WO2024130651A1 - 侧行控制信息的发送方法、装置、设备及介质 - Google Patents

侧行控制信息的发送方法、装置、设备及介质 Download PDF

Info

Publication number
WO2024130651A1
WO2024130651A1 PCT/CN2022/141078 CN2022141078W WO2024130651A1 WO 2024130651 A1 WO2024130651 A1 WO 2024130651A1 CN 2022141078 W CN2022141078 W CN 2022141078W WO 2024130651 A1 WO2024130651 A1 WO 2024130651A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
resources
pscch
time
sci
Prior art date
Application number
PCT/CN2022/141078
Other languages
English (en)
French (fr)
Inventor
张世昌
马腾
Original Assignee
Oppo广东移动通信有限公司
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024130651A1 publication Critical patent/WO2024130651A1/zh

Links

Images

Definitions

  • the present application relates to the field of wireless communications, and in particular to a method, device, equipment and medium for sending side control information.
  • the embodiments of the present application provide a method, device, equipment and medium for sending side control information, which can reduce the conflict between SL PRS sending resources and SL-U communication resources.
  • the technical solution is as follows:
  • a method for sending side control information is provided, which is applied in a terminal, and the method includes:
  • SL PRS and side control information SCI are sent, and the SCI is used to indicate the resource reservation status of SL PRS.
  • a device for sending side control information comprising:
  • the sending module is used to send SL PRS and side control information SCI according to network configuration or pre-configuration, and the SCI is used to indicate the resource reservation status of SL PRS.
  • a terminal comprising: a processor and a transceiver connected to the processor; wherein,
  • the transceiver is used to send SL PRS and side control information SCI according to network configuration or pre-configuration, and the SCI is used to indicate the resource reservation status of SL PRS.
  • a computer-readable storage medium in which executable instructions are stored.
  • the executable instructions are loaded and executed by a processor to enable a communication device to implement the method for sending side control information as described in the above aspect.
  • a chip which includes a programmable logic circuit and/or program instructions.
  • the chip runs on a communication device, it is used to enable the communication device to implement the method for sending side control information described in the above aspect.
  • a computer program product is provided.
  • the communication device executes the method for sending sideline control information described in the above aspect.
  • SCI Servicelink Control Information
  • SCI-P SCI for Positioning
  • the terminal sending SL PRS can determine the resource reservation status of SL PRS according to the network configuration or pre-configuration; wherein the network configuration or pre-configuration is determined by the network equipment based on the reservation status of the SL PRS resource pool and the SL-U communication resource pool.
  • the overlapping resources do not need to be reserved for the SL PRS; if there are non-overlapping resources between the SL PRS resource pool and the SL-U communication resource pool, the non-overlapping resources can be reserved for the SL PRS, thereby reducing the mutual interference between the SL PRS and SL-U data and improving the positioning accuracy of the SL PRS system.
  • FIG2 is a schematic diagram of sideline communication provided by an exemplary embodiment of the present application.
  • FIG3 is a schematic diagram of side communication provided by an exemplary embodiment of the present application.
  • FIG4 is a schematic diagram of sideline communication provided by an exemplary embodiment of the present application.
  • FIG5 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG6 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG7 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG8 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG9 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG10 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG11 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG13 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG14 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG15 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG16 is a flowchart of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG17 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG18 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG19 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG20 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG21 is a flowchart of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG22 is a flowchart of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG23 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG24 is a flowchart of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG25 is a flowchart of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG26 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG27 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG28 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG29 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG30 is a flowchart of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG31 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG32 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG33 is a schematic diagram of a method for sending side control information provided by an exemplary embodiment of the present application.
  • FIG34 is a structural block diagram of a device for sending side control information provided by an exemplary embodiment of the present application.
  • FIG. 35 is a schematic diagram of the structure of a communication device provided by an exemplary embodiment of the present application.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
  • a person of ordinary skill in the art can appreciate that with the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are equally applicable to similar technical problems.
  • the "indication" mentioned in the embodiments of the present application can be a direct indication, an indirect indication, or an indication of an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association relationship between A and B.
  • corresponding may indicate a direct or indirect correspondence between two items, or an association relationship between the two items, or a relationship of indication and being indicated, configuration and being configured, etc.
  • pre-defined can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, including a terminal and a network device), and the present application does not limit the specific implementation method.
  • pre-defined can refer to what is defined in the protocol.
  • FIG1 shows a schematic diagram of a network architecture 100 provided by an embodiment of the present application.
  • the network architecture 100 may include: a terminal 10 , an access network device 20 , and a core network device 30 .
  • the terminal 10 may refer to a user equipment (UE), an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device, a user agent or a user device.
  • UE user equipment
  • the terminal 10 may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal in the fifth generation mobile communication system (5th Generation System, 5GS) or a terminal in the future evolved public land mobile communication network (Public Land Mobile Network, PLMN), etc., and the embodiments of the present application are not limited to this.
  • 5GS Fifth Generation System
  • PLMN Public Land Mobile Network
  • the above-mentioned devices are collectively referred to as terminals.
  • the number of terminals 10 is usually multiple, and one or more terminals 10 may be distributed in a cell managed by each access network device 20 .
  • the access network device 20 is a device deployed in the access network to provide wireless communication functions for the terminal 10.
  • the access network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, etc.
  • the names of devices with access network device functions may be different.
  • gNodeB or gNB next Generation Node B, next generation node B (or new generation access network node)
  • the name "access network device” may change.
  • access network devices For the convenience of description, in the embodiments of the present application, the above-mentioned devices that provide wireless communication functions for the terminal 10 are collectively referred to as access network devices.
  • a communication relationship can be established between the terminal 10 and the core network device 30 through the access network device 20.
  • the access network device 20 may be an Evolved Universal Terrestrial Radio Access Network (EUTRAN) or one or more eNodeBs in the EUTRAN; in a 5G NR system, the access network device 20 may be a Radio Access Network (RAN) or one or more gNBs in the RAN.
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • RAN Radio Access Network
  • the network device refers to the access network device 20, such as a base station.
  • the core network device 30 is a device deployed in the core network.
  • the functions of the core network device 30 are mainly to provide user connection, user management and service bearing, and to provide an interface to the external network as a bearer network.
  • the core network equipment in the 5G NR system may include an access and mobility management function (Access and Mobility Management Function, AMF) network element, an authentication server function (Authentication Server Function, AUSF) network element, a user plane function (User Plane Function, UPF) network element, a session management function (Session Management Function, SMF) network element, a location management function (Location Management Function, LMF) network element, a policy control function (Policy Control Function, PCF) network element, a unified data management (Unified Data Management, UDM) network element, etc.
  • AMF Access and Mobility Management Function
  • AUSF Authentication Server Function
  • UPF User Plane Function
  • SMF Session Management Function
  • LMF Location Management Function
  • Policy Control Function Policy Control Function
  • the access network device 20 and the core network device 30 communicate with each other through a certain interface technology, such as the NG interface in the 5G NR system.
  • the access network device 20 and the terminal 10 communicate with each other through a certain air interface technology, such as the Uu interface.
  • Access network equipment is the access equipment that terminals use to access the network architecture wirelessly. It is mainly responsible for wireless resource management, quality of service (QoS) management, data compression and encryption, etc. on the air interface side.
  • QoS quality of service
  • base station NodeB evolved base station eNodeB
  • base stations in 5G mobile communication systems or new generation wireless (New Radio, NR) communication systems base stations in future mobile communication systems, etc.
  • the core network equipment includes NSSF (Network Slice Selection Function), AUSF (Authentication Server Function), UDM (Unified Data Management), AMF (Access and Mobility Management Function), SMF (Session Management Function), PCF (Policy Control Function), and UPF (User Plane Function).
  • NSSF Network Slice Selection Function
  • AUSF Authentication Server Function
  • UDM Unified Data Management
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • PCF Policy Control Function
  • UPF User Plane Function
  • the UE establishes an access layer connection with the (R)AN (Access Network) through the Uu interface, exchanges access layer messages and wireless data transmission, and establishes a non-access layer (None Access Stratum, NAS) connection with the AMF through the N1 interface, exchanging NAS messages.
  • AMF is the mobility management function in the core network
  • SMF is the session management function in the core network.
  • the AMF is also responsible for forwarding session management-related messages between the UE and the SMF.
  • PCF is the policy management function in the core network, responsible for formulating policies related to the mobility management, session management, and billing of the UE.
  • PCF transmits data with the external application function (Application Function, AF) through the N5 interface.
  • UPF is a user plane function in the core network, which transmits data with the external data network (Data Network, DN) through the N6 interface and with the AN through the N3 interface.
  • the "5G NR system" in the embodiments of the present application may also be referred to as a 5G system or an NR system, but those skilled in the art may understand its meaning.
  • the technical solution described in the embodiments of the present application may be applicable to an LTE system, a 5G NR system, a subsequent evolution system of the 5G NR system, or other communication systems such as a Narrow Band Internet of Things (NB-IoT) system, and the present application does not limit this.
  • NB-IoT Narrow Band Internet of Things
  • SL transmission technology Different from the traditional cellular system where communication data is received or sent through access network equipment, SL (Sidelink) transmission refers to the direct communication data transmission between terminals through sidelinks.
  • 3GPP (3rd Generation Partnership Project) defines two transmission modes: Mode A and Mode B.
  • Mode A The transmission resources of SL UE (User Equipment) are allocated by the access network equipment.
  • SL UE transmits communication data on the sidelink according to the transmission resources allocated by the access network equipment.
  • the access network equipment can allocate transmission resources for single transmission to SL UE or semi-static transmission to SL UE.
  • Mode B SL UE selects one or more transmission resources in the resource pool for communication data transmission.
  • SL UE can select transmission resources in the resource pool by listening or by random selection.
  • the access network equipment can pre-configure multiple resource pools (SL PRS resource pool, SL-U communication resource pool, etc.) for the UE.
  • the UE can select resources from the corresponding resource pool to perform the LBT (Listen Before Talk) process. If the LBT is successful, the UE can occupy this part of the resources for sideline transmission on the unlicensed spectrum.
  • the UE sends sideline data on this part of the resources it will also send SCI.
  • SCI indicates the resources occupied by the UE's current sideline transmission.
  • SCI can also be used to indicate the resources reserved by the UE.
  • the UE occupies a part of the resources in the SL PRS resource pool through LBT to send SL PRS. Then the UE sends SL PRS and SCI-P on this part of the resources. SCI-P indicates the resources occupied by the current SL PRS and the resources reserved for the subsequent SL PRS.
  • the sidelink (SL) transmission according to the network coverage of the communicating terminals, it can be divided into sidelink communication inside the network coverage, sidelink communication with partial network coverage, and sidelink communication outside the network coverage, as shown in Figures 2, 3 and 4 respectively.
  • Figure 2 In the sideline communication within the network coverage, all the terminals 21 performing the sideline communication are within the coverage of the same base station 10. Thus, the above terminals 21 can perform the sideline communication based on the same sideline configuration by receiving the configuration signaling of the base station 10.
  • FIG 3 In the case of partial network coverage for sidelink communication, some terminals 21 performing sidelink communication are located within the coverage of the base station. These terminals 21 can receive the configuration signaling of the base station 10 and perform sidelink communication according to the configuration of the base station 10. However, the terminals 22 located outside the network coverage cannot receive the configuration signaling of the base station 10. In this case, the terminals 22 outside the network coverage will determine the sidelink configuration according to the pre-configuration information and the information carried in the Physical Sidelink Broadcast Channel (PSBCH) sent by the terminals 21 located within the network coverage, and perform sidelink communication.
  • PSBCH Physical Sidelink Broadcast Channel
  • FIG4 For sideline communications outside network coverage, all terminals 22 performing sideline communications are located outside network coverage, and all terminals 22 determine sideline configurations according to pre-configuration information to perform sideline communications.
  • V2X Vehicle to everything
  • V2X communication includes vehicle to vehicle (V2V) communication, vehicle to roadside infrastructure (V2I) communication, and vehicle to pedestrian (V2P) communication.
  • V2X applications will improve driving safety, reduce congestion and vehicle energy consumption, and improve traffic efficiency.
  • PSSCH Physical Sidelink Shared Channel
  • PSCCH Physical Sidelink Control Channel
  • the time domain resource allocation of NR-V2X is based on the time slot as the allocation granularity.
  • the starting point and length of the time domain symbols used for sidelink transmission in a time slot are configured by the parameters sl-startSLsymbols (Sidelink - Sidelink start symbol) and sl-lengthSLsymbols (Sidelink - Sidelink symbol length). The last symbol in this part of symbols is used as GP (Guard Period). PSSCH and PSCCH can only use the remaining time domain symbols.
  • PSSCH and PSCCH cannot occupy the time domain symbols used for PSFCH transmission, as well as the AGC (Automatic Gain Control) and GP symbols before the symbol.
  • AGC Automatic Gain Control
  • the PSFCH occupies symbols 11 and 12, among which symbol 11 is used as the AGC symbol of PSFCH, and symbols 10 and 13 are used as GPs respectively.
  • the time that can be used for PSSCH transmission is symbol 3 to symbol 9.
  • PSCCH occupies 3 time domain symbols, namely symbols 3, 4, and 5, and symbol 3 is usually used as an AGC symbol.
  • NR-V2X in addition to PSCCH and PSSCH, there may also be PSFCH in a side slot, as shown in Figure 6.
  • the first OFDM (Orthogonal Frequency Division Multiplexing) symbol is fixed for automatic gain control (AGC).
  • AGC automatic gain control
  • the UE copies the information sent on the second symbol.
  • AGC automatic gain control
  • transceiver conversion At the end of the time slot, there is a symbol for transceiver conversion, which is used for the UE to switch from the sending (or receiving) state to the receiving (or sending) state.
  • PSCCH can occupy two or three OFDM symbols starting from the second sidelink symbol.
  • the number of PRBs (Physical Resource Blocks) occupied by PSCCH is within the subband range of one PSSCH. If the number of PRBs occupied by PSCCH is smaller than the size of a subchannel of PSSCH, or the frequency domain resources of PSSCH include multiple subchannels, then PSCCH can be frequency-division multiplexed with PSSCH on the OFDM symbol where PSCCH is located.
  • the DMRS (Demodulation Reference Signal) of PSSCH in NR-V2X draws on the design in the NR Uu interface and adopts multiple time-domain PSSCH DMRS patterns.
  • the number of available DMRS patterns is related to the number of PSSCH symbols in the resource pool. For a specific number of PSSCH symbols (including the first AGC symbol) and PSCCH symbols, the available DMRS patterns and the position of each DMRS symbol in the pattern are shown in Table 1.
  • Figure 7 shows a schematic diagram of the time-domain position of 4 DMRS symbols when the number of PSSCH symbols is 13, that is, when the number of PSSCH symbols is 13, the number of PSCCH symbols is 2, and the number of DMRS symbols is 4, the DMRS symbol positions are located at symbols 1, 4, 7, and 10 respectively.
  • the specific time-domain DMRS pattern to be used is selected by the transmitting UE and indicated in the first-order SCI. This design allows high-speed UEs to select high-density DMRS patterns to ensure the accuracy of channel estimation, while for low-speed UEs, low-density DMRS patterns can be used to improve spectrum efficiency.
  • the generation method of the PSSCH DMRS sequence is almost identical to that of the PSCCH DMRS sequence. The only difference is in the initialization formula c init of the pseudo-random sequence c(m).
  • NR PDSCH and PUSCH support two frequency domain DMRS patterns, namely DMRS frequency domain type 1 and DMRS frequency domain type 2, and for each frequency domain type, there are two different types: single DMRS symbol and double DMRS symbol.
  • Single symbol DMRS frequency domain type 1 supports 4 DMRS ports
  • single symbol DMRS frequency domain type 2 can support 6 DMRS ports
  • the number of supported ports is doubled.
  • PSSCH since PSSCH only needs to support two DMRS ports at most, only single symbol DMRS frequency domain type 1 is supported, as shown in Figure 8.
  • the frequency domain resources of the NR-V2X resource pool are also continuous, and the allocation granularity of the frequency domain resources is also sub-channel.
  • the number of PRBs included in a sub-channel is ⁇ 10, 12, 15, 20, 50, 75, 100 ⁇ , among which the smallest sub-channel size is 10PRB, which is much larger than the smallest sub-channel size of 4PRB in LTE-V2X.
  • the frequency domain resources of PSCCH in NR-V2X are located in the first sub-channel of PSSCH associated with it, and the frequency domain resources of PSCCH are less than or equal to the size of a sub-channel of PSSCH, while the time domain resources of PSCCH occupy 2 or 3 OFDM symbols. If the sub-channel size is configured to be relatively small, there will be few available resources for PSCCH, the code rate will increase, and the detection performance of PSCCH will be reduced. In NR-V2X, the size of the PSSCH subchannel and the frequency domain resource size of the PSCCH are configured independently, but it is necessary to ensure that the frequency domain resources of the PSCCH are less than or equal to the subchannel size of the PSSCH.
  • the following configuration parameters in the NR-V2X resource pool configuration information are used to determine the frequency domain resources of the PSCCH and PSSCH resource pools:
  • Subchannel size indicates the number of consecutive PRBs included in a subchannel in the resource pool, and the value range is ⁇ 10, 12, 15, 20, 50, 75, 100 ⁇ PRBs;
  • Number of subchannels indicates the number of subchannels included in the resource pool
  • Subchannel start RB (Resource Block) index indicates the start PRB index of the first subchannel in the resource pool;
  • PRB number indicates the number of consecutive PRBs included in the resource pool
  • PSCCH frequency domain resource indication indicates the frequency domain resource size of PSCCH, and the value range is ⁇ 10, 12, 15, 20, 25 ⁇ PRB;
  • the frequency domain resources included in the resource pool are sl-NumSubchannel consecutive subchannels starting from the PRB indicated by sl-StartRB-Subchannel. If the number of PRBs contained in the final sl-NumSubchannel consecutive subchannels is less than the number of PRBs indicated by sl-RB-Number, the remaining PRBs cannot be used for PSSCH transmission or reception.
  • the frequency domain starting position of the first subchannel of the PSCCH and its associated PSSCH is aligned. Therefore, the starting position of each PSSCH subchannel is the possible frequency domain starting position of the PSCCH.
  • the frequency domain range of the resource pool of the PSCCH and PSSCH can be determined according to the above parameters.
  • PSCCH is used to carry side control information related to resource monitoring, including:
  • Frequency domain resource allocation indicating the number of frequency domain resources of PSSCH in the current time slot scheduled by PSCCH, and the number and starting position of frequency domain resources of up to two retransmission resources reserved;
  • Time domain resource allocation indicating the time domain locations of up to two retransmission resources
  • MCS Modulation and Coding Scheme
  • Resource reservation period reserves resources for another TB to send in the next period. If the inter-TB (Transport Block) resource reservation is not activated in the resource pool configuration, this information bit field does not exist.
  • Reserved bits 2 to 4 bits. The specific number of bits is configured or pre-configured by the network.
  • the SCI format 1-A does not explicitly indicate the time-frequency domain starting position of the scheduled PSSCH.
  • the transmission of PSCCH/PSSCH is based on the time slot level, that is, only one PSCCH/PSSCH can be transmitted in one time slot. It does not support the transmission of multiple PSCCH/PSSCH in one time slot through TDM (Time Division Multiplex and Multiplexer). PSCCH/PSSCH between different users can be multiplexed in one time slot through FDM (Frequency Division Multiplexing).
  • TDM Time Division Multiplex and Multiplexer
  • PSCCH/PSSCH between different users can be multiplexed in one time slot through FDM (Frequency Division Multiplexing).
  • the time domain resources of PSSCH in NR-V2X are based on time slots, but unlike PSSCH in LTE-V2X, which occupies all time domain symbols in a subframe, PSSCH in NR-V2X can occupy part of the symbols in a time slot.
  • a flexible time slot structure is adopted, that is, a time slot includes both uplink symbols and downlink symbols, so that more flexible scheduling can be achieved and latency can be reduced.
  • the subframe of a typical NR system is shown in Figure 10.
  • the time slot may include downlink symbols (Downlink, DL), uplink symbols (Uplink, UL) and flexible symbols.
  • the downlink symbols are located at the start position of the time slot, and the uplink symbols are located at the end position of the time slot.
  • the sidelink transmission system can share a carrier with the cellular system.
  • the sidelink transmission can only use the uplink transmission resources of the cellular system.
  • the network needs to configure a time slot with all uplink symbols for sidelink transmission, which will have a great impact on the uplink and downlink data transmission of the NR system and reduce the performance of the system. Therefore, in NR-V2X, some time domain symbols in the time slot are supported for sidelink transmission, that is, some uplink symbols in a time slot are used for sidelink transmission.
  • the sidelink transmission includes AGC symbols and GP symbols
  • the AGC symbols and GP symbols are removed, and the remaining symbols that can be used to transmit valid data are even fewer, and the resource utilization rate is very low. Therefore, the time domain symbols occupied by the sidelink transmission in NR-V2X are at least 7 (including GP symbols).
  • the starting point and length of the time domain symbol used for side transmission in a time slot are configured through the parameters of the starting symbol position (sl-StartSymbol) and the number of symbols (sl-LengthSymbols).
  • the last symbol in the time domain symbol used for side transmission is used as the GP, and PSSCH and PSCCH can only use the remaining time domain symbols.
  • PSSCH and PSCCH cannot occupy the time domain symbol used for PSFCH transmission, as well as the AGC and GP symbols before the symbol.
  • PSCCH occupies 2 time domain symbols, but since the data on the AGC symbol is a copy of the data on the second sideline symbol, the first sideline symbol also includes PSCCH data.
  • the time domain resources of the resource pool are also indicated by a bitmap.
  • the length of the bitmap is also extended, and the supported bitmap length range is [10:160].
  • the method of using the bitmap to determine the time slot position belonging to the resource pool within a SFN (System Frame Number) period is the same as in LTE-V2X, but there are two differences:
  • the total number of time slots included in a SFN (System Frame Number) period is 10240 ⁇ 2 ⁇ , where the parameter ⁇ is related to the subcarrier spacing.
  • time slot cannot be used for sidelink transmission.
  • Y and X represent sl-StartSymbol and sl-LengthSymbols, respectively.
  • the specific steps include:
  • Step 1 Remove the time slots that do not belong to the resource pool within the SFN cycle, including synchronization time slots and time slots that cannot be used for sideline transmission.
  • the remaining time slots are represented as the remaining time slot set, and the remaining time slots are renumbered as
  • N S_SSB represents the number of synchronization time slots in an SFN cycle; the synchronization time slot is determined according to synchronization-related configuration parameters, and is related to the period of transmitting SSB (Synchronization Signal Block) and the number of transmission resources of SSB configured in the period.
  • SSB Synchronization Signal Block
  • N nonSL indicates the number of time slots that do not conform to the uplink symbol start point and number configurations within an SFN cycle: if at least one of the time domain symbols Y, Y+1, Y+2...Y+X-1 included in a time slot is not semi-statically configured as an uplink symbol, the time slot cannot be used for sidelink transmission, where Y and X represent sl-StartSymbol and sl-LengthSymbols, respectively.
  • Step 2 Determine the number of reserved time slots and the corresponding time domain positions.
  • the number of reserved time slots and the corresponding time domain positions need to be determined. Specifically, if a time slot l r (0 ⁇ r ⁇ 10240 ⁇ 2 ⁇ -N S_SSB -N nonSL ) satisfies the following conditions, then the time slot is a reserved time slot:
  • Step 3 Remove the reserved time slots from the remaining time slot set, and the remaining time slot set is represented as a logical time slot set.
  • the time slots in the time slot set are all time slots that can be used in the resource pool.
  • Step 4 Determine the time slots in the logical time slot set that belong to the resource pool according to the bit map.
  • Step 5 Renumber the time slots belonging to the resource pool determined in step 4 in order i ⁇ 0,1,...,T′ max -1 ⁇ , where T′ max represents the number of time slots included in the resource pool.
  • one SFN cycle (or DFN (Direct Frame Number) cycle) includes 10240 subframes, the period of the synchronization signal is 160ms, and one synchronization cycle includes 2 synchronization subframes. Therefore, there are 128 synchronization subframes in one SFN cycle.
  • the length of the bit map used to indicate the time domain resources of the resource pool is 10 bits, so 2 reserved subframes are required.
  • the remaining subframes are renumbered as 0, 1, 2...10109, and the first 3 bits of the bit map are 1, and the remaining 7 bits are 0.
  • the bitmap needs to be repeated 1011 times in the remaining subframes to indicate whether all subframes belong to the resource pool, and each bitmap period includes 3 subframes, a total of 3033 subframes belong to the resource pool in one SFN period.
  • Mode 2 resource selection is supported in NR-V2X, that is, the UE excludes the resources reserved by other UEs based on the PSCCH sent by other UEs detected, and selects the resources for data transmission from the remaining resources.
  • the second mode resource selection is performed in the following two steps:
  • Step 1 The UE takes all available resources in the resource selection window as resource set A.
  • the UE sends data in some time slots within the listening window and does not listen, all resources on the corresponding time slots in the selection window for these time slots are excluded.
  • the UE determines the corresponding time slot in the selection window using the value set of the "resource reservation period" field in the resource pool configuration used.
  • the UE detects PSCCH within the listening window, it measures the RSRP (Reference Signal Received Power) of the PSCCH or the RSRP of the PSSCH scheduled by the PSCCH. If the measured RSRP is greater than the SL-RSRP threshold, and the reserved resources are determined to be within the resource selection window based on the resource reservation information in the side control information transmitted in the PSCCH, the corresponding resources are excluded from set A. If the remaining resources in resource set A are less than X% of all resources before resource set A is excluded, the SL-RSRP threshold is raised by 3dB and step 1 is executed again.
  • RSRP Reference Signal Received Power
  • the possible values of X are ⁇ 20, 35, 50 ⁇ , and the UE determines the parameter X from the value set according to the priority of the data to be sent.
  • the SL-RSRP threshold is related to the priority carried in the PSCCH detected by the UE and the priority of the data to be sent by the UE.
  • the UE uses the remaining resources in set A after resource exclusion as the candidate resource set.
  • Step 2 The UE randomly selects several resources from the candidate resource set as the transmission resources for its initial transmission and retransmission.
  • 3GPP RAN conducted studies on “NR Positioning Enhancement” and “Scenarios and Requirements for NR Positioning Use Cases in In-Coverage, Partial Coverage and Out-of-Coverage”.
