WO2024067092A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2024067092A1
WO2024067092A1 PCT/CN2023/118511 CN2023118511W WO2024067092A1 WO 2024067092 A1 WO2024067092 A1 WO 2024067092A1 CN 2023118511 W CN2023118511 W CN 2023118511W WO 2024067092 A1 WO2024067092 A1 WO 2024067092A1
Authority
WO
WIPO (PCT)
Prior art keywords
pssch
repetition
repetitions
terminal device
time
Prior art date
Application number
PCT/CN2023/118511
Other languages
English (en)
French (fr)
Inventor
何泓利
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067092A1 publication Critical patent/WO2024067092A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink

Definitions

  • the present application relates to the field of communications, and more specifically, to a communication method and device.
  • SL communication can support direct communication between terminal devices, avoiding the need for user data to be transferred through the network in cellular communication, thereby reducing transmission delay and alleviating network load.
  • SL sidelink
  • the present application provides a communication method and device, which can improve the reliability of SL communication system transmission and reduce transmission delay.
  • a communication method is provided, which can be executed by a first terminal device (e.g., a sending user equipment (UE1)), or can also be executed by a chip or circuit for the first terminal device, which is not limited in the present application.
  • a first terminal device e.g., a sending user equipment (UE1)
  • UE1 sending user equipment
  • a chip or circuit for the first terminal device which is not limited in the present application.
  • the following description is given by taking the execution by the first terminal device as an example.
  • the method includes: a first terminal device receives a physical sidelink control channel (PSCCH) and a physical sidelink shared channel (PSSCH) from a second terminal device in a first time unit, the PSSCH includes at least two PSSCH repetitions; the first terminal device determines a first repetition number and/or a first repetition length; the first terminal device determines, based on the first repetition number and/or the first repetition length, that the PSSCH includes N PSSCH repetitions and resource locations respectively included in the N PSSCH repetitions, where N is an integer greater than or equal to 2.
  • the PSCCH includes first sidelink control information (SCI), and the PSSCH includes second SCI.
  • the first terminal device receives PSCCH and PSSCH within the first time unit, and can determine that the PSSCH includes multiple PSSCH repetitions based on the first repetition number and/or the first repetition length.
  • the reliability of the SL communication system transmission can be improved without increasing the delay.
  • PSCCH and PSSCH in the time domain include all time subunits in the first time unit except the automatic gain control time subunit, the interval time subunit, and the time subunit where the physical sidelink feedback channel (PSFCH) is located.
  • PSFCH physical sidelink feedback channel
  • the stability of the power in the entire time unit is guaranteed when the data in the time unit is repeatedly transmitted, and the automatic gain control of other UEs is not affected.
  • the first SCI and/or the second SCI is used to indicate that the PSSCH includes at least two PSSCH repetitions.
  • the first terminal device can determine that the PSSCH received in the first time unit is a repeated transmission by receiving and successfully decoding the first SCI and/or the second SCI.
  • a first terminal device receives first information from a second terminal device, the first information indicating that a PSSCH sent by the second terminal device to the first terminal device includes at least two PSSCH repetitions; the first terminal device determines, based on the first information, that the PSSCH includes at least two PSSCH repetitions.
  • the data sending device when the data sending device has high reliability requirements, the data sending device can start a mode of repeated transmission within a time unit between a specific terminal device, thereby meeting the high reliability and low latency requirements of transmission between specific device pairs in industrial SL scenarios.
  • a first terminal device sends first information to a second terminal device, the first information indicating that the PSSCH sent by the second terminal device to the first terminal device includes at least two PSSCH repetitions; the first terminal device determines, based on the first information, that the PSSCH includes at least two PSSCH repetitions.
  • the data receiving device when the data receiving device has high reliability requirements, the data receiving device can start a mode of repeated transmission within a time unit between the data receiving device and a specific terminal device, thereby meeting the high reliability and low latency requirements of transmission between specific device pairs in the industrial SL scenario.
  • the first information includes one or more of the following: information of X side hybrid automatic repeat request (HARQ) process identifiers; information of X priorities; information of X transmission resources, where X is an integer greater than or equal to 1.
  • HARQ hybrid automatic repeat request
  • the first SCI and/or the second SCI includes information about a first sidelink HARQ process identifier, the first sidelink HARQ process identifier belongs to X sidelink HARQ process identifiers, and the first terminal device determines, based on the first information, that the PSSCH includes at least two PSSCH repetitions, including: the first terminal device determines, based on the information of the first sidelink HARQ process identifier, that the PSSCH includes at least two PSSCH repetitions; or, the first SCI and/or the second SCI includes information about a first priority, the first priority belongs to X priorities, and the first terminal device determines, based on the first information, that the PSSCH includes at least two PSSCH repetitions, including: the first terminal device determines, based on the information of the first priority, that the PSSCH includes at least two PSSCH repetitions; or, the first SCI and/or the second SCI includes information about a first transmission resource, the first transmission resource belongs to
  • the first terminal device can clearly identify a specific PSSCH as being repeatedly transmitted based on the first information, and the first SCI and/or the second SCI, thereby more efficiently receiving and decoding data and improving system transmission performance.
  • the first information also includes one or more of the following: an association between X number of repetitions and/or X number of repetition lengths and X sidelink HARQ process identifiers; an association between X number of repetitions and/or X number of repetition lengths and X priority levels; an association between X number of repetitions and/or X number of repetition lengths and X transmission resources.
  • the number of repetitions and/or repetition length, as well as the HARQ process number, priority, or transmission resource are associated to meet the different reliability requirements of different transmission services, so that the number of repetitions and/or repetition length match the actual transmission service requirements.
  • the first terminal device determines a first number of repetitions and/or a first repetition length, including: the first SCI and/or the second SCI includes information about a first sideline HARQ process identifier, and the first terminal device determines, based on the first information, the number of repetitions and/or the repetition length associated with the first sideline HARQ process identifier among X numbers of repetitions and/or X numbers of repetition lengths as the first number of repetitions and/or the first repetition length; or, the first SCI and/or the second SCI includes information about a first priority, and the first terminal device determines, based on the first information, the number of repetitions and/or the repetition length associated with the first priority among X numbers of repetitions and/or X numbers of repetition lengths as the first number of repetitions and/or the first repetition length; or, the first SCI and/or the second SCI includes information about a first transmission resource, and the first terminal device determines, based on
  • the first terminal device can determine the first HARQ process identifier, the first priority, or the first transmission resource, which is associated with the first repetition number and/or the first repetition length, based on the first information, and the first SCI and/or the second SCI, and can further determine the first repetition number and/or the first repetition length corresponding to the multiple PSSCH repetitions included in the PSSCH, with relatively small modifications to the physical layer signaling.
  • the first SCI and/or the second SCI include indication information of the first number of repetitions and/or the first repetition length, and the first terminal device determines the first number of repetitions and/or the first repetition length, including: the first terminal device determines the first number of repetitions and/or the first repetition length based on the first SCI and/or the second SCI.
  • the indication of the first number of repetitions and/or the first repetition length is more flexible and convenient, thereby enabling more flexible implementation of repeated transmission within a time unit.
  • the first number of repetitions and/or the first repetition length are determined based on configuration information; wherein the configuration information is configured by the resource pool; or, the configuration information is sent by the first terminal device to the second terminal device; or, the configuration information is sent by the second terminal device to the first terminal device.
  • the configuration rules for the first number of repetitions and/or the first repetition length are more concise, so that repeated transmission within a time unit can be implemented more simply.
  • the first information is also used to indicate multiple consecutive time units, the multiple consecutive time units include the first time unit, and each time unit in the multiple consecutive time units includes at least two PSSCH repetitions.
  • the first SCI and/or the second SCI includes indication information of multiple consecutive time units, the multiple consecutive time units include the first time unit, and each time unit in the multiple consecutive time units includes at least two PSSCH repetitions.
  • the first terminal device determines a plurality of consecutive time units based on a first number of repetitions and a first repetition length, the plurality of consecutive time units including a first time unit, and each of the plurality of consecutive time units includes at least two PSSCH repetitions.
  • the first terminal device can determine that multiple PSSCH repetitions include multiple continuous time units based on the first information, or the first SCI and/or the second SCI, or the first repetition number and the first repetition length, thereby achieving more times of repeated transmission and improving transmission reliability.
  • the PSSCH includes N PSSCH repetitions, and each of the N PSSCH repetitions includes a second SCI repetition and a data repetition.
  • the second SCI and data can be sent repeatedly, which can improve the transmission reliability of the PSSCH between the first terminal device and the second terminal device.
  • the method when the first terminal device determines that the first repetition length includes L time subunits, the method also includes: the first terminal device determines, according to the first method, that the first PSSCH repetition includes the 1st time subunit to the B+Lth time subunit out of A time subunits in the time domain; or, the first terminal device determines, according to the second method, that the first PSSCH repetition includes the 1st time subunit to the Lth time subunit out of A time subunits in the time domain; wherein the first PSSCH repetition is the first PSSCH repetition among N PSSCH repetitions, A is the number of time subunits included in the PSSCH and PSCCH in the first time unit, B is the number of time subunits included in the PSCCH in the first time unit, and L and B are integers greater than or equal to 1 and less than or equal to A.
  • the first terminal device determines to use the first mode or the second mode based on the frequency domain subunit included in the PSCCH.
  • the first terminal device determines to use the first method or the second method based on the frequency domain sub-units included in the PSCCH, including: when the number of frequency domain sub-units included in the PSCCH is greater than or equal to a first threshold, the first terminal device determines to use the first method; when the number of frequency domain sub-units included in the PSCCH is less than or equal to the first threshold, the first terminal device determines to use the second method.
  • the first terminal device when determining the first repetition length, can determine the mapping of the first PSSCH repetition through the first method or the second method, and can further decide whether to adopt the first method or the second method based on the resources included in the PSCCH received by the first terminal device, so as to ensure that the size of resources occupied by each PSSCH repetition is consistent as much as possible, thereby improving the efficiency of system transmission.
  • the first terminal device determines, according to the first method, that the first PSSCH repetition includes the 1st time subunit to the B+Lth time subunit in the A time subunits in the time domain,
  • the other PSSCH repetitions except the first PSSCH repetition and the last PSSCH repetition in the N PSSCH repetitions respectively include L time sub-units in the first time unit, and the last PSSCH repetition includes [(AB)–1]mod L+1 time sub-units in the first time unit; or,
  • the other PSSCH repetitions except the first PSSCH repetition and the last PSSCH repetition in the N PSSCH repetitions include L time sub-units in the first time unit, and the last PSSCH repetition includes L+(AB)mod L time sub-units.
  • the first terminal device determines, according to the second method, that the first PSSCH repetition includes the first time subunit to the Lth time subunit in the A time subunits in the time domain
  • the other PSSCH repetitions except the last PSSCH repetition in the N PSSCH repetitions respectively include L time sub-units in the first time unit, and the last PSSCH repetition includes (A-1) mod L+1 time sub-units in the time domain; or,
  • the other PSSCH repetitions respectively include L time sub-units in the first time unit
  • the last PSSCH repetition includes L+A mod L time sub-units in the first time unit.
  • the first terminal device is defined to determine the resource mapping rules for each PSSCH repetition according to the first method or the second method, so that the receiving device and the sending device have a consistent understanding of the resource mapping rules, thereby ensuring reliable repeated transmission within a new time unit.
  • the method further includes: the first terminal device determines, according to a third method, that the first PSSCH repetition includes the 1st time subunit to the B+Cth time subunit in the A time subunits in the time domain, or Alternatively, the first terminal device determines, according to the fourth manner, that the first PSSCH repetition includes the 1st time subunit to the Dth time subunit in the A time subunits in the time domain, or Among them, the first PSSCH repetition is the first PSSCH repetition among N PSSCH repetitions, A is the number of time sub-units included in PSSCH and PSCCH in the first time unit, B is the number of time sub-units included in PSCCH in the first time unit, and B is an integer greater than or equal to 1 and less than or equal to A.
  • the first terminal device determines to use the third mode or the fourth mode based on the frequency domain subunit included in the PSCCH.
  • the first terminal device determines to use the third method or the fourth method based on the frequency domain sub-units included in the PSCCH, including: when the number of frequency domain sub-units included in the PSCCH is greater than or equal to the second threshold, the first terminal device determines to use the third method; when the number of frequency domain sub-units included in the PSCCH is less than or equal to the second threshold, the first terminal device determines to use the fourth method.
  • the first terminal device can determine the mapping of the first PSSCH repetition by the third method or the fourth method when determining the first number of repetitions. Further, the third method or the fourth method can be decided based on the resource situation included in the PSCCH received by the first terminal device, so as to ensure that the resource size occupied by each PSSCH repetition is consistent as much as possible, thereby improving the efficiency of system transmission.
  • the first terminal device determines, according to the third method, that the first PSSCH repetition includes the 1st to B+Cth time subunits of A time subunits in the time domain
  • A is the number of time subunits for PSCCH and PSSCH transmission included in the first time unit
  • B is the number of time subunits included in the time domain of PSCCH in the first time unit
  • B is an integer greater than or equal to 1 and less than or equal to A.
  • a and B can be determined through the configuration information of the SL resource pool
  • the first PSSCH repetition is the first PSSCH repetition among N PSSCH repetitions.
  • N M;
  • the i-th PSSCH repetition when 1 ⁇ i ⁇ (AB)mod M, the i-th PSSCH repetition includes C time subunits in the first time unit; or, when i>(AB)mod M, the i-th PSSCH repetition includes C time subunits in the first time unit. time subunits; or,
  • N M;
  • the other PSSCH repetitions except the first PSSCH repetition and the last PSSCH repetition in the N PSSCH repetitions include C time sub-units in the first time unit, and the last PSSCH repetition includes C+(AB)mod M time sub-units.
  • the first terminal device determines according to the fourth method that the first PSSCH repetition includes the 1st time subunit to the Dth time subunit in A time subunits in the time domain
  • A is the number of time subunits for PSCCH and PSSCH transmission included in the first time unit
  • D is an integer greater than or equal to 1 and less than or equal to A, generally speaking
  • A can be determined through the configuration information of the SL resource pool
  • the first PSSCH repetition is the first PSSCH repetition among N PSSCH repetitions.
  • N M;
  • the i-th PSSCH repetition when i ⁇ A mod M, the i-th PSSCH repetition includes D time subunits in the first time unit; when i>A mod M, the i-th PSSCH repetition includes time subunits; or,
  • N M;
  • the other PSSCH repetitions include D time sub-units in the first time unit respectively, and the last PSSCH repetition includes D+A mod M time sub-units in the first time unit.
  • the first terminal device is defined to determine the resource mapping rules for each PSSCH repetition according to the third method or the fourth method, so that the receiving device and the sending device have a consistent understanding of the resource mapping rules, thereby ensuring reliable repeated transmission within a new time unit.
  • the PSSCH includes N PSSCH repetitions
  • the first PSSCH repetition in the N PSSCH repetitions includes a second SCI and a data repetition
  • the second PSSCH repetition to the Nth PSSCH repetition in the N PSSCH repetitions each include a data repetition.
  • the second PSSCH to the Nth PSSCH repetition in the N PSSCH repetitions do not include the second SCI.
  • data can be sent repeatedly, which can improve the transmission reliability of data transmission between the first terminal device and the second terminal device.
  • the second SCI is only transmitted in the first PSSCH repetition, which can free up more time and frequency resources for data transmission, further improving the reliability of data transmission.
  • the first terminal device determines, according to the fifth method, that the first PSSCH repetition includes the 1st time subunit to the E+Lth time subunit among A time subunits in the time domain; wherein A is the number of time subunits for PSCCH and PSSCH transmission included in the first time unit, E is an integer greater than or equal to 0 and less than or equal to B, B is the number of time subunits included in the PSCCH in the first time unit in the time domain, L and B are integers greater than or equal to 1 and less than or equal to A, and the first PSSCH repetition is the first PSSCH repetition among N PSSCH repetitions.
  • the first terminal device determines whether the E time subunits include the jth time subunit based on the number of frequency domain subunits of the second SCI and PSCCH in the jth time subunit.
  • the first terminal device determines that the E time subunits include the jth time subunit; or, in the jth time subunit, if the number of frequency domain subunits included in the second SCI and PSCCH is less than or equal to the third threshold, the first terminal device determines that the E time subunits do not include the jth time subunit, where j is an integer greater than or equal to 1 and less than or equal to B.
  • the resources occupied by each PSSCH repetition can be further determined according to the size of the PSCCH and the second SCI, so as to ensure that the size of the resources occupied by each PSSCH repetition is consistent as much as possible, thereby improving the efficiency of system transmission.
  • the first terminal device determines, according to the sixth method, that the first PSSCH repetition includes the 1st time subunit to the F+Cth time subunit in A time subunits in the time domain; wherein A is the number of time subunits for PSCCH and PSSCH transmission included in the first time unit, F is an integer greater than or equal to 0 and less than or equal to B, and B is the number of time subunits included in the first time unit by PSCCH in the time domain.
  • the number of time subunits, C and B are integers greater than or equal to 1 and less than or equal to A, and the first PSSCH repetition is the first PSSCH repetition among N PSSCH repetitions.
  • the first terminal device determines whether the F time subunits include the kth time subunit based on the number of frequency domain subunits of the second SCI and PSCCH in the kth time subunit.
  • the first terminal device determines that the F time subunits include the kth time subunit; or, in the kth time subunit, if the number of frequency domain subunits included in the second SCI and PSCCH is less than or equal to the fourth threshold, the first terminal device determines that the F time subunits do not include the kth time subunit, where k is an integer greater than or equal to 1 and less than or equal to B.
  • the resources occupied by each PSSCH repetition can be further determined according to the size of the PSCCH and the second SCI, so as to ensure that the size of the resources occupied by each PSSCH repetition is consistent as much as possible, thereby improving the efficiency of system transmission.
  • the PSCCH includes N PSCCH repetitions
  • the PSSCH includes N PSSCH repetitions
  • each of the N PSSCH repetitions includes a second SCI repetition and a data repetition
  • each of the N PSCCH repetitions includes a first SCI repetition.
  • both data and control information can be sent repeatedly, which can improve the reliability of data transmission and control information transmission between the first terminal device and the second terminal device.
  • the first terminal device determines that the first repetition length includes L time subunits
  • the first time unit includes N first channel repetitions
  • each of the N first channel repetitions includes a PSCCH repetition and a PSSCH repetition.
  • the number N of repetitions of the first channel in the first time unit is:
  • the other first channel repetitions except the last first channel repetition among the N first channel repetitions respectively include L time sub-units in the first time unit, and the last first channel repetition includes (A-1)mod L+1 time sub-units in the time domain, A is the number of time sub-units included in the PSSCH and PSCCH in the first time unit, and L is an integer greater than or equal to 1 and less than or equal to A; or,
  • the number N of repetitions of the first channel in the first time unit is:
  • the other PSSCH repetitions except the last first channel repetition in the N first channel repetitions include L time sub-units in the first time unit, and the last first channel repetition includes L+A mod L time sub-units in the first time unit, A is the number of time sub-units included in PSSCH and PSCCH in the first time unit, and L is an integer greater than or equal to 1 and less than or equal to A.
  • the first terminal device when determining the first repetition length, can determine the mapping situation of the first first channel repetition through at least one of the two examples mentioned above, and can specifically determine the resources included in the first first channel repetition, and ensure that the size of resources occupied by each first channel repetition is consistent as much as possible, thereby improving the reliability of system transmission.
  • the first time unit when the first terminal device determines that the first number of repetitions is M, the first time unit includes N first channel repetitions, and each of the N first channel repetitions includes a PSCCH repetition and a PSSCH repetition.
  • the other first channel repetitions except the last first channel repetition in the N first channel repetitions respectively include in the first time unit time subunits, the last first channel repetition includes time subunits; or,
  • the i-th first channel repetition includes in the first time unit time subunits; when i>A mod M, the i-th first channel repetition includes the first time unit time subunits; or,
  • the first terminal device when determining the first number of repetitions, can determine the mapping situation of the first first channel repetition through at least one of the above three examples, and can specifically determine the resources included in the first first channel repetition, and ensure that the size of resources occupied by each first channel repetition is consistent as much as possible, thereby improving the reliability of system transmission.
  • the first SCI and/or the second SCI include periodic information
  • the method also includes: the first terminal device determines periodic resources based on the periodic information, and the periodic resources include first resources; the first terminal device determines that the first resources include at least two candidate PSCCH repetitions.
  • the periodic information is configured through configuration information, such as resource pool configuration, or the configuration information is sent between the first terminal device and the second terminal device, or the base station configures the first terminal device and the second terminal device. Further, the first terminal device determines the periodic resource according to the periodic information, and the periodic resource includes the first resource; the first terminal device determines that the first resource includes at least two candidate PSCCH repetitions.
  • the blind detection conditions for PSCCH repetition of the first terminal device are additionally defined, that is, by carrying periodic information in the first SCI and/or the second SCI, or configuring periodic resources through configuration information, the first terminal device can perform PSCCH blind detection on the corresponding periodic resources after receiving and successfully decoding the first SCI and/or the second SCI, or according to the configuration information, thereby increasing the reliability of control channel transmission and avoiding missed detection or false detection.
  • the first SCI and/or the second SCI is used to indicate that at least two PSSCH repetitions among N PSSCH repetitions are sent in a frequency hopping manner.
  • At least two PSSCHs can be repeatedly sent through different frequency resources, thereby obtaining additional frequency diversity gain and further improving transmission reliability.
  • the first SCI and/or the second SCI includes frequency hopping indication information, and the frequency hopping indication information is used to indicate the frequency domain resource position included in each PSSCH repetition of at least two PSSCH repetitions.
  • the frequency domain resource position included in each of the at least two PSSCH repetitions is configured by the resource pool; or, the frequency domain resource position included in each of the at least two PSSCH repetitions is determined based on the configuration information sent by the first terminal device to the second terminal device; or, the frequency domain resource position included in each of the at least two PSSCH repetitions is determined based on the configuration information received by the first terminal device from the second terminal device; or, the frequency domain resource position included in each of the at least two PSSCH repetitions is determined based on the configuration information sent by the network device.
  • the resource mapping positions of the transmitting device and the receiving device for each PSSCH repetition can be aligned during frequency hopping transmission, thereby ensuring the accuracy of the PSSCH repetition received by the receiving device.
  • a communication method is provided, which can be executed by a second terminal device (e.g., receiving UE2), or can also be executed by a chip or circuit for the second terminal device, which is not limited in this application.
  • a second terminal device e.g., receiving UE2
  • a chip or circuit for the second terminal device which is not limited in this application.
  • the following is an example of execution by the second terminal device.
  • the method includes: the second terminal device determines a first number of repetitions and/or a first repetition length; the second terminal device determines, based on the first number of repetitions and/or the first repetition length, that the PSSCH includes N PSSCH repetitions and the resource positions respectively occupied by the N PSSCH repetitions, where N is an integer greater than or equal to 2; the second terminal device sends a PSCCH and a PSSCH to the first terminal device in a first time unit, the PSSCH including at least two PSSCH repetitions, the PSCCH including a first SCI, and the PSSCH including a second SCI.
  • the second terminal device sends PSCCH and PSSCH within the first time unit.
  • PSSCH Physical Broadcast Channel
  • PSCCH and PSSCH include all time subunits in the first time unit except the automatic gain control time subunit, the interval time subunit, and the time subunit where the PSFCH is located.
  • the stability of the power in the entire time unit is guaranteed when the data in the time unit is repeatedly transmitted, and the automatic gain control of other UEs is not affected.
  • the first SCI and/or the second SCI is used to indicate that the PSSCH includes at least two PSSCH repetitions.
  • the second terminal device sends the first SCI and/or the second SCI, so that the first terminal device determines that the PSSCH received in the first time unit is a repeated transmission, which can improve the reliability of data transmission without increasing the delay.
  • the second terminal device sends first information to the first terminal device, and the first information indicates that the PSSCH sent by the second terminal device to the first terminal device includes at least two PSSCH repetitions.
  • the second terminal device can determine that the PSSCH includes at least two PSSCH repetitions according to the first information. Therefore, when the data sending device has a high reliability requirement, the data sending device can start a mode of repeated transmission within a time unit between the data sending device and a specific terminal device, meeting the high reliability and low latency requirements of transmission between specific device pairs in the industrial SL scenario.
  • the second terminal device receives first information from the first terminal device, where the first information indicates that a PSSCH sent by the second terminal device to the first terminal device includes at least two PSSCH repetitions;
  • the second terminal device can determine, based on the first information, that the PSSCH includes at least two PSSCH repetitions. Therefore, when the data receiving device has a high reliability requirement, the data receiving device can start a mode of repeated transmission within a time unit between the data receiving device and a specific terminal device, thereby meeting the high reliability and low latency requirements of transmission between specific device pairs in the industrial SL scenario.
  • the first information includes one or more of the following: information of X sidelink hybrid automatic repeat request HARQ process identifiers, where X is an integer greater than or equal to 1; information of X priorities; and information of X transmission resources.
  • the first SCI and/or the second SCI includes information about a first sidelink HARQ process identifier, the first sidelink HARQ process identifier belongs to X sidelink HARQ process identifiers, and the information about the first HARQ process identifier is used to indicate that the PSSCH includes at least two PSSCH repetitions; or, the first SCI and/or the second SCI includes information about a first priority, the first priority belongs to X priorities, and the information about the first priority is used to indicate that the PSSCH includes at least two PSSCH repetitions; or, the first SCI and/or the second SCI includes information about a first transmission resource, the first transmission resource belongs to X transmission resources, and the information about the first transmission resource is used to indicate that the PSSCH includes at least two PSSCH repetitions.
  • the first terminal device can determine whether a specific PSSCH is a repeated transmission based on the first information, and the first SCI and/or the second SCI, thereby more efficiently receiving and decoding data and improving the system transmission performance.
  • the first information also includes one or more of the following: an association between X number of repetitions and/or X repetition lengths and X sidelink HARQ process identifiers; an association between X number of repetitions and/or X repetition lengths and X priorities; an association between X number of repetitions and/or X repetition lengths and X transmission resources.
  • the number of repetitions and/or repetition length, as well as the HARQ process number, priority, or transmission resource are associated to meet the different reliability requirements of different transmission services, so that the number of repetitions and/or repetition length match the actual transmission service requirements, with less modification to the physical layer signaling and greater reliability.
  • the first SCI and/or the second SCI includes information about a first sideline HARQ process identifier, and according to the first information, the first HARQ process identifier is associated with a first number of repetitions and/or a first repetition length, the first sideline HARQ process identifier belongs to X sideline HARQ process identifiers, and the information about the first sideline HARQ process identifier is used to indicate the first number of repetitions and/or the first repetition length; or, the first SCI and/or the second SCI includes information about a first priority, and according to the first information, the first priority is associated with the first number of repetitions and/or the first repetition length, the first priority belongs to X priorities, and the information about the first priority is used to indicate the first number of repetitions and/or the first repetition length; or, the first SCI and/or the second SCI includes information about a first transmission resource, and according to the first information, the information about the first transmission resource
  • the first terminal device can determine the first HARQ process identifier, the first priority, or the first transmission resource, which is associated with the first repetition number and/or the first repetition length, based on the first information, and the first SCI and/or the second SCI, and can then determine that the multiple PSSCH repetitions included in the PSSCH correspond to the first repetition number and/or the first repetition length, with relatively small modifications to the physical layer signaling.
  • the first SCI and/or the second SCI include indication information of the first repetition number and/or the first repetition length, which is used by the first terminal device to determine the first repetition number and/or the first repetition length based on the first SCI and/or the second SCI.
  • the indication of the first number of repetitions and/or the first repetition length is more flexible and convenient, so that Realize repeated transmission within a time unit.
  • the first number of repetitions and/or the first repetition length are determined based on configuration information; wherein the configuration information is configured by the resource pool; or, the configuration information is sent by the first terminal device to the second terminal device; or, the configuration information is sent by the second terminal device to the first terminal device.
  • the configuration rules for the first number of repetitions and/or the first repetition length are more concise, so that repeated transmission within a time unit can be implemented more simply.
  • the first information is also used to indicate multiple consecutive time units, the multiple consecutive time units include the first time unit, and each time unit in the multiple consecutive time units includes at least two PSSCH repetitions.
  • the first SCI and/or the second SCI includes indication information of multiple consecutive time units, the multiple consecutive time units include the first time unit, and each time unit in the multiple consecutive time units includes at least two PSSCH repetitions.
  • the first repetition number and the first repetition length are used to determine multiple consecutive time units, the multiple consecutive time units include the first time unit, and each time unit in the multiple consecutive time units includes at least two PSSCH repetitions.
  • the first terminal device can send multiple PSSCH repetitions in multiple consecutive time units, thereby achieving more repeated transmissions and improving transmission reliability.
  • the PSSCH includes N PSSCH repetitions, and each of the N PSSCH repetitions includes a second SCI repetition and a data repetition.
  • the second SCI and data can be sent repeatedly, which can improve the transmission reliability of the PSSCH between the first terminal device and the second terminal device.
  • the PSSCH includes N PSSCH repetitions
  • the first PSSCH repetition in the N PSSCH repetitions includes a second SCI and a data repetition
  • the second PSSCH to the Nth PSSCH repetition in the N PSSCH repetitions each include a data repetition.
  • the second PSSCH to the Nth PSSCH repetition in the N PSSCH repetitions do not include the second SCI.
  • data can be sent repeatedly, which can improve the transmission reliability of data transmission between the first terminal device and the second terminal device.
  • the second SCI is only transmitted in the first PSSCH repetition, which can free up more time and frequency resources for data transmission, further improving the reliability of data transmission.
  • the PSCCH includes N PSCCH repetitions
  • the PSSCH includes N PSSCH repetitions
  • each of the N PSSCH repetitions includes a second SCI repetition and a data repetition
  • each of the N PSCCH repetitions includes a first SCI repetition.
  • both data and control information can be sent repeatedly, which can improve the reliability of data transmission and control information transmission between the first terminal device and the second terminal device.
  • the first SCI and/or the second SCI includes periodic information
  • the periodic information is used to indicate periodic resources
  • the periodic resources include first resources
  • the first resources include at least two candidate PSCCH repetitions.
  • the periodic information is configured through configuration information, such as resource pool configuration, or the configuration information is sent between the first terminal device and the second terminal device, or the base station configures the first terminal device and the second terminal device.
  • the periodic information is used to indicate a periodic resource, and the periodic resource includes a first resource; the first resource includes at least two candidate PSCCH repetitions.
  • the blind detection conditions for PSCCH repetitions of the first terminal device are additionally defined, that is, the second terminal device carries periodic information in the first SCI and/or the second SCI, or configures periodic resources through configuration information, so that the first terminal device can perform PSCCH blind detection on the corresponding periodic resources after receiving and successfully decoding the first SCI and/or the second SCI, or according to the configuration information, thereby increasing the reliability of control channel transmission, avoiding missed detection or false detection, and reducing transmission delay.
  • the first SCI and/or the second SCI is used to indicate that at least two PSSCH repetitions among N PSSCH repetitions are sent in a frequency hopping manner.
  • At least two PSSCHs can be repeatedly sent through different frequency resources, thereby obtaining additional frequency diversity gain and further improving transmission reliability.
  • the first SCI and/or the second SCI includes frequency hopping indication information, and the frequency hopping indication information is used to indicate the frequency domain resource position included in each PSSCH repetition of at least two PSSCH repetitions.
  • the frequency domain resource position included in each of the at least two PSSCH repetitions is configured by the resource pool; or, the frequency domain resource position included in each of the at least two PSSCH repetitions is determined based on first configuration information sent by the first terminal device to the second terminal device; or, the frequency domain resource position included in each of the at least two PSSCH repetitions is determined based on second configuration information received by the first terminal device from the second terminal device; or, the frequency domain resource position included in each of the at least two PSSCH repetitions is determined based on configuration information sent by the network device.
  • the resource mapping positions of the transmitting device and the receiving device for each PSSCH repetition during frequency hopping transmission can be aligned, thereby ensuring the accuracy of the PSSCH repetition received by the receiving device.
  • a communication device comprising: a transceiver unit, configured to receive PSCCH and PSSCH from a second terminal device in a first time unit, the PSSCH comprising at least two PSSCH repetitions; a processing unit, configured to determine a first number of repetitions and/or a first repetition length; the processing unit is further configured to determine, based on the first number of repetitions and/or the first repetition length, that the PSSCH comprises N PSSCH repetitions and resource positions respectively occupied by the N PSSCH repetitions, wherein N is an integer greater than or equal to 2; wherein the PSCCH comprises a first SCI and the PSSCH comprises a second SCI.
  • the transceiver unit can perform the reception and transmission processing in the aforementioned first aspect, and the processing unit can perform other processing except reception and transmission in the aforementioned first aspect.
  • a communication device including: a processing unit, used to determine a first number of repetitions and/or a first repetition length; the processing unit, also used to determine, based on the first number of repetitions and/or the first repetition length, that the PSSCH includes N PSSCH repetitions and the resource positions respectively occupied by the N PSSCH repetitions, where N is an integer greater than or equal to 2; a transceiver unit, used to send PSCCH and PSSCH to a first terminal device in a first time unit, the PSSCH including at least two PSSCH repetitions, the PSCCH including a first SCI, and the PSSCH including a second SCI.
  • the transceiver unit can perform the reception and transmission processing in the aforementioned second aspect, and the processing unit can perform other processing except reception and transmission in the aforementioned second aspect.
  • a communication device comprising a transceiver, a processor and a memory, wherein the processor is used to control the transceiver to receive and send signals, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the communication device executes a method in any possible implementation of the first aspect or the second aspect mentioned above.
  • the number of the processors is one or more, and the number of the memories is one or more.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the communication device also includes a transmitter (transmitter) and a receiver (receiver).
  • a communication system comprising a first terminal device and a second terminal device, the first terminal device being used to execute the method in any possible implementation manner of the above-mentioned first aspect, and the second terminal device being used to execute the method in any possible implementation manner of the above-mentioned second aspect.
  • a computer-readable storage medium stores a computer program or code, and when the computer program or code is run on a computer, the computer executes a method in any possible implementation of the first aspect or the second aspect.
  • a chip comprising at least one processor, wherein the at least one processor is coupled to a memory, the memory being used to store a computer program, and the processor being used to call and run the computer program from the memory, so that a device equipped with the chip system executes a method in any possible implementation of the first aspect or the second aspect mentioned above.
  • the chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • a computer program product comprising: a computer program code, when the computer program code is executed by a device, the device executes a method in any possible implementation of the first aspect or the second aspect.
  • FIG1 is a schematic diagram of a wireless communication system applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an SL frame structure.
  • FIG3 is a flow chart of a communication method 300 provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of a first type of resource mapping provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a second resource mapping provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a third type of resource mapping provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the fourth resource mapping provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the fifth type of resource mapping provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the sixth type of resource mapping provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of a structure of repeated transmission of multi-slot resources provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of a structure of multiple repeated frequency hopping transmissions within a time slot provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication device 1000 provided in an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication device 2000 provided in an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a chip system 3000 provided in an embodiment of the present application.
  • the technical solution provided in this application can be applied to various communication systems, such as: sidelink SL system, fifth generation (5th generation, 5G) or new radio (new radio, NR) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, etc.
  • the technical solution provided in this application can also be applied to future communication systems, such as the sixth generation (6th generation, 6G) mobile communication system.
  • the technical solution provided in this application can also be applied to device to device (D2D) communication, vehicle to everything (V2X) communication, machine to machine (M2M) communication, machine type communication (MTC), and Internet of things (IoT) communication system or other communication systems.
  • D2D device to device
  • V2X vehicle to everything
  • M2M machine to machine
  • MTC machine type communication
  • IoT Internet of things
  • V2X communication may include: vehicle-to-vehicle (V2V) communication, vehicle-to-roadside infrastructure (V2I) communication, vehicle-to-pedestrian (V2P) communication, and vehicle-to-network (V2N) communication.
  • V2V refers to communication between vehicles.
  • V2P refers to communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers, etc.).
  • V2I refers to communication between vehicles and infrastructure, such as roadside units (RSU) or network equipment.
  • RSU roadside units
  • RSU includes two types: terminal-type RSU, which is in a non-mobile state because it is located on the roadside and does not need to consider mobility; base station-type RSU, which can provide timing synchronization and resource scheduling for vehicles communicating with it.
  • V2N refers to communication between vehicles and network equipment. It can be understood that the above is an exemplary description and the embodiments of the present application are not limiting.
  • V2X may also include V2X communications based on the NR system of the current 3GPP Rel-16 and subsequent versions.
  • the terminal device in the embodiment of the present application may also be referred to as user equipment UE, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • user equipment UE access terminal
  • user unit user station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • user agent or user device wireless communication device
  • Terminal equipment can be a device that provides voice/data to users, for example, a handheld device with wireless connection function, a vehicle-mounted device, etc.
  • terminals are: mobile phones, customer-premises equipment (CPE), tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety, etc.
  • wireless terminals in smart cities wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, wearable devices, terminal devices in 5G networks or terminal devices in future evolved public land mobile communication networks (PLMN), etc., and the embodiments of the present application are not limited to this.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems
  • wearable devices terminal devices in 5G networks or terminal devices in future evolved public land mobile communication networks (PLMN), etc.
  • PLMN public land mobile communication networks
  • the terminal device may also be a wearable device.
  • Wearable devices may also be called wearable smart devices, which are a general term for wearable devices that are designed and developed by applying wearable technology to daily wear, such as glasses, gloves, watches, clothing, and shoes.
  • Wearable devices are a type of device that is worn directly on the body or integrated into the user's clothes or accessories.
  • Wearable devices are not just hardware devices, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include those with full functions, large size, and can realize complete or partial functions without relying on smartphones, such as smart watches or smart glasses, as well as those that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various smart bracelets and smart jewelry for vital sign monitoring.
  • the device for realizing the function of the terminal device i.e., the terminal device
  • the terminal device can be the terminal device, or a device capable of supporting the terminal device to realize the function, such as a chip system or a chip, which can be installed in the terminal device.
  • the chip system can be composed of a chip, or can include a chip and other discrete devices.
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may also be referred to as an access network device or a wireless access network device, such as a base station.
  • the network device in the embodiment of the present application may refer to a wireless access network (RAN) node (or device) that connects a terminal device to a wireless network.
  • RAN wireless access network
  • Base station can broadly cover various names as follows, or be replaced with the following names, such as: NodeB, evolved NodeB (eNB), next generation NodeB (gNB), relay station, access point, transmitting point (TRP), transmitting point (TP), master station, auxiliary station, multi-standard wireless (motor slide retainer, MSR) node, home base station, network controller, access node, wireless node, access point (AP), transmission node, transceiver node, baseband unit (BBU), remote radio unit (RRU), active antenna unit (AAU), remote radio head (RRH), central unit (CU), distributed unit (DU), positioning node, etc.
  • NodeB evolved NodeB (eNB), next generation NodeB (gNB), relay station, access point, transmitting point (TRP), transmitting point (TP), master station, auxiliary station, multi-standard wireless (motor slide retainer, MSR) node, home base station, network controller, access node, wireless node, access point (AP), transmission node, transceiver node,
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • the base station may also refer to a communication module, a modem or a chip used to be arranged in the aforementioned device or apparatus.
