WO2024061069A1 - 侧行链路通信的方法及装置 - Google Patents

侧行链路通信的方法及装置 Download PDF

Info

Publication number
WO2024061069A1
WO2024061069A1 PCT/CN2023/118454 CN2023118454W WO2024061069A1 WO 2024061069 A1 WO2024061069 A1 WO 2024061069A1 CN 2023118454 W CN2023118454 W CN 2023118454W WO 2024061069 A1 WO2024061069 A1 WO 2024061069A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
resource
information
psfch
power
Prior art date
Application number
PCT/CN2023/118454
Other languages
English (en)
French (fr)
Inventor
吴越
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024061069A1 publication Critical patent/WO2024061069A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present application relates to the field of sidelink communications, and more specifically, to a method and device for sidelink communications.
  • SBFD subband non-overlapping full duplex
  • UL uplink
  • UL downlink
  • DL downlink
  • SBFD hybrid automatic repeat request
  • SL is different from UL and DL.
  • SL is a link technology introduced mainly to support direct communication between terminal devices. Then, if SBFD technology is introduced into SL, how the terminal device selects resources is a problem to be solved.
  • This application provides a sidelink communication method and communication device. After introducing SBFD technology into SL, it provides a terminal equipment resource selection method to reduce self-interference caused by the terminal equipment transmitting and receiving data at the same time.
  • a method of sidelink communication is provided.
  • the method can be executed by a terminal device, or can also be executed by a component (such as a chip or circuit) of the terminal device. This is not limited. For the convenience of description, , the following description takes execution by the first terminal device as an example.
  • the method may include: the first terminal device sending first information to the second terminal device, the first information indicating whether the first terminal device uses the first resource as a receiving resource, wherein the first resource is the second
  • the resources are resources that overlap in time domain and are adjacent in frequency domain.
  • the second resource is a reserved transmission resource of the first terminal device, and the first terminal device is a subband non-overlapping full-duplex device.
  • the first terminal device can determine whether to use resources that overlap in time domain and are adjacent in frequency domain with the reserved sending resources of the first terminal device as receiving resources according to the actual communication situation, and indicate to other devices, so that When other devices send data to the first terminal device, they may exclude candidate resources according to the instructions of the first terminal device.
  • the first terminal device may indicate to other devices not to use the first resource as a receiving device. resources, thereby reducing self-interference caused by the first terminal device sending and receiving data at the same time.
  • the first terminal device determines whether to use the resources that overlap with the reserved transmission resources of the first terminal device in the time domain and are adjacent in the frequency domain as the receiving resources according to the actual communication situation, and can also realize the dynamic configuration of the guard band (GB) between the transceiver resources (such as the transceiver subband) in the process of resource selection, improve the flexibility of GB configuration, and reduce unnecessary resource waste.
  • the resources that overlap with the reserved transmission resources of the first terminal device in the time domain and are adjacent in the frequency domain can be considered as a guard band.
  • the receiving resources can be used as the guard band between the reserved transmission resources and other resources (such as other receiving resources); if the first terminal device determines to use the resources that overlap with the reserved transmission resources of the first terminal device in the time domain and are adjacent in the frequency domain as the receiving resources according to the actual communication situation, then it is equivalent to that the guard band between the reserved transmission resources and the receiving resources can be set without setting the guard band. It can be seen from this that through the embodiments of the present application, it is also possible to realize the dynamic configuration of the guard band between the transceiver resources (such as the transceiver subband) in the process of resource selection.
  • the first information is carried in sideline control information.
  • the sidelink control information is carried on a physical sidelink control channel or a physical sidelink shared channel.
  • the sidelink control information further indicates the second resource.
  • the first terminal device carries the first information and the information of the second resource in the same sidelink control information. In this way, it is convenient for other devices to obtain the information of the first resource indicated in the first information based on the sidelink control information. Location.
  • the method further includes: the first terminal device sending second information to the second terminal device, the second information indicating that the first terminal device The identification of the terminal device.
  • the first terminal device can also indicate the identifier of the first terminal device to other devices, so that other devices can identify which terminal device is mentioned in the first information based on the identifier of the first terminal device, and then other devices can determine candidate resources based on the first information when sending data to the terminal device.
  • the method before the first terminal device sends the first information to the second terminal device, the method further includes: the first terminal device determines the first terminal device. a message.
  • the first terminal device determines the first information, including: the first terminal device determines the first information according to at least one of the following: First power and second power, wherein the first power is the transmission power of the first terminal equipment on the second resource, and the second power is the transmission power of the first terminal equipment on the first resource. Residual self-interference power on the resource.
  • the first terminal device may determine the second power through the first power and the ratio of the first power to the second power.
  • the ratio of the first power to the second power may be preconfigured, or obtained by measurement by the first terminal device.
  • the first terminal device determines the first information according to at least one of the following: first power, second power, including: in the first power If the value is greater than the first threshold, the first information determined by the first terminal device indicates that the first terminal device does not use the first resource as a receiving resource, or when the first power is less than or equal to In the case of the first threshold, the first information determined by the first terminal device indicates that the first terminal device uses the first resource as a receiving resource; or, when the second power is greater than the second In the case of a threshold, the first information determined by the first terminal device indicates that the first terminal device does not use the first resource as a receiving resource, or when the second power is less than or equal to the first In the case of two thresholds, the first information determined by the first terminal device instructs the first terminal device to use the first resource as a receiving resource.
  • the first terminal device preferentially determines the first information through the second power.
  • the first terminal device does not use the first resource as a receiving resource, including: the candidate resource set for receiving data by the first terminal device does not include the first resource.
  • the method further includes: the first terminal device determining a third resource, where the third resource is a receiving resource of the first terminal device; The first terminal device determines whether to send data on a fourth resource, where the fourth resource is a resource in which the third resource overlaps in time domain and is adjacent in frequency domain.
  • the first terminal device can select, according to the reception resources of the first terminal device, whether to send data on resources that overlap the reception resources in the time domain and are adjacent in the frequency domain.
  • the guard band between the transmission and reception resources (such as the transmission and reception subbands) can be dynamically configured during the resource selection process, but also the self-interference caused by the terminal device transmitting and receiving data at the same time can be reduced. For example, when the first terminal device sends data on the fourth resource, causing greater interference to the first terminal device receiving data on the third resource, the first terminal device may not send data on the fourth resource.
  • the first terminal device determines whether to send data on the fourth resource, including: the first terminal device determines whether to send data on the fourth resource according to at least one of the following: Transmitting data on four resources: third power and fourth power; wherein, the third power is the sending power of the first terminal device on the fourth resource, and the fourth power is the sending power of the first terminal device The residual self-interference power of the device on the third resource.
  • the first terminal device determines whether to send data on the fourth resource according to at least one of the following: a third power, a fourth power, including: If the third power is greater than a third threshold, the first terminal device determines not to send data on the fourth resource, or if the third power is less than or equal to the third threshold, The first terminal device determines to send data on the fourth resource; or, if the fourth power is greater than a fourth threshold, the first terminal device determines not to send data on the fourth resource, Alternatively, if the fourth power is less than or equal to the fourth threshold, the first terminal device determines to send data on the fourth resource.
  • the first terminal device determines whether to send data on the fourth resource by using the fourth power first.
  • the first terminal device not sending data on the fourth resource includes: the candidate resource set for the first terminal device to send data does not include the fourth resource.
  • a method for side link communication is provided.
  • the method can be executed by a terminal device, or can also be executed by a component (such as a chip or circuit) of the terminal device.
  • a component such as a chip or circuit
  • the method may include: the second terminal device receiving first information from the first terminal device, the first information indicating whether the first terminal device uses the first resource as a receiving resource, wherein the first resource is the Two resources that overlap in time domain and are adjacent in frequency domain, the second resource is the reserved transmission resource of the first terminal device, and the first terminal device is a subband non-overlapping full-duplex device; The second terminal device determines a set of candidate resources for sending data to the first terminal device based on the first information.
  • the sending of data to the first terminal device is The set of candidate resources does not include the first resource.
  • the method further includes: the second terminal device receiving second information from the first terminal device, the second information indicating that the first terminal device An identification of a terminal device; the second terminal device determines a set of candidate resources for sending data to the first terminal device based on the first information, including: the second terminal device determines a set of candidate resources for sending data to the first terminal device based on the first information and the The second information determines a set of candidate resources for sending data to the first terminal device.
  • a side link communication method is provided.
  • the method can be executed by a terminal device, or can also be executed by a component (such as a chip or circuit) of the terminal device.
  • a component such as a chip or circuit
  • the following description takes execution by the first terminal device as an example.
  • the method may include: the first terminal device sending third information to the second terminal device, the third information indicating that the first physical sidelink feedback channel PSFCH is a channel for the first terminal device to receive or send feedback information,
  • the first PSFCH is one of at least two PSFCHs, and the first terminal device is a subband non-overlapping full-duplex device; wherein the third information indicates that the first PSFCH receives feedback for the first terminal device.
  • information channel the first terminal device receives the feedback information on the first PSFCH; or the third information indicates that the first PSFCH is a channel for the first terminal device to send feedback information, and the third terminal device receives the feedback information on the first PSFCH.
  • a terminal equipment sends the feedback information on the first PSFCH.
  • each of the at least two PSFCHs maps the PSSCH of the entire resource pool.
  • the PSFCH channel can be divided into at least two PSFCHs (or at least two groups) in the frequency domain.
  • the first terminal device can choose to send feedback information and receive feedback information on different PSFCHs.
  • the first terminal device sends feedback information on one PSFCH and receives feedback information on another PSFCH. This can reduce conflicts and self-interference problems that occur when the first terminal device sends and receives feedback information on the same PSFCH.
  • the third information is carried in sideline control information, and the feedback information is used to feed back the reception status of data scheduled by the sideline control information.
  • each of the at least two PSFCHs includes a plurality of frequency domain units in the frequency domain, and the resources occupied by each of the at least two PSFCHs are Overlap in the time domain and separated by at least one frequency domain unit in the frequency domain.
  • the method further includes: the first terminal device acquiring fourth information, the fourth information indicating where at least one of the at least two PSFCHs is located. Accounted resource information.
  • the fourth information is configuration information of the resource pool.
  • the first terminal device obtaining the fourth information includes: the first terminal device receiving the fourth information, such as the first terminal device receiving the fourth information from a network device.
  • the first terminal device obtains the fourth information, including: the first terminal device determines the fourth information, such as the first terminal device itself determines or reads the fourth information.
  • the resource information occupied by at least one PSFCH among the at least two PSFCHs includes at least one of the following: the number of frequency domain units occupied by the at least one PSFCH. , the starting position of the frequency domain resource occupied by the at least one PSFCH, and the end position of the frequency domain resource occupied by the at least one PSFCH.
  • the at least two PSFCHs include a second PSFCH
  • the third The information indicates that the first PSFCH is a channel for the first terminal device to receive feedback information
  • the third information indicates that the second PSFCH is a channel for the first terminal device to send feedback information
  • the third information indicates that the second PSFCH is a channel for the first terminal device to receive feedback information.
  • the at least two PSFCHs further include a second PSFCH
  • the third information indicates that the first PSFCH is used by the first terminal device to receive feedback information.
  • the second PSFCH is a channel through which the first terminal equipment sends feedback information; or the third information indicates that the first PSFCH is a channel through which the first terminal equipment sends feedback information, and the second PSFCH is a channel through which the first terminal device receives feedback information.
  • a side link communication method is provided.
  • the method can be executed by a terminal device, or can also be executed by a component (such as a chip or circuit) of the terminal device.
  • a component such as a chip or circuit
  • the method may include: a second terminal device receives third information from a first terminal device, the third information indicating that a first physical sidelink feedback channel PSFCH is a channel for the first terminal device to receive or send feedback information, the first PSFCH is one of at least two PSFCHs, and the first terminal device is a sub-band non-overlapping full-duplex device; wherein the third information indicates that the first PSFCH is a channel for the first terminal device to receive feedback information, and the second terminal device sends the feedback information to the first terminal device on the first PSFCH; or, the third information indicates that the first PSFCH is a channel for the first terminal device to send feedback information, and the second terminal device monitors the feedback information from the first terminal device on the first PSFCH.
  • the third information is carried in sideline control information, and the feedback information is used to feed back the reception status of data scheduled by the sideline control information.
  • each of the at least two PSFCHs includes multiple frequency domain units in the frequency domain, and the resources occupied by each PSFCH in the at least two PSFCHs overlap in the time domain and are separated by at least one frequency domain unit in the frequency domain.
  • the method further includes: the second terminal device acquiring fourth information, the fourth information indicating where at least one of the at least two PSFCHs is located. Accounted resource information.
  • the second terminal device obtains the fourth information, including: the second terminal device receives the fourth information, such as the second terminal device receiving the fourth information from a network device.
  • the second terminal device obtains the fourth information, including: the second terminal device determines the fourth information, such as the second terminal device itself determines or reads the fourth information.
  • the resource information occupied by at least one PSFCH among the at least two PSFCHs includes at least one of the following: the number of frequency domain units occupied by the at least one PSFCH. , the starting position of the frequency domain resource occupied by the at least one PSFCH, and the end position of the frequency domain resource occupied by the at least one PSFCH.
  • the at least two PSFCHs further include a second PSFCH
  • the third information indicates that the first PSFCH is used by the first terminal device to receive feedback information.
  • the second PSFCH is a channel through which the first terminal equipment sends feedback information; or the third information indicates that the first PSFCH is a channel through which the first terminal equipment sends feedback information, and the second PSFCH is a channel through which the first terminal device receives feedback information.
  • a side link communication method is provided.
  • the method can be executed by a terminal device, or can also be executed by a component (such as a chip or circuit) of the terminal device.
  • a component such as a chip or circuit
  • the method may include: the first terminal device determines a third resource, and the third resource is a receiving resource of the first terminal device; the first terminal device determines whether to send data on a fourth resource, and the fourth resource
  • the resources are resources in which the third resource overlaps in time domain and is adjacent in frequency domain, and the first terminal device is a subband non-overlapping full-duplex device.
  • the first terminal device can select according to the reception resource of the first terminal device whether to send data in a resource that overlaps the time domain and is adjacent to the frequency domain of the reception resource. In this way, not only the selection of transmission resources can be realized, but also the self-interference caused by the terminal device sending and receiving data at the same time can be reduced. For example, when the first terminal device sends data on the fourth resource, resulting in greater interference between the first terminal device receiving data on the third resource, the first terminal device may not send data on the fourth resource.
  • the first terminal device determines whether to use the time domain overlapping and frequency domain of the third resource according to the actual communication situation.
  • Domain-adjacent resources are used as sending resources, and the guard band between sending and receiving resources (such as sending and receiving subbands) can be dynamically configured during the resource selection process, thereby improving the flexibility of GB configuration and reducing unnecessary waste of resources.
  • resources that overlap with the third resource in the time domain and are adjacent in the frequency domain can be considered as a guard band. If the first terminal device determines not to use the third resource that overlaps in the time domain and is adjacent in the frequency domain based on the actual communication situation.
  • this resource can be used as a guard band between the third resource and other resources; if the first terminal device determines to use the third resource that overlaps in time domain and is adjacent in frequency domain based on the actual communication situation. If the resource is used as a transmission resource, then there is no need to set a guard band between the resource and the third resource. It can be seen from this that through the embodiments of the present application, it is also possible to dynamically configure the guard band between the transceiver resources (such as transceiver subbands) during the resource selection process.
  • the first terminal device determines whether to send data in the fourth resource, including: the first terminal device determines whether to send data in the fourth resource according to at least one of the following: Transmitting data on four resources: third power and fourth power; wherein, the third power is the sending power of the first terminal device on the fourth resource, and the fourth power is the sending power of the first terminal device The residual self-interference power of the device on the third resource.
  • the first terminal device determines whether to send data on the fourth resource according to at least one of the following: a third power, a fourth power, including: If the third power is greater than a third threshold, the first terminal device determines not to send data on the fourth resource, or if the third power is less than or equal to the third threshold, The first terminal device determines to send data on the fourth resource; or, if the fourth power is greater than a fourth threshold, the first terminal device determines not to send data on the fourth resource, Alternatively, if the fourth power is less than or equal to the fourth threshold, the first terminal device determines to send data on the fourth resource.
  • the first terminal device determines whether to send data on the fourth resource by using the fourth power first.
  • the first terminal device does not send data on the fourth resource, including: a set of candidate resources for the first terminal device to send data does not include the fourth resource.
  • the sixth aspect provides a method for side link communication.
  • the method can be executed by a terminal device, or can also be executed by a component (such as a chip or circuit) of the terminal device.
  • a component such as a chip or circuit
  • the following description takes execution by the first terminal device as an example.
  • the method may include: the first terminal device determines to send the first data on M first resource units and to send the second data on N second resource units, wherein the N second resource units are based on the The M first resource units are determined, at least one first resource unit among the M first resource units and at least one second resource unit among the N second resource units overlap in the time domain, and Continuous in the frequency domain, M and N are integers greater than or equal to 1, and the first terminal device is a subband non-overlapping full-duplex device.
  • a communication device which is used to perform the method in any of the possible implementation manners of the above-mentioned first to sixth aspects.
  • the device may include units and/or modules for performing the method in any possible implementation of the first to sixth aspects, such as a processing unit and/or a communication unit.
  • the device is a terminal device (such as a first terminal device, or a second terminal device).
  • the communication unit may be a transceiver, or an input/output interface; the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, a chip system or a circuit used in a terminal device (such as a first terminal device, or a second terminal device).
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit, etc.
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • An eighth aspect provides a communication device, which includes: at least one processor for executing computer programs or instructions stored in a memory to execute the method in any of the possible implementations of the first to sixth aspects.
  • the device further includes a memory for storing computer programs or instructions.
  • the device further includes a communication interface, through which the processor reads the computer program or instructions stored in the memory.
  • the apparatus is a terminal device (such as a first terminal device or a second terminal device).
  • the apparatus is a chip, a chip system or a circuit used in a terminal device (such as a first terminal device or a second terminal device).
  • the present application provides a processor for executing the methods provided in the above first to sixth aspects.
  • processor output, reception, input and other operations can be understood as processor output, reception, input and other operations.
  • transmitting and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a computer-readable storage medium stores a program code for device execution.
  • the program code includes a method for executing any of the possible implementations of the above-mentioned first to sixth aspects. method.
  • a computer program product containing instructions is provided.
  • the computer program product When the computer program product is run on a computer, it causes the computer to execute the method in any one of the possible implementation modes of the first to sixth aspects.
  • a communication system including the aforementioned first terminal device and second terminal device.
  • Figure 1 is a schematic diagram of a wireless communication system suitable for embodiments of the present application.
  • Figure 2 is a schematic diagram of SBFD, TDD, and FDD.
  • FIG3 is a schematic diagram of dividing a resource pool into two sub-bands and a GB.
  • FIG. 4 is a schematic diagram of a sidelink communication method 400 provided in accordance with an embodiment of the present application.
  • Figure 5 is a schematic diagram of a first terminal device receiving resource selection suitable for an embodiment of the present application.
  • Figure 6 is a schematic diagram of a sidelink communication method 600 provided by another embodiment of the present application.
  • Figure 7 is a schematic diagram of a first terminal device sending resource selection suitable for an embodiment of the present application.
  • Figure 8 is a schematic diagram of a sidelink communication method 800 provided by another embodiment of the present application.
  • Figure 9 is a schematic diagram of PSSCH to PSFCH mapping applicable to the embodiment of the present application.
  • Figure 10 is a schematic diagram of a sidelink communication method 1000 provided by another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a high-level determination of sending resources applicable to an embodiment of the present application.
  • Figure 12 is a schematic block diagram of a communication device 1200 provided by an embodiment of the present application.
  • Figure 13 is a schematic block diagram of a communication device 1300 provided by an embodiment of the present application.
  • Figure 14 is a schematic block diagram of a chip system 1400 provided by an embodiment of the present application.
  • the technical solutions provided by this application can be applied to various communication systems, such as fifth generation (5th generation, 5G) or new radio (NR) systems, long term evolution (LTE) systems, LTE frequency division Duplex (frequency division duplex, FDD) system, LTE time division duplex (TDD) system, etc.
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation (6th generation, 6G) mobile communication system.
  • the technical solution provided by this application can also be applied to device-to-device (D2D) communication, vehicle-to-everything (V2X) communication, machine-to-machine (M2M) communication, machine type Communication (machine type communication, MTC), and Internet of Things (Internet of things, IoT) communication systems or other communication systems.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • MTC machine type Communication
  • Internet of Things Internet of things, IoT
  • V2X communication may include: vehicle-to-vehicle (V2V) communication, vehicle-to-infrastructure (V2I) communication, vehicle-to-pedestrian (V2P) communication ) communication, vehicle-to-network (V2N) communication.
  • V2V refers to communication between vehicles.
  • V2P refers to the communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers, etc.).
  • V2I refers to the communication between vehicles and infrastructure, such as road side units (RSU) or network equipment. Among them, RSU includes two types: terminal type RSU.
  • V2N refers to the communication between vehicles and network devices. It can be understood that the above is an illustrative description, and the embodiments of the present application are not limiting.
  • V2X can also include V2X communications based on the NR system of the current 3GPP Rel-16 and subsequent versions.
  • D2D communication can include communication between a programmable logic controller (PLC) and its slave devices, such as communication between a PLC and a sensor, or communication between a PLC and an actuator.
  • PLC programmable logic controller
  • the sensor may be, for example, a pressure sensor, a temperature sensor, etc.
  • the actuator may be a valve island, a heater, etc., for example.
  • the PLC receives data measured by all sensors in each cycle and sends execution instructions to the actuator in each cycle.
  • the terminal equipment in the embodiment of the present application may also be called user equipment (UE), access terminal, user unit, User station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communications equipment, user agent or user device.
  • UE user equipment
  • access terminal user unit
  • User station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communications equipment
  • user agent wireless communications equipment
  • the terminal device may be a device that provides voice/data to users, for example, a handheld device with wireless connection function, a vehicle-mounted device, etc.
  • terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocols , SIP) telephone, wireless local loop (WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, which can Wearable devices, terminal devices in the 5G network or terminal devices in the future evolved public land mobile communication network (public land mobile network, PLMN), etc., are not limited in the embodiments of this application.
  • MID mobile internet devices
  • the terminal device may also be a wearable device.
  • Wearable devices may also be referred to as wearable smart devices, which are a general term for wearable devices that are intelligently designed and developed using wearable technology for daily wear, such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothes or accessories. Wearable devices are not only hardware devices, but also powerful functions achieved through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, and fully or partially independent of smartphones, such as smart watches or smart glasses, as well as devices that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various types of smart bracelets and smart jewelry for vital sign monitoring.
  • the device used to implement the functions of the terminal device may be a terminal device, or may be a device capable of supporting the terminal device to implement the function, such as a chip system or a chip, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
  • the network device may also be called an access network device or a wireless access network device.
  • the network device may be a base station.
  • the network device in the embodiment of this application may refer to a radio access network (radio access network, RAN) node (or device) that connects the terminal device to the wireless network.
  • radio access network radio access network, RAN node (or device) that connects the terminal device to the wireless network.
  • the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), primary station, secondary station, multi-standard wireless (motor slide retainer, MSR) node, home base station, network controller, interface Ingress node, wireless node, access point (AP), transmission node, transceiver node, baseband unit (BBU), remote radio unit (RRU), active antenna unit (active antenna) unit, AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB, gNB
  • relay station Access point
  • transmission point transmitting and receiving
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and equipment that performs base station functions in D2D, V2X, and M2M communications, network-side equipment in 6G networks, equipment that performs base station functions in future communication systems, etc.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the network device mentioned in the embodiments of this application may be a device including a CU, or a DU, or a device including a CU and a DU, or a control plane CU node (central unit-control plane (CU- CP)) and user plane CU nodes (central unit user plane (CU-UP)) and DU node equipment.
  • CU- CP central unit-control plane
  • CU-UP central unit user plane
  • the device used to implement the function of the network device may be a network device, or may be a device that can support the network device to implement the function, such as a chip system or a chip, and the device may be installed in the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; and Can be deployed on aircraft, balloons and satellites in the sky. In the embodiments of this application, the scenarios in which network devices and terminal devices are located are not limited.
  • Fig. 1 is a schematic diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system may include at least one terminal device, such as UE1, UE2, and UE3 shown in Fig. 1.
  • the wireless communication system may also include at least one network device, such as the network device shown in Fig. 1.
  • Network equipment and terminal equipment can communicate through the Uu interface, and the link (link) communicating between the network equipment and terminal equipment can be recorded as a Uu link.
  • the network device and UE1 can communicate directly.
  • the network device and UE1 can also communicate through UE2; similarly, the network device and UE2 can communicate with each other directly.
  • Direct communication is possible, and communication between network equipment and UE2 can also be carried out through UE1.
  • the Uu link represents a connection relationship between the terminal device and the network device, and is a logical concept rather than a physical entity.
  • the main link is only named for differentiation, and its specific naming does not limit the scope of protection of this application.
  • terminal devices can directly communicate with each other.
  • terminal devices can communicate with each other through other devices, such as network devices or terminal devices, as shown in Figure 1(a), and UE1 and UE2 can communicate with each other through network devices, as shown in Figure 1
  • UE1 and UE2 can communicate through UE3.
  • the interface for communication between terminal devices can be recorded as a proximity-based services communication 5 (PC5) interface, and the link for communication between terminal devices can be recorded as a sidelink (sidelink). , SL), the communication between terminal equipment can also be recorded as SL communication.
  • PC5 proximity-based services communication 5
  • sidelink sidelink
  • SL sidelink
  • Side links may also be called side links or secondary links. It can be understood that the side link represents a connection relationship between terminal equipment and is a logical concept rather than a physical entity. The side link is only named for differentiation, and its specific naming does not limit the scope of protection of this application.
  • SL communication between terminal devices can be used in the Internet of Vehicles or intelligent transportation systems (ITS), such as the V2X communication mentioned above.
  • ITS intelligent transportation systems
  • the SL communication between the terminal device and the terminal device can be carried out under network coverage or without network coverage.
  • UE1 and other UEs can communicate under network coverage; or, as shown in Figures 1(c) to (d), UE1 and other UEs can communicate under network coverage. Communicate outside the network coverage (out-of-coverage).
  • the configuration information during SL communication between terminal devices may be configured or scheduled by the network device, or may be independently selected by the terminal device without restriction.
  • FIG. 1 is only a simplified schematic diagram for ease of understanding.
