WO2024099173A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024099173A1
WO2024099173A1 PCT/CN2023/128323 CN2023128323W WO2024099173A1 WO 2024099173 A1 WO2024099173 A1 WO 2024099173A1 CN 2023128323 W CN2023128323 W CN 2023128323W WO 2024099173 A1 WO2024099173 A1 WO 2024099173A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
unit
frequency domain
type
units
Prior art date
Application number
PCT/CN2023/128323
Other languages
English (en)
French (fr)
Inventor
王碧钗
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024099173A1 publication Critical patent/WO2024099173A1/zh

Links

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and device.
  • SL sidelink
  • existing standards support allocating resources used for uplink (UL) transmission in the cellular network to SL communication to avoid interference with the downlink reception of nearby user equipment (UE). Therefore, in the time division duplex (TDD) mode of the cellular network, the UL time slot can be used for SL communication.
  • TDD time division duplex
  • SBFD subband full duplex
  • the uplink subband of the SBFD time slot can also be considered for SL communication to reduce the SL transmission delay.
  • the size of the frequency domain resources of all time slots in the resource pool needs to be the same. Therefore, if the resource pool contains both the uplink subbands of the UL time slot and the SBFD time slot, the frequency domain resource size of the resource pool cannot exceed the uplink subband size of the SBFD time slot, which results in the frequency domain resources of the UL time slot cannot be fully utilized, resulting in resource waste.
  • the embodiments of the present application provide a communication method and device for improving resource utilization.
  • a first communication method which can be executed by a terminal device, or by other devices including terminal device functions, or by a chip system (or, chip) or other functional modules, the chip system or functional module can realize the functions of the terminal device, the chip system or functional module is, for example, set in the terminal device.
  • the method includes: determining configuration information, the configuration information is used to configure a first resource pool, the first resource pool is used for the terminal device to transmit information with other terminal devices, the first resource pool includes M1 first-class time domain units and M2 second-class time domain units, M1 and M2 are both positive integers, each of the M1 first-class time domain units corresponds to N1 first-class frequency domain units in the first resource pool, each of the M2 second-class time domain units corresponds to N2 second-class frequency domain units in the first resource pool, N1 and N2 are both positive integers, wherein the bandwidth of each first-class frequency domain unit is the same as the bandwidth of each second-class frequency domain unit, and N2 is greater than N1.
  • the first type of time domain unit included in the first resource pool may correspond to N1 first type of frequency domain units
  • the second type of time domain unit may correspond to N2 second type of frequency domain units.
  • N1 and N2 may be different. That is to say, in the time domain units included in the first resource pool, the first resource pool may include different numbers of frequency domain units on different types of time domain units.
  • the first resource pool may include all available frequency domain resources on the UL time slot and all available frequency domain resources on the SBFD time slot, thereby reducing resource waste and improving resource utilization.
  • the configuration information includes one or more of the following: information on the index set of the M1 first-type time domain units, information on the index set of the M2 second-type time domain units, frequency domain position information of the N1 first-type frequency domain units, frequency domain position information of the N2 second-type frequency domain units, the value of N1, the value of N2; or, the number of PRBs included in each of the first-type frequency domain units or each of the second-type frequency domain units.
  • the configuration information can configure the first resource pool by configuring one or more of the above parameters.
  • the configuration information can also include other parameters, which are not limited.
  • determining the configuration information includes: receiving the configuration information from the network device; or determining the pre-configured configuration information.
  • the configuration information may be sent by the network device, and the network device may send the configuration information by broadcast or unicast.
  • the configuration information may be pre-configured in the terminal device, for example, pre-configured when the terminal device leaves the factory.
  • the configuration information may also be configured by a higher layer of the terminal device (for example, an RRC layer or other protocol layer), etc.
  • the method further includes: sending or receiving side control information in the first time domain unit in the first resource pool, the side control information including a frequency resource indication value, the frequency resource indication value being used to indicate the frequency domain unit occupied by the reserved resources within K time domain units, wherein the number of bits occupied by the frequency resource indication value is determined according to a first parameter, and K is a positive integer.
  • the side control information may indicate the reserved resources for the first data, and the reserved resources are transmission resources reserved for the first data.
  • a terminal device receiving the side control information may perform interference avoidance according to the reserved resources.
  • an optional way for the side control information to indicate the reserved resources is that the side control information may indicate the position information of the frequency domain unit occupied by the reserved resources within the K time domain units, or indicate the frequency domain unit occupied by the reserved resources within the K time domain units.
  • the first parameter is N2.
  • the frequency resource indication value can indicate the frequency domain unit reserved for the first data in the resource reservation period.
  • the value of the first parameter can be determined according to N2, thereby determining the number of bits of the frequency resource indication value, and the implementation method is relatively simple.
  • the first parameter is N1; or, if the first time domain unit belongs to the M2 second-type time domain units, the first parameter is N2. Compared with the first parameter always being N2, in this optional implementation. If the side control information is sent in the first-type time domain unit, the value of the first parameter is N1, thereby reducing the number of bits occupied by the frequency resource indication value and saving transmission overhead.
  • the first time domain unit belongs to the M1 first-type time domain units
  • the K time domain units include a second time domain unit
  • the second time domain unit belongs to the M2 second-type time domain units
  • the side control information is also used to indicate information of a first frequency domain unit set occupied by the reserved resources in the second time domain unit
  • the N2 second-type frequency domain units are divided into at least two frequency domain unit sets, wherein each frequency domain unit set includes one or more second-type frequency domain units, and the first frequency domain unit set is a frequency domain unit set in the at least two frequency domain unit sets. If the first time domain unit is a first-type time domain unit, the number of bits of the frequency resource indication value is determined according to N1.
  • the frequency resource indication value cannot indicate the additional frequency domain units occupied by the reserved resources on the second-type time domain units (i.e., the additional frequency domain units relative to the frequency domain units corresponding to the first-type time domain units).
  • the side control information can also indicate the set of frequency domain units occupied by the reserved resources in the second time domain unit, so that the receiving end of the side control information can determine the frequency domain units occupied by the reserved resources within K time domain units based on the frequency resource indication value and the set of frequency domain units occupied by the reserved resources in the second time domain unit.
  • the method further includes: sending or receiving side control information in a first time domain unit in the first resource pool, the side control information including K first indication information, K being a positive integer, and the K first indication information being used to indicate the frequency domain unit occupied by the reserved resources in the K time domain units.
  • each of the K first indication information is a bitmap.
  • the side control information can indicate the frequency domain unit occupied by the reserved resources in the K time domain units by means of a frequency resource indication value.
  • the side control information can also indicate the frequency domain unit occupied by the reserved resources in the K time domain units by means of the first indication information.
  • the K first indication information exist independently and do not interfere with each other, and respectively indicate the frequency domain unit occupied by the reserved resources in one time domain unit, so that the side control information can also indicate the frequency domain unit occupied by the reserved resources in the K time domain units.
  • each of the K first indication information can be implemented through a bitmap, and the number of bits of a bitmap can be the same as the number of frequency domain units corresponding to the time domain unit indicated by the bitmap, so that one bit of the bitmap can indicate a frequency domain unit corresponding to the time domain unit.
  • the method of indicating through the first indication information is more flexible.
  • the method further includes: sending or receiving first data on a first frequency domain unit of a third time domain unit, wherein the fourth time domain unit includes H1 feedback resource unit sets for sending or receiving feedback information, the H1 feedback resource unit sets correspond one-to-one to the frequency domain units in the L1 time domain units, the third time domain unit belongs to the L1 time domain units, the first frequency domain unit in the third time domain unit corresponds to the first feedback resource unit set in the H1 feedback resource unit set, and H1 and L1 are both positive integers; determining a first feedback resource unit from the first feedback resource unit set, the first feedback resource unit is used to receive or send feedback information of the first data.
  • feedback information can be sent through PSFCH, and the feedback information is, for example, HARQ feedback, such as ACK or NACK, to indicate that at least one TB corresponding to the first data is received successfully or failed.
  • HARQ feedback such as ACK or NACK
  • both the sending end and the receiving end of the first data can determine the feedback resource unit used to transmit the feedback information, thereby being able to send or receive the feedback information.
  • the L1 time domain units do not include any of the M2 second-type time domain units; or, the L1 time domain units include at least one of the M2 second-type time domain units.
  • H1 when the L1 time domain unit does not include any of the M2 second-type time domain units is less than H1 when the L1 time domain unit includes at least one of the M2 second-type time domain units. If the L1 time domain units include the second-type time domain units, it indicates that the feedback resource unit on the fourth time domain unit is associated with more frequency domain units, and thus the feedback resource unit on the fourth time domain unit can be divided into more feedback resource unit sets to transmit feedback information corresponding to more frequency domain units.
  • determining a first feedback resource unit from the first feedback resource unit set includes: determining one or more of an index of the first feedback resource unit, a sub-frequency domain unit index corresponding to the first feedback resource unit, a cyclic shift of a sequence corresponding to the first feedback resource unit, or an orthogonal cover code OCC corresponding to the first feedback resource unit according to an identifier related to the first data, wherein the first feedback resource unit includes at least two sub-time domain units in the time domain. If the fourth time domain unit is associated with the second type of time domain unit, it has more associated frequency domain units, that is, the feedback resource unit on the fourth time domain unit will be used to transmit more feedback information.
  • the time domain resources included in the feedback resource unit can be expanded, for example, the number of time domain symbols included in a feedback resource unit can be greater than 1, which is equivalent to making the feedback resource unit include more resources in the time domain so that it can be used for the transmission of more feedback information.
  • the optional range of feedback information can be expanded through features of multiple dimensions, so that the feedback information resources are richer.
  • the OCC is a Walsh code sequence or a discrete Fourier transform sequence.
  • the L1 time domain units include one or more second-type time domain units among the M2 second-type time domain units, and the fourth time domain unit belongs to the M1 first-type time domain units. If the fourth time domain unit is a second-type time domain unit, the frequency domain resources corresponding to the fourth time domain unit are relatively abundant and can be used to transmit more feedback information. Therefore, in this case, even if the fourth time domain unit is associated with the second-type time domain unit, it is not necessary to expand the time domain resources of the feedback resource unit. Therefore, if the fourth time domain unit is associated with the second-type time domain unit, and the fourth time domain unit is a first-type time domain unit, the time domain resources of the feedback resource unit can be expanded.
  • a second communication method which can be executed by a terminal device, or by other devices including terminal device functions, or by a chip system (or, chip) or other functional modules, which can realize the functions of the terminal device, and the chip system or functional module is, for example, arranged in the terminal device.
  • the method includes: determining configuration information, the configuration information is used to configure a first resource pool, the first resource pool is used for the terminal device to transmit information with other terminal devices, the first resource pool includes M1 first-class time domain units and M2 second-class time domain units, M1 and M2 are both positive integers, each of the M1 first-class time domain units corresponds to N first-class frequency domain units, each of the M2 second-class time domain units corresponds to N second-class frequency domain units, N is a positive integer, and the bandwidth of each first-class frequency domain unit is less than the bandwidth of each second-class frequency domain unit.
  • the first resource pool may include frequency domain units of different bandwidths on different types of time domain units.
  • the first resource pool may include all available frequency domain resources on the UL time slot and all available frequency domain resources on the SBFD time slot, thereby reducing resource waste and improving resource utilization.
  • the number of frequency domain units corresponding to the first type of time domain units is equal to the number of frequency domain units corresponding to the second type of time domain units, thereby eliminating the need to make excessive changes to the side control information and feedback mechanism, etc., and being more compatible with existing technologies.
  • the configuration information includes one or more of the following: information on the index set of the M1 first-type time domain units, information on the index set of the M2 second-type time domain units, frequency domain position information of the N first-type frequency domain units, frequency domain position information of the N second-type frequency domain units, the value of N, the number of PRBs included in each first-type frequency domain unit, or the number of PRBs included in each second-type frequency domain unit.
  • the configuration information can configure the first resource pool by configuring one or more of the above parameters.
  • the configuration information can also include other parameters, which are not limited.
  • determining the configuration information includes: receiving the configuration information from the network device; or determining the pre-configured configuration information.
  • the configuration information may be sent by the network device, and the network device may send the configuration information by broadcast or unicast.
  • the configuration information may be pre-configured in the terminal device, for example, pre-configured when the terminal device leaves the factory.
  • the configuration information may also be configured by a higher layer of the terminal device (for example, an RRC layer or other protocol layer), etc.
  • the method further includes: sending or receiving side control information, the side control information includes a frequency resource indication value, the frequency resource indication value is used to indicate the frequency domain unit occupied by the reserved resources within K time domain units, K is a positive integer, and the side control information is also used to indicate a first modulation and coding strategy MCS and a second MCS, the first MCS is applicable to a first type of time domain unit in the K time domain units, the second MCS is applicable to a second type of time domain unit in the K time domain units, and the first MCS is different from the second MCS.
  • the side control information includes a frequency resource indication value
  • the frequency resource indication value is used to indicate the frequency domain unit occupied by the reserved resources within K time domain units
  • K is a positive integer
  • the side control information is also used to indicate a first modulation and coding strategy MCS and a second MCS, the first MCS is applicable to a first type of time domain unit in the K time domain units, the second MCS is applicable to a second type of time domain unit
  • the embodiments of the present application can set different MCSs for the data carried by the two types of frequency domain units, so that the MCS can be better applied to the corresponding transmission resources.
  • the spectral efficiency corresponding to the first MCS is greater than the spectral efficiency corresponding to the second MCS.
  • the spectral efficiency may be the product of the modulation order and the channel coding rate. If the spectral efficiency of an MCS is greater, it indicates that the MCS is a higher-order MCS, that is, the first MCS can be considered to be a higher-order MCS relative to the second MCS, while the second MCS is a lower-order MCS. In other words, since the bandwidth of the second type of frequency domain unit is larger, a lower-order MCS can be used in the second type of frequency domain unit to improve the reliability of data transmission.
  • the method further includes: sending or receiving side control information in a first time domain unit in the first resource pool, the side control information including a frequency resource indication value, the frequency resource indication value being used to indicate the frequency domain units occupied by the reserved resources within K time domain units, where K is a positive integer.
  • the first time domain unit belongs to the M1 first-type time domain units
  • the K time domain units include a second time domain unit
  • the second time domain unit belongs to the M2 second-type time domain units
  • the side control information is also used to indicate the number of frequency domain units occupied by the reserved resources within the second time domain unit
  • the first time domain unit belongs to the M2 second-type time domain units
  • the K time domain units include a third time domain unit
  • the third time domain unit belongs to the M2 first-type time domain units
  • the side control information is also used to indicate the number of frequency domain units occupied by the reserved resources within the third time domain unit.
  • the side control information sent in a certain type of time domain unit may include second indication information, and the second indication information may indicate the number of frequency domain units occupied by the reserved resources in another type of time domain unit (second type of time domain unit or first type of time domain unit).
  • the number of frequency domain units occupied by the reserved resources in the first type of time domain unit may not be equal to the number of frequency domain units occupied in the second type of time domain unit, making the data transmission process more flexible.
  • a communication device may be a terminal device as described in any one of the first aspect to the second aspect.
  • the communication device has the functions of the terminal device.
  • the communication device is, for example, a terminal device, or a larger device including a terminal device, or a functional module in a terminal device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also referred to as a processing module) and a transceiver unit (sometimes also referred to as a transceiver module).
  • the transceiver unit can implement a sending function and a receiving function.
  • the transceiver unit When the transceiver unit implements the sending function, it can be referred to as a sending unit (sometimes also referred to as a sending module), and when the transceiver unit implements the receiving function, it can be referred to as a receiving unit (sometimes also referred to as a receiving module).
  • the sending unit and the receiving unit can be the same functional module, which is called a transceiver unit, and the functional module can implement a sending function and a receiving function; or, the sending unit and the receiving unit can be different functional modules, and the transceiver unit is a general term for these functional modules.
  • the processing unit is used to determine configuration information, and the configuration information is used to configure a first resource pool.
  • the first resource pool is used for the terminal device to transmit information with other terminal devices.
  • the first resource pool includes M1 first-class time domain units and M2 second-class time domain units, M1 and M2 are both positive integers, each first-class time domain unit in the M1 first-class time domain units corresponds to N1 first-class frequency domain units in the first resource pool, and each second-class time domain unit in the M2 second-class time domain units corresponds to N2 second-class frequency domain units in the first resource pool, N1 and N2 are both positive integers, wherein the bandwidth of each first-class frequency domain unit is the same as the bandwidth of each second-class frequency domain unit, and N2 is greater than N1.
  • the processing unit is used to determine configuration information, and the configuration information is used to configure a first resource pool.
  • the first resource pool is used for the terminal device to transmit information with other terminal devices.
  • the first resource pool includes M1 first-class time domain units and M2 second-class time domain units, M1 and M2 are both positive integers, each first-class time domain unit in the M1 first-class time domain units corresponds to N first-class frequency domain units, and each second-class time domain unit in the M2 second-class time domain units corresponds to N second-class frequency domain units, N is a positive integer, and the bandwidth of each first-class frequency domain unit is smaller than the bandwidth of each second-class frequency domain unit.
  • the communication device also includes a storage unit (sometimes also referred to as a storage module), and the processing unit is used to couple with the storage unit and execute the program or instructions in the storage unit, so that the communication device can perform the functions of the terminal device described in any one of the first to second aspects above.
  • a storage unit sometimes also referred to as a storage module
  • another communication device which may be a terminal device, or a chip or chip system used in a terminal device.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store a computer program, and the processor is coupled to the memory and the communication interface.
  • the processor reads the computer program or instruction, the communication device executes the method executed by the terminal device in the above aspects.
  • a communication system comprising a terminal device, wherein the terminal device is used to execute the communication method executed by the terminal device as described in any one of the first aspect to the second aspect.
  • the terminal device is implemented by the third aspect or the fourth aspect or the communication device described above.
  • a computer-readable storage medium is provided, wherein the computer-readable storage medium is used to store a computer program or instruction, and when the computer-readable storage medium is executed, the method executed by the terminal device in the above aspects is implemented.
  • a computer program product comprising instructions, which, when executed on a computer, enables the methods described in the above aspects to be implemented.
  • FIG1 is a schematic diagram showing that resources of a UL time slot can be used for SL communication
  • FIG2 is a schematic diagram showing that resources of SBFD time slots can be used for SL communication
  • FIG3 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG4 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a first resource pool in an embodiment of the present application.
  • FIG6 is a schematic diagram showing the structure of a time slot including a PSFCH resource and a time slot not including a PSFCH resource;
  • FIG7 is a flow chart of another communication method provided in an embodiment of the present application.
  • FIG8 is another schematic diagram of the first resource pool in an embodiment of the present application.
  • FIG9 is a schematic diagram of a device provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another device provided in an embodiment of the present application.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character "/” generally indicates that the previous and next associated objects are in an “or” relationship.
  • A/B means: A or B.
  • “At least one of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • the terminal device is a device with wireless transceiver function, which can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above device (for example, a communication module, a modem, or a chip system, etc.).
  • the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios, such as but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), V2X, machine-to-machine/machine-type communication (machine-to-machine/machine-type communications, M2M/MTC), Internet of Things (Internet of Things, IoT), virtual reality (virtual reality, VR), augmented reality (augmented reality, AR), industrial control (industrial control), self-driving, remote medical, smart grid (smart grid), smart furniture, smart office, smart wear, smart transportation, smart city (smart city), drones, robots and other scenarios of terminal devices.
  • the terminal device may sometimes be referred to as UE, terminal, access station, UE station, remote station, wireless communication device, or user equipment, etc.
  • the terminal device is described by taking UE as an example in the embodiments of the present application.
  • the network equipment in the embodiments of the present application includes access network equipment, and/or core network equipment.
  • the access network equipment is a device with wireless transceiver function, which is used to communicate with the terminal device.
  • the access network equipment includes but is not limited to base stations (base transceiver station (BTS), Node B, eNodeB/eNB, or gNodeB/gNB), transmission reception points (TRP), base stations of subsequent evolution of the third generation partnership project (3GPP), access nodes in wireless fidelity (Wi-Fi) systems, wireless relay nodes, wireless backhaul nodes, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, etc.
  • the base station can include one or more co-station or non-co-station transmission and receiving points.
  • the access network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the access network device may also be a server, etc.
  • the network device in the vehicle to everything (V2X) technology may be a road side unit (RSU).
  • the base station can communicate with a terminal device, or it can communicate with the terminal device through a relay station.
  • the terminal device can communicate with multiple base stations in different access technologies.
  • the core network device is used to implement functions such as mobility management, data processing, session management, policy and billing.
  • functions such as mobility management, data processing, session management, policy and billing.
  • the names of the devices that implement the core network functions in systems with different access technologies may be different, and the embodiments of the present application do not limit this.
  • the core network equipment includes: access and mobility management function (access and mobility management function, AMF), session management function (session management function, SMF), policy control function (policy control function, PCF) or user plane function (user plane function, UPF), etc.
  • the communication device for realizing the function of the network device may be a network device, or may be a device capable of supporting the network device to realize the function, such as a chip system, which may be installed in the network device.
  • the technical solution provided in the embodiment of the present application is described by taking the device for realizing the function of the network device as an example that the network device is used as the device.
  • the technical solution provided in the embodiments of the present application can be applied to the 4th generation (4G) system, such as the long term evolution (LTE) system, or can be applied to the 5G system, such as the new radio (NR) system, or can also be applied to the next generation mobile communication system or other similar communication systems, such as the 6th generation (6G) system, etc., without specific limitation.
  • the technical solution provided in the embodiments of the present application can be applied to the device-to-device (D2D) scenario, such as the NR-D2D scenario, etc., or can be applied to the vehicle to everything (V2X) scenario, such as the NR-V2X scenario, etc.
  • D2D device-to-device
  • V2X vehicle to everything
  • it can be applied to the fields of intelligent driving, assisted driving, or intelligent networked vehicles.
  • the network equipment will configure downlink (DL) time slots and UL time slots.
  • the "D” in Figure 1 represents the DL time slot and the "U” represents the UL time slot.
  • the resources of the UL time slot can only be configured to the SL resource pool, so not every time slot has SL communication resources.
  • there are fewer UL time slots there will be fewer available resources for SL communication and longer latency, which makes it difficult to meet the needs of ultra-low latency services in scenarios such as the Industrial Internet.
  • the SL resource pool contains L continuous or non-continuous time slots, each time slot contains N continuous sub-channels, that is, the bandwidth of each time slot is the same.
