WO2017045179A1 - 数据传输的方法、终端设备和基站 - Google Patents

数据传输的方法、终端设备和基站 Download PDF

Info

Publication number
WO2017045179A1
WO2017045179A1 PCT/CN2015/089803 CN2015089803W WO2017045179A1 WO 2017045179 A1 WO2017045179 A1 WO 2017045179A1 CN 2015089803 W CN2015089803 W CN 2015089803W WO 2017045179 A1 WO2017045179 A1 WO 2017045179A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
index
terminal device
time interval
base station
Prior art date
Application number
PCT/CN2015/089803
Other languages
English (en)
French (fr)
Inventor
吴强
曲秉玉
薛丽霞
孙昊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA2998744A priority Critical patent/CA2998744A1/en
Priority to EP15903869.4A priority patent/EP3337258B1/en
Priority to CN201580083119.2A priority patent/CN108029108B/zh
Priority to PCT/CN2015/089803 priority patent/WO2017045179A1/zh
Publication of WO2017045179A1 publication Critical patent/WO2017045179A1/zh
Priority to US15/923,946 priority patent/US10511423B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • Embodiments of the present invention relate to the field of wireless communications, and more particularly, to a method of transmitting data, a terminal device, and a base station.
  • the downlink multiple access method usually adopts OFDMA ( Orthogonal Frequency Division Multiple Access (Orthogonal Frequency Division Multiple Access).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the downlink resources of the system are divided into sub-frames in the time domain and sub-carriers in the frequency domain.
  • the duration of one subframe is 1 millisecond (ms), and each subframe is further divided into two 0.5 ms slots.
  • each time slot is composed of 7 Orthogonal Frequency Division Multiplexing (OFDM) symbols; for an extended cyclic prefix (Extended CP), Each slot is composed of 6 OFDM symbols, and the OFDM symbols are simply referred to as symbols below.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the base station can perform uplink channel estimation using a reference signal, such as a Demodulation Reference Signal (DMRS).
  • DMRS is located in a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH), and the time domain position of the PUSCH is the fourth last sign bit of each time slot.
  • the frequency domain location is consistent with the bandwidth allocated by the user; the location in the PUCCH varies with the PUCCH transmission format.
  • system bandwidth/frequency domain resources are divided into two parts, one is a scheduling area, and the other is a contention data transmission area without control channel scheduling.
  • the above-mentioned PUSCH is taken as an example.
  • the base station allocates certain terminal devices to send control signaling in a contention transmission area, and the base station receives data through blind detection.
  • the terminal device Since there is no indication of the control channel in the contention data transmission area, the terminal device can only be associated with a certain DMRS. If the DMRSs associated with the two terminal devices are the same and are transmitted at the same time, the base station cannot correctly obtain the channels of the two terminal devices through the DMRS, thereby causing detection. A serious drop in performance was measured.
  • the existing LTE system uplink DMRS pilot sequence is a Zadoff-Chu sequence, and multiple DMRS sequences are generated by different shifts of a root sequence, and each DMRS sequence corresponds to one terminal device at the same time interval.
  • up to 8 shifts are used in the ⁇ ⁇ ⁇ ⁇ sequence. That is, in the existing communication mechanism, at the same time interval, up to eight users can be supported to transmit uplink data in a contention data transmission area, which is far from meeting the requirement of multi-user connection.
  • the embodiment of the invention provides a method for transmitting data, a terminal device and a base station, which can solve the problem that the existing communication mechanism can only solve the problem that a limited number of users send uplink data.
  • a first aspect of the present invention provides a data transmission method, including: determining, by a terminal device, a first reference signal (RS) sequence corresponding to a first time interval, wherein the first RS sequence is in an N RS sequence a N is a positive integer greater than 1, wherein the N RS sequences are generated based on at least two root sequences; at the first time interval, the terminal device sends the first RS sequence to a base station; Determining, by the terminal device, an RS sequence from the N RS sequences according to the first RS sequence as a second RS sequence corresponding to a second time interval, where the second RS sequence is determined according to the first RS sequence And at the second time interval, the terminal device sends the second RS sequence to a base station.
  • RS reference signal
  • a second aspect of the present invention provides a data transmission method, including: at a first time interval, a base station receives a first reference signal (RS) sequence, wherein the first RS sequence is one of N RS sequences N is a positive integer, wherein the N RS sequences are generated based on at least two root sequences; the base station confirms that the received first RS sequence is sent by the first terminal device according to the first time interval; The second time interval, the base station receives the second RS sequence, where the second RS sequence is one of the N RS sequences, and the second RS sequence is determined according to the first RS sequence; The base station confirms that the received second RS sequence is sent by the first terminal device according to the second time interval.
  • RS reference signal
  • a third aspect of the present invention provides a terminal device, including: a processing unit, configured to determine a first reference signal (RS) sequence corresponding to a first time interval, where the first RS sequence is N RS sequences And N is a positive integer greater than 1, wherein the N RS sequences are generated based on at least two root sequences; and a sending unit is configured to send, to the base station, the first time interval
  • the processing unit is further configured to determine, according to the first RS sequence, an RS sequence from the N RS sequences as a second RS sequence corresponding to a second time interval, where the The second RS sequence is determined according to the first RS sequence; the sending unit is further configured to send the second RS sequence to the base station at the second time interval.
  • a fourth aspect of the present invention provides a base station, including: a receiving unit, configured to receive a first reference signal (RS) sequence at a first time interval, where the first RS sequence is in an N RS sequence And N is a positive integer, wherein the N RS sequences are generated based on at least two root sequences; and the processing unit is configured to confirm, according to the first time interval, that the received first RS sequence is the first terminal device
  • the receiving unit is further configured to: at a second time interval, receive a second RS sequence, where the second RS sequence is one of the N RS sequences, and the second RS sequence is based on The first RS sequence is determined; the processing unit is further configured to acknowledge, according to the second time interval, that the received second RS sequence is sent by the first terminal device.
  • a plurality of RS sequences based on different root sequences are introduced, which satisfies the requirement of multi-user connection.
  • Figure 1 is a schematic diagram of a competitive transmission mode.
  • FIG. 2 is a schematic diagram of a communication system in accordance with one embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a method of transmitting data according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an RS sequence algorithm in accordance with one embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method of transmitting data according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a terminal device according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a base station according to another embodiment of the present invention.
  • the technical solution of the present invention can be applied to various communication systems, for example, GSM, Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), general packet Wireless Service (GPRS, General Packet Radio Service), Long Term Evolution (LTE), etc.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the communication system 200 includes a base station 210, terminal devices 220-1, 220-2, ... 220-1, where l is a positive integer.
  • the terminal device may be any one of the terminal devices 220-1, 220-2, ..., 220-1, and is also called a user equipment (UE, User Equipment), and may also be called a mobile terminal (Mobile Terminal).
  • the mobile user equipment or the like can communicate with one or more core networks through the radio access network (e.g., RAN, Radio Access Network) through the base station 210.
  • the radio access network e.g., RAN, Radio Access Network
  • the terminal device 220-1, 220-2... or 220-1 may be a mobile terminal such as a mobile phone (or "cellular" phone) and a computer having a mobile terminal, for example, may be portable, pocket, handheld, built-in computer Or in-vehicle mobile devices that exchange language and/or data with a wireless access network.
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer having a mobile terminal, for example, may be portable, pocket, handheld, built-in computer Or in-vehicle mobile devices that exchange language and/or data with a wireless access network.
  • the base station 220 may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional Node B
  • FIG. 3 is a schematic flow chart of a method of transmitting data according to an embodiment of the present invention.
  • the method of Figure 3 can be performed by a terminal device.
  • Step 310 The terminal device determines a first reference signal (RS) sequence corresponding to the first time interval, where the first RS sequence is one of N RS sequences, and N is a positive integer, where the N RSs The sequence is generated based on at least two root sequences.
  • RS reference signal
  • the RS sequence may be a Demodulation Reference Signal (DMRS) sequence, or may be other reference signals.
  • DMRS Demodulation Reference Signal
  • the N RS sequences correspond to the same cell, where the cell is a current serving cell of the terminal device.
  • the base station of the cell can communicate with a plurality of terminal devices, and all the terminal devices in the cell need to use the RS sequence in the N RS sequences when sending the RS sequence to the base station.
  • the terminal device may directly receive the N RS sequences sent by the base station.
  • the terminal device may receive at least two root sequences sent by the base station, and then generate N RS sequences according to the at least two root sequences.
  • the root sequence used is a ZC (Zadoff-Chu) sequence.
  • each ZC sequence whose root is u can be calculated according to the following formula:
  • N ZC is the length of the sequence and u is the root of the sequence, where u is a positive integer.
  • the base station schedules X resource blocks (RBs) for one user to transmit PUSCH, and one RB includes Y subcarriers. Therefore, one RS sequence occupies X*Y subcarriers, that is, the length of the RS sequence is X*Y. .
  • N ZC can be defined as the largest prime number smaller than X*Y.
  • a ZC sequence of length N ZC can be calculated and then cyclically expanded to obtain an RS sequence of length X*Y.
  • the manner in which the N RS sequences are generated by at least 2 root sequences is as shown in FIG.
  • the root sequence 1 can generate N 1 RS sequences, wherein the first RS sequence is the root sequence 1 shift X 1 is generated, and the second RS sequence is the root sequence 1 cyclic shift X 1 + P 1 ... and so on to generate the first to the N 1 RS sequence cyclic shift of a root sequence X 1 + (N 1 -1) * P 1 generation, wherein, X 1 is an integer greater than zero, P 1, N 1 are A positive integer.
  • root sequence 2 can generate N 2 RS sequences, wherein the first RS sequence is a root sequence 2 cyclic shift X 2 generation, and the second RS sequence is a root sequence 2 cyclic shift X 2 + P 2 generation ... and so on, the N 2 RS sequences are generated by the root sequence 2 cyclic shift X 2 + N 2 * P 2 , where X 2 is an integer greater than or equal to zero, and P 2 and N 2 are positive integers.
  • the root sequence K can generate N K RS sequences, wherein the first RS sequence is the root sequence K cyclic shift X K generation, the second RS The sequence is the root sequence K cyclic shift X K + P K generation... and so on, the N 2 RS sequence is the root sequence 2 cyclic shift X K + N K * P K is generated, X K is an integer greater than or equal to zero, K, P K , N K are all positive integers, and N is the sum of N 1 , N 2 , ... N K .
  • cyclic shifting of a sequence means that elements in the sequence are sequentially shifted to the left or right, and the loop is repeated when the element is shifted to the end. For example, if a sequence is ⁇ 1, 2, 3, 4 ⁇ , it is cyclically shifted by 2 bits to obtain the sequence ⁇ 3, 4, 1, 2 ⁇ , and so on.
  • the N RS sequences are in one-to-one correspondence with the N index numbers. As shown in FIG. 3, the N RS sequences may respectively correspond to index numbers 1-N. It should be noted that, unlike the shifting of the root sequence, shifting an index number by k bits means adding k to the index number, where k is a positive integer.
  • the terminal device can acquire N RS sequences generated based on at least two root sequences, and each RS sequence corresponds to one index number.
  • each root sequence can only correspond to a limited number of RS sequences (for example, eight), only a limited number of terminal devices can be supported for data transmission in a contention data transmission area.
  • step 320 the terminal device transmits a first RS sequence to the base station at the first time interval.
  • the first time interval will be further described in step 340.
