WO2014048177A1 - 物理随机接入信道的资源确定方法及装置 - Google Patents

物理随机接入信道的资源确定方法及装置 Download PDF

Info

Publication number
WO2014048177A1
WO2014048177A1 PCT/CN2013/081326 CN2013081326W WO2014048177A1 WO 2014048177 A1 WO2014048177 A1 WO 2014048177A1 CN 2013081326 W CN2013081326 W CN 2013081326W WO 2014048177 A1 WO2014048177 A1 WO 2014048177A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
access channel
resource
frequency
physical
Prior art date
Application number
PCT/CN2013/081326
Other languages
English (en)
French (fr)
Inventor
弓宇宏
孙云锋
张峻峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014048177A1 publication Critical patent/WO2014048177A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the present invention relates to a resource determining technology for a Physical Random Access Channel (PRACH), and more particularly to a resource determining method and apparatus for a physical random access channel.
  • PRACH Physical Random Access Channel
  • the Physical Random Access Channel (PRACH) is used by the terminal to send a random access preamble to initiate a random access procedure.
  • FIG. 1 is a schematic diagram of a time domain structure of a physical random access channel.
  • the random access signal is composed of a cyclic prefix (CP, Cyclic Prefix), a sequence (Sequence), and a guard time (GT, Guard Time).
  • CP cyclic prefix
  • Sequence sequence
  • GT guard time
  • Table 1 depends on the applicable scenarios (such as cell radius, link budget, etc.).
  • LTE Long Term Evolution
  • Different formats include Different time lengths, in the specific use process, the high-level signaling indicates the random access channel configuration used by the cell.
  • the starting position of the PRACH signal transmission is aligned with the starting position of the terminal subframe, and the remaining time in the subframe is used as the guard time (GT) to avoid the subsequent uplink.
  • the frame is dry 4 especially.
  • TDD Time Division Duplexing
  • UpPTS uplink pilot time slot
  • OFDM Orthogonal Frequency Division
  • the random access signal of format 4 can be sent at the location of the UpPTS, and the random access function is implemented with a small overhead.
  • the transmission time of format 4 is taken as the reference point of the position of the terminal UpPTS.
  • PRACH format 4 sets the guard time (GT) length r CT to be about 7.4 us.
  • PRACH occupies 6 physical resource blocks (PRB, Physical Resource Block) (1.08MHz).
  • PRB Physical Resource Block
  • the PRACH signal is generated as shown in Figure 2.
  • the bandwidth occupied by the signal is 1.048.75 kHz, and the part less than 1.08 MHz is used as the guard band in the frequency domain. Since the manner of generating the PRACH signal is prior art, the details of its generation are not described herein.
  • the LTE physical layer uses the Zadoff-Chu sequence as a sequence for generating random access signals.
  • Each cell has 64 available sequences, indicated by the downlink broadcast of the cell.
  • the cell broadcast message indicates the logical number of one Zadoff-Chu base sequence and the configuration information of the cyclic shift step Ncs.
  • the terminal select and convert the random access sequence, and each of the logical number of the sequence and the physical serial number of the Zadoff-Chu sequence are considered.
  • the Zadoff-Chu-based sequence signal peak-to-average ratio is such that sequences with consecutive logical sequence numbers have similar peak-to-average ratio characteristics.
  • the mapping relationship between the logical serial number and the physical serial number is given in a list in the relevant standards.
  • the correlation is marked with the value of the maximum cyclic shift value that can be supported in a high-speed scene, that is, the motif column in the same group has the same value.
  • the cyclic shifts with different base sequences are represented by different phase rotations at the receiving end. This information can be used to distinguish different random access signals, thus forming different random access sequences.
  • the phase of the received sequence is heavily weighted. A large impact may cause a random access signal to be misdetected at the receiving end.
  • the Restricted set is defined in the standard, corresponding to the Unrestricted set in the normal scene.
  • the value of the cyclic shift Ncs that can be used for each sequence group is limited, that is, the value of the maximum cyclic shift that can be supported in the high-speed scene using the sequence group is used as the corresponding Ncs.
  • the physical resource location allocated to the uplink random access channel in the cell is indicated by higher layer signaling.
  • the PRACH format used and the location of the physical resource are indicated.
  • the time-frequency resource location of the PRACH channel in the cell may be determined by combining the time location of the PRACH channel indicated in the configuration index table shown in Table 2 with the information of the higher layer signaling regarding the PRACH channel frequency location.
  • the indication of the location of the PRACH physical resource includes a time location, a radio frame number and a subframe number, and a frequency location.
  • FIG. 3 is a schematic diagram of a physical resource location of a physical random access signal, as shown in FIG. 3, Correspondingly, according to the characteristics of the TDD system, five parameters are used to determine the resource location of the PRACH including d t and, where: (1) in .
  • the frequency position of each PRACH channel indicating the frequency division at the same time on the basis of ⁇ ;
  • (4) indicates the uplink subframe number of the PRACH channel in the 5ms field.
  • FIG. 4 is a schematic diagram of a PRACH frequency domain position on a normal uplink subframe in a TDD system.
  • the PRACH channel adopts the offset of ⁇ and the frequency division multiplexing method of up-and-down interleaving in TDD.
  • PUCCH physical uplink control channel
  • the gain that is, alternately starts from the upper or lower sideband.
  • Figure 5 shows the special uplink subframe in the TDD system.
  • PRACH frequency domain location diagram as shown in Figure 5, for TDD system PRACH configuration #9 and #54 (3 PRACH channels every 10ms), PRACH channel on the only uplink subframe or UpPTS in 10ms radio frame The distribution of the domain.
  • the main object of the present invention is to provide a method and apparatus for determining a resource of a physical random access channel, which can improve the PRACH resource multiplexing capacity in a frequency division duplex system and reduce the PRACH collision probability.
  • a method for determining a resource of a physical random access channel includes:
  • a plurality of physical random access channel resources are configured for each UE, and the physical random access channel resources include at least one of the following resources:
  • Time domain resources frequency domain resources, code domain resources, and airspace resources.
  • the time domain resource is a transmission subframe configuration of a physical random access channel
  • the frequency domain resource is a transmission frequency band configuration of a physical random access channel
  • the code domain resource is a transmission sequence of a random access channel or An orthogonal mask configuration
  • the spatial domain resource is a spatial access location configuration of a random access channel.
  • the method further includes:
  • frequency division duplex system multiple frequency division multiplexed random access channel frequency domain resources are allowed in a subframe of one physical random access channel.
  • the UE randomly selects or cancels through system information or a radio resource control protocol.
  • the medium access control unit determines that at least one of the random access channel frequency domain resources on the physical random access channel subframe is used to send the physical random access channel of the UE.
  • the frequency division multiplexed random access channel frequency domain resources in the subframe of the physical random access channel are multiplexed in the following manner: NRB 6 n PRB 6 I Others, where N is the number of uplink resource blocks, is the first physical resource block configured for the random access channel; is the first available in the subframe of the physical random access channel configured by the upper layer Resource block index, ⁇ C - 6 is a random access channel frequency domain resource index in a subframe configured by a system information or a radio resource control protocol message or a medium access control unit or randomly selected by the UE, is greater than or equal to An integer of 0, L" represents a rounding down operation.
  • the method further includes:
  • N N random access channel preamble sequences for each user; wherein, the configuration of the random access preamble cyclic shift amount of each user satisfies the following condition: the interval between any two cyclic shift amounts is at least equal to one; N is an integer greater than 64.
  • the UE randomly selects, or determines, by using system information or a radio resource control protocol message or a medium access control unit, at least one of the random access channel preamble sequences for transmitting physical random access of the UE. channel.
  • the method further includes:
  • the UE randomly selects, or determines at least one orthogonal mask value in the plurality of orthogonal mask values by using system information or a radio resource control protocol message or a medium access control unit, for transmitting the The physical random access channel of the UE.
  • the method further includes: On the random access channel time-frequency resource of the UE, the orthogonal mask is in the frequency domain from the low frequency to the high frequency on each random access symbol of the random access channel time-frequency resource according to the pre-frequency domain back time domain manner. Mapping in units of every two subcarriers;
  • the orthogonal mask is in the frequency domain of the random access channel and the low frequency to the high frequency on the partial random access symbol of the time-frequency resource of the random access channel.
  • the orthogonal mask is sequentially mapped in units of two subcarriers, and is inversely mapped in units of two subcarriers from low frequency to high frequency on the remaining random access symbols of the random access channel time-frequency resource.
  • the method further includes:
  • a plurality of spatial domain locations for random access are configured for each UE, and the airspace locations refer to channel information reference signal configuration resources.
  • the UE randomly selects, or determines, by using system information or a radio resource control protocol message or a medium access control unit, a channel information reference signal configuration resource of the UE, and configures a spatial location of the resource according to the channel information reference signal. Perform random access.
  • a resource determining apparatus for a physical random access channel includes:
  • a configuration unit configured to configure, for each UE, multiple physical random access channel resources, where the physical random access channel resources include at least one of the following resources: a time domain resource, a frequency domain resource, a code domain resource, and an airspace resource.
  • the time domain resource is a transmission subframe configuration of a physical random access channel
  • the frequency domain resource is a transmission frequency band configuration of a physical random access channel
  • the code domain resource is a transmission sequence of a random access channel or An orthogonal mask configuration
  • the spatial domain resource is a spatial access location configuration of a random access channel.
  • the configuration unit is further configured to configure a frequency access resource of a random access channel in which a plurality of frequency division multiplexing are allowed in a subframe of one physical random access channel.
  • the device further includes a first determining unit and a first initiating unit, wherein: a first determining unit, configured to randomly select at least one of the random access channel frequency domain resources on the physical random access channel subframe to send the physical random access channel of the UE, or through system information or The radio resource control protocol message or the medium access control unit determines that at least one of the random access channel frequency domain resources on the physical random access channel subframe is used to send the physical random access channel of the UE;
  • the first initiating unit is configured to initiate random access on the determined random access channel frequency domain resource.
  • the device further includes:
  • the multiplexing unit is configured to multiplex the frequency division multiplexed random access channel frequency domain resources in the subframe of the physical random access channel in the following manner:
  • N is the number of uplink resource blocks, which is the first physical resource block allocated to the random access channel; t is available in the subframe of the physical random access channel configured by the upper layer
  • the first resource block index, ⁇ ⁇ - 6 ' is a random access channel frequency domain resource in a subframe configured by a system information or a radio resource control protocol message or a medium access control unit or randomly selected by the UE
  • the index is an integer greater than or equal to 0, and L" represents a rounding down operation.
  • the configuration unit is further configured to configure N random access channel preamble sequences for each UE; wherein, the configuration of the random access preamble cyclic shift amount of each UE satisfies the following conditions: any two cycles The interval of the shift amount is at least equal to one; where N is an integer greater than 64.
  • the apparatus further includes a second determining unit and a second initiating unit, where: the second determining unit is configured to randomly select at least one of the random access channel preamble sequences for transmitting the physical of the UE Random access channel, or determined by the system information or radio resource control protocol message or media access control unit in the random access channel preamble sequence At least one of the foregoing is used to send a physical random access channel of the UE;
  • a second initiating unit configured to initiate random access using the determined random access channel preamble sequence.
  • the configuration unit is further configured to configure a plurality of orthogonal mask values for each UE.
  • the apparatus further includes a third determining unit and a third initiating unit, where: a physical random access channel for transmitting the UE, or a system for transmitting the UE by using system information or radio resources Physical random access channel;
  • the third initiating unit is configured to initiate random access using the determined orthogonal mask value.
  • the device further includes:
  • mapping unit configured to: on a random access channel time-frequency resource of the UE, the orthogonal mask is on each random access symbol of the random access channel time-frequency resource according to a pre-frequency domain back time domain manner Mapping from low frequency to high frequency in units of two subcarriers;
  • the orthogonal mask is in the frequency domain of the random access channel and the low frequency to the high frequency on the partial random access symbol of the time-frequency resource of the random access channel.
  • the orthogonal mask is sequentially mapped in units of two subcarriers, and is inversely mapped in units of two subcarriers from low frequency to high frequency on the remaining random access symbols of the random access channel time-frequency resource.
  • the configuration unit is further configured to configure, for each UE, at least one spatial domain location for random access, where the airspace location refers to a channel information reference signal configuration resource.
  • the configuration unit is further configured to configure, for each UE, a plurality of spatial domain locations for random access, where the airspace locations refer to channel information reference signal configuration resources.
  • the apparatus further includes a fourth determining unit and a fourth initiating unit, where: the fourth determining unit is configured to randomly select the channel information reference signal configuration resource of the UE Source, or determining, by using system information or a radio resource control protocol message or a medium access control unit, a channel information reference signal configuration resource of the UE;
  • a fourth initiating unit configured to initiate random access on the determined channel information reference signal configuration resource.
  • a plurality of physical random access channel resources are configured for each UE, and the physical random access channel resources include at least one of the following resources: a time domain resource, a frequency domain resource, a code domain resource, and an air space resource.
  • the time domain resource is a transmission subframe configuration of the physical random access channel;
  • the frequency domain resource is a transmission frequency band configuration of the physical random access channel;
  • the code domain resource is a transmission sequence or orthogonal mask configuration of the random access channel;
  • the resource is configured for the spatial access location of the random access channel.
  • the invention improves the PRACH resource multiplexing capacity in the frequency division duplex system, reduces the PRACH collision probability, and improves the terminal access efficiency and system throughput.
  • 1 is a schematic diagram of a time domain structure of a physical random access channel
  • 2 is a schematic diagram of PRACH signal generation
  • 3 is a schematic diagram of physical resource locations of physical random access signals
  • FIG. 4 is a schematic diagram of a PRACH frequency domain position on a normal uplink subframe in a TDD system
  • FIG. 5 is a schematic diagram of a PRACH frequency domain location on a special uplink subframe in a TDD system
  • FIG. 6 is a physical random access channel according to an embodiment of the present invention
  • Figure 7a and Figure 7b are schematic diagrams showing the structure of a PRACH resource according to Embodiment 10 of the present invention
  • Figure 8a and Figure 8b are schematic diagrams showing the structure of a PRACH resource according to Embodiment 11 of the present invention
  • 13 is a schematic structural diagram of a physical random channel frequency domain resource composition structure
  • FIG. 10 is a schematic structural diagram of a resource determining apparatus for a physical random access channel according to a first embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of a structure of a resource determining apparatus for a physical random access channel according to a second embodiment of the present invention
  • FIG. 12 is a schematic diagram showing the structure of a resource determining apparatus for a physical random access channel according to a third embodiment of the present invention
  • FIG. 13 is a schematic structural diagram of a structure of a resource determining apparatus for a physical random access channel according to a fourth embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a structure of a resource determining apparatus for a physical random access channel according to a fifth embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a structure of a resource determining apparatus for a physical random access channel according to a sixth embodiment of the present invention.
