DMRS pattern is converted to a decimal number and expressed as 0; the 01 in the DMRS pattern is converted to a decimal number and expressed as 1; the 10 in the DMRS pattern is converted to a decimal number and expressed as 2; 11 in the DMRS pattern is converted to a decimal number and expressed as 3.
  • the originating device may determine the parameters of the first sequence according to one or more items of the information indicated in the first control information. For example, taking the parameter of the first sequence as the initial value of the first sequence, if it is determined that the information indicated in the selected first control information is the DMRS pattern, then 1 bit of the DMRS pattern is used as the initial value of the first sequence, and combined In the above example, if 1 bit of the DMRS pattern is 0, the initial value of the first sequence is 0.
  • the initial value of the first sequence may include The function of, that is, any one of the information indicated in the first control information, can be expressed as Or, expressed as multiple combinations of the information indicated in the first control information: can be expressed as: among them It is the i-th item in the first control information.
  • the first parameter may include at least one of the following: a first identifier, a time unit number used to transmit the data, and other content, and a CRC mask used to transmit the first control information; The CRC check bit of the first control information.
  • the CRC verification bit of the first control information can be expressed as:
  • p i is the CRC verification bit after the CRC is generated by the originating device
  • L represents the length of the CRC verification bit.
  • the length of the CRC verification bit can be 8, 12, 16, 24, etc.
  • the initial value of the first sequence can be expressed as:
  • the first logo occupies 10bit.
  • the initial value of the first sequence can be expressed as:
  • the first logo occupies 10bit, It is used to indicate a piece of information indicated in the first control information.
  • the first identifier used to generate the first sequence (scrambling sequence used to scramble data, or reference signal sequence used to modulate data) It can be combined with the third identifier used to determine the third sequence ((scrambling sequence used to scramble the first control information, or reference signal sequence used to modulate the first control information) They are different and can be the same, and they are not limited here.
  • the first parameter may also include at least one of the following: a first identifier, a time unit number used to transmit the data, etc., a CRC mask used to transmit the first control information; the first control information CRC check bit, the information indicated in the first control information.
  • the initial value of the first sequence may be in the following form:
  • the initial value of the first sequence is composed of a piece of information indicated in the first control information and a third identifier, and the bit position occupied by the piece of information indicated in the first control information in the initial value of the first sequence is located in the first sequence.
  • the three identifiers are after the bits occupied in the initial value of the first sequence.
  • the initial value of the first sequence may be in the following form:
  • the initial value of the first sequence is based on the two information X 1 and X 2 indicated in the first control information, the number of the time slot where the data is transmitted when the data uses the subcarrier interval u, and the third identifier Composition, where m means The number of bits occupied.
  • the components in the initial value of the first sequence can occupy bits in the following order: the third identifier, the number of the time slot where the data is transmitted when the data uses the subcarrier interval u, the information X indicated in the first control information 1.
  • the initial value of the first sequence may be in the following form:
  • the value is based on the three information X 1 , X 2 and X 3 indicated in the first control information, the time slot number where the data is transmitted when the data uses the subcarrier interval u, and the third identifier.
  • the components in the initial value of the first sequence can occupy bits in the following order: the third identifier, the number of the time slot where the data is transmitted when the data uses the subcarrier interval u, the information X indicated in the first control information 1.
  • the total number of bits of the parameter of the first sequence is not greater than a preset value. If it is determined that the bits occupied by the content of the initial value of the selected first sequence exceed the bit length requirement of the initial value of the first sequence, for example, the initial value length of the first sequence is 31 bits. Set the initial value of the first sequence of bit lengths. In terms of conversion to binary, when the occupied binary bits are greater than 23 bits, the modulo operation as above needs to be performed. For example, if it is determined that the indication information of the selected first control information is converted to decimal and occupies 14 bits, the slot number occupies 8 bits, and the third identifier occupies 10 bits. At this time, the 31-bit requirement of the initial value of the first sequence is exceeded, so , The initial value of the first sequence can be modulo. Combining the above examples, the initial value of the first sequence can be expressed as:
  • the value of the modulus can be selected as required, which is not limited here.
  • the embodiment of the present application does not limit the method of obtaining the first sequence as the preset bit length, and can also be implemented in other ways.
  • the first 31 bits of the content of the initial value of the selected first sequence are used as the initial sequence of the first sequence. Value, or the last 31 bits of the content of the initial value of the selected first sequence as the initial value of the first sequence.
  • the specific selection method is not limited in this application.
  • the originating device can determine different first parameters corresponding to different data, and then generate different reference signal sequences to reduce or avoid conflicts caused by the overlap of multiple consecutive data on the same time unit. For example, the originating device determines to send the first parameter. At least one of the control information of the data and the second data is different, and further, the first sequence generated by the first control information is also different.
  • the parameters of the first sequence used to generate the reference signal sequence can be determined according to the first parameter, so as to determine the reference signal sequence of the data.
  • the data may be the first sequence of scrambled data determined according to the method of FIG. 3, or may be unscrambled data. For ease of description, they are collectively referred to as data below.
  • the generated reference signal sequence of the first data there is a high possibility of being different from the reference signal sequence for sending the second data, thereby reducing or solving the conflict between different data transmissions, and improving the privacy and demodulation of the data.
  • the process of determining the first sequence according to the first parameter may include: determining the parameter according to the first parameter Then determine the initial value of the random sequence.
  • the initial value of the random sequence can have a variety of forms, which can be based on parameters Modify and deform the form of the initial value of the random sequence.
  • the initial value of the first sequence can be expressed in the following form:
  • m is The number of binary bits occupied when taking the maximum value.
  • parameter The method of generating may be the same as the method of generating parameters of the scrambling sequence corresponding to the data.
  • the originating device may use the information indicated in the first control information, the first identifier, the time unit number used to transmit the data, and the The CRC check bit of a control information is used to transmit one or more of the information such as the CRC mask of the first control information to generate the parameters of the first sequence Then, a reference signal sequence of the data is generated.
  • the order of the 1 information and the first identifier indicated in the first control information can also be set, for example, the parameter Can be of the form: If the parameter Exceeds the 16 bits corresponding to the binary system.
  • the modulo operation can be performed on the combination of the 1 information indicated in the first control information and the first identifier, that is, the parameter Can be of the form
  • Another possible form of the initial value of the first sequence can also be:
  • n is The maximum number of binary bits occupied
  • m and n are positive integers.
  • the method for generating the first sequence may refer to the method for determining the second sequence according to the parameters of the second sequence in scenario 1, which will not be repeated here.
  • the receiving device receives the first reference signal.
  • the receiving device obtains the first reference signal, and then the receiving device demodulates the data corresponding to the first reference signal through the first reference signal and the first sequence corresponding to the first reference signal.
  • the data here may be scrambled data or unscrambled data, which is not limited here. For specific implementation manners, reference may be made to the above-mentioned embodiments, which will not be repeated here.
  • the receiving device receives the scrambled data.
  • the demodulated first data is the first data scrambled according to the scrambling sequence of the first data.
  • the receiving device can determine the first parameter according to the information indicated in the acquired first control information, the preset first identifier, etc., and then determine the first sequence through the first parameter, so as to solve the problem according to the first sequence. Scramble the data.
  • the receiving device may determine that the initial value of the first sequence is composed of the first identifier and the priority information in the first control information according to the preset method for generating the initial value of the first sequence, and that the initial value of the first sequence
  • the initial value has the form
  • the receiving device successfully parses the first control information it is assumed that the determined priority of the first control information is 111, which is converted to decimal number 7.
  • the receiving device can determine according to the preset first identifier, assuming 1008 The initial value of the first sequence is 71008. According to the initial value of the first sequence and the preset random sequence c(n) form, the value of the first sequence c(n) can be determined, and further, the scrambled data can be descrambled through the first sequence.
  • the way in which the receiving device generates the first sequence according to the first parameter may be sent to the receiving device through the sending device, or configured by the base station for the receiving device through high-level signaling, or it may be the receiving device. Obtained through the resource pool, there is no limitation here.
  • the originating device sends second control information.
  • the originating device before sending the second control information, the originating device also sends the first control information.
  • the second control information can be sent in a separate time unit, of course, it can also be sent in the same time unit as the first control information, or it can be sent in the same time unit as the data. Since in this scenario, the receiving device has acquired the first control information, it can use the indication information in the first control information to scramble the second control information or generate the reference signal sequence of the second control information to The privacy between the second control information and the first control information is improved, and at the same time, the second control information can be verified through the first control information to improve the security of control information transmission.
  • the indication information in the second control information is not the indication information necessary for the originating device to transmit the first data
  • the information indicated in the second control information may be the indication information determined according to the capability of the receiver.
  • the second control information is scrambled, or when the reference signal sequence of the second control information is generated, different methods of generating the parameters of the first sequence can be selected according to the capabilities of the receiver, which increases the acquisition of receivers that do not meet the capabilities.
  • the difficulty of the second control information improves the security of control information transmission.
  • the originating device sends the scrambled second control information.
  • the second sequence is a scrambling sequence
  • the originating device may determine the form of the second sequence.
  • the form of the second sequence may be the same as the form of the first sequence, for example, both are random sequences of a 31-bit shift register, or they may be different, which is not limited here.
  • the originating device determines the parameters for generating the second sequence according to the second parameters, and then generates the second sequence according to the parameters of the second sequence, so as to scramble the second control information.
  • the parameters of the second sequence may include at least one of the following: the initial value of the second sequence; the initial position of the second sequence; the root sequence number of the second sequence; the cyclic shift of the second sequence Bit value; covering orthogonal code of the second sequence. Further, the total number of bits of the parameter of the second sequence is not greater than a preset value.
  • the form of the parameters of the second sequence can refer to the form of the parameters of the first sequence, which will not be repeated here.
  • the second parameter may include at least one of the following: first control information, a second identifier, a CRC mask used to transmit the first control information; a CRC check bit of the first control information; used to transmit the The CRC mask of the second control information; the CRC check bit of the second control information; the time unit number used to transmit the data.
  • the second parameter selected in the second sequence may be different from or the same as the first parameter, and the selection method may be configured as required.
  • the second identifier may be different from the first identifier, and the value range of the second identifier is the same as the value range of the first identifier.
  • the originating device sends the second reference signal.
  • the second sequence is the random sequence c(n) in the generated reference signal sequence
  • the optional range of the second parameter may be the same as the optional range of the second parameter in the above-mentioned scrambled embodiment, and the second parameter selection The information of may be different from the content selected by the second parameter in the above-mentioned scrambled embodiment.
  • the second parameter used for scrambling the second control information is the indication information of the transmission resource of the data
  • the second parameter used for the reference signal sequence corresponding to the second control information is the indication information of the reference signal sequence pattern .
  • the second sequence c(n) is generated according to the parameters of the second sequence, so that the reference signal sequence of the second control information is generated according to the form of the DMRS sequence.
  • the originating device For the specific process for the originating device to determine the second sequence based on the second parameter, refer to the method for the originating device to determine the first sequence based on the first parameter in the embodiment in the second scenario above, which will not be repeated here.
  • the receiving device receives the second reference signal, determines a second sequence according to the second parameter, and receives the second control information according to the second sequence and the second reference signal.
  • the way the receiving device determines the second sequence according to the second parameter can refer to the way of determining the originating device, and the way the receiving device obtains the second parameter can refer to the way the receiving device obtains the first parameter.
  • the receiving device receives the scrambled second control information.
  • the demodulated second control information is the second control information scrambled according to the scrambling sequence of the second control information.
  • the first sequence may also be a scrambling sequence of the second control information.
  • the receiving device may determine the second sequence according to the acquired second parameter, and then use the second sequence to descramble the scrambled second control information to obtain the second control information.
  • the specific process for the receiving end device to determine the second sequence according to the second parameter may refer to the method for the receiving end device to determine the first sequence according to the first parameter in the embodiment in the second scenario above, which will not be repeated here.
  • the control information related to the scrambled data sent by the originating device includes: first control information and second control information.
  • first control information and the second control information are sent in the same time unit as the scrambled data.
  • the sending device can generate different reference signals by determining that different data corresponds to different control information. Sequence to reduce or avoid conflicts caused by the overlap of multiple consecutive data on the same time unit, that is, the originating device determines that at least one of the control information for sending the first data and the second data is different, and then, through the first control The possibility that the sequence generated by the information and the first control information is different is greatly increased.
  • the indication information in the first control information or the decimal number after CRC scrambling corresponding to the first control information may be a complete value or a value generated by partial bits. It is the indication information in the second control information or the decimal number after CRC scrambling corresponding to the second control information.
  • the parameters of the first sequence are multiple combinations, for example, taking the initial value of the first sequence as an example, it can be expressed as among them Is the i-th item of indication information in the first control information, It is the jth item of indication information in the second control information.
  • the initial value of the scrambling sequence may also include: the first identifier, the time unit number, and so on.
  • the initial value of the first sequence may include: a first identifier, a time unit number, and so on.
  • the first parameter of the scrambling sequence for generating the first control information includes the first identifier
  • the first parameter of the scrambling sequence for generating the second control information includes the first identifier
  • the data generating The first identifier included in the first parameter of the scrambling sequence may be the same or different, and is not limited here.
  • the first identifier used in the generated reference signal sequence may also be the same or different, which is not limited here.
  • the initial value of the first sequence can be:
  • the first parameter that generates the initial value of the first sequence includes: a first identifier, and the time unit number corresponding to the data The CRC check bit in the first control information.
  • the first logo The binary value of occupies m bits.
  • the first parameter that generates the initial value of the first sequence includes: the first identifier CRC check bit in the first control information
  • the initial value of the first sequence can be:
  • the first parameter that generates the initial value of the first sequence includes: The time unit number corresponding to the data A piece of information indicated in the second control information
  • the initial value of the first sequence can be:
  • the first parameter that generates the initial value of the first sequence includes: a first identifier A piece of information indicated in the second control information among them The binary value of occupies m bits.
  • the initial value of the first sequence can be:
  • the first parameter that generates the initial value of the first sequence includes: a first identifier n ID , a piece of information indicated in the first control information A piece of information indicated in the second control information
  • m is The number of bits occupied by
  • the initial value of the first sequence can be:
  • the first parameter that generates the initial value of the first sequence includes: a first identifier n ID , a piece of information indicated in the first control information A piece of information indicated in the second control information
  • the time unit number corresponding to the data Where m is The number of bits occupied by the
  • the total number of bits of the parameters of the first sequence is not greater than the preset value.
  • the initial value of the first sequence can be obtained after the modulo operation, combined with the above example ,
  • the form of the initial value of the first sequence can be:
  • n means The number of binary bits occupied.
  • the DMRS sequence of the second control information or the DMRS sequence of the data can also be determined by this method.
  • the difference is the initial value c init of the random sequence c(n) of the DMRS sequence that generates the second control information and the DMRS of the first control information.
  • the sequence is different, and the DMRS sequence of the data is different from the DMRS sequence of the first control information.
  • the PSCCH2 carrying the second control information and the PSSCH carrying the data may be located in the same time unit, at this time, the symbols of the PSCCH2 carrying the second control information and the PSSCH carrying the data may overlap partially or completely.
  • the reference signal sequence used for the second control information and data on the same symbol needs to be the same.
  • the reference signal sequences used for the second control information and data on different symbols may be different.
  • the data sending and receiving methods of the embodiments of the present application are described above with reference to FIG. 3. Based on the same inventive concept as the foregoing data sending and receiving methods, the embodiments of the present application also provide a communication device, as shown in FIG.
  • the communication device 1500 includes a processing unit 1501 and a transceiver unit 1502, and the device 1500 can be used to implement the methods described in the foregoing embodiments applied to the originating device and the receiving device.
  • the apparatus 1500 may be located in the originating device or the receiving device, or be the originating device or the receiving device.
  • the apparatus in the above-mentioned embodiment may be an originating device or a receiving device, or a chip applied to the originating device or the receiving device, or other combination devices with the above-mentioned terminal device functions, Parts etc.
  • the transceiving unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver unit may be an input/output interface of the chip system
  • the processing module may be a processor of the chip system.
  • the apparatus 1500 is applied to the originating device.
  • the processing unit 1501 is configured to determine a first sequence according to a first parameter, where the first parameter includes information indicated by the first control information and/or information indicated by the second control information; Scrambling; wherein the first control information, the second control information, and the data are in the same time unit, and the first control information is used to indicate the first transmission parameter of the data, and the second The control information is used to indicate the second transmission parameter of the data; the transceiver unit 1502 is used to send the scrambled data.
  • the processing unit 1501 is configured to determine the parameters of the first sequence according to the first parameters; the parameters of the first sequence include at least one of the following: the initial value of the first sequence; The initial position of the first sequence; the root sequence number of the first sequence; the cyclic shift value of the first sequence; the covering orthogonal code of the first sequence.
  • the processing unit 1501 is configured to determine a second sequence according to a second parameter, where the second parameter includes information indicated by the first control information; and perform the second control information according to the second sequence Scrambling;
  • the transceiver unit 1502 is used to send the scrambled second control information.
  • the processing unit 1501 is configured to determine the parameters of the second sequence according to the second parameters; the parameters of the second sequence include at least one of the following: the initial value of the second sequence; The initial position of the second sequence; the root sequence number of the second sequence; the cyclic shift value of the second sequence; the covering orthogonal code of the second sequence.
  • the processing unit 1501 is configured to determine a second sequence according to a second parameter, where the second parameter includes information indicated by the first control information; and perform the second control information according to the second sequence Scrambling;
  • the transceiver unit 1502 is used to send the scrambled second control information.
  • the processing unit 1501 is configured to determine a third sequence according to a third identifier; the value of the third identifier is an integer greater than 1007 and less than 1024; according to the third sequence, the first sequence 1. Control information scrambling; the transceiver unit 1502 is used to send the scrambled first control information.
  • the apparatus 1500 is applied to a receiving device.
  • the transceiver unit 1502 is configured to receive scrambled data.
  • the processing unit 1501 is configured to determine a first sequence according to a first parameter, where the first parameter includes information indicated by the first control information and/or information indicated by the second control information; wherein, the first control information, the The second control information and the data are located in the same time unit, the first control information is used to indicate the first transmission parameter of the data, and the second control information is used to indicate the second transmission parameter of the data;
  • the first sequence descrambles the scrambled data.
  • the processing unit 1501 is configured to determine the parameters of the first sequence according to the first parameters; the parameters of the first sequence include at least one of the following: the initial value of the first sequence; The initial position of the first sequence; the root sequence number of the first sequence; the cyclic shift value of the first sequence; the covering orthogonal code of the first sequence.
  • the transceiver unit 1502 which is used to receive the scrambled second control information.
  • the processing unit 1501 is configured to determine a second sequence according to a second parameter, where the second parameter includes information indicated by the first control information; and descramble the scrambled second control information according to the second sequence.