  • the acquiring, by the terminal device, the first RS sequence corresponding to the first time interval includes: receiving, by the terminal device, high layer signaling sent by the base station, where the high layer signaling indicates, by the terminal device, the first RS sequence.
  • the acquiring, by the terminal device, the first RS sequence corresponding to the first time interval comprises: the terminal device calculating, according to the predefined formula (2), the first index number corresponding to the first RS sequence, and according to the first The index number gets the first RS sequence:
  • the RS index is the first index number
  • the C RNTI is the cell radio network temporary identifier of the terminal device
  • N is the sequence number of the N RS sequences.
  • the terminal device sends the first data packet to the base station by using the first RS sequence.
  • each of the at least two root sequences may be a ZC sequence
  • the RS sequences generated based on each root sequence are orthogonal between the two, but the RS sequences generated based on the different root sequences are It may be a non-orthogonal relationship. Since a non-orthogonal RS is introduced, and a plurality of terminal devices corresponding to one base station select a reference signal in the N RS sequences, the correlation of the RS sequences used by the two terminal devices may be large, causing a detection error of the base station. .
  • the terminal device transmits the first to the base station by using the first RS sequence at the first time interval.
  • another terminal device transmits an additional data packet to the data packet at the same time interval. If the first RS sequence is highly correlated with the RS sequence used by another terminal device, the terminal device receives the data packet. A notification to the base station about retransmitting the first data packet.
  • the two terminal devices still use the two previously related RSs during retransmission and perform packet retransmission at the same time interval, large interference will also occur.
  • the effect of RS randomization can be achieved by the change of the RS of the initial transmission and the retransmission.
  • step 330 the terminal device determines a second RS sequence corresponding to the second time interval, wherein the second RS sequence is also one of the N RS sequences, and the second RS sequence is calculated according to the first RS sequence.
  • step 340 the terminal device transmits a second RS sequence to the base station at the second time interval.
  • the first time interval and the second time interval respectively correspond to a unit time domain resource for transmitting one data packet and another unit time domain resource for retransmitting the data packet.
  • retransmitting a data packet refers to performing channel coding and rate matching on the original data of the data packet to obtain retransmitted data encoded according to the original data, and transmitting the data.
  • the unit time domain resource may be one subframe.
  • the terminal device transmits the first data packet to the base station by using the first RS sequence; and at the second time interval, the terminal device resends the first data packet to the base station by using the second RS sequence.
  • a data packet, the second RS sequence being different from the first RS sequence.
  • the calculating, according to the first RS sequence, the second RS sequence includes: an index number of the terminal device according to the first sequence, and an index shift number of the two consecutive time intervals of the same data packet sent by the terminal device, Calculating a second index number corresponding to the second sequence.
  • the terminal device may calculate, according to the following formula (3), the second index number corresponding to the second RS sequence according to the first RS sequence:
  • RS index2 to the second sequence corresponding to the second index number, RS index1 to the first sequence number corresponding to a first index, S 1 is the same packet transmitted between two adjacent terminal apparatus The number of index shifts of the time interval, and S 1 is a positive integer, and T is the smallest prime number greater than or equal to the number N.
  • T is a prime number
  • any positive integer is mutually prime with T, thereby ensuring that the terminal device can configure all N RS sequences once after the time interval of transmitting the data packets N times.
  • the terminal device configures, for each data packet, a different RS sequence for each time interval corresponding to the data packet, and therefore, the time interval corresponding to the n+1th transmission of the same data packet is The corresponding time interval when the nth transmission is performed is an adjacent time interval. It should be noted that, for one data packet, the (n+1)th transmission may also be referred to as retransmission of the nth transmission, where n is a positive integer.
  • S 1 is a shift number of two adjacent time intervals of the terminal device, wherein, since S 1 is a positive integer, the second index number RS index2 and the first index number RS index1 are guaranteed to be different values. . Moreover, since the RS sequence and the index number are in one-to-one correspondence, the second RS sequence is different from the first RS sequence, and it is ensured that when resending a data packet, an RS sequence different from the previous one is utilized.
  • the terminal device may calculate a second index number corresponding to the second RS sequence according to the first RS sequence according to the following formula (4):
  • RS index2 (RS index1 +M 1 )modN (4)
  • RS index2 to the second sequence corresponding to the second index number, RS index1 to the first sequence number corresponding to a first index, M 1 is the same data packet transmitted between two adjacent terminal apparatus The number of index shifts of the time interval, and M 1 is a positive integer and is mutually prime with N.
  • the terminal device can configure all the N RSs to be once.
  • the terminal device adds the first index number to M 1 and obtains a second index number after modulo N to obtain the second RS sequence.
  • M and N are mutually prime, each time an M is added to the index number, it can be ensured that after N time intervals, the terminal device can configure each RS sequence in the N RS sequences, and the RS sequence used each time. different. For example, it is assumed that if the number N of RS sequences is 8, then M can be selected as any one of 1, 3, 5, and 7. When M is 1, the index number corresponding to the RS sequence configured by the terminal device is the last index number plus 1 at each time interval. After 8 time intervals, the terminal device can configure all 8 RS sequences. Go through it again.
  • the terminal device when the terminal device configures a different RS sequence for the time interval corresponding to each data packet, it can satisfy the effect of randomizing the interference of the RS by using different RS sequences for each data packet.
  • the first time interval and the second time interval respectively correspond to two unit time domain resources, such as a subframe, that the base station allows the terminal device to send data packets.
  • the terminal device may receive, by the base station, information about multiple unit time domain resources that allow the terminal device to send the data packet, where the first time interval is one of multiple unit time domain resources, and the second time interval is also multiple unit time domains.
  • One of the resources, And is the Kth unit time domain resource after the first time interval, where K is a positive integer greater than one. That is, between the first time interval and the second time interval, there are K-1 information of the unit time domain resources that allow the terminal device to transmit the data packet.
  • the terminal device may choose to send the data packet, or may choose not to send the data packet.
  • the unit time domain resource is a subframe, that is, the first time interval corresponds to one subframe that can be used to send a data packet, and the second time interval corresponds to the first time interval, and can be used to send the Kth subframe of the data packet.
  • the terminal device may configure a corresponding RS sequence for each subframe in which the data packet can be sent. Although the terminal device does not send data packets in the second to K-1 subframes, the terminal device still configures a corresponding RS sequence for each subframe according to the configuration rule, and the RS sequence of the Kth subframe is calculated as follows. Description.
  • the N RS sequences correspond to N different time intervals, where each time interval is a unit time domain resource that allows the UE to send data packets to the base station, and N time intervals constitute a time period.
  • the first time interval is the first unit time domain resource in the time period.
  • the second RS sequence is calculated according to the first RS sequence, and the method includes: calculating, by the terminal device, the index number of the first sequence and the number of shifts of the index number corresponding to the adjacent two time domain resources, The second index number corresponding to the second sequence.
  • the terminal device calculates a second index number corresponding to the second sequence according to the following formula (5):
  • RS index2 [RS index1 +(K-1)S 2 ]modT (5)
  • RS index2 to the second sequence corresponding to the second index number RS index1 to the first sequence number corresponding to a first index
  • S 2 is the corresponding time-domain resource index of two adjacent units
  • T is the smallest prime number greater than or equal to the number N.
  • the second time corresponding to the second RS sequence is the Kth subframe, it is necessary to calculate the sequence index number of the RS sequence corresponding to the Kth subframe.
  • the terminal device may calculate the second index number corresponding to the second RS sequence according to the first RS sequence according to the following formula (6):
  • RS index2 [RS index1 +(K-1)M 2 ]modN (6)
  • RS index2 to the second sequence corresponding to the second index number RS index1 to the first sequence number corresponding to a first index
  • M 2 is a corresponding time-domain resource index of two adjacent units The number of shifts, and M 2 is a positive integer and is mutually prime with N.
  • the RS sequence corresponding to any subframe can be calculated according to formula (5) or formula (6), Whether the terminal device sends a data packet in the subframe.
  • the terminal device can transmit using different RS sequences in each subframe, the random variation of the RS sequence is also implemented, thereby reducing the probability of occurrence of reference signal interference with other terminal devices.
  • the N RS sequences may correspond to N index numbers.
  • the terminal device can obtain the corresponding RS sequence according to the index number.
  • the terminal device configures a different RS sequence for each time interval in which data is allowed to be transmitted, the RS sequence can be greatly reduced, and the interference randomization effect of the RS is achieved.
  • FIG. 5 is a schematic flow chart of a method of transmitting data according to an embodiment of the present invention.
  • the method of Figure 5 can be performed by a base station.
  • Step 510 At a first time interval, the base station receives a first reference signal (RS) sequence, where the first RS sequence is one of N RS sequences, and N is a positive integer, where the N RS sequences are Generated based on at least two root sequences.
  • RS reference signal
  • the N RS sequences correspond to the same cell, and the cell is a cell corresponding to the base station.
  • the N RS sequences have been described in step 310 and will not be described here.
  • Step 520 The base station confirms that the received first RS sequence is sent by the first terminal device according to the first time interval.
  • Step 530 At the second time interval, the base station receives the second RS sequence, where the second RS sequence is one of the N RS sequences, and the second RS sequence is determined according to the first RS sequence.
  • the first time interval and the second time interval respectively correspond to a unit time domain resource that sends one data packet and another unit time domain resource that retransmits the data packet.
  • the base station receives a first data packet that is sent by the terminal device by using the first RS sequence, and at the second time interval, the base station receives a terminal device usage
  • the first data packet that is sent by the second RS sequence, the second RS sequence is different from the first RS sequence.
  • the N RS sequences are in one-to-one correspondence with the N index numbers
  • the determining the second RS sequence according to the first RS sequence includes: sending the same data packet according to an index number of the first RS sequence The index number shift number of the adjacent two time intervals is calculated, and the second index number corresponding to the second RS sequence is calculated.
  • the formula for calculating the second index number is formula (3), where RS index2 is the second index number corresponding to the second sequence, and RS index1 is the first corresponding to the first sequence.
  • index number the index number S 1 is at the base station receives the same number of shift data packets between two adjacent time intervals, and S 1 is at a positive integer, T is less than the minimum number N of a prime number.
  • the formula for calculating the second index number is the formula (4), where RS index2 is the second index number corresponding to the second sequence, and RS index1 is the first corresponding to the first sequence.
  • An index number, M 1 is an index number shift number of two adjacent time intervals of the same data packet received by the base station, M 1 is a positive integer, and M 1 and N are mutually prime.