  • the SBFD time slot can contain one or more downlink subbands (denoted as D in Figure 2) and one or more uplink subbands (denoted as U in Figure 2).
  • the downlink subband is used for the network device to send information to the UE
  • the uplink subband is used for the UE to send information to the network device.
  • the network device can simultaneously perform downlink transmission and uplink reception in the SBFD time slot, which can reduce the uplink transmission delay compared to the TDD system.
  • the uplink subband resources of the SBFD time slot can also be considered for SL communication to reduce the SL transmission delay. Therefore, for SL communication, the uplink subband resources of the SBFD time slot can be regarded as the available frequency domain resources on the SBFD time slot. For example, all uplink subband resources of the SBFD time slot can be regarded as all available frequency domain resources on the SBFD time slot.
  • the size of the frequency domain resources of all time slots in the resource pool needs to be the same. Therefore, if the resource pool contains both the uplink subbands of the UL time slot and the SBFD time slot, the size of the frequency domain resources of the resource pool cannot exceed the uplink subband size of the SBFD time slot, which results in the frequency domain resources of the UL time slot cannot be fully utilized, resulting in resource waste.
  • the first type of time domain unit included in the first resource pool may correspond to N1 first type of frequency domain units
  • the second type of time domain unit may correspond to N2 second type of frequency domain units.
  • N1 and N2 may be different. That is to say, in the time domain units included in the first resource pool, the first resource pool may include different numbers of frequency domain units on different types of time domain units.
  • the first resource pool may include all available frequency domain resources on the UL time slot and all available frequency domain resources on the SBFD time slot, thereby reducing resource waste and improving resource utilization.
  • SL may be referred to as "side link”, for example, SL information may be referred to as side link information, SL data may be referred to as side link data, etc.
  • SL may also be referred to as "side link”, for example, SL information may be referred to as side link information, SL data may be referred to as side link data, etc., and this is used as an example in the following text.
  • the frequency domain unit is, for example, a subband or a subchannel, etc.
  • the frequency domain unit in the embodiment of the present application is the smallest frequency domain resource scheduling unit in the SL resource pool (for example, the first resource pool to be introduced later), for example, when scheduling resources, scheduling is performed in units of frequency domain units.
  • the time domain unit is, for example, a subframe, a time slot, a mini-slot, or an orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • the “resource pools” involved are all “SL resource pools", for example, the first resource pool to be introduced later may be an SL resource pool.
  • “SL resource pool” refers to a set of time-frequency resources used to transmit SL information, and may have other names, which are not limited in the present application.
  • the communication network architecture may further include a network device, such as a network device capable of communicating with UE1 and/or UE2 (FIG. 3 takes the network device capable of communicating with UE1 as an example).
  • the network device is, for example, an access network device and/or a core network device.
  • the methods provided by the various embodiments of the present application are introduced below in conjunction with the accompanying drawings. Unless otherwise specified in the following text, the steps represented by dotted lines in the accompanying drawings corresponding to the various embodiments of the present application are all optional steps.
  • the methods provided by the various embodiments of the present application can be applied to the network architecture shown in Figure 3.
  • the first UE involved in the methods provided by the various embodiments of the present application can be UE1 in Figure 3
  • the second UE involved in the methods provided by the various embodiments of the present application can be UE2 in Figure 3
  • the network device involved in the methods provided by the various embodiments of the present application can be the network device in Figure 3.
  • FIG4 is a flowchart of the method.
  • a first UE determines configuration information.
  • the configuration information may be used to configure a first resource pool, and the first resource pool may be used for the first UE to communicate with other UEs, for example, for the first UE to transmit information with other UEs.
  • the first resource pool may include M1 first-class time domain units and M2 second-class time domain units, M1 and M2 are both positive integers, and there is no restriction on the size relationship between the two.
  • the duration of the first-class time domain unit and the second-class time domain unit may be equal, for example, the first-class time domain unit and the second-class time domain unit are both time slots or both subframes, etc., and the embodiment of the present application may be to classify the time domain units according to the frequency domain units corresponding to the time domain units.
  • the first-class time domain unit may correspond to N1 first-class frequency domain units in the first resource pool
  • the second-class time domain unit may correspond to N2 second-class frequency domain units in the first resource pool
  • N1 and N2 are both positive integers.
  • the time domain units in the first resource pool if a time domain unit corresponds to N1 first-class frequency domain units in the first resource pool, then the time domain unit is a first-class time domain unit; and if a time domain unit corresponds to N2 second-class frequency domain units in the first resource pool, then the time domain unit is a second-class time domain unit.
  • the time domain unit corresponds to (or is called associated with) the frequency domain unit, which can be understood as that the resource where the frequency domain unit is located is located on the time domain unit, or the time domain position of the resource where the frequency domain unit is located is the time domain position of the time domain unit.
  • the bandwidth of the first type of frequency domain unit may be the same as the bandwidth of the second type of frequency domain unit.
  • the number of resource units included in the first type of frequency domain unit is equal to the number of resource units included in the second type of frequency domain unit.
  • Resource units are, for example, physical resource blocks (PRBs), resource blocks (RBs), resource elements (REs), or subcarriers.
  • PRBs physical resource blocks
  • RBs resource blocks
  • REs resource elements
  • the first type of frequency domain unit and the second type of frequency domain unit may be considered to be the same type of frequency domain unit.
  • the first type of time domain unit corresponds to N1 frequency domain units in the first resource pool
  • the second type of time domain unit corresponds to N2 frequency domain units in the first resource pool.
  • N2 is greater than N1, that is, the number of second-type frequency domain units corresponding to the second-type time domain units is greater than the number of first-type frequency domain units corresponding to the first-type time domain units.
  • the first resource pool can include different numbers of frequency domain units on different time domain units, making the configuration of the resource pool more flexible.
  • the first-type time domain unit is an SBFD time slot
  • the second-type time domain unit is a UL time slot.
  • Figure 5 is an example of the first resource pool.
  • Figure 5 takes the time domain unit as an example that the time domain unit is a time slot.
  • the time slots included in Figure 5 can be all or part of the time slots in the first resource pool, and there is no limitation on this.
  • Figure 5 takes the first type of frequency domain unit and the second type of frequency domain unit as subchannels as an example.
  • the first type of time slot corresponds to subchannel 1 to subchannel 3
  • the second type of time slot corresponds to subchannel 1 to subchannel 9.
  • the "D" in Figure 5 indicates that this part of the frequency domain resources is a resource used for downlink transmission and does not belong to the first resource pool.
  • the configuration information for configuring the first resource pool may be configured by a network device, for example, the network device may send the configuration information, and the first UE receives the configuration information.
  • the network device may send the configuration information by broadcasting, for example, by sending the configuration information by a system message or other broadcast message; or, the network device may also send the configuration information by unicasting, for example, by sending the configuration information by high-level signaling or physical layer signaling
  • the high-level signaling may be, for example, radio resource control (RRC) signaling or media access control (MAC) control element (CE), etc.
  • the physical layer signaling may be, for example, downlink control information (DCI), etc.
  • the configuration information may be pre-configured in the first UE, for example, configured when the first UE leaves the factory.
  • the configuration information may be configured by the first UE itself, for example, the high layer of the first UE (such as the RRC layer, etc.) may configure the configuration information.
  • the configuration information may also be configured by other UEs and may be sent to the first UE, and the first UE may receive the configuration information.
  • the first UE joins a UE group, and the group head device in the UE group may configure the configuration information and send it to the member devices in the UE group (for example, via multicast). If the first UE is a group head device, the first UE may configure the configuration information by itself; if the first UE is a member device, the first UE may receive the configuration information from the group head device.
  • the configuration information may include one or more of the following: information on an index set of M1 first-type time domain units or an index of M1 first-type time domain units, information on an index set of M2 second-type time domain units or an index of M2 second-type time domain units, frequency domain position information of N1 first-type frequency domain units, frequency domain position information of N2 second-type frequency domain units, the value of N1, the value of N2, or the number of PRBs (or the number of RBs, or the number of REs, or the number of subcarriers, etc.) included in the first-type frequency domain unit or the second-type frequency domain unit.
  • Each of the M1 first-type time domain units may have a corresponding index, and the indexes of the M1 first-type time domain units may be included in an index set, and the configuration information may include information of the index set, such as an identifier of the index set.
  • the first UE may determine the index set based on the information of the index set, thereby determining the indexes of the M1 first-type time domain units included in the index set.
  • the configuration information may also directly include the indexes of the M1 first-type time domain units, so that the first UE does not need to determine the index set, but can directly determine the M1 first-type time domain units.
  • the configuration information may indicate the indexes of the M1 first-type time domain units through a bitmap.
  • the index of the first-type time domain unit is, for example, an index of a physical position of the first-type time domain unit, rather than an index of a logical position of the first-type time domain unit.
  • each of the M2 second-type time domain units may have a corresponding index
  • the indexes of the M2 second-type time domain units may be included in an index set
  • the configuration information may include information of the index set, for example, including an identifier of the index set.
  • the first UE can determine the index set based on the information of the index set, thereby determining the indexes of the M2 second-type time domain units included in the index set.
  • the configuration information may also directly include the indexes of the M2 second-type time domain units, so that the first UE does not need to determine the index set, but can directly determine the M2 second-type time domain units.
  • the configuration information may indicate the indexes of the M2 second-type time domain units through a bitmap.
  • the index of the second-type time domain unit is, for example, an index of a physical position of the second-type time domain unit, rather than an index of a logical position of the second-type time domain unit.
  • the configuration information may indicate the index of the M1 first-class time domain units and the index of the M2 second-class time domain units in the same manner, for example, the configuration information indicates the index of the M1 first-class time domain units and the index of the M2 second-class time domain units through a bitmap.
  • the configuration information may indicate the index of the M1 first-class time domain units and the index of the M2 second-class time domain units in different manners, for example, for the M1 first-class time domain units, the configuration information indicates the information of the index set to which the index of the M1 first-class time domain units belongs; and for the M2 second-class time domain units, the configuration information directly includes the index of the M2 second-class time domain units.
  • the starting frequency domain position and the ending frequency domain position of the first-class frequency domain unit on different first-class time domain units may be the same, so the configuration information only needs to include the frequency domain position information of N1 first-class frequency domain units on one first-class time domain unit.
  • the frequency domain position information of the N1 first-class frequency domain units included in the configuration information may include, for example, the frequency domain position information of each first-class frequency domain unit in the N1 first-class frequency domain units, or the starting frequency domain position information and/or the ending frequency domain position information of the N1 first-class frequency domain units as a whole.
  • the starting frequency domain position information of the N1 first-class frequency domain units as a whole may be the starting frequency domain position information of the starting frequency domain unit in the N1 first-class frequency domain units;
  • the ending frequency domain position information of the N1 first-class frequency domain units as a whole may be the ending frequency domain position information of the ending frequency domain unit in the N1 first-class frequency domain units.
  • the starting frequency domain unit among the N1 first-class frequency domain units is, for example, the frequency domain unit with the lowest frequency among the N1 first-class frequency domain units;
  • the ending frequency domain unit among the N1 first-class frequency domain units is, for example, the frequency domain unit with the highest frequency among the N1 first-class frequency domain units.
  • the configuration information may include the frequency domain position information of each of the three subchannels on any first-class time slot; or include the starting frequency domain position information of the bottom subchannel on any first-class time slot, and/or the ending frequency domain position information of the top subchannel on the first-class time slot.
  • the frequency domain position information of a first-class frequency domain unit may include the starting frequency domain position information and/or the ending position information of the first-class frequency domain unit.
  • the starting frequency domain position information of a first-class frequency domain unit included in the configuration information may be the offset information between the starting frequency domain position of the first-class frequency domain unit and the first resource unit in the partial bandwidth (bandwidth part, BWP) where the first resource pool is located.
  • the starting frequency domain position of the first-class frequency domain unit is, for example, the frequency domain position of the starting resource unit in the first-class frequency domain unit.
  • the starting frequency domain position and/or ending frequency domain position of N1 first-class frequency domain units included in the configuration information, or the ending frequency domain position of a first-class frequency domain unit, may also be configured in a similar manner.
  • the starting frequency domain position and the ending frequency domain position of the second type frequency domain unit on different second type time domain units may be the same, so the configuration information only needs to include the frequency domain position information of N2 second type frequency domain units on one second type time domain unit.
  • the frequency domain position information of the N2 second type frequency domain units included in the configuration information for example, includes the frequency domain position information of each second type frequency domain unit in the N2 second type frequency domain units, or includes the starting frequency domain position information and/or the ending frequency domain position information of the N2 second type frequency domain units as a whole.
  • the implementation method of the frequency domain position information of the N2 second type frequency domain units included in the configuration information is similar to the implementation method of the frequency domain position information of the N1 first type frequency domain units included in the configuration information. For more information, please refer to the introduction in the previous paragraph.
  • the starting frequency domain position information of a second-class frequency domain unit included in the configuration information may be the offset information between the starting frequency domain position of the second-class frequency domain unit and the first resource unit in the BWP where the first resource pool is located.
  • the starting frequency domain position of the second-class frequency domain unit is, for example, the frequency domain position of the starting resource unit in the second-class frequency domain unit.
  • the configuration information includes the starting frequency domain position and/or ending frequency domain position of N2 second-class frequency domain units, or the ending frequency domain position of a second-class frequency domain unit, and the configuration method may also be similar.
  • the starting frequency domain position information of a second-class frequency domain unit included in the configuration information may also be the offset information between the starting frequency domain position of the second-class frequency domain unit and the starting frequency domain unit or the ending frequency domain unit in the N1 first-class frequency domain units.
  • the starting frequency domain position and/or ending frequency domain position of the N2 second-class frequency domain units included in the configuration information, or the ending frequency domain position of a second-class frequency domain unit may also be configured in a similar manner. Then the first UE can also determine the frequency domain position information of the N2 second-class frequency domain units in combination with the frequency domain position information of the N1 first-class frequency domain units.
  • the starting frequency domain position information of a certain first-class frequency domain unit included in the configuration information may also be the offset information between the starting frequency domain position of the first-class frequency domain unit and the starting frequency domain unit or the ending frequency domain unit in the N2 second-class frequency domain units.
  • the starting frequency domain position and/or ending frequency domain position of the N1 first-class frequency domain units included in the configuration information, or the ending frequency domain position of a certain first-class frequency domain unit may also be configured in a similar manner. Then the first UE can also determine the frequency domain position information of the N1 second-class frequency domain units in combination with the frequency domain position information of the N2 second-class frequency domain units.
  • the number of resource units included in the first type of frequency domain unit can be the same as the number of resource units included in the second type of frequency domain unit. Therefore, the configuration information can include the number of resource units included in any first type of frequency domain unit, or the number of resource units included in any second type of frequency domain unit.
  • the first UE can determine the number of resource units included in the first type of frequency domain unit and the number of resource units included in the second type of frequency domain unit based on the number included in the configuration information.
  • S402 The second UE determines configuration information.
  • the configuration information is consistent with the configuration information introduced in S401.
  • the method may further include S403, the first UE sends side control information in the first time domain unit in the first resource pool.
  • the second UE receives the side control information in the first time domain unit.
  • the side control information is, for example, sidelink control information (SCI), which may be sent through a physical sidelink control channel (PSCCH); or, if the SCI is a first-order SCI (or SCI1), the SCI is sent through the PSCCH, and if the SCI is a second-order SCI (or SCI2), the SCI may be sent through a physical sidelink shared channel (PSSCH).
  • SCI sidelink control information
  • PSSCH physical sidelink shared channel
  • the sideline control information may be used to schedule a transport block (TB) corresponding to the data.
  • the data is referred to as first data.
  • the first data may correspond to one or more TBs.
  • the sideline control information may be used to schedule part or all of the one or more TBs. For example, at least one TB may be scheduled.
  • the sideline control information may also indicate reserved resources for the first data.
  • the reserved resources are transmission resources reserved for the first data. When selecting resources, the UE receiving the sideline control information may perform interference avoidance according to the reserved resources.
  • the sideline control information may indicate the time domain and/or frequency domain position of the PSCCH used to carry the sideline control information, and the time domain and/or frequency domain position of the PSSCH associated with the PSCCH.
  • the PSSCH may carry at least one TB corresponding to the first data.
  • the sideline control information indicates the reserved resources for the first data.
  • the sideline control information may indicate the frequency domain unit position information occupied by the reserved resources within K time domain units, where K is a positive integer.
  • the K time domain units are the time domain units where the reserved resources are located within a resource reservation period, or the reserved time domain units included in a resource reservation period, so the side control information is equivalent to indicating the time domain units and/or frequency domain units occupied by the reserved resources within a resource reservation period.
  • the time domain unit can be called a reserved time domain unit, and all or part of the time domain units included in a resource reservation period can be used as reserved time domain units.
  • the side control information can also indicate the resource reservation period, for example, indicating the number of resource reservation periods (which can be understood as how many periods of resources are reserved for the first data), and/or the duration of a resource reservation period (for example, the duration is greater than or equal to the total duration of K time domain units), etc.
  • the receiving end of the side control information (for example, the second UE) can determine the reserved resources according to the side control information, and the reserved resources include the resources reserved for the first data in all resource reservation periods reserved for the first data.
  • the sidelink control information indicates that the number of resource reservation cycles is 3, and the duration of one resource reservation cycle is one time slot, which is equivalent to reserving resources within 3 time slots for the first data.
  • the side control information indicates the frequency domain unit occupied by the reserved resource within the K time domain units.
  • the side control information includes a frequency resource indicator value (FRIV), and FRIV can indicate the frequency domain unit occupied by the reserved resource within the K time domain units.
  • FRIV can indicate the frequency domain unit occupied by the reserved resource within the K time domain units.
  • the receiving end of the sidelink control information (for example, the second UE) can determine the frequency domain unit occupied by the first data in each resource reservation period based on the frequency domain unit occupied by the reserved resources within a resource reservation period.
  • the value of FRIV may be related to the second parameter, the second parameter being, for example, the maximum number of sidelink reservations per time (sl-MaxNumPerReserve), sl-MaxNumPerReserve may indicate the maximum number of time domain units (reserved time domain units) that can be reserved within a resource reservation period.
  • LsubCH represents the number of frequency domain units reserved in one reserved time domain unit. It can be called the first parameter, which will be introduced later.
  • the UE eg, the second UE receiving the sideline control information can determine LsubCH, The values of parameters such as are used to determine the frequency domain position of the reserved resources.
  • FRIV can indicate the combination of frequency domain units when all time domain units where reserved resources are located in a resource reservation period are first-class time domain units. That is to say, if all time domain units where reserved resources are located in a resource reservation period are first-class time domain units, then FRIV can indicate the frequency domain units reserved for the first data in the resource reservation period, but if the resource reservation period also includes second-class time domain units, then FRIV cannot indicate some frequency domain units included in the second-class time domain units. If Then FRIV can indicate the combination of time domain units where the time domain units where the reserved resources within a resource reservation period are all second-type time domain units.
  • FRIV can indicate the frequency domain units reserved for the first data within the resource reservation period. Since the number of frequency domain units corresponding to the second-type time domain units is greater than the number of frequency domain units corresponding to the first-type time domain units, regardless of whether the time domain units where the reserved resources within the resource reservation period are located include only first-type time domain units, or the time domain units where the reserved resources within the resource reservation period are located include both first-type time domain units and second-type time domain units, FRIV can indicate the frequency domain units reserved for the first data within the resource reservation period.
  • the first parameter in the embodiment of the present application can have different implementation methods.
  • the value of the first parameter can be determined according to the type of the first time domain unit, thereby determining the number of bits of the FRIV.
  • the value of the first parameter is N1, thereby reducing the number of bits occupied by the FRIV and saving transmission overhead.
  • the N2 second-class frequency domain units can also be divided into at least two frequency domain unit sets, each of which can include one or more second-class frequency domain units, for example, each of which includes second-class frequency domain units that are continuous in the frequency domain.
  • the N2 second-class frequency domain units can correspond to any second-class time domain unit, and it can be understood that the N2 second-class frequency domain units corresponding to each second-class time domain unit can be divided into at least two frequency domain unit sets, and the division method of each second-class time domain unit can be the same, and the number and position of frequency domain unit sets corresponding to different second-class time domain units can be the same.
  • the number of at least two frequency domain unit sets is, for example, P, for example
  • the number of second-type frequency domain units included in each frequency domain unit set may be less than or equal to N1.
  • a first-type frequency domain unit corresponding to a first-type time domain unit may be associated with a second-type frequency domain unit in at least one frequency domain unit set corresponding to a second-type time domain unit.
  • the index of the second-type frequency domain unit corresponding to the second-type time domain unit associated with the first-type frequency domain unit i corresponding to the first-type time domain unit is i+j ⁇ N1, where 0 ⁇ j ⁇ P.
  • subchannels 1 to 9 on any second-type time domain unit can be divided into three subchannel sets, where subchannel set 1 includes subchannels 1 to 3, subchannel set 2 includes subchannels 4 to 6, and subchannel set 3 includes subchannels 7 to 9.
  • Subchannel 1 on any first-type time domain unit is associated with subchannel 1 in subchannel set 1, subchannel 4 in subchannel set 2, and subchannel 7 in subchannel set 3;
  • subchannel 2 on any first-type time domain unit is associated with subchannel 2 in subchannel set 1, subchannel 5 in subchannel set 2, and subchannel 8 in subchannel set 3;
  • subchannel 3 on any first-type time domain unit is associated with subchannel 3 in subchannel set 1, subchannel 6 in subchannel set 2, and subchannel 9 in subchannel set 3.
  • the side control information can also indicate the information of the set of frequency domain units (e.g., the first frequency domain unit set) occupied by the reserved resources in the second time domain unit. If the first time domain unit is a first type of time domain unit, the number of bits of FRIV is determined according to N1.
  • the side control information can also indicate the set of frequency domain units occupied by the reserved resources in the second time domain unit, so that the receiving end of the side control information can determine the frequency domain units occupied by the reserved resources in the K time domain units according to FRIV and the set of frequency domain units occupied by the reserved resources in the second time domain unit.
  • the first time domain unit is a first type time domain unit
  • the second UE determines that the reserved resources occupy subchannel 2 in a certain time domain unit within a resource reservation period according to the FRIV included in the SCI sent by the first time domain unit, and the SCI also indicates that the reserved resources occupy subchannel set 3 in the second time domain unit.