  • the wireless communication system may also include other network devices or other terminal devices, which are not shown in FIG. 1 .
  • the embodiments of this application can be applied to any communication scenario in which the sending device and the receiving device communicate.
  • SL communication can be carried out based on a resource pool.
  • the so-called resource pool refers to a block of time-frequency resources dedicated to SL communication; or the resource pool can also be understood as a collection of resources that can be used for SL communication, that is, a collection of time domain resources and frequency domain resources used for SL communication.
  • the resource pool used for SL communication may be simply called a resource pool, or may also be called an SL resource pool.
  • the following is concise and uses resource pools to describe it.
  • the resource pool can also be called channel, operating channel, nominal channel bandwidth (bandwith). That is, the resource pool, channel, and bandwidth are all used to represent the set of resources that can be used for SL communication. There are no restrictions on the naming of resource pools.
  • Data or information can be carried through resources.
  • a resource may include one or more time domain units (or, may also be called time units).
  • a time domain unit can be a symbol, or a mini-slot, or a slot, or a partial slot, or a subframe, or a radio frame ( frame), etc.
  • a resource may include one or more frequency domain units.
  • a frequency domain unit can be a resource element (RE), a resource block (RB), a subchannel (subchannel), a resource pool (resource pool), or a bandwidth (bandwidth) , or a bandwidth part (BWP), or a carrier, Or a channel, or an interlace RB, etc.
  • PSFCH resources represent resources used to transmit information carried on the PSFCH.
  • a PSFCH resource occupies 2 consecutive orthogonal frequency division multiplexing (OFDM symbols) in the time domain and 1 physical resource block (PRB) in the frequency domain.
  • OFDM symbols orthogonal frequency division multiplexing
  • PRB physical resource block
  • PSFCH resources can be used to transmit feedback information. For example, for a physical side link shared channel (PSSCH) transmission, if the sender carries hybrid automatic repeat request acknowledgment (HARQ-ACK) feedback in the control information If the information is enabled, the receiving end can feed back positive (ACK) or negative (NACK) information based on the decoding result of the data information carried on the PSSCH. The ACK or NACK information is transmitted through PSFCH.
  • PSFCH transmission refers to transmission over PSFCH.
  • PSSCH transmissions described below refer to transmissions over the PSSCH.
  • the identification of the terminal equipment is an identification used to indicate, identify or correspond to the corresponding terminal equipment.
  • the terminal device may be an index or number used to uniquely identify the terminal device. This identification can be signaling configured, preconfigured, or predefined.
  • the identification of the terminal device is any of the following: the terminal's medium access control (MAC) address, subscriber identity module (SIM) card number, international mobile equipment identification number (international mobile equipment identification number) identity, IMEI), etc.
  • MAC medium access control
  • SIM subscriber identity module
  • IMEI international mobile equipment identification number
  • the identification of the terminal device may also be an identification used to indicate, identify or correspond to the corresponding terminal device during transmission.
  • This identification can be signaling configured, preconfigured, or predefined. For example: IP address, network temporary identifier (RNTI), source identifier of the sending device, and destination identifier of the receiving device.
  • the source identifier of the sending device may be an identifier associated with a specific service or message to be sent.
  • the destination identifier of the receiving device may be an identifier associated with a specific service or message to be received.
  • SBFD technology supports more flexible uplink (UL) and downlink (DL) resource configuration in network deployment by enhancing the duplex of network equipment.
  • SBFD technology can improve uplink coverage and reduce the feedback delay of hybrid automatic repeat request (HARQ). It is a very promising technology in uplink-dominated application scenarios such as smart factories, smart mining, and smart steel.
  • HARQ hybrid automatic repeat request
  • PLC programmable logic controller
  • SBFD is more flexible in UL and DL resource allocation.
  • FIG. 2 is a schematic diagram of SBFD, TDD, and FDD.
  • SBFD is more flexible in spectrum allocation.
  • the same time domain unit such as the same time slot
  • the same frequency domain unit such as the same subband
  • one possible implementation method is to divide a guard band (GB) between the uplink resources and the downlink resources.
  • GB guard band
  • a possible implementation method is to divide the resource pool into two non-overlapping subbands in the frequency domain, and Designing system-level GB between subbands, the SBFD device can send data on one subband and receive data on another subband.
  • FIG3 is a schematic diagram of dividing a resource pool into two subbands and GB.
  • the resource pool is divided into subband 1 and subband 2 which do not overlap in the frequency domain, and a GB is designed between subband 1 and subband 2.
  • UE A selects subband 1 as a transmitting subband and subband 2 as a receiving subband, that is, UE A sends data on subband 1 and UE A receives data on subband 2.
  • the above design may have a half-duplex problem.
  • UE A selects subband 1 as the transmission subband and subband 2 as the reception subband
  • UE B selects subband 2 as the transmission subband and subband 1 as the reception subband
  • UE C may have a half-duplex conflict with UE A or UE B no matter how it configures its own reception subband and transmission subband.
  • Figure 3 when UE C uses subband 1 as the reception subband and subband 2 as the transmission subband, UE B and UE C have a half-duplex conflict.
  • dividing the receive subband, transmit subband, and GB in the SL resource pool may reduce the flexibility of UE resource selection and lead to unnecessary waste of resources. For example, after UE A selects the sending subband, UE A selects to send data on the sending subband to send data, and the opposite end UE that communicates with UE A, such as UE B, in the receiving subband of UE A Send data with selected send resources.
  • UE A selects to send data on the sending subband to send data
  • the opposite end UE that communicates with UE A such as UE B
  • there is no need to divide GB for some devices, such as half-duplex TDD UE, since there is no simultaneous transmission and reception, there is no need to divide GB.
  • SBFD equipment when the SBFD equipment does not have simultaneous reception and transmission service requirements at a certain moment, there is no need to allocate GB for it.
  • this application proposes a solution that can solve the above problems. Specifically, after introducing SBFD in SL, GB is dynamically configured through resource selection to reduce self-interference caused by terminal devices sending and receiving data at the same time.
  • instruction may include direct instruction, indirect instruction, explicit instruction, and implicit instruction.
  • indication information When it is described that certain indication information is used to indicate A, it can be understood that the indication information carries A, indicates A directly, or indicates A indirectly.
  • the information indicated by the indication information is referred to as the information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated itself or the index of the information to be indicated.
  • the information to be indicated can also be indirectly indicated by indicating other information, wherein there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while the other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be achieved with the help of the arrangement order of each information agreed in advance (such as specified by the protocol), thereby reducing the indication overhead to a certain extent.
  • Figure 4 is a schematic diagram of a sidelink communication method 400 provided by an embodiment of the present application.
  • the method 400 will be introduced below mainly by taking the interaction between the first terminal device and the second terminal device as an example.
  • Method 400 may include the following steps.
  • method 400 includes step 410.
  • the first terminal device determines the first information.
  • the first information indicates whether the first terminal device uses the first resource as a receiving resource, where the first resource is a resource in which the second resource overlaps in time domain and is adjacent in frequency domain.
  • the second resource The resources are reserved sending resources of the first terminal device.
  • the first terminal device is an SBFD device.
  • the first information indicates whether the first terminal device uses the first resource as a receiving resource. Alternatively, the first information indicates whether the first terminal device recommends the first resource as a receiving resource.
  • the first information determined by the first terminal device indicates that the first terminal device uses the first resource as a receiving resource, that is, the first terminal device can use the first resource to receive data.
  • the first information determined by the first terminal device indicates that the first terminal device does not use the first resource as a receiving resource, that is, the first terminal device does not use the first resource to receive data.
  • receiving resources and sending resources are mentioned many times.
  • the sending resources of the first terminal device the resources used by the first terminal device to send data can be called sending resources.
  • the first terminal device receives data.
  • the resources used may be called receiving resources.
  • the second resource is a reserved sending resource of the first terminal device, that is, the second resource is a reserved resource, such as a reserved resource scheduled by SCI, that is, the reserved resource indicated by SCI includes the second resource.
  • the SCI may be, for example, a first-order SCI.
  • the first terminal device can use the reserved resources scheduled by the SCI to send data, that is, the second resources can also be understood as the reserved sending resources of the first terminal device.
  • the reserved resources may include time domain resources and frequency domain resources.
  • the reserved resources may be determined by the following parameters in the first-order SCI: resource reservation period, frequency domain resource allocation, and time domain resource allocation.
  • the resource reservation period, or time domain offset value can represent the time interval between the next data packet and the current data packet. There is no limitation in this application embodiment regarding reserved resources.
  • FIG. 5 is a schematic diagram of a first terminal device receiving resource selection suitable for an embodiment of the present application.
  • the second resources are reserved resources scheduled by SCI (for distinction, denoted as the first SCI), including resources on subchannel 3, for example.
  • the first resource is a resource in which the second resource overlaps in time domain and is adjacent in frequency domain, such as resources on sub-channel 2 and sub-channel 4 that overlap with the second resource in time domain. If the first information indicates that the first terminal device does not use the first resource as a receiving resource, when the second terminal device sends data to the first terminal device, candidate resources that overlap with the second resource are excluded from the candidate resource set.
  • overlap is mentioned many times, such as time domain overlap and resource overlap. It can be understood that overlap may include complete overlap, or may also include partial overlap. Taking time domain overlap as an example, time domain overlap may include complete overlap in the time domain, or may include partial overlap in the time domain. No further details will be given below.
  • the first terminal device sends the first information to the second terminal device.
  • the second terminal device receives the first information.
  • the second terminal device may be an SBFD device, or may be other devices, without limitation.
  • the first terminal device can determine whether to use resources that overlap in time domain and are adjacent in frequency domain with the reserved transmission resources of the first terminal device as receiving resources based on actual communication conditions, and indicate to other devices , so that when other devices send data to the first terminal device, they can exclude candidate resources according to the instructions of the first terminal device.
  • the first terminal device may indicate to other devices not to use the first resource as a receiving device. resources, thereby reducing self-interference caused by the first terminal device sending and receiving data at the same time.
  • the first terminal device determines whether to use resources that overlap in time domain and are adjacent in frequency domain with the reserved transmission resources of the first terminal device as receiving resources based on actual communication conditions. It can also be implemented in resource selection.
  • the guard band between transceiver resources (such as transceiver subbands) is dynamically configured to improve the flexibility of guard band configuration and reduce unnecessary waste of resources. For example, resources that overlap in time domain and are adjacent in frequency domain with the reserved transmission resources of the first terminal equipment can be considered as a guard band.
  • the first terminal equipment determines not to use the transmission resources with the first terminal equipment based on the actual communication situation, If the reserved sending resource overlaps in time domain and is adjacent in frequency domain as a receiving resource, then the receiving resource can be used as a guard band between the reserved sending resource and other resources; if the first terminal device determines based on the actual communication situation, To use resources that overlap in time domain and are adjacent in frequency domain with the reserved transmission resources of the first terminal device as receiving resources, then it is equivalent to not setting a guard band between the reserved transmitting resources and the receiving resources. It can be seen from this that through the embodiments of the present application, it is also possible to dynamically configure the guard band between the transceiver resources (such as transceiver subbands) during the resource selection process.
  • the transceiver resources such as transceiver subbands
  • the first information is carried in the SCI.
  • the SCI is recorded as SCI#1.
  • the SCI#1 may be, for example, a first-order SCI, a second-order SCI, or a newly defined SCI (such as a third-order SCI), which is not limited.
  • SCI#1 can be carried on PSSCH or physical sidelink control channel (physical sidelink control channel, PSCCH), and there is no restriction on this.
  • PSSCH physical sidelink control channel
  • PSCCH physical sidelink control channel
  • the first terminal device can also indicate that the current second-order SCI is a newly defined second-order SCI through the first-order SCI.
  • the first terminal device may also indicate through the first-order SCI whether the current second-order SCI includes the first information.
  • the first information is implemented by at least one bit. For example, assume that one bit is used to indicate whether the first terminal device uses the first resource as a receiving resource. If this bit is set to "1", it means that the first terminal device uses the first resource as a receiving resource; if this bit is set to "0", it means that the first terminal device does not use the first resource as a receiving resource. It should be understood that the above is only an illustrative description and is not limiting.
  • the first information is a specific field.
  • the first information is carried in SCI#1, and whether the first terminal device uses the first resource as a receiving resource is indicated by whether the SCI#1 includes a specific field. For example, if SCI#1 includes the specific field, it means that the first terminal device uses the first resource as a receiving resource; if SCI#1 does not include the specific field, it means that the first terminal device does not use the first resource as a receiving resource. resource.
  • the method 400 further includes step 430.
  • the second terminal device determines a set of candidate resources for sending data to the first terminal device based on the first information.
  • the first information indicates that the first terminal device does not use the first resource as a receiving resource.
  • the second terminal device may consider the recommendation of the first terminal device, that is, send data to the first terminal device on a resource other than the first resource.
  • the second terminal device can determine based on the first information.
  • the first resource is not included in the set of candidate resources for sending data to the first terminal device.
  • the second terminal device excludes candidate resources that overlap with the first resource in the candidate resource set.
  • the second terminal device reserves a periodic resource
  • the second terminal device reserves a periodic resource with a period of T1
  • a candidate resource is periodically extended with a period of T1 and overlaps with the first resource
  • the second terminal device also excludes this candidate resource.
  • the second terminal device first determines the candidate resource set, and then excludes candidate resources that overlap with the first resource from the candidate resource set, or candidate resources that overlap with the first resource after periodic extension with period T1.
  • the first information indicates that the first terminal device uses the first resource as a receiving resource.
  • the recommendation of the first terminal device may be considered, that is, when sending data to the first terminal device, the first resource may not be excluded.
  • the second terminal device may determine to send data to the first terminal device according to the actual situation.
  • the device sends a set of candidate resources for data, that is, there is no need to exclude candidate resources that overlap with the first resource from the set of candidate resources.
  • the first information indicates that the first terminal device uses the first resource as a receiving resource
  • whether the resources used by the second terminal device to send data to the first terminal device include the first resource can be determined based on the actual communication situation. This application embodiment is not limited to this.
  • the first terminal device indicates the information of the second resource and/or the information of the first resource to the second terminal device.
  • the second terminal device can learn the second resource and the location of the second resource.
  • the information of the second resource and/or the information of the first resource is carried in the SCI.
  • the SCI is recorded as SCI#2.
  • the SCI#2 may be, for example, a first-order SCI, a second-order SCI, or a newly defined SCI (such as a third-order SCI), which is not limited.
  • SCI#2 and SCI#1 may be the same, that is, the first information, the information of the second resource, and/or the information of the first resource are carried in the same SCI; or, SCI#2 and SCI#1 may also be different. , that is, the first information, and the information of the second resource and/or the information of the first resource are carried in different SCIs.
  • the first terminal device sends SCI#2 to the second terminal device, where SCI#2 includes information about the second resource.
  • the second terminal device can learn the location of the second resource based on the SCI#2, and further can learn the location of the resource that overlaps with the second resource in the time domain and is adjacent in the frequency domain based on the location of the second resource (that is, the second resource). the location of a resource).
  • the first terminal device sends SCI#2 to the second terminal device, where SCI#2 includes information about the first resource.
  • SCI#2 includes information about the first resource.
  • the second terminal device can directly learn the location of the first resource based on the SCI#2.
  • the first terminal device sends SCI#2 to the second terminal device, where SCI#2 includes information about the first resource and the second resource.
  • SCI#2 includes information about the first resource and the second resource.
  • the second terminal device can directly learn the locations of the first resource and the second resource based on the SCI#2.
  • the first resource may also be implicitly indicated by the first information.
  • the second resource is indicated by the following parameters in the first-order SCI: frequency domain resource allocation, time domain resource allocation, resource reservation period indication; the first resource is indicated by the above parameters and the first information, for example, the first The information indicates that the first terminal device does not use the second resource as a receiving resource, then the second resource is a resource adjacent to the first resource in the time domain overlapping the frequency domain. That is to say, the resource not used as a receiving resource indicated by the first information is Resources adjacent to the first resource in the time domain and frequency domain overlap.
  • the first terminal device determines the first information, including: the first terminal device determines the first information according to any of the following: first power, second power.
  • the first power represents the transmission power of the first terminal device on the second resource.
  • the first terminal device may estimate or calculate the transmission power of the first terminal device on the second resource by itself.
  • the transmission power of the first terminal device on the second resource may be determined based on one or more of the path loss corresponding to the first terminal device, the priority of the first data, or the path loss corresponding to the third terminal device.
  • the first data is data sent by the first terminal device on the second resource
  • the third terminal device is the receiving device of the first data
  • the path loss corresponding to the first terminal device is, for example, the first terminal device to the access network device.
  • the path loss corresponding to the third terminal device is, for example, the path loss between the first terminal device and the third terminal device.
  • the first power may be determined according to the path loss corresponding to the third terminal device and/or the priority of the first data.
  • the first data is multicast data or broadcast data
  • the first power may be determined according to the path loss corresponding to the first terminal device and/or the priority of the first data.
  • the sending power of the first terminal device on the second resource may be the power of the first terminal device sending a signal (such as a reference signal or a data signal) on the second resource.
  • the first power may be the average power or the sum of powers of the reference signal in each frequency domain unit.
  • the first power may be the average power or the sum of powers of the data signal in each frequency domain unit.
  • the first power may be the average power or the sum of powers of the data signal and the reference signal on each frequency domain unit.
  • the first information determined by the first terminal device when the first power is greater than the first threshold, indicates that the first terminal device does not use the first resource as a receiving resource, or when the first power is less than the first In the case of a threshold, the first information determined by the first terminal device indicates that the first terminal device uses the first resource as a receiving resource.
  • the first threshold is preconfigured, such as preconfigured by a high-level layer of the first terminal device, or may be estimated based on historical conditions, or may be predefined without limitation.
  • the first information determined by the first terminal device indicates that the first terminal device does not use the first resource as The receiving resource, or the first information determined by the first terminal device, instructs the first terminal device to use the first resource as a receiving resource, or it may be used for other functions, which is not limited.
  • the second power represents the residual self-interference power of the first terminal device on the first resource.
  • the first terminal device may estimate or calculate the residual self-interference power of the first terminal device on the first resource by itself. For example, the first terminal device selects to send signals, including reference signals and/or data signals, on a certain subchannel with the first power, and no other terminal device sends signals on adjacent subchannels of the subchannel. The first terminal equipment measures the received power on an adjacent sub-channel of the sub-channel, and the received power is the second power.
  • the first terminal device may estimate the second power according to the transmission power of the first terminal device on the first resource.
  • the greater the transmit power of the first terminal device on the first resource the greater the residual self-interference power (ie, the second power) of the first terminal device on the first resource.
  • the relationship between P1 and P2 may be preconfigured by the high-level layer of the first terminal device, or may be estimated based on historical conditions, or may be predefined without limitation.
  • the first terminal device can determine the second power according to the transmission power on the first resource and the ratio of the first power to the second power, for the convenience of description below, the ratio of the first power to the second power is denoted as ⁇ .
  • the value of ⁇ is preconfigured, such as preconfigured by a higher layer of the first terminal device, or may be predefined.
  • P2 satisfies Equation 1.
  • P2 P1- ⁇ Formula 1
  • P1 represents the first power
  • the units of P1 and P2 are decibel relative to one milliwatt (dBm)
  • the unit of ⁇ is decibel (dB).
  • the unit of X is dBm.
  • the first information determined by the first terminal device when the second power is greater than the second threshold, indicates that the first terminal device does not use the first resource as a receiving resource, or when the second power is less than the In the case of two thresholds, the first information determined by the first terminal device indicates that the first terminal device uses the first resource as a receiving resource.
  • the second threshold is preconfigured, such as preconfigured by a high-level layer of the first terminal device, or may be estimated based on historical conditions, or may be predefined without limitation.
  • the first information determined by the first terminal device indicates that the first terminal device does not use the first resource as a receiving resource, or it may be that the first information determined by the first terminal device indicates that The first terminal device uses the first resource as a receiving resource or can also be used for other functions, which is not limited.
  • the first power and the second power are separately introduced above. It can be understood that the first terminal device can also determine the first information based on the first power and the second power. For example, when the first power is greater than the first threshold and the second power is greater than the second threshold, the first information determined by the first terminal device indicates that the first terminal device does not use the first resource as a receiving resource, otherwise the first terminal device does not use the first resource as a receiving resource. The first information determined by a terminal device instructs the first terminal device to use the first resource as a receiving resource.
  • the first information determined by the first terminal device instructs the first terminal device to use the first resource as a receiving resource, otherwise
  • the first information determined by a terminal device indicates that the first terminal device does not use the first resource as a receiving resource.
  • the first terminal device sends second information to the second terminal device, and the second information indicates the identity of the first terminal device.
  • the second terminal device receives the second information.
  • the second information is carried in the SCI.
  • the SCI is recorded as SCI#3.
  • the SCI#3 may be, for example, a first-order SCI, a second-order SCI, or a newly defined SCI (such as a third-order SCI), which is not limited.
  • SCI#3 and SCI#1 can be the same, that is, the first information and the second information are carried in the same SCI; or, SCI#3 and SCI#1 can also be different, that is, the first information and the second information are carried in the same SCI. in different SCI.
  • the second terminal device determines a set of candidate resources for sending data to the first terminal device based on the first information, including: the second terminal device determines a set of candidates for sending data to the first terminal device based on the first information and the second information. Resource collection.
  • the second terminal device After the second terminal device receives the first information and the second information, if the first information indicates that the first terminal device does not use the first resource as a receiving resource and the second information indicates the identity of the first terminal device, then, When the second terminal device sends data to the first terminal device When the second terminal device sends data to the first terminal device, the second terminal device does not use the first resource to send data to the first terminal device; when the second terminal device sends data to other terminal devices other than the first terminal device, the first resource can be included in the data to other terminal devices.
  • the set of candidate resources for the terminal device to send data is finally determined by the second terminal device.
  • the sending resource may use the first resource, or may not use the first resource, and there is no restriction on this.
  • the second information is the identity of the first terminal device, that is, the first terminal device can directly indicate the identity of the first terminal device.
  • the second information is, for example, the source identifier in SCI#3 (such as second-order SCI).
  • the first terminal device and the second terminal device interact with a set of source identifiers associated with the first terminal device, and the set of source identifiers includes At least one source identification, which may be an identification associated with a specific service or message to be sent.
  • the second terminal device can determine whether the sending device is the first terminal device by determining whether the source identifier in SCI#3 (such as the second-order SCI) is in the set of source identifiers associated with the first terminal device.
  • the second information is the device identification of the first terminal device, such as a new field introduced in SCI#3 (such as second-order SCI or third-order SCI), which indicates the device identification of the first terminal device.
  • SCI#3 such as second-order SCI or third-order SCI
  • the first terminal device and the second terminal device exchange device identifiers.
  • the second terminal device can determine whether the sending device is the first terminal device by judging the device identification in SCI#3 (such as second-order SCI or third-order SCI).
  • the second information is other information
  • the identity of the first terminal device can be indirectly obtained based on the other information.
  • Figure 6 is a schematic diagram of a sidelink communication method 600 provided by another embodiment of the present application.
  • the solutions of Method 600 and Method 400 can be used in combination or separately without limitation.
  • the method 600 will be introduced below mainly taking the first terminal device as an example.
  • Method 600 may include the following steps.
  • the first terminal device determines a third resource, and the third resource is the receiving resource of the first terminal device.
  • the first terminal device receives an SCI (for distinction, recorded as SCI#4), and the SCI#4 indicates the third resource.
  • the SCI#4 may be, for example, a first-order SCI, a second-order SCI, or a newly defined SCI (such as a third-order SCI), which is not limited.
  • the first terminal device determines whether to send data on the fourth resource.
  • the fourth resource is a resource in which the third resource overlaps in time domain and is adjacent in frequency domain.
  • the first terminal device determines whether to send data on the fourth resource. Alternatively, the first terminal device determines whether the fourth resource is used as a sending resource for the first terminal device.
  • Figure 7 is a schematic diagram of a first terminal device sending resource selection suitable for an embodiment of the present application.
  • the fourth resource is a reserved resource scheduled by SCI (for distinction, it is recorded as the second SCI) scheduling, including resources on subchannel 3, for example.
  • the fourth resource is a resource that overlaps in time domain with the third resource and is adjacent in frequency domain, such as resources on sub-channel 2 and sub-channel 4 that overlap with the third resource in time domain. If the first terminal device determines not to send data on the fourth resource, when sending data, the first terminal device excludes candidate resources that overlap with the fourth resource from the candidate resource set.
  • the first terminal device determines whether to send data on the fourth resource, including: the first terminal device determines whether to send data on the fourth resource according to at least one of the following: third power, fourth power.
  • the third power is the transmit power of the first terminal device on the fourth resource.
  • the third power is similar to the first power in method 400.
  • the first terminal device determines not to send data on the fourth resource, or, when the third power is less than the third threshold, the first terminal device determines not to send data on the fourth resource.
  • the third threshold is preconfigured, such as preconfigured by a high-level layer of the first terminal device, or may be estimated based on historical conditions, or may be predefined without limitation. Regarding the situation where the third power is equal to the third threshold, it may be that the first terminal device determines not to send data on the fourth resource, or it may be that the first terminal device determines to send data on the fourth resource, or it may be used for other functions. , there is no restriction on this.
  • the fourth power is the residual self-interference power of the first terminal device on the third resource.
  • the fourth power is similar to the second power in method 400. Regarding the fourth power, reference may be made to the description of the second power in method 400, which is not limited here.
  • the first terminal device determines not to send data on the fourth resource, or, when the fourth power is less than the fourth threshold, the first terminal device Determine sending data on the fourth resource.
  • the fourth threshold is preconfigured, such as preconfigured by a high-level layer of the first terminal device, or may be estimated based on historical conditions, or may be predefined without limitation.
  • the fourth power is equal to the fourth threshold, it may be that the first terminal device determines not to send data on the fourth resource, or it may be that the first terminal device determines to send data on the fourth resource, or it may be used for other functions. , there is no restriction on this.
  • the third power and the fourth power are separately introduced above. It can be understood that the first terminal device can also determine whether to send data on the fourth resource based on the third power and the fourth power. For example, when the third power is greater than the third threshold and the fourth power is greater than the fourth threshold, the first terminal device determines not to send the data on the fourth resource; otherwise, the first terminal device determines to send the data on the fourth resource. data. For another example, when the third power is less than the third threshold and the fourth power is less than the fourth threshold, the first terminal device determines to send data on the fourth resource; otherwise, the first terminal device determines not to send data on the fourth resource. send data.
  • Figure 8 is a schematic diagram of a sidelink communication method 800 provided by another embodiment of the present application.
  • the method 800 will be introduced below mainly taking the first terminal device as an example.
  • Method 800 may include the following steps.
  • method 800 includes step 810.
  • the first terminal device determines third information.
  • the third information indicates that the first PSFCH is a channel through which the first terminal device receives or sends feedback information, and the first PSFCH is one of at least two PSFCHs.
  • the first terminal device is an SBFD device.
  • the feedback information may be used to indicate the reception status of the data, or may be used to indicate the reception status of the data, that is, whether the data is successfully received.
  • the feedback information may be HARQ feedback, for example. For example, if the terminal device successfully receives and successfully decodes the data, the feedback information sent by the terminal device is a positive response, such as ACK; if the terminal device does not receive the data and/or fails to decode the data, the feedback information sent by the terminal device It is a negative response, such as NACK.
  • the PSFCH channel is divided into at least two PSFCHs (or at least two groups) in the frequency domain.
