WO2018171754A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2018171754A1
WO2018171754A1 PCT/CN2018/080333 CN2018080333W WO2018171754A1 WO 2018171754 A1 WO2018171754 A1 WO 2018171754A1 CN 2018080333 W CN2018080333 W CN 2018080333W WO 2018171754 A1 WO2018171754 A1 WO 2018171754A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
frequency hopping
information
resource
reference signal
Prior art date
Application number
PCT/CN2018/080333
Other languages
English (en)
French (fr)
Inventor
黎超
张兴炜
时洁
刘哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880020200.XA priority Critical patent/CN110447288B/zh
Priority to EP18770870.6A priority patent/EP3592069B1/en
Publication of WO2018171754A1 publication Critical patent/WO2018171754A1/zh
Priority to US16/578,977 priority patent/US11064465B2/en
Priority to US17/345,623 priority patent/US11765725B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and in particular, to a communication method and apparatus.
  • the reliability and transmission performance of wireless transmission is an important direction in the industry.
  • the terminal performs wireless transmission, it is necessary to optimize the reliability and transmission performance of the wireless transmission.
  • the signal levels on different frequency bands will fluctuate.
  • a terminal occupies a frequency band at a lower frequency the communication performance will be poor.
  • An application scenario that triggers multiple transmissions for such scheduling information as semi-persistent scheduling (SPS), multi-subframe scheduling, and multi-subframe retransmission, or multiple time domain transmission resources for one data packet
  • SPS semi-persistent scheduling
  • multi-subframe scheduling multi-subframe scheduling
  • multi-subframe retransmission or multiple time domain transmission resources for one data packet
  • a method for optimizing wireless transmission performance is frequency hopping transmission.
  • the frequency hopping transmission makes the data to be transmitted of the same terminal not transmitted on one frequency, and can avoid the transmission performance of the terminal when a certain frequency is in deep fading. Very poor question.
  • the large-bandwidth terminal performs the frequency hopping transmission in the entire system bandwidth supported by the frequency hopping transmission scheme of the prior art, which may cause the problem that the transmission resources of the different terminals collide in the bandwidth. In order to avoid the collision of transmission resources, more resources need to be reserved, which will generate more unavailable resource fragments.
  • the embodiment of the present invention provides a communication method and apparatus for solving a problem in which a terminal having different baseband bandwidth capabilities can collide with a transmission resource.
  • the first aspect provides a communication method, where the method is applied to a sending end, including: acquiring resource allocation information and a frequency hopping parameter of a message to be transmitted; wherein the frequency hopping parameter includes bandwidth part indication information, beam indication information, At least one of reference signal configuration information, subcarrier spacing indication information, transmission waveform indication information, slot type indication information, channel type indication information, and transmission carrier indication information; determined according to the resource allocation information and the frequency hopping parameter a physical resource for transmitting the to-be-transmitted message, where the physical resource includes frequency domain resource information that is to be transmitted by the to-be-transmitted message on at least one time unit; and the to-be-transmitted message is sent by using the physical resource.
  • a frequency hopping scheme can be uniformly designed for coexistence of terminals of different bandwidth capability types, and a frequency hopping scheme is a method for determining physical resources, thereby reducing collision of transmission resources and reducing resource fragmentation of scheduling.
  • the frequency hopping parameter includes bandwidth portion indication information; determining the physical resource according to the resource allocation information and the frequency hopping parameter, by implementing: according to the resource allocation information and the The bandwidth part indication information, determining a first frequency domain resource value in a bandwidth part, and determining a second frequency domain resource value of the one bandwidth part according to the resource allocation information and the bandwidth part indication information, and then according to the The first frequency domain resource value and/or the second frequency domain resource value determines the physical resource.
  • the message to be transmitted can be further transmitted between several bandwidth portions, thereby obtaining a better frequency diversity gain.
  • determining the physical resource according to the first frequency domain resource value and the second resource frequency domain location is implemented by: based on the first frequency domain resource value and/or the The second frequency domain resource value determines an initial value of the first random sequence, and generates the first random sequence, and determines the physical resource according to the first random sequence.
  • the frequency hopping parameter includes bandwidth portion indication information, the bandwidth portion indication information includes a bandwidth portion number and/or a bandwidth portion index; determining, according to the resource allocation information and the frequency hopping parameter
  • the physical resource is implemented by determining the physical resource according to the resource allocation information and the number of bandwidth parts and/or a bandwidth part index.
  • determining the physical resource according to the resource allocation information and the bandwidth part number and/or the bandwidth part index by implementing, according to the resource allocation information, for sending the to-be-supplied
  • the time domain resource index and/or the frequency domain resource index of the transport message, and the number of bandwidth portions and/or the bandwidth portion index are used to determine the physical resource.
  • the number of bandwidth parts includes any one of: a quantity of bandwidth parts included in a carrier bandwidth of the transmitting end; a quantity of bandwidth parts that the transmitting end can support; and an allocation allocated to the transmitting end The number of bandwidth parts.
  • the resource allocation information includes a third frequency domain resource value in a bandwidth portion; when the bandwidth occupied by the to-be-transmitted message is greater than one bandwidth portion, according to the third frequency domain resource value
  • the physical resources of the to-be-transmitted message transmission are determined in all bandwidth portions configured by the transmitting end. In this way, when the bandwidth of the primary transmission is wide, only the overall frequency hopping of the frequency shifting in the bandwidth portion that the transmitting end sees is reduced, which can reduce the complexity of the frequency hopping and facilitate the control of the frequency hopping and the transmitting end.
  • the resource location when the transmitting end is the terminal, can obtain the frequency hopping effect and can also predict the resource location after the base station hops the terminal.
  • the bandwidth part indication information includes at least one of the following: indication information of a bandwidth portion occupied by the to-be-transmitted message, a size of a bandwidth portion on a carrier bandwidth of the transmitting end, and a carrier bandwidth of the transmitting end. The number of bandwidth parts included.
  • the frequency hopping parameter includes the beam indication information, the reference signal configuration information, the subcarrier spacing indication information, the transmission waveform indication information, the time slot type indication information, and the At least one of channel type indication information and the transmission carrier indication information.
  • the time unit includes at least one time slot, or the time unit includes at least one symbol within one time slot.
  • the time unit includes at least one symbol in a time slot, determining, according to the resource allocation information and the frequency hopping parameter, a physical resource used by the message to be transmitted, by using the following manner Determining a frequency domain resource location of the to-be-transmitted message mapped on different symbols within a time slot; wherein a time slot includes a first portion and a second portion in a time domain, the first portion including a first reference signal and a a data symbol, the second portion comprising a second data symbol, the different symbols in the one time slot comprising the first data symbol and the second data symbol.
  • the first data symbol is located at a fourth frequency domain resource location, and the second data symbol is located at a fifth frequency domain resource location; the first reference signal is located in the frequency domain respectively A quad-frequency domain resource location and the fifth frequency domain resource location.
  • the second portion further includes a second reference signal.
  • the second reference signal is located at a time domain start position of the second portion.
  • the time unit includes at least two time slots; sending the to-be-transmitted message by using the physical resource is implemented by: binding with a reference signal on the at least two time slots And transmitting the to-be-transmitted message by using the same frequency domain resource.
  • the hopping type is obtained, where the hopping type is used to indicate that the sending end acquires the physical resource used by the message to be transmitted.
  • the frequency hopping type is obtained by at least one of the following indication information: indication information of a bandwidth portion allocated for the transmitting end; indication information of resource allocation within the bandwidth portion.
  • the message to be transmitted includes at least one of the following: data, control information, and reference signal.
  • the different values of the frequency hopping parameters are associated with different configuration parameters of the physical resource used to determine the message to be transmitted, or different values of the frequency hopping parameter are associated with different frequency hopping types.
  • the frequency hopping type is used to indicate that the sending end acquires a physical resource used by the to-be-transmitted message.
  • the bandwidth portion indication information is predefined; or the bandwidth portion indication information is determined by the second signaling indication.
  • obtaining indication information where the indication information is used to indicate that the sending end is in a bandwidth part. Determining the physical resource used by the to-be-transmitted message; or the indication information is used to indicate that the sending end determines the physical resource used by the to-be-transmitted message between the bandwidth parts.
  • different frequency hopping modes are used for frequency hopping in the bandwidth part and frequency hopping between the bandwidth parts, which can provide corresponding frequency hopping schemes for terminals of different bandwidth capability types, so that the system can support terminals of different bandwidth capability types simultaneously. Frequency hopping improves system flexibility and communication efficiency.
  • a second aspect provides a communication method, where the method is applied to a receiving end, including: acquiring resource allocation information and frequency hopping parameters of a message to be demodulated; wherein the frequency hopping parameter includes bandwidth part indication information and beam indication information And at least one of reference signal configuration information, subcarrier spacing indication information, transmission waveform indication information, slot type indication information, channel type indication information, and transmission carrier indication information; according to the resource allocation information and the frequency hopping parameter Determining, by the physical resource, the physical resource used by the to-be-demodulated message, where the physical resource includes frequency domain resource information that is to be demodulated on the at least one time unit; and demodulating the to-be-demodulated message by using the physical resource.
  • a frequency hopping scheme can be uniformly designed for coexistence of terminals of different bandwidth capability types, and a frequency hopping scheme is a method for determining physical resources, thereby reducing collision of transmission resources and reducing resource fragmentation of scheduling.
  • the frequency hopping parameter includes bandwidth portion indication information; determining the physical resource according to the resource allocation information and the frequency hopping parameter, by implementing: according to the resource allocation information and the The bandwidth part indication information, determining a first frequency domain resource value in a bandwidth part; determining, according to the resource allocation information and the bandwidth part indication information, a second frequency domain resource value of the one bandwidth part; The first frequency domain resource value and/or the second frequency domain resource value determines the physical resource.
  • the message to be transmitted can be further transmitted between several bandwidth portions, thereby obtaining a better frequency diversity gain.
  • determining the physical resource according to the first frequency domain resource value and/or the second resource frequency domain location is implemented by: based on the first frequency domain resource value and/or The second frequency domain resource value determines an initial value of the first random sequence, and generates the first random sequence, and determines the physical resource according to the first random sequence.
  • determining, according to the resource allocation information, a first frequency domain resource value in a bandwidth portion by implementing, according to the resource allocation information, determining a bandwidth portion by using a pre-defined bandwidth portion frequency hopping manner The first frequency domain resource value within.
  • determining the physical resource according to the resource allocation information and the bandwidth part number and/or the bandwidth part index by implementing, according to the resource allocation information, for sending the to-be-supplied
  • the physical resource is determined by demodulating a time domain resource index and/or a frequency domain resource index of the message, and the bandwidth portion number and/or bandwidth portion index.
  • the number of bandwidth parts includes any one of: a quantity of bandwidth parts included in a carrier bandwidth of the receiving end; a quantity of bandwidth parts that the receiving end can support; and an allocation allocated to the receiving end The number of bandwidth parts.
  • the resource allocation information includes a third frequency domain resource value in a bandwidth portion; when the bandwidth occupied by the to-be-demodulated message is greater than one bandwidth portion, according to the third frequency domain resource value
  • the physical resources used by the to-be-demodulated message are determined in all bandwidth portions configured by the receiving end. In this way, when the bandwidth of the primary transmission is wide, only the overall frequency hopping of the frequency shifting in the bandwidth portion that the transmitting end sees is reduced, which can reduce the complexity of the frequency hopping and facilitate the control of the frequency hopping and the transmitting end.
  • the resource location when the transmitting end is the terminal, can obtain the frequency hopping effect and can also predict the resource location after the base station hops the terminal.
  • determining according to the resource allocation information, the time domain resource index and/or the frequency domain resource index used to send the to-be-demodulated message, and the bandwidth portion number and/or bandwidth portion index The physical resource is implemented by determining a second random based on the resource allocation information, the time domain resource index and/or the frequency domain resource index used to send the to-be-demodulated message, and the number of the bandwidth parts. An initial value of the sequence, and generating the second random sequence, the physical resource being determined according to the second random sequence.
  • the bandwidth part indication information includes at least one of: indication information of a bandwidth portion occupied by the to-be-demodulated message, a size of a bandwidth portion of a carrier bandwidth of the message to be demodulated, The number of bandwidth portions included in the carrier bandwidth carrying the message to be demodulated.
  • the frequency hopping parameter includes the beam indication information, the reference signal configuration information, the subcarrier spacing indication information, the transmission waveform indication information, the time slot type indication information, and the At least one of channel type indication information and the transmission carrier indication information.
  • the physical resource used by the to-be-demodulated message according to the resource allocation information and the frequency hopping parameter by implementing, according to the resource allocation information, the frequency hopping parameter, and the frequency Determining, by the domain offset value, the physical resource; or determining an initial value of the third random sequence according to the resource allocation information, the frequency hopping parameter, and generating the third random sequence, determining according to the third random sequence The physical resource.
  • the time unit includes at least one time slot, or the time unit includes at least one symbol within one time slot.
  • the time unit includes at least one symbol in a time slot, determining, according to the resource allocation information and the frequency hopping parameter, a physical resource used by the to-be-demodulated message, by using the following manner Implementation: determining a frequency domain resource location of the to-be-demodulated message mapped on different symbols in a time slot; wherein, one time slot includes a first part and a second part in a time domain, and the first part includes a first reference signal And a first data symbol, the second portion comprising a second data symbol, the different symbols in the one time slot including the first data symbol and the second data symbol.
  • the first data symbol is located at a fourth frequency domain resource location, and the second data symbol is located at a fifth frequency domain resource location; the first reference signal is located in the frequency domain respectively A quad-frequency domain resource location and the fifth frequency domain resource location.
  • the second portion further includes a second reference signal.
  • the second reference signal is located at a time domain start position of the second portion.
  • the time unit includes at least two time slots; demodulating the to-be-demodulated message by using the physical resource by: tying the reference signal on the at least two time slots
  • the demodulated message is demodulated in a fixed manner and using the same frequency domain resources.
  • the time domain resource index used for demodulating the to-be-demodulated message is The slot index of the reference signal binding and the number of slots to which the reference signal is bound are determined.
  • a frequency hopping type is obtained, where the frequency hopping type is used to indicate that the receiving end acquires a physical resource used by the to-be-demodulated message.
  • the frequency hopping type is obtained by at least one of the following indication information: indication information of a bandwidth portion of the to-be-demodulated message; indication information of resource allocation in a bandwidth portion of the to-be-demodulated message .
  • the to-be-demodulated message includes at least one of the following: data, control information, and reference signal.
  • the bandwidth portion indication information is predefined; or the bandwidth portion indication information is determined by the second signaling indication.
  • the second parameter includes a cyclic shift value; and correspondingly, determining the second parameter according to the first parameter is implemented by: determining the cyclic shift according to the first parameter and the third parameter a bit value; wherein the third parameter comprises at least one of: an indication value of a cyclic shift value, resource indication information for transmitting the reference signal, generating an orthogonal sequence index of the reference signal, generating the reference A root sequence index of the signal, a spreading factor value of the reference signal is generated.
  • determining the second parameter according to the first parameter is implemented by determining a cell-specific cyclic shift value using the first parameter, and determining the cyclic shift value using the cell-specific cyclic shift value.
  • determining the cell-specific cyclic shift value using the first parameter is accomplished by determining an initial value of the random sequence using the first parameter, and generating the cell-specific cyclic shift value using the random sequence.
  • the orthogonal sequence index is determined by the first parameter and the fourth parameter, and the fourth parameter includes at least one of: an indication value of an orthogonal sequence index, and the reference is sent.
  • Resource indication information of the signal generating a cyclic shift value of the reference signal, generating a root sequence index of the reference signal, and generating a spreading factor value of the reference signal.
  • the root sequence index is determined by a first parameter and a fifth parameter, the fifth parameter comprising at least one of: an indication value of a root sequence index, a resource indication for transmitting the reference signal And generating a cyclic shift value of the reference signal, generating an orthogonal sequence index of the reference signal, and generating a spreading factor value of the reference signal.
  • the second parameter includes a root sequence index; determining the second parameter according to the first parameter is implemented by: determining a sequence hop and/or a group hop using the first parameter; using the sequence hopping / or group hop determines the root sequence index.
  • the group hop includes determining the sequence group number and/or group hop mode using the first parameter, and determining the group hop using a sequence group number and/or a group hopping mode.
  • the reference signal includes at least one of a sounding reference signal, a demodulation reference signal, a positioning reference signal, a phase tracking reference signal, channel state information reference information, and a reference signal for transmitting control information.
  • a fourth aspect provides a method for transmitting control information, where the method is applied to a transmitting end, including: acquiring control information; mapping the control information and the first reference signal to a symbol carrying the control information, A first reference signal is used for demodulation of the control information, the symbol is transmitted, wherein the control information and the first reference signal are time division or frequency division multiplexed in the symbol.
  • transmitting the symbol is accomplished by spreading the control information using a first frequency domain spreading factor and transmitting the symbol.
  • the second reference signal is mapped onto a symbol carrying the control information, wherein the first reference signal and the second reference signal are frequency division multiplexed in the symbol.
  • transmitting the symbol is accomplished by spreading the control information using a second spreading domain spreading factor and transmitting the symbol.
  • the second spreading factor is less than the first spreading factor.
  • the second reference signal occupies a frequency domain resource where the first reference signal is located.
  • the first reference signal is code-multiplexed with the second reference signal, or the first reference signal and the second reference signal are not transmitted.
  • mapping the control information and the first reference signal to the symbol carrying the control information is implemented by: the control information arranged according to a preset rule and the first reference After the signal is transformed into the frequency domain signal, the frequency domain signal is mapped to the frequency domain resource corresponding to the symbol.
  • the mapping of the frequency domain signal to the frequency domain resource corresponding to the symbol is implemented by: mapping the frequency domain signal to a frequency domain resource corresponding to the symbol.
  • the transmission power is allocated according to a priority, wherein the priority is from high to low in order of the control information and the second reference signal.
  • the transmission power is allocated according to a priority, wherein the control information and the second reference signal are determined according to a message type included in the control information. Priority order.
  • the second reference signal is discarded and the control information is transmitted.
  • the second reference signal is discarded, and the higher priority information in the control information is sent.
  • the symbol includes a first time domain resource and a second time domain resource; transmitting the symbol is implemented by: when the transmit power is limited, the control information and the first reference A signal map is transmitted on the first time domain resource, and the second reference signal is mapped on the second time domain resource for transmission.
  • the symbol includes a first time domain resource and a second time domain resource; transmitting the symbol is implemented by: when the transmit power is limited, the first part and the Transmitting, by the first reference signal mapping, on the first time domain resource, and mapping the second part of the control information and the second reference signal on the second time domain resource.
  • the number of symbols carrying the control information is 1 or 2.
  • the number of symbols carrying the control information is 2, the first reference signal is at a first symbol, and the control information and the second reference signal are at a second symbol.
  • the second reference signal is any one of the following: a sounding reference signal, a demodulation reference signal, a positioning reference signal, a phase tracking reference signal, a channel state information reference information, and a reference for transmitting control information. signal.
  • the first reference signal and the second reference signal are used for different subcarrier spacings or different traffic types or different channel types, respectively.
  • a communication device which may be a transmitting end or a chip in a transmitting end.
  • the apparatus can include a processing unit and a transceiver unit.
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver
  • the transmitting end may further include a storage unit
  • the storage unit may be a memory
  • the storage unit is configured to store an instruction
  • the processing The unit executes the instructions stored by the storage unit to cause the sender to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a communication device which may be a receiving end or a chip in the receiving end.
  • the apparatus can include a processing unit and a transceiver unit.
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver
  • the receiving end may further include a storage unit
  • the storage unit may be a memory
  • the storage unit is configured to store an instruction
  • the processing The unit executes the instructions stored by the storage unit to cause the receiving end to perform the method of any of the possible aspects of the second aspect or the second aspect.
  • the processing unit may be a processor, the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes an instruction stored by the storage unit to enable the receiving
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or may be located in the receiving end
  • a memory unit external to the chip eg, read only memory, random access memory, etc.
  • a reference signal transmitting apparatus may be a transmitting end or a chip in the transmitting end.
  • the apparatus can include a processing unit and a transceiver unit.
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver
  • the transmitting end may further include a storage unit, the storage unit may be a memory; the storage unit is configured to store an instruction, the processing The unit executes the instructions stored by the storage unit to cause the transmitting end to perform the method of any of the possible aspects of the third aspect or the third aspect.
  • the processing unit may be a processor, the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes an instruction stored by the storage unit to enable the sending.
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or may be located in the sending end.
  • a memory unit external to the chip eg, read only memory, random access memory, etc.).
  • a device for transmitting control information is provided, and the device may be a transmitting end or a chip in the transmitting end.
  • the apparatus can include a processing unit and a transceiver unit.
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver
  • the transmitting end may further include a storage unit, the storage unit may be a memory; the storage unit is configured to store an instruction, the processing The unit executes the instructions stored by the storage unit to cause the transmitting end to perform the method of any of the possible implementations of the fourth aspect or the fourth aspect.
  • the processing unit may be a processor, the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes an instruction stored by the storage unit to enable the sending
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or may be located in the sending end
  • a memory unit external to the chip eg, read only memory, random access memory, etc.
  • a communication device comprising a memory and a processor, the memory storing instructions that, when executed by the processor, cause the device to perform the first aspect or the first aspect Any of the possible embodiments, or the method of any of the second or second aspect of the second aspect.
  • the device can be a chip system.
  • a reference signal transmitting apparatus characterized in that the apparatus comprises a memory and a processor, the memory storing instructions which, when executed by the processor, cause the apparatus to perform the third aspect or the third A method of any of the possible embodiments.
  • the device can be a chip system.
  • a device for transmitting control information comprising a memory and a processor, the memory storing instructions, when the instruction is executed by the processor, causing the device to perform the fourth aspect or A method in any of the possible embodiments of the fourth aspect.
  • the device can be a chip system.
  • a communication system comprising the communication device of the fifth aspect and the communication device of the sixth aspect.
  • a computer storage medium for storing a computer program, the computer program comprising instructions for performing the method of the above aspects.
  • a computer program product comprising instructions for causing a computer to perform the method of the above aspects when executed on a computer is provided.
  • FIG. 1 is a schematic structural diagram of a communication system in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of application to a cellular link in an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a communication method in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a portion occupied by a terminal in a bandwidth according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of determining physical resources by terminal 2 and terminal 3 according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of determining, by the terminal 4, a physical resource according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a time slot in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of frequency hopping in a time slot based on an additional configuration reference signal according to an embodiment of the present application.
  • FIG. 10 is a second schematic structural diagram of a time slot in an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a method for transmitting a reference signal according to an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a method for sending control information according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of UCI multiplexing in an SRS and a PUCCH of one symbol in an embodiment of the present application;
  • FIG. 14 is a schematic diagram of code division multiplexing between a DMRS and an SRS in an embodiment of the present application
  • FIG. 15 is a schematic diagram of the same RE shared by the DMRS and the SRS in the embodiment of the present application.
  • 16 is a schematic diagram of alternately transmitting UCI and SRS in the embodiment of the present application.
  • 17a to 17c are schematic diagrams of multiplexing methods of SRS and PUCCH in an embodiment of the present application.
  • FIG. 18 to FIG. 21 are schematic structural diagrams of a communication device according to an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of a reference signal sending apparatus according to an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a device for transmitting control information according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system 100 according to an embodiment of the present application.
  • the communication system includes a transmitting end 101 and a receiving end 102.
  • the sending end 101 can be a network device, such as a base station; the receiving end 102 can be a terminal; or the sending end 101 can be a terminal, and the receiving end 102 can be a network device; or the transmitting end 101 and the receiving end 102 are both terminals; Or, both the transmitting end 101 and the receiving end 102 are network devices.
  • a base station is a device deployed in a radio access network to provide wireless communication functions to a terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like. It can be applied in systems with different radio access technologies, such as in Long Term Evolution (LTE) systems, or in more possible communication systems such as 5th Generation (5G) communication systems.
  • LTE Long Term Evolution
  • 5G 5th Generation
  • the base station may also be another network device having a base station function, and in particular, may also be a terminal functioning as a base station in a device-to-device (D2D) communication.