  • the base station may also be a mobile switching center and a device that performs the base station function in D2D, V2X, and M2M communications, a network-side device in a 6G network, and a device that performs the base station function in a future communication system.
  • the base station may support networks with the same or different access technologies. The embodiments of the present application do not limit the specific technology and specific device form adopted by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move based on the location of the mobile base station.
  • a helicopter or drone can be configured to act as a device that communicates with another base station.
  • the network device mentioned in the embodiments of the present application may be a device including a CU, or a DU, or a device including a CU and a DU, or a device including a control plane CU node (central unit control plane (central unit-control plane, CU-CP)) and a user plane CU node (central unit user plane (central unit-user plane, CU-UP)) and a DU node.
  • CU-CP central unit control plane
  • CU-UP central unit user plane
  • the device for realizing the function of the network device can be a network device, or a device capable of supporting the network device to realize the function, such as a chip system or a chip, which can be installed in the network device.
  • the chip system can be composed of a chip, or can include a chip and other discrete devices.
  • the network equipment and terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on the water surface; they can also be deployed on aircraft, balloons and satellites in the air.
  • the embodiments of the present application do not limit the scenarios in which the network equipment and terminal equipment are located.
  • the technical solution of the present application is mainly used in side transmission scenarios, and the frequency bands used include but are not limited to licensed spectrum and unlicensed spectrum.
  • the unlicensed spectrum includes the frequency band near 2.4 GHz and the frequency band near 5.8 GHz, etc.
  • Fig. 1 is a schematic diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system may include at least one terminal device, such as UE1 and UE2 as shown in the figure.
  • the wireless communication system may further include at least one network device, such as the network device shown in the figure.
  • the network device and the terminal device can communicate with each other.
  • the network device and the terminal device can communicate with each other through the Uu interface, and the link for communication between the network device and the terminal device can be recorded as a Uu link.
  • the network device and UE1 can communicate directly, and as shown in (b) of Figure 1, the network device and UE1 can also communicate through UE2; similarly, the network device and UE2 can communicate directly, and the network device and UE2 can also communicate through UE1.
  • the Uu link represents a connection relationship between the terminal device and the network device, which is a logical concept rather than a physical entity.
  • the wireless communication system may not include a network device, that is, only communication between terminal devices.
  • UE1 and UE2 can communicate directly through a side link.
  • Terminal devices can also communicate with each other.
  • terminal devices can communicate directly with each other, as shown in FIG1(a) to FIG1(c), and UE1 and UE2 can communicate directly with each other.
  • terminal devices can communicate with each other through other devices, as shown in FIG1(a). As shown in (a) of 1, UE1 and UE2 can communicate through network equipment.
  • the interface for communication between terminal devices can be recorded as a proximity-based services communication 5 (PC5) interface
  • the multi-link for communication between terminal devices can be recorded as SL
  • the communication between terminal devices can also be recorded as SL communication.
  • Sidelink can also be called a side link or a side link, etc. It can be understood that the sidelink represents a connection relationship between terminal devices and terminal devices, which is a logical concept rather than a physical entity. The sidelink is only named for distinction, and its specific naming does not limit the scope of protection of this application.
  • Unicast communication can be performed between devices, such as between terminal devices.
  • Unicast means that a transmitting terminal and a receiving terminal form a unicast connection pair.
  • UE1 and UE2 can perform unicast communication.
  • Multicast communication can be performed between devices, such as between terminal devices.
  • Multicast means that a transmitting terminal and at least one receiving terminal form a multicast connection pair.
  • UE1 can perform multicast communication with a larger number of UEs.
  • SL communication between terminal devices can be used in the Internet of Vehicles or intelligent transportation system (ITS), such as the V2X communication mentioned above, or can also be applied to industrial scenarios, such as factories and docks.
  • ITS intelligent transportation system
  • SL communication between terminal devices can be performed under network coverage or without network coverage.
  • UE1 and other UEs can communicate under network coverage; or, as shown in FIG. 1(c), UE1 and other UEs can communicate outside network coverage (out-of-coverage).
  • the configuration information during SL communication between terminal devices may be configured by a network device, such as the network device sending configuration information to the terminal device for configuration; or, it may be pre-configured, such as pre-recording relevant information in a chip of the terminal device.
  • the time-frequency resources during SL communication between terminal devices may be configured or scheduled by a network device, or may be selected autonomously by the terminal device.
  • Figure 1 is a simplified schematic diagram for ease of understanding, and the wireless communication system may also include other network devices or other terminal devices, which are not shown in Figure 1.
  • the embodiments of the present application may be applicable to any communication scenario in which a transmitting device and a receiving device communicate.
  • the embodiments of the present application do not particularly limit the specific structure of the execution subject of the method provided by the embodiments of the present application.
  • the execution subject of the method provided by the embodiments of the present application may be a terminal device, or a functional module in the terminal device that can call and execute the program.
  • SL communication can be carried out based on a resource pool.
  • the so-called resource pool refers to a block of time-frequency resources dedicated to SL communication; or the resource pool can also be understood as a collection of resources that can be used for SL communication, that is, a collection of time domain resources and frequency domain resources used for SL communication.
  • the resource pool used for SL communication can be referred to as a resource pool, or can also be called an SL resource pool.
  • the following text uses the resource pool for brevity.
  • the resource pool can also be called a channel, an operating channel, or a nominal channel bandwidth. That is, resource pool, channel, and bandwidth are all used to represent a collection of resources that can be used for SL communication. There is no restriction on the naming of the resource pool.
  • a resource pool can be configured in a bandwidth part (BWP), that is, a BWP can include at least one resource pool.
  • BWP bandwidth part
  • Data or information can be carried by resources.
  • a resource may include one or more time domain units (or, may also be referred to as time units).
  • a time domain unit may be a symbol, or a mini-slot, or a slot, or a partial slot, or a subframe, or a radio frame, and so on.
  • resources can include one or more frequency domain units.
  • a frequency domain unit can be a resource element (RE), or a resource block (RB), or a subchannel, or a subband, or a resource pool, or a bandwidth, or a bandwidth part (BWP), or a carrier, or a channel, or an interlace RB, etc.
  • a subchannel is the smallest unit included in the frequency domain resources when a terminal performs data transmission.
  • the upper layer can configure the number of frequency domain subunits contained in a frequency domain unit in the resource pool, such as the number of physical resource blocks (PRBs) contained in a subchannel, or the number of interleavings, etc.
  • PRBs physical resource blocks
  • the embodiments of the present application are mainly described by taking the time domain unit/time unit as a time slot, the time domain sub-unit/time sub-unit as a symbol, the frequency domain unit as a sub-channel, and the frequency domain sub-unit as a PRB as an example.
  • the transmission of side information refers to the transmission of side information by the terminal device through the resources in the SL resource pool.
  • the resources in the resource pool can carry one or more side information of PSCCH, PSSCH, PSFCH, and demodulation reference signal (DMRS), phase tracking reference signal (PTRS), channel state information reference signal (CSI-RS).
  • DMRS demodulation reference signal
  • PTRS phase tracking reference signal
  • CSI-RS channel state information reference signal
  • PSCCH is used for the first SCI (abbreviated as SCI1) transmission.
  • SCI1 contains scheduling information for the data on its associated PSSCH.
  • SCI1 can carry a time resource assignment (TRA) indication to indicate one or two additional time slots in addition to the current time slot.
  • SCI1 can also carry a frequency resource assignment (FRA) indication to indicate the number of subchannels occupied by this transmission, as well as one or two additional frequency domain resources.
  • TRA time resource assignment
  • FAA frequency resource assignment
  • the above-mentioned additional time slots and additional frequency domain resources can be used for retransmission of this transmission. After other devices detect the retransmission resources reserved by the SCI1, they can avoid the resources in advance to avoid conflicts with the retransmission resources.
  • SCI1 can also carry reservation period indication information to instruct the sending device to periodically reserve the resources occupied by this transmission.
  • SCI1 can also carry priority indication information to indicate the priority corresponding to the data in this PSSCH.
  • the sending device can reserve resources based on its own retransmission and periodic services, and other devices determine whether the reservation is effective by detecting whether the reference signal received power (RSRP) of the DMRS corresponding to the SCI1 exceeds a certain threshold.
  • RSRP reference signal received power
  • PSCCH is usually occupied from the second time subunit that can be used for SL communication in a time unit that can be used for SL communication in the time domain, and from the starting frequency domain subunit of a frequency domain unit in the frequency domain.
  • the number of time subunits occupied in the time domain and the number of frequency domain subunits occupied in the frequency domain can be configured by the configuration information of the resource pool.
  • PSSCH is used for the transmission of the second SCI (abbreviated as SCI2) and data.
  • SCI2 the second SCI
  • the starting position of PSSCH in the time domain is the same as the starting position of PSCCH, and the starting subchannel in the frequency domain is the same as the subchannel where PSCCH is located. It can be partially frequency-division multiplexed with PSCCH.
  • PSSCH includes one subchannel or multiple subchannels in the frequency domain.
  • the resource pool configuration information contains the configuration information of PSFCH, such as the period of PSFCH, that is, how many time slots a time slot containing PSFCH resources will appear. For example, which PRBs on the symbol can be used for PSFCH transmission.
  • the PSSCH receiving device will determine a PRB for PSFCH transmission based on the mapping relationship.
  • the mapping relationship is mainly determined by two parameters. One is the period of PSFCH, that is, One is the minimum time slot interval between the PSSCH and its mapped PSFCH.
  • the priority may be a service priority, and may also be referred to as L1 priority, physical layer priority, priority carried in SCI, priority corresponding to PSSCH associated with SCI, transmission priority, priority for transmitting PSSCH, priority for resource determination, priority of logical channel, and priority of the highest level of logical channel.
  • the priority level and the priority value may have a certain correspondence, for example, the higher the priority level, the lower the corresponding priority value, or the lower the priority level, the lower the corresponding priority value. Taking the higher the priority level, the lower the corresponding priority value as an example, the priority value range may be an integer of 1 to 8 or an integer of 0 to 7. If the priority value range is 1 to 8, then when the priority value is 1, it represents the highest level of priority.
  • the identifier of a terminal device which may also be referred to as the address of a terminal device, is an identifier used to indicate, identify, or correspond to a corresponding terminal device.
  • a terminal device may be an index or number used to uniquely identify a terminal device.
  • This identifier may be mapped according to a high-level application, configured by signaling, preconfigured, or predefined. As an example, a terminal device may be mapped to different layer 2 identifiers according to different applications.
  • the terminal device may carry some or all bits of the layer 2 identifier in the SCI; alternatively, the terminal device may select a layer 2 identifier on its own, and may modify its own layer 2 identifier when a collision with a layer 2 identifier of another device is detected.
  • the HARQ mechanism can improve data Transmission robustness.
  • the receiver can send HARQ feedback to the transmitter to indicate whether the data is received correctly. For example, if the receiver receives the data correctly, the receiver sends a positive acknowledgment (ACK) to the transmitter, and the transmitter considers that the data is received correctly based on the ACK and does not need to be retransmitted; if the receiver does not receive the data correctly, the receiver sends a negative acknowledgment (NACK) to the transmitter, and the transmitter considers that the data is not received correctly based on the NACK and needs to be retransmitted.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • Redundant version The redundant version is designed to implement incremental redundancy (IR) HARQ transmission, that is, the redundant bits generated by the encoder are divided into several groups. Each RV defines a transmission starting point. Different RVs are used for the first transmission and each HARQ retransmission to achieve gradual accumulation of redundant bits and complete the incremental redundancy HARQ operation.
  • IR incremental redundancy
  • GAP symbols empty symbols
  • GP guard period
  • the terminal device may receive and send PSSCH in two consecutive time slots, or the terminal device may receive and send PSSCH and PSFCH in the same time slot. Therefore, in the SL system, an additional GAP symbol is required at the end of a time slot and between PSSCH and PSFCH in a time slot for the terminal device to switch between receiving and sending or between receiving and sending.
  • the symbol used for automatic gain control (AGC) can be called an AGC symbol.
  • the AGC symbol is generally located at the starting symbol of the transmission, such as the symbol before the starting symbol of PSCCH/PSSCH, and the symbol before PSFCH. Since the receiving device usually cannot perform AGC adjustment and data reception and decoding at the same time. Therefore, generally speaking, the transmitting device will copy the information on the first symbol of PSCCH/PSSCH to the previous AGC symbol, or copy the information on the first symbol of PSFCH to the previous AGC symbol, so that the receiving device can first adjust the AGC on the AGC symbol. Since the power of each symbol of the transmitting device in a time slot is roughly equal, the receiving device can perform subsequent PSCCH/PSSCH or PSFCH reception based on the adjustment result of the AGC symbol.
  • FIG. 2 is a schematic diagram of an SL frame structure. Take the time domain resource of the resource pool as a time slot, and take the time domain resource carrying the side information as a time slot as an example. As shown in Figure 2, the time domain resource includes 14 symbols, namely symbol 0 to symbol 13, and the frequency domain resource includes 3 subchannels. The time slot is used for SL transmission starting from symbol 3 (determined by the high-level parameter startSlsymbols). Since not all time slots can be used for SL transmission, the concept of logical time slots can be introduced in an SL resource pool. One logical time slot corresponds to one physical time slot that can be used for SL transmission, and the number index of the logical time slot can be continuous.
  • Symbol 3 is the AGC symbol of PSCCH/PSSCH, which is mainly used for the receiving UE to adjust the gain of the received signal.
  • PSCCH is mapped from symbol 4, including a subchannel of symbol 4 and symbol 5 (the number of RBs occupied by PSCCH in the frequency domain is configured by high-level parameters and generally cannot exceed the subchannel granularity).
  • PSSCH includes all time-frequency resources from symbol 6 to symbol 9, as well as two subchannels of symbol 4 and symbol 5, that is, PSSCH and PSCCH can be frequency-division multiplexed (FDM) on symbol 4 and symbol 5.
  • FDM frequency-division multiplexed
  • Symbol 13 is a GAP symbol, which is mainly used for transceiver conversion or transceiver conversion.
  • This time slot also includes PSFCH resources, that is, there are 3 additional symbols (symbol 10 to symbol 12) of overhead.
  • Symbol 10 is a GAP symbol
  • symbol 11 is an AGC symbol of PSFCH, which is mainly used for the sending UE to adjust the gain of the received signal
  • symbol 12 is a PSFCH resource.
  • the system transmission reliability is required to be high.
  • a single SL transmission occupies at least one subchannel in the frequency domain and at least one time slot in the time domain. Therefore, only retransmission based on multiple time slots can be achieved. Even if blind retransmission is used, the transmission delay is at least two time slots. Therefore, how to improve the reliability of the SL system and reduce the transmission delay is a problem that needs to be considered.
  • the present application provides a communication method and device, which are applied to the SL communication system, and enhance the communication robustness, improve the transmission reliability, and reduce the transmission delay by indicating the resource mapping status of repeated transmission within the first time unit between terminal devices.
  • “at least one” means one or more, and “more than one” means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships.
  • a and/or B can mean: A exists alone, and A exists at the same time. and B, the case where B exists alone, where A and B can be singular or plural.
  • the character “/” generally indicates that the objects associated before and after are in an “or” relationship.
  • “At least one of the following” or similar expressions refers to any combination of these items, including any combination of single items or plural items.
  • At least one of a, b and c can represent: a, or b, or c, or a and b, or a and c, or b and c, or a, b and c.
  • a, b and c can be single or multiple, respectively.
  • first”, “second” and various numerical numbers indicate distinctions made for ease of description and are not used to limit the scope of the embodiments of the present application. For example, to distinguish between different messages, etc., rather than to describe a specific order or sequence. It should be understood that the objects described in this way can be interchanged where appropriate so as to be able to describe solutions other than the embodiments of the present application.
  • used for indication may include being used for direct indication and being used for indirect indication.
  • indication information may include that the indication information directly indicates A or indirectly indicates A, but it does not mean that the indication information must carry A.
  • the indication method involved in the embodiments of the present application should be understood to include various methods that can enable the party to be indicated to know the information to be indicated.
  • the information to be indicated can be sent as a whole or divided into multiple sub-information and sent separately, and the sending period and/or sending time of these sub-information can be the same or different.
  • the present application does not limit the specific sending method.
  • the "indication information" in the embodiments of the present application may be an explicit indication, i.e., directly indicated by signaling, or obtained by combining other rules or other parameters or by deduction according to the parameters indicated by the signaling. It may also be an implicit indication, i.e., obtained according to a rule or relationship, or according to other parameters, or by deduction. The present application does not make specific restrictions on this.
  • protocol may refer to a standard protocol in the field of communications, such as 5G protocol, NR protocol, and related protocols used in future communication systems, which are not limited in this application.
  • Pre-configuration may include pre-definition. For example, protocol definition. Among them, “pre-definition” can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the device, and this application does not limit its specific implementation method.
  • storage may refer to storage in one or more memories.
  • the one or more memories may be separately set or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partially separately set and partially integrated in a decoder, a processor, or a communication device.
  • the type of memory may be any form of storage medium, which is not limited in this application.
  • the "first terminal device” can be described as “UE1”
  • the “second terminal device” can be described as “UE2”
  • this application will no longer place special emphasis on this.
  • execute method B when comparing A and B, the description of "when A is greater than or equal to B, execute method A, and when A is less than or equal to B, execute method B" may be specifically implemented as "when A is greater than or equal to B, execute method A; or, when A is less than B, execute method B", or "when A is greater than B, execute method A; or, when A is less than or equal to B, execute method B", and the present application does not limit this.
  • the communication method provided by the embodiment of the present application will be described in detail below in conjunction with the accompanying drawings.
  • the embodiment provided by the present application can be applied to the SL communication scenario where a transmitting device and a receiving device communicate, such as can be applied to the communication system shown in Figures 1 and 2 above.
  • PSSCH repetition can be understood as: the transmitting device repeatedly sends the transmission block (TB) in the PSSCH multiple times to form multiple PSSCH repetitions.
  • the TB in each PSSCH repetition (or the signal with different RV corresponding to the TB) can be understood as a data repetition, or corresponds to a data repetition.
  • the PSSCH repetition also includes SCI2 information
  • the first PSSCH repetition in multiple PSSCH repetitions includes SCI2 information
  • the other PSSCH repetitions only include Data repetition (also understood as TB repetition); or
  • each of the multiple PSSCH repetitions includes SCI2 information and data repetition, so the SCI2 in each PSSCH repetition (or the signal after encoding and modulating SCI2) can be understood as one SCI2 repetition, or corresponds to one SCI2 repetition.
  • PSCCH repetition can be understood as: the transmitting device repeatedly transmits PSCCH to form multiple PSCCH repetitions, at which time the SCI1 in each PSCCH repetition (or the signal after encoding and modulating SC1) can be understood as one SCI1 repetition, or corresponds to one SCI1 repetition.
  • PSSCH repetition and PSCCH repetition please refer to the current introduction of PUSCH repetition and PUCCH repetition in the Uu port, which will not be elaborated here.
  • FIG3 is a flow chart of a communication method 300 provided in an embodiment of the present application. Taking the second terminal device as a transmitting end device and the first terminal device as a receiving end device as an example, the repeated transmission method of the technical solution of the present application is specifically described. As shown in FIG3, the method includes the following steps.
  • the second terminal device determines a first repetition number and/or a first repetition length.
  • the second terminal device may determine the first number of repetitions and/or the first repetition length autonomously according to its own transmission requirements, or may determine the first number of repetitions and/or the first repetition length according to the configuration information of the resource pool and/or the configuration information between the second terminal device and the first terminal device.
  • the specific implementation method may refer to the relevant description in step S330, which will not be described in detail here.
  • the second terminal device sends a PSSCH and a PSCCH to the first terminal device in a first time unit;
  • the first terminal device receives the PSCCH and PSSCH from the second terminal device in the first time unit.
  • the PSSCH includes at least two PSSCH repetitions, the PSCCH includes a first SCI, and the PSSCH includes a second SCI and at least two data repetitions.
  • the PSCCH and PSSCH include, in the time domain, all time subunits in the first time unit except an automatic gain control time subunit, an interval time subunit, and a time subunit where the PSFCH is located.
  • the automatic gain control time subunit may be an AGC symbol
  • the interval time subunit may be a GAP symbol.
  • the first time unit when the first time unit includes PSFCH symbols, PSCCH and PSSCH include all symbols except AGC symbols, GP symbols and PSFCH symbols in the time domain.
  • symbol 0 is the AGC symbol of PSCCH/PSSCH
  • symbols 10 and 13 are GP symbols
  • symbol 11 is the AGC symbol of PSFCH
  • symbol 12 is the PSFCH symbol
  • PSCCH and PSSCH include all remaining symbols in the time domain
  • the first time unit does not include PSFCH symbols
  • PSCCH and PSSCH include all symbols except AGC symbols and GP symbols in the time domain.
  • symbol 0 is the AGC symbol
  • symbol 13 is the GP symbol
  • PSCCH and PSSCH include all remaining symbols in the time domain.
  • a time slot includes PSFCH resources
  • the time domain position of the PSFCH resources can also be other symbol positions.
  • This application does not make specific limitations on this.
  • the symbols included in the PSSCH and PSCCH in the time domain also change accordingly.
  • the first time unit is a time domain resource used for SL transmission.
  • the configuration information of the bandwidth part (bandwidth part, BWP) where the first terminal device is located configures the first terminal device to only use part of the symbols in a time slot for SL transmission. Then the first time unit corresponds to one or more symbols in the time slot that can be used for SL transmission.
  • the first terminal device determines the first number of repetitions and/or the first repetition length, that is, executes the following step S330.
  • step S330 it is first described how the first terminal device determines that the received PSSCH includes at least two PSSCH repetitions.
  • the first SCI and/or the second SCI is used to indicate that the PSSCH includes at least two PSSCH repetitions.
  • the first SCI and/or the second SCI carries 1 bit of indication information, for example, when the value of the bit is "1", it is used to indicate that the PSSCH includes at least two PSSCH repetitions, that is, it is used to indicate that the associated PSSCH includes at least two PSSCH repetitions.
  • TRA or FRA in the first SCI when the value of TRA or FRA in the first SCI is a special code point, it is used to indicate that the PSSCH associated therewith includes at least two PSSCH repetitions.
  • TRA in Rel-16 is mainly used to indicate that one or two of the 31 time slots after the PSCCH are time slots for retransmission resources.
  • TRA is 9 bits, containing a total of 512 code points, but only the 0th to 496th code points are valid indications. Therefore, when the TRA field in the first SCI is a value greater than 496, it can indicate that the PSSCH associated therewith includes at least two PSSCH repetitions.
  • the TRA field or FRA field in the existing first SCI is expanded to add indication information that the PSSCH includes at least two PSSCH repetitions.
  • the first terminal device can determine that the PSSCH includes at least two PSSCH repetitions according to the first SCI and/or the second SCI.
  • the PSSCH transmitted between the first terminal device and the second terminal device in the first time unit is configured to include at least two PSSCH repetitions through resource pool configuration information.
  • the configuration information of the resource pool indicates that the transmission of different devices on the resource pool is a transmission including PSSCH repetitions. Therefore, the second terminal device can determine that the PSSCH sent in step S320 includes at least two PSSCH repetitions based on the configuration information of the resource pool, and sends the PSSCH to the first terminal device.
  • the first terminal device can also determine that the PSSCH received in step S320 includes at least two PSSCH repetitions based on the configuration information of the resource pool.
  • a first terminal device receives first information from a second terminal device, and the first information indicates that a PSSCH sent by the second terminal device to the first terminal device includes at least two PSSCH repetitions; the first terminal device determines, based on the first information, that a PSSCH received in a first time unit includes at least two PSSCH repetitions.
  • the second terminal device may indicate to the first terminal device through radio resource control (RRC) signaling (i.e., an example of the first information) that the PSSCH sent by the second terminal device to the first terminal device includes at least two PSSCH repetitions.
  • RRC radio resource control
  • the first terminal device receives the PSCCH and the PSSCH, it can detect the device identification of the second terminal device in the first SCI and/or the second SCI, for example, the source ID field in the second SCI carries a partial identification of the second terminal device, and then combined with the first information between the first terminal device and the first terminal device, it can be determined that the PSSCH includes at least two PSSCH repetitions.
  • a first terminal device sends first information to a second terminal device, and the first information indicates that the PSSCH sent by the second terminal device to the first terminal device includes at least two PSSCH repetitions; the first terminal device determines, based on the first information, that the PSSCH received in the first time unit includes at least two PSSCH repetitions.
  • the first terminal device before the first terminal device receives the PSCCH and PSSCH from the second terminal device in the first time unit, the first terminal device can indicate through RRC signaling (i.e., an example of the first information) that the PSSCH sent by the second terminal device to the first terminal device includes at least two PSSCH repetitions according to its own capabilities or transmission requirements.
  • RRC signaling i.e., an example of the first information
  • This implementation method can improve the reliability of the first terminal device receiving information.
  • the second terminal device can determine that the PSSCH sent in step S320 includes at least two PSSCH repetitions based on the RRC indication information, and send the PSSCH to the first terminal device.
  • the first terminal device when the first terminal device receives the PSCCH and PSSCH, it can detect the device identification of the second terminal device in the first SCI and/or the second SCI, for example, the source ID field in the second SCI carries a partial identification of the second terminal device, and then combined with the first information between the first terminal device and the first terminal device, it can be determined that the PSSCH includes at least two PSSCH repetitions.
  • the network device sends first information to the first terminal device and the second terminal device, and the first information indicates that the PSSCH sent by the second terminal device to the first terminal device includes at least two PSSCH repetitions; the first terminal device determines, based on the first information, that the PSSCH received in the first time unit includes at least two PSSCH repetitions.
  • the network device indicates to the first terminal device and the second terminal device through RRC signaling (i.e., an example of the first information) that the PSSCH sent by the second terminal device to the first terminal device includes at least two PSSCH repetitions.
  • RRC signaling i.e., an example of the first information
  • the first terminal device receives the PSCCH and the PSSCH, it can detect the device identification of the second terminal device in the first SCI and/or the second SCI, for example, the source ID field in the second SCI carries a partial identification of the second terminal device, and then combined with the first information between the first terminal device and the first terminal device, it can be determined that the PSSCH includes at least two PSSCH repetitions.
  • the first information in the above three implementations may include one or more of the following: information of X sidelink hybrid automatic repeat request HARQ process identifiers; information of X priorities; information of X transmission resources, where X is an integer greater than or equal to 1.
  • the first terminal device and the second terminal device may configure one or more of the above HARQ processes, priorities, and periodic resources through RRC signaling (i.e., an example of the first information), which may be the first terminal device sending RRC signaling to the second terminal device for configuration, or the second terminal device sending RRC signaling to the first terminal device for configuration, or the network device sending RRC signaling to the first terminal device and the second terminal device for configuration.
  • RRC signaling i.e., an example of the first information
  • the RRC signaling between the above-mentioned devices can be configured in a unicast form between two devices, or can be configured in a multicast form between one device and multiple devices, and this application does not make specific limitations.
  • the first SCI and/or the second SCI includes information of a first sidelink HARQ process identifier
  • the first sidelink HARQ process identifier belongs to X sidelink HARQ process identifiers
  • the first terminal device determines that the PSSCH includes at least two PSSCH repetitions based on the information of the first sidelink HARQ process identifier.
  • the first information includes information of 5 HARQ process identifiers, such as "0", “1", “2", “3” and "4". If the information of the first HARQ process identifier carried in the first SCI and/or the second SCI indicates "1", the first terminal device can determine that the PSSCH Including at least two PSSCH repetitions; if the HARQ process identifier information carried in the first SCI and/or the second SCI indicates "6", the first terminal device can receive the PSSCH in Rel-16 mode, that is, the second terminal device does not repeatedly send the PSSCH.
  • the first SCI and/or the second SCI includes information of a first priority
  • the first priority belongs to X priorities
  • the first terminal device determines, based on the first information, that the PSSCH includes at least two PSSCH repetitions, including: the first terminal device determines, based on the information of the first priority, that the PSSCH includes at least two PSSCH repetitions.
  • the first information includes information of three priorities, for example, priority 1, 2 and 3. If the first priority information carried in the first SCI and/or the second SCI indicates priority 1, the first terminal device can determine that the PSSCH includes at least two PSSCH repetitions; if the priority information carried in the first SCI and/or the second SCI indicates priority 4, the first terminal device can determine that the PSSCH is not sent repeatedly.
  • the first SCI and/or the second SCI includes information of a first transmission resource
  • the first transmission resource belongs to X transmission resources
  • the first terminal device determines, based on the first information, that the PSSCH includes at least two PSSCH repetitions, including: the first terminal device determines, based on the information of the first transmission resource, that the PSSCH includes at least two PSSCH repetitions.
  • the first information includes information on two transmission resources, for example, "periodic resource #1" and "periodic resource #2". If the information on the first transmission resource carried in the first SCI and/or the second SCI indicates “resource #2", and “resource #2” belongs to “periodic resource #2", the first terminal device can determine that the PSSCH includes at least two PSSCH repetitions; if the information on the transmission resources carried in the first SCI and/or the second SCI indicates "resource #3", and neither "periodic resource #1” nor "periodic resource #2” includes “resource #3", the first terminal device can determine that the PSSCH is not sent repeatedly.
  • the first information includes a combination of X HARQ process identifiers and priorities, or a combination of X HARQ process identifiers and resources, or a combination of X priorities and resources, or a combination of X HARQ process identifiers, priorities and resources. Then, when the indication information in the first SCI and/or the second SCI is consistent with the information of one of the above X combinations, the first terminal device can determine that the PSSCH includes at least two PSSCH repetitions.
  • the first information includes a combination of 5 HARQ process identifiers and priorities, as shown in Table 1 below. If the HARQ process identifier corresponding to the PSSCH indicated in the first SCI and/or the second SCI is 0, and the first SCI and/or the second SCI indicates a priority of 0, the first terminal device can determine, based on the configuration information in the table, that the PSSCH includes at least two PSSCH repetitions; if the HARQ process identifier corresponding to the PSSCH indicated in the first SCI and/or the second SCI is 2, and the first SCI and/or the second SCI indicates a priority of 2, the first terminal device can determine, based on the configuration information in the table, that the PSSCH is not sent repeatedly.
  • Table 1 is only an example given for the convenience of understanding the solution and should not constitute any limitation on the technical solution of the present application. Based on this implementation, by configuring specific HARQ process identifier, priority, resource and other information in the first information, it can be achieved that part of the PSSCH sent by the second terminal device to the first terminal device may include at least two PSSCH repetitions, and part of the PSSCH may not include PSSCH repetitions, for example, the second terminal device and the first terminal device send and receive according to the implementation method of only one PSSCH in Rel-16.
  • the first terminal device determines a first repetition number and/or a first repetition length.
  • the first SCI and/or the second SCI includes indication information of the first repetition number and/or the first repetition length, and the first terminal device determines the first repetition number and/or the first repetition length according to the first SCI and/or the second SCI.
  • a new field is added to the first SCI and/or the second SCI, and the new field can indicate the first number of repetitions and/or the first repetition length by at least one bit.
  • “00", “01”, “10” and “11” indicate that the first number of repetitions and/or the first repetition length are: M1 and/or L1, M2 and/or L2, M3 and/or L3, M4 and/or L4.
  • the first terminal device can determine that the first number of repetitions is M2, and/or the first repetition length is L2.
  • two new fields are added to the first SCI and/or the second SCI, wherein one new field is used to indicate the first number of repetitions, and the other new field is used to indicate the first repetition length.
  • one bit “0” and one bit “1” are used to indicate that the first number of repetitions is M1 and M2, respectively.
  • M2 through 2 bits “00", "01", "10” and "11", respectively indicate that the first repetition length is L1, L2, L3 and L4.
  • the first terminal device can determine that the first repetition number is M1 and the first repetition length is L4.
  • TRA in the first SCI when the value of TRA in the first SCI is a special code point, it is used to indicate the first number of repetitions and/or the first repetition length, and when the value of FRA in the first SCI is a special code point, it is used to indicate the first number of repetitions and/or the first repetition length.
  • TRA in Rel-16 is mainly used to indicate that one or two of the 31 time slots after PSCCH are time slots for retransmission resources.
  • TRA is 9 bits, containing a total of 512 code points, of which only the 0th to 496th code points are valid indications.
  • the TRA field in the first SCI when it is a value greater than 496, it can indicate the first number of repetitions and/or the first repetition length.
  • 497 indicates that the first number of repetitions is M1, and/or the first repetition length is L1; for another example, 498 indicates that the first number of repetitions is M2, and/or the first repetition length is L2, and so on.
  • the TRA and/or FRA fields in the existing first SCI are expanded so that the TRA and/or FRA fields can not only indicate the time-frequency resource information corresponding to the PSSCH, but also indicate the first repetition number and/or the first repetition length.
  • the first number of repetitions and/or the first repetition length are determined based on configuration information; wherein the configuration information may be a resource pool configuration; or, the configuration information is sent by the first terminal device to the second terminal device; or, the configuration information is sent by the second terminal device to the first terminal device; or, the configuration information is configured by a network device (or a base station) for the first terminal device and the second terminal device.
  • the configuration information may be a resource pool configuration
  • the configuration information is configured by the resource pool.
  • the configuration information of the resource pool includes the first number of repetitions and/or the first repetition length.
  • the first terminal device determines that the received PSSCH includes at least two PSSCH repetitions based on the implementation method given above, it can further determine the first number of repetitions and/or the first repetition length according to the configuration information of the resource pool.
  • the configuration information of the resource pool may be configured through signaling, and may also be described as configuration signaling.
  • the signaling configuration includes configuring the resource pool by signaling sent by the base station, and these signalings may be RRC messages or DCI messages.
  • the configuration information of the resource pool may also be pre-configured signaling configured to the terminal device, or configured to the terminal device in a pre-configured manner.
  • the pre-configuration here means defining or configuring the values of the corresponding parameters in advance in a protocol manner.
  • the pre-configured information can be modified or updated when the terminal device is connected to the network.
  • the configuration information is sent by the second terminal device to the first terminal device.
  • the second terminal device sends configuration information to the first terminal device (for example, it can be included in the above-mentioned first information), and the configuration information is used to indicate the first number of repetitions and/or the first repetition length.
  • the first terminal device can determine that the PSCCH and PSSCH are sent by the second terminal device according to the Source ID information of SCI2 in the PSSCH, and further determine the first number of repetitions and/or the first repetition length according to the configuration information previously received from the second terminal device.
  • the configuration information is sent by the first terminal device to the second terminal device.
  • the first terminal device before the first terminal device receives the PSCCH and PSSCH from the second terminal device in the first time unit, the first terminal device sends configuration information (for example, which can be included in the above-mentioned first information) to the second terminal device, and the configuration information is used to indicate the first number of repetitions and/or the first repetition length.
  • the first terminal device After the first terminal device receives the PSCCH and PSSCH from the second terminal device in the first time unit, the first terminal device can determine that the PSCCH and PSSCH are sent by the second terminal device according to the Source ID information of SCI2 in the PSSCH, and further determine the first number of repetitions and/or the first repetition length according to the configuration information previously sent to the second terminal device.
  • the first terminal device autonomously sends configuration information to the second terminal device, which can improve the reliability of the subsequent reception of information (such as PSCCH and PSSCH) by the first terminal device.
  • the configuration information is configured by the base station for the first terminal device and the second terminal device.
  • the configuration information of the base station includes the first number of repetitions and/or the first repetition length.
  • the first terminal device determines that the received PSSCH includes at least two PSSCH repetitions, it can further determine the first number of repetitions and/or the first repetition length according to the configuration information of the base station.
  • the configuration information may also include one or more of the following: an association between X number of repetitions and/or X number of repetition lengths and X number of sidelink HARQ process identifiers; an association between X number of repetitions and/or X number of repetition lengths and X number of priorities; an association between X number of repetitions and/or X number of repetition lengths and X number of transmission resources.
  • the configuration information may be a further extension of the first information or may be separate information, which is not limited in this application. The following is a detailed description of the configuration information as a further extension of the first information.
  • the first terminal device and the second terminal device may configure one or more of the following through RRC signaling (i.e., an example of the first information): an association between the HARQ process and the number of repetitions and/or the repetition length, an association between the priority and the number of repetitions and/or the repetition length, and an association between the periodic resource and the number of repetitions and/or the repetition length.
  • RRC signaling i.e., an example of the first information
  • the first terminal device determines the first number of repetitions and/or the first repetition length based on the first information, the first number of repetitions belongs to X number of repetitions, and the first repetition length belongs to X repetition lengths.
  • Specific implementation methods include, but are not limited to, the following:
  • the first SCI and/or the second SCI includes information of a first sideline HARQ process identifier
  • the first terminal device determines, based on the first information, that the number of repetitions associated with the first sideline HARQ process identifier among X repetition numbers is the first repetition number; and/or, the first terminal device determines, based on the first information, that the repetition length associated with the first sideline HARQ process identifier among X repetition lengths is the first repetition length.
  • the first information is shown in Table 2 and/or Table 3 below, where Table 2 contains the correspondence between 5 HARQ process identifiers and 5 repetition numbers, and Table 3 contains the correspondence between 5 HARQ process identifiers and 5 repetition lengths.
  • the first terminal device can determine that the first number of repetitions is M1, and/or the first repetition length is L1, based on the association in the RRC signaling.
  • Table 2 and Table 3 can also be configured in the same table.
  • the first SCI and/or the second SCI includes information of the first priority
  • the first terminal device determines the number of repetitions associated with the first priority among X repetitions as the first number of repetitions based on the first information; and/or, the first terminal device determines the repetition length associated with the first priority among X repetition lengths as the first repetition length based on the first information.
  • the first information is shown in Table 4 and/or Table 5 below, Table 4 contains the correspondence between 3 priorities and 3 repetitions, and Table 5 contains the correspondence between 3 priorities and 3 repetition lengths.
  • the first terminal device can determine that the first number of repetitions is M3, and/or the first repetition length is L3 based on the association in the RRC signaling.
  • Table 4 and Table 5 can also be configured in the same table.
  • the first SCI and/or the second SCI includes information of the first transmission resource
  • the first terminal device determines the number of repetitions associated with the first transmission resource among the X number of repetitions as the first number of repetitions according to the first information
  • the first terminal device determines the repetition length associated with the first transmission resource among the X number of repetitions as the first repetition length according to the first information.
  • the first information is as shown in Table 6 below And/or as shown in Table 7, Table 6 contains the correspondence between 2 periodic transmission resources and 2 repetition times, and Table 7 contains the correspondence between 2 transmission resources and 2 repetition lengths.
  • the first terminal device can determine that the first repetition number is M2, and/or the first repetition length is L2 according to the association relationship in the RRC signaling.
  • Table 6 and Table 7 can also be configured in the same table.
  • the first SCI and/or the second SCI include at least two of the information of the first side row HARQ process identifier, the information of the first priority, and the information of the first transmission resource, which is not limited in the present application.
  • the first SCI and/or the second SCI include the information of the first side row HARQ process identifier and the information of the first priority
  • the first terminal device can determine the number of repetitions associated with the first side row HARQ process and the first priority among the X number of repetitions based on the first information as the first number of repetitions, and/or the first terminal device can determine the repetition length associated with the first side row HARQ process and the first priority among the X number of repetition lengths as the first repetition length based on the first information.