  • the first terminal device can choose to send feedback information and receive feedback information on different PSFCHs.
  • the first terminal device sends feedback information on one PSFCH and receives feedback information on another PSFCH.
  • GB can also be designed, for example, GB is designed between two adjacent PSFCHs.
  • the PSFCH channel is divided into three parts: the first PSFCH, the second PSFCH, and the GB in the frequency domain.
  • each of the at least two PSFCHs includes a plurality of frequency domain units in the frequency domain.
  • the number of frequency domain units included in each of the at least two PSFCHs in the frequency domain may be the same or different, and is not limited.
  • the resources occupied by each of the at least two PSFCHs overlap in the time domain and are separated by at least one frequency domain unit in the frequency domain.
  • the frequency domain resources occupied by the first terminal device for sending feedback information and receiving feedback information are not adjacent, thereby reducing interference caused by the first terminal device for sending feedback information and receiving feedback information.
  • the following mainly takes two PSFCHs, such as the first PSFCH and the second PSFCH, as an example for illustrative description. That is, the PSFCH channel is divided into the first PSFCH and the second PSFCH in the frequency domain, where the first PSFCH and the second PSFCH respectively map the PSSCH of the entire resource pool.
  • the number of frequency domain units (such as PRBs) occupied by the first PSFCH is M1, and each resource scheduling unit corresponds to M set,1 frequency domain unit in the first PSFCH.
  • M set,1 M1/(X*L); the number of frequency domain units (such as PRBs) occupied by the second PSFCH is M2.
  • Each resource scheduling unit corresponds to M set, 1 frequency domain unit in the second PSFCH.
  • M set,2 M2/(X*L).
  • X is the PSFCH cycle
  • L is the maximum number of sub-channels configured in the resource pool.
  • the third information indicates that the first PSFCH is a channel for the first terminal device to receive or send feedback information, including the following implementation methods.
  • the third information indicates that the first PSFCH is a channel for the first terminal device to receive feedback information, that is, the first terminal device receives feedback information from other devices on the first PSFCH.
  • the first terminal device sends data to other devices, and the other devices determine, based on the third information, to send feedback information for the data to the first terminal device on the first PSFCH; accordingly, the first terminal device sends data to the first terminal device on the first PSFCH. Receive feedback on this data.
  • the second PSFCH (that is, other PSFCHs except the first PSFCH) can be defaulted as the channel for the first terminal device to send feedback information, that is, the first terminal device sends feedback information to the second PSFCH on the second PSFCH.
  • Other devices send feedback information. For example, after receiving data from other devices, the first terminal device sends feedback information of the data to other devices on the second PSFCH; accordingly, the other devices determine based on the third information that the second terminal device sends feedback information on the second PSFCH. The feedback information of the data is received on the PSFCH.
  • the third information indicates that the first PSFCH is a channel for the first terminal device to send feedback information, that is, the first A terminal device sends feedback information to other devices on the first PSFCH.
  • the first terminal device after receiving data from other devices, the first terminal device sends feedback information of the data to the other devices on the first PSFCH; accordingly, the other devices determine, based on the third information, whether to receive the data on the first PSFCH. Feedback.
  • the second PSFCH (i.e., PSFCHs other than the first PSFCH) can be defaulted as the channel for the first terminal device to receive feedback information, that is, the first terminal device receives feedback information from other devices on the second PSFCH.
  • the first terminal device sends data to other devices, and the other devices determine to send feedback information for the data to the first terminal device on the second PSFCH based on the third information; accordingly, the first terminal device receives feedback information of the data on the second PSFCH.
  • the third information indicates that the first PSFCH is a channel for the first terminal device to send feedback information, and the second PSFCH is a channel for the first terminal device to receive feedback information, that is, the first terminal device sends feedback to other devices on the first PSFCH. information, receiving feedback information from other devices on the second PSFCH.
  • the first terminal device sends third information.
  • the first terminal device may send third information to at least one terminal device, for example, the first terminal device sends the third information to the second terminal device.
  • at least one terminal device can receive feedback information and send feedback information on the corresponding PSFCH based on the indication of the third information.
  • the third information is carried in SCI (for distinction, denoted as SCI#5).
  • the feedback information is used to feedback the reception status of data scheduled by SCI#5.
  • the SCI#5 may be, for example, a first-order SCI, a second-order SCI, or a newly defined SCI (such as a third-order SCI), which is not limited.
  • the third information indicates that the first PSFCH is a channel for the first terminal device to receive feedback information of data scheduled by SCI#5. That is to say, when the first terminal device sends data scheduled by SCI#5 to other devices, the other devices send feedback information for the data on the first PSFCH.
  • the third information indicates that the first PSFCH is the channel through which the first terminal device sends feedback information of data scheduled by SCI#5. That is to say, when the first terminal device receives SCI#5 scheduled data sent from other devices, the first terminal device sends feedback information for the data on the first PSFCH.
  • the method 800 further includes: the first terminal device obtains fourth information, where the fourth information indicates resource information occupied by at least one PSFCH among the at least two PSFCHs.
  • the fourth information is configuration information of the resource pool.
  • the first terminal device obtains the fourth information, which may be replaced by: the first terminal device receives the fourth information, for example, the first terminal device receives the fourth information from the network device; or it may be replaced by the first terminal device determining the fourth information.
  • Fourth information such as the first terminal device itself determines or reads the fourth information.
  • the resource information occupied by at least one PSFCH among the at least two PSFCHs includes at least one of the following: the number of frequency domain units occupied by at least one PSFCH, the starting position of the frequency domain resources occupied by at least one PSFCH, The end position of the frequency domain resource occupied by at least one PSFCH.
  • the fourth information indicates resource information occupied by each PSFCH of at least two PSFCHs.
  • the fourth information indicates at least one of the following: the number of frequency domain units occupied by each PSFCH, the starting position of the frequency domain resources occupied by each PSFCH, and the end position of the frequency domain resources occupied by each PSFCH.
  • the first terminal device can learn the resources occupied by the PSFCH based on the resource information occupied by each PSFCH.
  • the fourth information indicates resource information occupied by part of the PSFCHs in at least two PSFCHs.
  • the fourth information indicates at least one of the following: the number of frequency domain units occupied by the first PSFCH, the starting position of the frequency domain resources occupied by the first PSFCH, and the end position of the frequency domain resources occupied by the first PSFCH.
  • the first terminal device can directly learn the resources occupied by the first PSFCH based on the fourth information.
  • the first terminal equipment can learn the resources occupied by other PSFCHs based on the resources occupied by the first PSFCH.
  • the resources occupied by each PSFCH in at least two PSFCHs meet certain conditions. The conditions can be predefined or predetermined. configured, therefore, the first terminal device can learn the resources occupied by other PSFCHs based on the resources occupied by one of the PSFCHs.
  • FIG 9 is a schematic diagram of PSSCH to PSFCH mapping applicable to the embodiment of the present application.
  • UE A, UE B, and UE C are SBFD devices, and UE D and UE E are other devices, such as TDD devices.
  • the PSFCH channel is divided into: PSFCH 1, PSFCH 2, and GB in the frequency domain.
  • PSFCH 1 and PSFCH 2 respectively map the PSSCH of the entire resource pool.
  • the number of PRBs occupied by PSFCH 1 is M1
  • each resource scheduling unit corresponds to M set, 1 frequency domain unit in PSFCH 1.
  • M set, 1 M1/(X*L); PSFCH 2
  • the number of PRBs occupied is M2, and each resource scheduling unit corresponds to M set, 2 frequency domain units in PSFCH 2.
  • M set, 2 M2/(X*L).
  • X is the PSFCH cycle
  • L is the maximum number of sub-channels configured in the resource pool.
  • the SBFD devices can exchange PSFCHs for respectively receiving and/or sending feedback information.
  • the SBFD device sending data indicates the PSFCH channel as the PSFCH channel for which it receives HARQ in the SCI that schedules the data.
  • the SBFD device that receives data uses the PSFCH channel indicated by the SCI that schedules the data as the PSFCH channel through which it sends HARQ.
  • the PSFCH used by UE A to send feedback information is PSFCH 2
  • the PSFCH used by UE A to receive feedback information is PSFCH 1.
  • UE B detects the HARQ from UE A on PSFCH 2
  • UE A sends to UE C
  • UE C sends the HARQ of the data to UE A on PSFCH 1.
  • UE A detects the HARQ from UE C on PSFCH 1.
  • the second possible scenario is that when the SBFD device and the TDD device communicate with each other, the SBFD device can instruct itself to receive and/or send feedback information on the PSFCH, and the TDD device receives the feedback information on the PSFCH instructed by the SBFD device to send feedback information. Feedback information is sent on the PSFCH indicated by the device to receive feedback information.
  • the PSFCH used by UE B to send feedback information is PSFCH 1.
  • PSFCH 1 the PSFCH used by UE B to send feedback information.
  • UE D detects the HARQ from UE B on PSFCH 1.
  • the TDD device when the TDD device sends data to the SBFD device for the first time, the TDD device can jointly detect the HARQ feedback from the SBFD device on PSFCH 1 and PSFCH 2; or, if the TDD device knows in advance that the SBFD device receives and/or sends the PSFCH of HARQ, the TDD can detect the HARQ feedback from the SBFD device on the corresponding PSFCH.
  • the TDD devices when TDD devices communicate with each other, the TDD devices can exchange their respective PSFCHs for receiving and/or sending feedback information, or preconfigure the PSFCHs for TDD devices to receive and/or send feedback information.
  • the PSFCH for sending feedback information and the PSFCH for receiving feedback information of the TDD device can be the same or different, without limitation.
  • FIG. 9 is an exemplary description and is not limited thereto.
  • Figure 10 is a schematic diagram of a sidelink communication method 1000 provided by another embodiment of the present application.
  • the method 1000 is mainly introduced below by taking the first terminal device as an example.
  • Method 1000 may include the following steps.
  • the MAC layer of the first terminal device determines N second resource units for sending second data, wherein the N second resource units are determined based on M first resource units, and at least one first resource unit among the M first resource units and at least one second resource unit among the N second resource units overlap in the time domain and are continuous in the frequency domain.
  • M and N are integers greater than or equal to 1.
  • the M first resource units are resource units used by the first terminal device to send the first data.
  • the method 1000 further includes: the first terminal device determines to send the first data on M first resource units.
  • the first terminal device is an SBFD device.
  • first data and the second data may be data of different services, or the first data and the second data may be different data of the same service, without limitation.
  • the method 1000 further includes step 1001.
  • the physical layer of the first terminal device reports a candidate resource set to the MAC layer.
  • the candidate resource set includes N second resource units.
  • the MAC layer of the first terminal device determines to send the first data on M first resource units and to send the second data on N second resource units.
  • the MAC layer selects frequency domain continuous transmission resources for the multiple data to be sent from the candidate resource set reported by the physical layer, minimizing the resource caused by configuring GB. waste.
  • the first possible implementation method is that the N second resource units are N resource units whose values in I x and y are within the preset range, N is an integer greater than 1 or equal to 1, and I x and y are R x, The sum of the first number and the second number in the time slot set associated with y .
  • the first number is the resource occupied by the first data on the first time domain unit and the delay of R x, y on the first time domain unit.
  • the number of continuous time domain units of the extension resource in the frequency domain, the second number is the number of time domain units in the time slot set associated with R x, y that the first terminal device has not transmitted data; where R x, y represents the candidate resource For the candidate resources in the set (or called single-slot candidate resources), x represents the sequence of time domain units, and y represents the sequence of frequency domain units.
  • the first time domain unit represents the time domain resource corresponding to the resource selection window in which the candidate resource set is located.
  • the time domain resources corresponding to the resource selection window include at least two, then the first time domain unit can also be replaced by the first time domain unit set, that is, the first time domain unit set represents the time domain resources corresponding to the resource selection window where the candidate resource set is located gather.
  • Step 1) The upper layer selects candidate resources R x,y from the candidate resource set S A for the current transmission service.
  • the time slot number where R x and y are located is ty y
  • the starting sequence number occupied by the subchannel is x.
  • Step 2 Assuming that the resource reservation period is P rsvp , the higher level selects candidate resources R x, y and its period extension resources for the current service.
  • C resel is the number of time slots corresponding to the current service transmission opportunity.
  • Step 3 For the candidate resource R x,y in the candidate resource set S A , define I x,y as the set of time slots associated with R x,y There is an existing transmission service in , and the resources occupied by the existing transmission service in this time slot and the extension resources of R x, y on this time slot are continuous in the frequency domain. number of time slots.
  • FIG11 is a schematic diagram of a high-level determination of transmission resources applicable to an embodiment of the present application.
  • the resource reservation period P rsvp of the current service is 2, and C resel is 3.
  • the candidate time slot set associated with R 4,y is ⁇ ty , ty+2 ,ty +4 ⁇
  • the period extension of R 4,y corresponding to the time slot set is ⁇ R 4,y ,R 4,y+2 ,R 4,y+4 ⁇
  • Step 4) Sort I x, y from high to low, select the R x, y with the earliest time slot among the R x, y corresponding to the first N I x, y as the initial transmission resource, and the remaining N-1 I R x and y corresponding to x and y are retransmission resources.
  • N is an integer greater than or equal to 1.
  • the specific value of N can be predefined or preconfigured and is not limited.
  • the MAC layer can select R 4,y as the initial transmission resource, and can randomly select a certain one among R 1,y , R 3,y+1 , R 1,y+2 and R 4,y+2 One resource serves as a retransmission resource.
  • the MAC layer selects continuous sending resources in the frequency domain for the multiple sending services from the candidate resource set reported by the physical layer, thereby minimizing the configuration of GB resulting in a waste of resources.
  • the second possible implementation method is that the N second resource units are I x, N resource units whose values in y are within the preset range, N is an integer greater than 1 or equal to 1, I x, y is R x,
  • the third resources include: resources occupied by data, R x , y , continuation resources of R Neighboring resources, resources adjacent to the extension resource of R x, y in the frequency domain; where R x, y represents the candidate resource in the candidate resource set (or single slot candidate resource), and x represents the time domain unit sequence, y represents the sequence of frequency domain units.
  • Step 1) The upper layer selects candidate resources R x,y from the candidate resource set S A for the current transmission service.
  • Step 2 Assuming that the resource reservation period is P rsvp , the higher level selects candidate resources R x, y and its period extension resources for the current service.
  • Step 3 For the candidate resource R x,y in the candidate resource set S A , define I x,y as the set of time slots associated with R x,y Exclude resources occupied by existing sending services, R x, y and their periodic extension resources The number of time slots in which the proportion of available receiving resources after adjacent sub-channels of the above resources is higher than the threshold.
  • the proportion of available receiving resources in a certain time slot can be defined as the proportion of the number of remaining sub-channels in the time slot after excluding all sub-channels occupied by transmission services and their adjacent sub-channels to the total number of sub-channels configured in the resource pool.
  • the candidate time slot set associated with R 4, y is ⁇ ty , ty+2 , ty+4 ⁇
  • the period extension of R 4,y corresponding to the time slot set is ⁇ R 4,y ,R 4,y+2 ,R 4,y+4 ⁇
  • the remaining available receiving resources of time slot ty+2 account for 0% of the total number of sub-channels.
  • Step 4) Sort I x, y from high to low, select the R x, y with the earliest time slot among the R x, y corresponding to the first N I x, y as the initial transmission resource, and the remaining N-1 I R x and y corresponding to x and y are retransmission resources.
  • N is an integer greater than or equal to 1.
  • the specific value of N can be predefined or preconfigured and is not limited.
  • the MAC layer can select R 4,y as the initial transmission resource and R 3,y+1 as the retransmission resource.
  • the MAC layer selects continuous sending resources in the frequency domain for the multiple sending services from the candidate resource set reported by the physical layer, so as to ensure that the sending services can be guaranteed as much as possible. There are sufficient available receiving resources in the timeslot.
  • transmission includes receiving and/or sending.
  • transmitting a signal may include receiving a signal and/or transmitting a signal.
  • the first information is carried in the sideline control information, which can also be replaced by: the sideline control information includes the first information.
  • first-order SCI and first-order SCI are sometimes used interchangeably, which have the same meaning.
  • the first-order SCI and the first-order SCI can represent the SCI sent in the previous symbol of the time slot and carried by the PSCCH.
  • the first-order SCI and the first-order SCI can also mean that they are sent on symbols later in the time slot. They can be sent using the PSCCH, or they can be multiplexed and sent on the PSSCH.
  • the methods and operations implemented by the communication device can also be implemented by components (such as chips or circuits) that can be implemented by the communication device.
  • embodiments of the present application also provide corresponding devices, and the devices include modules for executing corresponding modules in each of the above method embodiments.
  • the module can be software, hardware, or a combination of software and hardware. It can be understood that the technical features described in the above method embodiments are also applicable to the following device embodiments.
  • FIG 12 is a schematic block diagram of a communication device 1200 provided by an embodiment of the present application.
  • the device 1200 includes a transceiver unit 1210.
  • the transceiver unit 1210 may be used to implement corresponding communication functions.
  • the transceiver unit 1210 may also be called a communication interface or a communication unit.
  • the device 1200 further includes a processing unit 1220.
  • the processing unit 1220 may be used for data processing.
  • the device 1200 also includes a storage unit, which can be used to store instructions and/or data, and the processing unit 1220 can read the instructions and/or data in the storage unit, so that the device implements each of the foregoing method embodiments.
  • the actions of the terminal equipment can be used to store instructions and/or data, and the processing unit 1220 can read the instructions and/or data in the storage unit, so that the device implements each of the foregoing method embodiments.
  • the actions of the terminal equipment can be used to store instructions and/or data
  • the processing unit 1220 can read the instructions and/or data in the storage unit, so that the device implements each of the foregoing method embodiments.
  • the device 1200 may be the first terminal device in the aforementioned embodiment, or may be a component (such as a chip) of the first terminal device.
  • the device 1200 can implement steps or processes corresponding to those performed by the first terminal device in the above method embodiment, wherein the transceiver unit 1210 can be used to perform operations related to the transceiver of the first terminal device in the above method embodiment, and the processing unit 1220 may be used to perform operations related to processing of the first terminal device in the above method embodiment.
  • the transceiver unit 1210 is configured to send first information to the second terminal device, where the first information indicates whether the first terminal device uses the first resource as a receiving resource, where when the first resource is the second resource Resources with overlapping domains and adjacent frequency domains, the second resources are reserved transmission resources of the first terminal device, and the first terminal device is a subband non-overlapping full-duplex device.
  • the device 1200 can implement steps or processes corresponding to those executed by the first terminal device in the method embodiments according to the embodiments of this application.
  • the device 1200 can include a first terminal device for executing the embodiment shown in Figure 4 or Figure 6 The unit of methods that the device executes.
  • the transceiver unit 1210 is configured to send third information to the second terminal device, where the third information indicates that the first physical sidelink feedback channel PSFCH is a channel for the first terminal device to receive or send feedback information.
  • the first PSFCH is one of at least two PSFCHs, and the first terminal device is a subband non-overlapping full-duplex device; wherein the third information indicates that the first PSFCH is a channel for the first terminal device to receive feedback information, and the first terminal The device receives feedback information on the first PSFCH; or, the third information indicates that the first PSFCH is a channel for the first terminal device to send feedback information, and the first terminal device sends feedback information on the first PSFCH.
  • the device 1200 can implement steps or processes corresponding to the execution of the first terminal device in the method embodiment according to the embodiment of the present application.
  • the device 1200 can include a step for executing the first terminal device in the embodiment shown in Figure 8. method unit.
  • the device 1200 may be the second terminal device in the aforementioned embodiment, or may be a component (such as a chip) of the second terminal device.
  • the device 1200 can implement steps or processes corresponding to those performed by the second terminal device in the above method embodiment, wherein the transceiver unit 1210 can be used to perform operations related to the transceiver of the second terminal device in the above method embodiment, and the processing unit 1220 may be used to perform operations related to processing of the second terminal device in the above method embodiment.
  • the transceiver unit 1210 is configured to receive first information from a first terminal device, where the first information indicates whether the first terminal device uses the first resource as a receiving resource, where the first resource is a second resource. Resources that overlap in the time domain and are adjacent in the frequency domain, the second resource is the reserved transmission resource of the first terminal device, and the first terminal device is a subband non-overlapping full-duplex device; the processing unit 1220 is configured to, according to the first information, A set of candidate resources for sending data to the first terminal device is determined.
  • the device 1200 can implement steps or processes corresponding to the execution of the second terminal device in the method embodiment according to the embodiment of the present application.
  • the device 1200 can include a second terminal for executing the embodiment shown in Figure 4 or Figure 6 The unit of methods that the device executes.
  • the transceiver unit 1210 is configured to receive third information from the first terminal device, where the third information indicates that the first physical sidelink feedback channel PSFCH is used by the first terminal device to receive or send feedback information.
  • the first PSFCH is one of at least two PSFCHs, and the first terminal device is a subband non-overlapping full-duplex device; wherein the third information indicates that the first PSFCH is a channel for the first terminal device to receive feedback information, and the second The terminal equipment sends feedback information to the first terminal equipment on the first PSFCH; or, the third information indicates that the first PSFCH is a channel for the first terminal equipment to send feedback information, and the second terminal equipment monitors the feedback information from the first terminal on the first PSFCH. Feedback from the device.
  • the device 1200 can implement steps or processes corresponding to the execution of the second terminal device in the method embodiment according to the embodiment of the present application.
  • the device 1200 can include a method for executing the second terminal device in the embodiment shown in Figure 8. method unit.
  • the device 1200 here is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • the device 1200 can be specifically a terminal device (such as a first terminal device or a second terminal device) in the above embodiments, and can be used to perform the above method embodiments. To avoid duplication, the various processes and/or steps corresponding to the terminal device will not be described again here.
  • the apparatus 1200 of each of the above solutions has the function of realizing the corresponding steps performed by the terminal device (such as the first terminal device, and such as the second terminal device) in the above method.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiving unit. (machine replacement), other units, such as processing units, etc., can be replaced by processors to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver unit 1210 may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in Figure 12 may be the device in the aforementioned embodiment, or it may be a chip or a chip system, such as a system on chip (SoC).
  • the transceiver unit may be an input-output circuit or a communication interface; the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip. No limitation is made here.
  • Figure 13 is a schematic block diagram of a communication device 1300 provided by an embodiment of the present application.
  • the apparatus 1300 includes a processor 1310 coupled to a memory 1320.
  • a memory 1320 is also included for storing computer programs or instructions and/or data, and the processor 1310 is used to execute the computer programs or instructions stored in the memory 1320, or read the data stored in the memory 1320 to perform the above. Methods in Method Examples.
  • processors 1310 there are one or more processors 1310 .
  • the memory 1320 is integrated with the processor 1310, or is provided separately.
  • the device 1300 also includes a transceiver 1330, which is used for receiving and/or transmitting signals.
  • the processor 1310 is used to control the transceiver 1330 to receive and/or transmit signals.
  • the device 1300 is used to implement the operations performed by the terminal device in each of the above method embodiments.
  • the processor 1310 is used to execute computer programs or instructions stored in the memory 1320 to implement related operations of the first terminal device or the second terminal device in each of the above method embodiments.
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 1310 .
  • the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 1320.
  • the processor 1310 reads the information in the memory 1320 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor may be one or more integrated circuits, used to execute relevant programs to execute the method embodiments of the present application.
  • a processor may include one or more processors and be implemented as a combination of computing devices.
  • the processor may include one or more of the following: microprocessor, microcontroller, digital signal processor (digital signal processor, DSP), digital signal processing device (digital signal processing device, DSPD), application specific integrated circuit (application specific integrated circuit (ASIC), field programmable gate array (FPGA), programmable logic device (PLD), gate logic, transistor logic, discrete hardware circuits, processing circuits or other suitable Hardware, firmware, and/or a combination of hardware and software to perform the various functions described in this disclosure.
  • the processor may be a general purpose processor or a special purpose processor.
  • processor 1310 may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processing unit may be used to cause the device to execute software programs and process data in the software programs.
  • a portion of the processor may include non-volatile random access memory.
  • the processor may also store information about the device type.
  • Program in this application is used in a broad sense to mean software.
  • software include: program code, programs, subroutines, instructions, sets of instructions, code, code segments, software modules, applications, or software applications, and the like.
  • Programs can run on a processor and/or computer. To cause the device to perform various functions and/or processes described in this application.
  • the memory can store data required by the processor (e.g., processor 1310) when executing software.
  • the memory can be implemented using any suitable storage technology.
  • the memory can be any available storage medium that can be accessed by the processor and/or computer.
  • Non-limiting examples of storage media include random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate synchronous dynamic random access memory (DDR SDRAM), enhanced synchronous dynamic random access memory (ESDRAM), synchronous link dynamic random access memory (SLDRAM), and direct rambus RAM (DR RAM), removable media, optical disk storage, magnetic disk storage media, magnetic storage devices, flash memory, registers, state memory, remote mounted storage, local or remote storage components, or any other medium capable of carrying or storing software, data or information and accessible by a processor/computer. It should be noted that the memory described herein is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory eg, memory 1320
  • the processor eg, processor 1310
  • the memory may be used in connection with the processor to enable the processor to read information from the memory, store and/or write information in the memory.
  • the memory can be integrated into the processor.
  • the memory and processor may be provided in an integrated circuit (eg, the integrated circuit may be provided in a UE or other network node).
  • FIG 14 is a schematic block diagram of a chip system 1400 provided by an embodiment of the present application.
  • the chip system 1400 (or can also be called a processing system) includes a logic circuit 1410 and an input/output interface 1420.
  • the logic circuit 1410 may be a processing circuit in the chip system 1400 .
  • the logic circuit 1410 can be coupled to the memory unit and call instructions in the memory unit, so that the chip system 1400 can implement the methods and functions of various embodiments of the present application.
  • the input/output interface 1420 can be an input/output circuit in the chip system 1400, which outputs information processed by the chip system 1400, or inputs data or signaling information to be processed into the chip system 1400 for processing.
  • the chip system 1400 is used to implement the operations performed by the terminal device in each of the above method embodiments.
  • the logic circuit 1410 is used to implement the processing-related operations performed by the first terminal device in the above method embodiment, such as the processing-related operations performed by the first terminal device in the embodiment shown in Figure 4, or the processing-related operations shown in Figure 6
  • the input/output interface 1420 is used to implement the sending and/or receiving related operations performed by the first terminal device in the above method embodiment, such as the sending performed by the first terminal device in the embodiment shown in Figure 4 and/or receive related operations, or send and/or receive related operations performed by the first terminal device in the embodiment shown in Figure 6, or send and/or receive performed by the first terminal device in the embodiment shown in Figure 8 Related operations, or sending and/or receiving related operations performed by the first terminal device in the embodiment shown in FIG. 10 .
  • the logic circuit 1410 is used to implement processing-related operations performed by the second terminal device in the above method embodiment, such as, Processing-related operations performed by the second terminal device in the embodiment shown in Figure 4, or processing-related operations performed by the second terminal device in the embodiment shown in Figure 6, or processing-related operations performed by the second terminal device in the embodiment shown in Figure 8 processing-related operations, or processing-related operations performed by the second terminal device in the embodiment shown in Figure 10;
  • the input/output interface 1420 is used to implement the sending and/or execution by the second terminal device in the above method embodiment.
  • Receiving related operations such as sending and/or receiving related operations performed by the second terminal device in the embodiment shown in Figure 4, or sending and/or receiving related operations performed by the second terminal device in the embodiment shown in Figure 6 or the sending and/or receiving related operations performed by the second terminal device in the embodiment shown in FIG. 8 , or the sending and/or receiving related operations performed by the second terminal device in the embodiment shown in FIG. 10 .
  • Embodiments of the present application also provide a computer-readable storage medium on which are stored computer instructions for implementing the methods executed by a terminal device (such as a first terminal device or a second terminal device) in each of the above method embodiments.
  • a terminal device such as a first terminal device or a second terminal device
  • Embodiments of the present application also provide a computer program product that includes instructions that, when executed by a computer, implement the methods executed by a terminal device (such as a first terminal device or a second terminal device) in each of the above method embodiments.
  • a terminal device such as a first terminal device or a second terminal device
  • An embodiment of the present application also provides a communication system, which includes the first terminal device and the second terminal device in the above embodiments.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the above units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to implement the solution provided by this application.
  • each functional unit in each embodiment of the present application can be integrated into one unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer may be a personal computer, a server, or a network device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g., computer instructions may be transmitted from a website, computer, server or data center via a wired link (e.g.
  • Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless means to transmit to another website site, computer, server or data center.
  • DSL digital subscriber line
  • wireless such as infrared, wireless, microwave, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种侧行链路通信的方法和通信装置,可以适用于侧行链路通信的场景。该方法可以包括:SBFD设备向其他设备指示自己是否推荐将与第二资源时域重叠且频域相邻的资源作为接收资源,第二资源为SBFD设备的预留发送资源。通过本申请,不仅可以实现资源选择,且在资源选择的过程中动态配置收发资源之间的保护带,而且还可以降低SBFD设备同时收发数据带来的自干扰。例如,在SBFD设备在第二资源上发送数据和与该第二资源时域重叠且频域相邻的资源上接收数据之间的干扰较大时,该SBFD设备可以向其他设备指示不推荐将与第二资源时域重叠且频域相邻的资源作为接收资源,从而降低SBFD设备同时收发数据带来的自干扰。