  • SA1 Security Association 1
  • SA1 Security Association 1
  • 3GPP needs to study and develop sidelink positioning solutions to support the use cases, scenarios and requirements identified in these activities.
  • the sidelink positioning reference signal SL PRS can be sent in a dedicated resource pool.
  • the UE in order to support sidelink positioning and sidelink communication, the UE also needs to send and receive UE mutual discovery information, configuration information, measurement reporting information related to sidelink positioning, as well as control and data information related to sidelink communication, etc., and this information needs to be carried through sidelink channels such as PSCCH and/or PSSCH.
  • the sidelink transmission needs to meet specific regulatory requirements, including the minimum occupied channel bandwidth (OCB) and maximum power spectral density (PSD).
  • OCB minimum occupied channel bandwidth
  • PSD maximum power spectral density
  • the occupied channel bandwidth shall not be less than 80% of the channel bandwidth; for the maximum power spectral density requirement, the power transmitted by the UE on each 1MHz shall not exceed 10dBm.
  • the interlaced resource block (IRB) structure is required for sidelink transmission over unlicensed spectrum.
  • An IRB includes N RBs that are discrete in the frequency domain, and a total of M IRBs are included in the frequency band.
  • the RBs included in the mth IRB are ⁇ m, M+m, 2M+m, 3M+m, ... ⁇ .
  • the numbers in the boxes in the figure represent the IRB indexes.
  • the channels such as PSCCH and PSSCH of the SL-U system should be based on the IRB structure.
  • the frame structure of the SL-U system is shown in Figure 14, and the numbers in the boxes in the figure represent the IRB index.
  • Figure 14 is a schematic diagram of the frame structure in which only PSCCH and PSSCH are included in the time slot, but not PSFCH.
  • the system configures PSCCH to occupy 1 IRB resource, and the time domain occupies 2 OFDM symbols.
  • PSSCH uses IRB as the granularity, the first symbol in the time slot is the AGC symbol, and the last symbol is the GP symbol.
  • PSSCH1 occupies IRB#0 and IRB#1, and its corresponding PSCCH1 occupies IRB#0.
  • PSSCH2 occupies IRB#2, and its corresponding PSCCH2 also occupies IRB#2. It should be noted that for the sake of simplicity, the resources occupied by the second-order SCI and the resources occupied by PSCCH DMRS and PSSCH DMRS are not shown in Figure 14.
  • LBT uses 20 MHz as the granularity in the frequency domain. Every 20 MHz is called an RB Set.
  • a carrier can include multiple RB Sets, and there are protection intervals between RB Sets.
  • Figure 16 shows a flow chart of a method for sending side control information provided by an embodiment of the present application, which method can be applied in a terminal.
  • the method includes the following steps.
  • Step 210 According to the network configuration or pre-configuration, SL PRS and SCI are sent, and SCI is used to indicate the resource reservation status of SL PRS.
  • the terminal receives the network configuration sent by the network device, and sends SL PRS and SCI according to the resource reservation method indicated in the network configuration (reservation allowed/reservation allowed in reservable time slots/reservation not allowed), wherein the resource reservation status of the SL PRS indicated by the SCI is determined according to the resource reservation method indicated by the network configuration.
  • the terminal sends SL PRS and SCI according to the resource reservation method indicated in the pre-configuration (reservation allowed/reservation allowed in reservable time slots/reservation not allowed), wherein the resource reservation status of the SL PRS indicated by the SCI is determined according to the resource reservation method indicated by the pre-configuration.
  • the network device may send a network configuration to the terminal according to the resource overlap between the SL PRS resource pool and the SL-U communication resource pool, or pre-configure the terminal according to the resource overlap between the SL PRS resource pool and the SL-U communication resource pool.
  • different resource overlap situations correspond to different network configurations or pre-configurations.
  • the SL PRS resource pool and SL-U communication resource pool are resource pools on the unlicensed spectrum configured by the network for terminals for sideline communications.
  • the SL PRS resource pool is used for SL PRS transmission
  • the SL-U resource pool is used for SL-U communication.
  • the SL PRS resource pool/SL-U resource pool includes at least one time slot in the time domain, and the at least one time slot may be continuous, dispersed, or periodically repeated.
  • the SL PRS resource pool/SL-U resource pool includes at least one subchannel in the frequency domain, and the at least one subchannel is continuous. Optionally, the at least one subchannel may also be dispersed or periodically repeated.
  • One subchannel includes at least one continuous PRB.
  • one subchannel includes 10 or 12 or 15 or 20 or 50 or 75 or 100 PRBs.
  • the configuration information of the resource pool includes at least one of the following parameters: subchannel size (sl-SubchannelSize): indicates the number of consecutive PRBs included in a subchannel in the resource pool, and the value range is ⁇ 10, 12, 15, 20, 50, 75, 100 ⁇ PRB; number of subchannels (sl-NumSubchannel): indicates the number of subchannels included in the resource pool; subchannel starting RB index (sl-StartRB-Subchannel): indicates the starting PRB index of the first subchannel in the resource pool; number of PRBs (sl-RB-Number): indicates the number of consecutive PRBs included in the resource pool.
  • subchannel size sl-SubchannelSize
  • sl-NumSubchannel indicates the number of subchannels included in the resource pool
  • subchannel starting RB index sl-StartRB-Subchannel
  • number of PRBs sl-RB-Number
  • the resource overlap between the SL PRS resource pool and the SL-U communication resource pool includes but is not limited to:
  • Case (1) The SL PRS resource pool completely overlaps with the SL-U communication resource pool; for example, as shown in FIG17 , the SL PRS resource pool is identical to the SL-U communication resource pool in both the time domain and the frequency domain.
  • Case (2) There are resources in each time slot in the SL PRS resource pool that overlap with the SL-U communication resource pool; for example, as shown in Figure 18, the SL PRS resource pool and the SL-U communication resource pool are identical in the time domain and overlap in the frequency domain.
  • Case (3) Some time slots of the SL PRS resource pool belong to the SL-U communication resource pool, and other time slots of the SL PRS resource pool do not belong to the SL-U communication resource pool, that is, the SL PRS resource pool includes time slots that do not belong to the SL-U communication resource pool; for example, as shown in Figure 19, the SL PRS resource pool and the SL-U communication resource pool have non-overlapping parts in the time domain, and there is frequency domain overlap in the overlapping parts in the time domain.
  • Case (4) The SL PRS resource pool does not overlap with the SL-U communication resource pool at all. For example, as shown in FIG20 , the SL PRS resource pool does not overlap with the SL-U communication resource pool in both the time domain and the frequency domain.
  • the network configuration or pre-configuration may indicate that the terminal sending the SL PRS cannot reserve resources in the SL PRS resource pool for SL PRS transmission, or, the terminal sending the SL PRS needs to send an SCI that can be recognized by all terminals to indicate the resources reserved for SL PRS transmission.
  • the network configuration or pre-configuration can instruct the terminal sending SL PRS to reserve resources on the non-overlapping time slots for SL PRS transmission.
  • the SL-U communication resource pool can be a resource pool for SL-U communication configured by the network for the backward UE.
  • the backward UE is a UE that supports sending side data on the unlicensed spectrum but cannot recognize SCI-P (SCI for Positioning), for example, SCI-P and SCI-C (SCI for Communication) have different formats or different sending methods, and the backward UE cannot decode SCI-P.
  • SCI-P is used to indicate SL PRS sending resources and/or SL PRS reserved resources.
  • the backward UE is a UE that only supports 3GPP R18 version SL-U. The backward UE can recognize SCI-C.
  • the backward UE When the backward UE cannot identify the SCI-P sent by the UE sending the SL PRS, the backward UE cannot learn the resources reserved by the UE sending the SL PRS, and the backward UE may use the resources reserved by the UE sending the SL PRS for SL-U communication. At this time, a transmission conflict between the SL-U communication and the SL PRS transmission will occur. Therefore, the method provided in the embodiment of the present application requires the UE sending the SL PRS to determine the resource reservation of the SL PRS based on the resource overlap between the SL PRS resource pool and the SL-U communication resource pool, so as to avoid transmission conflicts with the backward UE.
  • the terminal executing the method is a terminal sending SL PRS, and the terminal sending SL PRS sends SL PRS and SCI in one time slot.
  • the SCI can be called SCI-P.
  • SCI is used to indicate the resources for sending SL PRS this time.
  • SCI is also used to indicate the reserved resources for sending SL PRS.
  • SCI is used to indicate the resource reservation status of SL PRS.
  • SCI includes relevant indication information of reserved resources, SCI is used to indicate the reserved resources sent by SL PRS; when SCI does not include relevant indication information of reserved resources, SCI is used to indicate that no resources are reserved for SL PRS.
  • the formats of the SCI (SCI-P) used to indicate SL PRS transmission resources and/or SL PRS reserved resources and the SCI (SCI-C) used by the backward UE to indicate PSSCH transmission resources and PSSCH reserved resources may be different or the same, and the SCI-P includes one or more of the following information:
  • S PRS sends relevant information of UE, such as geographic location, type, etc.
  • the UE occupies at least one RB set when sending SL PRS.
  • the SL PRS sent by the UE can be used for absolute positioning, or for relative positioning, that is, for the UE receiving the PRS to determine the distance and/or direction relative to the sending UE.
  • the SL-U communication resource pool may also be called a side communication resource pool, a Mode 2 side communication resource pool, etc.
  • the method provided in this embodiment since some terminals (backward terminals) cannot recognize the SCI (Sidelink Control Information) (or SCI-P (SCI for Positioning)) used to indicate the SL PRS resource reservation status, if the terminal sends SCI-P to reserve some resources for SL PRS, the backward terminal cannot know that these resources have been occupied, and the backward terminal may still select these resources for SL-U communication, resulting in a transmission conflict between SL-U communication and SL PRS.
  • SCI Servicelink Control Information
  • SCI-P SCI for Positioning
  • the terminal sending SL PRS can determine the resource reservation status of SL PRS according to the network configuration or pre-configuration; wherein the network configuration or pre-configuration is determined by the network device based on the reservation status of the SL PRS resource pool and the SL-U communication resource pool.
  • the overlapping resources do not need to be reserved for the SL PRS; if there are non-overlapping resources between the SL PRS resource pool and the SL-U communication resource pool, the non-overlapping resources can be reserved for the SL PRS, thereby reducing the mutual interference between the SL PRS and SL-U data and improving the positioning accuracy of the SL PRS system.
  • the following three exemplary embodiments are provided to reduce the conflict between the SL PRS transmission resources and the SL-U transmission resources:
  • the UE sending SL PRS does not reserve resources in other time slots that overlap with the SL-U communication resource pool used by the backward UE for SL PRS transmission.
  • the UE sending SL PRS can reserve time slots in the SL-U communication resource pool that are not used by backward UEs for SL PRS transmission.
  • the UE sending SL PRS can reserve resources in other time slots that overlap with the SL-U communication resource pool used by the backward SL-U UE for SL PRS transmission, and indicate the reserved resources through the SCI that can be recognized by the backward UE.
  • the UE sending SL PRS does not reserve resources in other time slots that overlap with the SL-U communication resource pool used by the backward UE for SL PRS transmission.
  • Figure 21 shows a flow chart of a method for sending side control information provided by an embodiment of the present application, which method can be applied in a terminal.
  • the method includes the following steps.
  • Step 211 When the network configuration or pre-configuration indicates that reserved resources are not allowed in the SL PRS resource pool, the SL PRS and SCI are sent, and the SCI is not used to indicate reserved resources for the SL PRS.
  • the SCI is not used to indicate reserved resources for the SL PRS.
  • the reservable time slot belongs to the SL PRS resource pool and does not belong to the SL-U communication resource pool.
  • the network configuration or pre-configuration indicates that reserved resources are not allowed in the SL PRS resource pool.
  • the terminal sends SCI and SL PRS in the same time slot, and SCI is used to indicate the resources of the SL PRS sent this time, and SCI is not used to indicate the reserved resources of the SL PRS.
  • the terminal sends PSCCH and SL PRS in the same time slot, and PSCCH carries SCI.
  • SCI includes first-order SCI and second-order SCI
  • the terminal sends PSCCH, PSSCH and SL PRS in the same time slot, PSCCH carries first-order SCI
  • PSSCH carries second-order SCI.
  • the resources used by the terminal to send SCI and SL PRS this time are the transmission resources occupied by the terminal after the LBT is successful.
  • the resources used by the terminal to send SCI and SL PRS this time are the resources previously reserved by the terminal.
  • the SL PRS resource pool and the SL-U communication resource pool completely overlap in the time domain, and partially overlap, completely overlap, or do not overlap in the frequency domain.
  • the SL PRS resource pool and the SL-U communication resource pool contain the same time slot.
  • the SCI sent by the terminal is SCI-P
  • the formats of SCI-P and SCI-C are different, and/or the sending modes of SCI-P and SCI-C are different.
  • SCI-P includes at least one of the following information: ID information of SL PRS; time-frequency resource location occupied by SL PRS; number of repetitions of SL PRS, and time-frequency resource location for repeated transmission; transmission period of SL PRS; related information of the SL PRS sending terminal.
  • the formats/transmission methods of SCI-P and SCI-C are different, and the backward UE cannot decode the SCI (SCI-P) indicating the transmission of SL PRS.
  • the formats of SCI-P and SCI-C are different, or the transmission methods of PSCCH used to carry SCI-P and used to carry SCI-C are different.
  • the UE sending SL PRS cannot send SCI-P in time slot A to reserve resources in time slot B for SL PRS transmission, where A ⁇ B.
  • A bandwidth
  • any resources reserved for SL PRS transmission by the UE sending SL PRS may conflict with the resources used by the backward UE.
  • the UE sending SL PRS is only allowed to determine the resources for SL PRS transmission in a time slot through Mode 2 resource selection, and cannot reserve resources in another time slot for SL PRS transmission through SCI-P sent in a time slot.
  • the SL PRS resource pool and the sideline communication resource pool used by the backward UE contain the same time slots.
  • the UE sending SL PRS cannot send indication information in any time slot in the resource pool to reserve resources in other time slots in the resource pool for SL PRS transmission.
  • the terminal sending SL PRS will not reserve SL PRS resources and can only determine the SL PRS resources through LBT, thereby avoiding conflicts between SL PRS sending resources and SL-U communication resources, reducing mutual interference between SL PRS and SL-U data, and improving the positioning accuracy of the SL PRS system.
  • the UE sending SL PRS can reserve time slots in the SL-U communication resource pool that are not used by backward UEs for SL PRS transmission.
  • Figure 22 shows a flow chart of a method for sending side control information provided by an embodiment of the present application, which method can be applied in a terminal.
  • the method includes the following steps.
  • Step 212 When the network configuration or pre-configuration indicates a reservable time slot, the SL PRS and SCI are sent.
  • the SCI is used to indicate the reserved resources of the SL PRS.
  • the reserved resources are the transmission resources in the reservable time slot.
  • the reservable time slot belongs to the SL PRS resource pool and does not belong to the SL-U communication resource pool.
  • the terminal sends SCI and SL PRS in the same time slot, and SCI is used to indicate the resources of the SL PRS sent this time and the reserved resources of the SL PRS.
  • SCI includes first-order SCI and second-order SCI
  • the terminal sends PSCCH, PSSCH and SL PRS in the same time slot, PSCCH carries first-order SCI
  • PSSCH carries second-order SCI.
  • the resources used by the terminal to send SCI and SL PRS this time are the transmission resources occupied by the terminal after the LBT is successful.
  • the resources used by the terminal to send SCI and SL PRS this time are the resources previously reserved by the terminal.
  • the SL PRS resource pool and the SL-U communication resource pool do not overlap or completely overlap in the time domain (there are time slots in the SL PRS resource pool that do not belong to the SL-U communication resource pool), and partially overlap, completely overlap, or do not overlap in the frequency domain.
  • time slots 3, 4, 13, and 14 there are time slots 3, 4, 13, and 14 in the SL PRS resource pool that do not belong to the SL-U communication resource pool, and time slots 3, 4, 13, and 14 are reservable time slots.
  • the terminal can indicate the resources in the reservable time slots as reserved resources for the SL PRS in the SCI.
  • the SCI sent by the terminal is SCI-P
  • the formats of SCI-P and SCI-C are different, and/or the sending modes of SCI-P and SCI-C are different.
  • SCI-P includes at least one of the following information: ID information of SL PRS; time-frequency resource location occupied by SL PRS; number of repetitions of SL PRS, and time-frequency resource location for repeated transmission; transmission period of SL PRS; related information of the SL PRS sending terminal.
  • the backward UE cannot decode the SCI (SCI-P) indicating the transmission of the SL PRS, for example, the formats of SCI-P and SCI-C are different, or the PSCCH transmission methods used to carry SCI-P and used to carry SCI-C are different.
  • the UE may send indication information in time slot A to reserve resources in time slot B for SL PRS transmission, but time slot B should belong to a specific time slot range (referred to as reservable time slot).
  • the reservable time slot does not belong to the SL-U communication resource pool used by the backward UE.
  • the UE sending the SL PRS may reserve resources in this part of the time slot for SL PRS transmission. As shown in FIG.
  • time slot #2, time slot #12, etc. which are included in the SL PRS resource pool but do not belong to the Mode 2 sideline communication resource pool (SL-U communication resource pool) used by the backward UE, can be used as reservable time slots, and the UE sending the SL PRS can reserve resources in this part of the time slot for SL PRS transmission through indication information sent in other time slots. Since the backward UE will not send sidelink data in the reservable time slot, the resources reserved by SL PRS will not conflict with the resources of the backward UE.
  • SL-U communication resource pool Mode 2 sideline communication resource pool
  • the reservable time slots include time slot 3, time slot 4, time slot 13, and time slot 14.
  • the SCI can indicate that the transmission resources in time slot 13 are reserved for SL PRS transmission.
  • the reservable time slot is indicated by resource pool configuration or pre-configuration signaling.
  • the reserved time slot in the resource pool configuration is used as the reservable time slot.
  • the reserved time slot indicated in the pre-configuration signaling is used as the reservable time slot.
  • the resource pool configuration includes the configuration information of the SL PRS resource pool and the configuration information of the SL-U communication resource pool.
  • the UE sending the SL PRS can determine the reservable time slots through the configuration of the resource pool or pre-configuration signaling.
  • the reservable time slots can be indicated by the configuration of the resource pool or a specific information field (such as a specific bit map) in the pre-configuration signaling; or, the UE sending the SL PRS can determine the reservable time slots through specific rules. For example, if the SL PRS resource pool contains time slots for S-SSB transmission, or contains reserved time slots (reserved slots) in the process of determining the SL-U communication resource pool, then this part of the time slots can be used as reservable time slots.
  • the S-SSB time slot is the time slot for S-SSB transmission configured on the current SL BWP (Bandwidth Part), and the UE can only send the SL PRS using the frequency domain resources in the time slot that are not used for S-SSB transmission.
  • Example 1 can be regarded as a special case of Example 2, that is, when the UE sending SL PRS determines that there are reservable time slots in the SL PRS resource pool, the resources in the reservable time slots can be reserved for SL PRS transmission (i.e., Example 2); otherwise, the resources in different time slots cannot be reserved for SL PRS transmission (i.e., Example 1).
  • any UE sending SL PRS it can determine whether the resources in a reservable time slot are reserved by other UEs by detecting the indication information already sent by other UEs, thereby determining whether the resources in the time slot can be selected or reserved for sending SL PRS.
  • the terminal sending SL PRS can reserve the resources on these non-overlapping time slots for SL PRS transmission, thereby avoiding conflicts between SL PRS transmission resources and SL-U communication resources, reducing mutual interference between SL PRS and SL-U data, and improving the positioning accuracy of the SL PRS system.
  • the UE sending SL PRS can reserve resources in other time slots that overlap with the SL-U communication resource pool used by the backward SL-U UE for SL PRS transmission, and indicate the reserved resources through the SCI that can be recognized by the backward UE.
  • Figure 24 shows a flow chart of a method for sending side control information provided by an embodiment of the present application, which method can be applied in a terminal.
  • the method includes the following steps.
  • Step 213 When the network configuration or pre-configuration indicates that reserved resources are allowed in the SL PRS resource pool, the SL PRS and SCI are sent, and the SCI is used to indicate the reserved resources of the SL PRS.
  • the network configuration or pre-configuration indicates that the SL PRS resource pool allows for reserved resources, and the format and transmission method of SCI-P are the same as those of SCI-C.
  • the terminal can reserve resources in the SL PRS resource pool and indicate the reserved resources through SCI-P, and the UE can parse SCI-P to learn that these resources have been reserved.
  • the SL PRS resource pool there is resource overlap between the SL PRS resource pool and the SL-U communication resource pool in the time slot where the reserved resources are located.
  • the UE determines whether there is overlap with the resources of the SL-U communication resource pool based on the configuration information of the SL PRS resource pool.
  • the UE can reserve resources in other time slots that overlap with the SL-U communication resource pool used by the backward UE for SL PRS transmission, and indicate the reserved resources through an SCI that can be recognized by the backward UE.
  • the UE reserves resources in other time slots in the SL PRS resource pool for SL PRS transmission based on network configuration or pre-configuration, and indicates the reserved resources through an SCI that can be recognized by the backward UE.
  • the time slots occupied by the SL PRS resource pool and the SL-U communication resource pool used by the backward UE overlap, and the frequency domain resources occupied in each time slot can be the same or different. If the UE sending SL PRS sends SL PRS in time slot A, and reserves one or more overlapping time slots for SL PRS transmission, the UE should send PSCCH in time slot A to indicate the above reservation information.
  • the SCI sent by the terminal is SCI-P.
  • the format of SCI-P is the same as that of SCI-C, and the transmission mode of SCI-P and SCI-C is the same.
  • the format of SCI-P is the same as that of SCI-C, and the transmission mode of PSCCH carrying SCI-P and carrying SCI-C is the same.
  • SCI-P includes at least one of the following information: ID information of SL PRS; time-frequency resource location occupied by SL PRS; number of repetitions of SL PRS, and time-frequency resource location for repeated transmission; transmission period of SL PRS; related information of SL PRS transmitting terminal.
  • the UE always sends SL PRS and PSCCH and/or PSSCH used to indicate SL PRS transmission in the same time slot.
  • the PSCCH carrying SCI is sent using continuous RBs. That is, if the PSCCH in the resource pool is sent using continuous RBs, the PSCCH used to carry SCI-P and the PSCCH used to carry SCI-C are both sent using continuous RBs;
  • the PSCCH carrying SCI is sent using an IRB structure. That is, if the PSCCH in the resource pool is sent using an IRB structure, both the PSCCH used to carry SCI-P and the PSCCH used to carry SCI-C are sent using an IRB structure.
  • the time slots occupied by the SL PRS resource pool and the SL-U communication resource pool used by the backward UE partially overlap or completely overlap. If the terminal sending the SL PRS wants to reserve transmission resources in the overlapping time slots for SL PRS transmission, it needs to send an SCI that can be parsed by the backward UE to indicate the reserved resources.
  • the ways to send SCI include at least:
  • the terminal can send PSCCH in the time slot of sending SL PRS, and PSCCH carries SCI.
  • SL PRS is not sent on the symbol where PSCCH is located, and PSCCH is sent in the first subchannel used for SL PRS transmission.
  • SL PRS is not sent on the symbol where PSCCH is located. Multiple groups of resources for sending PSCCH and SL PRS are set in one time slot, and different SL PRS resources are used to correspond to different PSCCH resources.
  • SL PRS can be sent on the symbol where PSCCH is located.
  • Mode 2 terminals can send PSCCH and PSSCH in the time slot of sending SL PRS.
  • PSCCH carries the first-order SCI and PSSCH carries the second-order SCI.
  • SL PRS is not sent on the symbol where PSCCH is located, PSCCH is sent in the first subchannel used for SL PRS transmission, and the remaining IRBs on the symbol where PSCCH is located are used to send PSSCH.
  • SL PRS is not sent on the symbol where PSCCH is located. Multiple groups of resources for sending PSCCH, PSSCH and SL PRS are set in one time slot. Different SL PRS resources are used to correspond to different PSCCH/PSSCH resources.
  • SL PRS can be sent on the symbol where PSCCH is located.
  • the terminal can send PSCCH in the time slot of sending SL PRS, and PSCCH carries SCI.
  • step 213 may include step 214 .
  • Step 214 When the network configuration or pre-configuration indicates that reserved resources are allowed in the SL PRS resource pool, the SL PRS and PSCCH are sent in the first time slot, and the PSCCH carries the SCI, which is used to indicate the reserved resources of the SL PRS.
  • PSCCH is sent in the time slot in which SL PRS is sent.
  • a UE that sends SL PRS only sends PSCCH in the time slot in which SL PRS is sent, and does not send PSSCH in the time slot.
  • the UE only indicates SL PRS transmission and/or reserves SL PRS transmission resources through SCI-P carried by PSCCH.
  • the time-frequency resources for sending the PSCCH may be:
  • SL PRS is not sent in the symbol where PSCCH is located, and PSCCH is sent in the first subchannel used for SL PRS transmission.
  • the time-frequency resources of PSCCH include: part or all of the IRB/RB in the first subchannel used for SL PRS transmission on the OFDM symbol used for PSCCH transmission in the first time slot.
  • the OFDM symbol used for PSCCH transmission can be determined according to the network configuration or according to the established rules.
  • the time and frequency resources of SL PRS include: part or all of the IRB/RB in the subchannel used for SL PRS transmission on the OFDM symbols other than the OFDM symbols used for PSCCH transmission in the first time slot.
  • SL PRS is not sent on the OFDM symbol where PSCCH is located.
  • the UE occupies one or all IRBs in the first subchannel used for SL PRS transmission to send PSCCH on the OFDM symbol used for PSCCH transmission in the time slot.
  • the first time slot includes 14 symbols, and the frequency domain resources for SL PRS transmission include four sub-channels.
  • symbol 3, symbol 4, and symbol 5 are OFDM symbols for PSCCH transmission.
  • the time-frequency resources used for sending PSCCH in method 1.1 are part or all of the IRB/RB in the first sub-channel on symbols 3, 4, and 5; the time-frequency resources used for sending SL PRS are part or all of the IRB/RB in the four sub-channels on symbols 6-13.
  • the frequency domain resources used for SL PRS transmission include part or all of the PRBs in the SL PRS resource pool. That is, if the UE sends the SL PRS in one time slot, the UE occupies all or part of the PRBs in the resource pool.
  • SL PRS is not sent on the symbol where PSCCH is located. Multiple groups of resources for sending PSCCH and SL PRS are set in one time slot, and different SL PRS resources are used to correspond to different PSCCH resources.
  • the first time slot includes multiple groups of time-frequency resources for PSCCH, and a group of time-frequency resources for PSCCH includes: part or all of the IRBs on the OFDM symbols used for PSCCH transmission; the time-frequency resources of SL PRS adopt a comb-tooth structure; the first time slot includes one or more time-frequency resources for SL PRS, and a time-frequency resource of SL PRS includes: a group of comb-tooth structure resources on part or all of the OFDM symbols in the first time slot except those used for PSCCH transmission; a group of time-frequency resources for PSCCH corresponds one-to-one to a time-frequency resource of SL PRS.
  • SL PRS adopts a comb structure.
  • Different RE (Resource Element) offsets on the first OFDM symbol used for SL PRS transmission in the time slot correspond to different SL PRS resources.
  • An example is shown in Figure 27, where the comb size is 2, and SL PRS resources are sorted from low to high by RE offset.
  • the tooth size of the SL PRS comb structure is the number of time-frequency resources/groups of the SL PRS, and the tooth size of the SL PRS comb structure is x, then the SL PRS resources include x groups, and x is a positive integer.
  • the number of groups of PSCCH resources is the same as the number of groups of SL PRS resources, so that one group of SL PRS resources corresponds to one group of PSCCH resources.
  • the SL PRS resource pool includes a subchannels in the frequency domain, and the resources used to send PSCCH in each subchannel are a group of PSCCH resources.
  • the resources used to send PSCCH in each subchannel are a group of PSCCH resources.
  • There are a group of PSCCH resources in total and the a group of PSCCH resources are sorted from low to high in the frequency domain, and a is a positive number.
  • the SL PRS resources are in a comb-tooth structure, and the comb-tooth size is a.
  • the i-th group of PSCCH resources corresponds to the i-th group of SL PRS resources.
  • the i-th group of PSCCH resources are used to send PSCCH, and i is an integer not greater than a.