  • time domain unit is a first type time domain unit, it can be determined that the reserved resources occupy subchannel 2 in the time domain unit; or, if the time domain unit is a second type time domain unit, it can be determined that the subchannel associated with the subchannel 2 corresponding to the first type time domain unit in the subchannel set 3 is subchannel 8 in combination with the subchannel set 3 indicated by the side control information, and it can be determined that the reserved resources occupy subchannel 8 in the time domain unit.
  • the side control information can indicate the frequency domain unit occupied by the reserved resource within K time domain units through FRIV.
  • the side control information can also indicate the frequency domain unit occupied by the reserved resource within K time domain units through other methods.
  • one indication method is that the side control information includes K first indication information, and the K first indication information can indicate the frequency domain unit occupied by the reserved resource within K time domain units, and one of the first indication information can indicate the frequency domain unit occupied by the reserved resource in one time domain unit among the K time domain units, and the K first indication information corresponds one-to-one to the K time domain units.
  • each of the K first indication information can be implemented through a bitmap, and the number of bits of a bitmap can be the same as the number of frequency domain units corresponding to the time domain unit indicated by the bitmap, so that one bit of the bitmap can indicate a frequency domain unit corresponding to the time domain unit.
  • the method of indicating through the first indication information is more flexible.
  • the first UE may send side control information, and the side control information may schedule at least one TB corresponding to the first data. Therefore, optionally, the method may also include S404, where the first UE sends at least one TB corresponding to the first data in the first frequency domain unit of the third time domain unit.
  • the second UE receives at least one TB corresponding to the first data in the first frequency domain unit of the third time domain unit.
  • the third time domain unit and the first time domain unit may be the same time domain unit, or may be different time domain units.
  • the second UE may receive the side control information, and the receiving end of the first data may be the second UE or other UE.
  • the embodiment of the present application takes the second UE as an example.
  • the second UE After the second UE receives at least one TB corresponding to the first data, it can send feedback information through a physical sidelink feedback channel (PSFCH), and the feedback information is, for example, a hybrid automatic repeat request (HARQ) feedback, such as an acknowledgement (ACK) or a negative acknowledgement (NACK), to indicate that the at least one TB corresponding to the first data is received successfully or unsuccessfully.
  • the PSFCH resource is a periodic resource (pre) configured for the first resource pool, which can be configured through the configuration information.
  • the configuration information can configure the period of the PSFCH resource through a third parameter, and the third parameter is, for example, a period PSFCH resource (periodPSFCHresource) parameter, and the value of the periodPSFCHresource parameter can be 0, 1, 2, or 4, or it can also be other values.
  • the third parameter is, for example, a period PSFCH resource (periodPSFCHresource) parameter, and the value of the periodPSFCHresource parameter can be 0, 1, 2, or 4, or it can also be other values.
  • each square in FIG6 represents a logical time slot, that is, any time slot contained in the first resource pool.
  • the first OFDM symbol in the time slot is an automatic gain control (AGC) symbol, which is mainly used for the receiving UE (such as the second UE) to adjust the received signal amplification factor;
  • the last symbol in the time slot is a guard period (GP) symbol, which is mainly used for transceiver conversion or transceiver conversion.
  • AGC automatic gain control
  • GP guard period
  • the time slot including PSFCH resources in addition to the first OFDM symbol being an AGC symbol and the last OFDM symbol being a GP symbol, there are system-level resource overheads of an additional 3 OFDM symbols, of which one OFDM symbol is a GP symbol, one OFDM symbol is an AGC symbol, and one OFDM symbol is a PSFCH symbol.
  • the minimum time interval between the resources for receiving data and the resources for sending feedback information can be (pre) configured for the first resource pool, for example, the time interval is configured by a fourth parameter, and the fourth parameter may be included in the configuration information.
  • the fourth parameter is, for example, a minimum time interval PSFCH (MinTimeGapPSFCH) parameter, and the value of the MinTimeGapPSFCH parameter can be 2 or 3, or can also be other values.
  • MinTimeGapPSFCH 2 time domain units
  • Both the sending UE (e.g., the first UE) and the receiving UE (e.g., the second UE) can determine the association between the PSSCH resources for receiving data and the PSFCH resources for sending feedback information of the data according to the third parameter and the fourth parameter.
  • the PSSCH resources of every four time domain units are associated with the PSFCH resources of one time domain unit, and each of the four time domain units is at least 2 time slots away from the time slot where the associated PSFCH resource is located.
  • the second PSFCH resource (PSFCH resource in time slot 7) is associated with the PSSCH resources of the four time domain units (time slots 2 to 5) in the first dotted box
  • the third PSFCH resource (PSFCH resource in time slot 11) is associated with the PSSCH resources of the four time domain units (time slots 6 to 9) in the second dotted box.
  • the first resource pool may include a first type of time domain unit and a second type of time domain unit, and different types of time domain units correspond to different numbers of frequency domain units. Therefore, some PSFCH resources may be associated with the second type of time domain unit (for example, the time slot associated with time slot 7 in FIG. 5 includes time slots 2 to 5, where time slot 5 is a second type of time domain unit, and the PSFCH resources in time slot 7 are associated with the second type of time domain unit), and some PSFCH resources are not associated with the second type of time domain unit (for example, the time slot associated with time slot 11 in FIG.
  • time slot 6 to time slot 9 which are all first type of time domain units, and the PSFCH resources in time slot 11 are not associated with the second type of time domain unit). Since the first resource pool includes a large number of frequency domain units corresponding to the second type of time domain units, the PSFCH resources associated with the second type of time domain units will also be associated with more frequency domain units, while the PSFCH resources not associated with the second type of time domain units will be associated with relatively fewer frequency domain units.
  • the PSFCH resources in time slot 7 can be associated with a total of 18 frequency domain units in time slots 2 to 5
  • the PSFCH resources in time slot 11 can be associated with a total of 12 frequency domain units in time slots 6 to 9.
  • the PSFCH resources in a time domain unit can be divided into multiple feedback resource unit sets in the frequency domain, and the number of divided feedback resource unit sets can be equal to the number of frequency domain units associated with the PSFCH resources, and the frequency domain units associated with the PSFCH resources can correspond one-to-one to the feedback resource unit sets.
  • the first resource pool includes the fifth time domain unit
  • the fifth time domain unit includes PSFCH resources
  • the PSFCH resources of the fifth time domain unit are associated with L3 time domain units
  • the L3 time domain units do not include the second type of time domain units.
  • the PSFCH resources can be divided into H3 feedback resource unit sets in the frequency domain, and the H3 feedback resource unit sets correspond one-to-one to the frequency domain units in the L3 time domain units.
  • L3 and H3 are both positive integers.
  • the first resource pool includes the sixth time domain unit
  • the sixth time domain unit includes PSFCH resources
  • the PSFCH resources of the sixth time domain unit are associated with L2 time domain units
  • the L2 time domain units include the second type of time domain units.
  • the PSFCH resources can be divided into H2 feedback resource unit sets in the frequency domain, and the H2 feedback resource unit sets correspond one-to-one to the frequency domain units in the L2 time domain units.
  • L2 and H2 are both positive integers.
  • the PFSCH resources within a time domain unit are divided into multiple feedback resource unit sets in the frequency domain, each of which may include one or more feedback resource units, and the feedback resource unit is, for example, a resource unit including e sub-time domain units and f sub-frequency domain units, where e and f are both positive integers.
  • the sub-time domain unit is, for example, an OFDM symbol
  • the bandwidth of the sub-frequency domain unit is, for example, the same as the bandwidth of the PRB.
  • the feedback resource unit is a PRB
  • the feedback resource unit set can also be understood as a PRB set; or e can also take 2 or other values.
  • e may be 1.
  • the time domain unit associated with the PSFCH resource in time slot 11 does not include a second-type time domain unit, and time slot 15 is a second-type time domain unit, so the e corresponding to the PSFCH resources in time slots 11 and 15 may be 1.
  • the PSFCH resource associated with the second-type time domain unit it has more associated frequency domain units, that is, the PSFCH resource will be used to transmit more feedback information.
  • Setting e greater than 1 is equivalent to making the feedback resource unit include more resources in the time domain so that it can be used to transmit more feedback information.
  • the time domain unit where the PSFCH resource is located is a second-type time domain unit, the frequency domain resources of the PSFCH resource are relatively abundant and can be used to transmit more feedback information.
  • the first UE sends at least one TB corresponding to the first data in the first frequency domain unit of the third time domain unit, and the PSFCH resource associated with the third time domain unit is located in the fourth time domain unit.
  • the fourth time domain unit is associated with L1 time domain units in total. Then, if the L1 time domain units include the second-type time domain unit, and the fourth time domain unit is the first-type time domain unit, then e can be greater than 1.
  • the method may also include S405, where the second UE determines a feedback resource unit for sending the feedback information.
  • the first UE may also determine a feedback resource unit for receiving feedback information, and the first UE and the second UE determine the feedback resource unit in a similar manner.
  • the first UE sends at least one TB corresponding to the first data in the first frequency domain unit of the third time domain unit.
  • the PSFCH resource associated with the third time domain unit is located in the fourth time domain unit.
  • the fourth time domain unit is associated with L1 time domain units in total, and the third time domain unit belongs to the L1 time domain unit.
  • the first frequency domain unit in the third time domain unit corresponds to the first feedback resource unit set in the H1 feedback resource unit sets
  • the first UE or the second UE can determine the feedback resource unit for transmitting the feedback information of at least one TB corresponding to the first data from the first feedback resource unit set, for example, the determined feedback resource unit is the first feedback resource unit.
  • the method of determining the first feedback resource unit from the first feedback resource unit set may also be different, as described in the following example.
  • the first feedback resource unit set includes D feedback resource units.
  • the first UE or the second UE can determine that the number of cyclic shift pairs that can be used in the feedback information sequence is G according to the configuration information, and a total of D ⁇ G feedback resources can be determined.
  • the feedback resources include both time-frequency resources (i.e., D feedback resource units) and code domain resources (i.e., G cyclic shift pairs).
  • the first UE or the second UE can further determine the corresponding feedback resource from the D ⁇ G feedback resources according to the value of (P ID +M ID ) mod(D ⁇ G), and the time-frequency resource included in the feedback resource is the first feedback resource unit.
  • mod represents a remainder operation
  • P ID is determined according to the source ID corresponding to the PSSCH used to transmit the first data
  • M ID is set to 0 or determined according to the group ID configured by the high-level layer
  • P ID is set to 0 or determined according to the source ID corresponding to the PSSCH used to transmit the first data
  • M ID is determined according to the destination ID corresponding to the PSSCH used to transmit the first data or determined according to the group ID configured by the high-level layer.
  • One feedback resource may be used to transmit either ACK or NACK, and specific information transmitted may be determined according to a decoding result of the second UE on the received first data.
  • the first UE or the second UE may determine one or more of the following items according to the identifier related to the first data: the index of the first feedback resource unit, the sub-frequency domain unit index corresponding to the first feedback resource unit, the cyclic shift of the sequence corresponding to the first feedback resource unit, or the orthogonal cover code (OCC) corresponding to the first feedback resource unit.
  • OCC orthogonal cover code
  • the first feedback resource unit is also determined.
  • the OCC is, for example, a Walsh code sequence or a discrete Fourier transform (DFT) sequence.
  • the sequence corresponding to the first feedback resource unit can be understood as the sequence that can be used as feedback information carried by the first feedback resource unit, and the sequence is, for example, a ZC (Zaddoff Chu) sequence, or it can also be other sequences. For example, if the cyclic shifts of the two feedback information sequences are different, it indicates that they are two different feedback information; or, if the OCCs of the two feedback information sequences are different, it indicates that they are two different feedback information; or, if the feedback resource units where the two feedback information sequences are located are different, it can also indicate that they are different feedback information. It can be seen that the optional range of feedback information is expanded through the features of multiple dimensions.
  • the total number of resource indexes of the feedback resource units included in the PSFCH resources using 2 sub-frequency domain units is twice the total number of indexes of the feedback resource units included in the PSFCH resources using 1 sub-frequency domain unit, thereby expanding the capacity of the PSFCH resources and being able to carry more feedback information.
  • the identifier related to the first data may include, for example, one or more of the following: an identifier of the service corresponding to the first data, an identifier of the sending end of the first data (for example, the first UE), an identifier of the receiving end of the first data (for example, the second UE), or a multicast-related identifier.
  • the service corresponding to the first data is a multicast service and the first data is sent in a multicast manner
  • the multicast-related identifier may include an identifier of a group head device and/or an identifier of a group member device belonging to the multicast group.
  • the method may further include S406, the second UE sends feedback information of at least one TB corresponding to the first data in the first feedback resource unit of the fourth time domain unit.
  • the first UE receives the feedback information in the first feedback resource unit of the fourth time domain unit.
  • the first UE and the second UE may determine the first feedback resource unit in the same manner (such as the manner described above), so that the first UE can correctly receive the feedback information.
  • the first type of time domain unit included in the first resource pool may correspond to N1 first type of frequency domain units
  • the second type of time domain unit may correspond to N2 second type of frequency domain units.
  • N1 and N2 may be different. That is to say, in the time domain units included in the first resource pool, the first resource pool may include different numbers of frequency domain units on different types of time domain units.
  • the first resource pool may include all available frequency domain resources on the UL time slot and all available frequency domain resources on the SBFD time slot, thereby reducing resource waste and improving resource utilization.
  • an embodiment of the present application designs a side control information indication method for the frequency domain resources occupied by the reserved resources.
  • the side control information can indicate the frequency domain unit occupied by the reserved resources, so that the receiving UE can correctly receive the data, and other UEs can avoid interference according to the side control information when selecting resources.
  • an embodiment of the present application can also expand the capacity of the PFSCH resources used to send feedback information to transmit more feedback information and meet the needs of more users.
  • a first UE determines configuration information.
  • the configuration information may be used to configure a first resource pool, and the first resource pool may be used for the first UE to communicate with other UEs, for example, for the first UE to transmit information with other UEs.
  • the first resource pool may include M1 first-class time domain units and M2 second-class time domain units, where M1 and M2 are both positive integers, and there is no restriction on the size relationship between the two.
  • the duration of the first-class time domain unit and the second-class time domain unit may be equal, for example, the first-class time domain unit and the second-class time domain unit are both time slots or both subframes, etc., and the embodiment of the present application may be to classify the time domain units according to the frequency domain units corresponding to the time domain units.
  • the first-class time domain unit may correspond to N first-class frequency domain units in the first resource pool
  • the second-class time domain unit may correspond to N second-class frequency domain units in the first resource pool, where N is a positive integer. It can also be understood that for the time domain units in the first resource pool, if a time domain unit corresponds to N first-class frequency domain units in the first resource pool, then the time domain unit is a first-class time domain unit; and if a time domain unit corresponds to N second-class frequency domain units in the first resource pool, then the time domain unit is a second-class time domain unit.
  • the time domain unit corresponds to (or is called associated with) the frequency domain unit, which can be understood as that the resource where the frequency domain unit is located is located on the time domain unit, or the time domain position of the resource where the frequency domain unit is located is the time domain position of the time domain unit.
  • the bandwidth of the first type of frequency domain unit may be smaller than the bandwidth of the second type of frequency domain unit.
  • the number of resource units included in the first type of frequency domain unit may be smaller than the number of resource units included in the second type of frequency domain unit.
  • Resource units are, for example, PRBs, etc.
  • the bandwidth of the second type of frequency domain unit may be a multiple of the bandwidth of the first type of frequency domain unit, or the two may not be in a multiple relationship.
  • the first resource pool may include frequency domain units with different bandwidths on different time domain units, making the configuration of the resource pool more flexible.
  • the first type of time domain unit is an SBFD time slot
  • the second type of time domain unit is a UL time slot.
  • Figure 8 is an example of the first resource pool.
  • Figure 8 takes the time domain unit as a time slot as an example.
  • the time slots included in Figure 8 can be all or part of the time slots in the first resource pool, and there is no limitation on this.
  • Figure 8 takes the example that both the first-type frequency domain unit and the second-type frequency domain unit are subchannels.
  • the first-type time slot corresponds to subchannel 1 to subchannel 3
  • the second-type time slot also corresponds to subchannel 1 to subchannel 3, but the bandwidth of the subchannel corresponding to the first-type time slot is smaller than the bandwidth of the subchannel corresponding to the second-type time slot.
  • D in Figure 8 indicates that this part of the frequency domain resources is a resource used for downlink transmission and does not belong to the first resource pool.
  • the bandwidth of the second-type frequency domain unit is 3 times the bandwidth of the first-type frequency domain unit, and the frequency domain positions of the two are aligned, but are not limited to this.
  • the configuration information may include one or more of the following: information on an index set of M1 first-type time domain units or an index of M1 first-type time domain units, information on an index set of M2 second-type time domain units or an index of M2 second-type time domain units, frequency domain position information of N first-type frequency domain units, frequency domain position information of N second-type frequency domain units, the value of N, the number of PRBs (or the number of RBs, or the number of REs, or the number of subcarriers, etc.) included in the first-type frequency domain units, or the number of PRBs (or the number of RBs, or the number of REs, or the number of subcarriers, etc.) included in the second-type frequency domain units.
  • the number of resource units included in the first type of frequency domain unit may be different from the number of resource units included in the second type of frequency domain unit.
  • the number of resource units included in the first type of frequency domain unit may be smaller than the number of resource units included in the second type of frequency domain unit. Therefore, the configuration information can configure the number of resource units included in the first type of frequency domain unit and/or configure the number of resource units included in the second type of frequency domain unit.
  • S702 The second UE determines configuration information.
  • the configuration information is consistent with the configuration information introduced in S701.
  • the method may further include S703, the first UE sends side control information.
  • the second UE receives the side control information.
  • the first UE may use resources in the first resource pool (e.g., the first time domain unit) to send the side control information.
  • the side control information is, for example, SCI, and the introduction to this can refer to the embodiment shown in FIG4.
  • the sideline control information can be used to schedule the TB corresponding to the data.
  • the data is called the first data.
  • the first data can correspond to one or more TBs.
  • the sideline control information can schedule some or all of the one or more TBs, for example, schedule at least one of the one or more TBs.
  • the sideline control information can also indicate the reserved resources for the first data, and the reserved resources are transmission resources reserved for the first data. When selecting resources, the UE receiving the sideline control information can perform interference avoidance according to the reserved resources.
  • the sideline control information can indicate the time domain and/or frequency domain position of the PSCCH used to carry the sideline control information, and indicate the time domain and/or frequency domain position of the PSSCH associated with the PSCCH, and the PSSCH can carry at least one TB corresponding to the first data.
  • the sideline control information can also indicate the frequency domain unit occupied by the reserved resources within K time domain units, where K is a positive integer.
  • the K time domain units are all the time domain units included in the reserved resources within a resource reservation period, or the reserved time domain units included in a resource reservation period, so the side control information is equivalent to indicating the time domain units and/or frequency domain units occupied by the reserved resources within a resource reservation period.
  • the time domain unit can be called a reserved time domain unit, and all or part of the time domain units included in a resource reservation period can be used as reserved time domain units.
  • the side control information can also indicate the resource reservation period, for example, indicating the number of resource reservation periods (which can be understood as how many periods of resources are reserved for the first data), and/or the duration of a resource reservation period (for example, the duration is greater than or equal to the total duration of K time domain units), etc.
  • the receiving end of the side control information (for example, the second UE) can determine the reserved resources according to the side control information, and the reserved resources include resources reserved for the first data in all resource reservation periods reserved for the first data.
  • the sidelink control information indicates that the number of resource reservation cycles is 3, and the duration of one resource reservation cycle is one time slot, which is equivalent to reserving resources within 3 time slots for the first data.
  • the sidelink control information indicates the frequency domain units occupied by the reserved resources within the K time domain units, and there may be different indication modes.
  • the first indication method is, for example, that the side control information includes FRIV, and FRIV can indicate the frequency domain unit occupied by the reserved resource within K time domain units without resorting to other indication information.
  • the indication method of FRIV, the calculation method of the value of FRIV, etc. can all refer to the embodiment shown in FIG. 4.
  • the number of bits occupied by FRIV can be calculated based on the first parameter It is determined that in an embodiment of the present application, the value of the first parameter can be N, which represents the number of frequency domain units included in each time domain unit in the first resource pool.
  • FRIV can indicate the frequency domain units reserved for the first data in the resource reservation period.
  • the value of the first parameter can be determined according to N, thereby determining the number of bits of FRIV, and the implementation method is relatively simple.
  • the side control information may include parameters for decoding at least one TB corresponding to the first data, for example, the parameters include a modulation and coding scheme (MCS).
  • MCS modulation and coding scheme
  • the side control information indicates a first MCS and a second MCS, the first MCS is applicable to a first type of time domain unit in the K time domain units, and the second MCS is applicable to a second type of time domain unit in the K time domain units.
  • the first MCS and the second MCS may be different. That is, since the bandwidths of the frequency domain units corresponding to the two types of time domain units are different, the embodiment of the present application may set different MCSs for the data carried by the two types of frequency domain units, so that the MCS can be better applied to the corresponding transmission resources.
  • the spectral efficiency corresponding to the first MCS may be greater than the spectral efficiency corresponding to the second MCS, wherein the spectral efficiency may be the product of the modulation order and the channel coding rate. If the spectral efficiency of an MCS is larger, it indicates that the MCS is a higher-order MCS, that is, it can be considered that the first MCS is a higher-order MCS relative to the second MCS, and the second MCS is a lower-order MCS. That is to say, since the bandwidth of the second type of frequency domain unit is larger, a lower-order MCS can be used in the second type of frequency domain unit to improve the reliability of data transmission.
  • the number of frequency domain units occupied by the reserved resources in the first type of time domain unit may be equal to the number of frequency domain units occupied in the second type of time domain unit.
  • the bandwidth of the first type of frequency domain unit is different from the bandwidth of the second type of frequency domain unit, the embodiment of the present application believes that the number of frequency domain units occupied by the reserved resources in the first type of time domain unit may not be equal to the number of frequency domain units occupied in the second type of time domain unit, which makes data transmission more flexible.
  • another optional implementation mode is provided, namely the second indication mode of the side control information, in which the number of frequency domain units occupied by the reserved resources in the first type of time domain unit may not be equal to the number of frequency domain units occupied in the second type of time domain unit.
  • the second indication method is, for example, in addition to FRIV, combining the second indication information to indicate the frequency domain units occupied by the reserved resources within the K time domain units.