  • the first information is shown in Table 8 and/or Table 9 below, Table 8 contains the corresponding relationship between the combination of 5 HARQ process identifiers and priorities and 5 number of repetitions, and Table 9 contains the corresponding relationship between the combination of 5 HARQ process identifiers and priorities and 5 repetition lengths. If the information of the first side HARQ process identifier indicates "2" and the information of the first priority indicates "1", the first terminal device can determine that the first number of repetitions received is M2 and/or the first repetition length is L2 according to the association relationship in the RRC signaling.
  • Table 8 and Table 9 can also be configured in the same table. For other possible examples, please refer to the above related descriptions, which will not be elaborated here.
  • the first terminal device can directly determine the first number of repetitions and/or the first repetition length after receiving the PSSCH and PSCCH from the second terminal device, the first terminal device can directly execute S330 after step S320 without first determining that the PSSCH includes at least two PSSCH repetitions.
  • the first SCI and/or the second SCI sent by the second terminal device to the first terminal device carries the first number of repetitions and/or the first repetition length.
  • the first terminal device When the first terminal device detects indication information of the first number of repetitions and/or the first repetition length, if the indication information indicates that the first number of repetitions is 3 times, and/or the first repetition length is 3 symbols, then the first terminal device can also determine that the received PSSCH includes at least two PSSCH repetitions, and therefore there is no need to perform the determination separately.
  • the PSSCH includes at least two PSSCH repetitions.
  • the first terminal device may also first determine that the PSSCH includes at least two PSSCH repetitions, and then perform step S330.
  • the first SCI and/or the second SCI includes 1 bit of indication information indicating whether the PSSCH associated therewith includes at least two PSSCH repetitions, and the configuration information includes an association relationship between X HARQ process identifiers and X repetition times and/or repetition lengths.
  • the first terminal device can first determine whether its associated PSSCH contains at least two PSSCH repetitions based on the 1-bit indication information in the first SCI and/or the second SCI, and after determining that its associated PSSCH contains at least two PSSCH repetitions, determine the first number of repetitions and/or the first repetition length based on the indication information of the HARQ process identifier in the first SCI and/or the second SCI and the association between the HARQ process identifier and the number of repetitions and/or the repetition length in the configuration information; optionally, after determining that its associated PSSCH does not contain at least two PSSCH repetitions, even if the HARQ process identifier indicated in the first SCI and/or the second SCI belongs to the X HARQ process identifiers in the configuration information, the first terminal device does not need to determine the first number of repetitions and/or the first repetition length.
  • the first terminal device determines the actual number of repetitions (e.g., N) of the received PSSCH and PSCCH, and the resource location corresponding to each repetition based on the first number of repetitions (e.g., M) and/or the first repetition length (e.g., L), that is, executes step S340.
  • N the actual number of repetitions
  • M the resource location corresponding to each repetition based on the first number of repetitions
  • L the first repetition length
  • the first terminal device determines, according to the first repetition number and/or the first repetition length, that the PSSCH includes N PSSCH repetitions and resource positions respectively occupied by the N PSSCH repetitions, where N is an integer greater than or equal to 2.
  • PSCCH and PSSCH in the time domain include all time subunits in the first time unit except the automatic gain control time subunit, the interval time subunit, and the time subunit where the PSFCH is located.
  • N PSSCH repetitions and the resource positions respectively occupied by the N PSSCH repetitions are described according to the following three different repetition modes.
  • PSSCH includes N PSSCH repetitions, and each of the N PSSCH repetitions includes a second SCI repetition and a data repetition.
  • the first terminal device may determine the number N of PSSCH repetitions and the resources corresponding to each PSSCH repetition based on L.
  • the first terminal device determines, according to the first method, that the first PSSCH repetition includes the 1st time subunit to the B+Lth time subunit in A time subunits in the time domain.
  • A is the number of time subunits for PSCCH and PSSCH transmission included in the first time unit
  • B is the number of time subunits included in the time domain of PSCCH in the first time unit
  • L and B are integers greater than or equal to 1 and less than or equal to A.
  • a and B can be determined by the configuration information of the SL resource pool
  • the first PSSCH repetition is the first PSSCH repetition among N PSSCH repetitions.
  • the first PSSCH repetition can perform FDM with the PSCCH in the first time subunit to the Bth time subunit.
  • the PSSCH includes one frequency domain unit (e.g., one subchannel) in the frequency domain
  • the number of frequency domain subunits (e.g., PRBs) included in the PSCCH in the frequency domain is the number of frequency domain subunits included in one frequency domain unit
  • the time subunit actually occupied by the first PSSCH repetition is the B+1th to B+Lth time subunits among the A time subunits.
  • this situation we still describe this situation as the first PSSCH repetition including the 1st to the B+Lth time subunits among the A time subunits in the time domain, which can be understood as a special case where the first PSSCH repetition occupies 0 frequency domain subunits in the 1st to Bth time subunits.
  • the above special cases also apply to the description of the time subunits included in the time domain by the first PSSCH repetition in the following examples. For the sake of brevity, they will not be elaborated on below.
  • the number N of PSSCH repetitions included in the PSSCH in the first time unit is:
  • the other PSSCH repetitions respectively include L time sub-units in the first time unit
  • the last PSSCH repetition includes [(AB)–1]mod L+1 time sub-units in the first time unit.
  • the number N of PSSCH repetitions included in the PSSCH in the first time unit is:
  • N PSSCH The other PSSCH repetitions except the first PSSCH repetition and the last PSSCH repetition in the repetition include L time sub-units in the first time unit, and the last PSSCH repetition includes L+(AB) mod L time sub-units in the first time unit.
  • valid data or blank data can be mapped to the last (AB) mod L time sub-units in the last PSSCH repetition, which is not limited in this application.
  • the time subunit where the PSCCH is located is allocated separately to the first PSSCH repetition, and then the A-B time subunits except the B time subunits included in the PSCCH are evenly allocated to all PSSCH repetitions, and each PSSCH repetition is allocated L time subunits.
  • an additional PSSCH repetition can be added, and the last PSSCH repetition includes the remaining (A-B) mod L time subunits (the first example); or, no additional PSSCH repetition is added, and the remaining (A-B) mod L time subunits are allocated to the last PSSCH repetition (the second example).
  • the first terminal device may determine whether to use the first example or the second example according to the number of time subunits remaining after average distribution (A-B) mod L. For example, when (A-B) mod L is greater than or equal to a certain threshold, the first example is used; or when (A-B) mod L is less than or equal to a certain threshold, the second example is used.
  • A-B time subunits remaining after average distribution
  • the first terminal device determines, according to the second method, that the first PSSCH repetition includes the 1st time subunit to the Lth time subunit in A time subunits in the time domain.
  • A is the number of time subunits for PSCCH and PSSCH transmission included in the first time unit
  • L is an integer greater than or equal to 1 and less than or equal to A, generally speaking,
  • A can be determined by the configuration information of the SL resource pool, and the first PSSCH repetition is the first PSSCH repetition among N PSSCH repetitions.
  • the number N of PSSCH repetitions included in the PSSCH in the first time unit is:
  • the other PSSCH repetitions include L time sub-units in the first time unit respectively, and the last PSSCH repetition includes (A-1) mod L+1 time sub-units in the time domain.
  • the number N of PSSCH repetitions included in the PSSCH in the first time unit is:
  • the other PSSCH repetitions except the last PSSCH repetition in the N PSSCH repetitions respectively include L time sub-units in the first time unit, and the last PSSCH repetition includes L+A mod L time sub-units in the first time unit.
  • the last A mod L time sub-units in the last PSSCH repetition can be mapped with valid data or blank data, which is not limited in this application.
  • a time subunits can be evenly distributed to all PSSCH repetitions, and each PSSCH repetition is evenly distributed with L time subunits.
  • an additional PSSCH repetition can be added, and the last PSSCH repetition includes the remaining A mod L time subunits (the first example); or, if no additional PSSCH repetition is added, the last PSSCH repetition includes the remaining A mod L time subunits (the second example).
  • the first terminal device may determine whether to use the first example or the second example according to the number of time subunits remaining after average distribution A mod L. For example, when A mod L is greater than or equal to a certain threshold, the first example is used; or when A mod L is less than or equal to a certain threshold, the second example is used.
  • the first terminal device may determine resource mapping of N PSSCH repetitions using the first method or the second method according to the frequency domain subunit included in the PSCCH.
  • the first terminal device determines to use the first method; or, when the number of frequency domain sub-units included in the PSCCH is less than or equal to the first threshold, the first terminal device determines to use the second method to determine the resource mapping of N PSSCH repetitions. For example, assuming that the number of PRBs included in the PSCCH is a, and the first threshold is b, if a is greater than or equal to b, the first terminal device determines to use method one; conversely, if a is less than or equal to b, the first terminal device determines to use method two.
  • the first terminal device determines to use the first method; or, when the number of frequency domain subunits included in the PSCCH is less than or equal to a certain percentage value of the number of frequency domain subunits included in the PSSCH, the first terminal device determines to use the second method. For example, assuming that the number of PRBs included in the PSCCH is a, the first terminal device can determine this time through SCI1 in the PSCCH.
  • the number of PRBs included in PSSCH is c (e.g., SCI1 indicates the number of subchannels included in PSSCH, and the resource pool configuration information configures the number of PRBs included in a subchannel). If a is less than or equal to 0.2*c, the first terminal device determines to use method two; or, if a is greater than or equal to 0.2*c, the first terminal device determines to use method one.
  • the first threshold can be a fixed number, or it can be the number of frequency domain sub-units included in the PSSCH multiplied by a fixed percentage.
  • the number or percentage can be configured by the configuration information of the resource pool, or it can be configured by RRC signaling between the first terminal device and the second terminal device, or it can be configured by a network device. This application does not limit the specific configuration method.
  • each SCI2 repetition in the N PSSCH repetitions can be an SCI2 repetition of the same format or an SCI2 repetition of a different format, and the present application does not limit this.
  • the SCI2 in the first PSSCH repetition is a complete SCI2
  • the SCI2 in other PSSCH repetitions only contains part of the fields in the first SCI2, such as only RV indication information.
  • the PSSCH includes two PSSCH repetitions, the SCI2 in the first PSSCH repetition is a complete SCI2 defined by the existing protocol, and the SCI2 in the second PSSCH repetition can only contain RV indication information.
  • the RV indication information of SCI2 in each PSSCH repetition can be the same indication information (for example, the RV indication information is the RV of the first data repetition, and the RVs of the subsequent N-1 data repetitions are cycled in the order of a fixed sequence, such as 0, 2, 3, 1), or it can be the RV indication information corresponding to the data repetition in each PSSCH repetition.
  • the first PSSCH repetition includes symbols 1 to 7 of the time slot
  • the second PSSCH repetition includes symbols 8 to 12 of the time slot.
  • the PSCCH includes the entire frequency domain unit (for example, a subchannel) on symbols 1 and 2 of the time slot, and the frequency domain resources included by the PSSCH are a subchannel
  • the first PSSCH repetition actually includes symbols 3 to 7 of the time slot
  • the second PSSCH repetition includes symbols 8 to 12 of the time slot.
  • the first PSSCH repetition includes symbol 1 to symbol 6 of the time slot, and the second PSSCH repetition includes symbol 7 to symbol 12 of the time slot.
  • SCI2 repetition 1 includes RV0 for indicating TB repetition 1
  • SCI2 repetition 2 includes RV2 for indicating TB repetition 2.
  • SCI2 repetition 1 and SCI2 repetition 2 may use the same format, or SCI2 repetition 1 may use a normal format, and SCI2 repetition 2 may use a simplified format, including only indication information of RV2 of its corresponding TB repetition 2, etc.
  • the first PSSCH repetition includes symbols 1 to 6 of the time slot
  • the second The first PSSCH repetition includes symbols 7 to 10 of the time slot
  • the third PSSCH repetition includes symbols 11 and 12 of the time slot, for a total of 2 symbols.
  • the difference from FIG5(a) is that the remaining symbols 11 and 12 of the time slot are allocated to the second PSSCH repetition.
  • the second PSSCH repetition includes symbols 7 to 12 of the time slot.
  • the first PSSCH repetition includes symbols 1 to 5 of the time slot
  • the second PSSCH repetition includes symbols 6 to 10 of the time slot
  • the third PSSCH repetition includes symbols 11 and 12 of the time slot.
  • the difference from FIG5(b) is that the remaining symbols 11 and 12 of the time slot are allocated to the second PSSCH repetition.
  • the second PSSCH repetition includes symbols 6 to 12 of the time slot.
  • SCI2 repeat 1 includes RV0 for indicating TB repeat 1
  • SCI2 repeat 2 includes RV2 for indicating TB repeat 2
  • SCI2 repeat 3 includes RV3 for indicating TB repeat 3.
  • SCI2 repeat 1 includes RV0 for indicating TB repeat 1
  • SCI2 repeat 2 includes RV2 for indicating TB repeat 2.
  • the first terminal device may determine the number N of PSSCH repetitions and the resources corresponding to each PSSCH repetition based on M.
  • the first terminal device determines, according to the third method, that the first PSSCH repetition includes the 1st time subunit to the B+Cth time subunit in A time subunits in the time domain.
  • A is the number of time subunits for PSCCH and PSSCH transmission included in the first time unit
  • B is the number of time subunits included in the PSCCH in the first time unit in the time domain
  • B is an integer greater than or equal to 1 and less than or equal to A, generally speaking
  • a and B can be determined by the configuration information of the SL resource pool
  • the first PSSCH repetition is the first PSSCH repetition among N PSSCH repetitions.
  • N M
  • the i-th PSSCH repetition when 1 ⁇ i ⁇ (AB)mod M, the i-th PSSCH repetition includes C time subunits in the first time unit; or, when i>(AB)mod M, the i-th PSSCH repetition includes C time subunits in the first time unit. A time subunit.
  • the other PSSCH repetitions except the first PSSCH repetition and the last PSSCH repetition among the N PSSCH repetitions include C time sub-units in the first time unit.
  • (AB) mod M ⁇ 0, N M+1, and the last PSSCH repetition includes (AB) mod M time sub-units in the first time unit.
  • N M
  • the other PSSCH repetitions except the first PSSCH repetition and the last PSSCH repetition in the N PSSCH repetitions include C time sub-units in the first time unit, and the last PSSCH repetition includes C+(A-B)mod M time sub-units in the first time unit.
  • the last (A-B) mod M time sub-units in the last PSSCH repetition can be mapped with valid data or blank data, which is not limited in this application.
  • the time subunit where the PSCCH is located is separately allocated to the first PSSCH repetition, and then the AB time subunits in the A time subunits except the B time subunits included in the PSCCH are evenly divided into M parts.
  • an additional time subunit can be allocated to the first several PSSCH repetitions (the first example); or, an additional PSSCH repetition can be added (the second example, there may be M+1 PSSCH repetitions in the end); or, no additional PSSCH repetition is added, and the remaining (AB) mod M time subunits are allocated to the last PSSCH Repeat (third example).
  • the first terminal device may determine whether to use the second example or the third example according to the number of time subunits remaining after average distribution (A-B) mod M. For example, when (A-B) mod M is greater than or equal to a certain threshold, the second example is used; or when (A-B) mod M is less than or equal to a certain threshold, the third example is used.
  • A-B time subunits remaining after average distribution
  • the first terminal device determines, according to the fourth method, that the first PSSCH repetition includes the 1st time subunit to the Dth time subunit in A time subunits in the time domain.
  • A is the number of time subunits for PSCCH and PSSCH transmission included in the first time unit
  • D is an integer greater than or equal to 1 and less than or equal to A, generally speaking,
  • A can be determined by the configuration information of the SL resource pool, and the first PSSCH repetition is the first PSSCH repetition among N PSSCH repetitions.
  • N M
  • the i-th PSSCH repetition includes D time subunits in the first time unit; when i>A
  • the i-th PSSCH repetition includes in the first time unit A time subunit.
  • the other PSSCH repetitions except the last PSSCH repetition among N PSSCH repetitions include D time sub-units in the first time unit.
  • a mod M ⁇ 0, N M+1, and the last PSSCH repetition includes A mod M time sub-units in the first time unit.
  • N M
  • the other PSSCH repetitions except the last PSSCH repetition in the N PSSCH repetitions include D time sub-units in the first time unit, and the last PSSCH repetition includes D+A mod M time sub-units in the first time unit.
  • the last A mod M time sub-units in the last PSSCH repetition can be mapped with valid data or blank data, which is not limited in this application.
  • a time sub-units are equally divided into M parts.
  • an additional time sub-unit can be allocated to the first few PSSCH repetitions (the first example); or, an additional PSSCH repetition is added (the second example, there may be M+1 PSSCH repetitions in the end); or, no additional PSSCH repetition is added, and the remaining A mod M time sub-units are allocated to the last PSSCH repetition (the third example).
  • the first terminal device may determine to use the second example or the third example according to the number of time subunits remaining after average distribution A mod M. For example, when A mod M is greater than or equal to a certain threshold, the second example is used; or when A mod M is less than or equal to a certain threshold, the third example is used.
  • the first terminal device may determine resource mapping of N PSSCH repetitions using the third method or the fourth method according to the frequency domain subunit included in the PSCCH.
  • the first terminal device determines to use the third method; or, when the number of frequency domain sub-units included in the PSCCH is less than or equal to the second threshold, the first terminal device determines to use the fourth method.
  • the first terminal device determines to use the third method; or, when the number of frequency domain sub-units included in the PSCCH is less than or equal to a certain percentage value of the number of frequency domain sub-units included in the PSSCH, the first terminal device determines to use the fourth method.
  • the specific implementation process of the first terminal device determining to use the third method or the fourth method can refer to the above description of the first terminal device determining to use the first method or the second method according to the frequency domain subunit included in the PSCCH. For the sake of brevity, it will not be elaborated here.
  • the PSCCH includes the entire frequency domain unit (for example, a subchannel) on symbols 1 and 2 of the time slot, and the frequency domain resources included by the PSSCH are a subchannel
  • the first PSSCH repetition actually includes symbols 3 to 7 of the time slot
  • the second PSSCH repetition includes symbols 8 to 12 of the time slot.
  • the first PSSCH repetition includes symbols 1 to 6 of the time slot
  • the second PSSCH repetition includes symbols 7 to 9 of the time slot
  • the third PSSCH repetition includes symbols 10 to 12 of the time slot.
  • the first PSSCH repetition includes symbols 1 to 5 of the time slot
  • the second PSSCH repetition includes symbols 6 to 8 of the time slot
  • the third PSSCH repetition includes symbols 9 to 11 of the time slot
  • the fourth PSSCH repetition includes symbol 12 of the time slot.
  • the difference from (g) of Figure 5 is that the remaining symbol 12 of the time slot is allocated to the third PSSCH repetition.
  • the third PSSCH repetition includes symbols 9 to 12 of the time slot.
  • the first PSSCH repetition includes symbols 1 to 3 of the time slot
  • the second PSSCH repetition includes symbols 4 to 6 of the time slot
  • the third PSSCH repetition includes symbols 7 and 8 of the time slot
  • the fourth PSSCH repetition includes symbols 9 and 10 of the time slot
  • the fifth PSSCH repetition includes symbols 11 and 12 of the time slot.
  • the first PSSCH repetition includes symbol 1 and symbol 2 of the time slot
  • the second PSSCH repetition includes symbol 3 and symbol 4 of the time slot
  • the third PSSCH repetition includes symbol 5 and symbol 6 of the time slot
  • the fourth PSSCH repetition includes symbol 7 and symbol 8 of the time slot
  • the fifth PSSCH repetition includes symbol 9 and symbol 10 of the time slot
  • the sixth PSSCH repetition includes symbol 11 and symbol 12 of the time slot.
  • the difference from (h) of Figure 5 is that the remaining symbols 11 and 12 of the time slot are allocated to the fifth PSSCH repetition.
  • the fifth PSSCH repetition includes symbols 9 to 12 of the time slot.
  • SCI2 repeat 1 includes RV0 for indicating TB repeat 1
  • SCI2 repeat 2 includes RV2 for indicating TB repeat 2
  • SCI2 repeat 3 includes RV3 for indicating TB repeat 3
  • the additional SCI2 repeat 4 includes RV1 for indicating TB repeat 4
  • the additional SCI2 repeat 5 includes RV0 for indicating TB repeat 5
  • the additional SCI2 repeat 6 includes RV2 for indicating TB repeat 6.
  • PSSCH includes N PSSCH repetitions, and the first PSSCH repetition among the N PSSCH repetitions includes one The second SCI and one data repetition, and the second PSSCH repetition to the Nth PSSCH repetition in the N PSSCH repetitions each include one data repetition.
  • the second PSSCH to the Nth PSSCH repetition in the N PSSCH repetitions do not include the second SCI.
  • the second SCI includes indication information of N RVs, and the N redundant version numbers correspond one-to-one to the N PSSCH repetitions.
  • the RV field of the second SCI needs to be expanded; or, the second SCI may only include indication information of one RV, and the RV indication information is the RV of the first data repetition, and the subsequent N-1 data repetitions RV are cycled in the order of a fixed sequence, for example 0, 2, 3, 1.
  • the first terminal device may determine the number N of PSSCH repetitions and the resources corresponding to each PSSCH repetition based on L.
  • the first terminal device may adopt the first method or the second method to determine the number N of PSSCH repetitions and the resources corresponding to each PSSCH repetition according to L.
  • the specific implementation method please refer to the relevant description in the above repetition method 1.
  • the second SCI in repetition method 2 is not sent repeatedly, but only once in the first PSSCH repetition.
  • the first terminal device determines, according to the fifth method, that the first PSSCH repetition includes the 1st time subunit to the E+Lth time subunit in the A time subunits in the time domain.
  • A is the number of time subunits for PSCCH and PSSCH transmission included in the first time unit
  • E is an integer greater than or equal to 0 and less than or equal to B
  • B is the number of time subunits included in the PSCCH in the first time unit in the time domain
  • L and B are integers greater than or equal to 1 and less than or equal to A.
  • a and B can be determined by the configuration information of the SL resource pool
  • the first PSSCH repetition is the first PSSCH repetition among N PSSCH repetitions.
  • the implementation method can be to first allocate the first E time subunits of the B time subunits where the PSCCH is located to the first PSSCH repetition separately, and then evenly allocate the remaining A-E time subunits to all PSSCH repetitions, and determine the time-frequency resources included in each PSSCH repetition.
  • the specific allocation method can refer to the relevant description in the above repetition method 1, for example, replace B with E in the example of repetition method 1. For the sake of brevity, it will not be repeated here. It should be understood that the fifth method can be regarded as a further optimization of the first method or the second method by the first terminal device.
  • the first terminal device determines whether E time subunits include the jth time subunit based on the number of frequency domain subunits of the second SCI and PSCCH in the jth time subunit in A time subunits, where j is an integer greater than or equal to 1 and less than or equal to B.
  • the first terminal device can determine that the E time subunits include the jth time subunit; or, in the jth time subunit, if the number of frequency domain subunits included in the second SCI and PSCCH is less than or equal to the third threshold, the first terminal device can determine that the E time subunits do not include the jth time subunit.
  • the third threshold can be a fixed number, or it can be the number of frequency domain subunits included in the PSSCH multiplied by a fixed percentage.
  • the number or percentage can be configured by the configuration information of the resource pool, or it can be configured by RRC signaling between the first terminal device and the second terminal device, or it can be configured by a network device. This application does not limit the specific configuration method.
  • the PSCCH includes part of the frequency domain subunits of symbol 1 and symbol 2 (for example, PRB)
  • the PSSCH includes the remaining part of the frequency domain subunits of symbol 1 and symbol 2, and all resources from symbol 3 to symbol 12 (excluding CSI-RS, PTRS, DMRS and other signals).
  • the second SCI (for example, SCI2) is only sent once in the first PSSCH repetition
  • SCI2 includes RV0 for indicating TB repetition 1, and RV2 for indicating TB repetition 2.
  • the first PSSCH repetition includes symbol 1 to symbol 7 of the time slot; the second PSSCH repetition includes symbol 8 to symbol 12 of the time slot.
  • the PSCCH includes the entire frequency domain unit (for example, a subchannel) on symbol 1 and symbol 2 of the time slot, and the frequency domain resources included by the PSSCH are a subchannel
  • the first PSSCH repetition includes symbol 3 to symbol 7 of the time slot
  • the second PSSCH repetition includes symbol 8 to symbol 12 of the time slot.
  • the first PSSCH repetition includes symbols 1 to 6 of the time slot, and the second PSSCH repetition includes symbols 7 to 12 of the time slot.
  • PSCCH includes part of the frequency domain sub-units of symbol 1 and symbol 2 (for example, PRB)
  • PSSCH includes the remaining part of the frequency domain sub-units of symbol 1 and symbol 2
  • all resources from symbol 3 to symbol 12 excluding CSI-RS, PTRS, DMRS and other signals.
  • the second SCI (for example, SCI2) is only sent once in the first PSSCH repetition.
  • the first PSSCH repetition includes symbols 1 to 6 of the time slot
  • the second PSSCH repetition includes symbols 7 to 10 of the time slot
  • the third PSSCH repetition includes symbols 11 and 12 of the time slot.
  • the difference from FIG7 (a) is that the remaining symbols 11 and 12 of the time slot are allocated to the second PSSCH repetition.
  • the second PSSCH repetition includes symbols 7 to 12 of the time slot.
  • the first PSSCH repetition includes symbols 1 to 5 of the time slot
  • the second PSSCH repetition includes symbols 6 to 10 of the time slot
  • the third PSSCH repetition includes symbols 11 and 12 of the time slot.
  • the difference from FIG7(b) is that the remaining symbols 11 and 12 of the time slot are allocated to the second PSSCH repetition.
  • the second PSSCH repetition includes symbols 6 to 12 of the time slot.
  • SCI2 includes RV0 for indicating TB repeat 1, RV2 for indicating TB repeat 2, and RV3 for indicating TB repeat 3.
  • SCI2 includes RV0 for indicating TB repeat 1, and RV2 for indicating TB repeat 2.
  • the first terminal device may determine the number N of PSSCH repetitions and the resources corresponding to each PSSCH repetition based on M.
  • the first terminal device may adopt the third method or the fourth method to determine the number N of PSSCH repetitions and the resources corresponding to each PSSCH repetition according to M.
  • the specific implementation method please refer to the relevant description in the above repetition method 1.
  • the second SCI in repetition method 2 is not sent repeatedly, but only once in the first PSSCH repetition.
  • the first terminal device determines, according to the sixth method, that the first PSSCH repetition includes the 1st time subunit to the F+Cth time subunit in the A time subunits in the time domain.
  • A is the number of time subunits for PSCCH and PSSCH transmission included in the first time unit
  • F is an integer greater than or equal to 0 and less than or equal to B
  • B is the number of time subunits included in the PSCCH in the first time unit in the time domain
  • C and B are integers greater than or equal to 1 and less than or equal to A.
  • a and B can be determined by the configuration information of the SL resource pool
  • the first PSSCH repetition is the first PSSCH repetition among N PSSCH repetitions.
  • the implementation method can be to first allocate the first F time sub-units of the B time sub-units where the PSCCH is located to the first PSSCH repetition separately, and then evenly allocate the remaining AF time sub-units to all PSSCH repetitions. For example, first determine C, and then finally determine the resources corresponding to each PSSCH repetition.
  • the specific allocation method can refer to the relevant description in the above repetition method 1, for example, if B in the example of repetition mode 1 is replaced by F, it will not be described here for the sake of brevity. It should be understood that the sixth mode can be regarded as a further optimization of the third mode or the fourth mode by the first terminal device.
  • the first terminal device determines whether F time subunits include the kth time subunit based on the number of frequency domain subunits of the second SCI and the PSCCH in the kth time subunit, where k is an integer greater than or equal to 1 and less than or equal to B.
  • the first terminal device can determine that the F time subunits include the kth time subunit; or, at the kth time subunit, if the number of frequency domain subunits included in the second SCI and PSCCH is less than or equal to the fourth threshold, the first terminal device can determine that the F time subunits do not include the kth time subunit.
  • the fourth threshold can be a fixed number, or it can be the number of frequency domain subunits included in the PSSCH multiplied by a fixed percentage. The number or percentage can be configured by the configuration information of the resource pool, or it can be configured by RRC signaling between the first terminal device and the second terminal device, or it can be configured by a network device. This application does not limit the specific configuration method.
  • the first PSSCH repetition includes symbols 1 to 7 of the time slot, and the second PSSCH repetition includes symbols 8 to 12 of the time slot.
  • the PSCCH includes the entire frequency domain unit on symbols 1 and 2 of the time slot (for example, a subchannel), and the frequency domain resources included in the PSSCH are a subchannel
  • the first PSSCH repetition includes symbols 3 to 7 of the time slot
  • the second PSSCH repetition includes symbols 8 to 12 of the time slot.
  • the first PSSCH repetition includes symbols 1 to 6 of the time slot
  • the second PSSCH repetition includes symbols 7 to 9 of the time slot
  • the third PSSCH repetition includes symbols 10 to 12 of the time slot.
  • the first PSSCH repetition includes symbols 1 to 5 of the time slot
  • the second PSSCH repetition includes symbols 6 to 8 of the time slot
  • the third PSSCH repetition includes symbols 9 to 11 of the time slot
  • the fourth PSSCH repetition includes symbol 12 of the time slot.
  • the difference from (g) of FIG. 7 is that the remaining symbol 12 of the time slot is allocated to the third PSSCH repetition.
  • the third PSSCH repetition includes symbol 9 to symbol 12 of the time slot.
  • the PSSCH includes five PSSCH repetitions, that is, data is repeatedly sent 5 times (for example, TB repetition 1, TB repetition 2, TB repetition 3, TB repetition 4, and TB repetition 5).
  • the first PSSCH repetition includes symbols 1 to 3 of the time slot
  • the second PSSCH repetition includes symbols 4 to 6 of the time slot
  • the third PSSCH repetition includes symbols 7 and 8 of the time slot
  • the fourth PSSCH repetition includes symbols 9 and 10 of the time slot
  • the fifth PSSCH repetition includes symbols 11 and 12 of the time slot.
  • the PSSCH includes six PSSCH repetitions, that is, data is repeatedly sent 6 times (for example, TB repetition 1, TB repetition 2, TB repetition 3, TB repetition 4, TB repetition 5, and TB repetition 6).
  • the first PSSCH repetition includes symbol 1 and symbol 2 of the time slot;
  • the second PSSCH repetition includes symbol 3 and symbol 4 of the time slot,
  • the third PSSCH repetition includes symbol 5 and symbol 6 of the time slot,
  • the fourth PSSCH repetition includes symbol 7 and symbol 8 of the time slot, and
  • the fifth PSSCH repetition includes symbol 9 and symbol 10 of the time slot.
  • Symbol 9 and symbol 10 the sixth PSSCH repetition includes symbol 11 and symbol 12 of the time slot.
  • the PSSCH includes five PSSCH repetitions, that is, data is repeatedly transmitted five times (e.g., TB repetition 1, TB repetition 2, TB repetition 3, TB repetition 4, and TB repetition 5).
  • the difference from (h) of FIG. 7 is that the remaining symbols 11 and 12 of the time slot are allocated to the fifth PSSCH repetition.
  • the fifth PSSCH repetition includes symbols 9 to 12 of the time slot.
  • SCI2 includes RV0 for indicating TB repetition 1, RV2 for indicating TB repetition 2, and RV3 for indicating TB repetition 3; as shown in (g) of Figure 7, SCI2 additionally includes RV0 for indicating TB repetition 4; as shown in (f) or (j) of Figure 7, SCI2 additionally includes RV0 for indicating TB repetition 5; as shown in (h) of Figure 7, SCI2 additionally includes RV2 for indicating TB repetition 6.
  • the first PSSCH repetition can be frequency-division multiplexed with PSCCH in the first B time sub-units.
  • the first PSSCH repetition can occupy the remaining frequency domain sub-units in the first B time sub-units (excluding DMRS, PTRS, CSI-RS and other signals), and in the other A-B time sub-units, PSSCH repetition can occupy an integer number of frequency domain units (excluding DMRS, PTRS, CSI-RS and other signals).
  • PSCCH includes N PSCCH repetitions, each of the N PSSCH repetitions includes a second SCI repetition and a data repetition, and each of the N PSCCH repetitions includes a first SCI repetition.
  • N PSSCH repetitions and N PSCCH repetitions are associated one by one, and PSCCH is used to schedule PSSCH.
  • the first time unit includes N first channel repetitions, and each of the N first channel repetitions includes one PSCCH repetition and one PSSCH repetition;
  • the first device determines before S330 that the PSSCH on the first time unit includes at least two PSSCH repetitions, it can also be determined accordingly that the PSCCH on the first time unit includes at least two PSCCH repetitions, or includes at least two first channel repetitions.
  • the relevant indication information in S310-330 can also be used for the relevant information indication of the PSCCH repetition, or the relevant information indication of the first channel repetition.
  • the first channel repetition number and/or the first channel repetition length can be used to determine the number of first channel repetitions included in the first time unit, and the resources corresponding to each first channel repetition.
  • the first terminal device may determine the number N of first channel repetitions and the resources corresponding to each first channel repetition based on L.
  • the number N of repetitions of the first channel in the first time unit is:
  • the other first channel repetitions except the last first channel repetition among the N first channel repetitions respectively include L time sub-units in the first time unit, and the last first channel repetition includes (A-1) mod L+1 time sub-units in the time domain; A is the number of time sub-units included in PSSCH and PSCCH in the first time unit, and L is an integer greater than or equal to 1 and less than or equal to A.
  • the number N of repetitions of the first channel in the first time unit is:
  • the other first channel repetitions except the last first channel repetition in the N first channel repetitions include L time sub-units in the first time unit, and the last first channel repetition includes L+A mod L time sub-units in the first time unit; A is the number of time sub-units included in the PSSCH and PSCCH in the first time unit, and L is an integer greater than or equal to 1 and less than or equal to A.
  • valid data or blank data may be mapped to the last A mod L time sub-units in the last first channel repetition, which is not limited in this application.
  • a time subunits can be evenly distributed to all first channel repetitions, and each first channel repetition is evenly distributed with L time subunits.
  • an additional first channel repetition can be added, and the last first channel repetition includes the remaining A mod L time subunits (the first example); or, if no additional first channel repetition is added, the last first channel repetition includes the remaining A mod L time subunits (the second example).
  • the first terminal device may determine to use the first exemplary method according to the number of time subunits A mod L remaining after the average allocation. For example, when A mod L is greater than or equal to a certain threshold, the first example is used; or, when A mod L is less than or equal to a certain threshold, the second example is used.
  • each SCI2 repetition in the N first channel repetitions can be an SCI2 repetition of the same format or an SCI2 repetition of a different format, which is not limited in this application.
  • SCI2 repetition mode 3 For specific examples, please refer to the relevant description in the above repetition mode 1, which will not be repeated here.
  • B is the number of time subunits included in the first time unit of the PSCCH in each first channel repetition. That is, the time slot includes two first channel repetitions, the PSCCH is repeated twice, and the PSSCH is repeated twice, that is, the first SCI is repeated twice (for example, SCI1 repetition 1 and SCI1 repetition 2), the second SCI is repeated twice (for example, SCI2 repetition 1 and SCI2 repetition 2), and the data is repeated twice (for example, TB repetition 1 and TB repetition 2).
  • the first first channel repetition includes symbols 1 to 6 of the time slot
  • the second first channel repetition includes symbols 7 to 12 of the time slot.
  • the first PSCCH repetition includes a part of the PRBs of symbols 1 and 2 of the time slot
  • the first PSSCH repetition includes another part of the PRBs of symbols 1 and 2, that is, the first PSSCH repetition and the first PSCCH repetition are FDM on symbols 1 and 2
  • the first PSSCH repetition includes all resources on symbols 3 to 6 of the time slot (excluding signals such as CSI-RS, PTRS, DMRS, etc.).
  • the second PSCCH repetition includes a part of the PRBs of symbols 7 and 8 of the time slot
  • the second PSSCH repetition includes another part of the PRBs of symbols 7 and 8, that is, the second PSSCH repetition and the second PSCCH repetition are FDM on symbols 7 and 8
  • the second PSSCH repetition includes all resources from symbols 9 to 12 of the time slot (excluding CSI-RS, PTRS, DMRS and other signals).
  • SCI2 repetition 1 includes RV0 for indicating TB repetition 1
  • SCI2 repetition 2 includes RV2 for indicating TB repetition 2.
  • SCI2 repetition 1 and SCI2 repetition 2 may use the same format, or SCI2 repetition 1 may use a normal format and SCI2 repetition 2 may use a simplified format, for example, including only indication information of RV2 of its corresponding TB repetition 2.
  • the first first channel repetition includes symbols 1 to 5 of the time slot
  • the second first channel repetition includes symbols 6 to 10 of the time slot
  • the third first channel repetition includes symbols 11 and 12 of the time slot.
  • the difference from (a) of Figure 9 is that the remaining symbols 11 and 12 of the time slot are allocated to the second first channel repetition.
  • the second first channel repetition includes symbols 6 to 12 of the time slot.
  • SCI2 repeat 1 includes RV0 for indicating TB repeat 1
  • SCI2 repeat 2 includes RV2 for indicating TB repeat 2
  • the additional SCI2 repeat 3 includes RV3 for indicating TB repeat 3.
  • the first terminal device may According to M, the number N of first channel repetitions and the resources corresponding to each first channel repetition are determined.
  • the other first channel repetitions except the last first channel repetition in the N first channel repetitions respectively include in the first time unit time subunits
  • the last first channel repetition includes
  • the last A mod M time sub-units in the last repetition of the first channel may be mapped with valid data or blank data, which is not limited in the present application.
  • the i-th first channel repetition includes in the first time unit time subunits; when i>A mod M, the i-th first channel repetition includes the first time unit A time subunit.
  • the first terminal device may determine whether to use the first example or the third example according to the size of A mod M. For example, when A mod M is greater than or equal to a certain threshold, the third example is used; or when A mod M is less than or equal to a certain threshold, the first example is used.
  • a time subunits are evenly divided into M parts.
  • an additional time subunit can be allocated to the first several first channel repetitions (the second example); or, an additional first channel repetition is added (the third example, there may be M+1 first channel repetitions in the end); or, no additional first channel repetition is added, and the remaining A mod N time subunits are allocated to the last first channel repetition (the first example).
  • the PSSCH repetitions corresponding to the first B time sub-units of each first channel repetition can be frequency-division multiplexed with the PSCCH repetitions.
  • the PSCCH repetitions on the first B time sub-units occupy X frequency domain sub-units
  • the PSSCH repetitions occupy the remaining frequency domain sub-units (excluding DMRS, PTRS, CSI-RS and other signals).
  • the PSSCH repetitions occupy an integer number of frequency domain units (excluding DMRS, PTRS, CSI-RS and other signals).
  • the first SCI is repeated 5 times (for example, SCI1 repetition 1, SCI1 repetition 2, SCI1 repetition 3, SCI1 repetition 4, and SCI1 repetition 5)
  • the second SCI is repeated 5 times (for example, SCI
  • the first first channel repetition includes symbols 1 and 2 of the time slot
  • the second first channel repetition includes symbols 3 and 4 of the time slot
  • the third first channel repetition includes symbols 5 and 6 of the time slot
  • the fourth first channel repetition includes symbols 7 and 8 of the time slot
  • the fifth first channel repetition includes symbols 9 to 12 of the time slot.