  • a group of PSCCH resources is one or more IRBs in a sub-channel; multiple time-frequency resources of SL PRS are sorted according to the resource particle RE offset of the comb-tooth structure; when the i-th time-frequency resource of SL PRS is used to send SL PRS, the time-frequency resources for sending PSCCH are: part or all of the IRBs used for PSCCH transmission in the i-th sub-channel in the SL PRS resource pool, where i is an integer.
  • the frequency domain resources indicated by the SCI in the PSCCH are from the i-th subchannel to the last subchannel occupied by the SL PRS. That is, the frequency domain resources for sending the SL PRS are: the i-th group of SL PRS resources in the last subchannel from the i-th subchannel to the SL PRS resource pool; the time domain resources are: the symbols not used to send the PSCCH in the first time slot.
  • the time-frequency resources for sending SL PRS are: the i-th time-frequency resource of SL PRS in the frequency domain starting from the i-th subchannel and ending at the last subchannel in the SL PRS resource pool on the OFDM symbol after the OFDM symbol used to send PSCCH in the first time slot.
  • the first time slot includes 14 symbols.
  • the frequency domain resources for SL PRS transmission include two subchannels. One subchannel includes ten RBs, and one RB includes 12 REs.
  • SL PRS has a comb-tooth structure with a comb-tooth size of 2.
  • An RE offset of 0 corresponds to SL PRS resource 0, and an RE offset of 1 corresponds to SL PRS resource 1.
  • Symbol 3, symbol 4, and symbol 5 are OFDM symbols for PSCCH transmission.
  • the resources for PSCCH transmission in the first subchannel are PSCCH resource 0, and the resources for PSCCH transmission in the second subchannel are PSCCH resource 1.
  • SL PRS resource 0 corresponds to PSCCH resource 0
  • SL PRS resource 1 corresponds to PSCCH resource 1.
  • the time-frequency resources used to send PSCCH are PSCCH resource 1 in the second subchannel on symbols 3, 4, and 5; the time-frequency resources used to send SL PRS are SL PRS resource 1 corresponding to an RE offset of 1 in the second subchannel on symbols 6-13.
  • the resources used to send PSCCH in the symbol are set to be a group of PSCCH resources.
  • the SL PRS resources are in a comb-tooth structure, and the comb-tooth size is b.
  • the i-th group of PSCCH resources corresponds to the i-th group of SL PRS resources.
  • the i-th group of PSCCH resources are used to send PSCCH, and i is an integer not greater than b.
  • This method can support multiple UEs to send SL PRS through frequency division multiplexing in the same time slot.
  • SL PRS can be sent on the symbol where PSCCH is located.
  • the time-frequency resources of PSCCH include: part or all of the IRB/RB in the first subchannel used for SL PRS transmission on the OFDM symbol used for PSCCH transmission in the first time slot;
  • the time-frequency resources of SL PRS include: the first part of resources and the second part of resources; among which, the first part of resources includes: part or all of the IRB/RB in the OFDM symbol used for PSCCH transmission in the first time slot that is not used for PSCCH transmission;
  • the second part of resources includes: part or all of the IRB/RB in the subchannel used for SL PRS transmission on the OFDM symbol other than that used for PSCCH in the first time slot.
  • the second part of resources includes part or all of the IRB/RB in the subchannel used for SL PRS transmission on the OFDM symbol after the OFDM symbol used for PSCCH transmission in the first time slot.
  • the terminal may send SL PRS on the OFDM symbol where the PSCCH is located, but the receiving UE is not required to process the SL PRS sent on these OFDM symbols. If the terminal capability of the receiving UE is strong enough, the receiving UE may process the SL PRS on these OFDM symbols. If the terminal capability of the receiving UE is weak, the SL PRS on these OFDM symbols may not be processed.
  • these OFDM symbols used to send the PSCCH are not considered. That is, the RE offset of the SL PRS comb structure is calculated according to the RE offset on the OFDM symbols in the second part of the resources, and the RE offset on the OFDM symbols in the first part of the resources is not considered.
  • the PSCCH carrying SCI-P is sent in part or all of the IRBs of the first subchannel occupied by the SL PRS.
  • the UE can send the SL PRS in addition to the other IRBs used to send the PSCCH.
  • C-1 OFDM symbols in the time slot are OFDM symbols with PSCCH, and the OFDM symbols starting from symbol C are used for SL PRS transmission.
  • the first time slot includes 14 symbols, and the frequency domain resources for SL PRS transmission include four sub-channels.
  • symbol 3, symbol 4, and symbol 5 are OFDM symbols for PSCCH transmission.
  • the time-frequency resources used for sending PSCCH in method 1.3 are part or all of the IRB/RB in the first sub-channel on symbols 3, 4, and 5; the time-frequency resources used for sending SL PRS are part or all of the IRB/RB in the four sub-channels on symbols 3-13 that are not used for sending PSCCH.
  • the SL PRS sequence sent on the first part of resources and the RE position for sending the SL PRS can be determined in at least the following ways:
  • the SL PRS sequence sent on the first part of resources is the same as the DMRS sequence of PSCCH; the REs occupied by the SL PRS sent on the first part of resources on the RB are the same as the RE positions occupied by the DMRS of PSCCH on the RB.
  • the sequence of SL PRS sent by UE on the OFDM symbol where PSCCH is located is the repetition of DMRS of PSCCH in the frequency domain.
  • the REs occupied on each PRB are the same as the REs occupied by DMRS on the RB occupied by PSCCH.
  • the sequence of SL PRS sent on the first part of resources is also 010101. If the DMRS of PSCCH is sent on RE#2 of RB, the SL PRS sent on the first part of resources is also sent on RE#2 of RB.
  • the SL PRS sequence sent on the first part of resources is the subsequent part of the DMRS sequence of the PSCCH; the REs occupied by the SL PRS sent on the first part of resources on the RB are the same as the RE positions occupied by the DMRS of the PSCCH on the RB.
  • the SL PRS sequence sent by the UE on the OFDM symbol where the PSCCH is located is the DMRS sequence of the PSCCH.
  • the REs occupied on each PRB are the same as the REs occupied by the DMRS on the RB occupied by the PSCCH.
  • the DMRS sequence is a sequence intercepted from the preparatory sequence, and the preparatory sequence is an infinite sequence.
  • the preparatory sequence is 0101, 0100, 0111, 0000, 1111...
  • the first segment 0101 intercepted by the DMRS sequence of PSCCH, then the SL PRS sent on the first part of the resources can sequentially intercept the subsequent sequences: 0100, 0111, 0000, 1111.
  • the SL PRS sequence sent on the first symbol is 0100
  • the SL PRS sequence sent on the second symbol is 0111
  • the SL PRS sequence sent on the third symbol is 0000
  • the SL PRS sequence sent on the fourth symbol is 1111.
  • the SL PRS sequence sent on the first part of resources is the same as the SL PRS sequence sent on the first symbol of the second part of resources; the REs occupied by the SL PRS sent on the first part of resources on the RB are the same as the RE positions occupied by the SL PRS sent on the first symbol of the second part of resources on the RB.
  • the first symbol of the second part of the resources is the Cth symbol in the first time slot.
  • the SL PRS sequence sent by the UE on the OFDM symbol where the PSCCH is located is the SL PRS sequence sent on the Cth OFDM symbol, and the RE position occupied on each RB is the same as the RE occupied by the SL PRS on the Cth OFDM symbol.
  • the SL PRS sequence sent on the Cth OFDM symbol is 010101
  • the SL PRS sequence sent on the first part of the resources is also 010101.
  • the SL PRS on the Cth OFDM symbol is sent on RE#2 of the RB
  • the SL PRS sent on the first part of the resources is also sent on RE#2 of the RB.
  • the SL PRS sequence sent on the j-th symbol of the first part of the resources is the same as the SL PRS sequence sent on the j-th symbol of the second part of the resources, where j is an integer; the REs occupied by the SL PRS sent on the j-th symbol of the first part of the resources on the RB are the same as the REs occupied by the SL PRS sent on the j-th symbol of the second part of the resources on the RB.
  • the first part of resources includes OFDM symbols 0-(C-1) in the first time slot, and the OFDM symbols of the second part of resources start from the Cth symbol in the first time slot.
  • the SL PRS sequence sent by the UE on OFDM symbols 0, 1, ..., C-1 where the PSCCH is located is the SL PRS sequence sent on C OFDM symbols for SL PRS starting from OFDM symbol C, and the occupied REs are also the same as C OFDM symbols.
  • the symbols used for PSCCH transmission are symbols 0-2, and the SL PRS sequences sent on symbols 3-5 are 0000, 1111, and 1100 respectively. Then the SL PRS sequences sent on symbols 0-2 are 0000, 1111, and 1100 respectively.
  • the first part of resources includes C symbols, where C is a positive integer; the SL PRS sequence sent on the C-kth symbol of the first part of resources is the same as the SL PRS sequence sent on the k+1th symbol from the end of the second part of resources, where k is an integer less than C; the REs occupied by the SL PRS sent on the C-kth symbol of the first part of resources are the same as the REs occupied by the SL PRS sent on the k+1th symbol from the end of the second part of resources.
  • the first part of resources includes OFDM symbols 0-(C-1) in the first time slot, and the OFDM symbols of the second part of resources start from the Cth symbol in the first time slot.
  • the SL PRS sequence sent by the UE on the last C OFDM symbols in the time slot where the PSCCH is located on OFDM symbols 0, 1, ..., C-1 occupies the same REs as the C OFDM symbols.
  • the symbols used for PSCCH transmission are symbols 0-2, and the SL PRS sequences sent on symbols 11-13 are 0000, 1111, and 1100 respectively. Then the SL PRS sequences sent on symbols 0-2 are 0000, 1111, and 1100 respectively.
  • the RE offset occupied by SL PRS is determined according to the interval of the OFDM symbol relative to OFDM symbol C.
  • Mode 2 terminals can send PSCCH and PSSCH in the time slot of sending SL PRS.
  • PSCCH carries the first-order SCI and PSSCH carries the second-order SCI.
  • step 213 may include step 215 .
  • Step 215 When the network configuration or pre-configuration indicates that reserved resources are allowed in the SL PRS resource pool, the SL PRS, PSCCH and PSSCH are sent in the first time slot.
  • the PSCCH carries the first-order SCI
  • the PSSCH carries the second-order SCI.
  • the SCI is used to indicate the reserved resources of the SL PRS.
  • the UE that sends SL PRS sends PSCCH in the time slot in which SL PRS is sent, and at the same time sends PSSCH in the same time slot, where PSCCH carries the second-order SCI to indicate the sending of SL PRS.
  • SCI includes first-order SCI and second-order SCI. That is, SCI-P is divided into first-order SCI-P and second-order SCI-P, the first-order SCI-P is carried by PSCCH, and the second-order SCI-P is carried by PSSCH.
  • the first-order SCI-P and the second-order SCI-P carry different information.
  • the first-order SCI-P is used to carry SL PRS time-frequency resource information
  • the second-order SCI-P is used to carry information such as the sequence ID of SL PRS.
  • the DMRS in the DMRS pattern of the PSSCH, the DMRS exists in the first OFDM symbol used to send the PSCCH.
  • the DMRS pattern of the PSSCH selected by the UE should ensure that the DMRS exists in the first OFDM symbol used to send the PSCCH.
  • time-frequency resources for sending PSCCH and PSSCH may be:
  • SL PRS is not sent on the symbol where PSCCH is located, PSCCH is sent in the first subchannel used for SL PRS transmission, and the remaining IRBs on the symbol where PSCCH is located are used to send PSSCH.
  • the time and frequency resources of PSCCH include: part or all of the IRB/RB in the first subchannel used for SL PRS transmission on the OFDM symbol used for PSCCH transmission in the first time slot.
  • the time and frequency resources of SL PRS include: part or all of the IRB/RB in the subchannel used for SL PRS transmission in the OFDM symbols other than those used for PSCCH in the first time slot.
  • the time-frequency resources of the PSSCH include: part or all of the IRBs/RBs that are not used to send the PSCCH on the OFDM symbols used for sending the PSCCH in the first time slot.
  • SL PRS is not sent on the OFDM symbol where PSCCH is located.
  • the UE occupies one or all IRBs in the first subchannel used for SL PRS transmission to send PSCCH on the OFDM symbol used for PSCCH transmission in the time slot, and sends PSSCH on the remaining IRBs.
  • the first time slot includes 14 symbols
  • the frequency domain resources for SL PRS transmission include four sub-channels.
  • symbol 3, symbol 4, and symbol 5 are OFDM symbols for PSCCH transmission.
  • the time-frequency resources for sending PSCCH in method 2.1 are part or all of the IRB/RB in the first sub-channel on symbols 3, 4, and 5; the time-frequency resources for sending PSSCH are part or all of the IRB/RB in the first sub-channel on symbols 3, 4, and 5 that are not used for sending PSCCH; the time-frequency resources for sending SL PRS are part or all of the IRB/RB in the four sub-channels on symbols 6-13.
  • the frequency domain resources used for SL PRS transmission include part or all of the PRBs in the SL PRS resource pool. If the UE sends the SL PRS in a time slot, the UE occupies all or part of the PRBs in the resource pool.
  • the DMRS pattern of PSSCH selected by the UE should ensure that DMRS exists in the first OFDM symbol used for PSCCH.
  • SL PRS is not sent on the symbol where PSCCH is located. Multiple groups of resources for sending PSCCH, PSSCH and SL PRS are set in one time slot, and different SL PRS resources are used to correspond to different PSCCH/PSSCH resources.
  • the first time slot includes multiple groups of time-frequency resources for PSCCH, and one group of time-frequency resources for PSCCH includes: part or all of the IRBs on the OFDM symbols used for PSCCH transmission; the first time slot includes multiple groups of time-frequency resources for PSSCH, and one group of time-frequency resources for PSSCH includes: part or all of the IRBs on the OFDM symbols used for PSSCH transmission; the time-frequency resources of SL PRS adopt a comb-tooth structure; the first time slot includes multiple time-frequency resources for SL PRS, and one time-frequency resource of SL PRS includes: a group of comb-tooth structure resources on the OFDM symbols other than those used for PSCCH and PSSCH transmission in the first time slot; a group of time-frequency resources for PSCCH, a group of time-frequency resources for PSSCH, and one time-frequency resource for SL PRS correspond to each other one by one.
  • SL PRS there are multiple SL PRS resources in the frequency domain, and different SL PRS resources correspond to different PSCCH/PSSCH resources.
  • SL PRS adopts a comb structure, and different RE offsets on the first OFDM symbol used for SL PRS transmission in the time slot correspond to different SL PRS resources.
  • the multiple time-frequency resources of SL PRS are arranged according to the resource particle RE offset of the comb-tooth structure; when the i-th time-frequency resource of SL PRS is used to send SL PRS, the time-frequency resources for sending PSCCH are: part or all of the IRBs used for PSCCH sending in the i-th subchannel in the SL PRS resource pool, where i is an integer; when the i-th time-frequency resource of SL PRS is used to send SL PRS, the time-frequency resources for sending PSSCH are: part or all of the IRBs not used for PSCCH sending in the i-th subchannel in the SL PRS resource pool, where i is an integer.
  • the PSCCH/PSSCH resource is one or more consecutive subchannels; part or all of the IRBs in the first subchannel within the subchannel are used for PSCCH transmission, and the remaining IRBs are used for PSSCH transmission. If the UE occupies the i-th SL PRS resource, the UE transmits PSCCH/PSSCH in the i-th PSCCH/PSSCH resource occupied by the SL PRS.
  • the time-frequency resources for sending SL PRS are: on the OFDM symbol after the OFDM symbol used to send PSCCH in the first time slot, starting from the i-th subchannel to the last subchannel occupied by SL PRS.
  • the first time slot includes 14 symbols.
  • the frequency domain resources for SL PRS transmission include two subchannels. One subchannel includes ten RBs, and one RB includes 12 REs.
  • SL PRS has a comb-tooth structure with a comb-tooth size of 2.
  • An RE offset of 0 corresponds to SL PRS resource 0
  • an RE offset of 1 corresponds to SL PRS resource 1.
  • Symbol 3, symbol 4, and symbol 5 are OFDM symbols for PSCCH transmission.
  • the resources for PSCCH transmission in the first subchannel are PSCCH resource 0, and the resources for PSCCH transmission in the second subchannel are PSCCH resource 1; the resources for PSSCH transmission in the first subchannel are PSSCH resource 0, and the resources for PSSCH transmission in the second subchannel are PSSCH resource 1.
  • SL PRS resource 0 corresponds to PSCCH resource 0 and PSSCH resource 0
  • SL PRS resource 1 corresponds to PSCCH resource 1 and PSSCH resource 1.
  • the time-frequency resource used to send PSCCH is PSCCH resource 1 in the second subchannel on symbols 3, 4, and 5;
  • the time-frequency resource used to send PSSCH is PSSCH resource 1 in the second subchannel on symbols 3, 4, and 5;
  • the time-frequency resource used to send SL PRS is SL PRS resource 1 corresponding to RE offset 1 in the second subchannel on symbols 6-13.
  • This method can support multiple UEs to send SL PRS through frequency division multiplexing in the same time slot.
  • SL PRS can be sent on the symbol where PSCCH is located.
  • the time-frequency resources of PSCCH include: part or all of the IRBs/RBs in one or more subchannels used for SL PRS transmission on the OFDM symbols used for PSCCH transmission in the first time slot;
  • the time-frequency resources of PSSCH include: part or all of the IRBs/RBs not used for PSCCH transmission on the symbols used for PSCCH transmission and on the OFDM symbols used for PSSCH transmission in the first time slot;
  • the time-frequency resources of SL PRS include: a first part of resources and a second part of resources; wherein, the first part of resources includes: part or all of the IRBs/RBs not used for PSCCH or PSSCH on the OFDM symbols used for PSCCH transmission and on the OFDM symbols used for PSSCH transmission in the first time slot; the second part of resources includes: part or all of the IRBs/RBs in the subchannels used for SL PRS transmission on the OFDM symbols other than those used for PSCCH and PSSCH transmission in the first time slot.
  • the second part of resources includes part or all of the IRB/RB in the subchannel used for SL PRS transmission on the OFDM symbol after the OFDM symbol used for PSCCH transmission in the first time slot.
  • the terminal may send SL PRS on the OFDM symbol where the PSCCH is located, but the receiving UE is not required to process the SL PRS sent on these OFDM symbols. If the terminal capability of the receiving UE is strong enough, the receiving UE may process the SL PRS on these OFDM symbols. If the terminal capability of the receiving UE is weak, the SL PRS on these OFDM symbols may not be processed.
  • these OFDM symbols used to send the PSCCH are not considered. That is, the RE offset of the SL PRS comb structure is calculated according to the RE offset on the OFDM symbols in the second part of the resources, and the RE offset on the OFDM symbols in the first part of the resources is not considered.
  • the PSCCH carrying the first-order SCI-P and the PSSCH carrying the second-order SCI-P are sent in the first one or more subchannels occupied by the SL PRS.
  • the UE can send the SL PRS except for other IRBs used to send the PSCCH/PSSCH.
  • the first time slot includes 14 symbols
  • the frequency domain resources for SL PRS transmission include four sub-channels.
  • symbol 3, symbol 4, and symbol 5 are OFDM symbols for PSCCH transmission.
  • the time-frequency resources for sending PSCCH in method 2.3 are part or all of the IRB/RB in the first sub-channel on symbols 3, 4, and 5; the time-frequency resources for sending PSSCH are part or all of the IRB/RB in the first sub-channel on symbols 3, 4, and 5 that are not used to send PSCCH; the time-frequency resources for sending SL PRS are part or all of the IRB/RB in the four sub-channels on symbols 3-13 that are not used to send PSCCH and PSSCH.
  • the SL PRS sequence sent on the first part of the resources and the method adopted for the RE position of sending the SL PRS can refer to the relevant description in method 1.3.
  • the method provided in this embodiment is that when the terminal sending SL PRS reserves resources in the overlapping time slot for SL PRS transmission, it needs to send SCI-P that can be recognized by the backward UE, that is, the structure and transmission method of SCI-P and SCI-C are the same.
  • the conflict between SL PRS transmission resources and SL-U communication resources is avoided, the mutual interference between SL PRS and SL-U data is reduced, and the positioning accuracy of the SL PRS system is improved.
  • FIG. 34 shows a structural block diagram of a device for sending side control information provided by an exemplary embodiment of the present application.
  • the device can be implemented as a terminal, or implemented as a part of a terminal.
  • the device includes:
  • the sending module 301 is used to send SL PRS and side control information SCI according to network configuration or pre-configuration, and the SCI is used to indicate the resource reservation status of SL PRS.
  • the SCI when there are resources overlapping with the SL-U communication resource pool in each time slot in the SL PRS resource pool, the SCI is not used to indicate the reserved resources of the SL PRS.
  • the SCI is used to indicate reserved resources for the SL PRS.
  • the SCI is used to indicate reserved resources of the SL PRS, and the reserved resources are transmission resources in the reservable time slot.
  • the SCI is positioning side control information SCI-P; the format of the SCI-P is different from that of the communication side control information SCI-C, and/or the sending method of the SCI-P is different from that of the SCI-C.
  • the SCI is used to indicate reserved resources for the SL PRS.
  • the PSCCH carrying the SCI is sent using continuous RBs.
  • the PSCCH in the SL PRS resource pool is sent using a continuous interleaved resource block IRB structure
  • the PSCCH carrying the SCI is sent using an IRB structure
  • the sending module 301 is used to send the SL PRS and PSCCH in the first time slot, and the PSCCH carries the SCI.
  • the time-frequency resources of the PSCCH include: part or all of the IRBs in the first subchannel used for SL PRS transmission on the orthogonal frequency division multiplexing OFDM symbol used for PSCCH transmission in the first time slot.
  • the frequency domain resources used for SL PRS transmission when occupying the first time slot to send the SL PRS, include part or all of the physical resource blocks PRB in the SL PRS resource pool.
  • the first time slot includes multiple groups of time-frequency resources of the PSCCH, and the group of time-frequency resources of the PSCCH includes: part or all of the IRBs on the OFDM symbol used for PSCCH transmission;
  • the time-frequency resources of the SL PRS adopt a comb-tooth structure;
  • the first time slot includes one or more time-frequency resources of the SL PRS, and one time-frequency resource of the SL PRS includes: a group of comb-tooth structure resources on part or all of the OFDM symbols in the first time slot except for those used for PSCCH transmission;
  • a group of time-frequency resources of the PSCCH corresponds one-to-one to a time-frequency resource of the SL PRS.
  • the multiple time-frequency resources of the SL PRS are sorted according to the resource element RE offset of the comb-tooth structure
  • the time-frequency resource for sending the PSCCH is: part or all of the IRB used for PSCCH sending in the i-th subchannel in the SL PRS resource pool, where i is an integer.
  • the time-frequency resources of the PSCCH include: part or all of the IRBs in the first subchannel for SL PRS transmission on the OFDM symbol for PSCCH transmission in the first time slot;
  • the time-frequency resources of the SL PRS include: a first part of resources and a second part of resources;
  • the first part of resources includes: part or all of the IRBs not used for sending PSCCH on the OFDM symbols used for sending PSCCH in the first time slot;
  • the second part of resources includes: part or all of the IRBs in the subchannel used for SL PRS transmission on the OFDM symbols other than those used for PSCCH in the first time slot.
  • the SL PRS sequence sent on the first part of resources is the same as the demodulation reference signal DMRS sequence of the PSCCH;
  • the REs occupied by the SL PRS sent on the first part of resources on the RB are the same as the RE positions occupied by the DMRS of the PSCCH on the RB.
  • the SL PRS sequence sent on the first part of resources is a subsequent part of the DMRS sequence of the PSCCH;
  • the REs occupied by the SL PRS sent on the first part of resources on the RB are the same as the RE positions occupied by the DMRS of the PSCCH on the RB.
  • the SL PRS sequence sent on the first part of resources is the same as the SL PRS sequence sent on the first symbol of the second part of resources;
  • the REs occupied by the SL PRS sent on the first part of resources on the RB are the same as the RE positions occupied by the SL PRS sent on the first symbol of the second part of resources on the RB.
  • the SL PRS sequence sent on the j-th symbol of the first part of resources is the same as the SL PRS sequence sent on the j-th symbol of the second part of resources, where j is an integer;
  • the REs occupied by the SL PRS sent on the j-th symbol of the first part of resources on the RB are the same as the REs occupied by the SL PRS sent on the j-th symbol of the second part of resources on the RB.
  • the first part of resources includes C symbols, where C is a positive integer
  • the REs occupied by the SL PRS sent on the C-kth symbol of the first part of resources on the RB are the same as the REs occupied by the SL PRS sent on the penultimate (k+1)th symbol of the second part of resources on the RB.
  • the SCI includes a first-order SCI and a second-order SCI
  • the sending module 301 is used to send the SL PRS, PSCCH and physical sidelink shared channel PSSCH in the first time slot, the PSCCH carries the first-order SCI, and the PSSCH carries the second-order SCI.
  • a DMRS exists in the first OFDM symbol used to send the PSCCH.
  • the time-frequency resources of the PSCCH include: part or all of the IRBs in the first subchannel for SL PRS transmission on the OFDM symbol for PSCCH transmission in the first time slot;
  • the time-frequency resources of the SL PRS include: part or all of the IRBs in the subchannel used for SL PRS transmission in the OFDM symbols other than those used for PSCCH in the first time slot;
  • the time-frequency resources of the PSSCH include: part or all of the IRBs that are not used to send the PSCCH on the orthogonal frequency division multiplexing OFDM symbols used for sending the PSCCH in the first time slot.
  • the frequency domain resources used for SL PRS transmission when occupying the first time slot to send the SL PRS, include part or all of the physical resource blocks PRB in the SL PRS resource pool.
  • the first time slot includes multiple groups of time-frequency resources of the PSCCH, and the group of time-frequency resources of the PSCCH includes: part or all of the IRBs on the OFDM symbol used for PSCCH transmission;
  • the first time slot includes multiple groups of time-frequency resources of the PSSCH, and the group of time-frequency resources of the PSSCH includes: part or all of the IRBs on the OFDM symbol used for PSSCH transmission;
  • the time-frequency resources of the SL PRS adopt a comb-tooth structure;
  • the first time slot includes multiple time-frequency resources of the SL PRS, and one time-frequency resource of the SL PRS includes: a group of comb-tooth structure resources on OFDM symbols other than those used for PSCCH and PSSCH transmission in the first time slot;
  • a group of time-frequency resources of the PSCCH, a group of time-frequency resources of the PSSCH, and one time-frequency resource of the SL PRS correspond one to one.
  • the multiple time-frequency resources of the SL PRS are sorted according to the resource element RE offset of the comb-tooth structure
  • the time-frequency resource for sending the PSCCH is: part or all of the IRBs used for PSCCH transmission in the i-th subchannel in the SL PRS resource pool, where i is an integer;
  • the time-frequency resource for sending the PSSCH is: part or all of the IRBs in the i-th subchannel in the SL PRS resource pool that are not used for PSCCH transmission, where i is an integer.
  • the time-frequency resources of the PSCCH include: part or all of the IRBs in one or more subchannels used for SL PRS transmission on the OFDM symbol used for PSCCH transmission in the first time slot;
  • the time-frequency resources of the PSSCH include: part or all of the IRBs not used for PSCCH transmission on the symbols used for PSCCH transmission and on the OFDM symbols used for PSSCH transmission in the first time slot;
  • the time-frequency resources of the SL PRS include: a first part of resources and a second part of resources;
  • the first part of resources includes: part or all of the IRBs not used for sending PSCCH or PSSCH on the OFDM symbols used for sending PSCCH and the OFDM symbols used for sending PSSCH in the first time slot;
  • the second part of resources includes: part or all of the IRBs in the subchannel used for SL PRS transmission in the OFDM symbols other than those used for PSCCH and PSSCH transmission in the first time slot.
  • the SCI is positioning side control information SCI-P; the format and sending method of the SCI-P are the same as those of the communication side control information SCI-C.
  • the SCI-P includes at least one of the following information:
  • the identification ID information of the SL PRS The identification ID information of the SL PRS
  • the SL PRS sends relevant information of the terminal.
  • FIG35 shows a schematic diagram of the structure of a communication device (terminal or network device) provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 101 , a receiver 102 , a transmitter 103 , a memory 104 and a bus 105 .
  • the processor 101 includes one or more processing cores.
  • the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 may be implemented as a communication component, which may be a communication chip, and the communication component may be called a transceiver.
  • the memory 104 is connected to the processor 101 via a bus 105 .
  • the memory 104 may be used to store at least one instruction, and the processor 101 may be used to execute the at least one instruction to implement each step in the above method embodiment.
  • the memory 104 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes but is not limited to: a magnetic disk or an optical disk, an electrically erasable programmable read-only memory (EEPROM), an erasable programmable read-only memory (EPROM), a static random access memory (SRAM), a read-only memory (ROM), a magnetic memory, a flash memory, and a programmable read-only memory (PROM).
  • the processor and transceiver in the communication device involved in the embodiments of the present application can execute the steps performed by the terminal in any of the methods shown above, which will not be repeated here.
  • the transceiver is used to send SL PRS and side control information SCI based on the resource overlap between the sidelink positioning reference signal SL PRS resource pool and the unauthorized sidelink SL-U communication resource pool, according to the network configuration or according to the pre-configuration, and the SCI is used to indicate the resource reservation status of the SL PRS.
  • a computer-readable storage medium in which at least one instruction, at least one program, a code set or an instruction set is stored.
  • the at least one instruction, the at least one program, the code set or the instruction set is loaded and executed by a processor to implement the side control information sending method performed by the communication device provided in the above-mentioned various method embodiments.
  • a chip is also provided, which includes a programmable logic circuit and/or program instructions.
  • the chip runs on a communication device, it is used to enable the communication device to implement the method for sending side control information described in the above aspect.
  • a computer program product is further provided.
  • the communication device executes the method for sending sideline control information described in the above aspects.