  • the side control information sent within a certain type of time domain unit may include the second indication information
  • the second indication information may indicate the number of frequency domain units occupied by the reserved resources within another type of time domain unit (the second type of time domain unit or the first type of time domain unit).
  • the first UE uses the first time domain unit in the first resource pool to send the side control information.
  • the K time domain units include a second time domain unit, and the second time domain unit is a second type of time domain unit, then the second indication information included in the side control information may indicate the number of frequency domain units occupied by the reserved resources in the second time domain unit; or, the first UE uses the first time domain unit in the first resource pool to send the side control information.
  • the first time domain unit is a second type of time domain unit
  • the K time domain units include a third time domain unit
  • the third time domain unit is a first type of time domain unit
  • the second indication information included in the side control information may indicate the number of frequency domain units occupied by the reserved resources in the third time domain unit.
  • the first UE sends an SCI in a first-type time slot, and the SCI indicates that a second-type time slot occupied by the reserved resource is time slot 5 in FIG8 , and the FRIV included in the SCI indicates that the reserved resource occupies subchannel 2 and subchannel 3 in time slot 5.
  • the SCI also includes second indication information, and the second indication information indicates that the number of subchannels occupied by the reserved resource in the second-type time slot is 1, so the first UE can determine that the reserved resource occupies subchannel 2 or subchannel 3 in time slot 5. There can be a corresponding determination method as to whether the reserved resource occupies subchannel 2 or subchannel 3 in time slot 5.
  • the frequency domain unit with the smallest sequence number indicated by FRIV can be used as the frequency domain unit occupied by the reserved resources in a time domain unit of a different type from the time domain unit where the SCI is located.
  • the number of frequency domain units occupied by the reserved resources in a time domain unit of a different type from the time domain unit where the SCI is located is 1, which is less than the number of frequency domain units occupied by the reserved resources in a time domain unit of the same type as the time domain unit where the SCI is located (first type of time slot) (2), and the subchannel with the smallest sequence number indicated by FRIV is subchannel 2, then the first UE can determine that the reserved resources occupy subchannel 2 in the second type of time slot (e.g., time slot 5).
  • the number of frequency domain units occupied by the reserved resources in a time domain unit of a different type from the time domain unit where the SCI is located is less than the number of frequency domain units occupied by the reserved resources in a time domain unit of the same type as the time domain unit where the SCI is located, and the frequency domain unit with the largest sequence number indicated by FRIV may be used as the frequency domain unit occupied by the reserved resources in a time domain unit of a different type from the time domain unit where the SCI is located.
  • the number of frequency domain units occupied by the reserved resources in a time domain unit of a different type from the time domain unit where the SCI is located is 1, which is less than the number of frequency domain units occupied by the reserved resources in a time domain unit of the same type as the time domain unit where the SCI is located (first type of time slot) (2), and the subchannel with the largest sequence number indicated by FRIV is subchannel 3, and the first UE may determine that the reserved resources occupy subchannel 3 in the second type of time slot (e.g., time slot 5).
  • the first UE sends an SCI in the second-type time slot, and the SCI indicates that a first-type time slot occupied by the reserved resource is time slot 6 in FIG8 , and the FRIV included in the SCI indicates that the reserved resource occupies subchannel 2 in time slot 6.
  • the SCI also includes second indication information, and the second indication information indicates that the number of subchannels occupied by the reserved resource in the first-type time slot is 2, so the first UE can determine that the reserved resource occupies subchannel 2 and subchannel 3 in time slot 6, or occupies subchannel 1 and subchannel 2. As to which subchannels the reserved resource occupies in time slot 6, there can be a corresponding determination method.
  • the frequency domain unit with the smallest sequence number indicated by FRIV can be used as the starting frequency domain unit occupied by the reserved resources in the time domain unit of a different type from the time domain unit where the SCI is located.
  • the frequency domain unit index with the smallest sequence number indicated by FRIV is j, where 0 ⁇ j ⁇ N, and the number of frequency domain units occupied by the reserved resources in the time domain unit of a different type from the time domain unit where the SCI is located is Q, where 0 ⁇ Q ⁇ N.
  • the index of the frequency domain unit occupied by the reserved resources in the time domain unit of a different type from the time domain unit where the SCI is located is j ⁇ j+Q-1; if j+Q>N, the index of the frequency domain unit occupied by the reserved resources in the time domain unit of a different type from the time domain unit where the SCI is located is N-Q ⁇ N-1, or j ⁇ N-1 and 0 ⁇ Q-(N-j)-1.
  • the first UE can determine that the reserved resources occupy subchannel 2 and subchannel 3 in the first type of time slot (for example, time slot 6).
  • the number of frequency domain units occupied by reserved resources in time domain units of a different type from the time domain unit where the SCI is located is greater than the number of frequency domain units occupied by reserved resources in time domain units of the same type as the time domain unit where the SCI is located, then the frequency domain unit with the smallest sequence number indicated by FRIV can be used as the ending frequency domain unit occupied by reserved resources in time domain units of a different type from the time domain unit where the SCI is located.
  • the frequency domain unit with the smallest sequence number indicated by FRIV is indexed as j, where 0 ⁇ j ⁇ N, and the number of frequency domain units occupied by reserved resources in time domain units of a different type from the time domain unit where the SCI is located is Q, where 0 ⁇ Q ⁇ N.
  • the index of the frequency domain unit occupied by the reserved resources in a time domain unit of a different type from the time domain unit where the SCI is located is j-Q+1 ⁇ j; if j-Q+1 ⁇ 0, the index of the frequency domain unit occupied by the reserved resources in a time domain unit of a different type from the time domain unit where the SCI is located is 0 ⁇ Q-1, or 0 ⁇ j and N-(Q-(j+1)) ⁇ N-1.
  • the first UE can determine that the reserved resources occupy subchannel 1 and subchannel 2 in the first type of time slot (for example, time slot 6).
  • the first UE may send side control information, and the side control information may schedule one or more TBs corresponding to the first data. Therefore, optionally, the method may also include S704, where the first UE sends at least one TB corresponding to the first data in the first frequency domain unit of the third time domain unit.
  • the second UE receives at least one TB corresponding to the first data in the first frequency domain unit of the third time domain unit.
  • the third time domain unit and the first time domain unit may be the same time domain unit, or may be different time domain units.
  • the second UE may receive the side control information, and the receiving end of the first data may be the second UE or other UE.
  • the embodiment of the present application takes the second UE as an example.
  • the second UE After the second UE receives at least one TB corresponding to the first data, it can send feedback information through PSFCH, and the feedback information is, for example, HARQ feedback, such as ACK or NACK, to indicate whether the at least one TB corresponding to the first data is received successfully or failed.
  • HARQ feedback such as ACK or NACK
  • the first resource pool includes the first type of time domain unit and the second type of time domain unit
  • the number of frequency domain units corresponding to different types of time domain units is the same, so whether it is a PSFCH resource associated with the second type of time domain unit or a PSFCH resource not associated with the second type of time domain unit, the number of associated frequency domain units is the same.
  • the PSFCH resource in time slot 7 is a PSFCH resource associated with the second type of time domain unit (time slot 7 is associated with time slots 2 to 5, where time slot 5 is a second type of time domain unit), and the PSFCH resource in time slot 7 can be associated with 12 frequency domain units;
  • the PSFCH resource in time slot 11 is a PSFCH resource not associated with the second type of time domain unit (time slot 11 is associated with time slots 6 to 9, all of which are first type of time domain units), and the PSFCH resource in time slot 11 can also be associated with 12 frequency domain units.
  • the embodiment of the present application can divide the PSFCH resources into multiple feedback resource unit sets in the frequency domain. The number of divided feedback resource unit sets can be equal to the number of frequency domain units associated with the PSFCH resources. Then the frequency domain units associated with the PSFCH resources can correspond one-to-one to the feedback resource unit sets.
  • the first resource pool includes a fourth time domain unit
  • the fourth time domain unit includes a PSFCH resource
  • the fourth time domain unit is associated with L1 time domain units
  • the L1 time domain units include the second type of time domain units, or do not include the second type of time domain units.
  • the PSFCH resource can be divided into H1 feedback resource unit sets in the frequency domain, and the H1 feedback resource unit sets correspond one-to-one to the frequency domain units in the L1 time domain units.
  • L1 and H1 are both positive integers.
  • the PSFCH resources within a time domain unit are divided into multiple feedback resource unit sets in the frequency domain, each of which may include one or more feedback resource units, such as PRBs.
  • the feedback resource unit set may also be understood as a PRB set.
  • the method may further include S705, the second UE determines a feedback resource unit for sending feedback information.
  • the first UE may also determine a feedback resource unit for receiving feedback information, and the first UE and the second UE determine the feedback resource unit in a similar manner.
  • the first UE sends at least one TB corresponding to the first data in the first frequency domain unit of the third time domain unit.
  • the PSFCH resource associated with the third time domain unit is located in the fourth time domain unit.
  • the fourth time domain unit is associated with L1 time domain units in total, and the third time domain unit belongs to the L1 time domain unit.
  • the first frequency domain unit in the third time domain unit corresponds to the first feedback resource unit set in the H1 feedback resource unit sets
  • the first UE or the second UE can determine the feedback resource unit for transmitting the feedback information of at least one TB corresponding to the first data from the first feedback resource unit set, for example, the determined feedback resource unit is the first feedback resource unit.
  • the method may further include S706, the second UE sends feedback information of at least one TB corresponding to the first data in the first feedback resource unit of the fourth time domain unit.
  • the first UE receives the feedback information in the first feedback resource unit of the fourth time domain unit.
  • the first UE and the second UE may determine the first feedback resource unit in the same manner (such as the manner described above), so that the first UE can correctly receive the feedback information.
  • the first type of time domain unit included in the first resource pool may correspond to N first type of frequency domain units
  • the second type of time domain unit may correspond to N second type of frequency domain units
  • the bandwidth of the second type of frequency domain unit may be greater than the bandwidth of the first type of frequency domain unit. That is to say, among the time domain units included in the first resource pool, the first resource pool may include frequency domain units of different bandwidths on different types of time domain units.
  • the first resource pool may include all available frequency domain resources on the UL time slot and all available frequency domain resources on the SBFD time slot, thereby reducing resource waste and improving resource utilization.
  • the number of frequency domain units corresponding to the first type of time domain unit is equal to the number of frequency domain units corresponding to the second type of time domain unit, thereby eliminating the need to make excessive changes to the side control information and feedback mechanism, etc., and enabling better compatibility with existing technologies.
  • Figure 9 shows a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the communication device 900 may be the first UE or the circuit system of the first UE in the embodiment shown in Figure 4, and is used to implement the method corresponding to the first UE in the above method embodiment.
  • the communication device 900 may be the second UE or the circuit system of the second UE in the embodiment shown in Figure 4, and is used to implement the method corresponding to the second UE in the above method embodiment.
  • the communication device 900 may be the first UE or the circuit system of the first UE in the embodiment shown in Figure 7, and is used to implement the method corresponding to the first UE in the above method embodiment.
  • the communication device 900 may be the second UE or the circuit system of the second UE in the embodiment shown in Figure 7, and is used to implement the method corresponding to the second UE in the above method embodiment.
  • a circuit system is a chip system.
  • the communication device 900 includes at least one processor 901.
  • the processor 901 can be used for internal processing of the device to implement certain control processing functions.
  • the processor 901 includes instructions.
  • the processor 901 can store data.
  • different processors can be independent devices, can be located in different physical locations, and can be located on different integrated circuits.
  • different processors can be integrated into one or more processors, for example, integrated on one or more integrated circuits.
  • the communication device 900 includes one or more memories 903 for storing instructions.
  • data may also be stored in the memory 903.
  • the processor and the memory may be provided separately or integrated together.
  • the communication device 900 includes a communication line 902 and at least one communication interface 904. Since the memory 903, the communication line 902 and the communication interface 904 are all optional, they are all indicated by dotted lines in FIG. 9 .
  • the communication device 900 may further include a transceiver and/or an antenna.
  • the transceiver may be used to send information to other devices or receive information from other devices.
  • the transceiver may be referred to as a transceiver, a transceiver circuit, an input/output interface, etc., and is used to implement the transceiver function of the communication device 900 through an antenna.
  • the transceiver includes a transmitter and a receiver.
  • the transmitter may be used to generate a radio frequency signal from a baseband signal
  • the receiver may be used to convert the radio frequency signal into a baseband signal.
  • Processor 901 may include a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the communication link 902 may include a pathway for transmitting information between the above-mentioned components.
  • the communication interface 904 uses any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), wired access networks, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • wired access networks etc.
  • the memory 903 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 903 may exist independently and be connected to the processor 901 through the communication line 902. Alternatively, the memory 903 may also be integrated with the processor 901.
  • the memory 903 is used to store computer-executable instructions for executing the solution of the present application, and the execution is controlled by the processor 901.
  • the processor 901 is used to execute the computer-executable instructions stored in the memory 903, thereby realizing the communication method provided in the above embodiment of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application code, which is not specifically limited in the embodiments of the present application.
  • the processor 901 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 9 .
  • the communication device 900 may include multiple processors, such as the processor 901 and the processor 905 in FIG. 9. Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
  • the chip When the device shown in FIG9 is a chip, such as a chip of the first UE or a chip of the second UE, the chip includes a processor 901 (may also include a processor 905), a communication line 902 and a communication interface 904, and optionally, may also include a memory 903.
  • the communication interface 904 may be an input interface, a pin or a circuit, etc.
  • the memory 903 may be a register, a cache, etc.
  • the processor 901 and the processor 905 may be a general-purpose CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling the execution of the program of the method of any of the above embodiments.
  • the embodiment of the present application may divide the functional modules of the device according to the above method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated module may be implemented in the form of hardware or in the form of software functional modules.
  • the division of modules in the embodiment of the present application is schematic, which is only a logical function division, and there may be other division methods in actual implementation.
  • Figure 10 shows a schematic diagram of a device, and the device 1000 may be the first UE or the second UE involved in the above-mentioned various method embodiments, or a chip in the first UE or a chip in the second UE.
  • the device 1000 includes a sending unit 1001, a processing unit 1002 and a receiving unit 1003.
  • the device 1000 can be used to implement the steps performed by the first UE or the second UE in the method of the embodiment of the present application.
  • the relevant features can refer to the various embodiments above and will not be repeated here.
  • the functions/implementation processes of the sending unit 1001, the receiving unit 1003, and the processing unit 1002 in FIG10 may be implemented by the processor 901 in FIG9 calling a computer-executable instruction stored in the memory 903.
  • the functions/implementation processes of the processing unit 1002 in FIG10 may be implemented by the processor 901 in FIG9 calling a computer-executable instruction stored in the memory 903, and the functions/implementation processes of the sending unit 1001 and the receiving unit 1003 in FIG10 may be implemented by the communication interface 904 in FIG9.
  • the functions/implementation processes of the sending unit 1001 and the receiving unit 1003 can also be implemented through pins or circuits.
  • the present application also provides a computer-readable storage medium, which stores a computer program or instruction.
  • the computer program or instruction When the computer program or instruction is executed, the method performed by the first UE or the second UE in the aforementioned method embodiment is implemented.
  • the functions described in the above embodiments can be implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of the present application can be essentially or in other words, the part that contributes or the part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • Storage media include: various media that can store program codes, such as USB flash drives, mobile hard drives, ROM, RAM, magnetic disks, or optical disks.
  • the present application also provides a computer program product, which includes: a computer program code, when the computer program code is run on a computer, the computer executes the method executed by the first UE or the second UE in any of the aforementioned method embodiments.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is used to execute the method executed by the first UE or the second UE involved in any of the above method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that a computer can access or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid state drive (SSD)), etc.
  • the various illustrative logic units and circuits described in the embodiments of the present application can be implemented or operated by a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or any combination of the above.
  • the general-purpose processor can be a microprocessor, and optionally, the general-purpose processor can also be any conventional processor, controller, microcontroller or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (EPROM), EEPROM, register, hard disk, removable disk, CD-ROM or any other form of storage medium in the art.
  • the storage medium can be connected to the processor so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium can be arranged in an ASIC, and the ASIC can be arranged in a terminal device.
