CN111988862B - 随机接入信道的选择、配置方法、接入设备及网络设备 - Google Patents

随机接入信道的选择、配置方法、接入设备及网络设备 Download PDF

Info

Publication number
CN111988862B
CN111988862B CN201910424589.0A CN201910424589A CN111988862B CN 111988862 B CN111988862 B CN 111988862B CN 201910424589 A CN201910424589 A CN 201910424589A CN 111988862 B CN111988862 B CN 111988862B
Authority
CN
China
Prior art keywords
random access
preamble sequence
access channel
parameter information
frequency offset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910424589.0A
Other languages
English (en)
Other versions
CN111988862A (zh
Inventor
康绍莉
缪德山
孙韶辉
王映民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Datang Mobile Communications Equipment Co Ltd
Original Assignee
Datang Mobile Communications Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Datang Mobile Communications Equipment Co Ltd filed Critical Datang Mobile Communications Equipment Co Ltd
Priority to CN201910424589.0A priority Critical patent/CN111988862B/zh
Priority to US17/612,198 priority patent/US11974326B2/en
Priority to EP20810414.1A priority patent/EP3975654A4/en
Priority to PCT/CN2020/080921 priority patent/WO2020233224A1/zh
Publication of CN111988862A publication Critical patent/CN111988862A/zh
Application granted granted Critical
Publication of CN111988862B publication Critical patent/CN111988862B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • H04B7/18543Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for adaptation of transmission parameters, e.g. power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Abstract

本发明提供一种随机接入信道的选择、配置方法、接入设备及网络设备,解决高频段情况下地面5G制式定义的最小带宽大,不能适用于低功率等级的卫星终端接入的问题。本发明包括:获取至少两种随机接入信道对应的参数信息和时频资源分配信息,每种随机接入信道对应的参数信息包括:子载波间隔和前导码序列,根据子载波间隔和前导码序列的长度得到的随机接入信道带宽小于或等于卫星接入设备的最大发送带宽,子载波间隔包括卫星系统需抵抗的最大频偏的参考值;根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在参数信息中选择目标参数信息;根据目标参数信息,选择随机接入信道,基于时频资源分配信息发送随机接入信号。