Description

侧行链路通信的方法及装置
本申请要求于2022年09月21日提交中国专利局、申请号为202211151512.9、申请名称为“一种通信方法、装置及系统”的中国专利申请的优先权、以及于2022年11月02日提交中国专利局、申请号为202211359574.9、申请名称为“侧行链路通信的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及侧行链路通信领域,并且更具体的,涉及一种侧行链路通信的方法及装置。
背景技术
子带非重叠全双工(subband non-overlapping full duplex,SBFD)技术通过对网络设备进行双工增强,从而支持在网络部署中实现更灵活的上行链路(uplink,UL)和下行链路(downlink,DL)资源配置。SBFD技术可以提高上行覆盖,并降低混合自动重传请求(hybrid automatic repeat request,HARQ)的反馈时延,是智慧工厂、智慧采矿、智慧钢铁等上行主导应用场景里非常具有前景的技术。
侧行链路(sidelink,SL)不同于UL和DL,SL主要是为了支持终端设备之间直接通信而引入的链路技术。那么,若在SL中引入SBFD技术,终端设备如何进行资源的选择,是一个待解决的问题。
发明内容
本申请提供一种侧行链路通信的方法和通信装置,在SL中引入SBFD技术后,提供终端设备资源选择的方式,以降低终端设备同时收发数据带来的自干扰。
第一方面,提供了一种侧行链路通信的方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由第一终端设备执行为例进行说明。
该方法可以包括:第一终端设备向第二终端设备发送第一信息,所述第一信息指示所述第一终端设备是否将第一资源作为接收资源,其中,所述第一资源为第二资源时域重叠且频域相邻的资源,所述第二资源为所述第一终端设备的预留发送资源,所述第一终端设备为子带非重叠全双工设备。
基于上述技术方案,第一终端设备可以根据实际通信情况,确定是否要使用与第一终端设备的预留发送资源时域重叠且频域相邻的资源作为接收资源,并且向其他设备指示,这样其他设备在向第一终端设备发送数据时,可以根据第一终端设备的指示,进行候选资源的排除。通过本申请,不仅可以实现资源选择,而且还可以降低终端设备同时收发数据带来的自干扰。例如,在第一终端设备在第二资源上发送数据导致第一终端设备在第一资源上接收数据之间的干扰较大时,第一终端设备可以向其他设备指示不将第一资源作为接收资源,从而降低第一终端设备同时收发数据带来的自干扰。
此外,通过本申请,第一终端设备根据实际通信情况,确定是否要使用与第一终端设备的预留发送资源时域重叠且频域相邻的资源作为接收资源,还可以实现在资源选择的过程中动态地配置收发资源(如收发子带)之间的保护带(guard band,GB),提高GB配置的灵活性,降低不必要的资源浪费。举例来说,与第一终端设备的预留发送资源时域重叠且频域相邻的资源,可认为是一个保护带,若第一终端设备根据实际通信情况,确定不要使用与第一终端设备的预留发送资源时域重叠且频域相邻的资源作为接收资源,那么该接收资源可作为该预留发送资源与其他资源(如其他接收资源)之间的保护带;若第一终端设备根据实际通信情况,确定要使用与第一终端设备的预留发送资源时域重叠且频域相邻的资源作为接收资源,那么相当于该预留发送资源与该接收资源之间可以不用设置保护带。由此可知,通过本申请实施例,还可以实现在资源选择的过程中动态地配置收发资源(如收发子带)之间的保护带。
结合第一方面,在第一方面的某些实现方式中,所述第一信息承载于侧行控制信息。
结合第一方面,在第一方面的某些实现方式中,所述侧行控制信息承载于物理侧行链路控制信道或物理侧行链路共享信道。
结合第一方面,在第一方面的某些实现方式中,所述侧行控制信息还指示所述第二资源。
基于上述技术方案,第一终端设备在同一个侧行控制信息中携带第一信息和第二资源的信息,这样,便于其他设备基于该侧行控制信息获知第一信息中指示的第一资源的位置。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第一终端设备向所述第二终端设备发送第二信息,所述第二信息指示所述第一终端设备的标识。
基于上述技术方案,第一终端设备还可以向其他设备指示第一终端设备的标识,这样便于其他设备基于该第一终端设备的标识识别出第一信息中提及的终端设备是哪个,进而其他设备在向该终端设备发送数据时,基于该第一信息确定候选资源。
结合第一方面,在第一方面的某些实现方式中,在所述第一终端设备向第二终端设备发送第一信息之前,所述方法还包括:所述第一终端设备确定所述第一信息。
结合第一方面,在第一方面的某些实现方式中,所述第一终端设备确定所述第一信息,包括:所述第一终端设备根据以下至少一项,确定所述第一信息:第一功率、第二功率,其中,所述第一功率为所述第一终端设备在所述第二资源上的发送功率,所述第二功率为所述第一终端设备在所述第一资源上的残留自干扰功率。
示例地,第一终端设备可以通过第一功率、所述第一功率与所述第二功率的比值确定第二功率。示例地,所述第一功率与所述第二功率的比值可以是预配置的,或者是第一终端设备通过测量得到的。
结合第一方面,在第一方面的某些实现方式中,所述第一终端设备根据以下至少一项确定所述第一信息:第一功率、第二功率,包括:在所述第一功率大于第一阈值的情况下,所述第一终端设备确定的所述第一信息指示所述第一终端设备不将所述第一资源作为接收资源,或者,在所述第一功率小于或等于所述第一阈值的情况下,所述第一终端设备确定的所述第一信息指示所述第一终端设备将所述第一资源作为接收资源;或者,在所述第二功率大于第二阈值的情况下,所述第一终端设备确定的所述第一信息指示所述第一终端设备不将所述第一资源作为接收资源,或者,在所述第二功率小于或等于所述第二阈值的情况下,所述第一终端设备确定的所述第一信息指示所述第一终端设备将所述第一资源作为接收资源。
示例地,第一终端设备优先通过第二功率确定第一信息。
示例地,所述第一终端设备不将所述第一资源作为接收资源,包括:第一终端设备接收数据的候选资源集合不包括所述第一资源。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第一终端设备确定第三资源,所述第三资源为所述第一终端设备的接收资源;所述第一终端设备确定是否在第四资源上发送数据,所述第四资源为所述第三资源时域重叠且频域相邻的资源。
基于上述技术方案,第一终端设备可以根据第一终端设备的接收资源,选择是否在与该接收资源时域重叠且频域相邻的资源上发送数据。这样,不仅可以实现发送资源的选择,实现在资源选择的过程中动态地配置收发资源(如收发子带)之间的保护带,而且还可以降低终端设备同时收发数据带来的自干扰。例如,在第一终端设备在第四资源上发送数据导致第一终端设备在第三资源上接收数据的干扰较大时,第一终端设备可以不在该第四资源上发送数据。
结合第一方面,在第一方面的某些实现方式中,所述第一终端设备确定是否在第四资源发送数据,包括:所述第一终端设备根据以下至少一项确定是否在所述第四资源上发送数据:第三功率、第四功率;其中,所述第三功率为所述第一终端设备在所述第四资源上的发送功率,所述第四功率为所述第一终端设备在所述第三资源上的残留自干扰功率。
结合第一方面,在第一方面的某些实现方式中,所述第一终端设备根据以下至少一项确定是否在所述第四资源上发送数据:第三功率、第四功率,包括:在所述第三功率大于第三阈值的情况下,所述第一终端设备确定不在所述第四资源上发送数据,或者,在所述第三功率小于或等于所述第三阈值的情况下,所述第一终端设备确定在所述第四资源上发送数据;或者,在所述第四功率大于第四阈值的情况下,所述第一终端设备确定不在所述第四资源上发送数据,或者,在所述第四功率小于或等于所述第四阈值的情况下,所述第一终端设备确定在所述第四资源上发送数据。
示例地,第一终端设备优先通过第四功率确定是否在第四资源上发送数据。
示例地,所述第一终端设备不在所述第四资源上发送数据,包括:第一终端设备发送数据的候选资源集合不包括所述第四资源。
第二方面,提供了一种侧行链路通信的方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由第二终端设备执行为例进行说明。
该方法可以包括:第二终端设备接收来自第一终端设备的第一信息,所述第一信息指示所述第一终端设备是否将第一资源作为接收资源,其中,所述第一资源为第二资源时域重叠且频域相邻的资源,所述第二资源为所述第一终端设备的预留发送资源,所述第一终端设备为子带非重叠全双工设备;所述第二终端设备根据所述第一信息,确定向所述第一终端设备发送数据的候选资源集合。
结合第二方面,在第二方面的某些实现方式中,当所述第一信息指示所述第一终端设备不将第一资源作为接收资源时,所述向所述第一终端设备发送数据的候选资源集合不包括所述第一资源。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述第二终端设备接收来自所述第一终端设备的第二信息,所述第二信息指示所述第一终端设备的标识;所述第二终端设备根据所述第一信息,确定向所述第一终端设备发送数据的候选资源集合,包括:所述第二终端设备根据所述第一信息和所述第二信息,确定向所述第一终端设备发送数据的候选资源集合。
关于第二方面的有益效果,可以参考第一方面中的相关描述,此处不再赘述。
第三方面,提供了一种侧行链路通信的方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由第一终端设备执行为例进行说明。
该方法可以包括:第一终端设备向第二终端设备发送第三信息,所述第三信息指示第一物理侧行链路反馈信道PSFCH为所述第一终端设备接收或发送反馈信息的信道,所述第一PSFCH为至少两个PSFCH中的一个,所述第一终端设备为子带非重叠全双工设备;其中,所述第三信息指示第一PSFCH为所述第一终端设备接收反馈信息的信道,所述第一终端设备在所述第一PSFCH上接收所述反馈信息;或者,所述第三信息指示第一PSFCH为所述第一终端设备发送反馈信息的信道,所述第一终端设备在所述第一PSFCH上发送所述反馈信息。
示例地,至少两个PSFCH中的每个PSFCH映射整个资源池的PSSCH。
基于上述技术方案,可以将PSFCH信道在频域上划分成至少两个PSFCH(或者说至少两组)。这样,第一终端设备可以选择在不同的PSFCH上发送反馈信息和接收反馈信息,如第一终端设备在一PSFCH上发送反馈信息,在另一PSFCH上接收反馈信息。从而可以降低第一终端设备在同一个PSFCH上收发反馈信息时出现的冲突和自干扰问题。
结合第三方面,在第三方面的某些实现方式中,所述第三信息承载于侧行控制信息中,所述反馈信息用于反馈所述侧行控制信息调度的数据的接收情况。
结合第三方面,在第三方面的某些实现方式中,所述至少两个PSFCH中每个PSFCH在频域上包括多个频域单元,所述至少两个PSFCH中各个PSFCH所占的资源在时域上重叠,在频域上间隔至少一个频域单元。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述第一终端设备获取第四信息,所述第四信息指示所述至少两个PSFCH中至少一个PSFCH所占的资源信息。
示例地,第四信息为资源池的配置信息。
示例地,所述第一终端设备获取第四信息,包括:所述第一终端设备接收所述第四信息,如所述第一终端设备接收来自网络设备的所述第四信息。
示例地,所述第一终端设备获取第四信息,包括:所述第一终端设备确定所述第四信息,如所述第一终端设备自身确定或读取所述第四信息。
结合第三方面,在第三方面的某些实现方式中,所述至少两个PSFCH中至少一个PSFCH所占的资源信息包括以下至少一项:所述至少一个PSFCH所占的频域单元的数量、所述至少一个PSFCH所占的频域资源的起始位置、所述至少一个PSFCH所占的频域资源的结束位置。
结合第三方面,在第三方面的某些实现方式中,所述至少两个PSFCH包括第二PSFCH,所述第三 信息指示第一PSFCH为所述第一终端设备接收反馈信息的信道,且所述第三信息指示所述第二PSFCH为所述第一终端设备发送反馈信息的信道;或者,所述第三信息指示第一PSFCH为所述第一终端设备发送反馈信息的信道,且所述第三信息指示所述第二PSFCH为所述第一终端设备接收反馈信息的信道。
结合第三方面,在第三方面的某些实现方式中,所述至少两个PSFCH还包括第二PSFCH,所述第三信息指示所述第一PSFCH为所述第一终端设备接收反馈信息的信道,所述第二PSFCH为所述第一终端设备发送反馈信息的信道;或者,所述第三信息指示所述第一PSFCH为所述第一终端设备发送反馈信息的信道,所述第二PSFCH为所述第一终端设备接收反馈信息的信道。
第四方面,提供了一种侧行链路通信的方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由第二终端设备执行为例进行说明。
该方法可以包括:第二终端设备接收来自第一终端设备的第三信息,所述第三信息指示第一物理侧行链路反馈信道PSFCH为所述第一终端设备接收或发送反馈信息的信道,所述第一PSFCH为至少两个PSFCH中的一个,所述第一终端设备为子带非重叠全双工设备;其中,所述第三信息指示第一PSFCH为所述第一终端设备接收反馈信息的信道,所述第二终端设备在所述第一PSFCH上向所述第一终端设备发送所述反馈信息;或者,所述第三信息指示第一PSFCH为所述第一终端设备发送反馈信息的信道,所述第二终端设备在所述第一PSFCH上监测来自所述第一终端设备的所述反馈信息。
结合第四方面,在第四方面的某些实现方式中,所述第三信息承载于侧行控制信息中,所述反馈信息用于反馈所述侧行控制信息调度的数据的接收情况。
结合第四方面,在第四方面的某些实现方式中,所述至少两个PSFCH中每个PSFCH在频域上包括多个频域单元,所述至少两个PSFCH中各个PSFCH所占的资源在时域上重叠,在频域上间隔至少一个频域单元。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:所述第二终端设备获取第四信息,所述第四信息指示所述至少两个PSFCH中至少一个PSFCH所占的资源信息。
示例地,所述第二终端设备获取第四信息,包括:所述第二终端设备接收所述第四信息,如所述第二终端设备接收来自网络设备的所述第四信息。
示例地,所述第二终端设备获取第四信息,包括:所述第二终端设备确定所述第四信息,如所述第二终端设备自身确定或读取所述第四信息。
结合第四方面,在第四方面的某些实现方式中,所述至少两个PSFCH中至少一个PSFCH所占的资源信息包括以下至少一项:所述至少一个PSFCH所占的频域单元的数量、所述至少一个PSFCH所占的频域资源的起始位置、所述至少一个PSFCH所占的频域资源的结束位置。
结合第四方面,在第四方面的某些实现方式中,所述至少两个PSFCH还包括第二PSFCH,所述第三信息指示所述第一PSFCH为所述第一终端设备接收反馈信息的信道,所述第二PSFCH为所述第一终端设备发送反馈信息的信道;或者,所述第三信息指示所述第一PSFCH为所述第一终端设备发送反馈信息的信道,所述第二PSFCH为所述第一终端设备接收反馈信息的信道。
关于第四方面的有益效果,可以参考第三方面中的相关描述,此处不再赘述。
第五方面,提供了一种侧行链路通信的方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由第一终端设备执行为例进行说明。
该方法可以包括:第一终端设备确定第三资源,所述第三资源为所述第一终端设备的接收资源;所述第一终端设备确定是否在第四资源上发送数据,所述第四资源为所述第三资源时域重叠且频域相邻的资源,所述第一终端设备为子带非重叠全双工设备。
基于上述技术方案,第一终端设备可以根据第一终端设备的接收资源选择是否在与该接收资源时域重叠且频域相邻的资源,发送数据。这样,不仅可以实现发送资源的选择,而且还可以降低终端设备同时收发数据带来的自干扰。例如,在第一终端设备在第四资源上发送数据导致第一终端设备在第三资源上接收数据之间的干扰较大时,第一终端设备可以不在该第四资源上发送数据。
此外,通过本申请,第一终端设备根据实际通信情况,确定是否要使用与第三资源时域重叠且频 域相邻的资源作为发送资源,还可以实现在资源选择的过程中动态地配置收发资源(如收发子带)之间的保护带,提高GB配置的灵活性,降低不必要的资源浪费。举例来说,与第三资源时域重叠且频域相邻的资源,可认为是一个保护带,若第一终端设备根据实际通信情况,确定不要使用与第三资源时域重叠且频域相邻的资源作为发送资源,那么该资源可作为该第三资源与其他资源之间的保护带;若第一终端设备根据实际通信情况,确定要使用与第三资源时域重叠且频域相邻的资源作为发送资源,那么相当于该资源与该第三资源之间可以不用设置保护带。由此可知,通过本申请实施例,还可以实现在资源选择的过程中动态地配置收发资源(如收发子带)之间的保护带。
结合第五方面,在第五方面的某些实现方式中,所述第一终端设备确定是否在第四资源发送数据,包括:所述第一终端设备根据以下至少一项确定是否在所述第四资源上发送数据:第三功率、第四功率;其中,所述第三功率为所述第一终端设备在所述第四资源上的发送功率,所述第四功率为所述第一终端设备在所述第三资源上的残留自干扰功率。
结合第五方面,在第五方面的某些实现方式中,所述第一终端设备根据以下至少一项确定是否在所述第四资源上发送数据:第三功率、第四功率,包括:在所述第三功率大于第三阈值的情况下,所述第一终端设备确定不在所述第四资源上发送数据,或者,在所述第三功率小于或等于所述第三阈值的情况下,所述第一终端设备确定在所述第四资源上发送数据;或者,在所述第四功率大于第四阈值的情况下,所述第一终端设备确定不在所述第四资源上发送数据,或者,在所述第四功率小于或等于所述第四阈值的情况下,所述第一终端设备确定在所述第四资源上发送数据。
示例地,第一终端设备优先通过第四功率确定是否在第四资源上发送数据。
示例地,所述第一终端设备不在所述第四资源上发送数据,包括:第一终端设备发送数据的候选资源集合不包括所述第四资源。
关于第五方面的有益效果,可以参考第一方面中的相关描述,此处不再赘述。
第六方面,提供了一种侧行链路通信的方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由第一终端设备执行为例进行说明。
该方法可以包括:第一终端设备确定在M个第一资源单元上发送第一数据,且在N个第二资源单元上发送第二数据,其中,所述N个第二资源单元是根据所述M个第一资源单元确定的,所述M个第一资源单元中的至少一个第一资源单元和所述N个第二资源单元中的至少一个第二资源单元在时域上重叠,且在频域上连续,M和N为大于1或等于1的整数,所述第一终端设备为子带非重叠全双工设备。
第七方面,提供一种通信装置,该装置用于执行上述第一方面至第六方面任一种可能实现方式中的方法。具体地,该装置可以包括用于执行第一方面至第六方面任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为终端设备(如第一终端设备,又如第二终端设备)。当该装置为终端设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于终端设备(如第一终端设备,又如第二终端设备)的芯片、芯片系统或电路。当该装置为用于终端设备的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第八方面,提供一种通信装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面至第六方面任一种可能实现方式中的方法。可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为终端设备(如第一终端设备,又如第二终端设备)。
在另一种实现方式中,该装置为用于终端设备(如第一终端设备,又如第二终端设备)的芯片、芯片系统或电路。
第九方面,本申请提供一种处理器,用于执行上述第一方面至第六方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第十方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第六方面任一种可能实现方式中的方法。
第十一方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第六方面任一种可能实现方式中的方法。
第十二方面,提供一种通信系统,包括前述的第一终端设备和第二终端设备。
附图说明
图1是适用于本申请实施例的无线通信系统的一示意图。
图2是SBFD、TDD、FDD的示意图。
图3是资源池划分为两个子带和GB的示意图。
图4是本申请一实施例提供的一种侧行链路通信的方法400的示意图。
图5是适用于本申请实施例的第一终端设备接收资源选择的示意图。
图6是本申请另一实施例提供的一种侧行链路通信的方法600的示意图。
图7是适用于本申请实施例的第一终端设备发送资源选择的示意图。
图8是本申请另一实施例提供的一种侧行链路通信的方法800的示意图。
图9是适用于本申请实施例的PSSCH到PSFCH映射的示意图。
图10是本申请另一实施例提供的一种侧行链路通信的方法1000的示意图。
图11是适用于本申请实施例的高层确定发送资源的示意图。
图12是本申请实施例提供的一种通信装置1200的示意性框图。
图13是本申请实施例提供的一种通信装置1300的示意性框图。
图14是本申请实施例提供的一种芯片系统1400的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代(6th generation,6G)移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
作为示例,V2X通信可以包括:车与车(vehicle-to-vehicle,V2V)通信、车与路侧基础设施(vehicle-to-infrastructure,V2I)通信、车与行人(vehicle-to-pedestrian,V2P)通信、车与网络(vehicle-to-network,V2N)通信。V2V指的是车辆间的通信。V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客等)的通信。V2I指的是车辆与基础设施的通信,基础设施例如路侧单元(road side unit,RSU)或者网络设备。其中,RSU包括两种类型:终端类型的RSU,由于布在路边,该终端类型的RSU处于非移动状态,不需要考虑移动性;基站类型的RSU,可以给与之通信的车辆提供定时同步及资源调度。V2N指的是车辆与网络设备的通信。可以理解,上述为示例性说明,本申请实施例不予限性。例如,V2X还可包括目前3GPP的Rel-16及后续版本的基于NR系统的V2X通信等。
作为示例。D2D通信可以包括可编程逻辑控制器(programmable logic controller,PLC)与其从属设备之间的通信,如PLC与传感器之间的通信,又如PLC与执行器之间的通信。其中,传感器例如可以为压力传感器、温度传感器等。其中,执行器例如可以为阀岛、加热器等。举例来说,PLC在每个周期时间内接收所有传感器测量的数据,同时在每个周期时间内向执行器发送执行指令。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、 用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例中,用于实现终端设备的功能的装置,可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站、辅站、多制式无线(motor slide retainer,MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(baseband unit,BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及D2D、V2X、M2M通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例所提及的网络设备可以为包括CU、或DU、或包括CU和DU的设备、或者控制面CU节点(中央单元控制面(central unit-control plane,CU-CP))和用户面CU节点(中央单元用户面(central unit-user plane,CU-UP))以及DU节点的设备。