  • the processor and the storage medium can also be arranged in different components in the terminal device.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Quality & Reliability (AREA)

Abstract

本申请涉及一种通信方法及装置。终端设备确定用于配置第一资源池的配置信息。第一资源池包括M1个第一类时域单元和M2个第二类时域单元,M1个第一类时域单元中的每个第一类时域单元对应第一资源池内的N1个第一类频域单元,M2个第二类时域单元中的每个第二类时域单元对应第一资源池内的N2个第二类频域单元,每个第一类频域单元的带宽与每个第二类频域单元的带宽相同,且N2大于N1。第一资源池在不同类型的时域单元上可以包括不同数量的频域单元,例如第一资源池既可以包括UL时隙上的所有可用频域资源,也可以包括SBFD时隙上的所有可用频域资源,由此减少了资源浪费,提高了资源利用率。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年11月09日提交中国国家知识产权局、申请号为202211400750.9、申请名称为“一种资源配置方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2022年12月19日提交中国国家知识产权局、申请号为202211630768.8、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
当在授权频谱进行侧行链路(sidelink,SL)通信时,现有标准支持将蜂窝网络中用于上行链路(uplink,UL)传输的资源分配给SL通信,以避免对附近用户设备(user equipment,UE)的下行接收造成干扰。因此,在蜂窝网络时分双工(time division duplex,TDD)模式下,UL时隙(slot)可用于SL通信。
另外在蜂窝网络中,为了降低上行传输时延,目前标准正在考虑在网络侧采用子带全双工(subband full duplex,SBFD)模式。其中SBFD时隙包含下行子带(subband)和上行子带,网络设备可同时进行下行发送和上行接收,相比于TDD系统而言可降低上行传输时延。
在蜂窝网络的SBFD模式下,除了UL时隙外,SBFD时隙的上行子带也可以考虑用于SL通信,以降低SL传输时延。然而,在现有的SL资源池配置方式中,资源池内所有时隙的频域资源的大小需要相同。因此,如果资源池内同时包含UL时隙和SBFD时隙的上行子带,则该资源池的频域资源大小不能超过SBFD时隙的上行子带大小,这导致UL时隙的频域资源无法得到充分利用,造成资源浪费。
发明内容
本申请实施例提供一种通信方法及装置,用于提高资源利用率。
第一方面,提供第一种通信方法,该方法可由终端设备执行,或由包括终端设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能,该芯片系统或功能模块例如设置在终端设备中。该方法包括:确定配置信息,所述配置信息用于配置第一资源池,所述第一资源池用于所述终端设备与其他终端设备进行信息传输,所述第一资源池包括M1个第一类时域单元和M2个第二类时域单元,M1和M2均为正整数,所述M1个第一类时域单元中的每个第一类时域单元对应所述第一资源池内的N1个第一类频域单元,所述M2个第二类时域单元中的每个第二类时域单元对应所述第一资源池内的N2个第二类频域单元,N1和N2均为正整数,其中每个第一类频域单元的带宽与每个第二类频域单元的带宽相同,且N2大于N1。
本申请实施例中,第一资源池包括的第一类时域单元可对应N1个第一类频域单元,第二类时域单元可对应N2个第二类频域单元,对于N1和N2的值并未限制,例如N1与N2可以不同。也就是说,在第一资源池包括的时域单元中,第一资源池在不同类型的时域单元上可以包括不同数量的频域单元,例如第一资源池既可以包括UL时隙上的所有可用频域资源,也可以包括SBFD时隙上的所有可用频域资源,由此减少了资源浪费,提高了资源利用率。
在一种可选的实施方式中,所述配置信息包括如下一项或多项:所述M1个第一类时域单元的索引集合的信息,所述M2个第二类时域单元的索引集合的信息,所述N1个第一类频域单元的频域位置信息,所述N2个第二类频域单元的频域位置信息,N1的值,N2的值;或,所述每个第一类频域单元或所述每个第二类频域单元包括的PRB数量。该配置信息可以通过配置如上一项或多项参数来配置第一资源池。除了如上参数外,该配置信息还可以包括其他参数,对此不做限制。
在一种可选的实施方式中,确定配置信息,包括:接收来自网络设备的所述配置信息;或,确定预配置的所述配置信息。例如该配置信息可由网络设备发送,该网络设备可以通过广播或单播方式发送该配置信息。或者该配置信息可以预配置在终端设备中,例如在该终端设备出厂时预配置。或者该配置信息也可由该终端设备的高层(例如RRC层或其他协议层)配置等。
在一种可选的实施方式中,所述方法还包括:在所述第一资源池内的第一时域单元发送或接收侧行控制信息,所述侧行控制信息包括频率资源指示值,所述频率资源指示值用于指示预留资源在K个时域单元内占用的频域单元,其中,所述频率资源指示值占用的比特数根据第一参数确定,K为正整数。该侧行控制信息可以指示第一数据的预留资源,该预留资源是为第一数据预留的传输资源。从而接收该侧行控制信息的终端设备在选择资源时,可根据该预留资源进行干扰规避。例如,该侧行控制信息指示预留资源的一种可选方式为,该侧行控制信息可以指示该预留资源在K个时域单元内占用的频域单元的位置信息,或者说指示该预留资源在K个时域单元内占用的频域单元。
在一种可选的实施方式中,所述第一参数为N2。在这种实施方式中,无论一个资源预留周期内的预留资源所在的时域单元仅包括第二类时域单元,还是仅包括第一类时域单元,或者既包括第一类时域单元也包括第二类时域单元,频率资源指示值都可以指示该资源预留周期内为第一数据预留的频域单元。对于侧行控制信息的接收端来说,可以根据N2确定第一参数的值,从而确定频率资源指示值的比特数,实现方式较为简单。
在一种可选的实施方式中,如果所述第一时域单元属于所述M1个第一类时域单元,所述第一参数为N1;或者,如果所述第一时域单元属于所述M2个第二类时域单元,所述第一参数为N2。相比第一参数始终为N2来说,在这种可选的实施方式下。如果侧行控制信息在第一类时域单元中发送,则第一参数的值为N1,由此使得频率资源指示值占用的比特数较少,能够节省传输开销。
在一种可选的实施方式中,所述第一时域单元属于所述M1个第一类时域单元,所述K个时域单元包括第二时域单元,且所述第二时域单元属于所述M2个第二类时域单元,所述侧行控制信息还用于指示所述预留资源在所述第二时域单元内占用的第一频域单元集合的信息,其中,所述N2个第二类频域单元被划分为至少两个频域单元集合,其中每个频域单元集合包括一个或多个第二类频域单元,所述第一频域单元集合为所述至少两个频域单元集合中的一个频域单元集合。如果第一时域单元为第一类时域单元,则频率资源指示值的比特数根据N1确定,在这种情况下,如果K个时域单元包括了第二类时域单元,则频率资源指示值无法指示预留资源在第二类时域单元上占用的额外的频域单元(即,相对于第一类时域单元对应的频域单元来说多出的频域单元)。为此,该侧行控制信息还可以指示预留资源在第二时域单元内占用的频域单元集合,从而该侧行控制信息的接收端可以根据频率资源指示值以及预留资源在第二时域单元内占用的频域单元集合确定该预留资源在K个时域单元内占用的频域单元。
在一种可选的实施方式中,所述方法还包括:在所述第一资源池内的第一时域单元发送或接收侧行控制信息,所述侧行控制信息包括K个第一指示信息,K为正整数,所述K个第一指示信息用于指示预留资源在K个时域单元内占用的频域单元。可选的,所述K个第一指示信息中的每个第一指示信息为比特位图。前文介绍了,该侧行控制信息可以通过频率资源指示值指示该预留资源在K个时域单元内占用的频域单元,除此之外,该侧行控制信息还可以通过第一指示信息的方式指示该预留资源在K个时域单元内占用的频域单元。例如,K个第一指示信息独立存在,互不干扰,分别指示该预留资源在一个时域单元内占用的频域单元,由此该侧行控制信息也能够指示该预留资源在K个时域单元内占用的频域单元。可选的,K个第一指示信息中的每个第一指示信息可通过比特位图实现,一个比特位图的比特数可以与该比特位图所指示的时域单元对应的频域单元的数量相同,从而该比特位图的一个比特可指示该时域单元对应的一个频域单元。相较于通过频率资源指示值指示的方式来说,通过第一指示信息进行指示的方式更为灵活。
在一种可选的实施方式中,所述方法还包括:在第三时域单元的第一频域单元上发送或接收第一数据,其中,第四时域单元包括用于发送或接收反馈信息的H1个反馈资源单元集合,所述H1个反馈资源单元集合与L1个时域单元内的频域单元一一对应,所述第三时域单元属于所述L1个时域单元,所述第三时域单元内的所述第一频域单元对应所述H1个反馈资源单元集合中的第一反馈资源单元集合,H1和L1均为正整数;从所述第一反馈资源单元集合中确定第一反馈资源单元,所述第一反馈资源单元用于接收或发送所述第一数据的反馈信息。接收端接收到第一数据对应的至少一个TB后,可以通过PSFCH发送反馈信息,该反馈信息例如为HARQ反馈,例如ACK或NACK,以指示第一数据对应的至少一个TB接收成功或失败。为此,第一数据的发送端和接收端都可以确定用于传输该反馈信息的反馈资源单元,由此能够发送或接收该反馈信息。
在一种可选的实施方式中,所述L1个时域单元不包括所述M2个第二类时域单元中的任一个第二类时域单元;或者,所述L1个时域单元包括所述M2个第二类时域单元中的至少一个第二类时域单元。其中,所述L1个时域单元不包括所述M2个第二类时域单元中的任一个第二类时域单元时的H1,小于所述L1个时域单元包括所述M2个第二类时域单元中的至少一个第二类时域单元时的H1。如果L1个时域单元包括第二类时域单元,表明第四时域单元上的反馈资源单元关联了更多的频域单元,因此可将第四时域单元上的反馈资源单元划分为更多的反馈资源单元集合,以传输更多的频域单元所对应的反馈信息。
在一种可选的实施方式中,从所述第一反馈资源单元集合中确定第一反馈资源单元,包括:根据所述第一数据相关的标识,确定所述第一反馈资源单元的索引、所述第一反馈资源单元对应的子频域单元索引、所述第一反馈资源单元对应的序列的循环移位、或所述第一反馈资源单元对应的正交覆盖码OCC中的一项或多项,其中,所述第一反馈资源单元在时域上包括至少两个子时域单元。如果第四时域单元与第二类时域单元关联,则其关联的频域单元较多,也就是说,第四时域单元上的反馈资源单元会被用于传输更多的反馈信息。在这种情况下,可以扩展反馈资源单元包括的时域资源,例如一个反馈资源单元包括的时域符号数量可以大于1,由此相当于令反馈资源单元在时域上包括更多的资源,以能够用于更多反馈信息的传输。在这种情况下,可以通过多种维度的特征扩展反馈信息的可选范围,使得反馈信息资源更为丰富。
在一种可选的实施方式中,所述OCC为沃尔什码序列或离散傅里叶变换序列。
在一种可选的实施方式中,所述L1个时域单元包括所述M2个第二类时域单元中的一个或多个第二类时域单元,且所述第四时域单元属于所述M1个第一类时域单元。如果第四时域单元为第二类时域单元,则第四时域单元对应的频域资源较为丰富,能够用于传输较多的反馈信息,因此在这种情况下,即使第四时域单元关联了第二类时域单元,也可以不必扩展反馈资源单元的时域资源。因此,如果第四时域单元关联了第二类时域单元,且第四时域单元为第一类时域单元,则可以扩展反馈资源单元的时域资源。
第二方面,提供第二种通信方法,该方法可由终端设备执行,或由包括终端设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能,该芯片系统或功能模块例如设置在终端设备中。该方法包括:确定配置信息,所述配置信息用于配置第一资源池,所述第一资源池用于所述终端设备与其他终端设备进行信息传输,所述第一资源池包括M1个第一类时域单元和M2个第二类时域单元,M1和M2均为正整数,所述M1个第一类时域单元中的每个第一类时域单元对应N个第一类频域单元,所述M2个第二类时域单元中的每个第二类时域单元对应N个第二类频域单元,N为正整数,其中每个第一类频域单元的带宽小于每个第二类频域单元的带宽。
在第一资源池包括的时域单元中,第一资源池在不同类型的时域单元上可以包括不同带宽的频域单元,例如第一资源池既可以包括UL时隙上的所有可用频域资源,也可以包括SBFD时隙上的所有可用频域资源,由此减少了资源浪费,提高了资源利用率。而且本申请实施例中,第一类时域单元对应的频域单元的数量和第二类时域单元对应的频域单元的数量相等,由此可以不必对侧行控制信息以及反馈机制等进行过多的改变,能够更好地与已有技术兼容。
在一种可选的实施方式中,所述配置信息包括如下一项或多项:所述M1个第一类时域单元的索引集合的信息,所述M2个第二类时域单元的索引集合的信息,所述N个第一类频域单元的频域位置信息,所述N个第二类频域单元的频域位置信息,N的值,所述每个第一类频域单元包括的PRB数量,或,所述每个第二类频域单元包括的PRB数量。该配置信息可以通过配置如上一项或多项参数来配置第一资源池。除了如上参数外,该配置信息还可以包括其他参数,对此不做限制。
在一种可选的实施方式中,确定配置信息,包括:接收来自网络设备的所述配置信息;或,确定预配置的所述配置信息。例如该配置信息可由网络设备发送,该网络设备可以通过广播或单播方式发送该配置信息。或者该配置信息可以预配置在终端设备中,例如在该终端设备出厂时预配置。或者该配置信息也可由该终端设备的高层(例如RRC层或其他协议层)配置等。
在一种可选的实施方式中,所述方法还包括:发送或接收侧行控制信息,所述侧行控制信息包括频率资源指示值,所述频率资源指示值用于指示预留资源在K个时域单元内占用的频域单元,K为正整数,所述侧行控制信息还用于指示第一调制与编码策略MCS和第二MCS,所述第一MCS适用于所述K个时域单元中的第一类时域单元,所述第二MCS适用于所述K个时域单元中的第二类时域单元,所述第一MCS与所述第二MCS不同。由于两类时域单元对应的频域单元的带宽不同,因此本申请实施例可以为这两类频域单元承载的数据设置不同的MCS,从而使得MCS能够更好地适用相应的传输资源。
在一种可选的实施方式中,第一MCS对应的频谱效率大于第二MCS对应的频谱效率。其中,频谱效率可以是调制阶数与信道编码码率的乘积。如果一个MCS的频谱效率较大,表明该MCS是更为高阶的MCS,即,可以认为第一MCS相对于第二MCS来说是高阶MCS,而第二MCS是较为低阶的MCS。也就是说,由于第二类频域单元的带宽较大,因此可以在第二类频域单元采用更为低阶的MCS,以提升数据传输的可靠性。
在一种可选的实施方式中,所述方法还包括:在所述第一资源池内的第一时域单元发送或接收侧行控制信息,所述侧行控制信息包括频率资源指示值,所述频率资源指示值用于指示预留资源在K个时域单元内占用的频域单元,K为正整数。其中,所述第一时域单元属于所述M1个第一类时域单元,所述K个时域单元包括第二时域单元,且所述第二时域单元属于所述M2个第二类时域单元,所述侧行控制信息还用于指示所述预留资源在所述第二时域单元内占用的频域单元数量;或,所述第一时域单元属于所述M2个第二类时域单元,所述K个时域单元包括第三时域单元,且所述第三时域单元属于所述M2个第一类时域单元,所述侧行控制信息还用于指示所述预留资源在所述第三时域单元内占用的频域单元数量。可理解为,在某一类时域单元(第一类时域单元或第二类时域单元)内发送的侧行控制信息可以包括第二指示信息,第二指示信息可以指示预留资源在另一类时域单元(第二类时域单元或第一类时域单元)内占用的频域单元的数量。在这种指示方式下,预留资源在第一类时域单元内占用的频域单元的数量可以不等于在第二类时域单元内占用的频域单元的数量,使得数据传输过程更为灵活。
第三方面,提供一种通信装置。所述通信装置可以为上述第一方面至第二方面中的任一方面所述的终端设备。所述通信装置具备上述终端设备的功能。所述通信装置例如为终端设备,或为包括终端设备的较大设备,或为终端设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
在一种可选的实施方式中,所述处理单元,用于确定配置信息,所述配置信息用于配置第一资源池,所述第一资源池用于所述终端设备与其他终端设备进行信息传输,所述第一资源池包括M1个第一类时域单元和M2个第二类时域单元,M1和M2均为正整数,所述M1个第一类时域单元中的每个第一类时域单元对应所述第一资源池内的N1个第一类频域单元,所述M2个第二类时域单元中的每个第二类时域单元对应所述第一资源池内的N2个第二类频域单元,N1和N2均为正整数,其中每个第一类频域单元的带宽与每个第二类频域单元的带宽相同,且N2大于N1。
在一种可选的实施方式中,所述处理单元,用于确定配置信息,所述配置信息用于配置第一资源池,所述第一资源池用于所述终端设备与其他终端设备进行信息传输,所述第一资源池包括M1个第一类时域单元和M2个第二类时域单元,M1和M2均为正整数,所述M1个第一类时域单元中的每个第一类时域单元对应N个第一类频域单元,所述M2个第二类时域单元中的每个第二类时域单元对应N个第二类频域单元,N为正整数,其中每个第一类频域单元的带宽小于每个第二类频域单元的带宽。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面至第二方面中的任一方面所述的终端设备的功能。
第四方面,提供另一种通信装置,该通信装置可以为终端设备,或者为用于终端设备中的芯片或芯片系统。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述各方面中由终端设备所执行的方法。
第五方面,提供一种通信系统,包括终端设备,该终端设备用于执行如第一方面至第二方面中的任一方面所述的终端设备所执行的通信方法。
在一种可选的实施方式中,该终端设备通过第三方面或第四方面或所述的通信装置实现。
第六方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中终端设备所执行的方法被实现。
第七方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
附图说明
图1为UL时隙的资源可用于SL通信的示意图;
图2为SBFD时隙的资源可用于SL通信的示意图;
图3为本申请实施例的一种应用场景示意图;
图4为本申请实施例提供的一种通信方法的流程图;
图5为本申请实施例中第一资源池的一种示意图;
图6为包括PSFCH资源的时隙和不包括PSFCH资源的时隙的结构示意图;
图7为本申请实施例提供的另一种通信方法的流程图;
图8为本申请实施例中第一资源池的另一种示意图;
图9为本申请实施例提供的一种装置的示意图;
图10为本申请实施例提供的又一种装置的示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
[根据细则91更正 14.12.2023]
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。另外,本申请所介绍的各个实施例中对于步骤的编号,只是为了区分不同的步骤,并不用于限定步骤之间的先后顺序。例如,S401可以发生在S402之前,或者可能发生在S402之后,或者也可能与S402同时发生。
以下,对本申请实施例中的部分用语或概念进行解释说明,以便于本领域技术人员理解。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、V2X、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为UE、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。为描述方便,本申请实施例中将终端设备以UE为例进行说明。
本申请实施例中的网络设备,例如包括接入网设备,和/或核心网设备。所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于基站(基站收发站点(base transceiver station,BTS),Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),第三代合作伙伴计划(3rd generation partnership project,3GPP)后续演进的基站,无线保真(wireless fidelity,Wi-Fi)系统中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持同一种接入技术的网络,也可以支持不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。所述接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。所述接入网设备还可以是服务器等。例如,车到一切(vehicle to everything,V2X)技术中的网络设备可以为路侧单元(road side unit,RSU)。以下对接入网设备以基站为例进行说明。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。所述核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请实施例并不对此进行限定。以第五代移动通信技术(the 5th generation,5G)系统为例,所述核心网设备包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、策略控制功能(policy control function,PCF)或用户面功能(user plane function,UPF)等。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请实施例提供的技术方案可以应用于第四代移动通信技术(the 4th generation,4G)系统中,例如长期演进(long term evolution,LTE)系统,或可以应用于5G系统中,例如新空口(new radio,NR)系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统,例如第六代移动通信技术(the 6th generation,6G)系统等,具体的不做限制。本申请实施例提供的技术方案可以应用于设备到设备(device-to-device,D2D)场景,例如NR-D2D场景等,或者可以应用于车联网(vehicle to everything,V2X)场景,例如NR-V2X场景等。例如可应用于智能驾驶、辅助驾驶、或智能网联车等领域。
下面介绍本申请实施例涉及的技术特征。
如图1所示,在蜂窝网络TDD模式下,网络设备会配置下行链路(downlink,DL)时隙和UL时隙,图1中的“D”表示DL时隙,“U”表示UL时隙。如果在授权频谱进行SL通信,则只能将UL时隙的资源配置给SL资源池,因此并不是每个时隙都存在SL通信资源。当UL时隙较少时,会导致SL通信可用资源较少且时延较大,难以满足工业互联网等场景超低时延业务的需求。在现有的SL资源池配置中,SL资源池内包含L个连续或非连续的时隙,每个时隙包含N个连续的子信道,即每个时隙的带宽大小相同。
在蜂窝通信中,为了降低上行传输时延,5G NR正在讨论SBFD模式。如图2所示,SBFD时隙可以包含一个或多个下行子带(图2中表示为D)和一个或多个上行子带(图2中表示为U)。其中下行子带用于网络设备向UE发送信息,上行子带用于UE向网络设备发送信息,且网络设备在SBFD时隙可同时进行下行发送和上行接收,相比于TDD系统可降低上行传输时延。如图2所示,在蜂窝网络SBFD模式下,除了UL时隙资源外,SBFD时隙的上行子带资源也可以考虑用于SL通信,以降低SL传输时延。因此对于SL通信而言,SBFD时隙的上行子带资源可以视为SBFD时隙上的可用频域资源,例如,SBFD时隙的所有上行子带资源就可视为该SBFD时隙上的所有可用频域资源。
然而,在现有的SL资源池配置方式中,资源池内所有时隙的频域资源的大小需要相同。因此,如果资源池内同时包含UL时隙和SBFD时隙的上行子带,则该资源池的频域资源大小不能超过SBFD时隙的上行子带大小,这导致UL时隙的频域资源无法得到充分利用,造成资源浪费。
鉴于此,提供本申请实施例的技术方案。本申请实施例中,第一资源池包括的第一类时域单元可对应N1个第一类频域单元,第二类时域单元可对应N2个第二类频域单元,对于N1和N2的值并未限制,例如N1与N2可以不同。也就是说,在第一资源池包括的时域单元中,第一资源池在不同类型的时域单元上可以包括不同数量的频域单元,例如第一资源池既可以包括UL时隙上的所有可用频域资源,也可以包括SBFD时隙上的所有可用频域资源,由此减少了资源浪费,提高了资源利用率。
本申请实施例中,对于“SL”可以称为“侧行链路”,例如SL信息可以称为侧行链路信息,SL数据可以称为侧行链路数据等。或者,对于SL也可以简称为“侧行”,例如SL信息可以简称为侧行信息,SL数据可以简称为侧行数据等,后文以此为例。