Description

随机接入信道的选择、配置方法、接入设备及网络设备
技术领域
本发明涉及通信应用的技术领域,尤其涉及一种随机接入信道的选择、配置方法、接入设备及网络设备。
背景技术
针对地面5G移动通信系统,在高频段时其单载波带宽按照50MHz的整数倍来进行定义,最小值为50MHz,典型值有100MHz、200MHz、400MHz等多种类型,以子载波间隔120KHz为例,各带宽下的具体参数见表1所示。基于该带宽定义,随机接入信道的设置不受影响。
定义带宽 50MHz 100MHz 200MHz 400MHz
PRB数目 32 66 132 264
有效带宽 46.08MHz 95.04MHz 190.08MHz 380.16MHz
表1
对于采用地面5G制式的卫星移动通信系统,高频段情况下地面5G制式的最小带宽定义为50MHz,受限于终端的发送功率,低功率等级的终端其上行发送的带宽难以达到地面5G制式定义的最小带宽,导致不能适用于低功率等级的卫星终端接入。
发明内容
本发明的目的在于提供一种随机接入信道的选择、配置方法、接入设备及网络设备,用以解决高频段情况下地面5G制式定义的最小带宽大,不能适用于低功率等级的卫星终端接入的问题。
为了实现上述目的,本发明提供了一种随机接入信道的选择方法,应用于接入设备,包括:
获取至少两种随机接入信道对应的参数信息和时频资源分配信息,其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备的最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值;
根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息;
根据所述目标参数信息,选择随机接入信道,并基于所述时频资源分配信息进行随机接入信号的发送。
其中,所述根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息,包括:
根据接入设备的能力,在所述参数信息中选择小于或者等于接入设备最大发送带宽的目标随机接入信道带宽;
根据接入设备的工作场景,在所述参数信息中选择大于接入设备需要抵抗的最大频偏的目标子载波间隔;
根据随机接入信道的频偏占比,在所述参数信息中选择目标前导码序列。
其中,所述根据随机接入信道的频偏占比,在所述参数信息中选择目标前导码序列,包括:
在所述参数信息中存在多个相同前导码序列的情况下,在多个相同前导码序列中选择出具有最小频偏占比的前导码序列,得到目标前导码序列集合;
在所述目标前导码序列集合中存在不同前导码序列的情况下,根据所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比,确定目标前导码序列;
在所述目标前导码序列集合中不存在不同前导码序列的情况下,将所述目标前导码序列集合中的前导码序列确定为目标前导码序列。
其中,根据所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比,确定目标前导码序列,包括:
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比小于或者等于第一预设阈值的情况下,选择最短前导码序列作为目标前导码序列;
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于或者等于第二预设阈值的情况下,选择最长前导码序列作为目标前导码序列;
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于第一预设阈值且小于第二预设阈值的情况下,选择最小的随机接入信道的带宽对应的前导码序列作为目标前导码序列,其中,第二预设阈值大于第一预设阈值。
其中,每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数;
所述获取至少两种随机接入信道对应的参数信息之后,还包括:
根据所述参数信息,确定所述随机接入信道的前导码序列的重复次数。
其中,所述前导码序列的重复次数与所述前导码序列的长度成反比;
所述前导码序列的重复次数与所述随机接入信道的频偏占比成正比。
为了实现上述目的,本发明实施例还提供了一种随机接入信道的配置方法,应用于网络设备,包括:
配置至少两种随机接入信道对应的参数信息和时频资源分配信息;
将所述至少两种随机接入信道对应的参数信息和时频资源分配信息通知接入设备;
其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值。
其中,不同的随机接入信道对应参数信息中的前导码序列长度和/或子载波间隔不同。
其中,每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数,且所述随机接入信道的前导码序列的重复次数与前导码序列的长度和随机接入信道的频偏占比相关。
其中,所述前导码序列的重复次数与所述前导码序列的长度成反比;
所述前导码序列的重复次数与所述随机接入信道的频偏占比成正比。
其中,所述卫星接入设备的最大发送带宽包括地面通信系统定义的带宽和卫星系统支持的带宽。
为了实现上述目的,本发明实施例还提供了一种接入设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现以下步骤:
获取至少两种随机接入信道对应的参数信息和时频资源分配信息,其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备的最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值;
根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息;
根据所述目标参数信息,选择随机接入信道,并基于所述时频资源分配信息进行随机接入信号的发送。
其中,所述处理器执行根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息的程序的步骤包括:
根据接入设备的能力,在所述参数信息中选择小于或者等于接入设备最大发送带宽的目标随机接入信道带宽;
根据接入设备的工作场景,在所述参数信息中选择大于接入设备需要抵抗的最大频偏的目标子载波间隔;
根据随机接入信道的频偏占比,在所述参数信息中选择目标前导码序列。
其中,所述处理器执行根据前导码序列的频偏占比,在所述参数信息中选择目标前导码序列的程序的步骤包括:
在所述参数信息中存在多个相同前导码序列的情况下,在多个相同前导码序列中选择出具有最小频偏占比的前导码序列,得到目标前导码序列集合;
在所述目标前导码序列集合中存在不同前导码序列的情况下,根据所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比,确定目标前导码序列;
在所述目标前导码序列集合中不存在不同前导码序列的情况下,将所述目标前导码序列集合中的前导码序列确定为目标前导码序列。
其中,所述处理器执行根据所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比,确定目标前导码序列的程序的步骤包括:
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比小于或者等于第一预设阈值的情况下,选择最短前导码序列作为目标前导码序列;
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于或者等于第二预设阈值的情况下,选择最长前导码序列作为目标前导码序列;
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于第一预设阈值且小于第二预设阈值的情况下,选择最小的随机接入信道的带宽对应的前导码序列作为目标前导码序列,其中,第二预设阈值大于第一预设阈值。
其中,每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数;
所述处理器执行获取至少两种随机接入信道对应的参数信息的程序的步骤之后,所述处理器还用于执行以下步骤:
根据所述参数信息,确定所述随机接入信道的前导码序列的重复次数。
其中,所述前导码序列的重复次数与所述前导码序列的长度成反比;
所述前导码序列的重复次数与所述随机接入信道的频偏占比成正比。
为了实现上述目的,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上所述随机接入信道的选择方法的步骤。
为了实现上述目的,本发明实施例还提供了一种网络设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现以下步骤:
配置至少两种随机接入信道对应的参数信息和时频资源分配信息;
将所述至少两种随机接入信道对应的参数信息和时频资源分配信息通知接入设备;