  • the first PSCCH repetition includes a part of the PRBs of symbol 1 and symbol 2 of the time slot, and the first PSSCH repetition includes another part of the PRBs of symbol 1 and symbol 2, that is, the first PSSCH repetition and the first PSCCH repetition are FDM on symbol 1 and symbol 2; similarly, in the second first channel repetition, the second PSSCH repetition and the second PSCCH repetition are FDM on symbol 3 and symbol 4; in the third first channel repetition, the third PSSCH repetition and the third PSCCH repetition are FDM on symbol 5 and symbol 6; in the fourth first channel repetition, the fourth PSSCH repetition and the fourth PSCCH repetition are FDM on symbol 7 and symbol 8; in the fifth first channel repetition, the fifth PSSCH repetition and the fifth PSCCH repetition are FDM on symbol 9 and symbol 10, and the fifth PSSCH repetition includes all resources from symbol 8 to symbol 12 of the time slot (excluding DMRS, PTRS, CSI-RS and other signals).
  • the data is sent repeatedly three times (e.g., TB repetition 1, TB repetition 2, TB repetition 3, TB repetition 4, and TB repetition 5).
  • the first first channel repetition includes symbols 1 to 3 of the time slot
  • the second first channel repetition includes symbols 4 to 6 of the time slot
  • the third first channel repetition includes symbols 7 and 8 of the time slot
  • the fourth first channel repetition includes symbols 9 and 10 of the time slot
  • the fifth first channel repetition includes symbols 11 and 12 of the time slot.
  • the first first channel repetition includes symbols 1 and 2 of the time slot
  • the second first channel repetition includes symbols 3 and 4 of the time slot
  • the third first channel repetition includes symbols 5 and 6 of the time slot
  • the fourth first channel repetition includes symbols 7 and 8 of the time slot
  • the fifth first channel repetition includes symbols 9 and 10 of the time slot
  • the sixth first channel repetition includes symbols 11 and 12 of the time slot.
  • SCI2 repeat 1 includes RV0 for indicating TB repeat 1
  • SCI2 repeat 2 includes RV2 for indicating TB repeat 2
  • SCI2 repeat 3 includes RV3 for indicating TB repeat 3
  • SCI2 repeat 4 includes RV1 for indicating TB repeat 4
  • SCI2 repeat 5 includes RV0 for indicating TB repeat 5
  • the additional SCI2 repeat 6 includes RV2 for indicating TB repeat 6.
  • the first SCI and/or the second SCI includes periodic information.
  • the first terminal device can determine the periodic resource based on the periodic information, and can further determine that the first resource includes at least two candidate PSCCH repetitions, and the first resource belongs to the periodic resource.
  • the periodic resource may include one or more first resources. After determining that the first resource includes at least two candidate PSCCH repetitions, the first terminal device may further perform blind detection on the at least two candidate PSCCH repetitions. That is, the first terminal device may perform blind detection on multiple candidate PSCCH repetitions on the first periodic resource to decode and obtain the corresponding PSSCH.
  • the first time unit is time unit n
  • the period information e.g., reserved period
  • the first SCI and/or the second SCI can directly or indirectly indicate that the repetition period is P time units, then the first period resource is the same frequency domain resource in time units n+P, n+2P, n+3P, etc.
  • the first time unit can be a time slot, such as time slot 0, then the first terminal device detects the first SCI in the time slot, and determines that the PSCCH in time slot 0 includes at least two PSCCH repetitions, and at the same time, the first SCI indicates that the period is 2, and it can be determined that blind detection of multiple PSCCH repetitions is performed in time slots 0, time slot 2, time slot 4, time slot 6, time slot 8, etc.
  • the periodic information is configured through configuration information, such as resource pool configuration, or periodic resources are configured between the first terminal device and the second terminal device through RRC signaling, or network device (or base station) configuration, then the first terminal device can determine the need to perform blind detection of PSCCH repetition on one or more first resources according to the configuration information.
  • the first terminal device performs blind detection of multiple PSCCH repetitions in each time slot.
  • the first terminal device when periodic resources are configured between the first terminal device and the second terminal device (for example, first information), the first terminal device performs blind detection of multiple PSCCH repetitions on the corresponding periodic resources.
  • the first terminal device receives PSCCH and PSSCH from the second terminal device, and the first time unit in which they are located may be one or more.
  • the first terminal device may continue to receive PSCCH and PSSCH from the second terminal device in a second time unit, and the second time unit is a continuous and adjacent time unit to the first time unit.
  • the embodiment of the present application does not specifically limit the number of time units included in the PSCCH and PSSCH in the time domain.
  • the first terminal device can simultaneously determine the first repetition number M and the first repetition length L, thereby determining a plurality of consecutive time units, that is, the first terminal device can determine that the second terminal device is The PSSCH and PSCCH are repeatedly transmitted in multiple consecutive time units.
  • the first terminal device when the first terminal device determines that the first repetition length is 4 time subunits and the first repetition number is 6, the first terminal device can determine that the received PSCCH and PSSCH contain a total of 24 time subunits. If the number of time subunits used for PSCCH and PSSCH transmission in each time unit is 12, the first terminal device can determine that in two consecutive time units (for example, the first time unit and the subsequent time unit), there are at least two PSSCH repetitions in each time unit.
  • the first terminal device may also determine the number of repeated time units.
  • the first SCI and/or the second SCI are used to indicate the number of repeated time units.
  • the first SCI and/or the second SCI carry indication information, for example, "10" is used to indicate that the number of repeated time units is 2, and "11" is used to indicate that the number of repeated time units is 3.
  • the first terminal device receives the PSCCH and the PSSCH, it can determine the number of repeated time units based on the bit information detected in the first SCI and/or the second SCI.
  • the HARQ process identifier, priority, and transmission resource in the above-mentioned first information can be associated with the number of repeated time units.
  • the above-mentioned HARQ process identifiers "1", “2", “3", “4" and “5" correspond to the number of repeated time units of 1, 2, 3, 4 and 5, respectively, or the priorities 1, 2 and 3 correspond to the number of repeated time units of 1, 2 and 3, respectively, or "Resource #1" and "Resource #2" correspond to the number of repeated time units of 1 and 2, respectively.
  • the first terminal device can determine that the number of repeated time units is 2 according to the priority 2 in the first information, that is, the first terminal device can determine that each of the two consecutive time units has at least two PSSCH repetitions; or, after receiving the PSCCH and PSSCH, the first terminal device can determine that the number of repeated time units is 3 according to the HARQ process identifier "3" in the first information, that is, the first terminal device can determine that each of the three consecutive time units has at least two PSSCH repetitions.
  • the number of repetitive time units may be determined by configuration information.
  • the configuration information may be configured by a resource pool; or, the configuration information is sent by the first terminal device to the second terminal device; or, the configuration information is sent by the second terminal device to the first terminal device; or, the configuration information is configured by a network device (or a base station) for the first terminal device and the second terminal device.
  • the configuration information is configured by the resource pool.
  • the configuration information of the resource pool includes the number of repeated time units. After the first terminal device determines that the received PSSCH includes at least two PSSCH repetitions in one time unit based on the implementation method given above, it can further determine the number of repeated time units based on the configuration information of the resource pool, and then determine that each time unit in multiple consecutive time units includes at least two PSSCH repetitions.
  • the configuration information is sent by the second terminal device to the first terminal device.
  • the second terminal device before the second terminal device sends PSCCH and PSSCH to the first terminal device in the first time unit, the second terminal device sends configuration information to the first terminal device, and the configuration information is used to indicate the number of repeated time units.
  • the first terminal device can determine that the PSCCH and PSSCH are sent by the second terminal device according to the Source ID information of the second SCI in the received PSSCH, and further determine the number of repeated time units according to the configuration information previously received from the second terminal device, and then determine that each time unit in multiple consecutive time units includes at least two PSSCH repetitions.
  • the configuration information is sent by the first terminal device to the second terminal device.
  • the first terminal device before the first terminal device receives the PSCCH and PSSCH from the second terminal device in the first time unit, the first terminal device sends configuration information to the second terminal device, and the configuration information is used to indicate the number of repeated time units.
  • the first terminal device can determine that the PSCCH and PSSCH are sent by the second terminal device based on the Source ID information of the second SCI in the received PSSCH, and further determine the number of repeated time units based on the configuration information previously sent to the second terminal device, and then determine that each time unit in multiple consecutive time units includes at least two PSSCH repetitions.
  • the configuration information is configured by the base station for the first terminal device and the second terminal device.
  • the configuration information of the base station includes the number of repeated time units.
  • the first terminal device determines that the received PSSCH includes at least two PSSCH repetitions based on the implementation method given above, it can further determine the number of repeated time units according to the configuration information of the base station, and then it can be determined that each time unit in multiple consecutive time units includes at least two PSSCH repetitions.
  • the schemes provided in the above repetition modes 1, 2 and 3 can be applied to mapping, receiving and sending on multiple continuous time units.
  • the resource mapping method on each time unit is the same.
  • the resource mapping method on the second time unit is the same as the resource mapping method on the first time unit.
  • the specific implementation method can refer to the methods shown in the above repetition modes 1, 2 and 3. For simplicity, It is not described in detail here. It should be noted that in the above-mentioned repeated mapping mode 2, the PSSCH on the second time unit (and the subsequent third time unit and other time units) may not include the second SCI.
  • FIG10 is a schematic diagram of a structure of a multi-slot resource repetition transmission provided by an embodiment of the present application, which is explained based on the resource mapping method shown in (b) of FIG6 .
  • PSSCH and PSCCH are repeatedly transmitted on two consecutive time slots (e.g., time slot 1 and time slot 2).
  • PSSCH repetitions are transmitted twice on time slot 1 and time slot 2, respectively, for a total of 4 PSSCH repetitions, the first PSSCH repetition includes symbols 1 to 6 of time slot 1, the second PSSCH repetition includes symbols 7 to 12 of time slot 1, the third PSSCH repetition includes symbols 1 to 6 of time slot 2, and the fourth PSSCH repetition includes symbols 7 to 12 of time slot 2.
  • PSCCH is transmitted once on symbols 1 and 2 of time slot 1 and time slot 2, respectively, to indicate information such as resource reservation.
  • the second SCI may be sent only once in the first PSSCH repetition of the first time slot (e.g., time slot 1), and the second SCI may not be sent in the second or subsequent time slots (e.g., time slot 2).
  • the first number of repetitions can be the total number of repetitions in multiple time slots (for example, 4 times), or the number of repetitions in one time slot (for example, 2 times), and the mapping method of PSSCH and PSCCH resources in each time slot is similar.
  • PSSCH and PSCCH resource mapping methods are all repeated transmissions in the same frequency domain resources within one time slot or multiple time slots. It should be understood that the implementation methods provided above are also applicable to multiple repeated frequency hopping transmissions within one or more time slots. The following is an exemplary description of the repeated frequency hopping transmission of two PSSCHs within a time unit (for example, a time slot).
  • the first SCI and/or the second SCI is used to indicate that at least two PSSCH repetitions among N PSSCH repetitions are sent in a frequency hopping manner.
  • the first SCI and/or the second SCI further includes frequency hopping indication information, where the frequency hopping indication information is used to indicate a frequency domain resource position included in each PSSCH repetition of at least two PSSCH repetitions.
  • the frequency hopping indication information may be the frequency domain resource position where at least two PSSCH repetitions are located (e.g., a frequency hopping pattern), or may be the frequency domain resource position where the first PSSCH repetition is located and an offset value of the frequency domain resource position of the second PSSCH repetition relative to the first PSSCH repetition (e.g., a frequency domain offset), for example, a frequency domain offset with a subchannel as the granularity.
  • the number of frequency domain offsets may be one or more, which is not limited in the present application.
  • the FRA field in the first SCI is used to indicate at least two repeated frequency hopping indication information, and correspondingly, the first terminal device may determine the frequency domain position of each PSSCH repetition based on the first SCI.
  • the frequency hopping indication information is configured through RRC configuration information.
  • the frequency domain resource position included in each of the at least two PSSCH repetitions is configured by the resource pool; or, the frequency domain resource position included in each of the at least two PSSCH repetitions is determined based on first configuration information sent by the first terminal device to the second terminal device; or, the frequency domain resource position included in each of the at least two PSSCH repetitions is determined based on second configuration information received by the first terminal device from the second terminal device; or, the frequency domain resource position included in each of the at least two PSSCH repetitions is configured by the network device.
  • the configuration information is configured by the resource pool.
  • the configuration information of the resource pool includes frequency hopping indication information.
  • the first terminal device determines that the received PSSCH includes at least two PSSCH repetitions in one time unit based on the implementation method given above, it can further determine that at least two PSSCH repetitions are frequency hopping transmissions according to the configuration information of the resource pool, for example, in the first time unit, the first PSSCH repetition is transmitted in subchannel 1, and the second PSSCH repetition is transmitted in subchannel 2.
  • the configuration information is sent by the second terminal device to the first terminal device.
  • the second terminal device before the second terminal device sends PSCCH and PSSCH to the first terminal device in the first time unit, the second terminal device sends configuration information to the first terminal device, and the configuration information is used to indicate frequency hopping indication information.
  • the first terminal device can determine that the PSCCH and PSSCH are sent by the second terminal device according to the Source ID information of the second SCI in the received PSSCH, and further determine that at least two PSSCH repetitions are sent as frequency hopping according to the configuration information, for example, the first PSSCH repetition is sent in subchannel 1 in the first time unit, and the second PSSCH repetition is sent in subchannel 2.
  • the configuration information is sent by the first terminal device to the second terminal device, and the specific implementation method of determining that at least two PSSCH repetitions are sent as frequency hopping according to the configuration information is similar.
  • the configuration information is configured by the base station for the first terminal device and the second terminal device.
  • the configuration information of the base station includes frequency hopping indication information.
  • the first terminal device determines that the received PSSCH includes at least two PSSCH repetitions based on the implementation method given above, it can further determine that at least two PSSCH repetitions are frequency hopping transmissions according to the configuration information of the base station, for example, in the first time unit
  • the first PSSCH repetition is sent in subchannel 1 and the second PSSCH repetition is sent in subchannel 2.
  • FIG11 is a schematic diagram of a structure of multiple repeated frequency hopping transmissions in a time slot provided by an embodiment of the present application. Based on the resource mapping method shown in (b) of FIG4 , as shown in FIG11 , two PSSCH repetitions are included in time slot 1, wherein the first PSSCH repetition is located in subchannel 0 from symbol 1 to symbol 6 of time slot 1, and the second PSSCH repetition is located in subchannel 2 from symbol 7 to symbol 12 of the time slot.
  • the frequency hopping indication information can be that the first PSSCH repetition is located in subchannel 0, and the second PSSCH repetition is offset by 2 relative to the first PSSCH repetition; or, the frequency hopping indication information can directly indicate that the first PSSCH repetition is located in subchannel 0, and the second PSSCH repetition is located in subchannel 2, and the frequency domain offset between the two is 2, etc.
  • the PSCCH repetition may include 4, the third PSCCH repetition may be located in subchannel 0 of time slot 2, and the fourth PSCCH repetition may be located in subchannel 2 of time slot 2; or, the third PSCCH repetition may be located in subchannel 4 of time slot 2, and the fourth PSCCH repetition may be located in subchannel 6 of time slot 2, and so on.
  • the specific implementation method can refer to the above-mentioned related description, and for the sake of brevity, it will not be repeated here.
  • the second terminal device may also determine the resource mapping positions corresponding to N PSSCH repetitions and/or N PSCCH repetitions.
  • the specific implementation method can refer to the above-mentioned method in which the first terminal device determines the resource mapping positions corresponding to N PSSCH repetitions and/or N PSCCH repetitions. For the sake of brevity, it will not be repeated here.
  • the second terminal device may also determine the resource mapping positions corresponding to the N first channel repetitions.
  • the specific implementation method can refer to the above-mentioned method in which the first terminal device determines the resource mapping positions corresponding to the N first channel repetitions. For the sake of brevity, it will not be repeated here.
  • the solution provided in the present application is applied to the SL communication system, and by indicating the mapping of resources repeatedly sent in time slots between terminal devices, the robustness of D2D communication is enhanced, the transmission reliability is improved, and the transmission delay is reduced.
  • PSSCH and PSCCH mapping methods given in Figures 4 to 11 above are all illustrated by taking the example of not including PSFCH symbols in the time slot. It should be understood that the technical solution of the present application is also applicable to the time slot structure including PSFCH symbols, and the specific implementation method is similar to the above solution. The difference is that the PSFCH symbols (for example, including 3 additional symbols: AGC symbols, PSFCH symbols and GP symbols) in the time slot (for example, including 14 symbols) are excluded, and the remaining 9 symbols are used for repeated transmission of PSSCH and PSCCH.
  • this implementation method can also be extended to repeated transmission in multiple time slots, as well as frequency hopping repeated transmission and other schemes.
  • the specific implementation method is similar to the above scheme. For the sake of brevity, it will not be described in detail here.