  • the terminal may include various handheld devices having infinite communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of User Equipment (UE), mobile stations (Mobile) Station, MS), etc.
  • UE User Equipment
  • MS Mobile stations
  • the transmitting end 101 sends a message to the receiving end 102.
  • the transmitting end 101 can send a message to the receiving end 102 through the cellular link, as shown in FIG. 2, applied to the uplink of the cellular link, that is, the network device sends a message to the terminal 1, the terminal 2; or, is applied to the downlink of the cellular link. That is, the terminal 1 and the terminal 2 send a message to the network device.
  • the network device can be other types of devices such as a base station or a relay station.
  • the transmitting end 101 can also send a message to the receiving end 102 through the D2D link. As shown in FIG. 3, the terminal 1 sends a message to the terminal 2 through the direct link, or the terminal 2 sends a message to the terminal 1 through the direct link.
  • the term “and/or” is merely an association relationship describing an association object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately. There are three cases of A and B, and B alone.
  • the term “several” refers to at least two.
  • the embodiments of the present application refer to ordinal numbers such as "first" and "second” for distinguishing multiple objects, and are not used to define the order of multiple objects.
  • the application scenarios described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • Step 401 The sender acquires resource allocation information and frequency hopping parameters of the message to be transmitted.
  • the frequency hopping parameter includes at least one of bandwidth part indication information, beam indication information, reference signal configuration information, subcarrier spacing indication information, transmission waveform indication information, slot type indication information, channel type indication information, and transmission carrier indication information.
  • Step 402 The transmitting end determines, according to the resource allocation information and the frequency hopping parameter, a physical resource used for sending the message to be transmitted.
  • the physical resource includes frequency domain resource information that is to be transmitted on the at least one time unit.
  • Step 403 The sending end sends the message to be transmitted through the physical resource, and the receiving end receives the message sent by the sending end.
  • Step 406 The receiving end demodulates the to-be-demodulated message by using the physical resource.
  • the resource obtaining information and the frequency hopping parameter of the message to be transmitted by the transmitting end may include the following situations:
  • the resource allocation information and the frequency hopping parameter of the to-be-transmitted message may be obtained from information configured by the base station or the controller, or may be obtained by using a predefined manner.
  • a predefined manner For example, for a cellular link or an inter-device link controlled or scheduled by a base station, it is typically obtained from a base station or other controller.
  • inter-device links outside the network they can be obtained in a predefined manner.
  • the resource allocation information and the frequency hopping parameter of the to-be-transmitted message may be obtained from the same message, or may be obtained from different messages, or may be partially obtained from the same message, and another part is obtained from another message.
  • the resource allocation information of the message to be transmitted and the indication information of the frequency hopping parameter are simultaneously received from the physical layer control information.
  • the resource allocation information of the message to be transmitted is received from the physical layer control information, and the indication information of the frequency hopping parameter is obtained from another upper layer message.
  • the resource allocation information of the message to be transmitted and the indication information of a part of the frequency hopping parameter are received from the physical layer control information, and the indication information of the other frequency hopping parameters is obtained from another upper layer message.
  • the resource allocation information and the frequency hopping parameter of the to-be-transmitted message may be obtained from the same message at the same time, or may be obtained from different messages at different times.
  • the acquisition of the frequency hopping parameter should be no later than the acquisition of the resource allocation information of the message to be transmitted.
  • the carrier bandwidth on a single carrier may include several bandwidth portions. There may be multiple definitions of the size of the bandwidth portion: for example, it may be based on a predefined one, or may also be configured through a System Information Block (SIB) message or a Radio Resource Control (RRC) message.
  • SIB System Information Block
  • RRC Radio Resource Control
  • the division of the bandwidth part in the entire carrier bandwidth may be uniform or non-uniform, which is not limited in this embodiment of the present application.
  • the 80MHz carrier bandwidth can be divided into four 20MHz bandwidth portions.
  • the 80MHz carrier bandwidth can be divided into eight 10MHz bandwidth portions.
  • the 80MHz carrier bandwidth can also be divided into two 20MHz bandwidth parts and four 10MHz bandwidth parts, that is, a total of six bandwidth parts.
  • the base station can indicate the bandwidth portion occupied by the terminal according to the capability type of the terminal.
  • the bandwidth occupied by the terminal is less than or equal to the bandwidth portion supported by the terminal.
  • M is a positive integer greater than or equal to 2.
  • the base station uses M-bit bit maps (ie, bitmaps) to indicate which bandwidth portions of the carrier bandwidth the terminal occupies.
  • Different terminals occupy different bandwidth portions of the carrier bandwidth.
  • FIG. 1 illustrates the bandwidth portions of the carrier bandwidth.
  • the bitmap portion is used to indicate the bandwidth portion occupied by the terminal, and the shaded position of the label 1 represents the bandwidth portion occupied by the terminal.
  • Terminal 1 occupies the above two consecutive bandwidth portions
  • terminal 2 occupies the fourth bandwidth portion
  • terminal 3 occupies the second, third and fourth bandwidth portions
  • terminal 4 occupies the entire carrier bandwidth.
  • the portion of the bandwidth it occupies in the current carrier bandwidth may be continuous or discontinuous, occupying at least one bandwidth portion.
  • the portion shown by the vertical line in FIG. 5 is the bandwidth occupied by the data to be transmitted by the terminal. It can be seen that the bandwidth occupied by the data to be transmitted by the terminal 1, the terminal 2, and the terminal 3 is less than one bandwidth portion, and the bandwidth occupied by the data to be transmitted by the terminal 4 is greater than one. Bandwidth part.
  • the bandwidth part indication information in step 401 may include at least one of the following: the indication information of the bandwidth part occupied by the message to be transmitted, that is, the bandwidth part where the data to be transmitted is located or available; and the size of each bandwidth part of the carrier bandwidth The number of bandwidth parts included in the carrier bandwidth.
  • the bandwidth portion indication information is predefined; or the bandwidth portion indication information is determined by signaling indication.
  • the resource allocation information in step 401 includes a resource used when instructing the transmitting end to transmit. When the terminal is capable of supporting the entire carrier bandwidth, the resource allocation information is indication information of resource allocation within the carrier bandwidth; when the terminal cannot support the entire carrier bandwidth, the resource allocation information is resource indication information within the bandwidth portion.
  • the resource allocation information may be obtained by the terminal by using predefined information, or may be indicated by the base station.
  • the time unit described in the embodiment of the present application refers to a unit of time-frequency resources occupied by the transmitting end for one transmission.
  • the time unit according to the size of the occupied symbol can be divided into a time slot, a mini-slot (ie, a mini-slot), and a time slot convergence.
  • the size of the time slot is not fixed, and the number of occupied symbols is also not fixed. For example, one time slot can occupy 7,14 symbols.
  • the size of a mini-slot is usually no larger than the number of time-domain resources occupied by one time slot.
  • the minimum number of symbols (time slot length -1) can be used, and the symbol occupying one time slot can be used at most.
  • a time slot convergence is that at least 2 slots are aggregated and transmitted together.
  • the data transmitted in each time slot during transmission may be the same or different.
  • the following method 1 to method 3 may be used to determine the physical resource of the message to be transmitted.
  • the transmitting end determines the first frequency domain resource value in the bandwidth part by using a pre-defined bandwidth partial frequency hopping manner according to the resource allocation information.
  • the frequency hopping mode in the predefined bandwidth part may adopt the hopping formula of type 1 or type 2 in the existing LTE, or may adopt other types of methods.
  • the transmitting end may also determine the first frequency domain resource value in the bandwidth portion according to the indicated frequency domain location in the bandwidth portion.
  • the transmitting end determines the physical resource by using some operation manners based on the first frequency domain resource value and the second frequency domain resource value.
  • the frequency hopping mode in the predefined bandwidth part may adopt the hopping mode of the type 1 in the existing LTE.
  • the following formula (1) and formula (2) are used to determine the foregoing physical resources.
  • the frequency domain resource information on the first time unit that is, the frequency domain resource start value on the first time unit
  • the RB START is the frequency domain resource start value indicated by the resource allocation information, that is, the first frequency domain resource.
  • Value, N BP is the bandwidth of the bandwidth portion occupied by the message to be transmitted. It is the frequency domain resource start value of the bandwidth part, that is, the above second frequency domain resource value, mod represents a modulo operation, and i represents a time domain resource index.
  • n PRB (i) is the frequency domain resource information on the second time unit, that is, the frequency domain resource start value in the second time, and the second time unit is adjacent to the first time unit. It is the frequency domain resource start value of the bandwidth part, that is, the above second frequency domain resource value. It is a frequency domain position determined by the terminal on the second time unit according to the frequency hopping mode of the type 1 in the existing LTE. Is the frequency domain offset value, mod represents the modulo operation, and i represents the time domain resource index.
  • K is the number of bound parameter signals or the number of timeslots that are aggregated.
  • N sb is the size of the subband
  • BP is the size of the subband
  • f m (i) is the frequency hopping mirror function.
  • the transmitting end may further determine an initial value of the random sequence based on the first frequency domain resource value and the second frequency domain resource value, where the random sequence may be referred to as a first random sequence, and the transmitting end generates a first random sequence, according to the first A random sequence is used to determine physical resources.
  • step 402 the transmitting end determines the physical resource according to the resource allocation information, the bandwidth part indication information, and the frequency domain offset value. As shown in the following formula (4-0):
  • PRB(n s ) (PRB BP (n s )+N 0 +(n s modM) ⁇ N BP )modN TBP formula (4-0)
  • N 0 is the frequency domain offset value
  • Method 3 In step 402, the transmitting end determines the physical resource according to the resource allocation information and the number of bandwidth parts and/or the bandwidth part index.
  • the bandwidth part indication information includes a bandwidth part quantity and/or a bandwidth part index; the bandwidth part quantity includes any one of the following: the number of bandwidth parts included in the carrier bandwidth of the transmitting end; the number of bandwidth parts that the transmitting end can support; The number of bandwidth parts allocated by the end.
  • the transmitting end determines the physical resource according to the resource allocation information, the time domain resource index and/or the frequency domain resource index for transmitting the message to be transmitted, and the bandwidth part number and/or the bandwidth part index.
  • the transmitting end determines the physical resource by using formula (4), or formula (5), or formula (6), or formula (7).
  • PRB(n s ) (PRB BP (n s )+(n s modM) ⁇ N BP )modN TBP formula (4)
  • PRB(n s ) represents the above physical resource
  • n s is a slot index
  • PRB BP (n s ) represents a frequency hopping mode within a set bandwidth portion
  • N TBP represents a number of bandwidth portions supported by the terminal
  • N BP represents The size of the bandwidth portion
  • M represents the number of bandwidth portions and/or the bandwidth portion index.
  • PRB(n s ) (PRB BP (n s )+(an s +bmodM) ⁇ N BP )modN TBP formula (5)
  • c() is a function for generating a random sequence
  • g is a non-zero constant
  • FIG. 6 is a schematic diagram of the terminal 2 and the terminal 3 determining physical resources using any one of the foregoing methods 1 to 3.
  • Terminal 2 transmits messages in the fourth bandwidth portion (i.e., bandwidth portion 4) on different time units. The portion of bandwidth occupied by terminal 3 on different time units may be the same or different.
  • the following method 4 may be used to determine the physical resource of the message to be transmitted.
  • the transmitting end acquires the third frequency domain resource value in a bandwidth part included in the resource allocation information.
  • the bandwidth occupied by the message to be transmitted is greater than one bandwidth part, the transmitting end according to the third frequency domain resource value.
  • the physical resources of the message transmission to be transmitted are determined in all bandwidth portions configured by the sender.
  • All the bandwidths configured by the sender are larger than the bandwidth occupied by the message to be transmitted.
  • the entire carrier bandwidth is allocated to the sender.
  • the PRB START, BP (n s ) is the frequency domain start value in a bandwidth part, that is, the third frequency domain resource value.
  • PRB(n s ) (PRB START,BP (n s )+N O )modN TBP formula (9)
  • the PRB START, BP (n s ) is the frequency domain start value in a bandwidth part, and N O represents the frequency domain offset value.
  • the transmitting end performs frequency hopping according to the third frequency domain resource value, the bandwidth part indication information, and the frequency domain offset value included in the resource allocation information.
  • the method represented by the formula (10) can be regarded as a combination of the two methods of the formula (8) and the formula (9).
  • FIG. 7 is a schematic diagram of the terminal 4 determining the physical resource by using the foregoing method 4.
  • the terminal 4 shown in FIG. 5 occupies the entire carrier bandwidth.
  • the shaded portion is the bandwidth occupied by the data to be transmitted of the terminal 4, and the bandwidth occupied by the terminal 4 for transmitting data is larger than the size of one bandwidth portion, and the bandwidth portion occupied by the terminal 4 on different time units may be the same or different.
  • the terminal 4 determines the third frequency domain value in the bandwidth portion on each time unit according to any one of the above formulas (8) to (10) or in combination with a random function.
  • the resource location when the transmitting end is the terminal, can obtain the frequency hopping effect and can also predict the resource location after the base station hops the terminal.
  • the bandwidth part indication information is included in the frequency hopping parameter.
  • the following hopping parameters include beam indication information, reference signal configuration information, subcarrier spacing indication information, transmission waveform indication information, and slot type indication information. The case of at least one of channel type indication information and transmission carrier indication information is described in detail.
  • the frequency hopping parameter may include the bandwidth part indication information or may not include the bandwidth part indication information.
  • Beam indication information used to indicate the beam where the transmission is located, which can be indicated by the beam identification, the time-frequency resource used by the beam, or the configuration information of the reference signal.
  • Subcarrier spacing indication information is used to indicate the subcarrier spacing used in transmission.
  • the subcarrier spacing values may be: 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz.
  • different service types may use different subcarrier spacing.
  • eMBB enhanced mobile broadband
  • URLLC Ultra Reliable & Low Latency Communication
  • the subcarrier spacing indication information can be used not only for different communication bands but also for different service types.
  • Transmission waveform indication information Used to indicate the waveform used during transmission.
  • the optional waveform includes an Orthogonal Frequency Division Multiplexing (OFDM) waveform and a Discrete Fourier Transform-Spread OFDM (DFT-S-OFDM) waveform. Or at least two of the time domain waveforms.
  • An indication may be used to indicate the specific carrier spacing, for example, 1 may be used for OFDM and 0 for DFT-S-OFDM.
  • the slot type indication information includes a time slot, a mini slot, and an aggregation slot.
  • a time slot typically occupies 7 or 14 symbols, while a mini-slot occupies fewer symbols than a time slot, and typically there can be multiple mini-slots in a single time slot.
  • the aggregation slot may also be referred to as slot aggregation, and the aggregation slot usually includes a plurality of consecutive slots that are discontinuous in the time domain.
  • An indication may be used to indicate the type of slot to be used. For example, 0 may be used to indicate a minislot, 1 to be a slot, and 2 to an aggregation slot.
  • Channel type indication information including the indication as a control channel or a data channel, or including a format indicating different control channels. For example: short control channel, long control channel. Or a control channel occupying one time domain symbol, a control channel occupying two time domain symbols, and occupying at least four symbols of the control channel.
  • An indication information may be used to indicate a specifically used channel format. For example, a control channel of 1 symbol may be used with 0, a control channel of 2 symbols for 1 and a long control channel.
  • Transmission carrier indication information used to indicate the type of the current carrier, or the frequency range (high frequency or low frequency) of the current carrier, or configuration parameters related to the current carrier frequency.
  • One or more kinds of information such as subcarrier spacing, subband size, configuration of the bandwidth portion, and maximum number of carriers that can be supported.
  • One indication information may be used to indicate the carrier frequency information to be specifically used. For example, 0 may be used to indicate a low frequency of 6 GHz or less, and 1 may be a high frequency of 6 GHz or more.
  • the reference signal configuration information includes: indicating whether the reference signal on the plurality of time domain resources for transmitting the message is time domain bound; and/or indicating one or more of the generation parameters of the reference signal, the reference includes: The initial value of the sequence is generated, the root sequence number of the sequence is generated, a cyclic shift value of the sequence is generated, an orthogonal sequence index of the sequence is generated, and the like.
  • Any one of the above hopping parameters corresponds to a transmission parameter and a service characteristic with different differences, and one or more of the above hopping parameters are used to determine a physical resource used for sending a message to be transmitted, and different transmission parameters and services may be used. Give different frequency hopping methods to get the best transmission performance.
  • step 5 in step 402, the transmitting end determines the physical resource according to the resource allocation information, the frequency hopping parameter, and the configured frequency domain offset value.
  • the beam indication information is a beam identifier
  • the transmitting end determines the physical resource at the time of transmission according to the beam identifier and the frequency offset value.
  • formula (11) is used to determine the above physical resources.
  • the beam indication information is assumed to be a beam identifier, and an initial value of the third random sequence is generated according to the beam identifier.
  • formula (12) is used to generate an initial value of the third random sequence to further determine physical resources.
  • c init is the initial value of the third random sequence
  • K is a positive integer
  • n f represents the system frame number
  • M and N are positive integers
  • M is the number of possible bits occupied by the beam identifier
  • N represents the number of bits occupied by the cell identifier. For example, if The value ranges from 0 to 503, and N is 9. If The value ranges from 0 to 999, and N is 10. For another example, if the value of the beam identification B ID is 0 to 7, the value of M is 3.
  • the foregoing physical resource is determined by using any of the above hopping parameters in combination with the bandwidth part indication information.
  • formula (13) is used to determine the above physical resources.
  • the beam indication information is assumed to be a beam identifier, and the beam identification is determined when hopping on different bandwidth portions.
  • Different beam schemes have different frequency hopping modes according to frequency hopping parameters, which reduces interference between different beams, thereby achieving the best transmission performance.
  • the physical resources may be determined using a combination of at least two parameters.
  • the Tslot indicates the time slot type
  • ⁇ 1 indicates the frequency domain offset value of the beam identification
  • ⁇ 2 indicates the frequency domain offset value of the time slot type.
  • the meanings of other parameters are described in the formula (11), and are not described herein. .
  • the initial value of the third random sequence may be jointly generated using the slot type and the beam identifier to further determine the physical resource. Specifically, it is as shown in formula (15).
  • the physical resources can be jointly determined using the slot type and the beam identifier, as shown in the formula (16).
  • PRB(n s ) (PRB START,BP (n s )+N O +a ⁇ B ID +b ⁇ T slot )modN TBP formula (16)
  • the method of determining physical resources in the above methods 1 to 6 can be designed.
  • the sending end acquires a frequency hopping type by using at least one of the following indication information: indication information of a bandwidth part allocated for the sending end; and indication information of resource allocation in the bandwidth part.
  • the indication information of the bandwidth portion is used to explicitly or implicitly indicate the frequency hopping type. This information is also used to explicitly or implicitly indicate the skip mode or the frequency hopping parameter when using the bandwidth portion of the bandwidth portion to indicate the portion of the bandwidth in which the transmitting end is transmitting.
  • the frequency hopping type (which may include a hopping mode or a frequency hopping parameter) may be explicitly or implicitly indicated using indication information of resource allocation within the bandwidth portion.
  • the frequency hopping type (which may include a hopping mode or a frequency hopping parameter) may be explicitly or implicitly indicated using the indication information of the bandwidth portion and the indication information of the resource allocation within the bandwidth portion.
  • the indication information of the bandwidth portion may be indicated together with other indication information indicating a frequency hopping manner.
  • 1 bit is used to indicate whether the terminal is frequency hopping within the bandwidth portion or frequency hopping between the bandwidth portions.
  • 1 bit is used to indicate whether the terminal performs frequency hopping in the bandwidth portion, such as 1 for YES and 0 for frequency hopping between bandwidth portions.
  • this bit takes a value of 0, the bandwidth portion indication information is no longer used to indicate the bandwidth portion, but is used to indicate different ways of performing frequency hopping within the carrier bandwidth or system bandwidth.
  • this bit is 1, it means that frequency hopping can be performed in the bandwidth part, then the bandwidth part of the transmission and frequency hopping is determined according to the indication information of the bandwidth part, and the indication information in the bandwidth part is used to indicate the frequency hopping mode.
  • the bandwidth portion is represented by Part 1, Part 2, Part 3, Part 4, ...
  • the frequency hopping pattern is represented by Pattern 1, Pattern 2, Pattern 3, Pattern 4, ....
  • indication information to simultaneously indicate a frequency hopping manner, including: bandwidth part related frequency hopping indication information, a bandwidth part, and resource allocation indication information in the bandwidth part.
  • the sending end further obtains the indication information, where the indication information is used to indicate that the sending end determines the physical resource used by the message to be transmitted in the bandwidth part; or the indication information is used to indicate that the sending end is in the bandwidth part.
  • different values of the frequency hopping parameters are associated with different configuration parameters of the physical resource used to determine the message to be transmitted.
  • the configuration parameters of the physical resource are determined to take different values, and the configuration parameters include the bandwidth part, One or more of a frequency domain offset value, a frequency domain start position, and the like.
  • different values of the frequency hopping parameters are associated with different hopping types, and the hopping type is used to indicate that the sending end obtains the physical resource used by the message to be transmitted.
  • different values of the carrier type correspond to different frequency hopping types. For example, the high frequency carrier uses frequency hopping type 1, and the low frequency carrier uses frequency hopping type 2.
  • one time unit may be one time slot, or one mini time slot, or time slot aggregation. It can be considered that one time unit includes at least one time slot, or one time unit includes at least one symbol within one time slot.
  • the transmitting end determines that the physical resource is actually: the transmitting end determines the frequency domain resource location of the message to be transmitted mapped on different symbols in one time slot.
  • a time slot includes a first portion and a second portion in the time domain, the first portion includes a first reference signal and a first data symbol, and the second portion includes a second data symbol, wherein the different symbols in the one time slot include the first data Symbol and second data symbol.
  • the first data symbol is located at the fourth frequency domain resource location
  • the second data symbol is located at the fifth frequency domain resource location
  • the first reference signal is located in the fourth frequency domain resource location and the fifth frequency domain resource respectively in the frequency domain. position.
  • the data signal is divided into two parts in the frequency domain, occupying a fourth frequency domain resource location and a fifth frequency domain resource location, respectively, on the first data symbol and the second data symbol in the time slot.
  • the first reference signal needs to be sent one at each of the two frequency domain positions where the data appears.
  • the time slot shown in FIG. 8 is 7 symbols, and the data signals to be transmitted can be respectively placed in different frequency domain resource positions in the first 4 symbols and the following 3 symbols.
  • the same first reference signal is placed on the corresponding bandwidth, and the transmit power on the first reference signal is scaled according to the ratio of the two bandwidths. For example, when the lengths of the two portions of the frequency domain data are equal, the power of the two first reference signal portions each account for half of the power at the time symbol.
  • the second part further includes a second reference signal.
  • the second reference signal is located at the time domain start position of the second portion.
  • R' denotes an additionally configured DMRS, that is, a second reference signal, and when the terminal is configured with an additional DMRS in one slot, the terminal supports intra-slot frequency hopping.
  • the location of the frequency hopping starts from the location of the additional DMRS.
  • the time domain position of the physical resource hopping within the time slot is determined according to the symbol position at which frequency hopping occurs within the time slot.
  • the transmitting end sends the to-be-transmitted message in the manner of reference signal binding on at least two time slots and using the same frequency domain resource.
  • the time domain resource index used to send the to-be-transmitted message is bound by the slot index and the reference signal bound by the reference signal, if the time-domain resource index used to send the to-be-transmitted message is used by the transmitting end to determine the physical resource.
  • the number of slots is determined. For example, the value of the time domain resource index i used to send the message to be transmitted is: Where K is the number of time slots bound to the configured reference signal.
  • the foregoing method in the embodiment of the present application may be used for dynamic scheduling, and may also be used for semi-persistent scheduling, and may also be used for multiple retransmissions of multiple data or transmission during time slot aggregation.
  • the solution of the invention can be used for frequency hopping between different time slots and frequency hopping within time slots.
  • frequency hopping within a time slot is implemented, the frequency diversity gain of a data packet in a single transmission can be obtained.
  • frequency hopping between slots the same data packet (like multiple retransmissions of one data packet) or data packets of different UEs at different times (such as multiple data packets of a UE during semi-static transmission) can be transmitted. There are opportunities to use different frequencies to obtain the frequency diversity gain.