  • the processing unit 1501 is configured to determine the parameters of the second sequence according to the second parameters; the parameters of the second sequence include at least one of the following: the initial value of the second sequence; The initial position of the second sequence; the root sequence number of the second sequence; the cyclic shift value of the second sequence; the covering orthogonal code of the second sequence.
  • the transceiver unit 1502 is configured to receive the scrambled first control information; the processing unit 1501 is configured to determine the third sequence according to the third identifier, and the value of the third identifier is greater than 1007 and less than An integer of 1024; descramble the scrambled first control information according to the third sequence.
  • the processing unit 1501 is configured to determine the parameters of the third sequence according to the third identifier; the parameters of the third sequence include at least one of the following: the initial value of the third sequence; The initial position of the third sequence; the root sequence number of the third sequence; the cyclic shift value of the third sequence; the covering orthogonal code of the third sequence.
  • the information indicated by the first control information includes at least one of the following: priority information of the data; modulation and coding mode of the data; reference signal sequence pattern used to indicate the reference signal.
  • the indication information of the second control information includes the type or format of the second control information; the indication information used to indicate the transmission resource of the data; the indication information used to indicate the transmission interval of the initial transmission or retransmission of the data; The indication information of the reservation of the data transmission resource.
  • the information indicated by the second control information includes at least one of the following: a source identifier, a destination identifier, a process number of a hybrid automatic repeat request, and indication information of a retransmission or redundancy version.
  • the first parameter further includes at least one of the following: a CRC mask used to transmit the first control information; a CRC check bit used to transmit the first control information; The CRC mask of the second control information; the CRC check bit of the second control information; the time unit number used to transmit the data; the first identifier, wherein the value of the first identifier is greater than 1007 and less than An integer of 1024.
  • the second parameter further includes at least one of the following: a CRC mask used to transmit the first control information; a CRC check bit used to transmit the first control information; The time unit number of the second control information; the second identifier; wherein the value of the second identifier is an integer greater than 1007 and less than 1024.
  • the total number of bits of the parameters of the first sequence is not greater than a preset value; the total number of bits of the parameters of the second sequence is not greater than the preset value; the bits of the parameters of the third sequence The total number is not greater than the preset value.
  • each functional unit in each embodiment of the present application It can be integrated in one processing unit, or it can exist alone physically, or two or more units can be integrated in one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including a number of instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .
  • an embodiment of the present application also provides a schematic structural diagram of a feedback information transmission device 1600.
  • the apparatus 1600 can be used to implement the method described in the above method embodiment applied to the originating device or the receiving device.
  • the device 1600 can be located in the originating device or the receiving device, and may be Sending device or receiving device.
  • the device 1600 includes one or more processors 1601.
  • the processor 1601 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, terminals, or chips), execute software programs, and process data in the software programs.
  • the communication device may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the apparatus 1600 includes one or more of the processors 1601, and the one or more processors 1601 can implement the method of the originating device or the receiving device in the above-mentioned embodiment.
  • the processor 1601 may implement other functions in addition to implementing the methods in the above-mentioned embodiments.
  • the processor 1601 may execute instructions to cause the apparatus 1600 to execute the method described in the foregoing method embodiment.
  • the instructions may be stored in the processor in whole or in part, such as the instruction 1603, or in the memory 1602 coupled to the processor, in whole or in part, such as the instruction 1604, or through the instructions 1603 and 1604.
  • the apparatus 1600 executes the method described in the foregoing method embodiment.
  • the communication device 1600 may also include a circuit, and the circuit may implement the function of the terminal device in the foregoing method embodiment.
  • the apparatus 1600 may include one or more memories 1602, on which instructions 1604 are stored, and the instructions may be executed on the processor, so that the apparatus 1600 executes the foregoing The method described in the method embodiment.
  • data may also be stored in the memory.
  • the optional processor may also store instructions and/or data.
  • the one or more memories 1602 may store the corresponding relationship described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and the memory can be provided separately or integrated together.
  • the device 1600 may further include a transceiver unit 1605.
  • the processor 1601 may be referred to as a processing unit, which controls a device (terminal or base station).
  • the transceiving unit 1605 may be called a transceiver, a transceiving circuit, or a transceiver, etc., for implementing the transceiving of the device.
  • the apparatus 1600 may include a transceiver unit 1605.
  • the device 1600 may further include a transceiver unit 1605 and an antenna 1606.
  • the processor 1601 may be referred to as a processing unit, which controls a device (terminal or base station).
  • the transceiving unit 1605 may be called a transceiver, a transceiving circuit, or a transceiver, etc., and is used to implement the transceiving function of the device through the antenna 1606.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the embodiment of the present application also provides a computer-readable medium on which a computer program is stored.
  • the computer program is executed by a computer, the feedback information transmission described in any method embodiment applied to the originating device or the receiving device is realized. method.
  • the embodiments of the present application also provide a computer program product that, when executed by a computer, implements the feedback information transmission method described in any method embodiment applied to the originating device or the receiving device.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD)) etc.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the feedback information transmission method described in any method embodiment applied to the originating device or the receiving device.
  • the foregoing processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, At this time, the processor may be a general-purpose processor, which is realized by reading the software code stored in the memory, and the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • the embodiment of the present application also provides a communication device, as shown in FIG. 10
  • the communication device 1700 includes a processing unit 1701 and a transceiving unit 1702, and the device 1700 can be used to implement the method described in the foregoing method embodiments applied to the originating device or the receiving device.
  • the apparatus 1700 may be located in the originating device or the receiving device, or may be the originating device or the receiving device.
  • the apparatus in the foregoing embodiment may be an originating device or a receiving device, or a chip applied to the originating device or the receiving device, or other combination devices with the functions of the aforementioned terminal device, Parts etc.
  • the transceiving unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver unit may be an input/output interface of the chip system, and the processing module may be a processor of the chip system.
  • the apparatus 1700 is applied to the originating device.
  • the processing unit 1701 is configured to determine a first sequence according to a first parameter, where the first parameter includes information indicated by the first control information and/or information indicated by the second control information; and determine a first reference signal according to the first sequence
  • the first control information, the second control information and the data are located in the same time unit, the first control information is used to indicate the first transmission parameter of the data, and the second control information is used To indicate the second transmission parameter of the data;
  • the transceiver unit 1702 is configured to send the first reference signal.
  • the processing unit 1701 is configured to determine a second sequence according to a second parameter, where the second parameter includes the information indicated by the first control information; perform the second control information according to the second sequence Scrambling;
  • the transceiver unit 1702 is used to send the scrambled second control information.
  • the processing unit 1701 is configured to determine a second sequence according to a second parameter, where the second parameter includes information indicated by the first control information; determine a second reference signal according to the second sequence; The second reference signal is used for the originating device to modulate the second control information; the transceiver unit 1702 is used for sending the second reference signal.
  • the processing unit 1701 is configured to determine a third sequence according to a third identifier; the originating device determines a third reference signal according to the third sequence; the third reference signal is used for the originating device Modulate the first control information; the transceiver unit 1702 is configured to send the third reference signal.
  • the apparatus 1700 is applied to a receiving device.
  • the transceiver unit 1702 is configured to receive the first reference signal
  • the processing unit 1701 is configured to determine a first sequence according to a first parameter, where the first parameter includes information indicated by the first control information and/or information indicated by the second control information; according to the first sequence and the first sequence