  • FIG12 is a schematic block diagram of a communication device 1000 provided in an embodiment of the present application.
  • the device 1000 may include a transceiver unit 1010 and a processing unit 1020.
  • the transceiver unit 1010 may communicate with the outside, the processing unit 1020 is used for data processing, and the transceiver unit 1010 may also be referred to as a communication interface or a transceiver unit.
  • the device 1000 can implement steps or processes corresponding to those executed by the first terminal device (for example, sending UE1) in the above method embodiment, wherein the processing unit 1020 is used to execute processing-related operations of the first terminal device in the above method embodiment, and the transceiver unit 1010 is used to execute transceiver-related operations of the first terminal device in the above method embodiment.
  • the processing unit 1020 is used to execute processing-related operations of the first terminal device in the above method embodiment
  • the transceiver unit 1010 is used to execute transceiver-related operations of the first terminal device in the above method embodiment.
  • the device 1000 can implement steps or processes corresponding to those executed by the second terminal device (for example, receiving UE2) in the above method embodiments, wherein the processing unit 1020 is used to execute processing-related operations of the second terminal device in the above method embodiments, and the transceiver unit 1010 is used to execute transceiver-related operations of the second terminal device in the above method embodiments.
  • the second terminal device for example, receiving UE2
  • the processing unit 1020 is used to execute processing-related operations of the second terminal device in the above method embodiments
  • the transceiver unit 1010 is used to execute transceiver-related operations of the second terminal device in the above method embodiments.
  • the device 1000 here is embodied in the form of a functional unit.
  • the term "unit” here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a dedicated processor or a group processor, etc.) and a memory for executing one or more software or firmware programs, a merged logic circuit and/or other suitable components that support the described functions.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a dedicated processor or a group processor, etc.
  • memory for executing one or more software or firmware programs, a merged logic circuit and/or other suitable components that support the described functions.
  • the device 1000 can be specifically the transmitting end in the above-mentioned embodiment, and can be used to execute the various processes and/or steps corresponding to the transmitting end in the above-mentioned method embodiment, or the device 1000 can be specifically the receiving end in the above-mentioned embodiment, and can be used to execute the various processes and/or steps corresponding to the receiving end in the above-mentioned method embodiment. To avoid repetition, it will not be repeated here.
  • the device 1000 of each of the above solutions has the function of implementing the corresponding steps performed by the sending end in the above method, or the above
  • the device 1000 of the scheme has the function of implementing the corresponding steps performed by the receiving end in the above method.
  • the function can be implemented by hardware, or by hardware executing the corresponding software implementation.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver), and other units, such as the processing unit, can be replaced by a processor to respectively perform the transceiver operations and related processing operations in each method embodiment.
  • the above-mentioned transceiver unit can also be a transceiver circuit (for example, it can include a receiving circuit and a transmitting circuit), and the processing unit can be a processing circuit.
  • the device in Figure 12 can be the receiving end or the transmitting end in the aforementioned embodiment, or it can be a chip or a chip system, for example: a system on chip (system on chip, SoC).
  • the transceiver unit can be an input and output circuit, a communication interface.
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip. This is not limited here.
  • FIG13 is a schematic block diagram of a communication device 2000 provided in an embodiment of the present application.
  • the device 2000 includes a processor 2010 and a transceiver 2020.
  • the processor 2010 and the transceiver 2020 communicate with each other through an internal connection path, and the processor 2010 is used to execute instructions to control the transceiver 2020 to send and/or receive signals.
  • the device 2000 may further include a memory 2030, and the memory 2030 communicates with the processor 2010 and the transceiver 2020 through an internal connection path.
  • the memory 2030 is used to store instructions, and the processor 2010 may execute the instructions stored in the memory 2030.
  • the apparatus 2000 is used to implement various processes and steps corresponding to the first terminal device (eg, sending UE1) in the above method embodiment.
  • the first terminal device eg, sending UE1
  • the apparatus 2000 is used to implement the various processes and steps corresponding to the second terminal device (eg, receiving UE2) in the above method embodiment.
  • the second terminal device eg, receiving UE2
  • the device 2000 can be specifically the transmitting end or receiving end in the above embodiment, or a chip or a chip system.
  • the transceiver 2020 can be a transceiver circuit of the chip, which is not limited here.
  • the device 2000 can be used to execute each step and/or process corresponding to the transmitting end or receiving end in the above method embodiment.
  • the memory 2030 may include a read-only memory and a random access memory, and provide instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory may also store information about the device type.
  • the processor 2010 may be used to execute instructions stored in the memory, and when the processor 2010 executes instructions stored in the memory, the processor 2010 is used to execute the various steps and/or processes of the above-mentioned method embodiment corresponding to the transmitting end or the receiving end.
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the method disclosed in conjunction with the embodiment of the present application can be directly embodied as a hardware processor for execution, or a combination of hardware and software modules in a processor for execution.
  • the software module can be located in a storage medium mature in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in conjunction with its hardware. To avoid repetition, it is not described in detail here.
  • the processor in the embodiment of the present application can be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by an integrated logic circuit of hardware in the processor or an instruction in the form of software.
  • the above processor can be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component.
  • the processor in the embodiment of the present application can implement or execute the methods, steps and logic block diagrams disclosed in the embodiment of the present application.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to execute, or the hardware and software modules in the decoding processor can be combined and executed.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • SDR double data rate synchronous dynamic random access memory
  • the present invention relates to a memory system and method for storing a plurality of memory devices, such as a double data rate SDRAM (DDR SDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM), and a direct rambus RAM (DR RAM).
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • DR RAM direct rambus RAM
  • FIG14 is a schematic block diagram of a chip system 3000 provided in an embodiment of the present application.
  • the chip system 3000 (or also referred to as a processing system) includes a logic circuit 3010 and an input/output interface 3020.
  • the logic circuit 3010 can be a processing circuit in the chip system 3000.
  • the logic circuit 3010 can be coupled to the storage unit and call the instructions in the storage unit so that the chip system 3000 can implement the methods and functions of each embodiment of the present application.
  • the input/output interface 3020 can be an input/output circuit in the chip system 3000, outputting information processed by the chip system 3000, or inputting data or signaling information to be processed into the chip system 3000 for processing.
  • the chip system 3000 is used to implement the operations performed by the terminal device in the above method embodiments.
  • the logic circuit 3010 is used to implement the processing-related operations performed by the first terminal device in the above method embodiment, such as the processing-related operations performed by the first terminal device in the embodiment shown in Figure 3;
  • the input/output interface 3020 is used to implement the sending and/or receiving-related operations performed by the first terminal device in the above method embodiment, such as the sending and/or receiving-related operations performed by the first terminal device in the embodiment shown in Figure 3.
  • the logic circuit 3010 is used to implement the processing-related operations performed by the second terminal device in the above method embodiment, such as the processing-related operations performed by the second terminal device in the embodiment shown in Figure 3;
  • the input/output interface 3020 is used to implement the sending and/or receiving-related operations performed by the second terminal device in the above method embodiment, such as the sending and/or receiving-related operations performed by the second terminal device in the embodiment shown in Figure 3.
  • An embodiment of the present application also provides a computer-readable storage medium on which computer instructions for implementing the methods executed by a terminal device (such as a first terminal device or a second terminal device) in the above-mentioned method embodiments are stored.
  • a terminal device such as a first terminal device or a second terminal device
  • An embodiment of the present application also provides a computer program product, comprising instructions, which, when executed by a computer, implement the methods performed by a terminal device (such as a first terminal device or a second terminal device) in the above-mentioned method embodiments.
  • a terminal device such as a first terminal device or a second terminal device
  • An embodiment of the present application further provides a communication system, which includes the first terminal device and the second terminal device in the above embodiments.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application, or the part that contributes to the prior art, or the part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or device, etc.) to execute the various embodiments of the present application. All or part of the steps of the method described in the embodiment.
  • the aforementioned storage medium includes: a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk, and other media that can store program codes.

Abstract

本申请实施例提供了一种通信方法和装置,应用于侧行链路通信系统。该方法包括:第一终端设备在第一时间单元上接收来自第二终端设备的物理侧行控制信道PSCCH和物理侧行共享信道PSSCH,并根据第一重复次数和/或第一重复长度,确定PSSCH包括多个数据重复以及每个数据重复包括的资源位置,PSSCH包括至少两个PSSCH重复。该方法通过在时隙内重复传输的场景下,提升SL系统传输的可靠性,降低传输时延。

Description

通信方法和装置
本申请要求于2022年09月30日提交国家知识产权局、申请号为202211217533.6、发明名称为“一种侧行通信方法及通信设备”的中国专利申请的优先权,以及要求于2022年12月19日提交国家知识产权局、申请号为202211634750.5、发明名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和装置。
背景技术
当前,侧行链路(sidelink,SL)通信可以支持终端设备之间的直接通信,避免了蜂窝通信中用户数据经过网络中转传输,从而可以降低传输时延并且缓解网络负载。然而,如何提升SL系统的可靠性,降低传输时延是需要考虑的问题。
发明内容
本申请提供一种通信方法和装置,能够提升SL通信系统传输的可靠性,降低传输时延。
第一方面,提供了一种通信方法,该方法可以由第一终端设备(例如,发送用户设备(user equipment,UE1))执行,或者,也可以由用于第一终端设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由第一终端设备执行为例进行说明。
该方法包括:第一终端设备在第一时间单元上接收来自第二终端设备的物理侧行控制信道(physical sidelink control channel,PSCCH)和物理侧行共享信道(physical sidelink shared channel,PSSCH),PSSCH包括至少两个PSSCH重复;第一终端设备确定第一重复次数和/或第一重复长度;第一终端设备根据第一重复次数和/或第一重复长度,确定PSSCH包括N个PSSCH重复以及N个PSSCH重复分别包括的资源位置,N为大于或等于2的整数。其中,PSCCH包括第一侧行链路控制信息(sidelink control information,SCI),PSSCH包括第二SCI。
根据本申请提供的方案,第一终端设备在第一时间单元内接收PSCCH和PSSCH,并且根据第一重复次数和/或第一重复长度可以确定PSSCH包括多个PSSCH重复,通过在第一时间单元内重复传输PSSCH,能够在不额外增加时延的情况下,提升SL通信系统传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,PSCCH和PSSCH在时域上包括第一时间单元内除自动增益控制时间子单元、间隔时间子单元,以及物理侧行反馈信道(physical sidelink feedback channel,PSFCH)所在时间子单元外的所有时间子单元。
基于该实现方式,保证了时间单元内的数据重复传输时整个时间单元上的功率的稳定,不会对其他UE的自动增益控制造成影响。
结合第一方面,在第一方面的某些实现方式中,第一SCI和/或第二SCI用于指示PSSCH包括至少两个PSSCH重复。
基于该实现方式,第一终端设备可以通过接收并成功解码第一SCI和/或第二SCI,进而确定在第一时间单元上接收到的PSSCH是重复传输的。
结合第一方面,在第一方面的某些实现方式中,第一终端设备接收来自第二终端设备的第一信息,第一信息指示第二终端设备向第一终端设备发送的PSSCH包括至少两个PSSCH重复;第一终端设备根据第一信息,确定PSSCH包括至少两个PSSCH重复。
基于该实现方式,当数据的发送设备有高可靠性需求时,可以由数据的发送设备开启和特定的终端设备之间的时间单元内重复传输的模式,满足工业SL场景中特定设备对之间传输的高可靠性和低时延需求。
结合第一方面,在第一方面的某些实现方式中,第一终端设备向第二终端设备发送第一信息,第一信息指示第二终端设备向第一终端设备发送的PSSCH包括至少两个PSSCH重复;第一终端设备根据第一信息,确定PSSCH包括至少两个PSSCH重复。
基于该实现方式,当数据的接收设备有高可靠性需求时,可以由数据的接收设备开启和特定的终端设备之间的时间单元内重复传输的模式,满足工业SL场景中特定设备对之间传输的高可靠性和低时延需求。
结合第一方面,在第一方面的某些实现方式中,第一信息包括以下一项或多项:X个侧行混合自动重传请求(hybrid automatic repeat request,HARQ)进程标识的信息;X个优先级的信息;X个传输资源的信息,X为大于或等于1的整数。
结合第一方面,在第一方面的某些实现方式中,第一SCI和/或第二SCI包括第一侧行HARQ进程标识的信息,第一侧行HARQ进程标识的属于X个侧行HARQ进程标识,第一终端设备根据第一信息,确定PSSCH包括至少两个PSSCH重复,包括:第一终端设备根据第一侧行HARQ进程标识的信息,确定PSSCH包括至少两个PSSCH重复;或者,第一SCI和/或第二SCI包括第一优先级的信息,第一优先级属于X个优先级,第一终端设备根据第一信息,确定PSSCH包括至少两个PSSCH重复,包括:第一终端设备根据第一优先级的信息,确定PSSCH包括至少两个PSSCH重复;或者,第一SCI和/或第二SCI包括第一传输资源的信息,第一传输资源属于X个传输资源,第一终端设备根据第一信息,确定PSSCH包括至少两个PSSCH重复,包括:第一终端设备根据第一传输资源的信息,确定PSSCH包括至少两个PSSCH重复。
基于该实现方式,通过在第一信息中携带HARQ进程标识、优先级,或者传输资源等信息,同时在第一SCI和/或第二SCI携带第一HARQ进程标识、第一优先级,或者第一传输资源,使得第一终端设备根据该第一信息,以及第一SCI和/或第二SCI能够明确特定的PSSCH为重复发送,进而可以更有效地进行数据的接收和解码,提升系统传输性能。
结合第一方面,在第一方面的某些实现方式中,第一信息还包括以下一项或多项:X个重复次数和/或X个重复长度,与X个侧行HARQ进程标识之间的关联关系;X个重复次数和/或X个重复长度,与X个优先级之间的关联关系;X个重复次数和/或X个重复长度,与X个传输资源之间的关联关系。
基于该实现方式,将重复次数和/或重复长度,以及HARQ进程号、优先级、或者传输资源进行关联,能够满足不同的传输业务的不同可靠性要求,使得重复次数和/或重复长度匹配实际传输业务需求。
结合第一方面,在第一方面的某些实现方式中,第一终端设备确定第一重复次数和/或第一重复长度,包括:第一SCI和/或第二SCI包括第一侧行HARQ进程标识的信息,第一终端设备根据第一信息,确定X个重复次数和/或X个重复长度中与第一侧行HARQ进程标识关联的重复次数和/或重复长度为第一重复次数和/或第一重复长度;或者,第一SCI和/或第二SCI包括第一优先级的信息,第一终端设备根据第一信息,确定X个重复次数和/或X个重复长度中与第一优先级关联的重复次数和/或重复长度为第一重复次数和/或第一重复长度;或者,第一SCI和/或第二SCI包括第一传输资源的信息,第一终端设备根据第一信息,确定X个重复次数和/或X个重复长度中与第一传输资源关联的重复次数和/或重复长度为第一重复次数和/或第一重复长度;其中,第一重复次数属于X个重复次数,第一重复长度属于X个重复长度。
基于该实现方式,通过在第一SCI和/或第二SCI携带第一HARQ进程标识、第一优先级,或者第一传输资源,同时在第一信息中携带重复次数和/或重复长度与HARQ进程号、优先级、或者传输资源之间的关联关系,使得第一终端设备根据该第一信息,以及第一SCI和/或第二SCI能够确定第一HARQ进程标识、第一优先级,或者第一传输资源,与第一重复次数和/或第一重复长度关联,进而可以确定PSSCH包括的多个PSSCH重复对应的第一重复次数和/或第一重复长度,对物理层信令修改较小。
结合第一方面,在第一方面的某些实现方式中,第一SCI和/或第二SCI包括第一重复次数和/或第一重复长度的指示信息,第一终端设备确定第一重复次数和/或第一重复长度,包括:第一终端设备根据第一SCI和/或第二SCI,确定第一重复次数和/或第一重复长度。
基于该实现方式,对于第一重复次数和或第一重复长度的指示更加灵活方便,从而能够更灵活地实现时间单元内的重复传输。
结合第一方面,在第一方面的某些实现方式中,第一重复次数和/或第一重复长度是根据配置信息确定的;其中,配置信息是资源池配置的;或者,配置信息是第一终端设备向第二终端设备发送的;或者,配置信息是第二终端设备向第一终端设备发送的。
基于该实现方式,对于第一重复次数和或第一重复长度的配置规则更加简洁,从而能够更简单地实现时间单元内的重复传输。
结合第一方面,在第一方面的某些实现方式中,第一信息还用于指示多个连续的时间单元,多个连续的时间单元包括第一时间单元,多个连续的时间单元中的每个时间单元包括至少两个PSSCH重复。
结合第一方面,在第一方面的某些实现方式中,第一SCI和/或第二SCI包括多个连续的时间单元的指示信息,多个连续的时间单元包括第一时间单元,多个连续的时间单元中的每个时间单元包括至少两个PSSCH重复。
结合第一方面,在第一方面的某些实现方式中,第一终端设备根据第一重复次数和第一重复长度,确定多个连续的时间单元,多个连续的时间单元包括第一时间单元,多个连续的时间单元中的每个时间单元包括至少两个PSSCH重复。
基于该实现方式,第一终端设备可以根据第一信息,或者第一SCI和/或第二SCI,或者第一重复次数和第一重复长度,确定多个PSSCH重复包括多个连续的时间单元,从而能够实现更多次数的重复传输,提升传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,PSSCH包括N个PSSCH重复,N个PSSCH重复中的每个PSSCH重复包括一个第二SCI重复和一个数据重复。
基于该实现方式,第二SCI和数据都可以进行重复发送,可以提升第一终端设备和第二终端设备之间PSSCH的传输可靠性。
结合第一方面,在第一方面的某些实现方式中,在第一终端设备确定第一重复长度包括L个时间子单元的情况下,该方法还包括:第一终端设备根据第一方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第B+L个时间子单元;或者,第一终端设备根据第二方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第L个时间子单元;其中,第一PSSCH重复为N个PSSCH重复中的第一个PSSCH重复,A为PSSCH和PSCCH在第一时间单元中包括的时间子单元的个数,B为PSCCH在第一时间单元中包括的时间子单元的个数,L和B为大于或等于1且小于或等于A的整数。
结合第一方面,在第一方面的某些实现方式中,第一终端设备根据PSCCH包括的频域子单元,确定使用第一方式或第二方式。
结合第一方面,在第一方面的某些实现方式中,第一终端设备根据PSCCH包括的频域子单元,确定使用第一方式或第二方式,包括:在PSCCH包括的频域子单元的数量大于或等于第一阈值的情况下,第一终端设备确定使用第一方式;在PSCCH包括的频域子单元的数量小于或等于第一阈值的情况下,第一终端设备确定使用第二方式。
基于该实现方式,第一终端设备在确定第一重复长度的情况下,可以通过第一方式或第二方式确定第一PSSCH重复的映射情况,进一步可以根据第一终端设备接收的PSCCH包括的资源情况来决定采用第一方式还是第二方式,从而尽可能保证每个PSSCH重复占据的资源大小一致,从而提升系统传输的效率。
结合第一方面,在第一方面的某些实现方式中,在第一终端设备根据第一方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第B+L个时间子单元的情况下,
其中,N个PSSCH重复中除第一PSSCH重复和最后一个PSSCH重复外的其他PSSCH重复在第一时间单元上分别包括L个时间子单元,最后一个PSSCH重复在第一时间单元上包括[(A-B)–1]mod L+1个时间子单元;或者,
其中,N个PSSCH重复中除第一PSSCH重复和最后一个PSSCH重复外的其他PSSCH重复在第一时间单元上分别包括L个时间子单元,最后一个PSSCH重复在第一时间单元上包括L+(A-B)mod  L个时间子单元。
结合第一方面,在第一方面的某些实现方式中,在第一终端设备根据第二方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第L个时间子单元的情况下,
其中,N个PSSCH重复中除最后一个PSSCH重复外的其他PSSCH重复在第一时间单元上分别包括L个时间子单元,最后一个PSSCH重复在时域上包括(A-1)mod L+1个时间子单元;或者,
其中,N个PSSCH重复中除最后一个PSSCH重复外的其他PSSCH重复在第一时间单元上分别包括L个时间子单元,最后一个PSSCH重复在第一时间单元上包括L+A mod L个时间子单元。
基于该实现方式,定义第一终端设备根据第一方式或第二方式确定每个PSSCH重复的资源映射规则,进而使得接收设备和发送设备对于资源映射规则的理解一致,保障了可靠新的时间单元内重复传输。
结合第一方面,在第一方面的某些实现方式中,在第一终端设备确定第一重复次数为M的情况下,该方法还包括:第一终端设备根据第三方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第B+C个时间子单元,或者,第一终端设备根据第四方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第D个时间子单元,其中,第一PSSCH重复为N个PSSCH重复中的第一个PSSCH重复,A为PSSCH和PSCCH在第一时间单元中包括的时间子单元的个数,B为PSCCH在第一时间单元包括的时间子单元的个数,B为大于或等于1且小于或等于A的整数。
结合第一方面,在第一方面的某些实现方式中,第一终端设备根据PSCCH包括的频域子单元,确定使用第三方式或第四方式。
结合第一方面,在第一方面的某些实现方式中,第一终端设备根据PSCCH包括的频域子单元,确定使用第三方式或第四方式,包括:在PSCCH包括的频域子单元的数量大于或等于第二阈值的情况下,第一终端设备确定使用第三方式;在PSCCH包括的频域子单元的数量小于或等于第二阈值的情况下,第一终端设备确定使用第四方式。
基于该实现方式,第一终端设备在确定第一重复次数的情况下,可以通过第三方式或第四方式确定第一PSSCH重复的映射情况。进一步可以根据第一终端设备接收的PSCCH包括的资源情况来决定采用第三方式还是第四方式,从而尽可能保证每个PSSCH重复占据的资源大小一致,从而提升系统传输的效率。
结合第一方面,在第一方面的某些实现方式中,在第一终端设备根据第三方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第B+C个时间子单元的情况下,A为第一时间单元上包括的用于PSCCH以及PSSCH传输的时间子单元个数,B为第一时间单元中PSCCH在时域上包括的时间子单元个数,B为大于或等于1且小于或等于A的整数,一般而言A和B都可以通过SL资源池的配置信息确定,第一PSSCH重复为N个PSSCH重复中的第一个PSSCH重复。
在第一种示例中,第一时间单元内PSSCH包括的PSSCH重复的个数N为:
N=M;
其中,当1<i≤(A-B)mod M时,第i个PSSCH重复在第一时间单元上包括C个时间子单元;或者,当i>(A-B)mod M时,第i个PSSCH重复在第一时间单元上包括个时间子单元;或者,
在第二种示例中,N个PSSCH重复中除第一PSSCH重复和最后一个PSSCH重复外的其他PSSCH重复在第一时间单元上包括C个时间子单元,当(A-B)mod M=0时,N=M,最后一个PSSCH重复在第一时间单元上包括C个时间子单元,当(A-B)mod M≠0时,N=M+1,最后一个PSSCH重复在第一时间单元上包括(A-B)mod M个时间子单元;或者,
在第三种示例中,第一时间单元内PSSCH包括的PSSCH重复的个数N为:
N=M;
其中,N个PSSCH重复中除第一PSSCH重复和最后一个PSSCH重复外的其他PSSCH重复在第一时间单元上分别包括C个时间子单元,最后一个PSSCH重复在第一时间单元上包括C+(A-B)mod  M个时间子单元。
结合第一方面,在第一方面的某些实现方式中,在第一终端设备根据第四方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第D个时间子单元的情况下,A为第一时间单元上包括的用于PSCCH以及PSSCH传输的时间子单元个数,D为大于或等于1且小于或等于A的整数,一般而言A可以通过SL资源池的配置信息确定,第一PSSCH重复为N个PSSCH重复中的第一个PSSCH重复。
在第一种示例中,第一时间单元内PSSCH包括的PSSCH重复的个数N为:
N=M;
其中,当i≤A mod M时,第i个PSSCH重复在第一时间单元上包括D个时间子单元;当i>A mod M时,第i个PSSCH重复在第一时间单元上包括个时间子单元;或者,
在第二种示例中,N个PSSCH重复中除最后一个PSSCH重复外的其他PSSCH重复在第一时间单元上包括D个时间子单元,当A mod M=0时,N=M,最后一个PSSCH重复在第一时间单元上包括D个时间子单元,当A mod M≠0时,N=M+1,最后一个PSSCH重复在第一时间单元上包括A mod M个时间子单元;或者,
在第三种示例中,第一时间单元内PSSCH包括的PSSCH重复的个数N为:
N=M;
其中,N个PSSCH重复中除最后一个PSSCH重复外的其他PSSCH重复在第一时间单元上分别包括D个时间子单元,最后一个PSSCH重复在第一时间单元上包括D+A mod M个时间子单元。
基于该实现方式,定义第一终端设备根据第三方式或第四方式确定每个PSSCH重复的资源映射规则,进而使得接收设备和发送设备对于资源映射规则的理解一致,保障了可靠新的时间单元内重复传输。
结合第一方面,在第一方面的某些实现方式中,PSSCH包括N个PSSCH重复,N个PSSCH重复中的第一个PSSCH重复包括一个第二SCI和一个数据重复,N个PSSCH重复中第二个PSSCH重复至第N个PSSCH重复分别包括一个数据重复。其中,N个PSSCH重复中第二个PSSCH至第N个PSSCH重复中不包括第二SCI。
基于该实现方式,数据都可以进行重复发送,可以提升第一终端设备和第二终端设备之间数据传输的传输可靠性,同时第二SCI仅在第一个PSSCH重复中进行传输,可以空出更多的时频资源用于数据传输,可进一步提升数据传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,在第一终端设备确定第一重复长度包括L个时间子单元的情况下,第一终端设备根据第五方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第E+L个时间子单元;其中,A为第一时间单元上包括的用于PSCCH以及PSSCH传输的时间子单元个数,E为大于或等于0且小或等于B的整数,B为第一时间单元中PSCCH在时域上包括的时间子单元个数,L和B为大于或等于1且小于或等于A的整数,第一PSSCH重复为N个PSSCH重复中的第一个PSSCH重复。
结合第一方面,在第一方面的某些实现方式中,第一终端设备根据第二SCI和PSCCH在第j个时间子单元的频域子单元的数量,确定E个时间子单元是否包括该第j个时间子单元。例如,在第j个时间子单元上,若第二SCI和PSCCH包括的频域子单元数量大于或等于第三阈值,第一终端设备确定E个时间子单元包括第j个时间子单元;或者,在第j个时间子单元上,若第二SCI和PSCCH包括的频域子单元数量小于或等于第三阈值,第一终端设备确定E个时间子单元不包括第j个时间子单元,j为大于或等于1且小于或等于B的整数。
基于该实现方式,相对于第一方式或第二方式的适应性更强,可以进一步根据PSCCH以及第二SCI的大小来确定每个PSSCH重复占据的资源,从而可以尽可能保证每个PSSCH重复占据的资源大小一致,从而提升系统传输的效率。
结合第一方面,在第一方面的某些实现方式中,在第一终端设备确定第一重复次数为M的情况下,第一终端设备根据第六方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第F+C个时间子单元;其中,A为第一时间单元上包括的用于PSCCH以及PSSCH传输的时间子单元个数,F为大于或等于0且小于或等于B的整数,B为第一时间单元中PSCCH在时域上包括的 时间子单元个数,C和B为大于或等于1且小于或等于A的整数,第一PSSCH重复为N个PSSCH重复中的第一个PSSCH重复。
结合第一方面,在第一方面的某些实现方式中,第一终端设备根据第二SCI和PSCCH在第k个时间子单元的频域子单元的数量,确定F个时间子单元是否包括该第k个时间子单元。例如,在第k个时间子单元上,若第二SCI和PSCCH包括的频域子单元数量大于或等于第四阈值,第一终端设备确定F个时间子单元包括第k个时间子单元;或者,在第k个时间子单元上,若第二SCI和PSCCH包括的频域子单元数量小于或等于第四阈值,第一终端设备确定F个时间子单元不包括第k个时间子单元,k为大于或等于1且小于或等于B的整数。
基于该实现方式,相对于第三方式或第四方式的适应性更强,可以进一步根据PSCCH以及第二SCI的大小来确定每个PSSCH重复占据的资源,从而可以尽可能保证每个PSSCH重复占据的资源大小一致,从而提升系统传输的效率。
结合第一方面,在第一方面的某些实现方式中,PSCCH包括N个PSCCH重复,PSSCH包括N个PSSCH重复,N个PSSCH重复中的每个PSSCH重复包括一个第二SCI重复和一个数据重复,N个PSCCH重复中的每个PSCCH重复包括一个第一SCI重复。
基于该实现方式,数据和控制信息都可以进行重复发送,可以提升第一终端设备和第二终端设备之间数据传输以及控制信息传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,在第一终端设备确定第一重复长度包括L个时间子单元的情况下,第一时间单元包括N个第一信道重复,N个第一信道重复中的每个第一信道重复包括一个PSCCH重复和一个PSSCH重复。
在第一种示例中,第一时间单元内第一信道重复的个数N为:
其中,N个第一信道重复中除最后一个第一信道重复外的其他第一信道重复在第一时间单元上分别包括L个时间子单元,最后一个第一信道重复在时域上包括(A-1)mod L+1个时间子单元,A为PSSCH和PSCCH在第一时间单元包括的时间子单元的个数,L为大于或等于1且小于或等于A的整数;或者,
在第二种示例中,第一时间单元内第一信道重复的个数N为:
其中,N个第一信道重复中除最后一个第一信道重复外的其他PSSCH重复在第一时间单元上包括L个时间子单元,最后一个第一信道重复在第一时间单元上包括L+A mod L个时间子单元,A为PSSCH和PSCCH在第一时间单元包括的时间子单元的个数,L为大于或等于1且小于或等于A的整数。
基于该实现方式,第一终端设备在确定第一重复长度的情况下,可以通过上述两种示例中的至少一种确定第一个第一信道重复的映射情况,能够有针对性地确定第一个第一信道重复包括的资源,尽可能保证每个第一信道重复占据的资源大小一致,从而提升系统传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,在第一终端设备确定第一重复次数为M的情况下,第一时间单元包括N个第一信道重复,N个第一信道重复中的每个第一信道重复包括一个PSCCH重复和一个PSSCH重复。
在第一种示例中,第一时间单元内第一信道重复的个数N为:
N=M;
其中,N个第一信道重复中除最后一个第一信道重复外的其他第一信道重复在第一时间单元上分别包括个时间子单元,最后一个第一信道重复在第一时间单元上包括个时间子单元;或者,
在第二种示例中,第一时间单元内第一信道重复的个数N为:
N=M;
当i≤A mod M时,第i个第一信道重复在第一时间单元上包括个时间子单元;当i>A mod M时,第i个第一信道重复在第一时间单元上包括个时间子单元;或者,