Abstract

一种侧行控制信息的发送方法、装置、设备及介质,涉及无线通信领域。该方法应用于终端,该方法包括:根据网络配置或预配置,发送SL PRS和侧行控制信息SCI,SCI用于指示SL PRS的资源预留情况(210)。该方法可以减少SL PRS发送资源和SL-U通信资源之间的冲突。

Description

侧行控制信息的发送方法、装置、设备及介质 技术领域
本申请涉及无线通信领域,特别涉及一种侧行控制信息的发送方法、装置、设备及介质。
背景技术
当在非授权频谱上发送SL(SideLink,侧行)PRS(Positioning Reference Signal,定位参考信号)时,如果用于发送SL PRS的SL PRS资源池和用于SL-U(SideLink-Unlicense,非授权侧行链路)通信的SL-U通信资源池相同,或者,SL PRS资源池和SL-U通信资源池不完全相同但存在资源重叠,如何减少SL PRS发送资源和SL-U通信资源之间的冲突,是亟待解决的问题。
发明内容
本申请实施例提供了一种侧行控制信息的发送方法、装置、设备及介质,可以减少SL PRS发送资源和SL-U通信资源之间的冲突。所述技术方案如下:
根据本申请的一个方面,提供了一种侧行控制信息的发送方法,应用于终端中,所述方法包括:
根据网络配置或预配置,发送SL PRS和侧行控制信息SCI,所述SCI用于指示SL PRS的资源预留情况。
根据本申请的一个方面,提供了一种侧行控制信息的发送装置,所述装置包括:
发送模块,用于根据网络配置或预配置,发送SL PRS和侧行控制信息SCI,所述SCI用于指示SL PRS的资源预留情况。
根据本申请的一个方面,提供了一种终端,所述终端包括:处理器和与所述处理器相连的收发器;其中,
所述收发器,用于根据网络配置或预配置,发送SL PRS和侧行控制信息SCI,所述SCI用于指示SL PRS的资源预留情况。
根据本申请的一个方面,提供了一种终端,所述终端包括:处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行,以实现如上述方面所述的侧行控制信息的发送方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行以使通信设备实现如上述方面所述的侧行控制信息的发送方法。
根据本申请实施例的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在通信设备上运行时,用于使通信设备实现上述方面所述的侧行控制信息的发送方法。
根据本申请的一个方面,提供了一种计算机程序产品,该计算机程序产品在通信设备的处理器上运行时,使得通信设备执行上述方面所述的侧行控制信息的发送方法。
本申请实施例提供的技术方案至少包括如下有益效果:
由于部分终端(后向终端)不能识别用于指示SL PRS资源预留情况的SCI(Sidelink Control Information,侧行链路控制信息)(或称为SCI-P(SCI for Positioning,定位侧行控制信息)),若终端发送SCI-P预留部分资源用于SL PRS,则后向终端无法获知这部分资源已经被占用,后向终端可能仍会选择这部分资源进行SL-U通信,从而发生SL-U通信和SL PRS的传输冲突。为了避免SL-U通信和SL PRS的传输冲突,发送SL PRS的终端可以根据网络配置或预配置,来确定SL PRS的资源预留情况;其中,网络配置或预配置是由网络设备基于SL PRS资源池与SL-U通信资源池的预留情况确定的。若SL PRS资源池与SL-U通信资源池存在资源重叠,则可以不预留重叠资源用于SL PRS;若SL PRS资源池与SL-U通信资源池存在不重叠资源,则可以预留不重叠资源用于SL PRS,从而降低SL PRS和SL-U数据之间的相互干扰,提高SL PRS系统的定位精度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的通信系统的示意图;
图2是本申请一个示例性实施例提供的侧行通信的示意图;
图3是本申请一个示例性实施例提供的侧行通信的示意图;
图4是本申请一个示例性实施例提供的侧行通信的示意图;
图5是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图6是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图7是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图8是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图9是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图10是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图11是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图12是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图13是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图14是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图15是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图16是本申请一个示例性实施例提供的侧行控制信息的发送方法的流程图;
图17是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图18是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图19是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图20是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图21是本申请一个示例性实施例提供的侧行控制信息的发送方法的流程图;
图22是本申请一个示例性实施例提供的侧行控制信息的发送方法的流程图;
图23是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图24是本申请一个示例性实施例提供的侧行控制信息的发送方法的流程图;
图25是本申请一个示例性实施例提供的侧行控制信息的发送方法的流程图;
图26是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图27是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图28是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图29是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图30是本申请一个示例性实施例提供的侧行控制信息的发送方法的流程图;
图31是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图32是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图33是本申请一个示例性实施例提供的侧行控制信息的发送方法的示意图;
图34是本申请一个示例性实施例提供的侧行控制信息的发送装置的结构框图;
图35是本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”可以通过在设备(例如,包括终端和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
请参考图1,其示出了本申请一个实施例提供的网络架构100的示意图。该网络架构100可以包括:终端10、接入网设备20和核心网设备30。
终端10可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、 远方站、远程终端、移动设备、无线通信设备、用户代理或用户装置。可选地,终端10还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digita1 Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,第五代移动通信系统(5th Generation System,5GS)中的终端或者未来演进的公用陆地移动通信网络(Pub1ic Land Mobi1e Network,PLMN)中的终端等,本申请实施例对此并不限定。为方便描述,上面提到的设备统称为终端。终端10的数量通常为多个,每一个接入网设备20所管理的小区内可以分布一个或多个终端10。
接入网设备20是一种部署在接入网中用以为终端10提供无线通信功能的设备。接入网设备20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB(next Generation Node B,下一代节点B(或新一代接入网节点))。随着通信技术的演进,“接入网设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端10提供无线通信功能的装置统称为接入网设备。可选地,通过接入网设备20,终端10和核心网设备30之间可以建立通信关系。示例性地,在长期演进(Long Term Evolution,LTE)系统中,接入网设备20可以是演进的通用陆地无线网(Evolved Universal Terrestrial Radio Access Network,EUTRAN)或者EUTRAN中的一个或者多个eNodeB;在5G NR系统中,接入网设备20可以是无线接入网(Radio Access Network,RAN)或者RAN中的一个或者多个gNB。在本申请实施例中,所述的网络设备除特别说明之外,是指接入网设备20,如基站。
核心网设备30是部署在核心网中的设备,核心网设备30的功能主要是提供用户连接、对用户的管理以及对业务完成承载,作为承载网络提供到外部网络的接口。例如,5G NR系统中的核心网设备可以包括接入和移动性管理功能(Access and Mobility Management Function,AMF)网元、认证服务器功能(Authentication Server Function,AUSF)网元、用户平面功能(User Plane Function,UPF)网元、会话管理功能(Session Management Function,SMF)网元、位置管理功能(Location Management Function,LMF)网元、策略控制功能(Policy Control Function,PCF)网元、统一数据管理(Unified Data Management,UDM)网元等。
在一个示例中,接入网设备20与核心网设备30之间通过某种接口技术互相通信,例如5G NR系统中的NG接口。接入网设备20与终端10之间通过某种空口技术互相通信,例如Uu口。
接入网设备是终端通过无线方式接入到该网络架构中的接入设备,主要负责空口侧的无线资源管理、服务质量(Quality of Service,QoS)管理、数据压缩和加密等。例如:基站NodeB、演进型基站eNodeB、5G移动通信系统或新一代无线(New Radio,NR)通信系统中的基站、未来移动通信系统中的基站等。
核心网设备包括NSSF(Network Slice Selection Function,网络片选择功能)、AUSF(Authentication Server Function,身份验证服务器功能)、UDM(Unified Data Management,统一数据管理)、AMF(Access and Mobility Management Function,接入和移动性管理功能)、SMF(Session Management Function,会话管理功能)、PCF(Policy Control Function,策略控制功能)、UPF(User Plane Function,用户面功能)。
UE通过Uu口与(R)AN(Access Network,接入网)进行接入层连接,交互接入层消息及无线数据传输,UE通过N1接口与AMF进行非接入层(None Access Stratum,NAS)连接,交互NAS消息。AMF是核心网中的移动性管理功能,SMF是核心网中的会话管理功能,AMF在对UE进行移动性管理之外,还负责将从会话管理相关消息在UE和SMF之间的转发。PCF是核心网中的策略管理功能,负责制定对UE的移动性管理、会话管理、计费等相关的策略。PCF通过N5接口与外部应用功能(Application Function,AF)进行数据传输。UPF是核心网中的用户面功能,通过N6接口与外部数据网络(Data Network,DN)进行数据传输,通过N3接口与AN进行数据传输。
本申请实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本申请实施例描述的技术方案可以适用于LTE系统,也可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统,还可以适用于诸如窄带物联网(Narrow Band Internet of Things,NB-IoT)系统等其他通信系统,本申请对此不作限定。
首先,对相关内容进行介绍。
SL传输技术:不同于传统的蜂窝系统中通信数据通过接入网设备接收或者发送,SL(Sidelink,侧行链路)传输是指终端与终端之间通过侧行链路直接进行通信数据传输。关于SL传输,3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)定义了两种传输模式:模式A和模式B。模式A:SL UE(User Equipment,用户设备)的传输资源是由接入网设备分配的,SL UE根据接入网设备分配的传输资源在侧行链路上进行通信数据的传输,其中,接入网设备既可以为SL UE分配单次传输的传输资源,也可以为SL UE分配半静态传输的传输资源。模式B:SL UE在资源池中选取一个或多个传输资源进行通信数据的传 输,SL UE可以通过侦听的方式在资源池中选取传输资源,或者通过随机选取的方式在资源池中选取传输资源。而在非授权频谱上进行SL传输时,接入网设备可以为UE预先配置多个资源池(SL PRS资源池、SL-U通信资源池等),UE在执行具体业务时,可以从对应资源池中选择资源执行LBT(Listen Before Talk,先听后说)过程,若LBT成功则UE可以占用这部分资源进行非授权频谱上的侧行传输,UE在这部分资源上发送侧行数据的同时还会发送SCI,SCI指示了UE当前侧行传输所占用的资源,此外,SCI还可以用于指示UE预留的资源。例如,UE在SL PRS资源池中通过LBT占用了一部分资源用于发送SL PRS,则UE在这部分资源上发送SL PRS和SCI-P,SCI-P指示了本次SL PRS所占用的资源,以及为之后的SL PRS预留的资源。
在侧行链路(SideLink,SL)传输中,根据进行通信的终端所处的网络覆盖情况,可以分为网络覆盖内侧行通信,部分网络覆盖侧行通信,及网络覆盖外侧行通信,分别如图2,图3和图4所示。
图2:在网络覆盖内侧行通信中,所有进行侧行通信的终端21均处于同一基站10的覆盖范围内,从而,上述终端21均可以通过接收基站10的配置信令,基于相同的侧行配置进行侧行通信。
图3:在部分网络覆盖侧行通信情况下,部分进行侧行通信的终端21位于基站的覆盖范围内,这部分终端21能够接收到基站10的配置信令,而且根据基站10的配置进行侧行通信。而位于网络覆盖范围外的终端22,无法接收基站10的配置信令,在这种情况下,网络覆盖范围外的终端22将根据预配置(pre-configuration)信息及位于网络覆盖范围内的终端21发送的物理侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)中携带的信息确定侧行配置,进行侧行通信。
图4:对于网络覆盖外侧行通信,所有进行侧行通信的终端22均位于网络覆盖范围外,所有终端22均根据预配置信息确定侧行配置进行侧行通信。
车联网(Vehicle to everything,V2X):是未来智能交通运输系统的关键技术,主要研究基于3GPP通信协议的车辆数据传输方案。V2X通信包括车与车(Vehicle to Vehicle,V2V)通信、车与路侧基础设施(Vehicle to Infrastructure,V2I)通信以及车与行人(Vehicle to Pedestrian,V2P)通信。V2X应用将改善驾驶安全性、减少拥堵和车辆能耗、提高交通效率等。
NR-V2X中时隙结构
在NR-V2X中,PSSCH(Physical Sidelink Shared Channel,物理侧行共享信道)和其关联的PSCCH(Physical Sidelink Control Channel,物理侧行控制信道)在相同的时隙中传输,PSCCH占据2个或3个时域符号。NR-V2X的时域资源分配以时隙为分配粒度。通过参数sl-startSLsymbols(侧行链路-侧行链路起始符号)和sl-lengthSLsymbols(侧行链路-侧行链路符号长度)配置一个时隙中用于侧行传输的时域符号的起点和长度,这部分符号中的最后一个符号用作GP(Guard Period,保护间隔),PSSCH和PSCCH只能使用其余的时域符号,但是如果一个时隙中配置了PSFCH(Physical Sidelink Feedback Channel,物理侧行反馈信道)传输资源,PSSCH和PSCCH不能占用用于PSFCH传输的时域符号,以及该符号之前的AGC(Automatic Gain Control,自动增益控制)和GP符号。
如图5所示,网络配置sl-StartSymbol(侧行起始符号)=3,sl-LengthSymbols(侧行符号长度)=11,即一个时隙中从符号索引3开始的11个时域符号可用于侧行传输,该时隙中有PSFCH传输资源,该PSFCH占据符号11和符号12,其中符号11作为PSFCH的AGC符号,符号10、13分别用作GP,可用于PSSCH传输的时为符号3至符号9,PSCCH占据3个时域符号,即符号3、4、5,符号3通常用作AGC符号。
NR-V2X中一个侧行时隙内除存在PSCCH、PSSCH,还可能存在PSFCH,如图6所示。可以看到,在一个时隙内,第一个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号固定用于自动增益控制(AGC),在AGC符号上,UE复制第二个符号上发送的信息。而时隙的最后留有一个符号用于收发转换,用于UE从发送(或接收)状态转换到接收(或发送)状态。在剩余的OFDM符号中,PSCCH可以占用从第二个侧行符号开始的两个或三个OFDM符号,在频域上,PSCCH占据的PRB(Physical Resource Block,物理资源块)个数在一个PSSCH的子带范围内,如果PSCCH占用的PRB个数小于PSSCH的一个子信道的大小,或者,PSSCH的频域资源包括多个子信道,则在PSCCH所在的OFDM符号上,PSCCH可以和PSSCH频分复用。
NR-V2X中PSSCH的DMRS(Demodulation Reference Signal,解调参考信号)借鉴了NR Uu接口中的设计,采用了多个时域PSSCH DMRS图案。在一个资源池内,可采用的DMRS图案的个数和资源池内PSSCH的符号数有关,对于特定的PSSCH符号数(包括第一个AGC符号)和PSCCH符号数,可用的DMRS图案以及图案内每个DMRS符号的位置如表1所示。图7中给出了PSSCH为13个符号数时4个DMRS符号的时域位置示意图,即,当PSSCH符号数为13,PSCCH符号数为2,DMRS符号数为4时,DMRS符号位置分别位于符号1、4、7、10。
表1不同PSSCH和PSCCH符号数下DMRS符号个数及位置
Figure PCTCN2022141078-appb-000001
如果资源池内配置了多个时域DMRS图案,则具体采用的时域DMRS图案由发送UE选择,并在第一阶SCI中予以指示。这样的设计允许高速运动的UE选择高密度的DMRS图案,从而保证信道估计的精度,而对于低速运动的UE,则可以采用低密度的DMRS图案,从而提高频谱效率。
PSSCH DMRS序列的生成方式和PSCCH DMRS序列的生成方式几乎完全相同,唯一的区别在于伪随机序列c(m)的初始化公式c init中,
Figure PCTCN2022141078-appb-000002
p i为调度该PSSCH的PSCCH的第i位CRC(Cyclic Redundancy Check,循环冗余校验),L=24,为PSCCH CRC的比特位数。
NR PDSCH和PUSCH中支持两种频域DMRS图案,即DMRS频域类型1和DMRS频域类型2,而且对于每一种频域类型,均存在单DMRS符号和双DMRS符号两种不同类型。单符号DMRS频域类型1支持4个DMRS端口,单符号DMRS频域类型2可以支持6个DMRS端口,双DMRS符号情况下,支持的端口数均翻倍。然而,在NR-V2X中,由于PSSCH最多只需要支持两个DMRS端口,所以,仅支持单符号的DMRS频域类型1,如图8所示。
NR-V2X频域资源的确定
与LTE(Long Term Evolution,长期演进)-V2X类似,NR-V2X资源池的频域资源也是连续的,并且频域资源的分配粒度也是子信道,一个子信道包括的PRB个数为{10,12,15,20,50,75,100},其中,最小的子信道的尺寸为10PRB,远大于LTE-V2X中的最小子信道尺寸4PRB,这主要是因为NR-V2X中PSCCH的频域资源位于与其关联的PSSCH的第一个子信道内,PSCCH的频域资源小于或等于PSSCH的一个子信道的尺寸,而PSCCH的时域资源占据2个或3个OFDM符号,如果子信道的大小配置比较小,就会导致PSCCH可用资源很少,码率提高,降低PSCCH的检测性能。在NR-V2X中,PSSCH子信道的尺寸与PSCCH的频域资源大小是独立配置的,但是要保证PSCCH的频域资源小于或等于PSSCH的子信道尺寸。
NR-V2X资源池配置信息中的如下配置参数用于确定PSCCH和PSSCH资源池的频域资源:
子信道尺寸(sl-SubchannelSize):指示资源池中一个子信道包括的连续PRB的个数,取值范围为{10,12,15,20,50,75,100}PRB;
子信道数(sl-NumSubchannel):指示资源池中包括的子信道数;
子信道起始RB(Resource Block,资源块)索引(sl-StartRB-Subchannel):指示资源池中第一个子信道的起始PRB索引;
PRB数(sl-RB-Number):指示资源池中包括的连续PRB个数;
PSCCH频域资源指示(sl-FreqResourcePSCCH):指示PSCCH的频域资源大小,取值范围为{10,12,15,20,25}PRB;
在UE确定用于PSSCH发送或PSSCH的接收的资源池时,资源池包括的频域资源为sl-StartRB-Subchannel指示的PRB开始的sl-NumSubchannel个连续子信道,如果最终sl-NumSubchannel个连续子信道包含的PRB个数小于sl-RB-Number指示的PRB个数,则剩余的PRB不能用于PSSCH发送或接收。
NR-V2X中,如图9所示,PSCCH与其关联的PSSCH的第一个子信道的频域起始位置是对齐的,因 此,每个PSSCH子信道的起始位置都是可能的PSCCH的频域起始位置,根据上面的参数可以确定PSCCH与PSSCH的资源池的频域范围。
在NR-V2X中,PSCCH用于承载和资源侦听相关的侧行控制信息,包括:
被调度传输的优先级;
频域资源分配,指示PSCCH调度的当前时隙内的PSSCH的频域资源个数,以及预留的最多两个重传资源的频域资源个数和起始位置;
时域资源分配,指示最多两个重传资源的时域位置;
PSSCH的参考信号图案;
第二阶SCI格式;
第二阶SCI码率偏移;
PSSCH DMRS端口数;
调制编码机制(Modulation and Coding Scheme,MCS);
MCS表格指示;
PSFCH符号数;
资源预留周期,预留用于下个周期另外一个TB发送的资源,如果当资源池配置中没有激活TB(Transport Block,传输块)间资源预留时,不存在该信息比特域。
保留比特:2~4比特,具体比特个数由网络配置或预配置。
由于PSCCH总是和被调度的PSSCH在一个时隙内发送,而且PSCCH占用的PRB的起始位置即为被调度的PSSCH的第一个子信道的起始位置,SCI格式1-A中并没有明确指示被调度的PSSCH的时频域起始位置。
NR-V2X时域资源(时隙)的确定
在NR-V2X中,PSCCH/PSSCH的传输是基于时隙级别的,即一个时隙只能传输一个PSCCH/PSSCH,不支持一个时隙内通过TDM(Time Division Multiplex and Multiplexer,时分复用)的方式传输多个PSCCH/PSSCH,不同用户之间的PSCCH/PSSCH可以在一个时隙内通过FDM(Frequency Division Multiplexing,频分复用)的方式复用。NR-V2X中PSSCH的时域资源以时隙为粒度,但是与LTE-V2X中PSSCH占满一个子帧中所有的时域符号不同,NR-V2X中的PSSCH可以占据一个时隙中的部分符号。这主要是因为在LTE系统中,上行或下行传输也都是以子帧为粒度的,因此侧行传输也是以子帧为粒度(TDD(Time Division Duplex,时分双工)系统中的特殊子帧不用于侧行传输)。而在NR系统中采用灵活时隙结构,即一个时隙内既包括上行符号又包括下行符号,从而可以实现更加灵活的调度,并且可以降低时延。典型的NR系统的子帧如图10所示,时隙中可以包括下行符号(Downlink,DL)、上行符号(Uplink,UL)和灵活符号(Flexible),下行符号位于时隙的起始位置,上行符号位于时隙的结束位置,下行符号和上行符号之间是灵活符号,每个时隙中的各种符号的个数都是可配置的。
如前所述,侧行传输系统可以与蜂窝系统共享载波,此时侧行传输只能使用蜂窝系统的上行传输资源。对于NR-V2X,如果仍然需要侧行传输占据一个时隙中的所有时域符号,需要网络配置全上行符号的时隙用于侧行传输,这样会对NR系统的上下行数据传输造成很大的影响,降低系统的性能。因此,在NR-V2X中,支持时隙中部分时域符号用于侧行传输,即一个时隙中部分上行符号用于侧行链路传输。另外,考虑到在侧行传输中包括AGC符号以及GP符号,如果可用于侧行链路传输的上行符号的个数较少,去掉AGC符号和GP符号,剩余可用于传输有效数据的符号更少,资源利用率很低,因此,NR-V2X中侧行链路传输占据的时域符号最少是7个(包括GP符号)。当侧行传输系统使用专有载波时,此时不存在和其他系统共享传输资源的问题,可以配置时隙中所有的符号都用于侧行传输。
NR-V2X中通过参数起始符号位置(sl-StartSymbol)和符号个数(sl-LengthSymbols)配置一个时隙中用于侧行传输的时域符号的起点和长度,用于侧行传输的时域符号中的最后一个符号用作GP,PSSCH和PSCCH只能使用其余的时域符号,但是如果一个时隙中配置了PSFCH传输资源,PSSCH和PSCCH不能占用用于PSFCH传输的时域符号,以及该符号之前的AGC和GP符号。
如图11所示,网络配置起始符号位置=3,符号个数=11,即一个时隙中从符号索引3开始的11个时域符号可用于侧行传输,其中,符号3通常用作AGC符号,符号13用作GP,其余符号可用于PSCCH和PSSCH传输,PSCCH占据2个时域符号,但是由于AGC符号上的数据是第二个侧行符号上数据的复制,因此第一个侧行符号上也包括PSCCH数据。
在NR-V2X系统中,资源池的时域资源也是通过比特位图指示的,考虑到NR系统中灵活的时隙结构,对比特位图的长度也进行了扩展,支持的比特位图长度范围是[10:160]。利用比特位图确定一个SFN(System Frame Number,系统帧号)周期内属于资源池的时隙位置的方式与LTE-V2X中相同,但是有如 下两点不同:
·一个SFN(System Frame Number,系统帧号)周期内包括的时隙总数是10240×2 μ,其中,参数μ与子载波间隔大小有关;
·如果一个时隙包括的时域符号Y、Y+1、Y+2…Y+X-1中至少有一个时域符号不是被网络的TDD-UL-DL-ConfigCommon信令配置为上行符号,则该时隙不能用于侧行传输。其中,Y和X分别表示sl-StartSymbol和sl-LengthSymbols。
具体包括以下步骤:
步骤1:在SFN周期内去掉不属于资源池的时隙,包括同步时隙和不能用于侧行传输的时隙等。剩下的时隙表示为剩余时隙集合,将剩余的时隙重新编号为
Figure PCTCN2022141078-appb-000003
其中:
N S_SSB表示一个SFN周期内同步时隙的个数;同步时隙根据同步相关配置参数确定,与传输SSB(Synchronization Signal Block,同步信号块)的周期和周期内配置的SSB的传输资源数目等相关。
N nonSL表示一个SFN周期内不符合上行符号起点和个数配置的时隙个数:如果一个时隙包括的时域符号Y、Y+1、Y+2…Y+X-1中至少有一个时域符号不是被半静态配置为上行符号,则该时隙不能用于侧行传输,其中,Y和X分别表示sl-StartSymbol和sl-LengthSymbols。
步骤2:确定预留时隙的个数以及对应的时域位置。
剩余时隙集合中的时隙个数如果不能被比特位图长度整除,需要确定预留时隙的个数以及相应的时域位置。具体的,如果一个时隙l r(0≤r<10240×2 μ-N S_SSB-N nonSL)满足下面的条件,则该时隙是预留时隙:
Figure PCTCN2022141078-appb-000004
其中,N reserved=(10240×2 μ-N S_SSB-N nonSL)modL bitmap,表示预留时隙的个数,L bitmap表示比特位图的长度,m=0,...,N reserved-1。
步骤3:在剩余时隙集合中将预留时隙去掉,剩下的时隙集合表示为逻辑时隙集合,该时隙集合中的时隙都是可用于资源池的时隙,将逻辑时隙集合中的时隙重新编号为
Figure PCTCN2022141078-appb-000005
其中,T max=10240×2 μ-N S_SSB-N nonSL-N reserved