其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值。
其中,不同的随机接入信道对应参数信息中的前导码序列长度和/或子载波间隔不同。
其中,每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数,且所述随机接入信道的前导码序列的重复次数与前导码序列的长度和随机接入信道的频偏占比相关。
其中,所述前导码序列的重复次数与所述前导码序列的长度成反比;
所述前导码序列的重复次数与所述随机接入信道的频偏占比成正比。
其中,所述卫星接入设备的最大发送带宽包括地面通信系统定义的带宽和卫星系统支持的带宽。
为了实现上述目的,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上所述随机接入信道的配置方法的步骤。
为了实现上述目的,本发明实施例还提供了一种接入设备,包括:
第一获取模块,用于获取至少两种随机接入信道对应的参数信息和时频资源分配信息,其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备的最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值;
第一选择模块,用于根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息;
第二选择模块,用于根据所述目标参数信息,选择随机接入信道,并基于所述时频资源分配信息进行随机接入信号的发送。
其中,所述第一选择模块包括:
第一选择子模块,用于根据接入设备的能力,在所述参数信息中选择小于或者等于接入设备最大发送带宽的目标随机接入信道带宽;
第二选择子模块,用于根据接入设备的工作场景,在所述参数信息中选择大于接入设备需要抵抗的最大频偏的目标子载波间隔;
第三选择子模块,用于根据随机接入信道的频偏占比,在所述参数信息中选择目标前导码序列。
其中,所述第三选择子模块包括:
选择单元,用于在所述参数信息中存在多个相同前导码序列的情况下,在多个相同前导码序列中选择出具有最小频偏占比的前导码序列,得到目标前导码序列集合;
第一确定单元,用于在所述目标前导码序列集合中存在不同前导码序列的情况下,根据所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比,确定目标前导码序列;
第二确定单元,用于在所述目标前导码序列集合中不存在不同前导码序列的情况下,将所述目标前导码序列集合中的前导码序列确定为目标前导码序列。
其中,所述第一确定单元包括:
第一选择子单元,用于在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比小于或者等于第一预设阈值的情况下,选择最短前导码序列作为目标前导码序列;
第二选择子单元,用于在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于或者等于第二预设阈值的情况下,选择最长前导码序列作为目标前导码序列;
第三选择子单元,用于在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于第一预设阈值且小于第二预设阈值的情况下,选择最小的随机接入信道的带宽对应的前导码序列作为目标前导码序列,其中,第二预设阈值大于第一预设阈值。
其中,每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数;
所述接入设备还包括:
确定模块,用于获取至少两种随机接入信道对应的参数信息之后,根据所述参数信息,确定所述随机接入信道的前导码序列的重复次数。
为了实现上述目的,本发明实施例还提供了一种网络设备,包括:
配置模块,用于配置至少两种随机接入信道对应的参数信息和时频资源分配信息;
通知模块,用于将所述至少两种随机接入信道对应的参数信息和时频资源分配信息通知接入设备;
其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值。
其中,不同的随机接入信道对应参数信息中的前导码序列长度和/或子载波间隔不同。
其中,每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数,且所述随机接入信道的前导码序列的重复次数与前导码序列的长度和随机接入信道的频偏占比相关。
本发明实施例具有以下有益效果:
本发明实施例的上述技术方案,获取至少两种随机接入信道对应的参数信息和时频资源分配信息;根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息;根据所述目标参数信息,选择随机接入信道,并基于所述时频资源分配信息进行随机接入信号的发送。由于上述参数信息能够保证随机接入信道带宽能够与卫星接入设备的功率等级匹配,从而能够满足系统工作的信噪比要求,此外,在进行随机接入信道参数选择时尽量和地面5G系统靠近,也便于卫星移动通信系统充分利用地面5G系统的产业优势来发展。
附图说明
图1为本发明实施例的随机接入信道的选择方法的流程示意图;
图2为本发明实施例的随机接入信道的配置方法的流程示意图;
图3为本发明实施例中接入设备的结构框图;
图4为本发明实施例中接入设备的模块示意图;
图5为本发明实施例中网络设备的结构框图;
图6为本发明实施例中网络设备的模块示意图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
如图1所示,本发明实施例提供了一种随机接入信道的选择方法,应用于接入设备,该接入设备可以具体为终端或基站或中继relay节点,该方法包括:
步骤101:获取至少两种随机接入信道对应的参数信息和时频资源分配信息,其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备的最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值。
本发明实施例中,随机接入信道带宽是根据前导码序列的长度和子载波间隔的乘积得到的,所述卫星接入设备的最大发送带宽包括地面通信系统定义的带宽和卫星系统支持的带宽。
其中,地面通信系统可以具体是指地面5G通信系统,地面5G通信系统定义的带宽包括400MHz、200MHz、100MHz和50MHz。卫星系统支持的带宽包括:2MHz,5×nMHz(n<10);50×nMHz(n≤8)。其中,2MHz以及5×nMHz(n<10)为窄带,50×nMHz(n≤8)为宽带。
不同的随机接入信道对应参数信息中的前导码序列长度和/或子载波间隔不同。
本发明实施例中,随机接入信道的子载波间隔包括卫星系统需要抵抗的最大频偏的参考值,还包括地面通信系统定义的参考值。
其中,地面通信系统定义的参考值具体为地面5G通信系统定义的参考值,如1.25KHz、5KHz、15KHz、30KHz、60KHz和120KHz,卫星系统需要抵抗的最大频偏的参考值除了可使用地面5G系统定义的参考值外,还可考虑更大的频偏值以及在现有频偏值范围内进一步细化取值,例如240KHz、480KHz、1-30KHz之间细化取值等。
本发明实施例中随机接入信道的结构为一个循环前缀CP加上重复预设次数的前导码序列preamble。
前导码序列preamble是基于ZC(Zadoff Chu)序列或m序列设计的,preamble的长度的典型值为839和139。
前导码序列的重复次数与前导码序列的长度和随机接入信道的频偏占比相关。具体的,所述前导码序列的重复次数与所述前导码序列的长度成反比;所述前导码序列的重复次数与所述随机接入信道的频偏占比成正比。也就是说,preamble的长度长,preamble重复次数少;preamble的长度短,preamble重复次数多;随机接入信道频偏占比小,preamble重复次数少;随机接入信道频偏占比大,preamble重复次数多。其中,随机接入信道的频偏占比=系统需要抵抗的最大频偏/子载波间隔。
步骤102:根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息。
这里,接入设备能力可以包括接入设备最大发送带宽,接入设备的工作场景可以具体是机载终端、船载终端、车载终端(火车)、车载终端(汽车)等。
该目标参数信息可以包括目标随机接入信道带宽、目标子载波间隔和目标前导码序列。
步骤103:根据所述目标参数信息,选择随机接入信道,并基于所述时频资源分配信息进行随机接入信号的发送。
这里,确定目标参数信息后,根据目标参数信息选择对应的随机接入信道。
本发明实施例的随机接入信道的选择方法,获取至少两种随机接入信道对应的参数信息和时频资源分配信息;根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息;根据所述目标参数信息,选择随机接入信道,并基于所述时频资源分配信息进行随机接入信号的发送。由于上述参数信息能够保证随机接入信道带宽能够与卫星接入设备的功率等级匹配,从而能够满足系统工作的信噪比要求,此外,在进行随机接入信道参数选择时尽量和地面5G系统靠近,也便于卫星移动通信系统充分利用地面5G系统的产业优势来发展。