本申请实施例中,频域单元例如为子带或子信道(subchannel)等。可选的,本申请实施例中的频域单元为SL资源池(例如后文将要介绍的第一资源池)内的最小频域资源调度单元,例如,在调度资源时,是以频域单元为单位来调度。
本申请实施例中,时域单元例如为子帧(subframe)、时隙、微时隙(mini-slot)、或正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(symbol)等。
本申请实施例中,如无特殊说明,则所涉及的“资源池”均为“SL资源池”,例如后文将要介绍的第一资源池可以是SL资源池。“SL资源池”指的是用于传输SL信息的时频资源集合,还可以有其他名称,本申请不做限定。
可参考图3,为本申请实施例适用的一种通信网络架构,UE1和UE2可进行SL通信。可选的,该通信网络架构还可以包括网络设备,例如网络设备能够与UE1和/或UE2通信(图3以网络设备能够与UE1通信为例)。该网络设备例如为接入网设备和/或核心网设备。
为了更好地介绍本申请实施例,下面结合附图介绍本申请实施例所提供的方法。后文中如无特殊说明,则本申请的各个实施例对应的附图中,虚线表示的步骤均为可选的步骤。本申请的各个实施例所提供的方法均可应用于图3所示的网络架构,例如本申请的各个实施例提供的方法所涉及的第一UE可以是图3的UE1,本申请的各个实施例提供的方法所涉及的第二UE可以是图3中的UE2,本申请的各个实施例提供的方法所涉及的网络设备可以是图3中的网络设备。
下面介绍本申请实施例提供的一种通信方法,请参见图4,为该方法的流程图。
S401、第一UE确定配置信息。该配置信息可用于配置第一资源池,第一资源池可用于第一UE与其他UE通信,例如用于第一UE与其他UE进行信息传输。
第一资源池可以包括M1个第一类时域单元和M2个第二类时域单元,M1和M2均为正整数,且对于两者的大小关系不做限制。其中,第一类时域单元和第二类时域单元的时长可以相等,例如第一类时域单元和第二类时域单元均为时隙或均为子帧等,本申请实施例可以是根据时域单元所对应的频域单元对时域单元进行分类。例如,第一类时域单元可以对应第一资源池内的N1个第一类频域单元,第二类时域单元可以对应第一资源池内的N2个第二类频域单元,N1和N2均为正整数。也可以理解为,对于第一资源池内的时域单元来说,如果一个时域单元对应第一资源池内的N1个第一类频域单元,则该时域单元为第一类时域单元;而如果一个时域单元对应第一资源池内的N2个第二类频域单元,则该时域单元为第二类时域单元。其中,时域单元与频域单元对应(或者称为关联),可以理解为,该频域单元所在的资源位于该时域单元上,或者说该频域单元所在资源的时域位置是该时域单元的时域位置。
第一类频域单元的带宽与第二类频域单元的带宽可以相同,例如,第一类频域单元包括的资源单元的数量与第二类频域单元包括的资源单元的数量相等。资源单元例如为物理资源块(physical resource block,PRB)、资源块(resource block,RB)、资源元素(resource element,RE)、或子载波(subcarrier)等。从这个角度来看,也可以认为第一类频域单元和第二类频域单元是同一类频域单元,例如对于本申请实施例也可以理解为,第一类时域单元对应第一资源池内的N1个频域单元,第二类时域单元对应第一资源池内的N2个频域单元。
例如N2大于N1,也就是说,第二类时域单元对应的第二类频域单元的数量大于第一类时域单元对应的第一类频域单元的数量。可见,第一资源池在不同的时域单元上可以包括数量不同的频域单元,使得资源池的配置更加灵活。例如第一类时域单元为SBFD时隙,第二类时域单元为UL时隙,通过本申请实施例的技术方案,可将这两类时隙的频域资源均包括在第一资源池中,减少了资源浪费的情况,提高了资源利用率。
可参考图5,为第一资源池的一种示例。图5以N1=3、N2=9为例,实际不限于此,只要N2大于N1即可。图5以时域单元是时隙为例,图5包括的时隙可以是第一资源池内的全部或部分时隙,对此不做限制。图5以第一类频域单元和第二类频域单元均是子信道为例,例如第一类时隙对应子信道1至子信道3,第二类时隙对应子信道1至子信道9。图5中的“D”,表示该部分频域资源是用于下行传输的资源,不属于第一资源池。
用于配置第一资源池的该配置信息可由网络设备配置,例如网络设备可以发送该配置信息,则第一UE接收该配置信息。网络设备可以通过广播方式发送该配置信息,例如通过系统消息或其他广播消息发送该配置信息;或者,网络设备也可以通过单播方式发送该配置信息,例如通过高层信令或物理层信令发送该配置信息,高层信令例如为无线资源控制(radio resource control,RRC)信令或媒体接入控制(media access control,MAC)控制元素(control element,CE)等,物理层信令例如为下行控制信息(downlink control information,DCI)等。
或者,该配置信息可以预配置在第一UE中,例如在第一UE出厂时配置。
或者,该配置信息可由第一UE自行配置,例如第一UE的高层(例如RRC层等)可以配置该配置信息。或者,该配置信息也可由其他UE配置,并可以发送给第一UE,则第一UE可以接收该配置信息。例如第一UE加入了UE组,该UE组内的组头设备可以配置该配置信息,并发送给该UE组内的组员设备(例如通过组播方式发送)。如果第一UE为组头设备,则第一UE可以自行配置该配置信息;如果第一UE为组员设备,则第一UE可以接收来自组头设备的该配置信息。
该配置信息可以包括如下一项或多项:M1个第一类时域单元的索引集合的信息或者M1个第一类时域单元的索引,M2个第二类时域单元的索引集合的信息或者M2个第二类时域单元的索引,N1个第一类频域单元的频域位置信息,N2个第二类频域单元的频域位置信息,N1的值,N2的值,或,第一类频域单元或第二类频域单元包括的PRB数量(或RB数量,或RE数量,或子载波数量等)。
M1个第一类时域单元中的每个第一类时域单元可以有对应的索引,则M1个第一类时域单元的索引就可以包括在一个索引集合中,该配置信息可包括该索引集合的信息,例如包括该索引集合的标识。则第一UE根据该索引集合的信息就能确定该索引集合,从而确定该索引集合所包括的M1个第一类时域单元的索引。
或者,该配置信息也可以直接包括M1个第一类时域单元的索引,从而第一UE不必确定索引集合,而是可以直接确定M1个第一类时域单元。例如该配置信息可以通过比特位图(bitmap)指示M1个第一类时域单元的索引。
可选的,第一类时域单元的索引例如为第一类时域单元的物理位置的索引,而不是第一类时域单元的逻辑位置的索引。
同理,M2个第二类时域单元中的每个第二类时域单元可以有对应的索引,则M2个第二类时域单元的索引可以包括在一个索引集合中,该配置信息可包括该索引集合的信息,例如包括该索引集合的标识。则第一UE根据该索引集合的信息就能确定该索引集合,从而确定该索引集合所包括的M2个第二类时域单元的索引。
或者,该配置信息也可以直接包括M2个第二类时域单元的索引,从而第一UE不必确定索引集合,而是可以直接确定M2个第二类时域单元。例如该配置信息可以通过bitmap指示M2个第二类时域单元的索引。
可选的,第二类时域单元的索引例如为第二类时域单元的物理位置的索引,而不是第二类时域单元的逻辑位置的索引。
其中,该配置信息对于M1个第一类时域单元的索引和M2个第二类时域单元的索引的指示方式可以相同,例如该配置信息通过bitmap指示M1个第一类时域单元的索引以及M2个第二类时域单元的索引。或者,该配置信息对于M1个第一类时域单元的索引和M2个第二类时域单元的索引的指示方式也可以不同,例如对于M1个第一类时域单元,该配置信息指示的是M1个第一类时域单元的索引所在的索引集合的信息;而对于M2个第二类时域单元,该配置信息则是直接包括M2个第二类时域单元的索引。
在第一资源池中,不同的第一类时域单元上的第一类频域单元的起始频域位置和结束频域位置可以相同,因此该配置信息包括一个第一类时域单元上的N1个第一类频域单元的频域位置信息即可。该配置信息所包括的N1个第一类频域单元的频域位置信息,例如包括N1个第一类频域单元中每个第一类频域单元的频域位置信息,或者包括N1个第一类频域单元作为整体的起始频域位置信息和/或结束频域位置信息。其中,N1个第一类频域单元作为整体的起始频域位置信息,可以是N1个第一类频域单元中的起始频域单元的起始频域位置信息;N1个第一类频域单元作为整体的结束频域位置信息,可以是N1个第一类频域单元中的结束频域单元的结束频域位置信息。N1个第一类频域单元中的起始频域单元,例如为N1个第一类频域单元中频率最低的频域单元;N1个第一类频域单元中的结束频域单元,例如为N1个第一类频域单元中频率最高的频域单元。以图5为例,该配置信息可以包括任一个第一类时隙上的3个子信道中的每个子信道的频域位置信息;或者包括任一个第一类时隙上的最下方的子信道的起始频域位置信息,和/或该第一类时隙上的最上方的子信道的结束频域位置信息。其中,一个第一类频域单元的频域位置信息,可包括该第一类频域单元的起始频域位置信息和/或结束位置信息。
例如,该配置信息包括的某个第一类频域单元的起始频域位置信息,可以是该第一类频域单元的起始频域位置与第一资源池所在的部分带宽(bandwidth part,BWP)内的第一个资源单元之间的偏移信息。其中,该第一类频域单元的起始频域位置例如为该第一类频域单元内的起始资源单元的频域位置。该配置信息包括的N1个第一类频域单元的起始频域位置和/或结束频域位置,或者某个第一类频域单元的结束频域位置,配置方式也可以是类似的。
在第一资源池中,不同的第二类时域单元上的第二类频域单元的起始频域位置和结束频域位置可以相同,因此该配置信息包括一个第二类时域单元上的N2个第二类频域单元的频域位置信息即可。该配置信息所包括的N2个第二类频域单元的频域位置信息,例如包括N2个第二类频域单元中每个第二类频域单元的频域位置信息,或者包括N2个第二类频域单元作为整体的起始频域位置信息和/或结束频域位置信息。该配置信息所包括的N2个第二类频域单元的频域位置信息的实现方式,与该配置信息包括的N1个第一类频域单元的频域位置信息的实现方式是类似的,更多内容可参考上一段的介绍。
例如,该配置信息包括的某个第二类频域单元的起始频域位置信息,可以是该第二类频域单元的起始频域位置与第一资源池所在的BWP内的第一个资源单元之间的偏移信息。其中,该第二类频域单元的起始频域位置例如为该第二类频域单元内的起始资源单元的频域位置。该配置信息包括的N2个第二类频域单元的起始频域位置和/或结束频域位置,或者某个第二类频域单元的结束频域位置,配置方式也可以是类似的。
或者,该配置信息包括的某个第二类频域单元的起始频域位置信息,也可以是该第二类频域单元的起始频域位置与N1个第一类频域单元中的起始频域单元或结束频域单元之间的偏移信息。该配置信息包括的N2个第二类频域单元的起始频域位置和/或结束频域位置,或者某个第二类频域单元的结束频域位置,配置方式也可以是类似的。则第一UE结合N1个第一类频域单元的频域位置信息也能确定N2个第二类频域单元的频域位置信息。
或者,该配置信息包括的某个第一类频域单元的起始频域位置信息,也可以是该第一类频域单元的起始频域位置与N2个第二类频域单元中的起始频域单元或结束频域单元之间的偏移信息。该配置信息包括的N1个第一类频域单元的起始频域位置和/或结束频域位置,或者某个第一类频域单元的结束频域位置,配置方式也可以是类似的。则第一UE结合N2个第二类频域单元的频域位置信息也能确定N1个第二类频域单元的频域位置信息。
在前文介绍了,第一类频域单元包括的资源单元的数量与第二类频域单元包括的资源单元的数量可以相同,因此该配置信息可以包括任一个第一类频域单元所包括的资源单元的数量,或者包括任一个第二类频域单元所包括的资源单元的数量,第一UE根据该配置信息包括的该数量就能确定第一类频域单元包括的资源单元的数量,也能确定第二类频域单元包括的资源单元的数量。
S402、第二UE确定配置信息。该配置信息与S401所介绍的配置信息是一致的。关于S402的更多内容,例如该配置信息包括的信息以及第二UE确定配置信息的方式等,均可参考S401的介绍。
可选的,该方法还可以包括S403,第一UE在第一资源池内的第一时域单元发送侧行控制信息。相应的,第二UE在第一时域单元接收该侧行控制信息。该侧行控制信息例如为侧行链路控制信息(sidelink control information,SCI),该SCI可以通过物理侧行链路控制信道(physical sidelink control channel,PSCCH)发送;或者,如果该SCI为第一阶SCI(或称SCI1),则该SCI通过PSCCH发送,而如果该SCI为第二阶SCI(或称SCI2),则该SCI可通过物理侧行链路共享信道(physical sidelink shared channel,PSSCH)发送。
该侧行控制信息可用于调度数据对应的传输块(transport block,TB),例如将该数据称为第一数据,第一数据可以对应一个或多个TB,该侧行控制信息可用于调度这一个或多个TB中的部分或全部TB,例如可调度这一个或多个TB中的至少一个TB。该侧行控制信息还可以指示第一数据的预留资源,该预留资源是为第一数据预留的传输资源。接收该侧行控制信息的UE在选择资源时,可根据该预留资源进行干扰规避。例如,该侧行控制信息可以指示用于承载该侧行控制信息的PSCCH的时域和/或频域位置,以及指示用于承载与该PSCCH关联的PSSCH的时域和/或频域位置,该PSSCH可承载第一数据对应的至少一个TB。该侧行控制信息指示第一数据的预留资源,例如,该侧行控制信息可以指示该预留资源在K个时域单元内占用的频域单元位置信息,K为正整数。可选的,K个时域单元是在一个资源预留周期内预留资源所在的时域单元,或者是一个资源预留周期包括的预留时域单元,因此该侧行控制信息相当于指示了该预留资源在一个资源预留周期内占用的时域单元和/或频域单元。其中,如果该预留资源占用了一个资源预留周期内的某个时域单元,则该时域单元可被称为预留时域单元,一个资源预留周期内包括的全部或部分时域单元可以作为预留时域单元。可选的,该侧行控制信息还可以指示资源预留周期,例如指示资源预留周期的数量(可理解为,为第一数据预留了多少个周期内的资源),和/或一个资源预留周期的时长(例如该时长大于或等于K个时域单元的总时长)等。该侧行控制信息的接收端(例如第二UE)能够根据该侧行控制信息确定该预留资源,该预留资源包括在为第一数据预留的所有资源预留周期内为第一数据预留的资源。例如该侧行控制信息指示资源预留周期的数量为3,一个资源预留周期的时长为一个时隙,则相当于为第一数据预留了3个时隙内的资源。
该侧行控制信息指示该预留资源在K个时域单元内占用的频域单元,一种指示方式例如为,该侧行控制信息包括频率资源指示值(frequency resource indicator value,FRIV),FRIV可指示该预留资源在K个时域单元内占用的频域单元。例如K=2,预留资源在这2个时域单元上可以占用相同数量的频域单元,那么就可以有多种占用方式,或者说这2个时域单元上的频域单元可以有多种组合方式(例如一种组合方式为第1个时域单元上的子信道1和第2个时域单元上的子信道1;又一种组合方式为第1个时域单元上的子信道1、子信道2,以及第2个时域单元上的子信道2、子信道3,等等,可根据这2个时域单元包括的频域单元穷举各种组合方式),FRIV可指示其中一种组合方式,也就指示了该预留资源在K个时域单元内所占用的频域单元。例如该侧行控制信息指示的是该预留资源在一个资源预留周期内占用的频域单元,则该侧行控制信息的接收端(例如第二UE)根据该预留资源在一个资源预留周期内占用的频域单元,就可以确定第一数据在各个资源预留周期内占用的频域单元。
FRIV的值可以与第二参数有关,第二参数例如为侧行链路每次预留的最大数量(sl-MaxNumPerReserve),sl-MaxNumPerReserve可指示一个资源预留周期内最多可预留的时域单元(预留时域单元)的数量。sl-MaxNumPerReserve例如包括在所述配置信息中。例如,如果sl-MaxNumPerReserve=2,则或者,如果sl-MaxNumPerReserve=3,则 其中,表示一个资源预留周期内的第二个预留时域单元的起始频域单元索引,表示一个资源预留周期内的第三个预留时域单元的起始频域单元索引。例如,如果一个资源预留周期内仅预留1个时域单元,则或者,如果一个资源预留周期内预留2个时域单元,则LsubCH表示在一个预留时域单元预留的频域单元个数。可称为第一参数,将在后文介绍。接收该侧行控制信息的UE(例如第二UE)可以根据该侧行控制信息包括的FRIV确定LsubCH、等参数的取值,从而确定预留资源的频域位置。
FRIV所占用的比特数可根据第一参数确定。例如,如果sl-MaxNumPerReserve=2,则FRIV占用的比特数=或者,如果sl-MaxNumPerReserve=2,则FRIV占用的比特数=其中,表示对X进行向上取整。
其中,如果则FRIV可以指示一个资源预留周期内的预留资源所在的时域单元均为第一类时域单元时的频域单元的组合情况。也就是说,如果一个资源预留周期内的预留资源所在的时域单元均为第一类时域单元,则FRIV可以指示该资源预留周期内为第一数据预留的频域单元,但如果该资源预留周期内还包括第二类时域单元,则FRIV对于第二类时域单元所包括的部分频域单元就无法指示。如果则FRIV可以指示一个资源预留周期内的预留资源所在的时域单元均为第二类时域单元时频域单元的组合情况。也就是说,如果一个资源预留周期内的预留资源所在的时域单元均为第二类时域单元,则FRIV可以指示该资源预留周期内为第一数据预留的频域单元。由于第二类时域单元对应的频域单元的数量大于第一类时域单元对应的频域单元的数量,因此,无论该资源预留周期内的预留资源所在的时域单元仅包括第一类时域单元,还是该资源预留周期内的预留资源所在的时域单元既包括第一类时域单元也包括第二类时域单元,FRIV对于该资源预留周期内为第一数据预留的频域单元都可以指示。鉴于此,本申请实施例中的第一参数可以有不同的实现方式。
作为第一参数的第一种可选的实施方式,第一参数的值可以为N2。例如,如果sl-MaxNumPerReserve=2,则FRIV占用的比特数=或者,如果sl-MaxNumPerReserve=2,则FRIV占用的比特数=在这种实施方式中,无论一个资源预留周期内的预留资源所在的时域单元仅包括第二类时域单元,还是仅包括第一类时域单元,或者既包括第一类时域单元也包括第二类时域单元,FRIV都可以指示该资源预留周期内为第一数据预留的频域单元。对于侧行控制信息的接收端(例如第二UE)来说,可以根据N2确定第一参数的值,从而确定FRIV的比特数,实现方式较为简单。
作为第一参数的第二种可选的实施方式,如果侧行控制信息在第一类时域单元中发送,即第一时域单元为第一类时域单元,则第一参数的值可以为N1,例如,如果sl-MaxNumPerReserve=2,则FRIV占用的比特数=或者,如果sl-MaxNumPerReserve=3,则FRIV占用的比特数=
而如果侧行控制信息在第二类时域单元中发送,即第一时域单元为第二类时域单元,则第一参数的值可以为N2,例如,如果sl-MaxNumPerReserve=2,则FRIV占用的比特数=或者,如果sl-MaxNumPerReserve=3,则FRIV占用的比特数=
对于侧行控制信息的接收端(例如第二UE)来说,可以根据第一时域单元的类型确定第一参数的值,从而确定FRIV的比特数。相比上一种方式来说,在第一参数的第二种可选的实施方式下如果侧行控制信息在第一类时域单元中发送,则第一参数的值为N1,由此使得FRIV占用的比特数较少,能够节省传输开销。
可选的,在第一参数的第二种可选的实施方式下,还可以将N2个第二类频域单元划分为至少两个频域单元集合,其中的每个频域单元集合可包括一个或多个第二类频域单元,例如其中的每个频域单元集合包括的第二类频域单元在频域上连续。该N2个第二类频域单元可以对应任一个第二类时域单元,可理解为,可将每个第二类时域单元对应的N2个第二类频域单元划分为至少两个频域单元集合,各个第二类时域单元的划分方式可以相同,不同的第二类时域单元对应的频域单元集合的数量和位置可以相同。至少两个频域单元集合的数量例如为P,例如其中的每个频域单元集合包括的第二类频域单元的数量可以小于或等于N1。第一类时域单元对应的一个第一类频域单元可以与第二类时域单元对应的至少一个频域单元集合中的一个第二类频域单元关联。例如,与第一类时域单元对应的第一类频域单元i关联的第二类时域单元对应的第二类频域单元的索引为i+j·N1,其中0≤j<P。
以图5为例,N2=9,N1=3,则可将任一个第二类时域单元(例如时隙5)上的子信道1至子信道9划分为3个子信道集合,其中的子信道集合1包括子信道1至子信道3,子信道集合2包括子信道4至子信道6,子信道集合3包括子信道7至子信道9。任一个第一类时域单元(例如时隙1)上的子信道1关联子信道集合1中的子信道1、子信道集合2中的子信道4、以及关联子信道集合3中的子信道7;任一个第一类时域单元(例如时隙1)上的子信道2关联子信道集合1中的子信道2、子信道集合2中的子信道5、以及关联子信道集合3中的子信道8;任一个第一类时域单元(例如时隙1)上的子信道3关联子信道集合1中的子信道3、子信道集合2中的子信道6、以及关联子信道集合3中的子信道9。
在第一参数的第二种可选的实施方式下,如果K个时域单元包括第二时域单元,第二时域单元为第二类时域单元,且第一时域单元为第一类时域单元,则可选的,该侧行控制信息还可以指示预留资源在第二时域单元内占用的频域单元集合(例如第一频域单元集合)的信息。如果第一时域单元为第一类时域单元,则FRIV的比特数根据N1确定,在这种情况下,如果K个时域单元包括了第二类时域单元,则FRIV无法指示预留资源在第二类时域单元上占用的额外的频域单元(即,相对于第一类时域单元对应的频域单元来说多出的频域单元)。为此,该侧行控制信息还可以指示预留资源在第二时域单元内占用的频域单元集合,从而该侧行控制信息的接收端可以根据FRIV以及预留资源在第二时域单元内占用的频域单元集合确定该预留资源在K个时域单元内占用的频域单元。
例如,第一时域单元为第一类时域单元,第二UE根据第一时域单元发送的SCI包括的FRIV,确定预留资源在一个资源预留周期内的某个时域单元占用了子信道2,另外该SCI还指示了预留资源在第二时域单元内占用子信道集合3。如果该时域单元为第一类时域单元,则可以确定预留资源在该时域单元占用子信道2;或者,如果该时域单元为第二类时域单元,则结合该侧行控制信息指示的子信道集合3可以确定子信道集合3内与第一类时域单元对应的子信道2关联的子信道为子信道8,则可以确定预留资源在该时域单元占用子信道8。
前文介绍了,该侧行控制信息可以通过FRIV指示该预留资源在K个时域单元内占用的频域单元,除此之外,该侧行控制信息还可以通过其他方式指示该预留资源在K个时域单元内占用的频域单元。例如一种指示方式为,该侧行控制信息包括K个第一指示信息,K个第一指示信息可以指示该预留资源在K个时域单元内占用的频域单元,其中的一个第一指示信息可指示该预留资源在K个时域单元中的一个时域单元内占用的频域单元,K个第一指示信息与K个时域单元一一对应。相当于,K个第一指示信息独立存在,互不干扰,分别指示该预留资源在一个时域单元内占用的频域单元,由此该侧行控制信息也能够指示该预留资源在K个时域单元内占用的频域单元。可选的,K个第一指示信息中的每个第一指示信息可通过bitmap实现,一个bitmap的比特数可以与该bitmap所指示的时域单元对应的频域单元的数量相同,从而该bitmap的一个比特可指示该时域单元对应的一个频域单元。相较于通过FRIV指示的方式来说,通过第一指示信息进行指示的方式更为灵活。
在S403中,第一UE可以发送侧行控制信息,该侧行控制信息可调度第一数据对应的至少一个TB。因此,可选的,该方法还可以包括S404,第一UE在第三时域单元的第一频域单元发送第一数据对应的至少一个TB。相应的,第二UE在第三时域单元的第一频域单元接收第一数据对应的至少一个TB。第三时域单元与第一时域单元可以是同一时域单元,或者也可以是不同的时域单元。其中,第二UE可以接收该侧行控制信息,而第一数据的接收端可以是第二UE,也可以是其他UE,本申请实施例以第二UE为例。
第二UE接收到第一数据对应的至少一个TB后,可以通过物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH)发送反馈信息,该反馈信息例如为混合自动重传请求(hybrid automatic repeat request,HARQ)反馈,例如肯定应答(ACK)或否定应答(NACK),以指示第一数据对应的至少一个TB接收成功或失败。其中,PSFCH资源是为第一资源池(预)配置的周期性资源,可通过所述配置信息配置。例如该配置信息可通过第三参数配置PSFCH资源的周期,第三参数例如为周期PSFCH资源(periodPSFCHresource)参数,periodPSFCHresource参数的取值可以为0、1、2、或4,或者也可以是其他取值。例如,如果periodPSFCHresource=0,则意味着第一资源池不存在PSFCH资源;如果periodPSFCHresource=1,则意味着第一资源池包括的每个时域单元都包括PSFCH资源;如果periodPSFCHresource=2,则意味着第一资源池包括的每2个时域单元中有1个时域单元包括PSFCH资源;如果periodPSFCHresource=4,则意味着第一资源池包括的每4个时域单元中有1个时域单元包括PSFCH资源。
