WO2022193282A1 - 资源选取方法、装置、设备及存储介质 - Google Patents

资源选取方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022193282A1
WO2022193282A1 PCT/CN2021/081789 CN2021081789W WO2022193282A1 WO 2022193282 A1 WO2022193282 A1 WO 2022193282A1 CN 2021081789 W CN2021081789 W CN 2021081789W WO 2022193282 A1 WO2022193282 A1 WO 2022193282A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
signaling
sending
resources
sideline
Prior art date
Application number
PCT/CN2021/081789
Other languages
English (en)
French (fr)
Inventor
张世昌
赵振山
丁伊
林晖闵
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/081789 priority Critical patent/WO2022193282A1/zh
Priority to EP21930874.9A priority patent/EP4307730A4/en
Priority to CN202180095310.4A priority patent/CN116941257A/zh
Publication of WO2022193282A1 publication Critical patent/WO2022193282A1/zh
Priority to US18/466,698 priority patent/US20240008001A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/03Reselecting a link using a direct mode connection
    • H04W36/035Reselecting a link using a direct mode connection in self-organising networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the embodiments of the present application relate to the field of wireless communication technologies, and in particular, to a resource selection method, apparatus, device, and storage medium.
  • D2D communication As a key technology for 5th generation mobile networks (5G), device-to-device (D2D) communication, including vehicle-to-vehicle (V2V) communication or vehicle-to-device (V2V) communication vehicle to everything, V2X) communication.
  • D2D communication introduces a sidelink (SL) transmission technology. Different from the traditional cellular system in which the communication data is received or transmitted through the base station, because the terminal-to-terminal direct communication method is adopted, it has higher spectral efficiency and lower transmission delay.
  • SL sidelink
  • the 3rd generation partnership project (3GPP) defines two transmission modes in the V2X technology: one is that the terminal transmits data on the sidelink according to the resources allocated by the base station, and the base station can assign the terminal to the terminal. Resources for a single transfer, or resources for a semi-static transfer. The other is that the terminal determines the candidate resource set according to the existing listening process, and then autonomously selects resources in the candidate resource set for sideline transmission.
  • the above-mentioned enhanced resource selection scheme may have the situation that the other party is in a dormant state when data or signaling is sent between terminals, which affects the transmission performance of the entire system, and also causes the terminal to be unable to combine the resource sets of other terminals. Make resource selection. Therefore, it is necessary to further optimize the above-mentioned enhanced resource selection scheme.
  • Embodiments of the present application provide a resource selection method, apparatus, device, and storage medium, which can improve the overall performance of sideline communication.
  • an embodiment of the present application provides a resource selection method, which is applied to a first device, and the method includes:
  • the resource for sideline transmission is selected according to the resource set.
  • an embodiment of the present application provides a resource selection method, which is applied to a second device, and the method includes:
  • the second device receiving, within the DRX activation time of the second device, a first signaling from a first device, where the first signaling is used to trigger the second device to send a resource set to the first device,
  • the resource set is used to assist the first device to select resources for sideline transmission;
  • the resource set is sent to the first device according to the first signaling.
  • an embodiment of the present application provides a resource selection device, including:
  • a sending module configured to send a first signaling to a second device, where the first signaling is used to trigger the second device to send a resource set to the first device, where the resource set is used to assist the first device Resource selection for sideline transmission by the device;
  • a receiving module configured to receive the resource set from the second device
  • a processing module configured to select resources for sideline transmission according to the resource set.
  • an embodiment of the present application provides a resource selection device, including:
  • a receiving module configured to receive the first signaling from the first device within the DRX activation time of the discontinuous reception, where the first signaling is used to trigger the second device to send the resource set to the first device, and the The resource set is used to assist the first device to select resources for sideline transmission;
  • a processing module configured to send the resource set to the first device according to the first signaling.
  • an electronic device including:
  • Transceivers processors, memories
  • the memory stores computer-executable instructions
  • the processor executes computer-implemented instructions stored in the memory to cause the processor to perform the method of the first aspect.
  • an electronic device including:
  • Transceivers processors, memories
  • the memory stores computer-executable instructions
  • the processor executes computer-implemented instructions stored in the memory, causing the processor to perform the method of the second aspect.
  • an embodiment of the present application provides a computer storage medium for storing a computer program, and when the computer program runs on a computer, the computer causes the computer to execute the method described in the first aspect.
  • an embodiment of the present application provides a computer storage medium for storing a computer program, and when the computer program runs on a computer, the computer causes the computer to execute the method described in the second aspect.
  • an embodiment of the present application provides a computer program product, which, when the computer program product runs on a computer, causes the computer to execute the method according to the first aspect.
  • an embodiment of the present application provides a computer program product, which, when the computer program product runs on a computer, causes the computer to execute the method according to the first aspect.
  • Embodiments of the present application provide a resource selection method, apparatus, device, and storage medium, which are applied to a sideline communication system.
  • the method includes: sending a first signaling to a second device through a first device, where the first signaling is used to trigger the second device to send a resource set to the first device, and the resource set is used to assist the first device to select sidelink transmission resources .
  • the second device feeds back the resource set to the first device according to the first signaling, and the first device selects sidelink transmission resources according to the resource set.
  • the above process can prevent the first device from being in a dormant state when the second device sends the resource set, thereby improving the reliability of sideline data transmission.
  • FIG. 1 is a schematic diagram 1 of an application scenario provided by an embodiment of the present application.
  • FIG. 2 is a second schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram 3 of an application scenario provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of resources for selecting resources provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a frame structure of sideline communication provided by an embodiment of the present application.
  • Fig. 6 is the scene schematic diagram of hidden node
  • Fig. 7 is the scene schematic diagram of exposing terminal
  • FIG. 8 is a schematic diagram of a discontinuous reception mechanism
  • FIG. 9 is an interactive schematic diagram of a resource selection method provided by an embodiment of the present application.
  • FIG. 10 is an interactive schematic diagram of another resource selection method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram 1 of a first signaling provided by an embodiment of the present application.
  • FIG. 12 is a second schematic diagram of the first signaling provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram 3 of the first signaling provided by the embodiment of the present application.
  • FIG. 14 is a fourth schematic diagram of the first signaling provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram 1 of a resource selection apparatus provided by an embodiment of the present application.
  • FIG. 16 is a second schematic structural diagram of a resource selection apparatus provided by an embodiment of the present application.
  • FIG. 17 is a third schematic structural diagram of a resource selection apparatus provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram 1 of a hardware structure of an electronic device provided by an embodiment of the present application.
  • FIG. 19 is a second schematic diagram of a hardware structure of an electronic device provided by an embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the communication system shown in FIG. 1 includes a network device 101 and two terminal devices, which are terminal devices 102 and 103 respectively. Both the terminal device 102 and the terminal device 103 are within the coverage of the network device 101 .
  • the network device 101 is connected in communication with the terminal device 102 and the terminal device 103 respectively, and the terminal device 102 is connected in communication with the terminal device 103 .
  • the terminal device 102 may send a communication message to the terminal device 103 through the network device 101 , and the terminal device 102 may also directly send a communication message to the terminal device 103 .
  • the link for direct communication between the terminal device 102 and the terminal device 103 is called a D2D link, and may also be called a proximity service (proximity service, ProSe) link, a side link, and the like. Transmission resources on the D2D link may be allocated by network equipment.
  • a proximity service proximity service, ProSe
  • Transmission resources on the D2D link may be allocated by network equipment.
  • FIG. 2 is a schematic diagram of another application scenario provided by this embodiment of the present application.
  • the communication system shown in FIG. 2 also includes one network device 101 and two terminal devices.
  • the difference from FIG. 1 is that the terminal device 103 is within the coverage of the network device 101 , and the terminal device 104 is outside the coverage of the network device 101 .
  • the network device 101 is connected in communication with the terminal device 103
  • the terminal device 103 is connected in communication with the terminal device 104 .
  • the terminal device 103 may receive the configuration information sent by the network device 101, and perform sideline communication according to the configuration information. Since the terminal device 104 cannot receive the configuration information sent by the network device 101, the terminal device 104 can, according to the pre-configuration information and the information carried in the Physical Sidelink Broadcast Channel (PSBCH) sent by the terminal device 103, sideline communication.
  • PSBCH Physical Sidelink Broadcast Channel
  • FIG. 3 is a schematic diagram of another application scenario provided by an embodiment of the present application.
  • Both the terminal device 104 and the terminal device 105 shown in FIG. 3 are outside the coverage of the network device 101 .
  • Both the terminal device 104 and the terminal device 105 can determine the sideline configuration according to the pre-configuration information, and perform sideline communication.
  • two transmission modes are defined in the 3GPP protocol: a first transmission mode and a second transmission mode.
  • the first transmission mode the transmission resources of the terminal equipment are allocated by the base station, and the terminal equipment performs data transmission on the sidelink according to the resources allocated by the base station.
  • the base station can allocate resources for a single transmission to the terminal equipment, and can also allocate resources for semi-static transmission to the terminal equipment.
  • the terminal device 102 is located within the coverage area of the network device 101 , and the network device 101 allocates transmission resources for sideline transmission to the terminal device 102 .
  • Second transmission mode (1) If the terminal device has the interception capability, it can transmit data by means of interception and reservation or transmit data by means of randomly selecting resources. Specifically, the above method of listening and reserving means that the terminal device can acquire an available resource set by listening in a network configuration or a pre-configured resource pool, and randomly select a resource from the available resource set for data analysis. transmission. (2) If the terminal device does not have the ability to listen, it can directly select transmission resources from the resource pool at random.
  • the above-mentioned interception means that the terminal device receives the first sideline control information sent by other terminal devices, learns the resources reserved by other terminal devices according to the instructions of the first sideline control information, and excludes resources reserved by other terminal devices during resource selection. resources to avoid resource collision with other terminal devices.
  • the terminal device 102 shown in FIG. 1 may autonomously select transmission resources from the resource pool configured by the network to perform sideline transmission.
  • the terminal devices 104 and 105 shown in FIG. 3 are both located outside the coverage of the network device 101, and the terminal devices 104 and 105 can autonomously select transmission resources from the preconfigured resource pool for sideline transmission.
  • the terminal device when the terminal device operates in the second transmission mode, resource selection can be performed according to the listening result. Specifically, when new data arrives at time n, the terminal device may select resources within the resource selection window according to the listening result of the preset period before time n.
  • FIG. 4 is a schematic diagram of resources for selecting resources provided by an embodiment of the present application.
  • T 1 ⁇ T proc,1 , T proc,1 is determined according to the processing capability of the terminal device, T 2min ⁇ T 2 ⁇ remaining PDB (packet delay budget, data delay), T 2min is determined according to the configuration parameters, PDB Determined according to the delay of the data to be transmitted, eg.
  • the process for the terminal device to select resources in the resource selection window [n+T 1 , n+T 2 ] includes:
  • Step 1 The terminal device uses all available resources in the resource selection window as a set A;
  • Step 1 If some time slots in the listening window of the terminal device do not have a listening result due to the half-duplex problem, the resources on the time slots corresponding to these time slots in the resource selection window are excluded.
  • Step 2 If the terminal device detects a physical sidelink control channel (Physical Sidelink Control Channel, PSCCH) in the listening window, measure the reference signal received power (Reference Signal Received Power, RSRP) of the PSCCH, or measure the PSCCH scheduling
  • PSSCH Physical Sidelink Shared Channel
  • the selection of the PSSCH-RSRP threshold is determined by the priority information carried in the detected PSCCH and the priority of the data to be transmitted by the terminal device.
  • Step 3 If the number of remaining resources in set A is less than X% of the total number of resources, the terminal device will increase the RSRP threshold by 3dB, and repeat the above steps until the number of remaining resources in set A is greater than the total number of resources. X%.
  • Step 4 The terminal device reports the determined set A, that is, the candidate resource set (or available resource set) to the upper layer, and the higher layer randomly selects transmission resources from the candidate resource set reported by the physical layer for sideline transmission.
  • the terminal device involved in the embodiments of this application may also be referred to as a terminal, which may be a device with a wireless transceiver function, which may be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it may also be deployed on water (such as ships, etc.); can also be deployed in the air (such as on airplanes, balloons, satellites, etc.).
  • the terminal device may be a user equipment (user equipment, UE), wherein the UE includes a handheld device, a vehicle-mounted device, a wearable device or a computing device with a wireless communication function.
  • the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • the terminal device may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, intelligent Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the device for realizing the function of the terminal may be a terminal; it may also be a device capable of supporting the terminal to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network device involved in the embodiments of the present application includes a base station (base station, BS), which may be a device deployed in a wireless access network and capable of wirelessly communicating with a terminal.
  • the base station may have various forms, such as a macro base station, a micro base station, a relay station, and an access point.
  • the base station involved in the embodiment of the present application may be a base station in 5G or a base station in LTE, where the base station in 5G may also be called a transmission reception point (transmission reception point, TRP) or gNB.
  • the apparatus for implementing the function of the network device may be a network device; it may also be an apparatus capable of supporting the network device to implement the function, such as a chip system, and the apparatus may be installed in the network device.
  • the technical solutions of the embodiments of the present application are mainly applied to communication systems based on New Radio (NR) technology, such as 5G communication systems, NR-V2X, NR-V2V communication systems, and the like. It can also be applied to other communication systems, as long as there is resource scheduling between entities in the communication system, for example, it can be applied to resource scheduling between network equipment and terminal equipment, or resource scheduling between two terminal equipment, One of the terminal devices assumes the function of accessing the network, etc.
  • NR New Radio
  • X can generally refer to any device with wireless reception and transmission capabilities, including but not limited to slow-moving wireless devices, fast-moving vehicle-mounted devices, and network control nodes with wireless transmission and reception capabilities.
  • NR-V2X communication supports unicast, multicast, and broadcast transmission methods. For unicast transmission, the sending terminal sends data, and there is only one receiving terminal. For multicast transmission, the sending terminal sends data, and the receiving terminal is all terminals in a communication group, or all terminals within a certain transmission distance. For broadcast transmission, the sending terminal sends data, and the receiving terminal is any terminal around the sending terminal.
  • the second-order sideline control information (Sidelink Control Information, SCI) is introduced.
  • the first-order SCI (or the first sideline control information) is carried in the PSCCH and is used to indicate the PSSCH transmission resources, reserved resource information, modulation and coding strategy (Modulation and Coding Scheme, MCS) level, priority, etc. information.
  • the second-order SCI (or the second sideline control information) is carried in the PSSCH, and is used to indicate the sender ID, receiver ID, HARQ ID, new data indication NDI, etc. for data demodulation. information.
  • FIG. 5 is a schematic diagram of a frame structure of sideline communication provided by an embodiment of the present application.
  • the PSCCH occupies 3 symbols, for example, symbols 1, 2, and 3 in FIG.
  • DMRS occupies symbols 4 and 11.
  • the second-order SCI is mapped from symbol 4, and is frequency-division multiplexed with DMRS on symbol 4.
  • the second-order SCI is mapped to symbols 4, 5, and 6.
  • the size of the resources occupied by the second-order SCI depends on The number of bits in the second-order SCI.
  • the terminal device randomly selects transmission resources in the resource pool, or selects transmission resources according to the listening result.
  • This resource selection method can avoid interference between terminal devices to a certain extent, but there are still the following question:
  • FIG. 6 is a schematic diagram of a hidden node scenario.
  • the sending terminal TX B selects resources according to the interception, and uses the resources to send sideline data to the receiving terminal RX A, because the TX B and the sending terminal TX C are far away , and cannot hear each other's transmissions. Therefore, TX B and TX C may select the same transmission resources, and the data sent by TX C will interfere with the data sent by TX B.
  • the half-duplex (Half-duplex) problem When a terminal selects transmission resources by listening, within the listening window, if the terminal sends sideline data on a certain time slot, due to the limitation of half-duplex, the terminal cannot receive the data sent by other terminals on this time slot. data, and no listening results. Therefore, when the terminal performs resource exclusion, all resources corresponding to the time slot in the selection window will be excluded to avoid interference with other terminals. Due to the limitation of half-duplex, the terminal excludes many resources that do not need to be excluded.
  • FIG 7 is a schematic diagram of a scenario where the terminal is exposed.
  • both the transmitting terminal TX B and the transmitting terminal TX C can monitor each other, but the target receiving terminal RX A of TX B is far away from TX C, and the target receiving terminal RX of TX C is far away. D is far away from TX B.
  • TX B and TX C use the same time-frequency resources, they will not affect the reception of their respective target receiving terminals.
  • the received signal power of the other party is detected during the listening process. It may be very high, so that both parties will choose orthogonal time-frequency resources, which may eventually lead to a decrease in resource utilization efficiency.
  • the terminal needs to continuously listen to resources to determine which resources are available, and the terminal needs to consume a lot of energy to continuously listen to resources, which is not a problem for the vehicle terminal, because the vehicle terminal has power supply equipment
  • the terminal needs to consume a lot of energy to continuously listen to resources, which is not a problem for the vehicle terminal, because the vehicle terminal has power supply equipment
  • excessive power consumption will cause the terminal to run out of power quickly. Therefore, how to reduce the power consumption of the terminal is also a problem that needs to be considered in the process of resource selection.
  • a resource set may also be sent by one terminal (UE-A) to another terminal (UE-B) to assist UE-B in resource selection.
  • the resource collection can be of two different types:
  • Reference resource set UE-A can obtain the available resource set according to the resource listening result, base station indication, etc., and send the resource set to UE-B.
  • the resource set may be a set of resources suitable for use by UE-B.
  • resources may be preferentially selected from the available resource set, thereby improving target reception.
  • the reliability of the terminal receiving the sideline data; or, the resource set may also be a resource set that is not suitable for UE-B to use, and UE-B avoids selecting resources in the resource set when selecting resources, thereby avoiding the occurrence of hidden terminals. , the half-duplex limit, etc.
  • UE-A needs to determine the time or time range to send the resource set to UE-B according to the signaling instruction sent by UE-B, so as to ensure that the resource set sent by UE-A can be used for the resources of UE-B. selection or resource reselection.
  • the information sent by UE-A to UE-B includes the transmission resources directly allocated to UE-B, and UE-B uses the transmission resources to send sideline data to the target receiving terminal.
  • UE-A allocates sidelink transmission resources to UE-B.
  • the terminal needs to combine the resource sets sent by other terminals during the resource selection process, thereby improving transmission reliability.
  • a discontinuous reception mechanism (Discontinuous Reception, DRX) energy saving strategy is introduced into the 3GPP standard protocol.
  • FIG 8 is a schematic diagram of the discontinuous reception mechanism.
  • the basic mechanism of DRX is to configure a DRX cycle (DRX cycle) for the UE in the RRC_CONNECTED state.