进一步地,所述根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息,包括:
根据接入设备的能力,在所述参数信息中选择小于或者等于接入设备最大发送带宽的目标随机接入信道带宽;
根据接入设备的工作场景,在所述参数信息中选择大于接入设备需要抵抗的最大频偏的目标子载波间隔;
根据随机接入信道的频偏占比,在所述参数信息中选择目标前导码序列。
进一步地,所述根据随机接入信道的频偏占比,在所述参数信息中选择目标前导码序列,包括:
在所述参数信息中存在多个相同前导码序列的情况下,在多个相同前导码序列中选择出具有最小频偏占比的前导码序列,得到目标前导码序列集合;
在所述目标前导码序列集合中存在不同前导码序列的情况下,根据所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比,确定目标前导码序列;
在所述目标前导码序列集合中不存在不同前导码序列的情况下,将所述目标前导码序列集合中的前导码序列确定为目标前导码序列。
进一步地,根据所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比,确定目标前导码序列,包括:
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比小于或者等于第一预设阈值的情况下,选择最短前导码序列作为目标前导码序列;
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于或者等于第二预设阈值的情况下,选择最长前导码序列作为目标前导码序列;
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于第一预设阈值且小于第二预设阈值的情况下,选择最小的随机接入信道的带宽对应的前导码序列作为目标前导码序列,其中,第二预设阈值大于第一预设阈值。
例如,上述第一预设阈值可以具体为10%,第二预设阈值可以具体为50%。
本发明实施例的随机接入信道的选择方法,获取至少两种随机接入信道对应的参数信息和时频资源分配信息;根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息;根据所述目标参数信息,选择随机接入信道,并基于所述时频资源分配信息进行随机接入信号的发送。由于上述参数信息能够保证随机接入信道带宽能够与卫星接入设备的功率等级匹配,从而能够满足系统工作的信噪比要求,此外,在进行随机接入信道参数选择时尽量和地面5G系统靠近,也便于卫星移动通信系统充分利用地面5G系统的产业优势来发展。
如图2所示,本发明实施例还提供了一种随机接入信道的配置方法,应用于网络设备,该网络设备可以具体包括卫星、地面基站或者信关站,该方法包括:
步骤201:配置至少两种随机接入信道对应的参数信息和时频资源分配信息。
步骤202:将所述至少两种随机接入信道对应的参数信息和时频资源分配信息通知接入设备。
其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值。
不同的随机接入信道对应参数信息中的前导码序列长度和/或子载波间隔不同。
本发明实施例中,随机接入信道带宽是根据前导码序列的长度和子载波间隔的乘积得到的,所述卫星接入设备的最大发送带宽包括地面通信系统定义的带宽和卫星系统支持的带宽。
其中,地面通信系统可以具体是指地面5G通信系统,地面5G通信系统定义的带宽包括400MHz、200MHz、100MHz和50MHz。卫星系统支持的带宽包括:2MHz,5×nMHz(n<10);50×nMHz(n≤8)。其中,2MHz以及5×nMHz(n<10)为窄带,50×nMHz(n≤8)为宽带。
本发明实施例中,随机接入信道的子载波间隔包括卫星系统需要抵抗的最大频偏的参考值,还包括地面通信系统定义的参考值。
其中,地面通信系统定义的参考值具体为地面5G通信系统定义的参考值,如1.25KHz、5KHz、15KHz、30KHz、60KHz和120KHz,卫星系统需要抵抗的最大频偏的参考值除了可使用地面5G系统定义的参考值外,还可考虑更大的频偏值以及在现有频偏值范围内进一步细化取值,例如240KHz、480KHz、1-30KHz之间细化取值等。
每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数,且所述随机接入信道的前导码序列的重复次数与前导码序列的长度和随机接入信道的频偏占比相关。
具体的,所述前导码序列的重复次数与所述前导码序列的长度成反比;
所述前导码序列的重复次数与所述随机接入信道的频偏占比成正比。
进一步地,所述卫星接入设备的最大发送带宽包括地面通信系统定义的带宽和卫星系统支持的带宽。
本发明实施例的随机接入信道的配置方法,配置至少两种随机接入信道对应的参数信息;将所述至少两种随机接入信道对应的参数信息和时频资源分配信息通知接入设备,由于上述参数信息能够保证随机接入信道带宽能够与卫星接入设备的功率等级匹配,从而能够满足系统工作的信噪比要求,此外,在进行随机接入信道参数选择时尽量和地面5G系统靠近,也便于卫星移动通信系统充分利用地面5G系统的产业优势来发展。
下面结合具体实施例来对本发明进行说明。
以接入设备为终端为例,地面5G系统定义了频率范围FR1(<6GHz)和频率范围FR2(>6GHz)两种载波类型。对应于业务信道,FR1的单载波带宽按照20MHz的整数倍来进行定义,最大值为100MHz,主要采用15KHz、30KHz、60KHz三种子载波间隔,FR2的单载波带宽按照50MHz的整数倍来进行定义,最大值为400MHz,主要采用120KHz及以上的子载波间隔。对应于随机接入信道,如图2所示,其基本形式为一个CP加上重复多次的前导码序列preamble,其中FR1的preamble采用的码长与子载波间隔主要有839*1.25KHz、839*5KHz、139*15KHz、139*30KHz,FR2采用的码长与子载波间隔主要有139*60KHz、139*120KHz。可以看出,FR1的随机接入信道的带宽在1.05MHz~4.17MHz,小于最小单载波带宽20MHz,意味着随机接入信道带宽不受限;同理,FR2的随机接入信道的带宽在8.34MHz~16.68MHz,小于最小单载波带宽50MHz,意味着随机接入信道带宽也不受限。
以接入设备为终端为例,对于卫星通信系统,终端的成本与最大发送功率相关,低成本的终端对应着较低的最大发射功率,因功率和带宽都是系统的资源,因此低发射功率就意味着低发送带宽。以使用Ka频段的LEO系统为例,参照地面5G系统的带宽设计,虽然能定义卫星发送的单载波带宽为400MHz,但是小口径终端的有效全向辐射功率EIRP值较低,如果使用大带宽发送,必然导致接收端的信噪比很低,难以进行信号解调,因此,终端实际能够发送的最大带宽通常与EIRP最大值相对应。表2给出了一种终端发送能力的示例。可以看出,除1m口径的终端能够满足地面5G系统定义的最小50MHz发送带宽外,其余3种口径的终端的最大发送带宽均小于地面5G系统的定义值,可能会不满足随机接入信道的带宽要求。例如,此处0.45m口径终端的最大发送带宽为15MHz,小于使用139*120KHz preamble序列的随机接入信道带宽16.68MHz,而0.3m口径终端的最大发送带宽为5MHz,小于使用139*60KHz preamble序列的随机接入信道带宽8.34MHz。因为终端支持的最大发送带宽小于随机接入信道带宽,因此需要针对随机接入信道进行重新设计,主要包括preamble序列的码长、子载波间隔、重复发送次数等。
Figure BDA0002067090380000151
表2
Preamble序列的设计与抗频偏能力、同时并发的用户数、系统开销等多种因素有关。通常,频偏越大,意味着preamble需要更大的子载波间隔;并发的用户数越多,意味着preamble码需要具有更好的抗多用户干扰能力,更适宜长码;系统开销越大,意味着能用于随机接入的时频资源增大,preamble可更多次重复发送。因此,Preamble序列的设计需要综合考虑这些因素。从检测来看,通常系统对频偏的最大容忍能力为1倍的子载波间隔,由此可优先考虑preamble序列子载波间隔的设置。
不失一般性,以参照地面5G系统来设计的高频段LEO卫星移动通信系统为例,其随机接入信道设计包括如下一些过程:
设计随机接入信道能够支持的最大带宽。通常,随机接入信道的设计带宽小于等于业务信道的最大带宽,即BWRACH≤BWdata。对于大口径终端,因业务信道的带宽明显大于随机接入信道的带宽,则随机接入信道的带宽可参照地面5G系统设置;对于小口径终端,为了让发送的功率能够充分利用,或者说为了让业务信道和接入信道在带宽上能够尽量平衡,因此随机接入信道的设计带宽可直接定义为业务信道的最大带宽。针对表2,各类型终端的随机接入带宽设置如表3所示。