  • Figure 16 is a block diagram showing the structure of a resource determining apparatus for a physical random access channel according to a seventh embodiment of the present invention. detailed description
  • the basic idea of the present invention is: Configuring a plurality of physical random access channel resources for each UE, and the physical random access channel resources include at least one of the following resources: a time domain resource, a frequency domain resource, a code domain resource, and an airspace resource.
  • the time domain resource is a transmission subframe configuration of the physical random access channel;
  • the frequency domain resource is a transmission frequency band configuration of the physical random access channel;
  • the code domain resource is a transmission sequence or orthogonal mask configuration of the random access channel;
  • the resource is configured for the spatial access location of the random access channel.
  • FIG. 6 is a flowchart of a method for determining a resource of a physical random access channel according to an embodiment of the present invention. As shown in FIG. 6, the method for determining a resource of a physical random access channel according to the present invention includes the following steps: Step 601, for each user The device UE configures multiple physical random access channel resources.
  • the physical random access channel resource includes at least one of the following resources: a time domain resource, a frequency domain resource, a code domain resource, and an airspace resource.
  • the channel resource includes: at least one physical random access time domain resource, at least one physical random access frequency domain resource, at least one physical random access code domain resource, at least one physical random access airspace resource, and any combination of the foregoing resources.
  • Step 602 The UE randomly selects or determines, by receiving a signaling indication, that at least one physical random access channel resource is used to send its random access channel.
  • the UE When the UE performs the physical random channel access, the UE randomly selects, or obtains, by using the system information or the RRC message or the medium access control unit, the at least one random access channel frequency domain resource in the subframe of the physical random access channel, Configured to send a physical random access channel of the UE.
  • Step 603 The UE performs random channel access on the determined physical random access channel resource.
  • the PRACH on each subframe is allowed to perform frequency division multiplexing, and the UE uses at most one physical random access frequency domain resource for random access on each random access subframe.
  • the base station notifies the UE1 that the PRACH configuration index is 0 through the high layer signaling;
  • the UE1 After receiving the configuration index, the UE1 queries the configuration index table to determine the time domain location of the PRACH, where the system frame number is even and the subframe number is 1, that is, the time domain location in which the UE1 sends the PRACH is the wireless with the system frame number even. Subframe 1 in a frame (even radio frame).
  • the base station notifies the UE1 of the first physical resource block index and the PRACH random access channel frequency domain resource index available to the UE on the radio random access channel in the subframe 1 in each even radio frame through the high layer signaling;
  • the UE1 After receiving the first physical resource block index and the PRACH frequency domain resource index available for the PRACH sent by the base station, the UE1 determines the first random access channel on the subframe 1 in each even radio frame according to the following manner. Physical resource block index:
  • N ⁇ is the number of uplink resource blocks
  • the first physical resource block of the random access channel allocated to UE1 is configured on subframe 1 in each even radio frame
  • L" represents a rounding operation
  • UE1 determines six consecutive physical resource blocks from the low frequency to the high frequency on the subframe 1 in each even radio frame as its physical random access resources.
  • UE1 transmits a PRACH signal on the determined physical random access resource.
  • the PRACH on each subframe is allowed to perform frequency division multiplexing, and the UE uses at most one physical random access frequency domain resource for random access on each random access subframe.
  • the base station notifies the UE1 that the PRACH configuration index is 6 through the high layer signaling;
  • UE1 After receiving the configuration index, UE1 queries the configuration index table to determine the time domain location of the PRACH, where the system frame number is each radio frame, and the subframe number is 1,6, that is, the time domain location of the PR1 sent by UE1 is Subframe 1 and Subframe 6 in the radio frame.
  • the base station notifies the UE1 of the first physical resource block index D PRACH random access channel frequency domain resource index available to the radio random access channel on the subframe 1 and the subframe 6 in the radio frame by the high layer signaling;
  • the UE1 After receiving the first physical resource block index and the PRACH frequency domain resource index available for the PRACH sent by the base station, the UE1 determines the random access channel on the subframe 1 and the subframe 6 in each radio frame according to the following manner.
  • a physical resource block index :
  • N ⁇ is the number of uplink resource blocks, and is allocated for each wireless medium subframe 1 and subframe 6.
  • the first physical resource block of the random access channel allocated to UE1, L" represents a rounding down operation.
  • the UE1 determines that the six consecutive physical resource blocks from the low frequency to the high frequency on the subframe 1 and the subframe 6 in each radio frame are the physical random access resources.
  • UE1 transmits a PRACH signal on the determined physical random access resource.
  • the PRACH on each subframe is allowed to perform frequency division multiplexing, and the UE uses at most one physical random access frequency domain resource for random access on each random access subframe.
  • the base station notifies the UE1 that the PRACH configuration index is 6 through the high layer signaling;
  • UE1 After receiving the configuration index, UE1 queries the configuration index table to determine the time domain location of the PRACH, where the system frame number is each radio frame, and the subframe number is 1,6, that is, the time domain location of the PR1 sent by UE1 is Subframe 1 and Subframe 6 in the radio frame.
  • the base station notifies the UE1 through the high layer signaling that the first physical resource block index available to the radio random access channel on the subframe 1 and the subframe 6 of the UE in each radio frame is ⁇ ⁇ ⁇ , respectively.
  • the base station notifies the UE1 through the high layer signaling that the frequency domain resource index of the radio random access channel of the UE in subframe 1 and subframe 6 in each radio frame is respectively, and 2 ;
  • the UE1 After receiving the first physical resource block index and the PRACH frequency domain resource index available for the PRACH sent by the base station, the UE1 determines the random access channel of the subframe 1 and the subframe 6 in each radio frame according to the following manner.
  • the first physical resource block index :
  • N is the number of uplink resource blocks
  • is the first physical resource block of the random access channel configured for UE1 on subframe 1 in each radio frame
  • 2 is subframe 1 in each radio frame.
  • the first physical resource block allocated to the random access channel of UE1, [" represents a downward rounding operation.
  • UE1 determines that the subframe 1 in each radio frame is from low frequency to high frequency.
  • the six consecutive physical resource blocks starting with ⁇ and the six consecutive upper-frequency frequencies of the sub-frame 6 to the high frequency are consecutive physical resource blocks of the physical resources random access resources starting with " 2 ".
  • the UE 1 transmits a PRACH signal on the determined physical random count resource.
  • the PRACH on each subframe is allowed to perform frequency division multiplexing, and the UE uses at most one physical random access frequency domain resource for random access on each random access subframe.
  • the base station notifies the UE1 that the PRACH configuration index is 6 through the high layer signaling;
  • UE1 After receiving the configuration index, UE1 queries the configuration index table to determine the time domain location of the PRACH, where the system frame number is each radio frame, and the subframe number is 1,6, that is, the time domain location of the PR1 sent by UE1 is Subframe 1 and Subframe 6 in the radio frame.
  • the base station notifies the UE1 through the high layer signaling that the first physical resource block index available to the UE on the radio random access channel in subframe 1 and subframe 6 in each radio frame is;
  • the base station notifies the UE1 through the high layer signaling that the frequency domain resource index of the radio random access channel on the subframe 1 and the subframe 6 of the UE in each radio frame is respectively;
  • UE1 After receiving the first physical resource block index and the PRACH frequency domain resource index available for the PRACH sent by the base station, UE1 determines its subframe 1 and each radio frame in the following manner. First physical resource block index of the random access channel on subframe 6
  • N is the number of uplink resource blocks
  • is the first physical resource block of the random access channel configured for UE1 on subframe 1 in each radio frame
  • 2 is subframe 1 in each radio frame.
  • the first physical resource block allocated to the random access channel of UE1, [" represents a downward rounding operation.
  • UE1 determines that the subframe 1 in each radio frame is from low frequency to high frequency.
  • the six consecutive physical resource blocks starting with ⁇ and the six consecutive upper-frequency frequencies of the sub-frame 6 to the high frequency are consecutive physical resource blocks of the physical resources random access resources starting with " 2 ".
  • the UE 1 transmits a PRACH signal on the determined physical random count resource.
  • the PRACH on each subframe is allowed to perform frequency division multiplexing, and the UE uses at most one physical random access frequency domain resource for random access on each random access subframe.
  • the base station notifies the UE1 that the PRACH configuration index is 10 through the high layer signaling;
  • the UE1 After receiving the configuration index, the UE1 queries the configuration index table to determine the time domain location of the PRACH, where the system frame number is each radio frame, and the subframe number is 2, 5, 8, that is, the time domain location of the PR1 sent by the UE1 is Subframe 2, subframe 5, and subframe 8 in each radio frame.
  • the base station notifies the UE1 of the subframe 2 and the subframe 5 in each radio frame by using the high layer signaling. And a first physical resource block index and a PRACH random access channel frequency domain resource index available for the wireless random access channel on the subframe 8;
  • the UE1 After receiving the first physical resource block index and the PRACH frequency domain resource index available for the PRACH sent by the base station, the UE1 determines that it is randomly connected in the subframe 2, the subframe 5, and the subframe 8 in each radio frame.
  • N is the number of uplink resource blocks, and is the first physical resource block of the random access channel allocated to UE1 in subframe 2, subframe 5, and subframe 8 in each radio frame, L "It means rounding down the operation.”
  • the UE1 determines the six consecutive physical resource blocks in the subframe 2, the subframe 5, and the subframe from the low frequency to the high frequency in each radio frame as its physical random access resources.
  • UE1 transmits a PRACH signal on the determined physical random access resource.
  • the PRACH on each subframe is allowed to perform frequency division multiplexing, and the UE uses at most one physical random access frequency domain resource for random access on each random access subframe.
  • the base station notifies the UE1 that the PRACH configuration index is 10 through the high layer signaling;
  • the UE1 After receiving the configuration index, the UE1 queries the configuration index table to determine the time domain location of the PRACH, where the system frame number is each radio frame, and the subframe number is 2, 5, 8, that is, the time domain location of the PR1 sent by the UE1 is Subframe 2, subframe 5, and subframe 8 in each radio frame.
  • the base station notifies the UE1 through the high layer signaling that the first physical resource block index available to the UE in each radio frame, the second physical resource block index of the radio random access channel on the subframe 2, the subframe 5, and the subframe 8 is
  • the base station informs the UE1 through the high layer signaling that the frequency domain resource index of the radio random access channel on the subframe 2, the subframe 5, and the subframe 8 of the UE in each radio frame is / 1 , fMa, and / 3, respectively ;
  • the UE1 After receiving the first physical resource block index and the PRACH frequency domain resource index available for the PRACH sent by the base station, the UE1 determines the randomness on the subframe 2, the subframe 5, and the subframe 8 in each radio frame according to the following manner.
  • the first physical resource block index of the access channel :
  • N is the number of uplink resource blocks
  • is the first physical resource block of the random access channel configured for UE1 on subframe 2 in each radio frame
  • 2 is subframe 5 in each radio frame
  • " 3" is the first physical resource block of the random access channel allocated to UE1 on subframe 8 in each radio frame.
  • UE1 determines that its physical random access resource is: six consecutive physical resource blocks starting from low frequency to high frequency starting from ⁇ 2 in each radio frame, each radio frame the subframe 5 from low to high in the "2 starts six consecutive physical resource blocks in each radio frame and subframe 8 from low to six consecutive physical resource blocks that start frequency.
  • the UE 1 transmits a PRACH signal on the determined physical random count resource.
  • the PRACH on each subframe is allowed to perform frequency division multiplexing, and the UE uses at most one physical random access frequency domain resource for random access on each random access subframe.
  • the base station notifies the UE1 that the PRACH configuration index is 10 through the high layer signaling;
  • the UE1 After receiving the configuration index, the UE1 queries the configuration index table to determine the time domain location of the PRACH, where the system frame number is each radio frame, and the subframe number is 2, 5, 8, that is, the time domain location of the PR1 sent by the UE1 is Subframe 2, subframe 5, and subframe 8 in each radio frame.
  • the base station notifies the UE1 through the high layer signaling that the first physical resource block index available to the radio random access channel on the subframe 2, the subframe 5, and the subframe 8 of the UE in each radio frame is; Notifying the UE1 that the frequency-domain resource index of the radio random access channel on the subframe 2, the subframe 5, and the subframe 8 in each radio frame is / 1 , fMa, and / 3, respectively ;
  • the UE1 After receiving the first physical resource block index and the PRACH frequency domain resource index available for the PRACH sent by the base station, the UE1 determines the randomness on the subframe 2, the subframe 5, and the subframe 8 in each radio frame according to the following manner.
  • the first physical resource block index of the access channel :
  • N is the number of uplink resource blocks
  • is the first physical resource block of the random access channel configured for UE1 on subframe 2 in each radio frame
  • 2 is subframe 5 in each radio frame
  • 3 is the first physical resource block of the random access channel allocated to UE1 in subframe 8 in each radio frame
  • L indicates Round down the operation.
  • UE1 determines that its physical random access resource is: six consecutive physical resource blocks starting from low frequency to high frequency starting from ⁇ 2 in each radio frame, each radio frame On the sub-frame 5, from the low frequency to the high frequency, the continuous six physical resource blocks starting with ", 2 " and the sub-frame 8 in each radio frame are from the low frequency to the high frequency with six consecutive physics starting from " 3 ". Resource block.
  • the UE 1 transmits a PRACH signal on the determined physical random count resource.
  • the PRACH on each subframe is allowed to perform frequency division multiplexing, and the UE uses at most one physical random access frequency domain resource for random access on each random access subframe.
  • the base station notifies the UE1 that the PRACH configuration index is 0 through the high layer signaling, and notifies the UE2 that the PRACH configuration index is also 0;
  • UE1 and UE2 After receiving the configuration index, UE1 and UE2 query the configuration index table to determine the time domain location of the PRACH, where the system frame number is even and the subframe number is 1, that is, the time domain location of the PRACH sent by UE1 and UE2 is the system frame number. Subframe 1 in an even number of radio frames (even radio frames).
  • the base station notifies the UE1 of the first physical resource block index n available to the radio random access channel on the subframe 1 in each even radio frame by the high layer signaling.
  • N is the number of uplink resource blocks
  • the first physical resource block of the random access channel allocated to UE1 is configured on subframe 1 in each even radio frame
  • L" represents a rounding operation
  • the base station notifies the UE2 of the first physical resource block index n available to the radio random access channel on the subframe 1 of each even radio frame by the higher layer signaling.
  • Ffset and PRACH random access channel frequency domain resource index ⁇ , where ⁇ 2 , f ⁇ fL ;
  • the UE2 After receiving the first physical resource block index and the PRACH frequency domain resource index available for the PRACH sent by the base station, the UE2 determines the first random access channel on the subframe 1 in each even radio frame according to the following manner. Physical resource block index:
  • N is the number of uplink resource blocks
  • the first physical resource block of the random access channel allocated to UE2 is configured on subframe 1 in each even radio frame
  • L" represents a rounding operation
  • UE1 determines that six consecutive physical resource blocks starting from low frequency to high frequency on subframe 1 in each even radio frame are physical random access resources, and UE2 determines each even number.
  • the six physical resource blocks on the wireless neutron frame 1 from the low frequency to the high frequency are the physical random access resources.
  • the frequency domain resources of UE1 and UE2 do not overlap or overlap, so UE1 and UE2 are simultaneously determined in frequency division multiplexing mode on each subframe 1 of each even radio frame in PRACH configuration 0.
  • the physical random access frequency domain resource transmits a PRACH signal.
  • the network side configures N (N>64) random access preamble sequences for each cell.
  • the UE in each cell obtains the logical index of the preamble root sequence of the cell and the corresponding physical index by acquiring the system information RACH_ROOT_SEQUENCE; by acquiring 5 bits (32 cyclic shift amount settings) or more bit system information or