  • the first time interval and the second time interval respectively correspond to two unit time domain resources, such as a subframe, that the base station allows the terminal device to send data packets.
  • the N RS sequences correspond to N different time intervals, where each time interval is a unit time domain resource that the base station allows the terminal device to send a data packet, and the N time intervals Forming a time period; wherein the first time interval is a first unit time domain resource in the time period, and the second time interval is a Kth unit time domain resource in the time period, where , K is a positive integer greater than 1 and less than or equal to N.
  • the N RS sequences are in one-to-one correspondence with the N index numbers
  • the determining, according to the first RS sequence, the second RS sequence includes: according to an index number and an adjacent of the first RS sequence The number of shifts of the index number corresponding to the unit time domain resource is calculated, and the second index number corresponding to the second RS sequence is calculated.
  • the formula for calculating the second index number is formula (5), where RS index2 is the second index number corresponding to the second RS sequence, and RS index1 is the first RS sequence.
  • S 2 is a shift number of an index number corresponding to two adjacent unit time domain resources, and T is a minimum prime number greater than or equal to the number N.
  • the formula for calculating the second index number is formula (6), where RS index2 is the second index number corresponding to the second sequence, and RS index1 is corresponding to the first sequence.
  • the first index number, S 2 is the number of shifts of the index numbers corresponding to the adjacent two unit time domain resources, M 1 is a positive integer, and M 2 and N are prime.
  • the base station sends high layer signaling to the terminal device, where the high layer signaling indicates the first RS sequence for the terminal device.
  • each of the at least two root sequences is a ⁇ ⁇ - ⁇ sequence.
  • Step 540 The base station confirms that the received second RS sequence is sent by the first terminal device according to the second time interval.
  • FIG. 6 is a schematic diagram of a terminal device in accordance with one embodiment of the present invention.
  • the user equipment 600 of FIG. 6 includes a receiving unit 610, a processing unit 620, and a transmitting unit 630.
  • the processing unit 620 is configured to determine a first reference signal (RS) sequence corresponding to the first time interval, where the first RS sequence is one of N RS sequences, and N is a positive integer greater than 1, where The N RS sequences are generated based on at least two root sequences.
  • RS reference signal
  • the sending unit 630 is configured to send the first RS sequence to the base station in the first time interval.
  • the processing unit 620 is further configured to determine, according to the first RS sequence, an RS sequence from the N RS sequences as a second RS sequence corresponding to a second time interval, where the second RS sequence is a The first RS sequence is determined; the sending unit 630 is further configured to send the second RS sequence to the base station at the second time interval.
  • the N RS sequences correspond to the same cell, and the cell is a current serving cell of the terminal device.
  • the first time interval and the second time interval respectively correspond to a unit time domain resource for transmitting one data packet and another unit time domain resource for retransmitting the data packet.
  • the sending unit 630 sends a first data packet to the base station by using the first RS sequence; at the second time interval, the sending unit 630 utilizes the The second RS sequence transmits the first data packet to the base station again, and the second RS sequence is different from the first RS sequence.
  • the N RS sequences are in one-to-one correspondence with the N index numbers
  • the processing unit 620 determines the second RS sequence according to the first RS sequence, where the processing unit 620 is configured according to the first RS sequence.
  • the index number and the index number shift number of the adjacent two time intervals of the same data packet, and the second index number corresponding to the second RS sequence is calculated; the processing unit 620 determines the number according to the second index number Two RS sequences.
  • the formula for calculating the second index number is formula (3), where RS index2 is the second index number corresponding to the second sequence, and RS index1 is the first corresponding to the first sequence.
  • the formula for calculating the second index number is the formula (4), where RS index2 is the second index number corresponding to the second sequence, and RS index1 is the first corresponding to the first sequence.
  • M 1 is the transmission unit 630 transmits the number of shifts between two consecutive time index of the same packet interval, M 1 is a positive integer, and M 1 and N coprime.
  • the first time interval and the second time interval respectively correspond to two unit time domain resources, such as a subframe, that the base station allows the terminal device to send data packets.
  • the N RS sequences correspond to N different time intervals, where each time interval is a unit time domain resource that allows the terminal device to send a data packet to the base station, and the N times are The interval constitutes a time period; wherein the first time interval is a first unit time domain resource in the time period, and the second time interval is a Kth unit time domain resource in the time period, Where K is a positive integer greater than 1 and less than or equal to N.
  • the N RS sequences are in one-to-one correspondence with the N index numbers
  • the processing unit 620 is configured to determine the second RS sequence according to the first RS sequence, where the processing unit 620 is configured according to the Calculating a second index number corresponding to the second RS sequence by using an index number of an RS sequence and a shift number of an index number corresponding to two adjacent unit time domain resources.
  • the formula for calculating the second index number is the formula (5), where RS index2 is the second index number corresponding to the second RS sequence, and RS index1 is corresponding to the first RS sequence.
  • the first index number, S 2 is a shift number of an index number corresponding to two adjacent unit time domain resources, and T is a minimum prime number greater than or equal to the number N.
  • the processing unit 620 calculates the second index number according to formula (6): where RS index2 is the second index number corresponding to the second sequence, and RS index1 is the first sequence corresponding to The first index number, S 2 is the number of shifts of the index numbers corresponding to the adjacent two unit time domain resources, M 2 is a positive integer, and M 2 and N are prime.
  • the terminal device further includes: a receiving unit 610; the processing unit 620 determining that the first RS sequence corresponding to the first time interval comprises: the receiving unit 610 determining, according to the high layer signaling received from the base station In the first RS sequence, the high layer signaling indicates the first RS sequence for the terminal device.
  • the processing unit 620 determines that the first RS sequence corresponding to the first time interval includes: the processing unit 620 calculates a first index number corresponding to the first RS sequence according to the predefined formula (2) below. And acquiring the first RS sequence according to the first index number.
  • the receiving unit 610 may be implemented by a receiver
  • the sending unit 630 may be implemented by a transmitter
  • the processing unit 620 may be implemented by a processor.
  • the subscriber device 700 can include a processor 710, a receiver 720, a transmitter 730, and a memory 740.
  • the memory 740 can be used to store a program/code pre-installed at the time of shipment of the terminal device, and can also store a code or the like for execution of the processor 710.
  • bus system 750 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • FIG. 8 is a schematic diagram of a terminal device according to an embodiment of the present invention.
  • the user equipment 800 of FIG. 8 includes a receiving unit 810, a processing unit 820, and a transmitting unit 830.
  • the receiving unit 810 is configured to receive, at a first time interval, a first reference signal (RS) sequence, where the first RS sequence is one of N RS sequences, and N is a positive integer, where the N
  • the RS sequence is generated based on at least two root sequences.
  • the processing unit 820 is configured to confirm, according to the first time interval, that the received first RS sequence is sent by the first terminal device.
  • the receiving unit 810 is further configured to: at a second time interval, receive a second RS sequence, where the second RS sequence is one of the N RS sequences, and the second RS sequence is according to the An RS sequence is determined.
  • the processing unit 820 is further configured to acknowledge, according to the second time interval, that the received second RS sequence is sent by the first terminal device.
  • the N RS sequences correspond to the same cell, and the cell is a cell corresponding to the base station.
  • the first time interval and the second time interval respectively correspond to a unit time domain resource for transmitting one data packet and another unit time domain resource for retransmitting the data packet.
  • the receiving unit 810 is further configured to: at the first time interval, receive a first data packet that is sent by the terminal device by using the first RS sequence; and the receiving unit 810 is further configured to: And the time interval, the first data packet that is sent by the terminal device by using the second RS sequence, and the second RS sequence is different from the first RS sequence.
  • the N RS sequences are in one-to-one correspondence with the N index numbers
  • the determining the second RS sequence according to the first RS sequence includes: sending the same data packet according to an index number of the first RS sequence The index number shift number of the adjacent two time intervals is calculated, and the second index number corresponding to the second RS sequence is calculated.
  • the formula for calculating the second index number is formula (3), where RS index2 is the second index number corresponding to the second sequence, and RS index1 is corresponding to the first sequence.
  • the first index number the number of shifts S 1 is at index number of the receiving unit 810 receives the same data packets between two adjacent time intervals, and S 1 is at a positive integer, T is less than the minimum number N of a prime number.
  • the formula for calculating the second index number is formula (4), where RS index2 is the second index number corresponding to the second sequence, and RS index1 is corresponding to the first sequence.
  • the first index number, M 1 is an index number shift number of the adjacent two time intervals of the receiving unit 810 receiving the same data packet, where M 1 is a positive integer, and M 1 and N are mutually prime.
  • the first time interval and the second time interval respectively correspond to two unit time domain resources, such as a subframe, that the base station allows the terminal device to send data packets.
  • the N RS sequences correspond to N different time intervals, where each time interval is a unit time domain resource that the base station allows the terminal device to send a data packet, and the N time intervals Forming a time period; wherein the first time interval is a first unit time domain resource in the time period, and the second time interval is a Kth unit time domain resource in the time period, where , K is a positive integer greater than 1 and less than or equal to N.
  • the N RS sequences are in one-to-one correspondence with the N index numbers
  • the determining, according to the first RS sequence, the second RS sequence includes: according to an index number and an adjacent of the first RS sequence The number of shifts of the index number corresponding to the unit time domain resource is calculated, and the second index number corresponding to the second RS sequence is calculated.
  • the formula for calculating the second index number is formula (5), where RS index2 is the second index number corresponding to the second RS sequence, and RS index1 is the first RS sequence.
  • S 2 is a shift number of an index number corresponding to two adjacent unit time domain resources, and T is a minimum prime number greater than or equal to the number N.
  • the formula for calculating the second index number is formula (6), where RS index2 is the second index number corresponding to the second sequence, and RS index1 is corresponding to the first sequence.
  • the first index number, S 2 is the number of shifts of the index numbers corresponding to the adjacent two unit time domain resources, M 1 is a positive integer, and M 2 and N are prime.
  • the sending unit 830 sends high layer signaling to the terminal device, where the high layer signaling indicates the first RS sequence for the terminal device.
  • the receiving unit 810 may be implemented by a receiver
  • the sending unit 830 may be implemented by a transmitter
  • the processing unit 820 may be implemented by a processor.
  • the base Station 900 can include a processor 910, a receiver 920, a transmitter 930, and a memory 940.
  • the memory 940 can be used for programs/codes pre-installed for the base station, and can also store codes and the like for the execution of the processor 910.
  • bus system 950 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种传输数据的方法、终端设备和基站。其中,传输数据的方法包括:终端设备确定对应第一时间间隔的第一参考信号(RS)序列,其中,所述第一RS序列为N个RS序列中的一个,N为大于1的正整数,其中,所述N个RS序列基于至少两个根序列生成;在所述第一时间间隔,所述终端设备向基站发送所述第一RS序列;所述终端设备根据所述第一RS序列从所述N个RS序列中确定一个RS序列作为对应第二时间间隔的第二RS序列,其中,所述第二RS序列为根据所述第一RS序列确定;在所述第二时间间隔,所述终端设备向基站发送所述第二RS序列。