  • the frequency hopping scheme of the present invention can be used in multiple aggregated time slots, and the frequency hopping scheme of the present invention can also be used between multiple aggregation time slots, thereby The transmission of time slots provides a frequency diversity gain.
  • the embodiment of the present application further provides a reference signal sending method, and the specific process is as follows.
  • Step 1101 The transmitting end determines the reference signal sequence according to the first parameter, where the first parameter includes at least one of the following: bandwidth part indication information, beam indication information, reference signal configuration information, subcarrier spacing indication information, and transmission waveform indication information. , slot type indication information, channel type indication information, and transmission carrier indication information;
  • Step 1102 The transmitting end generates a reference signal by using a reference signal sequence.
  • Step 1103 The transmitting end sends a reference signal, and the receiving end receives the reference signal.
  • Step 1104 The receiving end parses the reference signal line.
  • the method used by the receiving end to parse the reference signal corresponds to the method for sending the reference signal by the transmitting end, and the repeated description is not repeated.
  • the reference signal includes at least one of the following: a demodulation reference signal, a reference signal for transmitting control information, a sounding reference signal, a positioning reference signal, channel state information reference information, and a phase tracking reference signal.
  • the sending end determines the second parameter according to the first parameter, where the second parameter includes at least one of the following: a cyclic shift value, an orthogonal sequence index, a root sequence index, and an initial value; and the sending end generates the reference signal according to the second parameter. sequence.
  • the transmitting end determines the cell-specific cyclic shift value by using the first parameter, and the transmitting end determines the cyclic shift value by using the cell-specific cyclic shift value.
  • the sending end determines the cell-specific cyclic shift value by using the first parameter
  • the sending end determines the initial value of the random sequence by using the first parameter
  • the sending end uses the random sequence to generate the cell-specific cyclic shift value
  • the cyclic shift value is determined by the cell specific cyclic shift value and the third parameter.
  • the root sequence index is determined by the first parameter and the fifth parameter, and the fifth parameter includes at least one of the following: an indication value of the root sequence index, resource indication information of the transmission reference signal, and a cyclic shift of the generated reference signal.
  • the value, the orthogonal sequence index that generates the reference signal, and the spreading factor value that generates the reference signal is determined by the first parameter and the fifth parameter, and the fifth parameter includes at least one of the following: an indication value of the root sequence index, resource indication information of the transmission reference signal, and a cyclic shift of the generated reference signal.
  • the value, the orthogonal sequence index that generates the reference signal, and the spreading factor value that generates the reference signal is determined by the first parameter and the fifth parameter, and the fifth parameter includes at least one of the following: an indication value of the root sequence index, resource indication information of the transmission reference signal, and a cyclic shift of the generated reference signal.
  • the second parameter includes a root sequence index
  • the sending end determines the initial value of the random sequence by using the first parameter, and the sending end generates the root sequence index by using the random sequence.
  • the second parameter includes a root sequence index
  • the sending end determines the sequence hop and/or the group hop by using the first parameter
  • the sending end determines the root sequence index by using the sequence hop and/or the group hop.
  • the group hopping comprises: determining the sequence group number and/or the group hopping mode by using the first parameter, and determining the group hopping by using the sequence group number and/or the group hopping mode.
  • different reference signals can be generated such that interference between the sequences can be reduced or randomized between the reference signals.
  • terminals with different beams generate a parameter signal, they generate different reference signal sequences, thereby reducing sequence interference between different time-frequency resource terminals of different beams.
  • the reference signal may be a reference signal for transmitting uplink control information (UCI), for example, the UCI includes a Hybrid Automatic Repeat ReQuest (HARQ) response message, and channel state information (Channel State Information).
  • UCI uplink control information
  • HARQ Hybrid Automatic Repeat ReQuest
  • Channel State Information Channel State Information
  • the reference signal may also be a reference signal for demodulation, such as a DMRS, or a reference signal for channel monitoring, such as a Sounding Reference Signal (SRS).
  • SRS Sounding Reference Signal
  • the second parameter includes: a root sequence number (u) of the sequence, a cyclic shift value (CS) of the sequence, an orthogonal cover mask (OCC) of the sequence, and an initial value of the sequence.
  • u root sequence number
  • CS cyclic shift value
  • OCC orthogonal cover mask
  • the above three second parameters are generated according to the first parameter to further eliminate, reduce or randomize interference generated between the sequences.
  • terminal 1 transmits on beam 1 and terminal 2 transmits on beam 2.
  • terminal 1 and terminal 2 take different u, CS, and OCC according to different beam values.
  • one of the initial values of the sequence takes a value, the orthogonality between the sequences of the terminal 1 and the terminal 2 can be ensured, so that the purpose of multi-user sequence interference can be reduced.
  • the following describes the root sequence number (u) of the sequence, the cyclic shift value (CS) of the sequence, and the specific method of generating the orthogonal cover mask (OCC) of the sequence from the first parameter described above.
  • Manner 1 The one or more of the first parameters are used to generate a common CS value of the cell.
  • c represents a random function
  • the initial value cinit of c may be generated by one or more of the first parameters, such as one or more of the following:
  • multiple parameters of the first parameter may also be generated at the same time, for example:
  • Manner 2 Generate a user-specific CS value by using one or more of the first parameters and a common CS value of the cell.
  • Nx represents a value used to characterize any one of the first parameters.
  • n csf is the CS value configured by the base station.
  • Manner 2a Determine the terminal-specific cyclic shift value for the terminal by using one or more of the first parameters.
  • the user-specific CS value is determined using the first parameter and the time domain resource index in which the terminal is located.
  • the formula in the above example is related to the slot number ns and the symbol number l at the same time.
  • Mode 2d Further, optionally, the first parameter and the time domain resource, the frequency domain resource index, and the OCC where the terminal is located are used to determine the user-specific CS value.
  • Method 2e Further, optionally, the CS value is determined by using any one of the methods 2a to 2d and the spreading factor of the terminal.
  • N SF represents a spreading factor
  • sequence transmission it is also possible to perform multiple block cascade transmissions.
  • One of the sequences is an OCC sequence, and the other sequence is a direct-spreading sequence that needs to generate a CS value as described above.
  • the OCC value of the block spreading sequence may be determined according to the first parameter, and the CS value of the direct spreading sequence may also be determined according to the first parameter.
  • OCC usually defines multiple orthogonal sequences over the length of the block spread sequence, such as Table 2:
  • an orthogonal sequence of corresponding length can always be found. What needs to be determined in the embodiments of the present application is an index of an orthogonal sequence of different lengths, that is, which orthogonal sequence of which block spreading sequence is used in transmission.
  • N x and N y represent parameter values of different first parameters.
  • the OCC value can be determined according to one of the following ways:
  • Mode x0 determining according to the first parameter and the indication information value
  • n ocf is the OC value of the base station configuration.
  • Mode x1 determined according to the first parameter and the time-frequency resource, such as:
  • Mode X2 determined according to the first parameter and the CS value, such as:
  • Mode X3 determined according to the first parameter and the u value, such as:
  • Mode X4 determined according to the first parameter and the CS+u value, such as:
  • Mode X5 determined according to the first parameter and the time-frequency resource + CS+u value, such as:
  • the embodiment of the present application proposes to use the first parameter to generate an OC value, to further perform randomization of interference on the block spreading sequence, and the same, to protect different terminals when transmitting according to different values in the first parameter.
  • the terminals are orthogonal to each other so that orthogonality can be achieved between different terminals for the first parameter transmitted, thereby reducing interference between multiple users when transmitting the first parameter.
  • the terminal 1 transmits on the beam 1 and the terminal 2 transmits on the beam 2
  • the other transmission parameters of the terminal 1 and the terminal 2 are the same
  • the OCs of the terminal 1 and the terminal 2 take different values according to different beam values
  • the root sequence number is to determine the following parameter q:
  • q is the root sequence number of the ZC sequence, Indicates the length of the ZC sequence, and m is the independent variable of the generated sequence.
  • the determination method can be any of the following:
  • the first method is directly determined according to the first parameter:
  • Method 2 is determined by the configured parameters and the first parameter:
  • Mode 3 is determined by the indication information of the first parameter and the frequency domain resource:
  • the fourth method is determined by the indication information of the first parameter and the time domain resource:
  • n s represents the current slot index
  • the fifth method is determined by the first parameter and the indication information of the time domain and the frequency domain resource:
  • the sixth mode is determined by the parameters of the sequence hop and the sequence group hop, and any one of the sequence hop and the sequence group hop is determined by the first parameter.
  • u is the sequence group jump parameter:
  • f gh (n s ) is a group hopping template and f ss is a sequence hopping shifting template.
  • Manner 1 The first parameter is used to directly generate f gh (n s ), and the generation method is the same as the above-mentioned q value generation, except that the constant is required to be modulo.
  • Method 2 Generate a sequence f gh (n s ) using a random function, and then use the first parameter to generate an initial value of the random function.
  • f ss is generated in the same way as f gh (n s ).
  • v is the sequence jump parameter
  • the generation method of v is the same as that of f gh (n s ).
  • the embodiment of the present application further provides a method for sending control information, and the specific process is as follows.
  • Step 1201 The sending end acquires control information.
  • Step 1202 The transmitting end maps the control information and the first reference signal to the symbol carrying the control information, where the first reference signal is used for demodulation of the control information, where the control information and the first reference signal are in the Time division or frequency division multiplexing in symbols.
  • Step 1203 The sender sends the symbol, and the receiver receives the symbol.
  • Step 1204 The receiving end parses the symbol.
  • control information and the first reference signal are frequency division multiplexed in the symbol, and the transmitting end uses the first frequency domain spreading factor to spread the control information, and then sends the symbol.
  • the transmitting end maps the second reference signal to the symbol carrying the control information, where the control information, the first reference signal and the second reference signal are frequency division multiplexed in the symbol, and the second reference signal is a detection signal;
  • the transmitting end spreads the control information using the second spreading domain spreading factor, and then transmits the symbol.
  • the second spreading factor is smaller than the first spreading factor.
  • the first reference signal is code-multiplexed with the second reference signal, or the first reference signal and the second reference signal are not sent.
  • the transmitting end converts the control information arranged according to the preset rule and the first reference signal into a frequency domain signal, and then maps the frequency domain signal to the frequency domain resource corresponding to the symbol.
  • the transmitting end maps the frequency domain signal to the subcarrier where the second reference signal is located in the frequency domain resource corresponding to the symbol.
  • the sending end allocates the transmit power according to the priority, wherein the priority is the control information and the second reference signal in descending order.
  • the sending end allocates the transmit power according to the priority, wherein the sending end determines the priority order of the control information and the second reference signal according to the message type included in the control information.
  • the sending end discards the second reference signal and sends the control information.
  • the sending end discards the second reference signal, and sends the information with higher priority in the control information.
  • the symbol includes a first time domain resource and a second time domain resource.
  • the sending end maps the control information and the first reference signal on the first time domain resource, and sends the second reference.
  • the signal map is sent on the second time domain resource.
  • the symbol includes a first time domain resource and a second time domain resource; when the transmit power is limited, the sending end maps the first part of the control information and the first reference signal to be sent on the first time domain resource, and The second portion of the control information and the second reference signal are mapped for transmission on the second time domain resource.
  • the number of symbols carrying control information is 1 or 2.
  • the number of symbols carrying the control information is 2, the first reference signal is at the first symbol, and the control information and the second reference signal are at the second symbol.
  • the second reference signal is any one of the following: a sounding reference signal, a demodulation reference signal, a positioning reference signal, a phase tracking reference signal, channel state information reference information, and a reference signal for transmitting control information.
  • the first reference signal and the second reference signal are respectively used for different subcarrier spacings or different service types or different channel types, and may be different control channel types, or may be different control channels and traffic channels. Types of.
  • control information is PUCCH
  • the first reference signal is DMRS
  • the second reference signal is SRS.
  • a PUCCH of 1 symbol and a PUCCH of 2 symbols can be used.
  • the PUCCH of 1 symbol and 2 symbols is simultaneously transmitted with the SRS in the embodiment of the present application.
  • FIG. 13 is a schematic diagram of UCI multiplexing in SPU and PUCCH of one symbol.
  • the UCI and the demodulated DMRS are frequency-division multiplexed on one symbol, and the spreading factor in the frequency domain of the UCI is adjusted according to whether there is an SRS.
  • the UCI occupies 8 REs.
  • the UCI can be transmitted using an 8x or 4x spreading factor.
  • the multiplexing mode of the UCI and the DMRS on the symbol of the PUCCH may be frequency division multiplexed, or may be mapped before the pre-DFT transform. This embodiment of the present application does not limit this.
  • the SRS occupies part of the RE in the UCI. As shown in FIG. 13, the SRS occupies 4 of the 8 UCI occupied REs, and the spreading factor of the UCI is reduced to half of the original, which is 4 REs or 2 REs.
  • the DMRS and the SRS may also be code division multiplexed. As shown in FIG. 14, the DMRS and the SRS occupy the same RE, and then the DMRS and the SRS are coded using different sequences.
  • the DMRS shares the same RE with the SRS, and only one reference signal is sent. Or, in other words, discard the DMRS and only send the SRS.
  • the UCI and the SRS are transmitted on the same symbol and the uplink transmission power of the terminal is limited, it is necessary to determine the transmission power values of the UCI and the SRS as follows.
  • Mode 0 The transmit power is allocated between UCI and SRS according to the configured parameters.
  • Manner 3 Determine the power priority between the UCI and the SRS according to the content of the signaling included in the UCI. If a response message of HARQ is included in the UCI, the UCI has a higher priority. If the CQI in the CSI is transmitted in the UCI, the CQI has a lower priority or the CQI has the same priority as the SRS.
  • Method 4 Send UCI and SRS separately on different time slots.
  • the PUCCH of one symbol appears once every two slots, and UCI and SRS can be alternately transmitted at different PUCCH locations.
  • This method is only applicable to the scenario where the priority of the information in the transmitted UCI is not higher than the SRS, otherwise it will have a greater negative impact on the transmission of UCI.
  • Manner 5 The UCI is divided into different parts, and some are sent on the time slot in which the UCI is located separately.
  • the UCI may be ACK/NACK, beam information, PMI, etc., and the other part is sent on the same symbol as the SRS, for example.
  • These UCIs can be CQI, RI, etc.
  • the multiplexing method of SRS and PUCCH is as shown in Figs. 17a to 17c.
  • DMRS and UCI are multiplexed are frequency division multiplexing and time division multiplexing.
  • Method 1 Frequency division multiplexing.
  • the SRS occupies the RE of the UCI in the second PUCCH symbol, and the remaining remaining non-DMRS REs are used to transmit the UCI. As shown in Figure 17a.
  • Method 2 Code division multiplexing. As shown in Fig. 17b, this is the same as the PUCCH of one symbol.
  • Mode 3 SRS shares the same RS with DMRS.
  • SRS shares the same RS with DMRS.
  • only the SRS can be sent on the symbol where the SRS is located, without transmitting the DMRS.
  • the embodiment of the present application can implement the simultaneous sending of the SRS and the PUCCH by using the foregoing method, and at the same time, can ensure the opportunity of UCI preferential transmission.
  • the embodiment of the present application further provides a communication device 1800, which is used to execute the communication method shown in FIG.
  • the communication device 1800 includes:
  • the processing unit 1801 is configured to obtain resource allocation information and frequency hopping parameters of the message to be transmitted, where the frequency hopping parameter includes bandwidth part indication information, beam indication information, reference signal configuration information, subcarrier spacing indication information, and transmission waveform indication information, At least one of slot type indication information, channel type indication information, and transmission carrier indication information;
  • the processing unit 1801 is further configured to determine, according to the resource allocation information and the frequency hopping parameter, a physical resource used for sending a message to be transmitted, where the physical resource includes frequency domain resource information that is to be transmitted on the at least one time unit.
  • the sending unit 1802 is configured to send a to-be-transmitted message by using the physical resource determined by the processing unit 1801.
  • the frequency hopping parameter includes a bandwidth part indication information
  • the processing unit 1801 is specifically configured to: determine, according to the resource allocation information and the bandwidth portion indication information, a first frequency domain resource value in a bandwidth portion; and determine a second bandwidth portion according to the resource allocation information and the bandwidth portion indication information. a frequency domain resource value; and determining a physical resource based on the first frequency domain resource value and/or the second frequency domain resource value.
  • the frequency hopping parameter includes at least one of beam indication information, reference signal configuration information, subcarrier spacing indication information, transmission waveform indication information, slot type indication information, channel type indication information, and transmission carrier indication information.
  • the processing unit 1801 is specifically configured to: determine a physical resource according to the resource allocation information, the frequency hopping parameter, and the configured frequency domain offset value; or determine an initial value of the third random sequence according to the resource allocation information and the frequency hopping parameter, And generating a third random sequence, and determining a physical resource according to the third random sequence.
  • the time unit includes at least one time slot, or the time unit includes at least one symbol in one time slot.
  • the time unit includes at least two time slots
  • the sending unit 1802 is configured to: send the to-be-transmitted message by using the same frequency domain resource in a manner of binding the reference signal on the at least two time slots.
  • the processing unit 1801 is further configured to: obtain a frequency hopping type, where the hopping type is used to indicate a manner in which the sending end acquires a physical resource used by the message to be transmitted.
  • the processing unit 1801 acquires a frequency hopping type by using at least one of the following indication information: indication information of a bandwidth portion allocated to the communication device 1800; and indication information of resource allocation in the bandwidth portion.
  • the embodiment of the present application further provides a communication device 1900, which is used to execute the communication method shown in FIG.
  • the communication device 1900 includes:
  • the receiving unit 1901 is configured to receive a to-be-demodulated message sent by the sending end.
  • the processing unit 1902 is configured to acquire resource allocation information and frequency hopping parameters of the to-be-demodulated message received by the receiving unit 1901.
  • the frequency hopping parameter includes bandwidth part indication information, beam indication information, reference signal configuration information, and subcarrier spacing indication information. And transmitting at least one of waveform indication information, slot type indication information, channel type indication information, and transmission carrier indication information;
  • the processing unit 1902 is further configured to determine, according to the resource allocation information and the frequency hopping parameter, a physical resource used by the to-be-demodulated message, where the physical resource includes frequency domain resource information that is to be demodulated and mapped on at least one time unit; and The demodulation message is tuned.
  • the frequency hopping parameter includes bandwidth part indication information; the processing unit 1902 is specifically configured to: determine, according to the resource allocation information and the bandwidth part indication information, a first frequency domain resource value in a bandwidth part; and, according to the resource allocation information And the bandwidth part indication information, determining a second frequency domain resource value of one bandwidth part; determining the physical resource according to the first frequency domain resource value and/or the second frequency domain resource value.
  • the frequency hopping parameter includes at least one of beam indication information, reference signal configuration information, subcarrier spacing indication information, transmission waveform indication information, slot type indication information, channel type indication information, and transmission carrier indication information.
  • the processing unit 1902 is specifically configured to: determine a physical resource according to the resource allocation information, the frequency hopping parameter, and the configured frequency domain offset value; or determine an initial value of the third random sequence according to the resource allocation information and the frequency hopping parameter, And generating a third random sequence, and determining a physical resource according to the third random sequence.
  • the time unit includes at least two time slots.
  • the processing unit 1902 is specifically configured to: demodulate the to-be-demodulated message by using the same frequency domain resource in a manner of binding the reference signal on the at least two time slots.
  • the processing unit 1902 acquires a frequency hopping type by using at least one of the following indication information: indication information of a bandwidth portion of the message to be demodulated; indication information of resource allocation in a bandwidth portion of the message to be demodulated.
  • the embodiment of the present application further provides a communication device 2000, which can be used to execute the method shown in FIG.
  • the communication device 2000 includes a transceiver 2001, a processor 2002, a memory 2003 and a bus 2004.
  • the processor 2002 and the memory 2003 are connected by a bus 2004.
  • the processor 2002 is configured to execute code in the memory 2003 when the code is executed. This execution causes the processor 2002 to execute the communication method shown in FIG.
  • the processor 2002 can be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • the processor 2002 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the embodiment of the present application further provides a communication device 2100, which can be used to execute the method shown in FIG.
  • the communication device 2100 includes a transceiver 2101, a processor 2102, a memory 2103 and a bus 2104.
  • the processor 2102 and the memory 2103 are connected by a bus 2104.
  • the processor 2102 is configured to execute code in the memory 2103 when the code is executed. This execution causes the processor 2102 to execute the communication method shown in FIG.
  • the processor 2102 can be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • the processor 2102 can also further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory 2103 may include a volatile memory such as a random-access memory (RAM); the memory 2103 may also include a non-volatile memory such as a flash memory (flash) Memory), hard disk drive (HDD) or solid state drive (SSD); the memory 2103 may also include a combination of the above types of memory.
  • RAM random-access memory
  • non-volatile memory such as a flash memory (flash) Memory), hard disk drive (HDD) or solid state drive (SSD); the memory 2103 may also include a combination of the above types of memory.
  • the communication device provided in FIG. 18-19 can be used to implement the communication method shown in FIG. 4.
  • the processing unit 1801 in FIG. 18 can be implemented by the processor 2002 in FIG. 20, and the transmitting unit 1802 can be implemented by the transceiver 2001 in FIG.
  • the processing unit 1902 in FIG. 19 can be implemented by the processor 2102 in FIG. 21, and the receiving unit 1901 can be implemented by the transceiver 2101 in FIG.
  • the transmitting end 101 may be the device provided by the embodiment corresponding to FIG. 18 and FIG.
  • the receiving end 102 can be the device provided by the embodiment corresponding to FIG. 19 and FIG. 21.
  • Communication system 100 is for performing the method of the embodiment corresponding to FIG.
  • the embodiment of the present application further provides a reference signal transmitting device 2200 for performing the process shown in FIG. a reference signal transmitting method, wherein the reference signal transmitting device 2200 includes:
  • the processing unit 2201 is configured to determine a reference signal sequence according to the first parameter, where the first parameter includes at least one of: bandwidth portion indication information, beam indication information, reference signal configuration information, subcarrier spacing indication information, and transmission waveform indication Information, time slot type indication information, channel type indication information, transmission carrier indication information;
  • the processing unit 2201 is further configured to generate a reference signal by using a reference signal sequence
  • the sending unit 2202 is configured to send a reference signal.
  • the transmitting end determines a cyclic shift value according to the first parameter and the third parameter, wherein the third parameter includes at least one of the following: an indication value of the cyclic shift value, Transmitting resource indication information of the reference signal, generating an orthogonal sequence index of the reference signal, generating a root sequence index of the reference signal, and generating a spreading factor value of the reference signal.
  • the transmitting end determines the cell-specific cyclic shift value by using the first parameter, and the transmitting end determines the cyclic shift value by using the cell-specific cyclic shift value.
  • the sending end determines the cell-specific cyclic shift value by using the first parameter
  • the sending end determines the initial value of the random sequence by using the first parameter
  • the sending end uses the random sequence to generate the cell-specific cyclic shift value
  • the cyclic shift value is determined by the cell specific cyclic shift value and the third parameter.
  • the root sequence index is determined by the first parameter and the fifth parameter, and the fifth parameter includes at least one of the following: an indication value of the root sequence index, resource indication information of the transmission reference signal, and a cyclic shift of the generated reference signal.
  • the value, the orthogonal sequence index that generates the reference signal, and the spreading factor value that generates the reference signal is determined by the first parameter and the fifth parameter, and the fifth parameter includes at least one of the following: an indication value of the root sequence index, resource indication information of the transmission reference signal, and a cyclic shift of the generated reference signal.
  • the value, the orthogonal sequence index that generates the reference signal, and the spreading factor value that generates the reference signal is determined by the first parameter and the fifth parameter, and the fifth parameter includes at least one of the following: an indication value of the root sequence index, resource indication information of the transmission reference signal, and a cyclic shift of the generated reference signal.
  • the second parameter includes a root sequence index
  • the sending end determines the initial value of the random sequence by using the first parameter, and the sending end generates the root sequence index by using the random sequence.