  • the RRC message acquires the cyclic shift amount of the local cell, wherein the configuration of the cyclic shift amount satisfies the minimum cyclic shift interval equal to 1.
  • the UE randomly selects one of all the random access preamble sequences of the cell as the preamble sequence for the UE to transmit the physical random access channel; the base station side detects the UE by using the blind detection mode. Random access preamble sequence.
  • the UE acquires the random access configured by the base station to the UE by using the system information of the local cell or the RRC message or the Medium Access Control Unit (MAC CE). Lead sequence. In this manner, the base station does not need to perform blind detection on the random access preamble sequence of the UE.
  • MAC CE Medium Access Control Unit
  • the eNB configures an orthogonal mask (OCC, Orthogonal Cover Code) for each UE.
  • OCC orthogonal mask
  • FIG. 7a and FIG. 7b are schematic diagrams showing the structure of a PRACH resource according to Embodiment 10 of the present invention.
  • the OCC code is based on the PRACH subcarrier from the low frequency to the high frequency in the frequency domain of the PRACH, and every two PRACH subcarriers. Perform a sequential mapping for the unit.
  • the mapping manner of the OCC code is: on the random access channel time-frequency resource of the UE, according to the pre-frequency domain back time domain manner, on each random access symbol of the random access channel time-frequency resource
  • the low frequency to high frequency sequentially maps the orthogonal mask in units of two subcarriers.
  • the base station In the non-contention mode, the base station notifies the UE of the value of the OCC code through UE-specific MAC layer signaling; the UE decodes the PRACH information according to the received OCC code indicated by the signaling.
  • the UE randomly selects one of [+1, +1] and [+1, -1] as its own OCC.
  • the base station side performs blind detection on the OCC code between [+1, +1] and [+1, -1] when decoding the PRACH information until its own PRACH information is detected.
  • the OCC length in the specific use is not limited to 2, and may be equal to 4 or 8, etc.
  • the corresponding OCC value is [+1, +1, +1, +1] or [+1, -1, + 1, -1] or [+1, -1, -1 + 1] or [-1, +1, -1, +1].
  • the eNB configures an orthogonal mask (OCC, Orthogonal Cover Code) for each UE.
  • OCC orthogonal mask
  • the frequency domain is mapped from the low frequency to the high frequency based on the PRACH subcarriers in the order of every two PRACH subcarriers.
  • the mapping mode of the OCC code is: on the time-frequency resource of the random access channel of the UE.
  • Orthogonal mask is sequentially mapped in units of every two subcarriers from low frequency to high frequency on a part of random access symbols of the random access channel time-frequency resource according to a pre-frequency domain back time domain, in random access
  • the orthogonal mask is mapped in reverse order from the low frequency to the high frequency on the remaining random access symbols of the channel time-frequency resource in units of two subcarriers. 8a and FIG.
  • FIG. 8b are schematic diagrams showing the structure of a PRACH resource according to Embodiment 10 of the present invention, as shown in FIG. 8a and FIG. 8b, that is, OCC on the uplink symbols of the first, third, fifth, seventh, ninth, and eleventh steps of each physical resource block.
  • the sequential mapping is performed from the low frequency to the high frequency, and the OCC is inversely mapped from the low frequency to the high frequency on the 2nd, 4th, 6th, 8th, 10th, and 12th uplink symbols.
  • the base station In the non-contention mode, the base station notifies the UE of the value of the OCC code through UE-specific MAC layer signaling; the UE decodes the PRACH information according to the received OCC code indicated by the signaling.
  • the UE randomly selects one of [+1, +1] and [+1, -1] as its own OCC code; when the base station side decodes the PRACH information, the OCC code is at [+1, + Blind detection between 1] and [+1, -1] until the detection of its own PRACH information.
  • the OCC length in the specific use is not limited to 2, and may be equal to 4, for example, when the OCC is equal to 4, the corresponding OCC value is [+1, +1, +1, +1] or [+1, -1, +1, -1] or [+1,-1,-1+1] or [-1, +1, -1, +1].
  • the network side configures at least one airspace resource for each UE, wherein the airspace resources are preferably distinguished by channel information reference signal configuration resources. That is, the network side configures at least one channel information reference signal configuration resource for each UE.
  • the network side broadcasts multiple sets of channel information reference signal (CSI-RS) configuration information for each cell through system information.
  • CSI-RS channel information reference signal
  • the UE When the random access procedure is based on the contention mode, the UE randomly selects one of the multiple sets of channel information reference signals of the cell in the cell, and performs measurement according to the channel information reference signal and/or transmission of the physical random access channel. Receiving; the base station side detects the physical random access channel of the UE by using a blind detection manner.
  • the UE When the random access procedure is based on the non-contention mode, the UE obtains the channel information reference configured by the base station to the UE by using the system information of the local cell or the RRC message or the Medium Access Control Unit (MAC CE). signal. In this manner, the base station does not need to blindly detect the channel information reference signal resources of the UE.
  • MAC CE Medium Access Control Unit
  • N is an integer greater than or equal to 2 physical random channel frequency domain resources for each UE.
  • the base station side configures two frequency domain resources, PRACH-fl and PRACH-f2, for UE1, and two PRNS- ⁇ and PRACH-f4 frequency domain resources for UE2.
  • the UE1 When the random access procedure is based on the contention mode, when the random channel is accessed, the UE1 randomly selects at least one physical random channel frequency domain resource from the PRACH-fl and the PRACH-f2 for transmitting the physical random access channel of the UE;
  • the base station side detects the physical random access channel of the UE by means of blind detection between the frequency domain resources PRACH-fl and PRACH f2 until the self is detected. PRACH information.
  • the UE acquires the base station configuration by using the system information of the current cell or the RRC message or the Medium Access Control Unit (MAC CE).
  • the physical random access channel of the UE is a frequency domain resource PRACHJ1 or PRACH_G; the base station side detects and receives its own physical random access channel on the frequency domain resource indicated by the information by using the received frequency domain resource information. In this manner, the base station does not need to perform blind detection on the physical random access channel frequency domain resources of the UE.
  • This method is applicable to both frequency division duplex systems and time division duplex systems.
  • the network side configures multiple physical random channel time domain resources for each UE.
  • the UE When the random access procedure is based on the contention mode, when the random channel is accessed, the UE randomly selects at least one physical random channel time domain resource for transmitting the physical random access channel of the UE; the base station side detects by blind detection The physical random access channel is transmitted on which random access subframe the UE transmits.
  • the UE acquires the base station configuration by using the system information of the current cell or the RRC message or the Media Access Control Unit (MAC CE).
  • the physical random access channel time domain resource of the UE. In this manner, the base station does not need to blindly detect the time domain resources of the physical random access channel of the UE.
  • the network side configures multiple sets of physical random access channel resources for each UE, where the physical random access channel resources include at least one physical random access channel time domain resource, at least one physical random access channel frequency domain resource, and at least one physical random Access preamble sequence resources, at least one physical random access channel information reference signal configuration resource, etc., and any combination therebetween.
  • the physical random access channel resources include at least one physical random access channel time domain resource, at least one physical random access channel frequency domain resource, and at least one physical random Access preamble sequence resources, at least one physical random access channel information reference signal configuration resource, etc., and any combination therebetween.
  • the UE When the random access procedure is the access competition mode, when the random channel is accessed, the UE randomly selects at least one set of physical random access channel resources to send the physical random access channel of the UE; The station side detects the physical random access channel of the UE by using blind detection.
  • the UE acquires the base station configuration by using the system information of the current cell or the RRC message or the Media Access Control Unit (MAC CE). Physical random access channel resource information of the UE. In this manner, the base station does not need to blindly detect the physical random access channel preamble sequence of the UE.
  • MAC CE Media Access Control Unit
  • the physical random access channel resource may be an existing physical random access channel resource, or may be a physical random access channel resource after capacity expansion of an existing resource.
  • the configuration unit 90 is configured to configure multiple physical random access channel resources for each UE, where the physical random access channel resources include at least one of the following resources: a time domain resource, a frequency domain resource, a code domain resource, and an airspace resource. .
  • the time domain resource is a transmission subframe configuration of a physical random access channel; the frequency domain resource is a transmission frequency band configuration of a physical random access channel; and the code domain resource is a transmission sequence of a random access channel or a positive Interworking mask configuration; the airspace resource is a spatial access location configuration of a random access channel.
  • the configuration unit 90 is further configured to configure a random access channel frequency domain resource in a subframe of a physical random access channel to allow multiple frequency division multiplexing.
  • FIG. 11 is a schematic structural diagram of a resource determining apparatus for a physical random access channel according to a second embodiment of the present invention. As shown in FIG. 11, on the basis of the resource determining apparatus of the physical random access channel shown in FIG.
  • the resource determining apparatus of the exemplary physical random access channel further includes a first determining unit 91 and a first initiating unit 92, where:
  • the first determining unit 91 is configured to randomly select at least one of the random access channel frequency domain resources on the physical random access channel subframe to send the physical random access of the UE Determining, by the system information or the RRC message or the medium access control unit, at least one of the random access channel frequency domain resources on the physical random access channel subframe for transmitting the physical of the UE Random access channel;
  • the first initiating unit 92 is configured to initiate random access on the determined random access channel frequency domain resource.
  • FIG. 12 is a schematic structural diagram of a resource determining apparatus for a physical random access channel according to a third embodiment of the present invention. As shown in FIG. 12, based on the resource determining apparatus of the physical random access channel shown in FIG. The resource determining device of the example physical random access channel further includes:
  • the multiplexing unit 93 is configured to multiplex the frequency-multiplexed random access channel frequency domain resources in the subframe of the physical random access channel in the following manner:
  • N is the number of uplink resource blocks, which is the first physical resource block allocated to the random access channel; and is the first resource block index available in the subframe of the physical random access channel configured by the upper layer, Q ⁇ .
  • Ffset ⁇ - 6 ' is a random access channel frequency domain resource index in a subframe configured by a system information or a radio resource control protocol message or a medium access control unit or randomly selected by the UE, is greater than or equal to 0 Integer, L" means rounding down.
  • the configuration unit 90 is further configured to configure, for each UE, N random access channel preamble sequences; wherein, the configuration of the random access preamble sequence cyclic shift amount of each UE satisfies the following conditions: any two cyclic shifts
  • the interval of the quantity is at least equal to one; where N is an integer greater than 64.
  • FIG. 13 is a schematic structural diagram of a resource determining apparatus for a physical random access channel according to a fourth embodiment of the present invention. As shown in FIG. 13, on the basis of the resource determining apparatus of the physical random access channel shown in FIG.
  • the resource determining apparatus of the exemplary physical random access channel further includes a second determining unit 94 and a second initiating unit 95, where:
  • the second determining unit 94 is configured to randomly select at least one of the random access channel preamble sequences for transmitting the physical random access channel of the UE, or by using system information or a radio resource control protocol message or media access.
  • the control unit determines that at least one of the random access channel preamble sequences is used to send a physical random access channel of the UE;
  • the second initiating unit 95 is configured to initiate random access using the determined random access channel preamble sequence.
  • the configuration unit 90 is further configured to configure a plurality of orthogonal mask values for each UE.
  • FIG. 14 is a schematic structural diagram of a resource determining apparatus for a physical random access channel according to a fifth embodiment of the present invention. As shown in FIG. 14, on the basis of the resource determining apparatus of the physical random access channel shown in FIG. The resource determining apparatus of the exemplary physical random access channel further includes a third determining unit 96 and a third initiating unit 97, where:
  • the third determining unit 96 is configured to randomly select at least one of the multiple orthogonal mask values for transmitting the physical random access channel of the UE, or by using system information or a RRC message or a media connection
  • the ingress control unit determines that at least one of the plurality of orthogonal mask values is used to send a physical random access channel of the UE;
  • the third initiating unit 97 is configured to initiate random access using the determined orthogonal mask value.
  • FIG. 15 is a schematic structural diagram of a resource determining apparatus for a physical random access channel according to a sixth embodiment of the present invention. As shown in FIG. 15, on the basis of the resource determining apparatus of the physical random access channel shown in FIG.
  • the resource determining device of the example physical random access channel further includes:
  • the mapping unit 98 is configured to: on the random access channel time-frequency resource of the UE, orthogonally masking each random access symbol of the random access channel time-frequency resource according to a pre-frequency domain back time domain manner The upper layer is mapped in order of every two subcarriers from low frequency to high frequency;
  • the orthogonal mask is in the frequency domain of the random access channel and the low frequency to the high frequency on the partial random access symbol of the time-frequency resource of the random access channel.
  • the orthogonal mask is sequentially mapped in units of two subcarriers, and the frequency is randomly used in the random access channel.
  • the remaining random access symbols of the source are mapped in reverse order from low frequency to high frequency in units of two subcarriers.
  • the configuration unit 90 is further configured to configure, for each UE, at least one airspace location for random access, where the airspace location refers to a channel information reference signal configuration resource.
  • the configuration unit 90 is further configured to configure, for each UE, a plurality of airspace locations for random access, where the airspace locations refer to channel information reference signal configuration resources.
  • FIG. 16 is a schematic structural diagram of a resource determining apparatus for a physical random access channel according to a seventh embodiment of the present invention. As shown in FIG. 16, on the basis of the resource determining apparatus of the physical random access channel shown in FIG. 10, The resource determining apparatus of the exemplary physical random access channel further includes a fourth determining unit 99 and a fourth initiating unit 910, where:
  • the fourth determining unit 99 is configured to randomly select a channel information reference signal configuration resource of the UE, or determine a channel information reference signal configuration resource of the UE by using system information or a radio resource control protocol message or a medium access control unit;
  • the fourth initiating unit 910 is configured to initiate random access on the determined channel information reference signal configuration resource.
  • the implementation functions of the processing units in the resource determining apparatus of the physical random access channel shown in FIG. 10 can be understood by referring to the related description of the resource determining method of the foregoing physical random access channel. It should be understood by those skilled in the art that the functions of the processing units in the resource determining apparatus of the physical random access channel shown in FIG. 10 can be implemented by a program running on the processor, or can be implemented by a specific logic circuit.
  • the present invention configures a plurality of physical random access channel resources for each UE, and the physical random access channel resources include at least one of the following resources: a time domain resource, a frequency domain resource, a code domain resource, and an air space resource.
  • the time domain resource is a transmission subframe configuration of the physical random access channel;
  • the frequency domain resource is a transmission frequency band configuration of the physical random access channel;
  • the code domain resource is a transmission sequence or orthogonal mask configuration of the random access channel;
  • the resource is configured for the spatial access location of the random access channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种物理随机接入信道的资源确定方法,包括:为每个用户设备UE配置多个物理随机接入信道资源,所述物理随机接入信道资源包括以下资源的至少之一:时域资源、频域资源、码域资源、空域资源;其中,时域资源为物理随机接入信道的发射子帧配置;频域资源为物理随机接入信道的发射频带配置;码域资源为随机接入信道的发射序列或正交掩码配置;空域资源为随机接入信道的空间接入位置配置。本发明同时公开了一种物理随机接入信道的资源确定装置。本发明提高了频分双工系统中的PRACH资源复用容量,降低了PRACH碰撞概率,从而提高了终端接入效率和系统吞吐量。