Description

数据传输的方法、终端设备和基站 技术领域
本发明实施例涉及无线通信领域,并且更具体地,涉及传输数据的方法、终端设备和基站。
背景技术
在3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)LTE(Long Term Evolution,长期演进)/LTE-A(LTE-advanced,LTE高级演进)系统中,下行多址接入方式通常采用OFDMA(Orthogonal Frequency Division Multiple Access,正交频分复用多址接入)方式。系统的下行资源在时域上被划分成了子帧,在频域上被划分成了子载波。在当前的LTE系统中,一个子帧的时长为1毫秒(ms),每个子帧又被分为两个0.5ms的时隙(slot)。对于普通循环前缀(normal cyclic prefix,normal CP),每个时隙由7个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号组成;对于长循环前缀(Extended cyclic prefix,extended CP),每个时隙由6个OFDM符号组成,以下将OFDM符号简称为符号。
通常,基站可利用参考信号进行上行信道估计,例如解调参考信号(Demodulation Reference Signal,DMRS)。DMRS存在于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)和物理上行控制信道(Physical Uplink Control Channel,PUCCH)中,其在PUSCH的时域位置为每个时隙的倒数第四个符号位,频域位置跟用户被分配的带宽一致;在PUCCH中的位置随着PUCCH传输格式的不同而不同。
未来通信中对用户连接数有超高的需求,小数据包频发对控制信道的容量形成了挑战。如图1所示,为减少控制信令占用的资源,系统带宽/频域资源被分成了两部分,一部分是调度区,另一部分是没有控制信道调度的竞争的数据传输区域。以上行PUSCH为例,基站分配某些终端设备在竞争的传输区域发送控制信令,基站通过盲检来接收数据。
由于在竞争的数据传输区域,没有控制信道的指示,终端设备只能和某个DMRS关联在一起。如果两个终端设备关联的DMRS一样,且同时发送,则基站不能够通过DMRS来正确的得到两个终端设备的信道,从而造成检 测性能的严重下降。
现有的LTE系统上行DMRS导频序列是乍道夫-楚(Zadoff-Chu)序列,通过一个根序列的不同移位来生成多个DMRS序列,每个DMRS序列在同一时间间隔对应一个终端设备。在现有系统中,为保证不同上行DMRS序列间的正交性,乍道夫-楚序列中最多使用8个移位。也即,在现有的通信机制中,同一时间间隔最多可支持8个用户在竞争的数据传输区域发送上行数据,远不能满足多用户连接的需求。
发明内容
本发明实施例提供传输数据的方法、终端设备及基站,能够解决现有通信机制仅能解决有限个用户发送上行数据的问题。
本发明的第一方面,提供了一种数据传输方法,包括:终端设备确定对应第一时间间隔的第一参考信号(RS)序列,其中,所述第一RS序列为N个RS序列中的一个,N为大于1的正整数,其中,所述N个RS序列基于至少两个根序列生成;在所述第一时间间隔,所述终端设备向基站发送所述第一RS序列;所述终端设备根据所述第一RS序列从所述N个RS序列中确定一个RS序列作为对应第二时间间隔的第二RS序列,其中,所述第二RS序列为根据所述第一RS序列确定;在所述第二时间间隔,所述终端设备向基站发送所述第二RS序列。
本发明的第二方面,提供了一种数据传输方法,包括:在第一时间间隔,基站接收第一参考信号(RS)序列,其中,所述第一RS序列为N个RS序列中的一个,N为正整数,其中,所述N个RS序列基于至少两个根序列生成;所述基站根据所述第一时间间隔确认收到的第一RS序列为第一终端设备所发送;在第二时间间隔,所述基站接收第二RS序列,其中,所述第二RS序列为所述N个RS序列中的一个,且所述第二RS序列为根据所述第一RS序列确定;所述基站根据所述第二时间间隔确认收到的第二RS序列为所述第一终端设备发送。
本发明的第三方面,提供了一种终端设备,包括:处理单元,用于确定对应第一时间间隔的第一参考信号(RS)序列,其中,所述第一RS序列为N个RS序列中的一个,N为大于1的正整数,其中,所述N个RS序列基于至少两个根序列生成;发送单元,用于在所述第一时间间隔,向基站发送 所述第一RS序列;所述处理单元还用于根据所述第一RS序列从所述N个RS序列中确定一个RS序列作为对应第二时间间隔的第二RS序列,其中,所述第二RS序列为根据所述第一RS序列确定;所述发送单元还用于,在所述第二时间间隔,向基站发送所述第二RS序列。
本发明的第四方面,提供了一种基站,包括:接收单元,用于在第一时间间隔,接收第一参考信号(RS)序列,其中,所述第一RS序列为N个RS序列中的一个,N为正整数,其中,所述N个RS序列基于至少两个根序列生成;处理单元,用于根据所述第一时间间隔确认收到的第一RS序列为第一终端设备所发送;所述接收单元还用于,在第二时间间隔,接收第二RS序列,其中,所述第二RS序列为所述N个RS序列中的一个,且所述第二RS序列为根据所述第一RS序列确定;所述处理单元还用于根据所述第二时间间隔确认收到的第二RS序列为所述第一终端设备发送。
本发明实施例中通过引入多个基于不同根序列的RS序列,满足了多用户连接的需求。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是竞争的传输方式示意图。
图2是根据本发明一个实施例的通信系统示意图。
图3是根据本发明一个实施例的传输数据的方法的示意性流程图。
图4是根据本发明一个实施例的RS序列算法示意图。
图5是根据本发明另一个实施例的传输数据的方法的示意性流程图。
图6是根据本发明一个实施例的终端设备的结构示意图。
图7是根据本发明另一个实施例的终端设备的结构示意图。
图8是根据本发明一个实施例的基站的结构示意图。
图9是根据本发明另一个实施例的基站的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的技术方案,可以应用于各种通信系统,例如:GSM,码分多址(CDMA,Code Division Multiple Access)系统,宽带码分多址(WCDMA,Wideband Code Division Multiple Access Wireless),通用分组无线业务(GPRS,General Packet Radio Service),长期演进(LTE,Long Term Evolution)等。
图2为根据本发明一个实施例的通信系统的示意图。如图2所示,通信系统200包括基站210,终端设备220-1,220-2…220-l,其中l为正整数。
其中,终端设备(TD,Terminal Device),可为终端设备220-1,220-2…220-l中的任意一个,又称用户设备(UE,User Equipment),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以通过基站210经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信。
终端设备220-1,220-2…或220-l可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
基站220,可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),本发明并不限定。
图3是根据本发明一个实施例的传输数据的方法的示意性流程图。图3的方法可以由终端设备执行。
步骤310,终端设备确定对应第一时间间隔的第一参考信号(RS)序列,其中,所述第一RS序列为N个RS序列中的一个,N为正整数,其中,所述N个RS序列基于至少两个根序列生成。
可选地,该RS序列可为解调参考信号(DMRS,Demodulation Reference Signal)序列,也可为其他参考信号。
可选地,该N个RS序列对应同一个小区,该小区为所述终端设备的当前服务小区。例如,该小区的基站可与多个终端设备进行通信,此小区中所有终端设备需要向基站发送RS序列时均使用这N个RS序列中的RS序列。
可选地,在一个实施例中,终端设备可直接接收基站发送的N个RS序列。
可选地,在另一个实施例中,终端设备可接收基站发送的至少两个根序列,再根据该至少两个根序列生成N个RS序列。
可选地,对上行的RS序列来说,使用的根序列是乍道夫-楚(ZC,Zadoff-Chu)序列。
可选地,每个根为u的ZC序列可根据如下公式计算:
Figure PCTCN2015089803-appb-000001
其中,NZC为序列的长度,u为序列的根,其中u为正整数。xu(n)为这个序列的索引为n的元素。例如,NZC=31,u=5,则索引为0的元素,xu(0)=1;索引为1的元素
Figure PCTCN2015089803-appb-000002
依次类推。
假设,基站给一个用户调度了X个资源块(RB,Resource Block)传输PUSCH,一个RB包括Y个子载波,因此,一个RS序列占X*Y个子载波,即,RS序列的长度为X*Y。
在利用公式(1)计算RS序列时,对长度为X*Y的RS序列,可定义NZC为小于X*Y的最大的素数。通过公式(1),可计算得到长度为NZC的ZC序列,然后循环扩展得到长度为X*Y的RS序列。
在一个实施例中,通过至少2个根序列生成N个RS序列的方式如图4所示。通过循环移位,根序列1可生成N1个RS序列,其中,第1个RS序列为根序列1移位X1生成,第2个RS序列为根序列1循环移位X1+P1生成…以此类推,第N1个RS序列为根序列1循环移位X1+(N1-1)*P1生成,其中,X1为大于等于零的整数,P1,N1均为正整数。类似地,根序列2可生成N2个RS序列,其中,第1个RS序列为根序列2循环移位X2生成,第2个RS序列为根序列2循环移位X2+P2生成…以此类推,第N2个RS序列为根序列2循环移位X2+N2*P2生成,其中,X2为大于等于零的整数,P2,N2均为正整数。同理,如果该N个RS序列为基于K个根序列生成,根序列K可生成NK个RS序列,其中,第1个RS序列为根序列K循环移位XK生成,第2个RS序列为根序列K循环移位XK+PK生成…以此类推,第N2个RS序列为根序列2循环移位XK+NK*PK生成,XK为大于等于零的整数,K,PK,NK均为正整数,且N为N1,N2,…NK之和。
需要说明的是,在本发明的实施例中,对于序列的循环移位是指序列中的元素依次向左或是向右进行移位,当元素移位到尽头时再重复循环。例如,若一个序列为{1,2,3,4},则对其循环移位2位,可得到序列{3,4,1,2},以此类推。