  • the reference signal receives data; wherein the first control information, the second control information, and the data are in the same time unit, the first control information is used to indicate the first transmission parameter of the data, and the first control information is used to indicate the first transmission parameter of the data.
  • the second control information is used to indicate the second transmission parameter of the data.
  • the transceiver unit 1702 is configured to receive the second reference signal; the processing unit 1701 is configured to determine the second sequence according to the second parameter, and the second parameter includes the information indicated by the first control information; The second sequence and the second reference signal receive the second control information.
  • the transceiver unit 1702 is configured to receive the third reference signal; the processing unit 1701 is configured to determine the third sequence according to the third identifier, and the value of the third identifier is an integer greater than 1007 and less than 1024 ; Receiving the first control information according to the third sequence and the third reference signal.
  • the processing unit 1701 is configured to determine the parameters of the first sequence according to the first parameters; the parameters of the first sequence include at least one of the following: the initial value of the first sequence; The initial position of the first sequence; the root sequence number of the first sequence; the cyclic shift value of the first sequence; the covering orthogonal code of the first sequence.
  • the processing unit 1701 is configured to determine the parameters of the second sequence according to the second parameters; the parameters of the second sequence include at least one of the following: the initial value of the second sequence; The initial position of the second sequence; the root sequence number of the second sequence; the cyclic shift value of the second sequence; the covering orthogonal code of the second sequence.
  • the processing unit 1701 is configured to determine the parameters of the third sequence according to the third identifier; the parameters of the third sequence include at least one of the following: the initial value of the third sequence; The initial position of the third sequence; the root sequence number of the third sequence; the cyclic shift value of the third sequence; the covering orthogonal code of the third sequence.
  • each functional unit in each embodiment of the present application It can be integrated in one processing unit, or it can exist alone physically, or two or more units can be integrated in one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including a number of instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .
  • an embodiment of the present application also provides a schematic structural diagram of a communication device 1800.
  • the apparatus 1800 may be used to implement the method described in the above method embodiment applied to the originating device or the receiving device.
  • the device 1800 may be located in the originating device or the receiving device, and may be Sending device or receiving device.
  • the apparatus 1800 includes one or more processors 1801.
  • the processor 1801 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, terminals, or chips), execute software programs, and process data in the software programs.
  • the communication device may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the apparatus 1800 includes one or more processors 1801, and the one or more processors 1801 can implement the method of the originating device or the receiving device in the above-mentioned embodiment.
  • the processor 1801 may implement other functions in addition to implementing the methods in the above-mentioned embodiments.
  • the processor 1801 may execute instructions to cause the apparatus 1800 to execute the method described in the foregoing method embodiment.
  • the instructions may be stored in the processor in whole or in part, such as the instruction 1803, or in the memory 1802 coupled to the processor, in whole or in part, such as the instruction 1804, or the instructions 1803 and 1804 can be used together to make The apparatus 1800 executes the method described in the foregoing method embodiment.
  • the communication device 1800 may also include a circuit, and the circuit may implement the function of the terminal device in the foregoing method embodiment.
  • the apparatus 1800 may include one or more memories 1802, on which instructions 1804 are stored, and the instructions may be executed on the processor, so that the apparatus 1800 executes the foregoing The method described in the method embodiment.
  • data may also be stored in the memory.
  • the optional processor may also store instructions and/or data.
  • the one or more memories 1802 may store the corresponding relationship described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and the memory can be provided separately or integrated together.
  • the device 1800 may further include a transceiver unit 1805.
  • the processor 1801 may be referred to as a processing unit, which controls a device (terminal or base station).
  • the transceiving unit 1805 may be called a transceiver, a transceiving circuit, or a transceiver, etc., for implementing the transceiving of the device.
  • the apparatus 1800 may include a transceiver unit 1805.
  • the device 1800 may further include a transceiver unit 1805 and an antenna 1806.
  • the processor 1801 may be referred to as a processing unit, which controls a device (terminal or base station).
  • the transceiving unit 1805 may be called a transceiver, a transceiving circuit, or a transceiver, etc., and is used to implement the transceiving function of the device through the antenna 1806.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the embodiment of the present application also provides a computer-readable medium on which a computer program is stored.
  • the computer program is executed by a computer, the information transmission method described in any method embodiment applied to the originating device or the receiving device is implemented. .
  • the embodiments of the present application also provide a computer program product that, when executed by a computer, implements the information transmission method described in any method embodiment applied to the originating device or the receiving device.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD)) etc.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the information transmission method described in any method embodiment applied to the originating device or the receiving device.
  • the foregoing processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, At this time, the processor may be a general-purpose processor, which is realized by reading the software code stored in the memory, and the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a computer.
  • computer readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data in the form of structure
  • Any connection can suitably become a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , Fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the media.
  • Disk and disc include compact discs (CD), laser discs, optical discs, digital versatile discs (DVD), floppy discs and Blu-ray discs. Disks usually copy data magnetically, while discs The laser is used to optically copy the data. The above combination should also be included in the protection scope of the computer-readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及一种数据的发送、接收方法、参考信号的发送方法及装置,用以解决资源之间的冲突,保证数据发送接收的可解调性和私密性,可以应用于车联网,例如V2X、LTE-V、V2V等,或可以用于智能驾驶,智能网联车等领域,该方法为:发端设备根据第一参数确定第一序列,所述第一参数包括第一控制信息指示的信息和/或第二控制信息指示的信息;所述发端设备根据所述第一序列对数据进行加扰;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数;所述发端设备发送加扰后的数据。

Description

一种数据的发送、接收方法、参考信号的发送方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种数据的发送、接收方法、参考信号的发送方法及装置。
背景技术
车联网作为未来智能交通运输系统(intelligent transport system,ITS)的关键技术,近来受到了越来越多的关注。其中车与任何设备(vehicle-to-everything,V2X)的系统是车联网中的一个关键技术。V2X其包括了车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)的通信交互。除V2N车辆和网络通信使用上下行链路,其余V2V/V2I/V2P数据通信均使用侧行链路(sidelink,SL)进行通信。
为尽可能地满足数据和业务的私密性和数据的可解调性,现有技术中,与V2X相关的数据和控制信息可以使用伪随机序列进行加扰,以使不相关的设备不能解调出相应的数据。例如蜂窝链路中,通常使用小区标识来作为伪随机序列的初始值,进而根据生成的伪随机序列对数据进行加扰或根据小区标识生成参考信号序列,以满足数据和业务的私密性,并避免数据间的干扰。
但是,在V2X的通信中,设备间在进行侧行链路通信时,可能会处于不同的小区之间,各个设备并不知道对方的小区标识,因此,无法采用蜂窝链路中根据小区标识生成伪随机序列的方法进行加扰或生成参考信号序列,甚至在侧行链路通信时,可能没有网络覆盖,不存在小区标识,因此,现有技术的方案无法适用于V2X的通信中。
发明内容
本申请提供一种数据的发送、接收方法、参考信号的发送方法及装置,有助于解决数据和业务的私密性和数据的可解调性的问题,从而保证了数据传输的可靠性和效率。其中,发端设备和收端设备均可以是车载设备、用户使用的设备、路侧单元、网络侧设备等。
第一方面,提供一种数据的发送方法,发端设备根据第一参数确定第一序列,所述第一参数包括第一控制信息指示的信息和/或第二控制信息指示的信息;所述发端设备根据所述第一序列对数据进行加扰;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数;所述发端设备发送加扰后的数据。
其中,对于同一时间单元中传输的第一控制信息和数据,或者,对于同一时间单元中传输的第一控制信息、第二控制信息和数据,或者,对于同一时间单元中传输的第二控制信息和数据,不同的数据采用的第一控制信息,或者,第二控制信息中,至少有一项是不同的,因此,通过包括有第一控制信息指示的信息和/或第二控制信息指示的信息的第一参数,确定第一序列,进而对数据进行加扰,可以有效增加数据间的加扰的随机性,并减少或解决了传输数据的资源之间的冲突,保证了数据高效准确的传输,提高了传输链路的可靠性。
一种可能的设计,所述发端设备根据所述第一参数确定所述第一序列的参数;所述第一序列的参数包括以下至少一项:所述第一序列的初始值;所述第一序列的初始位置;所述第一序列的根序列号;所述第一序列的循环移位值;所述第一序列的覆盖正交码。
通过上述根据第一参数确定第一序列的参数的方法,可以根据第一参数,确定不同的第一序列的参数,有效提高第一序列的生成的随机性,提高加扰性能。
一种可能的设计,所述发端设备根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;所述发端设备根据所述第二序列对所述第二控制信息进行加扰;所述发端设备发送加扰后的第二控制信息。
通过上述方法,可以对第二控制信息进行加扰,并且,通过与第一参数不同的第二参数,确定出的第二序列也与第一序列不同,进而实现了数据的加扰与第二控制信息的加扰可以不同,提高了数据和第二控制信息的私密性,另外,由于收端设备需要先解扰第二控制信息后,再通过第二控制信息接收数据,因此,在该场景中,可以通过第一序列和第二序列的不同,提高对数据的有效校验,进而增加传输链路的可靠性和私密性。
一种可能的设计,所述发端设备根据所述第二参数确定所述第二序列的参数;所述第二序列的参数包括以下至少一项:所述第二序列的初始值;所述第二序列的初始位置;所述第二序列的根序列号;所述第二序列的循环移位值;所述第二序列的覆盖正交码。
通过上述根据第二参数确定第二序列的参数的方法,可以根据第二参数,确定不同的第二序列的参数,有效提高第二序列的生成的随机性,提高加扰性能。
一种可能的设计,所述发端设备根据第三标识确定第三序列;所述第三标识的取值为大于1007且小于1024的整数;所述发端设备根据所述第三序列,对所述第一控制信息加扰;所述发端设备发送加扰后的第一控制信息。
通过上述根据第三标识确定第三序列的方法,可以避免现有技术中,通过小区标识进行加扰,导致侧行链路中无法对控制信息或数据进行加扰的问题,根据不同的第三标识,确定不同的第三序列,避免了蜂窝链路与侧行链路间加扰序列可能存在相同的场景,有效提高加扰性能。
一种可能的设计,所述发端设备根据所述第三标识确定所述第三序列的参数;所述第三序列的参数包括以下至少一项:所述第三序列的初始值;所述第三序列的初始位置;所述第三序列的根序列号;所述第三序列的循环移位值;所述第三序列的覆盖正交码。
通过上述根据第三标识确定第三序列的参数的方法,可以根据第三标识,确定不同的第三序列的参数,有效提高第三序列的生成的随机性,提高加扰性能。
一种可能的设计,所述第一控制信息指示的信息包括以下至少一种:所述数据的优先级信息;所述数据的调制编码方式;用于指示所述参考信号的参考信号序列图样的指示信息;所述第二控制信息的类型或格式;用于指示所述数据的传输资源的指示信息;用于指示所述数据的初传或重传的传输间隔的指示信息;用于指示所述数据的传输资源预留的指示信息。
一种可能的设计,所述第二控制信息指示的信息包括以下至少一种:源标识,目的标识,混合自动重传请求的进程号,重传或冗余版本的指示信息,所述发端设备位置的指示信息,最小通信距离指示信息,信道状态指示信息,信道状态指示参考信号的指示信息。
通过上述方法,不同的数据采用的第一控制信息中,至少有一项是不同的,因此,通过包括有第一控制信息指示的信息和/或第二控制信息指示的信息的第一参数,确定出的第 一序列,进而对数据进行加扰,或通过包括有第一控制信息指示的信息根据第二参数,确定出的第二序列,进而对第二控制信息进行加扰,可以有效增加数据或第二控制信息间的加扰或生成参考信号用于传输数据的随机性,并减少或解决了传输数据或控制信息的资源之间的冲突,提高了传输链路的可靠性。
一种可能的设计,所述第一参数还包括以下至少一项:用于传输所述第一控制信息的CRC掩码;所述第一控制信息的CRC校验位;用于传输所述第二控制信息的CRC掩码;所述第二控制信息的CRC校验位;用于传输所述数据的时间单元号;第一标识,其中,所述第一标识的取值大于1007且小于1024的整数。
一种可能的设计,所述第二参数还包括以下至少一项:用于传输所述第一控制信息的CRC掩码;所述第一控制信息的CRC校验位;用于传输所述第二控制信息的时间单元号;第二标识;其中,所述第二标识的取值为大于1007且小于1024的整数。
通过上述方法,提高了第一参数和第二参数的选择范围,进而可以提高第一序列和第二序列的随机性,提高加扰或生成参考信号用于传输数据的可靠性。