如图6所示,以时域单元是时隙为例,图6中的每个方格表示一个逻辑时隙,即第一资源池中包含的任一个时隙,不同的逻辑时隙在物理上可能是连续的,也可能是非连续的。假设periodPSFCHresource=4,则每4个时隙中有1个时隙包括PSFCH资源。例如,每个时隙包含14个OFDM符号,对于不包括PSFCH资源的时隙,该时隙内的第1个OFDM符号为自动增益控制(automatic gain control,AGC)符号,主要用于接收UE(例如第二UE)调整接收信号放大倍数;该时隙内的最后一个符号为保护间隔(guard period,GP)符号,主要用于收发转换或发收转换。而对于包括PSFCH资源的时隙,除了第1个OFDM符号为AGC符号、最后一个OFDM符号为GP符号外,还有额外3个OFDM符号的系统级资源开销,这3个OFDM符号中的一个OFDM符号为GP符号,一个OFDM符号为AGC符号,还有一个OFDM符号为PSFCH符号。
考虑到接收UE(例如第二UE)的处理时间,可以为第一资源池(预)配置用于接收数据的资源与用于发送反馈信息的资源之间的最小时间间隔,例如该时间间隔通过第四参数配置,第四参数可包括在所述配置信息中。第四参数例如为最小时间间隔PSFCH(MinTimeGapPSFCH)参数,MinTimeGapPSFCH参数的取值可以为2或3,或者也可以是其他取值。例如,如果MinTimeGapPSFCH=2,则意味着用于接收数据的PSSCH资源与用于发送该数据的反馈信息的PSFCH资源之间最小间隔2个时域单元;如果MinTimeGapPSFCH=3,则意味着用于接收数据的PSSCH资源与用于发送该数据的反馈信息的PSFCH资源之间最小间隔3个时域单元。发送UE(例如第一UE)和接收UE(例如第二UE)都可以根据第三参数和第四参数确定用于接收数据的PSSCH资源与用于发送该数据的反馈信息的PSFCH资源之间的关联关系。例如图6中,假设periodPSFCHresource=4且MinTimeGapPSFCH=2,则每4个时域单元的PSSCH资源关联1个时域单元的PSFCH资源,且这4个时域单元中的每个时域单元均与所关联的PSFCH资源所在的时隙至少间隔2个时隙。图6中,第二个PSFCH资源(时隙7内的PSFCH资源)与第一个虚线框内的4个时域单元(时隙2~时隙5)的PSSCH资源关联,第三个PSFCH资源(时隙11内的PSFCH资源)与第二个虚线框内的4个时域单元(时隙6~时隙9)的PSSCH资源关联。
本申请实施例中,第一资源池可包括第一类时域单元和第二类时域单元,不同类型的时域单元对应的频域单元的数量不同,那么,可能有些PSFCH资源与第二类时域单元关联(例如图5中的时隙7关联的时隙包括时隙2至时隙5,其中的时隙5是第二类时域单元,则时隙7内的PSFCH资源与第二类时域单元关联),还有些PSFCH资源不与第二类时域单元关联(例如图5中的时隙11关联的时隙为时隙6至时隙9,均为第一类时域单元,则时隙11内的PSFCH资源不与第二类时域单元关联)。由于第一资源池包括的第二类时域单元对应的频域单元数量较多,因此与第二类时域单元关联的PSFCH资源,也就会关联更多的频域单元,而不与第二类时域单元关联的PSFCH资源,关联的频域单元相对较少。以图5为例,其中的时隙7内的PSFCH资源可以关联时隙2至时隙5内的共18个频域单元,时隙11内的PSFCH资源可以关联时隙6至时隙9内的共12个频域单元。可选的,可以将一个时域单元内的PSFCH资源在频域上划分为多个反馈资源单元集合,划分的反馈资源单元集合的数量可以与该PSFCH资源所关联的频域单元的数量相等,则该PSFCH资源关联的频域单元可以与反馈资源单元集合一一对应。
例如,第一资源池包括第五时域单元,第五时域单元包括PSFCH资源,第五时域单元的PSFCH资源关联L3个时域单元,L3个时域单元不包括第二类时域单元。该PSFCH资源在频域上可以被划分为H3个反馈资源单元集合,H3个反馈资源单元集合与L3个时域单元内的频域单元一一对应。L3和H3均为正整数。以图5为例,第五时域单元例如为时隙11,则L3=4,H3=12。
又例如,第一资源池包括第六时域单元,第六时域单元包括PSFCH资源,第六时域单元的PSFCH资源关联L2个时域单元,L2个时域单元包括第二类时域单元。该PSFCH资源在频域上可以被划分为H2个反馈资源单元集合,H2个反馈资源单元集合与L2个时域单元内的频域单元一一对应。L2和H2均为正整数。以图5为例,第六时域单元例如为时隙7,则L2=4,H2=18。可见,由于第一类时域单元对应的第一类频域单元的数量小于第二类时域单元对应的第二类频域单元的数量,因此H3可以小于H2。
将一个时域单元内的PFSCH资源在频域上划分为多个反馈资源单元集合,其中的每个反馈资源单元集合可以包括一个或多个反馈资源单元,反馈资源单元例如为包括e个子时域单元和f个子频域单元的资源单元,e和f均为正整数。子时域单元例如为OFDM符号,子频域单元的带宽例如与PRB的带宽相同。例如e=1,则反馈资源单元为PRB,此时反馈资源单元集合也可理解为PRB集合;或者e也可以取2或其他值。
可选的,如果与PSFCH资源关联的时域单元包括第二类时域单元,以及该PSFCH资源所在的时域单元为第一类时域单元,则e可以大于1,例如e=2,或者也可以大于2,例如图5中,时隙3和时隙7中的PSFCH资源对应的e可以大于1;而如果与PSFCH资源关联的时域单元不包括第二类时域单元,和/或该PSFCH资源所在的时域单元为第二类时域单元,则e可以为1,例如图5中,与时隙11内的PSFCH资源关联的时域单元不包括第二类时域单元,时隙15为第二类时域单元,因此时隙11和时隙15中的PSFCH资源对应的e可以为1。对于与第二类时域单元关联的PSFCH资源来说,其关联的频域单元较多,也就是说,该PSFCH资源会被用于传输更多的反馈信息。令e大于1,相当于令反馈资源单元在时域上包括更多的资源,以能够用于更多反馈信息的传输。如果PSFCH资源所在的时域单元为第二类时域单元,则PSFCH资源的频域资源较为丰富,能够用于传输较多的反馈信息,因此在这种情况下可以不必扩展反馈资源单元的时域资源。例如,第一UE在第三时域单元的第一频域单元发送第一数据对应的至少一个TB,与第三时域单元关联的PSFCH资源位于第四时域单元,第四时域单元共关联L1个时域单元,那么,如果L1个时域单元包括第二类时域单元,且第四时域单元为第一类时域单元,则e可以大于1。
如果第二UE要发送第一数据对应的至少一个TB的反馈信息,则要确定用于发送该反馈信息的反馈资源单元。因此可选的,该方法还可以包括S405,第二UE确定用于发送该反馈信息的反馈资源单元。另外,第一UE也可以确定用于接收反馈信息的反馈资源单元,第一UE和第二UE确定反馈资源单元的方式是类似的。
前文介绍了,第一UE是在第三时域单元的第一频域单元发送第一数据对应的至少一个TB,例如与第三时域单元关联的PSFCH资源位于第四时域单元,第四时域单元共关联L1个时域单元,第三时域单元属于L1个时域单元。第四时域单元(或者,第四时域单元内的PSFCH资源)可包括用于发送或接收反馈信息的H1个反馈资源单元集合,H1个反馈资源单元集合与L1个时域单元内的频域单元一一对应。第三时域单元例如为第五时域单元,则H1=H3且L1=L3,或者第三时域单元为第六时域单元,则H1=H2且L1=L2。
例如第三时域单元内的第一频域单元对应H1个反馈资源单元集合中的第一反馈资源单元集合,那么第一UE或第二UE可以从第一反馈资源单元集合中确定用于传输第一数据对应的至少一个TB的反馈信息的反馈资源单元,例如确定的反馈资源单元为第一反馈资源单元。根据e的不同取值,从第一反馈资源单元集合中确定第一反馈资源单元的方式也可能不同,如下举例介绍。
e=1。例如第一反馈资源单元集合包括D个反馈资源单元,进一步,第一UE或第二UE可以根据所述配置信息确定反馈信息序列中可以使用的循环移位对(cyclic shift pair)的个数为G个,则总共可以确定D×G个反馈资源。其中,反馈资源既包含了时频资源(即D个反馈资源单元),也包含了码域资源(即G个循环移位对)。第一UE或第二UE可以再根据(PID+MID)mod(D×G)的值,从D×G个反馈资源中确定对应的反馈资源,该反馈资源包括的时频资源为第一反馈资源单元。其中,mod表示取余运算,PID根据用于传输第一数据的PSSCH对应的源ID来确定,MID设置为0或者根据高层配置的组ID来确定;或者,PID设置为0或根据用于传输第一数据的PSSCH对应的源ID来确定,MID根据用于传输第一数据的PSSCH对应的目的ID来确定或根据高层配置的组ID来确定。一个反馈资源既可以用于传输ACK,也可以用于传输NACK,具体传输的信息可根据第二UE对于所接收的第一数据的解码结果确定。
e>1。第一UE或第二UE可以根据第一数据相关的标识确定如下一项或多项:第一反馈资源单元的索引,第一反馈资源单元对应的子频域单元索引,第一反馈资源单元对应的序列的循环移位,或,第一反馈资源单元对应的正交覆盖码(orthogonal cover code,OCC)。确定了这一项或多项,也就确定了第一反馈资源单元。可选的,该OCC例如为沃尔什(Walsh)码序列或离散傅里叶变换(discrete Fourier transform,DFT)序列等。第一反馈资源单元对应的序列,可理解为,该序列可作为第一反馈资源单元承载的反馈信息,该序列例如为ZC(Zaddoff Chu)序列,或者也可以是其他序列。例如,如果两个反馈信息序列的循环移位不同,则表明是两个不同的反馈信息;或者,如果两个反馈信息序列的OCC不同,表明是两个不同的反馈信息;或者,如果两个反馈信息序列所在的反馈资源单元不同,也能表明是不同的反馈信息。可见,通过多种维度的特征扩展了反馈信息的可选范围。例如e=2,采用2个子频域单元的PSFCH资源包含的反馈资源单元的资源索引总数是采用1个子频域单元的PSFCH资源包含的反馈资源单元的索引总数的2倍,由此扩充了PSFCH资源的容量,能够承载更多的反馈信息。
第一数据相关的标识,例如包括如下一项或多项:第一数据对应的业务的标识,第一数据的发送端(例如第一UE)的标识,第一数据的接收端(例如第二UE)的标识,或,组播相关标识。例如第一数据对应的业务为组播业务,第一数据是通过组播方式发送,则组播相关标识可包括属于该组播组的组头设备的标识和/或组员设备的标识。
可选的,该方法还可以包括S406,第二UE在第四时域单元的第一反馈资源单元发送第一数据对应的至少一个TB的反馈信息。相应的,第一UE在第四时域单元的第一反馈资源单元接收该反馈信息。第一UE和第二UE可采用相同的方式(如前文所介绍的方式)确定第一反馈资源单元,因此第一UE能够正确接收该反馈信息。
本申请实施例中,第一资源池包括的第一类时域单元可对应N1个第一类频域单元,第二类时域单元可对应N2个第二类频域单元,对于N1和N2的值并未限制,例如N1与N2可以不同。也就是说,在第一资源池包括的时域单元中,第一资源池在不同类型的时域单元上可以包括不同数量的频域单元,例如第一资源池既可以包括UL时隙上的所有可用频域资源,也可以包括SBFD时隙上的所有可用频域资源,由此减少了资源浪费,提高了资源利用率。而且本申请实施例设计了侧行控制信息对于预留资源所占用的频域资源的指示方式,无论预留资源占用何种类型的时域资源,该侧行控制信息都能够指示预留资源所占用的频域单元,使得接收UE能够正确接收数据,也使得其他UE在选择资源时能够根据该侧行控制信息进行干扰规避。另外本申请实施例还可以扩展用于发送反馈信息的PFSCH资源的容量,以传输更多的反馈信息,满足更多用户的需求。
接下来介绍本申请实施例提供的另一种通信方法,请参见图7,为该方法的流程图。
S701、第一UE确定配置信息。该配置信息可用于配置第一资源池,第一资源池可用于第一UE与其他UE通信,例如用于第一UE与其他UE进行信息传输。
第一资源池可以包括M1个第一类时域单元和M2个第二类时域单元,M1和M2均为正整数,且对于两者的大小关系不做限制。其中,第一类时域单元和第二类时域单元的时长可以相等,例如第一类时域单元和第二类时域单元均为时隙或均为子帧等,本申请实施例可以是根据时域单元所对应的频域单元对时域单元进行分类。例如,第一类时域单元可以对应第一资源池内的N个第一类频域单元,第二类时域单元可以对应第一资源池内的N个第二类频域单元,N为正整数。也可以理解为,对于第一资源池内的时域单元来说,如果一个时域单元对应第一资源池内的N个第一类频域单元,则该时域单元为第一类时域单元;而如果一个时域单元对应第一资源池内的N个第二类频域单元,则该时域单元为第二类时域单元。其中,时域单元与频域单元对应(或者称为关联),可以理解为,该频域单元所在的资源位于该时域单元上,或者说该频域单元所在资源的时域位置是该时域单元的时域位置。
第一类频域单元的带宽可以小于第二类频域单元的带宽,例如,第一类频域单元包括的资源单元的数量可以小于第二类频域单元包括的资源单元的数量。资源单元例如为PRB等。例如,第二类频域单元的带宽可以是第一类频域单元的带宽的倍数,或者二者也可以不是倍数关系。可见,第一资源池在不同的时域单元上可以包括带宽不同的频域单元,使得资源池的配置更加灵活。例如第一类时域单元为SBFD时隙,第二类时域单元为UL时隙,通过本申请实施例的技术方案,可将这两类时隙的频域资源均包括在第一资源池中,减少了资源浪费的情况,提高了资源利用率。
可参考图8,为第一资源池的一种示例。图8以N=3为例,实际不限于此。图8以时域单元是时隙为例,图8包括的时隙可以是第一资源池内的全部或部分时隙,对此不做限制。图8以第一类频域单元和第二类频域单元均是子信道为例,例如第一类时隙对应子信道1至子信道3,第二类时隙也对应子信道1至子信道3,但第一类时隙对应的子信道的带宽小于第二类时隙对应的子信道的带宽。图8中的“D”,表示该部分频域资源是用于下行传输的资源,不属于第一资源池。另外,图8中,第二类频域单元的带宽是第一类频域单元的带宽的3倍,且二者的频域位置对齐,实际不限于此。
关于第一UE确定该配置信息的方式,或者该配置信息究竟由哪个设备配置,可参考图4所示的实施例的介绍。
该配置信息可以包括如下一项或多项:M1个第一类时域单元的索引集合的信息或者M1个第一类时域单元的索引,M2个第二类时域单元的索引集合的信息或者M2个第二类时域单元的索引,N个第一类频域单元的频域位置信息,N个第二类频域单元的频域位置信息,N的值,第一类频域单元包括的PRB数量(或RB数量,或RE数量,或子载波数量等),或,第二类频域单元包括的PRB数量(或RB数量,或RE数量,或子载波数量等)。
关于M1个第一类时域单元的索引集合的信息或者M1个第一类时域单元的索引、M2个第二类时域单元的索引集合的信息或者M2个第二类时域单元的索引、N个第一类频域单元的频域位置信息、N个第二类频域单元的频域位置信息等参数的介绍,可参考图4所示的实施例。
本申请实施例中,第一类频域单元包括的资源单元的数量与第二类频域单元包括的资源单元的数量可能不同,例如第一类频域单元包括的资源单元的数量可以小于第二类频域单元包括的资源单元的数量,因此该配置信息可以配置第一类频域单元包括的资源单元的数量和/或配置第二类频域单元包括的资源单元的数量。
S702、第二UE确定配置信息。该配置信息与S701所介绍的配置信息是一致的。关于S702的更多内容,例如该配置信息包括的信息以及第二UE确定配置信息的方式等,均可参考S701的介绍。
可选的,该方法还可以包括S703,第一UE发送侧行控制信息。相应的,第二UE接收该侧行控制信息。例如第一UE可采用第一资源池内的资源(例如第一时域单元)发送该侧行控制信息。该侧行控制信息例如为SCI,对此的介绍可参考图4所示的实施例。
该侧行控制信息可用于调度数据对应的TB,例如将该数据称为第一数据,第一数据可以对应一个或多个TB,该侧行控制信息可以调度这一个或多个TB中的部分或全部TB,例如调度这一个或多个TB中的至少一个TB。该侧行控制信息还可以指示第一数据的预留资源,该预留资源是为第一数据预留的传输资源。接收该侧行控制信息的UE在选择资源时,可根据该预留资源进行干扰规避。例如,该侧行控制信息可以指示用于承载该侧行控制信息的PSCCH的时域和/或频域位置,以及指示用于承载与该PSCCH关联的PSSCH的时域和/或频域位置,该PSSCH可承载第一数据对应的至少一个TB。另外,该侧行控制信息还可以指示该预留资源在K个时域单元内占用的频域单元,K为正整数。可选的,K个时域单元是在一个资源预留周期内的预留资源包括的全部时域单元,或者是一个资源预留周期包括的预留时域单元,因此该侧行控制信息相当于指示了该预留资源在一个资源预留周期内占用的时域单元和/或频域单元。其中,如果该预留资源占用了一个资源预留周期内的某个时域单元,则该时域单元可被称为预留时域单元,一个资源预留周期内包括的全部或部分时域单元可以作为预留时域单元。可选的,该侧行控制信息还可以指示资源预留周期,例如指示资源预留周期的数量(可理解为,为第一数据预留了多少个周期内的资源),和/或一个资源预留周期的时长(例如该时长大于或等于K个时域单元的总时长)等。该侧行控制信息的接收端(例如第二UE)能够根据该侧行控制信息确定该预留资源,该预留资源包括在为第一数据预留的所有资源预留周期内为第一数据预留的资源。例如该侧行控制信息指示资源预留周期的数量为3,一个资源预留周期的时长为一个时隙,则相当于为第一数据预留了3个时隙内的资源。
该侧行控制信息指示该预留资源在K个时域单元内占用的频域单元,可以有不同的指示方式。
作为一种可选的实施方式,第一种指示方式例如为,该侧行控制信息包括FRIV,FRIV可指示该预留资源在K个时域单元内占用的频域单元,而不必借助其他指示信息。关于FRIV的指示方式、FRIV的值的计算方式等均可参考图4所示的实施例。FRIV占用的比特数可以根据第一参数确定,本申请实施例中,第一参数的值可以为N,表示第一资源池内的每个时域单元所包括的频域单元的个数。在第一种指示方式中,无论一个资源预留周期内的预留资源仅包括第二类时域单元,还是仅包括第一类时域单元,或者既包括第一类时域单元也包括第二类时域单元,FRIV都可以指示该资源预留周期内为第一数据预留的频域单元。对于侧行控制信息的接收端(例如第二UE)来说,可以根据N确定第一参数的值,从而确定FRIV的比特数,实现方式较为简单。
该侧行控制信息可包括用于解码第一数据对应的至少一个TB的参数,例如该参数包括调制与编码策略(modulation and coding scheme,MCS)。例如该侧行控制信息指示第一MCS和第二MCS,第一MCS适用于K个时域单元中的第一类时域单元,第二MCS适用于K个时域单元中的第二类时域单元,在第一种指示方式下,第一MCS和第二MCS可以不同。也就是说,由于两类时域单元对应的频域单元的带宽不同,因此本申请实施例可以为这两类频域单元承载的数据设置不同的MCS,从而使得MCS能够更好地适用相应的传输资源。可选的,第一MCS对应的频谱效率可以大于第二MCS对应的频谱效率,其中,频谱效率可以是调制阶数与信道编码码率的乘积。如果一个MCS的频谱效率较大,表明该MCS是更为高阶的MCS,即,可以认为第一MCS相对于第二MCS来说是高阶MCS,而第二MCS是较为低阶的MCS。也就是说,由于第二类频域单元的带宽较大,因此可以在第二类频域单元采用更为低阶的MCS,以提升数据传输的可靠性。
在第一种指示方式下,预留资源在第一类时域单元内占用的频域单元的数量可以等于在第二类时域单元内占用的频域单元的数量。而考虑到第一类频域单元的带宽与第二类频域单元的带宽不同,本申请实施例认为,预留资源在第一类时域单元内占用的频域单元的数量也可以不等于在第二类时域单元内占用的频域单元的数量,这使得数据传输更为灵活。鉴于此,提供另一种可选的实施方式,即侧行控制信息的第二种指示方式,在这种指示方式下,预留资源在第一类时域单元内占用的频域单元的数量可以不等于在第二类时域单元内占用的频域单元的数量。
第二种指示方式例如为,除了FRIV外,还结合第二指示信息来指示预留资源在K个时域单元内占用的频域单元。例如,在某一类时域单元(第一类时域单元或第二类时域单元)内发送的侧行控制信息可以包括第二指示信息,第二指示信息可以指示预留资源在另一类时域单元(第二类时域单元或第一类时域单元)内占用的频域单元的数量。举例来说,第一UE采用第一资源池内的第一时域单元发送该侧行控制信息,如果第一时域单元为第一类时域单元,K个时域单元包括第二时域单元,而第二时域单元为第二类时域单元,那么该侧行控制信息包括的第二指示信息可以指示预留资源在第二时域单元占用的频域单元数量;或者,第一UE采用第一资源池内的第一时域单元发送该侧行控制信息,如果第一时域单元为第二类时域单元,K个时域单元包括第三时域单元,而第三时域单元为第一类时域单元,那么该侧行控制信息包括的第二指示信息可以指示预留资源在第三时域单元占用的频域单元数量。
例如图8中,第一UE在第一类时隙发送了SCI,该SCI指示预留资源占用的一个第二类时隙为图8中的时隙5,该SCI包括的FRIV指示预留资源在时隙5占用子信道2和子信道3。而该SCI还包括第二指示信息,第二指示信息指示该预留资源在第二类时隙占用的子信道的数量为1,那么第一UE可以确定预留资源在时隙5占用子信道2或子信道3。关于预留资源在时隙5究竟占用子信道2还是子信道3,可以有相应的确定方式。
可以规定,预留资源在与该SCI所在的时域单元不同类型的时域单元中占用的频域单元的数量,小于预留资源在与该SCI所在的时域单元相同类型的时域单元中占用的频域单元的数量,则可将FRIV指示的序号最小的频域单元作为预留资源在与该SCI所在的时域单元不同类型的时域单元中占用的频域单元。继续以图8为例,预留资源在与该SCI所在的时域单元不同类型的时域单元(第二类时隙)中占用的频域单元的数量为1,小于预留资源在与该SCI所在的时域单元相同类型的时域单元(第一类时隙)中占用的频域单元的数量2,而FRIV指示的序号最小的子信道为子信道2,则第一UE可以确定预留资源在第二类时隙(例如时隙5)占用子信道2。
或者可以规定,预留资源在与该SCI所在的时域单元不同类型的时域单元中占用的频域单元的数量,小于预留资源在与该SCI所在的时域单元相同类型的时域单元中占用的频域单元的数量,则可将FRIV指示的序号最大的频域单元作为预留资源在与该SCI所在的时域单元不同类型的时域单元中占用的频域单元。继续以图8为例,预留资源在与该SCI所在的时域单元不同类型的时域单元(第二类时隙)中占用的频域单元的数量为1,小于预留资源在与该SCI所在的时域单元相同类型的时域单元(第一类时隙)中占用的频域单元的数量2,而FRIV指示的序号最大的子信道为子信道3,则第一UE可以确定预留资源在第二类时隙(例如时隙5)占用子信道3。
又例如,图8中,第一UE在第二类时隙发送了SCI,该SCI指示预留资源占用的一个第一类时隙为图8中的时隙6,该SCI包括的FRIV指示预留资源在时隙6占用子信道2。而该SCI还包括第二指示信息,第二指示信息指示该预留资源在第一类时隙占用的子信道的数量为2,那么第一UE可以确定预留资源在时隙6占用子信道2和子信道3,或者占用子信道1和子信道2。关于预留资源在时隙6究竟占用哪些子信道,可以有相应的确定方式。
可以规定,预留资源在与该SCI所在的时域单元不同类型的时域单元中占用的频域单元的数量,大于预留资源在与该SCI所在的时域单元相同类型的时域单元中占用的频域单元的数量,则可将FRIV指示的序号最小的频域单元作为预留资源在与该SCI所在的时域单元不同类型的时域单元中占用的起始频域单元。例如,FRIV指示的序号最小的频域单元索引为j,其中0≤j<N,预留资源在与该SCI所在的时域单元不同类型的时域单元中占用的频域单元的数量为Q,其中0<Q≤N。如果j+Q≤N,则预留资源在与该SCI所在的时域单元不同类型的时域单元中占用的频域单元的索引为j~j+Q-1;如果j+Q>N,则预留资源在与该SCI所在的时域单元不同类型的时域单元中占用的频域单元的索引为N-Q~N-1,或者j~N-1以及0~Q-(N-j)-1。继续以图8为例,预留资源在与该SCI所在的时域单元不同类型的时域单元(第一类时隙)中占用的频域单元的数量为2,大于预留资源在与该SCI所在的时域单元相同类型的时域单元(第一类时隙)中占用的频域单元的数量1,而FRIV指示的子信道为子信道2,则第一UE可以确定预留资源在第一类时隙(例如时隙6)占用子信道2和子信道3。
或者规定,预留资源在与该SCI所在的时域单元不同类型的时域单元中占用的频域单元的数量,大于预留资源在与该SCI所在的时域单元相同类型的时域单元中占用的频域单元的数量,则可将FRIV指示的序号最小的频域单元作为预留资源在与该SCI所在的时域单元不同类型的时域单元中占用的结束频域单元。例如,FRIV指示的序号最小的频域单元索引为j,其中0≤j<N,预留资源在与该SCI所在的时域单元不同类型的时域单元中占用的频域单元的数量为Q,其中0<Q≤N。如果j-Q+1≥0,则预留资源在与该SCI所在的时域单元不同类型的时域单元中占用的频域单元的索引为j-Q+1~j;如果j-Q+1<0,则预留资源在与该SCI所在的时域单元不同类型的时域单元中占用的频域单元的索引为0~Q-1,或者0~j以及N-(Q-(j+1))~N-1。继续以图8为例,预留资源在与该SCI所在的时域单元不同类型的时域单元(第一类时隙)中占用的频域单元的数量为2,大于预留资源在与该SCI所在的时域单元相同类型的时域单元(第一类时隙)中占用的频域单元的数量1,而FRIV指示的子信道为子信道2,则第一UE可以确定预留资源在第一类时隙(例如时隙6)占用子信道1和子信道2。