  • the second parameter includes a root sequence index
  • the sending end determines the sequence hop and/or the group hop by using the first parameter
  • the sending end determines the root sequence index by using the sequence hop and/or the group hop.
  • the group hopping includes: determining the sequence group number and/or the group hopping mode by using the first parameter, and determining the group hopping by using the sequence group number and/or the group hopping mode.
  • the embodiment of the present application further provides a control device 2300 for transmitting control information.
  • the method for transmitting control information shown in FIG. 12, wherein the transmitting device 2300 of the control information includes:
  • the processing unit 2301 is configured to acquire control information.
  • the sending unit 2302 is configured to send the symbol.
  • control information and the first reference signal are frequency division multiplexed in the symbol, and the transmitting end uses the first frequency domain spreading factor to spread the control information, and then sends the symbol.
  • the transmitting end maps the second reference signal to the symbol carrying the control information, where the control information, the first reference signal and the second reference signal are frequency division multiplexed in the symbol, and the second reference signal is a detection signal;
  • the transmitting end spreads the control information using the second spreading domain spreading factor, and then transmits the symbol.
  • the second spreading factor is smaller than the first spreading factor.
  • the second reference signal occupies a frequency domain resource where the first reference signal is located.
  • the first reference signal is code-multiplexed with the second reference signal, or the first reference signal and the second reference signal are not sent.
  • the transmitting end converts the control information arranged according to the preset rule and the first reference signal into a frequency domain signal, and then maps the frequency domain signal to the frequency domain resource corresponding to the symbol.
  • the transmitting end maps the frequency domain signal to the subcarrier where the second reference signal is located in the frequency domain resource corresponding to the symbol.
  • the sending end allocates the transmit power according to the priority, wherein the priority is the control information and the second reference signal in descending order.
  • the sending end allocates the transmit power according to the priority, wherein the sending end determines the priority order of the control information and the second reference signal according to the message type included in the control information.
  • the sending end discards the second reference signal and sends the control information.
  • the sending end discards the second reference signal, and sends the information with higher priority in the control information.
  • the symbol includes a first time domain resource and a second time domain resource.
  • the sending end maps the control information and the first reference signal on the first time domain resource, and sends the second reference.
  • the signal map is sent on the second time domain resource.
  • the symbol includes a first time domain resource and a second time domain resource; when the transmit power is limited, the sending end maps the first part of the control information and the first reference signal to be sent on the first time domain resource, and The second portion of the control information and the second reference signal are mapped for transmission on the second time domain resource.
  • the number of symbols carrying control information is 1 or 2.
  • the number of symbols carrying the control information is 2, the first reference signal is at the first symbol, and the control information and the second reference signal are at the second symbol.
  • the second reference signal is any one of the following: a sounding reference signal, a demodulation reference signal, a positioning reference signal, a phase tracking reference signal, channel state information reference information, and a reference signal for transmitting control information.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种通信方法及装置,用以为不同带宽能力类型的终端共存时统一设计跳频方案,从而减少传输资源的碰撞以及减少调度的资源碎片。该方法为:发送端获取待传输消息的资源分配信息和跳频参数;其中,跳频参数包括带宽部分指示信息、波束指示信息、参考信号配置信息、子载波间隔指示信息、传输波形指示信息、时隙类型指示信息、信道类型指示信息和传输载波指示信息中的至少一种;发送端根据资源分配信息和跳频参数确定用于发送待传输消息的物理资源,物理资源包括待传输消息在至少一个时间单元上映射的频域资源信息;发送端通过物理资源发送待传输消息。

Description

一种通信方法及装置
本申请要求在2017年3月23日提交中国专利局、申请号为201710179572.4、发明名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在无线通信系统中,无线传输的可靠性和传输性能是业内研究的一个重要的方向。终端在进行无线传输时,需要使得无线传输的可靠性和传输性能都尽量达到最佳化。如图1所示,不同频段上的信号电平会有起有落,当某个终端占用频段处于电平较低的频域位置上时,通信性能会很差。针对如半持续调度(Semi-Persistent Scheduling,SPS)、多子帧调度和多子帧重传等这种一个调度信息触发多次传输的应用场景,或者对一个数据包有多个时域传输资源的场景,若某个终端占用频段一直处于信号电平较低的频率上,则将会导致该终端多次传输性能都很差。
一种优化无线传输性能的方法是跳频传输,跳频传输使得同一个终端的待传输数据不会固定在一个频率上传输,可以避免当某个频率处于深衰落时而导致该终端的传输性能一直很差的问题。
在第五代(5th Generation,5G)通信系统中,单个载波上系统支持基带传输的带宽最大可到400MHz,也就是系统带宽最大为400MHz。而不同能力类型的终端支持的基带带宽是不一样的。一部分终端能够支持整个系统带宽,这部分终端可以称为大带宽终端;而一部分终端只能支持系统带宽的一部分,这部分终端可以称为小带宽终端。5G通信系统要求小带宽终端和大带宽终端能够同时工作。现有技术中的跳频传输方案是按照终端能够在整个系统带宽内进行通信来设计的,若小带宽终端按照现有技术的跳频传输方案在其所支持的系统带宽的一部分来进行跳频传输,大带宽终端按照现有技术的跳频传输方案在其所支持的整个系统带宽来进行跳频传输,会导致不同终端在带宽上发生传输资源碰撞的问题。若为了避免传输资源碰撞的发生,需要预留更多的资源,这样会产生更多的不可用的资源碎片。
如何同时为小带宽终端和大带宽终端设计统一的跳频方案,使得两种终端可以同时复用整个系统的时频资源是一个需要解决的问题。
发明内容
本申请实施例提供一种通信方法及装置,用以解决具有不同的支持基带带宽能力的终端复用传输资源时发生碰撞的问题。
本申请实施例提供的具体技术方案如下:
第一方面,提供一种通信方法,所述方法应用于发送端,包括:获取待传输消息的资源分配信息和跳频参数;其中,所述跳频参数包括带宽部分指示信息、波束指示信息、参 考信号配置信息、子载波间隔指示信息、传输波形指示信息、时隙类型指示信息、信道类型指示信息和传输载波指示信息中的至少一种;根据所述资源分配信息和所述跳频参数确定用于发送所述待传输消息的物理资源,所述物理资源包括所述待传输消息在至少一个时间单元上映射的频域资源信息;通过所述物理资源发送所述待传输消息。这样,可以为不同带宽能力类型的终端共存时统一设计跳频方案,跳频方案即确定物理资源的方法,从而减少传输资源的碰撞以及减少调度的资源碎片。
在一个可能的设计中,所述跳频参数包括带宽部分指示信息;根据所述资源分配信息和所述跳频参数确定所述物理资源,通过以下方式实现:根据所述资源分配信息和所述带宽部分指示信息,确定在一个带宽部分内的第一频域资源值,并根据所述资源分配信息和所述带宽部分指示信息,确定所述一个带宽部分的第二频域资源值,然后根据所述第一频域资源值和/或所述第二频域资源值确定所述物理资源。这样,能够在使用带宽部分内跳频方式的基础上,进一步将待传输消息在若干个带宽部分间进行传输,从而获得更好的频率分集增益。
在一个可能的设计中,根据所述第一频域资源值和所述第二资源频域位置确定所述物理资源,通过以下方式实现:基于所述第一频域资源值和/或所述第二频域资源值确定第一随机序列的初始值,并生成所述第一随机序列,根据所述第一随机序列来确定所述物理资源。
在一个可能的设计中,根据所述资源分配信息确定带宽部分内的第一频域资源值,通过以下方式实现:根据所述资源分配信息,采用预定义的带宽部分内跳频方式确定带宽部分内的第一频域资源值。
在一个可能的设计中,所述跳频参数包括带宽部分指示信息;根据所述资源分配信息和所述跳频参数确定所述物理资源,通过以下方式实现:根据所述资源分配信息、所述带宽部分指示信息以及频域偏移值,确定所述物理资源。
在一个可能的设计中,所述跳频参数包括带宽部分指示信息,所述带宽部分指示信息中包括带宽部分数量和/或带宽部分索引;根据所述资源分配信息和所述跳频参数确定所述物理资源,通过以下方式实现:根据所述资源分配信息以及所述带宽部分数量和/或带宽部分索引来确定所述物理资源。
在一个可能的设计中,根据所述资源分配信息以及所述带宽部分数量和/或带宽部分索引来确定所述物理资源,通过以下方式实现:根据所述资源分配信息、用于发送所述待传输消息的时域资源索引和/或频域资源索引、以及所述带宽部分数量和/或带宽部分索引来确定所述物理资源。
在一个可能的设计中,所述带宽部分数量包括以下任意一种:所述发送端的载波带宽包括的带宽部分的数量;所述发送端能够支持的带宽部分的数量;为所述发送端分配的带宽部分的数量。
在一个可能的设计中,所述资源分配信息包括一个带宽部分内的第三频域资源值;当所述待传输消息占用的带宽大于一个带宽部分时,根据所述第三频域资源值在所述发送端配置的所有带宽部分中确定所述待传输消息传输的物理资源。这样,当发送端一次传输的带宽较宽时,只将发送端在它看到的带宽部分内做频率移位的整体跳频,可以减少跳频的复杂度,同时便于控制跳频后发送端的资源位置,在发送端为终端时,在获得跳频效果的同时还能够有方便基站对终端跳频后资源位置的预测。
在一个可能的设计中,根据所述资源分配信息、所述用于发送待传输消息的时域资源索引和/或频域资源索引、以及所述带宽部分数量和/或带宽部分索引来确定所述物理资源,通过以下方式实现:基于所述资源分配信息、所述用于发送待传输消息的时域资源索引和/或频域资源索引、以及所述带宽部分数量来确定第二随机序列的初始值,并生成所述第二随机序列,根据所述第二随机序列来确定所述物理资源。
在一个可能的设计中,所述带宽部分指示信息包括以下至少一种:所述待传输消息占用的带宽部分的指示信息、所述发送端的载波带宽上带宽部分的大小、所述发送端的载波带宽包括的带宽部分的数量。
在一个可能的设计中,所述跳频参数包括所述波束指示信息、所述参考信号配置信息、所述子载波间隔指示信息、所述传输波形指示信息、所述时隙类型指示信息、所述信道类型指示信息、所述传输载波指示信息中的至少一种。
在一个可能的设计中,根据所述资源分配信息和所述跳频参数确定所述待传输消息使用的物理资源,通过以下方式实现:根据所述资源分配信息、所述跳频参数以及频域偏移值确定所述物理资源;或者,根据所述资源分配信息、所述跳频参数确定第三随机序列的初始值,并生成所述第三随机序列,根据所述第三随机序列确定所述物理资源。
在一个可能的设计中,所述时间单元包括至少一个时隙,或者,所述时间单元包括一个时隙内的至少一个符号。
在一个可能的设计中,若所述时间单元包括一个时隙内的至少一个符号,则根据所述资源分配信息和所述跳频参数确定所述待传输消息使用的物理资源,通过以下方式实现:确定所述待传输消息在一个时隙内不同符号上映射的频域资源位置;其中,一个时隙在时域上包括第一部分和第二部分,所述第一部分包括第一参考信号和第一数据符号,所述第二部分包括第二数据符号,所述一个时隙内不同符号包括所述第一数据符号和所述第二数据符号。
在一个可能的设计中,所述第一数据符号位于第四频域资源位置,所述第二数据符号位于第五频域资源位置;所述第一参考信号在频域上分别位于所述第四频域资源位置和所述第五频域资源位置。
在一个可能的设计中,所述第二部分还包括第二参考信号。
在一个可能的设计中,所述第二参考信号位于所述第二部分的时域起始位置。
在一个可能的设计中,所述时间单元包括至少两个时隙;通过所述物理资源发送所述待传输消息,通过以下方式实现:在所述至少两个时隙上以参考信号绑定的方式、且使用相同的频域资源发送所述待传输消息。
在一个可能的设计中,若确定所述物理资源时采用所述用于发送待传输消息的时域资源索引,则所述用于发送待传输消息的时域资源索引由所述参考信号绑定的时隙索引和所述参考信号绑定的时隙数来确定。
在一个可能的设计中,获取跳频类型,其中,所述跳频类型用于指示所述发送端获取所述待传输消息使用的物理资源的确定方式。
在一个可能的设计中,通过以下指示信息中的至少一种获取跳频类型:为所述发送端分配的带宽部分的指示信息;带宽部分内的资源分配的指示信息。
在一个可能的设计中,所述待传输消息包括以下至少一种:数据,控制信息,参考信号。
在一个可能的设计中,所述跳频参数的不同取值关联不同的确定所述待传输消息使用的物理资源的配置参数,或者,所述跳频参数的不同取值关联不同的跳频类型,所述跳频类型用于指示所述发送端获取所述待传输消息使用的物理资源的确定方式。这样,在跳频参数取值不同时,配置不同的配置参数或跳频类型,有利于对不同的跳频参数取值实现有针对性的优化后的跳频方案,从而达到最佳的传输效果。
在一个可能的设计中,所述带宽部分指示信息是预定义的;或者,所述带宽部分指示信息是通过第二信令指示所确定的。
在一个可能的设计中,在根据所述资源分配信息和所述跳频参数确定所述待传输消息使用的物理资源之前,获取指示信息,所述指示信息用于指示所述发送端在带宽部分内确定所述待传输消息使用的物理资源;或者,所述指示信息用于指示所述发送端在带宽部分间确定所述待传输消息使用的物理资源。这样,对带宽部分内跳频和带宽部分间跳频使用不同的跳频方式,可以为不同带宽的能力类型的终端提供相应的跳频方案,使得系统能够支持不同带宽的能力类型的终端同时进行跳频,提高系统的灵活性和通信的效率。
第二方面,提供一种通信方法,所述方法应用于接收端,包括:获取待解调消息的资源分配信息和跳频参数;其中,所述跳频参数包括带宽部分指示信息、波束指示信息、参考信号配置信息、子载波间隔指示信息、传输波形指示信息、时隙类型指示信息、信道类型指示信息和传输载波指示信息中的至少一种;根据所述资源分配信息和所述跳频参数确定所述待解调消息使用的物理资源,所述物理资源包括所述待解调消息在至少一个时间单元上映射的频域资源信息;通过所述物理资源解调所述待解调消息。这样,可以为不同带宽能力类型的终端共存时统一设计跳频方案,跳频方案即确定物理资源的方法,从而减少传输资源的碰撞以及减少调度的资源碎片。
在一个可能的设计中,所述跳频参数包括带宽部分指示信息;根据所述资源分配信息和所述跳频参数确定所述物理资源,通过以下方式实现:根据所述资源分配信息和所述带宽部分指示信息,确定在一个带宽部分内的第一频域资源值;根据所述资源分配信息和所述带宽部分指示信息,确定所述一个带宽部分的第二频域资源值;根据所述第一频域资源值和/或所述第二频域资源值确定所述物理资源。这样,能够在使用带宽部分内跳频方式的基础上,进一步将待传输消息在若干个带宽部分间进行传输,从而获得更好的频率分集增益。
在一个可能的设计中,根据所述第一频域资源值和/或所述第二资源频域位置确定所述物理资源,通过以下方式实现:基于所述第一频域资源值和/或所述第二频域资源值确定第一随机序列的初始值,并生成所述第一随机序列,根据所述第一随机序列来确定所述物理资源。
在一个可能的设计中,根据所述资源分配信息确定带宽部分内的第一频域资源值,通过以下方式实现:根据所述资源分配信息,采用预定义的带宽部分内跳频方式确定带宽部分内的第一频域资源值。
在一个可能的设计中,所述跳频参数包括带宽部分指示信息;根据所述资源分配信息和所述跳频参数确定所述物理资源,通过以下方式实现:根据所述资源分配信息、所述带宽部分指示信息以及频域偏移值,确定所述物理资源。
在一个可能的设计中,所述跳频参数包括带宽部分指示信息,所述带宽部分指示信息中包括带宽部分数量和/或带宽部分索引;根据所述资源分配信息和所述跳频参数确定所述 物理资源,通过以下方式实现:根据所述资源分配信息以及所述带宽部分数量和/或带宽部分索引来确定所述物理资源。
在一个可能的设计中,根据所述资源分配信息以及所述带宽部分数量和/或带宽部分索引来确定所述物理资源,通过以下方式实现:根据所述资源分配信息、用于发送所述待解调消息的时域资源索引和/或频域资源索引、以及所述带宽部分数量和/或带宽部分索引来确定所述物理资源。
在一个可能的设计中,所述带宽部分数量包括以下任意一种:所述接收端的载波带宽包括的带宽部分的数量;所述接收端能够支持的带宽部分的数量;为所述接收端分配的带宽部分的数量。
在一个可能的设计中,所述资源分配信息包括一个带宽部分内的第三频域资源值;当所述待解调消息占用的带宽大于一个带宽部分时,根据所述第三频域资源值在所述接收端配置的所有带宽部分中确定所述待解调消息使用的物理资源。这样,当发送端一次传输的带宽较宽时,只将发送端在它看到的带宽部分内做频率移位的整体跳频,可以减少跳频的复杂度,同时便于控制跳频后发送端的资源位置,在发送端为终端时,在获得跳频效果的同时还能够有方便基站对终端跳频后资源位置的预测。
在一个可能的设计中,根据所述资源分配信息、所述用于发送待解调消息的时域资源索引和/或频域资源索引、以及所述带宽部分数量和/或带宽部分索引来确定所述物理资源,通过以下方式实现:基于所述资源分配信息、所述用于发送待解调消息的时域资源索引和/或频域资源索引、以及所述带宽部分数量来确定第二随机序列的初始值,并生成所述第二随机序列,根据所述第二随机序列来确定所述物理资源。
在一个可能的设计中,所述带宽部分指示信息包括以下至少一种:所述待解调消息占用的带宽部分的指示信息、承载所述待解调消息的载波带宽上所在带宽部分的大小、承载所述待解调消息的载波带宽包括的带宽部分的数量。
在一个可能的设计中,所述跳频参数包括所述波束指示信息、所述参考信号配置信息、所述子载波间隔指示信息、所述传输波形指示信息、所述时隙类型指示信息、所述信道类型指示信息、所述传输载波指示信息中的至少一种。
在一个可能的设计中,根据所述资源分配信息和所述跳频参数确定所述待解调消息使用的物理资源,通过以下方式实现:根据所述资源分配信息、所述跳频参数以及频域偏移值确定所述物理资源;或者,根据所述资源分配信息、所述跳频参数确定第三随机序列的初始值,并生成所述第三随机序列,根据所述第三随机序列确定所述物理资源。
在一个可能的设计中,所述时间单元包括至少一个时隙,或者,所述时间单元包括一个时隙内的至少一个符号。
在一个可能的设计中,若所述时间单元包括一个时隙内的至少一个符号,则根据所述资源分配信息和所述跳频参数确定所述待解调消息使用的物理资源,通过以下方式实现:确定所述待解调消息在一个时隙内不同符号上映射的频域资源位置;其中,一个时隙在时域上包括第一部分和第二部分,所述第一部分包括第一参考信号和第一数据符号,所述第二部分包括第二数据符号,所述一个时隙内不同符号包括所述第一数据符号和所述第二数据符号。
在一个可能的设计中,所述第一数据符号位于第四频域资源位置,所述第二数据符号位于第五频域资源位置;所述第一参考信号在频域上分别位于所述第四频域资源位置和所 述第五频域资源位置。
在一个可能的设计中,所述第二部分还包括第二参考信号。
在一个可能的设计中,所述第二参考信号位于所述第二部分的时域起始位置。
在一个可能的设计中,所述时间单元包括至少两个时隙;通过所述物理资源解调所述待解调消息,通过以下方式实现:在所述至少两个时隙上以参考信号绑定的方式、且使用相同的频域资源解调所述待解调消息。
在一个可能的设计中,若确定所述物理资源时采用所述用于解调待解调消息的时域资源索引,则所述用于解调待解调消息的时域资源索引由所述参考信号绑定的时隙索引和所述参考信号绑定的时隙数来确定。
在一个可能的设计中,获取跳频类型,其中,所述跳频类型用于指示所述接收端获取所述待解调消息使用的物理资源的确定方式。
在一个可能的设计中,通过以下指示信息中的至少一种获取跳频类型:所述待解调消息的带宽部分的指示信息;所述待解调消息的带宽部分内的资源分配的指示信息。
在一个可能的设计中,所述待解调消息包括以下至少一种:数据,控制信息,参考信号。
在一个可能的设计中,所述跳频参数的不同取值关联不同的确定所述待解调消息使用的物理资源的配置参数,或者,所述跳频参数的不同取值关联不同的跳频类型,所述跳频类型用于指示所述接收端获取所述待解调消息使用的物理资源的确定方式。这样,在跳频参数取值不同时,配置不同的配置参数或跳频类型,有利于对不同的跳频参数取值实现有针对性的优化后的跳频方案,从而达到最佳的传输效果。
在一个可能的设计中,所述带宽部分指示信息是预定义的;或者,所述带宽部分指示信息是通过第二信令指示所确定的。
在一个可能的设计中,在根据所述资源分配信息和所述跳频参数确定所述待解调消息使用的物理资源之前,获取指示信息,所述指示信息用于指示所述接收端在带宽部分内确定所述待解调消息使用的物理资源;或者,所述指示信息用于指示所述接收端在带宽部分间确定所述待解调消息使用的物理资源。这样,对带宽部分内跳频和带宽部分间跳频使用不同的跳频方式,可以为不同带宽的能力类型的终端提供相应的跳频方案,使得系统能够支持不同带宽的能力类型的终端同时进行跳频,提高系统的灵活性和通信的效率。
第三方面,提供一种参考信号发送方法,所述方法应用于发送端,包括:根据第一参数确定参考信号序列,其中所述第一参数包括以下中的至少一种:带宽部分指示信息,波束指示信息,参考信号配置信息,子载波间隔指示信息,传输波形指示信息,时隙类型指示信息,信道类型指示信息,传输载波指示信息;使用所述参考信号序列生成参考信号;发送所述参考信号。这样,在第一参数中的任意一种或多种取不同的取值时,可以生成不同的参考信号,以使得这些参考信号之间能够减少或随机化序列之间的干扰。例如,当具有不同的波束的终端在生成参数信号时,它们生成的参考信号序列不同,从而减少不同波束相同时频资源终端之间的序列干扰。