一种可能的设计,所述第一序列的参数的比特总数不大于预设值;所述第二序列的参数的比特总数不大于所述预设值;所述第三序列的参数的比特总数不大于所述预设值。
第二方面,提供一种通信装置,所述装置具有实现上述第一方面的方法实例中行为的功能。所述装置可以位于发端设备或收端设备中,或为发端设备或收端设备。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的实现中,所述装置的结构中包括处理单元和收发单元,这些单元可以执行上述第一方面方法示例中的相应步骤或功能,包括收发单元和处理单元。
所述处理单元,用于发端设备根据第一参数确定第一序列,所述第一参数包括第一控制信息指示的信息和/或第二控制信息指示的信息;所述发端设备根据所述第一序列对数据进行加扰;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数;所述发端设备发送加扰后的数据。
一种可能的设计,所述处理单元,用于根据所述第一参数确定所述第一序列的参数;所述第一序列的参数包括以下至少一项:所述第一序列的初始值;所述第一序列的初始位置;所述第一序列的根序列号;所述第一序列的循环移位值;所述第一序列的覆盖正交码。
一种可能的设计,所述处理单元,用于根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;所述发端设备根据所述第二序列对所述第二控制信息进行加扰;所述收发单元,用于发送加扰后的第二控制信息。
一种可能的设计,所述处理单元,用于根据所述第二参数确定所述第二序列的参数;所述第二序列的参数包括以下至少一项:所述第二序列的初始值;所述第二序列的初始位置;所述第二序列的根序列号;所述第二序列的循环移位值;所述第二序列的覆盖正交码。
一种可能的设计,所述处理单元,用于根据第三标识确定第三序列;所述第三标识的取值为大于1007且小于1024的整数;所述发端设备根据所述第三序列,对所述第一控制信息加扰;所述收发单元,用于发送加扰后的第一控制信息。
一种可能的设计,所述处理单元,用于根据所述第三标识确定所述第三序列的参数;所述第三序列的参数包括以下至少一项:所述第三序列的初始值;所述第三序列的初始位 置;所述第三序列的根序列号;所述第三序列的循环移位值;所述第三序列的覆盖正交码。
第三方面,提供一种数据的接收方法,收端设备接收加扰后的数据;所述收端设备根据第一参数确定第一序列,所述第一参数包括第一控制信息指示的信息和/或第二控制信息指示的信息;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数;所述收端设备根据所述第一序列对所述加扰后的数据进行解扰。
通过上述方法,根据包括有第一控制信息指示的信息和/或第二控制信息指示的信息的第一参数,确定第一序列,进而对数据进行解扰,提高了数据传输的可靠性。
一种可能的设计,所述收端设备根据所述第一参数确定所述第一序列的参数;所述第一序列的参数包括以下至少一项:所述第一序列的初始值;所述第一序列的初始位置;所述第一序列的根序列号;所述第一序列的循环移位值;所述第一序列的覆盖正交码。
一种可能的设计,所述收端设备接收加扰的第二控制信息;所述收端设备根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;所述发端设备根据所述第二序列对所述加扰后的第二控制信息进行解扰。
一种可能的设计,所述收端设备根据所述第二参数确定所述第二序列的参数;所述第二序列的参数包括以下至少一项:所述第二序列的初始值;所述第二序列的初始位置;所述第二序列的根序列号;所述第二序列的循环移位值;所述第二序列的覆盖正交码。
一种可能的设计,所述收端设备接收加扰的第一控制信息;所述收端设备根据第三标识确定第三序列;所述第三标识的取值为大于1007且小于1024的整数;所述收端设备根据所述第三序列,对所述加扰的第一控制信息解扰。
一种可能的设计,所述收端设备根据所述第三标识确定所述第三序列的参数;所述第三序列的参数包括以下至少一项:所述第三序列的初始值;所述第三序列的初始位置;所述第三序列的根序列号;所述第三序列的循环移位值;所述第三序列的覆盖正交码。
上述实施方式中,可以参考第一方面的实施方式的有益效果,在此不再赘述。第一控制信息,第二控制信息,第一参数,第二参数的确定方式可以参考第一方面的方法示例中的相应步骤,在此不再赘述。
第四方面,提供一种通信装置,所述装置具有实现上述第三方面的方法实例中行为的功能。所述装置可以位于发端设备或收端设备中,或为发端设备或收端设备。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的实现中,所述装置的结构中包括处理单元和收发单元,这些单元可以执行上述第三方面方法示例中的相应步骤或功能,包括:收发单元和处理单元,其中,所述收发单元,用于接收加扰后的数据;所述处理单元,用于根据第一参数确定第一序列,所述第一参数包括第一控制信息指示的信息和/或第二控制信息指示的信息;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数;根据所述第一序列对所述加扰后的数据进行解扰。
一种可能的设计,所述处理单元,用于根据所述第一参数确定所述第一序列的参数;所述第一序列的参数包括以下至少一项:所述第一序列的初始值;所述第一序列的初始位置;所述第一序列的根序列号;所述第一序列的循环移位值;所述第一序列的覆盖正交码。
一种可能的设计,所述收发单元,用于接收加扰的第二控制信息;所述处理单元,用 于根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;所述发端设备根据所述第二序列对所述加扰后的第二控制信息进行解扰。
一种可能的设计,所述处理单元,用于根据所述第二参数确定所述第二序列的参数;所述第二序列的参数包括以下至少一项:所述第二序列的初始值;所述第二序列的初始位置;所述第二序列的根序列号;所述第二序列的循环移位值;所述第二序列的覆盖正交码。
一种可能的设计,所述收发单元,用于接收加扰的第一控制信息;所述处理单元,用于根据第三标识确定第三序列;所述第三标识的取值为大于1007且小于1024的整数;所述收端设备根据所述第三序列,对所述加扰的第一控制信息解扰。
一种可能的设计,所述处理单元,用于根据所述第三标识确定所述第三序列的参数;所述第三序列的参数包括以下至少一项:所述第三序列的初始值;所述第三序列的初始位置;所述第三序列的根序列号;所述第三序列的循环移位值;所述第三序列的覆盖正交码。
上述实施方式中,可以参考第一方面和第三方面的实施方式的有益效果,在此不再赘述。上述实施方式中,根据第一参数确定第一序列的方法,根据第二参数确定二序列的方法,及根据第三标识确定第三序列的方法,及第一控制信息,第二控制信息,第一参数,第二参数的确定方式可以参考第一方面和第三方面的方法示例中的相应步骤,在此不再赘述。
第五方面,提供一种参考信号的发送方法,发端设备根据第一参数确定第一序列,所述第一参数包括第一控制信息指示的信息和/或第二控制信息指示的信息;所述发端设备根据所述第一序列确定第一参考信号;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数;所述发端设备发送所述第一参考信号。
通过上述方法,通过包括有第一控制信息指示的信息和/或第二控制信息指示的信息的第一参数,确定第一序列,进而生成对数据进行调制的第一参考信号,可以有效增加数据的参考信号的随机性,进而提高数据的可解调性,减少或解决了传输数据的资源之间的冲突,保证了数据高效准确的传输,提高了传输链路的可靠性。
一种可能的设计,所述发端设备根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;所述发端设备根据所述第二序列确定第二参考信号;所述第二参考信号用于所述发端设备调制所述第二控制信息;所述发端设备发送所述第二参考信号。
通过上述方法,通过包括有第一控制信息指示的信息的第二参数,确定第二序列,进而生成对第二控制信息进行调制的第二参考信号,可以有效增加第二控制信息的参考信号的随机性,进而提高第二控制信息的可解调性,减少或解决了传输数据的资源之间的冲突,保证了第二控制信息与数据的高效准确的传输,提高了传输链路的可靠性。
一种可能的设计,所述发端设备根据第三标识确定第三序列;所述发端设备根据所述第三序列确定第三参考信号;所述第三参考信号用于所述发端设备对所述第一控制信息调制;所述发端设备发送所述第三参考信号。
通过上述方法,通过第三标识,确定第三序列,进而生成对第一控制信息进行调制的第三参考信号,可以有效增加第三控制信息的参考信号与第一控制信息的参考信号的随机性,进而提高第一控制信息和第二控制信息的安全性和可解调性,减少或解决了传输数据的资源之间的冲突,提高了传输链路的可靠性。
其中,第一控制信息,第二控制信息,第一参数,第二参数的确定方式可以参考第一 方面的方法示例中的相应步骤,在此不再赘述。需要说明的是,第五方面确定的第一序列,可以与第一方面/第三方面确定的第一序列不同,第七方面确定的第二序列可以与第一方面/第三方面确定的第一序列不同,第七方面确定的第三序列可以与第一方面/第三方面确定的第三序列不同,在此不做限定。
第六方面,提供一种通信装置,所述装置具有实现上述第五方面的方法实例中行为的功能。所述装置可以位于发端设备或收端设备中,或为发端设备或收端设备。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的实现中,所述装置的结构中包括处理单元和收发单元,这些单元可以执行上述第五方面方法示例中的相应步骤或功能,包括:收发单元和处理单元,其中,处理单元,用于根据第一参数确定第一序列,所述第一参数包括第一控制信息指示的信息和/或第二控制信息指示的信息;根据所述第一序列确定第一参考信号;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数;收发单元,用于发送所述第一参考信号。
一种可能的设计,所述处理单元,用于根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;根据所述第二序列确定第二参考信号;所述第二参考信号用于所述发端设备调制所述第二控制信息;所述收发单元,用于发送所述第二参考信号。
一种可能的设计,所述处理单元,用于根据第三标识确定第三序列;所述发端设备根据所述第三序列确定第三参考信号;所述第三参考信号用于所述发端设备对所述第一控制信息调制;所述收发单元,用于发送所述第三参考信号。
上述实施方式中,可以参考第五方面的实施方式的有益效果,在此不再赘述。上述实施方式中,根据第一参数确定第一序列的方法,根据第二参数确定二序列的方法,及根据第三标识确定第三序列的方法,及第一控制信息,第二控制信息,第一参数,第二参数的确定方式可以参考第一方面和第三方面、第五方面的方法示例中的相应步骤,在此不再赘述。
第七方面,提供一种数据的接收方法,收端设备根据第一参数确定第一序列,所述第一参数包括第一控制信息指示的信息和/或第二控制信息指示的信息;所述收端设备接收第一参考信号;所述收端设备根据所述第一序列和所述第一参考信号接收数据;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数。
通过上述方法,通过包括有第一控制信息指示的信息和/或第二控制信息指示的信息的第一参数,确定第一序列,进而根据接收的第一参考信号及第一序列,对数据进行解调,可以有效提高数据的可解调性,减少或解决了传输数据的资源之间的冲突,保证了数据高效准确的传输,并且,通过第一序列及第一参考信号对数据进行解调的前提是,正确接收到第一控制信息,因此,有助于对数据的安全性传输进行校验,保证在第一控制信息正确传输的前提下,才能正确解调数据,提高了传输链路的可靠性。
一种可能的设计,所述收端设备接收第二参考信号;所述收端设备根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;所述收端设备根据所述第二序列和所述第二参考信号接收所述第二控制信息。
通过上述方法,通过包括有第一控制信息指示的信息的第二参数,确定第二序列,进 而根据接收的第二参考信号及第二序列,对第二控制信息进行解调,可以有效提高第二控制信息的可解调性,减少或解决了传输数据的资源之间的冲突,并且,通过第二序列及第二参考信号对第二控制信息进行解调,有助于对数据的安全性传输进行校验,保证在第一控制信息正确传输的前提下,才能正确解调第二控制信息,提高了传输链路的可靠性。
一种可能的设计,所述收端设备接收第三参考信号;所述收端设备根据第三标识确定第三序列,所述第三标识的取值为大于1007且小于1024的整数;所述收端设备根据所述第三序列和所述第三参考信号接收所述第一控制信息。
通过上述方法,通过第三标识,确定第三序列,进而生成对第一控制信息进行调制的第三参考信号,可以有效增加第三控制信息的参考信号与第一控制信息的参考信号的随机性,进而提高第一控制信息和第二控制信息的安全性和可解调性,减少或解决了传输数据的资源之间的冲突,提高了传输链路的可靠性。
其中,第一控制信息,第二控制信息,第一参数,第二参数的确定方式可以参考第一方面的方法示例中的相应步骤,在此不再赘述。需要说明的是,第七方面确定的第一序列,可以与第一方面/第三方面确定的第一序列不同,第七方面确定的第二序列可以与第一方面/第三方面确定的第一序列不同,第七方面确定的第三序列可以与第一方面/第三方面确定的第三序列不同,在此不做限定。
第八方面,提供一种通信装置,所述装置具有实现上述第五方面的方法实例中行为的功能。所述装置可以位于发端设备或收端设备中,或为发端设备或收端设备。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的实现中,所述装置的结构中包括处理单元和收发单元,这些单元可以执行上述第五方面方法示例中的相应步骤或功能,包括:收发单元和处理单元,其中,收发单元,用于接收第一参考信号;处理单元,用于根据第一参数确定第一序列,所述第一参数包括第一控制信息指示的信息和/或第二控制信息指示的信息;根据所述第一序列和所述第一参考信号接收数据;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数。
一种可能的设计,收发单元,用于接收第二参考信号;处理单元,用于根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;所述收端设备根据所述第二序列和所述第二参考信号接收所述第二控制信息。
一种可能的设计,收发单元,用于接收第三参考信号;处理单元,用于根据第三标识确定第三序列,所述第三标识的取值为大于1007且小于1024的整数;所述收端设备根据所述第三序列和所述第三参考信号接收所述第一控制信息。
第九方面,提供了一种通信装置。本申请提供的装置具有实现上述方法所述发端设备或收端设备的功能,其包括用于执行第一方面、第三方面、第一方面中任一种可能实现方式、或第三方面中任一种可能实现方式所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。其中,所述装置可以为发端设备或收端设备。
在一种可能的实现中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中发端设备或收端设备相应的功能。可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要 的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
另一个可能的实现中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第一方面、第三方面、第一方面中任一种可能实现方式、或第三方面中任一种可能实现方式中发端设备或收端设备完成的方法。
在一种可能的实现中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中发端设备或收端设备相应的功能。可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存终端设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。所述装置可以位于发端设备或收端设备中,或为发端设备或收端设备。
另一个可能的实现中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第一方面、第三方面、第一方面中任一种可能实现方式、或第三方面中任一种可能实现方式中发端设备或收端设备完成的方法。
第十方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面、第二方面、第一方面中任一种可能实现方式、或第二方面中任一种可能实现方式中的方法的指令。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面、第三方面、第一方面中任一种可能实现方式中、或第三方面中任一种可能实现方式的方法。
第十二方面,提供了一种通信装置,例如芯片系统等,该装置与存储器相连,用于读取并执行所述存储器中存储的软件程序,执行上述第一方面、第三方面、第一方面中任一种可能实现方式、或第三方面中任一种可能实现方式中的方法。
第十三方面,提供了一种通信装置。本申请提供的装置具有实现上述方法方面所述发端设备或收端设备的功能,其包括用于执行第五方面、第七方面、第五方面中任一种可能实现方式、或第七方面中任一种可能实现方式所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。其中,所述装置可以为发端设备或收端设备。
在一种可能的实现中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中发端设备或收端设备相应的功能。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
另一个可能的实现中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第五方面、第七方面、第五方面中任一种可能实现方式、或第七方面中任一种可能实现方式中发端设备或收端设备完成的方法。
在一种可能的实现中,上述装置包括一个或多个处理器和通信单元。所述一个或多个 处理器被配置为支持所述装置执行上述方法中发端设备或收端设备相应的功能。可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存终端设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。所述装置可以位于发端设备或收端设备中,或为发端设备或收端设备。
另一个可能的实现中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第五方面、第七方面、第五方面中任一种可能实现方式、或第七方面中任一种可能实现方式中发端设备或收端设备完成的方法。
第十四方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第五方面、第七方面、第五方面中任一种可能实现方式、或第七方面中任一种可能实现方式中的方法的指令。
第十五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第五方面、第七方面、第五方面中任一种可能实现方式、或第七方面中任一种可能实现方式中、或第四方面中任一种可能实现方式的方法。
第十六方面,提供了一种通信装置,例如芯片系统等,该装置与存储器相连,用于读取并执行所述存储器中存储的软件程序,执行上述第五方面、第七方面、第五方面中任一种可能实现方式、或第七方面中任一种可能实现方式中的方法。
附图说明
图1a-图1d为一种本申请实施例提供的无线通信系统网络架构的示意图;
图2a-图2d为一种本申请实施例提供的数据信道的结构示意图;
图3为一种本申请实施例提供的数据的发送方法的流程示意图;
图4为一种本申请实施例提供的数据的接收方法的流程示意图;
图5为一种本申请实施例提供的参考信号的发送方法的流程示意图;
图6为一种本申请实施例提供的数据的接收方法的流程示意图;
图7a-图7c为一种本申请实施例提供的数据信道的结构示意图;
图8为一种本申请实施例提供的通信装置的结构示意图;
图9为一种本申请实施例提供的通信装置的结构示意图;
图10为一种本申请实施例提供的通信装置的结构示意图;
图11为一种本申请实施例提供的通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第四代(4th Generation,4G),4G系统包括LTE系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,未来的第五代(5th Generation,5G)系统,如NR,及未来的通信系统,如6G系统等。另外,本申请实施例提供的技术方案可以应用于蜂窝链路, 也可以应用于设备间的链路,例如设备到设备(device to device,D2D)链路。D2D链路或V2X链路,也可以称为侧行链路(sidelink,SL),其中侧行链路也可以称为边链路或副链路等。在本申请实施例中,上述的术语都是指相同类型的设备之间建立的链路,其含义相同。所谓相同类型的设备,可以是终端设备到终端设备之间的链路,也可以是基站到基站之间的链路,还可以是中继节点到中继节点之间的链路等,本申请实施例对此不做限定。对于终端设备和终端设备之间的链路,有3GPP的版本(Rel)-12/13定义的D2D链路,也有3GPP为车联网定义的车到车、车到手机、或车到任何实体的V2X链路,包括Rel-14/15。还包括目前3GPP正在研究的Rel-16及后续版本的基于NR系统的V2X链路等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景(或应用场景)是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置,智能穿戴式设备,未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该设备还可以是可穿戴设备等。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能 全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU);如果位于路侧终端设备上(例如放置在路侧单元内或安装在路侧单元内),都可以认为是路侧终端设备,路侧终端设备也称为路侧单元(Road Side Unit,RSU)。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
2)网络侧设备,包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种V2X技术中的网络侧设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络侧设备还可协调对空口的属性管理。例如,网络侧设备可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G NR系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
网络设备可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备具体可包括基站(base station,BS),或包括基站以及用于控制基站的无线资源管理设备等。该网络设备还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备可以是可穿戴设备或车载设备或RSU。网络设备也可以是具有通信模块的通信芯片。
比如,网络设备包括但不限于:5G中的下一代基站(g nodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、WCDMA系统中的节点B(node B,NB)、CRAN系统下的无线控制器、基站控制器(base station controller,BSC)、GSM系统或CDMA系统中的基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。
3)发射机,也称发送设备,与接收机对应,该发射机用于发送信息,如数据包、控制信息、指示信息等。
4)接收机,也称接收设备,与发射机对应,该接收机用于接收发射机发送的信息,该接收机还可以向发射机发送反馈信息,也就是说一个设备既可以作为发射机也可以作为接收机。
5)传输链路,包括两个设备之间的侧行链路,以及终端设备与网络侧设备之间的上 下行链路等。
6)侧行链路(sidelink,SL),主要指相同类型的设备之间建立的链路,也可以称为边链路、副链路或辅助链路等,本申请实施例对此名称不作限定。相同类型的设备,可以是终端设备到终端设备之间的链路,也可以是基站到基站之间的链路,还可以是中继节点到中继节点之间的链路等,本申请实施例对此不做限定。V2X技术为D2D技术在车联网中的一种应用,或者说V2X是一种具体的D2D或sidelink技术。在V2X场景中,侧行链路为两V2X终端之间的直连链路连接,V2X终端为具有V2X功能的终端,例如上述相同类型的设备。
7)SL传输,两个V2X终端在侧行链路上的数据传输,称为SL传输。
两个V2X终端在进行SL传输之前,可以建立侧行链路连接。比如,作为发起方的V2X终端向网络侧设备发送建立侧行链路连接的请求,网络侧设备如果同意该V2X终端建立侧行链路连接,则向该V2X终端发送建立侧行链路连接的配置信息,该V2X终端根据网络侧设备发送的配置信息与另一V2X终端建立侧行链路连接。