步骤4:根据比特位图确定逻辑时隙集合中属于资源池的时隙。
资源池配置信息中的比特位图为
Figure PCTCN2022141078-appb-000006
对于逻辑时隙集合中的时隙
Figure PCTCN2022141078-appb-000007
(0≤k<(10240×2 μ-N S_SSB-N nonSL-N reserved)),当满b k′=1时,该时隙是属于资源池的时隙,其中k′=k mod L bitmap
步骤5:将步骤4中确定的属于资源池的时隙重新顺序编号为
Figure PCTCN2022141078-appb-000008
i∈{0,1,…,T′ max-1},其中,T′ max表示该资源池包括的时隙数量。
如图12所示,一个SFN周期(或DFN(Direct Frame Number,直接帧号)周期)包括10240个子帧,同步信号的周期是160ms,在一个同步周期内包括2个同步子帧,因此,在一个SFN周期内共有128个同步子帧,用于指示资源池时域资源的比特位图的长度是10比特,因此需要2个预留子帧(reserved subframe),剩余子帧个数是(10240-128-2=10110),可以被比特位图的长度10整除,将剩余的子帧重新编号为0、1、2……10109,比特位图前3位为1,其余7位为0,即,在剩余子帧中,每10个子帧中的前3个子帧属于该资源池,其余的子帧不属于该资源池。由于在剩余子帧中需要比特位图重复1011次,以指示所有的子帧是否属于资源池,而在每个比特位图周期内包括3个子帧,因此在一个SFN周期共有3033个子帧属于该资源池。
NR V2X中的第二模式(Mode 2)资源选择
在NR-V2X中支持Mode 2资源选择,即UE根据检测到的其它UE发送的PSCCH,排除其它UE预留的资源,并在剩余的资源中选择用于数据发送的资源。
第二模式资源选择按照以下两个步骤进行:
步骤1:UE将资源选择窗内所有的可用资源作为资源集合A。
如果UE在侦听窗内某些时隙发送数据,没有进行侦听,则这些时隙在选择窗内对应的时隙上的全部资源被排除掉。UE利用所用资源池配置中的“resource reservation period(资源预留周期)”域的取值集合确定选择窗内对应的时隙。
如果UE在侦听窗内侦听到PSCCH,测量该PSCCH的RSRP(Reference Signal Received Power,参考信号接收功率)或者该PSCCH调度的PSSCH的RSRP,如果测量的RSRP大于SL-RSRP阈值,并且根据 该PSCCH中传输的侧行控制信息中的资源预留信息确定其预留的资源在资源选择窗内,则从集合A中排除对应资源。如果资源集合A中剩余资源不足资源集合A进行资源排除前全部资源的X%,则将SL-RSRP阈值抬升3dB,重新执行步骤1。上述X可能的取值为{20,35,50},UE根据待发送数据的优先级从该取值集合中确定参数X。同时,上述SL-RSRP阈值与UE侦听到的PSCCH中携带的优先级以及UE待发送数据的优先级有关。UE将集合A中经资源排除后的剩余资源作为候选资源集合。
步骤2:UE从候选资源集合中随机选择若干资源,作为其初次传输以及重传的发送资源。
基于侧行链路的定位
3GPP RAN对“NR定位增强”和“覆盖内、部分覆盖和覆盖外NR定位用例的场景和要求”进行了研究。“覆盖内、部分覆盖和覆盖外NR定位用例的场景和要求”研究集中于V2X和公共安全用例。此外,SA1(Security Association 1,安全关联1)制定了“基于测距的服务”的要求,并针对覆盖范围外场景中的IIoT(Industrial Internet of Things,工业物联网)使用情况制定了定位精度要求。3GPP需要研究和开发侧行链路定位解决方案,以支持在这些活动中确定的用例、场景和需求。为了提高定位精度,尤其是实现位于蜂窝网络覆盖外的UE的定位,3GPP引入了基于侧行定位参考信号的定位。根据目前的结论,侧行定位参考信号SL PRS可以在专用的资源池内发送,然而,为了支持侧行定位和侧行通信,UE还需要发送和接收侧行定位相关的UE互发现信息,配置信息,测量上报信息,以及侧行通信相关的控制和数据信息,等,而这些信息需要通过侧行信道,例如PSCCH和/或PSSCH承载。
非授权频谱上的侧行传输(SL-U)
在非授权频谱上进行侧行传输(Sidelink Over Unlicensed Spectrum,SL-U)时,侧行发送需要满足特定的确法规需求,其中包括最小信道占用带宽(Occupied Channel Bandwidth,OCB)以及最大功率谱密度(Power Spectral Density,PSD)的需求。对于OCB的需求,UE使用该信道进行数据传输时,所占用的信道带宽不低于一个信道带宽的80%;对于最大功率谱密度的需求,UE在每1MHz上发送的功率不能超过10dBm。为了满足OCB和PSD法规需求,在非授权频谱上侧行发送需要采用交织资源块(Interlaced Resource Block,IRB)结构。一个IRB包括频域离散的N个RB,频带范围内共计包括M个IRB,第m个IRB包括的RB为{m,M+m,2M+m,3M+m,……}。
如图13所示,系统带宽包括20个RB,包括5个IRB(即M=5),每个IRB包括4个RB(即N=4),属于同一个IRB的相邻两个RB的频域间隔相同,即相距5个RB,图中方框内的数字表示IRB索引。
在SL-U系统中,如果采用基于IRB的资源分配粒度,SL-U系统的PSCCH和PSSCH等信道都应基于IRB结构。此时,SL-U系统的帧结构如图14所示,图中方框内的数字表示IRB索引。图14是时隙中只包括PSCCH和PSSCH,不包括PSFCH的帧结构示意图。图14中所示带宽包括20个RB,配置5个IRB资源,即M=5,每个IRB资源包括4个RB,方框中的数字表示IRB索引。在图14中,系统配置PSCCH占据1个IRB资源,时域占据2个OFDM符号,PSSCH以IRB为粒度,时隙中的第一个符号为AGC符号,最后一个符号为GP符号。图14中,PSSCH1占据IRB#0和IRB#1,其对应的PSCCH1占据IRB#0。PSSCH2占据IRB#2,其对应的PSCCH2也占据IRB#2。需要说明的是,图14中为了简化没有画出第二阶SCI占据的资源以及PSCCH DMRS和PSSCH DMRS占据的资源。
在非授权频谱上UE通过LBT接入信道,如图15所示,LBT在频域上以20MHz为粒度,每20MHz称为一个RB集合(RB Set),一个载波可以包括多个RB集合,RB集合和RB集合之间有保护间隔。
请参考图16,其示出了本申请一个实施例提供的侧行控制信息的发送方法的流程图,该方法可以应用于终端中。该方法包括如下步骤。
步骤210:根据网络配置或预配置,发送SL PRS和SCI,SCI用于指示SL PRS的资源预留情况。
终端接收网络设备发送的网络配置,根据网络配置中指示的资源预留方式(允许预留/允许在可预留时隙预留/不允许预留)来发送SL PRS和SCI,其中,SCI所指示的SL PRS的资源预留情况是根据网络配置所指示的资源预留方式确定的。
或者,终端根据预配置中指示的资源预留方式(允许预留/允许在可预留时隙预留/不允许预留)来发送SL PRS和SCI,其中,SCI所指示的SL PRS的资源预留情况是根据预配置所指示的资源预留方式确定的。
其中,网络设备可以根据SL PRS资源池和SL-U通信资源池的资源重叠情况向终端发送网络配置,或,根据SL PRS资源池和SL-U通信资源池的资源重叠情况为终端预配置。示例性的,不同的资源重叠情况对应不同的网络配置或预配置。
SL PRS资源池、SL-U通信资源池是网络为侧行通信的终端配置的非授权频谱上的资源池,其中,SL PRS资源池用于SL PRS发送,SL-U资源池用于SL-U通信。
SL PRS资源池/SL-U资源池在时域上包括至少一个时隙,该至少一个时隙可以是连续的,也可以是分散的或周期性重复的。SL PRS资源池/SL-U资源池在频域上包括至少一个子信道,至少一个子信道是连续的。可选的,至少一个子信道也可以是分散的或周期性重复的。
其中,一个子信道包括连续的至少一个PRB,可选的,一个子信道包括10或12或15或20或50或75或100个PRB。
资源池(SL PRS资源池/SL-U资源池)的配置信息包括如下参数中的至少一种:子信道尺寸(sl-SubchannelSize):指示资源池中一个子信道包括的连续PRB的个数,取值范围为{10,12,15,20,50,75,100}PRB;子信道数(sl-NumSubchannel):指示资源池中包括的子信道数;子信道起始RB索引(sl-StartRB-Subchannel):指示资源池中第一个子信道的起始PRB索引;PRB数(sl-RB-Number):指示资源池中包括的连续PRB个数。
SL PRS资源池与SL-U通信资源池的资源重叠情况包括但不限于:
情况(1):SL PRS资源池与SL-U通信资源池完全重叠;例如,如图17所示,SL PRS资源池与SL-U通信资源池在时域和频域上都相同。
情况(2):SL PRS资源池中的每个时隙上均存在与SL-U通信资源池重叠的资源;例如,如图18所示,SL PRS资源池与SL-U通信资源池在时域上相同,在频域上存在重叠。
情况(3):SL PRS资源池的部分时隙属于SL-U通信资源池,SL PRS资源池的其他时隙不属于SL-U通信资源池,即,SL PRS资源池中包括不属于SL-U通信资源池的时隙;例如,如图19所示,SL PRS资源池与SL-U通信资源池在时域上存在不重叠部分,在重叠部分的时域上存在频域重叠。
情况(4):SL PRS资源池与SL-U通信资源池完全不重叠。例如,如图20所示,SL PRS资源池与SL-U通信资源池在时域和频域上都不重叠。
若SL PRS发送和SL-U通信在同一个时隙中同时进行,则可能会发生传输冲突,导致接收方无法准确接收,因此,从SL PRS资源池与SL-U通信资源池的时域重叠情况上,来考虑发送SL PRS的终端是否可以预留SL PRS资源池中的资源用于SL PRS发送。
若SL PRS资源池与SL-U通信资源池在时域上完全重叠,则网络配置或预配置可以指示发送SL PRS的终端不可以预留SL PRS资源池中的资源用于SL PRS发送,或者,发送SL PRS的终端需要发送所有终端均可以识别的SCI来指示预留的用于SL PRS发送的资源。
若SL PRS资源池中存在与SL-U通信资源池不重叠的时隙,则网络配置或预配置可以指示发送SL PRS的终端可以预留不重叠时隙上的资源用于SL PRS发送。
可选的,SL-U通信资源池可以是网络为后向UE配置的用于SL-U通信的资源池。其中,后向UE是支持在非授权频谱上发送侧行数据,但不能识别SCI-P(SCI for Positioning,定位侧行控制信息)的UE,例如,SCI-P与SCI-C(SCI for Communication,通信测性控制信息)格式不同,或发送方式不同,后向UE无法解码SCI-P。SCI-P用于指示SL PRS发送资源和/或SL PRS预留资源。例如,后向UE为仅支持3GPPR18版本SL-U的UE。后向UE可以识别SCI-C。
当后向UE无法识别发送SL PRS的UE发送的SCI-P时,后向UE无法获知发送SL PRS的UE预留的资源,后向UE可能会使用发送SL PRS的UE预留的资源进行SL-U通信,此时,就会发生SL-U通信与SL PRS发送的传输冲突。因此,本申请实施例提供的方法,需要发送SL PRS的UE基于SL PRS资源池与SL-U通信资源池的资源重叠情况来确定SL PRS的资源预留情况,从而避免与后向UE发生传输冲突。
执行该方法的终端为发送SL PRS的终端,发送SL PRS的终端在一个时隙内发送SL PRS和SCI。该SCI可以称为SCI-P。SCI用于指示本次发送SL PRS的资源。可选的,SCI还用于指示SL PRS发送的预留资源。
SCI用于指示SL PRS的资源预留情况。当SCI中包括预留资源的相关指示信息时,SCI用于指示SL PRS发送的预留资源;当SCI中不包括预留资源的相关指示信息时,SCI用于指示没有为SL PRS预留资源。
可选的,用于指示SL PRS发送资源和/或SL PRS预留资源的SCI(SCI-P),和,后向UE用于指示PSSCH发送资源和PSSCH预留资源的SCI(SCI-C)的格式可以不同或相同,SCI-P包括以下信息中的一项或多项:
–SL PRS的ID(Identity,标识)信息;
–SL PRS占用的时频资源位置;
–SL PRS的重复次数,以及用于重复发送的时频资源位置;
–SL PRS的发送周期;
–SL PRS发送UE的相关信息,例如地理位置,类型等。
可选的,UE发送SL PRS时占用至少一个RB集合。
可选的,UE发送的SL PRS可以用于绝对定位,或者用于相对定位,即用于接收该PRS的UE确定相对于发送UE之间的距离和/或方向。
可选的,SL-U通信资源池还可以称为侧行通信资源池、Mode2侧行通信资源池等。
综上所述,本实施例提供的方法,由于部分终端(后向终端)不能识别用于指示SL PRS资源预留情况的SCI(Sidelink Control Information,侧行链路控制信息)(或称为SCI-P(SCI for Positioning,定位侧行控制信息)),若终端发送SCI-P预留部分资源用于SL PRS,则后向终端无法获知这部分资源已经被占用,后向终端可能仍会选择这部分资源进行SL-U通信,从而发生SL-U通信和SL PRS的传输冲突。为了避免SL-U通信和SL PRS的传输冲突,发送SL PRS的终端可以根据网络配置或预配置,来确定SL PRS的资源预留情况;其中,网络配置或预配置是由网络设备基于SL PRS资源池与SL-U通信资源池的预留情况确定的。若SL PRS资源池与SL-U通信资源池存在资源重叠,则可以不预留重叠资源用于SL PRS;若SL PRS资源池与SL-U通信资源池存在不重叠资源,则可以预留不重叠资源用于SL PRS,从而降低SL PRS和SL-U数据之间的相互干扰,提高SL PRS系统的定位精度。
示例性的,针对SL PRS资源池与SL-U通信资源池的资源重叠情况的不同,提供了以下三种示例性实施例,来减少SL PRS发送资源和SL-U发送资源的冲突:
1、发送SL PRS的UE不预留其它时隙中与后向UE使用的SL-U通信资源池重叠的资源用于SL PRS发送。
2、发送SL PRS的UE可以预留不属于后向UE使用的SL-U通信资源池中的时隙用于SL PRS发送。
3、发送SL PRS的UE可以预留其它时隙中与后向SL-U UE使用的SL-U通信资源池重叠的资源用于SL PRS发送,并通过后向UE可识别的SCI指示预留资源。
当然,基于本申请实施例提供的方法,还可以得到更多的示例性实施例,并不限于上述三种示例性实施例。
下面对这三种示例性实施例分别进行说明。
1、发送SL PRS的UE不预留其它时隙中与后向UE使用的SL-U通信资源池重叠的资源用于SL PRS发送。
请参考图21,其示出了本申请一个实施例提供的侧行控制信息的发送方法的流程图,该方法可以应用于终端中。该方法包括如下步骤。
步骤211:在网络配置或预配置指示SL PRS资源池内不允许预留资源的情况下,发送SL PRS和SCI,SCI不用于指示SL PRS的预留资源。
或者,在网络配置或预配置未指示可预留时隙的情况下,SCI不用于指示SL PRS的预留资源。可选的,可预留时隙属于SL PRS资源池且不属于SL-U通信资源池。
可选的,在SL PRS资源池中每个时隙均存在与SL-U通信资源池重叠的资源的情况下,网络配置或预配置指示SL PRS资源池内不允许预留资源。
可选的,终端在同一个时隙内发送SCI和SL PRS,SCI用于指示本次发送的SL PRS的资源,SCI不用于指示SL PRS的预留资源。例如,终端在同一个时隙内发送PSCCH和SL PRS,PSCCH中承载有SCI。或者,SCI包括第一阶SCI和第二阶SCI,终端在同一个时隙内发送PSCCH、PSSCH和SL PRS,PSCCH中承载有第一阶SCI,PSSCH中承载有第二阶SCI。
可选的,终端本次发送SCI和SL PRS的资源是终端LBT成功后占用的传输资源。或者,终端本次发送SCI和SL PRS的资源是终端之前预留的资源。
本实施例中,SL PRS资源池与SL-U通信资源池在时域完全重叠,频域部分重叠、全部重叠或不重叠。例如,如图18所示,SL PRS资源池与SL-U通信资源池所包含的时隙相同。
本实施例中,终端发送的SCI为SCI-P,SCI-P与SCI-C的格式不同,和/或,SCI-P与SCI-C的发送方式不同。SCI-P包括以下信息中的至少一种:SL PRS的ID信息;SL PRS占用的时频资源位置;SL PRS的重复次数,以及用于重复发送的时频资源位置;SL PRS的发送周期;SL PRS发送终端的相关信息。
本实施例中,SCI-P和SCI-C的格式/发送方式不同,后向UE不能解码指示SL PRS发送的SCI(SCI-P),例如,SCI-P和SCI-C格式不同,或者,用于承载SCI-P和用于承载SCI-C的PSCCH发送方式不同。
由于后向UE无法识别SCI-P,发送SL PRS的UE不可以在时隙A发送SCI-P预留时隙B内的资源用于SL PRS的发送,其中A≠B。例如,当SL PRS资源池的每个时隙均存在和后向UE使用的SL-U通信资源池重叠的资源时,发送SL PRS的UE预留的任何用于SL PRS发送的资源均有可能和后向UE使用的资源冲突,为了减少两者之间资源冲突的发生,在该SL PRS资源池内,发送SL PRS的UE只允许通 过Mode 2资源选择确定一个时隙内用于SL PRS发送的资源,而不能通过一个时隙内发送的SCI-P预留另外一个时隙内的资源用于SL PRS发送。如图18所示,SL PRS资源池和后向UE使用的侧行通信资源池包含的时隙相同,发送SL PRS的UE不能在资源池内的任何时隙发送指示信息预留资源池内其它时隙中的资源用于SL PRS发送。
综上所述,本实施例提供的方法,由于后向UE无法识别SCI-P,则当SL PRS资源池与SL-U通信资源池中的时隙完全重叠时,发送SL PRS的终端不会预留SL PRS的资源,只能通过LBT来确定SL PRS的资源,从而避免SL PRS发送资源和SL-U通信资源的冲突,降低SL PRS和SL-U数据之间的相互干扰,提高SL PRS系统的定位精度。
2、发送SL PRS的UE可以预留不属于后向UE使用的SL-U通信资源池中的时隙用于SL PRS发送。
请参考图22,其示出了本申请一个实施例提供的侧行控制信息的发送方法的流程图,该方法可以应用于终端中。该方法包括如下步骤。
步骤212:在网络配置或预配置指示了可预留时隙的情况下,发送SL PRS和SCI,SCI用于指示SL PRS的预留资源,预留资源是可预留时隙中的传输资源。
可选的,可预留时隙属于SL PRS资源池且不属于SL-U通信资源池。
可选的,终端在同一个时隙内发送SCI和SL PRS,SCI用于指示本次发送的SL PRS的资源以及SL PRS的预留资源。例如,终端在同一个时隙内发送PSCCH和SL PRS,PSCCH中承载有SCI。或者,SCI包括第一阶SCI和第二阶SCI,终端在同一个时隙内发送PSCCH、PSSCH和SL PRS,PSCCH中承载有第一阶SCI,PSSCH中承载有第二阶SCI。
可选的,终端本次发送SCI和SL PRS的资源是终端LBT成功后占用的传输资源。或者,终端本次发送SCI和SL PRS的资源是终端之前预留的资源。
本实施例中,SL PRS资源池与SL-U通信资源池在时域不重叠、不完全重叠(SL PRS资源池中存在不属于SL-U通信资源池的时隙),频域部分重叠、全部重叠或不重叠。例如,如图19所示,SL PRS资源池中存在不属于SL-U通信资源池的时隙3、时隙4、时隙13、时隙14,时隙3、时隙4、时隙13、时隙14即为可以预留时隙,终端可以在SCI中指示可预留时隙中的资源作为SL PRS的预留资源。
本实施例中,终端发送的SCI为SCI-P,SCI-P与SCI-C的格式不同,和/或,SCI-P与SCI-C的发送方式不同。SCI-P包括以下信息中的至少一种:SL PRS的ID信息;SL PRS占用的时频资源位置;SL PRS的重复次数,以及用于重复发送的时频资源位置;SL PRS的发送周期;SL PRS发送终端的相关信息。
本实施例中,后向UE不能解码指示SL PRS发送的SCI(SCI-P),例如,SCI-P和SCI-C格式不同,或者,用于承载SCI-P和用于承载SCI-C的PSCCH发送方式不同。
UE可以在时隙A发送指示信息预留时隙B内的资源用于SL PRS发送,但时隙B应属于特定的时隙范围(简称可预留时隙),可选的,可预留时隙不属于后向UE使用的SL-U通信资源池。例如,当SL PRS资源池的部分时隙属于后向UE使用的侧行通信资源池,而其它时隙并不属于后向UE使用的Mode 2侧行通信资源池(SL-U通信资源池)时,发送SL PRS的UE可以预留这部分时隙内的资源用于SL PRS发送。如图23所示,时隙#2,时隙#12…包含在SL PRS资源池内但不属于后向UE使用的Mode 2侧行通信资源池(SL-U通信资源池),可以作为可预留时隙,发送SL PRS的UE可以通过其他时隙发送的指示信息预留这部分时隙内的资源用于发送SL PRS。由于后向UE不会在可预留时隙内发送侧行数据,所以,SL PRS预留的资源不会和后向UE的资源产生冲突。
例如,如图19所示,可预留时隙包括时隙3、时隙4、时隙13、时隙14,则终端在时隙2发送SCI和SL PRS时,SCI中可以指示预留时隙13中的传输资源用于SL PRS发送。
可选的,可预留时隙是通过资源池配置或预配置信令指示的。例如,将资源池配置中的预留时隙作为可预留时隙。或者,将预配置信令中所指示的预留时隙作为可预留时隙。其中,资源池配置包括SL PRS资源池的配置信息、SL-U通信资源池的配置信息。
具体的,发送SL PRS的UE可以通过资源池的配置或预配置信令确定可预留时隙,例如,可预留时隙可以通过资源池的配置或预配置信令中的特定信息域(例如特定的比特位图)指示;或者,发送SL PRS的UE可以通过特定的规则确定可预留时隙。例如,如果SL PRS资源池内包含用于S-SSB发送的时隙,或者包含SL-U通信资源池确定过程中的预留时隙(reserved slots),则这部分时隙可以作为可预留时隙。其中,S-SSB时隙为当前SL BWP(Bandwidth Part,带宽部分)上配置的用于S-SSB发送的时隙,UE只能用该时隙内未用于S-SSB发送的频域资源发送SL PRS。
需要说明的是,实施例1可以视为实施例2的特例,即,当发送SL PRS的UE确定SL PRS资源池内存在可预留时隙时,则可以预留可预留时隙内的资源用于SL PRS发送(即实施例2),反之,则不能预留 不同时隙内的资源用于SL PRS发送(即实施例1)。
可选的,对于任何一个发送SL PRS的UE,可以通过检测其它UE已经发送的指示信息判断某个可预留时隙内的资源是否被其它UE预留,从而判断是否可以选择或预留该时隙内的资源用于发送SL PRS。
综上所述,本实施例提供的方法,由于后向UE无法识别SCI-P,则当SL PRS资源池中存在部分时隙与SL-U通信资源池不重叠时,发送SL PRS的终端可以预留不重叠的这部分时隙上的资源用于SL PRS发送,从而避免SL PRS发送资源和SL-U通信资源的冲突,降低SL PRS和SL-U数据之间的相互干扰,提高SL PRS系统的定位精度。
3、发送SL PRS的UE可以预留其它时隙中与后向SL-U UE使用的SL-U通信资源池重叠的资源用于SL PRS发送,并通过后向UE可识别的SCI指示预留资源。
请参考图24,其示出了本申请一个实施例提供的侧行控制信息的发送方法的流程图,该方法可以应用于终端中。该方法包括如下步骤。
步骤213:在网络配置或预配置指示SL PRS资源池内允许预留资源的情况下,发送SL PRS和SCI,SCI用于指示SL PRS的预留资源。
可选的,网络配置或预配置指示SL PRS资源池内允许预留资源,且SCI-P与SCI-C的格式和发送方式相同。如此,终端可以预留SL PRS资源池内的资源并通过SCI-P指示预留资源,后向UE可以解析SCI-P获知这部分资源已经被预留。
可选的,在SL PRS资源池和SL-U通信资源池在预留资源所在时隙存在资源重叠。
可选的,UE根据SL PRS资源池的配置信息判断是否与SL-U通信资源池的资源存在重叠,UE可以预留其它时隙中与后向UE使用的SL-U通信资源池重叠的资源用于SL PRS发送,并通过后向UE可识别的SCI指示预留资源。或者,UE根据网络配置或预配置,预留SL PRS资源池中其它时隙中的资源用于SL PRS发送,并通过后向UE可识别的SCI指示预留资源。
在本实施例中,SL PRS资源池和后向UE使用的SL-U通信资源池占用的时隙存在重叠,每个时隙上占用的频域资源可以相同或不同。如果发送SL PRS的UE在时隙A发送SL PRS,而且预留了之后的一个或多个重叠时隙用于SL PRS发送,则该UE应在时隙A内发送PSCCH指示上述预留信息。
在本实施例中,终端发送的SCI为SCI-P。SCI-P与SCI-C的格式相同,且,SCI-P与SCI-C的发送方式相同,SCI-P的格式和SCI-C的格式相同,承载SCI-P和承载SCI-C的PSCCH的发送方式相同。SCI-P包括以下信息中的至少一种:SL PRS的ID信息;SL PRS占用的时频资源位置;SL PRS的重复次数,以及用于重复发送的时频资源位置;SL PRS的发送周期;SL PRS发送终端的相关信息。
UE总是在相同的时隙内发送SL PRS和用于指示SL PRS发送的PSCCH和/或PSSCH。
具体的,在SL PRS资源池中的PSCCH采用连续的RB发送的情况下,承载SCI的PSCCH采用连续的RB发送。即,如果资源池内PSCCH采用连续的RB发送,则用于承载SCI-P和用于承载SCI-C的PSCCH均采用连续的RB发送;
在SL PRS资源池中的PSCCH采用连续的IRB结构发送的情况下,承载SCI的PSCCH采用IRB结构发送。即,如果资源池内PSCCH采用IRB结构发送,则用于承载SCI-P和用于承载SCI-C的PSCCH均采用IRB结构发送。
在本实施例中,SL PRS资源池和后向UE使用的SL-U通信资源池占用的时隙存在部分重叠或完全重叠,若发送SL PRS的终端要预留重叠部分时隙中的传输资源用于SL PRS发送,则需要发送后向UE能够解析的SCI来指示预留资源。
可选的,SCI的发送方式有多种,可以承载于PSCCH发送,也可以承载于PSCCH和PSSCH发送。则SCI的发送方式至少包括:
方式1终端可以在发送SL PRS的时隙内发送PSCCH,PSCCH承载有SCI。
·方式1.1 PSCCH所在符号上不发送SL PRS,在用于SL PRS发送的第一个子信道内发送PSCCH。
·方式1.2 PSCCH所在符号上不发送SL PRS,一个时隙内设置多组用于PSCCH和SL PRS发送的资源,采用不同的SL PRS资源对应不同的PSCCH资源。
·方式1.3 PSCCH所在符号上可以发送SL PRS。
方式2终端可以在发送SL PRS的时隙内发送PSCCH和PSSCH,PSCCH承载有第一阶SCI,PSSCH承载有第二阶SCI。
·方式2.1 PSCCH所在符号上不发送SL PRS,在用于SL PRS发送的第一个子信道内发送PSCCH,PSCCH所在符号上的剩余IRB用于发送PSSCH。
·方式2.2 PSCCH所在符号上不发送SL PRS,一个时隙内设置多组用于PSCCH、PSSCH和SL PRS 发送的资源,采用不同的SL PRS资源对应不同的PSCCH/PSSCH资源。
·方式2.3 PSCCH所在符号上可以发送SL PRS。
下面对上述方式进行分别说明。
方式1终端可以在发送SL PRS的时隙内发送PSCCH,PSCCH承载有SCI。
请参考图25,步骤213可以包括步骤214。
步骤214:在网络配置或预配置指示SL PRS资源池内允许预留资源的情况下,在第一时隙内发送SL PRS和PSCCH,PSCCH承载有SCI,SCI用于指示SL PRS的预留资源。
可选的,SL PRS资源池和SL-U通信资源池在预留资源所在时隙存在时频资源重叠。
即,在发送SL PRS的时隙内发送PSCCH。发送SL PRS的UE只在发送SL PRS的时隙内发送PSCCH,而不在该时隙内发送PSSCH。UE仅通过PSCCH承载的SCI-P指示SL PRS发送和/或预留SL PRS的发送资源。
具体的,发送PSCCH的时频资源可以是:
·方式1.1 PSCCH所在符号上不发送SL PRS,在用于SL PRS发送的第一个子信道内发送PSCCH。
PSCCH的时频资源包括:第一时隙中用于PSCCH发送的OFDM符号上,用于SL PRS发送的第一个子信道内的,部分或全部IRB/RB。其中,用于PSCCH发送的OFDM符号可以根据网络配置确定,也可以根据既定规则确定。
SL PRS的时频资源包括:第一时隙中除用于PSCCH发送的OFDM符号之外的OFDM符号上,用于SL PRS发送的子信道内的,部分或全部IRB/RB。
PSCCH所在的OFDM符号上不发送SL PRS,UE在时隙内用于PSCCH发送的OFDM符号上占用用于SL PRS发送的第一个子信道内的一个或全部IRB发送PSCCH。
例如,如图26中的(1)所示,为第一时隙内用于SL PRS发送的时频资源图,第一时隙包括14个符号,用于SL PRS发送的频域资源包括四个子信道。其中,符号3、符号4、符号5是用于PSCCH发送的OFDM符号。基于图26(1)所示的时频资源图,如图26中的(2)所示,方式1.1中用于发送PSCCH的时频资源为符号3、符号4、符号5上第一个子信道内的部分或全部IRB/RB;用于发送SL PRS的时频资源为符号6-13上四个子信道内的部分或全部IRB/RB。
在占用第一时隙发送SL PRS的情况下,用于SL PRS发送的频域资源包括SL PRS资源池中的部分或全部PRB。即,如果UE在一个时隙内发送SL PRS,则UE占用资源池内的所有PRB,或部分PRB。
·方式1.2 PSCCH所在符号上不发送SL PRS,一个时隙内设置多组用于PSCCH和SL PRS发送的资源,采用不同的SL PRS资源对应不同的PSCCH资源。
第一时隙内包括PSCCH的多组时频资源,PSCCH的一组时频资源包括:用于PSCCH发送的OFDM符号上的部分或全部IRB;SL PRS的时频资源采用梳齿结构;第一时隙内包括SL PRS的一个或多个时频资源,SL PRS的一个时频资源包括:第一时隙中除用于PSCCH发送之外的部分或全部OFDM符号上的一组梳齿结构资源;PSCCH的一组时频资源与SL PRS的一个时频资源一一对应。
SL PRS采用梳齿结构,时隙内第一个用于SL PRS发送的OFDM符号上的不同的RE(Resource Element,资源粒子)偏移对应不同的SL PRS资源,一个示例如图27所示,其中梳齿尺寸为2,SL PRS资源以RE偏移由低到高排序。如图27所示,RE偏移=0的一组SL PRS资源为SL PRS资源#0,RE偏移=1的一组SL PRS资源为SL PRS资源#1。