本申请实施例中,用于实现网络设备的功能的装置,可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在网络设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还 可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
首先结合图1简单介绍适用于本申请实施例的通信系统,如下。
图1是适用于本申请实施例的无线通信系统的一示意图。如图1所示,该无线通信系统可以包括至少一个终端设备,如图1所示的UE1、UE2、UE3。可选地,该无线通信系统还可以包括至少一个网络设备,如图1所示的网络设备。
网络设备和终端设备之间可进行通信。如网络设备和终端设备之间可通过Uu接口进行通信,网络设备和终端设备之间通信的链路(link)可记为Uu链路。如图1(a)所示,网络设备和UE1之间可直接通信,如图1(b)所示,网络设备和UE1之间也可通过UE2进行通信;类似地,网络设备和UE2之间可直接通信,网络设备和UE2之间也可通过UE1进行通信。可以理解,其中,Uu链路表征了终端设备和网络设备间的一种连接关系,是一个逻辑概念,而非一个物理实体。主链路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定。
终端设备和终端设备之间也可进行通信。例如,终端设备和终端设备之间可以直接通信,如图1(a)至(c)所示,UE1和UE2之间可以直接通信。再例如,终端设备和终端设备之间可以通过其他设备,如网络设备或终端设备,进行通信,如图1(a)所示,UE1和UE2之间可以通过网络设备进行通信,又如图1(d)所示,UE1和UE2之间可以通过UE3进行通信。终端设备和终端设备之间通信的接口可记为基于邻近服务通信5(proximity-based services communication 5,PC5)接口,终端设备与终端设备之间通信的链路可记为侧行链路(sidelink,SL),终端设备与终端设备之间的通信也可记为SL通信。侧行链路,也可称为边链路或副链路等。可以理解,其中,侧行链路表征了终端设备和终端设备间的一种连接关系,是一个逻辑概念,而非一个物理实体。侧行链路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定。
作为示例,终端设备和终端设备之间的SL通信,可以用于车联网或智能交通系统(intelligent transportation system,ITS),如上文所述的V2X通信中。
可选地,终端设备和终端设备之间的SL通信,可以在网络覆盖下进行,也可以在无网络覆盖下进行。如图1(a)至(b)所示,UE1和其它UE之间可以在网络覆盖下进行通信;或者,如图1(c)至(d)所示,UE1和其它UE之间可以在网络覆盖范围之外(out-of-coverage)进行通信。
可选地,终端设备和终端设备之间SL通信时的配置信息,如终端设备和终端设备之间SL通信时的时频资源可以是网络设备配置或调度的,也可以是终端设备自主选择的,不予限制。
可以理解,图1仅为便于理解而示例的简化示意图,该无线通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。本申请实施例可以适用于发送端设备和接收端设备通信的任何通信场景。
为便于理解本申请实施例,下面对本申请中涉及的几个术语做简单介绍。
1、资源池
SL通信可基于资源池(resource pool)进行。所谓资源池指的是一块专用于SL通信的时频资源;或者资源池也可以理解为可以用于SL通信的资源集合,也即用于SL通信的时域资源和频域资源的集合
用于SL通信的资源池可简称为资源池,或者也可称为SL资源池。下文为简洁,用资源池进行描述。资源池还可以称作信道(channel)、工作信道(operating channel)、名义信道(nominal channel bandwidth)带宽(bandwith)。即资源池、信道、带宽的均用于表示可以用于SL通信的资源集合。关于资源池的命名不予限制。
2、资源
数据或信息可以通过资源来承载。
在时域上,资源可以包括一个或多个时域单元(或者,也可以称为时间单位)。一个时域单元可以是一个符号,或者一个迷你时隙(mini-slot),或者一个时隙(slot),或者部分时隙(partial slot),或者一个子帧(subframe),或者一个无线帧(frame),等等。
在频域上,资源可以包括一个或多个频域单元。一个频域单元可以是一个资源单元(resource element,RE),或者一个资源块(resource block,RB),或者一个子信道(subchannel),或者一个资源池(resource pool),或者一个带宽(bandwidth),或者一个带宽部分(bandwidth part,BWP),或者一个载波(carrier), 或者一个信道(channel),或者一个交错(interlace)RB等。
3、物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH)资源
PSFCH资源表示用于传输承载于PSFCH上的信息的资源。作为示例,一个PSFCH资源在时域上占用2个连续的正交频分复用(orthogonal frequency division multiplexing,OFDM符号),频域为1个物理资源块(physical resource block,PRB)。
作为一种可能的情形,PSFCH资源可用于传输反馈信息。举例来说,针对一次物理侧行链路共享信道(physical side link share channel,PSSCH)传输,若发送端在控制信息中携带混合自动重传请求确认(hybrid automatic repeat request acknowledgment,HARQ-ACK)反馈使能信息,则接收端可根据承载于PSSCH的数据信息的译码结果反馈肯定(acknowledgement,ACK)或否定(negative acknowledgement,NACK)信息。其中ACK或NACK信息通过PSFCH传输。PSFCH传输指的是通过PSFCH进行的传输。类似地,下文所述的PSSCH传输指的是通过PSSCH进行的传输。
4、终端设备的标识(identifier,ID)
终端设备的标识,是用以指示、识别或对应到相应的终端设备的标识。例如,终端设备可以是用以唯一识别终端设备的索引或编号。这个标识可以是信令配置的、预配置的,或者预定义的。作为示例,终端设备的标识为以下任一项:终端的媒体接入控制(medium access control,MAC)地址,用户身份识别模块(subscriber identity module,SIM)卡号,国际移动设备识别码(international mobile equipment identity,IMEI)等。
可选地,终端设备的标识,也可以是用以指示、识别或对应到相应的终端设备传输时的标识。这个标识可以是信令配置的、预配置的,或者预定义的。例如:IP地址,网络临时标识符(radio network temporary identifier,RNTI),发送设备的源标识,接收设备的目的标识。可选的,发送设备的源标识,可以是关联到特定待发送的业务或消息的标识。可选的,接收设备的目的标识,可以是关联到特定待接收的业务或消息的标识。
5、子带非重叠全双工(subband non-overlapping full duplex,SBFD)技术
SBFD技术通过对网络设备进行双工增强,从而支持在网络部署中实现更灵活的上行链路(uplink,UL)和下行链路(downlink,DL)资源配置。SBFD技术可以提高上行覆盖,并降低混合自动重传请求(hybrid automatic repeat request,HARQ)的反馈时延,是智慧工厂、智慧采矿、智慧钢铁等上行主导应用场景里非常具有前景的技术。
在SL面向企业客户(to business,2B)等应用场景中,例如可编程逻辑控制器(programmable logic controller,PLC)下挂多个传感器和执行器,PLC要在很短时间内接收传感器回传的数据并向执行器发送指令消息。因此,考虑在SL通信中应用SBFD技术,例如PLC具备在同一时刻不重叠的频域资源上同时收、发的能力,这样可以降低通信时延,并解决设备与设备通信时的半双工问题。
与时分双工(time division duplex,TDD)和频分双工(frequency division duplex,FDD)不同,SBFD在UL和DL的资源划分上更加灵活。
图2是SBFD、TDD、FDD的示意图。如图2所示,SBFD在频谱分配上更加灵活。在同一时域单元,如同一时隙,存在频域上不重叠的上行资源和下行资源。在同一频域单元,如同一子带,存在时域上不重叠的上行资源和下行资源。为了降低同时接收数据和发送数据形成的自干扰,一种可能的实现方式是在上行资源和下行资源之间划分保护带(guard band,GB)。
当在SL通信中应用SBFD技术,为了降低SBFD设备同时接收数据和发送数据形成的自干扰,一种可能的实现方式是将资源池划分成频域上不重叠的两个子带(subband),并且在子带之间设计系统级GB,SBFD设备可以在其中一个子带上发送数据,在另一个子带上接收数据。
图3是资源池划分为两个子带和GB的示意图。如图3所示,将资源池划分为频域上不重叠的子带1和子带2,且子带1和子带2之间设计有GB。以UE A为例,UE A选择子带1作为发送子带,子带2作为接收子带,也即UE A在子带1上发送数据,且UE A在子带2上接收数据。
一方面,上述设计可能会存在半双工问题。例如,当UE A选择子带1作为发送子带,子带2作为接收子带,UE B选择子带2作为发送子带,子带1作为接收子带时,UE C无论如何配置自己的接收子带和发送子带,都可能会与UE A或UE B发生半双工冲突。以图3为例,UE C将子带1作为接收子带,子带2作为发送子带时,UE B和UE C存在半双工冲突。
另一方面,在SL资源池中划分接收子带、发送子带、以及GB可能会降低UE资源选择的灵活性,并导致不必要的资源浪费。举例来说,UE A选择发送子带后,UE A在该发送子带上选择发送数据来发送数据,且与该UE A通信的对端UE,如记为UE B,在UE A的接收子带选择发送资源来发送数据。此外,对于某些设备,如半双工TDD UE,由于不存在同时收发的情况,因此不需要划分GB。此外,对于SBFD设备,当SBFD设备在某一时刻没有同时收、发的业务需求时,也不需要为其划分GB。
有鉴于此,本申请提出一种方案,可以解决上述问题。具体来说,在SL中引入SBFD后,通过资源选择动态配置GB,降低终端设备同时收发数据带来的自干扰。
上面对本申请中涉及到的术语做了简单说明,下文实施例中不再赘述。此外,上文关于术语的说明,仅是为便于理解做的说明,其对本申请实施例的保护范围不造成限定。
可以理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还可以理解,在本申请中,“指示”可以包括直接指示、间接指示、显示指示、隐式指示。当描述某一指示信息用于指示A时,可以理解为该指示信息携带A、直接指示A,或间接指示A。
本申请中,指示信息所指示的信息,称为待指示信息。在具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
下文将结合附图详细说明本申请实施例提供的方法。本申请提供的实施例可以应用于上述图1所示的网络架构中,不作限定。
图4是本申请一实施例提供的一种侧行链路通信的方法400的示意图。下文为便于说明,主要以第一终端设备和第二终端设备之间的交互为例介绍方法400。方法400可以包括如下步骤。
可选地,方法400包括步骤410。
410,第一终端设备确定第一信息,第一信息指示第一终端设备是否将第一资源作为接收资源,其中,第一资源为第二资源时域重叠且频域相邻的资源,第二资源为第一终端设备的预留发送资源。
其中,第一终端设备为SBFD设备。
其中,第一信息指示第一终端设备是否将第一资源作为接收资源,也可以替换为,第一信息指示第一终端设备是否推荐第一资源作为接收资源。
一种可能的情形,第一终端设备确定的第一信息指示第一终端设备将第一资源作为接收资源,也即第一终端设备可以使用该第一资源接收数据。
另一种可能的情形,第一终端设备确定的第一信息指示第一终端设备不将第一资源作为接收资源,也即第一终端设备不用该第一资源接收数据。
在本申请实施例中,多次提及接收资源和发送资源,以第一终端设备的发送资源为例,第一终端设备发送数据所使用的资源可称为发送资源,第一终端设备接收数据所使用的资源可称为接收资源。
其中,第二资源为第一终端设备的预留发送资源,也即第二资源为预留资源,如SCI调度的预留资源,也即SCI指示的预留资源包括第二资源。其中,该SCI例如可以为一阶SCI。第一终端设备可使用SCI调度的预留资源发送数据,也即该第二资源也可理解为是第一终端设备的预留发送资源。
其中,预留资源可以包括时域资源和频域资源。作为示例,预留资源可以由一阶SCI中的以下参数确定:资源预留周期、频域资源分配、时域资源分配。其中,资源预留周期,或者称时域偏移值,可表示下一个数据包与当前数据包的时间间隔。关于预留资源本申请实施例不予限制。
图5是适用于本申请实施例的第一终端设备接收资源选择的示意图。如图5所示,第二资源为SCI(为区分,记为第一SCI)调度的预留资源,如包括子信道3上的资源。第一资源为第二资源时域重叠且频域相邻的资源,如包括子信道2和子信道4上与第二资源时域重叠的资源。若第一信息指示第一终端设备不将第一资源作为接收资源,则第二终端设备向第一终端设备发送数据时,在候选资源集合中排除与第二资源重叠的候选资源。
在本申请实施例中多次提及重叠,如时域重叠,又如资源重叠,可以理解,重叠可以包括完全重叠,或者也可以包括部分重叠。以时域重叠为例,时域重叠可以包括时域上完全重叠,或者也可以包括时域上部分重叠。下文不予赘述。
420,第一终端设备向第二终端设备发送第一信息。相应地,第二终端设备接收第一信息。
示例地,第二终端设备可以为SBFD设备,或者也可以为其他设备,不予限制。
在本申请实施例中,第一终端设备可以根据实际通信情况,确定是否要使用与第一终端设备的预留发送资源时域重叠且频域相邻的资源作为接收资源,并且向其他设备指示,这样其他设备在向第一终端设备发送数据时,可以根据第一终端设备的指示,进行候选资源的排除。通过本申请,不仅可以实现资源选择,而且还可以降低终端设备同时收发数据带来的自干扰。例如,在第一终端设备在第二资源上发送数据导致第一终端设备在第一资源上接收数据之间的干扰较大时,第一终端设备可以向其他设备指示不将第一资源作为接收资源,从而降低第一终端设备同时收发数据带来的自干扰。
此外,通过本申请,第一终端设备根据实际通信情况,确定是否要使用与第一终端设备的预留发送资源时域重叠且频域相邻的资源作为接收资源,还可以实现在资源选择的过程中动态地配置收发资源(如收发子带)之间的保护带,提高保护带配置的灵活性,降低不必要的资源浪费。举例来说,与第一终端设备的预留发送资源时域重叠且频域相邻的资源,可认为是一个保护带,若第一终端设备根据实际通信情况,确定不要使用与第一终端设备的预留发送资源时域重叠且频域相邻的资源作为接收资源,那么该接收资源可作为该预留发送资源与其他资源之间的保护带;若第一终端设备根据实际通信情况,确定要使用与第一终端设备的预留发送资源时域重叠且频域相邻的资源作为接收资源,那么相当于该预留发送资源与该接收资源之间可以不用设置保护带。由此可知,通过本申请实施例,还可以实现在资源选择的过程中动态地配置收发资源(如收发子带)之间的保护带。
可选地,第一信息承载于SCI中,为区分,将该SCI记为SCI#1。其中,该SCI#1例如可以为一阶SCI,或者可以为二阶SCI,或者也可以为新定义的SCI(如称为三阶SCI),不予限制。其中,SCI#1可以承载于PSSCH或者物理侧行链路控制信道(physical sidelink control channel,PSCCH),对此不予限制。举例来说,若SCI#1为二阶SCI(如新格式的二阶SCI),则作为示例,第一终端设备还可以通过一阶SCI指示当前的二阶SCI为新定义的二阶SCI,或者,第一终端设备还可以通过一阶SCI指示当前的二阶SCI中是否包括第一信息。
一种可能的实现方式,第一信息通过至少一个比特来实现。例如,假设通过1比特来指示:第一终端设备是否将第一资源作为接收资源。若该比特设置为“1”,则表示第一终端设备将第一资源作为接收资源;若该比特设置为“0”,则表示第一终端设备不将第一资源作为接收资源。应理解,上述仅是一种示例性说明,不予限制。
另一种可能的实现方式,第一信息为一特定字段。例如,第一信息承载于SCI#1中,通过SCI#1中是否包括特定字段来指示第一终端设备是否将第一资源作为接收资源。例如,若SCI#1中包括该特定字段,则表示第一终端设备将第一资源作为接收资源;若SCI#1中不包括该特定字段,则表示第一终端设备不将第一资源作为接收资源。
可选地,方法400还包括步骤430。
430,第二终端设备根据第一信息,确定向第一终端设备发送数据的候选资源集合。
一种可能的情形,第一信息指示第一终端设备不将第一资源作为接收资源。在该情形下,第二终端设备在向第一终端设备发送数据时,可以考虑第一终端设备的推荐,即在该第一资源之外的资源上向第一终端设备发送数据。
具体来说,若第一信息指示第一终端设备不将第一资源作为接收资源,则在第二终端设备要向第一终端设备发送数据时,第二终端设备可以根据该第一信息,确定向第一终端设备发送数据的候选资源集合中不包括该第一资源。换句话说,第二终端设备在候选资源集合中排除与第一资源重叠的候选资源。举例来说,当第二终端设备预留周期资源时,例如第二终端设备预留周期为T1的周期资源,当某候选资源以周期T1进行周期延拓后与第一资源重叠,第二终端设备还排除该候选资源。再举例来说,第二终端设备先确定候选资源集合,再在候选资源集合中排除与第一资源重叠的候选资源,或以周期T1进行周期延拓后与第一资源重叠的候选资源。
另一种可能的情形,第一信息指示第一终端设备将第一资源作为接收资源。在该情形下,第二终 端设备在向第一终端设备发送数据时,可以考虑第一终端设备的推荐,即向第一终端设备发送数据时,可以不排除该第一资源。
具体来说,若第一信息指示第一终端设备将第一资源作为接收资源,则在第二终端设备要向第一终端设备发送数据时,第二终端设备可以根据实际情况确定向第一终端设备发送数据的候选资源集合,也即不需要在候选资源集合中排除与第一资源重叠的候选资源。
可以理解,第一信息指示第一终端设备将第一资源作为接收资源的情形下,第二终端设备向第一终端设备发送数据所使用的资源是否包括第一资源,可以根据实际通信情况确定,对此本申请实施例不予限制。
可选地,第一终端设备向第二终端设备指示第二资源的信息和/或第一资源的信息。这样,第二终端设备可获知第二资源和第二资源的位置。作为示例,第二资源的信息和/或第一资源的信息承载于SCI中,为区分,将该SCI记为SCI#2。其中,该SCI#2例如可以为一阶SCI,或者可以为二阶SCI,或者也可以为新定义的SCI(如称为三阶SCI),不予限制。
其中,SCI#2与SCI#1可以相同,也即第一信息、以及第二资源的信息和/或第一资源的信息承载于同一SCI中;或者,SCI#2与SCI#1也可以不同,也即第一信息、以及第二资源的信息和/或第一资源的信息承载于不同SCI中。
一示例,第一终端设备向第二终端设备发送SCI#2,SCI#2包括第二资源的信息。这样第二终端设备可以基于该SCI#2获知第二资源的位置,进而可以基于该第二资源的位置,获知与该第二资源时域重叠且频域相邻的资源的位置(也即第一资源的位置)。
另一示例,第一终端设备向第二终端设备发送SCI#2,SCI#2包括第一资源的信息。这样第二终端设备可以直接基于该SCI#2获知第一资源的位置。
另一示例,第一终端设备向第二终端设备发送SCI#2,SCI#2包括第一资源和第二资源的信息。这样第二终端设备可以直接基于该SCI#2获知第一资源和第二资源的位置。
上述为示例性说明,对此不予限定。例如第一资源还可以由第一信息隐式指示。举例来说,第二资源通过一阶SCI中的以下参数指示:频域资源分配、时域资源分配、资源预留周期指示;第一资源由以上参数和第一信息共同指示,例如,第一信息指示第一终端设备不使用第二资源作为接收资源,那么第二资源就为第一资源时域重叠频域相邻的资源,也就是说,第一信息指示的不作为接收资源的资源是与第一资源时域重叠频域相邻的资源。
可选地,第一终端设备确定第一信息,包括:第一终端设备根据以下任一项确定第一信息:第一功率、第二功率。
1)第一功率表示第一终端设备在第二资源上的发送功率。
作为示例,第一终端设备可以自己估计或计算第一终端设备在第二资源上的发送功率。
例如,第一终端设备在第二资源上的发送功率可以根据第一终端设备对应的路损、第一数据的优先级、或第三终端设备对应的路损中的一项或多项确定。其中,第一数据为第一终端设备在第二资源上发送的数据,第三终端设备为第一数据的接收设备,第一终端设备对应的路损例如为第一终端设备到接入网设备之间的路损,第三终端设备对应的路损例如为第一终端设备到第三终端设备之间的路损。举例来说,如果第一数据是单播数据,则第一功率可以根据第三终端设备对应的路损和/或第一数据的优先级确定。再举例来说,如果第一数据是组播数据或广播数据,则第一功率可以根据第一终端设备对应的路损和/或第一数据的优先级确定。
再例如,第一终端设备在第二资源上的发送功率可以为第一终端设备在第二资源上发送信号(如参考信号,又如数据信号)的功率。举例来说,第一功率可以为参考信号在各个频域单元上的平均功率或功率之和。再举例来说,第一功率可以为数据信号在各个频域单元上的平均功率或功率之和。再举例来说,第一功率可以为数据信号和参考信号在各个频域单元上的平均功率或功率之和。
一种可能的实现方式,在第一功率大于第一阈值的情况下,第一终端设备确定的第一信息指示第一终端设备不将第一资源作为接收资源,或者,在第一功率小于第一阈值的情况下,第一终端设备确定的第一信息指示第一终端设备将第一资源作为接收资源。其中,第一阈值为预配置的,如第一终端设备高层预配置的,或者也可以是根据历史情况估计的,或者也可以是预定义的,不予限制。关于第一功率等于第一阈值的情况,可以是第一终端设备确定的第一信息指示第一终端设备不将第一资源作为 接收资源,或者也可以是第一终端设备确定的第一信息指示第一终端设备将第一资源作为接收资源,或者也可以用于其他功能,对此不予限制。
2)第二功率表示第一终端设备在第一资源上的残留自干扰功率。
作为示例,第一终端设备可以自己估计或计算第一终端设备在第一资源上的残留自干扰功率。举例来说,第一终端设备选择在某一子信道上按照第一功率发送信号,包括参考信号和/或数据信号,该子信道的相邻子信道上不存在其他终端设备发送信号。第一终端设备在该子信道的相邻子信道上测量接收功率,该接收功率即为第二功率。
例如,第一终端设备可以根据第一终端设备在第一资源上的发送功率估计第二功率。一般来说,第一终端设备在第一资源上的发送功率越大,第一终端设备在第一资源上的残留自干扰功率(也即第二功率)也越大。
再例如,第一终端设备可以根据第一终端设备在第一资源上的发送功率,以及该发送功率与第二功率满足的关系,计算第二功率。举例来说,假设发送功率为P1,残留自干扰功率为P2,且P2=f(P1),因此,第一终端设备可以根据在第一资源上的发送功率以及上述关系,确定第一终端设备在第一资源上的残留自干扰功率(也即第二功率)。如第一终端设备可以根据在第一资源上的发送功率以及第一功率和第二功率的比值,确定第二功率。其中,P1和P2之间的关系可以是第一终端设备高层预配置的,或者也可以是根据历史情况估计的,或者也可以是预定义的,不予限制。
以第一终端设备可以根据在第一资源上的发送功率以及第一功率和第二功率的比值,确定第二功率为例,下文为便于描述,将第一功率和第二功率的比值记为α。
其中,α的值是预配置的,如第一终端设备的高层预配置的,或者也可以是预定义的。
作为示例,P2满足式1。
P2=P1-α
               式1
其中,P1表示第一功率,P1和P2的单位是分贝毫瓦(decibel relative to one milliwatt,dBm),α的单位是分贝(decibel,dB)。以式1为例,X的单位为dBm。