可选地,该N个RS序列与N个索引号一一对应,如图3所示,该N个RS序列可分别对应索引号1-N。需要说明的是,与对根序列的移位不同,对某个索引号进行移位k位是指在该索引号上再增加k,其中,k为正整数。
因此,终端设备可获取到基于至少两个根序列生成的N个RS序列,每个RS序列对应一个索引号。通过引入多个根序列,解决了由于每个根序列仅能对应有限个RS序列(例如8个),从而仅能支持有限个终端设备在竞争的数据传输区域进行数据传输的问题。
在步骤320中,在第一时间间隔,终端设备向基站发送第一RS序列。第一时间间隔将在步骤340中进行进一步描述。
可选地,终端设备获取对应第一时间间隔的第一RS序列具体包括:终端设备接收基站发送的高层信令,高层信令为终端设备指示所述第一RS序列。
另外可选地,终端设备获取对应第一时间间隔的第一RS序列具体包括:终端设备按照下述预定义公式(2)计算所述第一RS序列对应的第一索引号,并根据第一索引号获取第一RS序列:
RSindex1=CRNTImodN                (2)
其中,RSindex为第一索引号,CRNTI为终端设备的小区无线网络临时标识,N为N个RS序列的序列个数。
可选地,在第一时间间隔,终端设备利用所述第一RS序列向所述基站发送第一数据包。
如前文所述,通过引入多个根序列,解决了仅能支持有限个终端设备在竞争的数据传输区域进行数据传输的问题。
但是,由于该至少两个根序列中的每个根序列均可为ZC序列,则基于每个根序列生成的RS序列两两之间为正交的,但基于不同根序列生成的RS序列之间可能为非正交的关系。由于引入了非正交的RS,且对应一个基站的多个终端设备均在N个RS序列中选择参考信号,则两个终端设备使用的RS序列相关性有可能较大,造成基站的检测错误。
例如,假设终端设备在第一时间间隔利用第一RS序列向基站发送第一 数据包时,另一个终端设备在同样的时间间隔使用另外的RS序列向所述发送数据包,如果该第一RS序列与另一个终端设备使用的RS序列相关性较大,则终端设备会接收到基站关于重传第一数据包的通知。
如果重传时两个终端设备仍使用之前两个相关性较大的RS,并又在同一个时间间隔进行了数据包重传,则同样会产生较大干扰。为了避免以上的问题,可以通过初传和重传的RS的变化来达到RS的干扰随机化的效果。
在步骤330中,终端设备确定对应第二时间间隔的第二RS序列,其中,第二RS序列也为N个RS序列中的一个,且第二RS序列为根据第一RS序列计算所得。
在步骤340中,在第二时间间隔,终端设备向基站发送第二RS序列。
本发明的实施例中,针对第一时间间隔、第二时间间隔有两种不同的定义,以下分别情况一及情况二中进行说明。
情况一,上述第一时间间隔和第二时间间隔分别对应发送一个数据包的单位时域资源和重传该数据包的另一个单位时域资源。
在本发明实施例中,重传一个数据包是指对该数据包的原始数据进行信道编码和速率匹配得到根据原始数据编码后的重传数据,对此重传数据发送。
可选地,单位时域资源可为一个子帧。
在此种情况下,在第一时间间隔,终端设备利用第一RS序列向所述基站发送第一数据包;在第二时间间隔,终端设备利用第二RS序列向所述基站重新发送该第一数据包,第二RS序列与第一RS序列不同。
可选地,第二RS序列为根据所述第一RS序列计算所得具体包括:终端设备根据第一序列的索引号和终端设备发送同一数据包的相邻两次时间间隔的索引移位数,计算第二序列对应的第二索引号。
可选地,终端设备可按照如下公式(3)根据第一RS序列计算第二RS序列对应的第二索引号:
RSindex2=(RSindex1+S1)modT            (3)
其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,S1为所述终端设备发送同一数据包的相邻两次时间间隔的索引移位数,且S1为正整数,T为大于等于数字N的最小素数。
由于T为素数,因此,任何正整数都与T互素,从而保证了在N次发送数据包的时间间隔后,终端设备可将全部的N个RS序列都配置一遍。
可选地,所述终端设备针对每个数据包,给每次发送数据包对应的时间间隔配置一个不同的RS序列,因此,对同一个数据包进行第n+1次发送对应的时间间隔与进行第n次发送时对应的时间间隔为相邻的时间间隔。需要说明的是,针对一个数据包,第n+1次发送也可称作第n次发送的再次发送,其中,n为正整数。
如上所述,S1为所述终端设备相邻两个时间间隔的移位数,其中,因为S1为正整数,从而保证第二索引号RSindex2与第一索引号RSindex1为不同的值。又由于RS序列与索引号为一一对应,故而第二RS序列与第一RS序列不同,保证了对于一个数据包的再次发送时,利用了与之前一次不同的RS序列。
可选地,在另一个实施例中,终端设备可按照如下公式(4)根据第一RS序列计算第二RS序列对应的第二索引号:
RSindex2=(RSindex1+M1)modN                (4)
其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,M1为所述终端设备发送同一数据包的相邻两次时间间隔的索引移位数,且M1为正整数,且与N互素。
从而保证了在N次发送数据包的时间间隔后,终端设备可将全部的N个RS都配置过一遍。
例如,终端设备将第一索引号加M1,对N取模后得到第二索引号,从而获取第二RS序列。其中,由于M与N互素,则每次在索引号上加M,可保证在N个时间间隔后,终端设备可配置N个RS序列中的每个RS序列,并且每次使用的RS序列不同。举例说明如下:假设RS序列的个数N为8,则可选择M为1,3,5,7中的任意一个。当M为1时,在每个时间间隔,终端设备配置的RS序列对应的索引号为上次的索引号加1,在8个时间间隔后,终端设备可将全部的8个RS序列都配置过一遍。
综上,当终端设备为针对每次发送数据包对应的时间间隔配置一个不同的RS序列时,可满足每次发送数据包使用不同的RS序列,达到了RS的干扰随机化的效果。
情况二,上述第一时间间隔和第二时间间隔分别对应基站允许终端设备发送数据包的两个单位时域资源,例如子帧。终端设备可接收基站发送的允许终端设备发送数据包的多个单位时域资源的信息,上述第一时间间隔为多个单位时域资源中的一个,第二时间间隔也为多个单位时域资源中的一个, 且为第一时间间隔之后的第K个单位时域资源,其中,K为大于1的正整数。也即,在第一时间间隔和第二时间间隔之间,还有K-1个允许终端设备发送数据包的单位时域资源的信息。在每个允许发送数据包的单位时域资源,终端设备可以选择发送数据包,也可以选择不发送数据包。
例如,该单位时域资源为子帧,即第一时间间隔对应一个可用于发送数据包的子帧,第二时间间隔对应第一时间间隔后的,可用于发送数据包的第K个子帧。可选地,终端设备可为每个可发送数据包的子帧配置一个对应的RS序列。尽管在第2至K-1个子帧终端设备均未发送数据包,但按照配置规则,终端设备依然为每个子帧配置了对应的RS序列,对第K个子帧的RS序列的计算方式如后续说明。
可选地,N个RS序列对应N个不同的时间间隔,其中,每个时间间隔为允许所述UE向所述基站发送数据包的一个单位时域资源,且N个时间间隔构成一个时间周期,其中,第一时间间隔为该时间周期中的第一个单位时域资源。
可选地,第二RS序列为根据所述第一RS序列计算所得具体包括:终端设备根据第一序列的索引号和相邻两次单位时域资源对应的索引号的移位数,计算第二序列对应的第二索引号。
可选地,终端设备按照如下公式(5)计算第二序列对应的第二索引号:
RSindex2=[RSindex1+(K-1)S2]modT               (5)
其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,S2为相邻两次单位时域资源对应的索引号的移位数,T为大于等于数字N的最小素数。
也即,由于第二RS序列对应的第二时间为第K个子帧,因此,需要计算第K个子帧对应的RS序列的序列索引号。
另外可选地,终端设备可按照如下公式(6)根据第一RS序列计算第二RS序列对应的第二索引号:
RSindex2=[RSindex1+(K-1)M2]modN                (6)
其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,M2为相邻两次单位时域资源对应的索引号的移位数,且M2为正整数,并与N互素。
同理,可根据公式(5)或公式(6)可计算任意子帧对应的RS序列,无 论终端设备在该子帧是否发送了数据包。
该种情况下,由于在每个子帧终端设备可利用不同的RS序列进行发送,同样实现了RS序列的随机变化,从而降低了与其他终端设备发生参考信号干扰的概率。
如上文所述,N个RS序列可对应N个索引号。终端设备可根据索引号获取对应的RS序列。
综上,当终端设备为针对每次允许发送数据的时间间隔配置一个不同的RS序列时,可大大减少了RS序列,达到了RS的干扰随机化的效果。
图5是根据本发明一个实施例的传输数据的方法的示意性流程图。图5的方法可以由基站执行。
步骤510,在第一时间间隔,基站接收第一参考信号(RS)序列,其中,所述第一RS序列为N个RS序列中的一个,N为正整数,其中,所述N个RS序列基于至少两个根序列生成。
可选地,该N个RS序列对应同一个小区,且该小区为基站对应的小区。N个RS序列在步骤310中已描述,在此不做赘述。
步骤520,基站根据所述第一时间间隔确认收到的第一RS序列为第一终端设备所发送。
步骤530,在第二时间间隔,基站接收第二RS序列,其中,第二RS序列为所述N个RS序列中的一个,且第二RS序列为根据所述第一RS序列确定。
可选地,在情况一,上述第一时间间隔和第二时间间隔分别对应发送一个数据包的单位时域资源和重传该数据包的另一个单位时域资源。
可选地,在所述第一时间间隔,所述基站接收所述终端设备利用所述第一RS序列发送的第一数据包;在所述第二时间间隔,所述基站接收终端设备利用所述第二RS序列再次发送的所述第一数据包,所述第二RS序列与所述第一RS序列不同。
可选地,所述N个RS序列与N个索引号一一对应,所述根据所述第一RS序列确定所述第二RS序列包括:根据第一RS序列的索引号和发送同一数据包的相邻两次时间间隔的索引号移位数,计算第二RS序列对应的第二索引号。
可选地,计算所述第二索引号的公式为公式(3),其中,RSindex2为所述第 二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,S1为所述基站接收同一数据包的相邻两次时间间隔的索引号移位数,且S1为正整数,T为大于等于数字N的最小素数。