可选的,SL PRS梳齿结构的梳齿尺寸即为SL PRS的时频资源个数/组数,SL PRS梳齿结构的梳齿尺寸为x,则SL PRS资源包括x组,x为正整数。可选的,PSCCH资源的组数与SL PRS资源的组数相同,进而使一组SL PRS资源对应一组PSCCH资源。
例如,在第一时隙内,SL PRS资源池在频域上包括a个子信道,令每个子信道中用于发送PSCCH的资源为一组PSCCH资源,共有a组PSCCH资源,a组PSCCH资源按照频域由低到高排序,a为正数。在第一时隙内,SL PRS资源呈梳齿结构,梳齿尺寸为a,则共有a组SL PRS资源,a组SL PRS资源按照RE偏移由低到高排序。则第i组PSCCH资源对应第i组SL PRS资源,在采用第i组SL PRS资源发送SL PRS的情况下,采用第i组PSCCH资源发送PSCCH,i为不大于a的整数。
即,本方式中,一组PSCCH资源为一个子信道内的一个或多个IRB;SL PRS的多个时频资源按照梳齿结构的资源粒子RE偏移排序;在采用SL PRS的第i个时频资源发送SL PRS的情况下,发送PSCCH的时频资源为:SL PRS资源池中第i个子信道内用于PSCCH发送的部分或全部IRB,i为整数。
可选的,PSCCH中SCI指示的频域资源为从第i个子信道开始到SL PRS占用的最后一个子信道。即,发送SL PRS的频域资源为:从第i个子信道到SL PRS资源池中最后一个子信道中的第i组SL PRS资源;时域资源为:第一时隙内不用于发送PSCCH的符号。
即,发送SL PRS的时频资源为:第一时隙内用于发送PSCCH的OFDM符号之后的OFDM符号上,从第i个子信道开始到SL PRS资源池中最后一个子信道结束的频域中的,SL PRS的第i个时频资源。
例如,如图28中的(1)所示,为第一时隙内用于SL PRS发送的时频资源图,第一时隙包括14个符号,用于SL PRS发送的频域资源包括两个子信道,一个子信道包括十个RB,一个RB包括12个RE。SL PRS呈梳齿结构,梳齿尺寸为2,RE偏移为0对应SL PRS资源0,RE偏移为1对应SL PRS资源1。符号3、符号4、符号5是用于PSCCH发送的OFDM符号,第一个子信道内用于发送PSCCH的资源为PSCCH资源0,第二个子信道中用于发送PSCCH的资源为PSCCH资源1。基于图28(1)所示的时频资源图,SL PRS资源0对应PSCCH资源0,SL PRS资源1对应PSCCH资源1。如图28中的(2)所示,方式1.2中若采用SL PRS资源1发送SL PRS,则用于发送PSCCH的时频资源为符号3、符号4、符号5上第二个子信道中的PSCCH资源1;用于发送SL PRS的时频资源为符号6-13上,第二个子信道内,RE偏移为1对应的SL PRS资源1。
或者,在第一时隙内,用于发送PSCCH的符号有b个,令符号中用于发送PSCCH的资源为一组PSCCH资源,共有b组PSCCH资源,b组PSCCH资源按照时域由低到高排序,b为正数。在第一时隙内,SL PRS资源呈梳齿结构,梳齿尺寸为b,则共有b组SL PRS资源,b组SL PRS资源按照RE偏移由低到高排序。则第i组PSCCH资源对应第i组SL PRS资源,在采用第i组SL PRS资源发送SL PRS的情况下,采用第i组PSCCH资源发送PSCCH,i为不大于b的整数。
这种方式能够支持多个UE在同一时隙内通过频分复用的方式发送SL PRS。
·方式1.3 PSCCH所在符号上可以发送SL PRS。
PSCCH的时频资源包括:第一时隙中用于PSCCH发送的OFDM符号上,用于SL PRS发送的第一个子信道内的,部分或全部IRB/RB;SL PRS的时频资源包括:第一部分资源和第二部分资源;其中,第一部分资源包括:第一时隙中用于PSCCH发送的OFDM符号上,未用于发送PSCCH的部分或全部IRB/RB;第二部分资源包括:第一时隙中除用于PSCCH之外的OFDM符号上,用于SL PRS发送的子信道内,部分或全部IRB/RB。
可选的,第二部分资源包括第一时隙中用于PSCCH发送的OFDM符号之后的OFDM符号上,用于SL PRS发送的子信道内,部分或全部IRB/RB。
示例性的,终端可以在PSCCH所在的OFDM符号上发送SL PRS,但不要求接收UE处理这些OFDM符号上发送的SL PRS,若接收UE的终端能力足够强,则接收UE可以处理这些OFDM符号上的SL PRS,若接收UE的终端能力较弱,则可以不处理这些OFDM符号上的SL PRS。
可选的,在确定SL PRS在不同OFDM符号上的RE偏移时,不考虑用于发送PSCCH的这些OFDM符号。即,SL PRS梳齿结构的RE偏移是按照第二部分资源中的OFDM符号上的RE偏移计算的,并不考虑第一部分资源中的OFDM符号上的RE偏移。
在本方式中,承载SCI-P的PSCCH在SL PRS占用的第一个子信道的部分或全部IRB内发送,在PSCCH的OFDM符号内,除用于发送PSCCH的其它IRB上,UE可以发送SL PRS。假设时隙内的0,1,…,C-1个OFDM符号为存在PSCCH的OFDM符号,从符号C开始为用于SL PRS发送的OFDM符号。
例如,如图29中的(1)所示,为第一时隙内用于SL PRS发送的时频资源图,第一时隙包括14个符号,用于SL PRS发送的频域资源包括四个子信道。其中,符号3、符号4、符号5是用于PSCCH发送的OFDM符号。基于图29(1)所示的时频资源图,如图29中的(2)所示,方式1.3中用于发送PSCCH的时频资源为符号3、符号4、符号5上第一个子信道内的部分或全部IRB/RB;用于发送SL PRS的时频资源为符号3-13上四个子信道内未用于发送PSCCH的部分或全部IRB/RB。
示例性的,在第一部分资源上发送的SL PRS序列,以及发送SL PRS的RE位置至少可以采用如下几种方式确定:
(1)在第一部分资源上发送的SL PRS序列与PSCCH的DMRS序列相同;在第一部分资源上发送的SL PRS在RB上占用的RE,与,PSCCH的DMRS在RB上占用的RE位置相同。
UE在PSCCH所在OFDM符号上发送的SL PRS的序列为PSCCH的DMRS在频域上的重复,在每个PRB上占用的RE和PSCCH占用RB上DMRS占用的RE相同。
例如,PSCCH的DMRS序列为010101,则在第一部分资源上发送的SL PRS的序列也为010101。PSCCH的DMRS在RB的RE#2发送,则第一部分资源上发送的SL PRS也在RB的RE#2上发送。
(2)在第一部分资源上发送SL PRS序列为PSCCH的DMRS序列的后续部分;在第一部分资源上发送的SL PRS在RB上占用的RE,与,PSCCH的DMRS在RB上占用的RE位置相同。
UE在PSCCH所在OFDM符号上发送的SL PRS序列为PSCCH的DMRS序列,在每个PRB上占用的RE和PSCCH占用RB上DMRS占用的RE相同。
DMRS序列是从预备序列中截取得到的序列,预备序列是无限序列。例如,预备序列是 0101,0100,0111,0000,1111……PSCCH的DMRS序列截取的第一段0101,则在第一部分资源上发送的SL PRS可以顺序地截取后续序列:0100、0111、0000、1111。例如,第一个符号上发送的SL PRS序列为0100,第二个符号上发送的SL PRS序列为0111,第三个符号上发送的SL PRS序列为0000,第四个符号上发送的SL PRS序列为1111。
(3)在第一部分资源上发送SL PRS序列与在第二部分资源的第一个符号上发送的SL PRS序列相同;在第一部分资源上发送的SL PRS在RB上占用的RE,与,在第二部分资源的第一个符号上发送的SL PRS在RB上占用的RE位置相同。
可选的,第二部分资源的第一个符号为第一时隙内的第C个符号。UE在PSCCH所在OFDM符号上发送的SL PRS序列为第C个OFDM符号上发送的SL PRS序列,在每个RB上占用的RE位置和第C个OFDM符号上SL PRS占用的RE相同。
例如,第C个OFDM符号上发送的SL PRS序列为010101,则在第一部分资源上发送的SL PRS的序列也为010101。第C个OFDM符号上的SL PRS在RB的RE#2发送,则第一部分资源上发送的SL PRS也在RB的RE#2上发送。
(4)在第一部分资源的第j个符号上发送SL PRS序列,与,在第二部分资源的第j个符号上发送的SL PRS序列相同,j为整数;在第一部分资源的第j个符号上发送的SL PRS在RB上占用的RE,与,在第二部分资源的第j个符号上发送的SL PRS在RB上占用的RE位置相同。
可选的,第一部分资源包括第一时隙内的OFDM符号0-(C-1),第二部分资源的OFDM符号从第一时隙的第C个符号开始。UE在PSCCH所在OFDM符号0,1,…,C-1上发送的SL PRS序列为从OFDM符号C开始的C个用于SL PRS的OFDM符号上发送的SL PRS序列,占用的RE也和C个OFDM符号相同。
例如,用于PSCCH发送的符号为符号0-2,符号3-5上发送的SL PRS序列分别为0000、1111、1100,则符号0-2上发送的SL PRS序列分别为0000、1111、1100。
(5)第一部分资源包括C个符号,C为正整数;在第一部分资源的第C-k个符号上发送SL PRS序列,与,在第二部分资源的倒数第k+1个符号上发送的SL PRS序列相同,k为小于C的整数;在第一部分资源的第C-k个符号上发送的SL PRS在RB上占用的RE,与,在第二部分资源的倒数第k+1个符号上发送的SL PRS在RB上占用的RE位置相同。
可选的,第一部分资源包括第一时隙内的OFDM符号0-(C-1),第二部分资源的OFDM符号从第一时隙的第C个符号开始。UE在PSCCH所在OFDM符号0,1,…,C-1上发送的SL PRS序列时隙内最后C个OFDM符号上发送的SL PRS序列,占用的RE也和C个OFDM符号相同。
例如,用于PSCCH发送的符号为符号0-2,符号11-13上发送的SL PRS序列分别为0000、1111、1100,则符号0-2上发送的SL PRS序列分别为0000、1111、1100。
在本方式中,对于时隙内任何一个用于SL PRS的OFDM符号,即从OFDM符号C到时隙内最后一个用于SL PRS的OFDM符号,SL PRS占用的RE偏移根据该OFDM符号相对于OFDM符号C的间隔确定。
方式2终端可以在发送SL PRS的时隙内发送PSCCH和PSSCH,PSCCH承载有第一阶SCI,PSSCH承载有第二阶SCI。
请参考图30,步骤213可以包括步骤215。
步骤215:在网络配置或预配置指示SL PRS资源池内允许预留资源的情况下,在第一时隙内发送SL PRS、PSCCH和PSSCH,PSCCH承载有第一阶SCI,PSSCH承载有第二阶SCI,SCI用于指示SL PRS的预留资源。
可选的,SL PRS资源池和SL-U通信资源池在预留资源所在时隙存在时频资源重叠。
发送SL PRS的UE在发送SL PRS的时隙内发送PSCCH,同时该时隙内发送PSSCH,其中PSCCH承载第二阶SCI用于指示SL PRS发送。
本实施例中,SCI包括第一阶SCI和第二阶SCI。即,SCI-P分为第一阶SCI-P和第二阶SCI-P,第一阶SCI-P由PSCCH承载,第二阶SCI-P由PSSCH承载。第一阶SCI-P和第二阶SCI-P承载不同的信息,例如,第一阶SCI-P用于承载SL PRS时频资源信息,第二阶SCI-P用于承载SL PRS的序列ID等信息。
本实施例中,在PSSCH的DMRS图案中,用于发送PSCCH的第一个OFDM符号内存在DMRS。UE选择的PSSCH的DMRS图案应保证第一个用于发送PSCCH的OFDM符号存在DMRS。
具体的,发送PSCCH和PSSCH的时频资源可以是:
·方式2.1 PSCCH所在符号上不发送SL PRS,在用于SL PRS发送的第一个子信道内发送PSCCH,PSCCH所在符号上的剩余IRB用于发送PSSCH。
PSCCH的时频资源包括:第一时隙中用于PSCCH发送的OFDM符号上,用于SL PRS发送的第一个子信道内的,部分或全部IRB/RB。
SL PRS的时频资源包括:第一时隙中除用于PSCCH之外的OFDM符号上,用于SL PRS发送的子信道内,部分或全部IRB/RB。
PSSCH的时频资源包括:第一时隙中用于PSCCH发送的OFDM符号上,未用于发送PSCCH的部分或全部IRB/RB。
即,PSCCH所在的OFDM符号上不发送SL PRS,UE在时隙内用于PSCCH发送的OFDM符号上占用用于SL PRS发送的第一个子信道内的一个或全部IRB发送PSCCH,在剩余的IRB上发送PSSCH。
例如,如图31中的(1)所示,为第一时隙内用于SL PRS发送的时频资源图,第一时隙包括14个符号,用于SL PRS发送的频域资源包括四个子信道。其中,符号3、符号4、符号5是用于PSCCH发送的OFDM符号。基于图31(1)所示的时频资源图,如图31中的(2)所示,方式2.1中用于发送PSCCH的时频资源为符号3、符号4、符号5上第一个子信道内的部分或全部IRB/RB;用于发送PSSCH的时频资源为符号3、符号4、符号5上第一个子信道内未用于发送PSCCH的部分或全部IRB/RB;用于发送SL PRS的时频资源为符号6-13上四个子信道内的部分或全部IRB/RB。
可选的,在占用第一时隙发送SL PRS的情况下,用于SL PRS发送的频域资源包括SL PRS资源池中的部分或全部PRB。如果UE在一个时隙内发送SL PRS,则UE占用资源池内的所有PRB,或部分PRB。
UE选择的PSSCH的DMRS图案应保证第一个用于PSCCH的OFDM符号存在DMRS。
·方式2.2 PSCCH所在符号上不发送SL PRS,一个时隙内设置多组用于PSCCH、PSSCH和SL PRS发送的资源,采用不同的SL PRS资源对应不同的PSCCH/PSSCH资源。
第一时隙内包括PSCCH的多组时频资源,PSCCH的一组时频资源包括:用于PSCCH发送的OFDM符号上的部分或全部IRB;第一时隙内包括PSSCH的多组时频资源,PSSCH的一组时频资源包括:用于PSSCH发送的OFDM符号上的部分或全部IRB;SL PRS的时频资源采用梳齿结构;第一时隙内包括SL PRS的多个时频资源,SL PRS的一个时频资源包括:第一时隙中除用于PSCCH和PSSCH发送之外的OFDM符号上的一组梳齿结构资源;PSCCH的一组时频资源、PSSCH的一组时频资源、SL PRS的一个时频资源一一对应。
本方式中,在频域范围内存在多个SL PRS资源,不同的SL PRS资源对应不同的PSCCH/PSSCH资源。例如,SL PRS采用梳齿结构,时隙内第一个用于SL PRS发送的OFDM符号上的不同的RE偏移对应不同的SL PRS资源。
SL PRS的多个时频资源按照梳齿结构的资源粒子RE偏移排序;在采用SL PRS的第i个时频资源发送SL PRS的情况下,发送PSCCH的时频资源为:SL PRS资源池中第i个子信道内用于PSCCH发送的部分或全部IRB,i为整数;在采用SL PRS的第i个时频资源发送SL PRS的情况下,发送PSSCH的时频资源为:SL PRS资源池中第i个子信道内未用于PSCCH发送的部分或全部IRB,i为整数。
本方式中,PSCCH/PSSCH资源为一个或多个连续的子信道;子信道内的第一个子信道中的部分或全部IRB用于PSCCH发送,剩余的IRB用于PSSCH发送。如果UE占用第i个SL PRS资源,则UE在SL PRS占用的第i个PSCCH/PSSCH资源内发送PSCCH/PSSCH。
即,发送SL PRS的时频资源为:第一时隙内用于发送PSCCH的OFDM符号之后的OFDM符号上,从第i个子信道开始到SL PRS占用的最后一个子信道。
例如,如图32中的(1)所示,为第一时隙内用于SL PRS发送的时频资源图,第一时隙包括14个符号,用于SL PRS发送的频域资源包括两个子信道,一个子信道包括十个RB,一个RB包括12个RE。SL PRS呈梳齿结构,梳齿尺寸为2,RE偏移为0对应SL PRS资源0,RE偏移为1对应SL PRS资源1。符号3、符号4、符号5是用于PSCCH发送的OFDM符号,第一个子信道内用于发送PSCCH的资源为PSCCH资源0,第二个子信道中用于发送PSCCH的资源为PSCCH资源1;第一个子信道内用于发送PSSCH的资源为PSSCH资源0,第二个子信道中用于发送PSSCH的资源为PSSCH资源1。基于图32(1)所示的时频资源图,SL PRS资源0对应PSCCH资源0和PSSCH资源0,SL PRS资源1对应PSCCH资源1和PSSCH资源1。如图32中的(2)所示,方式2.2中若采用SL PRS资源1发送SL PRS,则用于发送PSCCH的时频资源为符号3、符号4、符号5上第二个子信道中的PSCCH资源1;用于发送PSSCH的时频资源为符号3、符号4、符号5上第二个子信道中的PSSCH资源1;用于发送SL PRS的时频资源为符号6-13上,第二个子信道内,RE偏移为1对应的SL PRS资源1。
这种方式能够支持多个UE在同一时隙内通过频分复用的方式发送SL PRS。
·方式2.3 PSCCH所在符号上可以发送SL PRS。
PSCCH的时频资源包括:第一时隙中用于PSCCH发送的OFDM符号上,用于SL PRS发送的一个或多个子信道内的,部分或全部IRB/RB;PSSCH的时频资源包括:第一时隙中用于PSCCH发送的符号上 以及用于PSSCH发送的OFDM符号上,未用于PSCCH发送的部分或全部IRB/RB;SL PRS的时频资源包括:第一部分资源和第二部分资源;其中,第一部分资源包括:第一时隙中用于PSCCH发送的OFDM符号以及用于PSSCH发送的OFDM符号上,未用于发送PSCCH或PSSCH的,部分或全部IRB/RB;第二部分资源包括:第一时隙中除用于PSCCH和PSSCH发送之外的OFDM符号上,用于SL PRS发送的子信道内,部分或全部IRB/RB。
可选的,第二部分资源包括第一时隙中用于PSCCH发送的OFDM符号之后的OFDM符号上,用于SL PRS发送的子信道内,部分或全部IRB/RB。
示例性的,终端可以在PSCCH所在的OFDM符号上发送SL PRS,但不要求接收UE处理这些OFDM符号上发送的SL PRS,若接收UE的终端能力足够强,则接收UE可以处理这些OFDM符号上的SL PRS,若接收UE的终端能力较弱,则可以不处理这些OFDM符号上的SL PRS。
可选的,在确定SL PRS在不同OFDM符号上的RE偏移时,不考虑用于发送PSCCH的这些OFDM符号。即,SL PRS梳齿结构的RE偏移是按照第二部分资源中的OFDM符号上的RE偏移计算的,并不考虑第一部分资源中的OFDM符号上的RE偏移。
在本方式中,承载第一阶SCI-P的PSCCH和承载第二阶SCI-P的PSSCH在SL PRS占用的开始一个或多个子信道内发送,在PSCCH/PSSCH的所在OFDM符号内,除用于发送PSCCH/PSSCH的其它IRB上,UE可以发送SL PRS。
例如,如图33中的(1)所示,为第一时隙内用于SL PRS发送的时频资源图,第一时隙包括14个符号,用于SL PRS发送的频域资源包括四个子信道。其中,符号3、符号4、符号5是用于PSCCH发送的OFDM符号。基于图33(1)所示的时频资源图,如图33中的(2)所示,方式2.3中用于发送PSCCH的时频资源为符号3、符号4、符号5上第一个子信道内的部分或全部IRB/RB;用于发送PSSCH的时频资源为符号3、符号4、符号5上第一个子信道内未用于发送PSCCH的部分或全部IRB/RB;用于发送SL PRS的时频资源为符号3-13上四个子信道内未用于发送PSCCH和PSSCH的部分或全部IRB/RB。
示例性的,在第一部分资源上发送的SL PRS序列,以及发送SL PRS的RE位置所采用的的方式可以参照方式1.3中的相关描述。
综上所述,本实施例提供的方法,发送SL PRS的终端在预留重叠时隙中的资源用于SL PRS发送时,需要发送后向UE所能够识别的SCI-P,即,SCI-P和SCI-C的结构、发送方式都相同。以告知后向UE预留的SL PRS资源,从而避免SL PRS发送资源和SL-U通信资源的冲突,降低SL PRS和SL-U数据之间的相互干扰,提高SL PRS系统的定位精度。
需要说明的是,上述实施例中的方法步骤可以任意组合得到新的实施例,本申请对此不加以限制。
图34示出了本申请一个示例性实施例提供的侧行控制信息的发送装置的结构框图,该装置可以实现成为终端,或者,实现成为终端中的一部分,该装置包括:
发送模块301,用于根据网络配置或预配置,发送SL PRS和侧行控制信息SCI,所述SCI用于指示SL PRS的资源预留情况。
在一个可选的实施例中,在所述SL PRS资源池中每个时隙均存在与所述SL-U通信资源池重叠的资源的情况下,所述SCI不用于指示SL PRS的预留资源。
在一个可选的实施例中,在所述网络配置或预配置指示SL PRS资源池内不允许预留资源的情况下,所述SCI用于指示SL PRS的预留资源。
在一个可选的实施例中,在所述网络配置或预配置指示了可预留时隙的情况下,所述SCI用于指示SL PRS的预留资源,所述预留资源是所述可预留时隙中的传输资源。
在一个可选的实施例中,所述SCI为定位侧行控制信息SCI-P;所述SCI-P与通信侧行控制信息SCI-C的格式不同,和/或,所述SCI-P与所述SCI-C的发送方式不同。
在一个可选的实施例中,在所述网络配置或预配置指示SL PRS资源池内允许预留资源的情况下,所述SCI用于指示SL PRS的预留资源。
在一个可选的实施例中,在所述SL PRS资源池中的物理侧行控制信道PSCCH采用连续的资源块RB发送的情况下,承载所述SCI的PSCCH采用连续的RB发送。
在一个可选的实施例中,在所述SL PRS资源池中的PSCCH采用连续的交织资源块IRB结构发送的情况下,承载所述SCI的PSCCH采用IRB结构发送。
在一个可选的实施例中,所述发送模块301,用于在第一时隙内发送所述SL PRS和PSCCH,所述PSCCH承载有所述SCI。
在一个可选的实施例中,所述PSCCH的时频资源包括:所述第一时隙中用于PSCCH发送的正交频分 复用OFDM符号上,用于SL PRS发送的第一个子信道内的,部分或全部IRB。
在一个可选的实施例中,在占用所述第一时隙发送所述SL PRS的情况下,用于SL PRS发送的频域资源包括所述SL PRS资源池中的部分或全部物理资源块PRB。
在一个可选的实施例中,所述第一时隙内包括所述PSCCH的多组时频资源,所述PSCCH的一组时频资源包括:用于PSCCH发送的OFDM符号上的部分或全部IRB;
所述SL PRS的时频资源采用梳齿结构;所述第一时隙内包括所述SL PRS的一个或多个时频资源,所述SL PRS的一个时频资源包括:所述第一时隙中除用于PSCCH发送之外的部分或全部OFDM符号上的一组梳齿结构资源;
所述PSCCH的一组时频资源与所述SL PRS的一个时频资源一一对应。
在一个可选的实施例中,所述SL PRS的多个时频资源按照所述梳齿结构的资源粒子RE偏移排序;
在采用所述SL PRS的第i个时频资源发送所述SL PRS的情况下,发送所述PSCCH的时频资源为:所述SL PRS资源池中第i个子信道内用于PSCCH发送的部分或全部IRB,i为整数。
在一个可选的实施例中,所述PSCCH的时频资源包括:所述第一时隙中用于PSCCH发送的OFDM符号上,用于SL PRS发送的第一个子信道内的,部分或全部IRB;
所述SL PRS的时频资源包括:第一部分资源和第二部分资源;
其中,所述第一部分资源包括:所述第一时隙中用于PSCCH发送的OFDM符号上,未用于发送PSCCH的部分或全部IRB;
所述第二部分资源包括:所述第一时隙中除用于PSCCH之外的OFDM符号上,用于SL PRS发送的子信道内,部分或全部IRB。
在一个可选的实施例中,在所述第一部分资源上发送的SL PRS序列与所述PSCCH的解调参考信号DMRS序列相同;
在所述第一部分资源上发送的SL PRS在RB上占用的RE,与,所述PSCCH的DMRS在RB上占用的RE位置相同。
在一个可选的实施例中,在所述第一部分资源上发送SL PRS序列为所述PSCCH的DMRS序列的后续部分;
在所述第一部分资源上发送的SL PRS在RB上占用的RE,与,所述PSCCH的DMRS在RB上占用的RE位置相同。
在一个可选的实施例中,在所述第一部分资源上发送SL PRS序列与在所述第二部分资源的第一个符号上发送的SL PRS序列相同;
在所述第一部分资源上发送的SL PRS在RB上占用的RE,与,在所述第二部分资源的第一个符号上发送的SL PRS在RB上占用的RE位置相同。
在一个可选的实施例中,在所述第一部分资源的第j个符号上发送SL PRS序列,与,在所述第二部分资源的第j个符号上发送的SL PRS序列相同,j为整数;
在所述第一部分资源的第j个符号上发送的SL PRS在RB上占用的RE,与,在所述第二部分资源的第j个符号上发送的SL PRS在RB上占用的RE位置相同。
在一个可选的实施例中,所述第一部分资源包括C个符号,C为正整数;
在所述第一部分资源的第C-k个符号上发送SL PRS序列,与,在所述第二部分资源的倒数第k+1个符号上发送的SL PRS序列相同,k为小于C的整数;
在所述第一部分资源的第C-k个符号上发送的SL PRS在RB上占用的RE,与,在所述第二部分资源的倒数第k+1个符号上发送的SL PRS在RB上占用的RE位置相同。
在一个可选的实施例中,所述SCI包括第一阶SCI和第二阶SCI;
所述发送模块301,用于在第一时隙内发送所述SL PRS、PSCCH和物理侧行共享信道PSSCH,所述PSCCH承载有所述第一阶SCI,所述PSSCH承载有所述第二阶SCI。
在一个可选的实施例中,在所述PSSCH的DMRS图案中,用于发送所述PSCCH的第一个OFDM符号内存在DMRS。
在一个可选的实施例中,所述PSCCH的时频资源包括:所述第一时隙中用于PSCCH发送的OFDM符号上,用于SL PRS发送的第一个子信道内的,部分或全部IRB;
所述SL PRS的时频资源包括:所述第一时隙中除用于PSCCH之外的OFDM符号上,用于SL PRS发送的子信道内,部分或全部IRB;
所述PSSCH的时频资源包括:所述第一时隙中用于PSCCH发送的正交频分复用OFDM符号上,未用于发送PSCCH的部分或全部IRB。
在一个可选的实施例中,在占用所述第一时隙发送所述SL PRS的情况下,用于SL PRS发送的频域资 源包括所述SL PRS资源池中的部分或全部物理资源块PRB。
在一个可选的实施例中,所述第一时隙内包括所述PSCCH的多组时频资源,所述PSCCH的一组时频资源包括:用于PSCCH发送的OFDM符号上的部分或全部IRB;
所述第一时隙内包括所述PSSCH的多组时频资源,所述PSSCH的一组时频资源包括:用于PSSCH发送的OFDM符号上的部分或全部IRB;
所述SL PRS的时频资源采用梳齿结构;所述第一时隙内包括所述SL PRS的多个时频资源,所述SL PRS的一个时频资源包括:所述第一时隙中除用于PSCCH和PSSCH发送之外的OFDM符号上的一组梳齿结构资源;
所述PSCCH的一组时频资源、所述PSSCH的一组时频资源、所述SL PRS的一个时频资源一一对应。
在一个可选的实施例中,所述SL PRS的多个时频资源按照所述梳齿结构的资源粒子RE偏移排序;
在采用所述SL PRS的第i个时频资源发送所述SL PRS的情况下,发送所述PSCCH的时频资源为:所述SL PRS资源池中第i个子信道内用于PSCCH发送的部分或全部IRB,i为整数;
在采用所述SL PRS的第i个时频资源发送所述SL PRS的情况下,发送所述PSSCH的时频资源为:所述SL PRS资源池中第i个子信道内未用于PSCCH发送的部分或全部IRB,i为整数。
在一个可选的实施例中,所述PSCCH的时频资源包括:所述第一时隙中用于PSCCH发送的OFDM符号上,用于SL PRS发送的一个或多个子信道内的,部分或全部IRB;
所述PSSCH的时频资源包括:所述第一时隙中用于PSCCH发送的符号上以及用于PSSCH发送的OFDM符号上,未用于PSCCH发送的部分或全部IRB;
所述SL PRS的时频资源包括:第一部分资源和第二部分资源;
其中,所述第一部分资源包括:所述第一时隙中用于PSCCH发送的OFDM符号以及用于PSSCH发送的OFDM符号上,未用于发送PSCCH或PSSCH的,部分或全部IRB;
所述第二部分资源包括:所述第一时隙中除用于PSCCH和PSSCH发送之外的OFDM符号上,用于SL PRS发送的子信道内,部分或全部IRB。
在一个可选的实施例中,所述SCI为定位侧行控制信息SCI-P;所述SCI-P与通信侧行控制信息SCI-C的格式和发送方式均相同。
在一个可选的实施例中,所述SCI-P包括以下信息中的至少一种:
所述SL PRS的标识ID信息;
所述SL PRS占用的时频资源位置;
所述SL PRS的重复次数,以及用于重复发送的时频资源位置;
所述SL PRS的发送周期;
所述SL PRS发送终端的相关信息。
图35示出了本申请一个示例性实施例提供的通信设备(终端或网络设备)的结构示意图,该通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片,该通信组件可以称为收发器。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically-Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
其中,当通信设备实现为终端时,本申请实施例涉及的通信设备中的处理器和收发器,可以执行上述任一所示的方法中,由终端执行的步骤,此处不再赘述。
在一种可能的实现方式中,当通信设备实现为终端时,
所述收发器,用于基于侧行链路定位参考信号SL PRS资源池与非授权侧行链路SL-U通信资源池的资源重叠情况,根据网络配置,或根据预配置,发送SL PRS和侧行控制信息SCI,所述SCI用于指示SL PRS的资源预留情况。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现上述各个方法实施例提供的由通信设备执行的侧行控制信息的发送方法。
在示例性实施例中,还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在通信设备上运行时,用于使通信设备实现上述方面所述的侧行控制信息的发送方法。
在示例性实施例中,还提供了一种计算机程序产品,该计算机程序产品在通信设备的处理器上运行时,使得通信设备执行上述方面所述的侧行控制信息的发送方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (33)

