WO2018129987A1 - 免授权传输的方法、终端设备和网络设备 - Google Patents

免授权传输的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2018129987A1
WO2018129987A1 PCT/CN2017/108347 CN2017108347W WO2018129987A1 WO 2018129987 A1 WO2018129987 A1 WO 2018129987A1 CN 2017108347 W CN2017108347 W CN 2017108347W WO 2018129987 A1 WO2018129987 A1 WO 2018129987A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency resource
time
sequence
frequency
target time
Prior art date
Application number
PCT/CN2017/108347
Other languages
English (en)
French (fr)
Inventor
吴艺群
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17891487.5A priority Critical patent/EP3554118B1/en
Priority to KR1020197022066A priority patent/KR102256464B1/ko
Publication of WO2018129987A1 publication Critical patent/WO2018129987A1/zh
Priority to US16/508,306 priority patent/US20190357269A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present application relates to the field of communications, and in particular, to a method, an end device, and a network device for unauthorized transmission in the field of communications.
  • the base station In a typical wireless communication system, such as a Long Term Evolution (LTE) system, the base station notifies the user equipment of the information of the time-frequency resource for uplink transmission by sending a control message.
  • the base station can flexibly configure the appropriate time-frequency resources for the user equipment because the user type, the quality of service (QoS) requirements, the data packet size, and the channel status are different.
  • QoS quality of service
  • the narrowband or single carrier transmission scheme may be used to improve the received signal to noise ratio (SNR); the time-frequency resource size allocated to the data packet to be transmitted may be determined according to the size of the data packet to be transmitted.
  • the embodiment of the present application provides a method for unlicensed transmission, a terminal device, and a network device, and the network device can effectively determine a time-frequency resource selected by the terminal device for performing unlicensed transmission.
  • a method for license-free transmission comprising:
  • the terminal device performs the unlicensed transmission on the target time-frequency resource and the network device according to the sequence corresponding to the target time-frequency resource.
  • the terminal device indicates the time-frequency resource currently used for the unlicensed access to the network device by using the transmitted sequence, so that the network device can effectively determine the time-frequency resource selected by the terminal device for performing the unlicensed access. And because of the multiplexing of multiple unlicensed transmission resources, the efficient use of wireless transmission resources is realized. At the same time, the transmission process can be simplified and the complexity of the receiver can be reduced.
  • the determining, by the terminal device, the target time-frequency resource for the unlicensed transmission, in the multiple time-frequency resources includes:
  • the information about the target time-frequency resource includes at least one of the following information: a start position of the target time-frequency resource, and a target time-frequency resource a frequency domain resource size, a time domain resource size of the target time-frequency resource, and a frequency hopping mode of the terminal device.
  • the terminal device may randomly among the time-frequency resources. Select one as the target time-frequency resource.
  • time-frequency resources for unlicensed transmission correspond to different sequences
  • each time-frequency resource may correspond to one or more sequences.
  • the terminal device performs the exemption from the network device on the target time-frequency resource according to the sequence corresponding to the target time-frequency resource.
  • the transmitting the terminal device sends the sequence to the network device on a time-frequency resource for sending the sequence, and sends uplink data to the network device on the target time-frequency resource.
  • the first location relationship is met between the time-frequency resource of the sequence and the target time-frequency resource, where the first location relationship includes: The frequency resource is adjacent to the target time-frequency resource in the time domain and is located before the target time-frequency resource, and all or part of the frequency domain resource of the target time-frequency resource is occupied in the frequency domain.
  • the network device satisfies a certain positional relationship between the time-frequency resource for transmitting the sequence and the target time-frequency resource for transmitting the uplink data, and after receiving the sequence sent by the terminal device, the network device may receive the sequence according to the sequence.
  • the time-frequency resource directly determines the time-frequency resource that the terminal device sends the uplink data, that is, the sequence sent by the terminal device implicitly indicates the resource used for the uplink unlicensed transmission, and no other signaling is needed for the resource indication, thereby saving the system. Signaling overhead in .
  • the terminal device performs the exemption from the network device on the target time-frequency resource according to the sequence corresponding to the target time-frequency resource.
  • the transmitting the terminal device sends the sequence to the network device on a time-frequency resource for sending the sequence, and sends a control signal and an uplink to the network device on the target time-frequency resource.
  • the uplink data herein refers to service data
  • the control signal carries other control information except the uplink data.
  • the control signal carries the start of the time-frequency resource of the uplink data. Information such as location, bandwidth, and number of slots, etc., if the transmission of uplink data supports frequency hopping, the control signal may also carry a corresponding frequency hopping mode.
  • the control signal may further carry information such as a user identifier (Identity, ID), a modulation and coding scheme (MCS) of the data, an interleaving method, and a spreading code.
  • the control signal and the uplink data are independently coded, and the control signal and the data signal can share the same channel or use different channels for transmission.
  • the time-frequency resource of the sequence and the time-frequency resource used for transmitting the control signal meet a second location relationship, where the second location relationship includes: The time-frequency resource of the sequence and the time-frequency resource of the control signal are adjacent in the time domain and located before the time-frequency resource of the control signal, occupying all the time-frequency resources of the control signal in the frequency domain. Or part of the frequency domain resources.
  • the network device may receive the time-frequency of the sequence after receiving the sequence sent by the terminal device.
  • the resource directly determines the time-frequency resource that the terminal device sends the control signal, and determines the resource used for the uplink unlicensed transmission according to the resource information carried in the control signal, that is, the sequence sent by the terminal device implicitly indicates the uplink exemption.
  • the sequence comprises a preamble sequence or a reference signal.
  • a method for license-free transmission comprising:
  • the network device detects a sequence sent by the terminal device
  • the network device detects uplink data sent by the terminal device on the target time-frequency resource.
  • the network device can effectively determine the time-frequency resource used by the terminal device for unauthorized access by using the sequence information sent by the terminal device.
  • the efficient use of wireless transmission resources is realized by supporting multiplexing of multiple unlicensed transmission resources. At the same time, the transmission process can be simplified and the complexity of the receiver can be reduced.
  • the method before the detecting, by the network device, the sequence sent by the terminal device, the method further includes: determining, by the network device, whether the terminal device sends the Determining the sequence, and detecting the sequence sent by the terminal device when determining that the terminal device sends the sequence.
  • the network device can calculate the signal power corresponding to the preamble sequence according to formula (1), and compare whether the signal power and the preset power threshold are used to determine whether the terminal device sends the preamble sequence. If one or more preamble sequences are detected, the uplink data sent by the terminal device is further detected in the target time-frequency resource corresponding to the preamble sequence, otherwise no subsequent detection is performed.
  • the information about the target time-frequency resource includes at least one of: a starting location of the target time-frequency resource, and a target time-frequency resource a frequency domain resource size, a time domain resource size of the target time-frequency resource, and a frequency hopping mode of the terminal device.
  • the determining, by the network device, the information about the target time-frequency resource for the unlicensed transmission according to the detected sequence including: the network device according to the network device The sequence, and the correspondence between the sequence and the time-frequency resource, determine information of the target time-frequency resource.
  • the first location relationship is met between the time-frequency resource used to transmit the sequence and the target time-frequency resource, where the first location relationship includes: The time-frequency resource of the sequence is adjacent to the target time-frequency resource in the time domain and is located before the target time-frequency resource, and all or part of the frequency-domain resource of the target time-frequency resource is occupied in the frequency domain.
  • the network device satisfies a certain positional relationship between the time-frequency resource for transmitting the sequence and the target time-frequency resource for transmitting the uplink data, and after receiving the sequence sent by the terminal device, the network device may receive the sequence according to the sequence.
  • the time-frequency resource directly determines the time-frequency resource that the terminal device sends the uplink data, that is, the sequence sent by the terminal device implicitly indicates the resource used for the uplink unlicensed transmission, and no other signaling is needed for the resource indication, thereby saving the system. Signaling overhead in .
  • the determining, by the network device, the information about the target time-frequency resource for the unlicensed transmission according to the detected sequence including: the network device according to the network device a time-frequency resource for transmitting the sequence, determining a time-frequency resource for transmitting a control signal in the target time-frequency resource, and receiving the control sent by the terminal device on a time-frequency resource of the control signal a signal, where the control signal includes information about a time-frequency resource for transmitting the uplink data in the target time-frequency resource; and the network device determines, according to the control signal, the target time-frequency resource. Transmitting a time-frequency resource of the uplink data;
  • the time-frequency resource of the sequence and the time-frequency resource of the control signal satisfy a second positional relationship, where the second location relationship includes: the sequence
  • the time-frequency resource and the time-frequency resource of the control signal are all adjacent to the time-frequency resource in the time domain and before the time-frequency resource of the control signal, occupying all or part of the frequency-frequency resource of the control signal in the frequency domain. Domain resource.
  • the position of the time-frequency resource CR of the control signal and the time-frequency resource location of the sequence can be agreed in advance.
  • the time-frequency resource of the sequence may be agreed to be adjacent to the CR in the time domain and located before the CR, and the bandwidth of the time-frequency resource of the sequence is the same as the bandwidth of the CR, and the number of slots of the CR is related to the bandwidth of the CR. It can be determined by the bandwidth of the CR.
  • the network device can directly determine the starting position and bandwidth of the CR according to the detected time-frequency resources of the preamble sequence, and determine the number of slots of the CR according to the bandwidth of the CR, and can determine from the control signal on the CR.
  • the starting position, bandwidth, and number of slots of the time-frequency resource DR of the uplink data If it is also agreed that the positions of the CR and the DR are adjacent, the starting position of the CR and the number of slots directly determine the starting position of the DR, and the starting position of the DR may not be included in the control signal. If it is also agreed that the bandwidth of the CR and the DR are the same, then the control message does not need to carry the bandwidth information of the DR. If the transmission bandwidth of the DR has only one possible number of slots of the DR, then the control message does not need to indicate the number of slots of the DR. When the data transmission supports frequency hopping, the control message can also indicate its frequency hopping mode.
  • the network device may receive the time-frequency of the sequence after receiving the sequence sent by the terminal device.
  • the resource directly determines the time-frequency resource that the terminal device sends the control signal, and determines the resource used for the uplink unlicensed transmission according to the resource information carried in the control signal, that is, the sequence sent by the terminal device implicitly indicates the uplink exemption.
  • the sequence comprises a preamble sequence or a reference signal.
  • a terminal device which can be used to perform various processes performed by the terminal device in the method of the above-mentioned first aspect and the unlicensed transmission in various implementation manners.
  • the network device includes a determining unit and a transmitting unit.
  • the determining unit is configured to determine a target time-frequency resource for the unlicensed transmission, where the determining unit is further configured to: according to the target time-frequency resource information, and the time-frequency Determining a sequence corresponding to the target time-frequency resource, the transmission unit, configured to: according to the sequence corresponding to the target time-frequency resource determined by the determining unit, in the sequence
  • the unauthorized transfer is performed between the target time-frequency resource and the network device.
  • a network device which can be used to perform various processes performed by a network device in the method of the above-described second aspect and the unlicensed transmission in various implementation manners.
  • the network device includes a detection unit and Unit.
  • the detecting unit is configured to detect a sequence sent by the terminal device, where the determining unit is configured to determine, according to the sequence detected by the detecting unit, information about a target time-frequency resource used for the unlicensed transmission;
  • the detecting unit is further configured to: detect uplink data sent by the terminal device on the target time-frequency resource determined by the determining unit.
  • a terminal device comprising a processor, a transceiver, and a memory.
  • the memory stores a program that executes the program for performing the various processes performed by the terminal device in the method of the above-described first aspect and the unlicensed transmission in various implementations.
  • the processor is specifically configured to: determine, in a plurality of time-frequency resources, a target time-frequency resource used for the unlicensed transmission; and information according to the target time-frequency resource, and a correspondence between a time-frequency resource and a sequence a relationship, the sequence corresponding to the target time-frequency resource is determined; the transceiver is specifically configured to: according to the sequence corresponding to the target time-frequency resource determined by the processor, on the target time-frequency resource The unauthorized transfer is performed between network devices.
  • a network device comprising a processor, a transceiver, and a memory.
  • the memory stores a program that executes the program for performing the various processes performed by the network device in the method of the above-described second aspect and the unlicensed transmission in various implementations.
  • the processor is configured to: detect a sequence sent by the terminal device; determine, according to the detected sequence, information of a target time-frequency resource used for the unlicensed transmission; and on the determined target time-frequency resource, the detection center The uplink data sent by the terminal device.
  • a computer readable storage medium storing a program, the program causing the terminal device to perform the first aspect described above, and any one of the various implementations thereof The method of transmission.
  • a computer readable storage medium storing a program, the program causing a network device to perform the second aspect described above, and any one of the various implementations thereof The method of transmission.
  • a system chip includes an input interface, an output interface, a processor, and a memory, where the weapon is used to execute an instruction stored by the memory, and when the instruction is executed, the processor can implement Any of the foregoing first aspects and various implementations thereof.
  • a system chip includes an input interface, an output interface, a processor, and a memory, where the edge device is configured to execute an instruction stored by the memory, and when the instruction is executed, the processor can implement Any of the foregoing second aspects and various implementations thereof.
  • the network device can determine the time-frequency resource used by the terminal device for unauthorized access by using the sequence information sent by the terminal device, and implement effective use of the wireless transmission resource.
  • Supporting multiplexing of multiple unlicensed transmission resources saves transmission resources and improves utilization of time-frequency resources.
  • the transmission process can be simplified and the complexity of the receiver can be reduced.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a method for uplink grant-free transmission in the prior art.
  • FIG. 3 is a flow diagram of a process for an unlicensed transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of time-frequency resources of an unlicensed transmission according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of time-frequency resources of an unlicensed transmission according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of time-frequency resources of an unlicensed transmission according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of time-frequency resources of an unlicensed transmission according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of time-frequency resources of an unlicensed transmission according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of time-frequency resources of an unlicensed transmission according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the present application describes various embodiments in connection with a terminal device.
  • the terminal device may also refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user agent.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • the present application describes various embodiments in connection with a network device.
  • the network device may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, BTS) in the GSM system or CDMA, or may be a base station (NodeB, NB) in the WCDMA system, or may be An evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network side device in a future 5G network or a future evolved PLMN network.
  • Network design Prepare.
  • FIG. 1 shows a schematic architectural diagram of a communication system to which an embodiment of the present application is applied.
  • the communication system may include a network device 10 and a terminal device 20 to a terminal device 70 (referred to as UE in the figure) connected by a wireless connection or a wired connection or other means.
  • the terminal device 20 to the terminal device 70 can communicate with the network device 10 by means of unauthorized access.
  • the network in the embodiment of the present application may refer to a Public Land Mobile Network (PLMN) or a Device to Device (D2D) network or a Machine to Machine/Man (M2M) network.
  • PLMN Public Land Mobile Network
  • D2D Device to Device
  • M2M Machine to Machine/Man
  • FIG. 1 is only a simplified schematic diagram of an example, and other network devices may also be included in the network, which are not shown in FIG.
  • Unlicensed transmission can solve a variety of services in the future network, such as Machine Type Communication (MTC) services or Ultra Reliable and Low Latency Communication (URLLC) services to meet low latency, Highly reliable business transmission needs. Unlicensed transmissions can be targeted for upstream data transmission.
  • MTC Machine Type Communication
  • URLLC Ultra Reliable and Low Latency Communication
  • Unlicensed transmissions can be targeted for upstream data transmission.
  • the unauthorized access may also be called another name, such as autonomous access, spontaneous multiple access, or contention based multiple access.
  • the data may be included in service data or signaling data.
  • the transmission resources of the unlicensed transmission may include, but are not limited to, a combination of one or more of the following resources: time domain resources, such as radio frames, subframes, symbols, etc.; frequency domain resources, such as subcarriers, resource blocks, etc.; airspace resources Such as transmitting antennas, beams, etc.; code domain resources, such as Sparse Code Multiple Access (SCMA) codebook group, Low Density Signature (LDS) group, CDMA code group, etc.; Frequency resource; interleaving resource; channel coding mode.
  • time domain resources such as radio frames, subframes, symbols, etc.
  • frequency domain resources such as subcarriers, resource blocks, etc.
  • airspace resources Such as transmitting antennas, beams, etc.
  • code domain resources such as Sparse Code Multiple Access (SCMA) codebook group, Low Density Signature (LDS) group, CDMA code group, etc.
  • Frequency resource interleaving resource
  • the foregoing transmission resource may be transmitted according to a control mechanism including but not limited to: uplink power control, such as uplink transmission power upper limit control, etc.; modulation and coding mode setting, such as transmission block size, code rate, modulation order setting, etc.; Transmission mechanism, such as Hybird Automatic Repeat reQuest (HARQ) mechanism.
  • uplink power control such as uplink transmission power upper limit control, etc.
  • modulation and coding mode setting such as transmission block size, code rate, modulation order setting, etc.
  • Transmission mechanism such as Hybird Automatic Repeat reQuest (HARQ) mechanism.
  • HARQ Hybird Automatic Repeat reQuest
  • FIG. 2 is a schematic diagram of a method for uplink grant-free transmission in the prior art.
  • the base station pre-configures a plurality of time-frequency resource blocks of different sizes for uplink unlicensed transmission, and each time-frequency resource block is independent of each other, and each time-frequency resource block can occupy at least one transmission time interval (Transmission).
  • Time Interval (TTI) as shown in the three figures of FIG. 2, are three different time-frequency resources pre-configured by the base station for uplink unlicensed transmission.
  • TTI Time Interval
  • the base station needs to separately detect each time-frequency resource block when receiving data, and the processing complexity is high.
  • the network device can determine the time-frequency resource used by the user equipment for unauthorized access by using the sequence information sent by the user equipment, and can effectively utilize the wireless transmission resource.