可选地,计算所述第二索引号的公式为公式(4),其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,M1为所述基站接收同一数据包的相邻两次时间间隔的索引号移位数,M1为正整数,且M1与N互素。
情况二,上述第一时间间隔和第二时间间隔分别对应基站允许终端设备发送数据包的两个单位时域资源,例如子帧。
可选地,所述N个RS序列对应N个不同的时间间隔,其中,每个时间间隔为所述基站允许所述终端设备发送数据包的一个单位时域资源,且所述N个时间间隔构成一个时间周期;其中,所述第一时间间隔为所述时间周期中的第一个单位时域资源,所述第二时间间隔为所述时间周期中的第K个单位时域资源,其中,K为大于1小于等于N的正整数。
可选地,所述N个RS序列与N个索引号一一对应,所述根据所述第一RS序列确定所述第二RS序列包括:根据所述第一RS序列的索引号和相邻两次单位时域资源对应的索引号的移位数,计算所述第二RS序列对应的第二索引号。
可选地,所述计算所述第二索引号的公式为公式(5),其中,RSindex2为所述第二RS序列对应的所述第二索引号,RSindex1为所述第一RS序列对应的第一索引号,S2为相邻两次单位时域资源对应的索引号的移位数,T为大于等于数字N的最小素数。
可选地,所述计算所述第二索引号的公式为公式(6),其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,S2为相邻两次单位时域资源对应的索引号的移位数,M1为正整数,且M2与N互素。
可选地,所述基站向所述终端设备发送高层信令,所述高层信令为所述终端设备指示所述第一RS序列。
可选地,所述至少两个根序列中的每个根序列均为乍道夫-楚序列。
步骤540,基站根据所述第二时间间隔确认收到的第二RS序列为第一终端设备发送。
基站进行数据传输的过程可参考图3中终端设备的方法,在此不再赘述。
图6是根据本发明一个实施例的终端设备的示意图。图6的用户设备600包括接收单元610、处理单元620和发送单元630。
处理单元620,用于确定对应第一时间间隔的第一参考信号(RS)序列,其中,所述第一RS序列为N个RS序列中的一个,N为大于1的正整数,其中,所述N个RS序列基于至少两个根序列生成。
发送单元630,用于在所述第一时间间隔,向基站发送所述第一RS序列;
所述处理单元620还用于根据所述第一RS序列从所述N个RS序列中确定一个RS序列作为对应第二时间间隔的第二RS序列,其中,所述第二RS序列为根据所述第一RS序列确定;所述发送单元630还用于,在所述第二时间间隔,向基站发送所述第二RS序列。
可选地,所述N个RS序列对应同一个小区,且所述小区为所述终端设备的当前服务小区。
上述第一时间间隔和第二时间间隔分别对应发送一个数据包的单位时域资源和重传该数据包的另一个单位时域资源。
可选地,在所述第一时间间隔,所述发送单元630利用所述第一RS序列向所述基站发送第一数据包;在所述第二时间间隔,所述发送单元630利用所述第二RS序列向所述基站再次发送所述第一数据包,所述第二RS序列与所述第一RS序列不同。
可选地,所述N个RS序列与N个索引号一一对应,所述处理单元620根据所述第一RS序列确定所述第二RS序列包括:所述处理单元620根据第一RS序列的索引号和发送同一数据包的相邻两次时间间隔的索引号移位数,计算第二RS序列对应的第二索引号;所述处理单元620根据所述第二索引号确定所述第二RS序列。
可选地,计算所述第二索引号的公式为公式(3),其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,S1为所述发送单元630发送同一数据包的相邻两次时间间隔的索引号移位数,且S1为正整数,T为大于等于数字N的最小素数。
可选地,计算所述第二索引号的公式为公式(4),其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,M1为所述发送单元630发送同一数据包的相邻两次时间间隔的索引号移位 数,M1为正整数,且M1与N互素。
情况二,上述第一时间间隔和第二时间间隔分别对应基站允许终端设备发送数据包的两个单位时域资源,例如子帧。
可选地,所述N个RS序列对应N个不同的时间间隔,其中,每个时间间隔为允许所述终端设备向所述基站发送数据包的一个单位时域资源,且所述N个时间间隔构成一个时间周期;其中,所述第一时间间隔为所述时间周期中的第一个单位时域资源,所述第二时间间隔为所述时间周期中的第K个单位时域资源,其中,K为大于1小于等于N的正整数。
可选地,所述N个RS序列与N个索引号一一对应,所述处理单元620备根据所述第一RS序列确定所述第二RS序列包括:所述处理单元620根据所述第一RS序列的索引号和相邻两次单位时域资源对应的索引号的移位数,计算所述第二RS序列对应的第二索引号。
可选地,计算所述第二索引号的公式为公式(5),其中,RSindex2为所述第二RS序列对应的所述第二索引号,RSindex1为所述第一RS序列对应的第一索引号,S2为相邻两次单位时域资源对应的索引号的移位数,T为大于等于数字N的最小素数。
可选地,所述处理单元620按照公式(6)计算所述第二索引号:其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,S2为相邻两次单位时域资源对应的索引号的移位数,M2为正整数,且M2与N互素。
可选地,所述终端设备还包括:接收单元610;所述处理单元620确定对应第一时间间隔的第一RS序列包括:所述接收单元610根据从所述基站接收的高层信令确定所述第一RS序列,所述高层信令为所述终端设备指示所述第一RS序列。
可选地,所述处理单元620确定对应第一时间间隔的第一RS序列包括:所述处理单元620按照下述预定义公式(2)计算所述第一RS序列对应的第一索引号,并根据所述第一索引号获取所述第一RS序列。
图6中终端设备进行数据传输的过程可参考图3中终端设备的方法,在此不再赘述。
应注意,本发明实施例中,接收单元610可以由接收器实现,发送单元630可以由发送器实现,处理单元620可以由处理器实现。如图7所示,用 户设备700可以包括处理器710、接收器720、发送器730和存储器740。其中,存储器740可以用于存储终端设备出厂时预装的程序/代码,也可以存储用于处理器710执行时的代码等。
用户设备700中的各个组件通过总线系统750耦合在一起,其中总线系统750除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图8是根据本发明一个实施例的终端设备的示意图。图8的用户设备800包括接收单元810、处理单元820和发送单元830。
接收单元810,用于在第一时间间隔,接收第一参考信号(RS)序列,其中,所述第一RS序列为N个RS序列中的一个,N为正整数,其中,所述N个RS序列基于至少两个根序列生成。
处理单元820,用于根据所述第一时间间隔确认收到的第一RS序列为第一终端设备所发送。
接收单元810还用于,在第二时间间隔,接收第二RS序列,其中,所述第二RS序列为所述N个RS序列中的一个,且所述第二RS序列为根据所述第一RS序列确定。
处理单元820还用于根据所述第二时间间隔确认收到的第二RS序列为所述第一终端设备发送。
可选地,所述N个RS序列对应同一个小区,且所述小区为所述基站对应的小区。
情况一,上述第一时间间隔和第二时间间隔分别对应发送一个数据包的单位时域资源和重传该数据包的另一个单位时域资源。
可选地,接收单元810还用于,在所述第一时间间隔,接收所述终端设备利用所述第一RS序列发送的第一数据包;接收单元810还用于,在所述第二时间间隔,接收终端设备利用所述第二RS序列再次发送的所述第一数据包,所述第二RS序列与所述第一RS序列不同。
可选地,所述N个RS序列与N个索引号一一对应,所述根据所述第一RS序列确定所述第二RS序列包括:根据第一RS序列的索引号和发送同一数据包的相邻两次时间间隔的索引号移位数,计算第二RS序列对应的第二索引号。
可选地,所述计算所述第二索引号的公式为公式(3),其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引 号,S1为所述接收单元810接收同一数据包的相邻两次时间间隔的索引号移位数,且S1为正整数,T为大于等于数字N的最小素数。
可选地,所述计算所述第二索引号的公式为公式(4),其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,M1为所述接收单元810接收同一数据包的相邻两次时间间隔的索引号移位数,M1为正整数,且M1与N互素。
情况二,上述第一时间间隔和第二时间间隔分别对应基站允许终端设备发送数据包的两个单位时域资源,例如子帧。
可选地,所述N个RS序列对应N个不同的时间间隔,其中,每个时间间隔为所述基站允许所述终端设备发送数据包的一个单位时域资源,且所述N个时间间隔构成一个时间周期;其中,所述第一时间间隔为所述时间周期中的第一个单位时域资源,所述第二时间间隔为所述时间周期中的第K个单位时域资源,其中,K为大于1小于等于N的正整数。
可选地,所述N个RS序列与N个索引号一一对应,所述根据所述第一RS序列确定所述第二RS序列包括:根据所述第一RS序列的索引号和相邻两次单位时域资源对应的索引号的移位数,计算所述第二RS序列对应的第二索引号。
可选地,所述计算所述第二索引号的公式为公式(5),其中,RSindex2为所述第二RS序列对应的所述第二索引号,RSindex1为所述第一RS序列对应的第一索引号,S2为相邻两次单位时域资源对应的索引号的移位数,T为大于等于数字N的最小素数。
可选地,所述计算所述第二索引号的公式为公式(6),其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,S2为相邻两次单位时域资源对应的索引号的移位数,M1为正整数,且M2与N互素。
可选地,所述发送单元830向所述终端设备发送高层信令,所述高层信令为所述终端设备指示所述第一RS序列。
基站进行数据传输的过程可参考图3中终端设备的数据传输方法和图5中基站的数据传输方法,在此不再赘述。
应注意,本发明实施例中,接收单元810可以由接收器实现,发送单元830可以由发送器实现,处理单元820可以由处理器实现。如图9所示,基 站900可以包括处理器910、接收器920、发送器930和存储器940。其中,存储器940可以用于为基站预装的程序/代码,也可以存储用于处理器910执行时的代码等。
终端设备900中的各个组件通过总线系统950耦合在一起,其中总线系统950除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (50)