一种可能的实现方式,在第二功率大于第二阈值的情况下,第一终端设备确定的第一信息指示第一终端设备不将第一资源作为接收资源,或者,在第二功率小于第二阈值的情况下,第一终端设备确定的第一信息指示第一终端设备将第一资源作为接收资源。其中,第二阈值为预配置的,如第一终端设备高层预配置的,或者也可以是根据历史情况估计的,或者也可以是预定义的,不予限制。关于第二功率等于第二阈值的情况,可以是第一终端设备确定的第一信息指示第一终端设备不将第一资源作为接收资源,或者也可以是第一终端设备确定的第一信息指示第一终端设备将第一资源作为接收资源,或者也可以用于其他功能,对此不予限制。
上述单独介绍了第一功率和第二功率,可以理解,第一终端设备也可以根据第一功率和第二功率确定第一信息。举例来说,在第一功率大于第一阈值,且第二功率大于第二阈值的情况下,第一终端设备确定的第一信息指示第一终端设备不将第一资源作为接收资源,否则第一终端设备确定的第一信息指示第一终端设备将第一资源作为接收资源。再举例来说,在第一功率小于第一阈值,且第二功率小于第二阈值的情况下,第一终端设备确定的第一信息指示第一终端设备将第一资源作为接收资源,否则第一终端设备确定的第一信息指示第一终端设备不将第一资源作为接收资源。。
可选地,第一终端设备向第二终端设备发送第二信息,第二信息指示第一终端设备的标识。相应地,第二终端设备接收该第二信息。
作为示例,第二信息承载于SCI中,为区分,将该SCI记为SCI#3。其中,该SCI#3例如可以为一阶SCI,或者可以为二阶SCI,或者也可以为新定义的SCI(如称为三阶SCI),不予限制。
其中,SCI#3与SCI#1可以相同,也即第一信息和第二信息承载于同一SCI中;或者,SCI#3与SCI#1也可以不同,也即第一信息和第二信息承载于不同SCI中。
步骤430中第二终端设备根据第一信息,确定向第一终端设备发送数据的候选资源集合,包括:第二终端设备根据第一信息和第二信息,确定向第一终端设备发送数据的候选资源集合。
举例来说,第二终端设备收到第一信息和第二信息后,若第一信息指示第一终端设备不将第一资源作为接收资源,第二信息指示第一终端设备的标识,那么,当第二终端设备向第一终端设备发送数 据时,第二终端设备不使用该第一资源向第一终端设备发送数据;当第二终端设备向第一终端设备之外的其它终端设备发送数据时,可以将该第一资源纳入向其它终端设备发送数据的候选资源集合,由第二终端设备最终确定发送资源,发送资源可以使用该第一资源,或者也可以不使用该第一资源,对此不予限制。
一种可能的实现方式,第二信息为第一终端设备的标识,也即第一终端设备可直接指示第一终端设备的标识。
作为一示例,第二信息例如为SCI#3(如二阶SCI)中的源标识。基于该示例,举例来说,第一终端设备和第二终端设备在建立通信时,第一终端设备与第二终端设备交互与第一终端设备关联的源标识的集合,源标识的集合中包括至少一个源标识,该至少一个源标识可以是关联到特定待发送的业务或消息的标识。通过该方式,第二终端设备可以通过判断SCI#3(如二阶SCI)中的源标识是否在第一终端设备关联的源标识的集合中确定发送设备是否为第一终端设备。
作为另一示例,第二信息为第一终端设备的设备标识,如在SCI#3(如二阶SCI或三阶SCI)中引入的新的字段,该字段指示第一终端设备的设备标识。基于该示例,举例来说,第一终端设备和第二终端设备在建立通信时,第一终端设备与第二终端设备交互设备标识。通过该方式,第二终端设备可以通过判断SCI#3(如二阶SCI或三阶SCI)中的设备标识确定发送设备是否为第一终端设备。
另一种可能的实现方式,第二信息为其他信息,基于该其他信息可间接获知第一终端设备的标识。
关于第一终端设备的标识的可能形式,可参考前面术语部分的说明,此处不予赘述。
图6是本申请另一实施例提供的一种侧行链路通信的方法600的示意图。方法600与方法400的方案可以结合使用,也可以单独使用,不予限制。下文为便于说明,主要以第一终端设备为例介绍方法600。方法600可以包括如下步骤。
610,第一终端设备确定第三资源,第三资源为第一终端设备的接收资源。
一种可能的实现方式,第一终端设备接收SCI(为区分,记为SCI#4),该SCI#4指示第三资源。其中,该SCI#4例如可以为一阶SCI,或者可以为二阶SCI,或者也可以为新定义的SCI(如称为三阶SCI),不予限制。
620,第一终端设备确定是否在第四资源上发送数据,第四资源为第三资源时域重叠且频域相邻的资源。
其中,第一终端设备确定是否在第四资源上发送数据,也可替换为,第一终端设备确定第四资源是否作为第一终端设备的发送资源。
图7是适用于本申请实施例的第一终端设备发送资源选择的示意图。如图7所示,第四资源为SCI(为区分,记为第二SCI)调度的预留资源,如包括子信道3上的资源。第四资源为第三资源时域重叠且频域相邻的资源,如包括子信道2和子信道4上与第三资源时域重叠的资源。若第一终端设备确定不在第四资源上发送数据,则第一终端设备发送数据时,在候选资源集合中排除与第四资源重叠的候选资源。
可选地,第一终端设备确定是否在第四资源上发送数据,包括:第一终端设备根据以下至少一项确定是否在第四资源上发送数据:第三功率、第四功率。
1)第三功率为第一终端设备在第四资源上的发送功率。第三功率与方法400中的第一功率类似,关于第三功率,可以参考方法400中关于第一功率的描述,此处不予限制。
一种可能的实现方式,在第三功率大于第三阈值的情况下,第一终端设备确定不在第四资源上发送数据,或者,在第三功率小于第三阈值的情况下,第一终端设备确定在第四资源上发送数据。其中,第三阈值为预配置的,如第一终端设备高层预配置的,或者也可以是根据历史情况估计的,或者也可以是预定义的,不予限制。关于第三功率等于第三阈值的情况,可以是第一终端设备确定不在第四资源上发送数据,或者也可以是第一终端设备确定在第四资源上发送数据,或者也可以用于其他功能,对此不予限制。
2)第四功率为第一终端设备在第三资源上的残留自干扰功率。第四功率与方法400中的第二功率类似,关于第四功率,可以参考方法400中关于第二功率的描述,此处不予限制。
一种可能的实现方式,在第四功率大于第四阈值的情况下,第一终端设备确定不在第四资源上发送数据,或者,在第四功率小于第四阈值的情况下,第一终端设备确定在第四资源上发送数据。其中, 第四阈值为预配置的,如第一终端设备高层预配置的,或者也可以是根据历史情况估计的,或者也可以是预定义的,不予限制。关于第四功率等于第四阈值的情况,可以是第一终端设备确定不在第四资源上发送数据,或者也可以是第一终端设备确定在第四资源上发送数据,或者也可以用于其他功能,对此不予限制。
上述单独介绍了第三功率和第四功率,可以理解,第一终端设备也可以根据第三功率和第四功率确定是否在第四资源上发送数据。举例来说,在第三功率大于第三阈值,且第四功率大于第四阈值的情况下,第一终端设备确定不在第四资源上发送数据,否则第一终端设备确定在第四资源上发送数据。再举例来说,在第三功率小于第三阈值,且第四功率小于第四阈值的情况下,第一终端设备确定在第四资源上发送数据,否则第一终端设备确定不在第四资源上发送数据。
图8是本申请另一实施例提供的一种侧行链路通信的方法800的示意图。下文为便于说明,主要以第一终端设备为例介绍方法800。方法800可以包括如下步骤。
可选地,方法800包括步骤810。
810,第一终端设备确定第三信息,第三信息指示第一PSFCH为第一终端设备接收或发送反馈信息的信道,第一PSFCH为至少两个PSFCH中的一个。
其中,第一终端设备为SBFD设备。
其中,反馈信息可用于指示数据的接收情况,或者说可用于指示数据的接收状态,也即是否成功接收数据。反馈信息例如可以为HARQ反馈。举例来说,若终端设备成功接收并成功解码数据,则终端设备发送的反馈信息为肯定应答,如ACK;若终端设备未接收到数据和/或对数据解码失败,则终端设备发送的反馈信息为否定应答,如NACK。
在本申请实施例中,将PSFCH信道在频域上划分成至少两个PSFCH(或者说至少两组)。这样,第一终端设备可以选择在不同的PSFCH上发送反馈信息和接收反馈信息,如第一终端设备在一PSFCH上发送反馈信息,在另一PSFCH上接收反馈信息。
可选地,还可以设计GB,如相邻两个PSFCH之间设计GB。例如,将PSFCH信道在频域上划分成第一PSFCH、第二PSFCH、以及GB三部分。
可选地,至少两个PSFCH中每个PSFCH在频域上包括多个频域单元。作为示例,至少两个PSFCH中每个PSFCH在频域上包括的频域单元的数量可以相同,也可以不同,不予限制。
可选地,至少两个PSFCH中各个PSFCH所占的资源在时域上重叠,在频域上间隔至少一个频域单元。这样,第一终端设备发送反馈信息和接收反馈信息所占的频域资源不相邻,从而可以降低第一终端设备发送反馈信息和接收反馈信息带来的干扰。
为便于描述,下面主要以两个PSFCH,如记为第一PSFCH和第二PSFCH,为例进行示例性说明。也即将PSFCH信道在频域上划分成第一PSFCH和第二PSFCH,其中,第一PSFCH和第二PSFCH分别映射整个资源池的PSSCH。
举例来说,第一PSFCH所占的频域单元(如PRB)的数量为M1,每个资源调度单元对应第一PSFCH中的Mset,1个频域单元,作为示例,Mset,1=M1/(X*L);第二PSFCH所占的频域单元(如PRB)的数量为M2,每个资源调度单元对应第二PSFCH中的Mset,1个频域单元,作为示例,Mset,2=M2/(X*L)。其中,X为PSFCH周期,L为资源池配置的最大子信道数。
其中,第三信息指示第一PSFCH为第一终端设备接收或发送反馈信息的信道,包括以下几种实现方式。
第一种可能的实现方式,第三信息指示第一PSFCH为第一终端设备接收反馈信息的信道,也即第一终端设备在第一PSFCH上接收来自其他设备的反馈信息。例如,第一终端设备向其他设备发送数据,其他设备基于第三信息,确定在第一PSFCH上向第一终端设备发送针对该数据的反馈信息;相应地,第一终端设备在第一PSFCH上接收该数据的反馈信息。
基于该第一种可能的实现方式,可以默认第二PSFCH(即除第一PSFCH之外的其他PSFCH)为第一终端设备发送反馈信息的信道,也即第一终端设备在第二PSFCH上向其他设备发送反馈信息,例如,第一终端设备接收来自其他设备的数据后,在第二PSFCH上向其他设备发送该数据的反馈信息;相应地,其他设备基于该第三信息,确定在第二PSFCH上接收该数据的反馈信息。
第二种可能的实现方式,第三信息指示第一PSFCH为第一终端设备发送反馈信息的信道,也即第 一终端设备在第一PSFCH上向其他设备发送反馈信息。例如,第一终端设备接收来自其他设备的数据后,在第一PSFCH上向其他设备发送该数据的反馈信息;相应地,其他设备基于该第三信息,确定在第一PSFCH上接收该数据的反馈信息。
基于该第二种可能的实现方式,可以默认第二PSFCH(即除第一PSFCH之外的其他PSFCH)为第一终端设备接收反馈信息的信道,也即第一终端设备在第二PSFCH上接收来自其他设备的反馈信息,例如,第一终端设备向其他设备发送数据,其他设备基于第三信息,确定在第二PSFCH上向第一终端设备发送针对该数据的反馈信息;相应地,第一终端设备在第二PSFCH上接收该数据的反馈信息。
可以理解,上述两种实现方式为示例性说明,对此不予限制。例如,第三信息指示第一PSFCH为第一终端设备发送反馈信息的信道,第二PSFCH为第一终端设备接收反馈信息的信道,也即第一终端设备在第一PSFCH上向其他设备发送反馈信息,在第二PSFCH上接收来自其他设备的反馈信息。
820,第一终端设备发送第三信息。
在步骤820中,第一终端设备可以向至少一个终端设备发送第三信息,如第一终端设备向第二终端设备发送第三信息。这样,至少一个终端设备可以基于第三信息的指示在对应的PSFCH上接收反馈信息和发送反馈信息。
可选地,第三信息承载于SCI(为区分,记为SCI#5)中。进一步可选地,反馈信息用于反馈SCI#5调度的数据的接收情况。其中,该SCI#5例如可以为一阶SCI,或者可以为二阶SCI,或者也可以为新定义的SCI(如称为三阶SCI),不予限制。
举例来说,第一终端设备发送SCI#5,该SCI#5包括第三信息,则第三信息指示第一PSFCH为第一终端设备接收SCI#5调度的数据的反馈信息的信道。也就是说,第一终端设备向其他设备发送SCI#5调度的数据时,其他设备在第一PSFCH上发送针对该数据的反馈信息。
再举例来说,第一终端设备发送SCI#5,该SCI#5包括第三信息,则第三信息指示第一PSFCH为第一终端设备发送SCI#5调度的数据的反馈信息的信道。也就是说,第一终端设备接收来自其他设备发送的SCI#5调度的数据时,第一终端设备在第一PSFCH上发送针对该数据的反馈信息。
可选地,方法800还包括:第一终端设备获取第四信息,第四信息指示至少两个PSFCH中至少一个PSFCH所占的资源信息。作为示例,第四信息为资源池的配置信息。其中,第一终端设备获取第四信息,可以替换为:第一终端设备接收第四信息,如第一终端设备接收来自网络设备的第四信息;或者,也可替换为第一终端设备确定第四信息,如第一终端设备自身确定或读取第四信息。
进一步可选地,至少两个PSFCH中至少一个PSFCH所占的资源信息包括以下至少一项:至少一个PSFCH所占的频域单元的数量、至少一个PSFCH所占的频域资源的起始位置、至少一个PSFCH所占的频域资源的结束位置。
一种可能的实现方式,第四信息指示至少两个PSFCH中各个PSFCH所占的资源信息。例如,第四信息指示以下至少一项:各个PSFCH所占的频域单元的数量、各个PSFCH所占的频域资源的起始位置、各个PSFCH所占的频域资源的结束位置。基于该实现方式,第一终端设备可基于该各个PSFCH所占的资源信息,获知PSFCH所占的资源。
另一种可能的实现方式,第四信息指示至少两个PSFCH中部分PSFCH所占的资源信息。例如,第四信息指示以下至少一项:第一PSFCH所占的频域单元的数量、第一PSFCH所占的频域资源的起始位置、第一PSFCH所占的频域资源的结束位置。基于该实现方式,第一终端设备可基于该第四信息直接获知第一PSFCH所占的资源。进一步,第一终端设备可以基于该第一PSFCH所占的资源获知其他PSFCH所占的资源,如至少两个PSFCH中各个PSFCH所占的资源满足一定的条件,该条件可以是预定义的或预配置的,因此,第一终端设备可以基于其中某一个PSFCH所占的资源获知其他PSFCH所占的资源。
图9是适用于本申请实施例的PSSCH到PSFCH映射的示意图。如图9所示,假设UE A、UE B、UE C为SBFD设备,UE D、UE E为其他设备,如TDD设备。如图9所示,假设PSFCH信道在频域上划分为:PSFCH 1、PSFCH 2、GB。PSFCH 1、PSFCH 2分别映射整个资源池的PSSCH。其中,PSFCH 1所占的PRB的数量为M1,每个资源调度单元对应PSFCH 1中的Mset,1个频域单元,作为示例,Mset,1=M1/(X*L);PSFCH 2所占的PRB的数量为M2,每个资源调度单元对应PSFCH 2中的Mset,2个频域单元,作为示例,Mset,2=M2/(X*L)。其中,X为PSFCH周期,L为资源池配置的最大子信道数。
第一种可能的情形,SBFD设备和SBFD设备互相通信时,SBFD设备之间可交互各自接收和/或发送反馈信息的PSFCH。例如,发送数据的SBFD设备在调度该数据的SCI中指示PSFCH信道为其接收HARQ的PSFCH信道。再例如,接收数据的SBFD设备将调度该数据的SCI指示的PSFCH信道作为其发送HARQ的PSFCH信道。
如图9所示,以UE B和UE A为例,假设UE A发送反馈信息的PSFCH为PSFCH 2,UE A接收反馈信息的PSFCH为PSFCH 1。举例来说,UE B向UE A发送数据后,UE A在PSFCH 2上向UE B发送该数据的HARQ,相应地,UE B在PSFCH 2上检测来自UE A的HARQ;UE A向UE C发送数据后,UE C在PSFCH 1上向UE A发送该数据的HARQ,相应地,UE A在PSFCH 1上检测来自UE C的HARQ。
第二种可能的情形,SBFD设备和TDD设备互相通信时,SBFD设备可指示自己接收和/或发送反馈信息的PSFCH,TDD设备在SBFD设备指示的发送反馈信息的PSFCH上接收反馈信息,在SBFD设备指示的接收反馈信息的PSFCH上发送反馈信息。
如图9所示,以UE B和UE D为例,假设UE B发送反馈信息的PSFCH为PSFCH 1。举例来说,UE D向UE B发送数据后,UE B在PSFCH 1上向UE D发送HARQ,相应地,UE D在PSFCH 1上检测来自UE B的HARQ。
可以理解,TDD设备首次向SBFD设备发送数据时,TDD设备可以在PSFCH 1和PSFCH 2上共同检测SBFD设备反馈的HARQ;或者,若TDD设备提前获知SBFD设备接收和/或发送HARQ的PSFCH,则TDD可以在相应的PSFCH上检测SBFD设备反馈的HARQ。
第三种可能的情形,TDD设备和TDD设备互相通信时,TDD设备之间可交互各自接收和/或发送反馈信息的PSFCH,或者,预配置TDD设备接收和/或发送反馈信息的PSFCH。TDD设备发送反馈信息的PSFCH和接收反馈信息的PSFCH可以相同,也可以不同,不予限制。
上述图9为示例性说明,对此不予限制。
图10是本申请另一实施例提供的一种侧行链路通信的方法1000的示意图。下文为便于说明,主要以第一终端设备为例介绍方法1000。方法1000可以包括如下步骤。
1010,第一终端设备的MAC层确定发送第二数据的N个第二资源单元,其中,N个第二资源单元是根据M个第一资源单元确定的,M个第一资源单元中的至少一个第一资源单元和N个第二资源单元中的至少一个第二资源单元在时域上重叠,且在频域上连续。
其中,M和N为大于1或等于1的整数。
其中,M个第一资源单元为第一终端设备发送第一数据的资源单元。可选地,在步骤1010之前,方法1000还包括:第一终端设备确定在M个第一资源单元上发送第一数据。
其中,第一终端设备为SBFD设备。
示例地,第一数据和第二数据可以是不同业务的数据,或者,第一数据和第二数据可以是同一业务的不同数据,不予限制。
可选地,在步骤1010之前,方法1000还包括步骤1001。
1001,第一终端设备的物理层向MAC层上报候选资源集合,候选资源集合包括N个第二资源单元。
也即在步骤1010中,第一终端设备的MAC层确定在M个第一资源单元上发送第一数据,且在N个第二资源单元上发送第二数据。
在本申请实施例中,当SBFD设备存在多个待发送数据时,MAC层从物理层上报的候选资源集合中为多个待发送数据选择频域连续的发送资源,尽量减少配置GB导致的资源浪费。
下面介绍两种可能的实现方式。
第一种可能的实现方式,N个第二资源单元为Ix,y中数值在预设范围内的N个资源单元,N为大于1或等于1的整数,Ix,y为Rx,y关联的时隙集合中的第一数与第二数之和,第一数为第一数据在第一时域单元上所占的资源与Rx,y在第一时域单元上的延拓资源在频域上连续的时域单元数,第二数为Rx,y关联的时隙集合中的第一终端设备未传输数据的时域单元数;其中,Rx,y表示候选资源集合中的候选资源(或者称为单时隙候选资源),x表示时域单元的序列,y表示频域单元的序列。可以理解,在本申请实施例中,第一时域单元表示候选资源集合所在资源选择窗对应的时域资源。若候选资源集合所在 资源选择窗对应的时域资源包括至少两个,则第一时域单元也可替换为第一时域单元集合,即第一时域单元集合表示候选资源集合所在资源选择窗对应的时域资源集合。
下面结合几个步骤详细介绍上述实现方式。
步骤1)高层为当前发送业务从候选资源集合SA中选择候选资源Rx,y
其中,Rx,y所在时隙序号为ty,子信道占用的起始序号为x。
步骤2)假设资源预留周期为Prsvp,则高层为当前业务选择候选资源Rx,y以及其周期延拓资源
其中,Cresel为当前业务传输机会对应的时隙数。
可以理解,若当前业务是非周期性业务,则Prsvp=0;若当前业务是非周期性业务,则Prsvp为大于0的整数。
步骤3)对于候选资源集合SA中的候选资源Rx,y,定义Ix,y为Rx,y关联的时隙集合中存在已有发送业务、且该时隙已有发送业务占用的资源与Rx,y在该时隙上的延拓资源在频域连续的时隙数,加上不存在已有发送业务传输的时隙数。
图11是适用于本申请实施例的高层确定发送资源的一示意图。如图11所示,假设当前业务的资源预留周期Prsvp=2,且Cresel=3。以R4,y为例,R4,y关联的候选时隙集合为{ty,ty+2,ty+4},R4,y对应在该时隙集合上的周期延拓为{R4,y,R4,y+2,R4,y+4},其中R4,y与已有业务占用资源连续,且时隙t-y+4没有已有业务传输,因此Ix,y=1+1=2。
步骤4)将Ix,y从高到低排序,选择前N个Ix,y对应的Rx,y中时隙最靠前的Rx,y为初传资源,剩余N-1个Ix,y对应的Rx,y为重传资源。
其中,N为大于1或等于1的整数。N的具体数值可以是预定义的或者预配置的,不予限制。
以图11所示的示例为例,对候选资源集合SA中的所有候选资源进行遍历,可以得到Rx,y对应的Ix,y值如表1所示。假设N=2,MAC层可以选择R4,y作为初传资源,并且可以在R1,y、R3,y+1、R1,y+2和R4,y+2中随机选择某一资源作为重传资源。
表1
基于上述第一种可能的实现方式,当SBFD设备存在多个发送业务时,MAC层从物理层上报的候选资源集合中为多个发送业务选择频域连续的发送资源,从而可以尽量减少配置GB导致的资源浪费。
第二种可能的实现方式,N个第二资源单元为Ix,y中数值在预设范围内的N个资源单元,N为大于1或等于1的整数,Ix,y为Rx,y关联的时隙集合中除第三资源外可用资源比例大于或等于预设值的时 域单元数,第三资源包括:数据所占的资源、Rx,y、Rx,y的延拓资源、与数据所占的资源频域相邻的资源、与Rx,y频域相邻的资源、与Rx,y的延拓资源频域相邻的资源;其中,Rx,y表示候选资源集合中的候选资源(或者称为单时隙候选资源),x表示时域单元的序列,y表示频域单元的序列。
下面结合几个步骤详细介绍上述实现方式。
步骤1)高层为当前发送业务从候选资源集合SA中选择候选资源Rx,y
步骤2)假设资源预留周期为Prsvp,则高层为当前业务选择候选资源Rx,y以及其周期延拓资源
关于步骤1)和步骤2)的描述可参考第一种可能的实现方式中的描述,此处不予赘述。
步骤3)对于候选资源集合SA中的候选资源Rx,y,定义Ix,y为Rx,y关联的时隙集合中排除已有发送业务占用资源、Rx,y以及其周期延拓资源和上述资源的相邻子信道后可用接收资源比例高于阈值的时隙数。
作为示例,某一时隙的可用接收资源比例可定义为该时隙内排除所有发送业务占用的子信道以及其相邻子信道后,剩余子信道数占资源池配置的总子信道数的比例。
仍然以图11为例,如图11所示,假设当前业务的资源预留周期Prsvp=2,Cresel=3,高层配置的剩余可用接收资源比例阈值为20%。以R4,y为例,R4,y关联的候选时隙集合为{ty,ty+2,ty+4},R4,y对应在该时隙集合上的周期延拓为{R4,y,R4,y+2,R4,y+4},其中时隙ty排除R4,y和已有业务传输占用资源(R3,y)以及上述资源的相邻子信道(R2,y)后,剩余可用接收资源(R1,y)占总子信道数的比例为1/4=25%。同理时隙ty+2的剩余可用接收资源占总子信道数的比例为0%。时隙ty+4的剩余可用接收资源(R2,y+4,R1,y+4)占总子信道数的比例为50%。因此,R1,y对应的I1,y=1+0+1=2。
步骤4)将Ix,y从高到低排序,选择前N个Ix,y对应的Rx,y中时隙最靠前的Rx,y为初传资源,剩余N-1个Ix,y对应的Rx,y为重传资源。
其中,N为大于1或等于1的整数。N的具体数值可以是预定义的或者预配置的,不予限制。
以图11所示的示例为例,对候选资源集合SA中的所有候选资源进行遍历,可以得到Rx,y对应的Ix,y值如表2所示。假设N=2,MAC层可以选择R4,y作为初传资源,R3,y+1作为重传资源。
表2
基于上述第二种可能的实现方式,当SBFD设备存在多个发送业务时,MAC层从物理层上报的候选资源集合中为多个发送业务选择频域连续的发送资源,从而可以尽量保证发送业务所在时隙存在足够的可用接收资源。
可以理解,上述两种实现方式为示例性说明,对此不予限制。只要可以实现MAC层从物理层上报 的候选资源集合中为多个发送业务选择频域连续的发送资源的方案都适用于本申请实施例。
可以理解,在上述一些实施例中,提到了“传输”,在未作出特别说明的情况下,传输,包括接收和/或发送。例如,传输信号,可以包括接收信号和/或发送信号。