在第三种示例中,N个第一信道重复中除最后一个第一信道重复外的其他第一信道重复在第一时间单元上包括个时间子单元,当A mod M=0时,N=M,最后一个第一信道重复在第一时间单元 上包括个时间子单元,当A mod M≠0时,N=M+1,最后一个第一信道重复在第一时间单元上包括A mod M个时间子单元。
基于该实现方式,第一终端设备在确定第一重复次数的情况下,可以通过上述三种示例中的至少一种确定第一个第一信道重复的映射情况,能够有针对性地确定第一个第一信道重复包括的资源,尽可能保证每个第一信道重复占据的资源大小一致,从而提升系统传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,第一SCI和/或第二SCI包括周期信息,方法还包括:第一终端设备根据周期信息确定周期性资源,周期性资源包括第一资源;第一终端设备确定第一资源包括至少两个候选PSCCH重复。
结合第一方面,在第一方面的某些实现方式中,通过配置信息配置周期信息,例如资源池配置,或者第一终端设备与第二终端设备之间发送配置信息,或者基站为第一终端设备和第二终端设备配置。进一步地,第一终端设备根据周期信息确定周期性资源,周期性资源包括第一资源;第一终端设备确定第一资源包括至少两个候选PSCCH重复。
基于该实现方式,额外定义了第一终端设备对于PSCCH重复的盲检条件,即通过在第一SCI和/或第二SCI携带周期信息,或者通过配置信息配置周期资源,使得第一终端设备在接收和成功解码第一SCI和/或第二SCI之后,或者根据配置信息可以在对应的周期资源上进行PSCCH盲检,增加控制信道传输的可靠性,避免漏检或错检。
结合第一方面,在第一方面的某些实现方式中,第一SCI和/或第二SCI用于指示N个PSSCH重复中的至少两个PSSCH重复通过跳频方式发送。
基于该实现方式,可以使得至少两个PSSCH重复通过不同的频率资源发送,从而能够获得额外的频率分集增益,进一步提升传输可靠性。
结合第一方面,在第一方面的某些实现方式中,第一SCI和/或第二SCI包括跳频指示信息,跳频指示信息用于指示至少两个PSSCH重复中的每个PSSCH重复包括的频域资源位置。
结合第一方面,在第一方面的某些实现方式中,至少两个PSSCH重复中的每个PSSCH重复包括的频域资源位置是资源池配置的;或者,至少两个PSSCH重复中的每个PSSCH重复包括的频域资源位置是根据第一终端设备向第二终端设备发送的配置信息确定的;或者,至少两个PSSCH重复中的每个PSSCH重复包括的频域资源位置是根据第一终端设备接收来自第二终端设备的配置信息确定的;或者,至少两个PSSCH重复中的每个PSSCH重复包括的频域资源位置是根据网络设备发送的的配置信息确定的。
基于该实现方式,能够对齐跳频发送时发送设备和接收设备对于各个PSSCH重复的资源映射位置,保证了接收设备接收PSSCH重复的准确性。
第二方面,提供了一种通信方法,该方法可以由第二终端设备(例如,接收UE2)执行,或者,也可以由用于第二终端设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由第二终端设备执行为例进行说明。
该方法包括:第二终端设备确定第一重复次数和/或第一重复长度;第二终端设备根据第一重复次数和/或第一重复长度,确定PSSCH包括N个PSSCH重复以及N个PSSCH重复分别占据的资源位置,N为大于或等于2的整数;第二终端设备在第一时间单元上向第一终端设备发送PSCCH和PSSCH,PSSCH包括至少两个PSSCH重复,PSCCH包括第一SCI,PSSCH包括第二SCI。
根据本申请提供的方案,第二终端设备在第一时间单元内发送PSCCH和PSSCH,通过在第一时间单元内重复传输PSSCH,能够在不额外增加时延的情况下,提升SL系统传输的可靠性。
结合第二方面,在第二方面的某些实现方式中,PSCCH和PSSCH包括第一时间单元内除自动增益控制时间子单元、间隔时间子单元,以及PSFCH所在时间子单元外的所有时间子单元。
基于该实现方式,保证了时间单元内的数据重复传输时整个时间单元上的功率的稳定,不会对其他UE的自动增益控制造成影响。
结合第二方面,在第二方面的某些实现方式中,第一SCI和/或第二SCI用于指示PSSCH包括至少两个PSSCH重复。
基于该实现方式,第二终端设备通过发送第一SCI和/或第二SCI,使得第一终端设备确定在第一时间单元上接收到的PSSCH是重复传输的,能够在不额外增加时延的情况下,提升数据传输的可靠性。
结合第二方面,在第二方面的某些实现方式中,第二终端设备向第一终端设备发送第一信息,第一信息指示第二终端设备向第一终端设备发送的PSSCH包括至少两个PSSCH重复。
基于该实现方式,使得第二终端设备可以根据第一信息,确定PSSCH包括至少两个PSSCH重复。所以当数据的发送设备有高可靠性需求时,可以由数据的发送设备开启和特定的终端设备之间的时间单元内重复传输的模式,满足工业SL场景中特定设备对之间传输的高可靠性和低时延需求。
结合第二方面,在第二方面的某些实现方式中,第二终端设备接收来自第一终端设备的第一信息,第一信息指示第二终端设备向第一终端设备发送的PSSCH包括至少两个PSSCH重复;
基于该实现方式,第二终端设备可以根据第一信息,确定PSSCH包括至少两个PSSCH重复。所以当数据的接收设备有高可靠性需求时,可以由数据的接收设备开启和特定的终端设备之间的时间单元内重复传输的模式,满足工业SL场景中特定设备对之间传输的高可靠性和低时延需求。
结合第二方面,在第二方面的某些实现方式中,第一信息包括以下一项或多项:X个侧行混合自动重传请求HARQ进程标识的信息,X为大于或等于1的整数;X个优先级的信息;X个传输资源的信息。
结合第二方面,在第二方面的某些实现方式中,第一SCI和/或第二SCI包括第一侧行HARQ进程标识的信息,第一侧行HARQ进程标识属于X个侧行HARQ进程标识,第一HARQ进程标识的信息用于指示PSSCH包括至少两个PSSCH重复;或者,第一SCI和/或第二SCI包括第一优先级的信息,第一优先级属于X个优先级,第一优先级的信息用于指示PSSCH包括至少两个PSSCH重复;或者,第一SCI和/或第二SCI包括第一传输资源的信息,第一传输资源属于X个传输资源,第一传输资源的信息用于指示PSSCH包括至少两个PSSCH重复。
基于该实现方式,通过在第一信息中携带HARQ进程标识、优先级,或者传输资源等信息,同时在第一SCI和/或第二SCI携带第一HARQ进程标识、第一优先级,或者第一传输资源,使得第一终端设备根据该第一信息,以及第一SCI和/或第二SCI能够明确特定的PSSCH是否为重复发送,进而可以更有效地进行数据的接收和解码,提升系统传输性能。
结合第二方面,在第二方面的某些实现方式中,第一信息还包括以下一项或多项:X个重复次数和/或X个重复长度,与X个侧行HARQ进程标识之间的关联关系;X个重复次数和/或X个重复长度,与X个优先级之间的关联关系;X个重复次数和/或X个重复长度,与X个传输资源之间的关联关系。
基于该实现方式,将重复次数和/或重复长度,以及HARQ进程号、优先级、或者传输资源进行关联,能够满足不同的传输业务的不同可靠性要求,使得重复次数和/或重复长度匹配实际传输业务需求,且对物理层信令修改较小,可靠性更强。
结合第二方面,在第二方面的某些实现方式中,第一SCI和/或第二SCI包括第一侧行HARQ进程标识的信息,根据第一信息,第一HARQ进程标识与第一重复次数和/或第一重复长度关联,第一侧行HARQ进程标识属于X个侧行HARQ进程标识,第一侧行HARQ进程标识的信息用于指示第一重复次数和/或第一重复长度;或者,第一SCI和/或第二SCI包括第一优先级的信息,根据第一信息,第一优先级的与第一重复次数和/或第一重复长度关联,第一优先级属于X个优先级,第一优先级的信息用于指示第一重复次数和/或第一重复长度;或者,第一SCI和/或第二SCI包括第一传输资源的信息,根据第一信息,第一传输资源的信息与第一重复次数和/或第一重复长度关联,第一传输资源属于X个传输资源,第一传输资源的信息用于指示第一重复次数和/或第一重复长度。
基于该实现方式,通过在第一SCI和/或第二SCI携带第一HARQ进程标识、第一优先级,或者第一传输资源,同时在第一信息中携带重复次数和/或重复长度与HARQ进程号、优先级、或者传输资源之间的关联关系,使得第一终端设备根据该第一信息,以及第一SCI和/或第二SCI能够确定第一HARQ进程标识、第一优先级,或者第一传输资源,与第一重复次数和/或第一重复长度关联,进而可以确定PSSCH包括的多个PSSCH重复对应第一重复次数和/或第一重复长度,对物理层信令修改较小。
结合第二方面,在第二方面的某些实现方式中,第一SCI和/或第二SCI包括第一重复次数和/或第一重复长度的指示信息,用于第一终端设备根据第一SCI和/或第二SCI,确定第一重复次数和/或第一重复长度。
基于该实现方式,对于第一重复次数和或第一重复长度的指示更加灵活方便,从而能够更灵活地 实现时间单元内的重复传输。
结合第二方面,在第二方面的某些实现方式中,第一重复次数和/或第一重复长度是根据配置信息确定的;其中,配置信息是资源池配置的;或者,配置信息是第一终端设备向第二终端设备发送的;或者,配置信息是第二终端设备向第一终端设备发送的。
基于该实现方式,对于第一重复次数和或第一重复长度的配置规则更加简洁,从而能够更简单地实现时间单元内的重复传输。
结合第二方面,在第二方面的某些实现方式中,第一信息还用于指示多个连续的时间单元,多个连续的时间单元包括第一时间单元,多个连续的时间单元中的每个时间单元包括至少两个PSSCH重复。
结合第二方面,在第二方面的某些实现方式中,第一SCI和/或第二SCI包括多个连续的时间单元的指示信息,多个连续的时间单元包括第一时间单元,多个连续的时间单元中的每个时间单元包括至少两个PSSCH重复。
结合第二方面,在第二方面的某些实现方式中,第一重复次数和第一重复长度用于确定多个连续的时间单元,多个连续的时间单元包括第一时间单元,多个连续的时间单元中的每个时间单元包括至少两个PSSCH重复。
基于该实现方式,使得第一终端设备可以在多个连续的时间单元中发送多个PSSCH重复,从而能够实现更多次数的重复传输,提升传输的可靠性。
结合第二方面,在第二方面的某些实现方式中,PSSCH包括N个PSSCH重复,N个PSSCH重复中的每个PSSCH重复包括一个第二SCI重复和一个数据重复。
基于该实现方式,第二SCI和数据都可以进行重复发送,可以提升第一终端设备和第二终端设备之间PSSCH的传输可靠性。
结合第二方面,在第二方面的某些实现方式中,PSSCH包括N个PSSCH重复,N个PSSCH重复中的第一个PSSCH重复包括一个第二SCI和一个数据重复,N个PSSCH重复中第二个PSSCH至第N个PSSCH重复分别包括一个数据重复。其中,N个PSSCH重复中第二个PSSCH至第N个PSSCH重复中不包括第二SCI。
基于该实现方式,数据都可以进行重复发送,可以提升第一终端设备和第二终端设备之间数据传输的传输可靠性,同时第二SCI仅在第一个个PSSCH重复中进行传输,可以空出更多的时频资源用于数据传输,可进一步提升数据传输的可靠性。
结合第二方面,在第二方面的某些实现方式中,PSCCH包括N个PSCCH重复,PSSCH包括N个PSSCH重复,N个PSSCH重复中的每个PSSCH重复包括一个第二SCI重复和一个数据重复,N个PSCCH重复中的每个PSCCH重复包括一个第一SCI重复。
基于该实现方式,数据和控制信息都可以进行重复发送,可以提升第一终端设备和第二终端设备之间数据传输以及控制信息传输的可靠性。
结合第二方面,在第二方面的某些实现方式中,第一SCI和/或第二SCI包括周期信息,周期信息用于指示周期性资源,周期性资源包括第一资源,第一资源包括至少两个候选PSCCH重复。
结合第二方面,在第二方面的某些实现方式中,通过配置信息配置周期信息,例如资源池配置,或者第一终端设备与第二终端设备之间发送配置信息,或者基站为第一终端设备和第二终端设备配置。进一步地,周期信息用于指示周期性资源,周期性资源包括第一资源;第一资源包括至少两个候选PSCCH重复。
基于该实现方式,额外定义了第一终端设备对于PSCCH重复的盲检条件,即第二终端设备通过在第一SCI和/或第二SCI携带周期信息,或者通过配置信息配置周期资源,使得第一终端设备在接收和成功解码第一SCI和/或第二SCI之后,或者根据配置信息可以在对应的周期资源上进行PSCCH盲检,增加控制信道传输的可靠性,避免漏检或错检,减少传输时延。
结合第二方面,在第二方面的某些实现方式中,第一SCI和/或第二SCI用于指示N个PSSCH重复中的至少两个PSSCH重复通过跳频方式发送。
基于该实现方式,可以使得至少两个PSSCH重复通过不同的频率资源发送,从而能够获得额外的频率分集增益,进一步提升传输可靠性。
结合第二方面,在第二方面的某些实现方式中,第一SCI和/或第二SCI包括跳频指示信息,跳频指示信息用于指示至少两个PSSCH重复中的每个PSSCH重复包括的频域资源位置。
结合第二方面,在第二方面的某些实现方式中,至少两个PSSCH重复中的每个PSSCH重复包括的频域资源位置是资源池配置的;或者,至少两个PSSCH重复中的每个PSSCH重复包括的频域资源位置是根据第一终端设备向第二终端设备发送的第一配置信息确定的;或者,至少两个PSSCH重复中的每个PSSCH重复包括的频域资源位置是根据第一终端设备接收来自第二终端设备的第二配置信息确定的;或者,至少两个PSSCH重复中的每个PSSCH重复包括的频域资源位置是根据网络设备发送的的配置信息确定的。
基于该实现方式,能够对齐跳频发送时发送设备和接收设备对于各个PSSCH重复的资源映射位置,保证了接收设备接收PSSCH重复的准确性。
第三方面,提供了一种通信装置,包括:收发单元,用于在第一时间单元上接收来自第二终端设备的PSCCH和PSSCH,PSSCH包括至少两个PSSCH重复;处理单元,用于确定第一重复次数和/或第一重复长度;处理单元,还用于根据第一重复次数和/或第一重复长度,确定PSSCH包括N个PSSCH重复以及N个PSSCH重复分别占据的资源位置,N为大于或等于2的整数;其中,PSCCH包括第一SCI,PSSCH包括第二SCI。
该收发单元可以执行前述第一方面中的接收和发送的处理,处理单元可以执行前述第一方面中除了接收和发送之外的其他处理。
第四方面,提供了一种通信装置,包括:处理单元,用于确定第一重复次数和/或第一重复长度;处理单元,还用于根据第一重复次数和/或第一重复长度,确定PSSCH包括N个PSSCH重复以及N个PSSCH重复分别占据的资源位置,N为大于或等于2的整数;收发单元,用于在第一时间单元上向第一终端设备发送PSCCH和PSSCH,PSSCH包括至少两个PSSCH重复,PSCCH包括第一SCI,PSSCH包括第二SCI。
该收发单元可以执行前述第二方面中的接收和发送的处理,处理单元可以执行前述第二方面中除了接收和发送之外的其他处理。
第五方面,提供了一种通信装置,包括收发器、处理器和存储器,该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信装置执行上述第一方面或第二方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选地,该通信装置还包括,发射机(发射器)和接收机(接收器)。
第六方面,提供了一种通信系统,包括第一终端设备和第二终端设备,第一终端设备用于执行上述第一方面中任一种可能实现方式中的方法,第二终端设备用于执行上述第二方面中任一种可能实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序或代码,所述计算机程序或代码在计算机上运行时,使得所述计算机执行上述第一方面或第二方面中任一种可能实现方式中的方法。
第八方面,提供了一种芯片,包括至少一个处理器,所述至少一个处理器与存储器耦合,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的装置执行上述第一方面或第二方面中任一种可能实现方式中的方法。
其中,该芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被装置运行时,使得所述装置执行上述第一方面或第二方面中任一种可能实现方式中的方法。
附图说明
图1是适用于本申请实施例的无线通信系统的示意图。
图2是一种SL帧结构的示意图。
图3是本申请实施例提供的通信方法300的流程示意图。
图4是本申请实施例提供的第一种资源映射的示意图。
图5是本申请实施例提供的第二种资源映射的示意图。
图6是本申请实施例提供的第三种资源映射的示意图。
图7是本申请实施例提供的第四种资源映射的示意图。
图8是本申请实施例提供的第五种资源映射的示意图。
图9是本申请实施例提供的第六种资源映射的示意图。
图10是本申请实施例提供的一种多时隙的资源重复发送的结构示意图。
图11是本申请实施例提供的一种时隙内多个重复跳频发送的结构示意图。
图12是本申请实施例提供的通信装置1000的示意性框图。
图13是本申请实施例提供的通信装置2000的示意性框图。
图14是本申请实施例提供的芯片系统3000的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:侧行链路SL系统、第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代(6th generation,6G)移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
作为示例,V2X通信可以包括:车与车(vehicle-to-vehicle,V2V)通信、车与路侧基础设施(vehicle-to-infrastructure,V2I)通信、车与行人(vehicle-to-pedestrian,V2P)通信、车与网络(vehicle-to-network,V2N)通信。V2V指的是车辆间的通信。V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客等)的通信。V2I指的是车辆与基础设施的通信,基础设施例如路侧单元(road side unit,RSU)或者网络设备。其中,RSU包括两种类型:终端类型的RSU,由于布在路边,该终端类型的RSU处于非移动状态,不需要考虑移动性;基站类型的RSU,可以给与之通信的车辆提供定时同步及资源调度。V2N指的是车辆与网络设备的通信。可以理解,上述为示例性说明,本申请实施例不予限性。例如,V2X还可包括目前3GPP的Rel-16及后续版本的基于NR系统的V2X通信等。
本申请实施例中的终端设备也可以称为用户设备UE、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、用户驻地设备(customer-premises equipment,CPE)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种 便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例中,用于实现终端设备的功能的装置,即终端设备,可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站、辅站、多制式无线(motor slide retainer,MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(baseband unit,BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及D2D、V2X、M2M通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例所提及的网络设备可以为包括CU、或DU、或包括CU和DU的设备、或者控制面CU节点(中央单元控制面(central unit-control plane,CU-CP))和用户面CU节点(中央单元用户面(central unit-user plane,CU-UP))以及DU节点的设备。
本申请实施例中,用于实现网络设备的功能的装置,可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在网络设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
需要说明的是,本申请技术方案主要应用在侧行传输场景,使用的频带包括但不限于授权频谱和非授权频谱,非授权频谱包括2.4GHz附近的频带,以及5.8GHz附近的频带等。
下面结合图1和图2简单介绍适用于本申请实施例的通信系统,如下。
图1是适用于本申请实施例的无线通信系统的示意图。如图1所示,该无线通信系统可以包括至少一个终端设备,如图所示的UE1、UE2。
可选地,该无线通信系统还可以包括至少一个网络设备,如图所示的网络设备。网络设备和终端设备之间可进行通信。如网络设备和终端设备之间可通过Uu接口进行通信,网络设备和终端设备之间通信的链路可记为Uu链路。如图1的(a),网络设备和UE1之间可直接通信,如图1的(b),网络设备和UE1之间也可通过UE2进行通信;类似地,网络设备和UE2之间可直接通信,网络设备和UE2之间也可通过UE1进行通信。可以理解,其中,Uu链路表征了终端设备和网络设备间的一种连接关系,是一个逻辑概念,而非一个物理实体。
可选地,该无线通信系统可以不包括网络设备,即只有终端设备和终端设备之间的通信。如图1的(c)所示,该场景中没有网络设备,UE1和UE2之间可以通过侧行链路直接通信。终端设备和终端设备之间也可进行通信。例如,终端设备和终端设备之间可以直接通信,如图1的(a)至图1的(c),UE1和UE2之间可以直接通信。再例如,终端设备和终端设备之间可以通过其他设备进行通信,如图 1的(a)所示,UE1和UE2之间可以通过网络设备进行通信。终端设备和终端设备之间通信的接口可记为基于邻近服务通信5(proximity-based services communication 5,PC5)接口,终端设备与终端设备之间通信多链路可记为SL,终端设备与终端设备之间的通信也可记为SL通信。侧行链路,也可称为边链路或副链路等。可以理解,其中,侧行链路表征了终端设备和终端设备间的一种连接关系,是一个逻辑概念,而非一个物理实体。侧行链路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定。
设备之间可以进行单播通信,如终端设备之间可以进行单播通信。单播是指:一个发送终端和一个接收终端组成一个单播连接对。例如,UE1与UE2之间可以进行单播通信。设备之间可以进行组播通信,如终端设备之间可以进行组播通信。组播是指:一个发送终端和至少一个接收终端组成一个组播连接对。例如UE1可以与更多数量的UE进行组播通信。
作为示例,终端设备和终端设备之间的SL通信,可以用于车联网或智能交通系统(intelligent transportation system,ITS),如上文所述的V2X通信中,或者也可以应用于工业场景中,例如工厂和码头等。
可选地,终端设备和终端设备之间的SL通信,可以在网络覆盖下进行,也可以在无网络覆盖下进行。如图1的(a)至图1的(b)所示,UE1和其它UE之间可以在网络覆盖下进行通信;或者,如图1的(c)所示,UE1和其它UE之间可以在网络覆盖范围之外(out-of-coverage)进行通信。
可选地,终端设备和终端设备之间SL通信时的配置信息可以是网络设备配置的,例如网络设备向终端设备发送配置信息进行配置;或者,也可以是预配置的,例如将相关信息预先记录在终端设备的芯片中。终端设备和终端设备之间SL通信时的时频资源可以是网络设备配置或调度的,也可以是终端设备自主选择的。
可以理解,图1仅为便于理解而示例的简化示意图,该无线通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。本申请实施例可以适用于发送端设备和接收端设备通信的任何通信场景。
需要说明的是,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备,或者,是终端设备中能够调用程序并执行程序的功能模块。
为便于理解本申请实施例,首先对本申请中涉及到的侧行通信中的相关术语或技术做简单说明。
1、资源池
SL通信可基于资源池(resource pool)进行。所谓资源池指的是一块专用于SL通信的时频资源;或者资源池也可以理解为可以用于SL通信的资源集合,也即用于SL通信的时域资源和频域资源的集合。
用于SL通信的资源池可简称为资源池,或者也可称为SL资源池。下文为简洁,用资源池进行描述。资源池还可以称作信道(channel)、工作信道(operating channel)、名义信道(nominal channel bandwidth)。即资源池、信道、带宽的均用于表示可以用于SL通信的资源集合。关于资源池的命名不予限制。
可选的,资源池可以配置在一个带宽部分(bandwidth part,BWP)中,即一个BWP可以包括至少一个资源池。
2、资源
数据或信息可以通过资源来承载。
在时域上,资源可以包括一个或多个时域单元(或者,也可以称为时间单元)。一个时域单元可以是一个符号,或者一个迷你时隙(mini-slot),或者一个时隙(slot),或者部分时隙(partial slot),或者一个子帧(subframe),或者一个无线帧(frame),等等。
在频域上,资源可以包括一个或多个频域单元。一个频域单元可以是一个资源单元(resource element,RE),或者一个资源块(resource block,RB),或者一个子信道(subchannel),或者一个子带(subband),或者一个资源池(resource pool),或者一个带宽(bandwidth),或者一个带宽部分(bandwidth part,BWP),或者一个载波(carrier),或者一个信道(channel),或者一个交错(interlace)RB等。在SL 中,子信道是终端在进行数据传输时在频域资源上的包括的最小单元,高层可以配置资源池内一个频域单元包含的频域子单元的个数,例如一个子信道包含的物理资源块(physical resource block,PRB)个数,或者交错个数等。
本申请实施例主要以时域单元/时间单元为时隙,时域子单元/时间子单元为符号,频域单元为子信道,频域子单元为PRB为例进行说明。
3、侧行信息
侧行信息的传输,指终端设备通过SL资源池中的资源传输侧行信息。资源池中的资源可承载PSCCH、PSSCH、PSFCH,以及解调参考信号(demodulation reference signal,DMRS)、相位跟踪参考信号(phase tracking reference signal,PTRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)中的一种或多种侧行信息。其中:
PSCCH用于第一SCI(可简称为SCI1)传输。SCI1包含其关联PSSCH上的数据的调度信息,例如SCI1可以承载时域资源分配(time resource assignment,TRA)指示,用于指示除本时隙之外的额外的一个或两个时隙。SCI1还可以承载频域资源分配(frequency resource assignment,FRA)指示,用于指示本次传输占用的子信道个数,以及额外的一个或两个频域资源。上述额外的时隙以及额外的频域资源可以用于对本次传输的重传,其他设备检测到该SCI1预约的重传资源之后,可以提前避开该资源,以免与该重传资源冲突而产生碰撞。SCI1还可以承载预留周期指示信息,用于指示发送设备对于本次传输占用的资源进行周期性预留。SCI1还可以承载优先级的指示信息,用于指示本次PSSCH中的数据对应的优先级。如上所述,发送设备可以根据自己的重传以及周期性业务预约资源,其他设备通过检测该SCI1对应的DMRS的参考信号接收能量(reference signal received power,RSRP)是否超过某个门限来判断该预约是否生效。通常而言,优先级越高,该门限会越低,优先级更高的资源预留越容易生效,从而对高优先级业务起到更好的保护作用。PSCCH在时域上通常从一个可用于SL通信的时间单元中第二个可用于SL通信的时间子单元开始占用,在频域上从一个频域单元的起始频域子单元开始占用,时域占据的时间子单元个数以及频域占据的频域子单元个数可由资源池的配置信息进行配置。
PSSCH用于第二SCI(可简称为SCI2)以及数据的传输。PSSCH的时域起始位置和PSCCH的起始位置相同,频域起始子信道和PSCCH所在子信道相同,可以和PSCCH进行部分的频分复用,PSSCH在频域上包括一个子信道或多个子信道。
PSFCH用于数据HARQ的反馈信息传输。资源池配置信息中包含PSFCH的配置信息,例如PSFCH出现的周期,即每隔多少个时隙会出现一个包含PSFCH资源的时隙。例如,符号上哪些PRB可用于PSFCH传输。同时PSFCH与PSSCH之间有明确的映射关系,PSSCH的接收设备会根据映射关系确定出一个PRB用于PSFCH的发送。该映射关系主要有两个参数确定,一个是PSFCH出现的周期即一个是PSSCH与其映射的PSFCH之间的最小时隙间隔。
4、优先级
优先级可以是业务优先级,还可以称为L1优先级(L1 priority)、物理层优先级、SCI中携带的优先级、SCI关联的PSSCH对应的优先级、发送优先级、发送PSSCH的优先级、用于资源确定的优先级、逻辑信道的优先级、逻辑信道的最高等级的优先级。其中,优先级等级与优先级数值可具有某种对应关系,例如优先级等级越高对应的优先级数值越低,或者优先级等级越低对应的优先级数值越低。以优先级等级越高对应的优先级数值越低为例,优先级数值取值范围可以为1~8的整数或者0~7的整数。若以优先级数值取值范围为1~8,则优先级的值为1时,代表最高等级的优先级。
5、终端设备的标识(identifier,ID)
终端设备的标识,也可以称为终端设备的地址,是用以指示、识别或对应到相应的终端设备的标识。例如,终端设备可以是用以唯一识别终端设备的索引或编号。这个标识可以是根据高层应用映射的、信令配置的、预配置的,或者预定义的。作为示例,终端设备可以根据不同的应用映射至不同的层2标识。终端设备在进行SL通信时,可以在SCI中携带层2标识的部分或所有比特;或者,终端设备可以自行进行层2标识的选择,当发现与其他设备的层2标识发生碰撞后,可以进行自己层2标识的修改。
6、混合自动重传请求HARQ
在传输数据的过程中,可能会出现传输比特出错或者丢包的情况,通过HARQ机制可以提高数据 传输的鲁棒性。
在HARQ机制中,发送端向接收端发送数据后,接收端可向发送端发送HARQ反馈,用于指示该数据是否正确接收。例如,如果接收端正确接收数据,那么接收端向发送端发送肯定应答(acknowledgement,ACK),发送端基于ACK认为该数据被正确接收,不需要重传;如果接收端未正确接收数据,那么接收端向发送端发送否定应答(negative acknowledgment,NACK),发送端基于NACK认为数据没有被正确接收,需要重传。
7、冗余版本(redundancy version,RV)
冗余版本:冗余版的设计用于实现增量冗余(incremental redundancy,IR)HARQ传输,即将编码器生成的冗余比特分成若干组,每个RV定义一个传输开始点,首次传送和各次HARQ重传分别使用不同的RV,以实现冗余比特的逐步积累,完成增量冗余HARQ操作。
8、GAP符号、AGC符号
用于收发或发收转换的符号可以称为空符号(GAP符号),或者保护间隔(guard period,GP)符号。在空符号上,通信设备通常既不发送,也不接收。终端设备可能在连续两个时隙分别接收和发送PSSCH,或者终端设备可能在同一个时隙分别接收和发送PSSCH和PSFCH。因此,在SL系统中,一个时隙的最后以及一个时隙中PSSCH和PSFCH之间,均需要额外增加一个GAP符号,用于终端设备的收发转换或者发收转换。
用于自动增益控制(automatic gain control,AGC)的符号可以称为AGC符号。AGC符号一般位于传输的起始符号,例如PSCCH/PSSCH起始符号的前一个符号,又例如PSFCH的前一个符号。由于接收设备通常不能同时进行AGC调整和数据的接收译码。因此通常而言,发送设备会将PSCCH/PSSCH的第一个符号上的信息复制到之前的AGC符号,或者将PSFCH的第一个符号上的信息复制到之前的AGC符号,从而接收设备可以先在AGC符号上进行AGC的调整,由于发送设备在一个时隙中各个符号的功率大致相等,因此该接收设备可以基于AGC符号的调整结果进行后续PSCCH/PSSCH或者PSFCH的接收。
上面对本申请中涉及到的术语做了简单说明,下文实施例中不再赘述。此外,上文关于术语的说明,仅是为便于理解进行的说明,其对本申请实施例的保护范围不造成限定。
图2是一种SL帧结构的示意图。以资源池的时域资源的单位是时隙,且以承载侧行信息的时域资源为一个时隙为例。如图2所示,该时域资源包含14个符号,即符号0~符号13,频域资源包括3个子信道。该时隙从符号3(由高层参数startSlsymbols确定)开始用于SL传输。由于不是所有的时隙都能用于SL传输,所以在一个SL资源池中,可以引入逻辑时隙的概念,一个逻辑时隙对应一个可用于SL传输的物理时隙,逻辑时隙的编号索引可以是连续的。下文中除非特别指出,当出现时隙时都可以理解为逻辑时隙。符号3为PSCCH/PSSCH的AGC符号,主要用于接收UE调整接收信号放大倍数,PSCCH从符号4开始映射,包括符号4和符号5的一个子信道(PSCCH在频域上占用的RB个数由高层参数配置,一般无法超过子信道粒度),PSSCH包括符号6至符号9的全部时频资源,以及符号4和符号5的两个子信道,即PSSCH和PSCCH在符号4和符号5上可以进行频分复用(frequency domain multiplexing,FDM),符号13为GAP符号,主要用于收发转换或发收转换。该时隙上还包括PSFCH资源,即有额外3个符号(符号10至符号12)的开销,符号10为GAP符号,符号11为PSFCH的AGC符号,主要用于发送UE调整接收信号放大倍数,符号12为PSFCH资源。
考虑到SL通信系统应用在工业场景中,系统传输可靠性要求高,目前SL单次传输在频域上占用至少一个子信道,在时域上占用至少一个时隙,因此只能实现基于多个时隙的重传,即使使用盲重传,传输时延也至少两个时隙。因此,如何提升SL系统的可靠性,降低传输时延是需要考虑的问题。
有鉴于此,本申请提供了一种通信方法和装置,应用于SL通信系统,通过在终端设备之间指示第一时间单元内重复发送的资源映射情况,增强通信鲁棒性,提升传输可靠性,降低传输时延。
为了便于理解本申请实施例,作出以下几点说明:
第一、在本申请中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
第二、在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A 和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
第三、在本申请中,“第一”、“第二”以及各种数字编号(例如,#1、#2等)指示为了描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的消息等,而不是用于描述特定的顺序或先后次序。应理解,这样描述的对象在适当情况下可以互换,以便能够描述本申请的实施例以外的方案。
第四、在本申请中,“当……时”、“在……的情况下”以及“如果”等描述均指在某种客观情况下设备会做出相应的处理,并非是限定时间,且也不要求设备在实现时一定要有判断的动作,也不意味着存在其它限定。
第五、在本申请中,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
第六、在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。待指示信息可以作为整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同,本申请对具体的发送方法不作限定。
本申请实施例中的“指示信息”可以是显式指示,即通过信令直接指示,或者根据信令指示的参数,结合其他规则或结合其他参数或通过推导获得。也可以是隐式指示,即根据规则或关系,或根据其他参数,或推导获得。本申请对此不作具体限定。
第七、在本申请中,“协议”可以是指通信领域的标准协议,例如可以包括5G协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。“预配置”可以包括预先定义。例如,协议定义。其中,“预先定义”可以通过在设备中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第八、在本申请中,“存储”可以是指保存在一个或者多个存储器中。所述一个或者多个存储器可以是单独的设置,也可以是集成在编码器或者译码器、处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第九、在本申请中,“通信”还可以描述为“数据传输”、“信息传输”、“数据处理”等。“传输”包括“发送”和“接收”,本申请对此不作限定。
第十、在本申请中,“第一终端设备”可以描述为“UE1”,“第二终端设备”可以描述为“UE2”,以此类推,本申请不再特殊强调。
第十一、在本申请中,在进行A和B之间的比较时,“当A大于或等于B时,执行方式甲,当A小于或等于B时,执行方式乙”的描述,具体实现方式可以是“当A大于或等于B时,执行方式甲;或者,当A小于B时,执行方式乙”,也可以是“当A大于B时,执行方式甲;或者,当A小于或等于B时,执行方式乙”,本申请对此不作限定。
下文将结合附图详细说明本申请实施例提供的通信方法。本申请提供的实施例可以适用于发送端设备和接收端设备通信的SL通信场景,如可以应用于上述图1和图2所示的通信系统中。
首先,为便于理解方案,对本申请实施例中涉及的PSSCH重复、PSCCH重复、数据重复、第一SCI重复(也称为SCI1重复)、第二SCI重复(也称为SCI2重复)进行简单说明。具体地,PSSCH重复可以理解为:发送设备将PSSCH中的传输块(transmission block,TB)重复发送多次构成多个PSSCH重复,此时每个PSSCH重复中的TB(或者TB对应的具有不同RV的信号)可以理解成一个数据重复,或者对应一个数据重复。可选地,由于PSSCH重复中还包括SCI2的信息,因此在本申请实施例中,(1)多个PSSCH重复中的第一个PSSCH重复包括SCI2的信息,其他PSSCH重复仅包含 数据重复(也可以理解为TB重复);或者,(2)多个PSSCH重复中的每个PSSCH重复中都包括SCI2的信息以及数据重复,因此每个PSSCH重复中的SCI2(或者对SCI2进行编码调制后的信号)即可以理解为一个SCI2重复,或者对应一个SCI2重复。类似的,PSCCH重复可以理解为:发送设备将PSCCH进行重复发送构成多个PSCCH重复,此时每个PSCCH重复中的SCI1(或者对SC1进行编码调制后的信号)即可以理解为一个SCI1重复,或者对应一个SCI1重复。PSSCH重复以及PSCCH重复的进一步细节可以参考目前Uu口中关于PUSCH重复以及PUCCH重复的介绍,此处不过多赘述。
图3是本申请实施例提供的通信方法300的流程示意图。以第二终端设备为发送端设备,第一终端设备为接收端设备为例,对本申请技术方案的重复发送方法进行具体说明。如图3所示,该方法包括如下多个步骤。
S310,可选地,第二终端设备确定第一重复次数和/或第一重复长度。
其中,第二终端设备可以根据自己的传输需求自主确定第一重复次数和/或第一重复长度,或者可以根据资源池的配置信息和/或与第一终端设备之间的配置信息确定第一重复次数和/或第一重复长度。具体实现方式可参考步骤S330中的相关描述,这里先不作详细说明。
S320,第二终端设备在第一时间单元上向第一终端设备发送PSSCH和PSCCH;
对应的,第一终端设备在第一时间单元上接收来自第二终端设备的PSCCH和PSSCH。
其中,PSSCH包括至少两个PSSCH重复。PSCCH包括第一SCI,PSSCH包括第二SCI以及至少两个数据重复。
可选地,PSCCH和PSSCH在时域上包括第一时间单元内除自动增益控制时间子单元、间隔时间子单元,以及PSFCH所在时间子单元外的所有时间子单元。
示例性的,自动增益控制时间子单元可以是AGC符号、间隔时间子单元可以是GAP符号。
可选地,以第一时间单元为一个时隙,该时隙包括14个符号为例,在第一时间单元包括PSFCH符号的情况下,PSCCH和PSSCH在时域上包括除了AGC符号、GP符号和PSFCH符号外的所有符号。例如一个时隙中符号0为PSCCH/PSSCH的AGC符号,符号10和13为GP符号,符号11为PSFCH的AGC符号,符号12为PSFCH符号,PSCCH和PSSCH在时域上包括剩下的所有符号;或者,在第一时间单元不包括PSFCH符号的情况下,PSCCH和PSSCH在时域上包括除了AGC符号和GP符号外的所有符号。例如一个时隙中符号0为AGC符号,符号13为GP符号,PSCCH和PSSCH在时域上包括剩下的所有符号。
应理解,当一个时隙中包括PSFCH资源,即有额外3个符号的开销,当前定义为符号11至符号13,可选地,PSFCH资源的时域位置也可以是其他符号位置,本申请对此不作具体限定,对应的,PSSCH和PSCCH在时域上包括的符号也随之变化。
还应理解,在本申请实施例中,第一时间单元为用于SL传输中的时域资源,例如第一终端设备所在的带宽部分(bandwidth part,BWP)的配置信息配置了第一终端设备只能使用一个时隙中的部分符号进行SL传输,则第一时间单元对应该时隙中能用于SL传输的一个或多个符号。
下面,对第一终端设备如何确定第一重复次数和/或第一重复长度进行说明,即执行下列步骤S330。
可选地,在执行步骤S330之前,先对第一终端设备如何确定接收到的PSSCH包括至少两个PSSCH重复进行说明。
在一种可能的实现方式中,第一SCI和/或第二SCI用于指示PSSCH包括至少两个PSSCH重复。
示例性的,第一SCI和/或第二SCI中携带1比特指示信息,例如,当该比特的值为“1”时用于指示PSSCH包括至少两个PSSCH重复,即用于指示关联的PSSCH包括至少两个PSSCH重复。
示例性的,当第一SCI中的TRA或者FRA的值为特殊码点(codepoint)时,用于指示其关联的PSSCH包括至少两个PSSCH重复。例如,Rel-16中TRA主要用于指示PSCCH之后的31个时隙中的一个或者两个时隙为用于重传资源所在的时隙,当该资源池支持预约额外的两次重传时,TRA为9bit,总共包含512个码点,但其中只有第0~496个码点为有效指示,因此当第一SCI中的TRA字段为大于496的值时,可以指示其关联的PSSCH包括至少两个PSSCH重复。
示例性的,扩充现有的第一SCI中的TRA字段或者FRA字段,增加PSSCH包括至少两个PSSCH重复的指示信息。对应的,第一终端设备可以根据该第一SCI和/或第二SCI,确定PSSCH包括至少两个PSSCH重复。
在一种可能的实现方式中,通过资源池配置信息配置第一终端设备与第二终端设备之间在第一时间单元上传输的PSSCH包括至少两个PSSCH重复。例如,资源池的配置信息中指示不同设备在该资源池上的传输为包括PSSCH重复的传输。因此,第二终端设备根据资源池的配置信息可以确定在步骤S320中发送的PSSCH包括至少两个PSSCH重复,并向第一终端设备发送PSSCH,对应的,第一终端设备也可以根据资源池的配置信息确定在步骤S320中接收到的PSSCH包括至少两个PSSCH重复。
在另一种可能的实现方式中,第一终端设备接收来自第二终端设备的第一信息,第一信息指示第二终端设备向第一终端设备发送的PSSCH包括至少两个PSSCH重复;第一终端设备根据第一信息,确定在第一时间单元上接收到的PSSCH包括至少两个PSSCH重复。
示例性的,第二终端设备在接收PSCCH以及PSSCH之前,可以通过无线资源控制(radio resource control,RRC)信令(即,第一信息的一例)向第一终端设备指示第二终端设备发送给第一终端设备的PSSCH包括至少两个PSSCH重复。这样,第一终端设备在接收到PSCCH以及PSSCH时,能够在第一SCI和/或第二SCI中检测到第二终端设备的设备标识,例如第二SCI中的source ID字段携带有第二终端设备的部分标识,然后再结合与第一终端设备之间的第一信息可以确定该PSSCH中包括至少两个PSSCH重复。
在又一种可能的实现方式中,第一终端设备向第二终端设备发送第一信息,第一信息指示第二终端设备向第一终端设备发送的PSSCH包括至少两个PSSCH重复;第一终端设备根据第一信息,确定在第一时间单元上接收到的PSSCH包括至少两个PSSCH重复。
示例性的,在第一终端设备在第一时间单元上接收来自第二终端设备的PSCCH和PSSCH之前,第一终端设备可以根据自身能力或者传输需求,通过RRC信令(即,第一信息的一例)指示第二终端设备向第一终端设备发送的PSSCH包括至少两个PSSCH重复。该实现方式可以提升第一终端设备接收信息的可靠性。进一步可选地,第二终端设备可以根据该RRC指示信息,确定该步骤S320中发送的PSSCH包括至少两个PSSCH重复,并向第一终端设备发送PSSCH。这样,第一终端设备在接收到PSCCH以及PSSCH时,能够在第一SCI和/或第二SCI中检测到第二终端设备的设备标识,例如第二SCI中的source ID字段携带有第二终端设备的部分标识,然后再结合与第一终端设备之间第一信息可以确定该PSSCH中包括至少两个PSSCH重复。
在又一种可能的实现方式中,网络设备向第一终端设备和第二终端设备发送第一信息,第一信息指示第二终端设备向第一终端设备发送的PSSCH包括至少两个PSSCH重复;第一终端设备根据第一信息,确定在第一时间单元上接收到的PSSCH包括至少两个PSSCH重复。
示例性的,第二终端设备在接收PSCCH以及PSSCH之前,网络设备通过RRC信令(即,第一信息的一例)向第一终端设备和第二终端设备指示第二终端设备发送给第一终端设备的PSSCH包括至少两个PSSCH重复。这样,第一终端设备在接收到PSCCH以及PSSCH时,能够在第一SCI和/或第二SCI中检测到第二终端设备的设备标识,例如第二SCI中的source ID字段携带有第二终端设备的部分标识,然后再结合与第一终端设备之间的第一信息可以确定该PSSCH中包括至少两个PSSCH重复。
可选地,上述三种实现方式中的第一信息可以包括以下一项或多项:X个侧行混合自动重传请求HARQ进程标识的信息;X个优先级的信息;X个传输资源的信息,X为大于或等于1的整数。例如,在第一终端设备在第一时间单元上接收来自第二终端设备的PSCCH和PSSCH之前,第一终端设备和第二终端设备可以通过RRC信令(即,第一信息的一例)配置上述HARQ进程、优先级、周期性资源中的一种或多种,可以是第一终端设备向第二终端设备发送RRC信令进行配置,也可以是第二终端设备向第一终端设备发送RRC信令进行配置,还可以是网络设备向第一终端设备和第二终端设备发送RRC信令进行配置。
需要指出的是,上述设备间的RRC信令可以是两个设备之间通过单播形式配置的,也可以是一个设备和多个设备之间通过组播形式配置的,本申请不作具体限定。
在第一种示例中,第一SCI和/或第二SCI包括第一侧行HARQ进程标识的信息,第一侧行HARQ进程标识属于X个侧行HARQ进程标识,第一终端设备根据第一侧行HARQ进程标识的信息,确定PSSCH包括至少两个PSSCH重复。
示例性的,第一信息包括5个HARQ进程标识的信息,例如“0”、“1”、“2”、“3”和“4”,若第一SCI和/或第二SCI中携带的第一HARQ进程标识的信息指示“1”,则第一终端设备可以确定该PSSCH 包括至少两个PSSCH重复;若第一SCI和/或第二SCI中携带的HARQ进程标识的信息指示“6”,则第一终端设备可以按照Rel-16方式接收该PSSCH,也就是说第二终端设备并未重复发送该PSSCH。
在第二种示例中,第一SCI和/或第二SCI包括第一优先级的信息,第一优先级属于X个优先级,第一终端设备根据第一信息,确定PSSCH包括至少两个PSSCH重复,包括:第一终端设备根据第一优先级的信息,确定PSSCH包括至少两个PSSCH重复。
示例性的,第一信息包括3个优先级的信息,例如优先级1,2和3,若第一SCI和/或第二SCI中携带的第一优先级的信息指示优先级1,则第一终端设备可以确定该PSSCH包括至少两个PSSCH重复;若第一SCI和/或第二SCI中携带的优先级的信息指示优先级4,则第一终端设备可以确定该PSSCH不重复发送。
在第三种示例中,第一SCI和/或第二SCI包括第一传输资源的信息,第一传输资源属于X个传输资源,第一终端设备根据第一信息,确定PSSCH包括至少两个PSSCH重复,包括:第一终端设备根据第一传输资源的信息,确定PSSCH包括至少两个PSSCH重复。
示例性的,第一信息包括2个传输资源的信息,例如“周期资源#1”和“周期资源#2”,若第一SCI和/或第二SCI中携带的第一传输资源的信息指示“资源#2”,且“资源#2”属于“周期资源#2”,则第一终端设备可以确定该PSSCH包括至少两个PSSCH重复;若第一SCI和/或第二SCI中携带的传输资源的信息指示“资源#3”,且“周期资源#1”和“周期资源#2”都不包括“资源#3”,则第一终端设备可以确定该PSSCH不重复发送。
应理解,上述给出的三种示例仅是为便于理解方案,不应构成对本申请技术方案的任何限定。可选地,上述三种示例可以独立实现,也可以组合实现,本申请对此不作限定。示例性的,第一信息包括X个HARQ进程标识与优先级的组合,或者X个HARQ进程标识与资源的组合,或者X个优先级与资源的组合,或者X个HARQ进程标识、优先级以及资源的组合。则当第一SCI和/或第二SCI中的指示信息与上述X个组合中的一个组合的信息一致时,第一终端设备即可确定该PSSCH包括至少两个PSSCH重复。例如,第一信息包括5个HARQ进程标识与优先级的组合,如下表1所示。若第一SCI和/或第二SCI中指示PSSCH对应的HARQ进程标识为0,并且第一SCI和/或第二SCI中指示优先级0,则第一终端设备根据表中的配置信息即可确定该PSSCH包括至少两个PSSCH重复;若第一SCI和/或第二SCI中指示PSSCH对应的HARQ进程标识为2,并且第一SCI和/或第二SCI中指示优先级2,即第一终端设备根据表中的配置信息即可确定该PSSCH不重复发送。
表1
表1仅是为便于理解方案给出的示例,不应构成对本申请技术方案的任何限定。基于该实现方式,通过在第一信息中配置特定的HARQ进程标识、优先级、资源等信息,能够实现第二终端设备向第一终端设备发送的部分PSSCH可以包括至少两个PSSCH重复,部分PSSCH可以不包括PSSCH重复,例如第二终端设备和第一终端设备按照Rel-16中只有一个PSSCH的实现方式进行发送和接收。
S330,第一终端设备确定第一重复次数和/或第一重复长度。
在一种可能的实现方式中,第一SCI和/或第二SCI包括第一重复次数和/或第一重复长度的指示信息,第一终端设备根据第一SCI和/或第二SCI,确定第一重复次数和/或第一重复长度。