  1. 一种数据传输的方法,其特征在于,包括:
    终端设备确定对应第一时间间隔的第一参考信号(RS)序列,其中,所述第一RS序列为N个RS序列中的一个,N为大于1的正整数,其中,所述N个RS序列基于至少两个根序列生成;
    在所述第一时间间隔,所述终端设备向基站发送所述第一RS序列;
    所述终端设备根据所述第一RS序列从所述N个RS序列中确定一个RS序列作为对应第二时间间隔的第二RS序列,其中,所述第二RS序列为根据所述第一RS序列确定;
    在所述第二时间间隔,所述终端设备向基站发送所述第二RS序列。
  2. 如权利要求1所述的方法,其特征在于,所述N个RS序列对应同一个小区,且所述小区为所述终端设备的当前服务小区。
  3. 如权利要求1所述的方法,其特征在于,还包括:
    在所述第一时间间隔,所述终端设备利用所述第一RS序列向所述基站发送第一数据包;
    在所述第二时间间隔,所述终端设备利用所述第二RS序列向所述基站再次发送所述第一数据包,所述第二RS序列与所述第一RS序列不同。
  4. 如权利要求3所述的方法,其特征在于,所述N个RS序列与N个索引号一一对应,所述终端设备根据所述第一RS序列确定所述第二RS序列包括:
    所述终端设备根据第一RS序列的索引号和发送同一数据包的相邻两次时间间隔的索引号移位数,计算第二RS序列对应的第二索引号;
    所述终端设备根据所述第二索引号确定所述第二RS序列。
  5. 如权利要求4所述的方法,其特征在于,计算所述第二索引号的公式为:
    RSindex2=(RSindex1+S1)mod T,
    其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,S1为所述终端设备发送同一数据包的相邻两次时间间隔的索引号移位数,且S1为正整数,T为大于等于数字N的最小素数。
  6. 如权利要求4所述的方法,其特征在于,计算所述第二索引号的公式为:
    RSindex2=(RSindex1+M1)mod N,
    其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,M1为所述终端设备发送同一数据包的相邻两次时间间隔的索引号移位数,M1为正整数,且M1与N互素。
  7. 如权利要求1所述的方法,其特征在于,所述N个RS序列对应N个不同的时间间隔,其中,每个时间间隔为允许所述终端设备向所述基站发送数据包的一个单位时域资源,且所述N个时间间隔构成一个时间周期;
    其中,所述第一时间间隔为所述时间周期中的第一个单位时域资源,所述第二时间间隔为所述时间周期中的第K个单位时域资源,其中,K为大于1小于等于N的正整数。
  8. 如权利要求7所述的方法,其特征在于,所述N个RS序列与N个索引号一一对应,所述终端设备根据所述第一RS序列确定所述第二RS序列包括:
    所述终端设备根据所述第一RS序列的索引号和相邻两次单位时域资源对应的索引号的移位数,计算所述第二RS序列对应的第二索引号。
  9. 如权利要求8所述的方法,其特征在于,计算所述第二索引号的公式为:
    RSindex2=[RSindex1+(K-1)S2]mod T,
    其中,RSindex2为所述第二RS序列对应的所述第二索引号,RSindex1为所述第一RS序列对应的第一索引号,S2为相邻两次单位时域资源对应的索引号的移位数,T为大于等于数字N的最小素数。
  10. 如权利要求8所述的方法,其特征在于,所述终端设备按照如下公式计算所述第二索引号:
    RSindex2=[RSindex1+(K-1)M2]mod N,
    其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,S2为相邻两次单位时域资源对应的索引号的移位数,M2为正整数,且M2与N互素。
  11. 如权利要求1-10任一项所述的方法,其特征在于,所述终端设备确定对应第一时间间隔的第一RS序列包括:
    所述终端设备根据从所述基站接收的高层信令确定所述第一RS序列,所述高层信令为所述终端设备指示所述第一RS序列。
  12. 如权利要求1-11任一项所述的方法,其特征在于,所述终端设备确定对应第一时间间隔的第一RS序列包括:
    所述终端设备按照下述预定义公式计算所述第一RS序列对应的第一索引号,并根据所述第一索引号获取所述第一RS序列:
    RSindex1=CRNTImod N
    其中,RSindex为所述第一索引号,CRNTI为所述终端设备的小区无线网络临时标识,N为所述N个RS序列的序列个数。
  13. 如权利要求1-12任一项所述的方法,其特征在于,所述至少两个根序列中的每个根序列均为乍道夫-楚序列。
  14. 一种数据传输的方法,其特征在于,包括:
    在第一时间间隔,基站接收第一参考信号(RS)序列,其中,所述第一RS序列为N个RS序列中的一个,N为正整数,其中,所述N个RS序列基于至少两个根序列生成;
    所述基站根据所述第一时间间隔确认收到的第一RS序列为第一终端设备所发送;
    在第二时间间隔,所述基站接收第二RS序列,其中,所述第二RS序列 为所述N个RS序列中的一个,且所述第二RS序列为根据所述第一RS序列确定;
    所述基站根据所述第二时间间隔确认收到的第二RS序列为所述第一终端设备发送。
  15. 如权利要求14所述的方法,其特征在于,所述N个RS序列对应同一个小区,且所述小区为所述基站对应的小区。
  16. 如权利要求14所述的方法,其特征在于,还包括:
    在所述第一时间间隔,所述基站接收所述终端设备利用所述第一RS序列发送的第一数据包;
    在所述第二时间间隔,所述基站接收终端设备利用所述第二RS序列再次发送的所述第一数据包,所述第二RS序列与所述第一RS序列不同。
  17. 如权利要求16所述的方法,其特征在于,所述N个RS序列与N个索引号一一对应,所述根据所述第一RS序列确定所述第二RS序列包括:
    根据第一RS序列的索引号和发送同一数据包的相邻两次时间间隔的索引号移位数,计算第二RS序列对应的第二索引号。
  18. 如权利要求17所述的方法,其特征在于,所述计算所述第二索引号的公式为:
    RSindex2=(RSindex1+S1)mod T,
    其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,S1为所述基站接收同一数据包的相邻两次时间间隔的索引号移位数,且S1为正整数,T为大于等于数字N的最小素数。
  19. 如权利要求17所述的方法,其特征在于,所述计算所述第二索引号的公式为:
    RSindex2=(RSindex1+M1)mod N,
    其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,M1为所述基站接收同一数据包的相邻两次时间间 隔的索引号移位数,M1为正整数,且M1与N互素。
  20. 如权利要求14所述的方法,其特征在于,所述N个RS序列对应N个不同的时间间隔,其中,每个时间间隔为所述基站允许所述终端设备发送数据包的一个单位时域资源,且所述N个时间间隔构成一个时间周期;
    其中,所述第一时间间隔为所述时间周期中的第一个单位时域资源,所述第二时间间隔为所述时间周期中的第K个单位时域资源,其中,K为大于1小于等于N的正整数。
  21. 如权利要求20所述的方法,其特征在于,所述N个RS序列与N个索引号一一对应,所述根据所述第一RS序列确定所述第二RS序列包括:
    根据所述第一RS序列的索引号和相邻两次单位时域资源对应的索引号的移位数,计算所述第二RS序列对应的第二索引号。
  22. 如权利要求21所述的方法,其特征在于,所述计算所述第二索引号的公式为:
    RSindex2=[RSindex1+(K-1)S2]mod T,
    其中,RSindex2为所述第二RS序列对应的所述第二索引号,RSindex1为所述第一RS序列对应的第一索引号,S2为相邻两次单位时域资源对应的索引号的移位数,T为大于等于数字N的最小素数。
  23. 如权利要求21所述的方法,其特征在于,所述计算所述第二索引号的公式为:
    RSindex2=[RSindex1+(K-1)M2]mod N,
    其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,S2为相邻两次单位时域资源对应的索引号的移位数,M1为正整数,且M2与N互素。
  24. 如权利要求14-23所述的方法,其特征在于,还包括:
    所述基站向所述终端设备发送高层信令,所述高层信令为所述终端设备指示所述第一RS序列。
  25. 如权利要求14-24任一项所述的方法,其特征在于,所述至少两个根序列中的每个根序列均为乍道夫-楚序列。
  26. 一种终端设备,其特征在于,包括:
    处理单元,用于确定对应第一时间间隔的第一参考信号(RS)序列,其中,所述第一RS序列为N个RS序列中的一个,N为大于1的正整数,其中,所述N个RS序列基于至少两个根序列生成;
    发送单元,用于在所述第一时间间隔,向基站发送所述第一RS序列;
    所述处理单元还用于根据所述第一RS序列从所述N个RS序列中确定一个RS序列作为对应第二时间间隔的第二RS序列,其中,所述第二RS序列为根据所述第一RS序列确定;
    所述发送单元还用于,在所述第二时间间隔,向基站发送所述第二RS序列。
  27. 如权利要求26所述的终端设备,其特征在于,所述N个RS序列对应同一个小区,且所述小区为所述终端设备的当前服务小区。
  28. 如权利要求26所述的终端设备,其特征在于,还包括:
    在所述第一时间间隔,所述发送单元利用所述第一RS序列向所述基站发送第一数据包;
    在所述第二时间间隔,所述发送单元利用所述第二RS序列向所述基站再次发送所述第一数据包,所述第二RS序列与所述第一RS序列不同。
  29. 如权利要求28所述的终端设备,其特征在于,所述N个RS序列与N个索引号一一对应,所述处理单元根据所述第一RS序列确定所述第二RS序列包括:
    所述处理单元根据第一RS序列的索引号和发送同一数据包的相邻两次时间间隔的索引号移位数,计算第二RS序列对应的第二索引号;
    所述处理单元根据所述第二索引号确定所述第二RS序列。
  30. 如权利要求29所述的终端设备,其特征在于,计算所述第二索引号的公式为:
    RSindex2=(RSindex1+S1)mod T,
    其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,S1为所述发送单元发送同一数据包的相邻两次时间间隔的索引号移位数,且S1为正整数,T为大于等于数字N的最小素数。
  31. 如权利要求29所述的终端设备,其特征在于,计算所述第二索引号的公式为:
    RSindex2=(RSindex1+M1)mod N,
    其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,M1为所述发送单元发送同一数据包的相邻两次时间间隔的索引号移位数,M1为正整数,且M1与N互素。
  32. 如权利要求26所述的终端设备,其特征在于,所述N个RS序列对应N个不同的时间间隔,其中,每个时间间隔为允许所述终端设备向所述基站发送数据包的一个单位时域资源,且所述N个时间间隔构成一个时间周期;
    其中,所述第一时间间隔为所述时间周期中的第一个单位时域资源,所述第二时间间隔为所述时间周期中的第K个单位时域资源,其中,K为大于1小于等于N的正整数。
  33. 如权利要求32所述的终端设备,其特征在于,所述N个RS序列与N个索引号一一对应,所述处理单元备根据所述第一RS序列确定所述第二RS序列包括:
    所述处理单元根据所述第一RS序列的索引号和相邻两次单位时域资源对应的索引号的移位数,计算所述第二RS序列对应的第二索引号。
  34. 如权利要求33所述的终端设备,其特征在于,计算所述第二索引号的公式为:
    RSindex2=[RSindex1+(K-1)S2]mod T,
    其中,RSindex2为所述第二RS序列对应的所述第二索引号,RSindex1为所述 第一RS序列对应的第一索引号,S2为相邻两次单位时域资源对应的索引号的移位数,T为大于等于数字N的最小素数。
  35. 如权利要求33所述的终端设备,其特征在于,所述处理单元按照如下公式计算所述第二索引号:
    RSindex2=[RSindex1+(K-1)M2]mod N,
    其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,S2为相邻两次单位时域资源对应的索引号的移位数,M2为正整数,且M2与N互素。
  36. 如权利要求26-35所述的终端设备,其特征在于,所述终端设备还包括:
    接收单元;所述处理单元确定对应第一时间间隔的第一RS序列包括:
    所述接收单元根据从所述基站接收的高层信令确定所述第一RS序列,所述高层信令为所述终端设备指示所述第一RS序列。
  37. 如权利要求26-36所述的终端设备,其特征在于,所述处理单元确定对应第一时间间隔的第一RS序列包括:
    所述处理单元按照下述预定义公式计算所述第一RS序列对应的第一索引号,并根据所述第一索引号获取所述第一RS序列:
    RSindex1=CRNTImod N
    其中,RSindex为所述第一索引号,CRNTI为所述终端设备的小区无线网络临时标识,N为所述N个RS序列的序列个数。
  38. 如权利要求26-37任一项所述的终端设备,其特征在于,所述至少两个根序列中的每个根序列均为乍道夫-楚序列。
  39. 一种基站,其特征在于,包括:
    接收单元,用于在第一时间间隔,接收第一参考信号(RS)序列,其中,所述第一RS序列为N个RS序列中的一个,N为正整数,其中,所述N个RS序列基于至少两个根序列生成;
    处理单元,用于根据所述第一时间间隔确认收到的第一RS序列为第一终端设备所发送;
    所述接收单元还用于,在第二时间间隔,接收第二RS序列,其中,所述第二RS序列为所述N个RS序列中的一个,且所述第二RS序列为根据所述第一RS序列确定;
    所述处理单元还用于根据所述第二时间间隔确认收到的第二RS序列为所述第一终端设备发送。
  40. 如权利要求39所述的基站,其特征在于,所述N个RS序列对应同一个小区,且所述小区为所述基站对应的小区。
  41. 如权利要求39所述的基站,其特征在于,还包括:
    所述接收单元还用于,在所述第一时间间隔,接收所述终端设备利用所述第一RS序列发送的第一数据包;
    所述接收单元还用于,在所述第二时间间隔,接收终端设备利用所述第二RS序列再次发送的所述第一数据包,所述第二RS序列与所述第一RS序列不同。
  42. 如权利要求41所述的基站,其特征在于,所述N个RS序列与N个索引号一一对应,所述根据所述第一RS序列确定所述第二RS序列包括:
    根据第一RS序列的索引号和发送同一数据包的相邻两次时间间隔的索引号移位数,计算第二RS序列对应的第二索引号。
  43. 如权利要求42所述的基站,其特征在于,所述计算所述第二索引号的公式为:
    RSindex2=(RSindex1+S1)mod T,
    其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,S1为所述接收单元接收同一数据包的相邻两次时间间隔的索引号移位数,且S1为正整数,T为大于等于数字N的最小素数。
  44. 如权利要求42所述的基站,其特征在于,所述计算所述第二索引号 的公式为:
    RSindex2=(RSindex1+M1)mod N,
    其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,M1为所述接收单元接收同一数据包的相邻两次时间间隔的索引号移位数,M1为正整数,且M1与N互素。
  45. 如权利要求39所述的基站,其特征在于,所述N个RS序列对应N个不同的时间间隔,其中,每个时间间隔为所述基站允许所述终端设备发送数据包的一个单位时域资源,且所述N个时间间隔构成一个时间周期;
    其中,所述第一时间间隔为所述时间周期中的第一个单位时域资源,所述第二时间间隔为所述时间周期中的第K个单位时域资源,其中,K为大于1小于等于N的正整数。
  46. 如权利要求45所述的基站,其特征在于,所述N个RS序列与N个索引号一一对应,所述根据所述第一RS序列确定所述第二RS序列包括:
    根据所述第一RS序列的索引号和相邻两次单位时域资源对应的索引号的移位数,计算所述第二RS序列对应的第二索引号。
  47. 如权利要求46所述的基站,其特征在于,所述计算所述第二索引号的公式为:
    RSindex2=[RSindex1+(K-1)S2]mod T,
    其中,RSindex2为所述第二RS序列对应的所述第二索引号,RSindex1为所述第一RS序列对应的第一索引号,S2为相邻两次单位时域资源对应的索引号的移位数,T为大于等于数字N的最小素数。
  48. 如权利要求46所述的基站,其特征在于,所述计算所述第二索引号的公式为:
    RSindex2=[RSindex1+(K-1)M2]mod N,
    其中,RSindex2为所述第二序列对应的所述第二索引号,RSindex1为所述第一序列对应的第一索引号,S2为相邻两次单位时域资源对应的索引号的移位数,M1为正整数,且M2与N互素。
  49. 如权利要求39-48所述的基站,其特征在于,还包括:
    所述发送单元向所述终端设备发送高层信令,所述高层信令为所述终端设备指示所述第一RS序列。
  50. 如权利要求39-49任一项所述的基站,其特征在于,所述至少两个根序列中的每个根序列均为乍道夫-楚序列。
PCT/CN2015/089803 2015-09-16 2015-09-16 数据传输的方法、终端设备和基站 WO2017045179A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2998744A CA2998744A1 (en) 2015-09-16 2015-09-16 Data transmission method, terminal device, and base station
EP15903869.4A EP3337258B1 (en) 2015-09-16 2015-09-16 Data transmission method, terminal device, and base station
CN201580083119.2A CN108029108B (zh) 2015-09-16 2015-09-16 数据传输的方法、终端设备和基站
PCT/CN2015/089803 WO2017045179A1 (zh) 2015-09-16 2015-09-16 数据传输的方法、终端设备和基站
US15/923,946 US10511423B2 (en) 2015-09-16 2018-03-16 Data transmission method, terminal device, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/089803 WO2017045179A1 (zh) 2015-09-16 2015-09-16 数据传输的方法、终端设备和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/923,946 Continuation US10511423B2 (en) 2015-09-16 2018-03-16 Data transmission method, terminal device, and base station