时域资源,包括时间单元,时间单元可以为时隙(slot),迷你时隙(mini-slot),符号(symbol)或其他时域粒度(如系统帧、子帧),其中一个时隙可以包括至少一个符号,例如14个符号,或者12个符号。本申请以时隙为示例进行说明,但并不局限于时隙的实施方式。
在5G NR中,一个时隙可以由用作下行传输的符号、用作灵活的符号、用作上行传输的符号等其中的至少一个组成,这样时隙的构成称为不同的时隙格式(slot format,SF),时隙格式最多可能有256种。
时隙可以有不同的时隙类型,不同的时隙类型包括的符号个数不一样,如迷你时隙(mini slot)包含小于7个符号,2个符号,3个符号,4个符号等,普通时隙(slot)包含7个符号或14个符号等。根据子载波间隔不同,每个符号长度可以不同,因此时隙长度可以不同。
子载波间隔(sub-carrier spacing,SCS),是OFDM系统中,频域上相邻的两个子载波的中心位置或峰值位置之间的间隔值。在5G NR中,引入了多种子载波间隔,不同的载波可以有不同的子载波间隔。基线为15kHz,可以是15kHz×2n,n是整数,从3.75,7.5直到480kHz,例如,关于子载波间隔,可参考如下的表1:
表1
μ Δf=2 μ·15[kHz]
0 15
1 30
2 60
3 120
4 240
其中,μ用于指示子载波间隔,例如,μ=0时,子载波间隔为15kHz,μ=1时,子载波间隔为30kHz。不同的子载波间隔对应的一个时隙的长度是不同的,15kHz的子载波间隔对应的一个时隙的长度为0.5ms,60kHz的子载波间隔对应的一个时隙的长度为0.125ms,等等。那么相应的,不同的子载波间隔对应的一个符号的长度也就是不同的。
频域上,由于5G NR单载波带宽可以达到400MHz,因而又在一个载波内定义了带宽 部分(bandwidth part,BWP),也可以称为载波带宽部分(carrier bandwidth part)。BWP包括频域上的连续若干个资源单元,比如资源块(resource block,RB)。带宽部分可以为下行或上行带宽部分,终端设备在激活的带宽部分内的数据信道上接收或发送数据。
频域资源,包括子信道、频段(band)、载波(carrier)、带宽部分(BandWidth Part,BWP)、资源块(Resource Block,RB)或资源池等。
子信道,是物理侧行共享信道占用频域资源的最小单位,一个子信道可以包括一个或多个资源块(resource block,RB)。无线通信系统在频域上的带宽可以包括多个RB,例如,在LTE系统的各可能的带宽中,包括的PRB可以为6个、15个、25个、50个等。在频域上,一个RB可以包括若干个子载波,例如,在LTE系统中,一个RB包括12个子载波,其中,每个子载波间隔可以为15kHz,当然,也可以采用其他子载波间隔,例如3.75kHz、30kHz、60kHz或120kHz子载波间隔,在此不作限制。
序列资源,又称码域资源,为用来指示序列的相关参数。对于随机序列,序列的参数包括序列的初始位置,序列的长度,序列的初始值;对于低蜂均比序列(例如ZC(Zadoff–Chu)序列),序列的参数包括根序列、掩码、扰码、循环移位(Cyclic shift,CS)或正交覆盖码(Orthogonal Cover Code,OCC)等。
序列的初始值,指对于随机序列(如Gold序列,m序列)来说,生成序列的移位寄存器的初始值。
序列的初始位置与用于传输时使用的随机序列之间满足:c(n)=c(n+a),n=0,1,2,…,L-1,其中c(n)为用于传输时使用的随机序列,a为随机序列的初始位置,L为随机序列的长度,一般a为非负的整数,如a为0,或a为2等。
8)V2X的数据传输方式。在V2X中,主要是终端设备和终端设备之间的通信。对于终端设备和终端设备之间的传输模式,当前标准协议支持的有广播方式,组播方式,和单播方式。
广播方式:广播方式是指作为发送端的终端设备采用广播的模式进行数据发送,多个终端设备端均能接收来自发送端的侧行链路控制信息(sidelink control information,SCI)或承载在侧行链路共享信道(sidelink shared channel,SSCH)上的数据信息。
在侧行链路中,保证所有的终端设备都能解析来自发送端的控制信息的方式是,发送端不对控制信息加扰,或者发送端使用所有的终端设备都已知的扰码对控制信息加扰。
组播方式:组播方式和广播发送相似,作为发送端的终端设备采用组播的模式进行数据发送,一组终端设备均能解析SCI或SSCH。
单播方式:单播方式是一个终端设备向另外一个终端设备发送数据,其它终端设备不需要或者不能够解析该数据。
综上,为尽可能地满足数据和业务的私密性。一种可行的方式是,对与V2X相关的数据和控制信息使用伪随机序列进行加扰,以使不相关的终端设备不能解调出相应的数据。
9)参考信号,主要指传输针对数据的调制解调的参考信号,发送参考信号的设备可以为发送控制信息和第一数据的发端设备,也可以为进行测量或提供同步源的设备。参考信号有以下用途:承载传输的控制信息及数据,进行信道状态信息(Channel State Information,CSI)、无线资源管理(Radio Resource Management,RRM)或无线链路监控(Radio Link Monitoring,RLM)测量,进行同步等。参考信号在承载传输的数据时,可以是用序列承载,也可以是用反馈信道中的控制信息编码比特来承载,具体参考信号可以 为物理侧行链路共享信道(Physical Sidelink Shared Channel,PSSCH)使用的解调参考信号(Demodulation Reference Signal,DMRS),可以为物理侧行链路控制信道(Physical Sidelink Control Channel,PSCCH);参考信道在进行CSI、RRM或RLM测量时,参考信号可以为RS,或信道探测参考信号(Sounding Reference Signal,SRS),或CSI-RS等;参考信号在进行同步时,参考信号可以为物理侧行链路广播信道(Physical sidelink broadcast Channel,PSBCH)使用的参考信号等。
举例来说,信道状态信息参考信号(channel state information-reference signal,CSI-RS)的序列,可以是按如下方式生成的:
Figure PCTCN2019116880-appb-000001
其中n=0,1,2,…;r l()表示参考信号的序列;c()为随机序列,例如,随机序列为31bit或31位的移位寄存器的Gold序列,或者m序列。
解调参考信号(DMRS)的序列,可以是按如下方式生成的:
r l(n)=(1-2c(n))
需要说明的是本发明生成参考信号使用的序列的形式不作限制。
ZC序列,也称为Zadoff–Chu,Frank–Zadoff–Chu(FZC)序列或者Chu序列,是完美序列中的一种。这个序列具有理想的周期自相关特性。生成ZC序列的主要参数有序列的根序列号,循环移位值和正交覆盖码中的一种或多种。
10)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如第一时隙和第二时隙,只是为了区分不同的时隙,并不是限制这两个时隙的优先级或重要程度等。
为了便于理解本申请实施例,下面对本申请的应用场景进行说明。
物联网是在通信系统提供的互联网的基础上延伸和扩展的网络,通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实现采集任何需要监控、连接、互动的物体或过程,通过各类可能的网络接入,实现物与物、物与人之间的泛在连接。简单来说,物联网的核心和基础仍然是互联网,是在互联网基础上延伸和扩展的网络,其用户端延伸和扩展到了任何物与物之间的信息交换和通信。
物联网的应用领域涉及到方方面面,比如在智能交通中的应用,而随着交通信息化和智能交通的行业发展,车联网的概念被提出。车联网主要指车辆上的车载设备通过无线通信技术,对信息网络平台中的所有车辆的动态信息进行有效路由,在车联运行中提供不同的功能服务,旨在提升汽车安全性、自动化驾驶,并提升交通效率。车联网的实现主要依 赖于V2X技术,V2X技术核心在于实现车联与万事万物的互连,主要应用在车与外界(vehicle to everything,V2X)场景,其中,V2X具体又包括车与车(Vehicle to Vehicle,V2V)、车与行人(Vehicle-to-Pedestrian,V2P)、车与路侧基础设施(Vehicle-to-Infrastructure,V2I)、车与网络(Vehicle-to-Network,V2N)四种应用场景。V2V指的是车辆间通信;V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客)的通信;V2I指的是车辆与路侧单元(RSU)的通信,V2N指的是车辆与基站/网络的通信。
在如图1a所示无线通信系统中,网络设备102可通过第一控制信息以及第二控制信息调度终端101的数据。其中,第一控制信息可以是第一下行控制信息(downlink control information,DCI)或第一上行控制信息(uplink control information,UCI),第二控制信息可以是第二DCI或第二UCI。所述第一DCI以及所述第二DCI可用于调度由网络设备102向终端101发送的下行数据,该下行数据可承载于物理下行共享信道(physical downlink shared channel,PDSCH)。所述第一UCI以及所述第二UCI可用于调度由终端101向网络设备102发送的下行数据,该下行数据可承载于物理上行共享信道(physical uplink shared channel,PUSCH)。
请参见图1b,为本申请实施例提供的另一种无线通信系统网络架构的示意图。
如图1b所示,无线通信系统可以包括终端103以及终端104,终端103以及终端104之间可进行侧行(sidelink,SL)通信。其中,终端103可作为发送设备,终端104可作为接收设备。或者,终端104可作为发送设备,终端103可作为接收设备。
在如图1b所示无线通信系统中,终端103可通过第一控制信息以及第二控制信息调度终端104的数据。其中,第一控制信息可以是第一SCI,第二控制信息可以是第二SCI,其中,所述第一SCI以及所述第二SCI可用于调度由终端103向终端104发送的数据,和/或,用于调度由终端104向终端103发送的数据。终端103与终端104之间传输的数据可承载于物理边链路共享信道(physical sidelink shared channel,PSSCH)。
所述终端103以及终端104可以是用户设备、终端、RSU、接入终端、终端单元、终端站、移动台、远方站、远程终端、移动终端、无线通信设备、终端代理或终端设备等,具体可参照以上关于终端101的说明。
示例性的,终端103还可接入接入网设备,从而可由接入网设备配置终端103与终端104之间的SL链路,该SL链路用于终端103与终端104之间的SL通信。该接入网设备可以是RAN基站等设备,具体可参照以上关于网络设备102的说明。应理解,终端104可接入如图1b所示的接入网设备,或接入图1b未示出的其他接入网设备。
请参见图3,为本申请实施例提供的另一种无线通信系统网络架构的示意图。
如图1c所示,无线通信系统包括:多个车载设备(如图1c所示的UE1、UE2、UE3),车载设备之间可以相互通信;一个或多个RSU,它可以与各个车载设备和/或eNB进行通信;一个或多个LTE基站设备(eNB),它可以与各个车载设备和/或RSU进行通信;一个或多个NR基站设备(gNB),它可以与各个车载设备和/或RSU进行通信;一个或多个全球导航卫星系统(Global Navigation Satellite System,GNSS),它可以为概统信息系统中的其它的网元提供定位与授时的信息。车载设备可以随着车辆高速移动,例如UE1和UE2之间相对运动时,具有最大的相对移动速度。
应理解,图1c所示的各个设备之间都可以相互通信,通信时可以使用蜂窝链路的频谱,也可以使用5.9GHz附近的智能交通频谱。各设备相互通信的技术可以基于LTE协议进行 增强,也可以基于D2D技术进行增强。图1c所示的系统中的任意两个设备通信时,第一控制信息以及第二控制信息可以用于调度两个设备之间的数据。
例如,第一DCI以及第二DCI可用于调度由gNB/eNB/RSU向UE1/UE2/UE3发送的下行数据,该下行数据可承载于PDSCH。例如,第一UCI以及第二UCI可用于调度由UE1/UE2/UE3向gNB/eNB/RSU发送的上行数据,该上行数据可承载于PUSCH。例如,UE1可通过第一SCI以及第二SCI调度终端UE2/UE3的数据。UE1与UE2/UE3之间传输的数据可承载于PSSCH。
应理解,在图1c中,eNB和/或gNB是可选的。在有eNB和/或gNB时,则是有网络覆盖的V2X场景,如果无eNB和/或gNB则是属于无网络覆盖的V2X场景。
基于以上如图1a或图1b或图1c所示的无线通信系统,本申请实施例提供一种控制信息发送方法和接收方法,用于确定两级控制信息中的第二控制信息的传输资源,以便发送设备和接收设备之间根据两级控制信息实现数据传输。
如图1d所示为一种应用场景的示意图,图1d所示的应用场景为V2X场景,该场景中包括车载设备(如图1d所示包括UE1、UE2和UE3),路侧单元(如图1d所示包括RSU1),基站设备(如图1d所示包括eNB和gNB等),以及全球导航卫星系统(如图1d所示包括GNSS),该场景中的各设备均可以为一个或多个。车载设备之间可以相互通信,实现信息交流与信息共享,如包括车辆位置、行驶速度等车联状态信息,可用于判断道路车流状况。RSU可以与各个车载设备和/或基站设备通信,进可用于检测道路路面状况,引导车辆选择最佳行驶路径。基站设备与各个车载设备和/或RSU通信,GNSS可以为其他的网元提供定位授时的信息。此外,该车联网中车载设备还可以与人通信,具体的用户可以通过Wi-Fi、蓝牙、蜂窝等无线通信手段与车辆进行信息沟通,使用户能通过对应的移动终端设备监测并控制车辆。图1d中的基站设备是可选的,如果有基站设备,则是有网络覆盖的场景;如果无基站设备则是属于无网络覆盖的场景。
上述各设备之间都可以通过侧行链路和上下行链路进行相互通信,通信时可以使用蜂窝链路的频谱,也可以使用5.9GHz附近的智能交通频谱。各设备相互通信的技术可以基于通信网络协议(如LTE协议)进行增强,可以基于D2D技术进行增强。
本申请实施例提供一种数据的发送方法,请参见图3,为本申请实施例提供的一种数据的发送方法的流程图。在下文的介绍过程中,以该方法应用于图1a-图1d所示的网络架构为例。另外,该方法可由两个设备执行,这两个设备例如为发端设备和收端设备,其中,发端设备可以是终端设备或网络侧设备,或能够支持终端设备或网络侧设备实现该方法所需的功能的通信装置,或者发端设备可以是能够支持终端设备或网络侧设备实现该方法所需的功能的通信芯片(例如通信基带芯片系统)。对于收端设备也是同样,收端设备可以是终端设备或网络侧设备或能够支持终端设备或网络侧设备实现该方法所需的功能的通信装置,或者收端设备可以是能够支持终端设备或网络侧设备实现该方法所需的功能的通信芯片(例如基带通信芯片系统)。
为了方便说明,下文以侧行链路为例,发端设备可以是图1a-图1d中的UE,收端设备同样可以是图1a-图1d中的UE,例如,该方法应用于图1a-图1d所示的网络架构,发端设备可以是UE1-UE3中的任意一个UE,收端设备可以是UE1-UE3中除发端设备之外的任意一个UE,也可以是RSU1;又或者,发端设备可以是RSU1,收端设备可以是UE1-UE3中的任意一个UE。本申请实施例对发端设备和收端设备的实现方式均不作限制。需要说 明的是,本申请实施例只是以通过发端设备和收端设备执行为例,并不限制于这种场景。蜂窝链路中的下行传输链路,发端设备可以为网络侧设备例如,网络侧设备为基站,收端设备也可以为终端设备;蜂窝链路中的上行传输链路,发端设备可以为终端设备,收端设备可以为网络侧设备例如,基站。
发端设备也可以称为数据的发射机。具体的,发端设备确定用于传输数据的第一资源,通过第一资源发送数据。一种可能的方式,发端设备可以通过控制信息向接收数据的接收机指示第一资源,以使收端设备根据第一资源接收所述数据。第一资源可以为基站为发端设备配置的,也可以为资源池中配置的,也可以为发端设备在传输资源中选择的,在此不做限定。以传输资源包括第一资源和第二资源为例。第一资源可以是用于发送数据的资源,也可以是用于发送控制信息的资源。对应的,第二资源可以是用于接收数据的资源,也可以是用于接收控制信息的资源。例如,发端设备作为发端设备时可以在第一资源上向收端设备发送数据,或者发端设备作为收端设备时,可以在第二资源上接收来自发端设备的数据;发端设备作为发端设备时可以在第一资源上发送控制信息,或者发端设备作为收端设备时,可以在第二资源上接收来自发端设备的控制信息。这里的控制信息可以是指示数据传输的调度信息或指示HARQ应答信息。
针对侧行链路,控制信息可以通过PSCCH上承载SCI,用于指示第一资源,可以通过PSSCH上承载数据。针对蜂窝链路,控制信息可以通过PDCCH上承载DCI,用于指示第一资源。示例性的,该第一资源可以包括数据所在的第一时隙(或者数据占用的第一时隙)、数据所在的第一频域资源(或者数据占用的第一频域资源)以及用于承载该数据的第一参考信号序列资源,数据的加扰序列中的至少一种。
一种可能的场景中,发端设备发送控制信息,用于指示收端设备根据控制信息接收数据。此时,控制信息可以包括用于传输数据的第一资源。针对下行链路,控制信息可以承载于PDCCH上,数据可以承载于PDSCH上。针对侧行链路,控制信息可以承载于PSCCH上,数据可以承载于PSSCH上。承载控制信息的PSCCH可以与承载数据的PSSCH位于同一时间单元,承载控制信息的PSCCH也可以位于承载数据的PSSCH之前,在此不做限定。
另一种可能的场景中,在侧行链路上,如图2a-图2d所示,PSCCH可以包括PSCCH1和PSCCH2,PSCCH1用于承载第一控制信息SCI-1,PSCCH2用于承载第二控制信息SCI-2。第一控制信息可以用于指示收端设备接收所述数据所必需的资源。图2a中,PSCCH1和PSCCH2位于不同的符号上,图2b中,PSCCH1和PSCCH2位于相同的符号上,图2c中,PSCCH1和PSCCH2位于相同的符号上,且同一个时隙内,还可以包括自动增益控制(automatic gain control,AGC),空符号(gap,GP);图2d中,PSCCH1和PSCCH2位于相同的符号上,且同一个时隙内,还可以包括AGC1,GP1,AGC2,Fundamental Channel物理侧行链路反馈信道(Physical Sidelink Feedback Channel,PSFCH),GP2。
一种可能的示例,第一控制信息指示的信息可以包括以下至少一项:
所述数据的优先级信息;所述数据的调制编码方式;用于指示所述参考信号的参考信号序列图样的指示信息;所述第二控制信息的类型或格式;用于指示所述数据的传输资源的指示信息;用于指示所述数据的初传或重传的传输间隔的指示信息;用于指示所述数据的传输资源预留的指示信息。
其中,所述第一传输资源的指示信息可以用于指示传输所述数据的资源。例如,数据 的优先级Priority,占用3bits,数据的调制编码方式MCS,占用5bits,确定数据的DMRS图样(DMRS pattern),占用1、2或3比特(bits);确定数据的SCI-2的类型或格式(SCI-2 type or format),确定数据的初传或数据的重传的频域资源(大小和位置)的指示信息,或为数据的重传或发送冗余版本预留资源的指示信息,数据的传输的时间间隔的指示信息,数据的初传与重传之间的时间间隔的指示信息。
可选的,第一控制信息包括以下信息中的一种或多种,可以描述为:
1)、优先级(priority)信息,例如:用于指示第一数据的优先级,用来表示第一数据的重要程度、紧急程度、时延需求、可靠性要求的等级、大小或范围;
2)、调制编码方式(modulation and coding scheme,MCS),例如:用来指示第一数据和/或第二控制信息发送时使用的MCS;
3)、解调参考信号(demodulation reference signal,DMRS)图样(pattern),例如:用于指示第一数据和/或第二控制信息发送时使用的DMRS的图样中预定义或预配置的图样的哪一种;
4)、第二控制信息SCI-2的类型或格式(SCI-2 type or format),或第一数据的传输方式,例如:用来指示SCI-2使用的CRC掩码、SCI-2的大小,SCI-2是用来指示第一数据是用来做单播、组播或广播传输中的哪一种;
5)、当前数据或数据的初传或重传的时域和频域资源分配(大小和位置)的指示信息,或预留资源的指示信息(例如:用于指示为后续传输所预留资源的信息);
6)、当前的传输与下一次传输,或当前传输的数据包与下一个待传输的数据包之间的时间间隔的指示信息,或者初传与重传之间的时间间隔的指示信息。
以优先级举例,发端设备在确定第一资源和第二资源在至少一个时域符号上重叠时,可以根据第一数据的优先级和第二数据的优先级来确定优先发送第一数据还是控制信息。示例性的,如果第一数据的优先级高于第二数据的优先级,则发端设备确定即优先处理优先级较高的数据,在第一资源上发送第一数据,也就是优先保证较为重要数据的传输,降低对要进行的通信业务的影响。
第二控制信息用于指示收端设备根据第二控制信息进行对应的操作,例如,执行信道测量,发送反馈信息等。可选的,第二控制信息包括以下信息中的一种或多种,可以描述为:
1)、源标识(source identifier)或者物理层的源标识;
2)、目的标识(destination identifier)或者物理层的目的标识;
3)、混合自动重传请求(hybrid automatic repeat request,HARQ)的进程号;
4)、重传或冗余版本指示信息;
5)、发端设备的位置指示信息;
6)、要求的通信距离的指示信息(required minimun communication distance),例如,可用于指示第一数据传输时要求达到的最小通信距离;
7)、信道状态信息参考信号(channel state information-reference signal,CSI-RS)的指示或配置信息。
例如,收端设备根据数据的源标识,数据的目的标识,确定接收的数据是否需要进行转发。
收端设备根据混合自动重传请求的进程号,重传或冗余版本的指示信息接收重传数据或冗余版本对应的数据。
收端设备根据道状态指示信息,信道状态指示参考信号的指示信息,对信道进行测量,并根据对应的参数,生成并发送反馈信息。
为方便描述,以下将发端设备确定的用于传输数据的第一资源按照第一控制信息和第二控制信息中指示的信息划分为第一传输参数和第二传输参数。即所述第一控制信息用于指示所述数据的第一传输参数,结合上述例子,第一传输参数可以包括:用于传输数据的优先级信息,用于传输数据的调制编码方式,用于传输数据的参考信号序列图样指示信息,所述第一传输资源的指示信息,传输间隔的指示信息,资源预留的指示信息。所述第二控制信息用于指示所述数据的第二传输参数;第二传输参数包括:源标识,目的标识,混合自动重传请求的进程号,重传或冗余版本的指示信息,所述发端设备位置的指示信息,最小通信距离指示信息,信道状态指示信息,信道状态指示参考信号的指示信息。
在该场景中,发端设备可以发送第二控制信息。此时,用于传输第二控制信息的传输资源可以由第一控制信息指示,也可以通过高层信令的方式配置,或资源池的方式配置,在此不做限定。举例来说,第一控制信息还可以包括第二传输资源的指示信息,第二传输资源的指示信息用于指示第二控制信息的传输资源;此时,收端设备可以根据第一控制信息中指示的第二控制信息的传输资源,接收第二控制信息。同理,若第一控制信息用于指示第二控制信息和数据的传输参数,则收端设备可以根据第一控制信息中的第二控制信息的传输资源,接收第二控制信息;通过所述数据的传输资源,接收所述数据。
需要说明的是,PSCCH1的位置先于PSCCH2上,使得收端设备可以先获取PSCCH1上的第一控制信息后,根据第一控制信息中的第二控制信息的传输参数及第二控制信息的资源指示信息,确定PSCCH2,进而对第二控制信息进行接收。承载第一控制信息的PSCCH1,和承载第二控制信息的PSCCH2可以与承载数据的PSSCH位于同一时间单元。或者,承载第一控制信息的PSCCH1,可以位于承载第二控制信息的PSCCH2之前,也承载第二控制信息的PSCCH2可以位于承载数据的PSSCH之前,可以根据需要,确定发送的时间单元,在此不做限定。
为提高数据的私密性,可以对控制信息和数据进行加扰,对应的加扰方法可以为,根据加扰序列,对数据进行加扰。一种加扰方式,可以为以下形式:
Figure PCTCN2019116880-appb-000002
其中c(i)为加扰序列,b(i)为数据的比特,
Figure PCTCN2019116880-appb-000003
为加扰之后的比特。此处的数据可以是编码前的数据,也可以是信道编码之后的数据,在此不做限定。当然,加扰方式也可以是现有技术中通过加扰序列确定的任一种方式,上述实施例仅为举例。
进一步的,为提高加扰的随机性,增强数据的私密性,发端设备可以根据待发送的数据有针对性的生成加扰序列。例如,发端设备向收端设备发送第一数据,发端设备向发端设备发送第二数据,此时,发端设备可以为发送的第一数据生成第一加扰序列,发端设备可以为发送的第二数据生成第二加扰序列。在具体实施过程中,第一加扰序列和第二加扰序列所采用的序列形式可以相同,通过选择不同的序列的参数,进而生成不同的加扰序列。
本申请实施例中,用于待发送的数据的加扰序列和用于生成参考信号的序列,可以采 用的随机序列的形式可以相同,也可以不同,其随机序列可以基于初始值和非零的初始状态值来确定。其中,非零的初始状态值可以包括:序列的初始位置、序列的根序列号、序列的循环移位值、序列的覆盖正交码等。下面实施例中具体描述通过不同的序列的参数生成序列的方法。