  1. 一种侧行控制信息的发送方法,其特征在于,所述方法由终端执行,所述方法包括:
    根据网络配置或预配置,发送侧行链路定位参考信号SL PRS和侧行控制信息SCI,所述SCI用于指示SL PRS的资源预留情况。
  2. 根据权利要求1所述的方法,其特征在于,在所述网络配置或预配置指示SL PRS资源池内不允许预留资源的情况下,所述SCI不用于指示SL PRS的预留资源。
  3. 根据权利要求1所述的方法,其特征在于,在所述网络配置或预配置未指示可预留时隙的情况下,所述SCI不用于指示SL PRS的预留资源。
  4. 根据权利要求1所述的方法,其特征在于,在所述网络配置或预配置指示了可预留时隙的情况下,所述SCI用于指示SL PRS的预留资源,所述预留资源是所述可预留时隙中的传输资源。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述SCI为定位侧行控制信息SCI-P;所述SCI-P与通信侧行控制信息SCI-C的格式不同,和/或,所述SCI-P与所述SCI-C的发送方式不同。
  6. 根据权利要求1所述的方法,其特征在于,在所述网络配置或预配置指示SL PRS资源池内允许预留资源的情况下,所述SCI用于指示SL PRS的预留资源。
  7. 根据权利要求6所述的方法,其特征在于,在所述SL PRS资源池中的物理侧行控制信道PSCCH采用连续的资源块RB发送的情况下,承载所述SCI的PSCCH采用连续的RB发送。
  8. 根据权利要求6所述的方法,其特征在于,在所述SL PRS资源池中的PSCCH采用连续的交织资源块IRB结构发送的情况下,承载所述SCI的PSCCH采用IRB结构发送。
  9. 根据权利要求7至8任一所述的方法,其特征在于,所述发送SL PRS和SCI,包括:
    在第一时隙内发送所述SL PRS和PSCCH,所述PSCCH承载有所述SCI。
  10. 根据权利要求9所述的方法,其特征在于,所述PSCCH的时频资源包括:所述第一时隙中用于PSCCH发送的正交频分复用OFDM符号上,用于SL PRS发送的第一个子信道内的,部分或全部IRB。
  11. 根据权利要求10所述的方法,其特征在于,在占用所述第一时隙发送所述SL PRS的情况下,用于SL PRS发送的频域资源包括所述SL PRS资源池中的部分或全部物理资源块PRB。
  12. 根据权利要求9所述的方法,其特征在于,所述第一时隙内包括所述PSCCH的多组时频资源,所述PSCCH的一组时频资源包括:用于PSCCH发送的OFDM符号上的部分或全部IRB;
    所述SL PRS的时频资源采用梳齿结构;所述第一时隙内包括所述SL PRS的一个或多个时频资源,所述SL PRS的一个时频资源包括:所述第一时隙中除用于PSCCH发送之外的部分或全部OFDM符号上的一组梳齿结构资源;
    所述PSCCH的一组时频资源与所述SL PRS的一个时频资源一一对应。
  13. 根据权利要求12所述的方法,其特征在于,所述SL PRS的多个时频资源按照所述梳齿结构的资源粒子RE偏移排序;
    在采用所述SL PRS的第i个时频资源发送所述SL PRS的情况下,发送所述PSCCH的时频资源为:所述SL PRS资源池中第i个子信道内用于PSCCH发送的部分或全部IRB,i为整数。
  14. 根据权利要求9所述的方法,其特征在于,所述PSCCH的时频资源包括:所述第一时隙中用于PSCCH发送的OFDM符号上,用于SL PRS发送的第一个子信道内的,部分或全部IRB;
    所述SL PRS的时频资源包括:第一部分资源和第二部分资源;
    其中,所述第一部分资源包括:所述第一时隙中用于PSCCH发送的OFDM符号上,未用于发送PSCCH的部分或全部IRB;
    所述第二部分资源包括:所述第一时隙中除用于PSCCH之外的OFDM符号上,用于SL PRS发送的子信道内,部分或全部IRB。
  15. 根据权利要求14所述的方法,其特征在于,在所述第一部分资源上发送的SL PRS序列与所述PSCCH的解调参考信号DMRS序列相同;
    在所述第一部分资源上发送的SL PRS在RB上占用的RE,与,所述PSCCH的DMRS在RB上占用的RE位置相同。
  16. 根据权利要求14所述的方法,其特征在于,在所述第一部分资源上发送SL PRS序列为所述PSCCH的DMRS序列的后续部分;
    在所述第一部分资源上发送的SL PRS在RB上占用的RE,与,所述PSCCH的DMRS在RB上占用的RE位置相同。
  17. 根据权利要求14所述的方法,其特征在于,在所述第一部分资源上发送SL PRS序列与在所述第二部分资源的第一个符号上发送的SL PRS序列相同;
    在所述第一部分资源上发送的SL PRS在RB上占用的RE,与,在所述第二部分资源的第一个符号上发送的SL PRS在RB上占用的RE位置相同。
  18. 根据权利要求14所述的方法,其特征在于,在所述第一部分资源的第j个符号上发送SL PRS序列,与,在所述第二部分资源的第j个符号上发送的SL PRS序列相同,j为整数;
    在所述第一部分资源的第j个符号上发送的SL PRS在RB上占用的RE,与,在所述第二部分资源的第j个符号上发送的SL PRS在RB上占用的RE位置相同。
  19. 根据权利要求14所述的方法,其特征在于,所述第一部分资源包括C个符号,C为正整数;
    在所述第一部分资源的第C-k个符号上发送SL PRS序列,与,在所述第二部分资源的倒数第k+1个符号上发送的SL PRS序列相同,k为小于C的整数;
    在所述第一部分资源的第C-k个符号上发送的SL PRS在RB上占用的RE,与,在所述第二部分资源的倒数第k+1个符号上发送的SL PRS在RB上占用的RE位置相同。
  20. 根据权利要求6至8任一所述的方法,其特征在于,所述SCI包括第一阶SCI和第二阶SCI;
    所述发送SL PRS和侧行控制信息SCI,包括:
    在第一时隙内发送所述SL PRS、PSCCH和物理侧行共享信道PSSCH,所述PSCCH承载有所述第一阶SCI,所述PSSCH承载有所述第二阶SCI。
  21. 根据权利要求20所述的方法,其特征在于,在所述PSSCH的DMRS图案中,用于发送所述PSCCH的第一个OFDM符号内存在DMRS。
  22. 根据权利要求20或21所述的方法,其特征在于,所述PSCCH的时频资源包括:所述第一时隙中用于PSCCH发送的OFDM符号上,用于SL PRS发送的第一个子信道内的,部分或全部IRB;
    所述SL PRS的时频资源包括:所述第一时隙中除用于PSCCH之外的OFDM符号上,用于SL PRS发送的子信道内,部分或全部IRB;
    所述PSSCH的时频资源包括:所述第一时隙中用于PSCCH发送的正交频分复用OFDM符号上,未用于发送PSCCH的部分或全部IRB。
  23. 根据权利要求22所述的方法,其特征在于,在占用所述第一时隙发送所述SL PRS的情况下,用于SL PRS发送的频域资源包括所述SL PRS资源池中的部分或全部物理资源块PRB。
  24. 根据权利要求20或21所述的方法,其特征在于,所述第一时隙内包括所述PSCCH的多组时频资源,所述PSCCH的一组时频资源包括:用于PSCCH发送的OFDM符号上的部分或全部IRB;
    所述第一时隙内包括所述PSSCH的多组时频资源,所述PSSCH的一组时频资源包括:用于PSSCH发送的OFDM符号上的部分或全部IRB;
    所述SL PRS的时频资源采用梳齿结构;所述第一时隙内包括所述SL PRS的多个时频资源,所述SL PRS的一个时频资源包括:所述第一时隙中除用于PSCCH和PSSCH发送之外的OFDM符号上的一组梳 齿结构资源;
    所述PSCCH的一组时频资源、所述PSSCH的一组时频资源、所述SL PRS的一个时频资源一一对应。
  25. 根据权利要求24所述的方法,其特征在于,所述SL PRS的多个时频资源按照所述梳齿结构的资源粒子RE偏移排序;
    在采用所述SL PRS的第i个时频资源发送所述SL PRS的情况下,发送所述PSCCH的时频资源为:所述SL PRS资源池中第i个子信道内用于PSCCH发送的部分或全部IRB,i为整数;
    在采用所述SL PRS的第i个时频资源发送所述SL PRS的情况下,发送所述PSSCH的时频资源为:所述SL PRS资源池中第i个子信道内未用于PSCCH发送的部分或全部IRB,i为整数。
  26. 根据权利要求20或21所述的方法,其特征在于,所述PSCCH的时频资源包括:所述第一时隙中用于PSCCH发送的OFDM符号上,用于SL PRS发送的一个或多个子信道内的,部分或全部IRB;
    所述PSSCH的时频资源包括:所述第一时隙中用于PSCCH发送的符号上以及用于PSSCH发送的OFDM符号上,未用于PSCCH发送的部分或全部IRB;
    所述SL PRS的时频资源包括:第一部分资源和第二部分资源;
    其中,所述第一部分资源包括:所述第一时隙中用于PSCCH发送的OFDM符号以及用于PSSCH发送的OFDM符号上,未用于发送PSCCH或PSSCH的,部分或全部IRB;
    所述第二部分资源包括:所述第一时隙中除用于PSCCH和PSSCH发送之外的OFDM符号上,用于SL PRS发送的子信道内,部分或全部IRB。
  27. 根据权利要求6至26任一所述的方法,其特征在于,所述SCI为定位侧行控制信息SCI-P;所述SCI-P与通信侧行控制信息SCI-C的格式和发送方式均相同。
  28. 根据权利要求5或27所述的方法,其特征在于,所述SCI-P包括以下信息中的至少一种:
    所述SL PRS的标识ID信息;
    所述SL PRS占用的时频资源位置;
    所述SL PRS的重复次数,以及用于重复发送的时频资源位置;
    所述SL PRS的发送周期;
    所述SL PRS发送终端的相关信息。
  29. 一种侧行控制信息的发送装置,其特征在于,所述装置用于实现终端,所述装置包括:
    发送模块,用于根据网络配置或预配置,发送SL PRS和侧行控制信息SCI,所述SCI用于指示SL PRS的资源预留情况。
  30. 一种终端,其特征在于,所述终端包括:处理器和与所述处理器相连的收发器;其中,
    所述收发器,用于根据网络配置或预配置,发送SL PRS和侧行控制信息SCI,所述SCI用于指示SL PRS的资源预留情况。
  31. 一种终端,其特征在于,所述终端包括:处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行,以实现如权利要求1至28任一所述的侧行控制信息的发送方法。
  32. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行以使通信设备实现如权利要求1至28任一所述的侧行控制信息的发送方法。
  33. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路或程序,安装有所述芯片的通信设备用于实现如权利要求1至28任一所述的侧行控制信息的发送方法。
PCT/CN2022/141078 2022-12-22 侧行控制信息的发送方法、装置、设备及介质 WO2024130651A1 (zh)