Publications (1)

Publication Number Publication Date
WO2017045179A1 true WO2017045179A1 (zh) 2017-03-23

Family

ID=58288338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089803 WO2017045179A1 (zh) 2015-09-16 2015-09-16 数据传输的方法、终端设备和基站

Country Status (5)

Country Link
US (1) US10511423B2 (zh)
EP (1) EP3337258B1 (zh)
CN (1) CN108029108B (zh)
CA (1) CA2998744A1 (zh)
WO (1) WO2017045179A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3248347B1 (en) * 2016-03-23 2018-12-19 Telefonaktiebolaget LM Ericsson (publ) Methods and devices for reduction of cubic metric in a concatenated block reference signal design
KR102639615B1 (ko) * 2017-02-07 2024-02-22 삼성전자주식회사 무선 통신 시스템에서 다중 접속을 지원하기 위한 장치 및 방법
KR20200113218A (ko) * 2018-01-22 2020-10-06 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 정보 결정 방법 및 장치, 컴퓨터 저장 매체
JP7328320B2 (ja) 2018-07-25 2023-08-16 オッポ広東移動通信有限公司 ランダムアクセスの方法及び通信デバイス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309134A (zh) * 2008-06-23 2008-11-19 中兴通讯股份有限公司 一种下行数据接收状态的通知方法
CN101854227A (zh) * 2009-01-22 2010-10-06 三星电子株式会社 在无线通信系统中发送和接收上行探测信号的装置和方法
WO2011005163A1 (en) * 2009-07-07 2011-01-13 Telefonaktiebolaget L M Ericsson (Publ) Random access procedure utilizing cyclic shift of demodulation reference signal
CN102461052A (zh) * 2009-06-22 2012-05-16 高通股份有限公司 在资源的不连续簇上传输参考信号
US20130170441A1 (en) * 2011-07-21 2013-07-04 Telefonaktiebolaget L M Ericsson (Publ) Sequence Derivation for Reference Signal Patterns

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100066255A (ko) * 2008-12-09 2010-06-17 엘지전자 주식회사 다중안테나를 갖는 무선 통신 시스템에서 상향링크 기준 신호 전송 및 수신 방법
EP2211515B1 (en) 2009-01-22 2016-05-25 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving uplink sounding signal in broadband wireless communication system
US9137076B2 (en) * 2009-10-30 2015-09-15 Qualcomm Incorporated Method and apparatus for mutiplexing reference signal and data in a wireless communication system
RU2014108326A (ru) * 2011-08-05 2015-09-10 Телефонактиеболагет Л М Эрикссон (Пабл) Способ генерации опорного сигнала
WO2013073917A1 (ko) * 2011-11-17 2013-05-23 엘지전자 주식회사 상향링크 신호 수신 방법 및 기지국과, 상향링크 신호 전송 방법 및 사용자기기
EP2624495A1 (en) * 2012-01-31 2013-08-07 Alcatel Lucent A method for retransmission of reference signals in uplink, and network devices therefor
CN103297953B (zh) * 2012-02-24 2016-06-01 华为技术有限公司 物理小区标识配置、逻辑根序列索引配置方法及基站设备
CN104798400B (zh) * 2013-01-09 2019-07-19 Lg 电子株式会社 接收信号的方法和用户设备以及发送信号的方法和基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309134A (zh) * 2008-06-23 2008-11-19 中兴通讯股份有限公司 一种下行数据接收状态的通知方法
CN101854227A (zh) * 2009-01-22 2010-10-06 三星电子株式会社 在无线通信系统中发送和接收上行探测信号的装置和方法
CN102461052A (zh) * 2009-06-22 2012-05-16 高通股份有限公司 在资源的不连续簇上传输参考信号
WO2011005163A1 (en) * 2009-07-07 2011-01-13 Telefonaktiebolaget L M Ericsson (Publ) Random access procedure utilizing cyclic shift of demodulation reference signal
US20130170441A1 (en) * 2011-07-21 2013-07-04 Telefonaktiebolaget L M Ericsson (Publ) Sequence Derivation for Reference Signal Patterns

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3337258A4 *

Also Published As

Publication number Publication date
EP3337258A4 (en) 2018-08-15
US10511423B2 (en) 2019-12-17
US20180205515A1 (en) 2018-07-19
EP3337258A1 (en) 2018-06-20
EP3337258B1 (en) 2020-02-26
CN108029108A (zh) 2018-05-11
CA2998744A1 (en) 2017-03-23
CN108029108B (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
JP6961679B2 (ja) 無線通信システムにおいて端末のd2dデータ伝送方法及び装置
US11777555B2 (en) Terminal and transmission method
KR101824902B1 (ko) 상향링크 레퍼런스 신호들을 위한 시퀀스 호핑 및 직교 커버링 코드의 적용
JP5886764B2 (ja) 無線通信システムにおけるデータ送信方法及び装置
US8184579B2 (en) ACK/NAK repetition schemes in wireless networks
WO2013077339A1 (ja) 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
US11115958B2 (en) Method whereby terminal transmits and receives sidelink signals in wireless communication system
US10973033B2 (en) Method and device for data transmission and resource selection by means of terminal measurement in wireless communication system
JP6643457B2 (ja) 物理ダウンリンク制御チャネル送信方法および装置
EP3364700B1 (en) Data transmission method, network device and terminal device
WO2018129987A1 (zh) 免授权传输的方法、终端设备和网络设备
JP7224506B2 (ja) 通信装置、通信方法および集積回路
JP2015530845A (ja) 無線通信システムにおいて受信確認応答送信方法及び装置
CN111757458B (zh) 通信的方法和终端装置
US10511423B2 (en) Data transmission method, terminal device, and base station
WO2018081991A1 (zh) 传输上行信号的方法、终端设备和网络侧设备
US10028223B2 (en) Method of receiving signal based on signal quality in device to device (D2D) communication
KR102457905B1 (ko) 비면허 스펙트럼에서 상향링크 제어 정보 송수신 방법 및 장치
JP6845951B2 (ja) 基地局、受信方法及び集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903869

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015903869

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2998744

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018005158

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018005158

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180315