本申请实施例提供了一种数据的发送方法,该方法可以应用于如图1a-图1d所示的场景中,也可以应用在传输资源可能产生冲突的其他场景中,下面参考图1a-图1d,详细说明方法的具体过程。如图3所示,该过程包括:
步骤301:发端设备根据第一参数确定第一序列;
具体的,发端设备可以先确定第一序列的形式,例如,第一序列为长度为31bit的循环移位的随机序列。第一序列可以为现有技术中的加扰序列中的任一种,在此不做限定。
进一步的,发端设备可以根据第一参数确定第一序列的参数。其中,第一参数可以包括以下至少一项:所述第一序列的初始值、所述第一序列的初始位置、所述第一序列的根序列号、所述第一序列的循环移位值(cycle shift,CS)、所述第一序列的覆盖正交码(Orthogonal Cover Code,OCC)。
以加扰为例,第一序列的参数可以为第一序列的初始值。第一序列c(n)表示一个初始序列,第一序列c(n)可以是基于伪随机序列,例如小m序列或Gold序列生成的,序列c(n)的序列值可以由序列的初始值C init来确定。
例如,对于长度为31位的移位寄存器,输出的随机序列长度为M PN,n=0,1,...,M PN-1;随机序列c(n)可以通过以下方式生成:
c(n)=(x 1(n+N C)+x 2(n+N C))mod 2
x 1(n+31)=(x 1(n+3)+x 1(n))mod 2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod 2
其中,N C=1600,第一个m序列x 1(n)的初始值可以为:x 1(0)=1,x 1(n)=0,n=1,2,...,30.
第二个m序列x 2(n)的初始值为:
Figure PCTCN2019116880-appb-000004
mod为取模操作,mod2表示对数除2求余。根据确定的第一序列c(n)的初始值c init,可以确定第一序列c(n)。
另一种举例,以生成参考信号序列为例,第一序列的参数可以为第一序列的初始值。第一序列的初始值可以表示为:
Figure PCTCN2019116880-appb-000005
其中,
Figure PCTCN2019116880-appb-000006
为每个时隙中的符号数,l当前时隙中的符号的索引。
Figure PCTCN2019116880-appb-000007
为第一控制信息使用子载波间隔u下时传输第一控制信息所在的时隙号。mod为取模操作,mod31表示对数除31求余。
根据第一序列的初始值,可以确定第一序列c(n),进而根据DMRS的序列的生成方式:r l(n)=(1-2c(n)),确定出DMRS序列。
另一种举例,以生成参考信号序列为例,第一序列的参数可以为第一序列的初始位置,例如,可以用第一序列c(n)生成参考信号序列。在生成参考信号序列时,可以将第一序列c(n)的不同位置作为参考信号序列的初始位置,从而就可以得到不同的参考信号序列。例如一个参考信号序列是将序列c(n)的第3个元素开始的位置作为初始位置,而另一个参考 信号序列是将序列c(n)的第4个元素开始的位置作为初始位置。
另一种举例,第一序列的参数可以为第一序列的根序列号,例如,发端设备根据第一参数确定第一序列的序列组跳和/或序列跳,然后根据序列组跳和/或序列跳生成第一序列的根序列号。
如u=(f gh+f ss+g 1(x))mod 30,其中根序列号为u。
该方式可以主要针对低PAPR序列,如ZC序列。
例如,序列组跳f gh
Figure PCTCN2019116880-appb-000008
序列跳f ss分别为f ss=(n ID+g 3(x))mod 30。
例如,序列组跳f gh
Figure PCTCN2019116880-appb-000009
序列跳f ss分别为f ss=(n ID+g 3(x))mod 30
其中,g1(x),g2(x)和g3(x)可以根据第一参数确定,c()为随机序列,
Figure PCTCN2019116880-appb-000010
为子载波间隔μ对应的时隙号,m为时隙号,n hop表示跳频的指示信息,跳频时取值为1,否则为0。
该方式中通过序列组跳和序列跳生成根序列号,可以进一步对序列进行扩频,从而进一步解决传输资源之间的冲突,n ID为基站配置的或预定义的标识,或者是发端设备的标识,或者是收端设备的标识。
另一种举例,第一序列的参数可以为第一序列的循环移位值CS,例如,通过循环移位寄存器按循环移位值确定的位数右循环或左循环确定第一序列。其中,循环移位值的数量即为可用的循环移位值的总数,例如为4,6,8,12等。根据下述公式生成循环移位的数值:
Figure PCTCN2019116880-appb-000011
其中h(n)为循环移位值,α为循环移位的数值,其中此处N为序列的长度,为正整数;进而,通过循环移位的数值,根据下述公式生成参考信号序列:
Figure PCTCN2019116880-appb-000012
其中r u,v(n)为原序列,其中Mc为参考信号使用的序列的长度,为正整数。
另一种举例,第一序列的参数可以为第一序列的覆盖正交码,例如,根据下述公式生成覆盖正交码的数值:n_occ=q(x)mod Ko,其中Ko为正交序列的总数,q(x)为正交覆盖码。
步骤302:发端设备根据所述第一序列对数据进行加扰;
其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数。
步骤303:发端设备发送加扰后的数据。
其中,发端设备发送加扰后的数据的方式可以为单播,广播,组播等方式,在此不做限定。
本申请实施例提供了一种数据的接收方法,该方法可以应用于如图1a-图1d所示的场景中,也可以应用在传输资源可能产生冲突的其他场景中,下面参考图1a-图1d,详细说明方法的具体过程。如图4所示,该过程包括:
步骤401:收端设备接收加扰后的数据。
其中,收端设备接收的加扰后的数据,可以为发端设备通过单播,广播,组播等方式 发送给收端设备的,在此不做限定。
步骤402:收端设备根据第一参数确定第一序列。
收端设备通过多种方式确定第一参数,例如,可以为通过发端设备指示的方式,也可以为高层信令为收端设备配置的,也可以为资源池中配置的第一参数,在此不做限定。收端设备根据第一参数确定第一序列的方式,也可以为发端设备指示的方式,也可以为高层信令为收端设备配置的,也可以为协议预先设定的,在此不做限定。
步骤403:收端设备根据第一序列对所述加扰后的数据解扰。
收端设备通过第一序列对所述加扰后的数据进行解扰的方法,可以与发端设备通过第一序列对所述数据加扰的方式对应,例如,可以通过以下形式确定解扰后的数据:
Figure PCTCN2019116880-appb-000013
其中c(i)为加扰序列,b(i)为解扰后的数据的比特,
Figure PCTCN2019116880-appb-000014
为加扰后的数据的比特。
本申请实施例提供了一种参考信号的发送方法,该方法可以应用于如图1a-图1d所示的场景中,也可以应用在传输资源可能产生冲突的其他场景中,下面参考图1a-图1d,详细说明方法的具体过程。如图5所示,该过程包括:
步骤501:发端设备根据第一参数确定第一序列;
具体的,发端设备可以先确定第一序列的形式,例如,第一序列为长度为31bit的循环移位的随机序列。第一序列可以为现有技术中用于生成参考信号序列的随机序列中的任一种,在此不做限定。
进一步的,发端设备可以根据第一参数确定第一序列的参数。其中,第一参数可以包括:以下至少一项:所述第一序列的初始值、所述第一序列的初始位置、所述第一序列的根序列号、所述第一序列的循环移位值、所述第一序列的覆盖正交码。
需要说明的是,对数据进行加扰确定的第一序列,与对数据进行调制的参考信号使用的第一序列可以不同,也可以相同,在此不做限定。具体的,对数据进行加扰选择的随机序列可以与对进行调制的参考信号使用的随机序列的形式可以不同,也可以相同。用于生成参考信号的第一序列的参数,与用于加扰的第一序列的参数可以不同,也可以相同,在此不做限定。用于生成参考信号的第一序列的第一参数,与用于加扰的第一序列的第一参数可以不同,也可以相同,在此不做限定。
步骤502:发端设备根据所述第一序列确定第一参考信号;
其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数;所述第一参考信号用于所述发端设备调制所述数据。
步骤503:发端设备发送第一参考信号。
进一步的,发端设备还可以发送数据。所述数据为根据第一参考信号调制的数据。所述数据可以为上述实施例中的加扰后的数据,也可以为未加扰的数据,在此不做限定。
本申请实施例提供了一种数据的接收方法,该方法可以应用于如图1a-图1d所示的场景中,也可以应用在传输资源可能产生冲突的其他场景中,下面参考图1a-图1d,详细说明方法的具体过程。如图6所示,该过程包括:
步骤601:收端设备接收第一参考信号。
步骤602:收端设备根据第一参数确定第一序列。
具体的收端设备根据第一参数确定第一序列的方式与发端设备根据第一参数确定第一序列的方式相同。收端设备获取第一参数的方式可以为通过发端设备指示的方式,也可以为高层信令为收端设备配置的,也可以为资源池中配置的第一参数,在此不做限定。
步骤603:收端设备根据所述第一序列和所述第一参考信号接收数据。
具体的,收端设备根据第一序列和接收到的第一参考信号,可以对当前的信道进行估计,进而,可以对接收到的信号解调,以实现对所述数据的接收。具体的通过第一序列和第一参考信号进行解调的方式可以参考现有技术的方式,在此不再赘述。
考虑到收端设备在接收数据之前,获取到的数据相关的控制信息可能不同,发端设备可以根据不同的控制信息,生成不同的加扰序列或参考信号。下面根据具体的场景分别进行描述。
场景一,如图7a所示,发端设备发送加扰的第一控制信息。
一种可能的设计,发端设备可以根据第三标识,生成加扰序列。其中,第三标识可以为通过高层信令配置的,也可以为通过基站为发端设备配置的,也可以为基站在资源池中配置的,也可以为协议中规定的,在此不做限定。例如,发端设备可以根据配置在资源池中的第三标识,生成第一序列。其中,第三标识可以用于确定第三序列的参数,第三序列的参数可以包括:第三序列的初始值、所述第三序列的初始位置、所述第三序列的根序列号、所述第三序列的循环移位值、所述第三序列的正交覆盖码中的一种或多种。
下面以第三序列的初始值为例进行说明。预先配置的第三序列的初始值可以为第三标识,第三标识可以为大于1007且小于1024的正整数。通过该设置方式,当下行传输资源与侧行传输资源共享时,下行传输的数据与侧行传输的控制信息可能共用一个相同的传输资源,可以使得生成的第三序列与蜂窝链路上生成的加扰序列不同,避免侧行链路与蜂窝链路的传输冲突。另一种可能的实现方式,可以针对不同的资源配置模式,设置不同的第三标识,例如,在侧行传输中,可以分为模式1和模式2,在模式1中,基站为每个终端在资源池内分配确定的时频资源用于该终端进行侧行传输;在模式2中,终端自主的在资源池内随机选取传输资源,在数据资源池中随机选取数据资源进行侧行传输。收端设备在资源池内盲检测PSCCH,以获得SCI,然后通过SCI中指示的时频资源信息到数据资源池中相应的资源上检测数据。因此,可以设置模式1传输下的第三序列和模式2传输下的第三序列不同,增加不同资源配置模式间的随机性。
收端设备接收加扰的第一控制信息。
此时,收端设备可以获取预先设置的第三标识,通过第三标识,确定第三序列,进而通过第三序列对所述加扰的第一控制信息进行解扰,以获得第一控制信息中指示的信息。其中,收端设备获取第三标识的方式,可以为通过发端设备发送给收端设备的,也可以为通过基站为收端设备通过高层信令配置的,也可以为收端设备通过资源池获取的,在此不做限定。
发端设备发送第三参考信号。
一种可能的设计,发端设备可以根据第三标识,生成第三序列,发端设备根据第三序列生成第三参考信号,并发送所述第三参考信号。需要说明的是,根据第三序列生成第三参考信号的参考信号序列的形式可以为现有技术中参考信号序列的形式,在此不做限定。发端设备通过第三参考信号对第一控制信息进行调制,使用码分的方式实现第一控制信息与其他传输的数据或控制信息之间的码分复用,从而避免或减少传输资源之间的冲突。
其中,所述第一控制信息可以为根据上述实施例中的方法确定的第三序列加扰后的第一控制信息,也可以为未加扰的第一控制信息,在此不做限定。下面以第三序列为DMRS序列为例,通过设置DMRS序列的初始值作为第三序列的参数,进而确定第一控制信息的参考信号序列的过程。进一步的,所述第三序列的参数的比特总数不大于预设值。以第三序列的初始值为例,所述第三序列的初始值的比特总数可以不大于31bit。
一种可能的设计,第一序列的初始值可以表示为:
Figure PCTCN2019116880-appb-000015
其中,
Figure PCTCN2019116880-appb-000016
为每个时隙中的符号数,l当前时隙中的符号的索引。
Figure PCTCN2019116880-appb-000017
为第一控制信息使用子载波间隔u下时传输第一控制信息所在的时隙号。mod为取模操作,mod31表示对数除31求余。
其中,n SCID的取值可以为0或1。一种可能的设计中,n SCID的取值可以与传输模式相对应,例如,可以设置对应关系为0对应NR V2X的传输模式1,1对应NR V2X的传输模式2,实现不同传输模式间的防干扰。
对于参数
Figure PCTCN2019116880-appb-000018
可以有多种方式进行确定。一种可能的方式为,参数
Figure PCTCN2019116880-appb-000019
的取值范围为{0,1,2,……,65535}。此时,参数
Figure PCTCN2019116880-appb-000020
可以通过高层信令配置给发端设备,进而,发端设备可以根据高层信令,确定参数
Figure PCTCN2019116880-appb-000021
的值。或者,参数
Figure PCTCN2019116880-appb-000022
根据控制信息配置给发端设备的,发端设备根据获取的控制信息,确定参数
Figure PCTCN2019116880-appb-000023
的值。或者,在基站没有网络覆盖的场景中,基站将参数
Figure PCTCN2019116880-appb-000024
预先配置在资源池上,此时,发端设备可以根据资源池,确定参数
Figure PCTCN2019116880-appb-000025
的值。资源池可以根据发端的资源和收端的资源区分,也可以不区分。例如,第一资源可以位于第一资源池,第一资源池可以是网络侧设备为发端设备配置的;第一资源池可以配置时频资源及传输参数,用于传输第一控制信息,第二控制信息及数据。第二资源可以位于第二资源池,第二资源池可以是网络侧设备为收端设备配置的。第二资源池可以配置时频资源或传输参数,用于传输收端设备发送的反馈信息等。或者,网络侧设备配置了多个资源池,发端设备可以从这多个资源池中选择第一资源池,收端设备可以从这多个资源池中选择第二资源池。每个资源池可以是由时频资源或传输参数组成的资源集合,发端设备和收端设备可以利用资源池中的时频资源或传输参数进行V2X通信。
另一种可能的实现方式,参数
Figure PCTCN2019116880-appb-000026
可以为发端设备选择的值,其取值范围可以为大于1007,小于1028。此时,可以避免生成的参考信号序列,与蜂窝链路上通过小区标识生成的参考信号序列相同,避免蜂窝链路与侧行链路间的干扰。
进一步的,发端设备选择参数
Figure PCTCN2019116880-appb-000027
的值,也可以根据n SCID的取值,设置不同的对应关系,即,可以设置在不同传输模式下,选择不同的参数
Figure PCTCN2019116880-appb-000028
的值。例如,在模式1下,n SCID的取值为0,参数
Figure PCTCN2019116880-appb-000029
的值为1010;在模式2下,n SCID的取值为1,参数
Figure PCTCN2019116880-appb-000030
的值为1011。进而,可以生成不同的参考信号序列的初始值,从而生成不同的参考信号序列。
对应的,收端设备接收第三参考信号,并根据第三标识确定第三序列,根据所述第三序列和所述第三参考信号接收所述第一控制信息。
收端设备也可以称为数据的接收机。收端设备获取第一控制信息的参考信号,用于收端设备接收第一控制信息。具体的实施过程中,收端设备可以通过盲检PSCCH的时间窗,通过接收的参考信号,解调PSCCH上的信号,以获得第一控制信息。
需要说明的是,加扰的第一控制信息,可以为通过收端设备接收第三参考信号和第三参考信号对应的第三序列解调后的控制信息,该解调后的控制信息为根据上述实施例中的 对第一控制信息加扰的第三序列加扰的第一控制信息。也可以为通过现有技术中的参考信号解调后获得的加扰的第一控制信息,在此不做限定。
场景二,发端设备发送加扰后的数据。在该场景中,接收机接收来自发端设备的加扰后的数据之前,已经获取第一控制信息,例如,如图7b所示,第一控制信息与加扰后的数据位于同一时间单元发送。因此,发端设备可以根据第一控制信息指示的信息对发送的数据进行加扰,或者根据第一控制信息指示的信息生成调制/解调第一数据的参考信号序列。
针对发送的数据为加扰后的数据的场景,第一序列加扰序列可以根据第一参数来确定。由于第一控制信息中指示的不同的信息可以确定不同的序列的参数,发端设备根据确定的第一序列的参数确定加扰序列,进而可以提高发端设备生成加扰序列的随机性。
第一序列的参数包括以下至少一项:所述第一序列的初始值;所述第一序列的初始位置;所述第一序列的根序列号;所述第一序列的循环移位值;所述第一序列的覆盖正交码。
具体的,发端设备可以将第一控制信息中指示的信息转换为十进制数,作为第一序列的参数中的内容。以DMRS图样为例,如果用1比特指示DMRS图样,则DMRS图样中的0,转换为十进制数表示为0,DMRS图样中的1转换为十进制数表示为1。如果用2比特指示,DMRS图样,则DMRS图样中的00,转换为十进制数表示为0;DMRS图样中的01,转换为十进制数表示为1;DMRS图样中的10,转换为十进制数表示为2;DMRS图样中的11,转换为十进制数表示为3。
进而,发端设备可以根据第一控制信息中指示的信息中的一项或多项,确定第一序列的参数。例如,以第一序列的参数为第一序列的初始值为例,若确定选择的第一控制信息中指示的信息为DMRS图样,则将DMRS图样的1比特作为第一序列的初始值,结合上述例子,若DMRS图样的1比特为0,则第一序列的初始值为0。
以根据第一参数确定第一序列的初始值为例,第一序列的初始值可以包括
Figure PCTCN2019116880-appb-000031
的函数,即第一控制信息中指示的信息的任意一种,可以表示为
Figure PCTCN2019116880-appb-000032
或,表示为第一控制信息中指示的信息的多种的组合:可以表示为:
Figure PCTCN2019116880-appb-000033
其中
Figure PCTCN2019116880-appb-000034
为第一控制信息中的第i项。
另一种可能的实现方式,第一参数可以包括以下至少一项:第一标识,用于传输所述数据的时间单元号等内容,用于传输所述第一控制信息的CRC掩码;所述第一控制信息的CRC校验位。
以CRC验证位为例,对于第一控制信息的CRC校验位,转换为十进制数后,可以表示为:
Figure PCTCN2019116880-appb-000035
其中,p i为发端设备生成CRC之后的CRC验证位,L表示CRC验证位的长度,例如,CRC验证位的长度可以为8,12,16,24等。
以根据第一参数确定第一序列的初始值为例,举例来说,第一序列的初始值可以表示为:
Figure PCTCN2019116880-appb-000036
第一标识,占用10bit。
以根据第一参数确定第一序列的初始值为例,举例来说,第一序列的初始值可以表示为:
Figure PCTCN2019116880-appb-000037
第一标识,占用10bit,
Figure PCTCN2019116880-appb-000038
用于表示第一控制信息中指示的一个信息。需要说明的是,用于生成第一序列(用于加扰数据的加扰序列,或用于调制数据的参考信号序列)的第一标识
Figure PCTCN2019116880-appb-000039
可以与用于确定第三序列((用于加扰第一控制信息的加扰序列,或用于调制第一控制信息的参考信号序列)的第三标识
Figure PCTCN2019116880-appb-000040
不同,也可以相同,在此不做限定。
当然,第一参数还可以包括以下至少一项:第一标识,用于传输所述数据的时间单元号等内容,用于传输所述第一控制信息的CRC掩码;所述第一控制信息的CRC校验位,所述第一控制信息中指示的信息。
举例来说,第一序列的初始值可以为以下形式:
Figure PCTCN2019116880-appb-000041
其中,第一序列的初始值为根据第一控制信息中指示的一个信息和第三标识组成,且,第一控制信息中指示的一个信息在第一序列的初始值中占据的比特位位于第三标识在第一序列的初始值中所占据的比特位之后。
举例来说,第一序列的初始值可以为以下形式:
Figure PCTCN2019116880-appb-000042
此时,第一序列的初始值为根据第一控制信息中指示的2个信息X 1和X 2,所述数据使用子载波间隔u时传输所述数据所在的时隙号,和第三标识组成,其中m表示
Figure PCTCN2019116880-appb-000043
占用的比特数。第一序列的初始值中各组成部分可以按照以下顺序占据比特位:第三标识,所述数据使用子载波间隔u时传输所述数据所在的时隙号,第一控制信息中指示的信息X 1,第一控制信息中指示的信息X 2
举例来说,第一序列的初始值可以为以下形式:
Figure PCTCN2019116880-appb-000044
值为根据第一控制信息中指示的3个信息X 1,X 2和X 3,所述数据使用子载波间隔u时传输所述数据所在的时隙号,和第三标识组成。第一序列的初始值中各组成部分可以按照以下顺序占据比特位:第三标识,所述数据使用子载波间隔u时传输所述数据所在的时隙号,第一控制信息中指示的信息X 1,第一控制信息中指示的信息X 2和第一控制信息中指示的信息X 3
需要说明的是,上述举例中的各组成部分及相对位置仅为示例,可以根据需要任意组合,在此不做限定。
另一种可能的设计,所述第一序列的参数的比特总数不大于预设值。若确定选择的第一序列的初始值的内容占用的比特超过第一序列的初始值的比特长度要求,例如,第一序列的初始值长度为31bit,此时,可以通过取模操作,获得预设比特长度的第一序列的初始值。转换为二进制而言,当所占的二进制比特大于23比特时,则需要进行如上取模操作。例如,若确定选择的第一控制信息的指示信息转换为十进制后占用14bit,时隙号占用8bit,第三标识占用10bit,此时,超过了第一序列的初始值的31比特的要求,因此,可以对第一序列的初始值进行取模。结合上述举例,第一序列的初始值可以表示为:
Figure PCTCN2019116880-appb-000045
Figure PCTCN2019116880-appb-000046
Figure PCTCN2019116880-appb-000047
Figure PCTCN2019116880-appb-000048
需要说明的是,取模的值可以根据需要选取,在此不做限定。本申请实施例并不限定获取第一序列为预设比特长度的方法,还可以通过其他方式实现,例如,将选择的第一序列的初始值的内容的前31比特,作为第一序列的初始值,或者,将选择的第一序列的初始值的内容的后31比特,作为第一序列的初始值。具体的选择方式,本申请不做限定。
发端设备可以通过确定不同数据对应的不同的第一参数,进而生成不同的参考信号序列,来减少或避免连续多个数据在同一时间单元上的重叠产生的冲突,例如,发端设备确定发送第一数据和第二数据的控制信息中,至少一种存在不同,进而,通过第一控制信息生成的第一序列也不同。
针对数据的参考信号序列,可以根据第一参数,确定出用于生成参考信号序列的第一序列的参数,从而确定出数据的参考信号序列。需要说明的是,所述数据可以为根据图3的方法确定的第一序列加扰后的数据,也可以为未加扰后的数据,为描述方便,下面统称为数据。
针对不同的数据,例如,第一数据和第二数据,由于第一数据对应的第一参数与第二数据对应的第一参数至少存在一项不同,因此,生成的第一数据的参考信号序列与发送第二数据的参考信号序列不同的可能性很高,从而减少或解决传输不同数据之间的冲突,提高数据的私密性和可解调性。
以根据第一参数确定第一序列的参数为随机序列的初始值为例,根据第一参数确定第一序列的过程中,可以包括:根据第一参数确定参数
Figure PCTCN2019116880-appb-000049
进而确定随机序列的初始值。其中,随机序列的初始值的形式可以有多种,可以基于参数
Figure PCTCN2019116880-appb-000050
对随机序列的初始值的形式进行修改和变形。一种可能的设计,第一序列的初始值可以表示为以下形式:
Figure PCTCN2019116880-appb-000051
其中,m为
Figure PCTCN2019116880-appb-000052
取最大值时占的二进制比特数。参数
Figure PCTCN2019116880-appb-000053
的生成方式,可以与数据对应的加扰序列的参数的生成方式相同,例如,发端设备可以根据第一控制信息中指示的信息,第一标识,用于传输所述数据的时间单元号,第一控制信息的CRC校验位,用于传输所述第一控制信息的CRC掩码等信息中的一项或多项,生成第一序列的参数
Figure PCTCN2019116880-appb-000054
进而生成所述数据的参考信号序列。
举例来说,参数
Figure PCTCN2019116880-appb-000055
的形式可以为:
Figure PCTCN2019116880-appb-000056
其中
Figure PCTCN2019116880-appb-000057
可以为第一控制信息的CRC校验位或CRC掩码的十进制数,也可以为第一控制信息中指示的一个信息。另一种可能的参数
Figure PCTCN2019116880-appb-000058
的形式:
Figure PCTCN2019116880-appb-000059
其中m为
Figure PCTCN2019116880-appb-000060
占用的比特数。另一种可能的参数
Figure PCTCN2019116880-appb-000061
的形式:
Figure PCTCN2019116880-appb-000062
即参数
Figure PCTCN2019116880-appb-000063
选取了第一控制信息中指示的2个信息形成的。另一种可能的参数
Figure PCTCN2019116880-appb-000064
的形式:
Figure PCTCN2019116880-appb-000065
即参数
Figure PCTCN2019116880-appb-000066
选取了第一控制信息中指示的1个信息和第一标识形成的。其中,第一标识
Figure PCTCN2019116880-appb-000067
的取值范围可以为{0,1,2,……,65535}的一个整数。此时m=16。当然,第一控制信息中指示的1个信息和第一标识的前后顺序也是可以设置的,例如,参数
Figure PCTCN2019116880-appb-000068
的形式可以为:
Figure PCTCN2019116880-appb-000069
若参数
Figure PCTCN2019116880-appb-000070
超过了二进制对应的16bit,此时,可以对第一控制信息中指示的1个信息和第一标识的组 合进行取模操作,即参数
Figure PCTCN2019116880-appb-000071
的形式可以为
Figure PCTCN2019116880-appb-000072
另一种可能的第一序列的初始值的形式还可以为:
Figure PCTCN2019116880-appb-000073
其中,m为
Figure PCTCN2019116880-appb-000074
取最大值时占的二进制比特数,n为
Figure PCTCN2019116880-appb-000075
占用的最大的二进制比特数,m,n为正整数。
另一种可能的第一序列的参数
Figure PCTCN2019116880-appb-000076
的形式还可以为:
Figure PCTCN2019116880-appb-000077
为正整数。需要说明的是,第一序列的生成方式可以参见场景一中根据第二序列的参数确定第二序列的方式,在此不再赘述。
收端设备接收第一参考信号。
具体的,收端设备获取第一参考信号,进而收端设备通过所述第一参考信号和所述第一参考信号对应的第一序列,解调所述第一参考信号对应的数据。需要说明的是,此处的数据可以为加扰后的数据,也可以为未加扰后的数据,在此不做限定。具体的实施方式可以参考上述实施例,在此不再赘述。
收端设备接收加扰后的数据。
一种可能的实现方式,解调后的第一数据为根据第一数据的加扰序列加扰的第一数据。此时,收端设备可以根据获取的第一控制信息中指示的信息,及预先设置的第一标识等,确定第一参数,进而通过第一参数,确定第一序列,从而根据第一序列解扰所述数据。
举例来说,以第一序列的初始值为
Figure PCTCN2019116880-appb-000078
为例,其中,
Figure PCTCN2019116880-appb-000079
以第一控制信息中的优先级信息为例。此时,收端设备可以根据预先设置的第一序列的初始值的生成方法,确定第一序列的初始值由第一标识及第一控制信息中的优先级信息组成,并且,第一序列的初始值的形式为
Figure PCTCN2019116880-appb-000080
收端设备在成功解析第一控制信息后,假设确定的第一控制信息的优先级为111,转换为十进制后为7,收端设备根据预先设置的第一标识,假设为1008,则可以确定第一序列的初始值为71008。根据第一序列的初始值,及预先设置的随机序列c(n)的形式,可以确定第一序列c(n)的值,进而,通过第一序列解扰所述加扰后的数据。
其中,收端设备根据第一参数生成第一序列的方式,可以为通过发端设备发送给收端设备的,也可以为通过基站为收端设备通过高层信令配置的,也可以为收端设备通过资源池获取的,在此不做限定。
场景三
发端设备发送第二控制信息。如图7c所示,在该场景中,发送第二控制信息之前,发端设备还发送了第一控制信息。第二控制信息可以在一个单独的时间单元内发送,当然,也可以与第一控制信息在同一时间单元内发送,也可以与数据在同一时间单元内发送。由于在该场景中,收端设备已获取到第一控制信息,因此,可以利用第一控制信息中的指示信息,对第二控制信息进行加扰或生成第二控制信息的参考信号序列,以提高第二控制信息与第一控制信息间的私密性,同时,还可以通过第一控制信息,对第二控制信息进行校验,提高控制信息传输的安全性。
进一步的,由于第二控制信息中的指示信息并不是发端设备传输第一数据所必须的指 示信息,第二控制信息中指示的信息可以为根据接收机的能力确定的指示信息,因此,在对第二控制信息进行加扰,或,生成第二控制信息的参考信号序列时,可以根据接收机的能力,选择不同的生成第一序列的参数的方式,增加了对于不符合能力的接收机获取第二控制信息的难度,从另一方面提高了控制信息传输的安全性。
发端设备发送加扰的第二控制信息。
针对生成第二控制信息的第二序列,此时,第二序列为加扰序列,发端设备可以确定第二序列的形式。其中,第二序列的形式可以与第一序列的形式相同,例如,都是31bit的移位寄存器的随机序列,也可以不同,在此不做限定。发端设备根据第二参数确定生成第二序列的参数,进而根据第二序列的参数,生成第二序列,从而对第二控制信息进行加扰。
其中,第二序列的参数可以包以下至少一项:所述第二序列的初始值;所述第二序列的初始位置;所述第二序列的根序列号;所述第二序列的循环移位值;所述第二序列的覆盖正交码。进一步的,所述第二序列的参数的比特总数不大于预设值。第二序列的参数的形式可以参考第一序列的参数的形式,在此不再赘述。
第二参数可以包括以下至少一项:第一控制信息,第二标识,用于传输所述第一控制信息的CRC掩码;所述第一控制信息的CRC校验位;用于传输所述第二控制信息的CRC掩码;所述第二控制信息的CRC校验位;用于传输所述数据的时间单元号。
第二序列选择的第二参数可以与第一参数不同,也可能相同,可以根据需要配置选择的方式。第二标识可以与第一标识不同,第二标识的取值范围与第一标识的取值范围相同。具体的发端设备根据第二参数确定第二序列过程可以参考上述场景二中的实施例说明,在此不再赘述。
发端设备发送第二参考信号。
此时,第二序列为生成参考信号序列中的随机序列c(n),第二参数的可选范围可以与上述加扰的实施例中的第二参数的可选范围相同,第二参数选择的信息可以与上述加扰的实施例中的第二参数选择的内容不同。例如,对第二控制信息进行加扰所采用的第二参数为所述数据的传输资源的指示信息;第二控制信息对应的参考信号序列所采用的第二参数为参考信号序列图样的指示信息。进而根据第二序列的参数,生成第二序列c(n),从而,根据DMRS序列的形式,生成第二控制信息的参考信号序列。
具体的发端设备根据第二参数确定第二序列的过程可以参见上述场景二中的实施例中发端设备根据第一参数确定第一序列的方法,在此不再赘述。
收端设备接收第二参考信号,并根据第二参数确定第二序列,根据所述第二序列和所述第二参考信号接收所述第二控制信息。其中,收端设备根据第二参数确定第二序列的方式,可以参考发端设备的确定方式,收端设备获取第二参数的方式,可以参考收到设备获取第一参数的方式,在此不再赘述。
收端设备接收加扰的第二控制信息。
一种可能的实现方式,解调后的第二控制信息为根据第二控制信息的加扰序列加扰的第二控制信息。此时,第一序列也可以为第二控制信息的加扰序列。收端设备可以根据获取第二参数,确定第二序列,进而通过第二序列,解扰所述加扰的第二控制信息,以获得第二控制信息。具体的收端设备根据第二参数确定第二序列的过程可以参见上述场景二中的实施例中收端设备根据第一参数确定第一序列的方法,在此不再赘述。
场景四,与发端设备发送的加扰后的数据相关的控制信息,包括:第一控制信息和第二控制信息。例如,如图8所示,第一控制信息,第二控制信息,与加扰后的数据在同一时间单元内发送。此时,由于收端设备在接收加扰后的数据之前,已获得了第一控制信息和第二控制信息,因此,发端设备可以通过确定不同数据对应不同的控制信息,进而生成不同的参考信号序列,来减少或避免连续多个数据在同一时间单元上的重叠产生的冲突,即发端设备确定发送第一数据和第二数据的控制信息中,至少一种存在不同,进而,通过第一控制信息和第一控制信息生成的序列不同的可能性大大增加。
Figure PCTCN2019116880-appb-000081
其中即表示是标识
Figure PCTCN2019116880-appb-000082
和标识
Figure PCTCN2019116880-appb-000083
的函数。其中,
Figure PCTCN2019116880-appb-000084
为第一控制信息中的指示信息或者是第一控制信息对应的CRC加扰之后的十进制数,可以为完整数值或部分比特位生成的数值。
Figure PCTCN2019116880-appb-000085
为第二控制信息中的指示信息或者是第二控制信息对应的CRC加扰之后的十进制数。当第一序列的参数为多种的组合时,例如,以第一序列的初始值为例,可以表示为
Figure PCTCN2019116880-appb-000086
其中
Figure PCTCN2019116880-appb-000087
为第一控制信息中的第i项指示信息,
Figure PCTCN2019116880-appb-000088
为第二控制信息中的第j项指示信息。当然,第一序列若为加扰序列时,加扰序列的初始值还可以包括:第一标识,时间单元号等。第一序列若为用于生成参考信号序列的随机序列时,第一序列的初始值可以包括:第一标识,时间单元号等。
需要说明的是,若确定生成第一控制信息的加扰序列的第一参数中包括第一标识,和生成第二控制信息的加扰序列的第一参数中包括第一标识,和生成数据的加扰序列的第一参数中包括的第一标识,可以相同,也可以不同,在此不做限定。类似的,生成的参考信号序列所用的第一标识也可以相同,也可以不同,在此不做限定。
举例来说,第一序列的初始值可以为:
Figure PCTCN2019116880-appb-000089
此时,生成第一序列的初始值的第一参数包括:第一标识,所述数据对应的时间单元号
Figure PCTCN2019116880-appb-000090
第一控制信息中的CRC校验位。
Figure PCTCN2019116880-appb-000091
其中,第一标识
Figure PCTCN2019116880-appb-000092
的二进制数值占用m比特,此时,生成第一序列的初始值的第一参数包括:第一标识
Figure PCTCN2019116880-appb-000093
第一控制信息中的CRC校验位
Figure PCTCN2019116880-appb-000094
另一种举例,第一序列的初始值可以为:
Figure PCTCN2019116880-appb-000095
此时,生成第一序列的初始值的第一参数包括:第一标识
Figure PCTCN2019116880-appb-000096
所述数据对应的时间单元号
Figure PCTCN2019116880-appb-000097
第二控制信息中指示的一个信息
Figure PCTCN2019116880-appb-000098
第一序列的初始值可以为:
Figure PCTCN2019116880-appb-000099
此时,生成第一序列的初始值的第一参数包括:第一标识
Figure PCTCN2019116880-appb-000100
第二控制信息中指示的一个信息
Figure PCTCN2019116880-appb-000101
其中
Figure PCTCN2019116880-appb-000102
的二进制数值占用m比特。
第一序列的初始值可以为:
Figure PCTCN2019116880-appb-000103
此时,生成第一序列的初始值的第一参数包括:第一标识n ID,第一控制信息中指示的一个信息
Figure PCTCN2019116880-appb-000104
第二控制信息中指示的一个信息
Figure PCTCN2019116880-appb-000105
其中m为
Figure PCTCN2019116880-appb-000106
的占的比特位数;
第一序列的初始值可以为:
Figure PCTCN2019116880-appb-000107
此时,生成第一序列的初始值的第一参数包括:第一标识n ID,第一控制信息中指示的一个信息
Figure PCTCN2019116880-appb-000108
第二控制信息中指示的一个信息
Figure PCTCN2019116880-appb-000109
所述数据对应的时间单元号
Figure PCTCN2019116880-appb-000110
其中m为
Figure PCTCN2019116880-appb-000111
的占的比特位数。
另一种可能的设计,第一序列的参数的比特总数不大于预设值,以第一序列的初始值为例,第一序列的初始值可以为进行取模操作后获得的,结合上述例子,第一序列的初始值的形式可以为:
Figure PCTCN2019116880-appb-000112
Figure PCTCN2019116880-appb-000113
Figure PCTCN2019116880-appb-000114
Figure PCTCN2019116880-appb-000115
Figure PCTCN2019116880-appb-000116
其中,
Figure PCTCN2019116880-appb-000117
表示第二控制信息中指示的源标识,
Figure PCTCN2019116880-appb-000118
表示第二控制信息中指示的目的标识。
Figure PCTCN2019116880-appb-000119
Figure PCTCN2019116880-appb-000120
其中,m表示
Figure PCTCN2019116880-appb-000121
占用的二进制比特数。
第二控制信息的DMRS序列,或数据的DMRS序列也可以通过该方法确定,其区别为生成第二控制信息的DMRS序列的随机序列c(n)的初始值c init与第一控制信息的DMRS序列不同,数据的DMRS序列与第一控制信息的DMRS序列不同。需要说明的是,由于承载第二控制信息的PSCCH2与承载数据的PSSCH可能位于同一时间单元内,此时,承载第二控制信息的PSCCH2与承载数据的PSSCH的符号可能有部分重叠,或全部重叠,针对相同符号上的第二控制信息和数据所采用的参考信号序列需要相同。针对不同符号上的第二控制信息和数据所采用的参考信号序列可以不同。
以上结合图3说明了本申请实施例的数据发送、接收方法,基于与上述数据发送、接收方法的同一发明构思,本申请实施例还提供了一种通信装置,如图8所示,所述通信装置1500中包含处理单元1501和收发单元1502,装置1500可用于实现上述应用于发端设备、收端设备实施例中描述的方法。装置1500可以位于发端设备或收端设备内,或为发端设备或收端设备。
需要说明的是,上述实施例中的装置即所述装置1500可以是发端设备或收端设备,也可以是应用于发端设备或收端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当装置是发端设备或收端设备时收发单元可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。当装置是具有上述发端设备或收端设备功能的部件时,收发单元可以是射频单元,处理模块可以是处理器。当装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理模块可以是芯片系统的处理器。
在一个实施例中,装置1500应用于发端设备。
具体的,处理单元1501,用于根据第一参数确定第一序列,所述第一参数包括第一控 制信息指示的信息和/或第二控制信息指示的信息;根据所述第一序列对数据进行加扰;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数;收发单元1502,用于发送加扰后的数据。
一种可能的实现方式,处理单元1501,用于根据所述第一参数确定所述第一序列的参数;所述第一序列的参数包括以下至少一项:所述第一序列的初始值;所述第一序列的初始位置;所述第一序列的根序列号;所述第一序列的循环移位值;所述第一序列的覆盖正交码。
一种可能的实现方式,处理单元1501,用于根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;根据所述第二序列对所述第二控制信息进行加扰;收发单元1502,用于发送加扰后的第二控制信息。
一种可能的实现方式,处理单元1501,用于根据所述第二参数确定所述第二序列的参数;所述第二序列的参数包括以下至少一项:所述第二序列的初始值;所述第二序列的初始位置;所述第二序列的根序列号;所述第二序列的循环移位值;所述第二序列的覆盖正交码。
一种可能的实现方式,处理单元1501,用于根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;根据所述第二序列对所述第二控制信息进行加扰;收发单元1502,用于发送加扰后的第二控制信息。
一种可能的实现方式,处理单元1501,用于根据第三标识确定第三序列;所述第三标识的取值为大于1007且小于1024的整数;根据所述第三序列,对所述第一控制信息加扰;收发单元1502,用于发送加扰后的第一控制信息。
在一个实施例中,装置1500应用于收端设备。
具体的,收发单元1502,用于接收加扰后的数据。处理单元1501,用于根据第一参数确定第一序列,所述第一参数包括第一控制信息指示的信息和/或第二控制信息指示的信息;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数;根据所述第一序列对所述加扰后的数据进行解扰。
一种可能的实现方式,处理单元1501,用于根据所述第一参数确定所述第一序列的参数;所述第一序列的参数包括以下至少一项:所述第一序列的初始值;所述第一序列的初始位置;所述第一序列的根序列号;所述第一序列的循环移位值;所述第一序列的覆盖正交码。
一种可能的实现方式,收发单元1502,用于接收加扰的第二控制信息。处理单元1501,用于根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;根据所述第二序列对所述加扰后的第二控制信息进行解扰。
一种可能的实现方式,处理单元1501,用于根据所述第二参数确定所述第二序列的参数;所述第二序列的参数包括以下至少一项:所述第二序列的初始值;所述第二序列的初始位置;所述第二序列的根序列号;所述第二序列的循环移位值;所述第二序列的覆盖正交码。
一种可能的实现方式,收发单元1502,用于接收加扰的第一控制信息;处理单元1501,用于根据第三标识确定第三序列,所述第三标识的取值为大于1007且小于1024的整数; 根据所述第三序列,对所述加扰的第一控制信息解扰。
一种可能的实现方式,处理单元1501,用于根据所述第三标识确定所述第三序列的参数;所述第三序列的参数包括以下至少一项:所述第三序列的初始值;所述第三序列的初始位置;所述第三序列的根序列号;所述第三序列的循环移位值;所述第三序列的覆盖正交码。
一种可能的实现方式,所述第一控制信息指示的信息包括以下至少一种:所述数据的优先级信息;所述数据的调制编码方式;用于指示所述参考信号的参考信号序列图样的指示信息;所述第二控制信息的类型或格式;用于指示所述数据的传输资源的指示信息;用于指示所述数据的初传或重传的传输间隔的指示信息;用于指示所述数据的传输资源预留的指示信息。
一种可能的实现方式,所述第二控制信息指示的信息包括以下至少一种:源标识,目的标识,混合自动重传请求的进程号,重传或冗余版本的指示信息,所述发端设备位置的指示信息,最小通信距离指示信息,信道状态指示信息,信道状态指示参考信号的指示信息。
一种可能的实现方式,所述第一参数还包括以下至少一项:用于传输所述第一控制信息的CRC掩码;所述第一控制信息的CRC校验位;用于传输所述第二控制信息的CRC掩码;所述第二控制信息的CRC校验位;用于传输所述数据的时间单元号;第一标识,其中,所述第一标识的取值大于1007且小于1024的整数。
一种可能的实现方式,所述第二参数还包括以下至少一项:用于传输所述第一控制信息的CRC掩码;所述第一控制信息的CRC校验位;用于传输所述第二控制信息的时间单元号;第二标识;其中,所述第二标识的取值为大于1007且小于1024的整数。
一种可能的实现方式,所述第一序列的参数的比特总数不大于预设值;所述第二序列的参数的比特总数不大于所述预设值;所述第三序列的参数的比特总数不大于所述预设值。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于与上述反馈信息传输方法相同的构思,如图9所示,本申请实施例还提供了一种反馈信息传输装置1600的结构示意图。装置1600可用于实现上述应用于发端设备或收端设备的方法实施例中描述的方法,可以参见上述方法实施例中的说明,其中所述装置1600可以位于发端设备或收端设备中,可以为发端设备或收端设备。
所述装置1600包括一个或多个处理器1601。所述处理器1601可以是通用处理器或者 专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,所述收发单元可以为收发器,射频芯片等。
所述装置1600包括一个或多个所述处理器1601,所述一个或多个处理器1601可实现上述所示的实施例中发端设备或收端设备的方法。
可选的,处理器1601除了实现上述所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器1601可以执行指令,使得所述装置1600执行上述方法实施例中描述的方法。所述指令可以全部或部分存储在所述处理器内,如指令1603,也可以全部或部分存储在与所述处理器耦合的存储器1602中,如指令1604,也可以通过指令1603和1604共同使得装置1600执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置1600也可以包括电路,所述电路可以实现前述方法实施例中终端设备的功能。
在又一种可能的设计中,所述装置1600中可以包括一个或多个存储器1602,其上存有指令1604,所述指令可在所述处理器上被运行,使得所述装置1600执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器1602可以存储上述实施例中所描述的对应关系,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述装置1600还可以包括收发单元1605。所述处理器1601可以称为处理单元,对装置(终端或者基站)进行控制。所述收发单元1605可以称为收发机、收发电路、或者收发器等,用于实现装置的收发。
例如,如果所述装置1600为应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等,所述装置1600中可以包括收发单元1605。
在又一种可能的设计中,所述装置1600还可以包括收发单元1605以及天线1606。所述处理器1601可以称为处理单元,对装置(终端或者基站)进行控制。所述收发单元1605可以称为收发机、收发电路、或者收发器等,用于通过天线1606实现装置的收发功能。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述应用于发端设备或收端设备的任一方法实施例所述的反馈信息传输方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述应用于发端设备或收端设备的任一方法实施例所述的反馈信息传输方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述应用于发端设备或收端设备的任一方法实施例所述的反馈信息传输方法。
应理解,上述处理装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
以上结合图4详细说明了本申请实施例的参考信号的发送、接收方法,基于与上述参考信号的发送、接收方法的同一发明构思,本申请实施例还提供了一种通信装置,如图10所示,所述通信装置1700中包含处理单元1701和收发单元1702,装置1700可用于实现上述应用于发端设备或收端设备的方法实施例中描述的方法。装置1700可以位于发端设 备或收端设备内,或为发端设备或收端设备。
需要说明的是,上述实施例中的装置即所述装置1700可以是发端设备或收端设备,也可以是应用于发端设备或收端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当装置是发端设备或收端设备时收发单元可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。当装置是具有上述发端设备或收端设备功能的部件时,收发单元可以是射频单元,处理模块可以是处理器。当装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理模块可以是芯片系统的处理器。