在S703中,第一UE可以发送侧行控制信息,该侧行控制信息可调度第一数据对应的一个或多个TB。因此,可选的,该方法还可以包括S704,第一UE在第三时域单元的第一频域单元发送第一数据对应的至少一个TB。相应的,第二UE在第三时域单元的第一频域单元接收第一数据对应的至少一个TB。第三时域单元与第一时域单元可以是同一时域单元,或者也可以是不同的时域单元。其中,第二UE可以接收该侧行控制信息,而第一数据的接收端可以是第二UE,也可以是其他UE,本申请实施例以第二UE为例。
第二UE接收到第一数据对应的至少一个TB后,可以通过PSFCH发送反馈信息,该反馈信息例如为HARQ反馈,例如ACK或NACK,以指示第一数据对应的至少一个TB接收成功或失败。关于PSFCH资源等内容的介绍可参考图4所示的实施例。
本申请实施例中,第一资源池虽然包括第一类时域单元和第二类时域单元,但不同类型的时域单元对应的频域单元的数量相同,因此无论是与第二类时域单元关联的PSFCH资源,还是不与第二类时域单元关联的PSFCH资源,其关联的频域单元的数量都相同。以图8为例,时隙7内的PSFCH资源是与第二类时域单元关联的PSFCH资源(时隙7与时隙2~时隙5关联,其中时隙5是第二类时域单元),时隙7内的PSFCH资源可关联12个频域单元;时隙11内的PSFCH资源是不与第二类时域单元关联的PSFCH资源(时隙11与时隙6~时隙9关联,均为第一类时域单元),时隙11内的PSFCH资源也可关联12个频域单元。本申请实施例可将PSFCH资源在频域上划分为多个反馈资源单元集合,划分的反馈资源单元集合的数量可以与该PSFCH资源所关联的频域单元的数量相等,则该PSFCH资源关联的频域单元可以与反馈资源单元集合一一对应。
例如,第一资源池包括第四时域单元,第四时域单元包括PSFCH资源,第四时域单元关联L1个时域单元,L1个时域单元包括第二类时域单元,或者不包括第二类时域单元。该PSFCH资源在频域上可以被划分为H1个反馈资源单元集合,H1个反馈资源单元集合与L1个时域单元内的频域单元一一对应。L1和H1均为正整数。以图8为例,第三时域单元例如为时隙7或时隙11,L1=4,H1=12。
将一个时域单元内的PSFCH资源在频域上划分为多个反馈资源单元集合,其中的每个反馈资源单元集合可以包括一个或多个反馈资源单元,反馈资源单元例如为PRB,此时反馈资源单元集合也可理解为PRB集合。
如果第二UE要发送反馈信息,则要确定用于发送该反馈信息的反馈资源单元。因此可选的,该方法还可以包括S705,第二UE确定用于发送反馈信息的反馈资源单元。另外,第一UE也可以确定用于接收反馈信息的反馈资源单元,第一UE和第二UE确定反馈资源单元的方式是类似的。
前文介绍了,第一UE是在第三时域单元的第一频域单元发送第一数据对应的至少一个TB,例如与第三时域单元关联的PSFCH资源位于第四时域单元,第四时域单元共关联L1个时域单元,第三时域单元属于L1个时域单元。
例如第三时域单元内的第一频域单元对应H1个反馈资源单元集合中的第一反馈资源单元集合,那么第一UE或第二UE可以从第一反馈资源单元集合中确定用于传输第一数据对应的至少一个TB的反馈信息的反馈资源单元,例如确定的反馈资源单元为第一反馈资源单元。关于第一UE或第二UE确定第一反馈资源单元的方式,可参考图4所示的实施例中当e=1时确定第一反馈资源单元的方式,不多赘述。
可选的,该方法还可以包括S706,第二UE在第四时域单元的第一反馈资源单元发送第一数据对应的至少一个TB的反馈信息。相应的,第一UE在第四时域单元的第一反馈资源单元接收该反馈信息。第一UE和第二UE可采用相同的方式(如前文所介绍的方式)确定第一反馈资源单元,因此第一UE能够正确接收该反馈信息。
本申请实施例中,第一资源池包括的第一类时域单元可对应N个第一类频域单元,第二类时域单元可对应N个第二类频域单元,而第二类频域单元的带宽可以大于第一类频域单元的带宽。也就是说,在第一资源池包括的时域单元中,第一资源池在不同类型的时域单元上可以包括不同带宽的频域单元,例如第一资源池既可以包括UL时隙上的所有可用频域资源,也可以包括SBFD时隙上的所有可用频域资源,由此减少了资源浪费,提高了资源利用率。而且本申请实施例中,第一类时域单元对应的频域单元的数量和第二类时域单元对应的频域单元的数量相等,由此可以不必对侧行控制信息以及反馈机制等进行过多的改变,能够更好地与已有技术兼容。
图9给出了本申请实施例提供的一种通信装置的结构示意图。通信装置900可以是图4示的实施例中的第一UE或该第一UE的电路系统,用于实现上述方法实施例中对应于第一UE的方法。或者,所述通信装置900可以是图4所示的实施例中的第二UE或该第二UE的电路系统,用于实现上述方法实施例中对应于第二UE的方法。或者,通信装置900可以是图7示的实施例中的第一UE或该第一UE的电路系统,用于实现上述方法实施例中对应于第一UE的方法。或者,所述通信装置900可以是图7所示的实施例中的第二UE或该第二UE的电路系统,用于实现上述方法实施例中对应于第二UE的方法。具体的功能可以参见上述方法实施例中的说明。其中,例如一种电路系统为芯片系统。
该通信装置900包括至少一个处理器901。处理器901可以用于装置的内部处理,实现一定的控制处理功能。可选地,处理器901包括指令。可选地,处理器901可以存储数据。可选地,不同的处理器可以是独立的器件,可以位于不同物理位置,可以位于不同的集成电路上。可选地,不同的处理器可以集成在一个或多个处理器中,例如,集成在一个或多个集成电路上。
可选地,通信装置900包括一个或多个存储器903,用以存储指令。可选地,所述存储器903中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选地,通信装置900包括通信线路902,以及至少一个通信接口904。其中,因为存储器903、通信线路902以及通信接口904均为可选项,因此在图9中均以虚线表示。
可选地,通信装置900还可以包括收发器和/或天线。其中,收发器可以用于向其他装置发送信息或从其他装置接收信息。所述收发器可以称为收发机、收发电路、输入输出接口等,用于通过天线实现通信装置900的收发功能。可选地,收发器包括发射机(transmitter)和接收机(receiver)。示例性地,发射机可以用于将基带信号生成射频(radio frequency)信号,接收机可以用于将射频信号转换为基带信号。
处理器901可以包括一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路902可包括一通路,在上述组件之间传送信息。
通信接口904,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器903可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器903可以是独立存在,通过通信线路902与处理器901相连接。或者,存储器903也可以和处理器901集成在一起。
其中,存储器903用于存储执行本申请方案的计算机执行指令,并由处理器901来控制执行。处理器901用于执行存储器903中存储的计算机执行指令,从而实现本申请上述实施例提供的通信方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器901可以包括一个或多个CPU,例如图9中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置900可以包括多个处理器,例如图9中的处理器901和处理器905。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
当图9所示的装置为芯片时,例如是第一UE的芯片,或第二UE的芯片,则该芯片包括处理器901(还可以包括处理器905)、通信线路902和通信接口904,可选的,还可以包括存储器903。例如,通信接口904可以是输入接口、管脚或电路等。存储器903可以是寄存器、缓存等。处理器901和处理器905可以是一个通用的CPU,微处理器,ASIC,或一个或多个用于控制上述任一实施例的方法的程序执行的集成电路。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图10示出了一种装置示意图,该装置1000可以是上述各个方法实施例中所涉及的第一UE或第二UE,或者为第一UE中的芯片或第二UE中的芯片。该装置1000包括发送单元1001、处理单元1002和接收单元1003。
应理解,该装置1000可以用于实现本申请实施例的方法中由第一UE或第二UE执行的步骤,相关特征可以参照上文的各个实施例,此处不再赘述。
可选的,图10中的发送单元1001、接收单元1003以及处理单元1002的功能/实现过程可以通过图9中的处理器901调用存储器903中存储的计算机执行指令来实现。或者,图10中的处理单元1002的功能/实现过程可以通过图9中的处理器901调用存储器903中存储的计算机执行指令来实现,图10中的发送单元1001和接收单元1003的功能/实现过程可以通过图9中的通信接口904来实现。
可选的,当该装置1000是芯片或电路时,则发送单元1001和接收单元1003的功能/实现过程还可以通过管脚或电路等来实现。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令被运行时,实现前述方法实施例中由第一UE或第二UE所执行的方法。这样,上述实施例中所述功能可以软件功能单元的形式实现并作为独立的产品销售或使用。基于这样的理解,本申请的技术方案本质上或者说对做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述任一方法实施例中由第一UE或第二UE所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例所涉及的第一UE或第二UE所执行的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field-programmable gate array,FPGA),或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、EEPROM、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的范围的情况下,可对其进行各种修改和组合。相应地,本申请实施例和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请实施例权利要求及其等同技术的范围之内,则本申请实施例也意图包含这些改动和变型在内。

Claims (24)

  1. 一种通信方法,其特征在于,应用于终端设备,所述方法包括:
    确定配置信息,所述配置信息用于配置第一资源池,所述第一资源池用于所述终端设备与其他终端设备进行信息传输,所述第一资源池包括M1个第一类时域单元和M2个第二类时域单元,M1和M2均为正整数,所述M1个第一类时域单元中的每个第一类时域单元对应所述第一资源池内的N1个第一类频域单元,所述M2个第二类时域单元中的每个第二类时域单元对应所述第一资源池内的N2个第二类频域单元,N1和N2均为正整数,其中每个第一类频域单元的带宽与每个第二类频域单元的带宽相同,且N2大于N1。
  2. 根据权利要求1所述的方法,其特征在于,所述配置信息包括如下一项或多项:
    所述M1个第一类时域单元的索引集合的信息;
    所述M2个第二类时域单元的索引集合的信息;
    所述N1个第一类频域单元的频域位置信息;
    所述N2个第二类频域单元的频域位置信息;
    N1的值;
    N2的值;或,
    所述每个第一类频域单元或所述每个第二类频域单元包括的物理资源块PRB数量。
  3. 根据权利要求1或2所述的方法,其特征在于,确定配置信息,包括:
    接收来自网络设备的所述配置信息;或,
    确定预配置的所述配置信息。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一资源池内的第一时域单元发送或接收侧行控制信息,所述侧行控制信息包括频率资源指示值,所述频率资源指示值用于指示预留资源在K个时域单元内占用的频域单元,其中,所述频率资源指示值占用的比特数根据第一参数确定,K为正整数。
  5. 根据权利要求4所述的方法,其特征在于,所述第一参数为N2。
  6. 根据权利要求4所述的方法,其特征在于,
    如果所述第一时域单元属于所述M1个第一类时域单元,所述第一参数为N1;或者,
    如果所述第一时域单元属于所述M2个第二类时域单元,所述第一参数为N2。
  7. 根据权利要求6所述的方法,其特征在于,所述第一时域单元属于所述M1个第一类时域单元,所述K个时域单元包括第二时域单元,且所述第二时域单元属于所述M2个第二类时域单元,所述侧行控制信息还用于指示所述预留资源在所述第二时域单元内占用的第一频域单元集合的信息,其中,所述N2个第二类频域单元被划分为至少两个频域单元集合,其中每个频域单元集合包括一个或多个第二类频域单元,所述第一频域单元集合为所述至少两个频域单元集合中的一个频域单元集合。
  8. 根据权利要求1~3任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一资源池内的第一时域单元发送或接收侧行控制信息,所述侧行控制信息包括K个第一指示信息,K为正整数,所述K个第一指示信息用于指示预留资源在K个时域单元内占用的频域单元。
  9. 根据权利要求8所述的方法,其特征在于,所述K个第一指示信息中的每个第一指示信息为比特位图。
  10. 根据权利要求4~9任一项所述的方法,其特征在于,所述方法还包括:
    在第三时域单元的第一频域单元上发送或接收第一数据,其中,第四时域单元包括用于发送或接收反馈信息的H1个反馈资源单元集合,所述H1个反馈资源单元集合与L1个时域单元内的频域单元一一对应,所述第三时域单元属于所述L1个时域单元,所述第三时域单元内的所述第一频域单元对应所述H1个反馈资源单元集合中的第一反馈资源单元集合,H1和L1均为正整数;
    从所述第一反馈资源单元集合中确定第一反馈资源单元,所述第一反馈资源单元用于接收或发送所述第一数据的反馈信息。
  11. 根据权利要求10所述的方法,其特征在于,
    所述L1个时域单元不包括所述M2个第二类时域单元中的任一个第二类时域单元;或者,
    所述L1个时域单元包括所述M2个第二类时域单元中的至少一个第二类时域单元;
    其中,所述L1个时域单元不包括所述M2个第二类时域单元中的任一个第二类时域单元时的H1,小于所述L1个时域单元包括所述M2个第二类时域单元中的至少一个第二类时域单元时的H1。
  12. 根据权利要求11所述的方法,其特征在于,从所述第一反馈资源单元集合中确定第一反馈资源单元,包括:
    根据所述第一数据相关的标识,确定所述第一反馈资源单元的索引、所述第一反馈资源单元对应的子频域单元索引、所述第一反馈资源单元对应的序列的循环移位、或所述第一反馈资源单元对应的正交覆盖码OCC中的一项或多项,其中,所述第一反馈资源单元在时域上包括至少两个子时域单元。
  13. 根据权利要求12所述的方法,其特征在于,所述OCC为沃尔什码序列或离散傅里叶变换序列。
  14. 根据权利要求12或13所述的方法,其特征在于,所述L1个时域单元包括所述M2个第二类时域单元中的一个或多个第二类时域单元,且所述第四时域单元属于所述M1个第一类时域单元。
  15. 一种通信方法,其特征在于,应用于终端设备,所述方法包括:
    确定配置信息,所述配置信息用于配置第一资源池,所述第一资源池用于所述终端设备与其他终端设备进行信息传输,所述第一资源池包括M1个第一类时域单元和M2个第二类时域单元,M1和M2均为正整数,所述M1个第一类时域单元中的每个第一类时域单元对应N个第一类频域单元,所述M2个第二类时域单元中的每个第二类时域单元对应N个第二类频域单元,N为正整数,其中每个第一类频域单元的带宽小于每个第二类频域单元的带宽。
  16. 根据权利要求15所述的方法,其特征在于,所述配置信息包括如下一项或多项:
    所述M1个第一类时域单元的索引集合的信息;
    所述M2个第二类时域单元的索引集合的信息;
    所述N个第一类频域单元的频域位置信息;
    所述N个第二类频域单元的频域位置信息;
    N的值;
    所述每个第一类频域单元包括的PRB数量;或,
    所述每个第二类频域单元包括的PRB数量。
  17. 根据权利要求15或16所述的方法,其特征在于,确定配置信息,包括:
    接收来自网络设备的所述配置信息;或,
    确定预配置的所述配置信息。
  18. 根据权利要求15~17任一项所述的方法,其特征在于,所述方法还包括:
    发送或接收侧行控制信息,所述侧行控制信息包括频率资源指示值,所述频率资源指示值用于指示预留资源在K个时域单元内占用的频域单元,K为正整数,所述侧行控制信息还用于指示第一调制与编码策略MCS和第二MCS,所述第一MCS适用于所述K个时域单元中的第一类时域单元,所述第二MCS适用于所述K个时域单元中的第二类时域单元,所述第一MCS与所述第二MCS不同。
  19. 根据权利要求18所述的方法,其特征在于,所述第一MCS对应的频谱效率大于所述第二MCS对应的频谱效率。
  20. 根据权利要求15~17任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一资源池内的第一时域单元发送或接收侧行控制信息,所述侧行控制信息包括频率资源指示值,所述频率资源指示值用于指示预留资源在K个时域单元内占用的频域单元,K为正整数;其中,
    所述第一时域单元属于所述M1个第一类时域单元,所述K个时域单元包括第二时域单元,且所述第二时域单元属于所述M2个第二类时域单元,所述侧行控制信息还用于指示所述预留资源在所述第二时域单元内占用的频域单元数量;或,
    所述第一时域单元属于所述M2个第二类时域单元,所述K个时域单元包括第三时域单元,且所述第三时域单元属于所述M2个第一类时域单元,所述侧行控制信息还用于指示所述预留资源在所述第三时域单元内占用的频域单元数量。
  21. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求1~14任一项所述的方法,或用于执行如权利要求15~20任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~14任一项所述的方法,或使得所述计算机执行如权利要求15~20任一项所述的方法。
  23. 一种芯片系统,其特征在于,所述芯片系统包括:
    处理器和接口,所述处理器用于从所述接口调用并运行指令,当所述处理器执行所述指令时,实现如权利要求1~14任一项所述的方法,或实现如权利要求15~20任一项所述的方法。
  24. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~14任一项所述的方法,或使得所述计算机执行如权利要求15~20任一项所述的方法。
PCT/CN2023/128323 2022-11-09 2023-10-31 一种通信方法及装置 WO2024099173A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211400750.9 2022-11-09
CN202211400750 2022-11-09
CN202211630768.8 2022-12-19
CN202211630768.8A CN118019114A (zh) 2022-11-09 2022-12-19 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024099173A1 true WO2024099173A1 (zh) 2024-05-16

Family

ID=90945899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128323 WO2024099173A1 (zh) 2022-11-09 2023-10-31 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN118019114A (zh)
WO (1) WO2024099173A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889067A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 信息发送和接收方法及装置
CN110431896A (zh) * 2017-03-20 2019-11-08 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
CN114793358A (zh) * 2021-01-26 2022-07-26 北京紫光展锐通信技术有限公司 数据传输方法、装置、用户设备、网络设备及存储介质
WO2022226739A1 (zh) * 2021-04-26 2022-11-03 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889067A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 信息发送和接收方法及装置
CN110431896A (zh) * 2017-03-20 2019-11-08 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
CN114793358A (zh) * 2021-01-26 2022-07-26 北京紫光展锐通信技术有限公司 数据传输方法、装置、用户设备、网络设备及存储介质
WO2022226739A1 (zh) * 2021-04-26 2022-11-03 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质

Also Published As

Publication number Publication date
CN118019114A (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
WO2018171754A1 (zh) 一种通信方法及装置
US11304220B2 (en) Method and device for scheduling transmissions based on channel numerology
WO2017045496A1 (zh) 一种下行控制方法及装置
US9749995B2 (en) User equipment and method for persistent subframe scheduling
JP6807453B2 (ja) 情報送信方法、端末デバイス、およびネットワークデバイス
TWI676398B (zh) 一種資料傳輸方法及裝置
WO2013083043A1 (zh) 一种调度资源的方法及装置
WO2020199957A1 (zh) 一种重传资源的调度方法及设备
WO2021036949A1 (zh) 一种数据的传输方法及装置
WO2014000514A1 (zh) 设备间通信方法、用户设备和基站
WO2019052455A1 (zh) 数据信道参数配置方法及装置
US11540254B2 (en) Apparatus and method for allocating resources in wireless communication system
WO2020253770A1 (zh) 由用户设备执行的方法以及用户设备
WO2020200176A1 (zh) 确定传输资源的方法及装置
EP3398283B1 (en) Method, and apparatus for selecting downlink control information format
WO2021204191A1 (zh) 由用户设备执行的方法以及用户设备
JP2022017375A (ja) 確認応答リソースの永続的なインジケーション
WO2021000937A1 (zh) 多时间单元传输方法及相关装置
WO2024099173A1 (zh) 一种通信方法及装置
WO2024067189A1 (zh) 一种通信方法及装置
WO2024067184A1 (zh) 一种通信方法及装置
WO2022117058A1 (zh) 数据传输方法及装置
WO2024001762A1 (zh) 一种通信方法及装置
WO2024032444A1 (zh) 侧行链路通信方法和通信装置
WO2024032535A1 (zh) 一种传输块大小确定方法及装置