  • the preamble mentioned in the embodiment of the present application may also be referred to as a preamble, a preamble, a preamble, etc., and may be, for example, a ZC (Zadoff Chu) sequence or a Pseudo Noise (PN) sequence.
  • the longest linear shift register sequence (referred to as the M sequence, the basic PN sequence used in the CDMA system), the Walsh sequence, and the like.
  • the reference signal (RS), which may also be referred to as a pilot signal, is a signal that is provided by the transmitting end to the receiving end for channel estimation, channel sounding or channel state detection.
  • the transmitting end of the sequence or the data may be a terminal device or a network device
  • the receiving end of the sequence or data may be a terminal device or a network device.
  • the transmitting end of the sequence or the data is the terminal device and the receiving end is the network device.
  • the embodiment of the present application is not limited thereto.
  • the transmitting end of the sequence or the data is the terminal device, and the receiving end of the sequence or the data is another terminal device.
  • the method of the embodiment of the present application can apply the D2D transmission.
  • the network device can be, for example, the network device 10 in FIG. 1
  • the terminal device can be, for example, any one of the terminal device 20 to the terminal device 70 in FIG. 1, where only one terminal is used.
  • the device is described as an example, but the network device can perform the unlicensed transmission by using the method of the embodiment of the present application, and the method performed by other terminal devices can be referred to the method shown in FIG. 3 .
  • the method performed by the terminal device is not described here for brevity.
  • the method may be applied to the unlicensed transmission, and may also be applied to other scenarios.
  • the unauthorized transmission is taken as an example for description, that is, the uplink transmission performed by the terminal device and the network device is an unauthorized transmission, and the used transmission resource is Unauthorized transfer of resources.
  • the method for unauthorized transfer includes:
  • the terminal device determines a target time-frequency resource for the current unlicensed transmission among the plurality of time-frequency resources.
  • the target time-frequency resource used for accessing for example, determining the starting position of the target time-frequency resource, the occupied bandwidth, and the number of slots, and the like are selected.
  • the terminal device may determine a target time-frequency resource for the current unlicensed transmission among the plurality of time-frequency resources configured in advance.
  • the terminal device may determine a target time-frequency resource for the unlicensed transmission in the multiple time-frequency resources according to the size of the uplink data to be sent; the terminal device may also be based on a path loss between the terminal device and the network device.
  • the target time-frequency resource for the unlicensed transmission is determined in the multiple time-frequency resources; or the terminal device may determine the target time-frequency resource according to other information, which is not limited in this embodiment of the present application.
  • the terminal device may randomly select one of the time-frequency resources. As the target time-frequency resource.
  • the terminal device determines a sequence corresponding to the target time-frequency resource according to the information of the target time-frequency resource and the correspondence between the time-frequency resource and the sequence.
  • the information about the target time-frequency resource includes at least one of the following information: a start position of the target time-frequency resource, a frequency domain resource size of the target time-frequency resource, and a time-frequency resource of the target time-frequency resource.
  • the size of the domain resource and the frequency hopping mode of the terminal device includes at least one of the following information: a start position of the target time-frequency resource, a frequency domain resource size of the target time-frequency resource, and a time-frequency resource of the target time-frequency resource.
  • the terminal device may determine, according to the information of the target time-frequency resource, and the preset correspondence between the time-frequency resource and the sequence, determining, corresponding to the target time-frequency resource. A sequence for this unauthorized transfer.
  • the different time-frequency resources used for the unlicensed transmission correspond to different sequences, and each time-frequency resource may correspond to one or more sequences.
  • the corresponding relationship between the time-frequency resource and the sequence can be presented by, for example, a table, a formula, an image, or the like, and in the corresponding relationship, one time-frequency resource can correspond to one or more sequences, and one sequence can also correspond to one or more sequences.
  • Time-frequency resources That is, the terminal device may determine the sequence corresponding to the target time-frequency resource by searching a preset table including a correspondence between multiple time-frequency resources and multiple sequences; or the terminal device may also preset
  • the formula and the related parameter information of the target time-frequency resource are used to calculate the identifier or number of the sequence corresponding to the target time-frequency resource. This application does not limit this.
  • the sequence corresponding to the target time-frequency resource includes a preamble sequence or includes a reference signal such as a pilot sequence.
  • the time-frequency resource used for the unlicensed transmission may also be referred to as a Grant Free Access Region (GFAR).
  • GFAR Grant Free Access Region
  • FIG. 4 and FIG. 5 are used as an example to illustrate the correspondence between time-frequency resources and sequences.
  • the corresponding relationship may be determined by the network device and notified to the terminal device, or may be negotiated by the network device and the terminal device, for example, may be specified in the protocol.
  • Correspondence. 4 and 5 illustrate three time-frequency resources for unlicensed transmission, where a first time-frequency resource (GFAR 1), a second time-frequency resource (GFAR 2), and a third time-frequency resource (GFAR 3) The time domain start position is the same.
  • the bandwidth F1 of the first time-frequency resource is the same as the bandwidth F2 of the second time-frequency resource, and the bandwidth of the third time-frequency resource is F3; the number of timeslot T2 of the second time-frequency resource is equal to the number of timeslot T1 of the first time-frequency resource Twice, the number of time slots T3 of the third time domain resource is equal to four times the number of time slots T1 of the first time domain resource.
  • At least one GFAR unit can be defined, each GFAR unit having a particular bandwidth and number of slots, and the like.
  • the GFAR used by the terminal device may be composed of at least one GFAR unit.
  • the preamble sequence is taken as an example.
  • the first time-frequency resource corresponds to the preamble sequence C1
  • the second time The frequency resource corresponds to the preamble sequence C2
  • the third time-frequency resource corresponds to the preamble sequence C3.
  • the preamble sequences C1, C2, and C3 respectively correspond to different sizes of GFARs.
  • different GFARs have the same length of the preamble sequence, but different GFARs in the embodiment of the present application may also correspond to a plurality of sets of preamble sequences of different lengths, which are not limited herein.
  • the terminal device determines that the target time-frequency resource is the first time-frequency resource according to the information of the uplink data to be transmitted or the link loss situation, the preamble sequence C1 is used, and the network device is used on the first time-frequency resource. If the terminal device determines that the target time-frequency resource used by the terminal device is the second time-frequency resource, the terminal device uses the preamble sequence C2 to perform exemption from the network device on the second time-frequency resource. Transmission; if it is determined that the target time-frequency resource used is the third time-frequency resource, the terminal device uses the preamble sequence C3 to perform an unlicensed transmission with the network device on the third time-frequency resource.
  • the preamble sequences C1, C2, and C3 may be ZC sequences commonly used in LTE systems, and may also be PN sequences, M sequences, Walsh sequences, and the like.
  • the information of the target time-frequency resource may further include a frequency hopping mode used by the terminal device.
  • the physical layer adopts Orthogonal Frequency Division Multiplexing (OFDM), and the bandwidth includes a certain number of subcarriers, and each time slot includes a certain number of time domain symbols such as OFDM symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Each cell may define a different number and size of GFARs, and the network device may, for example, notify the terminal device to configure the above GFAR through a broadcast or control message.
  • the terminal device performs the unlicensed transmission on the target time-frequency resource and the network device according to the sequence.
  • the terminal device determines the target time-frequency resource and sequence for the current unlicensed transmission, such as the preamble sequence or the pilot sequence, the terminal device sends the uplink data to the network device on the target time-frequency resource according to the sequence.
  • the terminal device may send the sequence to the network device on the time-frequency resource for sending the sequence, and send the uplink to the network device on the target time-frequency resource.
  • the time-frequency resource of the sequence and the target time-frequency resource satisfy a first location relationship, where the first location relationship may include: the time-frequency resource of the sequence is adjacent to the target time-frequency resource in the time domain. And before the target time-frequency resource, all or part of the frequency domain resources of the target time-frequency resource are occupied in the frequency domain.
  • the terminal device may also send the sequence to the network device on the time-frequency resource of the sequence, and send a control signal and uplink data to the network device on the target time-frequency resource, where the control signal includes For transmission Information about the time-frequency resources of the uplink data.
  • the time-frequency resource of the sequence and the time-frequency resource used for transmitting the control signal satisfy a second positional relationship, where the second location relationship may include: time-frequency resources of the sequence and timing of the control signal.
  • the frequency resource occupies all or part of the frequency domain resources of the time-frequency resource of the control signal in the frequency domain before being adjacent to the time-frequency resource of the control signal in the time domain.
  • the network device detects the sequence transmitted by the terminal device.
  • the method may further include: determining, by the network device, whether the terminal device sends the sequence according to the signal power, and detecting the terminal device when determining that the terminal device sends the sequence. The sequence sent.
  • the network device may first determine, according to the signal power, whether the terminal device sends the sequence.
  • the network device can calculate the signal power corresponding to the preamble sequence according to formula (1), and compare whether the signal power and the preset power threshold are used to determine whether the terminal device sends the preamble sequence. If one or more preamble sequences are detected, the uplink data sent by the terminal device is further detected in the GFAR corresponding to the preamble sequence, otherwise no subsequent detection is performed.
  • the network device determines information for the target time-frequency resource for the unlicensed transmission based on the detected sequence.
  • the network device determines the information of the target time-frequency resource for the unlicensed transmission, it can be performed in two ways. One is to directly determine the corresponding target time-frequency resource according to the detected preamble sequence; the other is to determine the information of the target time-frequency resource according to the preamble sequence and the control signal sent by the terminal device.
  • the following describes in detail how the network device determines the information of the target time-frequency resource for the unlicensed transmission in these two ways.
  • the network device in 350 determines, according to the detected sequence, information about the target time-frequency resource used for the unlicensed transmission, including: determining, by the network device, the correspondence between the sequence and the time-frequency resource according to the sequence Information on the target time-frequency resource.
  • the information about the target time-frequency resource of the uplink data of the receiving terminal device may be determined according to the correspondence between the sequence and the time-frequency resource. For example, the network device may determine the target time-frequency resource for detecting the uplink data according to the correspondence between the sequence and the time-frequency resource shown in FIG. 4 and FIG. 5 and the detected sequence. For example, if the network device detects the preamble sequence C1, the uplink data sent by the terminal device is detected on the first time-frequency resource corresponding to the preamble sequence C1, that is, the GFAR1; if the network device detects the preamble sequence C2, it corresponds to the preamble sequence C2.
  • the second time-frequency resource that is, the uplink data sent by the terminal device is detected on the GFAR 2; if the network device detects the preamble sequence C3, the uplink data sent by the terminal device is detected on the third time-frequency resource corresponding to the preamble sequence C3, that is, the GFAR 3. .
  • the first location relationship is met between the time-frequency resource used to transmit the sequence and the target time-frequency resource, where the first location relationship may be, for example, the time-frequency resource of the sequence and the target time-frequency resource are in time All or part of the frequency domain resources of the target time-frequency resource are occupied in the frequency domain adjacent to the target time-frequency resource.
  • FIG. 6 is a schematic diagram of time-frequency resources of an unlicensed transmission, where a first positional relationship between a time-frequency resource for transmitting the sequence and the target time-frequency resource is: time-frequency resource and target time of the sequence
  • the frequency resource is adjacent in the time domain and is located before the target time-frequency resource, and occupies all frequency domain resources of the target time-frequency resource in the frequency domain.
  • FIG. 6 shows a first time-frequency resource and a fourth time-frequency resource, where the bandwidth F1 of the first time-frequency resource and the bandwidth F4 of the fourth time-frequency resource are equal, and the number of time slots T1 and IV of the first time-frequency resource are The time slot number T4 of the time-frequency resource is equal, and the start position of the first time-frequency resource is located before the start position of the fourth time-frequency resource.
  • the target time-frequency resource determined by the terminal device is the first time-frequency resource, that is, GFAR 1
  • the preamble sequence determined by the terminal device according to the GFAR 1 is C1
  • the terminal device is in the time-frequency resource of the preamble sequence C1 as shown in FIG. 6.
  • the preamble sequence C1 is sent to the network device in the location, and the uplink data is sent to the network device on the GFAR 1.
  • the network device detects the preamble sequence C1 on the time-frequency resource of the preamble sequence C1
  • the network device according to the preamble sequence C1 And detecting uplink data sent by the terminal device on the first time-frequency resource corresponding to the preamble sequence C1.
  • the target time-frequency resource determined by the terminal device is the fourth time-frequency resource, that is, GFAR 4
  • the preamble sequence determined by the terminal device according to the GFAR 4 is C4
  • the terminal device is in the time-frequency resource of the preamble sequence C4 as shown in FIG. 6.
  • the preamble sequence C4 is sent to the network device in the location, and the uplink data is sent to the network device on the GFAR 4.
  • the network device detects the preamble sequence C4 on the time-frequency resource of the preamble sequence C4
  • the network device according to the preamble sequence C4 And detecting uplink data sent by the terminal device on the fourth time-frequency resource corresponding to the preamble sequence C4.
  • FIG. 7 is a schematic diagram of time-frequency resources of an unlicensed transmission, where a first positional relationship between a time-frequency resource for transmitting the sequence and the target time-frequency resource is: a time-frequency resource of the sequence Part of the frequency domain resource of the target time-frequency resource is occupied in the frequency domain adjacent to the target time-frequency resource in the time domain and before the target time-frequency resource.
  • FIG. 7 shows a first time-frequency resource and a second time-frequency resource, and the bandwidth F1 of the first time-frequency resource and the bandwidth F2 of the second time-frequency resource are equal, and the number of time slots T2 included in the second time-frequency resource is The number of time slots T1 of the first time-frequency resource is twice, and the starting position of the first time-frequency resource is the same as the starting position of the second time-frequency resource.
  • the target time-frequency resource determined by the terminal device is the first time-frequency resource, that is, GFAR 1
  • the preamble sequence determined by the terminal device according to the GFAR 1 is C1
  • the terminal device is in the time-frequency resource of the preamble sequence C1 as shown in FIG. 7.
  • the preamble sequence C1 is sent to the network device in the location, and the uplink data is sent to the network device on the GFAR 1.
  • the network device detects the preamble sequence C1 on the time-frequency resource of the preamble sequence C1
  • the network device according to the preamble sequence C1 And detecting uplink data sent by the terminal device on the first time-frequency resource corresponding to the preamble sequence C1.
  • the target time-frequency resource determined by the terminal device is the second time-frequency resource, that is, GFAR 2
  • the preamble sequence determined by the terminal device according to the GFAR 2 is C2
  • the terminal device is in the time sequence of the preamble sequence C2 as shown in FIG. 7.
  • the preamble sequence C2 is sent to the network device at the resource location, and the uplink data is sent to the network device on the GFAR 2; thereafter, if the network device detects the preamble sequence C2 on the time-frequency resource of the preamble sequence C2, the network device according to the preamble sequence C2: Detect uplink data sent by the terminal device on the second time-frequency resource corresponding to the preamble sequence C2.
  • the preamble sequence C1 corresponding to the first time-frequency resource and the preamble sequence C2 corresponding to the second time-frequency resource occupy the same symbol transmission, but the time-frequency resource of the transmission preamble occupies the target time-frequency resource in the frequency domain. Part of the frequency domain resources. In the symbol, the frequency domain resources used by the preamble sequence C1 and the preamble sequence C2 at the time of transmission are cross-distributed in the frequency domain.
  • the network device satisfies a certain positional relationship between the time-frequency resource for transmitting the sequence and the target time-frequency resource for transmitting the uplink data, and after receiving the sequence sent by the terminal device, the network device may receive the sequence according to the sequence.
  • the time-frequency resource directly determines the time-frequency resource that the terminal device sends the uplink data, that is, the sequence sent by the terminal device implicitly indicates the resource used for the uplink unlicensed transmission, and no other signaling is needed for the resource indication, thereby saving the system. Signaling overhead in .
  • the network device determines information about the target time-frequency resource for the unlicensed transmission according to the detected sequence, where the network device determines the target time-frequency according to the time-frequency resource used to transmit the sequence. a time-frequency resource for transmitting a control signal in the resource, and receiving the control signal sent by the terminal device on the time-frequency resource of the control signal; the network device determining, according to the control signal, the uplink data used in the target time-frequency resource Time-frequency resources.
  • the second location relationship is met between the time-frequency resource used to transmit the sequence and the time-frequency resource of the control signal, and the control signal includes the time for transmitting the uplink data in the target time-frequency resource.
  • Information about frequency resources is met between the time-frequency resource used to transmit the sequence and the time-frequency resource of the control signal, and the control signal includes the time for transmitting the uplink data in the target time-frequency resource.
  • the terminal device sends the sequence to the network device on the time-frequency resource of the sequence, and sends a control signal and uplink data to the network device on the target time-frequency resource, where the network device determines according to the time-frequency resource of the sequence.
  • a time-frequency resource for transmitting a control signal in the target time-frequency resource, and receiving the control signal sent by the terminal device on the time-frequency resource of the control signal, where the control signal carries the target time-frequency resource for transmission a signal of a time-frequency resource of the uplink data, such as a starting position, a bandwidth, a number of timeslots, and a frequency hopping mode, and the network device receives the control signal, and determines, according to the control signal, the uplink time-frequency resource for transmitting the uplink data.
  • the time-frequency resource in this case, the network device can detect the uplink data sent by the terminal device on the time-frequency resource used for transmitting the uplink data in the target time-frequency resource.
  • the time-frequency resource of the control signal may be simply referred to as a control region (Control Region, CR), and the time-frequency resource of the uplink data may be simply referred to as a data region (Data Region, DR).
  • the target time-frequency resource GFAR includes CR and DR.
  • the position information of the CR needs to be determined before demodulation.
  • the most basic way is that the sequence sent by the terminal device determines information such as the starting position, bandwidth and number of slots of the CR. If the transmission of the control signal supports frequency hopping, the sequence may also be used to indicate the corresponding frequency hopping mode.
  • the control signal may indicate information such as a starting position, a bandwidth, and a number of slots of the DR. If the transmission of the data supports frequency hopping, the control message may also indicate a corresponding frequency hopping mode.
  • the uplink data herein refers to service data
  • the control signal carries other control information except the uplink data.
  • the control signal carries the start of the time-frequency resource of the uplink data. Information such as location, bandwidth, and number of slots.
  • the control message may further carry information such as a user identifier (Identity, ID), a modulation and coding scheme (MCS) of the data, an interleaving method, and a spreading code.
  • MCS modulation and coding scheme
  • the control signal and the uplink data are independently coded, and the control signal and the data signal can share the same channel or use different channels for transmission.
  • a schematic diagram of the time-frequency resource of the unlicensed transmission shown in FIG. 8 and FIG. 9 is configured to satisfy a second positional relationship between the time-frequency resource for transmitting the sequence and the time-frequency resource of the control signal, and the The second positional relationship is: the time-frequency resource of the sequence and the time-frequency resource of the control signal are adjacent in the time domain and are located before the target time-frequency resource, and part of the frequency-domain resource occupying the time-frequency resource of the control signal in the frequency domain .
  • the terminal device determines the corresponding preamble sequence according to the GFAR, and sends the preamble sequence to the network device at the time-frequency resource location of the preamble sequence, and sends the preamble sequence to the network on the GFAR.
  • the device sends a control signal and uplink data, where the terminal device sends a control to the network device on the CR in the GFAR.
  • the uplink data on the DR in the GFAR And generating the uplink data on the DR in the GFAR, and carrying the information of the time-frequency resource of the uplink data, such as the bandwidth, the number of timeslots, the starting position, and the like, in the control signal; and then, if the network device is in the preamble sequence On the time-frequency resource, the preamble sequence is detected, and the network device receives the control sent by the terminal device on the CR corresponding to the preamble sequence according to the preamble sequence and the second positional relationship between the preamble sequence and the CR. And obtaining, by the control signal, information about a DR for receiving uplink data, so as to detect uplink data sent by the terminal device on the DR.
  • determining the time-frequency resource of the control signal according to the time-frequency resource of the sequence transmitted by the terminal device is a second positional relationship that is satisfied according to the time-frequency resource of the sequence and the time-frequency resource of the control signal.
  • the partial location information of the CR and the sequence can be agreed in advance.
  • the time-frequency resource of the sequence may be agreed to be adjacent to the CR in the time domain and located before the CR, and the bandwidth of the time-frequency resource of the sequence is the same as the bandwidth of the CR, and the number of slots of the CR is related to the bandwidth of the CR. It can be determined by the bandwidth of the CR.
  • the network device can directly determine the starting position and bandwidth of the CR according to the detected time-frequency resources of the preamble sequence, and determine the number of slots of the CR according to the bandwidth of the CR, and can determine from the control signal on the CR.
  • the starting position, bandwidth, and number of slots of the DR If it is also agreed that the positions of the CR and the DR are adjacent, the starting position of the CR and the number of slots directly determine the starting position of the DR, and the starting position of the DR may not be included in the control signal. If it is also agreed that the bandwidth of the CR and the DR are the same, then the control message does not need to carry the bandwidth information of the DR. If the transmission bandwidth of the DR has only one possible number of slots of the DR, then the control message does not need to indicate the number of slots of the DR. When the data transmission supports frequency hopping, the control message can also indicate its frequency hopping mode.
  • the network device may receive the time-frequency of the sequence after receiving the sequence sent by the terminal device.
  • the resource directly determines the time-frequency resource that the terminal device sends the control signal, and determines the resource used for the uplink unlicensed transmission according to the resource information carried in the control signal, that is, the sequence sent by the terminal device implicitly indicates the uplink exemption.
  • the network device detects uplink data sent by the terminal device on the target time-frequency resource.
  • the terminal device indicates the time-frequency resource used for the unlicensed transmission by using the sequence sent to the network device, so that the information of the sequence sent by the network device through the terminal device can effectively determine that the terminal device is used for unauthorized authorization.
  • Time-frequency resources for access By supporting multiplexing of multiple unlicensed transmission resources, efficient use of wireless transmission resources is realized, transmission resources are saved, and utilization of time-frequency resources is improved. At the same time, the transmission process can be simplified and the complexity of the receiver can be reduced.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • a terminal device according to an embodiment of the present application will be described below with reference to FIG. 10.
  • the technical features described in the method embodiments may be applied to the following device embodiments.
  • FIG. 10 shows a terminal device 400 in accordance with an embodiment of the present application.
  • the terminal device 400 includes a determining unit 410 and a transmitting unit 420.
  • the determining unit 410 is configured to: determine, in the plurality of time-frequency resources, a target time-frequency resource used for the unlicensed transmission; according to the information of the target time-frequency resource, and the correspondence between the time-frequency resource and the sequence a relationship, determining the sequence corresponding to the target time-frequency resource;
  • the transmitting unit 420 is configured to: perform the unlicensed transmission on the target time-frequency resource and the network device according to the sequence corresponding to the target time-frequency resource.
  • the terminal device indicates the time-frequency resource currently used for the unlicensed access to the network device through the preamble sequence, so that the network device can effectively determine the time-frequency resource selected by the terminal device for performing the unlicensed access.
  • the determining unit 410 is specifically configured to: determine, according to a size of the uplink data to be sent, or a path loss condition between the terminal device and the network device, in the multiple time-frequency resources The target time-frequency resource for the unauthorized transfer.
  • the information about the target time-frequency resource includes at least one of the following information: a starting location of the target time-frequency resource, a frequency domain resource size of the target time-frequency resource, and the target time-frequency resource.
  • the size of the time domain resource and the frequency hopping mode of the terminal device includes at least one of the following information: a starting location of the target time-frequency resource, a frequency domain resource size of the target time-frequency resource, and the target time-frequency resource.
  • the transmitting unit 420 is specifically configured to: send the sequence to the network device on the time-frequency resource used to send the sequence, and send the uplink data to the network device on the target time-frequency resource.
  • the first location relationship is met between the time-frequency resource of the sequence and the target time-frequency resource, where the first location relationship includes: the time-frequency resource of the sequence and the target time-frequency resource are in time All or part of the frequency domain resources of the target time-frequency resource are occupied in the frequency domain adjacent to the target time-frequency resource.
  • the transmitting unit 420 is specifically configured to: send the sequence to the network device on the time-frequency resource used to send the sequence, and send a control signal to the network device on the target time-frequency resource and Uplink data, wherein the control signal includes information for transmitting a time-frequency resource of the uplink data.
  • the second location relationship is met between the time-frequency resource of the sequence and the time-frequency resource used for transmitting the control signal, where the second location relationship includes: the time-frequency resource of the sequence and the control
  • the time-frequency resource of the signal occupies all or part of the frequency domain resource of the time-frequency resource of the control signal in the frequency domain before being adjacent to the time-frequency resource of the control signal in the time domain.
  • the sequence comprises a preamble sequence or a reference signal.
  • terminal device 400 may correspond to the terminal device in the method embodiment, and the corresponding functions of the terminal device may be implemented. For brevity, details are not described herein again.
  • FIG. 11 is a schematic structural diagram of a terminal device 500 provided by an embodiment of the present application.
  • the terminal device 500 includes a processor 510, a transceiver 520, and a memory 530, wherein the processor 510, the transceiver 520, and the memory 530 communicate with each other through an internal connection path.
  • the memory 530 is configured to store instructions for executing the instructions stored by the memory 530 to control the transceiver 520 to receive signals or transmit signals.
  • the processor 510 is configured to: determine, in a plurality of time-frequency resources, a target time-frequency resource used for the unlicensed transmission;
  • the transceiver 520 is configured to perform the unlicensed transmission on the target time-frequency resource and the network device according to the sequence corresponding to the target time-frequency resource determined by the processor 510.
  • the terminal device indicates the time-frequency resource currently used for the unlicensed access to the network device through the preamble sequence, so that the network device can effectively determine the time-frequency resource selected by the terminal device for performing the unlicensed access. Due to support for multiple exemptions The reuse of authorized transmission resources realizes efficient use of wireless transmission resources, saves transmission resources, and improves utilization of time-frequency resources. At the same time, the transmission process can be simplified and the complexity of the receiver can be reduced.
  • the processor 510 is specifically configured to: determine, according to a size of the uplink data to be sent, or a path loss between the terminal device and the network device, in the multiple time-frequency resources The target time-frequency resource for the unauthorized transfer.
  • the information about the target time-frequency resource includes at least one of the following information: a starting location of the target time-frequency resource, a frequency domain resource size of the target time-frequency resource, and the target time-frequency resource.
  • the size of the time domain resource and the frequency hopping mode of the terminal device includes at least one of the following information: a starting location of the target time-frequency resource, a frequency domain resource size of the target time-frequency resource, and the target time-frequency resource.
  • the transceiver 520 is specifically configured to: send the sequence to the network device on the time-frequency resource used to send the sequence, and send the uplink data to the network device on the target time-frequency resource.
  • the first location relationship is met between the time-frequency resource of the sequence and the target time-frequency resource, where the first location relationship includes: the time-frequency resource of the sequence and the target time-frequency resource are in time All or part of the frequency domain resources of the target time-frequency resource are occupied in the frequency domain adjacent to the target time-frequency resource.
  • the transceiver 520 is configured to: send the sequence to a network device on a time-frequency resource used to send the sequence, and send a control signal to the network device on the target time-frequency resource.
  • the second location relationship is met between the time-frequency resource of the sequence and the time-frequency resource used for transmitting the control signal, where the second location relationship includes: the time-frequency resource of the sequence and the control
  • the time-frequency resource of the signal occupies all or part of the frequency domain resource of the time-frequency resource of the control signal in the frequency domain before being adjacent to the time-frequency resource of the control signal in the time domain.
  • the sequence comprises a preamble sequence or a reference signal.
  • the processor 510 may be a central processing unit (CPU), and the processor 510 may also be another general-purpose processor, a digital signal processor (DSP). , Application-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 530 can include read only memory and random access memory and provides instructions and data to the processor 510.
  • a portion of the memory 530 may also include a non-volatile random access memory.
  • the memory 530 can also store information of the device type.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 510 or an instruction in a form of software.
  • the steps of the positioning method disclosed in the embodiment of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor 510.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 530, and processor 510 reads the information in memory 530 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the terminal device 500 according to the embodiment of the present application may correspond to the terminal device for performing the method shown in FIG. 3 to FIG. 8 in the above method, and the terminal device 400 according to the embodiment of the present application, and each of the terminal devices 500
  • the unit or module is used to perform each action or process performed by the terminal device in the method shown in FIG. 3 to FIG. 8 above.
  • a detailed description thereof will be omitted.
  • FIG. 12 shows a network device 600 in accordance with an embodiment of the present application.
  • the network device 600 includes a detecting unit 610 and a determining unit 620.
  • the detecting unit 610 is configured to: detect a sequence sent by the terminal device;
  • the determining unit 620 is configured to: determine, according to the sequence detected by the detecting unit 610, information of the target time-frequency resource used for the unlicensed transmission;
  • the detecting unit 610 is further configured to: detect the uplink data sent by the terminal device on the target time-frequency resource determined by the determining unit 620.
  • the network device can effectively determine the time-frequency resource used by the terminal device for unauthorized access by using the sequence information sent by the terminal device.
  • efficient use of wireless transmission resources is realized, transmission resources are saved, and utilization of time-frequency resources is improved.
  • the transmission process can be simplified and the complexity of the receiver can be reduced.
  • determining, according to the signal power, whether the terminal device sends the sequence, and detecting that the terminal device sends the sequence detecting, by the terminal device, Said sequence.
  • the information about the target time-frequency resource includes at least one of the following information: a starting location of the target time-frequency resource, a frequency domain resource size of the target time-frequency resource, and the target time-frequency resource.
  • the size of the time domain resource and the frequency hopping mode of the terminal device includes at least one of the following information: a starting location of the target time-frequency resource, a frequency domain resource size of the target time-frequency resource, and the target time-frequency resource.
  • the determining unit 620 is specifically configured to: determine information about the target time-frequency resource according to the sequence, and a correspondence between the sequence and the time-frequency resource.
  • the first location relationship is met between the time-frequency resource used to transmit the sequence and the target time-frequency resource, and the first location relationship includes: the time-frequency resource of the sequence and the target time-frequency resource All or part of the frequency domain resources of the target time-frequency resource are occupied in the frequency domain before being adjacent to the target time-frequency resource in the time domain.
  • the determining unit 620 is specifically configured to: determine, according to a time-frequency resource used to transmit the sequence, a time-frequency resource used for transmitting a control signal in the target time-frequency resource, and at a time frequency of the control signal.
  • the detecting unit 610 is specifically configured to: detect the uplink data sent by the terminal device on a time-frequency resource used to transmit the uplink data in the target time-frequency resource.
  • a second location relationship is met between the time-frequency resource of the sequence and the time-frequency resource of the control signal, where the second location relationship includes: a time-frequency resource of the sequence and a time of the control signal.
  • the frequency resource occupies all or part of the frequency domain resources of the time-frequency resource of the control signal in the frequency domain before being adjacent to the time-frequency resource of the control signal in the time domain.
  • the sequence comprises a preamble sequence or a reference signal.
  • FIG. 13 is a schematic structural diagram of a network device 700 provided by an embodiment of the present application.
  • the network device 700 includes a processor 710, a transceiver 720, and a memory 730, wherein the processor 710, the transceiver 720, and the memory 730 communicate with each other through an internal connection path.
  • the memory 730 is configured to store instructions for executing the instructions stored by the memory 730 to control the transceiver 720 to receive signals or transmit signals.
  • the processor 710 is configured to: detect a sequence sent by the terminal device; determine, according to the detected sequence, information of a target time-frequency resource used for the unlicensed transmission; and detect the target time-frequency resource The uplink data sent by the terminal device.
  • the network device can effectively determine the time-frequency resource used by the terminal device for unauthorized access by using the sequence information sent by the terminal device.
  • efficient use of wireless transmission resources is realized, transmission resources are saved, and utilization of time-frequency resources is improved.
  • the transmission process can be simplified and the complexity of the receiver can be reduced.
  • the processor 710 is specifically configured to: before detecting the sequence sent by the terminal device, determine, according to the signal power, whether the terminal device sends the sequence, and when determining that the terminal device sends the sequence, Detecting the sequence sent by the terminal device.
  • the information about the target time-frequency resource includes at least one of the following information: a starting location of the target time-frequency resource, a frequency domain resource size of the target time-frequency resource, and the target time-frequency resource.
  • the size of the time domain resource and the frequency hopping mode of the terminal device includes at least one of the following information: a starting location of the target time-frequency resource, a frequency domain resource size of the target time-frequency resource, and the target time-frequency resource.
  • the processor 710 is specifically configured to: determine information about the target time-frequency resource according to the sequence, and a correspondence between the sequence and the time-frequency resource.
  • the first location relationship is met between the time-frequency resource used to transmit the sequence and the target time-frequency resource, and the first location relationship includes: the time-frequency resource of the sequence and the target time-frequency resource All or part of the frequency domain resources of the target time-frequency resource are occupied in the frequency domain before being adjacent to the target time-frequency resource in the time domain.
  • the processor 710 is specifically configured to: determine, according to a time-frequency resource used to transmit the sequence, a time-frequency resource used for transmitting a control signal in the target time-frequency resource, and at a time frequency of the control signal. Receiving, by the resource, the control signal sent by the terminal device, where the control signal includes information about a time-frequency resource used for transmitting the uplink data in the target time-frequency resource; and determining, according to the control signal, the a time-frequency resource for transmitting the uplink data in the target time-frequency resource;
  • the processor 710 is specifically configured to: detect the uplink data sent by the terminal device on a time-frequency resource used to transmit the uplink data in the target time-frequency resource.
  • a second location relationship is met between the time-frequency resource of the sequence and the time-frequency resource of the control signal, where the second location relationship includes: a time-frequency resource of the sequence and a time of the control signal.
  • the frequency resource occupies all or part of the frequency domain resources of the time-frequency resource of the control signal in the frequency domain before being adjacent to the time-frequency resource of the control signal in the time domain.
  • the sequence comprises a preamble sequence or a reference signal.
  • the processor 710 may be a central processing unit (CPU), and the processor 710 may also be another general-purpose processor, a digital signal processor (DSP). , Application-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 730 can include read only memory and random access memory and provides instructions and data to the processor 710. A portion of the memory 730 may also include a non-volatile random access memory. For example, the memory 730 can also store information of the device type.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 710 or an instruction in a form of software.
  • the steps of the positioning method disclosed in the embodiment of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor 710.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 730, and processor 710 reads the information in memory 730 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the network device 700 according to the embodiment of the present application may correspond to the network device for performing the method shown in FIG. 3 to FIG. 8 in the above method, and the network device 600 according to the embodiment of the present application, and each of the network devices 700
  • the units or modules are respectively used to perform the various actions or processes performed by the network device in the methods shown in FIG. 3 to FIG. 8 above.
  • detailed description thereof will be omitted.
  • FIG. 14 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • the system chip 800 of FIG. 14 includes an input interface 801, an output interface 802, at least one processor 803, and a memory 804.
  • the input interface 801, the output interface 802, the processor 803, and the memory 804 are connected by a bus 805.
  • the processor 803 is configured to execute code in the memory 804.
  • the processor 803 can implement a method performed by the terminal device in the method embodiment. For the sake of brevity, it will not be repeated here.
  • the processor 803 can implement a method performed by a network device in a method embodiment. For the sake of brevity, it will not be repeated here.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the function can be stored if it is implemented in the form of a software functional unit and sold or used as a standalone product.
  • a computer readable storage medium Based on such understanding, the technical solution of the present application, which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

本申请实施例提供了一种免授权传输的方法、终端设备和网络设备。该方法包括:终端设备在多个时频资源中,确定用于所述免授权传输的目标时频资源;所述终端设备根据所述目标时频资源的信息,以及时频资源与序列之间的对应关系,确定与所述目标时频资源对应的序列;所述终端设备根据所述目标时频资源对应的所述序列,在所述目标时频资源上与网络设备之间进行所述免授权传输。因此,网络设备根据终端设备发送的序列能够有效地确定终端设备用于免授权传输的时频资源。

Description

免授权传输的方法、终端设备和网络设备
本申请要求于2017年01月12日提交中国专利局、申请号为201710019826.6、发明名称为“免授权传输的方法、终端设备和网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及通信领域中的免授权传输的方法、终端设备和网络设备。
背景技术
在典型无线通信系统例如长期演进(Long Term Evolution,LTE)系统中,基站通过下发控制消息通知用户设备用于上行传输的时频资源的信息。由于用户类型、业务质量(Quality of Service,QoS)要求、数据包大小、信道状态等各不相同,基站可以灵活地为用户设备配置合适的时频资源。例如,当边缘用户功率受限时可以采用窄带或单载波传输方案提升接收信噪比(Signal Noise Ratio,SNR);可以根据待传输数据包的大小确定为其分配的时频资源大小。
但是对于上行免授权接入(Grant-Free Access,GFA)方式,由于用户设备不需要基站动态和显式的调度指令,而是自主进行上行传输的接入,很难做到无线传输资源的有效利用,因此如何有效地确定用户设备用于免授权接入的时频资源是急需解决的问题。
发明内容
本申请实施例提供了一种免授权传输的方法、终端设备和网络设备,网络设备能够有效地确定终端设备选择的用于进行免授权传输的时频资源。
第一方面,提供了一种免授权传输的方法,该方法包括:
终端设备在多个时频资源中,确定用于所述免授权传输的目标时频资源;
所述终端设备根据所述目标时频资源的信息,以及时频资源与序列之间的对应关系,确定与所述目标时频资源对应的序列;
所述终端设备根据所述目标时频资源对应的所述序列,在所述目标时频资源上与网络设备之间进行所述免授权传输。
因此,终端设备通过发送的序列向网络设备指示当前用于免授权接入的时频资源,使网络设备能够有效地确定终端设备选择的用于进行免授权接入的时频资源。且由于支持多种免授权传输资源的复用,实现了无线传输资源的有效利用。同时可以简化传输流程,降低接收机的复杂度。
可选地,在第一方面的一种实现方式中,所述终端设备在多个时频资源中,确定用于所述免授权传输的目标时频资源,包括:
所述终端设备根据待发送的上行数据的大小,或所述终端设备与所述网络设备之间的路径损耗情况,在所述多个时频资源中确定用于所述免授权传输的目标时频资源。
可选地,在第一方面的一种实现方式中,所述目标时频资源的信息包括以下信息中的至少一种:所述目标时频资源的起始位置、所述目标时频资源的频域资源大小、所述目标时频资源的时域资源大小和所述终端设备的跳频模式。
其中,可选地,当有多个可选的时频资源用于该免授权传输时,例如时频资源大小相同但起始位置不同的时频资源,终端设备可以在这些时频资源中随机选取一个作为该目标时频资源。
另外,用于免授权传输的不同时频资源对应不同的序列,且每个时频资源可以对应一个或多个序列。
可选地,在第一方面的一种实现方式中,所述终端设备根据所述目标时频资源对应的所述序列,在所述目标时频资源上与网络设备之间进行所述免授权传输,包括:所述终端设备在用于发送所述序列的时频资源上,向所述网络设备发送所述序列,并在所述目标时频资源上向所述网络设备发送上行数据。
可选地,在第一方面的一种实现方式中,所述序列的时频资源与所述目标时频资源之间满足第一位置关系,所述第一位置关系包括:所述序列的时频资源与所述目标时频资源在时域上相邻且位于所述目标时频资源之前,在频域上占用所述目标时频资源的全部或部分频域资源。
由于用于传输该序列的时频资源与用于传输上行数据的该目标时频资源之间满足一定的位置关系,因而网络设备在接收到终端设备发送的该序列后,可以根据接收该序列的时频资源直接地确定终端设备发送上行数据的时频资源,即终端设备发送的该序列隐式地指示了用于上行免授权传输的资源,而无需其他信令来进行资源指示,节省了系统中的信令开销。
可选地,在第一方面的一种实现方式中,所述终端设备根据所述目标时频资源对应的所述序列,在所述目标时频资源上与网络设备之间进行所述免授权传输,包括:所述终端设备在用于发送所述序列的时频资源上,向所述网络设备发送所述序列,并在所述目标时频资源上向所述网络设备发送控制信号和上行数据,其中,且所述控制信号中包括用于传输所述上行数据的时频资源的信息。
应理解,这里的上行数据指的是业务数据,该控制信号中携带了除上行数据之外的其他控制信息,在本申请实施例中,该控制信号携带了上行数据的时频资源的起始位置、带宽和时隙数等信息等,如果上行数据的传输支持跳频,该控制信号还可以携带相应的跳频模式。此外,该控制信号中还可以携带用户标识(Identity,ID)、数据的调制编码方式(Modulation and Coding Scheme,MCS)、交织方式、扩频码等信息。该控制信号与该上行数据是独立编码的,且该控制信号与该数据信号可以共享同一个信道或者使用不同的信道进行传输。
可选地,在第一方面的一种实现方式中,所述序列的时频资源与用于传输所述控制信号的时频资源之间满足第二位置关系,所述第二位置关系包括:所述序列的时频资源与所述控制信号的时频资源,在时域上相邻且位于所述控制信号的时频资源之前,在频域上占用所述控制信号的时频资源的全部或部分频域资源。
由于用于传输该序列的时频资源与用于传输控制信号的时频资源之间满足一定的位置关系,因而网络设备在接收到终端设备发送的该序列后,可以根据接收该序列的时频资源直接地确定终端设备发送控制信号的时频资源,并根据控制信号中携带的资源信息确定用于上行免授权传输的资源,即终端设备发送的该序列隐式地指示了用于上行免授权传输的资源,而无需其他信令来进行资源指示,节省了系统中的信令开销。
可选地,在第一方面的一种实现方式中,所述序列包括前导序列或参考信号。
第二方面,提供了一种免授权传输的方法,该方法包括:
网络设备检测终端设备发送的序列;
所述网络设备根据检测到的所述序列,确定用于所述免授权传输的目标时频资源的信息;
所述网络设备在所述目标时频资源上,检测所述终端设备发送的上行数据。
因此,网络设备通过终端设备发送的序列的信息,能够有效地确定终端设备用于免授权接入的时频资源。由于支持多种免授权传输资源的复用,实现了无线传输资源的有效利用。同时可以简化传输流程,降低接收机的复杂度。
可选地,在第二方面的一种实现方式中,在所述网络设备检测终端设备发送的序列之前,所述方法还包括:所述网络设备根据信号功率确定所述终端设备是否发送了所述序列,并在确定所述终端设备发送了所述序列时,检测所述终端设备发送的所述序列。
例如,以前导序列为例,各资源单元的接收信号是y=[y1,y2,…,yk]T,待检测的前导序列是x=[x1,x2,…,xk]T,其中[…]T表示向量或矩阵的转置。则网络设备可以按公式(1)计算前导序列对应的信号功率,并通过比较该信号功率和预设的功率门限的大小,判断是否有终端设备发送该前导序列。如果检测到一个或多个前导序列,则进一步在该前导序列对应的目标时频资源中检测终端设备发送的上行数据,否则不进行后续检测。
Figure PCTCN2017108347-appb-000001
可选地,在第二方面的一种实现方式中,所述目标时频资源的信息包括以下信息中的至少一种:所述目标时频资源的起始位置、所述目标时频资源的频域资源大小、所述目标时频资源的时域资源大小和所述终端设备的跳频模式。
可选地,在第二方面的一种实现方式中,所述网络设备根据检测到的所述序列,确定用于所述免授权传输的目标时频资源的信息,包括:所述网络设备根据所述序列,以及序列与时频资源之间的对应关系,确定所述目标时频资源的信息。
可选地,在第二方面的一种实现方式中,用于传输所述序列的时频资源与所述目标时频资源之间满足第一位置关系,所述第一位置关系包括:所述序列的时频资源与所述目标时频资源在时域上相邻且位于所述目标时频资源之前,在频域上占用所述目标时频资源的全部或部分频域资源。
由于用于传输该序列的时频资源与用于传输上行数据的该目标时频资源之间满足一定的位置关系,因而网络设备在接收到终端设备发送的该序列后,可以根据接收该序列的时频资源直接地确定终端设备发送上行数据的时频资源,即终端设备发送的该序列隐式地指示了用于上行免授权传输的资源,而无需其他信令来进行资源指示,节省了系统中的信令开销。
可选地,在第二方面的一种实现方式中,所述网络设备根据检测到的所述序列,确定用于所述免授权传输的目标时频资源的信息,包括:所述网络设备根据用于传输所述序列的时频资源,确定所述目标时频资源中用于传输控制信号的时频资源,并在所述控制信号的时频资源上接收所述终端设备发送的所述控制信号,其中,所述控制信号中包括所述目标时频资源中用于传输所述上行数据的时频资源的信息;所述网络设备根据所述控制信号,确定所述目标时频资源中用于传输所述上行数据的时频资源;
其中,所述网络设备在所述目标时频资源上,检测所述终端设备发送的上行数据,包括:所述网络设备在所述目标时频资源中用于传输所述上行数据的时频资源上,检测所述终端设备发送的所述上行数据。
可选地,在第二方面的一种实现方式中,所述序列的时频资源与所述控制信号的时频资源之间满足第二位置关系,所述第二位置关系包括:所述序列的时频资源与所述控制信号的时频资源,在时域上相邻且位于所述控制信号的时频资源之前,在频域上占用所述控制信号的时频资源的全部或部分频域资源。
在实现过程中为了简化设计,控制信号的时频资源CR的位置与该序列的时频资源位置可以事先约定。例如,可以约定该序列的时频资源与CR在时域上相邻且位于CR之前,且该序列的时频资源的带宽与CR的带宽相同,同时CR的时隙数与CR的带宽有关,可以由CR的带宽来决定。那么网络设备就可以根据检测到的前导序列的时频资源,直接确定CR的起始位置和带宽,并根据CR的带宽确定CR的时隙数,而从CR上的控制信号中又可以确定出上行数据的时频资源DR的起始位置、带宽和时隙数等。如果还约定CR和DR的位置相邻,那么CR的起始位置和时隙数就直接决定了DR的起始位置,控制信号中可以不包括DR的起始位置。如果还约定CR和DR的带宽相同,那么控制消息也不需要携带DR的带宽信息。如果DR的传输带宽只有一种可能的DR的时隙数,那么控制消息也不需要指示DR的时隙数。当数据传输支持跳频时,控制消息还可以指示其跳频模式。
由于用于传输该序列的时频资源与用于传输控制信号的时频资源之间满足一定的位置关系,因而网络设备在接收到终端设备发送的该序列后,可以根据接收该序列的时频资源直接地确定终端设备发送控制信号的时频资源,并根据控制信号中携带的资源信息确定用于上行免授权传输的资源,即终端设备发送的该序列隐式地指示了用于上行免授权传输的资源,而无需其他信令来进行资源指示,节省了系统中的信令开销。
可选地,在第二方面的一种实现方式中,所述序列包括前导序列或参考信号。
第三方面,提供了一种终端设备,该终端设备可以用于执行前述第一方面及各种实现方式中的免授权传输的方法中由终端设备执行的各个过程。该网络设备包括确定单元和传输单元。所述确定单元,用于在多个时频资源中,确定用于所述免授权传输的目标时频资源;所述确定单元还用于,根据所述目标时频资源的信息,以及时频资源与序列之间的对应关系,确定与所述目标时频资源对应的序列;所述传输单元,用于根据所述确定单元确定的所述目标时频资源对应的所述序列,在所述目标时频资源上与网络设备之间进行所述免授权传输。
第四方面,提供了一种网络设备,该网络设备可以用于执行前述第二方面及各种实现方式中的免授权传输的方法中由网络设备执行的各个过程。该网络设备包括检测单元和确 定单元。所述检测单元,用于检测终端设备发送的序列;所述确定单元,用于根据所述检测单元检测到的所述序列,确定用于所述免授权传输的目标时频资源的信息;所述检测单元还用于,在所述确定单元确定的所述目标时频资源上,检测所述终端设备发送的上行数据。
第五方面,提供了一种终端设备,该终端设备包括处理器、收发器和存储器。所述存储器存储了程序,所述处理器执行所述程序,以用于执行前述第一方面及各种实现方式中的免授权传输的方法中由终端设备执行的各个过程。所述处理器具体用于:在多个时频资源中,确定用于所述免授权传输的目标时频资源;根据所述目标时频资源的信息,以及时频资源与序列之间的对应关系,确定与所述目标时频资源对应的序列;所述收发器具体用于:根据所述处理器确定的所述目标时频资源对应的所述序列,在所述目标时频资源上与网络设备之间进行所述免授权传输。
第六方面,提供了一种网络设备,该网络设备包括处理器、收发器和存储器。所述存储器存储了程序,所述处理器执行所述程序,以用于执行前述第二方面及各种实现方式中的免授权传输的方法中由网络设备执行的各个过程。所述处理器用于:检测终端设备发送的序列;根据检测到的所述序列,确定用于所述免授权传输的目标时频资源的信息;在确定的所述目标时频资源上,检测所述终端设备发送的上行数据。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得终端设备执行上述第一方面,及其各种实现方式中的任一种免授权传输的方法。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得网络设备执行上述第二方面,及其各种实现方式中的任一种免授权传输的方法。
第九方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该持利器用于执行该存储器存储的指令,当该指令被执行时,该处理器可以实现前述第一方面及其各种实现方式中的任一种方法。
第十方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该持利器用于执行该存储器存储的指令,当该指令被执行时,该处理器可以实现前述第二方面及其各种实现方式中的任一种方法。
基于本申请实施例所述的方法,网络设备通过终端设备发送的序列的信息,能够确定终端设备用于免授权接入的时频资源,实现了无线传输资源的有效利用。由于支持多种免授权传输资源的复用,节省了传输资源,提高了时频资源的利用率。同时可以简化传输流程,降低接收机的复杂度。
附图说明
图1是本申请实施例的应用场景的示意图。
图2是现有技术中上行免授权传输的方法的示意图。
图3是本申请实施例的免授权传输的方法的流程交互图。
图4是本申请实施例的免授权传输的时频资源的示意图。
图5是本申请实施例的免授权传输的时频资源的示意图。
图6是本申请实施例的免授权传输的时频资源的示意图。
图7是本申请实施例的免授权传输的时频资源的示意图。
图8是本申请实施例的免授权传输的时频资源的示意图。
图9是本申请实施例的免授权传输的时频资源的示意图。
图10是根据本申请实施例的终端设备的示意性框图。
图11是根据本申请实施例的终端设备的结构示意图。
图12是根据本申请实施例的网络设备的示意性框图。
图13是根据本申请实施例的网络设备的结构示意图。
图14是根据本申请实施例的系统芯片的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、以及未来的5G通信系统等。
本申请结合终端设备描述了各个实施例。终端设备也可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
本申请结合网络设备描述了各个实施例。网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备或未来演进的PLMN网络中的网络设 备等。
图1示出了应用本申请实施例的一种通信系统的示意性架构图。如图1所示,该通信系统可以包括网络设备10和终端设备20至终端设备70(图中简称为UE)通过无线连接或有线连接或其它方式连接。终端设备20至终端设备70可以通过免授权接入的方式与网络设备10进行通信。
本申请实施例中的网络可以是指公共陆地移动网络(Public Land Mobile Network,PLMN)或者设备对设备(Device to Device,D2D)网络或者机器对机器/人(Machine to Machine/Man,M2M)网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
本申请实施例提出的方案可以应用于免授权接入,这里的免授权接入也可以称为免授权(Grant Free)传输。免授权传输可以解决未来网络中的多种业务,例如机器类通信(Machine Type Communication,MTC)业务或者超可靠和低延迟通信(Ultra Reliable and Low Latency Communication,URLLC)业务,以满足低时延、高可靠的业务传输需求。免授权传输可以针对的是上行数据传输。本领域技术人员可以知道,免授权接入也可以叫做其他名称,比如叫做自发接入、自发多址接入、或者基于竞争的多址接入等。
本申请实施例中,所述的数据可以为包括业务数据或者信令数据。免授权传输的传输资源可以包括但不限于如下资源的一种或多种的组合:时域资源,如无线帧、子帧、符号等;频域资源,如子载波、资源块等;空域资源,如发送天线、波束等;码域资源,如稀疏码多址接入(Sparse Code Multiple Access,SCMA)码本组、低密度签名(Low Density Signature,LDS)组、CDMA码组等;上行导频资源;交织资源;信道编码方式。
如上的传输资源可以根据包括但不限于如下的控制机制进行的传输:上行功率控制,如上行发送功率上限控制等;调制编码方式设置,如传输块大小、码率、调制阶数设置等;重传机制,如混合自动重传请求(Hybird Automatic Repeat reQuest,HARQ)机制等。
图2所示为现有技术中上行免授权传输的方法的示意图。如图2所示,基站预先配置多个不同大小的时频资源块用于上行免授权传输,各个时频资源块之间相互独立,每个时频资源块可以占用至少一个传输时间间隔(Transmission Time Interval,TTI),如图2的三个图中所示分别为基站预先配置的用于上行免授权传输的三个大小不同的时频资源。但是,该方法中,当用户设备的类型多但用户设备数量少时,时频资源的利用率很低。而且基站在接收数据时需要在每个时频资源块上单独检测,处理复杂度较高。
而本申请实施例中,网络设备可以通过用户设备发送的序列的信息,确定用户设备用于免授权接入的时频资源,能够实现无线传输资源的有效利用。
应理解,本申请实施例提到的前导序列(preamble)还可以称为前导码、前置序列、前置码等,例如可以是ZC(Zadoff Chu)序列、伪噪声(Pseudo Noise,PN)序列、最长线性移位寄存器序列(简称M序列,CDMA系统中采用的基本PN序列)、Walsh序列等。本申请实施例提到参考信号(Reference Signal,RS)还可以称为导频信号,是由发射端提供给接收端用于信道估计、信道探测或信道状态检测的一种信号。
图3是根据本申请实施例的免授权传输的方法的流程交互图。图3所示的方法中,序列或数据等的发送端可以为终端设备或网络设备,序列或数据等的接收端可以为终端设备或网络设备。
以下将以序列或数据等的发送端为终端设备且接收端为网络设备为例进行说明,但本申请实施例并不限于此。例如,序列或数据等的发送端为终端设备,序列或数据等的接收端为另一终端设备,此时本申请实施例的方法可以应用D2D传输。
图3示出了网络设备和终端设备,其中网络设备例如可以为图1中的网络设备10,终端设备例如可以为图1中终端设备20至终端设备70中的任意一个,这里只以一个终端设备为例进行描述,但网络设备可以与包括该终端设备在内的多个终端设备之间利用本申请实施例的方法进行免授权传输,其他终端设备所执行的方法可以参考图3中所示的终端设备所执行的方法,为了简洁,这里不再赘述。可选地,该方法可以应用于免授权传输,也可以应用于其他场景,这里以免授权传输为例进行描述,即终端设备与网络设备进行的上行传输为免授权传输,所使用的传输资源为免授权传输资源。如图3所示,该免授权传输的方法包括:
在310中,终端设备在多个时频资源中,确定用于当前免授权传输的目标时频资源。
具体地说,当终端设备进行上行免授权接入时,首先需要选择用于进行接入的该目标时频资源比如确定该目标时频资源的起始位置、占用的带宽和时隙数等信息。终端设备可以在预先配置好的多个时频资源中,确定用于当前免授权传输的目标时频资源。
例如,终端设备可以根据待发送的上行数据的大小,在该多个时频资源中确定用于该免授权传输的目标时频资源;终端设备也可以根据终端设备与网络设备之间的路径损耗情况,在该多个时频资源中确定用于该免授权传输的目标时频资源;或者终端设备而也可以根据其他信息来确定该目标时频资源,本申请实施例对此不做限定。
可选地,当有多个可选的时频资源用于该免授权传输时,例如时频资源大小相同但起始位置不同的时频资源,终端设备可以在这些时频资源中随机选取一个作为该目标时频资源。
在320中,终端设备根据该目标时频资源的信息,以及时频资源与序列之间的对应关系,确定与该目标时频资源对应的序列。
其中,可选地,该目标时频资源的信息包括以下信息中的至少一种:该目标时频资源的起始位置、该目标时频资源的频域资源大小、该目标时频资源的时域资源大小和该终端设备的跳频模式。
终端设备确定了用于该免授权传输的目标时频资源后,可以根据该目标时频资源的信息,以及时频资源与序列之间预设的对应关系,确定与该目标时频资源对应的用于该免授权传输的序列。其中,用于免授权传输的不同时频资源对应不同的序列,每个时频资源可以对应一个或多个序列。
时频资源与序列之间的该对应关系例如可以通过表格、公式、图像等方式来呈现,且该对应关系中,一个时频资源可以对应一个或多个序列,一个序列也可以对应一个或多个时频资源。也就是说,终端设备可以通过查找预设的包括多个时频资源与多个序列之间对应关系的表格,来确定与该目标时频资源对应的该序列;或者终端设备也可以通过预设的公式和该目标时频资源的相关参数信息,来计算与该目标时频资源对应的该序列的标识或编号。本申请对此不做限定。
可选地,与该目标时频资源对应的该序列包括前导序列,或者包括参考信号例如导频序列。
本申请实施例中,用于免授权传输的时频资源也可以称为免授权接入区域(Grant Free Access Region,GFAR)。
以图4和图5为例说明时频资源与序列之间的对应关系,该对应关系可以由网络设备确定并通知终端设备,也可以由网络设备与终端设备共同协商约定例如可以是协议中规定的对应关系。图4和图5示出了三种用于免授权传输的时频资源,其中,第一时频资源(GFAR 1)、第二时频资源(GFAR 2)和第三时频资源(GFAR 3)的时域起始位置相同。第一时频资源的带宽F1和第二时频资源的带宽F2相同,第三时频资源的带宽为F3;第二时频资源的时隙数T2等于第一时频资源的时隙数T1的两倍,第三时域资源的时隙数T3等于第一时域资源的时隙数T1的四倍。
更一般地,可以定义至少一种GFAR单元,每种GFAR单元具有特定的带宽和时隙数等。终端设备使用的GFAR可以是由至少一个GFAR单元组成的。
假设用于免授权传输的时频资源与序列之间的对应关系如图5所示,以前导序列为例,从图5中可以看出,第一时频资源对应前导序列C1,第二时频资源对应前导序列C2,第三时频资源对应前导序列C3,换句话说,前导序列C1、C2和C3分别对应不同大小的GFAR。一般情况下,不同的GFAR对应的前导序列长度相同,但本申请实施例中不同的GFAR也可以对应若干组长度不同的前导序列,这里不做限定。
终端设备根据自己待传输的上行数据的大小或链路损耗情况等信息确定了目标时频资源为第一时频资源时,那么就会使用前导序列C1,在第一时频资源上与网络设备之间进行免授权传输;如果终端设备确定其所使用的目标时频资源为第二时频资源,那么终端设备则使用前导序列C2,在第二时频资源上与网络设备之间进行免授权传输;如果确定使用的目标时频资源为第三时频资源,那么终端设备则使用前导序列C3,在第三时频资源上与网络设备之间进行免授权传输。前导序列C1、C2和C3可以是LTE系统中常用的ZC序列,也可以是PN序列,M序列,Walsh序列等。
如果终端设备支持跳频,那么该目标时频资源的信息中还可以包括终端设备使用的跳频模式。以LTE系统的帧结构为例,物理层采用正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM),带宽包括一定数量的子载波,每个时隙包括一定数量的时域符号比如OFDM符号。每个小区可定义不同数量和大小的GFAR,网络设备例如可以通过广播或者控制消息来通知终端设备配置上述GFAR。
在330中,终端设备根据该序列,在该目标时频资源上与网络设备之间进行该免授权传输。
当终端设备确定好了用于当前免授权传输的目标时频资源和序列例如前导序列或导频序列等,终端设备根据该序列在该目标时频资源上向网络设备发送上行数据。
可选地,终端设备在与网络设备之间进行免授权传输时,可以在用于发送该序列的时频资源上向网络设备发送该序列,并在该目标时频资源上向网络设备发送上行数据。其中,可选地,该序列的时频资源与该目标时频资源之间满足第一位置关系,该第一位置关系可以包括:序列的时频资源与目标时频资源在时域上相邻且位于该目标时频资源之前,在频域上占用该目标时频资源的全部或部分频域资源。
或者,可选地,终端设备也可以在该序列的时频资源上向网络设备发送该序列,并在该目标时频资源上向网络设备发送控制信号和上行数据,而该控制信号中包括用于传输该 上行数据的时频资源的信息。其中,可选地,该序列的时频资源与用于传输该控制信号的时频资源之间满足第二位置关系,该第二位置关系可以包括:该序列的时频资源与控制信号的时频资源,在时域上相邻且位于该控制信号的时频资源之前,在频域上占用该控制信号的时频资源的全部或部分频域资源。
在340中,网络设备检测终端设备发送的序列。
可选地,在网络设备检测终端设备发送的该序列之前,该方法还可以包括:网络设备根据信号功率确定终端设备是否发送了该序列,并在确定终端设备发送了该序列时,检测终端设备发送的该序列。
具体地说,网络设备在接收信号时,首先可以根据信号功率判断是否有终端设备发送该序列。例如,以前导序列为例,各资源单元的接收信号是y=[y1,y2,…,yk]T,待检测的前导序列是x=[x1,x2,…,xk]T,其中[…]T表示向量或矩阵的转置。则网络设备可以按公式(1)计算前导序列对应的信号功率,并通过比较该信号功率和预设的功率门限的大小,判断是否有终端设备发送该前导序列。如果检测到一个或多个前导序列,则进一步在该前导序列对应的GFAR中检测终端设备发送的上行数据,否则不进行后续检测。
Figure PCTCN2017108347-appb-000002
在350中,网络设备根据检测到的该序列,确定用于该免授权传输的目标时频资源的信息。
具体地说,网络设备确定用于该免授权传输的目标时频资源的信息时,可以通过两种方式来进行。一种是根据检测到的前导序列直接确定对应的目标时频资源;另一种是根据前导序列和终端设备发送的控制信号确定该目标时频资源的信息。
下面详细地说明网络设备如何通过这两种方式确定用于该免授权传输的目标时频资源的信息。
方式1
可选地,350中网络设备根据检测到的序列,确定用于免授权传输的目标时频资源的信息,包括:网络设备根据该序列,以及序列与时频资源之间的对应关系,确定该目标时频资源的信息。
具体地说,网络设备检测到该序列后,可以根据序列与时频资源之间的对应关系,确定由于接收终端设备的上行数据的该目标时频资源的信息。例如网络设备可以根据图4和图5所示的序列与时频资源之间的该对应关系以及检测到的序列,来确定用于检测上行数据的目标时频资源。比如,若网络设备检测到前导序列C1,则在前导序列C1对应的第一时频资源即GFAR 1上检测终端设备发送的上行数据;若网络设备检测到前导序列C2,则在前导序列C2对应的第二时频资源即GFAR 2上检测终端设备发送的上行数据;若网络设备检测到前导序列C3,则在前导序列C3对应的第三时频资源即GFAR 3上检测终端设备发送的上行数据。
其中,可选地,用于传输该序列的时频资源与目标时频资源之间满足第一位置关系,该第一位置关系例如可以是:该序列的时频资源与目标时频资源在时域上相邻且位于该目标时频资源之前,在频域上占用该目标时频资源的全部或部分频域资源。
下面分别结合图6和图7,以两个详细的示例来说明终端设备发送该序列的时频资源 与目标时频资源之间满足的该第一位置关系。
如图6所示的免授权传输的时频资源的示意图,用于传输该序列的时频资源与该目标时频资源之间满足的第一位置关系为:该序列的时频资源与目标时频资源在时域上相邻且位于该目标时频资源之前,在频域上占用该目标时频资源的全部频域资源。图6示出了第一时频资源和第四时频资源,第一时频资源的带宽F1和第四时频资源的带宽F4相等,且第一时频资源的时隙数T1和第四时频资源的时隙数T4相等,第一时频资源的起始位置位于第四时频资源的起始位置之前。
如果终端设备确定的目标时频资源为第一时频资源即GFAR 1,那么终端设备根据该GFAR 1确定的前导序列为C1,且终端设备在如图6所示的前导序列C1的时频资源位置上向网络设备发送前导序列C1,并在GFAR 1上向网络设备发送上行数据;之后,如果网络设备在前导序列C1的时频资源上,检测到前导序列C1,那么网络设备根据前导序列C1,在与该前导序列C1的对应的第一时频资源上检测终端设备发送的上行数据。
如果终端设备确定的目标时频资源为第四时频资源即GFAR 4,那么终端设备根据该GFAR 4确定的前导序列为C4,且终端设备在如图6所示的前导序列C4的时频资源位置上向网络设备发送前导序列C4,并在GFAR 4上向网络设备发送上行数据;之后,如果网络设备在前导序列C4的时频资源上,检测到前导序列C4,那么网络设备根据前导序列C4,在与该前导序列C4的对应的第四时频资源上检测终端设备发送的上行数据。
如图7所示的免授权传输的时频资源的示意图,用于传输所述该序列的时频资源与所述目标时频资源之间满足的第一位置关系为:该序列的时频资源与目标时频资源在时域上相邻且位于该目标时频资源之前,在频域上占用该目标时频资源的部分频域资源。图7示出了第一时频资源和第二时频资源,且第一时频资源的带宽F1和第二时频资源的带宽F2相等,且第二时频资源包括的时隙数T2是第一时频资源的时隙数T1的两倍,第一时频资源的起始位置和第二时频资源的起始位置相同。
如果终端设备确定的目标时频资源为第一时频资源即GFAR 1,那么终端设备根据该GFAR 1确定的前导序列为C1,且终端设备在如图7所示的前导序列C1的时频资源位置上向网络设备发送前导序列C1,并在GFAR 1上向网络设备发送上行数据;之后,如果网络设备在前导序列C1的时频资源上,检测到前导序列C1,那么网络设备根据前导序列C1,在与该前导序列C1的对应的第一时频资源上检测终端设备发送的上行数据。
如果终端设备确定的目标时频资源如果为第二时频资源即GFAR 2,那么终端设备根据该GFAR 2确定的前导序列为C2,且终端设备在如图7所示的前导序列C2的时频资源位置上向网络设备发送前导序列C2,并在GFAR 2上向网络设备发送上行数据;之后,如果网络设备在前导序列C2的时频资源上,检测到前导序列C2,那么网络设备根据前导序列C2,在与该前导序列C2的对应的第二时频资源上检测终端设备发送的上行数据。
可以看出,第一时频资源对应的前导序列C1,与第二时频资源对应的前导序列C2占用相同的符号传输,但是传输前导序列的时频资源在频域上占用该目标时频资源的部分频域资源。该符号中,前导序列C1和前导序列C2在传输时各自所使用的频域资源,在频域上是交叉分布的。
由于用于传输该序列的时频资源与用于传输上行数据的该目标时频资源之间满足一定的位置关系,因而网络设备在接收到终端设备发送的该序列后,可以根据接收该序列的 时频资源直接地确定终端设备发送上行数据的时频资源,即终端设备发送的该序列隐式地指示了用于上行免授权传输的资源,而无需其他信令来进行资源指示,节省了系统中的信令开销。
方式2
可选地,网络设备根据检测到的所述序列,确定用于所述免授权传输的目标时频资源的信息,包括:网络设备根据用于传输该序列的时频资源,确定该目标时频资源中用于传输控制信号的时频资源,并在该控制信号的时频资源上接收终端设备发送的该控制信号;网络设备根据该控制信号,确定该目标时频资源中用于传输上行数据的时频资源。
其中,可选地,用于传输该序列的时频资源与该控制信号的时频资源之间满足第二位置关系,且该控制信号中包括该目标时频资源中用于传输上行数据的时频资源的信息。
具体地说,终端设备在该序列的时频资源上向网络设备发送该序列,并在该目标时频资源上向网络设备发送控制信号和上行数据,网络设备根据该序列的时频资源,确定该目标时频资源中用于传输控制信号的时频资源,并在该控制信号的时频资源上接收终端设备发送的该控制信号,由于该控制信号中携带该目标时频资源中用于传输上行数据的时频资源的信号,例如起始位置、带宽、时隙数和跳频模式等信息,网络设备接收该控制信号根据该控制信号,确定该目标时频资源中用于传输上行数据的时频资源,这时,网络设备就可以在该目标时频资源中用于传输上行数据的时频资源上,检测终端设备发送的该上行数据。
这里,可以将控制信号的时频资源简称为控制区域(Control Region,CR),将由于上行数据的时频资源简称为数据区域(Data Region,DR)。目标时频资源GFAR中包括CR和DR。
由于控制信号也需要进行解调,解调之前需要确定CR的位置信息。最基本的方式是由终端设备发送的序列确定CR的起始位置、带宽和时隙数等信息,如果控制信号的传输支持跳频,该序列还可能用于指示相应的跳频模式。该控制信号则可以指示DR的起始位置、带宽和时隙数等信息,如果数据的传输支持跳频,该控制消息还可以指示相应的跳频模式。
应理解,这里的上行数据指的是业务数据,该控制信号中携带了除上行数据之外的其他控制信息,在本申请实施例中,该控制信号携带了上行数据的时频资源的起始位置、带宽和时隙数等信息等。此外,该控制消息中还可以携带用户标识(Identity,ID)、数据的调制编码方式(Modulation and Coding Scheme,MCS)、交织方式、扩频码等信息。该控制信号与该上行数据是独立编码的,且该控制信号与该数据信号可以共享同一个信道或者使用不同的信道进行传输。
举例来说,如图8和图9所示的免授权传输的时频资源的示意图,用于传输所述序列的时频资源与控制信号的时频资源之间满足第二位置关系,且该第二位置关系为:序列的时频资源与控制信号的时频资源在时域上相邻且位于该目标时频资源之前,在频域上占用该控制信号的时频资源的部分频域资源。
图8和图9中,终端设备确定了目标时频资源GFAR后,根据该GFAR确定对应的前导序列,在前导序列的时频资源位置上向网络设备发送该前导序列,并在GFAR上向网络设备发送控制信号和上行数据,其中,终端设备在GFAR中的CR上向网络设备发送控 制信号并在GFAR中的DR上发送上行数据,同时在该控制信号中携带该上行数据的时频资源的信息,例如带宽、时隙数、起始位置等;之后,如果网络设备在前导序列的时频资源上,检测到该前导序列,那么网络设备根据该前导序列,以及前导序列与CR之间的第二位置关系,在与该前导序列的对应的CR上,接收终端设备发送的控制信号,并从该控制信号中获取用于接收上行数据的DR的信息,从而在该DR上检测终端设备发送的上行数据。
应理解,根据终端设备发送该序列的时频资源确定控制信号的时频资源,是根依据该序列的时频资源与控制信号的时频资源之间满足的第二位置关系。但在实现过程中为了简化设计,CR的部分位置信息与该序列可以事先约定。例如,可以约定该序列的时频资源与CR在时域上相邻且位于CR之前,且该序列的时频资源的带宽与CR的带宽相同,同时CR的时隙数与CR的带宽有关,可以由CR的带宽来决定。那么网络设备就可以根据检测到的前导序列的时频资源,直接确定CR的起始位置和带宽,并根据CR的带宽确定CR的时隙数,而从CR上的控制信号中又可以确定出DR的起始位置、带宽和时隙数等。如果还约定CR和DR的位置相邻,那么CR的起始位置和时隙数就直接决定了DR的起始位置,控制信号中可以不包括DR的起始位置。如果还约定CR和DR的带宽相同,那么控制消息也不需要携带DR的带宽信息。如果DR的传输带宽只有一种可能的DR的时隙数,那么控制消息也不需要指示DR的时隙数。当数据传输支持跳频时,控制消息还可以指示其跳频模式。
由于用于传输该序列的时频资源与用于传输控制信号的时频资源之间满足一定的位置关系,因而网络设备在接收到终端设备发送的该序列后,可以根据接收该序列的时频资源直接地确定终端设备发送控制信号的时频资源,并根据控制信号中携带的资源信息确定用于上行免授权传输的资源,即终端设备发送的该序列隐式地指示了用于上行免授权传输的资源,而无需其他信令来进行资源指示,节省了系统中的信令开销。
在360中,网络设备在该目标时频资源上,检测终端设备发送的上行数据。
在本申请实施例中,终端设备通过向网络设备发送的序列来指示用于免授权传输的时频资源,使得网络设备通过终端设备发送的序列的信息就可以有效地确定终端设备用于免授权接入的时频资源。由于支持多种免授权传输资源的复用,实现了无线传输资源的有效利用,节省了传输资源,提高了时频资源的利用率。同时可以简化传输流程,降低接收机的复杂度。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
下面将结合图10,描述根据本申请实施例的终端设备,方法实施例所描述的技术特征可以适用于以下装置实施例。
图10示出了根据本申请实施例的终端设备400。如图10所示,该终端设备400包括确定单元410和传输单元420。
其中,确定单元410用于:在多个时频资源中,确定用于所述免授权传输的目标时频资源;根据所述目标时频资源的信息,以及时频资源与序列之间的对应关系,确定与所述目标时频资源对应的该序列;
传输单元420用于:根据所述目标时频资源对应的所述序列,在所述目标时频资源上与网络设备之间进行所述免授权传输。
因此,终端设备通过前导序列向网络设备指示当前用于免授权接入的时频资源,使网络设备能够有效地确定终端设备选择的用于进行免授权接入的时频资源。由于支持多种免授权传输资源的复用,实现了无线传输资源的有效利用,节省了传输资源,提高了时频资源的利用率。同时可以简化传输流程,降低接收机的复杂度。
可选地,确定单元410具体用于:根据待发送的上行数据的大小,或所述终端设备与所述网络设备之间的路径损耗情况,在所述多个时频资源中确定用于所述免授权传输的目标时频资源。
可选地,所述目标时频资源的信息包括以下信息中的至少一种:所述目标时频资源的起始位置、所述目标时频资源的频域资源大小、所述目标时频资源的时域资源大小和所述终端设备的跳频模式。
可选地,传输单元420具体用于:在用于发送所述序列的时频资源上,向网络设备发送所述序列,并在所述目标时频资源上向网络设备发送上行数据。
可选地,所述序列的时频资源与所述目标时频资源之间满足第一位置关系,所述第一位置关系包括:所述序列的时频资源与所述目标时频资源在时域上相邻且位于所述目标时频资源之前,在频域上占用所述目标时频资源的全部或部分频域资源。
可选地,传输单元420具体用于:在用于发送所述序列的时频资源上,向网络设备发送所述序列,并在所述目标时频资源上向所述网络设备发送控制信号和上行数据,其中,所述控制信号中包括用于传输所述上行数据的时频资源的信息。
可选地,所述序列的时频资源与用于传输所述控制信号的时频资源之间满足第二位置关系,所述第二位置关系包括:所述序列的时频资源与所述控制信号的时频资源,在时域上相邻且位于所述控制信号的时频资源之前,在频域上占用所述控制信号的时频资源的全部或部分频域资源。
可选地,所述序列包括前导序列或参考信号。
应理解,该终端设备400可以对应于方法实施例中的终端设备,可以实现该终端设备的相应功能,为了简洁,在此不再赘述。
图11示出了本申请实施例提供的终端设备500的示意性结构图。如图11所示,该终端设备500包括括处理器510、收发器520和存储器530,其中,该处理器510、收发器520和存储器530之间通过内部连接通路互相通信。该存储器530用于存储指令,该处理器510用于执行该存储器530存储的指令,以控制该收发器520接收信号或发送信号。
其中,该处理器510用于:在多个时频资源中,确定用于所述免授权传输的目标时频资源;
根据所述目标时频资源的信息,以及时频资源与序列之间的对应关系,确定与所述目标时频资源对应的特定序列;
该收发器520用于:根据处理器510确定的所述目标时频资源对应的所述序列,在所述目标时频资源上与网络设备之间进行所述免授权传输。
因此,终端设备通过前导序列向网络设备指示当前用于免授权接入的时频资源,使网络设备能够有效地确定终端设备选择的用于进行免授权接入的时频资源。由于支持多种免 授权传输资源的复用,实现了无线传输资源的有效利用,节省了传输资源,提高了时频资源的利用率。同时可以简化传输流程,降低接收机的复杂度。
可选地,处理器510具体用于:根据待发送的上行数据的大小,或所述终端设备与所述网络设备之间的路径损耗情况,在所述多个时频资源中确定用于所述免授权传输的目标时频资源。
可选地,所述目标时频资源的信息包括以下信息中的至少一种:所述目标时频资源的起始位置、所述目标时频资源的频域资源大小、所述目标时频资源的时域资源大小和所述终端设备的跳频模式。
可选地,收发器520具体用于:在用于发送所述序列的时频资源上,向网络设备发送所述序列,并在所述目标时频资源上向网络设备发送上行数据。
可选地,所述序列的时频资源与所述目标时频资源之间满足第一位置关系,所述第一位置关系包括:所述序列的时频资源与所述目标时频资源在时域上相邻且位于所述目标时频资源之前,在频域上占用所述目标时频资源的全部或部分频域资源。
可选地,收发器520具体用于:在用于发送所述序列的时频资源上,向网络设备发送所述序列,并在所述目标时频资源上向所述网络设备发送控制信号和上行数据,其中,所述控制信号中包括用于传输所述上行数据的时频资源的信息。
可选地,所述序列的时频资源与用于传输所述控制信号的时频资源之间满足第二位置关系,所述第二位置关系包括:所述序列的时频资源与所述控制信号的时频资源,在时域上相邻且位于所述控制信号的时频资源之前,在频域上占用所述控制信号的时频资源的全部或部分频域资源。
可选地,所述序列包括前导序列或参考信号。
应理解,在本申请实施例中,该处理器510可以是中央处理单元(Central Processing Unit,CPU),该处理器510还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application-Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器530可以包括只读存储器和随机存取存储器,并向处理器510提供指令和数据。存储器530的一部分还可以包括非易失性随机存取存储器。例如,存储器530还可以存储设备类型的信息。
在实现过程中,上述方法的各步骤可以通过处理器510中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的定位方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器510中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器530,处理器510读取存储器530中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例的终端设备500可以对应于上述方法中用于执行图3至图8所示的方法的终端设备,以及根据本申请实施例的终端设备400,且该终端设备500中的各单元或模块分别用于执行上述图3至图8所示的方法中由终端设备所执行的各动作或处理过 程,这里,为了避免赘述,省略其详细说明。
图12示出了根据本申请实施例的网络设备600。如图12所示,该网络设备600包括检测单元610和确定单元620。
其中,检测单元610用于:检测终端设备发送的序列;
确定单元620用于:根据检测单元610检测到的所述序列,确定用于所述免授权传输的目标时频资源的信息;
检测单元610还用于:在确定单元620确定的所述目标时频资源上,检测所述终端设备发送的上行数据。
因此,网络设备通过终端设备发送的序列的信息,能够有效地确定终端设备用于免授权接入的时频资源。由于支持多种免授权传输资源的复用,实现了无线传输资源的有效利用,节省了传输资源,提高了时频资源的利用率。同时可以简化传输流程,降低接收机的复杂度。
可选地,在检测终端设备发送的序列之前,根据信号功率确定所述终端设备是否发送了所述序列,并在确定所述终端设备发送了所述序列时,检测所述终端设备发送的所述序列。
可选地,所述目标时频资源的信息包括以下信息中的至少一种:所述目标时频资源的起始位置、所述目标时频资源的频域资源大小、所述目标时频资源的时域资源大小和所述终端设备的跳频模式。
可选地,确定单元620具体用于:根据所述序列,以及序列与时频资源的对应关系,确定所述目标时频资源的信息。
可选地,用于传输所述序列的时频资源与所述目标时频资源之间满足第一位置关系所述第一位置关系包括:所述序列的时频资源与所述目标时频资源在时域上相邻且位于所述目标时频资源之前,在频域上占用所述目标时频资源的全部或部分频域资源。
可选地,确定单元620具体用于:根据用于传输所述序列的时频资源,确定所述目标时频资源中用于传输控制信号的时频资源,并在所述控制信号的时频资源上接收所述终端设备发送的所述控制信号,所述控制信号中包括所述目标时频资源中用于传输所述上行数据的时频资源的信息;根据所述控制信号,确定所述目标时频资源中用于传输所述上行数据的时频资源;
其中,检测单元610具体用于:在所述目标时频资源中用于传输所述上行数据的时频资源上,检测所述终端设备发送的所述上行数据。
可选地,所述序列的时频资源与所述控制信号的时频资源之间满足第二位置关系,所述第二位置关系包括:所述序列的时频资源与所述控制信号的时频资源,在时域上相邻且位于所述控制信号的时频资源之前,在频域上占用所述控制信号的时频资源的全部或部分频域资源。
可选地,所述序列包括前导序列或参考信号。
图13示出了本申请实施例提供的网络设备700的示意性结构图。如图13所示,该网络设备700包括括处理器710、收发器720和存储器730,其中,该处理器710、收发器720和存储器730之间通过内部连接通路互相通信。该存储器730用于存储指令,该处理器710用于执行该存储器730存储的指令,以控制该收发器720接收信号或发送信号。
其中,该处理器710用于:检测终端设备发送的序列;根据检测到的所述序列,确定用于所述免授权传输的目标时频资源的信息;在所述目标时频资源上,检测所述终端设备发送的上行数据。
因此,网络设备通过终端设备发送的序列的信息,能够有效地确定终端设备用于免授权接入的时频资源。由于支持多种免授权传输资源的复用,实现了无线传输资源的有效利用,节省了传输资源,提高了时频资源的利用率。同时可以简化传输流程,降低接收机的复杂度。
可选地,该处理器710具体用于:在检测终端设备发送的序列之前,根据信号功率确定所述终端设备是否发送了所述序列,并在确定所述终端设备发送了所述序列时,检测所述终端设备发送的所述序列。
可选地,所述目标时频资源的信息包括以下信息中的至少一种:所述目标时频资源的起始位置、所述目标时频资源的频域资源大小、所述目标时频资源的时域资源大小和所述终端设备的跳频模式。
可选地,处理器710具体用于:根据所述序列,以及序列与时频资源之间的对应关系,确定所述目标时频资源的信息。
可选地,用于传输所述序列的时频资源与所述目标时频资源之间满足第一位置关系所述第一位置关系包括:所述序列的时频资源与所述目标时频资源在时域上相邻且位于所述目标时频资源之前,在频域上占用所述目标时频资源的全部或部分频域资源。
可选地,处理器710具体用于:根据用于传输所述序列的时频资源,确定所述目标时频资源中用于传输控制信号的时频资源,并在所述控制信号的时频资源上接收所述终端设备发送的所述控制信号,所述控制信号中包括所述目标时频资源中用于传输所述上行数据的时频资源的信息;根据所述控制信号,确定所述目标时频资源中用于传输所述上行数据的时频资源;
其中,处理器710具体用于:在所述目标时频资源中用于传输所述上行数据的时频资源上,检测所述终端设备发送的所述上行数据。
可选地,所述序列的时频资源与所述控制信号的时频资源之间满足第二位置关系,所述第二位置关系包括:所述序列的时频资源与所述控制信号的时频资源,在时域上相邻且位于所述控制信号的时频资源之前,在频域上占用所述控制信号的时频资源的全部或部分频域资源。
可选地,所述序列包括前导序列或参考信号。
应理解,在本申请实施例中,该处理器710可以是中央处理单元(Central Processing Unit,CPU),该处理器710还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application-Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器730可以包括只读存储器和随机存取存储器,并向处理器710提供指令和数据。存储器730的一部分还可以包括非易失性随机存取存储器。例如,存储器730还可以存储设备类型的信息。
在实现过程中,上述方法的各步骤可以通过处理器710中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的定位方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器710中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器730,处理器710读取存储器730中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例的网络设备700可以对应于上述方法中用于执行图3至图8所示的方法的网络设备,以及根据本申请实施例的网络设备600,且该网络设备700中的各单元或模块分别用于执行上述图3至图8所示的方法中由网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
图14是本申请实施例的系统芯片的一个示意性结构图。图14的系统芯片800包括输入接口801、输出接口802、至少一个处理器803、存储器804,所述输入接口801、输出接口802、所述处理器803以及存储器804之间通过总线805相连。所述处理器803用于执行所述存储器804中的代码。
可选地,当所述代码被执行时,所述处理器803可以实现方法实施例中由终端设备执行的方法。为了简洁,这里不再赘述。
可选地,当所述代码被执行时,所述处理器803可以实现方法实施例中由网络设备执行的方法。为了简洁,这里不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储 在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (32)

  1. 一种免授权传输的方法,其特征在于,所述方法包括:
    终端设备在多个时频资源中,确定用于所述免授权传输的目标时频资源;
    所述终端设备根据所述目标时频资源的信息,以及时频资源与序列之间的对应关系,确定与所述目标时频资源对应的序列;
    所述终端设备根据所述目标时频资源对应的所述序列,在所述目标时频资源上与网络设备之间进行所述免授权传输。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备在多个时频资源中,确定用于所述免授权传输的目标时频资源,包括:
    所述终端设备根据待发送的上行数据的大小,或所述终端设备与所述网络设备之间的路径损耗情况,在所述多个时频资源中确定用于所述免授权传输的目标时频资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述目标时频资源的信息包括以下信息中的至少一种:
    所述目标时频资源的起始位置、所述目标时频资源的频域资源大小、所述目标时频资源的时域资源大小和所述终端设备的跳频模式。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述终端设备根据所述目标时频资源对应的所述序列,在所述目标时频资源上与网络设备之间进行所述免授权传输,包括:
    所述终端设备在用于发送所述序列的时频资源上,向所述网络设备发送所述序列,并在所述目标时频资源上向所述网络设备发送上行数据。
  5. 根据权利要求4所述的方法,其特征在于,所述序列的时频资源与所述目标时频资源之间满足第一位置关系,所述第一位置关系包括:
    所述序列的时频资源与所述目标时频资源在时域上相邻且位于所述目标时频资源之前,在频域上占用所述目标时频资源的全部或部分频域资源。
  6. 根据权利要求1至3中任一项所述的方法,其特征在于,所述终端设备根据所述目标时频资源对应的所述序列,在所述目标时频资源上与网络设备之间进行所述免授权传输,包括:
    所述终端设备在用于发送所述序列的时频资源上,向所述网络设备发送所述序列,并在所述目标时频资源上向所述网络设备发送控制信号和上行数据,其中,且所述控制信号中包括用于传输所述上行数据的时频资源的信息。
  7. 根据权利要求6所述的方法,其特征在于,所述序列的时频资源与用于传输所述控制信号的时频资源之间满足第二位置关系,所述第二位置关系包括:
    所述序列的时频资源与所述控制信号的时频资源,在时域上相邻且位于所述控制信号的时频资源之前,在频域上占用所述控制信号的时频资源的全部或部分频域资源。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述序列包括前导序列或参考信号。
  9. 一种免授权传输的方法,其特征在于,所述方法包括:
    网络设备检测终端设备发送的序列;
    所述网络设备根据检测到的所述序列,确定用于所述免授权传输的目标时频资源的信息;
    所述网络设备在所述目标时频资源上,检测所述终端设备发送的上行数据。
  10. 根据权利要求9所述的方法,其特征在于,在所述网络设备检测终端设备发送的序列之前,所述方法还包括:
    所述网络设备根据信号功率确定所述终端设备是否发送了所述序列,并在确定所述终端设备发送了所述序列时,检测所述终端设备发送的所述序列。
  11. 根据权利要求9或10所述的方法,其特征在于,所述目标时频资源的信息包括以下信息中的至少一种:
    所述目标时频资源的起始位置、所述目标时频资源的频域资源大小、所述目标时频资源的时域资源大小和所述终端设备的跳频模式。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述网络设备根据检测到的所述序列,确定用于所述免授权传输的目标时频资源的信息,包括:
    所述网络设备根据所述序列,以及序列与时频资源之间的对应关系,确定所述目标时频资源的信息。
  13. 根据权利要求12所述的方法,其特征在于,用于传输所述序列的时频资源与所述目标时频资源之间满足第一位置关系,所述第一位置关系包括:
    所述序列的时频资源与所述目标时频资源在时域上相邻且位于所述目标时频资源之前,在频域上占用所述目标时频资源的全部或部分频域资源。
  14. 根据权利要求9至11中任一项所述的方法,其特征在于,所述网络设备根据检测到的所述序列,确定用于所述免授权传输的目标时频资源的信息,包括:
    所述网络设备根据用于传输所述序列的时频资源,确定所述目标时频资源中用于传输控制信号的时频资源,并在所述控制信号的时频资源上接收所述终端设备发送的所述控制信号,其中,所述控制信号中包括所述目标时频资源中用于传输所述上行数据的时频资源的信息;
    所述网络设备根据所述控制信号,确定所述目标时频资源中用于传输所述上行数据的时频资源;
    其中,所述网络设备在所述目标时频资源上,检测所述终端设备发送的上行数据,包括:
    所述网络设备在所述目标时频资源中用于传输所述上行数据的时频资源上,检测所述终端设备发送的所述上行数据。
  15. 根据权利要求14所述的方法,其特征在于,所述序列的时频资源与所述控制信号的时频资源之间满足第二位置关系,所述第二位置关系包括:
    所述序列的时频资源与所述控制信号的时频资源,在时域上相邻且位于所述控制信号的时频资源之前,在频域上占用所述控制信号的时频资源的全部或部分频域资源。
  16. 根据权利要求9至15中任一项所述的方法,其特征在于,所述序列包括前导序列或参考信号。
  17. 一种终端设备,其特征在于,所述终端设备包括:
    确定单元,用于在多个时频资源中,确定用于所述免授权传输的目标时频资源;
    所述确定单元还用于,根据所述目标时频资源的信息,以及时频资源与序列之间的对应关系,确定与所述目标时频资源对应的序列;
    传输单元,用于根据所述确定单元确定的所述目标时频资源对应的所述序列,在所述目标时频资源上与网络设备之间进行所述免授权传输。
  18. 根据权利要求17所述的终端设备,其特征在于,所述确定单元具体用于:
    根据待发送的上行数据的大小,或所述终端设备与所述网络设备之间的路径损耗情况,在所述多个时频资源中确定用于所述免授权传输的目标时频资源。
  19. 根据权利要求17或18所述的终端设备,其特征在于,所述目标时频资源的信息包括以下信息中的至少一种:
    所述目标时频资源的起始位置、所述目标时频资源的频域资源大小、所述目标时频资源的时域资源大小和所述终端设备的跳频模式。
  20. 根据权利要求17至19中任一项所述的终端设备,其特征在于,所述传输单元具体用于:
    在用于发送所述序列的时频资源上,向所述网络设备发送所述序列,并在所述目标时频资源上向所述网络设备发送上行数据。
  21. 根据权利要求20所述的终端设备,其特征在于,所述特定序列的时频资源与所述目标时频资源之间满足第一位置关系,所述第一位置关系包括:
    所述序列的时频资源与所述目标时频资源在时域上相邻且位于所述目标时频资源之前,在频域上占用所述目标时频资源的全部或部分频域资源。
  22. 根据权利要求17至19中任一项所述的终端设备,其特征在于,所述传输单元具体用于:
    在用于发送所述序列的时频资源上,向所述网络设备发送所述序列,并在所述目标时频资源上向所述网络设备发送控制信号和上行数据,其中,所述控制信号中包括用于传输所述上行数据的时频资源的信息。
  23. 根据权利要求22所述的终端设备,其特征在于,所述序列的时频资源与用于传输所述控制信号的时频资源之间满足第二位置关系,所述第二位置关系包括:
    所述序列的时频资源与所述控制信号的时频资源,在时域上相邻且位于所述控制信号的时频资源之前,在频域上占用所述控制信号的时频资源的全部或部分频域资源。
  24. 根据权利要求17至23中任一项所述的终端设备,其特征在于,所述序列包括前导序列或参考信号。
  25. 一种网络设备,其特征在于,所述网络设备包括:
    检测单元,用于检测终端设备发送的序列;
    确定单元,用于根据所述检测单元检测到的所述序列,确定用于所述免授权传输的目标时频资源的信息;
    所述检测单元还用于,在所述确定单元确定的所述目标时频资源上,检测所述终端设备发送的上行数据。
  26. 根据权利要求25所述的网络设备,其特征在于,所述检测单元具体用于:
    在检测终端设备发送的序列之前,根据信号功率确定所述终端设备是否发送了所述序 列,并在确定所述终端设备发送了所述序列时,检测所述终端设备发送的所述序列。
  27. 根据权利要求25或26所述的网络设备,其特征在于,所述目标时频资源的信息包括以下信息中的至少一种:
    所述目标时频资源的起始位置、所述目标时频资源的频域资源大小、所述目标时频资源的时域资源大小和所述终端设备的跳频模式。
  28. 根据权利要求25至27中任一项所述的网络设备,其特征在于,所述确定单元具体用于:
    根据所述序列,以及序列与时频资源之间的对应关系,确定所述目标时频资源的信息。
  29. 根据权利要求28所述的网络设备,其特征在于,用于传输所述序列的时频资源与所述目标时频资源之间满足第一位置关系所述第一位置关系包括:
    所述序列的时频资源与所述目标时频资源在时域上相邻且位于所述目标时频资源之前,在频域上占用所述目标时频资源的全部或部分频域资源。
  30. 根据权利要求25至27中任一项所述的网络设备,其特征在于,所述确定单元具体用于:
    根据用于传输所述序列的时频资源,确定所述目标时频资源中用于传输控制信号的时频资源,并在所述控制信号的时频资源上接收所述终端设备发送的所述控制信号,所述控制信号中包括所述目标时频资源中用于传输所述上行数据的时频资源的信息;
    根据所述控制信号,确定所述目标时频资源中用于传输所述上行数据的时频资源;
    其中,所述检测单元具体用于:
    在所述目标时频资源中用于传输所述上行数据的时频资源上,检测所述终端设备发送的所述上行数据。
  31. 根据权利要求30所述的网络设备,其特征在于,所述序列的时频资源与所述控制信号的时频资源之间满足第二位置关系,所述第二位置关系包括:
    所述序列的时频资源与所述控制信号的时频资源,在时域上相邻且位于所述控制信号的时频资源之前,在频域上占用所述控制信号的时频资源的全部或部分频域资源。
  32. 根据权利要求25至31中任一项所述的网络设备,其特征在于,所述序列包括前导序列或参考信号。
PCT/CN2017/108347 2017-01-12 2017-10-30 免授权传输的方法、终端设备和网络设备 WO2018129987A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17891487.5A EP3554118B1 (en) 2017-01-12 2017-10-30 Grant-free transmission method, terminal device and network device
KR1020197022066A KR102256464B1 (ko) 2017-01-12 2017-10-30 비인가 송신 방법, 단말 디바이스, 및 네트워크 디바이스
US16/508,306 US20190357269A1 (en) 2017-01-12 2019-07-11 Grant-free transmission method, terminal device, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710019826.6A CN108307419B (zh) 2017-01-12 2017-01-12 免授权传输的方法、终端设备和网络设备
CN201710019826.6 2017-01-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/508,306 Continuation US20190357269A1 (en) 2017-01-12 2019-07-11 Grant-free transmission method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2018129987A1 true WO2018129987A1 (zh) 2018-07-19

Family

ID=62839352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108347 WO2018129987A1 (zh) 2017-01-12 2017-10-30 免授权传输的方法、终端设备和网络设备

Country Status (5)

Country Link
US (1) US20190357269A1 (zh)
EP (1) EP3554118B1 (zh)
KR (1) KR102256464B1 (zh)
CN (1) CN108307419B (zh)
WO (1) WO2018129987A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3860290A4 (en) * 2018-09-27 2022-05-04 Ntt Docomo, Inc. USER TERMINAL, AND WIRELESS COMMUNICATION METHOD

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809582B (zh) 2017-05-05 2021-07-20 华为技术有限公司 一种数据传输的方法和装置
US11234169B2 (en) * 2018-09-06 2022-01-25 Qualcomm Incorporated Methods and apparatuses for signaling hopping transmission
CN112673665A (zh) 2018-09-28 2021-04-16 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
WO2020062105A1 (zh) * 2018-09-28 2020-04-02 华为技术有限公司 一种通信方法及装置
US11044702B2 (en) 2018-11-01 2021-06-22 Dish Wireless L.L.C. Replicated grant-free transmissions utilizing multiple configurations
WO2020087446A1 (zh) 2018-11-01 2020-05-07 Oppo广东移动通信有限公司 传输数据的方法和终端设备
CN111148258B (zh) * 2018-11-02 2021-12-10 中国信息通信研究院 一种免动态授权上行调度方法和应用其的终端设备、网络设备和系统
JP7311319B2 (ja) * 2019-06-19 2023-07-19 ファナック株式会社 時系列データ表示装置
US11394510B2 (en) * 2019-06-25 2022-07-19 Qualcomm Incorporated Collision avoidance and implicit location encoding in vehicle-to-pedestrian networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104735785A (zh) * 2013-12-18 2015-06-24 中国移动通信集团公司 一种数据传输方法、装置、系统和相关设备
US20150271847A1 (en) * 2014-03-21 2015-09-24 Qualcomm Incorporated Techniques for configuring preamble and overhead signals for transmissions in an unlicensed radio frequency spectrum band
CN105101223A (zh) * 2014-05-16 2015-11-25 北京三星通信技术研究有限公司 一种在免许可频段上进行数据传输的方法和设备
CN106211337A (zh) * 2016-06-21 2016-12-07 浙江大学 免授权频段基于有效帧号的资源定位方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175232A1 (en) * 2008-01-08 2009-07-09 Nokia Siemens Networks Oy Joint Coding of Multiple TTI Information and Quality Indication Requests
US8885528B2 (en) * 2010-06-18 2014-11-11 Institute For Information Industry Wireless apparatus, base station and uplink contention method thereof using mapping rule on uplink signal with preamble sequence and control message
CN103875187B (zh) * 2011-06-02 2016-01-06 美国博通公司 在免授权/共享频带中的跳频
US8989089B2 (en) * 2011-08-18 2015-03-24 Ofinno Technologies, Llc Automobile data transmission
US9860174B2 (en) * 2013-08-28 2018-01-02 Qualcomm Incorporated Methods and apparatus for acknowledgment of multi-user uplink wireless transmissions
CN104683081B (zh) * 2013-12-02 2018-06-26 中国移动通信集团公司 一种载波聚合方法、能力信息上报方法及装置
CN105517061B (zh) * 2016-01-15 2019-03-22 宇龙计算机通信科技(深圳)有限公司 一种非授权频谱上指示上行子帧的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104735785A (zh) * 2013-12-18 2015-06-24 中国移动通信集团公司 一种数据传输方法、装置、系统和相关设备
US20150271847A1 (en) * 2014-03-21 2015-09-24 Qualcomm Incorporated Techniques for configuring preamble and overhead signals for transmissions in an unlicensed radio frequency spectrum band
CN105101223A (zh) * 2014-05-16 2015-11-25 北京三星通信技术研究有限公司 一种在免许可频段上进行数据传输的方法和设备
CN106211337A (zh) * 2016-06-21 2016-12-07 浙江大学 免授权频段基于有效帧号的资源定位方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"NR operation in unlicensed band", 3GPP TSG RAN WG1 MEETING #85 RL-164181, 27 May 2016 (2016-05-27), XP051096539 *
See also references of EP3554118A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3860290A4 (en) * 2018-09-27 2022-05-04 Ntt Docomo, Inc. USER TERMINAL, AND WIRELESS COMMUNICATION METHOD

Also Published As

Publication number Publication date
EP3554118B1 (en) 2021-09-01
EP3554118A4 (en) 2019-11-27
CN108307419A (zh) 2018-07-20
KR102256464B1 (ko) 2021-05-26
EP3554118A1 (en) 2019-10-16
CN108307419B (zh) 2021-09-03
KR20190100338A (ko) 2019-08-28
US20190357269A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2018129987A1 (zh) 免授权传输的方法、终端设备和网络设备
AU2018215316B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
EP3413494B1 (en) Method for communicating in network supporting licensed and unlicensed bands
CN108347778B (zh) 通信方法及装置
WO2018177259A1 (zh) 一种数据传输方法、网络设备和终端
EP3579638A1 (en) Base station device, terminal device, communication method, and integrated circuit
US11044747B2 (en) Method for scheduling uplink transmission in communication network
CN108990103B (zh) 处理调度请求的装置及方法
US10554357B2 (en) Data transmission method, network device, and terminal device
CN112929958B (zh) 传输方法和装置
US20210160852A1 (en) Resource configuration method and terminal device
CN108632193B (zh) 一种资源指示方法及网络设备、终端设备
WO2018027982A1 (zh) 发送参考信号的方法和装置及接收参考信号的方法和装置
JP6861800B2 (ja) NRSを受信する方法及びNB−IoT機器
US11528728B2 (en) Information transmission method and device
WO2017117819A1 (zh) 数据传输方法及装置
WO2019052334A1 (zh) 一种通信方法及设备
CN107683624B (zh) 指示资源的方法、基站和终端
TW202008828A (zh) 資源配置的方法和終端設備
WO2020029258A1 (zh) 信息发送和接收方法以及装置
US20210014023A1 (en) Data transmission method, terminal device, and network device
WO2018081973A1 (zh) 传输信号的方法、终端设备和网络设备
EP3493636B1 (en) Data transmission method, terminal device and network device
WO2017132969A1 (zh) 传输参考信号的方法和装置
WO2017045179A1 (zh) 数据传输的方法、终端设备和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017891487

Country of ref document: EP

Effective date: 20190708

ENP Entry into the national phase

Ref document number: 20197022066

Country of ref document: KR

Kind code of ref document: A