Figure BDA0002067090380000152
表3
设计随机接入信道的子载波间隔(Subcarrier Spacing,SCS)。通常,子载波间隔SCS应该小于等于需要抵抗的最大频偏,即SCS≤Δf。随机接入过程中需要抵抗的最大频偏通常至少包括2部分,其一来自于卫星运动引起的频偏但系统进行了抵消后的残留,其二来自于终端自身的运动。针对表2,各类型终端的频偏估计以及子载波间隔设置如表4所示。
终端类型 机载 船载 车载(火车) 车载(汽车)
运动速率 1000km/h 60km/h 300km/h 120km/h
终端运动的频偏 27.8KHz 1.7KHz 8.3KHz 3.3KHz
系统的残留频偏 ≈1KHz ≈1KHz ≈1KHz ≈1KHz
需要抵抗的最大频偏 ≈30KHz ≈3KHz ≈10KHz ≈5KHz
子载波间隔 30KHz 3KHz 10KHz 5KHz
表4
设计preamble码。可先依据随机接入信道带宽和子载波间隔来确定码长的最大值,然后参照地面5G系统定义的码(采用Zadoff-Chu序列产生,有839和139两种前导码序列长度)来进行选择,保证所选择的前导码序列长度小于等于码长的最大值即可。针对表2,各类型终端的preamble码如表5所示。
Figure BDA0002067090380000161
表5
进行子载波间隔的调整以及preamble发送次数的设计。考虑到子载波间隔相对于频偏的冗余度越大,系统的抗频偏能力越强,由此可以针对所选择的preamble码来进行子载波间隔的进一步调整,如可以尽量增大子载波间隔,也可以尽量选用地面5G系统定义的子载波间隔,最终满足调整后的带宽小于设计的随机接入信道带宽即可。此外,依据preamble的抗频偏百分比,设计合适的preamble发送次数,需要考虑的原则是,既要保证接收端的检测性能,又要尽量降低系统开销。通常139的Zadoff-Chu序列抗50%以上频偏需要重复4次以上,839的Zadoff-Chu序列抗90%频偏不需要重复。对应于前述的表3-5,最终设计的各类型终端的随机接入信道参数如表6所示。
Figure BDA0002067090380000171
表6
基于上述设计思路,能够很容易地设计出参照地面5G制式又能反映高频段LEO卫星移动通信系统特定需求的随机接入信道参数汇总表。表7给出了一个示例,可以看出,该表包括了不同长度的前导码序列,以及各前导码序列包括了不同细粒度的子载波间隔,既纳入了地面5G定义的典型格式,又新增了卫星移动通信系统的典型格式,因此,基于该表格的随机接入信道,能够反映卫星移动通信系统各类终端的接入需求。
Figure BDA0002067090380000181
表7
针对设计的随机接入信道参数表,可以作为系统的约定参数,从而利于终端选择一种合适的格式来进行接入。不失一般性,以上述高频段LEO卫星移动通信系统为例,终端对随机接入信道参数的选择包括如下一些过程:
选择随机接入信道的带宽。要求支持的随机接入信道带宽小于等于业务信道最大发送带宽。对应于表2,各类型终端的潜在随机接入信道格式如表8所示。
Figure BDA0002067090380000182
表8
选择随机接入信道的子载波间隔。要求支持的子载波间隔大于需要抵抗的最大频偏。对应于表2,在表8的基础上,各类型终端的潜在随机接入信道格式如表9所示。
Figure BDA0002067090380000191
表9
选择随机接入信道的同根序列唯一值。若存在多个同根序列格式,则针对各根序列选择具有最小频偏占比的格式。对应于表2,在表9的基础上,各类型终端的潜在随机接入信道格式如表10所示。
Figure BDA0002067090380000192
表10
选择随机接入信道的不同根序列唯一值。若存在不同根序列格式,则依据最短序列(此处为139序列)的频偏占比来进一步判断。若频偏占比≤10%,选择139序列的格式;若频偏占比≥50%,选择839序列的格式;若10%<频偏占比<50%,选择随机接入信道带宽最小的格式。对应于表2,在表10的基础上,各类型终端最终所选择的随机接入信道格式如表11所示。可以看出,针对1m口径和0.75m口径的终端,可以选择格式4来作为随机接入信道的参数设计;针对0.45m口径的终端,可以选择格式3来作为随机接入信道的参数设计;针对0.3m口径的终端,可以选择格式2来作为随机接入信道的参数设计。
Figure BDA0002067090380000201
表11
本发明实施例的上述技术方案,基于地面5G制式来进行卫星移动通信系统设计,保证了设计的随机接入信道带宽能够与终端的功率等级相匹配,从而满足系统工作的信噪比要求。此外,随机接入信道设计的参数选择上尽量和地面5G系统靠近,也便于卫星移动通信系统充分利用地面5G系统的产业优势来发展。
如图3所示,本发明的实施例还提供了一种接入设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的,所述处理器执行所述计算机程序时实现以下步骤:
获取至少两种随机接入信道对应的参数信息和时频资源分配信息,其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备的最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值;
根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息;
根据所述目标参数信息,选择随机接入信道,并基于所述时频资源分配信息进行随机接入信号的发送。
其中,在图3中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器300代表的一个或多个处理器和存储器320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机310可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口330还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器300负责管理总线架构和通常的处理,存储器320可以存储处理器300在执行操作时所使用的数据。
可选的,所述处理器300执行根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息的程序的步骤包括:
根据接入设备的能力,在所述参数信息中选择小于或者等于接入设备最大发送带宽的目标随机接入信道带宽;
根据接入设备的工作场景,在所述参数信息中选择大于接入设备需要抵抗的最大频偏的目标子载波间隔;
根据随机接入信道的频偏占比,在所述参数信息中选择目标前导码序列。
可选的,所述处理器300执行根据随机接入信道的频偏占比,在所述参数信息中选择目标前导码序列的程序的步骤包括:
在所述参数信息中存在多个相同前导码序列的情况下,在多个相同前导码序列中选择出具有最小频偏占比的前导码序列,得到目标前导码序列集合;
在所述目标前导码序列集合中存在不同前导码序列的情况下,根据所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比,确定目标前导码序列;
在所述目标前导码序列集合中不存在不同前导码序列的情况下,将所述目标前导码序列集合中的前导码序列确定为目标前导码序列。
可选的,所述处理器300执行根据所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比,确定目标前导码序列的程序的步骤包括:
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比小于或者等于第一预设阈值的情况下,选择最短前导码序列作为目标前导码序列;
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于或者等于第二预设阈值的情况下,选择最长前导码序列作为目标前导码序列;
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于第一预设阈值且小于第二预设阈值的情况下,选择最小的随机接入信道的带宽对应的前导码序列作为目标前导码序列,其中,第二预设阈值大于第一预设阈值。
可选的,每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数;
所述处理器300执行获取至少两种随机接入信道对应的参数信息的程序的步骤之后,所述处理器还用于执行以下步骤:
根据所述参数信息,确定所述随机接入信道的前导码序列的重复次数。
可选的,所述前导码序列的重复次数与所述前导码序列的长度成反比;
所述前导码序列的重复次数与所述随机接入信道的频偏占比成正比。