在一个可能的设计中,根据第一参数确定参考信号序列,通过以下方式实现:根据第一参数确定第二参数,所述第二参数包括以下至少一种:循环移位值、正交序列索引、根序列索引、初始值;根据所述第二参数确定所述参考信号序列。
在一个可能的设计中,所述第二参数包括循环移位值;相应地,根据第一参数确定第 二参数,通过以下方式实现:根据所述第一参数和第三参数确定所述循环移位值;其中,所述第三参数包括以下中至少一种:循环移位值的指示值、发送所述参考信号的资源指示信息、生成所述参考信号的正交序列索引、生成所述参考信号的根序列索引、生成所述参考信号的扩频因子值。
在一个可能的设计中,根据第一参数确定第二参数,通过以下方式实现:使用第一参数确定小区特定循环移位值;使用所述小区特定循环移位值确定所述循环移位值。
在一个可能的设计中,使用第一参数确定小区特定循环移位值,通过以下方式实现:使用第一参数确定随机序列的初始值;使用所述随机序列生成所述小区特定循环移位值。
在一个可能的设计中,所述循环移位值由所述小区特定循环移位值和所述第三参数确定。
在一个可能的设计中,所述正交序列索引由所述第一参数和第四参数确定,所述第四参数包括以下中的至少一种:正交序列索引的指示值、发送所述参考信号的资源指示信息、生成所述参考信号的循环移位值、生成所述参考信号的根序列索引、生成所述参考信号的扩频因子值。
在一个可能的设计中,所述根序列索引由第一参数和第五参数确定,所述第五参数包括以下中的至少一种:根序列索引的指示值、发送所述参考信号的资源指示信息、生成所述参考信号的循环移位值、生成所述参考信号的正交序列索引、生成所述参考信号的扩频因子值。
在一个可能的设计中,所述第二参数包括根序列索引;根据第一参数确定第二参数,通过以下方式实现:使用第一参数确定随机序列的初始值;使用所述随机序列生成所述根序列索引。
在一个可能的设计中,所述第二参数包括根序列索引;根据第一参数确定第二参数,通过以下方式实现:使用第一参数确定序列跳和/或组跳;使用所述序列跳和/或组跳确定所述根序列索引。
在一个可能的设计中,所述组跳包括:使用所述第一参数确定序列组号和/或组跳模式,使用序列组号和/或组跳模式确定所述组跳。
在一个可能的设计中,所述参考信号包括以下中的至少一种:探测参考信号,解调参考信号,定位参考信号,相位跟踪参考信号,信道状态信息参考信息,传输控制信息的参考信号。
第四方面,提供一种控制信息的发送方法,所述方法应用于发送端,包括:获取控制信息;将所述控制信息、第一参考信号映射到承载所述控制信息的符号上,所述第一参考信号用于所述控制信息的解调,发送所述符号,其中,所述控制信息和所述第一参考信号在所述符号中时分或频分复用。这样,可以实现SRS与PUCCH的同发,且同时能够保证UCI优先发送的机会。
在一个可能的设计中,发送所述符号,通过以下方式实现:使用第一频域扩频因子对所述控制信息进行扩频后,发送所述符号。
在一个可能的设计中,将第二参考信号映射到承载所述控制信息的符号上,其中,所述第一参考信号和所述第二参考信号在所述符号中频分复用。
在一个可能的设计中,发送所述符号,通过以下方式实现:使用第二扩频域扩频因子对所述控制信息进行扩频后,发送所述符号。
在一个可能的设计中,所述第二扩频因子小于所述第一扩频因子。
在一个可能的设计中,所述第二参考信号占用所述第一参考信号所在的频域资源。
在一个可能的设计中,所述第一参考信号与所述第二参考信号码分复用,或者,所述第一参考信号与第二参考信号中的任意一种不做发送。
在一个可能的设计中,将所述控制信息、第一参考信号映射到承载所述控制信息的符号上,通过以下方式实现:将按预设规则排列的所述控制信息与所述第一参考信号变换成频域信号后,将所述频域信号映射到所述符号对应的频域资源上。
在一个可能的设计中,将所述频域信号映射到所述符号对应的频域资源上,通过以下方式实现:将所述频域信号映射到所述符号对应的频域资源中非所述第二参考信号所在的子载波上。
在一个可能的设计中,当发射功率受限时,按照优先级分配所述发射功率,其中,所述优先级由高到低顺序为所述控制信息、所述第二参考信号。
在一个可能的设计中,当发射功率受限时,按照优先级分配所述发射功率,其中,按照所述控制信息中包括的消息类型来确定所述控制信息与与所述第二参考信号的优先级顺序。
在一个可能的设计中,当发射功率受限时,丢弃所述第二参考信号,发送所述控制信息。
在一个可能的设计中,当发射功率受限时,丢弃所述第二参考信号,发送所述控制信息中优先级较高的信息。
在一个可能的设计中,所述符号包括第一时域资源和第二时域资源;发送所述符号通过以下方式实现:当发射功率受限时,将所述控制信息和所述第一参考信号映射在所述第一时域资源上发送,以及将所述第二参考信号映射在所述第二时域资源上发送。
在一个可能的设计中,所述符号包括第一时域资源和第二时域资源;发送所述符号通过以下方式实现:当发射功率受限时,将所述控制信息中的第一部分和所述第一参考信号映射在所述第一时域资源上发送,以及将所述控制信息中的第二部分和所述第二参考信号映射在所述第二时域资源上发送。
在一个可能的设计中,所述承载所述控制信息的符号的数量为1或2。
在一个可能的设计中,所述承载所述控制信息的符号的数量为2,所述第一参考信号在第一个符号,所述控制信息和所述第二参考信号在第二个符号。
在一个可能的设计中,所述第二参考信号为以下中的任意一种:探测参考信号,解调参考信号,定位参考信号,相位跟踪参考信号,信道状态信息参考信息,传输控制信息的参考信号。
在一个可能的设计中,所述第一参考信号和第二参考信号分别用于不同的子载波间隔或不同的业务类型或不同的信道类型。
第五方面,提供一种通信装置,该装置可以是发送端,也可以是发送端内的芯片。该装置可以包括处理单元和收发单元。当该装置是发送端时,该处理单元可以是处理器,该收发单元可以是收发器;该发送端还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该发送端执行第一方面或第一方面的任一可能的实施方式中的方法。当该装置是发送端内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存 储单元所存储的指令,以使该发送端执行第一方面或第一方面的任一可能的实施方式中的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该发送端内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第六方面,提供一种通信装置,该装置可以是接收端,也可以是接收端内的芯片。该装置可以包括处理单元和收发单元。当该装置是接收端时,该处理单元可以是处理器,该收发单元可以是收发器;该接收端还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该接收端执行第二方面或第二方面的任一可能的实施方式中的方法。当该装置是接收端内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该接收端执行第二方面或第二方面的任一可能的实施方式中的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该接收端内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第七方面,提供一种参考信号发送装置,该装置可以是发送端,也可以是发送端内的芯片。该装置可以包括处理单元和收发单元。当该装置是发送端时,该处理单元可以是处理器,该收发单元可以是收发器;该发送端还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该发送端执行第三方面或第三方面的任一可能的实施方式中的方法。当该装置是发送端内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该发送端执行第三方面或第三方面的任一可能的实施方式中的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该发送端内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第八方面,提供一种控制信息的发送装置,该装置可以是发送端,也可以是发送端内的芯片。该装置可以包括处理单元和收发单元。当该装置是发送端时,该处理单元可以是处理器,该收发单元可以是收发器;该发送端还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该发送端执行第四方面或第四方面的任一可能的实施方式中的方法。当该装置是发送端内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该发送端执行第四方面或第四方面的任一可能的实施方式中的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该发送端内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第九方面,提供了一种通信装置,其特征在于,该装置包括存储器和处理器,该存储器存储有指令,该指令被该处理器运行时,使得该装置执行第一方面或第一方面的任一可能的实施方式、或者第二方面或第二方面的任一可能的实施方式中的方法。该装置可以是芯片系统。
第十方面,提供了一种参考信号发送装置,其特征在于,该装置包括存储器和处理器,该存储器存储有指令,该指令被该处理器运行时,使得该装置执行第三方面或第三方面的任一可能的实施方式中的方法。该装置可以是芯片系统。
第十一方面,提供了一种控制信息的发送装置,其特征在于,该装置包括存储器和处理器,该存储器存储有指令,该指令被该处理器运行时,使得该装置执行第四方面或第四方面的任一可能的实施方式中的方法。该装置可以是芯片系统。
第十二方面,提供了一种通信系统,该通信系统包括第五方面所述的通信装置和第六方面所述的通信装置。
第十三方面,提供了一种计算机存储介质,用于存储计算机程序,该计算机程序包括用于执行上述各方面所述的方法的指令。
第十四方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1为本申请实施例中通信系统架构示意图;
图2为本申请实施例中应用于蜂窝链路示意图;
图3为本申请实施例中通过直连链路传输示意图;
图4为本申请实施例中通信方法流程示意图;
图5为本申请实施例中终端占用带宽部分的示意图;
图6为本申请实施例中终端2和终端3确定物理资源的示意图;
图7为本申请实施例中终端4确定物理资源的示意图;
图8为本申请实施例中时隙的结构示意图之一;
图9为本申请实施例中基于额外配置参考信号的时隙内跳频示意图;
图10为本申请实施例中时隙的结构示意图之二;
图11为本申请实施例中参考信号发送方法流程示意图;
图12为本申请实施例中控制信息的发送方法流程示意图;
图13为本申请实施例中SRS与1个符号的PUCCH中的UCI复用的示意图;
图14为本申请实施例中DMRS与SRS之间码分复用的示意图;
图15为本申请实施例中DMRS与SRS共用相同的RE的示意图;
图16为本申请实施例中交替发送UCI和SRS的示意图;
图17a~图17c为本申请实施例中SRS与PUCCH的复用方法示意图;
图18~图21为本申请实施例中通信装置结构示意图;
图22为本申请实施例中参考信号发送装置结构示意图;
图23为本申请实施例中控制信息的发送装置结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
图1示出了本申请实施例提供的通信系统100的结构示意图。如图1所示,该通信系统包括:发送端101和接收端102。其中,发送端101可为网络设备,比如:基站;接收端102可为终端;或者发送端101可为终端,接收端102可为网络设备;再或者发送端101和接收端102均为终端;再或者,发送端101和接收端102均为网络设备。
以网络设备为基站为例,对网络设备的功能进行介绍。基站是一种部署在无线接入网中用以为终端提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。可以应用在不同的无线接入技术的系统中,例如长期演进(Long Term Evolution,LTE)系统中,或者,第五代(5th Generation,5G)通信系统等更多可能的通 信系统中。基站还可以是其他具有基站功能的网络设备,特别地,还可以是终端对终端(Device-to-Device,D2D)通信中担任基站功能的终端。终端可以包括各种具有无限通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS)等。
本申请实施例中,发送端101向接收端102发送消息。
发送端101可以通过蜂窝链路向接收端102发送消息,如图2所示,应用于蜂窝链路的上行,即网络设备向终端1、终端2发送消息;或者,应用于蜂窝链路的下行,即终端1、终端2向网络设备发送消息。网络设备可以是基站或者中继站等其他类型的设备。
发送端101也可以通过D2D链路向接收端102发送消息,如图3所示,终端1通过直连链路向终端2发送消息,或者,终端2通过直连链路向终端1发送消息。
需要说明的是,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。术语“若干个”是指至少两个。本申请实施例提及“第一”及“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序。本申请实施例描述的应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
基于图1所示的通信系统的架构,如图4所示,本申请实施例提供的通信方法的具体流程如下所述。
步骤401、发送端获取待传输消息的资源分配信息和跳频参数。
其中,跳频参数包括带宽部分指示信息、波束指示信息、参考信号配置信息、子载波间隔指示信息、传输波形指示信息、时隙类型指示信息、信道类型指示信息和传输载波指示信息中的至少一种;
步骤402、发送端根据资源分配信息和跳频参数确定用于发送待传输消息的物理资源。
其中,该物理资源包括待传输消息在至少一个时间单元上映射的频域资源信息。
步骤403、发送端通过物理资源发送待传输消息,接收端接收发送端发来的消息。
具体地,接收端在接收到发送端发来的消息后,需要对该消息进行解调,具体解调步骤如下述步骤404~步骤406。
步骤404、接收端获取待解调消息的资源分配信息和跳频参数。
步骤405、接收端根据资源分配信息和跳频参数确定待解调消息使用的物理资源,物理资源包括待解调消息在至少一个时间单元上映射的频域资源信息;
步骤406、接收端通过所述物理资源解调所述待解调消息。
需要说明的是,接收端所解调的待解调消息即为发送端发送的待传输消息。接收端获取到的待解调消息的资源分配信息和跳频参数,即是发送端获取到的待传输消息的资源分配信息和跳频参数。待解调消息使用的物理资源即是用于发送待传输消息的物理资源。接收端确定待解调消息使用的物理资源的方式与发送端确定用于发送待传输消息的物理资源的方式相同,以下描述中,以发送端确定用于发送待传输消息的物理资源的方式为例进行说明,可以理解的是,接收端可以采用相同的方式确定待解调消息使用的物理资源。
本申请实施例中,待传输消息包括以下至少一种:数据,控制信息,参考信号。
为方便描述,以下描述中通常会以上述通信方法应用于蜂窝链路为例进行介绍,在这种情况下,发送端为终端,接收端为基站,终端向基站发送消息;或者,发送端为基站,接收端为终端,基站向终端发送消息。
以发送端为终端为例,上述步骤401中,发送端获取待传输消息的资源分配信息和跳频参数可以包括以下情况:
可选的,待传输消息的资源分配信息和跳频参数可以是从基站或控制器配置的信息中获取,也可以是通过预定义的方式获取。例如,对于蜂窝链路或受基站控制或调度的设备间链路,通常从基站获或其他控制器获取。而对于支持网络外通信的系统,如网络外的设备间链路,则可以是以预定义的方式获取。
可选的,待传输消息的资源分配信息和跳频参数可以是从同一个消息中获取,也可以是从不同的消息中获取,还可以是一部分从同一消息中获取,另一部分从另一消息中获取。例如,从物理层控制信息中同时接收到待传输消息的资源分配信息和跳频参数的指示信息。又如,从物理层控制信息中接收到待传输消息的资源分配信息,而从另一个上层消息中获取跳频参数的指示信息。再如,从物理层控制信息中接收到待传输消息的资源分配信息和一部分跳频参数的指示信息,而从另一个上层消息中获取其它的跳频参数的指示信息。
可选的,待传输消息的资源分配信息和跳频参数可以是同时从同一个消息中获取,也可以是不同时刻从不同的消息中获取。优选的,跳频参数的获取应该不晚于待传输消息的资源分配信息的获取。
为了方便对本申请实施例提供的通信方法的理解,下面对带宽部分的定义和指示做具体说明。
在通信系统中,单个载波上的载波带宽可以包括若干个带宽部分。对带宽部分大小的定义可以有多种:例如,可以是基于预定义的,或者也可以通过系统信息块(System Information Block,SIB)消息或无线资源控制(Radio Resource Control,RRC)消息来配置
对带宽部分大小的指示可以有多种,例如:基于物理广播信道(Physical Broadcast Channel,PBCH)、RRC或下行控制信息(Downlink Control Information,DCI)来指示的。在一个可实施的实施中,例如,在5G通信系统中,400MHz的载波带宽可被分割成4个100MHz的带宽部分,这个分割信息可以是通过预定义的、SIB消息或RRC消息来配置的。对于终端使用哪一个带宽部分或使用哪几个带宽部分,基站可以基于PBCH、RRC或DCI来指示给终端。
可选地,带宽部分在整个载波带宽上的划分可以是均匀的,也可以是不均匀的,本申请实施例对此不做限定。如,80MHz的载波带宽可以分成4个20MHz的带宽部分。又如,80MHz的载波带宽可以分成8个10MHz的带宽部分。又如,80MHz的载波带宽还可以分成2个20MHz的带宽部分和4个10MHz的带宽部分,即共有6个带宽部分。
不同能力类型的终端支持的带宽是不一样的。一部分终端能够支持整个载波带宽,这部分终端可以称为大带宽终端;而一部分终端只能支持载波带宽的一部分,这部分终端可以称为小带宽终端。在步骤401之前,基站获取终端的能力类型,或者,终端向基站发送终端的能力类型,终端的能力类型包括,终端是大带宽终端或者小带宽终端,和/或,终端能够支持的带宽部分大小。
基站可以根据终端的能力类型指示终端占用的带宽部分,当然,终端占用的带宽部分小于等于终端支持的带宽部分的大小。假设当前的载波带宽中有M个带宽部分,M为大于等于2的正整数。基站使用M比特的比特映射(即bitmap)指示终端占用载波带宽的哪些带宽部分。如图5所示,假设当前载波带宽包括4个带宽部分,例如,载波带宽为80MHz,M=4,一个带宽部分为20MHz;或者,载波带宽为400MHz,M=4,一个带宽部分为100MHz。不同的终端占用载波带宽的不同带宽部分。图5中,使用bitmap的方式指示终端占用的带宽部分,标1的阴影位置表征终端占用的带宽部分。终端1占用上面的2个连续的带宽部分,终端2占用第四个带宽部分,终端3占用第二个、第三个和第四个带宽部分,终端4占用整个载波带宽。对每个终端而言,其在当前载波带宽中占用的带宽部分可以是连续的,也可以是不连续的,最少占用一个带宽部分。
图5中的终端2只能够支持一个带宽部分大小,终端2的能力类型决定了终端2只能在一个带宽部分上做传输(例如80MHz中的20MHz,或400MHz中的100MHz),则基站可以在整个载波带宽上指示一个带宽部分给终端2来做传输。
图5中竖线所示部分为终端的待传输数据占用的带宽,可见,终端1、终端2和终端3待传输数据占用的带宽小于一个带宽部分,而终端4待传输数据占用的带宽大于一个带宽部分。
具体来说,步骤401中所述带宽部分指示信息可以包括以下至少一种:待传输消息占用的带宽部分的指示信息,即待传输数据所在或可用的带宽部分;载波带宽上各个带宽部分的大小、载波带宽包括的带宽部分的数量。带宽部分指示信息是预定义的;或者,带宽部分指示信息是通过信令指示所确定的。步骤401中所述资源分配信息包括指示发送端传输时使用的资源。当终端能够支持整个载波带宽时,该资源分配信息是在此载波带宽内的资源分配的指示信息;当终端不能支持整个载波带宽时,该资源分配信息是在带宽部分内的资源指示信息。其中,该资源分配信息可以是终端通过预定义的信息获取的,也可以是通过基站指示的。
本申请实施例中所述的时间单元是指发送端一次传输占用的时频资源的单位。根据占用符号的大小时间单元可以分为时隙,迷你时隙(即mini-slot)以及时隙汇聚。时隙的大小不是固定的,占用的符号数也是不固定的,例如:一个时隙可以用占7,14个符号。一个mini-slot的大小通常不大于一个时隙占用的时域资源数量,最小可以占用1个(时隙长度-1)的符号数,最多可以用占用一个时隙的符号。而一个时隙汇聚则是至少有2个进隙汇聚在一起传输。传输时在各个时隙中传输的数据可以相同也可以不同。
以下对跳频参数中包括带宽部分指示信息的情形作详细介绍。
当待传输消息占用的带宽不大于一个带宽部分时,可以采用下述方法一~方法三来确定待传输消息传输的物理资源。
方法一、步骤402中,发送端根据资源分配信息和带宽部分指示信息,确定在一个带宽部分内的第一频域资源值,根据资源分配信息和带宽部分指示信息,确定一个带宽部分的第二频域资源值;根据第一频域资源值和第二频域资源值确定物理资源。
具体来说,发送端根据资源分配信息,采用预定义的带宽部分内跳频方式确定带宽部分内的第一频域资源值。其中,预定义的带宽部分内跳频方式可以采用现有LTE中类型1或类型2的跳频公式,也可以采用其它类型的方式。或者,发送端也可以根据带宽部分内的指示的频域位置确定带宽部分内的第一频域资源值。
发送端基于第一频域资源值和第二频域资源值,采用一些运算方式,来确定物理资源。
例如,预定义的带宽部分内跳频方式可以采用现有LTE中类型1的跳频方式,则在一个可能的实现方式中,采用以下公式(1)和公式(2)来确定上述物理资源。
Figure PCTCN2018080333-appb-000001
其中,
Figure PCTCN2018080333-appb-000002
第一个时间单元上的频域资源信息,即第一个时间单元上的频域资源起始值,RB START是资源分配信息指示的频域资源起始值,也就是上述第一频域资源值,N BP是待传输消息占用的带宽部分的带宽,
Figure PCTCN2018080333-appb-000003
是带宽部分的频域资源起始值,也就是上述第二频域资源值,mod表示取模操作,i表示时域资源索引。
Figure PCTCN2018080333-appb-000004
其中,n PRB(i)是第二个时间单元上的频域资源信息,即第二个时间上的频域资源起始值,第二个时间单元与第一个时间单元相邻。
Figure PCTCN2018080333-appb-000005
是带宽部分的频域资源起始值,也就是上述第二频域资源值。
Figure PCTCN2018080333-appb-000006
是终端按照现有LTE中类型1的跳频方式在第二个时间单元上确定的频域位置,
Figure PCTCN2018080333-appb-000007
是频域偏移值,mod表示取模操作,i表示时域资源索引。
又例如,预定义的带宽部分内跳频方式可以采用现有LTE中类型2的跳频方式,则在一个可能的实现方式中,采用以下公式(3)来确定上述物理资源。
Figure PCTCN2018080333-appb-000008
其中,
Figure PCTCN2018080333-appb-000009
表示上述物理资源,n s是时隙索引,
Figure PCTCN2018080333-appb-000010
是带宽部分的频域资源起始值,也就是上述第二频域资源值。
Figure PCTCN2018080333-appb-000011
是资源分配信息指示的频域资源起始值,f hop(i)是跳频函数,i为时域索引值。本申请实施例中,当执行时隙间跳频时,i=n s,当执行时隙内跳频时
Figure PCTCN2018080333-appb-000012
其中l是时隙内的符号索引,K为时隙内跳频的数量。例如,当一个时隙有14个符号且每7个符号做时隙内跳频时,K=2。当执行时隙汇聚的跳频或参考信号绑定的跳频时,
Figure PCTCN2018080333-appb-000013
其中K为绑定的参数信号数量或者汇聚的时隙数量。
Figure PCTCN2018080333-appb-000014
为带宽部分内的子带参数,N sb,BP为子带的大小,f m(i)是跳频镜像函数。
另外,发送端还可以基于第一频域资源值和第二频域资源值确定随机序列的初始值,这里的随机序列可称为第一随机序列,发送端生成第一随机序列,根据第一随机序列来确定物理资源。
方法二、步骤402中,发送端根据资源分配信息、带宽部分指示信息以及频域偏移值,确定物理资源。如下公式(4-0)所示:
PRB(n s)=(PRB BP(n s)+N 0+(n smodM)·N BP)modN TBP         公式(4-0)
其中N 0为频域偏移值。
方法三、步骤402中,发送端根据资源分配信息以及带宽部分数量和/或带宽部分索引来确定物理资源。
其中,带宽部分指示信息中包括带宽部分数量和/或带宽部分索引;带宽部分数量包括以下任意一种:发送端的载波带宽包括的带宽部分的数量;发送端能够支持的带宽部分的数量;为发送端分配的带宽部分的数量。
具体地,发送端根据资源分配信息、用于发送待传输消息的时域资源索引和/或频域资源索引、以及带宽部分数量和/或带宽部分索引来确定物理资源。
在一个可能的实现方式中,发送端采用公式(4)、或公式(5)、或公式(6)、或公式(7)来确定上述物理资源。
PRB(n s)=(PRB BP(n s)+(n smodM)·N BP)modN TBP       公式(4)
其中,PRB(n s)表示上述物理资源,n s是时隙索引,PRB BP(n s)表示设定的带宽部分内跳频方式,N TBP表示终端支持的带宽部分的数量,N BP表示带宽部分的大小,M表示带宽部分数量和/或带宽部分索引。
PRB(n s)=(PRB BP(n s)+(an s+bmodM)·N BP)modN TBP    公式(5)
其中,a,b为常数,其余参数与公式(4)中所述相同,重复之处不再赘述。
Figure PCTCN2018080333-appb-000015
其中,a,b,c为常数,其余参数与公式(4)中所述相同,重复之处不再赘述。
可选的,发送端基于资源分配信息、用于发送待传输消息的时域资源索引和/或频域资源索引、以及带宽部分数量来确定第二随机序列的初始值,并生成第二随机序列,根据第二随机序列来确定物理资源。具体地,在上述公式(4)~公式(6)的基础上使用随机函数。
Figure PCTCN2018080333-appb-000016
其中,f(i)根据随机序列函数生成,例如,f(i)=g*c(10i),c()为生成随机序列的函数,g为一个非零常数,其余参数与公式(4)中所述相同,重复之处不再赘述。
以图5中所示的终端2和终端3为例,图6为终端2和终端3使用上述方法一~方法三的任意一种确定物理资源的示意图,图5中所示的终端2占用一个带宽部分,终端3占用三个带宽部分。如图6所示,阴影部分为终端2和终端3的待传输数据占用的带宽,可见,终端2和终端3传输数据占用的带宽小于一个带宽部分的大小。终端2在不同的时间单元上一直在第四个带宽部分(即带宽部分4)内传输消息。终端3在不同的时间单元上占用的带宽部分可能相同或不同。因为终端2和终端3在使用了相同的带宽部分内跳频方式,当终端2和终端3资源分配信息不相同或不重叠时,确定的物理资源也不相同或不重叠,这样,可以减少跳频后的资源冲突,且减少资源分配时产生的碎片。并且,可以实现窄带宽能力终端与宽带宽能力终端的良好共存,减少跳频的冲突和资源碎片。通过上述方法一~方法三,能够在使用带宽部分内跳频方式的基础上,进一步将待传输消息在若干个带宽部分间进行传输,从而获得更好的频率分集增益。