示例性的,在第一SCI和/或第二SCI中增加1个新字段,该新字段可以通过至少一个比特来指示第一重复次数和/或第一重复长度。例如,“00”、“01”、“10”和“11”指示第一重复次数和/或第一重复长度依次为:M1和/或L1,M2和/或L2,M3和/或L3,M4和/或L4。则当第一SCI和/或第二SCI中携带的新字段为“01”时,则第一终端设备可以确定第一重复次数为M2,和/或第一重复长度为L2。
示例性的,在第一SCI和/或第二SCI中增加2个新字段,其中一个新字段用于指示第一重复次数,另一个新字段用于指示第一重复长度。例如,通过1个比特“0”和“1”分别指示第一重复次数为M1和 M2,通过2个比特“00”、“01”、“10”和“11”分别指示第一重复长度为L1、L2、L3和L4。则当第一SCI和/或第二SCI中携带的2个新字段分别为“0”和“11”时,则第一终端设备可以确定第一重复次数为M1,且第一重复长度为L4。
示例性的,当第一SCI中的TRA的值为特殊码点时,用于指示第一重复次数和/或第一重复长度,当第一SCI中的FRA的值为特殊码点时,用于指示第一重复次数和/或第一重复长度。例如,Rel-16中TRA主要用于指示PSCCH之后的31个时隙中的一个或者两个时隙为用于重传资源所在的时隙,当该资源池支持预约额外的两次重传时,TRA为9bit,总共包含512个码点,其中只有第0~496个码点为有效的指示,因此当第一SCI中的TRA字段为大于496的值时,可以指示第一重复次数和/或第一重复长度。例如,497指示第一重复次数为M1,和/或第一重复长度为L1;再例如,498指示第一重复次数为M2,和/或第一重复长度为L2,以此类推,为了简洁,其他不再赘述。应理解,以上仅是为便于理解方案给出的示例,不构成对本申请的任何限定。
示例性的,扩充现有的第一SCI中的TRA和/或FRA字段,使得该TRA和/或FRA字段不仅能指示PSSCH对应的时频资源信息,还可以指示第一重复次数和/或第一重复长度。
在另一种可能的实现方式中,第一重复次数和/或第一重复长度是根据配置信息确定的;其中,配置信息可以是资源池配置的;或者,配置信息是第一终端设备向第二终端设备发送的;或者,配置信息是第二终端设备向第一终端设备发送的;或者,配置信息是由网络设备(或者基站)为第一终端设备和第二终端设备配置的。
示例性的,配置信息是资源池配置的。例如,资源池的配置信息包括第一重复次数和/或第一重复长度,则第一终端设备在基于上述给出的实现方式确定接收的PSSCH包括至少两个PSSCH重复后,即可进一步根据资源池的配置信息确定第一重复次数和/或第一重复长度。
应理解,在本申请实施例中,资源池的配置信息可以是通过信令配置的,也可以描述为配置信令。例如,信令配置包括由基站发送的信令对资源池进行配置,这些信令可以是RRC消息或者DCI消息。可选的,资源池的配置信息还可以是预配置的信令配置给终端设备,或者,通过预配置的方式配置给终端设备。这里的预配置,是以协议的方式提前定义或配置相应参数的取值。预配置的信息,在终端设备连网的条件下可以修改或更新。
示例性的,配置信息是第二终端设备向第一终端设备发送的。例如,在第二终端设备在第一时间单元上向第一终端设备发送PSCCH和PSSCH之前,第二终端设备向第一终端设备发送配置信息(例如可以包含在上述第一信息中),该配置信息用于指示第一重复次数和/或第一重复长度,则第一终端设备在第一时间单元上接收来自第二终端设备的PSCCH和PSSCH之后,第一终端设备可以根据PSSCH中的SCI2的Source ID信息确定该PSCCH和PSSCH是第二终端设备发送的,进一步根据之前接收来自第二终端设备的配置信息可以确定第一重复次数和/或第一重复长度。
示例性的,配置信息是第一终端设备向第二终端设备发送的。例如,在第一终端设备在第一时间单元上接收来自第二终端设备的PSCCH和PSSCH之前,第一终端设备向第二终端设备发送配置信息(例如可以包含在上述第一信息中),该配置信息用于指示第一重复次数和/或第一重复长度,则第一终端设备在第一时间单元上接收来自第二终端设备的PSCCH和PSSCH之后,第一终端设备可以根据PSSCH中的SCI2的Source ID信息确定该PSCCH和PSSCH是第二终端设备发送的,进一步根据之前向第二终端设备发送的配置信息可以确定第一重复次数和/或第一重复长度,在该实现方式中,第一终端设备自主向第二终端设备发送配置信息,能够提高第一终端设备后续接收信息(例如PSCCH和PSSCH)的可靠性。
示例性的,配置信息是基站为第一终端设备和第二终端设备配置的。例如,基站的配置信息包括第一重复次数和/或第一重复长度,则第一终端设备在确定接收的PSSCH包括至少两个PSSCH重复后,即可进一步根据基站的配置信息确定第一重复次数和/或第一重复长度。
在又一种可能的实现方式中,上述配置信息还可以包括以下一项或多项:X个重复次数和/或X个重复长度,与X个侧行HARQ进程标识之间的关联关系;X个重复次数和/或X个重复长度,与X个优先级之间的关联关系;X个重复次数和/或X个重复长度,与X个传输资源之间的关联关系。可选的,该配置信息可以是对上述第一信息的进一步扩展,也可以是单独的信息,本申请不做限定。以下以该配置信息是对上述第一信息的进一步扩展为例做详细介绍。
示例性的,在第一终端设备在第一时间单元上接收来自第二终端设备的PSCCH和PSSCH之前,第一终端设备和第二终端设备可以通过RRC信令(即,第一信息的一例)配置以下一种或者多种:HARQ进程与重复次数和/或重复长度的关联关系,优先级与重复次数和/或重复长度的关联关系,周期性资源与重复次数和/或重复长度的关联关系。进一步地,第一终端设备根据第一信息,确定第一重复次数和/或第一重复长度,第一重复次数属于X个重复次数,第一重复长度属于X个重复长度。具体实现方式包括但不限于以下:
在第一种示例中,第一SCI和/或第二SCI包括第一侧行HARQ进程标识的信息,第一终端设备根据第一信息确定X个重复次数中与第一侧行HARQ进程标识关联的重复次数为第一重复次数;和/或,第一终端设备根据第一信息确定X个重复长度中与第一侧行HARQ进程标识关联的重复长度为第一重复长度。例如,第一信息如下表2和/或表3所示,表2包含5个HARQ进程标识与5个重复次数的对应关系,表3包含5个HARQ进程标识与5个重复长度的对应关系。若第一SCI和/或第二SCI中携带的第一HARQ进程标识的信息指示“1”,则第一终端设备根据RRC信令中的关联关系可以确定第一重复次数为M1,和/或第一重复长度为L1。可选的,表2和表3也可以配置在同一张表中。
表2
表3
在第二种示例中,第一SCI和/或第二SCI包括第一优先级的信息,第一终端设备根据第一信息确定X个重复次数中与第一优先级关联的重复次数为第一重复次数;和/或,第一终端设备根据第一信息确定X个重复长度中与第一优先级关联的重复长度为第一重复长度。例如,第一信息如下表4和/或表5所示,表4包含3个优先级与3个重复次数的对应关系,表5包含3个优先级与3个重复长度的对应关系。若第一SCI和/或第二SCI中携带的第一优先级的信息指示优先级3,则第一终端设备根据RRC信令中的关联关系可以确定第一重复次数为M3,和/或第一重复长度为L3。可选的,表4和表5也可以配置在同一张表中。
表4
表5
在第三种示例中,第一SCI和/或第二SCI包括第一传输资源的信息,第一终端设备根据第一信息确定X个重复次数中与第一传输资源关联的重复次数为第一重复次数;和/或,第一终端设备根据第一信息确定X个重复长度中与第一传输资源关联的重复长度为第一重复长度。例如,第一信息如下表6 和/或表7所示,表6包含2个周期性传输资源与2个重复次数的对应关系,表7包含2个传输资源与2个重复长度的对应关系。若第一SCI和/或第二SCI中携带的第一传输资源的信息指示“资源#2”,且“周期资源#2”包括“资源#2”,则第一终端设备根据RRC信令中的关联关系可以确定第一重复次数为M2,和/或第一重复长度为L2。可选的,表6和表7也可以配置在同一张表中。
表6
表7
应理解,上述给出的三种示例仅是为便于理解方案,不应构成对本申请技术方案的任何限定。
可选地,上述三种示例可以独立实现,也可以组合实现,比如第一SCI和/或第二SCI包括第一侧行HARQ进程标识的信息、第一优先级的信息和第一传输资源的信息中的至少两个,本申请对此不作限定。例如,第一SCI和/或第二SCI包括第一侧行HARQ进程标识的信息和第一优先级的信息,第一终端设备可以根据第一信息确定X个重复次数中与第一侧行HARQ进程和第一优先级关联的重复次数为第一重复次数,和/或第一终端设备可以根据第一信息确定X个重复长度中与第一侧行HARQ进程和第一优先级关联的重复长度为第一重复长度。例如,第一信息如下表8和/或表9所示,表8包含5个HARQ进程标识和优先级构成的组合与5个重复次数的对应关系,表9包含5个HARQ进程标识和优先级构成的组合与5个重复长度的对应关系。若第一侧行HARQ进程标识的信息指示“2”,且第一优先级的信息指示“1”,则第一终端设备根据RRC信令中的关联关系可以确定接收到的第一重复次数为M2和/或第一重复长度为L2。可选的,表8和表9也可以配置在同一张表中。其他可能的示例可参考上述相关描述,这里不再过多赘述。
表8
表9
应理解,上述表2至表9仅是为便于理解给出的示例,不应构成对本申请技术方案的任何限定。
可选地,针对上述确定PSSCH包括至少两个PSSCH重复,以及确定第一重复次数和/或第一重复长度的实现方式,若第一终端设备在接收来自第二终端设备的PSSCH和PSCCH之后,能够直接确定第一重复次数和/或第一重复长度,则第一终端设备可以在步骤S320之后直接执行S330,而不必先确定PSSCH包括至少两个PSSCH重复。例如,第二终端设备发送给第一终端设备的第一SCI和/或第二SCI中携带了第一重复次数和/或第一重复长度,在第一终端设备检测到第一重复次数和/或第一重复长度的指示信息的情况下,如该指示信息指示第一重复次数为3次,和/或第一重复长度为3个符号,此时第一终端设备也就可以确定接收的PSSCH包括至少两个PSSCH重复,因此不必单独执行确定 PSSCH包括至少两个PSSCH重复。
可选地,第一终端设备也可以先确定PSSCH包括至少两个PSSCH重复,再执行步骤S330。例如,在上述步骤S320中第一SCI和/或第二SCI包含1比特指示信息指示其关联的PSSCH是否包括至少两个PSSCH重复,且配置信息包含X个HARQ进程标识与X个重复次数和/或重复长度的关联关系。则第一终端设备可以先根据第一SCI和/或第二SCI中的1比特指示信息,确定其关联的PSSCH是否包含至少两个PSSCH重复,在确定其关联的PSSCH包含至少两个PSSCH重复之后,再根据第一SCI和/或第二SCI中的HARQ进程标识的指示信息以及配置信息中HARQ进程标识与重复次数和/或重复长度的关联关系,确定第一重复次数和/或第一重复长度;可选地,在确定其关联的PSSCH不包含至少两个PSSCH重复后,即使第一SCI和/或第二SCI中指示的HARQ进程标识属于配置信息中的X个HARQ进程标识,第一终端设备也无需再确定第一重复次数和/或第一重复长度。
下面,对第一终端设备根据第一重复次数(例如M)和/或第一重复长度(例如L),如何确定接收到的PSSCH和PSCCH真实的重复次数(例如N),以及每个重复对应的资源位置进行具体说明,即执行步骤S340。
S340,第一终端设备根据第一重复次数和/或第一重复长度,确定PSSCH包括N个PSSCH重复以及N个PSSCH重复分别占据的资源位置。其中,N为大于或等于2的整数。
可选的,PSCCH和PSSCH在时域上包括第一时间单元内除自动增益控制时间子单元、间隔时间子单元,以及PSFCH所在时间子单元外的所有时间子单元。
具体地,分别根据以下三种不同的重复方式,对确定N个PSSCH重复以及N个PSSCH重复分别占据的资源位置进行说明。
重复方式1:PSSCH包括N个PSSCH重复,N个PSSCH重复中的每个PSSCH重复包括一个第二SCI重复和一个数据重复。
可选地,在第一终端设备在步骤S330中确定第一重复长度包括L个时间子单元的情况下,第一终端设备可以根据L确定PSSCH重复的个数N,以及各个PSSCH重复对应的资源。
在一种可能的实现方式中,第一终端设备根据第一方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第B+L个时间子单元。其中,A为第一时间单元上包括的用于PSCCH以及PSSCH传输的时间子单元个数,B为第一时间单元中PSCCH在时域上包括的时间子单元个数,L和B为大于或等于1且小于或等于A的整数,一般而言A和B都可以通过SL资源池的配置信息确定,第一PSSCH重复为N个PSSCH重复中的第一个PSSCH重复。
一般情况下,第一PSSCH重复在第一个时间子单元至第B个时间子单元上可以和PSCCH进行FDM。特殊的,当PSSCH在频域上包括一个频域单元(例如,一个子信道),且PSCCH在频域上包括的频域子单元(例如,PRB)数为一个频域单元包括的频域子单元数时,第一PSSCH重复实际占据的时间子单元为A个时间子单元中的第B+1至B+L个时间子单元,为了便于描述,我们仍将该情况描述为第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第B+L个时间子单元,可以理解为第一PSSCH重复在第1至B个时间子单元中占据了0个频域子单元的特殊情况。以上特殊情况同样适用于以下各示例中关于第一PSSCH重复在时域上包括的时间子单元的描述,为了简洁,以下不再过多赘述。
在第一种示例中,第一时间单元内PSSCH包括的PSSCH重复的个数N为:
其中,表示向上取整函数,例如下文中出现的类似,不再赘述,N个PSSCH重复中除第一PSSCH重复和最后一个PSSCH重复外的其他PSSCH重复在第一时间单元上分别包括L个时间子单元,最后一个PSSCH重复在第一时间单元上包括[(A-B)–1]mod L+1个时间子单元,mod表示取余运算,例如7 mod 3=1,6 mod 3=0,下文中出现的mod相同,不再赘述。
可选地,当(A-B)mod L=0成立时,最后一个PSSCH重复包括L个时间子单元;当(A-B)mod L=0不成立时,最后一个PSSCH重复包括(A-B)mod L个时间子单元。
在第二种示例中,第一时间单元内PSSCH包括的PSSCH重复的个数N为:
其中,表示向下取整函数,例如下文中出现的类似,不再赘述,N个PSSCH 重复中除第一PSSCH重复和最后一个PSSCH重复外的其他PSSCH重复在第一时间单元上分别包括L个时间子单元,最后一个PSSCH重复在第一时间单元上包括L+(A-B)mod L个时间子单元。可选地,最后一个PSSCH重复中的最后(A-B)mod L个时间子单元上可以映射有效数据,也可以映射空白数据,本申请不作限定。
因此,基于上述第一方式,将PSCCH所在的时间子单元单独分配给第一个PSSCH重复,然后再将A个时间子单元中除PSCCH所包括的B个时间子单元外的A-B个时间子单元平均分配给所有的PSSCH重复,每个PSSCH重复被分配L个时间子单元。可选地,若出现无法正好平均分配的情况,则可以额外新增加一个PSSCH重复,此时最后一个PSSCH重复包括剩余的(A-B)mod L个时间子单元(第一种示例);或者,不额外增加PSSCH重复,将剩余的(A-B)mod L个时间子单元分配给最后一个PSSCH重复(第二种示例)。
可选地,第一终端设备可以根据平均分配后剩余的时间子单元个数(A-B)mod L,确定使用第一种示例或者第二种示例。例如,当(A-B)mod L大于或等于某个阈值时,使用第一种示例;或者,当(A-B)mod L小于或等于某个阈值时,使用第二种示例。
在另一种可能的实现方式中,第一终端设备根据第二方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第L个时间子单元。其中,A为第一时间单元上包括的用于PSCCH以及PSSCH传输的时间子单元个数,L为大于或等于1且小于或等于A的整数,一般而言A可以通过SL资源池的配置信息确定,第一PSSCH重复为N个PSSCH重复中的第一个PSSCH重复。
在第一种示例中,第一时间单元内PSSCH包括的PSSCH重复的个数N为:
其中,N个PSSCH重复中除最后一个PSSCH重复外的其他PSSCH重复在第一时间单元上分别包括L个时间子单元,最后一个PSSCH重复在时域上包括(A-1)mod L+1个时间子单元。
可选地,当A mod L=0成立时,最后一个PSSCH重复包括L个时间子单元;或者,当A mod L=0不成立时,最后一个PSSCH重复包括A mod L个时间子单元。
在第二种示例中,第一时间单元内PSSCH包括的PSSCH重复的个数N为:
其中,N个PSSCH重复中除最后一个PSSCH重复外的其他PSSCH重复在第一时间单元上分别包括L个时间子单元,最后一个PSSCH重复在第一时间单元上包括L+A mod L个时间子单元。可选地,最后一个PSSCH重复中的最后Amod L个时间子单元上可以映射有效数据,也可以映射空白数据,本申请不作限定。
因此,基于上述第二方式,可以将A个时间子单元平均分配给所有的PSSCH重复,每个PSSCH重复被平均分配L个时间子单元。可选地,若出现无法正好平均分配的情况,则可以额外新增加一个PSSCH重复,此时最后一个PSSCH重复包括剩余的A mod L个时间子单元(第一种示例);或者,不额外增加PSSCH重复,则最后一个PSSCH重复包括剩余的A mod L个时间子单元(第二种示例)。
可选地,第一终端设备可以根据平均分配后剩余的时间子单元个数A mod L,确定使用第一种示例或者第二种示例。例如,当A mod L大于或等于某个阈值时,使用第一种示例;或者,当A mod L小于或等于某个阈值时,使用第二种示例。
可选地,第一终端设备可以根据PSCCH包括的频域子单元确定使用第一方式或者第二方式确定N个PSSCH重复的资源映射。
示例性的,在PSCCH包括的频域子单元的数量大于或等于第一阈值的情况下,第一终端设备确定使用第一方式;或者,在PSCCH包括的频域子单元的数量小于或等于第一阈值的情况下,第一终端设备确定使用第二方式确定N个PSSCH重复的资源映射。例如,假设PSCCH包括的PRB个数为a,第一阈值为b,若a大于或等于b,则第一终端设备确定使用方式一;反之,若a小于或等于b,则第一终端设备确定使用方式二。
示例性的,在PSCCH包括的频域子单元的数量大于或等于PSSCH包括的频域子单元的数量的某个百分比值的情况下,第一终端设备确定使用第一方式;或者,在PSCCH包括的频域子单元的数量小于或等于PSSCH包括的频域子单元的数量的某个百分比值的情况下,第一终端设备确定使用第二方式。例如,假设PSCCH包括的PRB个数为a,第一终端设备可以通过PSCCH中的SCI1确定本次 PSSCH包括的PRB个数为c(如,SCI1中指示了PSSCH包括的子信道个数,资源池配置信息配置了一个子信道包含的PRB个数),若a小于或等于0.2*c,则第一终端设备确定使用方式二;或者,若a大于或等于0.2*c,则第一终端设备确定使用方式一。
基于上述实现方式,第一阈值可以是固定的数量,也可以是PSSCH包括的频域子单元数量乘以某个固定百分比,该数量或者百分比可以由资源池的配置信息进行配置,也可以由第一终端设备和第二终端设备之间通过RRC信令进行配置,也可以由网络设备进行配置,本申请对具体的配置方式不做限定。
需要指出的是,在上述重复方式1中,N个PSSCH重复中的每个SCI2重复可以是相同格式的SCI2重复,也可以是不同格式的SCI2重复,本申请对此不作限定。例如,第一个PSSCH重复中的SCI2为一个完整的SCI2,其他PSSCH重复中的SCI2只包含第一个SCI2中的部分字段,例如只RV指示信息等。例如,PSSCH包括两个PSSCH重复,第一个PSSCH重复中的SCI2为现有协议定义的完整SCI2,第二个PSSCH重复中的SCI2可以仅包含RV指示信息。各个PSSCH重复中SCI2的RV指示信息可以是相同的指示信息(例如该RV指示信息为第一个数据重复的RV,后续N-1个数据重复的RV按照固定序列的顺序循环,例如0,2,3,1),也可以是对应各自PSSCH重复中数据重复对应的RV指示信息。
图4是本申请实施例提供的第一种资源映射的示意图。以时间单元为时隙,时间子单元为符号为例。如图4所示,该时隙包含14个符号,即符号0~符号13,都可用于SL传输。其中,符号0为AGC符号,符号13为GP符号,则该时隙包括A=12个用于PSCCH和PSSCH传输的符号,即符号1~符号12。假设资源池配置信息中配置PSCCH在时域上包括B=2个符号,PSCCH包括符号1和符号2的部分频域子单元(例如,PRB),则PSSCH包括符号1和符号2的剩余部分频域子单元,以及符号3至符号12的全部资源(排除CSI-RS,PTRS,DMRS等信号)。
如图4的(a)所示,PSSCH资源映射对应第一方式,A=12,B=2,以L=5为例(例如通过步骤S330中的某种方式确定),则或者即该PSSCH包括两个PSSCH重复,第二SCI重复发送两次(例如,SCI2重复1和SCI2重复2),数据重复发送两次(例如,TB重复1和TB重复2)。具体地,第一个PSSCH重复包括该时隙的符号1至符号7,第二PSSCH重复包括该时隙的符号8至符号12。特别地,当PSCCH包括该时隙的符号1和符号2上的整个频域单元(例如,一个子信道),且PSSCH包括的频域资源为一个子信道时,第一个PSSCH重复实际包括该时隙的符号3至符号7,第二个PSSCH重复包括该时隙的符号8至符号12。
如图4的(b)所示,PSSCH资源映射对应第二方式,A=12,B=2,以L=6为例(例如通过步骤S330中的某种方式确定),则或者即该PSSCH包括两个PSSCH重复,第二SCI重复发送两次(例如,SCI2重复1和SCI2重复2),数据重复发送两次(例如,TB重复1和TB重复2)。具体地,第一个PSSCH重复包括该时隙的符号1至符号6,第二PSSCH重复包括该时隙的符号7至符号12。
如图4所示,SCI2重复1包含了用于指示TB重复1的RV0,SCI2重复2包含了用于指示TB重复2的RV2。可选地,上述两个PSSCH重复中,SCI2重复1和SCI2重复2可以使用相同的格式,也可以SCI2重复1使用正常格式,SCI2重复2使用精简的格式,只包含其对应TB重复2的RV2的指示信息等。
图5是本申请实施例提供的第二种资源映射的示意图。以时间单元为时隙,时间子单元为符号为例。如图5所示,该时域资源包含14个符号,即符号0~符号13,都可用于SL传输。其中,符号0为AGC符号,符号13为GP符号,则该时隙包括A=12个用于PSCCH和PSSCH传输的符号,即符号1~符号12。假设资源池配置信息中配置PSCCH在时域上包括B=2个符号,PSCCH包括符号1和符号2的部分频域子单元(例如,PRB),则PSSCH包括符号1和符号2的剩余部分频域子单元,以及符号3至符号12的全部资源(排除CSI-RS,PTRS,DMRS等信号)。
如图5的(a)所示,PSSCH资源映射对应第一方式的第一种示例,A=12,B=2,以L=4为例(例如通过步骤S330中的某种方式确定),则即该PSSCH包括三个PSSCH重复,第二SCI重复发送三次(例如,SCI2重复1、SCI2重复2和SCI2重复3),数据重复发送三次(例如,TB重复1、TB重复2和TB重复3)。具体地,第一个PSSCH重复包括该时隙的符号1至符号6,第二 个PSSCH重复包括该时隙的符号7至符号10,第三个PSSCH重复包括该时隙的符号11和符号12,共2个符号。
如图5的(c)所示,PSSCH资源映射对应第一方式的第二种示例,A=12,B=2,以L=4为例(例如通过步骤S330中的某种方式确定),则即该PSSCH包括2个PSSCH重复,第二SCI重复发送2次(例如,SCI2重复1和SCI2重复2),数据重复发送2次(例如,TB重复1和TB重复2)。与图5的(a)区别在于,将该时隙剩余的符号11和符号12分配给第二个PSSCH重复。例如,第二个PSSCH重复包括该时隙的符号7至符号12。
如图5的(b)所示,PSSCH资源映射对应第二方式的第一种示例,A=12,B=2,以L=5为例(例如通过步骤S330中的某种方式确定),则即该PSSCH包括三个PSSCH重复,第二SCI重复发送三次(例如,SCI2重复1、SCI2重复2和SCI2重复3),数据重复发送三次(例如,TB重复1、TB重复2和TB重复3)。具体地,第一个PSSCH重复包括该时隙的符号1至符号5,第二个PSSCH重复包括该时隙的符号6至符号10,第三个PSSCH重复包括该时隙的符号11和符号12。
如图5的(d)所示,PSSCH资源映射对应第二方式的第二种示例,A=12,B=2,以L=5为例(例如通过步骤S330中的某种方式确定),则即该PSSCH包括2个PSSCH重复,第二SCI重复发送2次(例如,SCI2重复1和SCI2重复2),数据重复发送2次(例如,TB重复1和TB重复2)。与图5的(b)区别在于,将该时隙剩余的符号11和符号12分配给第二个PSSCH重复。例如,第二个PSSCH重复包括该时隙的符号6至符号12。
另外,如图5的(a)或(b)所示,SCI2重复1包含了用于指示TB重复1的RV0,SCI2重复2包含了用于指示TB重复2的RV2,SCI2重复3包含了用于指示TB重复3的RV3。如图5的(c)或(d)所示,SCI2重复1包含了用于指示TB重复1的RV0,SCI2重复2包含了用于指示TB重复2的RV2。
可选地,在第一终端设备在步骤S330中确定第一重复次数为M的情况下,第一终端设备可以根据M确定PSSCH重复的个数N,以及各个PSSCH重复对应的资源。
在一种可能的实现方式中,第一终端设备根据第三方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第B+C个时间子单元。其中,A为第一时间单元上包括的用于PSCCH以及PSSCH传输的时间子单元个数,B为第一时间单元中PSCCH在时域上包括的时间子单元个数,B为大于或等于1且小于或等于A的整数,一般而言A和B都可以通过SL资源池的配置信息确定,第一PSSCH重复为N个PSSCH重复中的第一个PSSCH重复。
在第一种示例中,第一时间单元内PSSCH包括的PSSCH重复的个数N为:
N=M,
其中,当1<i≤(A-B)mod M时,第i个PSSCH重复在第一时间单元上包括C个时间子单元;或者,当i>(A-B)mod M时,第i个PSSCH重复在第一时间单元上包括个时间子单元。
在第二种示例中,N个PSSCH重复中除第一PSSCH重复和最后一个PSSCH重复外的其他PSSCH重复在第一时间单元上包括C个时间子单元,当(A-B)mod M=0时,N=M,最后一个PSSCH重复在第一时间单元上包括C个时间子单元,当(A-B)mod M≠0时,N=M+1,最后一个PSSCH重复在第一时间单元上包括(A-B)mod M个时间子单元。
在第三种示例中,第一时间单元内PSSCH包括的PSSCH重复的个数N为:
N=M,
其中,N个PSSCH重复中除第一PSSCH重复和最后一个PSSCH重复外的其他PSSCH重复在第一时间单元上分别包括C个时间子单元,最后一个PSSCH重复在第一时间单元上包括C+(A-B)mod M个时间子单元。可选地,最后一个PSSCH重复中的最后(A-B)mod M个时间子单元上可以映射有效数据,也可以映射空白数据,本申请不作限定。
因此,基于上述第三方式,将PSCCH所在的时间子单元单独分配给第一个PSSCH重复,然后再将A个时间子单元中除PSCCH所包括的B个时间子单元外的A-B个时间子单元平均分成M份。可选地,若出现无法正好平均分配的情况,则可以为靠前的若干个PSSCH重复额外分配一个时间子单元(第一种示例);或者,可以额外新增加一个PSSCH重复(第二种示例,最后可能会有M+1个PSSCH重复);或者,不额外增加PSSCH重复,将剩余的(A-B)mod M个时间子单元分配给最后一个PSSCH 重复(第三种示例)。
可选地,第一终端设备可以根据平均分配后剩余的时间子单元个数(A-B)mod M,确定使用第二种示例或者第三种示例。例如,当(A-B)mod M大于或等于某个阈值时,使用第二种示例;或者,当(A-B)mod M小于或等于某个阈值时,使用第三种示例。
在另一种可能的实现方式中,第一终端设备根据第四方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第D个时间子单元。其中,A为第一时间单元上包括的用于PSCCH以及PSSCH传输的时间子单元个数,D为大于或等于1且小于或等于A的整数,一般而言A可以通过SL资源池的配置信息确定,第一PSSCH重复为N个PSSCH重复中的第一个PSSCH重复。
在第一种示例中,第一时间单元内PSSCH包括的PSSCH重复的个数N为:
N=M,
其中,当i≤A mod M时,第i个PSSCH重复在第一时间单元上包括D个时间子单元;当i>A
mod M时,第i个PSSCH重复在第一时间单元上包括个时间子单元。
在第二种示例中,N个PSSCH重复中除最后一个PSSCH重复外的其他PSSCH重复在第一时间单元上包括D个时间子单元,当A mod M=0时,N=M,最后一个PSSCH重复在第一时间单元上包括D个时间子单元,当A mod M≠0时,N=M+1,最后一个PSSCH重复在第一时间单元上包括A mod M个时间子单元。
在第三种示例中,第一时间单元内PSSCH包括的PSSCH重复的个数N为:
N=M,
其中,N个PSSCH重复中除最后一个PSSCH重复外的其他PSSCH重复在第一时间单元上分别包括D个时间子单元,最后一个PSSCH重复在第一时间单元上包括D+A mod M个时间子单元。可选地,最后一个PSSCH重复中的最后A mod M个时间子单元上可以映射有效数据,也可以映射空白数据,本申请不作限定。
因此,基于上述第四方式,将A个时间子单元平均分成M份,可选地,若出现无法正好平均分配的情况,则可以为靠前的若干个PSSCH重复额外分配一个时间子单元(第一种示例);或者,额外新增加一个PSSCH重复(第二种示例,最后可能会有M+1个PSSCH重复);或者,不额外增加PSSCH重复,将剩余的A mod M个时间子单元分配给最后一个PSSCH重复(第三种示例)。
可选地,第一终端设备可以根据平均分配后剩余的时间子单元个数A mod M,确定使用第二种示例或者第三种示例。例如,当A mod M大于或等于某个阈值时,使用第二种示例;或者,当A mod M小于或等于某个阈值时,使用第三种示例。
可选地,第一终端设备可以根据PSCCH包括的频域子单元确定使用第三方式或者第四方式确定N个PSSCH重复的资源映射。
示例性的,在PSCCH包括的频域子单元的数量大于或等于第二阈值的情况下,第一终端设备确定使用第三方式;或者,在PSCCH包括的频域子单元的数量小于或等于第二阈值的情况下,第一终端设备确定使用第四方式。
示例性的,在PSCCH包括的频域子单元的数量大于或等于PSSCH包括的频域子单元的数量的某个百分比值的情况下,第一终端设备确定使用第三方式;或者,在PSCCH包括的频域子单元的数量小于或等于PSSCH包括的频域子单元的数量的某个百分比值的情况下,第一终端设备确定使用第四方式。
其中,第一终端设备确定使用第三方式或者第四方式的具体实现过程可参考上文第一终端设备根据PSCCH包括的频域子单元确定使用第一方式或者第二方式的相关描述,为了简洁,此处不再过多赘述。
如图4的(a)所示,PSSCH资源映射对应第三方式,A=12,B=2,以M=2为例(例如通过步骤S330中的某种方式确定),则N=2,C=5。即该PSSCH包括两个PSSCH重复,第一个PSSCH重复包括该时隙的符号1至符号7,第二PSSCH重复包括该时隙的第8至12个符号。特别地,当PSCCH包括该时隙的符号1和符号2上的整个频域单元(例如,一个子信道),且PSSCH包括的频域资源为一个子信道时,第一个PSSCH重复实际包括该时隙的符号3至符号7,第二个PSSCH重复包括该时隙的符号8至符号12。
如图4的(b)所示,PSSCH资源映射对应第四方式,A=12,B=2,以M=2为例(例如通过步骤S330中的某种方式确定),则N=2,D=6。即该PSSCH包括两个PSSCH重复,第一个PSSCH重复包括该时隙的符号1至符号6,第二PSSCH重复包括该时隙的符号7至符号12。
如图5的(e)所示,PSSCH资源映射对应第三方式的第一种示例,A=12,B=2,以M=3为例(例如通过步骤S330中的某种方式确定),则N=M=3,即该PSSCH包括三个PSSCH重复,第二SCI重复发送三次(例如,SCI2重复1、SCI2重复2和SCI2重复3),数据重复发送三次(例如,TB重复1、TB重复2和TB重复3)。具体地,第一个PSSCH重复包括该时隙的符号1至符号6,第二个PSSCH重复包括该时隙的符号7至符号9,第三个PSSCH重复包括该时隙的符号10至符号12。
如图5的(g)所示,PSSCH资源映射对应第三方式的第二种示例,A=12,B=2,以M=3为例(例如通过步骤S330中的某种方式确定),则N=M+1=4,即,该PSSCH包括四个PSSCH重复,第二SCI重复发送4次(例如,SCI2重复1、SCI2重复2、SCI2重复3和SCI2重复4),数据重复发送4次(例如,TB重复1、TB重复2、TB重复3和TB重复4)。具体地,第一个PSSCH重复包括该时隙的符号1至符号5,第二个PSSCH重复包括该时隙的符号6至符号8,第三个PSSCH重复包括该时隙的符号9至符号11,第四个PSSCH重复包括该时隙的符号12。
如图5的(i)所示,PSSCH资源映射对应第三方式的第三种示例,A=12,B=2,以M=3为例(例如通过步骤S330中的某种方式确定),则N=M=3,即该PSSCH包括三个PSSCH重复,第二SCI重复发送3次(例如,SCI2重复1、SCI2重复2和SCI2重复3),数据重复发送3次(例如,TB重复1、TB重复2和TB重复3)。与图5的(g)区别在于,将该时隙剩余的符号12分配给第三个PSSCH重复。例如,第三个PSSCH重复包括该时隙的符号9至符号12。
如图5的(f)所示,PSSCH资源映射对应第四方式的第一种示例,A=12,B=2,以M=5为例(例如通过步骤S330中的某种方式确定),则N=M=5,即该PSSCH包括五个PSSCH重复,第二SCI重复发送5次(例如,SCI2重复1、SCI2重复2、SCI2重复3、SCI2重复4和SCI2重复5),数据重复发送5次(例如,TB重复1、TB重复2、TB重复3、TB重复4和TB重复5)。具体地,第一个PSSCH重复包括该时隙的符号1至符号3,第二个PSSCH重复包括该时隙的符号4至符号6,第三个PSSCH重复包括该时隙的符号7和符号8,第四个PSSCH重复包括该时隙的符号9和符号10,第五个PSSCH重复包括该时隙的符号11和符号12。
如图5的(h)所示,PSSCH资源映射对应第四方式的第二种示例,A=12,B=2,以M=5为例(例如通过步骤S330中的某种方式确定),则N=M+1=6,即该PSSCH包括六个PSSCH重复,第二SCI重复发送6次(例如,SCI2重复1、SCI2重复2、SCI2重复3、SCI2重复4、SCI2重复5和SCI2重复6),数据重复发送6次(例如,TB重复1、TB重复2、TB重复3、TB重复4、TB重复5和TB重复6)。具体地,第一个PSSCH重复包括该时隙的符号1和符号2,第二个PSSCH重复包括该时隙的符号3和符号4;第三个PSSCH重复包括该时隙的符号5和符号6,第四个PSSCH重复包括该时隙的符号7和符号8,第五个PSSCH重复包括该时隙的符号9和符号10,第六个PSSCH重复包括该时隙的符号11和符号12。
如图5的(j)所示,PSSCH资源映射对应第四方式的第三种示例,A=12,B=2,以M=5为例(例如通过步骤S330中的某种方式确定),则N=M=5,即该PSSCH包括五个PSSCH重复,第二SCI重复发送5次(例如,SCI2重复1、SCI2重复2、SCI2重复3、SCI2重复4和SCI2重复5),数据重复发送5次(例如,TB重复1、TB重复2、TB重复3、TB重复4和TB重复5)。与图5的(h)区别在于,将该时隙剩余符号11和符号12分配给第五个PSSCH重复。例如,第五个PSSCH重复包括该时隙的符号9至符号12。
另外,如图5的(e)或(i)所示,SCI2重复1包含了用于指示TB重复1的RV0,SCI2重复2包含了用于指示TB重复2的RV2,SCI2重复3包含了用于指示TB重复3的RV3;如图5的(g)所示,额外增加SCI2重复4包含了用于指示TB重复4的RV1;如图5的(f)或(j)所示,额外增加SCI2重复5包含了用于指示TB重复5的RV0;如图5的(h)所示,额外增加SCI2重复6包含了用于指示TB重复6的RV2。
重复方式2:PSSCH包括N个PSSCH重复,N个PSSCH重复中的第一个PSSCH重复包括一个 第二SCI和一个数据重复,N个PSSCH重复中第二个PSSCH重复至第N个PSSCH重复分别包括一个数据重复。
其中,N个PSSCH重复中第二个PSSCH至第N个PSSCH重复中不包括第二SCI。
可选地,第二SCI包括N个RV的指示信息,N个冗余版本号与N个PSSCH重复一一对应,此时需要对第二SCI的RV字段进行扩容;或者,第二SCI可以仅包含一个RV的指示信息,该RV指示信息为第一个数据重复的RV,后续N-1个数据重复的RV按照固定序列的顺序循环,例如0,2,3,1。
可选地,在第一终端设备在步骤S330中确定第一重复长度包括L个时间子单元的情况下,第一终端设备可以根据L确定PSSCH重复的个数N,以及各个PSSCH重复对应的资源。
示例性的,第一终端设备可以采用第一方式或第二方式,根据L确定PSSCH重复的个数N,以及各个PSSCH重复对应的资源,具体实现方式可参考上述重复方式1中的相关描述。为了简洁,这里不再过多赘述。区别仅在于重复方式2中的第二SCI不重复发送,仅在第一个PSSCH重复内发送一次。
在一种可能的实现方式中,第一终端设备根据第五方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第E+L个时间子单元。其中,A为第一时间单元上包括的用于PSCCH以及PSSCH传输的时间子单元个数,E为大于等于0且小于等于B的整数,B为第一时间单元中PSCCH在时域上包括的时间子单元个数,L和B为大于或等于1且小于或等于A的整数。一般而言A和B都可以通过SL资源池的配置信息确定,第一PSSCH重复为N个PSSCH重复中的第一个PSSCH重复。
换句话说,该实现方式可以是先将PSCCH所在的B个时间子单元中前E个时间子单元单独分配给第一PSSCH重复,再将其余的A-E个时间子单元平均分配给所有的PSSCH重复,并确定各个PSSCH重复包括的时频资源,具体的分配方法可以参考上述重复方式1中的相关描述,例如将重复方式1的示例中的B替换成E,为了简洁,此处不再赘述。应理解,该第五方式可以看做是第一终端设备对第一方式或第二方式的进一步优化。
在一种示例中,第一终端设备根据第二SCI和PSCCH在A个时间子单元中第j个时间子单元的频域子单元的数量,确定E个时间子单元是否包括第j个时间子单元,j为大于或等于1且小于或等于B的整数。
可选地,在第j个时间子单元上,若第二SCI和PSCCH包括的频域子单元数量大于或等于第三阈值,则第一终端设备可以确定E个时间子单元包括第j个时间子单元;或者,在第j个时间子单元上,若第二SCI和PSCCH包括的的频域子单元数量小于或等于第三阈值,则第一终端设备可以确定E个时间子单元不包括第j个时间子单元。其中,第三阈值可以是固定的数量,也可以是PSSCH包括的频域子单元数量乘以某个固定百分比,该数量或者百分比可以由资源池的配置信息进行配置,也可以由第一终端设备和第二终端设备之间通过RRC信令进行配置,也可以由网络设备进行配置,本申请对具体的配置方式不做限定。
图6是本申请实施例提供的第三种资源映射的示意图。以时间单元为时隙,时间子单元为符号为例。如图6所示,该时隙包含14个符号,即符号0~符号13,都可用于SL传输。其中,符号0为AGC符号,符号13为GP符号,则该时隙包括A=12个用于PSCCH和PSSCH传输的符号,即符号1~符号12。假设资源池配置信息中配置PSCCH在时域上包括B=2个符号,PSCCH包括符号1和符号2的部分频域子单元(例如,PRB),PSSCH包括符号1和符号2的剩余部分频域子单元,以及符号3至符号12的全部资源(排除CSI-RS,PTRS,DMRS等信号)。另外,第二SCI(例如,SCI2)仅在第一PSSCH重复中发送1次,SCI2包含了用于指示TB重复1的RV0,以及用于指示TB重复2的RV2。
如图6的(a)所示,PSSCH资源映射对应第一方式,A=12,B=2,以L=5为例(例如通过步骤S330中的某种方式确定),则N=2。即PSSCH包括两个PSSCH重复,第二SCI发送1次,数据重复发送两次(例如,TB重复1和TB重复2)。第一个PSSCH重复包括该时隙的符号1至符号7;第二PSSCH重复包括该时隙的符号8至符号12。特别地,当PSCCH包括该时隙的符号1和符号2上的整个频域单元(例如,一个子信道),且PSSCH包括的频域资源为一个子信道时,第一个PSSCH重复包括该时隙的符号3至符号7个符号,第二个PSSCH重复包括该时隙的符号8至符号12。
如图6的(b)所示,PSSCH资源映射对应第二方式,A=12,B=2,以L=6为例(例如通过步骤 S330中的某种方式确定),则N=2。即该PSSCH包括两个PSSCH重复,第二SCI发送1次,数据重复发送两次(例如,TB重复1和TB重复2)。第一个PSSCH重复包括该时隙的符号1至符号6,第二PSSCH重复包括12该时隙的符号7至符号12个。
图7是本申请实施例提供的第四种资源映射的示意图。以时间单元为时隙,时间子单元为符号为例。如图7所示,该时隙包含14个符号,即符号0~符号13,都可用于SL传输。其中,符号0为AGC符号,符号13为GP符号,则该时隙包括A=12个用于PSCCH和PSSCH传输的符号,即符号1~符号12。假设资源池配置信息中配置PSCCH在时域上包括B=2个符号,PSCCH包括符号1和符号2的部分频域子单元(例如,PRB),PSSCH包括符号1和符号2的剩余部分频域子单元,以及符号3至符号12的全部资源(排除CSI-RS,PTRS,DMRS等信号)。另外,第二SCI(例如,SCI2)仅在第一PSSCH重复中发送1次。
如图7的(a)所示,PSSCH资源映射对应第一方式的第一种示例,A=12,B=2,以L=4为例(例如通过步骤S330中的某种方式确定),则即该PSSCH包括三3个PSSCH重复,数据重复发送3次(例如,TB重复1、TB重复2和TB重复3)。具体地,第一个PSSCH重复包括该时隙的符号1至符号6,第二个PSSCH重复包括该时隙的符号7至符号10,第三个PSSCH重复包括该时隙的符号11和符号12。
如图7的(c)所示,PSSCH资源映射对应第一方式的第二种示例,A=12,B=2,以L=4为例(例如通过步骤S330中的某种方式确定),则即该PSSCH包括2个PSSCH重复,数据重复发送2次(例如,TB重复1和TB重复2)。与图7的(a)区别在于,将该时隙的剩余符号11和符号12个符号分配给第二个PSSCH重复。例如,第二个PSSCH重复包括该时隙的符号7至符号12。
如图7的(b)所示,PSSCH资源映射对应第二方式的第一种示例,A=12,B=2,以L=5为例(例如通过步骤S330中的某种方式确定),则即该PSSCH包括3个PSSCH重复,数据重复发送3次(例如,TB重复1、TB重复2和TB重复3)。具体地,第一个PSSCH重复包括该时隙的符号1至符号5,第二个PSSCH重复包括该时隙的符号6至符号10,第三个PSSCH重复包括该时隙的符号11和符号12。
如图7的(d)所示,PSSCH资源映射对应第二方式的第二种示例,A=12,B=2,以L=5为例(例如通过步骤S330中的某种方式确定),则即该PSSCH包括2个PSSCH重复,数据重复发送2次(例如,TB重复1和TB重复2)。与图7的(b)区别在于,将该时隙的剩余符号11和符号12个分配给第二个PSSCH重复。例如,第二个PSSCH重复包括该时隙的符号6至符号12。
另外,如图7的(a)或(b)所示,SCI2包含了用于指示TB重复1的RV0,用于指示TB重复2的RV2,以及用于指示TB重复3的RV3。如图7的(c)或(d)所示,SCI2包含了用于指示TB重复1的RV0,以及用于指示TB重复2的RV2。
可选地,在第一终端设备在步骤S330中确定第一重复次数为M的情况下,第一终端设备可以根据M确定PSSCH重复的个数N,以及各个PSSCH重复对应的资源。
示例性的,第一终端设备可以采用第三方式或第四方式,根据M确定PSSCH重复的个数N,以及各个PSSCH重复对应的资源,具体实现方式可参考上述重复方式1中的相关描述。为了简洁,这里不再过多赘述。区别仅在于重复方式2中的第二SCI不重复发送,仅在第一个PSSCH重复内发送一次。
在一种可能的实现方式中,第一终端设备根据第六方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第F+C个时间子单元。其中,A为第一时间单元上包括的用于PSCCH以及PSSCH传输的时间子单元个数,F为大于等于0且小于等于B的整数,B为第一时间单元中PSCCH在时域上包括的时间子单元个数,C和B为大于或等于1且小于或等于A的整数。一般而言A和B都可以通过SL资源池的配置信息确定,第一PSSCH重复为N个PSSCH重复中的第一个PSSCH重复。
换句话说,该实现方式可以是先将PSCCH所在的B个时间子单元中前F个时间子单元单独分配给第一PSSCH重复,再将其余的A-F个时间子单元平均分配给所有的PSSCH重复,例如先确定C,再最终确定各个PSSCH重复对应的资源,具体的分配方法可以参考上述重复方式1中的相关描述,例 如将重复方式1的示例中的B替换成F,为了简洁,此处不再赘述。应理解,该第六方式可以看做是第一终端设备对第三方式或第四方式的进一步优化。
在一种示例中,第一终端设备根据第二SCI和PSCCH在第k个时间子单元的频域子单元的数量,确定F个时间子单元是否包括第k个时间子单元,k为大于或等于1且小于或等于B的整数。
可选地,在第k个时间子单元上,若第二SCI和PSCCH包括的频域子单元数量大于或等于第四阈值,则第一终端设备可以确定F个时间子单元包括第k个时间子单元;或者,在第k个时间子单元上,若第二SCI和PSCCH包括的频域子单元数量小于或等于第四阈值的情况下,则第一终端设备可以确定F个时间子单元不包括第k个时间子单元。其中,第四阈值可以是固定的数量,也可以是PSSCH包括的频域子单元数量乘以某个固定百分比,该数量或者百分比可以由资源池的配置信息进行配置,也可以由第一终端设备和第二终端设备之间通过RRC信令进行配置,也可以由网络设备进行配置,本申请对具体的配置方式不做限定。
如图6的(a)所示,PSSCH资源映射对应第三方式,A=12,B=2,以M=2为例(例如通过步骤S330中的某种方式确定),则N=2,C=5。即PSSCH包括两个PSSCH重复,第二SCI发送1次,数据重复发送两次(例如,TB重复1和TB重复2)。第一个PSSCH重复包括该时隙的符号1至符号7,第二PSSCH重复包括该时隙的符号8至符号12。特别地,当PSCCH包括该时隙的符号1和符号2上的整个频域单元(例如,一个子信道),且PSSCH包括的频域资源为一个子信道时,第一个PSSCH重复包括该时隙的符号3至符号7,第二个PSSCH重复包括该时隙的符号8至符号12。
如图6的(b)所示,PSSCH资源映射对应第四方式,A=12,B=2,以M=2为例(例如通过步骤S330中的某种方式确定),则N=2,D=6。即PSSCH包括两个PSSCH重复,第二SCI发送1次,数据重复发送两次(例如,TB重复1和TB重复2)。其中,第一个PSSCH重复包括该时隙的符号1至符号6,第二PSSCH重复包括该时隙的符号7至符号12。
如图7的(e)所示,PSSCH资源映射对应第三方式的第一种示例,A=12,B=2,以M=3为例(例如通过步骤S330中的某种方式确定),则N=M=3,即该PSSCH包括三个PSSCH重复,数据重复发送三次(例如,TB重复1、TB重复2和TB重复3)。具体地,第一个PSSCH重复包括该时隙的符号1至符号6,第二个PSSCH重复包括该时隙的符号7至符号9,第三个PSSCH重复包括该时隙的符号10至符号12。
如图7的(g)所示,PSSCH资源映射对应第三方式的第二种示例,A=12,B=2,以M=3为例(例如通过步骤S330中的某种方式确定),则N=4,即该PSSCH包括四个PSSCH重复,数据重复发送4次(例如,TB重复1、TB重复2、TB重复3和TB重复4)。具体地,第一个PSSCH重复包括该时隙的符号1至符号5,第二个PSSCH重复包括该时隙的符号6至符号8,第三个PSSCH重复包括该时隙的符号9至符号11,第四个PSSCH重复包括该时隙的符号12。
如图7的(i)所示,PSSCH资源映射对应第三方式的第三种示例,A=12,B=2,以M=3为例(例如通过步骤S330中的某种方式确定),则N=M=3,即该PSSCH包括三个PSSCH重复,数据重复发送3次(例如,TB重复1、TB重复2和TB重复3)。与图7的(g)区别在于,将该时隙的剩余符号12分配给第三个PSSCH重复。例如,第三个PSSCH重复包括该时隙的符号9至符号12。
如图7的(f)所示,PSSCH资源映射对应第四方式的第一种示例,A=12,B=2,以M=5为例(例如通过步骤S330中的某种方式确定),则N=M=5,其中,该PSSCH包括五个PSSCH重复,即数据重复发送5次(例如,TB重复1、TB重复2、TB重复3、TB重复4和TB重复5)。具体地,第一个PSSCH重复包括该时隙的符号1至符号3,第二个PSSCH重复包括该时隙的符号4至符号6,第三个PSSCH重复包括该时隙的符号7和符号8,第四个PSSCH重复包括该时隙的符号9和符号10,第五个PSSCH重复包括该时隙的符号11和符号12。
如图7的(h)所示,PSSCH资源映射对应第四方式的第二种示例,A=12,B=2,M=5,则N=6,其中,该PSSCH包括六个PSSCH重复,即数据重复发送6次(例如,TB重复1、TB重复2、TB重复3、TB重复4、TB重复5和TB重复6)。具体地,第一个PSSCH重复包括该时隙的符号1和符号2;第二个PSSCH重复包括该时隙的符号3和符号4,第三个PSSCH重复包括该时隙的符号5和符号6,第四个PSSCH重复包括该时隙的符号7和符号8,第五个PSSCH重复包括该时隙的 符号9和符号10,第六个PSSCH重复包括该时隙的符号11和符号12。
如图7的(j)所示,PSSCH资源映射对应第四方式的第三种示例,A=12,B=2,M=5,则N=M=5,其中,该PSSCH包括五个PSSCH重复,即数据重复发送5次(例如,TB重复1、TB重复2、TB重复3、TB重复4和TB重复5)。与图7的(h)区别在于,将该时隙的剩余符号符号11和12分配给第五个PSSCH重复。例如,第五个PSSCH重复包括该时隙的符号9至符号12。
另外,如图7的(e)或(i)所示,SCI2包含了用于指示TB重复1的RV0,用于指示TB重复2的RV2,以及用于指示TB重复3的RV3;如图7的(g)所示,SCI2额外包含了用于指示TB重复4的RV0;如图7的(f)或(j)所示,SCI2额外包含了用于指示TB重复5的RV0;如图7的(h)所示,SCI2额外包含了用于指示TB重复6的RV2。