该程序被处理器300执行时能实现上述应用于接入设备侧的随机接入信道的选择方法实施例中的所有实现方式,且能达到相同的技术效果,为避免重复,此处不再赘述。
在本发明的一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
获取至少两种随机接入信道对应的参数信息和时频资源分配信息,其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备的最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值;
根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息;
根据所述目标参数信息,选择随机接入信道,并基于所述时频资源分配信息进行随机接入信号的发送。
该程序被处理器执行时能实现上述应用于接入设备侧的随机接入信道的选择方法实施例中的所有实现方式,且能达到相同的技术效果,为避免重复,此处不再赘述。
如图4所示,本发明的实施例还提供了一种接入设备,包括:
第一获取模块401,用于获取至少两种随机接入信道对应的参数信息和时频资源分配信息,其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度和得到的随机接入信道带宽小于或者等于卫星接入设备的最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值;
第一选择模块402,用于根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息;
第二选择模块403,用于根据所述目标参数信息,选择随机接入信道,并基于所述时频资源分配信息进行随机接入信号的发送。
本发明实施例的接入设备,所述第一选择模块包括:
第一选择子模块,用于根据接入设备的能力,在所述参数信息中选择小于或者等于接入设备最大发送带宽的目标随机接入信道带宽;
第二选择子模块,用于根据接入设备的工作场景,在所述参数信息中选择大于接入设备需要抵抗的最大频偏的目标子载波间隔;
第三选择子模块,用于根据随机接入信道的频偏占比,在所述参数信息中选择目标前导码序列。
本发明实施例的接入设备,所述第三选择子模块包括:
选择单元,用于在所述参数信息中存在多个相同前导码序列的情况下,在多个相同前导码序列中选择出具有最小频偏占比的前导码序列,得到目标前导码序列集合;
第一确定单元,用于在所述目标前导码序列集合中存在不同前导码序列的情况下,根据所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比,确定目标前导码序列;
第二确定单元,用于在所述目标前导码序列集合中不存在不同前导码序列的情况下,将所述目标前导码序列集合中的前导码序列确定为目标前导码序列。
本发明实施例的接入设备,所述第一确定单元包括:
第一选择子单元,用于在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比小于或者等于第一预设阈值的情况下,选择最短前导码序列作为目标前导码序列;
第二选择子单元,用于在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于或者等于第二预设阈值的情况下,选择最长前导码序列作为目标前导码序列;
第三选择子单元,用于在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于第一预设阈值且小于第二预设阈值的情况下,选择最小的随机接入信道的带宽对应的前导码序列作为目标前导码序列,其中,第二预设阈值大于第一预设阈值。
本发明实施例的接入设备,每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数;
所述接入设备还包括:
确定模块,用于获取至少两种随机接入信道对应的参数信息之后,根据所述参数信息,确定所述随机接入信道的前导码序列的重复次数。
本发明实施例的接入设备,所述前导码序列的重复次数与所述前导码序列的长度成反比;
所述前导码序列的重复次数与所述随机接入信道的频偏占比成正比。
本发明实施例的接入设备,获取至少两种随机接入信道对应的参数信息和时频资源分配信息;根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息;根据所述目标参数信息,选择随机接入信道,并基于所述时频资源分配信息进行随机接入信号的发送。由于上述参数信息能够保证随机接入信道带宽能够与卫星接入设备的功率等级匹配,从而能够满足系统工作的信噪比要求,此外,在进行随机接入信道参数选择时尽量和地面5G系统靠近,也便于卫星移动通信系统充分利用地面5G系统的产业优势来发展。
本发明实施例的接入设备能实现上述应用于接入设备侧的随机接入信道的选择方法实施例中的所有实现方式,且能达到相同的技术效果,为避免重复,此处不再赘述。
如图5所示,本发明的实施例还提供了一种网络设备,该网络设备可具体为基站,包括存储器520、处理器500、收发机510、总线接口及存储在存储器520上并可在处理器500上运行的程序,所述处理器500用于读取存储器520中的程序,执行下列过程:
配置至少两种随机接入信道对应的参数信息;
将所述至少两种随机接入信道对应的参数信息和时频资源分配信息通知接入设备;
其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
可选的,不同的随机接入信道对应参数信息中的前导码序列长度和/或子载波间隔不同。
可选的,每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数,且所述随机接入信道的前导码序列的重复次数与前导码序列的长度和随机接入信道的频偏占比相关。
可选的,所述前导码序列的重复次数与所述前导码序列的长度成反比;
所述前导码序列的重复次数与所述随机接入信道的频偏占比成正比。
可选的,所述卫星接入设备的最大发送带宽包括地面通信系统定义的带宽和卫星系统支持的带宽。
本发明实施例的网络设备,配置至少两种随机接入信道对应的参数信息;将所述至少两种随机接入信道对应的参数信息和时频资源分配信息通知接入设备,由于上述参数信息能够保证随机接入信道带宽能够与卫星接入设备的功率等级匹配,从而能够满足系统工作的信噪比要求,此外,在进行随机接入信道参数选择时尽量和地面5G系统靠近,也便于卫星移动通信系统充分利用地面5G系统的产业优势来发展。
该程序被处理器500执行时能实现上述应用于网络设备侧的随机接入信道的配置方法实施例中的所有实现方式,且能达到相同的技术效果,为避免重复,此处不再赘述。
在本发明的一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
配置至少两种随机接入信道对应的参数信息;
将所述至少两种随机接入信道对应的参数信息和时频资源分配信息通知接入设备;
其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值。
该程序被处理器执行时能实现上述应用于网络设备侧的随机接入信道的配置方法实施例中的所有实现方式,且能达到相同的技术效果,为避免重复,此处不再赘述。
如图6所示,本发明实施例还提供了一种网络设备,包括:
配置模块601,用于配置至少两种随机接入信道对应的参数信息;
通知模块602,用于将所述至少两种随机接入信道对应的参数信息和时频资源分配信息通知接入设备;
其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值。
本发明实施例的网络设备,不同的随机接入信道对应参数信息中的前导码序列长度和/或子载波间隔不同。
本发明实施例的网络设备,每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数,且所述随机接入信道的前导码序列的重复次数与前导码序列的长度和随机接入信道的频偏占比相关。
本发明实施例的网络设备,所述前导码序列的重复次数与所述前导码序列的长度成反比;
所述前导码序列的重复次数与所述随机接入信道的频偏占比成正比。
本发明实施例的网络设备,所述卫星接入设备的最大发送带宽包括地面通信系统定义的带宽和卫星系统支持的带宽。
本发明实施例的网络设备,配置至少两种随机接入信道对应的参数信息;将所述至少两种随机接入信道对应的参数信息和时频资源分配信息通知接入设备,由于上述参数信息能够保证随机接入信道带宽能够与卫星接入设备的功率等级匹配,从而能够满足系统工作的信噪比要求,此外,在进行随机接入信道参数选择时尽量和地面5G系统靠近,也便于卫星移动通信系统充分利用地面5G系统的产业优势来发展。
本发明实施例的网络设备能实现上述应用于网络设备侧的随机接入信道的配置方法实施例中的所有实现方式,且能达到相同的技术效果,为避免重复,此处不再赘述。
在本发明的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (32)