在一个实施例中,装置1700应用于发端设备。
处理单元1701,用于根据第一参数确定第一序列,所述第一参数包括第一控制信息指示的信息和/或第二控制信息指示的信息;根据所述第一序列确定第一参考信号;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数;
收发单元1702,用于发送所述第一参考信号。
一种可能的实现方式,处理单元1701,用于根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;根据所述第二序列对所述第二控制信息进行加扰;收发单元1702,用于发送加扰后的第二控制信息。
一种可能的实现方式,处理单元1701,用于根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;根据所述第二序列确定第二参考信号;所述第二参考信号用于所述发端设备调制所述第二控制信息;收发单元1702,用于发送所述第二参考信号。
一种可能的实现方式,处理单元1701,用于根据第三标识确定第三序列;所述发端设备根据所述第三序列确定第三参考信号;所述第三参考信号用于所述发端设备对所述第一控制信息调制;收发单元1702,用于发送所述第三参考信号。
在一个实施例中,装置1700应用于收端设备。
收发单元1702,用于接收第一参考信号;
处理单元1701,用于根据第一参数确定第一序列,所述第一参数包括第一控制信息指示的信息和/或第二控制信息指示的信息;根据所述第一序列和所述第一参考信号接收数据;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数。
一种可能的实现方式,收发单元1702,用于接收第二参考信号;处理单元1701,用于根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;根据所述第二序列和所述第二参考信号接收所述第二控制信息。
一种可能的实现方式,收发单元1702,用于接收第三参考信号;处理单元1701,用于根据第三标识确定第三序列,所述第三标识的取值为大于1007且小于1024的整数;根据所述第三序列和所述第三参考信号接收所述第一控制信息。
一种可能的实现方式,处理单元1701,用于根据所述第一参数确定所述第一序列的参数;所述第一序列的参数包括以下至少一项:所述第一序列的初始值;所述第一序列的初始位置;所述第一序列的根序列号;所述第一序列的循环移位值;所述第一序列的覆盖正 交码。
一种可能的实现方式,处理单元1701,用于根据所述第二参数确定所述第二序列的参数;所述第二序列的参数包括以下至少一项:所述第二序列的初始值;所述第二序列的初始位置;所述第二序列的根序列号;所述第二序列的循环移位值;所述第二序列的覆盖正交码。
一种可能的实现方式,处理单元1701,用于根据所述第三标识确定所述第三序列的参数;所述第三序列的参数包括以下至少一项:所述第三序列的初始值;所述第三序列的初始位置;所述第三序列的根序列号;所述第三序列的循环移位值;所述第三序列的覆盖正交码。
针对第一控制信息,第二控制信息,第一参数,第二参数的实施方式,可以参考图9中的通信装置中的实施方式,在此不再赘述。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于与上述信息传输方法相同的构思,如图11所示,本申请实施例还提供了一种通信装置1800的结构示意图。装置1800可用于实现上述应用于发端设备或收端设备的方法实施例中描述的方法,可以参见上述方法实施例中的说明,其中所述装置1800可以位于发端设备或收端设备中,可以为发端设备或收端设备。
所述装置1800包括一个或多个处理器1801。所述处理器1801可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,所述收发单元可以为收发器,射频芯片等。
所述装置1800包括一个或多个所述处理器1801,所述一个或多个处理器1801可实现上述所示的实施例中发端设备或收端设备的方法。
可选的,处理器1801除了实现上述所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器1801可以执行指令,使得所述装置1800执行上述方法实施例中描述的方法。所述指令可以全部或部分存储在所述处理器内,如指令1803,也可以全部或部分存储在与所述处理器耦合的存储器1802中,如指令1804,也可以通过指令1803和1804共同使得装置1800执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置1800也可以包括电路,所述电路可以实现前述方法实施例中终端设备的功能。
在又一种可能的设计中,所述装置1800中可以包括一个或多个存储器1802,其上存有指令1804,所述指令可在所述处理器上被运行,使得所述装置1800执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器1802可以存储上述实施例中所描述的对应关系,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述装置1800还可以包括收发单元1805。所述处理器1801可以称为处理单元,对装置(终端或者基站)进行控制。所述收发单元1805可以称为收发机、收发电路、或者收发器等,用于实现装置的收发。
例如,如果所述装置1800为应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等,所述装置1800中可以包括收发单元1805。
在又一种可能的设计中,所述装置1800还可以包括收发单元1805以及天线1806。所述处理器1801可以称为处理单元,对装置(终端或者基站)进行控制。所述收发单元1805可以称为收发机、收发电路、或者收发器等,用于通过天线1806实现装置的收发功能。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述应用于发端设备或收端设备的任一方法实施例所述的信息传输方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述应用于发端设备或收端设备的任一方法实施例所述的信息传输方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述应用于发端设备或收端设备的任一方法实施例所述的信息传输方法。
应理解,上述处理装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元 上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (34)

  1. 一种数据的发送方法,其特征在于,包括:
    发端设备根据第一参数确定第一序列,所述第一参数包括第一控制信息指示的信息和/或第二控制信息指示的信息;
    所述发端设备根据所述第一序列对数据进行加扰;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数;
    所述发端设备发送加扰后的数据。
  2. 一种参考信号的发送方法,其特征在于,包括:
    发端设备根据第一参数确定第一序列,所述第一参数包括第一控制信息指示的信息和/或第二控制信息指示的信息;
    所述发端设备根据所述第一序列确定第一参考信号;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数;
    所述发端设备发送所述第一参考信号。
  3. 如权利要求1或2所述的方法,其特征在于,所述发端设备根据第一参数确定第一序列,包括:
    所述发端设备根据所述第一参数确定所述第一序列的参数;
    所述第一序列的参数包括以下至少一项:
    所述第一序列的初始值;
    所述第一序列的初始位置;
    所述第一序列的根序列号;
    所述第一序列的循环移位值;
    所述第一序列的覆盖正交码。
  4. 如权利要求3所述的方法,其特征在于,所述第一控制信息指示的信息包括以下至少一种:
    所述数据的优先级信息;
    所述数据的调制编码方式;
    用于指示所述参考信号的参考信号序列图样的指示信息;
    所述第二控制信息的类型或格式;
    用于指示所述数据的传输资源的指示信息;
    用于指示所述数据的初传或重传的传输间隔的指示信息;
    用于指示所述数据的传输资源预留的指示信息。
  5. 如权利要求3所述的方法,其特征在于,所述第二控制信息指示的信息包括以下至少一种:
    源标识,目的标识,混合自动重传请求的进程号,重传或冗余版本的指示信息,所述发端设备位置的指示信息,最小通信距离指示信息,信道状态指示信息,信道状态指示参考信号的指示信息。
  6. 如权利要求3-5任一项所述的方法,其特征在于,
    所述第一参数还包括以下至少一项:
    用于传输所述第一控制信息的CRC掩码;
    所述第一控制信息的CRC校验位;
    用于传输所述第二控制信息的CRC掩码;
    所述第二控制信息的CRC校验位;
    用于传输所述数据的时间单元号;
    第一标识,其中,所述第一标识的取值大于1007且小于1024的整数。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    所述发端设备根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;
    所述发端设备根据所述第二序列对所述第二控制信息进行加扰;
    所述发端设备发送加扰后的第二控制信息。
  8. 如权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    所述发端设备根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;
    所述发端设备根据所述第二序列确定第二参考信号;所述第二参考信号用于所述发端设备调制所述第二控制信息;
    所述发端设备发送所述第二参考信号。
  9. 如权利要求7或8所述的方法,其特征在于,所述发端设备根据第二参数确定第二序列,包括:
    所述发端设备根据所述第二参数确定所述第二序列的参数;
    所述第二序列的参数包括以下至少一项:
    所述第二序列的初始值;
    所述第二序列的初始位置;
    所述第二序列的根序列号;
    所述第二序列的循环移位值;
    所述第二序列的覆盖正交码。
  10. 如权利要求7或8所述的方法,其特征在于,
    所述第二参数还包括以下至少一项:
    用于传输所述第一控制信息的CRC掩码;
    所述第一控制信息的CRC校验位;
    用于传输所述第二控制信息的时间单元号;
    第二标识;其中,所述第二标识的取值为大于1007且小于1024的整数。
  11. 如权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    所述发端设备根据第三标识确定第三序列;所述第三标识的取值为大于1007且小于1024的整数;
    所述发端设备根据所述第三序列,对所述第一控制信息加扰;
    所述发端设备发送加扰后的第一控制信息。
  12. 如权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    所述发端设备根据第三标识确定第三序列;
    所述发端设备根据所述第三序列确定第三参考信号;所述第三参考信号用于所述发端设备对所述第一控制信息调制;
    所述发端设备发送所述第三参考信号。
  13. 如权利要求11或12所述的方法,其特征在于,所述发端设备根据第三标识确定第三序列,包括:
    所述发端设备根据所述第三标识确定所述第三序列的参数;
    所述第三序列的参数包括以下至少一项:
    所述第三序列的初始值;
    所述第三序列的初始位置;
    所述第三序列的根序列号;
    所述第三序列的循环移位值;
    所述第三序列的覆盖正交码。
  14. 如权利要求1-13任一项所述的方法,其特征在于,所述第一序列的参数的比特总数不大于预设值;所述第二序列的参数的比特总数不大于所述预设值;所述第三序列的参数的比特总数不大于所述预设值。
  15. 一种数据的接收方法,其特征在于,包括:
    收端设备接收加扰后的数据;
    所述收端设备根据第一参数确定第一序列,所述第一参数包括第一控制信息指示的信息和/或第二控制信息指示的信息;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数;
    所述收端设备根据所述第一序列对所述加扰后的数据进行解扰。
  16. 一种数据的接收方法,其特征在于,包括:
    收端设备根据第一参数确定第一序列,所述第一参数包括第一控制信息指示的信息和/或第二控制信息指示的信息;
    所述收端设备接收第一参考信号;
    所述收端设备根据所述第一序列和所述第一参考信号接收数据;其中,所述第一控制信息、所述第二控制信息和所述数据位于同一时间单元,所述第一控制信息用于指示所述数据的第一传输参数,所述第二控制信息用于指示所述数据的第二传输参数。
  17. 如权利要求15或16所述的方法,其特征在于,所述收端设备根据第一参数确定第一序列,包括:
    所述收端设备根据所述第一参数确定所述第一序列的参数;
    所述第一序列的参数包括以下至少一项:
    所述第一序列的初始值;
    所述第一序列的初始位置;
    所述第一序列的根序列号;
    所述第一序列的循环移位值;
    所述第一序列的覆盖正交码。
  18. 如权利要求17所述的方法,其特征在于,所述第一控制信息指示的信息包括以下至少一种:
    所述数据的优先级信息;
    所述数据的调制编码方式;
    用于指示所述参考信号的参考信号序列图样的指示信息;
    所述第二控制信息的类型或格式;
    用于指示所述数据的传输资源的指示信息;
    用于指示所述数据的初传或重传的传输间隔的指示信息;
    用于指示所述数据的传输资源预留的指示信息。
  19. 如权利要求17所述的方法,其特征在于,所述第二控制信息指示的信息包括以下至少一种:
    源标识,目的标识,混合自动重传请求的进程号,重传或冗余版本的指示信息,所述发端设备位置的指示信息,最小通信距离指示信息,信道状态指示信息,信道状态指示参考信号的指示信息。
  20. 如权利要求15-19任一项所述的方法,其特征在于,所述第一参数还包括以下至少一项:
    用于传输所述第一控制信息的CRC掩码;
    所述第一控制信息的CRC校验位;
    用于传输所述第二控制信息的CRC掩码;
    所述第二控制信息的CRC校验位;
    用于传输所述数据的时间单元号;
    第一标识,其中,所述第一标识的取值为大于1007且小于1024的整数。
  21. 如权利要求15-19任一项所述的方法,其特征在于,所述方法还包括:
    所述收端设备接收加扰的第二控制信息;
    所述收端设备根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;
    所述发端设备根据所述第二序列对所述加扰后的第二控制信息进行解扰。
  22. 如权利要求15-19任一项所述的方法,其特征在于,所述方法还包括:
    所述收端设备接收第二参考信号;
    所述收端设备根据第二参数确定第二序列,所述第二参数包括第一控制信息指示的信息;
    所述收端设备根据所述第二序列和所述第二参考信号接收所述第二控制信息。
  23. 如权利要求21或22所述的方法,其特征在于,所述收端设备根据第二参数确定第二序列,包括:
    所述收端设备根据所述第二参数确定所述第二序列的参数;
    所述第二序列的参数包括以下至少一项:
    所述第二序列的初始值;
    所述第二序列的初始位置;
    所述第二序列的根序列号;
    所述第二序列的循环移位值;
    所述第二序列的覆盖正交码。
  24. 如权利要求21-23任一项所述的方法,其特征在于,所述第二参数还包括以下至 少一项:
    用于传输所述第一控制信息的CRC掩码;
    所述第一控制信息的CRC校验位;
    用于传输所述第二控制信息的时间单元号;
    第二标识;其中,所述第二标识的取值为大于1007且小于1024的整数。
  25. 如权利要求15-24任一项所述的方法,其特征在于,所述方法还包括:
    所述收端设备接收加扰的第一控制信息;
    所述收端设备根据第三标识确定第三序列;所述第三标识的取值为大于1007且小于1024的整数;
    所述收端设备根据所述第三序列,对所述加扰的第一控制信息解扰。
  26. 如权利要求15-24任一项所述的方法,其特征在于,所述方法还包括:
    所述收端设备接收第三参考信号;
    所述收端设备根据第三标识确定第三序列,所述第三标识的取值为大于1007且小于1024的整数;
    所述收端设备根据所述第三序列和所述第三参考信号接收所述第一控制信息。
  27. 如权利要求25或26所述的方法,其特征在于,所述收端设备根据第三标识确定第三序列,包括:
    所述收端设备根据所述第三标识确定所述第三序列的参数;
    所述第三序列的参数包括以下至少一项:
    所述第三序列的初始值;
    所述第三序列的初始位置;
    所述第三序列的根序列号;
    所述第三序列的循环移位值;
    所述第三序列的覆盖正交码。
  28. 如权利要求15-27任一项所述的方法,其特征在于,所述第一序列的参数的比特总数不大于预设值;所述第二序列的参数的比特总数不大于所述预设值;所述第三序列的参数的比特总数不大于所述预设值。
  29. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求1至14任一项所述的方法。
  30. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求15至28任一项所述的方法。
  31. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如权利要求1至14任一项所述的方法。
  32. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指 令以执行如权利要求15至28任一项所述的方法。
  33. 一种可读存储介质,其特征在于,所述可读存储介质用于存储指令,当所述指令被执行时,使如权利要求1-14中任一项所述的方法被实现。
  34. 一种可读存储介质,其特征在于,所述可读存储介质用于存储指令,当所述指令被执行时,使如权利要求15-28中任一项所述的方法被实现。
PCT/CN2019/116880 2019-11-08 2019-11-08 一种数据的发送、接收方法、参考信号的发送方法及装置 WO2021088080A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980101415.9A CN114600523A (zh) 2019-11-08 2019-11-08 一种数据的发送、接收方法、参考信号的发送方法及装置
PCT/CN2019/116880 WO2021088080A1 (zh) 2019-11-08 2019-11-08 一种数据的发送、接收方法、参考信号的发送方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116880 WO2021088080A1 (zh) 2019-11-08 2019-11-08 一种数据的发送、接收方法、参考信号的发送方法及装置

Publications (1)

Publication Number Publication Date
WO2021088080A1 true WO2021088080A1 (zh) 2021-05-14

Family

ID=75849560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116880 WO2021088080A1 (zh) 2019-11-08 2019-11-08 一种数据的发送、接收方法、参考信号的发送方法及装置

Country Status (2)

Country Link
CN (1) CN114600523A (zh)
WO (1) WO2021088080A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028847A1 (en) * 2017-08-11 2019-02-14 Zte Corporation RESOURCE ALLOCATION
US20190342790A1 (en) * 2015-05-15 2019-11-07 Kyocera Corporation Base station and radio terminal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190342790A1 (en) * 2015-05-15 2019-11-07 Kyocera Corporation Base station and radio terminal
WO2019028847A1 (en) * 2017-08-11 2019-02-14 Zte Corporation RESOURCE ALLOCATION

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AT&T: "Resource allocation mechanism", 3GPP DRAFT; R1-1810700 RESOURCE ALLOCATION MECHANISM, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, China; 20181008 - 20181012, 29 September 2018 (2018-09-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 4, XP051518104 *
HUAWEI, HISILICON: "Sidelink physical layer structure for NR V2X", 3GPP DRAFT; R1-1910054, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 8 October 2019 (2019-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051788861 *

Also Published As

Publication number Publication date
CN114600523A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
US10681695B2 (en) Method and apparatus for configuring DM-RS for V2X
US11018800B2 (en) Information transmission method and user equipment
WO2018129987A1 (zh) 免授权传输的方法、终端设备和网络设备
WO2018027982A1 (zh) 发送参考信号的方法和装置及接收参考信号的方法和装置
WO2021204128A1 (zh) 一种传输块尺寸确定方法及装置
WO2021027815A1 (zh) 一种反馈信息传输方法及装置
WO2019007182A1 (zh) 一种数据传输方法及装置
KR20200087698A (ko) 무선통신시스템에서 사이드링크 물리계층 세션 아이디를 결정하는 방법 및 장치
US20210329601A1 (en) Communication Resource Determining Method and Apparatus
WO2021017792A1 (zh) 一种反馈信息的传输方法及终端装置
CN114402636A (zh) 发送和接收侧行控制信息的方法、终端装置和系统
CN116548039A (zh) 无线通信的方法和终端设备
CN110958095B (zh) 一种通信方法及装置
CN114868447A (zh) 无线通信的方法和终端设备
WO2022222106A1 (zh) 传输物理侧行反馈信道psfch的方法和终端设备
WO2021088080A1 (zh) 一种数据的发送、接收方法、参考信号的发送方法及装置
CN111147204B (zh) 通信方法、装置及存储介质
WO2021088081A1 (zh) 一种控制信息发送方法、接收方法和通信装置
CN109831824B (zh) 用于上行捎带传输的方法、装置及系统
CN116261844A (zh) 一种侧行链路通信方法及装置
WO2024130651A1 (zh) 侧行控制信息的发送方法、装置、设备及介质
WO2023093531A1 (zh) 一种通信方法及装置
WO2022267898A1 (zh) 一种资源指示方法和装置
WO2021232425A1 (zh) 无线通信方法和终端设备
WO2021146968A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951285

Country of ref document: EP

Kind code of ref document: A1