还可以理解,在上述一些实施例中,多次提及“包括”和“携带于”,可以理解,其表示相同的含义。例如,第一信息携带于侧行控制信息中,也可以替换为:侧行控制信息中包括第一信息。
还可以理解,在本申请实施例中,第一阶SCI和一阶SCI有时交替使用,其表示相同的含义。举例来说,第一阶SCI和一阶SCI,可以表示在时隙前面的符号发送的,使用PSCCH承载的SCI。再举例来说,第一阶SCI和一阶SCI,还可以表示在时隙较后面的符号上发送的,可以使用PSCCH发送,也可以是复用在PSSCH上发送的SCI。
还可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,本申请的各实施例中的方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,上述各个方法实施例中,由通信设备实现的方法和操作,也可以由可由通信设备的组成部件(例如芯片或者电路)来实现。
相应于上述各方法实施例给出的方法,本申请实施例还提供了相应的装置,所述装置包括用于执行上述各个方法实施例相应的模块。该模块可以是软件,也可以是硬件,或者是软件和硬件结合。可以理解的是,上述各方法实施例所描述的技术特征同样适用于以下装置实施例。
图12是本申请实施例提供的一种通信装置1200的示意性框图。该装置1200包括收发单元1210。收发单元1210可以用于实现相应的通信功能。收发单元1210还可以称为通信接口或通信单元。
可选地,该装置1200还包括处理单元1220。处理单元1220可以用于进行数据处理。
可选地,该装置1200还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1220可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中终端设备的动作。
在一种设计中,该装置1200可以是前述实施例中的第一终端设备,也可以是第一终端设备的组成部件(如芯片)。该装置1200可实现对应于上文方法实施例中的第一终端设备执行的步骤或者流程,其中,收发单元1210可用于执行上文方法实施例中第一终端设备的收发相关的操作,处理单元1220可用于执行上文方法实施例中第一终端设备的处理相关的操作。
一种可能的实现方式,收发单元1210,用于向第二终端设备发送第一信息,第一信息指示第一终端设备是否将第一资源作为接收资源,其中,第一资源为第二资源时域重叠且频域相邻的资源,第二资源为第一终端设备的预留发送资源,第一终端设备为子带非重叠全双工设备。
该装置1200可实现对应于根据本申请实施例的方法实施例中的第一终端设备执行的步骤或者流程,该装置1200可以包括用于执行图4或图6所示实施例中的第一终端设备执行的方法的单元。
另一种可能的实现方式,收发单元1210,用于向第二终端设备发送第三信息,第三信息指示第一物理侧行链路反馈信道PSFCH为第一终端设备接收或发送反馈信息的信道,第一PSFCH为至少两个PSFCH中的一个,第一终端设备为子带非重叠全双工设备;其中,第三信息指示第一PSFCH为第一终端设备接收反馈信息的信道,第一终端设备在第一PSFCH上接收反馈信息;或者,第三信息指示第一PSFCH为第一终端设备发送反馈信息的信道,第一终端设备在第一PSFCH上发送反馈信息。
该装置1200可实现对应于根据本申请实施例的方法实施例中的第一终端设备执行的步骤或者流程,该装置1200可以包括用于执行图8所示实施例中的第一终端设备执行的方法的单元。
在另一种设计中,该装置1200可以是前述实施例中的第二终端设备,也可以是第二终端设备的组成部件(如芯片)。该装置1200可实现对应于上文方法实施例中的第二终端设备执行的步骤或者流程,其中,收发单元1210可用于执行上文方法实施例中第二终端设备的收发相关的操作,处理单元1220可用于执行上文方法实施例中第二终端设备的处理相关的操作。
一种可能的实现方式,收发单元1210,用于接收来自第一终端设备的第一信息,第一信息指示第一终端设备是否将第一资源作为接收资源,其中,第一资源为第二资源时域重叠且频域相邻的资源,第二资源为第一终端设备的预留发送资源,第一终端设备为子带非重叠全双工设备;处理单元1220,用于根据第一信息,确定向第一终端设备发送数据的候选资源集合。
该装置1200可实现对应于根据本申请实施例的方法实施例中的第二终端设备执行的步骤或者流程,该装置1200可以包括用于执行图4或图6所示实施例中的第二终端设备执行的方法的单元。
另一种可能的实现方式,收发单元1210,用于接收来自第一终端设备的第三信息,第三信息指示第一物理侧行链路反馈信道PSFCH为第一终端设备接收或发送反馈信息的信道,第一PSFCH为至少两个PSFCH中的一个,第一终端设备为子带非重叠全双工设备;其中,第三信息指示第一PSFCH为第一终端设备接收反馈信息的信道,第二终端设备在第一PSFCH上向第一终端设备发送反馈信息;或者,第三信息指示第一PSFCH为第一终端设备发送反馈信息的信道,第二终端设备在第一PSFCH上监测来自第一终端设备的反馈信息。
该装置1200可实现对应于根据本申请实施例的方法实施例中的第二终端设备执行的步骤或者流程,该装置1200可以包括用于执行图8所示实施例中的第二终端设备执行的方法的单元。
有关该装置1200更详细的描述可以参考上文方法实施例中相关描述直接得到,在此不再赘述。
应理解,各单元执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置1200以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置1200可以具体为上述实施例中的终端设备(如第一终端设备,又如第二终端设备),可以用于执行上述各方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置1200具有实现上述方法中终端设备(如第一终端设备,又如第二终端设备)所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元1210还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图12中的装置可以是前述实施例中的设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图13是本申请实施例提供的一种通信装置1300的示意性框图。该装置1300包括处理器1310,处理器1310与存储器1320耦合。可选地,还包括存储器1320,用于存储计算机程序或指令和/或数据,处理器1310用于执行存储器1320存储的计算机程序或指令,或读取存储器1320存储的数据,以执行上文各方法实施例中的方法。
可选地,处理器1310为一个或多个。
可选地,存储器1320为一个或多个。
可选地,该存储器1320与该处理器1310集成在一起,或者分离设置。
可选地,如图13所示,该装置1300还包括收发器1330,收发器1330用于信号的接收和/或发送。例如,处理器1310用于控制收发器1330进行信号的接收和/或发送。
作为一种方案,该装置1300用于实现上文各个方法实施例中由终端设备执行的操作。
例如,处理器1310用于执行存储器1320存储的计算机程序或指令,以实现上文各个方法实施例中第一终端设备或第二终端设备的相关操作。
在实现过程中,上述方法的各步骤可以通过处理器1310中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1320,处理器1310读取存储器1320中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本申请实施例中,处理器可以为一个或多个集成电路,用于执行相关程序,以执行本申请方法实施例。
处理器(例如,处理器1310)可包括一个或多个处理器并实现为计算设备的组合。处理器可分别包括以下一种或多种:微处理器、微控制器、数字信号处理器(digital signal processor,DSP)、数字信号处理设备(digital signal processing device,DSPD)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、选通逻辑、晶体管逻辑、分立硬件电路、处理电路或其它合适的硬件、固件和/或硬件和软件的组合,用于执行本公开中所描述的各种功能。处理器可以是通用处理器或专用处理器。例如,处理器1310可以是基带处理器或中央处理器。基带处理器可用于处理通信协议和通信数据。中央处理器可用于使装置执行软件程序,并处理软件程序中的数据。此外,处理器的一部分还可以包括非易失性随机存取存储器。例如,处理器还可以存储设备类型的信息。
本申请中的程序在广义上用于表示软件。软件的非限制性示例包括:程序代码、程序、子程序、指令、指令集、代码、代码段、软件模块、应用程序、或软件应用程序等。程序可以在处理器和/或计算机中运行。以使得装置执行本申请中描述的各种功能和/或过程。
存储器(例如,存储器1320)可存储供处理器(例如,处理器1310)在执行软件时所需的数据。存储器可以使用任何合适的存储技术实现。例如,存储器可以是处理器和/或计算机能够访问的任何可用存储介质。存储介质的非限制性示例包括:随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、光盘只读存储器(Compact Disc-ROM,CD-ROM)、静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)、可移动介质、光盘存储器、磁盘存储介质、磁存储设备、闪存、寄存器、状态存储器、远程挂载存储器、本地或远程存储器组件,或能够携带或存储软件、数据或信息并可由处理器/计算机访问的任何其它介质。需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
存储器(例如,存储器1320)和处理器(例如,处理器1310)可以分开设置或集成在一起。存储器可以用于与处理器连接,使得处理器能够从存储器中读取信息,在存储器中存储和/或写入信息。存储器可以集成在处理器中。存储器和处理器可以设置在集成电路中(例如,该集成电路可以设置在UE或其他网络节点中)。
图14是本申请实施例提供的一种芯片系统1400的示意性框图。该芯片系统1400(或者也可以称为处理系统)包括逻辑电路1410以及输入/输出接口(input/output interface)1420。
其中,逻辑电路1410可以为芯片系统1400中的处理电路。逻辑电路1410可以耦合连接存储单元,调用存储单元中的指令,使得芯片系统1400可以实现本申请各实施例的方法和功能。输入/输出接口1420,可以为芯片系统1400中的输入输出电路,将芯片系统1400处理好的信息输出,或将待处理的数据或信令信息输入芯片系统1400进行处理。
作为一种方案,该芯片系统1400用于实现上文各个方法实施例中由终端设备执行的操作。
例如,逻辑电路1410用于实现上文方法实施例中由第一终端设备执行的处理相关的操作,如,图4所示实施例中第一终端设备执行的处理相关的操作,或图6所示实施例中第一终端设备执行的处理相关的操作,或图8所示实施例中第一终端设备执行的处理相关的操作,或图10所示实施例中第一终端设备执行的处理相关的操作;输入/输出接口1420用于实现上文方法实施例中由第一终端设备执行的发送和/或接收相关的操作,如,图4所示实施例中的第一终端设备执行的发送和/或接收相关的操作,或图6所示实施例中第一终端设备执行的发送和/或接收相关的操作,或图8所示实施例中第一终端设备执行的发送和/或接收相关的操作,或图10所示实施例中第一终端设备执行的发送和/或接收相关的操作。
再例如,逻辑电路1410用于实现上文方法实施例中由第二终端设备执行的处理相关的操作,如, 图4所示实施例中第二终端设备执行的处理相关的操作,或图6所示实施例中第二终端设备执行的处理相关的操作,或图8所示实施例中第二终端设备执行的处理相关的操作,或图10所示实施例中第二终端设备执行的处理相关的操作;输入/输出接口1420用于实现上文方法实施例中由第二终端设备执行的发送和/或接收相关的操作,如,图4所示实施例中的第二终端设备执行的发送和/或接收相关的操作,或图6所示实施例中第二终端设备执行的发送和/或接收相关的操作,或图8所示实施例中第二终端设备执行的发送和/或接收相关的操作,或图10所示实施例中第二终端设备执行的发送和/或接收相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由终端设备(如第一终端设备,又如第二终端设备)执行的方法的计算机指令。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由终端设备(如第一终端设备,又如第二终端设备)执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文各实施例中的第一终端设备和第二终端设备。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,计算机可以是个人计算机,服务器,或者网络设备等。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。关于计算机可读存储介质,可以参考上文描述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种侧行链路通信的方法,其特征在于,包括:
    第一终端设备向第二终端设备发送第一信息,所述第一信息指示所述第一终端设备是否将第一资源作为接收资源,其中,所述第一资源为第二资源时域重叠且频域相邻的资源,所述第二资源为所述第一终端设备的预留发送资源,所述第一终端设备为子带非重叠全双工设备。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息承载于侧行控制信息。
  3. 根据权利要求2所述的方法,其特征在于,所述侧行控制信息承载于物理侧行链路控制信道或物理侧行链路共享信道。
  4. 根据权利要求2或3所述的方法,其特征在于,所述侧行控制信息还指示所述第二资源。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述第二终端设备发送第二信息,所述第二信息指示所述第一终端设备的标识。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,在所述第一终端设备向第二终端设备发送第一信息之前,所述方法还包括:
    所述第一终端设备确定所述第一信息。
  7. 根据权利要求6所述的方法,其特征在于,所述第一终端设备确定所述第一信息,包括:
    所述第一终端设备根据以下至少一项,确定所述第一信息:第一功率、第二功率,
    其中,所述第一功率为所述第一终端设备在所述第二资源上的发送功率,所述第二功率为所述第一终端设备在所述第一资源上的残留自干扰功率。
  8. 根据权利要求7所述的方法,其特征在于,所述第一终端设备根据以下至少一项确定所述第一信息:第一功率、第二功率,包括:
    在所述第一功率大于第一阈值的情况下,所述第一终端设备确定的所述第一信息指示所述第一终端设备不将所述第一资源作为接收资源,或者,在所述第一功率小于或等于所述第一阈值的情况下,所述第一终端设备确定的所述第一信息指示所述第一终端设备将所述第一资源作为接收资源;或者,
    在所述第二功率大于第二阈值的情况下,所述第一终端设备确定的所述第一信息指示所述第一终端设备不将所述第一资源作为接收资源,或者,在所述第二功率小于或等于所述第二阈值的情况下,所述第一终端设备确定的所述第一信息指示所述第一终端设备将所述第一资源作为接收资源。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备确定第三资源,所述第三资源为所述第一终端设备的接收资源;
    所述第一终端设备确定是否在第四资源上发送数据,所述第四资源为所述第三资源时域重叠且频域相邻的资源。
  10. 根据权利要求9所述的方法,其特征在于,所述第一终端设备确定是否在第四资源发送数据,包括:
    所述第一终端设备根据以下至少一项确定是否在所述第四资源上发送数据:第三功率、第四功率;
    其中,所述第三功率为所述第一终端设备在所述第四资源上的发送功率,所述第四功率为所述第一终端设备在所述第三资源上的残留自干扰功率。
  11. 根据权利要求10所述的方法,其特征在于,所述第一终端设备根据以下至少一项确定是否在所述第四资源上发送数据:第三功率、第四功率,包括:
    在所述第三功率大于第三阈值的情况下,所述第一终端设备确定不在所述第四资源上发送数据,或者,在所述第三功率小于或等于所述第三阈值的情况下,所述第一终端设备确定在所述第四资源上发送数据;或者,
    在所述第四功率大于第四阈值的情况下,所述第一终端设备确定不在所述第四资源上发送数据,或者,在所述第四功率小于或等于所述第四阈值的情况下,所述第一终端设备确定在所述第四资源上发送数据。
  12. 一种侧行链路通信的方法,其特征在于,包括:
    第二终端设备接收来自第一终端设备的第一信息,所述第一信息指示所述第一终端设备是否将第一资源作为接收资源,其中,所述第一资源为第二资源时域重叠且频域相邻的资源,所述第二资源为所述第一终端设备的预留发送资源,所述第一终端设备为子带非重叠全双工设备;
    所述第二终端设备根据所述第一信息,确定向所述第一终端设备发送数据的候选资源集合。
  13. 根据权利要求12所述的方法,其特征在于,当所述第一信息指示所述第一终端设备不将第一资源作为接收资源时,所述向所述第一终端设备发送数据的候选资源集合不包括所述第一资源。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备接收来自所述第一终端设备的第二信息,所述第二信息指示所述第一终端设备的标识;
    所述第二终端设备根据所述第一信息,确定向所述第一终端设备发送数据的候选资源集合,包括:
    所述第二终端设备根据所述第一信息和所述第二信息,确定向所述第一终端设备发送数据的候选资源集合。
  15. 一种侧行链路通信的方法,其特征在于,包括:
    第一终端设备向第二终端设备发送第三信息,所述第三信息指示第一物理侧行链路反馈信道PSFCH为所述第一终端设备接收或发送反馈信息的信道,所述第一PSFCH为至少两个PSFCH中的一个,所述第一终端设备为子带非重叠全双工设备;
    其中,所述第三信息指示第一PSFCH为所述第一终端设备接收反馈信息的信道,所述第一终端设备在所述第一PSFCH上接收所述反馈信息;或者,所述第三信息指示第一PSFCH为所述第一终端设备发送反馈信息的信道,所述第一终端设备在所述第一PSFCH上发送所述反馈信息。
  16. 根据权利要求15所述的方法,其特征在于,所述第三信息承载于侧行控制信息中,所述反馈信息用于反馈所述侧行控制信息调度的数据的接收情况。
  17. 根据权利要求15或16所述的方法,其特征在于,所述至少两个PSFCH中每个PSFCH在频域上包括多个频域单元,所述至少两个PSFCH中各个PSFCH所占的资源在时域上重叠,在频域上间隔至少一个频域单元。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备获取第四信息,所述第四信息指示所述至少两个PSFCH中至少一个PSFCH所占的资源信息。
  19. 根据权利要求18所述的方法,其特征在于,所述至少两个PSFCH中至少一个PSFCH所占的资源信息包括以下至少一项:所述至少一个PSFCH所占的频域单元的数量、所述至少一个PSFCH所占的频域资源的起始位置、所述至少一个PSFCH所占的频域资源的结束位置。
  20. 根据权利要求15至19中任一项所述的方法,其特征在于,所述至少两个PSFCH还包括第二PSFCH,
    所述第三信息指示所述第一PSFCH为所述第一终端设备接收反馈信息的信道,所述第二PSFCH为所述第一终端设备发送反馈信息的信道;或者,
    所述第三信息指示所述第一PSFCH为所述第一终端设备发送反馈信息的信道,所述第二PSFCH为所述第一终端设备接收反馈信息的信道。
  21. 一种侧行链路通信的方法,其特征在于,包括:
    第二终端设备接收来自第一终端设备的第三信息,所述第三信息指示第一物理侧行链路反馈信道PSFCH为所述第一终端设备接收或发送反馈信息的信道,所述第一PSFCH为至少两个PSFCH中的一个,所述第一终端设备为子带非重叠全双工设备;
    其中,所述第三信息指示第一PSFCH为所述第一终端设备接收反馈信息的信道,所述第二终端设备在所述第一PSFCH上向所述第一终端设备发送所述反馈信息;或者,所述第三信息指示第一PSFCH为所述第一终端设备发送反馈信息的信道,所述第二终端设备在所述第一PSFCH上监测来自所述第一终端设备的所述反馈信息。
  22. 根据权利要求21所述的方法,其特征在于,所述第三信息承载于侧行控制信息中,所述反馈信息用于反馈所述侧行控制信息调度的数据的接收情况。
  23. 根据权利要求21或22所述的方法,其特征在于,所述至少两个PSFCH中每个PSFCH在频 域上包括多个频域单元,所述至少两个PSFCH中各个PSFCH所占的资源在时域上重叠,在频域上间隔至少一个频域单元。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备获取第四信息,所述第四信息指示所述至少两个PSFCH中至少一个PSFCH所占的资源信息。
  25. 根据权利要求24所述的方法,其特征在于,所述至少两个PSFCH中至少一个PSFCH所占的资源信息包括以下至少一项:所述至少一个PSFCH所占的频域单元的数量、所述至少一个PSFCH所占的频域资源的起始位置、所述至少一个PSFCH所占的频域资源的结束位置。
  26. 根据权利要求21至25中任一项所述的方法,其特征在于,所述至少两个PSFCH还包括第二PSFCH,
    所述第三信息指示所述第一PSFCH为所述第一终端设备接收反馈信息的信道,所述第二PSFCH为所述第一终端设备发送反馈信息的信道;或者,
    所述第三信息指示所述第一PSFCH为所述第一终端设备发送反馈信息的信道,所述第二PSFCH为所述第一终端设备接收反馈信息的信道。
  27. 一种通信装置,其特征在于,包括用于执行权利要求1至26中任一项所述的方法的模块或单元。
  28. 一种通信装置,其特征在于,包括处理器,所述处理器,用于执行存储器中存储的计算机程序或指令,以使得所述装置执行权利要求1至26中任一项所述的方法。
  29. 根据权利要求28所述的装置,其特征在于,所述装置还包括所述存储器和/或通信接口,所述通信接口与所述处理器耦合,
    所述通信接口,用于输入和/或输出信息。
  30. 根据权利要求27至29中任一项所述的装置,其特征在于,所述装置为以下任一项:芯片、芯片系统、或电路。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序或指令,当所述计算机程序或指令在通信装置上运行时,使得所述通信装置执行如权利要求1至26中任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至26中任一项所述的方法的计算机程序或指令。
  33. 一种通信系统,其特征在于,包括第一终端设备和第二终端设备,
    所述第一终端设备用于执行如权利要求1至11中任一项所述的方法,所述第二终端设备用于执行如权利要求12至14中任一项所述的方法;或者,
    所述第一终端设备用于执行如权利要求15至20中任一项所述的方法,所述第二终端设备用于执行如权利要求21至26中任一项所述的方法。
PCT/CN2023/118454 2022-09-21 2023-09-13 侧行链路通信的方法及装置 WO2024061069A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211151512.9 2022-09-21
CN202211151512 2022-09-21
CN202211359574.9 2022-11-02
CN202211359574.9A CN117750529A (zh) 2022-09-21 2022-11-02 侧行链路通信的方法及装置

Publications (1)

Publication Number Publication Date
WO2024061069A1 true WO2024061069A1 (zh) 2024-03-28

Family

ID=90281892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118454 WO2024061069A1 (zh) 2022-09-21 2023-09-13 侧行链路通信的方法及装置

Country Status (2)

Country Link
CN (1) CN117750529A (zh)
WO (1) WO2024061069A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021026932A1 (zh) * 2019-08-15 2021-02-18 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
WO2021087874A1 (zh) * 2019-11-07 2021-05-14 富士通株式会社 边链路资源的预留方法以及装置
WO2021134798A1 (zh) * 2020-01-03 2021-07-08 Oppo广东移动通信有限公司 无线通信的方法和终端设备
CN113453196A (zh) * 2020-03-27 2021-09-28 维沃移动通信有限公司 信息传输方法和终端设备
US20210321387A1 (en) * 2020-04-09 2021-10-14 Qualcomm Incorporated Downlink positioning reference signal configuration and processing in full duplex scenarios

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021026932A1 (zh) * 2019-08-15 2021-02-18 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
WO2021087874A1 (zh) * 2019-11-07 2021-05-14 富士通株式会社 边链路资源的预留方法以及装置
WO2021134798A1 (zh) * 2020-01-03 2021-07-08 Oppo广东移动通信有限公司 无线通信的方法和终端设备
CN113453196A (zh) * 2020-03-27 2021-09-28 维沃移动通信有限公司 信息传输方法和终端设备
US20210321387A1 (en) * 2020-04-09 2021-10-14 Qualcomm Incorporated Downlink positioning reference signal configuration and processing in full duplex scenarios

Also Published As

Publication number Publication date
CN117750529A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
WO2021027940A1 (zh) 一种用于指示信号传输的方法及装置
US8792459B2 (en) Methods and apparatus for joint scheduling of peer-to-peer links and wireless wide area network links in cellular networks
US20230041458A1 (en) Resource allocation method and terminal
CN115589596A (zh) 侧行通信的方法及装置
WO2022134076A1 (zh) 无线通信的方法和终端设备
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
WO2022011699A1 (zh) 一种通信方法及侧行设备
WO2022222106A1 (zh) 传输物理侧行反馈信道psfch的方法和终端设备
WO2022141608A1 (zh) 一种通信方法和通信装置
WO2024061069A1 (zh) 侧行链路通信的方法及装置
WO2022061776A1 (zh) 确定资源集合的方法和终端设备
WO2022021008A1 (zh) 确定侧行链路配置授权资源的方法和终端设备
CN116170117A (zh) 侧行反馈信息处理方法、终端设备和网络设备
WO2024067092A1 (zh) 通信方法和装置
WO2024051682A1 (zh) 资源确定的方法和装置
WO2024061076A1 (zh) 侧行链路通信的方法及装置
WO2024007981A1 (zh) 信息传输的方法和通信装置
WO2024012129A1 (zh) 指示信息发送方法、装置及系统
WO2024061072A1 (zh) 通信方法和装置
WO2022126636A1 (zh) 无线通信的方法和终端设备
WO2023050338A1 (zh) 无线通信的方法和终端设备
US20240073868A1 (en) Wireless communication method, and device
WO2024099166A1 (zh) 侧行链路通信方法和装置
WO2023231965A1 (zh) 数据传输的方法、装置和系统
WO2022061790A1 (zh) 资源集合的传输方法和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867358

Country of ref document: EP

Kind code of ref document: A1