Description

物理随机接入信道的资源确定方法及装置 技术领域
本发明涉及物理随机接入信道 ( PRACH , Physical Random Access Channel ) 的资源确定技术, 尤其涉及一种物理随机接入信道的资源确定方 法及装置。 背景技术
物理随机接入信道(PRACH, Physical Random Access Channel )用于 终端发送随机接入信号 ( Random Access Preamble ), 发起随机接入的过程。
图 1为物理随机接入信道的时域结构示意图, 如图 1所示, 随机接入 信号由循环前缀 ( CP, Cyclic Prefix ), 序列 ( Sequence )和保护时间 (GT, Guard Time ) 3个部分组成, 如下表 1所示, 根据适用的场景的不同 (例如 小区半径、 链路预算等), 长期演进(LTE, Long Term Evolution )系统物理 层支持五种随机接入信号格式, 不同的格式有不同的时间长度, 具体使用 过程中, 由高层信令对小区所使用的随机接入信道配置进行指示。
Figure imgf000003_0001
表 1
在发送时间上, 对于格式 0~3, PRACH信号发送的起始位置与终端子 帧的起始位置对齐, 子帧中剩余的时间用作保护时间 (GT ) 的作用, 避免 对随后的上行子帧的干 4尤。 而对于格式 4, 仅用于时分双工 (TDD, Time Division Duplexing ) 系统中, 当 TDD系统配置上行导频时隙 (UpPTS ) 的 长度为 2 个正交频分复用 ( OFDM, Orthogonal Frequency Division Multiplexing )符号时, 可以在 UpPTS的位置发送格式 4的随机接入信号, 以较小的开销实现随机接入的功能。 在发送时间上, 格式 4 的发送时间以 终端 UpPTS 阶数的位置为参考点, 为了避免对随后的上行子帧的干扰, PRACH格式 4设置保护时间 (GT ) 的长度 rCT约为 7.4us。
在频域上, PRACH占用 6个物理资源块( PRB, Physical Resource Block ) ( 1.08MHz )。 以格式 0为例, PRACH信号的生成方式如图 2所示,信号占 用的带宽为 1.048.75kHz, 不足 1.08MHz 的部分作为频域的保护带。 由于 PRACH信号的生成方式是现有技术, 这里不再赘述其生成细节。
LTE物理层使用 Zadoff-Chu序列作为生成随机接入信号的序列。
每个小区有 64个可用的序列, 由小区的下行广播进行指示。 小区广播 消息指示 1个 Zadoff-Chu基序列的逻辑号码和循环移位步长 Ncs的配置信 息。 在获取所有可用的 64个随机接入序列时, 首先使用该基序列的循环移 位, 试图得到 64个序列; 如果使用 1个基序列不够的话, 那么使用逻辑序 号连续的下一个基序列进行类似的操作, 直到得到 64个可用的序列。
为了使同一小区内的 64个随机接入序列能有类似的功率效率, 方便终 端对随机接入序列进行选择和转换, 在序列的逻辑序号与 Zadoff-Chu序列 物理序号的映射关系中考虑了各个 Zadoff-Chu基序列信号峰均比的情况, 使得逻辑序号连续的序列有相似的峰均比特性。 按照这样的原则, 相关标 准中以列表的方式给出了逻辑序号和物理序号的映射关系。 同时, 相关标 在高速场景下可支持的最大循环移位的数值这一特性, 即同一组内的基序 列具有相同的数值。
基序列不同的循环移位在接收端体现为不同的相位旋转, 该信息可以 用来区分不同的随机接入信号, 因而形成了不同的随机接入序列。 但是, 在高速移动场景下, 由于多普勒频移的作用, 会对接收序列的相位产生重 大影响, 可能造成随机接入信号在接收端出现误检测现象。 为了避免产生 这种问题, 在 LTE物理层对随机接入序列循环移位的设计中, 对高速场景 进行了特殊的考虑, 即标准中定义了 Restricted set, 对应于普通场景下的 Unrestricted set。 在 Restricted set情况下, 对各个序列组可使用的循环移位 Ncs的数值进行了限制,即使用该序列分组在高速场景下可支持的最大的循 环移位的数值作为对应的 Ncs。
小区中配置给上行随机接入信道的物理资源位置由高层信令指示。 在 关于小区随机接入信道配置的信息中,指示了使用的 PRACH格式以及物理 资源的位置。
对于频分双工 ( FDD, Frequency Division Duplexing ) 系统, 每个时刻 最多传输一个 PRACH信道, 即没有频分复用。结合表 2所示的配置索引表 中指示的 PRACH信道的时间位置以及高层信令关于 PRACH信道频率位置 的信息,可以确定小区中 PRACH信道的时频资源位置。相关标准中列出了 各种随机接入信道的配置选项。 例如, 使用标准中定义的 PRACH格式 0、 周期为 10ms的配置 #3, 支设频率位置 =1, 那么小区中用于 PRACH信道 的物理资源位置如附图 3所示。
Figure imgf000006_0001
表 2 个时刻可能传输多个频分的 PRACH信道。 因为 TDD支持不同的上下行 时间比例的配置, 在某些配置情况下上行时间较少, 所以可能需要在同一 个时刻支持多个 PRACH信道,以提供足够的随机接入信道的容量。在 FDD 系统中,对 PRACH物理资源位置的指示包括时间位置、无线帧号码及子帧 号码、 以及频率位置 图 3为物理随机接入信号的物理资源位置示意 图, 如图 3所示, 与此相对应, 才艮据 TDD系统的特点, 采用 5个参数来确 定 PRACH的资源位置包括 dt和 , 其中: ( 1 ) 在《 。^的基础上指示同一时刻内频分的各个 PRACH信道的 频率位置;
( 2 ) 指示 PRACH信道的无线帧位置, 即全部无线帧、 奇数无线帧 或者偶数无线帧;
( 3 ) 4根据 DD上下行切换周期的特点, 指示 PRACH信道在无线 帧中的前半帧或者后半帧;
( 4 ) 则指示 PRACH信道在 5ms半帧内的上行子帧序号。
相关标准中以列表的方式给出了 TDD系统中 PRACH信道物理资源的 所有配置选项。
图 4为 TDD系统中普通上行子帧上的 PRACH频域位置示意图, 如图 4所示,在普通子帧中,由于上行两边频带存在物理上行控制信道(PUCCH, Physical Uplink Control Channel )信道, 因此 PRACH信道采用 ^ 的偏移 以及 TDD中上下交错的频分复用方式。 而对于 TDD系统中的 PRACH格 式 4, 由于 UpPTS上不存在 PUCCH信道, 因此采用了不同的机制: 从上 行频域的边际开始, 连续分布, 在两次 UpPTS之间采用跳频的方式获得频 率分集的增益, 即交替地从上边带或下边带开始。 假设 =1, 采用上下 行时间配置 #5 (下行: 上行 =1 : 9 )。 图 5为 TDD系统中特殊上行子帧上的 PRACH频域位置示意图, 如图 5所示, 对于 TDD系统 PRACH配置 #9和 #54 (每 10ms有 3个 PRACH信道), 在 10ms无线帧中唯一的上行子帧或 者 UpPTS上, PRACH信道在频域的分布。
在 LTE-A研究阶段中, 引入了很多新技术, 例如多点协作 (CoMP, Coordinated Multi-Point )、载波聚合( CA, Carrier Aggregation )、软小区( Soft Cell )等。 针对这些新技术提出了很多新的通信场景, 其中 CoMP 场景 4 和 Soft Cell 等场景中单小区所容纳的用户都远远大于传统小区, 导致 PRACH容量不足, 从而影响用户的接入效率。 发明内容
有鉴于此, 本发明的主要目的在于提供一种物理随机接入信道的资源 确定方法及装置, 能提高频分双工系统中的 PRACH 资源复用容量, 降低 PRACH碰撞概率。
为达到上述目的, 本发明的技术方案是这样实现的:
一种物理随机接入信道的资源确定方法, 包括:
为每个 UE配置多个物理随机接入信道资源,所述物理随机接入信道资 源包括以下资源的至少之一:
时域资源、 频域资源、 码域资源、 空域资源。
优选地, 所述时域资源为物理随机接入信道的发射子帧配置; 所述频 域资源为物理随机接入信道的发射频带配置; 所述码域资源为随机接入信 道的发射序列或正交掩码配置; 所述空域资源为随机接入信道的空间接入 位置配置。
优选地, 所述方法还包括:
在频分双工系统中, 一个物理随机接入信道的子帧中允许存在多个频 分复用的随机接入信道频域资源。
优选地,所述 UE随机选择、或者通过系统信息或无线资源控制协议消 息或媒体接入控制单元确定所述物理随机接入信道子帧上的随机接入信道 频域资源中的其中至少一个用于发送所述 UE的物理随机接入信道。
优选地, 物理随机接入信道的子帧中的频分复用的随机接入信道频域 资源按以下方式进行复用:
Figure imgf000009_0001
NRB 6 nPRB 6 I 其它 其中, N 为上行资源块数目, 为配置给随机接入信道的第一个物 理资源块; 为由高层配置的物理随机接入信道的子帧内可用的第一个 资源块索引, ≤C - 6 为由系统信息或无线资源控制协议消息 或媒体接入控制单元配置的或由所述 UE 随机选择的子帧内的随机接入信 道频域资源索引, 是大于等于 0的整数, L」表示向下取整运算。
优选地, 所述方法还包括:
为每个用户配置 N条随机接入信道前导序列; 其中, 每个用户的随机 接入前导序列循环移位量的配置满足以下条件: 任意两个循环移位量的间 隔最小等于一; 其中, N为大于 64的整数。
优选地,所述 UE随机选择、或者通过系统信息或无线资源控制协议消 息或媒体接入控制单元确定所述随机接入信道前导序列中的其中至少一个 用于发送所述 UE的物理随机接入信道。
优选地, 所述方法还包括:
为每个 UE配置多个正交掩码值。
优选地,所述 UE随机选择、或者通过系统信息或无线资源控制协议消 息或媒体接入控制单元在所述多个正交掩码值确定其中至少一个正交掩码 值, 用于发送所述 UE的物理随机接入信道。
优选地, 所述方法还包括: 在所述 UE的随机接入信道时频资源上,正交掩码按照先频域后时域的 方式在所述随机接入信道时频资源的每个随机接入符号上从低频到高频以 每两个子载波为单位顺序映射;
或者在所述 UE的随机接入信道时频资源上,正交掩码按照先频域后时 域的方式在所述随机接入信道时频资源的部分随机接入符号上从低频到高 频以每两个子载波为单位顺序映射正交掩码, 在所述随机接入信道时频资 源的剩余随机接入符号上从低频到高频以每两个子载波为单位逆顺序映 射。
优选地, 所述方法还包括:
为每个 UE配置多个进行随机接入的空域位置,所述空域位置是指信道 信息参考信号配置资源。
优选地,所述 UE随机选择、或通过系统信息或无线资源控制协议消息 或媒体接入控制单元确定所述 UE的信道信息参考信号配置资源,并按照所 述信道信息参考信号配置资源所属空间位置进行随机接入。
一种物理随机接入信道的资源确定装置, 包括:
配置单元, 配置为为每个 UE配置多个物理随机接入信道资源,所述物 理随机接入信道资源包括以下资源的至少之一: 时域资源、 频域资源、 码 域资源、 空域资源。
优选地, 所述时域资源为物理随机接入信道的发射子帧配置; 所述频 域资源为物理随机接入信道的发射频带配置; 所述码域资源为随机接入信 道的发射序列或正交掩码配置; 所述空域资源为随机接入信道的空间接入 位置配置。
优选地, 在频分双工系统中, 所述配置单元还配置为, 配置一个物理 随机接入信道的子帧中允许存在多个频分复用的随机接入信道频域资源。
优选地, 所述装置还包括第一确定单元和第一发起单元, 其中: 第一确定单元, 配置为随机选择所述物理随机接入信道子帧上的随机 接入信道频域资源中的其中至少一个用于发送所述 UE 的物理随机接入信 道, 或者通过系统信息或无线资源控制协议消息或媒体接入控制单元确定 所述物理随机接入信道子帧上的随机接入信道频域资源中的其中至少一个 用于发送所述 UE的物理随机接入信道;
第一发起单元, 配置为在确定的随机接入信道频域资源上发起随机接 入。
优选地, 所述装置还包括:
复用单元, 配置为按以下方式复用物理随机接入信道的子帧中的频分 复用的随机接入信道频域资源:
+ 6 ify ^
nPR
NRB 6 nPRB ― 6 I, 其它 其中, N 为上行资源块数目, 为配置给随机接入信道的第一个物 理资源块; t为由高层配置的物理随机接入信道的子帧内可用的第一个 资源块索引, ≤ ≤ - 6 ', 为由系统信息或无线资源控制协议消息 或媒体接入控制单元配置的或由所述 UE 随机选择的子帧内的随机接入信 道频域资源索引, 是大于等于 0的整数, L」表示向下取整运算。
优选地, 所述配置单元还配置为, 为每个 UE配置 N条随机接入信道 前导序列; 其中,每个 UE的随机接入前导序列循环移位量的配置满足以下 条件: 任意两个循环移位量的间隔最小等于一; 其中, N为大于 64的整数。
优选地, 所述装置还包括第二确定单元和第二发起单元, 其中: 第二确定单元, 配置为随机选择所述随机接入信道前导序列中的其中 至少一个用于发送所述 UE的物理随机接入信道,或者通过系统信息或无线 资源控制协议消息或媒体接入控制单元确定所述随机接入信道前导序列中 的其中至少一个用于发送所述 UE的物理随机接入信道;
第二发起单元, 配置为使用确定的随机接入信道前导序列发起随机接 入。
优选地, 所述配置单元还配置为, 为每个 UE配置多个正交掩码值。 优选地, 所述装置还包括第三确定单元和第三发起单元, 其中: 个用于发送所述 UE的物理随机接入信道,或者通过系统信息或无线资源控 个用于发送所述 UE的物理随机接入信道;
第三发起单元, 配置为使用确定的正交掩码值发起随机接入。
优选地, 所述装置还包括:
映射单元, 配置为在所述 UE的随机接入信道时频资源上,正交掩码按 照先频域后时域的方式在所述随机接入信道时频资源的每个随机接入符号 上从低频到高频以每两个子载波为单位顺序映射;
或者在所述 UE的随机接入信道时频资源上,正交掩码按照先频域后时 域的方式在所述随机接入信道时频资源的部分随机接入符号上从低频到高 频以每两个子载波为单位顺序映射正交掩码, 在所述随机接入信道时频资 源的剩余随机接入符号上从低频到高频以每两个子载波为单位逆顺序映 射。
优选地,所述配置单元还配置为, 为每个 UE配置至少一个进行随机接 入的空域位置, 所述空域位置是指信道信息参考信号配置资源。
优选地,所述配置单元还配置为, 为每个 UE配置多个进行随机接入的 空域位置, 所述空域位置是指信道信息参考信号配置资源。
优选地, 所述装置还包括第四确定单元和第四发起单元, 其中: 第四确定单元, 配置为随机选择所述 UE 的信道信息参考信号配置资 源, 或者通过系统信息或无线资源控制协议消息或媒体接入控制单元确定 所述 UE的信道信息参考信号配置资源;
第四发起单元, 配置为在所确定的信道信息参考信号配置资源上发起 随机接入。
本发明中, 为每个 UE配置多个物理随机接入信道资源,物理随机接入 信道资源包括以下资源的至少之一: 时域资源、 频域资源、 码域资源、 空 域资源。 其中, 时域资源为物理随机接入信道的发射子帧配置; 频域资源 为物理随机接入信道的发射频带配置; 码域资源为随机接入信道的发射序 列或正交掩码配置; 空域资源为随机接入信道的空间接入位置配置。 本发 明提高了频分双工系统中的 PRACH资源复用容量,降低了 PRACH碰撞概 率, 从而提高了终端接入效率和系统吞吐量。 附图说明
图 1为物理随机接入信道的时域结构示意图;
图 2为 PRACH信号生成示意图;
图 3为物理随机接入信号的物理资源位置示意图;
图 4为 TDD系统中普通上行子帧上的 PRACH频域位置示意图; 图 5为 TDD系统中特殊上行子帧上的 PRACH频域位置示意图; 图 6为本发明实施例的物理随机接入信道的资源确定方法的流程图; 图 7a、 图 7b为本发明实施例 10的 PRACH资源组成结构示意图; 图 8a、 图 8b为本发明实施例 11的 PRACH资源组成结构示意图; 图 9为本发明实施例 13中物理随机信道频域资源组成结构示意图; 图 10为本发明第一实施例的物理随机接入信道的资源确定装置的组成 结构示意图;
图 11为本发明第二实施例的物理随机接入信道的资源确定装置的组成 结构示意图; 图 12为本发明第三实施例的物理随机接入信道的资源确定装置的组成 结构示意图;
图 13为本发明第四实施例的物理随机接入信道的资源确定装置的组成 结构示意图;
图 14为本发明第五实施例的物理随机接入信道的资源确定装置的组成 结构示意图;
图 15为本发明第六实施例的物理随机接入信道的资源确定装置的组成 结构示意图;
图 16为本发明第七实施例的物理随机接入信道的资源确定装置的组成 结构示意图。 具体实施方式
本发明的基本思想为: 为每个 UE配置多个物理随机接入信道资源,物 理随机接入信道资源包括以下资源的至少之一: 时域资源、 频域资源、 码 域资源、 空域资源。 其中, 时域资源为物理随机接入信道的发射子帧配置; 频域资源为物理随机接入信道的发射频带配置; 码域资源为随机接入信道 的发射序列或正交掩码配置; 空域资源为随机接入信道的空间接入位置配 置。
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
图 6为本发明实施例的物理随机接入信道的资源确定方法的流程图, 如图 6所示, 本发明的物理随机接入信道的资源确定方法包括以下步骤: 步骤 601, 为每个用户设备 UE配置多个物理随机接入信道资源。
其中, 物理随机接入信道资源包括以下资源的至少之一: 时域资源、 频域资源、 码域资源、 空域资源。
当为每个 UE配置多套物理随机接入信道资源时,多个物理随机接入信 道资源包括: 至少一个物理随机接入时域资源、 至少一个物理随机接入频 域资源、 至少一个物理随机接入码域资源、 至少一个物理随机接入空域资 源, 以及前述资源的任意组合。
步骤 602, UE随机选择或通过接收信令指示确定其中至少一个物理随 机接入信道资源用于发送其随机接入信道。
UE进行物理随机信道接入时, UE随机选择、 或者通过系统信息或无 线资源控制协议消息或媒体接入控制单元获取物理随机接入信道的子帧上 的至少一个随机接入信道频域资源,配置为发送所述 UE的物理随机接入信 道。
步骤 603, UE在所确定的物理随机接入信道资源上进行随机信道接入。 实施例 1
在频分双工系统中, 允许每个子帧上 PRACH进行频分复用, UE在每 个随机接入子帧上使用其中至多一个物理随机接入频域资源进行随机接 入。
基站通过高层信令向 UE1通知其 PRACH配置索引为 0;
UE1接收到该配置索引后, 查询配置索引表, 确定发送 PRACH的时 域位置, 其中系统帧号为偶, 子帧号为 1, 即 UE1发送 PRACH的时域位 置为系统帧号为偶数的无线帧 (偶数无线帧) 中的子帧 1。
基站通过高层信令向 UE1通知该 UE在每个偶数无线帧中的子帧 1上 的无线随机接入信道可用的第一个物理资源块索引 和 PRACH随机接 入信道频域资源索引 ;
UE1 接收到基站发送的 PRACH 可用的第一个物理资源块索引和 PRACH频域资源索引后,按照下述方式确定其在每个偶数无线帧中的子帧 1上随机接入信道的第一个物理资源块索引:
Figure imgf000016_0001
其中, N^为上行资源块数目, 为每个偶数无线帧中的子帧 1 上配 置给 UE1的随机接入信道的第一个物理资源块, L」表示向下取整运算。
综上, 根据基站的配置, UE1确定每个偶数无线帧中的子帧 1上从低 频到高频以 为开始的连续六个物理资源块为它的物理随机接入资源。
UE1在所确定的物理随机接入资源上发送 PRACH信号。
实施例 2
在频分双工系统中, 允许每个子帧上 PRACH进行频分复用, UE在每 个随机接入子帧上使用其中至多一个物理随机接入频域资源进行随机接 入。
基站通过高层信令向 UE1通知其 PRACH配置索引为 6;
UE1接收到该配置索引后, 查询配置索引表, 确定发送 PRACH的时 域位置, 其中系统帧号为每个无线帧, 子帧号为 1,6, 即 UE1发送 PRACH 的时域位置为每个无线帧中的子帧 1和子帧 6。
基站通过高层信令向 UE1通知该 UE在每个无线帧中的子帧 1和子帧 6上的无线随机接入信道可用的第一个物理资源块索引 D PRACH随 机接入信道频域资源索引 ;
UE1 接收到基站发送的 PRACH 可用的第一个物理资源块索引和 PRACH频域资源索引后,按照下述方式确定其在每个无线帧中的子帧 1和 子帧 6上随机接入信道的第一个物理资源块索引:
Figure imgf000016_0002
其中, N^为上行资源块数目, 为每个无线中子帧 1和子帧 6上配 置给 UE1的随机接入信道的第一个物理资源块, L」表示向下取整运算。 综上, 根据基站的配置, UE1确定每个无线帧中的子帧 1和子帧 6上 从低频到高频以《 为开始的连续六个物理资源块为其物理随机接入资源。
UE1在所确定的物理随机接入资源上发送 PRACH信号。
实施例 3
在频分双工系统中, 允许每个子帧上 PRACH进行频分复用, UE在每 个随机接入子帧上使用其中至多一个物理随机接入频域资源进行随机接 入。
基站通过高层信令向 UE1通知其 PRACH配置索引为 6;
UE1接收到该配置索引后, 查询配置索引表, 确定发送 PRACH的时 域位置, 其中系统帧号为每个无线帧, 子帧号为 1,6, 即 UE1发送 PRACH 的时域位置为每个无线帧中的子帧 1和子帧 6。
基站通过高层信令向 UE1通知该 UE在每个无线帧中的子帧 1和子帧 6 上的无线随机接入信道可用的第一个物理资源块索引分别为 Μ οί Λ和 ,
基站通过高层信令向 UE1通知该 UE在每个无线帧中的子帧 1和子帧 6上的无线随机接入信道频域资源索引分别为 和 ,2
UE1 接收到基站发送的 PRACH 可用的第一个物理资源块索引和 PRACH频域资源索引后,按照下述方式确定其在每个无线帧中的子帧 1和 子帧 6上的随机接入信道的第一个物理资源块索引:
对于每个无线帧的子帧 1上, 有:
Figure imgf000017_0001
对于每个无线帧的子帧 6上, 有: 其它
Figure imgf000018_0001
其中, N 为上行资源块数目, ^为每个无线帧中的子帧 1上配置给 UE1 的随机接入信道的第一个物理资源块, 《 ,2为每个无线帧中的子帧 1 上配置给 UE1 的随机接入信道的第一个物理资源块, [」表示向下取整运 综上, 根据基站的配置, UE1确定每个无线帧中的子帧 1上从低频到 高频以 ^为开始的连续六个物理资源块和子帧 6 上 氏频到高频以《 ,2 为开始的连续六个物理资源块为其物理随机接入资源。
UE 1在所确定的物理随机计入资源上发送 PRACH信号。
实施例 4
在频分双工系统中, 允许每个子帧上 PRACH进行频分复用, UE在每 个随机接入子帧上使用其中至多一个物理随机接入频域资源进行随机接 入。
基站通过高层信令向 UE1通知其 PRACH配置索引为 6;
UE1接收到该配置索引后, 查询配置索引表, 确定发送 PRACH的时 域位置, 其中系统帧号为每个无线帧, 子帧号为 1,6, 即 UE1发送 PRACH 的时域位置为每个无线帧中的子帧 1和子帧 6。
基站通过高层信令向 UE1通知该 UE在每个无线帧中的子帧 1和子帧 6上的无线随机接入信道可用的第一个物理资源块索引为 ;
基站通过高层信令向 UE1通知该 UE在每个无线帧中的子帧 1和子帧 6上的无线随机接入信道频域资源索引分别为 和 ;
UE1 接收到基站发送的 PRACH 可用的第一个物理资源块索引和 PRACH频域资源索引后,按照下述方式确定其在每个无线帧中的子帧 1和 子帧 6上的随机接入信道的第一个物理资源块索引
每个无线帧的子帧 1上:
Figure imgf000019_0001
对于每个无线帧的子帧 6上, 有:
Figure imgf000019_0002
其中, N 为上行资源块数目, ^为每个无线帧中的子帧 1上配置给 UE1 的随机接入信道的第一个物理资源块, 《 ,2为每个无线帧中的子帧 1 上配置给 UE1 的随机接入信道的第一个物理资源块, [」表示向下取整运 综上, 根据基站的配置, UE1确定每个无线帧中的子帧 1上从低频到 高频以 ^为开始的连续六个物理资源块和子帧 6 上 氏频到高频以《 ,2 为开始的连续六个物理资源块为其物理随机接入资源。
UE 1在所确定的物理随机计入资源上发送 PRACH信号。
实施例 5
频分双工系统中, 允许每个子帧上 PRACH进行频分复用, UE在每个 随机接入子帧上使用其中至多一个物理随机接入频域资源进行随机接入。
基站通过高层信令向 UE1通知其 PRACH配置索引为 10;
UE1接收到该配置索引后, 查询配置索引表, 确定发送 PRACH的时 域位置,其中系统帧号为每个无线帧,子帧号为 2,5,8, 即 UE1发送 PRACH 的时域位置为每个无线帧中的子帧 2、 子帧 5和子帧 8。
基站通过高层信令向 UE1通知该 UE在每个无线帧中的子帧 2、子帧 5 和子帧 8 上的无线随机接入信道可用的第一个物理资源块索引 和 PRACH随机接入信道频域资源索引 ;
UE1 接收到基站发送的 PRACH 可用的第一个物理资源块索引和 PRACH频域资源索引后, 按照下述方式确定其在每个无线帧中的子帧 2、 子帧 5和子帧 8中随机接入信道的第一个物理资源块索引:
NRB - 6 -
Figure imgf000020_0001
nPKB - 6 , 其它 其中, N 为上行资源块数目, 为每个无线帧中的子帧 2、 子帧 5和 子帧 8中配置给 UE1的随机接入信道的第一个物理资源块, L」表示向下取 整运算。
综上, 根据基站的配置, UE1确定每个无线帧中的子帧 2、 子帧 5和子 帧上从低频到高频以 为开始的连续六个物理资源块为其物理随机接入 资源。
UE1在所确定的物理随机接入资源上发送 PRACH信号。
实施例 6
频分双工系统中, 允许每个子帧上 PRACH进行频分复用, UE在每个 随机接入子帧上使用其中至多一个物理随机接入频域资源进行随机接入。
基站通过高层信令向 UE1通知其 PRACH配置索引为 10;
UE1接收到该配置索引后, 查询配置索引表, 确定发送 PRACH的时 域位置,其中系统帧号为每个无线帧,子帧号为 2,5,8, 即 UE1发送 PRACH 的时域位置为每个无线帧中的子帧 2、 子帧 5和子帧 8。
基站通过高层信令向 UE1通知该 UE在每个无线帧中的子帧 2、子帧 5 和子帧 8 上的无线随机接入信道可用的第一个物理资源块索引分别为
RA RA RA ·
NPRB 、 NPRB ^ NPRB , 基站通过高层信令向 UE1通知该 UE在每个无线帧中的子帧 2、子帧 5 和子帧 8上的无线随机接入信道频域资源索引分别为 / 1、 fMa和 / 3
UE1 接收到基站发送的 PRACH 可用的第一个物理资源块索引和 PRACH频域资源索引后, 按照下述方式确定其在每个无线帧中的子帧 2、 子帧 5和子帧 8上的随机接入信道的第一个物理资源块索引:
对于每个无线帧的子帧 2上, 有:
Figure imgf000021_0001
对于每个无线帧的子帧 5上, 有:
Figure imgf000021_0002
A - 6 - RA,2
'RB ,2 其它 对于每个无线帧的子帧 8上, 有:
Figure imgf000021_0003
其中, N 为上行资源块数目, ^为每个无线帧中的子帧 2上配置给 UE1 的随机接入信道的第一个物理资源块, 《 ,2为每个无线帧中的子帧 5 上配置给 UE1 的随机接入信道的第一个物理资源块, 《 ,3为每个无线帧中 的子帧 8上配置给 UE1的随机接入信道的第一个物理资源块。
综上, 根据基站的配置, UE1 确定其物理随机接入资源为: 每个无线 帧中的子帧 2上从低频到高频以 ^为开始的连续六个物理资源块、每个无 线帧中的子帧 5 上从低频到高频以《 ,2为开始的连续六个物理资源块和每 个无线帧中的子帧 8上从低频到高频以 为开始的连续六个物理资源块。 UE 1在所确定的物理随机计入资源上发送 PRACH信号。
实施例 7
频分双工系统中, 允许每个子帧上 PRACH进行频分复用, UE在每个 随机接入子帧上使用其中至多一个物理随机接入频域资源进行随机接入。
基站通过高层信令向 UE1通知其 PRACH配置索引为 10;
UE1接收到该配置索引后, 查询配置索引表, 确定发送 PRACH的时 域位置,其中系统帧号为每个无线帧,子帧号为 2,5,8, 即 UE1发送 PRACH 的时域位置为每个无线帧中的子帧 2、 子帧 5和子帧 8。
基站通过高层信令向 UE1通知该 UE在每个无线帧中的子帧 2、子帧 5 和子帧 8上的无线随机接入信道可用的第一个物理资源块索引为 ; 基站通过高层信令向 UE1通知该 UE在每个无线帧中的子帧 2、子帧 5 和子帧 8上的无线随机接入信道频域资源索引分别为 / 1、 fMa和 / 3
UE1 接收到基站发送的 PRACH 可用的第一个物理资源块索引和 PRACH频域资源索引后, 按照下述方式确定其在每个无线帧中的子帧 2、 子帧 5和子帧 8上的随机接入信道的第一个物理资源块索引:
对于每个无线帧的子帧 2上, 有:
Figure imgf000022_0001
对于每个无线帧的子帧 5上, 有:
Figure imgf000022_0002
对于每个无线帧的子帧 8上, 有:
Figure imgf000023_0001
其中, N 为上行资源块数目, ^为每个无线帧中的子帧 2上配置给 UE1 的随机接入信道的第一个物理资源块, 《 ,2为每个无线帧中的子帧 5 上配置给 UE1 的随机接入信道的第一个物理资源块, 《 ,3为每个无线帧中 的子帧 8上配置给 UE1的随机接入信道的第一个物理资源块, L」表示向下 取整运算。
综上, 根据基站的配置, UE1 确定其物理随机接入资源为: 每个无线 帧中的子帧 2上从低频到高频以 ^为开始的连续六个物理资源块、每个无 线帧中的子帧 5 上从低频到高频以《 ,2为开始的连续六个物理资源块和每 个无线帧中的子帧 8上从低频到高频以《 ,3为开始的连续六个物理资源块。
UE 1在所确定的物理随机计入资源上发送 PRACH信号。
实施例 8
频分双工系统中, 允许每个子帧上 PRACH进行频分复用, UE在每个 随机接入子帧上使用其中至多一个物理随机接入频域资源进行随机接入。
基站通过高层信令向 UE1通知其 PRACH配置索引都为 0, 向 UE2通 知其 PRACH配置索引也为 0;
UE1和 UE2接收到该配置索引后,查询配置索引表,确定发送 PRACH 的时域位置, 其中系统帧号为偶, 子帧号为 1, 即 UE1和 UE2发送 PRACH 的时域位置都系统帧号为偶数的无线帧 (偶数无线帧) 中的子帧 1。
基站通过高层信令向 UE1通知该 UE在每个偶数无线帧中的子帧 1上 的无线随机接入信道可用的第一个物理资源块索引 n 。ffset和 PRACH随机接 入信道频域资源索引 / ;
UE1 接收到基站发送的 PRACH 可用的第一个物理资源块索引和 PRACH频域资源索引后,按照下述方式确定其在每个偶数无线帧中的子帧 1上随机接入信道的第一个物理资源块索引: if/ mod 2 = 0
其它
Figure imgf000024_0001
其中, N 为上行资源块数目, 为每个偶数无线帧中的子帧 1 上配 置给 UE1的随机接入信道的第一个物理资源块, L」表示向下取整运算。
基站通过高层信令向 UE2通知该 UE在每个偶数无线帧中的子帧 1上 的无线随机接入信道可用的第一个物理资源块索引 nffset和 PRACH随机接 入信道频域资源索引 ^, 其中^^2 = , f ≠fL ;
UE2 接收到基站发送的 PRACH 可用的第一个物理资源块索引和 PRACH频域资源索引后,按照下述方式确定其在每个偶数无线帧中的子帧 1上随机接入信道的第一个物理资源块索引:
Figure imgf000024_0002
其中, N 为上行资源块数目, 为每个偶数无线帧中的子帧 1上配 置给 UE2的随机接入信道的第一个物理资源块, L」表示向下取整运算。
综上, 根据基站的配置, UE1确定每个偶数无线帧中的子帧 1上从低 频到高频以 ? 为开始的连续六个物理资源块为其物理随机接入资源, UE2 确定每个偶数无线中子帧 1上从低频到高频以 为开始的六个物理资源块 为其物理随机接入资源。
显然根据上面的分析, UE1和 UE2的频域资源并没有重叠或覆盖, 因 此 UE1和 UE2在 PRACH配置 0下在每个偶数无线帧的子帧 1上以频分复 用方式同时在各自所确定的物理随机接入频域资源上发送 PRACH信号。 实施例 9
网络侧为每个小区配置 N ( N>64 )条随机接入前导序列。
每个小区中的 UE通过获取系统信息 RACH— ROOT— SEQUENCE获得 本小区前导根序列的逻辑索引以及相应的物理索引; 通过获取 5 比特(32 种循环移位量设置)或更多比特系统信息或无线资源控制协议消息获取本 小区循环移位量, 其中循环移位量的配置满足循环移位间隔最小等于 1。
当随机接入过程是基于竟争方式时, UE随机从所在小区的所有随机接 入前导序列中选择一条作为该 UE发射物理随机接入信道的前导序列;基站 侧采用盲检的方式检测该 UE的随机接入前导序列。
当随机接入过程是基于非竟争方式时, UE通过本小区的系统信息或无 线资源控制协议消息 (RRC message )或媒体接入控制单元( MAC CE )获 取基站配置给该 UE的随机接入前导序列。 这种方式下基站不需要对该 UE 的随机接入前导序列进行盲检测。
实施例 10
eNB为每个 UE配置正交掩码( OCC, Orthogonal Cover Code )。该 OCC 码有两种取值: OCC=[+l,+l] 和 OCC=[+l,-l]。
图 7a、 图 7b为本发明实施例 10的 PRACH资源组成结构示意图, 如 图 7a、 7b所示, OCC码在 PRACH所在频域按照从低频到高频基于 PRACH 子载波以每两个 PRACH子载波为单位进行顺序映射。 具体的, OCC码的 映射方式为: 在 UE的随机接入信道时频资源上,按照先频域后时域的方式 在所述随机接入信道时频资源的每个随机接入符号上从低频到高频以每两 个子载波为单位顺序映射正交掩码。
非竟争方式下, 基站通过 UE特定的 MAC层信令向 UE通知其 OCC 码的值; UE按照接收到的信令指示的 OCC码对 PRACH信息解码。
竟争方式下, UE随机地从 [+1,+1]和 [+1,-1]中选择一种作为自身的 OCC 码; 基站侧对 PRACH信息解码时对 OCC码在 [+1,+1]和 [+1,-1]之间进行盲 检测, 直到检测到自身的 PRACH信息为止。
具体使用中 OCC长度不限于 2,也可以等于 4或 8等,例如 OCC等于 4 时对应的 OCC 取值为 [+1,+1,+1,+1]或 [+1,-1,+1,-1]或 [+1,-1,-1+1]或 [-1,+1,-1,+1]。
实施例 11
eNB为每个 UE配置正交掩码( OCC, Orthogonal Cover Code )。该 OCC 码有两种取值: OCC=[+l,+l]和 OCC=[+l,-l]。
所在频域按照从低频到高频的方式基于 PRACH 子载波以每两个 PRACH子载波为单位顺序和逆序映射, 具体的, OCC码的映射方式为: 在 UE的随机接入信道时频资源上,按照先频域后时域的方式在所述随机接入 信道时频资源的部分随机接入符号上从低频到高频以每两个子载波为单位 顺序映射正交掩码, 在随机接入信道时频资源的剩余随机接入符号上从低 频到高频以每两个子载波为单位逆顺序映射正交掩码。 图 8a、 图 8b为本发 明实施例 10的 PRACH资源组成结构示意图, 如图 8a、 8b所示, 即在每个 物理资源块的第 1、 3、 5、 7、 9、 11上行符号上 OCC从低频到高频进行顺 序映射, 而在第 2、 4、 6、 8、 10、 12上行符号上 OCC从低频到高频进行 逆序映射。
非竟争方式下, 基站通过 UE特定的 MAC层信令向 UE通知其 OCC 码的值; UE按照接收到的信令指示的 OCC码对 PRACH信息解码。
竟争方式下, UE随机地从 [+1,+1]和 [+1,-1]中选择一种作为自身的 OCC 码; 基站侧对 PRACH信息解码时对 OCC码在 [+1,+1]和 [+1,-1]之间进行盲 检测, 直到检测到自身的 PRACH信息为止。
具体使用中 OCC长度不限于 2, 也可以等于 4等, 例如 OCC等于 4 时对应的 OCC 取值为 [+1,+1,+1,+1]或 [+1,-1,+1,-1]或 [+1,-1,-1+1]或 [-1,+1,-1,+1]。
实施例 12
网络侧为每个 UE配置至少一个空域资源,其中所述的空域资源优选地 通过信道信息参考信号配置资源进行区分。即网络侧为每个 UE配置至少一 个信道信息参考信号配置资源。
网络侧通过系统信息为每个小区广播多套信道信息参考信号 ( CSI-RS ) 配置信息。
当随机接入过程是基于竟争方式时, UE随机从所在小区的这多套信道 信息参考信号中选择一套, 并按照该信道信息参考信号进行测量和 /或物理 随机接入信道的发送与接收;基站侧采用盲检的方式检测该 UE的物理随机 接入信道。
当随机接入过程是基于非竟争方式时, UE通过本小区的系统信息或无 线资源控制协议消息 (RRC message )或媒体接入控制单元( MAC CE )获 取基站配置给该 UE的信道信息参考信号。 这种方式下基站不需要对该 UE 的信道信息参考信号资源进行盲检测。
实施例 13
图 8为本发明实施例 13中物理随机信道频域资源组成结构示意图, 如 图 8所示, 网络侧为每个 UE配置 N个(N为大于等于 2的整数)物理随 机信道频域资源。基站侧为 UE1配置 PRACH— fl和 PRACH— f2两个频域资 源, 为 UE2配置 PRACH— β和 PRACH— f4两个频域资源等等。 下面以 UE1 为例说明:
当随机接入过程是基于竟争方式时, 随机信道接入时, UE1 从 PRACH— fl和 PRACH— f2中随机选择至少一个物理随机信道频域资源用于 发送该 UE 的物理随机接入信道; 基站侧通过对频域资源 PRACH— fl 和 PRACH f2间盲检测的方式检测该 UE的物理随机接入信道,直到检测到自 身的 PRACH信息。
当随机接入过程是基于非竟争方式时, 随机信道接入时, UE通过本小 区的系统信息或无线资源控制协议消息( RRC message )或媒体接入控制单 元 (MAC CE ) 获取基站配置给该 UE 的物理随机接入信道频域资源 PRACHJ1或 PRACH— G;基站侧通过所接收的频域资源信息在该信息所指 示的频域资源上检测并接收自身的物理随机接入信道。 这种方式下基站不 需要对该 UE的物理随机接入信道频域资源进行盲检测。
该方法既适用于频分双工系统, 也适用于时分双工系统。
实施例 14
网络侧为每个 UE配置多个物理随机信道时域资源。
当随机接入过程是基于竟争方式时, 随机信道接入时, UE从中随机选 择至少一个物理随机信道时域资源用于发送该 UE的物理随机接入信道;基 站侧通过盲检测的方式检测该 UE在哪个随机接入子帧上发送了物理随机 接入信道。
当随机接入过程是基于非竟争方式时, 随机信道接入时, UE通过本小 区的系统信息或无线资源控制协议消息( RRC message )或媒体接入控制单 元( MAC CE )获取基站配置给该 UE的物理随机接入信道时域资源。 这种 方式下, 基站不需要对该 UE的物理随机接入信道时域资源进行盲检测。
实施例 15
网络侧为每个 UE配置多套物理随机接入信道资源,其中物理随机接入 信道资源包括至少一个物理随机接入信道时域资源、 至少一个物理随机接 入信道频域资源、 至少一个物理随机接入前导序列资源、 至少一个物理随 机接入信道信息参考信号配置资源等以及它们之间的任意组合。
当随机接入过程是接入竟争方式时, 随机信道接入时, UE从中随机选 择至少一套物理随机接入信道资源进行发送该 UE的物理随机接入信道;基 站侧采用盲检测的方式检测该 UE的物理随机接入信道。
当随机接入过程是基于非竟争方式时, 随机信道接入时, UE通过本小 区的系统信息或无线资源控制协议消息( RRC message )或媒体接入控制单 元( MAC CE )获取基站配置给该 UE的物理随机接入信道资源信息。 这种 方式下基站不需要对 UE的物理随机接入信道前导序列进行盲检测。
所述物理随机接入信道资源可以是现有的物理随机接入信道资源, 也 可以是对现有资源进行容量扩展后的物理随机接入信道资源。
图 10为本发明第一实施例的物理随机接入信道的资源确定装置的组成 结构示意图, 如图 10所示, 本示例的物理随机接入信道的资源确定装置包 括:
配置单元 90, 配置为为每个 UE配置多个物理随机接入信道资源, 所 述物理随机接入信道资源包括以下资源的至少之一: 时域资源、 频域资源、 码域资源、 空域资源。
其中, 所述时域资源为物理随机接入信道的发射子帧配置; 所述频域 资源为物理随机接入信道的发射频带配置; 所述码域资源为随机接入信道 的发射序列或正交掩码配置; 所述空域资源为随机接入信道的空间接入位 置配置。
在频分双工系统中, 所述配置单元 90还配置为, 配置一个物理随机接 入信道的子帧中允许存在多个频分复用的随机接入信道频域资源。
图 11为本发明第二实施例的物理随机接入信道的资源确定装置的组成 结构示意图, 如图 11所示, 在图 10所示的物理随机接入信道的资源确定 装置的基础上, 本示例的物理随机接入信道的资源确定装置还包括第一确 定单元 91和第一发起单元 92, 其中:
第一确定单元 91, 配置为随机选择所述物理随机接入信道子帧上的随 机接入信道频域资源中的其中至少一个用于发送所述 UE 的物理随机接入 信道, 或者通过系统信息或无线资源控制协议消息或媒体接入控制单元确 定所述物理随机接入信道子帧上的随机接入信道频域资源中的其中至少一 个用于发送所述 UE的物理随机接入信道;
第一发起单元 92, 配置为在确定的随机接入信道频域资源上发起随机 接入。
图 12为本发明第三实施例的物理随机接入信道的资源确定装置的组成 结构示意图, 如图 12所示, 在图 10所示的物理随机接入信道的资源确定 装置的基础上, 本示例的物理随机接入信道的资源确定装置还包括:
复用单元 93, 配置为按以下方式复用物理随机接入信道的子帧中的频 分复用的随机接入信道频域资源:
其它
Figure imgf000030_0001
其中, N 为上行资源块数目, 为配置给随机接入信道的第一个物 理资源块; 为由高层配置的物理随机接入信道的子帧内可用的第一个 资源块索引, Q≤ 。ffset≤ - 6 ', 为由系统信息或无线资源控制协议消息 或媒体接入控制单元配置的或由所述 UE 随机选择的子帧内的随机接入信 道频域资源索引, 是大于等于 0的整数, L」表示向下取整运算。
所述配置单元 90还配置为, 为每个 UE配置 N条随机接入信道前导序 列; 其中, 每个 UE的随机接入前导序列循环移位量的配置满足以下条件: 任意两个循环移位量的间隔最小等于一; 其中, N为大于 64的整数。
图 13为本发明第四实施例的物理随机接入信道的资源确定装置的组成 结构示意图, 如图 13所示, 在图 10所示的物理随机接入信道的资源确定 装置的基础上, 本示例的物理随机接入信道的资源确定装置还包括第二确 定单元 94和第二发起单元 95, 其中: 第二确定单元 94, 配置为随机选择所述随机接入信道前导序列中的其 中至少一个用于发送所述 UE的物理随机接入信道,或者通过系统信息或无 线资源控制协议消息或媒体接入控制单元确定所述随机接入信道前导序列 中的其中至少一个用于发送所述 UE的物理随机接入信道;
第二发起单元 95, 配置为使用确定的随机接入信道前导序列发起随机 接入。
所述配置单元 90还配置为, 为每个 UE配置多个正交掩码值。
图 14为本发明第五实施例的物理随机接入信道的资源确定装置的组成 结构示意图, 如图 14所示, 在图 10所示的物理随机接入信道的资源确定 装置的基础上, 本示例的物理随机接入信道的资源确定装置还包括第三确 定单元 96和第三发起单元 97, 其中:
第三确定单元 96, 配置为随机选择所述多个正交掩码值中的其中至少 一个用于发送所述 UE的物理随机接入信道,或者通过系统信息或无线资源 控制协议消息或媒体接入控制单元确定所述多个正交掩码值中的其中至少 一个用于发送所述 UE的物理随机接入信道;
第三发起单元 97, 配置为使用确定的正交掩码值发起随机接入。
图 15为本发明第六实施例的物理随机接入信道的资源确定装置的组成 结构示意图, 如图 15所示, 在图 10所示的物理随机接入信道的资源确定 装置的基础上, 本示例的物理随机接入信道的资源确定装置还包括:
映射单元 98, 配置为在所述 UE的随机接入信道时频资源上, 正交掩 码按照先频域后时域的方式在所述随机接入信道时频资源的每个随机接入 符号上从低频到高频以每两个子载波为单位顺序映射;
或者在所述 UE的随机接入信道时频资源上,正交掩码按照先频域后时 域的方式在所述随机接入信道时频资源的部分随机接入符号上从低频到高 频以每两个子载波为单位顺序映射正交掩码, 在所述随机接入信道时频资 源的剩余随机接入符号上从低频到高频以每两个子载波为单位逆顺序映 射。
所述配置单元 90还配置为, 为每个 UE配置至少一个进行随机接入的 空域位置, 所述空域位置是指信道信息参考信号配置资源。
所述配置单元 90还配置为, 为每个 UE配置多个进行随机接入的空域 位置, 所述空域位置是指信道信息参考信号配置资源。
图 16为本发明第七实施例的物理随机接入信道的资源确定装置的组成 结构示意图, 如图 16所示, 在图 10所示的物理随机接入信道的资源确定 装置的基础上, 本示例的物理随机接入信道的资源确定装置还包括第四确 定单元 99和第四发起单元 910, 其中:
第四确定单元 99, 配置为随机选择所述 UE的信道信息参考信号配置 资源, 或者通过系统信息或无线资源控制协议消息或媒体接入控制单元确 定所述 UE的信道信息参考信号配置资源;
第四发起单元 910,配置为在所确定的信道信息参考信号配置资源上发 起随机接入。
本领域技术人员应当理解, 除上述配置单元 90是为实现本发明物理随 机接入信道的资源确定装置的基本目的的必要技术手段外, 其余的处理单 元并非是实现本发明设备发现装置基本目的的必要技术手段。
本领域技术人员应当理解, 图 10中所示的物理随机接入信道的资源确 定装置中的各处理单元的实现功能可参照前述物理随机接入信道的资源确 定方法的相关描述而理解。 本领域技术人员应当理解, 图 10所示的物理随 机接入信道的资源确定装置中各处理单元的功能可通过运行于处理器上的 程序而实现, 也可通过具体的逻辑电路而实现。
显然, 本领域的技术人员应该明白, 上述的本发明的各处理单元或各 步骤可以用通用的计算装置来实现, 其可以集中在单个的计算装置上, 或 者分布在多个计算装置所组成的网络上, 可选地, 其可以用计算装置可执 行的程序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来 执行, 或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模 块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任何特 定的硬件和软件结合。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。
工业实用性
本发明通过为每个 UE配置多个物理随机接入信道资源,物理随机接入 信道资源包括以下资源的至少之一: 时域资源、 频域资源、 码域资源、 空 域资源。 其中, 时域资源为物理随机接入信道的发射子帧配置; 频域资源 为物理随机接入信道的发射频带配置; 码域资源为随机接入信道的发射序 列或正交掩码配置; 空域资源为随机接入信道的空间接入位置配置。 从而 提高了频分双工系统中的 PRACH资源复用容量,降低了 PRACH碰撞概率, 从而提高了终端接入效率和系统吞吐量。

Claims

权利要求书
1、 一种物理随机接入信道的资源确定方法, 包括:
为每个用户设备 UE配置多个物理随机接入信道资源,所述物理随机接 入信道资源包括以下资源的至少之一:
时域资源、 频域资源、 码域资源、 空域资源。
2、 根据权利要求 1所述的方法, 其中, 所述时域资源为物理随机接入 信道的发射子帧配置; 所述频域资源为物理随机接入信道的发射频带配置; 所述码域资源为随机接入信道的发射序列或正交掩码配置; 所述空域资源 为随机接入信道的空间接入位置配置。
3、 根据权利要求 1或 2所述的方法, 其中, 所述方法还包括: 在频分双工系统中, 一个物理随机接入信道的子帧中允许存在多个频 分复用的随机接入信道频域资源。
4、 根据权利要求 3所述的方法, 其中:
所述 UE随机选择、或者通过系统信息或无线资源控制协议消息或媒体 接入控制单元确定所述物理随机接入信道子帧上的随机接入信道频域资源 中的其中至少一个用于发送所述 UE的物理随机接入信道。
5、 根据权利要求 3所述的方法, 其中, 物理随机接入信道的子帧中的 频分复用的随机接入信道频域资源按以下方式进行复用:
Figure imgf000034_0001
NRB 6 nPRB 6 I, 其它 其中, N 为上行资源块数目, 为配置给随机接入信道的第一个物 理资源块; 为由高层配置的物理随机接入信道的子帧内可用的第一个 资源块索引, Q≤ 。ffset≤ - 6 ', 为由系统信息或无线资源控制协议消息 或媒体接入控制单元配置的或由所述 UE 随机选择的子帧内的随机接入信 道频域资源索引, 是大于等于 0的整数, L」表示向下取整运算。
6、 根据权利要求 1或 2所述的方法, 其中, 所述方法还包括: 为每个用户配置 N条随机接入信道前导序列; 其中, 每个用户的随机 接入前导序列循环移位量的配置满足以下条件: 任意两个循环移位量的间 隔最小等于一; 其中, N为大于 64的整数。
7、 根据权利要求 7所述的方法, 其中:
所述 UE随机选择、或者通过系统信息或无线资源控制协议消息或媒体 接入控制单元确定所述随机接入信道前导序列中的其中至少一个用于发送 所述 UE的物理随机接入信道。
8、 根据权利要求 1或 2所述的方法, 其中, 所述方法还包括: 为每个 UE配置多个正交掩码值。
9、 根据权利要求 8所述的方法, 其中:
所述 UE随机选择、或者通过系统信息或无线资源控制协议消息或媒体 接入控制单元在所述多个正交掩码值确定其中至少一个正交掩码值, 用于 发送所述 UE的物理随机接入信道。
10、 根据权利要求 8或 9所述的方法, 其中, 所述方法还包括: 在所述 UE的随机接入信道时频资源上,正交掩码按照先频域后时域的 方式在所述随机接入信道时频资源的每个随机接入符号上从低频到高频以 每两个子载波为单位顺序映射;
或者在所述 UE的随机接入信道时频资源上,正交掩码按照先频域后时 域的方式在所述随机接入信道时频资源的部分随机接入符号上从低频到高 频以每两个子载波为单位顺序映射正交掩码, 在所述随机接入信道时频资 源的剩余随机接入符号上从低频到高频以每两个子载波为单位逆顺序映 射。
11、 根据权利要求 1或 2所述的方法, 其中, 所述方法还包括: 为每个 UE配置多个进行随机接入的空域位置,所述空域位置是指信道 信息参考信号配置资源。
12、 根据权利要求 11所述的方法, 其中:
所述 UE随机选择、或通过系统信息或无线资源控制协议消息或媒体接 入控制单元确定所述 UE的信道信息参考信号配置资源,并按照所述信道信 息参考信号配置资源所属空间位置进行随机接入。
13、 一种物理随机接入信道的资源确定装置, 包括:
配置单元, 配置为为每个 UE配置多个物理随机接入信道资源,所述物 理随机接入信道资源包括以下资源的至少之一: 时域资源、 频域资源、 码 域资源、 空域资源。
14、 根据权利要求 13所述的装置, 其中, 所述时域资源为物理随机接 入信道的发射子帧配置; 所述频域资源为物理随机接入信道的发射频带配 置; 所述码域资源为随机接入信道的发射序列或正交掩码配置; 所述空域 资源为随机接入信道的空间接入位置配置。
15、 根据权利要求 13或 14所述的装置, 其中:
在频分双工系统中, 所述配置单元还配置为, 配置一个物理随机接入 信道的子帧中允许存在多个频分复用的随机接入信道频域资源。
16、 根据权利要求 15所述的装置, 其中, 所述装置还包括第一确定单 元和第一发起单元, 其中:
第一确定单元, 配置为随机选择所述物理随机接入信道子帧上的随机 接入信道频域资源中的其中至少一个用于发送所述 UE 的物理随机接入信 道, 或者通过系统信息或无线资源控制协议消息或媒体接入控制单元确定 所述物理随机接入信道子帧上的随机接入信道频域资源中的其中至少一个 用于发送所述 UE的物理随机接入信道;
第一发起单元, 配置为在确定的随机接入信道频域资源上发起随机接 入。
17、 根据权利要求 16所述的装置, 其中, 所述装置还包括: 复用单元, 配置为按以下方式复用物理随机接入信道的子帧中的频分 复用的随机接入信道频域资源:
Figure imgf000037_0001
NRB 6 nPRB 6 I, 其它 其中, N 为上行资源块数目, 为配置给随机接入信道的第一个物 理资源块; 为由高层配置的物理随机接入信道的子帧内可用的第一个 资源块索引, Q≤ 。ffset≤ - 6 ', 为由系统信息或无线资源控制协议消息 或媒体接入控制单元配置的或由所述 UE 随机选择的子帧内的随机接入信 道频域资源索引, 是大于等于 0的整数, L」表示向下取整运算。
18、 根据权利要求 13或 14所述的装置, 其中, 所述配置单元还配置 为, 为每个 UE配置 N条随机接入信道前导序列; 其中, 每个 UE的随机接 入前导序列循环移位量的配置满足以下条件: 任意两个循环移位量的间隔 最小等于一; 其中, N为大于 64的整数。
19、 根据权利要求 18所述的装置, 其中, 所述装置还包括第二确定单 元和第二发起单元, 其中:
第二确定单元, 配置为随机选择所述随机接入信道前导序列中的其中 至少一个用于发送所述 UE的物理随机接入信道,或者通过系统信息或无线 资源控制协议消息或媒体接入控制单元确定所述随机接入信道前导序列中 的其中至少一个用于发送所述 UE的物理随机接入信道;
第二发起单元, 配置为使用确定的随机接入信道前导序列发起随机接 入。
20、 根据权利要求 13或 14所述的装置, 其中: 所述配置单元还配置为, 为每个 UE配置多个正交掩码值。
21、 根据权利要求 20所述的装置, 所述装置还包括第三确定单元和第 三发起单元, 其中:
个用于发送所述 UE的物理随机接入信道,或者通过系统信息或无线资源控 个用于发送所述 UE的物理随机接入信道;
第三发起单元, 配置为使用确定的正交掩码值发起随机接入。
22、 根据权利要求 20所述的装置, 其中, 所述装置还包括: 映射单元, 配置为在所述 UE的随机接入信道时频资源上,正交掩码按 照先频域后时域的方式在所述随机接入信道时频资源的每个随机接入符号 上从低频到高频以每两个子载波为单位顺序映射;
或者,在所述 UE的随机接入信道时频资源上,正交掩码按照先频域后 时域的方式在所述随机接入信道时频资源的部分随机接入符号上从低频到 高频以每两个子载波为单位顺序映射正交掩码, 在所述随机接入信道时频 资源的剩余随机接入符号上从低频到高频以每两个子载波为单位逆顺序映 射。
23、 根据权利要求 13或 14所述的装置, 其中:
所述配置单元还配置为,为每个 UE配置至少一个进行随机接入的空域 位置, 所述空域位置是指信道信息参考信号配置资源。
24、 根据权利要求 23所述的装置, 所述装置还包括第四确定单元和第 四发起单元, 其中:
第四确定单元, 配置为随机选择所述 UE 的信道信息参考信号配置资 源, 或者通过系统信息或无线资源控制协议消息或媒体接入控制单元确定 所述 UE的信道信息参考信号配置资源; 第四发起单元, 配置为在所确定的信道信息参考信号配置资源上发起 随机接入。
PCT/CN2013/081326 2012-09-29 2013-08-12 物理随机接入信道的资源确定方法及装置 WO2014048177A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210375801.7A CN103716895B (zh) 2012-09-29 2012-09-29 物理随机接入信道的资源确定方法及装置
CN201210375801.7 2012-09-29

Publications (1)

Publication Number Publication Date
WO2014048177A1 true WO2014048177A1 (zh) 2014-04-03

Family

ID=50386951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081326 WO2014048177A1 (zh) 2012-09-29 2013-08-12 物理随机接入信道的资源确定方法及装置

Country Status (2)

Country Link
CN (1) CN103716895B (zh)
WO (1) WO2014048177A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019061257A1 (en) * 2017-09-29 2019-04-04 Qualcomm Incorporated INCREASING THE CAPACITY OF PHYSICAL RANDOM ACCESS USING ORTHOGONAL COVER CODES

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195292A1 (ko) * 2015-05-29 2016-12-08 엘지전자 주식회사 Mmwave 대역을 이용하는 무선 통신 시스템에서 적응적 전송시점의 랜덤 액세스 수행 방법
CN107710853B (zh) * 2015-06-30 2020-01-03 华为技术有限公司 传输信息的方法和设备
CN106559841B (zh) * 2015-09-25 2020-03-06 北京大学 一种lte上行物理控制信道pucch资源的分配方法和装置
CN111225449A (zh) * 2015-12-18 2020-06-02 华为技术有限公司 一种无线帧的传输方法及无线网络设备
CN105682232B (zh) * 2016-01-08 2018-03-16 宇龙计算机通信科技(深圳)有限公司 资源配置方法、资源配置装置和基站
CN107205281B (zh) * 2016-03-18 2020-11-10 中兴通讯股份有限公司 一种随机接入信号的发送方法、资源的通知方法及装置
CN107371242B (zh) 2016-05-12 2020-11-10 华为技术有限公司 一种数据传输方法、网络设备及用户设备
CN107592673B (zh) * 2016-07-08 2020-09-08 中兴通讯股份有限公司 伪随机序列的处理方法、装置及系统
CN107623952B (zh) * 2016-07-14 2020-05-05 展讯通信(上海)有限公司 基站、用户设备及其随机接入方法
CN107623953B (zh) * 2016-07-14 2020-04-28 展讯通信(上海)有限公司 基站、用户设备及其随机接入方法
CN107659963B (zh) * 2016-07-26 2020-12-04 华为技术有限公司 前导序列的配置方法、用户设备及接入网设备
CN107734677A (zh) * 2016-08-12 2018-02-23 中国移动通信有限公司研究院 随机接入信号配置方法、装置、相关设备和系统
CN107770733B (zh) * 2016-08-22 2021-08-13 华为技术有限公司 一种数据通信的方法、装置及系统
CN107888350A (zh) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 一种资源复用的方法和装置
CN107889244B (zh) * 2016-09-30 2020-06-02 华为技术有限公司 通信方法、装置及计算机可读存储介质
CN110381602B (zh) * 2016-11-04 2021-10-15 华为技术有限公司 通信方法、网络设备、通信系统和计算机可读存储介质
US20190387550A1 (en) * 2017-01-06 2019-12-19 Idac Holdings, Inc. Physical broadcast channel, initial uplink transmission and system acquisition associated with new radio
CN114786269A (zh) 2017-03-27 2022-07-22 中兴通讯股份有限公司 一种随机接入物理资源的指示方法及装置
CN109152085B (zh) * 2017-06-16 2023-01-13 华为技术有限公司 随机接入方法、设备及系统
CN109152029B (zh) * 2017-06-16 2024-04-16 华为技术有限公司 一种通信方法、网络设备及用户设备
CN109803384B (zh) * 2017-11-16 2024-04-09 北京三星通信技术研究有限公司 确定资源的方法、资源配置方法及设备
KR102588435B1 (ko) 2017-09-08 2023-10-12 삼성전자주식회사 리소스 결정, 리소스 구성, 랜덤 액세스 프리엠블 송신 및 랜덤 엑세스를 위한 방법 및 장치
CN110011714B (zh) * 2018-01-05 2021-06-15 维沃移动通信有限公司 信号接收方法、发送方法、用户设备和网络设备
CN110035536B (zh) * 2018-01-11 2024-04-09 北京三星通信技术研究有限公司 一种时频资源的确定方法,配置方法和设备
AU2019291439B2 (en) 2018-06-20 2024-04-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Channel access method and apparatus for physical random access channel transmission, and program
CN112514506B (zh) * 2018-08-08 2023-06-20 华为技术有限公司 用于在无线通信中节省频率资源的设备和方法
CN110831191B (zh) * 2018-08-10 2022-10-11 北京紫光展锐通信技术有限公司 物理随机接入信道的频域资源的配置方法及装置
CN111988862B (zh) * 2019-05-21 2022-07-19 大唐移动通信设备有限公司 随机接入信道的选择、配置方法、接入设备及网络设备
CN111107555B (zh) * 2019-11-08 2023-06-02 中兴通讯股份有限公司 传输信道的传输和发送方法、装置、设备和存储介质
CN113498211B (zh) * 2020-03-19 2023-10-20 海能达通信股份有限公司 随机接入方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483919A (zh) * 2008-01-08 2009-07-15 华为技术有限公司 用于随机接入的无线资源分配方法及基站设备
CN102065501A (zh) * 2011-01-17 2011-05-18 大唐移动通信设备有限公司 一种小区切换方法和设备
CN102238752A (zh) * 2010-04-30 2011-11-09 电信科学技术研究院 一种mtc设备随机接入控制方法及mtc设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8665857B2 (en) * 2007-12-18 2014-03-04 Qualcomm Incorporated Method and apparatus for sending and receiving random access response in a wireless communication system
CN101686547B (zh) * 2008-09-23 2012-04-25 电信科学技术研究院 一种随机接入信道的频域配置方法、系统和装置
US8787304B2 (en) * 2010-06-22 2014-07-22 Acer Incorporated Method for reference signal pattern allocation and related communication device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483919A (zh) * 2008-01-08 2009-07-15 华为技术有限公司 用于随机接入的无线资源分配方法及基站设备
CN102238752A (zh) * 2010-04-30 2011-11-09 电信科学技术研究院 一种mtc设备随机接入控制方法及mtc设备
CN102065501A (zh) * 2011-01-17 2011-05-18 大唐移动通信设备有限公司 一种小区切换方法和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019061257A1 (en) * 2017-09-29 2019-04-04 Qualcomm Incorporated INCREASING THE CAPACITY OF PHYSICAL RANDOM ACCESS USING ORTHOGONAL COVER CODES
US11432332B2 (en) 2017-09-29 2022-08-30 Qualcomm Incorporated Increasing physical random access capacity using orthogonal cover codes

Also Published As

Publication number Publication date
CN103716895A (zh) 2014-04-09
CN103716895B (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2014048177A1 (zh) 物理随机接入信道的资源确定方法及装置
CN111919411B (zh) 支持ss/pbch块的大子载波间隔的方法和装置
US10979194B2 (en) Resource indication method, user equipment, and network device
KR102320460B1 (ko) 무선 통신 시스템의 물리 채널 및 신호 송수신 방법 및 이를 이용하는 장치
WO2018171754A1 (zh) 一种通信方法及装置
CN107836093B (zh) 用于接收下行链路信号的方法和用户设备以及用于发送下行链路信号的方法和基站
EP3576482A1 (en) Terminal device, base station device, and communication method
EP3051908B1 (en) Terminal, base station, and communication method
KR20200091849A (ko) Ss/pbch 블록 주파수 위치 인디케이션을 위한 방법 및 장치
WO2015184917A1 (zh) 设备到设备通信方法及装置、设备到设备通信控制装置
TW201611652A (zh) 供無線通信系統中裝置對裝置使用者設備的資料傳輸的裝置及方法
WO2014107994A1 (zh) 控制信息的发送、控制信息的接收方法和装置
WO2019187989A1 (ja) 端末装置、基地局装置、および、通信方法
EP3442151B1 (en) Data processing method, apparatus and system
KR102647709B1 (ko) 비면허 대역에서 전송을 수행하기 위한 채널 액세스 방법 및 이를 이용하는 장치
KR20190017588A (ko) 비면허대역에서 상향링크 자발적 전송을 위한 채널엑세스, 데이터 자원 설정 방법, 및 재전송을 위한 장치 및 시스템
KR20180039501A (ko) 비면허대역에서 상향링크 캐리어 채널엑세스 및 데이터 전송 방법, 장치 및 시스템
EP4195602A1 (en) Terminal device, base station device, and communication method
WO2020059419A1 (ja) 端末装置、基地局装置、および、通信方法
EP3836591A1 (en) Communication method and communication device employing unlicensed frequency band
KR20180022221A (ko) 비면허대역에서 다중 캐리어 채널엑세스 방법, 장치 및 시스템
EP4221400A1 (en) Terminal apparatus and base station apparatus
WO2020054358A1 (ja) 端末装置、基地局装置、および、通信方法
KR20210153492A (ko) 무선 통신시스템에서 하향링크 수신 및 상향링크 전송을 위한 방법 및 장치
KR20240045085A (ko) 비면허대역 통신에서 채널 접속을 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842676

Country of ref document: EP

Kind code of ref document: A1