当待传输消息占用的带宽大于一个带宽部分时,可以采用下述方法四来确定待传输消息传输的物理资源。
方法四、步骤402中,发送端获取资源分配信息中包括的一个带宽部分内的第三频域资源值,当待传输消息占用的带宽大于一个带宽部分时,发送端根据第三频域资源值在发送端配置的所有带宽部分中确定待传输消息传输的物理资源。
在一个可能的实现方式中,发送端采用公式(8)、或公式(9)、或公式(10)来确定上述物理资源。
发送端所配置的所有带宽部分大于待传输消息占用的带宽,可选的,为发送端分配整个载波带宽。
Figure PCTCN2018080333-appb-000017
其中,PRB START,BP(n s)是在一个带宽部分内的频域起始值,也就是第三频域资源值,其余参量描述参见公式(4),在此不再赘述。
公式(8)所表示的方法中,发送端只在带宽部分间跳频,且跳频后在带宽部分内的频域起始值始终不变。
PRB(n s)=(PRB START,BP(n s)+N O)modN TBP    公式(9)
其中,PRB START,BP(n s)是在一个带宽部分内的频域起始值,N O表示频域偏移值,其余参量描述参见公式(4),在此不再赘述。
公式(9)所表示的方法中,发送端根据资源分配信息中包括的第三频域资源值、带宽部分指示信息以及频域偏移值进行跳频。
Figure PCTCN2018080333-appb-000018
其中,各参量描述参见公式(9),在此不再赘述。
公式(10)所表示的方法可以看做公式(8)和公式(9)两种方法的结合。
可选的,在上述公式(8)~公式(10)的基础上使用随机函数。具体方法与公式(7)的方法类似,相同之处不再赘述。
以图5中所示的终端4为例,图7为终端4使用上述方法四确定物理资源的示意图,图5中所示的终端4占用整个载波带宽。如图7所示,阴影部分为终端4的待传输数据占用的带宽,终端4传输数据占用的带宽大于一个带宽部分的大小,终端4在不同的时间单元上占用的带宽部分可能相同或不同。终端4在每一个时间单元上根据上述公式(8)~公式(10)或结合随机函数的任一种方式,来确定带宽部分内的第三频域值。这样,当发送端一次传输的带宽较宽时,只将发送端在它看到的带宽部分内做频率移位的整体跳频,可以减少跳频的复杂度,同时便于控制跳频后发送端的资源位置,在发送端为终端时,在获得跳频效果的同时还能够有方便基站对终端跳频后资源位置的预测。
以上为跳频参数中包括带宽部分指示信息的情形的详细介绍,以下对跳频参数中包括波束指示信息、参考信号配置信息、子载波间隔指示信息、传输波形指示信息、时隙类型指示信息、信道类型指示信息、传输载波指示信息中的至少一种的情形作详细介绍。以下描述的方法中,跳频参数中可以包括带宽部分指示信息,也可以不包括带宽部分指示信息。
为了方面对本申请实施例的了解,首先对上述各个跳频参数作介绍。
波束指示信息:用来指示传输时所在的波束,可以使用波束标识、波束使用的时频资源或参考信号的配置信息来指示。
子载波间隔指示信息:子载波间隔指示信息用来指示传输时使用的子载波间隔。例如子载波间隔值可以是:15kHz、30kHz、60kHz、120kHz、240kHz、480kHz。进一步地,不同的业务类型可以使用不同的子载波间隔。例如,增强移动宽带(enhanced Mobile Broadband,eMBB)业务可以使用15kHz,超高可靠性与超低时延通信(Ultra Reliable&Low Latency Communication,URLLC)业务可以使用60kHz、30kHz。所以子载波间隔指示信息不仅能用于不同的通信频段,还能用于不同的业务类型。可以使用一个指示信息来指示具体使用的载波间隔,例如n=0、1、2、…、5,用来分别表示15kHz到480kHz的子载波间隔。
传输波形指示信息:用来指示传输时使用的波形。可选的波形包括正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)波形,离散傅里叶变换扩展的正交 频分复用(Discrete Fourier Transform-Spread OFDM,DFT-S-OFDM)波形,或时域波形中的至少两种。可以使用一个指示信息来指示具体使用的载波间隔,例如可以使用1表示OFDM,0表示DFT-S-OFDM。
时隙类型指示信息:包括时隙,迷你时隙,汇聚时隙。时隙通常占用7或14个符号,而迷你时隙占用的符号数比时隙要小,通常一个时隙中可以有多个迷你时隙。汇聚时隙也可以称为时隙汇聚,汇聚时隙通常包括多个在时域上连续上不连续的时隙。可以使用一个指示信息来指示具体使用的时隙类型,例如可以使用0表示迷你时隙,1表示时隙,2表示汇聚时隙。
信道类型指示信息:包括指示为控制信道或数据信道,或者包括指示的是不同控制信道的格式。例如:短的控制信道,长的控制信道。或者占用1个时域符号的控制信道,占用2个时域符号的控制信道,占用至少4个符号的控制信道。可以使用一个指示信息来指示具体使用的信道格式,例如可以使用0表示1符号的控制信道,1表示2符号的控制信道,2表示长的控制信道。
传输载波指示信息:用来指示当前载波的类型,或当前载波的频率范围(高频或低频),或当前载波频率相关的配置参数。如子载波间隔、子带大小、带宽部分的配置、能够支持的最大载波数等一种或多种信息。可以使用一个指示信息来指示具体使用的载频信息,例如可以使用0表示6GHz以下的低频,1表示6GHz以上的高频。
参考信号配置信息包括:指示发送所述消息的多个时域资源上的参考信号是否时域绑定;和/或指示所述参考信号的生成参数的一种或多种,所述参考包括:生成序列的初始值,生成序列的根序列号,生成序列的循环移位值,生成序列的正交序列索引等。
以上任意一种跳频参数对应了差异较大的传输参数和业务特性,使用以上跳频参数中的一种或以上来确定用于发送待传输消息的物理资源,可以对不同的传输参数和业务给予不同的跳频方式,从而以获得最佳的传输性能。
方法五、步骤402中,发送端根据资源分配信息、跳频参数以及配置的频域偏移值确定物理资源。
以跳频参数为波束指示信息为例,假设波束指示信息为波束标识,发送端根据波束标识和频率偏移值来确定传输时的物理资源。在一个可能的实现方式中,采用公式(11)来确定上述物理资源。
Figure PCTCN2018080333-appb-000019
其中,B ID表示波束标识,Δ表示频率偏移值,其他参数见公式(2)中描述,在此不再赘述。
方法六、步骤402中,发送端根据资源分配信息、跳频参数确定第三随机序列的初始值,并生成第三随机序列,根据第三随机序列确定物理资源。
以跳频参数为波束指示信息为例,假设波束指示信息为波束标识,根据波束标识来生成第三随机序列的初始值。在一个可能的实现方式中,采用公式(12)来生成第三随机序列的初始值,进一步确定物理资源。
Figure PCTCN2018080333-appb-000020
其中,c init为第三随机序列的初始值,
Figure PCTCN2018080333-appb-000021
表示小区标识,K是一个正整数,n f表示系统帧号,M和N为正整数,M为波束标识占用的可能的比特位数,N表示小区标识占用 的比特位数。例如,如果
Figure PCTCN2018080333-appb-000022
的取值范围为0~503,则N为9,如果
Figure PCTCN2018080333-appb-000023
的取值范围为0~999,则N为10。又如,如果波束标识B ID的取值为0~7,则M的值为3。
当发送端在带宽部分间跳频时,采用上述任一种跳频参数结合带宽部分指示信息,确定上述物理资源。在一个可能的实现方式中,采用公式(13)来确定上述物理资源。
以跳频参数为波束指示信息为例,假设波束指示信息为波束标识,确定在不同带宽部分上跳频时使用波束标识。
PRB(n s)=(PRB START,BP(n s)+N O+a·B ID)modN TBP    公式(13)
其中,各个参数的意义参考公式(9)和公式(12),在此不再赘述。
不同的波束方案中根据跳频参数有不同的跳频方式,减少了不同波束间的干扰,从而达到传输性能最佳。
以上公式(11)~公式(13)中均以跳频参数为波束指示信息为例进行介绍,当跳频参数取上述其他参数时,均可代替上述公式中的波束标识,参考相同的方式确定物理资源。
进一步地,可以使用至少两种参数来组合确定物理资源。
例如,公式(11)中,可以使用时隙类型和波束标识共同确定物理资源,具体如公式(14)。
Figure PCTCN2018080333-appb-000024
其中,Tslot表示时隙类型,Δ 1表示波束标识的频域偏移值,Δ 2表示时隙类型的频域偏移值,其他参数的意义见公式(11)中描述,在此不再赘述。
又例如,公式(12)中,可以使用时隙类型和波束标识共同生成第三随机序列的初始值,进一步确定物理资源。具体如公式(15)。
Figure PCTCN2018080333-appb-000025
其中,各参数的意义参见公式(12)和公式(14),在此不再赘述。
又例如,公式(13)中,可以使用时隙类型和波束标识共同确定物理资源,具体如公式(16)。
PRB(n s)=(PRB START,BP(n s)+N O+a·B ID+b·T slot)modN TBP     公式(16)
其中,a、b为常数,其他参数的意义参见公式(13),在此不再赘述。
综上,根据跳频参数中包括的内容不同,可以设计上述方法一~方法六的确定物理资源的方式。
当发送端在传输时,使用的上述跳频参数中只有有一种不同,则根据上面的实施例,发送端1和发送端2在这传输时通过上述的跳频方式会有不同的实际传输的物理资源,从而可以避免这两个UE在传输时一直发生资源冲突或碰撞。
可选的,在步骤402,发送端还获取跳频类型,其中,跳频类型用于指示发送端获取待传输消息使用的物理资源的确定方式。例如,跳频类型包括上述方法一~方法六中的任意一种。
可选的,发送端通过以下指示信息中的至少一种获取跳频类型:为发送端分配的带宽部分的指示信息;带宽部分内的资源分配的指示信息。
具体地,例如,使用带宽部分的指示信息来显式或隐式地指示跳频类型。在使用带宽部分的指示发送端传输所在的带宽部分时,还用这些信息来显式或隐式地指示跳步方式或 跳频参数。
又例如,使用带宽部分内的资源分配的指示信息来显式或隐式地指示跳频类型(可包括跳步方式或跳频参数)。
又例如,使用带宽部分的指示信息和使用带宽部分内的资源分配的指示信息来显式或隐式地指示跳频类型(可包括跳步方式或跳频参数)。
可选地,可以使用带宽部分的指示信息和指示跳频方式的其他指示信息一起来指示。例如,使用1比特来指示终端是带宽部分内跳频还是带宽部分间跳频。例如,在表1中,使用1比特来指示终端是否在带宽部分内做跳频,如1表示是,0表示在带宽部分间跳频。当这个比特取值为0时,带宽部分指示信息不再用来指示带宽部分,而是用来指示在载波带宽或系统带宽内进行跳频的不同方式。当这个比特为1时,表示可以在带宽部分内进行跳频,然后按带宽部分的指示信息来确定传输和跳频所在的带宽部分,并使用带宽部分内指示信息来指示跳频的方式。带宽部分用Part 1、Part 2、Part 3、Part 4……来表示,跳频模式用Pattern 1、Pattern 2、Pattern 3、Pattern 4……来表示。
可选地,有三种指示信息来同时指示跳频方式,包括:带宽部分相关的跳频指示信息,带宽部分,带宽部分内的资源分配指示信息。
表1
Figure PCTCN2018080333-appb-000026
可选的,在步骤402之前,发送端还获取指示信息,该指示信息用于指示发送端在带宽部分内确定待传输消息使用的物理资源;或者,该指示信息用于指示发送端在带宽部分间确定待传输消息使用的物理资源。例如,用同一信令指示的不同取值或不同信令来指示发送端使用是否进行带宽部分间跳频。以公式(4)为例,确定待传输消息使用的物理资源的方式表示为
Figure PCTCN2018080333-appb-000027
其中,PRB(n s)=PRB BP(n s)时,表示发送端在带宽部分内跳频,即在带宽部分内确定待传输消息使用的物理资源;PRB(n s)=(PRB BP(n s)+(n smodM)·N BP)modN TBP时,表示发送端在带宽部分间跳频,即在带宽部分间确定待传输消息使用的物理资源。
这样,对带宽部分内跳频和带宽部分间跳频使用不同的跳频方式,可以为不同带宽的能力类型的终端提供相应的跳频方案,使得系统能够支持不同带宽的能力类型的终端同时进行跳频,提高系统的灵活性和通信的效率。
可选的,跳频参数的不同取值关联不同的确定待传输消息使用的物理资源的配置参数。
具体地,当使用同一种跳频参数和同一个跳频公式来确定物理资源时,跳频参数取值不同时,确定物理资源的配置参数也要取不同的值,这些配置参数包括带宽部分、频域偏 移值、频域起始位置等中的一种或多种。
可选的,跳频参数的不同取值关联不同的跳频类型,跳频类型用于指示发送端获取待传输消息使用的物理资源的确定方式。一种可能的实现方式中,载波类型的不同取值对应不同的跳频类型。例如高频载波使用跳频类型1,低频载波使用跳频类型2。
这样,在跳频参数取值不同时,配置不同的配置参数或跳频类型,有利于对不同的跳频参数取值实现有针对性的优化后的跳频方案,从而达到最佳的传输效果。
如上所述,本申请实施例中一个时间单元可能为一个时隙,或者一个迷你时隙,或者时隙汇聚。可以认为,一个时间单元包括至少一个时隙,或者,一个时间单元包括一个时隙内的至少一个符号。
若时间单元包括一个时隙内的至少一个符号,则发送端确定物理资源实际上是:发送端确定待传输消息在一个时隙内不同符号上映射的频域资源位置。
其中,一个时隙在时域上包括第一部分和第二部分,第一部分包括第一参考信号和第一数据符号,第二部分包括第二数据符号,上述一个时隙内不同符号包括第一数据符号和第二数据符号。可选的,第一数据符号位于第四频域资源位置,第二数据符号位于第五频域资源位置,第一参考信号在频域上分别位于第四频域资源位置和第五频域资源位置。
例如,如图8所示,将数据信号在频域上分成两部分,分别占用第四频域资源位置和第五频域资源位置,在时隙中的第一数据符号和第二数据符号上发送不同的部分。其中,为了支持后一部分数据的解调,则第一参考信号需要在数据出现的2个频域位置各发一份。图8所示时隙为7个符号,可以分别将待传输的数据信号分别放在前面4个符号和后面3个符号中的不同频域资源位置。然后对应这两部分频域资源位置,将相同的第一参考信号放置在对应的带宽上,第一参考信号上的发射功率按2个带宽占的比例做相应的缩放。例如,两部分频域数据的长度相等时,两个第一参考信号部分的功率各占当时符号上功率的一半。
3GPP同意,在一个时隙中,必要的位置可以配置额外的DMRS符号。基于此,可选的,第二部分还包括第二参考信号。第二参考信号位于第二部分的时域起始位置。
如图9所示,R’表示额外配置的DMRS,即第二参考信号,当终端在一个时隙中配置有额外的DMRS时,终端支持时隙内跳频。跳频的位置从额外的DMRS的位置开始。
也就是,时隙内跳频的物理资源的时域位置根据发生时隙内跳频的符号位置来确定。
时隙内的跳频的物理资源的确定方式可以在上述方法(一)~方法(六)上作部分调整,具体的,时域资源索引i的值需要做修订,例如:
Figure PCTCN2018080333-appb-000028
或者i=2n s+lmodK,K=4或者7,l为时隙内符号位置的索引,K为时隙内跳频的符号位置。
可选的,参考信号在时域上可以绑定传输时,如图10所示,绑定在一起的参考信号的若干个时隙使用相同的跳频类型。在此种情况下,上述时间单元中包括至少两个时隙,步骤403中,发送端在至少两个时隙上以参考信号绑定的方式、且使用相同的频域资源发送待传输消息。
其中,若发送端确定物理资源时采用用于发送待传输消息的时域资源索引,则用于发送待传输消息的时域资源索引由参考信号绑定的时隙索引和参考信号绑定的时隙数来确定。例如,在用于发送待传输消息的时域资源索引i的值为:
Figure PCTCN2018080333-appb-000029
其中,K为配置的参考信号绑定的时隙数。
本申请实施例的上述方法可以用于动态调度,也可以用于半静态调度,还可以用于一 个数据多的多次重传,或者时隙汇聚时的传输。本发明的方案可以用于在不同时隙之间的跳频和时隙内的跳频。在实施时隙内的跳频时,可以获得一个数据包在单次传输时的频率分集增益。在时隙间跳频时,可以实现同一个数据包(如同一个数据包的多次重传)或者同一个UE不同时刻的数据包(如一个UE的半静态传输时的多个数据包)传输时有机会使用不同的频率,从而获得频率分集增益。当使用的是时隙汇聚的方式传输时,在多个汇聚的时隙内部可以使用本发明的跳频方案,在多个汇聚时隙之间也可以使用本发明的跳频方案,从而为汇聚时隙的传输提供频率分集增益。
基于图1所示的通信系统架构,如图11所示,本申请实施例还提供了一种参考信号发送方法,具体流程如下所述。
步骤1101、发送端根据第一参数确定参考信号序列,其中第一参数包括以下中的至少一种:带宽部分指示信息,波束指示信息,参考信号配置信息,子载波间隔指示信息,传输波形指示信息,时隙类型指示信息,信道类型指示信息,传输载波指示信息;
步骤1102、发送端使用参考信号序列生成参考信号;
步骤1103、发送端发送参考信号;接收端接收参考信号。
步骤1104、接收端对该参考信号行解析。
其中,接收端在解析该参考信号时所采用的方法与发送端发送参考信号的方法相对应,重复之处不再赘述。
可选的,参考信号包括以下中的至少一种:解调参考信号,传输控制信息的参考信号,探测参考信号,定位参考信号,信道状态信息参考信息,相位跟踪参考信号。
可选的,发送端根据第一参数确定第二参数,第二参数包括以下至少一种:循环移位值、正交序列索引、根序列索引、初始值;发送端根据第二参数生成参考信号序列。
若第二参数包括循环移位值,则相应地,发送端根据第一参数和第三参数确定循环移位值;其中,第三参数包括以下中至少一种:循环移位值的指示值、发送参考信号的资源指示信息、生成参考信号的正交序列索引、生成参考信号的根序列索引、生成参考信号的扩频因子值。
可选的,发送端使用第一参数确定小区特定循环移位值,发送端使用小区特定循环移位值确定循环移位值。
可选的,发送端使用第一参数确定小区特定循环移位值时,通过以下方式:发送端使用第一参数确定随机序列的初始值,发送端使用随机序列生成小区特定循环移位值。
可选的,循环移位值由小区特定循环移位值和第三参数确定。
可选的,正交序列索引由第一参数和第四参数确定,第四参数包括以下中的至少一种:正交序列索引的指示值、发送参考信号的资源指示信息、生成参考信号的循环移位值、生成参考信号的根序列索引、生成参考信号的扩频因子值。
可选的,根序列索引由第一参数和第五参数确定,第五参数包括以下中的至少一种:根序列索引的指示值、发送参考信号的资源指示信息、生成参考信号的循环移位值、生成参考信号的正交序列索引、生成参考信号的扩频因子值。
可选的,第二参数包括根序列索引,发送端使用第一参数确定随机序列的初始值,发送端使用随机序列生成根序列索引。
可选的,第二参数包括根序列索引,发送端使用第一参数确定序列跳和/或组跳,发送端使用序列跳和/或组跳确定根序列索引。
可选的,组跳包括:使用第一参数确定序列组号和/或组跳模式,使用序列组号和/或 组跳模式确定组跳。
这样,在第一参数中的任意一种或多种取不同的取值时,可以生成不同的参考信号,以使得这些参考信号之间能够减少或随机化序列之间的干扰。例如,当具有不同的波束的终端在生成参数信号时,它们生成的参考信号序列不同,从而减少不同波束相同时频资源终端之间的序列干扰。
基于图11所示的参考信号发送方法,下面结合具体的应用场景做进一步详细说明。
参考信号可以是用于使用发送上行控制信息(Uplink Control Information,UCI)的参考信号,例如,UCI包括混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)的应答消息、信道状态信息(Channel State Information,CSI)等,参考信号也可以是用于作为解调的参考信号,如DMRS,还可以是用于作为信道监听的参考信号,如探测参考信号(Sounding Reference Signal,SRS)。
举例来说,第二参数包括:序列的根序列号(u),序列的循环移位值(CS),序列的正交覆盖掩码(OCC)、序列的初始值。
根据第一参数来生成上述三种第二参数,以进一步消除、减少或随机化序列间产生的干扰。例如:终端1在波束1上传输,终端2在波束2上传输,那么当终端1和终端2其它的传输参数相同时,终端1和终端2的按不同的波束值取不同u、CS、OCC或序列的初始值中的一种时取值时,可以确保终端1和终端2的序列之间的正交性,从而可以减少多用户序列干扰的目的。
下面分别介绍这序列的根序列号(u),序列的循环移位值(CS),序列的正交覆盖掩码(OCC)由上述的第一参数生成的具体方法。
序列的循环移位值的生成方法:
方式一:使用第一参数中的一种或多种来生成小区公共的CS值。
Figure PCTCN2018080333-appb-000030
其中,c表示随机函数,c的初始值cinit可以由第一参数中的一种或多种来生成,例如以下中的一种或多种方式来确定:
Figure PCTCN2018080333-appb-000031
Figure PCTCN2018080333-appb-000032
Figure PCTCN2018080333-appb-000033
Figure PCTCN2018080333-appb-000034
Figure PCTCN2018080333-appb-000035
Figure PCTCN2018080333-appb-000036
Figure PCTCN2018080333-appb-000037
Figure PCTCN2018080333-appb-000038
进一步地,还可以由第一参数的多种参数同时生成,例如:
Figure PCTCN2018080333-appb-000039
方式二:使用第一参数中的一种或多种以及小区公共的CS值来生成用户特定的CS值。
例如以下中的一种或多种方式来确定:
Figure PCTCN2018080333-appb-000040
Figure PCTCN2018080333-appb-000041
其中,Nx表示用来表征第一参数中的任意一种参数的数值。
在方式二下,一种可选的实施方式是,
方式a0:根据第一参数和指示信息值来确定CS值:
Figure PCTCN2018080333-appb-000042
其中,n csf是基站配置的CS值。
方式二a:使用第一参数中的一种或多种分别为终端确定终端特定的循环移位值。
方式二b:进一步地,可选地,使用第一参数以及终端所在的时域资源索引确定用户特定的CS值。如上例中的公式,同时与时隙编号ns以及符号编号l有关。
方式二c:可选地,使用第一参数以及终端所在的时域资源和频域资源索引确定用户特定的CS值。
例如:
Figure PCTCN2018080333-appb-000043
其中
Figure PCTCN2018080333-appb-000044
表示天线端口p上的频域资源索引。
方式二d:进一步地,可选地,使用第一参数以及终端所在的时域资源、频域资源索引以及OCC来确定用户特定的CS值。
例如:
Figure PCTCN2018080333-appb-000045
方式二e:进一步地,可选地,使用方式二a~方式二d中的任意一种方法以及终端的扩频因子来确定CS值。
例如:
Figure PCTCN2018080333-appb-000046
其中,N SF表示扩频因子。
,循环移位值是指将一个特定长度的序列进行循环移位后生成一个新的序列。例如ZC序列或其他具有零相关值的序列,当它按一定的步长做循环移位之后,原序列与不同长度循环移位后的序列之间具有零值相关特性。对使用第一参数的不同值时,使用序列的不同循环移位值,可以获得这些序列间的理想相关特性(相关值为零)。从而对不同终端,当某个第一参数值不同时,就会根据上述的方法产生序列的不同循环移位,从而对这个参数而言能够实现使用理想相关特性进行序列的传输。从而减少了整个系统在进行多用户序列传输时的序列间的干扰,从而提高了整个系统的性能。
OCC的值的生成方法:
在序列传输时,还可以做多个序列级联的块扩传输。其中一个序列为OCC序列,另一个序列为上面所述的需要生成CS值的直扩序列。
在本申请实施例中,可以根据第一参数确定块扩序列的OCC值,还可以根据第一参数同时确定直扩序列的CS值。
OCC通常是在块扩序列长度上定义多个正交序列,例如表2:
表2
序列索引n oc 正交序列
0 [+1 +1 +1 +1]
1 [+1 -1 +1 -1]
2 [+1 -1 -1 +1]
又如表3:
表3
序列索引n oc 正交序列
0 [1 1 1]
1 [1 e j2π/3 e j4π/3]
2 [1 e j4π/3 e j2π/3]
又如表4:
表4
Figure PCTCN2018080333-appb-000047
总之,对于不同长度的块扩频,总能找到相应长度的正交序列。本申请实施例需要确定的就是不同长度下正交序列的索引,即在传输时使用哪个块扩序列中的哪个正交序列。例如:
Figure PCTCN2018080333-appb-000048
又如:
Figure PCTCN2018080333-appb-000049
Figure PCTCN2018080333-appb-000050
Figure PCTCN2018080333-appb-000051
其中N x和N y表示不同的第一参数的参数值。
具体地,OCC值可以根据以下中的一种方式来确定:
方式x0:根据第一参数和指示信息值来确定
Figure PCTCN2018080333-appb-000052
其中n ocf是基站配置的OC值。
方式x1:根据第一参数和时频资源确定,如:
Figure PCTCN2018080333-appb-000053
方式X2:根据第一参数和CS值确定,如:
Figure PCTCN2018080333-appb-000054
方式X3:根据第一参数和u值确定,如:
Figure PCTCN2018080333-appb-000055
方式X4:根据第一参数和CS+u值确定,如:
Figure PCTCN2018080333-appb-000056
方式X5:根据第一参数和时频资源+CS+u值确定,如:
Figure PCTCN2018080333-appb-000057
本申请实施例提议使用第一参数来生成OC值,以进一步对块扩序列来进行干扰的随机化以及相同的,对不同终端在按第一参数中的不同取值进行传输时,来保护这些终端间相互正交,从而可以对于传输的第一参数而言,在不同的终端间实现正交,从而减少在传输第一参数时的多用户间的干扰。例如终端1在波束1上传输,终端2在波束2上传输,那么当终端1和终端2其它的传输参数相同时,终端1和终端2的OC按不同的波束值取不同的值时,可以确保终端1和终端2的序列之间的正交性,从而可以减少多用户序列干扰的目的。
根序列号的值的生成方法:
对于ZC序列,的根序列号,就是要确定以下参数q:
Figure PCTCN2018080333-appb-000058
其中,q表示ZC序列的根序列号,
Figure PCTCN2018080333-appb-000059
表示ZC序列的长度,m为生成序列的自变量。
确定方式,可以是以下中的任意一种:
方式一,直接根据第一参数确定:
q=N x
可选地,还可以由多个第一参数确定:
q=N x+N y
方式二,由配置的参数和第一参数确定:
q=q 0+N x
可选地,还可以由配置的参数和多个第一参数确定:
q=q 0+N x+N y
方式三,由第一参数和频域资源的指示信息确定:
q=n p+N x
n p表示使用的频域资源。
方式四,由第一参数和时域资源的指示信息确定:
q=n s+N x
n s表示当前的时隙索引。
方式五,由第一参数和时域和频域资源的指示信息确定:
q=n s+n p+N x
方式六,由序列跳和序列组跳的参数确定,而序列跳和序列组跳中的任意一种由第一参数确定。
例如:
Figure PCTCN2018080333-appb-000060
Figure PCTCN2018080333-appb-000061
u为序列组跳参数:
u=(f gh(n s)+f ss)mod30
其中,f gh(n s)为组跳模板,f ss为序列跳移位模版。
其中:
Figure PCTCN2018080333-appb-000062
Figure PCTCN2018080333-appb-000063
Figure PCTCN2018080333-appb-000064
在本申请实施例中,可以按以下方式中的一种生成f gh(n s)和/或f ss
方式一:使用第一参数直接生成f gh(n s),生成方式与上述q值的生成方式相同,只是需要对常数取模。
例如:
f gh(n s)=n smod30
f gh(n s)=(n s+N x)mod30
f gh(n s)=(n s+n p+N x)mod30
Figure PCTCN2018080333-appb-000065
方式二:使用随机函数生成序列f gh(n s),然后使用第一参数来生成随机函数的初始值。
例如:
c init=n smod30
c init=n s/30
c init=(n s+N x)
c init=(n s+n p+N x)
Figure PCTCN2018080333-appb-000066
或者:
c init=n smod30
c init=n s/30
c init=(n s+2 M·N x)
Figure PCTCN2018080333-appb-000067
Figure PCTCN2018080333-appb-000068
f ss的生成方式与f gh(n s)生成方式一相同。
v为序列跳参数
Figure PCTCN2018080333-appb-000069
v的生成方式与f gh(n s)生成方式二相同。
基于图1所示的系统架构,如图12所示,本申请实施例还提供了一种控制信息的发送方法,具体流程如下所述。
步骤1201、发送端获取控制信息;
步骤1202、发送端将控制信息、第一参考信号映射到承载控制信息的符号上,第一参考信号用于控制信息的解调;其中,所述控制信息和所述第一参考信号在所述符号中时分或频分复用。
步骤1203、发送端发送该符号,接收端接收该符号。
步骤1204、接收端对该符号进行解析。
其中,接收端在解析符号时所采用的方法与发送端发送控制信息的方法类似,重复之处不再赘述。
可选的,控制信息和第一参考信号在符号中频分复用,发送端使用第一频域扩频因子对控制信息进行扩频后,发送符号。
可选的,发送端将第二参考信号映射到承载控制信息的符号上,其中,控制信息、第一参考信号和第二参考信号在符号中频分复用,第二参考信号为探测信号;
相应地,发送端使用第二扩频域扩频因子对控制信息进行扩频后,发送符号。
可选的,第二扩频因子小于第一扩频因子。
可选的,第二参考信号占用第一参考信号所在的频域资源。
可选的,第一参考信号与第二参考信号码分复用,或者,第一参考信号与第二参考信号中的任意一种不做发送。
可选的,发送端将按预设规则排列的控制信息与第一参考信号变换成频域信号后,将频域信号映射到符号对应的频域资源上。
可选的,发送端将频域信号映射到符号对应的频域资源中非第二参考信号所在的子载波上。
可选的,当发射功率受限时,发送端按照优先级分配发射功率,其中,优先级由高到低顺序为控制信息、第二参考信号。
可选的,当发射功率受限时,发送端按照优先级分配发射功率,其中,发送端按照控制信息中包括的消息类型来确定控制信息与与第二参考信号的优先级顺序。
可选的,当发射功率受限时,发送端丢弃第二参考信号,发送控制信息。
可选的,当发射功率受限时,发送端丢弃第二参考信号,发送控制信息中优先级较高的信息。
可选的,符号包括第一时域资源和第二时域资源,当发射功率受限时,发送端将控制信息和第一参考信号映射在第一时域资源上发送,以及将第二参考信号映射在第二时域资源上发送。
可选的,符号包括第一时域资源和第二时域资源;当发射功率受限时,发送端将控制信息中的第一部分和第一参考信号映射在第一时域资源上发送,以及将控制信息中的第二部分和第二参考信号映射在第二时域资源上发送。
可选的,承载控制信息的符号的数量为1或2。
可选的,承载控制信息的符号的数量为2,第一参考信号在第一个符号,控制信息和第二参考信号在第二个符号。
可选的,第二参考信号为以下中的任意一种:探测参考信号,解调参考信号,定位参考信号,相位跟踪参考信号,信道状态信息参考信息,传输控制信息的参考信号。
可选的,第一参考信号和第二参考信号分别用于不同的子载波间隔或不同的业务类型或不同的信道类型,可以是不同的控制信道类型,也可以是控制信道和业务信道的不同类型。
基于图12所示的控制信息的发送方法,下面结合具体的应用场景做进一步详细说明。
例如,控制信息为PUCCH,第一参考信号为DMRS,第二参考信号为SRS。
目前,可以使用1个符号的PUCCH和2个符号的PUCCH,在这两种PUCCH格式中,本申请实施例实现1个符号以及2个符号的PUCCH同时与SRS一起传输。
对于1个符号,SRS与PUCCH的复用方法如图13所示,图13为SRS与1个符号的PUCCH中的UCI复用的示意图。
一种可能的实现方式中,UCI与解调的DMRS在一个符号上频分复用,根据是否存在SRS来调整UCI的在频域上的扩频因子。
如图13所示,在占用12个RE的符号上,其中DMRS占用4个RE,则UCI占用8个RE。可以使用8倍或者4倍的扩频因子来传输UCI。
UCI与DMRS在PUCCH所在符号上的复用方式可以是频分复用的,也可以是预DFT变换前映射好的。本申请实施例对此不做限定。
当SRS也需要在这个PUCCH的符号上传输时,则SRS占用UCI中的部分RE。如图13,SRS占用8个UCI占用RE中的4个,则UCI的扩频因子对应减少到原来的一半,为4个RE或2个RE。
一种可能的实现方式中,DMRS与SRS之间还可以码分复用。如图14所示,DMRS与SRS占用相同的RE,然后DMRS与SRS之间使用不同的序列进行码分。
一种可能的实现方式中,如图15所示,DMRS与SRS共用相同的RE,也只发送一个参考信号。或者,换言之,是丢弃掉DMRS,只发送SRS。
进一步地,当UCI与SRS在同一个符号上传输并且终端的上行发射功率受限时需要按如下方式来确定UCI和SRS的发射功率值。
方式0:按配置的参数在UCI和SRS之间分配发送功率。
方式一:优先将发射功率分配给UCI所在的子载波,将SRS所在的子载波的功率做相应的降低。
方式二:直接丢弃掉待发送的SRS。
方式三:根据UCI包括的信令的内容来确定UCI与SRS之间的功率优先间。如果UCI中包括的是HARQ的应答消息,则UCI具有更高的优先级。如果UCI中传输的是CSI中的CQI,则CQI的优先级更低或者CQI与SRS具有相同的优先级。
在分配功率时,优先将功率先分配给优先级更高的消息,优先丢弃优先级更低的消息,当优先级相同时,按等比例我的方式降低UCI和SRS的功率。
方式四:在不同的时隙上分别发送UCI和SRS。
例如,如图16,1个符号的PUCCH每隔2个slot出现一次,则可以交替地在不同的PUCCH位置出发送UCI和SRS。
这种方式只适用于传输的UCI中信息的优先级不高于SRS的情景,不然会对UCI的发送产生较大的负面影响。
方式五:将UCI分成不同的部分,一部分在UCI单独所在的时隙上发送,例如,这些UCI可以是ACK/NACK,波束信息,PMI等,另一部分则与SRS在同一个符号上发送,例如,这些UCI可以是CQI,RI等。
对于2个符号,SRS与PUCCH的复用方法如图17a~图17c所示。
DMRS与UCI复用的方式有频分复用和时分复用。
频分复用的方式请见图17a和图17b,频分复用的方式请见图17a和图17c。在图17c中,DMRS占用第1个符号,UCI占用第2个符号。
有关SRS与UCI复用的方式。
方式一:频分复用。SRS占用第二个PUCCH符号中的UCI的RE,其它余下的非DMRS RE用来传输UCI。如图17a所示。
方式二:码分复用。如图17b所示,这个与1个符号的PUCCH相同。
方式三:SRS与DMRS共用相同的RS。这个在图17b中,可以在SRS所在的符号上只发送SRS,而不发送DMRS。
本申请实施例通过以上方法可以实现SRS与PUCCH的同发,且同时能够保证UCI优先发送的机会。
基于与图4所示的通信方法的同一发明构思,如图18所示,本申请实施例还提供了一种通信装置1800,该通信装置1800用于执行图4所示的通信方法,其中,该通信装置1800包括:
处理单元1801,用于获取待传输消息的资源分配信息和跳频参数;其中,跳频参数包括带宽部分指示信息、波束指示信息、参考信号配置信息、子载波间隔指示信息、传输波形指示信息、时隙类型指示信息、信道类型指示信息和传输载波指示信息中的至少一种;
处理单元1801,还用于根据资源分配信息和跳频参数确定用于发送待传输消息的物理资源,物理资源包括待传输消息在至少一个时间单元上映射的频域资源信息;
发送单元1802,用于通过处理单元1801确定的物理资源发送待传输消息。
可选的,跳频参数包括带宽部分指示信息;
处理单元1801具体用于:根据资源分配信息和带宽部分指示信息,确定在一个带宽部分内的第一频域资源值;以及,根据资源分配信息和带宽部分指示信息,确定一个带宽部分的第二频域资源值;以及,根据第一频域资源值和/或第二频域资源值确定物理资源。
可选的,跳频参数包括波束指示信息、参考信号配置信息、子载波间隔指示信息、传输波形指示信息、时隙类型指示信息、信道类型指示信息、传输载波指示信息中的至少一种。
可选的,处理单元1801具体用于:根据资源分配信息、跳频参数以及配置的频域偏移值确定物理资源;或者,根据资源分配信息、跳频参数确定第三随机序列的初始值,并生成第三随机序列,根据第三随机序列确定物理资源。
可选的,时间单元包括至少一个时隙,或者,时间单元包括一个时隙内的至少一个符号。
可选的,时间单元包括至少两个时隙;发送单元1802具体用于:在至少两个时隙上以参考信号绑定的方式、且使用相同的频域资源发送待传输消息。
可选的,处理单元1801还用于:获取跳频类型,其中,跳频类型用于指示发送端获取待传输消息使用的物理资源的确定方式。
可选的,处理单元1801通过以下指示信息中的至少一种获取跳频类型:为通信装置1800分配的带宽部分的指示信息;带宽部分内的资源分配的指示信息。
基于与图4所示的通信方法的同一发明构思,如图19所示,本申请实施例还提供了一种通信装置1900,该通信装置1900用于执行图4所示的通信方法,其中,该通信装置1900包括:
接收单元1901,用于接收发送端发送的待解调消息;
处理单元1902,用于获取接收单元1901接收的待解调消息的资源分配信息和跳频参数;其中,跳频参数包括带宽部分指示信息、波束指示信息、参考信号配置信息、子载波间隔指示信息、传输波形指示信息、时隙类型指示信息、信道类型指示信息和传输载波指示信息中的至少一种;
处理单元1902,还用于根据资源分配信息和跳频参数确定待解调消息使用的物理资源,物理资源包括待解调消息在至少一个时间单元上映射的频域资源信息;以及通过物理资源解调待解调消息。
可选的,跳频参数包括带宽部分指示信息;处理单元1902具体用于:根据资源分配信息和带宽部分指示信息,确定在一个带宽部分内的第一频域资源值;以及,根据资源分配信息和带宽部分指示信息,确定一个带宽部分的第二频域资源值;根据第一频域资源值和/或第二频域资源值确定物理资源。
可选的,跳频参数包括波束指示信息、参考信号配置信息、子载波间隔指示信息、传输波形指示信息、时隙类型指示信息、信道类型指示信息、传输载波指示信息中的至少一种。
可选的,处理单元1902具体用于:根据资源分配信息、跳频参数以及配置的频域偏移值确定物理资源;或者,根据资源分配信息、跳频参数确定第三随机序列的初始值,并生成第三随机序列,根据第三随机序列确定物理资源。
可选的,时间单元包括至少一个时隙,或者,时间单元包括一个时隙内的至少一个符号。
可选的,时间单元包括至少两个时隙;处理单元1902具体用于:在至少两个时隙上以参考信号绑定的方式、且使用相同的频域资源解调待解调消息。
可选的,处理单元1902还用于:获取跳频类型,其中,跳频类型用于指示接收端获取待解调消息使用的物理资源的确定方式。
可选的,处理单元1902通过以下指示信息中的至少一种获取跳频类型:待解调消息的带宽部分的指示信息;待解调消息的带宽部分内的资源分配的指示信息。
基于与图4所示的通信方法的同一发明构思,如图20所示,本申请实施例还提供一种通信装置2000,该通信装置2000可用于执行图4所示的方法。其中,通信装置2000包括收发器2001、处理器2002,存储器2003和总线2004,处理器2002以及存储器2003之间通过总线2004相连,处理器2002用于执行存储器2003中的代码,当代码被执行时,该执行使得处理器2002执行图4所示的通信方法。
处理器2002可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器2002还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器2003可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器2003也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器2003还可以包括上述种类的存储器的组合。
基于与图4所示的通信方法的同一发明构思,如图21所示,本申请实施例还提供一种通信装置2100,该通信装置2100可用于执行图4所示的方法。其中,通信装置2100包括收发器2101、处理器2102,存储器2103和总线2104,处理器2102以及存储器2103之间通过总线2104相连,处理器2102用于执行存储器2103中的代码,当代码被执行时,该执行使得处理器2102执行图4所示的通信方法。
处理器2102可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器2102还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器2103可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器2103也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器2103还可以包括上述种类的存储器的组合。
需要说明的是,图18-19提供的通信装置,可用于实现图4所示的通信方法。一个具体的实现方式中,图18中的处理单元1801可以用图20中的处理器2002实现,发送单元1802可以由图20中的收发器2001实现。图19中的处理单元1902可以用图21中的处理器2102实现,接收单元1901可以由图21中的收发器2101实现。
本申请实施例图1所提供的通信系统100中,发送端101可以是图18、图20对应的实施例所提供的设备。接收端102可以是图19、图21对应的实施例所提供的设备。通信系统100用于执行图4对应的实施例的方法。
基于与图11所示的参考信号发送方法的同一发明构思,如图22所示,本申请实施例还提供了一种参考信号发送装置2200,该参考信号发送装置2200用于执行图11所示的参考信号发送方法,其中,该参考信号发送装置2200包括:
处理单元2201,用于根据第一参数确定参考信号序列,其中第一参数包括以下中的至少一种:带宽部分指示信息,波束指示信息,参考信号配置信息,子载波间隔指示信息,传输波形指示信息,时隙类型指示信息,信道类型指示信息,传输载波指示信息;
处理单元2201,还用于使用参考信号序列生成参考信号;
发送单元2202,用于发送参考信号。
可选的,参考信号包括以下中的至少一种:解调参考信号,传输控制信息的参考信号,探测参考信号,定位参考信号,信道状态信息参考信息,相位跟踪参考信号。
可选的,发送端根据第一参数确定第二参数,第二参数包括以下至少一种:循环移位值、正交序列索引、根序列索引、初始值;发送端根据第二参数生成参考信号序列。
若第二参数包括循环移位值,则相应地,发送端根据第一参数和第三参数确定循环移位值;其中,第三参数包括以下中至少一种:循环移位值的指示值、发送参考信号的资源指示信息、生成参考信号的正交序列索引、生成参考信号的根序列索引、生成参考信号的扩频因子值。
可选的,发送端使用第一参数确定小区特定循环移位值,发送端使用小区特定循环移位值确定循环移位值。
可选的,发送端使用第一参数确定小区特定循环移位值时,通过以下方式:发送端使用第一参数确定随机序列的初始值,发送端使用随机序列生成小区特定循环移位值。
可选的,循环移位值由小区特定循环移位值和第三参数确定。
可选的,正交序列索引由第一参数和第四参数确定,第四参数包括以下中的至少一种:正交序列索引的指示值、发送参考信号的资源指示信息、生成参考信号的循环移位值、生成参考信号的根序列索引、生成参考信号的扩频因子值。
可选的,根序列索引由第一参数和第五参数确定,第五参数包括以下中的至少一种:根序列索引的指示值、发送参考信号的资源指示信息、生成参考信号的循环移位值、生成参考信号的正交序列索引、生成参考信号的扩频因子值。
可选的,第二参数包括根序列索引,发送端使用第一参数确定随机序列的初始值,发送端使用随机序列生成根序列索引。
可选的,第二参数包括根序列索引,发送端使用第一参数确定序列跳和/或组跳,发送端使用序列跳和/或组跳确定根序列索引。
可选的,组跳包括:使用第一参数确定序列组号和/或组跳模式,使用序列组号和/或组跳模式确定组跳。
基于与图12所示的控制信息的发送方法的同一发明构思,如图23所示,本申请实施例还提供了一种控制信息的发送装置2300,该控制信息的发送装置2300用于执行图12所示的控制信息的发送方法,其中,该控制信息的发送装置2300包括:
处理单元2301,用于获取控制信息;
处理单元2301,还用于将控制信息、第一参考信号映射到承载控制信息的符号上,第一参考信号用于控制信息的解调;其中,所述控制信息和所述第一参考信号在所述符号中时分或频分复用。
发送单元2302,用于发送该符号。
可选的,控制信息和第一参考信号在符号中频分复用,发送端使用第一频域扩频因子对控制信息进行扩频后,发送符号。
可选的,发送端将第二参考信号映射到承载控制信息的符号上,其中,控制信息、第一参考信号和第二参考信号在符号中频分复用,第二参考信号为探测信号;
相应地,发送端使用第二扩频域扩频因子对控制信息进行扩频后,发送符号。
可选的,第二扩频因子小于第一扩频因子。
可选的,第二参考信号占用第一参考信号所在的频域资源。
可选的,第一参考信号与第二参考信号码分复用,或者,第一参考信号与第二参考信号中的任意一种不做发送。
可选的,发送端将按预设规则排列的控制信息与第一参考信号变换成频域信号后,将频域信号映射到符号对应的频域资源上。
可选的,发送端将频域信号映射到符号对应的频域资源中非第二参考信号所在的子载波上。
可选的,当发射功率受限时,发送端按照优先级分配发射功率,其中,优先级由高到低顺序为控制信息、第二参考信号。
可选的,当发射功率受限时,发送端按照优先级分配发射功率,其中,发送端按照控制信息中包括的消息类型来确定控制信息与与第二参考信号的优先级顺序。
可选的,当发射功率受限时,发送端丢弃第二参考信号,发送控制信息。
可选的,当发射功率受限时,发送端丢弃第二参考信号,发送控制信息中优先级较高的信息。
可选的,符号包括第一时域资源和第二时域资源,当发射功率受限时,发送端将控制信息和第一参考信号映射在第一时域资源上发送,以及将第二参考信号映射在第二时域资源上发送。
可选的,符号包括第一时域资源和第二时域资源;当发射功率受限时,发送端将控制信息中的第一部分和第一参考信号映射在第一时域资源上发送,以及将控制信息中的第二部分和第二参考信号映射在第二时域资源上发送。
可选的,承载控制信息的符号的数量为1或2。
可选的,承载控制信息的符号的数量为2,第一参考信号在第一个符号,控制信息和第二参考信号在第二个符号。
可选的,第二参考信号为以下中的任意一种:探测参考信号,解调参考信号,定位参考信号,相位跟踪参考信号,信道状态信息参考信息,传输控制信息的参考信号。
可选的,第一参考信号和第二参考信号分别用于不同的子载波间隔或不同的业务类型或不同的信道类型,可以是不同的控制信道类型,也可以是控制信道和业务信道的不同类型。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (32)

  1. 一种通信方法,所述通信方法应用于发送端,其特征在于,包括:
    获取待传输消息的资源分配信息和跳频参数;其中,所述跳频参数包括带宽部分指示信息、波束指示信息、参考信号配置信息、子载波间隔指示信息、传输波形指示信息、时隙类型指示信息、信道类型指示信息和传输载波指示信息中的至少一种;
    根据所述资源分配信息和所述跳频参数确定用于发送所述待传输消息的物理资源,所述物理资源包括所述待传输消息在至少一个时间单元上映射的频域资源信息;
    通过所述物理资源发送所述待传输消息。
  2. 如权利要求1所述的方法,其特征在于,所述跳频参数包括带宽部分指示信息;
    根据所述资源分配信息和所述跳频参数确定所述物理资源,包括:
    根据所述资源分配信息和所述带宽部分指示信息,确定在一个带宽部分内的第一频域资源值;
    根据所述资源分配信息和所述带宽部分指示信息,确定所述一个带宽部分的第二频域资源值;
    根据所述第一频域资源值和/或所述第二频域资源值确定所述物理资源。
  3. 如权利要求1或2所述的方法,其特征在于,所述跳频参数包括所述波束指示信息、所述参考信号配置信息、所述子载波间隔指示信息、所述传输波形指示信息、所述时隙类型指示信息、所述信道类型指示信息、所述传输载波指示信息中的至少一种。
  4. 如权利要求3所述的方法,其特征在于,根据所述资源分配信息和所述跳频参数确定所述待传输消息使用的物理资源,包括:
    根据所述资源分配信息、所述跳频参数以及频域偏移值确定所述物理资源;或者
    根据所述资源分配信息、所述跳频参数确定第三随机序列的初始值,并生成所述第三随机序列,根据所述第三随机序列确定所述物理资源。
  5. 如权利要求1~4任一项所述的方法,其特征在于,所述时间单元包括至少一个时隙,或者,所述时间单元包括一个时隙内的至少一个符号。
  6. 如权利要求5所述的方法,其特征在于,所述时间单元包括至少两个时隙;
    通过所述物理资源发送所述待传输消息,包括:
    在所述至少两个时隙上以参考信号绑定的方式、且使用相同的频域资源发送所述待传输消息。
  7. 如权利要求1~6任一项所述的方法,其特征在于,还包括:
    获取跳频类型,其中,所述跳频类型用于指示获取所述待传输消息使用的物理资源的确定方式。
  8. 如权利要求7所述的方法,其特征在于,通过以下指示信息中的至少一种获取跳频类型:
    为所述发送端分配的带宽部分的指示信息;
    带宽部分内的资源分配的指示信息。
  9. 一种通信方法,所述方法应用于接收端,其特征在于,包括:
    获取待解调消息的资源分配信息和跳频参数;其中,所述跳频参数包括带宽部分指示信息、波束指示信息、参考信号配置信息、子载波间隔指示信息、传输波形指示信息、时 隙类型指示信息、信道类型指示信息和传输载波指示信息中的至少一种;
    根据所述资源分配信息和所述跳频参数确定所述待解调消息使用的物理资源,所述物理资源包括所述待解调消息在至少一个时间单元上映射的频域资源信息;
    通过所述物理资源解调所述待解调消息。
  10. 如权利要求9所述的方法,其特征在于,所述跳频参数包括带宽部分指示信息;
    根据所述资源分配信息和所述跳频参数确定所述物理资源,包括:
    根据所述资源分配信息和所述带宽部分指示信息,确定在一个带宽部分内的第一频域资源值;
    根据所述资源分配信息和所述带宽部分指示信息,确定所述一个带宽部分的第二频域资源值;
    根据所述第一频域资源值和/或所述第二频域资源值确定所述物理资源。
  11. 如权利要求9或10所述的方法,其特征在于,所述跳频参数包括所述波束指示信息、所述参考信号配置信息、所述子载波间隔指示信息、所述传输波形指示信息、所述时隙类型指示信息、所述信道类型指示信息、所述传输载波指示信息中的至少一种。
  12. 如权利要求11所述的方法,其特征在于,根据所述资源分配信息和所述跳频参数确定所述待解调消息使用的物理资源,包括:
    根据所述资源分配信息、所述跳频参数以及频域偏移值确定所述物理资源;或者
    根据所述资源分配信息、所述跳频参数确定第三随机序列的初始值,并生成所述第三随机序列,根据所述第三随机序列确定所述物理资源。
  13. 如权利要求9~12任一项所述的方法,其特征在于,所述时间单元包括至少一个时隙,或者,所述时间单元包括一个时隙内的至少一个符号。
  14. 如权利要求13所述的方法,其特征在于,所述时间单元包括至少两个时隙;
    通过所述物理资源解调所述待解调消息,包括:
    在所述至少两个时隙上以参考信号绑定的方式、且使用相同的频域资源解调所述待解调消息。
  15. 如权利要求9~14任一项所述的方法,其特征在于,还包括:
    获取跳频类型,其中,所述跳频类型用于指示所述接收端获取所述待解调消息使用的物理资源的确定方式。
  16. 如权利要求15所述的方法,其特征在于,通过以下指示信息中的至少一种获取跳频类型:
    所述待解调消息的带宽部分的指示信息;
    所述待解调消息的带宽部分内的资源分配的指示信息。
  17. 一种通信装置,其特征在于,包括:
    处理单元,用于获取待传输消息的资源分配信息和跳频参数;其中,所述跳频参数包括带宽部分指示信息、波束指示信息、参考信号配置信息、子载波间隔指示信息、传输波形指示信息、时隙类型指示信息、信道类型指示信息和传输载波指示信息中的至少一种;
    所述处理单元,还用于根据所述资源分配信息和所述跳频参数确定用于发送所述待传输消息的物理资源,所述物理资源包括所述待传输消息在至少一个时间单元上映射的频域资源信息;
    发送单元,用于通过所述处理单元确定的物理资源发送所述待传输消息。
  18. 如权利要求17所述的装置,其特征在于,所述跳频参数包括带宽部分指示信息;
    所述处理单元具体用于:根据所述资源分配信息和所述带宽部分指示信息,确定在一个带宽部分内的第一频域资源值;以及
    根据所述资源分配信息和所述带宽部分指示信息,确定所述一个带宽部分的第二频域资源值;以及
    根据所述第一频域资源值和/或所述第二频域资源值确定所述物理资源。
  19. 如权利要求17或18所述的装置,其特征在于,所述跳频参数包括所述波束指示信息、所述参考信号配置信息、所述子载波间隔指示信息、所述传输波形指示信息、所述时隙类型指示信息、所述信道类型指示信息、所述传输载波指示信息中的至少一种。
  20. 如权利要求19所述的装置,其特征在于,所述处理单元具体用于:
    根据所述资源分配信息、所述跳频参数以及频域偏移值确定所述物理资源;或者
    根据所述资源分配信息、所述跳频参数确定第三随机序列的初始值,并生成所述第三随机序列,根据所述第三随机序列确定所述物理资源。
  21. 如权利要求17~20任一项所述的装置,其特征在于,所述时间单元包括至少一个时隙,或者,所述时间单元包括一个时隙内的至少一个符号。
  22. 如权利要求21所述的装置,其特征在于,所述时间单元包括至少两个时隙;
    所述发送单元具体用于:
    在所述至少两个时隙上以参考信号绑定的方式、且使用相同的频域资源发送所述待传输消息。
  23. 如权利要求17~22任一项所述的装置,其特征在于,所述处理单元还用于:
    获取跳频类型,其中,所述跳频类型用于指示所述发送端获取所述待传输消息使用的物理资源的确定方式。
  24. 如权利要求23所述的装置,其特征在于,所述处理单元通过以下指示信息中的至少一种获取跳频类型:
    为所述装置分配的带宽部分的指示信息;
    带宽部分内的资源分配的指示信息。
  25. 一种通信装置,其特征在于,包括:
    接收单元,用于接收发送端发送的待解调消息;
    处理单元,用于获取所述接收单元接收的待解调消息的资源分配信息和跳频参数;其中,所述跳频参数包括带宽部分指示信息、波束指示信息、参考信号配置信息、子载波间隔指示信息、传输波形指示信息、时隙类型指示信息、信道类型指示信息和传输载波指示信息中的至少一种;
    所述处理单元,还用于根据所述资源分配信息和所述跳频参数确定所述待解调消息使用的物理资源,所述物理资源包括所述待解调消息在至少一个时间单元上映射的频域资源信息;以及通过所述物理资源解调所述待解调消息。
  26. 如权利要求25所述的装置,其特征在于,所述跳频参数包括带宽部分指示信息;
    所述处理单元具体用于:
    根据所述资源分配信息和所述带宽部分指示信息,确定在一个带宽部分内的第一频域资源值;以及
    根据所述资源分配信息和所述带宽部分指示信息,确定所述一个带宽部分的第二频域 资源值;
    根据所述第一频域资源值和/或所述第二频域资源值确定所述物理资源。
  27. 如权利要求25或26所述的装置,其特征在于,所述跳频参数包括所述波束指示信息、所述参考信号配置信息、所述子载波间隔指示信息、所述传输波形指示信息、所述时隙类型指示信息、所述信道类型指示信息、所述传输载波指示信息中的至少一种。
  28. 如权利要求27所述的装置,其特征在于,所述处理单元具体用于:
    根据所述资源分配信息、所述跳频参数以及频域偏移值确定所述物理资源;或者
    根据所述资源分配信息、所述跳频参数确定第三随机序列的初始值,并生成所述第三随机序列,根据所述第三随机序列确定所述物理资源。
  29. 如权利要求25~28任一项所述的装置,其特征在于,所述时间单元包括至少一个时隙,或者,所述时间单元包括一个时隙内的至少一个符号。
  30. 如权利要求29所述的装置,其特征在于,所述时间单元包括至少两个时隙;
    所述处理单元具体用于:
    在所述至少两个时隙上以参考信号绑定的方式、且使用相同的频域资源解调所述待解调消息。
  31. 如权利要求25~30任一项所述的装置,其特征在于,所述处理单元还用于:
    获取跳频类型,其中,所述跳频类型用于指示所述接收端获取所述待解调消息使用的物理资源的确定方式。
  32. 如权利要求31所述的装置,其特征在于,所述处理单元通过以下指示信息中的至少一种获取跳频类型:
    所述待解调消息的带宽部分的指示信息;
    所述待解调消息的带宽部分内的资源分配的指示信息。
PCT/CN2018/080333 2017-03-23 2018-03-23 一种通信方法及装置 WO2018171754A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880020200.XA CN110447288B (zh) 2017-03-23 2018-03-23 一种通信方法及装置
EP18770870.6A EP3592069B1 (en) 2017-03-23 2018-03-23 Communication method and device
US16/578,977 US11064465B2 (en) 2017-03-23 2019-09-23 Communication method and communications apparatus
US17/345,623 US11765725B2 (en) 2017-03-23 2021-06-11 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710179572.4A CN108631976B (zh) 2017-03-23 2017-03-23 一种通信方法及装置
CN201710179572.4 2017-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/578,977 Continuation US11064465B2 (en) 2017-03-23 2019-09-23 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2018171754A1 true WO2018171754A1 (zh) 2018-09-27

Family

ID=63584194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080333 WO2018171754A1 (zh) 2017-03-23 2018-03-23 一种通信方法及装置

Country Status (4)

Country Link
US (2) US11064465B2 (zh)
EP (1) EP3592069B1 (zh)
CN (3) CN108631976B (zh)
WO (1) WO2018171754A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020062005A1 (en) * 2018-09-28 2020-04-02 Nokia Shanghai Bell Co., Ltd. A multiplexing mechanism of prs with different numerologies of gnbs and ue
WO2020143382A1 (zh) * 2019-01-07 2020-07-16 维沃移动通信有限公司 上行传输方法、终端及网络设备
WO2022032593A1 (zh) * 2020-08-13 2022-02-17 北京小米移动软件有限公司 一种跳频配置方法、跳频配置装置及存储介质
CN114365458A (zh) * 2019-09-10 2022-04-15 华为技术有限公司 一种参考信号发送、信号检测方法及装置

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537351B (zh) * 2017-04-28 2022-05-06 松下电器(美国)知识产权公司 测量装置和测量方法
EP3636024B1 (en) * 2017-05-05 2023-08-23 Samsung Electronics Co., Ltd. Method and apparatus for uplink transmission in wireless communication system
WO2019047171A1 (zh) * 2017-09-08 2019-03-14 Oppo广东移动通信有限公司 一种信道跳频的确定方法及装置、计算机存储介质
ES2916576T3 (es) 2017-09-08 2022-07-01 Guangdong Oppo Mobile Telecommunications Corp Ltd Método y aparato para determinar saltos de frecuencia de canal, y medio de almacenamiento informático
CN109905217B (zh) * 2017-12-11 2020-11-17 中兴通讯股份有限公司 参考信号的传输方法及装置
CN112534906A (zh) * 2018-08-17 2021-03-19 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备
US20220007418A1 (en) * 2018-11-12 2022-01-06 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for configuring bandwidth part
CN111385880B (zh) * 2018-12-27 2022-11-04 华为技术有限公司 一种时域资源的确定方法及装置
CN111417196B (zh) * 2019-01-07 2023-05-09 中国移动通信有限公司研究院 基于预调度的传输配置方法、传输参数确定方法及设备
CN111436127A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种参考信号发送方法及装置
CN111435887B (zh) * 2019-01-11 2022-02-08 大唐移动通信设备有限公司 一种定位处理方法、装置及设备
EP3911054A4 (en) * 2019-02-03 2021-12-29 Huawei Technologies Co., Ltd. Reference signal receiving and sending methods, apparatuses and systems
WO2020165999A1 (ja) * 2019-02-14 2020-08-20 株式会社Nttドコモ ユーザ端末
CN111757363B (zh) * 2019-03-29 2022-07-12 中国移动通信有限公司研究院 一种通信方法和终端、网络设备
CN113424486B (zh) * 2019-04-01 2022-12-30 华为技术有限公司 一种多跳网络的跳频方法及装置
CN112714495A (zh) * 2019-10-25 2021-04-27 大唐移动通信设备有限公司 一种无线通信中的传输方法及其装置
CN111107555B (zh) * 2019-11-08 2023-06-02 中兴通讯股份有限公司 传输信道的传输和发送方法、装置、设备和存储介质
CN112804693A (zh) * 2019-11-14 2021-05-14 华为技术有限公司 一种测量中间物体状态信息的方法及装置
US11743006B2 (en) * 2019-11-27 2023-08-29 Intel Corporation Physical uplink control channel design for discrete fourier transform-spread-orthogonal frequency-division multiplexing (DFT-s-OFDM) waveforms
US11601177B2 (en) * 2020-01-09 2023-03-07 Qualcomm Incorporated Channel state information (CSI) reporting for frequency hopping in unlicensed frequency bands
US20210242985A1 (en) * 2020-02-03 2021-08-05 Qualcomm Incorporated Per bandwidth part frequency hopping
CN113395713B (zh) * 2020-03-12 2022-11-01 中国电信股份有限公司 时隙间的跳频方法、终端设备、基站和跳频系统
CN113677024A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 资源确定方法及装置
US20230328705A1 (en) * 2020-08-14 2023-10-12 Nokia Technologies Oy Demodulation Reference Signal Allocation for Uplink Shared Channel for Wireless Communication
EP4224757A4 (en) * 2020-09-30 2023-11-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR DETERMINING A FREQUENCY DOMAIN POSITION, DEVICE AND STORAGE MEDIUM
CN116391337A (zh) * 2020-10-23 2023-07-04 华为技术有限公司 一种信号发送、信号检测方法及装置
CN116420403A (zh) * 2020-11-11 2023-07-11 华为技术有限公司 一种信号发送、接收方法及装置
CN113039854B (zh) * 2021-02-23 2023-01-03 北京小米移动软件有限公司 射频重调方法及装置
CN115134199A (zh) * 2021-03-29 2022-09-30 维沃移动通信有限公司 Srs的发送方法、接收方法、配置方法及装置
US11606117B2 (en) * 2021-03-30 2023-03-14 Qualcomm Incorporated Frequency hopping pattern for random access channel preamble based on coverage enhancement level
CN115189818A (zh) * 2021-04-01 2022-10-14 中国移动通信有限公司研究院 跳频的配置方法、装置、终端及存储介质
US11742913B2 (en) * 2021-12-17 2023-08-29 Qualcomm Incorporated Intra slot antenna diversity for uplink transmissions
CN117641387A (zh) * 2022-08-12 2024-03-01 华为技术有限公司 参考信号传输方法及通信装置
CN116074961B (zh) * 2023-03-16 2023-07-04 中国移动通信有限公司研究院 信号传输方法、装置、电子设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298117A (zh) * 2012-02-29 2013-09-11 电信科学技术研究院 一种时频资源的指示及确认方法和装置
CN103517426A (zh) * 2012-06-19 2014-01-15 电信科学技术研究院 一种pucch资源的确定方法及装置
CN104283582A (zh) * 2013-07-01 2015-01-14 中兴通讯股份有限公司 一种确定探测参考信号跳频图案方法及终端
WO2016164028A1 (en) * 2015-04-09 2016-10-13 Nokia Solutions And Networks Oy Frequency hopping method for machine type communication
WO2016192048A1 (zh) * 2015-06-03 2016-12-08 华为技术有限公司 一种频域资源的配置方法及装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4382729B2 (ja) * 2005-09-22 2009-12-16 株式会社東芝 無線通信装置および無線通信方法
KR101387499B1 (ko) * 2007-01-09 2014-04-21 엘지전자 주식회사 주파수도약을 적용하는 데이터 송신 방법 및주파수도약방식용 부대역 결정 방법
EP3709545A1 (en) * 2008-01-04 2020-09-16 Godo Kaisha IP Bridge 1 Radio transmitting device and radio transmitting method
US20090176514A1 (en) * 2008-01-09 2009-07-09 Infineon Technologies Ag Radio communication device and method for controlling a radio communication device
KR101441500B1 (ko) * 2008-06-20 2014-11-04 삼성전자주식회사 다중 안테나 및 사운딩 레퍼런스 신호 호핑을 사용하는상향링크 무선 통신 시스템에서의 사운딩 레퍼런스 신호전송 장치 및 방법
CN101771438B (zh) * 2009-01-05 2012-08-29 电信科学技术研究院 一种跳频方法、系统及装置
CN101867403B (zh) * 2010-06-13 2016-06-29 中兴通讯股份有限公司 一种测量参考信号的多天线发送方法、终端
CN103379635A (zh) * 2012-04-25 2013-10-30 中兴通讯股份有限公司 数据传输方法及装置
KR102210081B1 (ko) * 2012-05-11 2021-02-01 팬텍 주식회사 무선통신 시스템에서의 참조신호 송수신 방법 및 장치
CN103546920A (zh) * 2012-07-13 2014-01-29 中兴通讯股份有限公司 一种系统信息的接收方法和装置
CN104186020B (zh) * 2013-01-22 2017-11-03 华为技术有限公司 竞争性随机接入的方法和装置
CN104811909B (zh) * 2014-01-27 2019-09-10 中兴通讯股份有限公司 设备到设备广播信息的发送、接收方法及装置、传输系统
CN105099634B (zh) * 2014-05-09 2019-05-07 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端
CN105338518B (zh) * 2014-07-31 2020-03-31 索尼公司 无线通信系统中的装置和方法
WO2016021944A1 (ko) * 2014-08-08 2016-02-11 엘지전자 주식회사 무선 통신 시스템에서의 간섭 제거 방법 및 단말
US10327232B2 (en) * 2015-09-02 2019-06-18 Qualcomm Incorporated Techniques for allocating time and frequency resources to an uplink channel to carry uplink control information used for narrowband communication
CN106506127B (zh) * 2015-09-06 2021-03-16 中兴通讯股份有限公司 一种传输信息的方法和装置
CN105338641B (zh) * 2015-10-21 2019-02-19 上海华为技术有限公司 一种信息发送、接收方法及相关装置
US10945237B2 (en) * 2016-01-04 2021-03-09 Lg Electronics Inc. Method and apparatus for performing uplink transmission for NB-IoT in wireless communication system
US10419086B2 (en) * 2016-04-26 2019-09-17 Samsung Electronics Co., Ltd. Method and apparatus for enabling uplink MIMO
WO2017195848A1 (ja) * 2016-05-12 2017-11-16 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2018027499A1 (zh) * 2016-08-08 2018-02-15 华为技术有限公司 设备对设备通信的方法和终端设备
CN106455097B (zh) * 2016-09-06 2019-09-17 珠海市魅族科技有限公司 上行跳频方法及装置
CN108270538B (zh) * 2017-01-04 2020-02-14 中兴通讯股份有限公司 参考信号的参数确定、发送方法及装置、终端、基站
WO2018136298A1 (en) * 2017-01-19 2018-07-26 Intel IP Corporation Advertisement of nr capability to user equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298117A (zh) * 2012-02-29 2013-09-11 电信科学技术研究院 一种时频资源的指示及确认方法和装置
CN103517426A (zh) * 2012-06-19 2014-01-15 电信科学技术研究院 一种pucch资源的确定方法及装置
CN104283582A (zh) * 2013-07-01 2015-01-14 中兴通讯股份有限公司 一种确定探测参考信号跳频图案方法及终端
WO2016164028A1 (en) * 2015-04-09 2016-10-13 Nokia Solutions And Networks Oy Frequency hopping method for machine type communication
WO2016192048A1 (zh) * 2015-06-03 2016-12-08 华为技术有限公司 一种频域资源的配置方法及装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020062005A1 (en) * 2018-09-28 2020-04-02 Nokia Shanghai Bell Co., Ltd. A multiplexing mechanism of prs with different numerologies of gnbs and ue
CN112753255A (zh) * 2018-09-28 2021-05-04 上海诺基亚贝尔股份有限公司 具有gNB和UE的不同参数集的PRS的多路复用机制
CN112753255B (zh) * 2018-09-28 2024-02-06 上海诺基亚贝尔股份有限公司 具有gNB和UE的不同参数集的PRS的多路复用机制
WO2020143382A1 (zh) * 2019-01-07 2020-07-16 维沃移动通信有限公司 上行传输方法、终端及网络设备
CN114365458A (zh) * 2019-09-10 2022-04-15 华为技术有限公司 一种参考信号发送、信号检测方法及装置
EP4068714A4 (en) * 2019-09-10 2022-10-05 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR REFERENCE SIGNAL SENDING AND SIGNAL DETECTION
CN114365458B (zh) * 2019-09-10 2023-09-29 华为技术有限公司 一种参考信号发送、信号检测方法及装置
US11882071B2 (en) 2019-09-10 2024-01-23 Huawei Technologies Co., Ltd. Reference signal sending method, signal detection method, and apparatus
WO2022032593A1 (zh) * 2020-08-13 2022-02-17 北京小米移动软件有限公司 一种跳频配置方法、跳频配置装置及存储介质

Also Published As

Publication number Publication date
US11064465B2 (en) 2021-07-13
US20210377929A1 (en) 2021-12-02
CN114124329A (zh) 2022-03-01
CN108631976A (zh) 2018-10-09
CN110447288B (zh) 2022-09-16
EP3592069A1 (en) 2020-01-08
EP3592069A4 (en) 2020-08-12
EP3592069B1 (en) 2022-06-01
US20200022127A1 (en) 2020-01-16
US11765725B2 (en) 2023-09-19
CN110447288A (zh) 2019-11-12
CN108631976B (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2018171754A1 (zh) 一种通信方法及装置
JP7184999B2 (ja) データ送信方法およびその装置
EP3549376B1 (en) Transmission with multiple numerologies in new radio system
US10979194B2 (en) Resource indication method, user equipment, and network device
KR20200050848A (ko) Nr v2x 시스템에서 harq 피드백 절차 수행 방법 및 그 장치
EP3554118B1 (en) Grant-free transmission method, terminal device and network device
WO2014048177A1 (zh) 物理随机接入信道的资源确定方法及装置
JP2019527972A (ja) デバイス間通信方法およびユーザ機器
EP3639494A1 (en) Waveform indication in wireless communication networks
JP2023131172A (ja) 基地局、及び第1の端末装置
KR20200087698A (ko) 무선통신시스템에서 사이드링크 물리계층 세션 아이디를 결정하는 방법 및 장치
CN108702772B (zh) 调度数据和控制信道二者的多子帧准许
AU2012384578B2 (en) Method and network node for allocating resources of an uplink subframe
US11924854B2 (en) Method and apparatus for uplink data information transmission in wireless communication system
US20130064200A1 (en) Base station apparatus, mobile terminal apparatus and communication control method
CN115942483B (zh) 一种信息传输方法及装置
WO2022222106A1 (zh) 传输物理侧行反馈信道psfch的方法和终端设备
CN116033558A (zh) 一种物理上行控制信道的发送方法、接收方法及通信装置
EP3487108B1 (en) Information transmission method and device
WO2024099173A1 (zh) 一种通信方法及装置
WO2021232425A1 (zh) 无线通信方法和终端设备
WO2022214006A1 (zh) 一种上行信道的发送方法、接收方法及通信装置
CN108633039B (zh) 一种上行控制信道确定方法及装置
KR20240045085A (ko) 비면허대역 통신에서 채널 접속을 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018770870

Country of ref document: EP

Effective date: 20191004