  • the DRX cycle consists of "On Duration" and "Opportunity for DRX”: within the "On Duration” time (also known as active time, activation period), the UE monitors and receives PDCCH; during the "Opportunity for DRX" time (also known as the active time) Inactive time, inactive period or dormant period), the UE does not receive PDCCH to reduce power consumption.
  • Opportunity for DRX time can also be called DRX off duration.
  • the terminal controls the active period and the inactive period of the terminal according to some timer parameters configured by the network. For example, when the UE receives the PDCCH that the network schedules the UE within the On Duration period, the UE will activate a timer, such as drx_inactiveTimer, before the timer expires, the terminal is in an active state.
  • a timer such as drx_inactiveTimer
  • the energy-saving and consumption-reducing mechanism of the terminal is discussed in the R17SL technology.
  • it is considered to introduce a discontinuous reception (DRX) mechanism in SL, that is, SL DRX.
  • DRX discontinuous reception
  • the terminal receives data sent by other terminals within the On duration range, and if no data is detected, it enters the sleep state within the DRX off duration range to save power consumption; For the data of the terminal, the terminal will activate the timer, and before the timer expires, the terminal is in the active state.
  • the above-mentioned enhanced resource selection scheme may have the following problems: UE-A sends a resource set to UE-B. If UE-B is configured with DRX, UE-B may be in a dormant state, and UE-B cannot After receiving the resource set of UE-A, UE-B will not be able to select transmission resources in combination with the resource sets of other terminals.
  • an embodiment of the present application proposes a resource selection method.
  • UE-B receiving the resource set may be configured with DRX
  • UE-A will feed back the resource set to UE-B within the DRX activation time, so as to avoid sending the resource set to UE-B.
  • UE-B is in a dormant state.
  • the above method is an optimization of the enhanced resource selection scheme, which can improve the overall performance of the sideline communication system.
  • FIG. 9 is an interactive schematic diagram of a resource selection method provided by an embodiment of the present application.
  • the first device and the second device are any two devices in sideline communication, and the resource selection method in this embodiment includes the following steps:
  • Step 101 The first device sends first signaling to the second device.
  • the first signaling is used to trigger the second device to send a resource set to the first device, and the resource set is used to assist the first device to select resources for sideline transmission.
  • the resource set is a reference resource set sent by the second device to the first device, and the first device can perform sideline transmission resource selection in combination with the reference resource set on the basis of the existing resource selection scheme.
  • the first signaling sent by the first device to the second device may be carried in a specific bit field of the PSCCH, or the medium access control layer control unit MAC CE in the PSSCH, or the second sideline control information, Or, in PC5 radio resource control RRC.
  • the first device may send the first signaling to the second device when a preset condition is satisfied.
  • satisfying the preset condition for the first device includes meeting at least one of the following conditions:
  • the first device has triggered resource reselection or is about to trigger resource reselection.
  • the first device is about to trigger resource reselection, including the following situations:
  • the Sidelink Process of the first device is used for sending multiple MAC layer protocol data units MAC PDUs, and the value of the resource occupancy counter SL_RESOURCE_RESELECTION_COUNTER is equal to 1, and the first device is randomly between [0, 1] The value of the generated random number is greater than the parameter sl-ProbResourceKeep configured by the high layer. In this case, the first device will perform resource reselection after the next transmission (ie, after the resource occupancy counter returns to zero).
  • the first device's sideline process is used for multiple MAC PDU transmissions, but in the past 1 second, the first device has not utilized the reserved resources for any initial transmission or retransmission. In this case, when there is sideline data in the logical channel of the first device, resource reselection will be performed.
  • the lateral process of the first device is used for sending multiple MAC PDUs, and the first device does not send any information on consecutive sl-ReselectAfter reserved resources, where sl-ReselectAfter is a parameter configured by a higher layer.
  • sl-ReselectAfter is a parameter configured by a higher layer.
  • Case 4 if the first device currently has Sidelink Grant (Sidelink Grant) resources, but even if the first device adopts the maximum MCS resource allowed by the current high layer, it cannot carry the current RLC layer protocol data unit RLC PDU, and the first device's The MAC layer does not further segment the RLC PDU. In this case, the first device will perform resource reselection.
  • Sidelink Grant Sidelink Grant
  • the priority value of the sideline data to be sent by the first device is greater than the priority threshold.
  • the priority threshold is defined by network configuration, pre-configuration or standard.
  • the first device determines that the number of times that the second device fails to receive the PSSCH sent by the first device continuously is greater than a preset number of times. Specifically, it includes the following two situations:
  • Case 1 when the second device successfully receives the PSSCH sent by the first device, the second device feeds back an ACK message, and when the second device successfully receives the PSCCH sent by the first device but fails to receive the PSSCH sent by the first device, the second device Feedback does not acknowledge the NACK message, and the number of times the first device fails to receive ACK feedback from the second device consecutively is greater than a certain threshold, where the specific threshold is configured by the network, pre-configured or defined by a standard.
  • the second device when the second device successfully receives the PSCCH sent by the first device but fails to receive the PSSCH sent by the first device, the second device feeds back a NACK message, and in other cases, the second device does not perform any feedback. If the number of consecutive failures of the first device to receive NACK feedback from the second device is greater than a certain threshold, where the certain threshold is configured by the network, pre-configured or defined by a standard.
  • the delay of the sideline data to be sent by the first device is greater than the delay threshold.
  • Step 102 The second device sends the resource set to the first device according to the first signaling.
  • the resource set sent by the second device specifically includes resources suitable or unsuitable for sideline transmission by the first device.
  • the second device after receiving the first signaling, the second device sends the resource set to the first device in response to the first signaling.
  • the second device triggers, according to the first signaling, to send a resource set to the first device in a first time unit, where the resource set is included in a preset time period after the first time unit and is suitable or unsuitable for the first device.
  • Resources for sideline transmission may be a radio frame, a subframe, a time slot, a symbol or a half frame.
  • the second device can send the resource set in the following ways:
  • the second device sends a resource set in time slot m, and the resource set includes A1 resources in the range of [m+T0, m+PDB] that are not suitable for use by the first device, where A1 ⁇ 1.
  • T0 represents the minimum time required for the first device to receive the resource set sent by the second device and respond to the resource set
  • the value of T0 can be configured by the base station, pre-configured or defined by standards
  • PDB is the first device to be sent The remaining tolerable delay of the data.
  • the B1 resources in the above A1 resources are simultaneously included in the M resources indicated by the PSSCH carrying the first signaling, where 1 ⁇ B1 ⁇ A1, correspondingly, the first device should The B1 resources are reselected, that is, different resources are selected to replace the original B1 resources. During the resource reselection process, the first device should exclude the above A1 resources in the resource set.
  • the second device sends a resource set in time slot m, and the resource set includes A2 resources within the range of [m+T0, m+PDB] suitable for use by the first device, where A2 ⁇ 1 .
  • the second device sends a resource set in time slot m, and the resource set includes A1 resources in the range of [m+T0, m+PDB] that are not suitable for the first device and A2 resources suitable for use by the first device.
  • the resource used by the first device is not limited to [m+T0, m+PDB]
  • the second device sends a resource set in time slot m, and the resource set includes A3 resources within the range of [m+T0, m+ ⁇ ] that are not suitable for use by the first device, where A3 ⁇ 1.
  • T0 represents the minimum time required for the first device to receive the resource set sent by the second device and respond to the resource set
  • the value of T0 can be configured by the base station, pre-configured or defined by standards
  • is a specific time span
  • The value of can be configured by the base station, first device configuration, pre-configured or defined by standard.
  • the value of ⁇ may be related to the data priority indicated in the PSCCH.
  • B2 resources in the above A3 resources are simultaneously included in the M retransmission resources indicated by the PSCCH carrying the first signaling, where 1 ⁇ B2 ⁇ A3, correspondingly, the first The device should reselect B2 resources, that is, select different resources to replace the original B2 resources. During the resource reselection process, the first device should exclude the above A3 resources in the resource set.
  • the second device sends a resource set in time slot m, where the resource set includes A4 resources suitable for use by the first device in the range of [m+T0, m+ ⁇ ], where A4 ⁇ 1.
  • the second device sends a resource set in time slot m, where the resource set includes A3 resources that are not suitable for use by the first device and A4 resources within the range of [m+T0, m+ ⁇ ] Resources suitable for use by the first device.
  • the second device sends the resource set in time slot m. If the first device is configured with DRX, the first device should notify the second device of its DRX configuration, and the second device should ensure that time slot m is located at the time slot m. within the DRX activation time of the first device.
  • the DRX activation time of the first device includes the on duration range in one or more DRX configurations semi-statically configured by the first device, and the second device transmits or is about to send a sideline transmission to the first device on the first device. The time range from activation to deactivation of a side-activated timer. It should be understood that the first device should send the current DRX configuration of the first device to the second device in advance.
  • the first signaling includes at least one of the following: a sending resource pool of the first device; a priority prio_TX of sideline data to be sent by the first device; a resource selection to be performed by the first device The starting point and end point of the resource selection window; the delay requirement of the sideline data to be sent by the first device; the frequency domain resource size L_subCH used in the resource selection to be performed by the first device; Resource reservation period P_rsvp_TX.
  • the second device determines the resource set according to the content indicated by the first signaling, and sends the resource set to the first device.
  • the second device determines, from the resource selection window, resources that are suitable or unsuitable for the first device to perform lateral transmission.
  • the first signaling includes at least one of the following: a sending resource pool of the first device; M resources selected by the first device, where M is a positive integer greater than or equal to 1; the first device The remaining tolerable delay in sending sideline data.
  • the second device After receiving the first signaling, the second device determines the resource set according to the content indicated by the first signaling, and sends the resource set to the first device.
  • the M resources may be the M resources indicated by the first device through the PSSCH, or the M resources indicated by the first device through the PSCCH. resource.
  • the second device determines the resource set according to the content indicated by the first signaling, including: the second device determines, according to the M resources indicated in the first signaling, from the M resources suitable or unsuitable for the first device to perform sideline transmission. resource.
  • the second device determining the resource set according to the first signaling includes: within a preset period after the first time unit, determining resources suitable or unsuitable for the first device to perform sideline transmission; and, according to the first For the M resources indicated in the signaling, resources suitable or unsuitable for the first device to perform lateral transmission are determined from the M resources. That is, if the second device sends a resource set to the first device in the first time unit, the resource set includes two parts, and the first part is used to indicate whether the M resources indicated by the first signaling are suitable or unsuitable for the first device The resources for sideline transmission, the second part is used to indicate the resources suitable or unsuitable for the first device to perform sideline transmission within a preset time period after the first time unit.
  • the preset time period after the first time unit may be [m+T0,m+PDB] or [m+T0,m+ ⁇ ] in the above-mentioned embodiment.
  • the preset time period after the first time unit may be [m+T0,m+PDB] or [m+T0,m+ ⁇ ] in the above-mentioned embodiment.
  • the second device determines the resource set according to the first signaling
  • the following summarizes the resource set sent by the second device to the first device.
  • the resources in the above resource collection can be selected from the following ranges:
  • the second device sends time-frequency resources within a preset period after the resource set.
  • Resources that have been reserved by the first device through signaling such as resources reserved by the first device through PSCCH for retransmission of the same transport block TB, or resources for new transmission or retransmission of other new TBs .
  • the first device can reserve up to 150 periodic resources, and the first device can reserve resources for a maximum of 150 cycles. In order, only two resources for retransmission of the same TB and resources for transmission of a new TB in the next period can be reserved at most, so there are resources that are pre-reserved by the first device but have not been reserved by signaling.
  • the resources used by the first device for example, the resources used by the first device in the past period of time.
  • Step 103 The first device selects resources for sideline transmission according to the resource set.
  • the first device may exclude the resources in the resource selection process.
  • the first device may preferentially select the resource during the resource selection process.
  • the first device can reselect B resources, that is, select different resources to replace the original B resources. During the resource reselection process, the first device should exclude the above A resources .
  • the first device sends the first signaling to the second device, the first signaling is used to trigger the second device to send the resource set to the first device, and the second device sends the resource set to the first device according to the first signaling.
  • the first device feeds back a resource set, where the resource set is used to assist the first device in resource selection for sideline transmission.
  • the second device sends the resource set to the first device based on the trigger of the first device, which can prevent the first device from being in a dormant state when sending the resource set, thereby improving the reliability of sideline communication data transmission.
  • the first device is configured with DRX, and the first device sends trigger signaling to the second device to notify the second device to feed back the resource set, which can solve the problem that when the second device sends the resource set to the first device, the first device An issue that could be dormant and not be able to successfully receive resource collections.
  • the second device is also configured with DRX
  • the first device sends trigger signaling to the second device, and the second device is in a dormant state, then the second device cannot receive the DRX. trigger signaling. Therefore, what kind of resource the first device sends the trigger signaling to the second device is an urgent problem to be solved.
  • the embodiment of the present application provides a resource selection method.
  • the second device is configured with DRX
  • the second device will only receive trigger signaling within the DRX activation time.
  • the third A device needs to first determine the time-frequency resources for sending trigger signaling, and on the determined time-frequency resources, send trigger signaling to the second device to ensure that the second device can successfully receive the signaling, and send trigger signaling to the first device according to the signaling.
  • the device feeds back the resource set for the first device to select sideline transmission resources, which can ultimately improve the transmission performance of the entire sideline system.
  • FIG. 10 is an interactive schematic diagram of another resource selection method provided by an embodiment of the present application.
  • the resource selection method of this embodiment includes the following steps:
  • Step 201 The first device determines resources for sending the first signaling.
  • the first signaling is used to trigger the second device to send a resource set to the first device, and the resource set is used to assist the first device to select resources for sideline transmission.
  • the first device obtains the sideline DRX configuration of the second device in advance, and the first device determines the DRX activation time of the second device according to the sideline DRX configuration of the second device, thereby determining to send the first device a signaling time. That is, the sending time of the first signaling is within the DRX activation time of the second device, thereby ensuring that the second device can successfully receive the first signaling.
  • the first device uses the resource in the sideline grant within the DRX activation time of the second device as the resource for sending the first signaling. That is, the first device can send the first signaling through the existing resources in the sideline grant within the DRX activation time of the second device. If there are no resources that meet the requirements, or there are not enough resources that meet the requirements, the first device needs to perform resource reselection, and send the first signaling on the resources resected.
  • the first device can determine to perform resource reselection in a certain time unit in the future, such as time slot n, in this case, if the first device has a sideline authorization, and One or more resources in the authorization are within the DRX activation time of the second device, then the first device can send the first message through one or more resources in the existing sideline authorization that are within the DRX activation time of the second device. make. If there is no resource within the DRX activation time of the second device in the existing sideline authorization of the first device, or the resources within the DRX activation time of the second device in the existing sideline authorization are insufficient, the first device Resource reselection should be triggered. In this case, the resource selection window determined when the first device performs resource reselection should be within the DRX activation time of the second device.
  • the first device when the first device satisfies at least situation 2 of (1) in the above preset conditions, the first device can determine that after the transmission of the next MAC PDU is completed, resource reselection will be performed in time slot n, and In this case, in the next MAC PDU transmission process, the first device may send the first signaling by using the resources in the existing sideline grant or by using the reselection resources.
  • the first device selects M resources from the above-mentioned resources, and sends the first signaling to the second device on the M resources. If the DRX activation time of the second device overlaps with the DRX activation time of the second device in the existing resources used by the first device for sending the next MAC PDU, and the number of resources whose distance from time slot n is not less than T is less than M, then the first device Resource reselection will be triggered.
  • M represents the number of times of sending the first signaling
  • the value of M may be configured by the base station, pre-configured or defined by a standard.
  • T represents the minimum time required for the second device to decode the first signaling, determine the resource set according to the first signaling, and send the resource set to the first device.
  • the value of T can be configured by the base station, pre-configured or defined by standards , the value of T may be related to the data priority (ie prio_TX) indicated by the first device in the first signaling.
  • the first device when the first device satisfies at least situation 2 of (1) in the foregoing preset conditions, it also needs to satisfy at least one of (2), (3), and (4) in the foregoing preset conditions.
  • the first device can send the first signaling.
  • the DRX activation time of the second device includes the on duration range in one or more DRX configurations semi-statically configured by the second device, and the sideline transmission to the second device that has been or is about to be sent by the first device.
  • FIG. 11 is a schematic diagram 1 of the first signaling provided by this embodiment of the application.
  • the number of times M of sending the first signaling is 2, and the first device has a sideline authorization in the period n+1.
  • the first signaling of the device is a schematic diagram 1 of the first signaling provided by this embodiment of the application.
  • the number of times M of sending the first signaling is 2, and the first device has a sideline authorization in the period n+1.
  • the first signaling of the device is a schematic diagram 1 of the first signaling provided by
  • FIG. 12 is a schematic diagram 2 of the first signaling provided by this embodiment of the application.
  • the number of times M of sending the first signaling is also set to 2
  • the first device has a sideline authorization in the period n+1.
  • There is a resource the resource is within the DRX activation time of the second device, and the first device can use this resource to send the first signaling once. Since the number of times of sending the first signaling is 2, the first device also needs to determine the resources for sending the first signaling for the second time, that is, additionally select resources for the sending of the first signaling for the second time.
  • the additionally selected resource for sending the second first signaling should overlap with the DRX activation time of the second device, and the termination time of the resource should be no later than time slot n-T.
  • the first device may send the first signaling through the MAC CE in the PSSCH carrying the MAC PDU, or send the first signaling through the second sideline control information of the scheduling MAC PDU.
  • the first signaling includes at least one of the following items: the sending resource pool of the first device; the priority prio_TX of the sideline data to be sent by the first device; the priority of the resource selection window in the resource selection to be performed by the first device The starting point and the end point; the delay requirement of the sideline data to be sent by the first device; the frequency domain resource size L_subCH used in the resource selection to be performed by the first device; the resource reservation period to be used in the resource selection to be performed by the first device P_rsvp_TX.
  • the first device when the first device satisfies at least Case 2 or Case 3 of the above preset conditions (1), there is sideline data in the logical channel of the first device, and resource reselection needs to be performed in time slot n , if the first device already has a sideline authorization that overlaps with the DRX activation time of the second device, and the distance between the first device and the time slot n is not less than T and the number of resources is not less than M, then the first device from the above resources M resources are selected, and the first signaling is sent to the second device.