1.一种随机接入信道的选择方法,应用于接入设备,其特征在于,包括:
获取至少两种随机接入信道对应的参数信息和时频资源分配信息,其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备的最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值;
根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息,所述随机接入信道的频偏占比是根据卫星系统需要抵抗的最大频偏和子载波间隔确定的;
根据所述目标参数信息,选择随机接入信道,并基于所述时频资源分配信息进行随机接入信号的发送。
2.根据权利要求1所述的随机接入信道的选择方法,其特征在于,所述根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息,包括:
根据接入设备的能力,在所述参数信息中选择小于或者等于接入设备最大发送带宽的目标随机接入信道带宽;
根据接入设备的工作场景,在所述参数信息中选择大于接入设备需要抵抗的最大频偏的目标子载波间隔;
根据随机接入信道的频偏占比,在所述参数信息中选择目标前导码序列。
3.根据权利要求2所述的随机接入信道的选择方法,其特征在于,所述根据随机接入信道的频偏占比,在所述参数信息中选择目标前导码序列,包括:
在所述参数信息中存在多个相同前导码序列的情况下,在多个相同前导码序列中选择出具有最小频偏占比的前导码序列得到目标前导码序列集合;
在所述目标前导码序列集合中存在不同前导码序列的情况下,根据所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比,确定目标前导码序列;
在所述目标前导码序列集合中不存在不同前导码序列的情况下,将所述目标前导码序列集合中的前导码序列确定为目标前导码序列。
4.根据权利要求3所述的随机接入信道的选择方法,其特征在于,根据所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比,确定目标前导码序列,包括:
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比小于或者等于第一预设阈值的情况下,选择最短前导码序列作为目标前导码序列;
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于或者等于第二预设阈值的情况下,选择最长前导码序列作为目标前导码序列;
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于第一预设阈值且小于第二预设阈值的情况下,选择最小的随机接入信道的带宽对应的前导码序列作为目标前导码序列,其中,第二预设阈值大于第一预设阈值。
5.根据权利要求1所述的随机接入信道的选择方法,其特征在于,每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数;
所述获取至少两种随机接入信道对应的参数信息之后,还包括:
根据所述参数信息,确定所述随机接入信道的前导码序列的重复次数。
6.根据权利要求5所述的随机接入信道的选择方法,其特征在于,所述前导码序列的重复次数与所述前导码序列的长度成反比;
所述前导码序列的重复次数与所述随机接入信道的频偏占比成正比。
7.一种随机接入信道的配置方法,应用于网络设备,其特征在于,包括:
配置至少两种随机接入信道对应的参数信息和时频资源分配信息;
将所述至少两种随机接入信道对应的参数信息和时频资源分配信息通知接入设备;
其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值,所述随机接入信道的频偏占比是根据卫星系统需要抵抗的最大频偏和子载波间隔确定的。
8.根据权利要求7所述的随机接入信道的配置方法,其特征在于,不同的随机接入信道对应参数信息中的前导码序列长度和/或子载波间隔不同。
9.根据权利要求7所述的随机接入信道的配置方法,其特征在于,每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数,且所述随机接入信道的前导码序列的重复次数与前导码序列的长度和随机接入信道的频偏占比相关。
10.根据权利要求9所述的随机接入信道的配置方法,其特征在于,所述前导码序列的重复次数与所述前导码序列的长度成反比;
所述前导码序列的重复次数与所述随机接入信道的频偏占比成正比。
11.根据权利要求7所述的随机接入信道的配置方法,其特征在于,所述卫星接入设备的最大发送带宽包括地面通信系统定义的带宽和卫星系统支持的带宽。
12.一种接入设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现以下步骤:
获取至少两种随机接入信道对应的参数信息和时频资源分配信息,其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备的最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值;
根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息,所述随机接入信道的频偏占比是根据卫星系统需要抵抗的最大频偏和子载波间隔确定的;
根据所述目标参数信息,选择随机接入信道,并基于所述时频资源分配信息进行随机接入信号的发送。
13.根据权利要求12所述的接入设备,其特征在于,所述处理器执行根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息的程序的步骤包括:
根据接入设备的能力,在所述参数信息中选择小于或者等于接入设备最大发送带宽的目标随机接入信道带宽;
根据接入设备的工作场景,在所述参数信息中选择大于接入设备需要抵抗的最大频偏的目标子载波间隔;
根据随机接入信道的频偏占比,在所述参数信息中选择目标前导码序列。
14.根据权利要求13所述的接入设备,其特征在于,所述处理器执行根据随机接入信道的频偏占比,在所述参数信息中选择目标前导码序列的程序的步骤包括:
在所述参数信息中存在多个相同前导码序列的情况下,在多个相同前导码序列中选择出具有最小频偏占比的前导码序列得到目标前导码序列集合;
在所述目标前导码序列集合中存在不同前导码序列的情况下,根据所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比,确定目标前导码序列;
在所述目标前导码序列集合中不存在不同前导码序列的情况下,将所述目标前导码序列集合中的前导码序列确定为目标前导码序列。
15.根据权利要求14所述的接入设备,其特征在于,所述处理器执行根据所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比,确定目标前导码序列的程序的步骤包括:
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比小于或者等于第一预设阈值的情况下,选择最短前导码序列作为目标前导码序列;
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于或者等于第二预设阈值的情况下,选择最长前导码序列作为目标前导码序列;
在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于第一预设阈值且小于第二预设阈值的情况下,选择最小的随机接入信道的带宽对应的前导码序列作为目标前导码序列,其中,第二预设阈值大于第一预设阈值。
16.根据权利要求12所述的接入设备,其特征在于,每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数;
所述处理器执行获取至少两种随机接入信道对应的参数信息的程序的步骤之后,所述处理器还用于执行以下步骤:
根据所述参数信息,确定所述随机接入信道的前导码序列的重复次数。
17.根据权利要求16所述的接入设备,其特征在于,所述前导码序列的重复次数与所述前导码序列的长度成反比;
所述前导码序列的重复次数与所述随机接入信道的频偏占比成正比。
18.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至6中任一项所述随机接入信道的选择方法的步骤。
19.一种网络设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现以下步骤:
配置至少两种随机接入信道对应的参数信息和时频资源分配信息;
将所述至少两种随机接入信道对应的参数信息和时频资源分配信息通知接入设备;
其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值,所述随机接入信道的频偏占比是根据卫星系统需要抵抗的最大频偏和子载波间隔确定的。
20.根据权利要求19所述的网络设备,其特征在于,不同的随机接入信道对应参数信息中的前导码序列长度和/或子载波间隔不同。
21.根据权利要求19所述的网络设备,其特征在于,每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数,且所述随机接入信道的前导码序列的重复次数与前导码序列的长度和随机接入信道的频偏占比相关。
22.根据权利要求21所述的网络设备,其特征在于,所述前导码序列的重复次数与所述前导码序列的长度成反比;
所述前导码序列的重复次数与所述随机接入信道的频偏占比成正比。
23.根据权利要求19所述的网络设备,其特征在于,所述卫星接入设备的最大发送带宽包括地面通信系统定义的带宽和卫星系统支持的带宽。
24.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求7至11中任一项所述随机接入信道的配置方法的步骤。
25.一种接入设备,其特征在于,包括:
第一获取模块,用于获取至少两种随机接入信道对应的参数信息和时频资源分配信息,其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备的最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值;
第一选择模块,用于根据接入设备能力、接入设备的工作场景与随机接入信道的频偏占比,在所述参数信息中选择目标参数信息,所述随机接入信道的频偏占比是根据卫星系统需要抵抗的最大频偏和子载波间隔确定的;
第二选择模块,用于根据所述目标参数信息,选择随机接入信道,并基于所述时频资源分配信息进行随机接入信号的发送。
26.根据权利要求25所述的接入设备,其特征在于,所述第一选择模块包括:
第一选择子模块,用于根据接入设备的能力,在所述参数信息中选择小于或者等于接入设备最大发送带宽的目标随机接入信道带宽;
第二选择子模块,用于根据接入设备的工作场景,在所述参数信息中选择大于接入设备需要抵抗的最大频偏的目标子载波间隔;
第三选择子模块,用于根据随机接入信道的频偏占比,在所述参数信息中选择目标前导码序列。
27.根据权利要求26所述的接入设备,其特征在于,所述第三选择子模块包括:
选择单元,用于在所述参数信息中存在多个相同前导码序列的情况下,在多个相同前导码序列中选择出具有最小频偏占比的前导码序列,得到目标前导码序列集合;
第一确定单元,用于在所述目标前导码序列集合中存在不同前导码序列的情况下,根据所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比,确定目标前导码序列;
第二确定单元,用于在所述目标前导码序列集合中不存在不同前导码序列的情况下,将所述目标前导码序列集合中的前导码序列确定为目标前导码序列。
28.根据权利要求27所述的接入设备,其特征在于,所述第一确定单元包括:
第一选择子单元,用于在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比小于或者等于第一预设阈值的情况下,选择最短前导码序列作为目标前导码序列;
第二选择子单元,用于在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于或者等于第二预设阈值的情况下,选择最长根序列作为目标前导码序列;
第三选择子单元,用于在所述目标前导码序列集合中最短前导码序列对应的随机接入信道的频偏占比大于第一预设阈值且小于第二预设阈值的情况下,选择最小的随机接入信道的带宽对应的前导码序列作为目标前导码序列,其中,第二预设阈值大于第一预设阈值。
29.根据权利要求25所述的接入设备,其特征在于,每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数;
所述接入设备还包括:
确定模块,用于获取至少两种随机接入信道对应的参数信息之后,根据所述参数信息,确定所述随机接入信道的前导码序列的重复次数。
30.一种网络设备,其特征在于,包括:
配置模块,用于配置至少两种随机接入信道对应的参数信息和时频资源分配信息;
通知模块,用于将所述至少两种随机接入信道对应的参数信息和时频资源分配信息通知接入设备;
其中,每种所述随机接入信道对应的参数信息包括:子载波间隔和前导码序列,且根据所述子载波间隔和所述前导码序列的长度得到的随机接入信道带宽小于或者等于卫星接入设备最大发送带宽,所述子载波间隔包括卫星系统需要抵抗的最大频偏的参考值,所述随机接入信道的频偏占比是根据卫星系统需要抵抗的最大频偏和子载波间隔确定的。
31.根据权利要求30所述的网络设备,其特征在于,不同的随机接入信道对应参数信息中的前导码序列长度和/或子载波间隔不同。
32.根据权利要求30所述的网络设备,其特征在于,每种所述随机接入信道对应的参数信息还包括:随机接入信道的前导码序列的重复次数,且所述随机接入信道的前导码序列的重复次数与前导码序列的长度和随机接入信道的频偏占比相关。
CN201910424589.0A 2019-05-21 2019-05-21 随机接入信道的选择、配置方法、接入设备及网络设备 Active CN111988862B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201910424589.0A CN111988862B (zh) 2019-05-21 2019-05-21 随机接入信道的选择、配置方法、接入设备及网络设备
US17/612,198 US11974326B2 (en) 2019-05-21 2020-03-24 Methods for selecting and configuring random access channel, access device and network device
EP20810414.1A EP3975654A4 (en) 2019-05-21 2020-03-24 METHOD FOR CONFIGURATION AND SELECTION OF RANDOM ACCESS CHANNEL, ACCESS DEVICE AND NETWORK DEVICE
PCT/CN2020/080921 WO2020233224A1 (zh) 2019-05-21 2020-03-24 随机接入信道的选择、配置方法、接入设备及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910424589.0A CN111988862B (zh) 2019-05-21 2019-05-21 随机接入信道的选择、配置方法、接入设备及网络设备