需要指出的是,在上述重复方式1和重复方式2中,第一个PSSCH重复可以和PSCCH在前B个时间子单元上进行频分复用。例如,前B个时间子单元上PSCCH占据X个频域子单元,则第一个PSSCH重复可以占用前B个时间子单元上的剩余频域子单元(除去DMRS、PTRS、CSI-RS等信号),其他A-B个时间子单元上,PSSCH重复可以占据整数个频域单元(除去DMRS、PTRS、CSI-RS等信号)。
重复方式3:PSCCH包括N个PSCCH重复,N个PSSCH重复中的每个PSSCH重复包括一个第二SCI重复和一个数据重复,N个PSCCH重复中的每个PSCCH重复包括一个第一SCI重复。
其中,N个PSSCH重复和N个PSCCH重复一一关联,PSCCH用于调度PSSCH。
在一种可能的实现方式中,第一时间单元包括N个第一信道重复,N个第一信道重复中的每个第一信道重复包括一个PSCCH重复和一个PSSCH重复;
应理解,在该重复方式下,如果第一设备在S330之前确定第一时间单元上PSSCH至少包括两个PSSCH重复,则也能相应地确定第一时间单元上PSCCH包括至少两个PSCCH重复,或者包括至少两个第一信道重复。同时在该方式下,S310-330中的相关指示信息也可用于PSCCH重复的相关信息指示,或者第一信道重复的相关信息指示。例如第一信道重复次数和/或第一信道重复长度可用于确定第一时间单元上包括的第一信道重复的个数,以及每个第一信道重复对应的资源。
可选地,在第一终端设备在步骤S330中确定第一重复长度包括L个时间子单元的情况下,第一终端设备可以根据L确定第一信道重复的个数N,以及每个第一信道重复对应的资源。
在第一种示例中,第一时间单元内第一信道重复的个数N为:
其中,N个第一信道重复中除最后一个第一信道重复外的其他第一信道重复在第一时间单元上分别包括L个时间子单元,最后一个第一信道重复在时域上包括(A-1)mod L+1个时间子单元;A为PSSCH和PSCCH在第一时间单元包括的时间子单元的个数,L为大于或等于1且小于或等于A的整数。
可选地,当A mod L=0成立时,最后一个第一信道重复包括L个时间子单元;当A mod L=0不成立时,最后一个第一信道重复包括A mod L个时间子单元。
在第二种示例中,第一时间单元内第一信道重复的个数N为:
其中,N个第一信道重复中除最后一个第一信道重复外的其他第一信道重复在第一时间单元上包括L个时间子单元,最后一个第一信道重复在第一时间单元上包括L+A mod L个时间子单元;A为PSSCH和PSCCH在第一时间单元包括的时间子单元的个数,L为大于或等于1且小于或等于A的整数。可选地,最后一个第一信道重复中的最后Amod L个时间子单元上可以映射有效数据,也可以映射空白数据,本申请不作限定。
因此,基于上述实现方式,可以将A个时间子单元平均分配给所有的第一信道重复,每个第一信道重复被平均分配L个时间子单元。可选地,若出现无法正好平均分配的情况,则可以额外新增加一个第一信道重复,此时最后一个第一信道重复包括剩余的A mod L个时间子单元(第一种示例);或者,不额外增加第一信道重复,则最后一个第一信道重复包括剩余的A mod L个时间子单元(第二种示例)。
可选地,第一终端设备可以根据平均分配后剩余的时间子单元个数A mod L,确定使用第一种示 例或者第二种示例。例如,当A mod L大于或等于某个阈值时,使用第一种示例;或者,当A mod L小于或等于某个阈值时,使用第二种示例。
需要指出的是,在上述重复方式3中,N个第一信道重复中的每个SCI2重复可以是相同格式的SCI2重复,也可以是不同格式的SCI2重复,本申请对此不作限定。具体示例可参考上述重复方式1中的相关描述,这里不再赘述。
图8是本申请实施例提供的第五种资源映射的示意图。以时间单元为时隙,时间子单元为符号为例。如图8所示,该时隙包含14个符号,即符号0~符号13,都可用于SL传输。其中,符号0为AGC符号,符号13为GP符号,则该时隙包括A=12个用于PSCCH和PSSCH传输的符号,即符号1~符号12。假设资源池配置信息中配置PSCCH在时域上包括B=2个符号。
示例性的,A=12,B=2,以L=6为例(例如通过步骤S330中的某种方式确定),则B为每个第一信道重复中PSCCH在第一时间单元包括的时间子单元的个数。即该时隙内包括两个第一信道重复,PSCCH重复发送两次,PSSCH重复发送两次,也就是说,第一SCI重复发送两次(例如,SCI1重复1和SCI1重复2),第二SCI重复发送两次(例如,SCI2重复1和SCI2重复2),数据重复发送两次(例如,TB重复1和TB重复2)。具体地,第一个第一信道重复包括该时隙的符号1至符号6,第二个第一信道重复包括该时隙的符号7至符号12。其中,在第一个第一信道重复中,第一个PSCCH重复包括该时隙的符号1和符号2的一部分PRB,第一个PSSCH重复包括符号1和符号2的另一部分PRB,即第一个PSSCH重复和第一个PSCCH重复在符号1和符号2上FDM,同时第一个PSSCH重复包括该时隙的符号3至符号6上的全部资源(排除CSI-RS,PTRS,DMRS等信号)。类似地,在第二个第一信道重复中,第二个PSCCH重复包括该时隙的符号7和符号8的一部分PRB,第二个PSSCH重复包括符号7和符号8的另一部分PRB,即第二个PSSCH重复和第二个PSCCH重复在符号7和符号8上FDM,同时第二个PSSCH重复包括该时隙的符号9至符号12上的全部资源(排除CSI-RS,PTRS,DMRS等信号)。
如图8所示,SCI2重复1包含了用于指示TB重复1的RV0,SCI2重复2包含了用于指示TB重复2的RV2。可选地,上述两个第一信道重复中,SCI2重复1和SCI2重复2可以使用相同的格式,也可以SCI2重复1使用正常格式,SCI2重复2使用精简的格式,例如只包含其对应TB重复2的RV2的指示信息等。
图9是本申请实施例提供的第六种资源映射的示意图。以时间单元为时隙,时间子单元为符号为例。如图9所示,该时隙包含14个符号,即符号0~符号13,都可用于SL传输。其中,符号0为AGC符号,符号13为GP符号,则该时隙包括A=12个用于PSCCH和PSSCH传输的符号,即符号1~符号12。假设资源池配置信息中配置PSCCH在时域上包括B=2个符号。
如图9的(a)所示,PSCCH和PSSCH资源映射对应第一种示例,A=12,B=2,以L=5为例(例如通过步骤S330中的某种方式确定),则即该时隙内包括三个第一信道重复,PSCCH重复发送三次,PSSCH重复发送三次,也就是说,第一SCI重复发送三次(例如,SCI1重复1、SCI1重复2和SCI1重复3),第二SCI重复发送三次(例如,SCI2重复1、SCI2重复2和SCI2重复3),数据重复发送三次(例如,TB重复1、TB重复2和TB重复3)。具体地,第一个第一信道重复包括该时隙的符号1至符号5,第二个第一信道重复包括该时隙的符号6至符号10,第三个第一信道重复包括该时隙的符号11和符号12。
如图9的(b)所示,PSCCH和PSSCH资源映射对应第二种示例,A=12,B=2,以L=5为例(例如通过步骤S330中的某种方式确定),则即该时隙内包括两个第一信道重复,PSCCH重复发送两次,PSSCH重复发送两次,也就是说,第一SCI重复发送两次(例如,SCI1重复1和SCI1重复2),第二SCI重复发送两次(例如,SCI2重复1和SCI2重复2),数据重复发送两次(例如,TB重复1和TB重复2)。与图9的(a)区别在于,将该时隙的剩余符号11和符号12分配给第二个第一信道重复。例如,第二个第一信道重复包括该时隙的符号6至符号12。
另外,如图9的(b)所示,SCI2重复1包含了用于指示TB重复1的RV0,SCI2重复2包含了用于指示TB重复2的RV2;如图9的(a)所示,额外增加SCI2重复3包含了用于指示TB重复3的RV3。
可选地,在第一终端设备在步骤S330中确定第一重复次数为M的情况下,第一终端设备可以根 据M确定第一信道重复的个数N,以及每个第一信道重复对应的资源。
在第一种示例中,第一时间单元内第一信道重复的个数N为:
N=M;
其中,N个第一信道重复中除最后一个第一信道重复外的其他第一信道重复在第一时间单元上分别包括个时间子单元,最后一个第一信道重复在第一时间单元上包括个时间子单元。可选地,最后一个第一信道重复中的最后A mod M个时间子单元上可以映射有效数据,也可以映射空白数据,本申请不作限定。
在第二种示例中,第一时间单元内第一信道重复的个数N为:
N=M;
当i≤A mod M时,第i个第一信道重复在第一时间单元上包括个时间子单元;当i>A mod M时,第i个第一信道重复在第一时间单元上包括个时间子单元。
在第三种示例中,N个第一信道重复中除最后一个第一信道重复外的其他第一信道重复在第一时间单元上包括个时间子单元,当A mod M=0时,N=M,最后一个第一信道重复在第一时间单元上包括个时间子单元,当A mod M≠0时,N=M+1,最后一个第一信道重复在第一时间单元上包括A mod M个时间子单元。
可选地,第一终端设备可以根据A mod M的大小确定使用上述第一种示例或者第三种示例。例如,当A mod M大于或等于某个阈值时,使用第三种示例;或者,当A mod M小于或等于某个阈值时,使用第一种示例。
因此,基于上述实现方式,将A个时间子单元平均分成M份。可选地,若出现无法正好平均分配的情况,则可以为靠前的若干个第一信道重复额外分配一个时间子单元(第二种示例);或者,额外新增加一个第一信道重复(第三种示例,最后可能会有M+1个第一信道重复);或者,不额外增加第一信道重复,将剩余的A mod N个时间子单元分配给最后一个第一信道重复(第一种示例)。
需要指出的是,在重复方式3中,每个第一信道重复的前B个时间子单元,对应的PSSCH重复可以和PSCCH重复进行频分复用。例如,在每个第一重复信道中,前B个时间子单元上的PSCCH重复占据X个频域子单元,PSSCH重复占用剩余的频域子单元(排除DMRS、PTRS、CSI-RS等信号),每个第一信道重复中的其他时间子单元上,PSSCH重复占据整数个频域单元(除去DMRS、PTRS、CSI-RS等信号)。
如图9的(c)所示,PSSCH和PSCCH资源映射对应第一种示例,A=12,B=2,以M=5为例(例如通过步骤S330中的某种方式确定),则N=M=5。即该时隙内包括5个第一信道重复,PSCCH重复发送5次,PSSCH重复发送5次,也就是说,第一SCI重复发送5次(例如,SCI1重复1、SCI1重复2、SCI1重复3、SCI1重复4和SCI1重复5),第二SCI重复发送5次(例如,SCI2重复1、SCI2重复2、SCI2重复3、SCI2重复4和SCI2重复5),数据重复发送5次(例如,TB重复1、TB重复2、TB重复3、TB重复4和TB重复5)。具体地,第一个第一信道重复包括该时隙的符号1和2,第二个第一信道重复包括该时隙的符号3和4,第三个第一信道重复包括该时隙的符号5和6,第四个第一信道重复包括该时隙的符号7和8,第五个第一信道重复包括该时隙的符号9至符号12。
示例性的,在第一个第一信道重复中,第一个PSCCH重复包括该时隙的符号1和符号2的一部分PRB,第一个PSSCH重复包括符号1和符号2的另一部分PRB,即第一个PSSCH重复和第一个PSCCH重复在符号1和符号2上FDM;类似地,在第二个第一信道重复中,第二个PSSCH重复和第二个PSCCH重复在符号3和符号4上FDM;在第三个第一信道重复中,第三个PSSCH重复和第三个PSCCH重复在符号5和符号6上FDM;在第四个第一信道重复中,第四个PSSCH重复和第四个PSCCH重复在符号7和符号8上FDM;在第五个第一信道重复中,第五个PSSCH重复和第五个PSCCH重复在符号9和符号10上FDM,同时第五个PSSCH重复包括该时隙的符号8至符号12上的全部资源(排除DMRS、PTRS、CSI-RS等信号)。
如图9的(d)所示,PSSCH和PSCCH资源映射对应第二种示例,A=12,B=2,以M=5为例(例如通过步骤S330中的某种方式确定),则N=M=5。即该时隙内包括5个第一信道重复,PSCCH重复发送5次,PSSCH重复发送5次,也就是说,第一SCI重复发送5次(例如,SCI1重复1、SCI1重复2、SCI1重复3、SCI1重复4和SCI1重复5),第二SCI重复发送5次(例如,SCI2重复1、SCI2重 复2、SCI2重复3、SCI2重复4和SCI2重复5),数据重复发送三次(例如,TB重复1、TB重复2、TB重复3、TB重复4和TB重复5)。具体地,第一个第一信道重复包括该时隙的符号1至符号3,第二个第一信道重复包括该时隙的符号4至符号6,第三个第一信道重复包括该时隙的符号7和8,第四个第一信道重复包括该时隙的符号9和10,第五个第一信道重复包括该时隙的符号11和12。
如图9的(e)所示,PSSCH和PSCCH资源映射对应第三种示例,A=12,B=2,以M=5为例(例如通过步骤S330中的某种方式确定),则N=6。即该时隙内包括6个第一信道重复,PSCCH重复发送6次,PSSCH重复发送6次,也就是说,第一SCI重复发送6次(例如,SCI1重复1、SCI1重复2、SCI1重复3、SCI1重复4、SCI1重复5和SCI1重复6),第二SCI重复发送6次(例如,SCI2重复1、SCI2重复2、SCI2重复3、SCI2重复4、SCI2重复5和SCI2重复6),数据重复发送6次(例如,TB重复1、TB重复2、TB重复3、TB重复4、TB重复5和TB重复6)。具体地,第一个第一信道重复包括该时隙的符号1和2,第二个第一信道重复包括该时隙的符号3和4,第三个第一信道重复包括该时隙的符号5和6,第四个第一信道重复包括该时隙的符号7和8,第五个第一信道重复包括该时隙的符号9和10,第六个第一信道重复包括该时隙的符号11和12。
另外,如图9的(c)或(d)所示,SCI2重复1包含了用于指示TB重复1的RV0,SCI2重复2包含了用于指示TB重复2的RV2,SCI2重复3包含了用于指示TB重复3的RV3,SCI2重复4包含了用于指示TB重复4的RV1,SCI2重复5包含了用于指示TB重复5的RV0;如图9的(e)所示,额外增加SCI2重复6包含了用于指示TB重复6的RV2。
基于上述N个第一信道重复(N个PSCCH重复和N个PSSCH重复)在第一时间单元上的资源映射方法,下面对第一终端设备对于PSCCH重复的盲检进行说明。
在一种可能的实现方式中,第一SCI和/或第二SCI包括周期信息,第一终端设备根据该周期信息可以确定周期性资源,并可以进一步确定第一资源上包括至少两个候选PSCCH重复,该第一资源属于周期性资源。
可选地,该周期性资源可以包括一个或多个第一资源,第一终端设备在确定第一资源上包括至少两个候选PSCCH重复后,可以进一步对至少两个候选PSCCH重复进行盲检,也就是说,第一终端设备可以在第一周期资源上进行多个候选PSCCH重复的盲检,以解码得到对应的PSSCH。
示例性的,第一时间单元为时间单元n,第一SCI和/或第二SCI包括的周期信息(例如,预留周期)可以直接或间接地指示重复周期为P个时间单元,则第一周期资源是时间单元n+P,n+2P,n+3P….等上相同的频域资源。例如,第一时间单元可以是一个时隙,如时隙0,则第一终端设备在时隙中检测到第一SCI,并且确定时隙0中的PSCCH包括至少两个PSCCH重复,同时第一SCI指示周期为2,可以确定分别在时隙0、时隙2、时隙4、时隙6、时隙8等时隙中进行多个PSCCH重复的盲检。
在另一种可能的实现方式中,通过配置信息配置周期信息。例如资源池配置,或者第一终端设备与第二终端设备之间通过RRC信令配置周期资源,或者网络设备(或者基站)配置,则第一终端设备则可以根据配置信息确定需要在一个或多个第一资源上进行PSCCH重复的盲检。
可选地,当资源池配置信息中配置了该资源池中的PSCCH都包含了至少两个PSCCH重复时(具体实现方式可参考上述步骤S320和S330中关于资源池配置信息中指示该资源池中传输都包括至少两个PSSCH重复),第一终端设备在每个时隙都进行多个PSCCH重复的盲检。
可选地,当第一终端设备和第二终端设备之间配置了周期性的资源时(例如,第一信息),第一终端设备在对应的周期性资源上进行多个PSCCH重复的盲检。
需要说明的是,上述三种重复方式均是以一个时隙内重复发送为例。应理解,本申请技术方案同样适用于多个时隙内的重复发送。下面针对多个时间单元(例如,多个时隙)内的PSCCH和PSSCH重复发送进行具体说明。
可选地,第一终端设备接收来自第二终端设备的PSCCH和PSSCH,所在的第一时间单元可以是一个,也可以是多个。或者说,第一终端设备还可以在第二时间单元继续接收来自第二终端设备的PSCCH和PSSCH,该第二时间单元与第一时间单元是连续的、相邻的时间单元。也就是说,本申请实施例对PSCCH和PSSCH在时域上包括的时间单元的个数不作具体限定。
在一种可能的实现方式中,基于上述步骤S330的实现方式,第一终端设备可以同时确定第一重复次数M和第一重复长度L,从而确定多个连续的时间单元,即第一终端设备可以确定第二终端设备在 多个连续的时间单元重复发送PSSCH和PSCCH。
示例性的,当第一终端设备确定第一重复长度为4个时间子单元,第一重复次数为6,则第一终端设备可以确定接收到的PSCCH和PSSCH总共包含24个时间子单元,若每个时间单元中用于PSCCH和PSSCH传输的时间子单元个数为12时,则第一终端设备可以确定在连续的两个时间单元中(例如第一时间单元以及其后一个时间单元),每个时间单元中都存在着至少两个PSSCH重复。
在另一种可能的实现方式中,基于上述步骤S330的实现方式,第一终端设备还可以确定重复时间单元的个数。
在第一种示例中,第一SCI和/或第二SCI用于指示重复时间单元的个数。例如,第一SCI和/或第二SCI中携带指示信息,举例来说,“10”用于指示重复时间单元的个数为2,“11”用于指示重复时间单元的个数为3。对应的,第一终端设备在接收到PSCCH以及PSSCH时,能够根据在第一SCI和/或第二SCI中检测到的比特信息,确定重复时间单元的个数。
在第二种示例中,上述第一信息中的HARQ进程标识、优先级、传输资源可以关联重复时间单元的个数。例如,上述HARQ进程标识“1”、“2”、“3”、“4”和“5”分别对应重复时间单元的个数为1、2、3、4和5,或者优先级1,2和3分别对应重复时间单元的个数为1、2和3,或者“资源#1”和“资源#2”分别对应重复时间单元的个数为1和2。对应的,当第一终端设备在接收到PSCCH以及PSSCH后,能够根据第一信息中的优先级2确定重复时间单元的个数为2,即第一终端设备可以确定连续2个时间单元中的每个时间单元都有至少两个PSSCH重复;或者,当第一终端设备在接收到PSCCH以及PSSCH后,能够根据第一信息中的HARQ进程标识“3”确定重复时间单元的个数为3,即第一终端设备可以确定连续3个时间单元中的每个时间单元都有至少两个PSSCH重复。
在第三种示例中,重复时间单元的个数可以是通过配置信息确定的。其中,配置信息可以是资源池配置的;或者,配置信息是第一终端设备向第二终端设备发送的;或者,配置信息是第二终端设备向第一终端设备发送的;或者,配置信息是由网络设备(或者基站)为第一终端设备和第二终端设备配置的。
示例性的,配置信息是资源池配置的。例如,资源池的配置信息包括重复时间单元的个数,则第一终端设备在基于上述给出的实现方式确定接收的PSSCH在一个时间单元内包括至少两个PSSCH重复后,可进一步根据根据资源池的配置信息确定重复时间单元个数,进而也就能确定多个连续的时间单元中每个时间单元都包括至少两个PSSCH重复。
示例性的,配置信息是第二终端设备向第一终端设备发送的。例如,在第二终端设备在第一时间单元上向第一终端设备发送PSCCH和PSSCH之前,第二终端设备向第一终端设备发送配置信息,该配置信息用于指示重复时间单元个数,则第一终端设备可以根据接收的PSSCH中第二SCI的Source ID信息确定该PSCCH和PSSCH是第二终端设备发送的,进一步根据之前接收来自第二终端设备的配置信息可以确定重复时间单元个数,进而也就能确定多个连续的时间单元中每个时间单元都包括至少两个PSSCH重复。
示例性的,配置信息是第一终端设备向第二终端设备发送的。例如,在第一终端设备在第一时间单元上接收来自第二终端设备的PSCCH和PSSCH之前,第一终端设备向第二终端设备发送配置信息,该配置信息用于指示重复时间单元个数,则第一终端设备可以根据接收到的PSSCH中第二SCI的Source ID信息确定该PSCCH和PSSCH是第二终端设备发送的,进一步根据之前向第二终端设备发送的配置信息可以确定重复时间单元个数,进而也就能确定多个连续的时间单元中每个时间单元都包括至少两个PSSCH重复。
示例性的,配置信息是基站为第一终端设备和第二终端设备配置的。例如,基站的配置信息包括重复时间单元个数,则第一终端设备在基于上述给出的实现方式确定接收的PSSCH包括至少两个PSSCH重复后,即可进一步根据基站的配置信息确定重复时间单元个数,进而也就能确定多个连续的时间单元中每个时间单元都包括至少两个PSSCH重复。
可选地,基于上述确定的多个连续的时间单元,上述重复方式1、2和3中提供的方案可以适用于多个连续的时间单元上的映射、接收和发送。其中,每个时间单元上的资源映射方式相同,例如PSSCH和PSSCH在连续的第一时间单元和第二时间单元传输,则第二时间单元上的资源映射方式与在第一时间单元上的资源映射方式相同,具体实现方式可参考上述重复方式1、2和3中示出的方式,为了简洁, 此处不再过多赘述。需要指出的是,在上述重复映射方式2中,第二时间单元(以及之后的第三时间单元等时间单元)上的PSSCH中可以不包括第二SCI。
图10是本申请实施例提供的一种多时隙的资源重复发送的结构示意图,基于图6的(b)所示的资源映射方式进行说明,如图10所示,PSSCH和PSCCH在两个连续时隙(例如时隙1和时隙2)上重复发送。具体地,PSSCH重复分别在时隙1和时隙2上发送两次,共4个PSSCH重复,第一个PSSCH重复包括时隙1的符号1至符号6,第二个PSSCH重复包括时隙1的符号7至符号12,第三个PSSCH重复包括时隙2的符号1至符号6,第四个PSSCH重复包括时隙2的符号7至符号12。其中,PSCCH分别在时隙1和时隙2的符号1和符号2上发送一次,用于指示资源预留等信息。
应理解,当PSSCH和PSCCH在多个时隙(例如,时隙1和时隙2)中重复发送时,第二SCI可以仅在第一个时隙(例如,时隙1)的第一个PSSCH重复中发送一次,在第2个或之后的时隙(例如,时隙2)中可以不发送第二SCI。
可选地,基于上述多个时间单元的指示,第一重复次数可以是多个时隙中的总重复次数(例如,4次),也可以是在一个时隙中的重复次数(例如,2次),每个时隙中的PSSCH和PSCCH资源的映射方式类似。
需要说明的是,上述PSSCH和PSCCH资源映射方法均是以一个时隙或多个时隙内,同一频域资源内进行的重复发送。应理解,以上提供的实现方式同样适用于在一个或多个时隙内实现多个重复跳频发送。下面以一个时间单元(例如,一个时隙)内的两个PSSCH重复的跳频发送进行示例性说明。
可选地,第一SCI和/或第二SCI用于指示N个PSSCH重复中的至少两个PSSCH重复通过跳频方式发送。
在一种可能的实现方式中,第一SCI和/或第二SCI还包括跳频指示信息,跳频指示信息用于指示至少两个PSSCH重复中的每个PSSCH重复包括的频域资源位置。
示例性的,跳频指示信息可以是至少两个PSSCH重复所在的频域资源位置(例如,跳频的pattern),也可以是包括第一个PSSCH重复所在的频域资源位置以及第二个PSSCH重复相对于第一个PSSCH重复的频域资源位置的偏移值(例如,频域offset),例如可以是以子信道为粒度的频域offset。可选地,频域offset的数量可以是一个或多个,本申请对此不作限定。例如,第一SCI中的FRA字段用于指示至少两个重复的跳频指示信息,对应的,第一终端设备可以根据第一SCI确定每个PSSCH重复的频域位置。
在另一种可能的实现方式中,跳频指示信息是通过RRC配置信息配置的。
示例性的,至少两个PSSCH重复中的每个PSSCH重复包括的频域资源位置是资源池配置的;或者,至少两个PSSCH重复中的每个PSSCH重复包括的频域资源位置是根据第一终端设备向第二终端设备发送的第一配置信息确定的;或者,至少两个PSSCH重复中的每个PSSCH重复包括的频域资源位置是根据第一终端设备接收来自第二终端设备的第二配置信息确定的;或者,至少两个PSSCH重复中的每个PSSCH重复包括的频域资源位置是网络设备配置的。
示例性的,配置信息是资源池配置的。例如,资源池的配置信息包括跳频指示信息,则第一终端设备在基于上述给出的实现方式确定接收的PSSCH在一个时间单元内包括至少两个PSSCH重复后,可进一步根据根据资源池的配置信息确定至少两个PSSCH重复为跳频发送,例如在第一时间单元内第一个PSSCH重复在子信道1内发送,第二个PSSCH重复在子信道2内发送。
示例性的,配置信息是第二终端设备向第一终端设备发送的。例如,在第二终端设备在第一时间单元上向第一终端设备发送PSCCH和PSSCH之前,第二终端设备向第一终端设备发送配置信息,该配置信息用于指示跳频指示信息,则第一终端设备可以根据接收的PSSCH中第二SCI的Source ID信息确定该PSCCH和PSSCH是第二终端设备发送的,进一步根据配置信息可以确定至少两个PSSCH重复为跳频发送,例如在第一时间单元内第一个PSSCH重复在子信道1内发送,第二个PSSCH重复在子信道2内发送。或者,配置信息是第一终端设备向第二终端设备发送的,根据配置信息可以确定至少两个PSSCH重复为跳频发送的具体实现方式类似。
示例性的,配置信息是基站为第一终端设备和第二终端设备配置的。例如,基站的配置信息包括跳频指示信息,则第一终端设备在基于上述给出的实现方式确定接收的PSSCH包括至少两个PSSCH重复后,即可进一步根据基站的配置信息确定至少两个PSSCH重复为跳频发送,例如在第一时间单元 内第一个PSSCH重复在子信道1内发送,第二个PSSCH重复在子信道2内发送。
图11是本申请实施例提供的一种时隙内多个重复跳频发送的结构示意图。基于图4的(b)所示的资源映射方式进行说明,如图11所示,在时隙1内包括两个PSSCH重复,其中第一个PSSCH重复位于时隙1的符号1至符号6的子信道0内,第二个PSSCH重复位于该时隙符号7至符号12的子信道2内。可以理解,跳频指示信息可以是第一个PSSCH重复位于子信道0,第二个PSSCH重复相对于第一个PSSCH重复的offset为2;或者,跳频指示信息可以直接指示第一个PSSCH重复位于子信道0,以及第二个PSSCH重复位于子信道2,二者频域offset为2等。
需要说明的是,以上仅是为便于理解方案给出的示例,不应构成对本申请技术方案的任何限定。另外,上述多时隙内重复发送,周期性地重复发送,以及多个重复的跳频发送等方案可以组合实现,也可以单独实现,本申请对此不作具体限定。例如,在图11中,PSCCH重复可以包括4个,第三个PSCCH重复可以位于时隙2的子信道0,第四个PSCCH重复可以位于时隙2的子信道2;或者,第三个PSCCH重复可以位于时隙2的子信道4,第四个PSCCH重复可以位于时隙2的子信道6,等等,具体实现方式可参考上述相关描述,为了简洁,此处不再赘述。
可选地,在执行步骤S320之前,第二终端设备也可以确定N个PSSCH重复和/或N个PSCCH重复对应的资源映射位置,具体实现方式可参考上述第一终端设备确定N个PSSCH重复和/或N个PSCCH重复对应的资源映射位置的方式,为了简洁,此处不再赘述。
可选地,当第一终端设备和第二终端设备之间采用上述重复方式3时,在步骤S320之前,第二终端设备也可以确定N个第一信道重复对应的资源映射位置,具体实现方式可参考上述第一终端设备确定N个第一信道重复对应的资源映射位置的方式,为了简洁,此处不再赘述。
根据本申请提供的方案,应用于SL通信系统,通过在终端设备之间指示时隙内重复发送的资源的映射情况,增强D2D通信的鲁棒性,提升传输可靠性,降低传输时延。
需要说明的是,以上图4至图11给出的PSSCH和PSCCH映射方法,均是以时隙中不包括PSFCH符号为例进行说明的,应理解,本申请技术方案同样适用于包括PSFCH符号的时隙结构,具体实现方式与上述方案类似。区别在于将时隙(例如,包括14个符号)中PSFCH符号(例如,包括3个额外的符号:AGC符号、PSFCH符号和GP符号)排除,将剩余的9个符号用于PSSCH和PSCCH重复发送即可。另外,该实现方式同样可以延伸到多时隙内重复发送,以及跳频重复发送等方案,具体实现方式与上述方案类似,为了简洁,此处不再过多赘述。
上文结合图1至图11,详细描述了本申请的通信方法侧实施例,下面将结合图12和图13,详细描述本申请的通信装置侧实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图12是本申请实施例提供的通信装置1000的示意性框图。如图12所示,该装置1000可以包括收发单元1010和处理单元1020。收发单元1010可以与外部进行通信,处理单元1020用于进行数据处理,收发单元1010还可以称为通信接口或收发单元。
在一种可能的设计中,该装置1000可实现对应于上文方法实施例中的第一终端设备(例如,发送UE1)执行的步骤或者流程,其中,处理单元1020用于执行上文方法实施例中第一终端设备的处理相关的操作,收发单元1010用于执行上文方法实施例中第一终端设备的收发相关的操作。
在另一种可能的设计中,该装置1000可实现对应于上文方法实施例中的第二终端设备(例如,接收UE2)执行的步骤或者流程,其中,处理单元1020用于执行上文方法实施例中第二终端设备的处理相关的操作,收发单元1010用于执行上文方法实施例中第二终端设备的收发相关的操作。
应理解,这里的设备1000以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,设备1000可以具体为上述实施例中的发送端,可以用于执行上述方法实施例中与发送端对应的各个流程和/或步骤,或者,设备1000可以具体为上述实施例中的接收端,可以用于执行上述方法实施例中与接收端对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的设备1000具有实现上述方法中发送端所执行的相应步骤的功能,或者,上述各个 方案的设备1000具有实现上述方法中接收端所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。在本申请的实施例,图12中的装置可以是前述实施例中的接收端或发送端,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口。处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图13是本申请实施例提供的通信装置2000的示意性框图。如图13所示,该装置2000包括处理器2010和收发器2020。其中,处理器2010和收发器2020通过内部连接通路互相通信,该处理器2010用于执行指令,以控制该收发器2020发送信号和/或接收信号。
可选地,该装置2000还可以包括存储器2030,该存储器2030与处理器2010、收发器2020通过内部连接通路互相通信。该存储器2030用于存储指令,该处理器2010可以执行该存储器2030中存储的指令。
在一种可能的实现方式中,装置2000用于实现上述方法实施例中的第一终端设备(例如,发送UE1)对应的各个流程和步骤。
在另一种可能的实现方式中,装置2000用于实现上述方法实施例中的第二终端设备(例如,接收UE2)对应的各个流程和步骤。
应理解,设备2000可以具体为上述实施例中的发送端或接收端,也可以是芯片或者芯片系统。对应的,该收发器2020可以是该芯片的收发电路,在此不做限定。具体地,该设备2000可以用于执行上述方法实施例中与发送端或接收端对应的各个步骤和/或流程。
可选地,该存储器2030可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器2010可以用于执行存储器中存储的指令,并且当该处理器2010执行存储器中存储的指令时,该处理器2010用于执行上述与发送端或接收端对应的方法实施例的各个步骤和/或流程。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。本申请实施例中的处理器可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动 态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图14是本申请实施例提供的芯片系统3000的示意性框图。如图14所示,该芯片系统3000(或者也可以称为处理系统)包括逻辑电路3010以及输入/输出接口(input/output interface)3020。
其中,逻辑电路3010可以为芯片系统3000中的处理电路。逻辑电路3010可以耦合连接存储单元,调用存储单元中的指令,使得芯片系统3000可以实现本申请各实施例的方法和功能。输入/输出接口3020,可以为芯片系统3000中的输入输出电路,将芯片系统3000处理好的信息输出,或将待处理的数据或信令信息输入芯片系统3000进行处理。
作为一种方案,该芯片系统3000用于实现上文各个方法实施例中由终端设备执行的操作。
例如,逻辑电路3010用于实现上文方法实施例中由第一终端设备执行的处理相关的操作,如图3所示实施例中第一终端设备执行的处理相关的操作;输入/输出接口3020用于实现上文方法实施例中由第一终端设备执行的发送和/或接收相关的操作,如图3所示实施例中的第一终端设备执行的发送和/或接收相关的操作。
再例如,逻辑电路3010用于实现上文方法实施例中由第二终端设备执行的处理相关的操作,如图3所示实施例中第二终端设备执行的处理相关的操作;输入/输出接口3020用于实现上文方法实施例中由第二终端设备执行的发送和/或接收相关的操作,如图3所示实施例中的第二终端设备执行的发送和/或接收相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由终端设备(如第一终端设备,又如第二终端设备)执行的方法的计算机指令。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由终端设备(如第一终端设备,又如第二终端设备)执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文各实施例中的第一终端设备和第二终端设备。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者装置等)执行本申请各个实 施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种通信方法,其特征在于,包括:
    第一终端设备在第一时间单元上接收来自第二终端设备的物理侧行控制信道PSCCH和物理侧行共享信道PSSCH,所述PSSCH包括至少两个PSSCH重复;
    所述第一终端设备确定第一重复次数和/或第一重复长度;
    所述第一终端设备根据所述第一重复次数和/或所述第一重复长度,确定所述PSSCH包括N个PSSCH重复以及所述N个PSSCH重复分别占据的资源位置,N为大于或等于2的整数,所述PSCCH包括第一侧行链路控制信息SCI,所述PSSCH包括第二SCI。
  2. 根据权利要求1所述的方法,其特征在于,所述第一SCI和/或所述第二SCI用于指示所述PSSCH包括至少两个PSSCH重复。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收来自所述第二终端设备的第一信息,所述第一信息指示所述第二终端设备向所述第一终端设备发送的PSSCH包括至少两个PSSCH重复;
    所述第一终端设备根据所述第一信息,确定所述PSSCH包括至少两个PSSCH重复。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述第二终端设备发送第一信息,所述第一信息指示所述第二终端设备向所述第一终端设备发送的PSSCH包括至少两个PSSCH重复;
    所述第一终端设备根据所述第一信息,确定所述PSSCH包括至少两个PSSCH重复。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一信息包括以下一项或多项:
    X个侧行混合自动重传请求HARQ进程标识的信息,X为大于或等于1的整数;
    X个优先级的信息;
    X个传输资源的信息。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第一SCI和/或所述第二SCI包括第一侧行HARQ进程标识的信息,所述第一侧行HARQ进程标识属于所述X个侧行HARQ进程标识,所述第一终端设备根据所述第一信息,确定所述PSSCH包括至少两个PSSCH重复,包括:
    所述第一终端设备根据所述第一侧行HARQ进程标识的信息,确定所述PSSCH包括至少两个PSSCH重复;或者,
    所述第一SCI和/或所述第二SCI包括第一优先级的信息,所述第一优先级属于所述X个优先级,所述第一终端设备根据所述第一信息,确定所述PSSCH包括至少两个PSSCH重复,包括:
    所述第一终端设备根据所述第一优先级的信息,确定所述PSSCH包括至少两个PSSCH重复;或者,
    所述第一SCI和/或所述第二SCI包括第一传输资源的信息,所述第一传输资源属于所述X个传输资源,所述第一终端设备根据所述第一信息,确定所述PSSCH包括至少两个PSSCH重复,包括:
    所述第一终端设备根据所述第一传输资源的信息,确定所述PSSCH包括至少两个PSSCH重复。
  7. 根据权利要求5所述的方法,其特征在于,所述第一信息还包括以下一项或多项:
    X个重复次数和/或X个重复长度,与所述X个侧行HARQ进程标识之间的关联关系;
    X个重复次数和/或X个重复长度,与所述X个优先级之间的关联关系;
    X个重复次数和/或X个重复长度,与所述X个传输资源之间的关联关系。
  8. 根据权利要求7所述的方法,其特征在于,所述第一终端设备确定第一重复次数和/或第一重复长度,包括:
    所述第一SCI和/或所述第二SCI包括第一侧行HARQ进程标识的信息,所述第一终端设备根据所述第一信息,确定所述X个重复次数和/或所述X个重复长度中与所述第一侧行HARQ进程标识关联的重复次数和/或重复长度为所述第一重复次数和/或所述第一重复长度;或者,
    所述第一SCI和/或所述第二SCI包括第一优先级的信息,所述第一终端设备根据所述第一信息,确定所述X个重复次数和/或所述X个重复长度中与所述第一优先级关联的重复次数和/或重复长度为 所述第一重复次数和/或所述第一重复长度;或者,
    所述第一SCI和/或所述第二SCI包括第一传输资源的信息,所述第一终端设备根据所述第一信息,确定所述X个重复次数和/或所述X个重复长度中与所述第一传输资源关联的重复次数和/或重复长度为所述第一重复次数和/或所述第一重复长度;
    其中,所述第一重复次数属于所述X个重复次数,所述第一重复长度属于所述X个重复长度。
  9. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一SCI和/或所述第二SCI包括所述第一重复次数和/或所述第一重复长度的指示信息,所述第一终端设备确定第一重复次数和/或第一重复长度,包括:
    所述第一终端设备根据所述第一SCI和/或所述第二SCI,确定所述第一重复次数和/或所述第一重复长度。
  10. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一重复次数和/或所述第一重复长度是根据配置信息确定的;
    其中,所述配置信息是资源池配置的;或者,所述配置信息是所述第一终端设备向所述第二终端设备发送的;或者,所述配置信息是所述第二终端设备向所述第一终端设备发送的。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据所述第一重复次数和所述第一重复长度,确定多个连续的时间单元,所述多个连续的时间单元包括所述第一时间单元,所述多个连续的时间单元中的每个时间单元包括至少两个PSSCH重复。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述PSSCH包括N个PSSCH重复,所述N个PSSCH重复中的每个PSSCH重复包括一个第二SCI重复和一个数据重复。
  13. 根据权利要求12所述的方法,其特征在于,在所述第一终端设备确定所述第一重复长度包括L个时间子单元的情况下,所述方法还包括:
    所述第一终端设备根据第一方式,确定第一PSSCH重复在时域上包括A个时间子单元中的第1个时间子单元至第B+L个时间子单元;或者,
    所述第一终端设备根据第二方式,确定所述第一PSSCH重复在时域上包括所述A个时间子单元中的第1个时间子单元至第L个时间子单元;
    其中,所述第一PSSCH重复为所述N个PSSCH重复中的第一个PSSCH重复,A为所述PSSCH和所述PSCCH在所述第一时间单元中包括的时间子单元的个数,B为所述PSCCH在所述第一时间单元包括的时间子单元的个数,L和B为大于或等于1且小于或等于A的整数。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据所述PSCCH包括的频域子单元,确定使用所述第一方式或所述第二方式。
  15. 根据权利要求14所述的方法,其特征在于,所述第一终端设备根据所述PSCCH包括的频域子单元,确定使用所述第一方式或所述第二方式,包括:
    在所述PSCCH包括的频域子单元的数量大于或等于第一阈值的情况下,所述第一终端设备确定使用所述第一方式;
    在所述PSCCH包括的频域子单元的数量小于所述第一阈值的情况下,所述第一终端设备确定使用所述第二方式。
  16. 根据权利要求1至11中任一项所述的方法,其特征在于,所述PSSCH包括N个PSSCH重复,所述N个PSSCH重复中的第一个PSSCH重复包括一个第二SCI和一个数据重复,所述N个PSSCH重复中第二个PSSCH重复至第N个PSSCH重复分别包括一个数据重复。
  17. 根据权利要求1至11中任一项所述的方法,其特征在于,所述PSCCH包括N个PSCCH重复,所述PSSCH包括N个PSSCH重复,所述N个PSSCH重复中的每个PSSCH重复包括一个第二SCI重复和一个数据重复,所述N个PSCCH重复中的每个PSCCH重复包括一个第一SCI重复。
  18. 根据权利要求17所述的方法,其特征在于,所述第一SCI和/或所述第二SCI包括周期信息,所述方法还包括:
    所述第一终端设备根据所述周期信息确定周期性资源,所述周期性资源包括第一资源;
    所述第一终端设备确定所述第一资源上包括至少两个候选PSCCH重复。
  19. 根据权利要求12至18中任一项所述的方法,其特征在于,所述第一SCI和/或所述第二SCI用于指示所述N个PSSCH重复中的至少两个PSSCH重复通过跳频方式发送。
  20. 根据权利要求1至19中任一项所述的方法,其特征在于,所述PSCCH和所述PSSCH在时域上包括所述第一时间单元内除自动增益控制时间子单元、间隔时间子单元,以及物理侧行反馈信道PSFCH所在时间子单元外的所有时间子单元。
  21. 一种通信方法,其特征在于,包括:
    第二终端设备确定第一重复次数和/或第一重复长度;
    所述第二终端设备根据所述第一重复次数和/或所述第一重复长度,确定物理侧行共享信道PSSCH包括N个PSSCH重复以及所述N个PSSCH重复分别占据的资源位置,N为大于或等于2的整数;
    所述第二终端设备在第一时间单元上向第一终端设备发送物理侧行控制信道PSCCH和所述PSSCH,所述PSSCH包括至少两个PSSCH重复,所述PSCCH包括第一侧行链路控制信SCI,所述PSSCH包括第二SCI。
  22. 一种通信装置,其特征在于,包括用于执行权利要求1至20中任一项所述的方法的模块或单元。
  23. 一种通信装置,其特征在于,包括用于执行权利要求21中任一项所述的方法的模块或单元。
  24. 一种通信装置,其特征在于,所述装置包括处理器,所述处理器与存储器耦合,所述存储器存储有指令,所述指令被所述处理器运行时,使得所述处理器执行如权利要求1至20中任一项所述的方法,或者使得所述处理器执行如权利要求21所述的方法。
  25. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的通信装置执行如权利要求1至20中任一项所述的方法,或者使得安装有所述芯片的通信装置执行如权利要求21所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至20中任一项所述的方法,或者使得所述计算机执行如权利要求21所述的方法。
  27. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1至20中任一项所述的方法,或者实现如权利要求21所述的方法。
PCT/CN2023/118511 2022-09-30 2023-09-13 通信方法和装置 WO2024067092A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211217533.6 2022-09-30
CN202211217533 2022-09-30
CN202211634750.5A CN117811715A (zh) 2022-09-30 2022-12-19 通信方法和装置
CN202211634750.5 2022-12-19

Publications (1)

Publication Number Publication Date
WO2024067092A1 true WO2024067092A1 (zh) 2024-04-04

Family

ID=90428738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118511 WO2024067092A1 (zh) 2022-09-30 2023-09-13 通信方法和装置

Country Status (2)

Country Link
CN (1) CN117811715A (zh)
WO (1) WO2024067092A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534750A (zh) * 2018-08-09 2021-03-19 鸿颖创新有限公司 用于在无线通信系统中执行侧行链路通信的方法和设备
CN114342307A (zh) * 2019-07-02 2022-04-12 三星电子株式会社 用于侧链路发送的资源选择方法和装置
US20220264585A1 (en) * 2021-02-18 2022-08-18 Qualcomm Incorporated Sidelink feedback channel repetitions
US20220264529A1 (en) * 2021-02-18 2022-08-18 Qualcomm Incorporated Sidelink feedback channel repetitions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534750A (zh) * 2018-08-09 2021-03-19 鸿颖创新有限公司 用于在无线通信系统中执行侧行链路通信的方法和设备
CN114342307A (zh) * 2019-07-02 2022-04-12 三星电子株式会社 用于侧链路发送的资源选择方法和装置
US20220264585A1 (en) * 2021-02-18 2022-08-18 Qualcomm Incorporated Sidelink feedback channel repetitions
US20220264529A1 (en) * 2021-02-18 2022-08-18 Qualcomm Incorporated Sidelink feedback channel repetitions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on channel access mechanism for sidelink on unlicensed spectrum", 3GPP DRAFT; R1-2203713, vol. RAN WG1, 29 April 2022 (2022-04-29), pages 1 - 15, XP052153133 *

Also Published As

Publication number Publication date
CN117811715A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
CN108029120B (zh) 用于为低复杂度窄带终端指示对随机接入过程中的harq消息分配的资源的方法
JP2022522390A (ja) ユーザ装置及び無線通信方法
US20210282118A1 (en) Radio communication method and radio communication device
WO2020143732A1 (zh) 发送和接收反馈信道的方法以及装置
WO2021000679A1 (zh) 一种通信方法及设备
JP7460628B2 (ja) 端末、送信方法及び集積回路
JP2015503869A (ja) アップリンクでの制御信号に関する通信リソース割当
WO2021027815A1 (zh) 一种反馈信息传输方法及装置
CN114788204B (zh) Harq进程的状态确定方法、装置及设备
CN112997433B (zh) 用于harq传输的方法以及通信设备
WO2022011699A1 (zh) 一种通信方法及侧行设备
CN116548039A (zh) 无线通信的方法和终端设备
WO2020063596A1 (zh) 一种通信方法及装置
WO2024067092A1 (zh) 通信方法和装置
CN109831824B (zh) 用于上行捎带传输的方法、装置及系统
WO2024061069A1 (zh) 侧行链路通信的方法及装置
WO2024061076A1 (zh) 侧行链路通信的方法及装置
WO2024061072A1 (zh) 通信方法和装置
US20240073868A1 (en) Wireless communication method, and device
WO2024007981A1 (zh) 信息传输的方法和通信装置
WO2023060559A1 (zh) 无线通信的方法和终端设备
WO2024067429A1 (zh) 通信方法及通信装置
WO2024051682A1 (zh) 资源确定的方法和装置
WO2023011218A1 (zh) 一种资源共享方法及通信装置
WO2022222106A1 (zh) 传输物理侧行反馈信道psfch的方法和终端设备