  • the first device will trigger resource reselection.
  • M and T are the same as above.
  • the first device when the first device satisfies at least Case 2 or Case 3 of (1) in the foregoing preset conditions, it also needs to satisfy (2), (3), and (4) in the foregoing preset conditions. ), the first device can send the first signaling.
  • the first device may send the first signaling through the MAC CE in the PSSCH, or send the first signaling through the second sideline control information.
  • the first signaling includes at least one of the following items: the sending resource pool of the first device; the priority prio_TX of the sideline data to be sent by the first device; the priority of the resource selection window in the resource selection to be performed by the first device The starting point and the end point; the delay requirement of the sideline data to be sent by the first device; the frequency domain resource size L_subCH used in the resource selection to be performed by the first device; the resource reservation period to be used in the resource selection to be performed by the first device P_rsvp_TX.
  • FIG. 13 is a schematic diagram 3 of the first signaling provided by this embodiment of the present application.
  • resource reselection is triggered to select to send the first signaling.
  • a signaling resource if the first device does not have enough resources to send the first signaling, resource reselection is triggered to select to send the first signaling.
  • the termination time of the resource selection window determined by the first device in the resource reselection process should be no later than the time slot n-T, and the resource selection window determined by the first device should be the same as the DRX activation time of the second device.
  • the priority used by the first device in the resource exclusion process ie, the priority of the first signaling
  • the priority of the data to be sent by the first device ie, prio_TX.
  • the first device randomly selects resources for sending the first signaling from the resource pool within the DRX activation time of the second device.
  • the first device when the first device triggers resource reselection, there are no sideline authorized resources, and the first device can select the resources for sending the first signaling within the DRX activation time of the second device by random selection. .
  • the first device when the first device satisfies the above preset conditions (1) in which the first device has triggered resource reselection and the above preset conditions (2), or when the first device satisfies the above preset conditions In (1), when the first device has triggered resource reselection and in (3) of the above preset conditions, or when the first device satisfies (3) in the above preset conditions, if the first device currently has a special resource pool ( Exceptional Resource) configuration, or any resource pool configuration that allows random resource selection, then the first device can select by random selection within the range of the special resource pool overlapping the DRX activation time of the second device for sending the first Signaling resources.
  • Exceptional Resource Exceptional Resource
  • the first device when the first device satisfies the above-mentioned preset conditions (1) in which the first device has triggered resource reselection and the above-mentioned preset conditions (2), or when the first device satisfies the above-mentioned preset conditions.
  • the preset conditions (1) when the first device has triggered resource reselection and in the above preset conditions (3), the first device needs to satisfy (4) in the above preset conditions before the first device can send the first signaling .
  • the first device may send the first signaling through the MAC CE in the PSSCH, or send the first signaling through the second sideline control information.
  • the first signaling includes at least one of the following items: the sending resource pool of the first device; the priority prio_TX of the sideline data to be sent by the first device; the priority of the resource selection window in the resource selection to be performed by the first device The starting point and the end point; the delay requirement of the sideline data to be sent by the first device; the frequency domain resource size L_subCH used in the resource selection to be performed by the first device; the resource reservation period to be used in the resource selection to be performed by the first device P_rsvp_TX.
  • the DRX activation time of the second device includes the on duration range in one or more DRX configurations semi-statically configured by the second device, and the sideline transmission to the second device that has been or is about to be sent by the first device.
  • the resources for sending the first signaling may be randomly selected from the resource pool through the MAC layer or the physical layer of the first device within the DRX activation time of the second device.
  • the MAC layer of the first device shall select the time range between [TM1, TM2] where the DRX activation time of the second device intersects with the DRX activation time of the second device. order resources.
  • the MAC layer of the first device should provide the physical layer with a special resource pool configuration, selection window upper limit reference value, frequency domain resource size required for sending the first signaling, etc.
  • the physical layer of the first device should select a resource for sending the first signaling within a time range where there is an intersection between [TP1, TP2] and the DRX activation time of the second device.
  • the value of TP2 is determined by the physical layer of the first device according to the upper limit reference of the selection window.
  • the upper limit reference value of the selection window is PDB
  • the value of X is defined by network configuration, pre-configuration or standard; or, selected by the first device within the time range of the intersection between [TP2_min, upper limit reference value of selection window] and the DRX activation time of the second device, TP2_min
  • the value of is defined by network configuration, pre-configuration or standard
  • the upper limit reference value of the selection window is the sending delay requirement of the first signaling indicated by the MAC layer of the first device.
  • the first device uses the resource after resource reselection as the resource for sending the first signaling. That is, the first device sends the first signaling through the resource after resource reselection.
  • the first device may use at least one PSSCH resource selected for sending the first transport block (TB) after resource reselection to send the first signaling.
  • FIG. 14 is a schematic diagram 4 of the first signaling provided by this embodiment of the present application. As shown in FIG. 14 , the first device performs resource reselection in time slot n, and M resources are selected for resource reselection. For example, M takes 2. The first device may use the first PSSCH resource among the M resources for resource reselection to send the first signaling.
  • the first device may send the first signaling through the MAC CE in the PSSCH, or send the first signaling through the second sideline control information.
  • the first signaling includes at least one of the following: a sending resource pool of the first device; M resources selected by the first device, where M is a positive integer greater than or equal to 1; the first device sends sideline data the remaining tolerable delay.
  • M is not greater than the number of resources currently selected by the first device, and the value of M may be independently determined by the first device or defined by a standard.
  • the first signaling may include all resources that have been selected by the first device but have not been indicated by the PSCCH.
  • the first device may send the first signaling by using at least one PSCCH resource selected for scheduling the transmission of the first TB after the resource reselection. As shown in FIG. 14 , the first device may send the first signaling by using the first PSCCH resource among the M resources for resource reselection.
  • the first device may send the first signaling through one or more reserved bits in PSCCH format 1-A.
  • the resource selected by the first device for sending data to the second device during resource reselection should be within the DRX activation time of the second device. That is, the resources within the DRX activation time of the second device after the first device performs resource reselection are used as resources for sending the first signaling.
  • the DRX activation time of the second device includes the on duration range in one or more DRX configurations semi-statically configured by the second device, and the first device uses the sideline transmission for the second device that has been or will be sent by the first device in the second device. The time range from activation to deactivation of the timer activated on the device side.
  • the first device if the first device is configured with DRX, and after triggering resource reselection, the first device can use the selected first resource to send the first signaling, if the first signaling indicates M resource, the first device should keep the DRX active state within the time range before the first resource among the M resources.
  • the first device if the first resource among the M resources indicated by the first signaling is located in the time slot r, the first device should be in the range of the time slot [r-T3-k, r-T3] Keeping the DRX active state, for example, the first device starts a timer drx_inactiveTimer in time slot r-T3-k, and lasts until r-T3.
  • the purpose of the first device maintaining the DRX active state within the time slot [r-T3-k, r-T3] is to receive the resource set fed back by the second device.
  • T3 represents the minimum time required for the first device to receive the resource set sent by the second device and to reselect one or more resources indicated in the resource set
  • the value of T3 can be configured by the base station, pre-configured or defined by standards
  • k is a specific time span
  • the value of k can be configured by the base station, pre-configured or defined by a standard.
  • Step 202 The first device sends the first signaling to the second device on the resource used for sending the first signaling.
  • Step 203 The second device sends the resource set to the first device according to the first signaling.
  • Step 204 The first device selects resources for sideline transmission according to the resource set.
  • Step 203 and step 204 in this embodiment are the same as step 102 and step 103 in the above-mentioned embodiment.
  • Step 203 and step 204 in this embodiment are the same as step 102 and step 103 in the above-mentioned embodiment.
  • the second device in this embodiment has a sideline DRX configuration.
  • the sideline DRX configuration of the second device includes the first DRX configuration on the sidelink between the second device and the first device, and other DRX configurations on the sidelink between the second device and other devices.
  • the first DRX configuration may be configured on the network side or determined through negotiation between the second device and the first device, and other DRX configurations may be determined through configuration on the network side or through negotiation between the second device and other devices.
  • the DRX activation time of the second device includes: the DRX activation time determined by the second device according to the first DRX configuration, and the DRX activation time determined by the second device according to one or more other DRX configurations.
  • the first device first determines the time-frequency resources for sending the first signaling to the second device, and sends the first signaling to the second device on the determined time-frequency resources, and the second device determines the time-frequency resources to send the first signaling to the second device.
  • a signaling feeds back a resource set to the first device, where the resource set is used to assist the first device in resource selection for sidelink transmission.
  • the time-frequency resource for sending the first signaling determined by the first device can ensure that the second device can successfully receive the first signaling, and can avoid the second device being in a dormant state when sending the first signaling, thereby improving the side effect. reliability of data transmission in line communication.
  • FIG. 15 is a schematic structural diagram 1 of a resource selection apparatus provided by an embodiment of the present application.
  • the resource selection apparatus 300 provided by this embodiment includes: a sending module 301, a receiving module 302, and a processing Module 303.
  • a sending module 301 configured to send a first signaling to a second device, where the first signaling is used to trigger the second device to send a resource set to the first device, where the resource set is used to assist the first device A device performs resource selection for sideline transmission;
  • the processing module 303 is configured to select resources for sideline transmission according to the resource set.
  • the sending time of the first signaling is within the discontinuous reception DRX activation time of the second device.
  • the resource set includes resources suitable or unsuitable for the first device to perform lateral transmission.
  • the processing module 303 before the sending module 301 sends the first signaling to the second device, the processing module 303 is further configured to:
  • a resource for sending the first signaling is determined.
  • the processing module 303 is specifically used for:
  • the resource in the sideline grant within the DRX activation time of the second device is used as the resource for sending the first signaling.
  • the processing module 303 is further configured to trigger resource reselection.
  • the processing module 303 is specifically used for:
  • a resource for sending the first signaling is randomly selected from a resource pool.
  • the processing module 303 is specifically used for:
  • the resource after resource reselection by the first device is used as the resource for sending the first signaling.
  • the processing module 303 is specifically used for:
  • the resource within the DRX activation time of the second device after the first device performs resource reselection is used as the resource for sending the first signaling.
  • the processing module 303 is specifically used for:
  • the at least one PSSCH resource for sending the first transport block TB after resource reselection by the first device is used as a resource for sending the first signaling.
  • the processing module 303 is specifically used for:
  • the at least one physical sideline control channel PSCCH resource used for scheduling and sending the first transport block TB after resource reselection by the first device is used as a resource for sending the first signaling.
  • the first signaling includes at least one of the following:
  • the frequency domain resource size L_subCH used in the resource selection to be performed by the first device is the frequency domain resource size L_subCH used in the resource selection to be performed by the first device
  • the first signaling includes at least one of the following:
  • M resources selected by the first device where M is a positive integer greater than or equal to 1;
  • the remaining tolerable delay for the first device to send sideline data is the remaining tolerable delay for the first device to send sideline data.
  • the sending module 301 is specifically configured to: when a preset condition is met, send the first signaling to the second device;
  • the meeting the preset condition includes meeting at least one of the following conditions:
  • the first device has triggered resource reselection or is about to trigger resource reselection;
  • the priority value of the sideline data to be sent by the first device is greater than the priority threshold
  • the first device determines that the number of times that the second device continuously fails to successfully receive the PSSCH sent by the first device is greater than a preset number of times;
  • the delay of the sideline data to be sent by the first device is greater than the delay threshold.
  • the first signaling is carried in a specific bit field of the PSCCH, or the medium access control layer control unit MAC CE in the PSSCH, or the second sideline control information, or the PC5 wireless Resource control in RRC.
  • the resource selection apparatus provided in the embodiment of the present application is configured to execute the technical solution executed by the first device in the foregoing method embodiment, and its implementation principle and technical effect are similar, and details are not described herein again.
  • FIG. 16 is a second schematic structural diagram of a resource selection apparatus provided by an embodiment of the present application.
  • the resource selection apparatus 400 provided by this embodiment includes: a receiving module 401 and a sending module 402 .
  • a receiving module 401 configured to receive a first signaling from a first device within the DRX activation time of discontinuous reception, where the first signaling is used to trigger the second device to send a resource set to the first device,
  • the resource set is used to assist the first device to select resources for sideline transmission;
  • a sending module 402 configured to send the resource set to the first device according to the first signaling.
  • the resource set includes resources suitable or unsuitable for the first device to perform lateral transmission.
  • FIG. 17 is a third schematic structural diagram of a resource selection apparatus provided by an embodiment of the present application.
  • the resource selection apparatus 400 further includes: a processing module 403 .
  • the processing module 403 is configured to determine the resource set according to the first signaling before the sending module 402 sends the resource set to the first device according to the first signaling. collection of resources.
  • the first signaling includes at least one of the following:
  • the frequency domain resource size L_subCH used in the resource selection to be performed by the first device is the frequency domain resource size L_subCH used in the resource selection to be performed by the first device
  • processing module 403 is specifically used for:
  • the first signaling includes at least one of the following:
  • M resources selected by the first device where M is a positive integer greater than or equal to 1;
  • the remaining tolerable delay for the first device to send sideline data is the remaining tolerable delay for the first device to send sideline data.
  • processing module 403 is specifically used for:
  • resources suitable or unsuitable for the first device to perform lateral transmission are determined from the M resources.
  • the sending module 402 is specifically configured to:
  • processing module 403 is specifically used for:
  • the sending module 402 is specifically configured to:
  • processing module 403 is specifically used for:
  • resources suitable or unsuitable for the first device to perform lateral transmission are determined from the M resources.
  • the resource selection apparatus provided in the embodiment of the present application is configured to execute the technical solution executed by the second device in the foregoing method embodiment, and its implementation principle and technical effect are similar, and details are not described herein again.
  • each module of any of the foregoing resource selection apparatuses is only a division of logical functions, and may be fully or partially integrated into one physical entity or physically separated in actual implementation.
  • these modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in hardware.
  • the processing module may be a separately established processing element, or may be integrated into a certain chip of the above-mentioned device to be implemented, in addition, it may also be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device Call and execute the function of the above determined module.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated together, and can also be implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capability.
  • each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital) signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA), etc.
  • ASIC application specific integrated circuits
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the processing element may be a general-purpose processor, such as a central processing unit (central processing unit, CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • FIG. 18 is a schematic diagram 1 of a hardware structure of an electronic device provided by an embodiment of the present application.
  • the electronic device 500 provided by this embodiment may include:
  • transceiver 501 processor 502, memory 503;
  • the memory 503 stores computer-executed instructions
  • the processor 502 executes the computer-executed instructions stored in the memory 503, so that the processor 502 executes the technical solution of the first device in any of the foregoing method embodiments.
  • the memory 503 may be independent or integrated with the processor 502 .
  • the electronic device 500 may further include: a bus 504 for connecting the memory 503 and the processor 502 .
  • the processor 502 may be a chip.
  • FIG. 19 is a second schematic diagram of the hardware structure of an electronic device provided by an embodiment of the present application.
  • the electronic device 600 provided by this embodiment may include:
  • the memory 603 stores computer-executed instructions
  • the processor 602 executes the computer-executed instructions stored in the memory 603, so that the processor 602 executes the technical solution of the second device in any of the foregoing method embodiments.
  • the memory 603 may be independent or integrated with the processor 602 .
  • the electronic device 600 may further include: a bus 604 for connecting the memory 603 and the processor 602 .
  • the processor 602 may be a chip.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement the first method in any of the foregoing method embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement the first method in any of the foregoing method embodiments. 2. Technical scheme of equipment.
  • the embodiments of the present application further provide a computer program, which, when the computer program is executed by a processor, is used to execute the technical solution of the first device in any of the foregoing method embodiments.
  • the embodiments of the present application further provide a computer program, which, when the computer program is executed by a processor, is used to execute the technical solution of the second device in any of the foregoing method embodiments.
  • Embodiments of the present application further provide a computer program product, including program instructions, where the program instructions are used to implement the technical solution of the first device in any of the foregoing method embodiments.
  • Embodiments of the present application further provide a computer program product, including program instructions, where the program instructions are used to implement the technical solution of the second device in any of the foregoing method embodiments.
  • Embodiments of the present application further provide a chip, including: a processing module and a communication interface, where the processing module can execute the technical solutions of the first device in the foregoing method embodiments.
  • the chip further includes a storage module (such as a memory), the storage module is used for storing instructions, the processing module is used for executing the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to perform any of the foregoing.
  • a storage module such as a memory
  • the storage module is used for storing instructions
  • the processing module is used for executing the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to perform any of the foregoing.
  • Embodiments of the present application further provide a chip, including: a processing module and a communication interface, where the processing module can execute the technical solutions of the second device in the foregoing method embodiments.
  • the chip further includes a storage module (such as a memory), the storage module is used for storing instructions, the processing module is used for executing the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to perform any of the foregoing.
  • a storage module such as a memory
  • the storage module is used for storing instructions
  • the processing module is used for executing the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to perform any of the foregoing.
  • At least two means two or more, and "a plurality” means two or more.
  • the character “/” generally indicates that the related objects before and after are an “or” relationship; in the formula, the character “/” indicates that the related objects are a “division” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple indivual.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种资源选取方法、装置、设备及存储介质,应用于侧行通信系统。该方法包括:通过第一设备向第二设备发送第一信令,第一信令用于触发第二设备向第一设备发送资源集合,资源集合用于辅助第一设备进行侧行传输资源选取。第二设备根据第一信令向第一设备反馈资源集合,第一设备根据资源集合选取侧行传输资源。上述过程可避免第二设备发送资源集合时第一设备处于休眠状态,提高侧行数据传输的可靠性。

Description

资源选取方法、装置、设备及存储介质 技术领域
本申请实施例涉及无线通信技术领域,尤其涉及一种资源选取方法、装置、设备及存储介质。
背景技术
作为面向第五代移动通信(5th generation mobile networks,5G)的关键技术,设备到设备(device-to-device,D2D)通信,包括车对车(vehicle to vehicle,V2V)通信或车到设备(vehicle to everything,V2X)通信。D2D通信引入了侧行链路(sidelink,SL)传输技术。与传统的蜂窝系统中通信数据通过基站接收或发送数据的方式不同,由于采用终端到终端直接通信的方式,因此具有更高的频谱效率以及更低的传输时延。
目前第三代合作伙伴计划(3rd generation partnership project,3GPP)在V2X技术中,定义了两种传输模式:一种是终端根据基站分配的资源在侧行链路上传输数据,基站可以为终端分配单次传输的资源,或者分配半静态传输的资源。另一种是终端根据现有的侦听流程确定候选资源集合,进而在候选资源集合中自主选取资源进行侧行传输。
上述第二种传输模式中存在隐藏终端、半双工限制等问题,为了解决该问题,目前提出了一种增强的资源选取方案,在采用上述第二种传输模式进行资源侦听的基础上,还可以通过一个终端(UE-A)为另一个终端(UE-B)发送一个资源集合,辅助UE-B进行资源选取。此外,上述第二种传输模式的侦听流程,需要终端持续的进行资源侦听,以判断哪些资源是可用的,终端能耗过大。为了达到节能目的,考虑在SL系统引入非连续接收DRX机制。
在引入SL DRX机制后,上述增强的资源选取方案可能存在终端之间发送数据或信令时,对方处于休眠状态的情况,影响整个系统的传输性能,也将导致终端无法结合其他终端的资源集合进行资源选取。因此,需要对上述增强的资源选取方案作进一步优化。
发明内容
本申请实施例提供一种资源选取方法、装置、设备及存储介质,可提升侧行通信的整体性能。
第一方面,本申请实施例提供一种资源选取方法,应用于第一设备,该方法包括:
向第二设备发送第一信令,所述第一信令用于触发所述第二设备向所述第一设备发送资源集合,所述资源集合用于辅助所述第一设备进行侧行传输的资源选取;
接收来自所述第二设备的所述资源集合;
根据所述资源集合选取进行侧行传输的资源。
第二方面,本申请实施例提供一种资源选取方法,应用于第二设备,该方法包括:
在所述第二设备的非连续接收DRX激活时间内,接收来自第一设备的第一信令,所述第一信令用于触发所述第二设备向所述第一设备发送资源集合,所述资源集合用于辅助所述第一设备进行侧行传输的资源选取;
根据所述第一信令向所述第一设备发送所述资源集合。
第三方面,本申请实施例提供一种资源选取装置,包括:
发送模块,用于向第二设备发送第一信令,所述第一信令用于触发所述第二设备向所述第一设备发送资源集合,所述资源集合用于辅助所述第一设备进行侧行传输的资源选取;
接收模块,用于接收来自所述第二设备的所述资源集合;
处理模块,用于根据所述资源集合选取进行侧行传输的资源。
第四方面,本申请实施例提供一种资源选取装置,包括:
接收模块,用于在非连续接收DRX激活时间内,接收来自第一设备的第一信令,所述第一信令用于触发所述第二设备向所述第一设备发送资源集合,所述资源集合用于辅助所述第一设备进行侧行传输的资源选取;
处理模块,用于根据所述第一信令向所述第一设备发送所述资源集合。
第五方面,本申请实施例提供一种电子设备,包括:
收发器、处理器、存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第一方面所述的 方法。
第六方面,本申请实施例提供一种电子设备,包括:
收发器、处理器、存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第二方面所述的方法。
第七方面,本申请实施例提供一种计算机存储介质,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如第一方面所述的方法。
第八方面,本申请实施例提供一种计算机存储介质,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如第二方面所述的方法。
第九方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如第一方面所述的方法。
第十方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如第一方面所述的方法。
本申请实施例提供一种资源选取方法、装置、设备及存储介质,应用于侧行通信系统。该方法包括:通过第一设备向第二设备发送第一信令,第一信令用于触发第二设备向第一设备发送资源集合,资源集合用于辅助第一设备进行侧行传输资源选取。第二设备根据第一信令向第一设备反馈资源集合,第一设备根据资源集合选取侧行传输资源。上述过程可避免第二设备发送资源集合时第一设备处于休眠状态,提高侧行数据传输的可靠性。
附图说明
图1为本申请实施例提供的应用场景示意图一;
图2为本申请实施例提供的应用场景示意图二;
图3为本申请实施例提供的应用场景示意图三;
图4为本申请实施例提供的选取资源的资源示意图;
图5为本申请实施例提供的侧行通信的一种帧结构的示意图;
图6为隐藏节点的场景示意图;
图7为暴露终端的场景示意图;
图8为非连续接收机制的示意图;
图9为本申请实施例提供的一种资源选取方法的交互示意图;
图10为本申请实施例提供的另一种资源选取方法的交互示意图;
图11为本申请实施例提供的第一信令的示意图一;
图12为本申请实施例提供的第一信令的示意图二;
图13为本申请实施例提供的第一信令的示意图三;
图14为本申请实施例提供的第一信令的示意图四;
图15为本申请实施例提供的资源选取装置的结构示意图一;
图16为本申请实施例提供的资源选取装置的结构示意图二;
图17为本申请实施例提供的资源选取装置的结构示意图三;
图18为本申请实施例提供的电子设备的硬件结构示意图一;
图19为本申请实施例提供的电子设备的硬件结构示意图二。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取; 也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
在介绍本申请实施例提供的技术方案之前,首先对本申请实施例可能的应用场景进行说明。
示例性的,图1为本申请实施例提供的一种应用场景示意图。图1所示的通信系统中包括一个网络设备101以及两个终端设备,分别为终端设备102和103,终端设备102和终端设备103均处于网络设备101的覆盖范围内。网络设备101分别与终端设备102、终端设备103通信连接,终端设备102与终端设备103通信连接。示例性的,终端设备102可以通过网络设备101向终端设备103发送通信消息,终端设备102还可以直接向终端设备103发送通信消息。其中,终端设备102与终端设备103之间直接通信的链路称为D2D链路,也可以称为临近服务(proximity service,ProSe)链路、侧行链路等。D2D链路上的传输资源可以由网络设备分配。
示例性的,图2为本申请实施例提供的另一种应用场景示意图。图2所示的通信系统同样包括一个网络设备101以两个终端设备,与图1不同的是,终端设备103处于网络设备101的覆盖范围内,终端设备104在网络设备101的覆盖范围之外。网络设备101与终端设备103通信连接,终端设备103与终端设备104通信连接。示例性的,终端设备103可以接收网络设备101发送的配置信息,根据配置信息进行侧行通信。由于终端设备104无法接收网络设备101发送的配置信息,终端设备104可以根据预配置(pre-configuration)信息以及终端设备103发送的侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)中携带的信息,进行侧行通信。
示例性的,图3为本申请实施例提供的又一种应用场景示意图。图3所示的终端设备104和终端设备105均在网络设备101的覆盖范围之外。终端设备104与终端设备105均可以根据预配置信息确定侧行配置,进行侧行通信。
关于侧行通信,在3GPP协议定义了两种传输模式:第一传输模式和第二传输模式。
第一传输模式:终端设备的传输资源是由基站分配的,终端设备根据基站分配的资源在侧行链路上进行数据传输。基站可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源。
示例性的,图1中,终端设备102位于网络设备101覆盖范围内,网络设备101为终端设备102分配侧行传输使用的传输资源。
第二传输模式:(1)终端设备如果具备侦听能力,可采用侦听和预留的方式传输数据或采用随机选取资源的方式传输数据。具体的,上述侦听和预留的方式是指终端设备可以在网络配置或预配置的资源池中,通过侦听的方式获取可用的资源集合,从可用的资源集合中随机选取一个资源进行数据传输。(2)终端设备如果不具备侦听能力,可直接在资源池中随机选取传输资源。
上述侦听是指终端设备接收其他终端设备发送的第一侧行控制信息,根据第一侧行控制信息的指示获知其他终端设备预留的资源,通过在资源选择时排除其他终端设备预留的资源,避免与其他终端设备发生资源碰撞。
示例性的,图1所示的终端设备102可以在网络配置的资源池中自主选取传输资源进行侧行传输。图3所示的终端设备104和105均位于网络设备101覆盖范围外,终端设备104和105可以在预配置的资源池中自主选取传输资源进行侧行传输。
基于上述描述可知,终端设备工作在第二传输模式时,可以根据侦听结果进行资源选取。具体的,当在时刻n有新的数据达到时,终端设备可根据时刻n之前的预设时段的侦听结果,在资源选择窗内进行资源选取。
示例性的,图4为本申请实施例提供的选取资源的资源示意图,如图4所示,在时刻n有业务数据到达时,终端设备在时刻n对应的资源选择窗[n+T 1,n+T 2]内随机选取资源,例如选取了4个资源,分别为资源w、x、y、z,T 1=1,T 2=100。其中,0≤T 1≤T proc,1,T proc,1是根据终端设备的处理能力确定,T 2min≤T 2≤剩余PDB(packet delay budget,数据延迟),T 2min根据配置参数确定,PDB根据待传输数据的时延确定,例如。
具体的,终端设备在资源选择窗[n+T 1,n+T 2]进行资源选取的过程包括:
步骤0、终端设备将资源选择窗内所有可用的资源作为一个集合A;
步骤1、如果终端设备在侦听窗内的某些时隙由于半双工问题导致没有侦听结果,则这些时隙在资源选择窗内对应的时隙上的资源被排除掉。
步骤2、如果终端设备在侦听窗内检测到物理侧行控制信道(Physical Sidelink Control Channel,PSCCH),测量该PSCCH的参考信号接收功率(Reference Signal Received Power,RSRP),或者,测量该PSCCH调度的物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)的RSRP, 如果测量的RSRP大于RSRP门限,且承载在PSCCH/PSSCH的SCI中预留的传输资源与终端设备待传输的侧行数据存在资源冲突,则终端设备在集合A中排除该资源。其中,PSSCH-RSRP门限的选取是由检测到的PSCCH中携带的优先级信息和终端设备待传输数据的优先级确定的。
步骤3、如果集合A中剩余的资源个数小于总资源个数的X%,终端设备会提升RSRP的门限3dB,并且重复上述步骤,直至集合A中剩余的资源个数大于总资源个数的X%。其中,X是高层配置参数,例如X=20,30或50,X的取值是由终端设备待传输数据的优先级确定。
步骤4、终端设备将确定的集合A,即候选资源集合(或称为可用资源集合),上报给高层,高层从物理层上报的候选资源集合中随机选取传输资源用于侧行传输。
本申请实施例涉及到的终端设备还可以称为终端,可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE),其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例涉及到的网络设备包括基站(base station,BS),可以是一种部署在无线接入网中能够和终端进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的基站可以是5G中的基站或LTE中的基站,其中,5G中的基站还可以称为发送接收点(transmission reception point,TRP)或gNB。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
本申请实施例的技术方案主要应用于基于新空口(New Radio,NR)技术的通信系统,例如5G通信系统、NR-V2X、NR-V2V通信系统等。也可以应用于其它的通信系统,只要该通信系统中存在实体之间的资源调度即可,例如可以应用在网络设备和终端设备之间的资源调度,或者两个终端设备之间的资源调度,其中一个终端设备承担接入网络的功能等。
需要说明的是,本申请实施例描述的系统架构以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的问题,同样适用。
NR-V2X通信中,X可以泛指任意具有无线接收和发送能力的设备,包括但不限于慢速移动的无线装置,快速移动的车载设备,具有无线发射接收能力的网络控制节点等。NR-V2X通信支持单播、组播、广播的传输方式。对于单播传输,发送终端发送数据,接收终端只有一个。对于组播传输,发送终端发送数据,接收终端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端。对于广播传输,发送终端发送数据,接收终端是发送终端周围的任意一个终端。
NR-V2X通信中,引入2阶侧行控制信息(Sidelink Control Information,SCI)。第一阶SCI(或称为第一侧行控制信息)承载在PSCCH中,用于指示PSSCH的传输资源、预留资源信息、调制与编码策略(Modulation and Coding Scheme,MCS)等级、优先级等信息。第二阶SCI(或称为第二侧行控制信息)承载在PSSCH中,用于指示发送端标识ID、接收端ID、混合自动重传HARQ ID、新数据指示NDI等用于数据解调的信息。终端设备利用PSSCH的解调参考信号(Demodulation Reference Signal,DMRS)进行解调,第二阶SCI从PSSCH的第一个DMRS符号开始映射,先频域再时域映射。示例性的,图5为本申请实施例提供的侧行通信的一种帧结构的示意图,如图5所示,PSCCH占据3个符号,例如图5中的符号1、2、3,PSSCH的DMRS占据符号4、11,第二阶SCI从符号4开始映射,在符号4上和DMRS频分复用,第二阶SCI映射到符号4、5、6,第二阶SCI占据的资源大小取决于第二阶SCI的比特数。
在上述第二传输模式中,终端设备在资源池中随机选取传输资源,或者根据侦听结果选取传输资源,这种资源选取方式可以在一定程度上避免终端设备之间的干扰,但是仍存在以下问题:
第一,隐藏节点(Hidden node)问题。图6为隐藏节点的场景示意图,如图6所示,发送终端TX B根据侦听选取资源,并利用该资源向接收终端RX A发送侧行数据,由于TX B和发送终端TX C相距较远,互相侦听不到对方的传输,因此,TX B和TX C可能选取相同的传输资源,则TX C发送的数据会对TX B发送的数据造成干扰。
第二,半双工(Half-duplex)问题。当终端通过侦听选取传输资源时,在侦听窗口内,如果该终端在某个时隙上发送侧行数据,由于半双工的限制,该终端在该时隙上不能接收其他终端发送的数据,也没有侦听结果。因此,终端在进行资源排除时,会把选择窗内与该时隙对应的资源全部排除掉,以避免和其他终端的干扰。由于半双工的限制会导致该终端排除了很多不需要排除的资源。
第三,暴露终端问题。图7为暴露终端的场景示意图,如图7所示,发送终端TX B和发送终端TX C均可以监听到对方,但TX B的目标接收终端RX A远离TX C,TX C的目标接收终端RX D远离TX B,这种情况下TX B和TX C即使使用相同的时频资源也不会影响各自目标接收终端的接收,但由于双方地理位置接近,侦听过程中检测到对方的信号接收功率可能会很高,从而双方会选择到正交的时频资源,最终可能导致资源利用效率的下降。
第四,功耗问题。在上述侦听过程中,需要终端持续的进行资源侦听以判断哪些资源是可用的,而终端持续进行资源侦听需要消耗很大的能量,这对于车载终端不是问题,因为车载终端有供电设备,但是对于手持终端,能耗过大会导致终端很快就没电了,因此,如何降低终端的能耗也是资源选取过程中需要考虑的问题。
由于上述的第二传输模式的资源选取过程中存在上述问题,提出了增强的资源选取方案。在第二传输模式采用的资源侦听的基础上,还可以通过一个终端(UE-A)为另一个终端(UE-B)发送一个资源集合,用于辅助UE-B进行资源选取。该资源集合可以是以下两种不同类型:
(1)参考资源集合:UE-A可以根据资源侦听结果、基站指示等获取可用资源集合,并且将该资源集合发送给UE-B。该资源集合可以是适合于UE-B使用的资源集合,当UE-B选择用于向目标接收终端发送侧行数据的资源时,可以优先从该可用资源集合中选取资源,从而可以提升目标接收终端接收该侧行数据的可靠性;或者,该资源集合也可以是不适合UE-B使用的资源集合,UE-B在选取资源的时避免选取该资源集合中的资源,从而避免发生隐藏终端,半双工限制等问题。有的情况下UE-A需要根据UE-B发送的信令指示确定在什么时间或什么时间范围内向UE-B发送资源集合,从而保证UE-A发送的资源集合能够用于UE-B的资源选择或资源重选。
(2)分配的传输资源:UE-A向UE-B发送的信息中包括直接分配给UE-B的传输资源,UE-B利用该传输资源向目标接收终端发送侧行数据,此时,相当于UE-A为UE-B分配了侧行传输资源。
相对于目前第二传输模式中终端自主选取传输资源的方式,在上述资源分配方式中,终端在进行资源选取过程中,需要结合其他终端发送的资源集合,从而可以提高传输可靠性。
在无线网络中,当有数据需要进行传输时,用户终端(User Equipment,UE)要一直监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),根据网络侧发送的指示消息对数据进行收发,这样导致UE的功耗和数据传输的时延都比较大。因此3GPP标准协议中引入非连续接收机制(Discontinuous Reception,DRX)节能策略。
图8为非连续接收机制的示意图,如图8所示,DRX的基本机制是为处于RRC_CONNECTED态的UE配置一个DRX周期(DRX cycle)。DRX cycle由“On Duration”和“Opportunity for DRX”组成:在“On Duration”时间内(又称为active time,激活期),UE监听并接收PDCCH;在“Opportunity for DRX”时间内(又称为inactive time,非激活期或休眠期),UE不接收PDCCH以减少功耗,相对于DRX on duration,Opportunity for DRX时间又可以称为DRX off duration。
在DRX操作中,终端根据网络配置的一些定时器参数来控制终端激活期和非激活期。例如,当UE在On Duration期间内接收到网络调度该UE的PDCCH时,该UE会激活计时器,如drx_inactiveTimer,在该计时器超时前,该终端处于激活状态。
在R17SL技术中讨论终端的节能降耗机制,为了达到节能目的,考虑在SL引入非连续接收(Discontinuous Reception,DRX)机制,即SL DRX。类似于上述Uu接口的DRX机制,终端在On duration范围内接收其他终端发送的数据,如果没有检测到数据,在DRX off duration范围内进入休眠状态,以节省功耗;如果检测到其他终端发给该终端的数据,终端会激活计时器,在计时器失效前,终端处于激活状态。
在引入SL DRX机制后,上述增强的资源选取方案可能存在如下问题:UE-A向UE-B发送资源集合,如果UE-B配置有DRX,UE-B可能处于休眠状态,则UE-B无法接收到UE-A的资源集合,那么UE-B将无法结合其他终端的资源集合选取传输资源。
针对上述问题,本申请实施例提出一种资源选取方法,考虑到接收资源集合的UE-B可能配置有DRX,UE-A将在UE-B的DRX激活时间内向其反馈资源集合,从而避免发送资源集合到UE-B时,UE-B处于休眠状态。上述方法是对增强的资源选取方案的优化,可提高侧行通信系统的整体性能。
下面通过具体实施例对本申请实施例提供的技术方案进行详细说明。需要说明的是,本申请实施例提供的技术方案可以包括以下内容中的部分或全部,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
示例性的,图9为本申请实施例提供的一种资源选取方法的交互示意图。如图9所示,第一设备和第二设备为侧行通信中的任意两个设备,本实施例的资源选取方法,包括如下几个步骤:
步骤101、第一设备向第二设备发送第一信令。
其中,第一信令用于触发第二设备向第一设备发送资源集合,资源集合用于辅助第一设备进行侧行传输的资源选取。资源集合为第二设备发送给第一设备的参考资源集合,第一设备可以在现有资源选取方案的基础上,结合该参考资源集合进行侧行传输资源选取。
本实施例中,第一设备向第二设备发送的第一信令可以承载在PSCCH的特定比特域,或者,PSSCH中的介质访问控制层控制单元MAC CE,或者,第二侧行控制信息,或者,PC5无线资源控制RRC中。
在本申请的一个实施例中,第一设备可以在满足预设条件时,向第二设备发送第一信令。具体的,第一设备满足预设条件包括满足以下至少一个条件:
(1)第一设备已经触发资源重选或者即将触发资源重选。
对于第一设备即将触发资源重选,包括以下几种情况:
情况1,第一设备的侧行进程(Sidelink Process)用于多个MAC层协议数据单元MAC PDU发送,且资源占用计数器SL_RESOURCE_RESELECTION_COUNTER的值等于1,且第一设备在[0,1]之间随机生成的随机数的值大于高层配置的参数sl-ProbResourceKeep。在这种情况下,第一设备将在下一次发送之后(即资源占用计数器归零后)进行资源重选。
情况2,第一设备的侧行进程用于多个MAC PDU发送,但在过去的1秒钟内,第一设备没有利用预留的资源用于任何初始发送或重传。在这种情况下,当第一设备的逻辑信道中存在侧行数据时,将进行资源重选。
情况3,第一设备的侧行进程用于多个MAC PDU发送,第一设备连续sl-ReselectAfter个预留资源上没有发送任何信息,其中sl-ReselectAfter为高层配置的参数。在这种情况下,当第一设备的逻辑信道中存在侧行数据时,将进行资源重选。
情况4,如果第一设备目前已有侧行授权(Sidelink Grant)资源,但即使第一设备采用目前高层允许的最大MCS资源也无法承载当前的RLC层协议数据单元RLC PDU,而且第一设备的MAC层不对RLC PDU做进一步的分割。在这种情况下,第一设备将进行资源重选。
(2)第一设备将要发送的侧行数据的优先级取值大于优先级门限。其中优先级门限由网络配置,预配置或标准定义。
(3)第一设备确定第二设备连续未能成功接收第一设备发送的PSSCH的次数大于预设次数。具体的,包括如下两种情况:
情况1,第二设备成功接收第一设备发送的PSSCH时,第二设备反馈确认ACK消息,第二设备成功接收第一设备发送的PSCCH但没有成功接收第一设备发送的PSSCH时,第二设备反馈不确认NACK消息,第一设备连续未能从第二设备接收到ACK反馈的次数大于某一特定门限,其中特定门限由网络配置,预配置或标准定义。
情况2,第二设备成功接收第一设备发送的PSCCH但没有成功接收第一设备发送的PSSCH时,第二设备反馈NACK消息,其它情况下第二设备不进行任何反馈。如果第一设备连续未能从第二设备接收到NACK反馈的次数大于某一特定门限,其中特定门限由网络配置,预配置或标准定义。
(4)第一设备将要发送的侧行数据的时延大于时延门限。
步骤102、第二设备根据第一信令向第一设备发送资源集合。
在本申请的一个实施例中,第二设备发送的资源集合具体包括适合或不适合第一设备进行侧行传输的资源。
在本申请的一个实施例中,第二设备在接收到第一信令后,响应于第一信令,向第一设备发送资源集合。
示例性的,第二设备根据第一信令,触发在第一时间单元向第一设备发送资源集合,资源集合中包括在第一时间单元之后的预设时段内,适合或不适合第一设备进行侧行传输的资源。其中,第一时间单元可以是无线帧,子帧,时隙,符号或半帧。
以第一时间单元为时隙举例,第二设备可通过如下几种实现方式发送资源集合:
一种可能的实现方式中,第二设备在时隙m发送资源集合,该资源集合中包括[m+T0,m+PDB] 范围内的A1个不适合第一设备使用的资源,其中A1≥1。其中T0表示第一设备接收到第二设备发送的资源集合,并对资源集合做出反应所需的最小时间,T0的值可以由基站配置,预配置或标准定义,PDB为第一设备待发送数据的剩余可容忍时延。
可选的,在一些实施例中,上述A1个资源中的B1个资源同时包含在承载第一信令的PSSCH指示的M个资源中,其中1≤B1≤A1,相应的,第一设备应重选B1个资源,即选择不同的资源替换原来的B1个资源,在资源重选过程中,第一设备应排除资源集合中的上述A1个资源。
一种可能的实现方式中,第二设备在时隙m发送资源集合,该资源集合中包括[m+T0,m+PDB]范围内的A2个适合第一设备使用的资源,其中A2≥1。
一种可能的实现方式中,第二设备在时隙m发送资源集合,该资源集合中包括[m+T0,m+PDB]范围内的A1个不适合第一设备使用的资源以及A2个适合第一设备使用的资源。
一种可能的实现方式中,第二设备在时隙m发送资源集合,该资源集合中包括[m+T0,m+Δ]范围内的A3个不适合第一设备使用的资源,其中A3≥1。其中T0表示第一设备接收到第二设备发送的资源集合,并对资源集合做出反应所需的最小时间,T0的值可以由基站配置,预配置或标准定义,Δ为特定时间跨度,Δ的值可以由基站配置,第一设备配置,预配置或标准定义。可选的,Δ的值可以与PSCCH中指示的数据优先级有关。
可选的,在一些实施例中,上述A3个资源中的B2个资源同时包含在承载第一信令的PSCCH指示的M个重传资源中,其中1≤B2≤A3,相应的,第一设备应重选B2个资源,即选择不同的资源替换原来的B2个资源,在资源重选过程中,第一设备应排除资源集合中的上述A3个资源。
在一种可能的实现方式中,第二设备在时隙m发送资源集合,该资源集合中包括[m+T0,m+Δ]范围内的A4个适合第一设备使用的资源,其中A4≥1。
在一种可能的实现方式中,第二设备在时隙m发送资源集合,该资源集合中包括[m+T0,m+Δ]范围内的A3个不适合第一设备使用的资源以及A4个适合第一设备使用的资源。
上述几种实现方式中,第二设备在时隙m发送资源集合,如果第一设备配置有DRX,则第一设备应将其DRX配置通知第二设备,而第二设备应保证时隙m位于第一设备的DRX激活时间内。其中第一设备的DRX激活时间包括第一设备半静态配置的一个或多个DRX配置中的on duration范围,以及第二设备通过已经或即将发送的针对第一设备的侧行传输在第一设备侧激活的计时器从激活到失效的时间范围。应理解,第一设备应预先将第一设备目前已有的DRX配置发送给第二设备。
在本申请的一个实施例中,第一信令包括以下至少一项:第一设备的发送资源池;第一设备将要发送的侧行数据的优先级prio_TX;第一设备即将执行的资源选择中资源选择窗的起点和终点;第一设备将要发送的侧行数据的时延要求;第一设备即将执行的资源选择中采用的频域资源大小L_subCH;第一设备即将执行的资源选择中采用的资源预留周期P_rsvp_TX。第二设备在接收到第一信令后,根据第一信令指示的内容确定资源集合,并向第一设备发送资源集合。
示例性的,第二设备根据第一信令中指示的资源选择窗,从资源选择窗中确定适合或不适合第一设备进行侧行传输的资源。
在本申请的一个实施例中,第一信令包括以下至少一项:第一设备的发送资源池;第一设备已选取的M个资源,M为大于或等于1的正整数;第一设备发送侧行数据的剩余可容忍时延。第二设备在接收到第一信令后,根据第一信令指示的内容确定资源集合,并向第一设备发送资源集合。
示例性的,若第一信令指示了第一设备已选取的M个资源,该M个资源可以是第一设备通过PSSCH指示的M个资源,也可以是第一设备通过PSCCH指示的M个资源。第二设备根据第一信令指示的内容确定资源集合,包括:第二设备根据第一信令中指示的M个资源,从M个资源中确定适合或不适合第一设备进行侧行传输的资源。
示例性的,第二设备根据第一信令确定资源集合,包括:在第一时间单元之后的预设时段内,确定适合或不适合第一设备进行侧行传输的资源;以及,根据第一信令中指示的M个资源,从M个资源中确定适合或不适合第一设备进行侧行传输的资源。也就是说,若第二设备在第一时间单元向第一设备发送资源集合,该资源集合包括两部分,第一部分用于指示第一信令指示的M个资源中适合或不适合第一设备进行侧行传输的资源,第二部分用于指示在第一时间单元之后的预设时段内适合或不适合第一设备进行侧行传输的资源。以第一时间单元为时隙m,则第一时间单元之后的预设时段可以是上述实施例中的[m+T0,m+PDB]或者[m+T0,m+△],具体可参见上文,此处不再赘述。
基于上述对第二设备根据第一信令确定资源集合的各个实施例,下面对第二设备向第一设备 发送的资源集合进行如下总结。
上述资源集合中的资源可以从以下范围内选取:
(1)第二设备发送资源集合之后的预设时段内的时频资源。
(2)第一设备已经通过信令预留的资源,例如第一设备通过PSCCH预留的用于同一个传输块TB重传的资源,或用于其它新的TB新传或重传的资源。
(3)第一设备预选的但尚未通过信令预留的资源。
需要说明的是,由于一个TB的重传次数可能多达32次,而且如果第一设备支持周期性资源预留,第一设备最多可以预留150个周期的资源,而第一设备在一个信令中只能最多预留两个用于同一个TB重传的资源和下一个周期用于新TB传输的资源,因此存在第一设备预先的但尚未通过信令预留的资源。
(4)第一设备曾经使用的资源,例如,在过去一段时间第一设备使用过的资源。
步骤103、第一设备根据资源集合选取进行侧行传输的资源。
在本申请的一个实施例中,若资源集合中包括不适合第一设备进行侧行传输的资源,第一设备可以在资源选取过程中排除该资源。
在本申请的一个实施例中,若资源集合中包括适合第一设备进行侧行传输的资源,第一设备可以在资源选取过程中优先选取该资源。
在本申请的一个实施例中,若资源集合中包括不适合第一设备进行侧行传输的A个资源,且A个资源中有B个资源同时包含在第一信令指示的M个资源中,其中1≤B≤A,B≤M,第一设备可以重选B个资源,即选择不同的资源替换原来的B个资源,在资源重选过程中,第一设备应排除上述A个资源。
本实施例提供的资源选取方法,通过第一设备向第二设备发送第一信令,第一信令用于触发第二设备向第一设备发送资源集合,第二设备根据第一信令向第一设备反馈资源集合,资源集合用于辅助第一设备进行侧行传输的资源选取。上述过程中,第二设备是基于第一设备的触发,向第一设备发送资源集合,可以避免发送资源集合时第一设备处于休眠状态,从而提高侧行通信数据传输的可靠性。
上述实施例中,第一设备配置有DRX,通过第一设备向第二设备发送触发信令,通知第二设备反馈资源集合,可以解决第二设备向第一设备发送资源集合时,第一设备可能处于休眠状态而无法成功接收资源集合的问题。
在上述实施例的基础上,如果第二设备也配置有DRX,存在一种情况,第一设备向第二设备发送触发信令,第二设备处于休眠状态,那么第二设备是无法接收到该触发信令的。因此,第一设备通过什么样的资源向第二设备发送触发信令是一个亟需解决的问题。
针对上述问题,本申请实施例提供一种资源选取方法,考虑到第二设备配置有DRX,第二设备将只在DRX激活时间内接收触发信令,为了提高触发信令传输的成功率,第一设备需要先确定发送触发信令的时频资源,在确定的时频资源上,向第二设备发送触发信令,确保第二设备能够成功接收该信令,并根据该信令向第一设备反馈资源集合,以供第一设备进行侧行传输资源选取,最终可以提高整个侧行系统的传输性能。
下面通过具体实施例对本申请实施例提供的技术方案进行详细说明。示例性的,图10为本申请实施例提供的另一种资源选取方法的交互示意图。如图10所示,本实施例的资源选取方法,包括如下几个步骤:
步骤201、第一设备确定用于发送第一信令的资源。
其中,第一信令用于触发第二设备向第一设备发送资源集合,资源集合用于辅助第一设备进行侧行传输的资源选取。
本步骤的第一个实施例中,第一设备预先获取第二设备的侧行DRX配置,第一设备根据第二设备的侧行DRX配置,确定第二设备的DRX激活时间,从而确定发送第一信令的时间。即第一信令的发送时间在第二设备的DRX激活时间内,从而确保第二设备能够成功接收到第一信令。
本步骤的第二个实施例中,第一设备将位于第二设备的DRX激活时间内的侧行授权中的资源,作为用于发送第一信令的资源。即第一设备可以通过已有的位于第二设备的DRX激活时间内的侧行授权中的资源,发送第一信令。如果没有符合要求的资源,或者没有足够符合要求的资源,第一设备需要进行资源重选,在资源重选的资源上发送第一信令。
在本实施例中,第一设备能够确定在将来的某一时间单元,例如时隙n,进行资源重选,在这种情况下,如果第一设备拥有侧行授权,并且第一设备侧行授权中的一个或多个资源位于第二设备的DRX激活时间内,则第一设备可以通过已有的侧行授权中位于第二设备的DRX激活时间 内的一个或多个资源发送第一信令。如果第一设备已有的侧行授权中没有位于第二设备的DRX激活时间内的资源,或者已有的侧行授权中的位于第二设备的DRX激活时间内的资源不足,则第一设备应触发资源重选,在这种情况下,第一设备进行资源重选时所确定的资源选择窗应位于第二设备的DRX激活时间内。
在一个具体的示例中,当第一设备至少满足上述预设条件中(1)的情况2时,第一设备能够确定在下一个MAC PDU传输完成之后,将在时隙n进行资源重选,在这种情况下,第一设备可以在下一个MAC PDU传输过程中,利用已有的侧行授权中的资源或者利用重选的资源发送第一信令。具体的,如果第一设备已有的用于下一个MAC PDU发送资源中与第二设备的DRX激活时间重叠,且与时隙n之间的距离不小于T的资源个数不小于M,则第一设备从上述资源中选择M个资源,在M个资源上向第二设备发送第一信令。如果第一设备已有的用于下一个MAC PDU发送的资源中与第二设备的DRX激活时间重叠,且与时隙n之间的距离不小于T的资源个数小于M,则第一设备将触发资源重选。其中M表示第一信令的发送次数,M的值可以由基站配置,预配置或者标准定义。T表示第二设备对第一信令进行解码,根据第一信令确定资源集合,并将资源集合发送到第一设备所需的最小时间,T的值可以由基站配置,预配置或者标准定义,T的值可以与第一设备在第一信令中指示的数据优先级(即prio_TX)有关。
可选的,在一些实施例中,当第一设备至少满足上述预设条件中(1)的情况2时,还需要满足上述预设条件中(2)、(3)、(4)的至少一项,第一设备才能够发送第一信令。
在上述示例中,第二设备的DRX激活时间包括第二设备半静态配置的一个或多个DRX配置中的on duration范围,以及第一设备通过已经或即将发送的针对第二设备的侧行传输在第二设备侧激活的计时器从激活到失效的时间范围。
示例性的,图11为本申请实施例提供的第一信令的示意图一,该示例中第一信令的发送次数M取2,在周期n+1中第一设备已有侧行授权中有两个资源,该两个资源均位于第二设备的DRX激活时间内,且这两个资源与时隙n之间的距离不小于T,则第一设备利用该两个资源发送针对第二设备的第一信令。
示例性的,图12为本申请实施例提供的第一信令的示意图二,该示例中第一信令的发送次数M同样取2,在周期n+1中第一设备已有侧行授权中有一个资源,该资源位于第二设备的DRX激活时间内,第一设备可以利用该资源发送一次第一信令。由于第一信令的发送次数为2次,第一设备还需要确定发送第二次第一信令的资源,即为第二次第一信令的发送额外选择资源。额外选择的用于发送第二次第一信令的资源应和第二设备的DRX激活时间重叠,且该资源的终止时间应不晚于时隙n-T。
在上述示例中,第一设备可以通过承载MAC PDU的PSSCH中的MAC CE发送第一信令,或者通过调度MAC PDU的第二侧行控制信息发送第一信令。
在上述示例中,第一信令包括以下至少一项:第一设备的发送资源池;第一设备将要发送的侧行数据的优先级prio_TX;第一设备即将执行的资源选择中资源选择窗的起点和终点;第一设备将要发送的侧行数据的时延要求;第一设备即将执行的资源选择中采用的频域资源大小L_subCH;第一设备即将执行的资源选择中采用的资源预留周期P_rsvp_TX。
在一个具体的示例中,当第一设备至少满足上述预设条件中(1)的情况2或情况3时,第一设备的逻辑信道中存在侧行数据而需要在时隙n进行资源重选时,如果第一设备已有侧行授权中与第二设备的DRX激活时间重叠,且与时隙n之间的距离不小于T的资源个数不小于M,则第一设备从上述资源中选择M个资源,向第二设备发送第一信令。如果第一设备已有侧行授权中与第二设备的DRX激活时间重叠,且与时隙n之间的距离不小于T的资源个数小于M,则第一设备将触发资源重选。其中M和T的定义和确定方式与上文相同。
可选的,在一些实施例中,当第一设备至少满足上述预设条件中(1)的情况2或情况3时,还需要满足上述预设条件中(2)、(3)、(4)的至少一项,第一设备才能够发送第一信令。
在上述示例中,第一设备可以通过PSSCH中的MAC CE发送第一信令,或者通过第二侧行控制信息发送第一信令。
在上述示例中,第一信令包括以下至少一项:第一设备的发送资源池;第一设备将要发送的侧行数据的优先级prio_TX;第一设备即将执行的资源选择中资源选择窗的起点和终点;第一设备将要发送的侧行数据的时延要求;第一设备即将执行的资源选择中采用的频域资源大小L_subCH;第一设备即将执行的资源选择中采用的资源预留周期P_rsvp_TX。
示例性的,图13为本申请实施例提供的第一信令的示意图三,如图13所示,如果第一设备因为没有足够的资源发送第一信令而触发资源重选用于选择发送第一信令的资源,则第一设备在 资源重选过程中确定的资源选择窗的终止时间应不晚于时隙n-T,且第一设备确定的资源选择窗应和第二设备的DRX激活时间重叠。可选的,第一设备进行资源排除过程中采用的优先级(即第一信令的优先级)和第一设备将要发送数据的优先级(即prio_TX)相同。
本步骤的第三个实施例中,第一设备在第二设备的DRX激活时间内,从资源池中随机选取用于发送第一信令的资源。
在本实施例中,第一设备触发资源重选时,不存在任何侧行授权资源,第一设备可通过随机选择的方式,从第二设备的DRX激活时间内选择发送第一信令的资源。
在一个具体的示例中,当第一设备满足上述预设条件中(1)中第一设备已经触发资源重选以及上述预设条件中(2)时,或者当第一设备满足上述预设条件中(1)中第一设备已经触发资源重选以及上述预设条件中(3)时,或者当第一设备满足上述预设条件中(3)时,如果第一设备当前拥有特殊资源池(Exceptional Resource)配置,或者任意一个允许随机资源选择的资源池配置,则第一设备可以在特殊资源池内与第二设备的DRX激活时间重叠的范围内,通过随机选择的方式选择用于发送第一信令的资源。
可选的,在一些实施例中,当第一设备满足上述预设条件中(1)中第一设备已经触发资源重选以及上述预设条件中(2)时,或者当第一设备满足上述预设条件中(1)中第一设备已经触发资源重选以及上述预设条件中(3)时,还需要满足上述预设条件中的(4),第一设备才能够发送第一信令。
在上述示例中,第一设备可以通过PSSCH中的MAC CE发送第一信令,或者通过第二侧行控制信息发送第一信令。
在上述示例中,第一信令包括以下至少一项:第一设备的发送资源池;第一设备将要发送的侧行数据的优先级prio_TX;第一设备即将执行的资源选择中资源选择窗的起点和终点;第一设备将要发送的侧行数据的时延要求;第一设备即将执行的资源选择中采用的频域资源大小L_subCH;第一设备即将执行的资源选择中采用的资源预留周期P_rsvp_TX。
在上述示例中,第二设备的DRX激活时间包括第二设备半静态配置的一个或多个DRX配置中的on duration范围,以及第一设备通过已经或即将发送的针对第二设备的侧行传输在第二设备侧激活的计时器从激活到失效的时间范围。
在本实施例中,可通过第一设备的MAC层或者物理层,在第二设备的DRX激活时间内,从资源池中随机选取用于发送第一信令的资源。
如果随机选择由第一设备的MAC层执行,则第一设备的MAC层应在[TM1,TM2]之间与第二设备的DRX激活时间存在交集的时间范围内,选择用于发送第一信令的资源。其中,TM1的值可以由第一设备自主选择,或者TM1<=n+Tproc,其中n为第一设备触发资源选择的时间,Tproc的值由网络配置,预配置或标准定义,TM1表示第一设备从资源选择触发到发送第一信令所需的最大处理时间。TM2的值可以由第一设备自主选择,或者TM2<=X%×PDB,其中PDB为第一设备将要发送数据的剩余可容忍时延,X的值由网络配置,预配置或标准定义。
如果随机选择由第一设备的物理层执行,则第一设备的MAC层应向物理层提供特殊资源池配置,选择窗上限参考值,发送第一信令所需的频域资源大小等。第一设备的物理层应在[TP1,TP2]之间与第二设备的DRX激活时间存在交集的时间范围内,选择用于发送第一信令的资源。其中,TP1的值可以由第一设备自主选择,或者TP1<=n+Tproc,其中n为第一设备触发资源选择的时间,Tproc的值由网络配置,预配置或标准定义,TP1表示第一设备从资源选择触发到发送第一信令所需的最大处理时间。TP2的值由第一设备物理层根据选择窗上限参考确定,例如,如果选择窗上限参考值为PDB,则TP2<=X%×PDB,其中PDB为第一设备将要发送数据的剩余可容忍时延,X的值由网络配置,预配置或标准定义;或者,由第一设备在[TP2_min,选择窗上限参考值]之间与第二设备的DRX激活时间存在交集的时间范围内选择,TP2_min的值由网络配置,预配置或标准定义,选择窗上限参考值为第一设备的MAC层指示的第一信令的发送时延要求。
本步骤的第四个实施例中,第一设备将进行资源重选后的资源,作为用于发送第一信令的资源。即第一设备通过资源重选后的资源,发送第一信令。
在本实施例中,第一设备进行资源重选后,用选取的前N个资源发送第一信令,其中N>=1,N的具体值由网络配置,预配置或标准定义。
在一个具体的示例中,第一设备在触发资源重选后,可以用选取的用于资源重选后发送第一个传输块(TB)的至少一个PSSCH资源发送第一信令。示例性的,图14为本申请实施例提供的第一信令的示意图四,如图14所示,第一设备在时隙n进行资源重选,资源重选了M个资源,例如M取2,第一设备可以用资源重选的M个资源中的第一个PSSCH资源发送第一信令。
在上述示例中,第一设备可以通过PSSCH中的MAC CE发送第一信令,或者通过第二侧行控制信息发送第一信令。
在上述示例中,第一信令包括以下至少一项:第一设备的发送资源池;第一设备已选取的M个资源,M为大于或等于1的正整数;第一设备发送侧行数据的剩余可容忍时延。其中M的值不大于第一设备目前已选取的资源的个数,M的值可以由第一设备自主决定,或者由标准定义。比如,第一信令中可以包含第一设备已选取的但尚未通过PSCCH指示的所有资源。
在一个具体的示例中,第一设备在触发资源重选后,可以用选取的用于调度资源重选后第一个TB发送的至少一个PSCCH资源发送第一信令。如图14所示,第一设备可以用资源重选的M个资源中的第一个PSCCH资源发送第一信令。
在上述示例中,第一设备可以通过PSCCH格式1-A中的一个或多个预留比特发送第一信令。
可选的,在一些实施例中,如果第二设备配置了DRX,则第一设备进行资源重选时选择的用于向第二设备发送数据的资源应位于第二设备的DRX激活时间内。即将第一设备进行资源重选后的,位于第二设备的DRX激活时间内的资源,作为用于发送第一信令的资源。其中,第二设备的DRX激活时间包括第二设备半静态配置的一个或多个DRX配置中的on duration范围,以及第一设备通过已经或即将发送的针对第二设备的侧行传输在第二设备侧激活的计时器从激活到失效的时间范围。
在一个具体的示例中,如果第一设备配置了DRX,且第一设备在触发资源重选后,可以用选取的第一个资源发送第一信令,如果第一信令中指示了M个资源,则第一设备应在M个资源中的第一个资源之前的时间范围内保持DRX激活状态。示例性的,如果第一设备在第一信令指示的M个资源中的第一个资源位于时隙r,则第一设备应在时隙[r-T3-k,r-T3]范围内保持DRX激活状态,例如在时隙r-T3-k第一设备启动一个计时器drx_inactiveTimer,并持续到r-T3。第一设备在时隙[r-T3-k,r-T3]范围内保持DRX激活状态的目的是为了接收第二设备反馈的资源集合。其中T3表示第一设备接收到第二设备发送的资源集合并对资源集合中指示的一个或多个资源进行重选所需的最小时间,T3的值可以由基站配置,预配置或标准定义,k为特定时间跨度,k的值可以由基站配置,预配置或标准定义。
步骤202、第一设备在用于发送第一信令的资源上,向第二设备发送第一信令。
步骤203、第二设备根据第一信令向第一设备发送资源集合。
步骤204、第一设备根据资源集合选取进行侧行传输的资源。
本实施例的步骤203和步骤204,同上述实施例的步骤102和步骤103,具体可参见上述实施例,此处不再赘述。
本实施例中的第二设备存在侧行DRX配置。第二设备的侧行DRX配置包括第二设备和第一设备之间的侧行链路上的第一DRX配置,以及第二设备和其他设备之间的侧行链路上的其它DRX配置。第一DRX配置可以由网络侧配置或第二设备与第一设备协商确定,其它DRX配置可以由网络侧配置或第二设备与其他设备协商确定。第二设备的DRX激活时间包括:第二设备根据第一DRX配置确定的DRX激活时间,以及第二设备根据一个或多个其它DRX配置确定的DRX激活时间。
本实施例提供的资源选取方法,第一设备首先确定向第二设备发送第一信令的时频资源,在确定的时频资源上向第二设备发送第一信令,第二设备根据第一信令向第一设备反馈资源集合,资源集合用于辅助第一设备进行侧行传输的资源选取。上述过程中,第一设备确定的发送第一信令的时频资源,可以确保第二设备能够成功接收第一信令,可以避免发送第一信令时第二设备处于休眠状态,从而提高侧行通信数据传输的可靠性。
示例性的,图15为本申请实施例提供的一种资源选取装置的结构示意图一,如图15所示,本实施例提供的资源选取装置300,包括:发送模块301,接收模块302以及处理模块303。
发送模块301,用于向第二设备发送第一信令,所述第一信令用于触发所述第二设备向所述第一设备发送资源集合,所述资源集合用于辅助所述第一设备进行侧行传输的资源选取;
接收模块302,用于接收来自所述第二设备的所述资源集合;
处理模块303,用于根据所述资源集合选取进行侧行传输的资源。
在本申请的一个实施例中,所述第一信令的发送时间在所述第二设备的非连续接收DRX激活时间内。
可选的,所述资源集合包括适合或不适合所述第一设备进行侧行传输的资源。
在本申请的一个实施例中,所述发送模块301向第二设备发送第一信令之前,所述处理模块303,还用于:
确定用于发送所述第一信令的资源。
在本申请的一个实施例中,所述处理模块303,具体用于:
将位于所述第二设备的DRX激活时间内的侧行授权中的资源,作为用于发送所述第一信令的资源。
在本申请的一个实施例中,若位于所述第二设备的DRX激活时间内的侧行授权中的资源不足,所述处理模块303,还用于触发资源重选。
在本申请的一个实施例中,所述处理模块303,具体用于:
在所述第二设备的DRX激活时间内,从资源池中随机选取用于发送所述第一信令的资源。
在本申请的一个实施例中,所述处理模块303,具体用于:
将所述第一设备进行资源重选后的资源,作为用于发送所述第一信令的资源。
在本申请的一个实施例中,所述处理模块303,具体用于:
将所述第一设备进行资源重选后的,位于所述第二设备的DRX激活时间内的资源,作为用于发送所述第一信令的资源。
在本申请的一个实施例中,所述处理模块303,具体用于:
将所述第一设备进行资源重选后的发送第一个传输块TB的至少一个物理侧行共享信道PSSCH资源,作为用于发送所述第一信令的资源。
在本申请的一个实施例中,所述处理模块303,具体用于:
将所述第一设备进行资源重选后的用于调度发送第一个传输块TB发送的至少一个物理侧行控制信道PSCCH资源,作为用于发送所述第一信令的资源。
可选的,所述第一信令包括以下至少一项:
所述第一设备的发送资源池;
所述第一设备将要发送的侧行数据的优先级prio_TX;
所述第一设备即将执行的资源选择中资源选择窗的起点和终点;
所述第一设备将要发送的侧行数据的时延要求;
所述第一设备即将执行的资源选择中采用的频域资源大小L_subCH;
所述第一设备即将执行的资源选择中采用的资源预留周期P_rsvp_TX。
可选的,所述第一信令包括以下至少一项:
所述第一设备的发送资源池;
所述第一设备已选取的M个资源,所述M为大于或等于1的正整数;
所述第一设备发送侧行数据的剩余可容忍时延。
在本申请的一个实施例中,所述发送模块301,具体用于:在满足预设条件时,向所述第二设备发送第一信令;
所述满足预设条件包括满足以下至少一个条件:
所述第一设备已经触发资源重选或者即将触发资源重选;
所述第一设备将要发送的侧行数据的优先级取值大于优先级门限;
所述第一设备确定所述第二设备连续未能成功接收所述第一设备发送的PSSCH的次数大于预设次数;
所述第一设备将要发送的侧行数据的时延大于时延门限。
在本申请的一个实施例中,所述第一信令承载在PSCCH的特定比特域,或者,PSSCH中的介质访问控制层控制单元MAC CE,或者,第二侧行控制信息,或者,PC5无线资源控制RRC中。
本申请实施例提供的资源选取装置,用于执行前述方法实施例中的第一设备执行的技术方案,其实现原理和技术效果类似,在此不再赘述。
示例性的,图16为本申请实施例提供的资源选取装置的结构示意图二,如图16所示,本实施例提供的资源选取装置400,包括:接收模块401以及发送模块402。
接收模块401,用于在非连续接收DRX激活时间内,接收来自第一设备的第一信令,所述第一信令用于触发所述第二设备向所述第一设备发送资源集合,所述资源集合用于辅助所述第一设备进行侧行传输的资源选取;
发送模块402,用于根据所述第一信令向所述第一设备发送所述资源集合。
可选的,所述资源集合包括适合或不适合所述第一设备进行侧行传输的资源。
图17为本申请实施例提供的资源选取装置的结构示意图三,在图16所示装置的基础上,如图17所示,资源选取装置400还包括:处理模块403。
在本申请的一个实施例中,所述处理模块403,用于在所述发送模块402根据第一信令向所 述第一设备发送所述资源集合之前,根据所述第一信令确定所述资源集合。
可选的,所述第一信令包括以下至少一项:
所述第一设备的发送资源池;
所述第一设备将要发送的侧行数据的优先级prio_TX;
所述第一设备即将执行的资源选择中资源选择窗的起点和终点;
所述第一设备将要发送的侧行数据的时延要求;
所述第一设备即将执行的资源选择中采用的频域资源大小L_subCH;
所述第一设备即将执行的资源选择中采用的资源预留周期P_rsvp_TX。
在本申请的一个实施例中,所述处理模块403,具体用于:
根据所述第一信令中指示的所述资源选择窗,确定所述资源选择窗内适合或不适合所述第一设备进行侧行传输的资源。
可选的,所述第一信令包括以下至少一项:
所述第一设备的发送资源池;
所述第一设备已选取的M个资源,所述M为大于或等于1的正整数;
所述第一设备发送侧行数据的剩余可容忍时延。
在本申请的一个实施例中,所述处理模块403,具体用于:
根据所述第一信令中指示的所述M个资源,从所述M个资源中确定适合或不适合所述第一设备进行侧行传输的资源。
在本申请的一个实施例中,所述发送模块402,具体用于:
在第一时间单元向所述第一设备发送所述资源集合;
相应的,所述处理模块403,具体用于:
在所述第一时间单元之后的预设时段内,确定适合或不适合所述第一设备进行侧行传输的资源。
在本申请的一个实施例中,所述发送模块402,具体用于:
在第一时间单元向所述第一设备发送所述资源集合;
相应的,所述处理模块403,具体用于:
在所述第一时间单元之后的预设时段内,确定适合或不适合所述第一设备进行侧行传输的资源;以及
根据所述第一信令中指示的M个资源,从所述M个资源中确定适合或不适合所述第一设备进行侧行传输的资源。
本申请实施例提供的资源选取装置,用于执行前述方法实施例中的第二设备执行的技术方案,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解上述任一资源选取装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介 质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
图18为本申请实施例提供的电子设备的硬件结构示意图一,如图18所示,本实施例提供的电子设备500,可以包括:
收发器501、处理器502、存储器503;
所述存储器503存储计算机执行指令;
所述处理器502执行所述存储器503存储的计算机执行指令,使得所述处理器502执行如前述任一方法实施例中第一设备的技术方案。
可选的,存储器503既可以是独立的,也可以跟处理器502集成在一起。当所述存储器503是独立于处理器502之外的器件时,所述电子设备500还可以包括:总线504,用于连接所述存储器503和处理器502。
可选的,处理器502可以为芯片。
图19为本申请实施例提供的电子设备的硬件结构示意图二,如图19所示,本实施例提供的电子设备600,可以包括:
收发器601、处理器602、存储器603;
所述存储器603存储计算机执行指令;
所述处理器602执行所述存储器603存储的计算机执行指令,使得所述处理器602执行如前述任一方法实施例中第二设备的技术方案。
可选的,存储器603既可以是独立的,也可以跟处理器602集成在一起。当所述存储器603是独立于处理器602之外的器件时,所述电子设备600还可以包括:总线604,用于连接所述存储器603和处理器602。
可选的,处理器602可以为芯片。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中第一设备的技术方案。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中第二设备的技术方案。
本申请实施例还提供一种计算机程序,当该计算机程序被处理器执行时,用于执行前述任一方法实施例中第一设备的技术方案。
本申请实施例还提供一种计算机程序,当该计算机程序被处理器执行时,用于执行前述任一方法实施例中第二设备的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中第一设备的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中第二设备的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中第一设备的技术方案。
可选的,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行前述任一方法实施例中第一设备的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中第二设备的技术方案。
可选的,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行前述任一方法实施例中第二设备的技术方案。
本申请中,“至少两个”是指两个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A 和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中,a,b,c可以是单个,也可以是多个。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (54)

  1. 一种资源选取方法,其特征在于,应用于第一设备,所述方法包括:
    向第二设备发送第一信令,所述第一信令用于触发所述第二设备向所述第一设备发送资源集合,所述资源集合用于辅助所述第一设备进行侧行传输的资源选取;
    接收来自所述第二设备的所述资源集合;
    根据所述资源集合选取进行侧行传输的资源。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信令的发送时间在所述第二设备的非连续接收DRX激活时间内。
  3. 根据权利要求1或2所述的方法,其特征在于,所述资源集合包括适合或不适合所述第一设备进行侧行传输的资源。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述向第二设备发送第一信令之前,所述方法还包括:
    确定用于发送所述第一信令的资源。
  5. 根据权利要求4所述的方法,其特征在于,所述确定用于发送所述第一信令的资源,包括:
    将位于所述第二设备的DRX激活时间内的侧行授权中的资源,作为用于发送所述第一信令的资源。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    若位于所述第二设备的DRX激活时间内的侧行授权中的资源不足,触发资源重选。
  7. 根据权利要求4所述的方法,其特征在于,所述确定用于发送所述第一信令的资源,包括:
    在所述第二设备的DRX激活时间内,从资源池中随机选取用于发送所述第一信令的资源。
  8. 根据权利要求4所述的方法,其特征在于,所述确定用于发送所述第一信令的资源,包括:
    将所述第一设备进行资源重选后的资源,作为用于发送所述第一信令的资源。
  9. 根据权利要求8所述的方法,其特征在于,将所述第一设备进行资源重选后的资源,作为用于发送所述第一信令的资源,包括:
    将所述第一设备进行资源重选后的,位于所述第二设备的DRX激活时间内的资源,作为用于发送所述第一信令的资源。
  10. 根据权利要求8所述的方法,其特征在于,将所述第一设备进行资源重选后的资源,作为用于发送所述第一信令的资源,包括:
    将所述第一设备进行资源重选后的发送第一个传输块TB的至少一个物理侧行共享信道PSSCH资源,作为用于发送所述第一信令的资源。
  11. 根据权利要求8所述的方法,其特征在于,将所述第一设备进行资源重选后的资源,作为用于发送所述第一信令的资源,包括:
    将所述第一设备进行资源重选后的用于调度第一个传输块TB发送的至少一个物理侧行控制信道PSCCH资源,作为用于发送所述第一信令的资源。
  12. 根据权利要求5或7所述的方法,其特征在于,所述第一信令包括以下至少一项:
    所述第一设备的发送资源池;
    所述第一设备将要发送的侧行数据的优先级prio_TX;
    所述第一设备即将执行的资源选择中资源选择窗的起点和终点;
    所述第一设备将要发送的侧行数据的时延要求;
    所述第一设备即将执行的资源选择中采用的频域资源大小L_subCH;
    所述第一设备即将执行的资源选择中采用的资源预留周期P_rsvp_TX。
  13. 根据权利要求8所述的方法,其特征在于,所述第一信令包括以下至少一项:
    所述第一设备的发送资源池;
    所述第一设备已选取的M个资源,所述M为大于或等于1的正整数;
    所述第一设备发送侧行数据的剩余可容忍时延。
  14. 根据权利要求1-13中任一项所述的方法,其特征在于,所述向第二设备发送第一信令,包括:
    在满足预设条件时,向所述第二设备发送第一信令;
    所述满足预设条件包括满足以下至少一个条件:
    所述第一设备已经触发资源重选或者即将触发资源重选;
    所述第一设备将要发送的侧行数据的优先级取值大于优先级门限;
    所述第一设备确定所述第二设备连续未能成功接收所述第一设备发送的PSSCH的次数大于 预设次数;
    所述第一设备将要发送的侧行数据的时延大于时延门限。
  15. 根据权利要求1-14中任一项所述的方法,其特征在于,所述第一信令承载在PSCCH的特定比特域,或者,PSSCH中的介质访问控制层控制单元MAC CE,或者,第二侧行控制信息,或者,PC5无线资源控制RRC中。
  16. 一种资源选取方法,其特征在于,应用于第二设备,所述方法包括:
    在所述第二设备的非连续接收DRX激活时间内,接收来自第一设备的第一信令,所述第一信令用于触发所述第二设备向所述第一设备发送资源集合,所述资源集合用于辅助所述第一设备进行侧行传输的资源选取;
    根据所述第一信令向所述第一设备发送所述资源集合。
  17. 根据权利要求16所述的方法,其特征在于,所述资源集合包括适合或不适合所述第一设备进行侧行传输的资源。
  18. 根据权利要求16或17所述的方法,其特征在于,所述根据第一信令向所述第一设备发送所述资源集合之前,所述方法还包括:
    根据所述第一信令确定所述资源集合。
  19. 根据权利要求18所述的方法,其特征在于,所述第一信令包括以下至少一项:
    所述第一设备的发送资源池;
    所述第一设备将要发送的侧行数据的优先级prio_TX;
    所述第一设备即将执行的资源选择中资源选择窗的起点和终点;
    所述第一设备将要发送的侧行数据的时延要求;
    所述第一设备即将执行的资源选择中采用的频域资源大小L_subCH;
    所述第一设备即将执行的资源选择中采用的资源预留周期P_rsvp_TX。
  20. 根据权利要求19所述的方法,其特征在于,所述根据所述第一信令确定所述资源集合,包括:
    根据所述第一信令中指示的所述资源选择窗,确定所述资源选择窗内适合或不适合所述第一设备进行侧行传输的资源。
  21. 根据权利要求18所述的方法,其特征在于,所述第一信令包括以下至少一项:
    所述第一设备的发送资源池;
    所述第一设备已选取的M个资源,所述M为大于或等于1的正整数;
    所述第一设备发送侧行数据的剩余可容忍时延。
  22. 根据权利要求21所述的方法,其特征在于,所述根据所述第一信令确定所述资源集合,包括:
    根据所述第一信令中指示的所述M个资源,从所述M个资源中确定适合或不适合所述第一设备进行侧行传输的资源。
  23. 根据权利要求18所述的方法,其特征在于,所述向所述第一设备发送所述资源集合,包括:
    在第一时间单元向所述第一设备发送所述资源集合;
    所述根据所述第一信令确定所述资源集合,包括:
    在所述第一时间单元之后的预设时段内,确定适合或不适合所述第一设备进行侧行传输的资源。
  24. 根据权利要求18所述的方法,其特征在于,所述向所述第一设备发送所述资源集合,包括:
    在第一时间单元向所述第一设备发送所述资源集合;
    所述根据所述第一信令确定所述资源集合,包括:
    在所述第一时间单元之后的预设时段内,确定适合或不适合所述第一设备进行侧行传输的资源;以及
    根据所述第一信令中指示的M个资源,从所述M个资源中确定适合或不适合所述第一设备进行侧行传输的资源。
  25. 一种资源选取装置,其特征在于,包括:
    发送模块,用于向第二设备发送第一信令,所述第一信令用于触发所述第二设备向所述第一设备发送资源集合,所述资源集合用于辅助所述第一设备进行侧行传输的资源选取;
    接收模块,用于接收来自所述第二设备的所述资源集合;
    处理模块,用于根据所述资源集合选取进行侧行传输的资源。
  26. 根据权利要求25所述的装置,其特征在于,所述第一信令的发送时间在所述第二设备的非连续接收DRX激活时间内。
  27. 根据权利要求25或26所述的装置,其特征在于,所述资源集合包括适合或不适合所述第一设备进行侧行传输的资源。
  28. 根据权利要求25-27中任一项所述的装置,其特征在于,所述发送模块向第二设备发送第一信令之前,所述处理模块,还用于:
    确定用于发送所述第一信令的资源。
  29. 根据权利要求28所述的装置,其特征在于,所述处理模块,具体用于:
    将位于所述第二设备的DRX激活时间内的侧行授权中的资源,作为用于发送所述第一信令的资源。
  30. 根据权利要求29所述的装置,其特征在于,
    若位于所述第二设备的DRX激活时间内的侧行授权中的资源不足,所述处理模块,还用于触发资源重选。
  31. 根据权利要求28所述的装置,其特征在于,所述处理模块,具体用于:
    在所述第二设备的DRX激活时间内,从资源池中随机选取用于发送所述第一信令的资源。
  32. 根据权利要求28所述的装置,其特征在于,所述处理模块,具体用于:
    将所述第一设备进行资源重选后的资源,作为用于发送所述第一信令的资源。
  33. 根据权利要求32所述的装置,其特征在于,所述处理模块,具体用于:
    将所述第一设备进行资源重选后的,位于所述第二设备的DRX激活时间内的资源,作为用于发送所述第一信令的资源。
  34. 根据权利要求32所述的装置,其特征在于,所述处理模块,具体用于:
    将所述第一设备进行资源重选后的发送第一个传输块TB的至少一个物理侧行共享信道PSSCH资源,作为用于发送所述第一信令的资源。
  35. 根据权利要求32所述的装置,其特征在于,所述处理模块,具体用于:
    将所述第一设备进行资源重选后的用于调度发送第一个传输块TB发送的至少一个物理侧行控制信道PSCCH资源,作为用于发送所述第一信令的资源。
  36. 根据权利要求29或31所述的装置,其特征在于,所述第一信令包括以下至少一项:
    所述第一设备的发送资源池;
    所述第一设备将要发送的侧行数据的优先级prio_TX;
    所述第一设备即将执行的资源选择中资源选择窗的起点和终点;
    所述第一设备将要发送的侧行数据的时延要求;
    所述第一设备即将执行的资源选择中采用的频域资源大小L_subCH;
    所述第一设备即将执行的资源选择中采用的资源预留周期P_rsvp_TX。
  37. 根据权利要求32所述的装置,其特征在于,所述第一信令包括以下至少一项:
    所述第一设备的发送资源池;
    所述第一设备已选取的M个资源,所述M为大于或等于1的正整数;
    所述第一设备发送侧行数据的剩余可容忍时延。
  38. 根据权利要求25-37中任一项所述的装置,其特征在于,所述发送模块,具体用于:在满足预设条件时,向所述第二设备发送第一信令;
    所述满足预设条件包括满足以下至少一个条件:
    所述第一设备已经触发资源重选或者即将触发资源重选;
    所述第一设备将要发送的侧行数据的优先级取值大于优先级门限;
    所述第一设备确定所述第二设备连续未能成功接收所述第一设备发送的PSSCH的次数大于预设次数;
    所述第一设备将要发送的侧行数据的时延大于时延门限。
  39. 根据权利要求25-38中任一项所述的装置,其特征在于,所述第一信令承载在PSCCH的特定比特域,或者,PSSCH中的介质访问控制层控制单元MAC CE,或者,第二侧行控制信息,或者,PC5无线资源控制RRC中。
  40. 一种资源选取装置,其特征在于,包括:
    接收模块,用于在非连续接收DRX激活时间内,接收来自第一设备的第一信令,所述第一信令用于触发所述第二设备向所述第一设备发送资源集合,所述资源集合用于辅助所述第一设备进 行侧行传输的资源选取;
    处理模块,用于根据所述第一信令向所述第一设备发送所述资源集合。
  41. 根据权利要求40所述的装置,其特征在于,所述资源集合包括适合或不适合所述第一设备进行侧行传输的资源。
  42. 根据权利要求40或41所述的装置,其特征在于,所述装置还包括:处理模块;
    所述处理模块,用于在所述发送模块根据第一信令向所述第一设备发送所述资源集合之前,根据所述第一信令确定所述资源集合。
  43. 根据权利要求42所述的装置,其特征在于,所述第一信令包括以下至少一项:
    所述第一设备的发送资源池;
    所述第一设备将要发送的侧行数据的优先级prio_TX;
    所述第一设备即将执行的资源选择中资源选择窗的起点和终点;
    所述第一设备将要发送的侧行数据的时延要求;
    所述第一设备即将执行的资源选择中采用的频域资源大小L_subCH;
    所述第一设备即将执行的资源选择中采用的资源预留周期P_rsvp_TX。
  44. 根据权利要求43所述的装置,其特征在于,所述处理模块,具体用于:
    根据所述第一信令中指示的所述资源选择窗,确定所述资源选择窗内适合或不适合所述第一设备进行侧行传输的资源。
  45. 根据权利要求42所述的装置,其特征在于,所述第一信令包括以下至少一项:
    所述第一设备的发送资源池;
    所述第一设备已选取的M个资源,所述M为大于或等于1的正整数;
    所述第一设备发送侧行数据的剩余可容忍时延。
  46. 根据权利要求45所述的装置,其特征在于,所述处理模块,具体用于:
    根据所述第一信令中指示的所述M个资源,从所述M个资源中确定适合或不适合所述第一设备进行侧行传输的资源。
  47. 根据权利要求42所述的装置,其特征在于,所述发送模块,具体用于:
    在第一时间单元向所述第一设备发送所述资源集合;
    所述处理模块,具体用于:
    在所述第一时间单元之后的预设时段内,确定适合或不适合所述第一设备进行侧行传输的资源。
  48. 根据权利要求42所述的装置,其特征在于,所述发送模块,具体用于:
    在第一时间单元向所述第一设备发送所述资源集合;
    所述处理模块,具体用于:
    在所述第一时间单元之后的预设时段内,确定适合或不适合所述第一设备进行侧行传输的资源;以及
    根据所述第一信令中指示的M个资源,从所述M个资源中确定适合或不适合所述第一设备进行侧行传输的资源。
  49. 一种电子设备,其特征在于,包括:
    收发器、处理器、存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1-15中任一项所述的方法。
  50. 一种电子设备,其特征在于,包括:
    收发器、处理器、存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求16-24中任一项所述的方法。
  51. 一种计算机存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-15中任一项所述的方法。
  52. 一种计算机存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求16-24中任一项所述的方法。
  53. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-15中任一项所述的方法。
  54. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求16-24中任一项所述的方法。
PCT/CN2021/081789 2021-03-19 2021-03-19 资源选取方法、装置、设备及存储介质 WO2022193282A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/081789 WO2022193282A1 (zh) 2021-03-19 2021-03-19 资源选取方法、装置、设备及存储介质
EP21930874.9A EP4307730A4 (en) 2021-03-19 2021-03-19 RESOURCE SELECTION METHOD AND APPARATUS, DEVICE, AND STORAGE MEDIUM
CN202180095310.4A CN116941257A (zh) 2021-03-19 2021-03-19 资源选取方法、装置、设备及存储介质
US18/466,698 US20240008001A1 (en) 2021-03-19 2023-09-13 Method for resource selection and first device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/081789 WO2022193282A1 (zh) 2021-03-19 2021-03-19 资源选取方法、装置、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/466,698 Continuation US20240008001A1 (en) 2021-03-19 2023-09-13 Method for resource selection and first device

Publications (1)

Publication Number Publication Date
WO2022193282A1 true WO2022193282A1 (zh) 2022-09-22

Family

ID=83321371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081789 WO2022193282A1 (zh) 2021-03-19 2021-03-19 资源选取方法、装置、设备及存储介质

Country Status (4)

Country Link
US (1) US20240008001A1 (zh)
EP (1) EP4307730A4 (zh)
CN (1) CN116941257A (zh)
WO (1) WO2022193282A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104519577A (zh) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 通信资源管理方法、设备及系统
US20160302250A1 (en) * 2015-04-09 2016-10-13 Sharp Laboratories Of America, Inc. Method and apparatus for implementing partial coverage and out-of-coverage sidelink discovery resource pools for wireless communications
CN111246483A (zh) * 2020-01-21 2020-06-05 北京展讯高科通信技术有限公司 辅链路通信的资源选择方法及装置
CN111901783A (zh) * 2020-04-02 2020-11-06 中兴通讯股份有限公司 资源获取、资源调度方法、终端、服务节点及介质
CN112512102A (zh) * 2020-07-14 2021-03-16 中兴通讯股份有限公司 节能、参数配置方法、装置、终端、基站及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104519577A (zh) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 通信资源管理方法、设备及系统
US20160302250A1 (en) * 2015-04-09 2016-10-13 Sharp Laboratories Of America, Inc. Method and apparatus for implementing partial coverage and out-of-coverage sidelink discovery resource pools for wireless communications
CN111246483A (zh) * 2020-01-21 2020-06-05 北京展讯高科通信技术有限公司 辅链路通信的资源选择方法及装置
CN111901783A (zh) * 2020-04-02 2020-11-06 中兴通讯股份有限公司 资源获取、资源调度方法、终端、服务节点及介质
CN112512102A (zh) * 2020-07-14 2021-03-16 中兴通讯股份有限公司 节能、参数配置方法、装置、终端、基站及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPLE: "Discussion on Inter-UE Coordination for Mode 2 Resource Allocation", 3GPP DRAFT; R1-2008447, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946667 *
See also references of EP4307730A4 *

Also Published As

Publication number Publication date
CN116941257A (zh) 2023-10-24
EP4307730A1 (en) 2024-01-17
EP4307730A4 (en) 2024-04-17
US20240008001A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
WO2019148489A1 (zh) 一种资源预留方法及装置、计算机存储介质
WO2017193766A1 (zh) 一种下行数据传输的方法及设备
WO2021244501A1 (zh) 通信方法及装置
WO2019174011A1 (zh) 一种数据传输方法及装置、计算机存储介质
WO2024026978A1 (zh) 通信方法及终端设备
WO2024036671A1 (zh) 侧行通信的方法及装置
WO2024066145A1 (zh) 侧行通信的方法及装置
WO2019051654A1 (zh) 一种逻辑信道的资源确定方法及装置、计算机存储介质
WO2021016979A1 (zh) 无线通信方法和终端设备
WO2023030088A1 (zh) 旁链路通信方法及设备
WO2022193282A1 (zh) 资源选取方法、装置、设备及存储介质
CN117480830A (zh) 通信系统中通过侧链路ue间协作的资源分配的方法和装置
WO2022233048A1 (zh) 资源选择方法、装置、设备及存储介质
WO2022141104A1 (zh) 资源选取方法、装置、设备及存储介质
WO2022222109A1 (zh) 资源选取方法、装置、设备及存储介质
WO2022165843A1 (zh) 侧行传输方法和终端
WO2023000181A1 (zh) 资源碰撞的指示方法、装置、设备及存储介质
WO2022188104A1 (zh) 信道检测方法、设备及存储介质
WO2023071407A1 (zh) 一种通信方法及设备
WO2022120610A1 (zh) 无线通信方法和终端
WO2023207506A1 (zh) 共享资源分配方法及装置
WO2023000233A1 (zh) 资源重选方法、装置、设备及存储介质
WO2023197292A1 (zh) 无线通信的方法及装置
WO2023010257A1 (zh) 侧行通信方法、装置、设备及存储介质
WO2023165468A9 (zh) 一种资源确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930874

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180095310.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021930874

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021930874

Country of ref document: EP

Effective date: 20231013