Publications (1)

Publication Number Publication Date
WO2024130651A1 true WO2024130651A1 (zh) 2024-06-27

Family

ID=

Similar Documents

Publication Publication Date Title
US10917216B2 (en) Method of transmitting configuration information, method of detecting control channel resources, and devices therefor
JP6743309B2 (ja) 狭帯域通信のための狭帯域時分割複信フレーム構造
US10785773B2 (en) Scheduling method and apparatus
CN107070596B (zh) 信息发送方法及装置
EP2941072B1 (en) Method for sending and receiving system information, base station, and user equipment
US10742465B2 (en) Systems and methods for multi-physical structure system
US11382100B2 (en) Multiple start symbols for new radio-unlicensed (NR-U) physical uplink shared channel (PUSCH)
CN110741591B (zh) 用于下行链路控制物理结构的方法和设备
US20120106466A1 (en) System and method to avoid downlink control channel coverage limitation in a communication system
CN116530040A (zh) 用于侧行链路通信的长物理侧行链路共享信道格式
KR20110082725A (ko) 다중 요소 반송파의 시스템 정보 전송방법 및 전송장치와, 그를 이용한 시스템 정보 수신/업데이트 장치
US11582759B2 (en) Method and device in UE and base station for identifying start time of transmission using subcarrier spacing information used for wireless communication
WO2021027815A1 (zh) 一种反馈信息传输方法及装置
JP7144399B2 (ja) 端末、無線通信方法及びシステム
US20230007630A1 (en) System and method for sidelink configuration
JP2023529711A (ja) 1つ以上のcoresetに対する2つ以上のtci状態のアクティブ化
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置
WO2018235297A1 (ja) ユーザ端末及び無線通信方法
WO2024130651A1 (zh) 侧行控制信息的发送方法、装置、设备及介质
WO2018235298A1 (ja) ユーザ端末及び無線通信方法
CN111435892B (zh) 接收数据的方法和装置
JP7335375B2 (ja) 端末、無線通信方法及びシステム
WO2024065707A1 (zh) 侧行通信方法、装置、设备、存储介质及程序产品
WO2021088080A1 (zh) 一种数据的发送、接收方法、参考信号的发送方法及装置
WO2024005212A1 (en) User equipments, base stations, and communication methods