Publications (2)

Publication Number Publication Date
CN111988862A CN111988862A (zh) 2020-11-24
CN111988862B true CN111988862B (zh) 2022-07-19

Family

ID=73436122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910424589.0A Active CN111988862B (zh) 2019-05-21 2019-05-21 随机接入信道的选择、配置方法、接入设备及网络设备

Country Status (3)

Country Link
EP (1) EP3975654A4 (zh)
CN (1) CN111988862B (zh)
WO (1) WO2020233224A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031431A1 (en) * 2022-08-10 2024-02-15 Apple Inc. Random access channel report enhancements

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888360A (zh) * 2009-05-15 2010-11-17 中兴通讯股份有限公司 一种随机接入信号的发射方法和装置及相关系统
CN101938441A (zh) * 2009-06-29 2011-01-05 中兴通讯股份有限公司 实现同步接入的同步序列发送、接收方法及相应的装置
CN102185685A (zh) * 2011-05-11 2011-09-14 京信通信系统(中国)有限公司 移动终端发射随机接入信号方法及系统
CN103200694A (zh) * 2012-01-09 2013-07-10 华为技术有限公司 一种通信系统中的随机接入方法及装置
CN103298136A (zh) * 2012-02-29 2013-09-11 华为技术有限公司 一种随机接入方法、终端、基站及系统
CN105635016A (zh) * 2014-10-29 2016-06-01 北京信威通信技术股份有限公司 支持单工数据采集业务的卫星移动通信系统、方法及装置
CN106301527A (zh) * 2015-06-09 2017-01-04 北京信威通信技术股份有限公司 卫星通信方法及装置
WO2017173051A1 (en) * 2016-03-30 2017-10-05 Idac Holdings, Inc. Method for initial access using signatures
CN110537332A (zh) * 2017-04-24 2019-12-03 高通股份有限公司 用于多频调物理随机接入信道传输的跳频配置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098218B (zh) * 2006-06-27 2011-11-30 中兴通讯股份有限公司 一种随机接入前导信号的发射机和接收机
CN102209052B (zh) * 2010-03-31 2015-06-24 中兴通讯股份有限公司 一种随机接入信号的频偏补偿方法和装置
WO2011132988A2 (en) * 2010-04-22 2011-10-27 Lg Electronics Inc. Method and apparatus for channel estimation for radio link between a base station and a relay station
US8582527B2 (en) * 2011-07-01 2013-11-12 Ofinno Technologies, Llc Hybrid automatic repeat request in multicarrier systems
US8369280B2 (en) * 2011-07-01 2013-02-05 Ofinno Techologies, LLC Control channels in multicarrier OFDM transmission
CN103716895B (zh) * 2012-09-29 2020-11-17 中兴通讯股份有限公司 物理随机接入信道的资源确定方法及装置
CA3167284A1 (en) * 2014-06-09 2015-12-17 Airvana Lp Radio access networks
US10389496B2 (en) * 2015-06-22 2019-08-20 Lg Electronics Inc. Apparatus and method for determining a time resource unit
CN106961709B (zh) * 2016-01-11 2021-08-03 中兴通讯股份有限公司 一种接入信号的生成方法及装置
WO2017218794A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Upload control signaling for new radio
US11516851B2 (en) * 2016-07-15 2022-11-29 Ntt Docomo, Inc. User terminal and radio communication method
EP3471498A4 (en) * 2017-06-01 2020-01-15 LG Electronics Inc. -1- METHOD FOR TRANSMITTING AND RECEIVING A RANDOM ACCESS CHANNEL IN A WIRELESS COMMUNICATION SYSTEM AND ASSOCIATED DEVICE

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888360A (zh) * 2009-05-15 2010-11-17 中兴通讯股份有限公司 一种随机接入信号的发射方法和装置及相关系统
CN101938441A (zh) * 2009-06-29 2011-01-05 中兴通讯股份有限公司 实现同步接入的同步序列发送、接收方法及相应的装置
CN102185685A (zh) * 2011-05-11 2011-09-14 京信通信系统(中国)有限公司 移动终端发射随机接入信号方法及系统
CN103200694A (zh) * 2012-01-09 2013-07-10 华为技术有限公司 一种通信系统中的随机接入方法及装置
CN103298136A (zh) * 2012-02-29 2013-09-11 华为技术有限公司 一种随机接入方法、终端、基站及系统
CN105635016A (zh) * 2014-10-29 2016-06-01 北京信威通信技术股份有限公司 支持单工数据采集业务的卫星移动通信系统、方法及装置
CN106301527A (zh) * 2015-06-09 2017-01-04 北京信威通信技术股份有限公司 卫星通信方法及装置
WO2017173051A1 (en) * 2016-03-30 2017-10-05 Idac Holdings, Inc. Method for initial access using signatures
CN110537332A (zh) * 2017-04-24 2019-12-03 高通股份有限公司 用于多频调物理随机接入信道传输的跳频配置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"TDoc_List_Meeting_RAN1#88-Bis".《3GPP tsg_ran\WG1_RL1》.2018, *
A Hybrid Random Access Method for Smart Meterson LTE Networks;Chalakorn Karupongsiri;《IEEE XPLORE》;20161228;全文 *
基于大规模M2M随机接入的上行资源分配方法研究;伍亚丽;《中国优秀硕士学位论文全文数据库(电子期刊)信息科技辑》;20170424;全文 *

Also Published As

Publication number Publication date
CN111988862A (zh) 2020-11-24
WO2020233224A1 (zh) 2020-11-26
EP3975654A1 (en) 2022-03-30
US20220248470A1 (en) 2022-08-04
EP3975654A4 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
CN108282895B (zh) 一种随机接入方法及终端
CN107295674B (zh) 一种资源分配方法、网络设备及终端设备
RU2735548C1 (ru) Способ передачи сигналов, терминал и сетевое устройство
KR20180014036A (ko) 주파수 도메인 자원들의 구성을 위한 방법 및 디바이스
CN107733829B (zh) 一种发送和检测同步信号的方法、设备
EP3813455A1 (en) Resource allocation method, node, and storage medium
CN109644432A (zh) 用于随机接入的方法和装置
CN112449420A (zh) 一种数据传输方法及装置
CN111988862B (zh) 随机接入信道的选择、配置方法、接入设备及网络设备
CN110300459B (zh) 一种信号传输方法及网络设备
CN109644347A (zh) 传输控制信道的方法、网络设备和终端设备
CN107155409A (zh) 一种信号发送方法及设备
CN111480376A (zh) 数据传输方法及装置
CN109644328B (zh) 车联网中传输资源的获取方法及终端
US20220150957A1 (en) Method and apparatus for configuring synchronization signal and physical broadcast channel block, system and storage medium
CN111726770A (zh) 通信方法及其装置
EP3484220B1 (en) Resource indication method and related device
CN109691145B (zh) 车联网中的数据传输方法及终端
CN107079418B (zh) 数据帧的传输方法和设备
CN110710289A (zh) 车联网中的数据发送方法及终端
US11974326B2 (en) Methods for selecting and configuring random access channel, access device and network device
CN113890715A (zh) 一种信道状态信息参考信号的分配方法及系统
CN111107647A (zh) 无线通信的方法、终端设备和网络设备
CN110062473B (zh) 随机接入方法、终端设备和网络设备
CN114650599A (zh) 信息传输方法、装置、iab节点及网络设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant