WO2024067189A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024067189A1
WO2024067189A1 PCT/CN2023/119303 CN2023119303W WO2024067189A1 WO 2024067189 A1 WO2024067189 A1 WO 2024067189A1 CN 2023119303 W CN2023119303 W CN 2023119303W WO 2024067189 A1 WO2024067189 A1 WO 2024067189A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback
interval
resource
time unit
time
Prior art date
Application number
PCT/CN2023/119303
Other languages
English (en)
French (fr)
Inventor
何泓利
李雪茹
王碧钗
焦瑞晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067189A1 publication Critical patent/WO2024067189A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and device.
  • SL Sidelink
  • LTE long-term evolution
  • 5G fifth generation new radio
  • NR new radio
  • D2D device-to-device
  • SL communication can achieve shorter latency, higher spatial multiplexing efficiency and lower core network load, and plays a huge role in scenarios with relatively high local communication requirements, such as vehicle to everything (V2X), smart home, short-distance transmission, virtual/augmented reality (VR/AR), and smart factory.
  • V2X vehicle to everything
  • smart home smart home
  • short-distance transmission VR/augmented reality
  • VR/AR virtual/augmented reality
  • UE2 can send feedback information to UE1 to indicate to UE1 whether UE2 has successfully received the SL data.
  • UE1 and UE2 need to determine the location of the resources that can be used to send the feedback information, for example, to determine the index of the physical resource block (PRB) that can be used to send the feedback information.
  • the parameters used to determine the index of the PRB include the minimum feedback interval, which refers to the minimum time interval between the time slot used to send the feedback information and the time slot where the SL data is located.
  • a SL resource pool is configured with a minimum feedback interval, and all UEs using the SL resource pool determine the index of the PRB used to send feedback information according to the minimum feedback interval.
  • the problem with this is that different services may have different requirements for latency. Some services with higher latency requirements expect the minimum feedback interval to be as small as possible, while some services with lower latency requirements expect the minimum feedback interval to be larger. If an SL resource pool is fixed with a minimum feedback interval, it will not be able to meet the needs of different services. For example, if the minimum feedback interval is small, the UEs that perform services with lower latency requirements will also need to communicate at a smaller minimum time interval, which will increase the cost of these UEs; and if the minimum feedback interval is large, it will not be able to meet the latency requirements of services with higher latency requirements.
  • the embodiments of the present application provide a communication method and apparatus for enabling a minimum feedback interval to meet the latency requirements of different services.
  • a first communication method which can be executed by a terminal device, or by other devices including terminal device functions, or by a chip system (or, chip) or other functional module, the chip system or functional module can realize the function of the terminal device, the chip system or functional module is, for example, set in the terminal device.
  • the terminal device is, for example, called a first terminal device.
  • the method includes: determining configuration information, the configuration information is used to configure a first resource pool and a plurality of feedback intervals associated with the first resource pool, the first resource pool is used for the first terminal device to communicate with other terminal devices (for example, for the first terminal device to send and or receive signals); receiving first side data at a first resource, the time domain resource of the first resource including a first time unit in the first resource pool; determining a target feedback interval, the target feedback interval being one of the plurality of feedback intervals; determining a first feedback resource unit according to the position of the first resource and the target feedback interval, the first feedback resource unit is located on a second time unit, and the interval between the second time unit and the first time unit is greater than or equal to the target feedback interval.
  • multiple feedback intervals can be associated with the first resource pool, and two terminal devices can select a suitable feedback interval (the selected feedback interval is referred to as the target feedback interval) from them when communicating.
  • the target feedback interval can meet the capabilities and latency requirements of the two terminal devices.
  • the terminal device can select a feedback interval with a smaller value as the target feedback interval to meet the latency requirement of the service; if the service performed by the terminal device has a low latency requirement, the terminal device can select a feedback interval with a smaller value as the target feedback interval to meet the latency requirement of the service.
  • the terminal device can select a feedback interval with a larger value as the target feedback interval, which can not only meet the latency requirements of the service, but also will not have too high requirements on the capabilities of the terminal device, and can reduce the cost of the terminal device. It can be seen that by adopting the solution of the embodiment of the present application, the latency requirements of different services can be met.
  • the mapping relationship between data transmission resources and feedback resources is designed by comprehensively considering multiple feedback intervals associated with the resource pool, so that after introducing multiple associated feedback intervals on a resource pool, it can also ensure that the feedback resources corresponding to different data transmission resources are also different, avoiding conflicts in feedback resources.
  • the method further includes: sending feedback information of the first side data in the first feedback resource unit.
  • the first terminal device can use the first feedback resource unit to send feedback information of the first side data, and the feedback information can indicate whether the first side data is received successfully or failed.
  • the method further includes: determining the larger value of the first feedback interval and the second feedback interval as the target feedback interval, or determining the first feedback interval as the target feedback interval, wherein the first feedback interval is a feedback interval supported by the first terminal device, and the first feedback interval belongs to the multiple feedback intervals, and the second feedback interval is a feedback interval supported by the second terminal device, and the second feedback interval belongs to the multiple feedback intervals.
  • the first terminal device and the second terminal device determine the larger value of the first feedback interval and the second feedback interval, which is equivalent to determining the minimum feedback interval supported by both terminal devices as the target feedback interval among the multiple feedback intervals supported by the first resource pool. This makes the target feedback interval both meet the capabilities of the two terminal devices and minimize the transmission delay.
  • the first device and the second device determine the target feedback interval according to the feedback interval supported by the first device.
  • the first feedback interval is the feedback interval with the smallest value among A feedback intervals supported by the first terminal device
  • the second feedback interval is the feedback interval with the smallest value among B feedback intervals supported by the second terminal device
  • the A feedback intervals belong to the multiple feedback intervals
  • the B feedback intervals belong to the multiple feedback intervals
  • a and B are both positive integers.
  • the first terminal device can support A feedback intervals among the multiple feedback intervals, and the second terminal device can support B feedback intervals among the multiple feedback intervals, then the feedback interval with the smallest value can be determined from the A feedback intervals, that is, the first feedback interval, and the feedback interval with the smallest value can be determined from the B feedback intervals, that is, the second feedback interval, so that the smallest feedback interval supported by both terminal devices can be finally determined.
  • the method further includes: sending first information to the second terminal device, the first information being used to indicate the target feedback interval.
  • the first terminal device determines the target feedback interval and sends the first information to the second terminal device, the first information being used to indicate the target feedback interval.
  • the second terminal device can determine the target feedback interval based on the first information, without the second terminal device having to perform more processes for determining the target feedback interval. This not only makes the target feedback intervals determined by the two terminal devices consistent, but also reduces the workload of the second terminal device.
  • the method further includes: receiving first information from a second terminal device, the first information being used to indicate the target feedback interval; determining the target feedback interval, including: determining the target feedback interval according to the first information.
  • the second terminal device determines the target feedback interval and sends first information to the first terminal device, the first information indicating the target feedback interval.
  • the first terminal device can determine the target feedback interval based on the first information, without the first terminal device having to perform more processes for determining the target feedback interval. This not only makes the target feedback intervals determined by the two terminal devices consistent, but also reduces the workload of the first terminal device.
  • the method also includes: before receiving the first sidelink data, receiving second information from a second terminal device, or sending second information to the second terminal device, wherein the second information includes an association relationship between X feedback intervals and X sidelink HARQ process identifiers, or includes an association relationship between X feedback intervals and X priorities, or includes an association relationship between X feedback intervals and X transmission resources, wherein the X feedback intervals included in the second information belong to the multiple feedback intervals, and X is a positive integer.
  • the method further includes: receiving sideline control information, the sideline control information being used to schedule first sideline data; determining a target feedback interval, including: the sideline control information including information of a first sideline HARQ process identifier, determining that the first sideline HARQ process identifier is associated with a third feedback interval based on the second information, and determining that the third feedback interval is the target feedback interval; or, the sideline control information including information of a first priority, determining that the first priority is associated with a third feedback interval based on the second information, and determining that the third feedback interval is the target feedback interval; or, the sideline control information including information of the first resource, determining that the first resource is associated with a third feedback interval based on the second information, and determining that the third feedback interval is the target feedback interval.
  • the sideline control information is used to schedule the first sideline data, and it can also be understood that the sideline control information is associated with the first sideline data.
  • the sideline control information includes information of the first resource, and it can be understood that the sideline control information includes information of a third resource, and the third resource includes one or more resources, and the one or more resources include the first resource, and the third resource excluding the first resource
  • the other resources may be resources reserved by the second terminal device for retransmission of the second terminal device.
  • the second information may include an association relationship between the first resource and the third feedback interval, and the first terminal device may determine the third feedback interval based on the first resource; or, the second information may include an association relationship between the third resource and the third feedback interval, wherein the third resource is a periodic resource, and the first resource is a resource of the third resource within a period, so it can also be determined that the first resource is associated with the third feedback interval.
  • the process of determining the target feedback interval is more flexible. For example, when executing different services or transmitting different sidelink data, two terminal devices can select different feedback intervals as the target feedback interval, so that the selected target feedback interval is more compatible with the current scenario. Moreover, this method can be considered as implicitly indicating the target feedback interval, so there is no need to indicate the target feedback interval through additional explicit information, which can reduce signaling overhead.
  • the method further includes: receiving sideline control information, the sideline control information is used to schedule the first sideline data, and the sideline control information is also used to indicate the target feedback interval; determining the target feedback interval includes: determining the target feedback interval according to the sideline control information. In this way, the process of determining the target feedback interval is more flexible. For example, when executing different services or transmitting different sideline data, the terminal device can select different feedback intervals as the target feedback interval, so that the selected target feedback interval is more compatible with the current scenario.
  • the method further includes: sending first capability information to the second terminal device, and/or receiving second capability information from the second terminal device, wherein the first capability information indicates at least one feedback interval among the multiple feedback intervals, and the second capability information indicates at least one feedback interval among the multiple feedback intervals.
  • the two terminal devices can send their respective capability information to each other, so that the two terminal devices can both know the feedback intervals supported by themselves and the other terminal device, thereby facilitating the two terminal devices to determine the target feedback interval.
  • the configuration information includes information about a feedback cycle
  • the method further includes: determining at least one time unit in the first resource pool according to the feedback cycle, the at least one time unit including a feedback resource unit for transmitting feedback information; determining the second time unit from the at least one time unit according to the first time unit and the target feedback interval, the second time unit being the first time unit in the at least one time unit that is located after the first time unit and whose interval with the first time unit is greater than or equal to the target feedback interval.
  • the first terminal device wants to send feedback information, it must determine the time unit for sending the feedback information.
  • the first terminal device can determine the second time unit for sending feedback information based on the feedback cycle, the first time unit, and the target feedback interval, which can match the actual capabilities and requirements of the terminal device.
  • the method further includes: determining N 1 time units associated with the second time unit according to the second time unit and the multiple feedback intervals, wherein when the third time unit is located before the second time unit, the interval between the third time unit and the second time unit is greater than or equal to the fourth feedback interval, and the interval between the third time unit and the second time unit is less than the fourth feedback interval plus the feedback cycle, the N 1 time units include the third time unit, wherein the fourth feedback interval is any one of the multiple feedback intervals, and N 1 is a positive integer.
  • the N 1 time units associated with the second time unit refer to the side data transmitted on these N 1 time units, and its feedback information can be sent on the second time unit.
  • the embodiment of the present application only takes the first terminal device and the second terminal device as an example to describe the process of determining the feedback resource unit, there may be other terminal devices on the first resource pool.
  • these terminal devices may use a feedback interval different from the target feedback interval determined by the first terminal device and the second terminal device for feedback when transmitting data and corresponding feedback information, for example, using a feedback interval other than the target feedback interval in the multiple feedback intervals associated with the first resource pool.
  • the feedback resource unit on the second time unit can be used by a terminal device of any feedback interval, so when determining the time unit associated with the second time unit, not only the target feedback interval between the first terminal device and the second terminal device needs to be considered, but also other feedback intervals associated with the first resource pool need to be considered. Therefore, the first terminal device can determine the time unit associated with the second time unit based on multiple feedback intervals associated with the first resource pool.
  • the second time unit is associated with N1 time units, which can be understood as the second time unit is associated with N1 time units according to the first relationship. Further, some time units can be excluded from the N1 time units to determine the remaining N3 time units, N3 is a positive integer less than or equal to N1 , and the N3 time units are associated with the second time unit according to the second relationship.
  • N1 time units include the fourth time unit
  • the second time unit is the first time unit in the at least one time unit (including the time unit of the feedback resource unit for transmitting feedback information) that is located after the fourth time unit and the interval with the fourth time unit is greater than or equal to the fourth feedback interval
  • N3 time units include the fourth time unit, wherein the fourth feedback interval is any one of the multiple feedback intervals. That is, in some cases, due to reasons such as limited time unit numbers, the number of time units actually associated with the second time unit may be less than N1 .
  • the time unit i and the frequency domain unit j are associated with M 1 feedback resource units.
  • the feedback resource unit in the element is [(i+j ⁇ N 1 ) ⁇ C 1 , (i+j ⁇ N 1 +1) ⁇ C 1 -1], where: D represents the number of frequency domain units included in the first resource pool, the M1 feedback resource units are the feedback resource units on the second time unit (or, M1 represents the number of feedback resource units on the second time unit), M1 is a positive integer greater than or equal to N1 , and D is a positive integer.
  • the M1 feedback resource units can be configured by the configuration information.
  • the first terminal device can determine the feedback resource units associated with the first time unit and the frequency domain unit used to transmit the first side data according to the above formula.
  • the configuration information of the resource pool can make the condition that M1 is an integer multiple of D ⁇ N1 hold true, so that C1 is a positive integer. If there is a special case where M1 is not an integer multiple of D ⁇ N1 , C1 can also be rounded up or down accordingly.
  • any resource corresponding to any time unit and frequency domain unit in the N1 time units can be mapped to its corresponding feedback resource unit on the second time unit, and the feedback resource units mapped to resources corresponding to different time units or frequency domain units are different. Therefore, even if multiple feedback intervals are configured on the first resource pool, as long as the time units or frequency domain units corresponding to different SL data are different, the feedback resource units corresponding to them are also different, that is, there will be no conflict of feedback resources.
  • time unit i and frequency domain unit j are associated with feedback resource units [(i+j ⁇ N 1 ) ⁇ C 1 , (i+j ⁇ N 1 +1) ⁇ C 1 -1] among the M 1 feedback resource units, where:
  • the above corresponding method can also be referred to to determine a feedback resource unit associated with a time unit and a frequency domain unit.
  • the time unit i and the frequency domain unit j are associated with the feedback resource units [(i+j ⁇ N 3 ) ⁇ C 3 , (i+j ⁇ N 3 +1) ⁇ C 3 -1] among the M 1 feedback resource units, where:
  • the configuration information of the resource pool can make the condition that M1 is an integer multiple of D ⁇ N3 hold true, so that C3 is a positive integer. If there is a special case where M1 is not an integer multiple of D ⁇ N3 , C3 can also be rounded up or down accordingly. In this way, when the number of time units actually associated with the second time unit is less than N1 , it can be considered to divide the M1 feedback resource units equally into the time units and frequency domain units in the N3 time units.
  • the method further includes: determining N 2 time units associated with the second time unit according to the second time unit and the target feedback interval, wherein when the third time unit is located before the second time unit, the interval between the third time unit and the second time unit is greater than or equal to the target feedback interval, and the interval between the third time unit and the second time unit is less than the target feedback interval plus the feedback cycle, the N 2 time units include the third time unit, and N 2 is a positive integer.
  • the second time unit includes multiple feedback resource unit sets, the multiple feedback resource unit sets correspond to the multiple feedback intervals one-to-one, each feedback resource unit set includes one or more feedback resource units, the M 2 feedback resource units belong to the feedback resource unit set associated with the target feedback interval on the second time unit, and the configuration information includes the correspondence between the multiple feedback resource unit sets and the multiple feedback intervals. That is, the configuration information can configure the correspondence between multiple feedback resource unit sets (e.g., an index set of feedback resource units) and multiple feedback intervals, for example, the feedback resource unit set corresponds to the feedback interval one-to-one.
  • Each feedback resource unit set may include one or more feedback resource units (for example, including the index of one or more feedback resource units), and different feedback resource unit sets may have no intersection.
  • N 2 can be a positive integer equal to the feedback period.
  • the above-mentioned second time unit is associated with N2 time units, which can be understood as the second time unit and the N2 time units are associated according to a third relationship. Further, some time units can be excluded from the above-mentioned N2 time units to determine the remaining N4 time units, N4 is a positive integer less than or equal to N2 , and the N4 time units and the second time unit are associated according to a fourth relationship.
  • the N2 time units include the fourth time unit
  • the second time unit is the first time unit in the at least one time unit (including the time unit of the feedback resource unit for transmitting feedback information) that is located after the fourth time unit and the interval between the second time unit and the fourth time unit is greater than or equal to the target feedback interval
  • N 4 time units are equal to N 2
  • the N 4 time units include the fourth time unit. That is, in some cases, due to the limited number of time units, the number of time units actually associated with the second time unit may be less than N 2 .
  • the time unit i and the frequency domain unit j are associated with the feedback resource unit [(i+j ⁇ N 2 ) ⁇ C 2 , (i+j ⁇ N 2 +1) ⁇ C 2 -1] among the M 2 feedback resource units, where: D represents the number of frequency domain units contained in the first resource pool, the M2 feedback resource units are the feedback resource units associated with the target feedback interval on the second time unit (or, M2 represents the number of feedback resource units associated with the target feedback interval on the second time unit), M2 is a positive integer greater than or equal to N2 , and D is a positive integer.
  • the first terminal device can determine the feedback resource units associated with the first time unit and the frequency domain unit used to transmit the first side data according to the above formula.
  • the configuration information of the resource pool can make the condition that M2 is an integer multiple of D ⁇ N2 hold true, so that C2 is a positive integer. If there is a special case where M2 is not an integer multiple of D ⁇ N2 , C2 can also be rounded up or down accordingly.
  • the resources corresponding to any time unit and frequency domain unit in the N2 time units can be mapped to their corresponding feedback resource units on the second time unit, and the feedback resource units mapped to the resources corresponding to different time units or frequency domain units are different. Therefore, for the same feedback interval, as long as the time units or frequency domain units corresponding to different SL data are different, their corresponding feedback resource units are also different, that is, there will be no conflict of feedback resources.
  • the time unit i and the frequency domain unit j are associated with the feedback resource unit [(i+j ⁇ N 2 ) ⁇ C 2 , (i+j ⁇ N 2 +1) ⁇ C 2 -1] among the M 2 feedback resource units, where:
  • the above corresponding method can also be referred to to determine a feedback resource unit associated with a time unit and a frequency domain unit.
  • the time unit i and the frequency domain unit j are associated with the feedback resource unit [(i+j ⁇ N 4 ) ⁇ C 4 , (i+j ⁇ N 4 +1) ⁇ C 4 -1] among the M 2 feedback resource units, where:
  • the configuration information of the resource pool can make the condition that M 2 is an integer multiple of D ⁇ N 4 hold true, so that C 4 is a positive integer. If there is a special case where M 2 is not an integer multiple of D ⁇ N 4 , C 4 can also be rounded up or down accordingly. In this way, when the number of time units actually associated with the second time unit is less than N 2 , it can be considered to divide the M 2 feedback resource units equally into the time units and frequency domain units in the N 4 time units.
  • the method further includes: determining one or more feedback resource units associated with the time unit and the frequency domain unit included in the first resource on the second time unit; and determining the first feedback resource unit from the one or more feedback resource units.
  • the first terminal device can determine one or more feedback resource units, and the first terminal device can finally determine the first feedback resource unit from the one or more feedback resource units to send feedback information.
  • the time unit includes a time slot
  • the frequency domain unit includes a subchannel
  • the feedback resource unit includes a PRB
  • the first resource includes one time slot or multiple time slots in the time domain and one or more subchannels in the frequency domain.
  • a second communication method which can be executed by a terminal device, or by other devices including terminal device functions, or by a chip system (or, chip) or other functional module, the chip system or functional module can realize the function of the terminal device, the chip system or functional module is, for example, set in the terminal device.
  • the terminal device is, for example, called a second terminal device.
  • the method includes: determining configuration information, the configuration information is used to configure a first resource pool and a plurality of feedback intervals associated with the first resource pool, the first resource pool is used for the second terminal device to communicate with other terminal devices (for example, for the second terminal device to send and or receive signals); sending first side data on a first resource, wherein a first time unit in the first resource pool includes a time domain resource of the first resource; determining a target feedback interval, the target feedback interval is one of the multiple feedback intervals; determining a first feedback resource unit according to the position of the first resource and the target feedback interval, the first feedback resource unit is located on a second time unit, and the interval between the second time unit and the first time unit is greater than or equal to the target feedback interval.
  • the method further includes: receiving, at the first feedback resource unit, a feedback signal of the first sidelink data; Feedback information.
  • the method also includes: determining the larger value of the first feedback interval and the second feedback interval as the target feedback interval, or determining the first feedback interval as the target feedback interval, wherein the first feedback interval is a feedback interval supported by the first terminal device, and the first feedback interval belongs to the multiple feedback intervals, and the second feedback interval is a feedback interval supported by the second terminal device, and the second feedback interval belongs to the multiple feedback intervals.
  • the first feedback interval is the feedback interval with the smallest value among A feedback intervals supported by the first terminal device
  • the second feedback interval is the feedback interval with the smallest value among B feedback intervals supported by the second terminal device
  • the A feedback intervals belong to the multiple feedback intervals
  • the B feedback intervals belong to the multiple feedback intervals
  • a and B are both positive integers.
  • the method further includes: sending first information to a first terminal device, where the first information is used to indicate the target feedback interval.
  • the method further includes: receiving first information from a first terminal device; and determining a target feedback interval, including: determining the target feedback interval according to the first information.
  • the method further includes: before sending the first sidelink data, sending second information to the first terminal device, or receiving second information from the first terminal device, wherein the second information includes an association relationship between X feedback intervals and X sidelink HARQ processes, or includes an association relationship between X feedback intervals and X priorities, or includes an association relationship between X feedback intervals and X transmission resources, wherein the X feedback intervals included in the second information belong to the multiple feedback intervals, and X is a positive integer.
  • the method further includes: sending the sidelink control information, the sidelink control information is used to schedule the first sidelink data.
  • the sidelink control information includes information about a first sidelink HARQ process identifier, the first sidelink HARQ process identifier is used by the first terminal device to determine the target feedback interval according to the second information (or, the sidelink control information includes information about the first sidelink HARQ process identifier, the target feedback interval is the feedback interval associated with the first HARQ process identifier in the second information); or, the sidelink control information includes information about a first priority, the first priority information is used by the first terminal device to determine the target feedback interval according to the second information (or, the sidelink control information includes information about a first priority, the target feedback interval is the feedback interval associated with the first priority in the second information); or, the sidelink control information includes information about the first resource, the first resource information is used by the first terminal device to determine the target feedback interval according to the second information (or, the sidelink control information includes information about a first resource, the target feedback interval according
  • the sidelink control information is used to schedule the first sidelink data, which can also be understood as the sidelink control information being associated with the first sidelink data.
  • the side control information includes information about the first resource, which can be understood as including information about the third resource, the third resource includes one or more resources, the one or more resources include the first resource, and the other resources in the third resource except the first resource can be resources reserved by the second terminal device for the retransmission of the second terminal device.
  • the second information may include the association relationship between the first resource and the third feedback interval, and the second terminal device can determine the third feedback interval based on the first resource; or, the second information may also include the association relationship between the third resource and the third feedback interval, wherein the third resource is a periodic resource, and the first resource is a resource of the third resource within a period, so it can also be determined that the first resource is associated with the third feedback interval.
  • the method further includes: sending sideline control information, where the sideline control information is used to schedule the first sideline data, and the sideline control information is also used to indicate the target feedback interval.
  • the method further includes: sending second capability information to the first terminal device, and/or receiving first capability information from the first terminal device, wherein the first capability information indicates at least one feedback interval and the second capability information indicates at least one feedback interval.
  • the configuration information includes information about the feedback cycle
  • the method further includes: determining at least one time unit in the first resource pool according to the feedback cycle, the at least one time unit including a feedback resource unit for transmitting feedback information; determining the second time unit from the at least one time unit according to the first time unit and the target feedback interval, the second time unit being the first time unit in the at least one time unit that is located after the first time unit and has an interval with the first time unit greater than or equal to the target feedback interval.
  • the method further includes: determining N 1 time units associated with the second time unit according to the second time unit and the multiple feedback intervals, wherein when a third time unit is located before the second time unit, the interval between the third time unit and the second time unit is greater than or equal to a fourth feedback interval, and the interval between the third time unit and the second time unit is less than the fourth feedback interval plus the feedback cycle, the N 1 time units include the third time unit.
  • An interval unit, wherein the fourth feedback interval is any one of the multiple feedback intervals, and N1 is a positive integer.
  • the second time unit is associated with N1 time units, which can be understood as the second time unit is associated with N1 time units according to the first relationship. Further, some time units can be excluded from the N1 time units to determine the remaining N3 time units, N3 is a positive integer less than or equal to N1 , and the N3 time units are associated with the second time unit according to the second relationship.
  • N1 time units include the fourth time unit
  • the second time unit is the first time unit in the at least one time unit (including the time unit of the feedback resource unit for transmitting feedback information) that is located after the fourth time unit and the interval with the fourth time unit is greater than or equal to the fourth feedback interval
  • N3 time units include the fourth time unit, wherein the fourth feedback interval is any one of the multiple feedback intervals. That is, in some cases, due to reasons such as limited time unit numbers, the number of time units actually associated with the second time unit will be less than N1 .
  • the time unit i and the frequency domain unit j are associated with the feedback resource units [(i+j ⁇ N 1 ) ⁇ C 1 , (i+j ⁇ N 1 +1) ⁇ C 1 -1] in the M 1 feedback resource units, where: D represents the number of frequency domain units contained in the second resource pool, the M1 feedback resource units are feedback resource units on the second time unit (or, M1 represents the number of feedback resource units on the second time unit), M1 is a positive integer greater than or equal to N1 , and D is a positive integer.
  • time unit i and frequency domain unit j are associated with feedback resource units [(i+j ⁇ N 1 ) ⁇ C 1 , (i+j ⁇ N 1 +1) ⁇ C 1 -1] among the M 1 feedback resource units, where:
  • the time unit i and the frequency domain unit j are associated with the feedback resource units [(i+j ⁇ N 3 ) ⁇ C 3 , (i+j ⁇ N 3 +1) ⁇ C 3 -1] among the M 1 feedback resource units, where:
  • the method further includes: determining N2 time units associated with the second time unit according to the second time unit and the target feedback interval, wherein when a third time unit is located before the second time unit, the interval between the third time unit and the second time unit is greater than or equal to the target feedback interval, and the interval between the third time unit and the second time unit is less than the target feedback interval plus the feedback cycle, the N2 time units include the third time unit, and N2 is a positive integer.
  • N2 can be a positive integer equal to the feedback cycle.
  • the above-mentioned second time unit is associated with N2 time units, which can be understood as the second time unit is associated with N2 time units according to the third relationship. Further, some time units can be excluded from the above-mentioned N2 time units to determine the remaining N4 time units, N4 is a positive integer less than or equal to N2 , and the N4 time units and the second time unit are associated according to the fourth relationship.
  • the N2 time units include the fourth time unit
  • the second time unit is the first time unit in the at least one time unit (including the time unit of the feedback resource unit for transmitting feedback information) that is located after the fourth time unit and the interval with the fourth time unit is greater than or equal to the target feedback interval
  • the N4 time units include the fourth time unit. That is, in some cases, due to reasons such as limited time unit numbers, the number of time units actually associated with the second time unit will be less than N2 .
  • the time unit i and the frequency domain unit j are associated with the feedback resource unit [(i+j ⁇ N 2 ) ⁇ C 2 , (i+j ⁇ N 2 +1) ⁇ C 2 -1] among the M 2 feedback resource units, where: D represents the number of frequency domain units contained in the first resource pool, the M2 feedback resource units are the feedback resource units associated with the target feedback interval on the second time unit (or, M2 represents the number of feedback resource units associated with the target feedback interval on the second time unit), M2 is a positive integer greater than or equal to N2 , and D is a positive integer.
  • the time unit i and the frequency domain unit j are associated with the feedback resource unit [(i+j ⁇ N 2 ) ⁇ C 2 , (i+j ⁇ N 2 +1) ⁇ C 2 -1] among the M 2 feedback resource units, where:
  • the time unit i and the frequency domain unit j are associated with the feedback resource unit [(i+j ⁇ N 4 ) ⁇ C 4 , (i+j ⁇ N 4 +1) ⁇ C 4 -1] among the M 2 feedback resource units, where:
  • the second time unit includes multiple feedback resource unit sets, the multiple feedback resource unit sets correspond to the multiple feedback intervals one by one, each feedback resource unit set includes one or more feedback resource units, and the M 2 feedback resource units belong to a feedback resource unit set associated with the target feedback interval on the second time unit, and the configuration information includes a correspondence between the multiple feedback resource unit sets and the multiple feedback intervals.
  • the method further includes: determining one or more feedback resource units associated with the time units and frequency domain units included in the first resource on the second time unit based on the time units and frequency domain units included in the first resource; and determining the first feedback resource unit from the one or more feedback resource units.
  • the time unit includes a time slot
  • the frequency domain unit includes a subchannel
  • the feedback resource unit includes a PRB
  • the first resource includes one time slot or multiple time slots in the time domain and one or more subchannels in the frequency domain.
  • a communication device may be the first terminal device described in any one of the first aspect to the second aspect.
  • the communication device has the function of the first terminal device.
  • the communication device is, for example, the first terminal device, or a larger device including the first terminal device, or a functional module in the first terminal device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also referred to as a processing module) and a transceiver unit (sometimes also referred to as a transceiver module).
  • the transceiver unit can implement a sending function and a receiving function.
  • the transceiver unit When the transceiver unit implements the sending function, it can be called a sending unit (sometimes also referred to as a sending module), and when the transceiver unit implements the receiving function, it can be called a receiving unit (sometimes also referred to as a receiving module).
  • the sending unit and the receiving unit can be the same functional module, which is called a transceiver unit, and the functional module can implement the sending function and the receiving function; or, the sending unit and the receiving unit can be different functional modules, and the transceiver unit is a general term for these functional modules.
  • the processing unit is used to determine configuration information, wherein the configuration information is used to configure a first resource pool and multiple feedback intervals associated with the first resource pool, and the first resource pool is used for the first terminal device to send and or receive signals; the transceiver unit (or, the receiving unit) is used to receive first side data at a first resource, and the time domain resources of the first resource include a first time unit in the first resource pool; the processing unit is also used to determine a target feedback interval, and the target feedback interval is one of the multiple feedback intervals; the processing unit is also used to determine a first feedback resource unit based on the position of the first resource and the target feedback interval, the first feedback resource unit is located on a second time unit, and the interval between the second time unit and the first time unit is greater than or equal to the target feedback interval.
  • the communication device also includes a storage unit (sometimes also referred to as a storage module), and the processing unit is used to couple with the storage unit and execute the program or instructions in the storage unit, so that the communication device can perform the function of the first terminal device described in any one of the first to second aspects above.
  • a storage unit sometimes also referred to as a storage module
  • a communication device may be the second terminal device described in any one of the first to second aspects.
  • the communication device has the functions of the second terminal device.
  • the communication device is, for example, a second terminal device, or a larger device including a second terminal device, or a functional module in the second terminal device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also referred to as a processing module) and a transceiver unit (sometimes also referred to as a transceiver module).
  • a processing unit sometimes also referred to as a processing module
  • transceiver unit sometimes also referred to as a transceiver module
  • the processing unit is used to determine configuration information, wherein the configuration information is used to configure a first resource pool and multiple feedback intervals associated with the first resource pool, and the first resource pool is used for the second terminal device to send and or receive signals;
  • the transceiver unit (or, the sending unit) is used to send first side data in the first resource, wherein the first time unit in the first resource pool includes the time domain resources of the first resource;
  • the processing unit is also used to determine a target feedback interval, and the target feedback interval is one of the multiple feedback intervals;
  • the processing unit is also used to determine a first feedback resource unit according to the position of the first resource and the target feedback interval, the first feedback resource unit is located on the second time unit, and the interval between the second time unit and the first time unit is greater than or equal to the target feedback interval.
  • the communication device also includes a storage unit (sometimes also referred to as a storage module), and the processing unit is used to couple with the storage unit and execute the program or instructions in the storage unit, so that the communication device can perform the function of the second terminal device described in any one of the first aspect to the second aspect above.
  • a storage unit sometimes also referred to as a storage module
  • a communication device which may be a remote terminal device, or a chip or chip system used in a remote terminal device.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store a computer program, and the processor is coupled to the memory and the communication interface.
  • the processor reads the computer program or instruction, the communication device executes the method executed by the first terminal device in the above aspects.
  • a communication device which may be a relay terminal device, or a chip or chip system used in a relay terminal device.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store a computer program, and the processor is coupled to the memory and the communication interface.
  • the processor reads the computer program or instruction, the communication device executes the method executed by the second terminal device in the above aspects.
  • a communication system comprising a remote terminal device and a relay terminal device, wherein the first terminal device is used to execute the method executed by the first terminal device as described in any one of the first to second aspects, and the second terminal device is used to execute the method executed by the second terminal device as described in any one of the first to second aspects.
  • the first terminal device can be implemented by the communication device described in the third or fifth aspect; the second terminal device can be implemented by the communication device described in the fourth or sixth aspect.
  • a computer-readable storage medium is provided, wherein the computer-readable storage medium is used to store a computer program or instruction, and when the computer-readable storage medium is executed, the method executed by the first terminal device or the second terminal device in the above aspects is implemented.
  • a computer program product comprising instructions, which, when executed on a computer, enables the methods described in the above aspects to be implemented.
  • a chip system comprising a processor and an interface, wherein the processor is used to call and execute instructions from the interface so that the chip system implements the above-mentioned methods.
  • FIG. 1 is a schematic diagram of a format of a time slot including a PSFCH
  • FIG2 is a schematic diagram showing the position of a time slot including a PSFCH
  • FIG3 is a schematic diagram of a network architecture used in an embodiment of the present application.
  • FIG4 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG5A is a schematic diagram of the position of a time unit for transmitting feedback information in an embodiment of the present application
  • FIG5B is a schematic diagram showing that the number of time units associated with the second time unit may be less than or equal to N 1 in an embodiment of the present application;
  • 6A and 6B are two schematic diagrams of determining a feedback resource unit in an embodiment of the present application.
  • FIG7 is a schematic diagram of a device provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of another device provided in an embodiment of the present application.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character "/” generally indicates that the previous and next associated objects are in an “or” relationship.
  • A/B means: A or B.
  • “At least one of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • the terminal device is a device with wireless transceiver functions, which can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above device (for example, a communication module, a modem, or a chip system, etc.).
  • the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios, such as but not limited to the following scenarios: cellular communications, D2D, V2X, machine-to-machine/machine-type communications (machine-to-machine/machine-type communications, M2M/MTC), Internet of Things (IoT), VR, AR, industrial control (industrial control), self driving, remote medical, smart grid (smart grid), smart furniture, smart office, smart wearable, smart transportation, smart city (smart city), drones, robots and other scenarios.
  • the terminal device is sometimes It may be called UE, terminal, customer premise equipment (CPE), access station, UE station, remote station, wireless communication equipment, or user device, etc.
  • CPE customer premise equipment
  • the terminal device is described by taking UE as an example in the embodiments of the present application.
  • the network equipment in the embodiments of the present application includes access network equipment, and/or core network equipment.
  • the access network equipment is a device with wireless transceiver function, which is used to communicate with the terminal device.
  • the access network equipment includes but is not limited to base stations (base transceiver station (BTS), Node B, eNodeB/eNB, or gNodeB/gNB), transmission reception points (TRP), base stations of subsequent evolution of the third generation partnership project (3GPP), access nodes in wireless fidelity (Wi-Fi) systems, wireless relay nodes, wireless backhaul nodes, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, etc.
  • the base station can include one or more co-station or non-co-station transmission and receiving points.
  • the access network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the access network device may also be a server, etc.
  • the network device in the V2X technology may be a road side unit (RSU).
  • RSU road side unit
  • the core network device is used to implement functions such as mobility management, data processing, session management, policy and billing.
  • functions such as mobility management, data processing, session management, policy and billing.
  • the names of the devices that implement core network functions in systems with different access technologies may be different, and the embodiments of the present application do not limit this.
  • the core network equipment includes: access and mobility management function (AMF), session management function (SMF), policy control function (PCF) or user plane function (UPF), etc.
  • AMF access and mobility management function
  • SMF session management function
  • PCF policy control function
  • UPF user plane function
  • the communication device for realizing the function of the network device may be a network device, or may be a device capable of supporting the network device to realize the function, such as a chip system, which may be installed in the network device.
  • the technical solution provided in the embodiment of the present application is described by taking the device for realizing the function of the network device as an example that the network device is used as the device.
  • the technical solution provided in the embodiments of the present application can be applied to the 4th generation (4G) mobile communication technology system, such as the LTE system, or can be applied to the 5G system, such as the NR system, or can also be applied to the next generation mobile communication system or other similar communication systems, such as the 6th generation (6G) mobile communication technology system, etc., without specific limitation.
  • the technical solution provided in the embodiments of the present application can be applied to D2D scenarios, such as NR-D2D scenarios, etc., or can be applied to V2X scenarios, such as NR-V2X scenarios, etc.
  • it can be applied to the Internet of Vehicles, such as V2X, etc., or can be used in the fields of intelligent driving, assisted driving, or intelligent networked vehicles.
  • smart factories or industrial control scenarios such as communication between a controller and a transmission device or a controller and a sensor.
  • the SL device can be configured with the bandwidth part (BWP) where it works and the SL resource pool, which are used to determine the frequency domain resources and time domain resources that can be used for SL transmission, wherein the time domain resources include the time slots that the SL device can use and the orthogonal frequency division multiplexing (OFDM) symbols that can be used in the time slots.
  • BWP bandwidth part
  • the SL resource pool which are used to determine the frequency domain resources and time domain resources that can be used for SL transmission, wherein the time domain resources include the time slots that the SL device can use and the orthogonal frequency division multiplexing (OFDM) symbols that can be used in the time slots.
  • a certain SL device is configured with an SL resource pool, which includes, for example, 6 subchannels in the frequency domain and resources with a period of 8 time slots in the time domain, wherein 6 time slots in each period can be used for SL transmission, as shown on the left side of Figure 1.
  • Figure 1 is a schematic diagram of the frame structure within a time slot. Take a time slot containing 14 OFDM symbols as an example, for example, it can be used for SL transmission starting from OFDM symbol 3.
  • the subchannel is the minimum granularity on the frequency domain resource when the SL device transmits data.
  • the number of PRBs that a subchannel on the SL resource pool can contain can be configured by the resource pool configuration information, and the resource pool configuration information can be used to configure the SL resource pool.
  • the channels in SL mainly include physical sidelink control channel (PSCCH), physical sidelink shared channel (PSSCH), physical sidelink feedback channel (PSFCH), etc.
  • PSCCH can transmit sidelink control information 1 (SCI1).
  • SCI1 contains scheduling information on the PSSCH associated with SCI1.
  • SCI1 can indicate the time-frequency resource location of PSSCH, the modulation and coding method used for data in PSSCH, and the priority corresponding to data in PSSCH. Therefore, it can also be understood that SCI1 can schedule PSSCH.
  • PSSCH can transmit sidelink control information 2 (SCI2) and SL data.
  • SCI2 It may include the HARQ process number (or identifier) corresponding to the data on the PSSCH, the source identity number (identity, ID) of the sending device, the destination ID of the receiving device, and other information.
  • PSFCH can transmit data hybrid automatic repeat request (HARQ) feedback information.
  • HARQ data hybrid automatic repeat request
  • the first OFDM symbol that can perform SL transmission is generally used as an automatic gain control (AGC) symbol, which can be used by the receiving end to adjust the gain factor of the power amplifier of the receiving end and the parameters of the analog to digital converter (ADC) according to the received power for subsequent PSCCH and/or PSSCH reception.
  • ADC analog to digital converter
  • PSCCH and PSSCH can be transmitted starting from the second OFDM symbol that can perform SL transmission.
  • PSCCH can generally occupy 2 or 3 symbols in the time domain, and the specific number of OFDM symbols occupied can be configured by high-level parameters; PSCCH is generally mapped from the starting PRB position of a subchannel in the frequency domain, and can occupy a total of 10, 12, 15, 20 or 25 PRBs. The specific number of occupied PRBs can also be configured by high-level parameters, so that the receiving end can perform blind detection of PSCCH at some fixed positions. Generally speaking, the frequency domain resources occupied by PSCCH cannot exceed one subchannel.
  • the time domain starting position of PSSCH is the same as the time domain starting position of PSCCH (in the special case where PSCCH occupies an entire subchannel and PSSCH also occupies only one subchannel, it can be understood that the time domain starting position of PSSCH is the same as the time domain starting position of PSCCH, but PSSCH occupies 0 frequency domain sub-units, such as PRB or subcarrier, at the time domain position where PSCCH is located.), the frequency domain starting subchannel and the subchannel where PSCCH is located are the same subchannel, PSSCH can be partially frequency-division multiplexed with PSCCH, PSSCH can occupy one or more subchannels in the frequency domain, and the number of occupied subchannels can be indicated by SCI1 that schedules the PSSCH.
  • the last OFDM symbol used to perform SL transmission is generally not used to send any information, but as a gap (GAP) symbol, which is used by the SL device to complete the transmit and receive state transition.
  • GAP gap
  • the resource pool configuration information may also include configuration information of the PSFCH, such as the period of the PSFCH, that is, how many time slots a time slot containing the PSFCH will appear.
  • the period is configured by the sidelink PSFCH period (sl-PSFCH-Period) parameter included in the resource pool configuration information.
  • the period is expressed as P, it means that a time slot containing PSFCH resources will appear every P time slots.
  • the period can be understood as the period of the logical time slot, that is, how many logical time slots a logical time slot containing the PSFCH will appear.
  • the PSFCH When a time slot contains PSFCH, the PSFCH may occupy the second to last OFDM symbol in the time slot, and the two OFDM symbols before the OFDM symbol where the PSFCH is located may be used as a GAP symbol and an AGC symbol, respectively.
  • the time slot when a time slot is configured with PSFCH, the time slot may be referred to as a PSFCH time slot or a feedback time slot.
  • the resource pool configuration information can indicate which PRBs on the OFDM symbol occupied by the PSFCH can be used for PSFCH transmission.
  • the PSSCH receiving device can determine a PRB for sending PSFCH according to the mapping relationship.
  • the mapping relationship is mainly determined by two parameters, one parameter is the period P of the above-mentioned PSFCH, and the other parameter is the minimum time interval between PSSCH and its mapped PSFCH.
  • the minimum time interval can be configured by the side line minimum time interval PSFCH (sl-MinTimeGapPSFCH) parameter included in the resource pool configuration information.
  • the minimum time interval can represent the minimum interval that needs to be met between the time slot where the PSSCH is located and the time slot where the PSFCH for sending the feedback information of the PSSCH is located.
  • the unit of the minimum time interval can be a time slot.
  • the purpose of setting the minimum time interval is mainly to take into account that the receiving device needs to demodulate the PSSCH and generate feedback information on the PSFCH, which requires a certain processing time, so it is required to maintain a certain time interval between the PSSCH and the PSFCH. That is, after receiving the PSSCH, an SL device can send the PSFCH in the first time slot containing the PSFCH and at least the minimum time interval from the last time slot of the PSSCH.
  • the above time interval should also be understood as the number of time slots contained in the resource pool in the interval, that is, the time interval is reflected by the number of logical time slots contained.
  • time slots 0 and time slot 12 are PSFCH time slots.
  • the minimum time interval of sl-MinTimeGapPSFCH configuration is 2 time slots. Taking time slot 8 as an example, the PSFCH in time slot 8 and its corresponding PSSCH need to meet the interval of at least two time slots.
  • the PSFCH in time slot 8 can correspond to the PSSCH in time slots 3 to 6, or in other words, if an SL device receives PSSCH in any time slot from time slot 3 to time slot 6, the SL device can send positive acknowledgement (ACK)/negative acknowledgement (NACK) information on the PSFCH in time slot 8.
  • the PSFCH in time slot 12 corresponds to the PSSCH in time slots 7 to 10, and so on.
  • the resource pool configuration information can configure one or more PRBs that can be used to transmit PSFCH for the OFDM symbol used to carry PSFCH in the PSFCH time slot, for example, the sidelink PSFCH resource block set (sl-PSFCH-RB-Set) parameter configuration included in the resource pool configuration information PRBs are used to transmit PSFCH.
  • the sidelink PSFCH resource block set (sl-PSFCH-RB-Set) parameter configuration included in the resource pool configuration information PRBs are used to transmit PSFCH.
  • time slot 4 and time slot 8 in FIG. 2 represent PRBs used to transmit PSFCH.
  • the PRBs included in the PRB set used to transmit PSFCH on a PSFCH time slot may have a mapping relationship with the time slot and subchannel associated with the PSFCH time slot.
  • time slot 8 in FIG. 2 is a feedback time slot. Slot, the feedback slot can be associated with slots 3 to 6, so the PRB set for transmitting PSFCH on slot 8 can form a mapping relationship with slots 3 to 6 and the subchannels on these slots. For example, there are 8 PRBs for transmitting PSFCH on slot 8.
  • one data transmission resource unit can correspond to one PRB for transmitting PSFCH on slot 8, for example, subchannel 0 of slot 3 is mapped to PRB0 on slot 8, subchannel 0 of slot 4 is mapped to PRB1 on slot 8, and so on.
  • the SL device can determine the time slots and subchannels included in the PSSCH according to the sent or received PSSCH, and then find the corresponding one or more PRBs according to the time slots and subchannels included in the PSSCH (for example, the first time slot and the first subchannel, or all time slots and all subchannels), and then determine a PRB from these PRBs as the PRB for transmitting or receiving the PSFCH corresponding to the PSSCH.
  • the corresponding feedback resources are also different, which can avoid conflicts in feedback resources.
  • the SL device can determine that the number of PRBs associated with PSSCH is F. Further, the SL device can determine that the number of cyclic shift pairs that can be used in the sequence used to transmit PSFCH is G according to the resource pool configuration information, so a total of F ⁇ G PSFCH resources can be determined.
  • PSFCH resources include both time-frequency resources (i.e., F PRBs) and code domain resources (i.e., G cyclic shift pairs). The SL device then determines the corresponding PSFCH resource from the F ⁇ G PSFCH resources based on the value of (P ID +M ID ) mod(F ⁇ G).
  • P ID is determined by the source ID carried in PSSCH, and M ID is set to 0 or determined according to the group ID configured by the high-level layer.
  • a PSFCH resource can be used to transmit ACK information or NACK information. The specific transmitted information can be determined based on the decoding result of the received PSSCH by the SL device.
  • the minimum time interval supported in the resource pool configuration information is usually set to 2 or 3 time slots, which is mainly based on the processing capabilities of the current equipment.
  • many services require extremely short transmission delays (for example, 1 to 2ms).
  • the subcarrier spacing is 15kHz
  • the length of a time slot is 1ms.
  • the feedback interval of 2 or 3 time slots may not have enough time for retransmission within the delay tolerance range. Therefore, in order to meet the above business needs, it may be necessary to configure a shorter minimum time interval, such as allowing the minimum time interval to be set to one time slot or 0 time slots (i.e., feedback within the same time slot).
  • the minimum time interval is configured by the resource pool configuration information, it can be considered as a system-level configuration and is shared by SL devices using the same SL resource pool. Then, in order to reduce the transmission delay of some services with high latency requirements, it is necessary to configure a smaller minimum time interval for the SL resource pool. Even if the latency requirements of some services are not high, the SL devices also need to execute according to the smaller minimum time interval, which requires these devices to have faster PSSCH processing capabilities and PSFCH packetization capabilities, which will increase the cost of devices without low latency requirements.
  • a plurality of feedback intervals can be associated with a first resource pool, from which two UEs can select a suitable feedback interval (the selected feedback interval is referred to as a target feedback interval) when communicating, and the target feedback interval can meet the capabilities of the two UEs and the latency requirements of the corresponding specific services.
  • the target feedback interval can meet the capabilities of the two UEs and the latency requirements of the corresponding specific services.
  • the UE can select a feedback interval with a smaller value as the target feedback interval to meet the latency requirement of the service; if the service performed by the UE has a low latency requirement, the UE can select a feedback interval with a larger value as the target feedback interval, which can meet the latency requirement of the service and will not have excessive requirements on the capabilities of the UE, thereby reducing the cost of the UE. It can be seen that by adopting the solution of the embodiment of the present application, the latency requirements of different services can be met.
  • Figure 3 is a communication network architecture applicable to an embodiment of the present application.
  • Figure 3 includes a first UE and a second UE, and SL communication can be performed between the first UE and the second UE.
  • the second UE can send SL data to the first UE
  • the first UE can send feedback information of the SL data to the second UE.
  • Figure 1 also includes an access network device, for example, the access network device can configure a first resource pool for the first UE and/or the second UE.
  • the first resource pool may not be configured by the access network device, for example, it may be pre-configured in the first UE or the second UE, or configured for the first UE and/or the second UE by other UEs or other network devices other than the access network device (such as core network devices, etc.).
  • SL may be referred to as "sidelink", for example, SL information may be referred to as sidelink information, SL data may be referred to as sidelink data, etc.
  • SL may also be referred to as "sidelink”, for example, SL information may be referred to as sidelink information, SL data can be referred to as side data, etc., which will be used as an example in the following text.
  • the "feedback interval" is, for example, a "minimum feedback interval". For example, if a UE (or both communicating parties) selects a certain feedback interval as a target feedback interval, the UE (or both communicating parties) may communicate according to a feedback interval greater than or equal to the target feedback interval.
  • the unit of the feedback interval may be a time unit.
  • the time unit is, for example, a subframe, and the sub-time unit is, for example, a time slot, a mini-slot, or an OFDM symbol; or, the time unit is, for example, a time slot, and the sub-time unit is, for example, a mini-slot or an OFDM symbol; or, the time unit is, for example, a mini-slot, and the sub-time unit is, for example, an OFDM symbol.
  • the frequency domain unit is, for example, a subband, a subchannel, or a carrier.
  • the feedback resource unit is, for example, a PRB for transmitting feedback information.
  • the Xth resource can be defined by a time unit and a frequency domain unit.
  • the time domain resource of the first resource may include a first time unit, and the frequency domain resource of the first resource may include a first frequency domain unit.
  • the time domain resource of the first resource may include other time units in addition to the first time unit, and the frequency domain resource of the first resource may include other frequency domain units in addition to the first frequency domain unit.
  • the first resource is a resource for SL data transmission
  • the first resource may include one or more time slots in the time domain
  • the first time unit may be, for example, one of the time slots
  • the first resource may include one or more subchannels in the frequency domain
  • the first frequency domain unit may be, for example, one of the subchannels.
  • the embodiment of the present application is mainly introduced by taking the example that the first resource includes one time unit in the time domain and one or more frequency domain units in the frequency domain.
  • the methods provided by the various embodiments of the present application are introduced below in conjunction with the accompanying drawings. Unless otherwise specified in the following text, the steps represented by dotted lines in the accompanying drawings corresponding to the various embodiments of the present application are all optional steps.
  • the methods provided by the various embodiments of the present application can be applied to the network architecture shown in Figure 3.
  • the first UE involved in the methods provided by the various embodiments of the present application can be the first UE in Figure 3
  • the second UE involved in the methods provided by the various embodiments of the present application can be the second UE in Figure 3
  • the access network device involved in the methods provided by the various embodiments of the present application can be the access network device in Figure 3.
  • FIG4 is a flowchart of the method.
  • the second UE determines configuration information.
  • the configuration information may be used to configure the first resource pool, and to configure multiple feedback intervals associated with the first resource pool.
  • the configuration information may include a list configured for the first resource pool, the list being called, for example, a sidelink time interval PSFCH (sl-TimeGapPSFCH) list, which may include multiple feedback intervals. That is, the first resource pool may support multiple feedback intervals.
  • the configuration information may configure two feedback intervals to determine a range of a feedback interval, and all feedback intervals within the feedback interval range are associated with the first resource pool.
  • the first resource pool is, for example, a SL resource pool
  • the second UE can use the first resource pool to send and/or receive signals, for example, to communicate with other UEs. For example, if the second UE operates in mode 2, the second UE can select SL resources in the first resource pool to send SL information to other UEs.
  • the configuration information can configure one or more SL resource pools for the second UE, and the first resource pool is, for example, one of the one or more SL resource pools.
  • the configuration information can configure one or more feedback intervals for it, and the number of feedback intervals configured for different SL resource pools can be the same or different, and the feedback intervals configured for different SL resource pools can have an intersection or no intersection.
  • the configuration information may be pre-configured in the second UE, for example, configured in the second UE when the second UE leaves the factory; or, the configuration information may come from the access network device, for example, the access network device configures the SL resource pool and feedback interval for the second UE, and sends the configuration information to the second UE, wherein the configuration information may be transmitted via a direct path between the second UE and the access network device, in which case the second UE receives the configuration information from the access network device, or may be transmitted via a non-direct path between the second UE and the access network device, in which case the second UE receives the configuration information from a relay UE, where the relay UE is, for example, the first UE or other UEs, and the second UE receives the configuration information and thus determines the configuration information; or, the SL resource pool and feedback interval may be configured for the second UE by other UEs (for example, the first UE or other UEs except the first UE), and the configuration information may come from other UE
  • the configuration information may also configure a feedback cycle, which is a cycle of time units including feedback resource units, such as a cycle of time units including PSFCH.
  • the feedback cycle may be understood as the number of time units included in a feedback cycle. For example, if the feedback cycle configured by the configuration information is P, it indicates that one time unit including PSFCH may exist in every P time units. Taking Figure 2 as an example, for example, if the feedback cycle P configured by the configuration information is 4 time slots, it indicates that one time slot including PSFCH may exist in every 4 time slots. For example, time slot 0 (not shown in the figure), time slot 4, and time slot 8 are time slots including PSFCH.
  • the configuration information may also configure the feedback resource units that can be used to transmit PSFCH in the sub-time unit used to transmit PFSCH within the time unit of PSFCH, and the number of the feedback resource units may be one or more. Perform configuration according to method A or method B.
  • the second UE may determine the sub-time unit including the PSFCH feedback resource unit according to a predefined rule. For example, in FIG1 , when a time slot is a PSFCH time slot, among all the symbols used for Sidelink transmission in the time slot, the second to last symbol is a symbol (i.e., a sub-time unit) used to transmit the PSFCH.
  • the third to last symbol is an AGC symbol of the PSFCH, and the UE will send a repetition of the signal on the PSFCH symbol on the AGC symbol when sending the PSFCH.
  • the configuration information may configure a feedback resource unit set, and the feedback resource unit set includes one or more feedback resource units.
  • the configuration information may configure the feedback resource unit set through the sl-PSFCH-RB-Set parameter.
  • the feedback resource unit set includes M 1 feedback resource units, and the M 1 feedback resource units are feedback resource units that can be used to transmit PSFCH on a sub-time unit for transmitting PFSCH within a time unit including PSFCH.
  • the indexes of the M 1 feedback resource units are 0 to M 1 -1, respectively.
  • the configuration information may configure a correspondence between multiple feedback resource unit sets (e.g., an index set of feedback resource units) and multiple feedback intervals, for example, a one-to-one correspondence between feedback resource unit sets and feedback intervals.
  • Each feedback resource unit set may include one or more feedback resource units (e.g., an index of one or more feedback resource units), and different feedback resource unit sets may have no intersection.
  • All feedback resource units included in the multiple feedback resource unit sets may be all or part of the feedback resource units on the sub-time unit used to transmit PSFCH on the second time unit, which may be understood as dividing all or part of the feedback resource units on the sub-time unit used to transmit PSFCH on the second time unit into multiple feedback resource unit sets, so that the multiple feedback resource unit sets correspond to the multiple feedback intervals.
  • the configuration information may also include configuration information of time resources and/or frequency domain resources in the first resource pool.
  • the configuration information includes a time slot index that can be used for SL transmission in the first resource pool, which can be used to determine a logical time slot in the first resource pool; and/or, the configuration information may include one or more of the following: configuration information of multiple OFDM symbols that can be used for SL transmission in each time slot in the first resource pool, configuration information of one or more subchannels in the first resource pool, or the number of PRBs included in each subchannel in the first resource pool, etc.
  • configuration information includes a time slot index that can be used for SL transmission in the first resource pool, which can be used to determine a logical time slot in the first resource pool; and/or, the configuration information may include one or more of the following: configuration information of multiple OFDM symbols that can be used for SL transmission in each time slot in the first resource pool, configuration information of one or more subchannels in the first resource pool, or the number of PRBs included in each subchannel in the
  • the first UE determines configuration information.
  • the configuration information may be used to configure a first resource pool and configure multiple feedback intervals associated with the first resource pool.
  • the first resource pool is, for example, an SL resource pool, and the first UE can use the first resource pool to send and/or receive signals, for example, to communicate with other UEs.
  • the first UE can monitor SL information from other UEs in the first resource pool.
  • the configuration information can configure one or more SL resource pools for the first UE, for which reference can be made to the introduction of S401.
  • multiple feedback intervals associated with the first resource pool are the same.
  • S401 may occur before S402, or after S402, or simultaneously with S402.
  • S403 The second UE sends first SL data in the first resource.
  • the first UE receives the first SL data in the first resource.
  • the second UE may select a SL resource from the first resource pool to send the first SL data, for example, the second UE selects the first resource.
  • the time domain resource of the first resource includes a first time unit in the first resource pool.
  • the second UE determines a SL resource from the first resource pool according to an instruction of the network device to send the first SL data.
  • the first time unit may be the first time unit or the last time unit among the multiple time units.
  • the first resource may include one or more frequency domain units in the frequency domain.
  • the first resource may include one or more sub-channels in the frequency domain.
  • the second UE may send side control information, and the side control information is associated with the first SL data.
  • the side control information is, for example, an SCI, such as a first-order SCI.
  • the first-order SCI may be carried in a PSCCH, and the starting time domain position of the PSCCH is the same as the starting time domain position of the first SL data, as shown in Figure 1.
  • the starting time domain position of the PSCCH may also be earlier than the starting time domain position of the first SL data; or, the SCI is a second-order SCI, and the second-order SCI may be carried in a PSSCH, without specific limitation.
  • the side control information may include information about the first resource (or information indicating the first resource), for example, the side control information indicates the first resource through a time resource assignment (TRA) field and a frequency resource assignment (FRA) field in the first-order SCI.
  • the side control information may be used to schedule both initial transmission of the first SL data and retransmission of the first SL data.
  • the side control information may include information about the first resource (or information indicating the first resource).
  • the first SL data transmitted in S403 may be initial transmission data or retransmission data, so the first resource may be part of the resources scheduled by the side control information.
  • the side control information may include information about the third resource, and the third resource includes the first resource, so the side control information also includes information about the first resource.
  • the side control information may include information of a first priority, where the first priority is the priority corresponding to the first SL data.
  • the sidelink control information may include information of a first HARQ process identifier, where the first HARQ process identifier is a HARQ process identifier corresponding to the first SL data.
  • S404 The first UE determines a target feedback interval.
  • the second UE determines a target feedback interval.
  • the first resource is a resource in the first resource pool, so the first UE can determine a feedback interval from multiple feedback intervals associated with the first resource pool as a target feedback interval.
  • the first UE can determine the target feedback interval, which are described below by example.
  • the first UE and/or the second UE may determine a larger value of a first feedback interval and a second feedback interval as a target feedback interval, wherein the first feedback interval is a feedback interval supported by the first UE, the second feedback interval is a feedback interval supported by the second UE, and the first feedback interval and the second feedback interval both belong to multiple feedback intervals supported on the first resource pool.
  • step S404 step S404a and S404b are also included.
  • the first UE sends first capability information to the second UE.
  • the second UE receives the first capability information from the first UE.
  • the first capability information indicates A feedback intervals among the multiple feedback intervals, and the A feedback intervals belong to the A feedback intervals supported by the first resource pool.
  • the second UE sends second capability information to the first UE.
  • the first UE receives the second capability information from the second UE.
  • the second capability information indicates B feedback intervals among the multiple feedback intervals, and the B feedback intervals belong to the B feedback intervals supported by the first resource pool.
  • the one feedback interval included in the first capability information can be understood as the minimum feedback interval supported by the first UE, that is, the first feedback interval; the one feedback interval included in the second capability information can be understood as the minimum feedback interval supported by the second UE, that is, the second feedback interval.
  • the first UE and the second UE determine the larger value of the first feedback interval and the second feedback interval, which is equivalent to determining the minimum feedback interval supported by both UEs as the target feedback interval among the multiple feedback intervals supported by the first resource pool.
  • the A feedback intervals included in the first capability information can be understood as the A feedback intervals supported by the first UE
  • the B feedback intervals included in the second capability information can be understood as the B feedback intervals supported by the second UE.
  • the first UE determines the first feedback interval according to the minimum value of the A feedback intervals supported by the first UE, and determines the second feedback interval according to the minimum value of the B feedback intervals in the second capability information; similarly, the second UE determines the second feedback interval according to the minimum value of the B feedback intervals supported by the second UE, and determines the first feedback interval according to the minimum value of the A feedback intervals in the first capability information.
  • the first UE and the second UE determine the minimum feedback interval supported by both UEs from the multiple feedback intervals supported by the first resource pool as the target feedback interval based on the larger value of the first feedback interval and the second feedback interval.
  • the first UE and the second UE may also determine the minimum feedback interval in the first feedback interval set as the target feedback interval, where the first feedback interval set is the intersection of the set consisting of A feedback intervals included in the first capability information and the set consisting of B feedback intervals included in the second capability information. In this manner, the first UE and the second UE determine a minimum feedback interval as the target feedback interval from one or more feedback intervals supported by both. In particular, when the above intersection is an empty set, the first UE and the second UE may take a default feedback interval as the target feedback interval, for example, the target feedback interval is the feedback interval with the largest value among multiple feedback intervals associated with the first resource pool.
  • the first UE and the second UE first indicate the feedback intervals supported by each other by sending capability information to each other, and then each determines the target feedback interval according to the capabilities between the two UEs, but because the determination rules are unified, the target feedback intervals determined by the two UEs are also the same. In this way, on the one hand, the target feedback intervals determined by the first UE and the second UE can be achieved by both UEs, and on the other hand, the target feedback interval can be made as small as possible, enabling the UE to feedback faster and reducing feedback delay.
  • the second method may include the above-mentioned S404b.
  • the second method may include S404c: the first UE sends first information to the second UE, where the first information is used to indicate the target feedback interval, the second UE receives first information from the first UE and determines a target feedback interval according to the first information.
  • the first UE determines the target feedback interval according to one or more feedback intervals supported by the first UE and the second capability information of the second UE, and sends first information to the second UE, where the first information may indicate the target feedback interval.
  • the second UE can determine the target feedback interval according to the first information, without the second UE having to perform more processes for determining the target feedback interval.
  • the first UE may determine the target feedback interval in the first manner as described above, but the second UE does not need to determine the target feedback interval in the first manner as described above. Instead, the first UE sends a first message to the second UE to indicate the target feedback interval.
  • the first UE may determine the target feedback interval in other ways instead of in the first manner as described above, and then send a first message to the second UE to indicate the target feedback interval.
  • the first UE may select any feedback interval as the target feedback interval from the intersection of A feedback intervals and B feedback intervals.
  • the first UE shall determine the target feedback interval from the intersection of A feedback intervals and B feedback intervals.
  • the embodiment of the present application does not limit the method for the first UE to specifically determine the target feedback interval.
  • the third method may include the above-mentioned S404a.
  • the third method may include S404d: the second UE sends first information to the first UE, where the first information is used to indicate a target feedback interval, the first UE receives the first information from the second UE, and determines the target feedback interval according to the first information.
  • the second UE determines the target feedback interval according to one or more feedback intervals supported by the second UE and the first capability information of the first UE, and sends first information to the first UE, where the first information may indicate the target feedback interval.
  • the first UE can determine the target feedback interval according to the first information, without the first UE having to perform more processes for determining the target feedback interval.
  • the second UE may determine the target feedback interval in the first manner as described above, but the first UE does not need to determine the target feedback interval in the first manner as described above, but the second UE sends a first message to the first UE to indicate the target feedback interval.
  • the second UE may determine the target feedback interval in other ways instead of in the first manner as described above, and then send a first message to the first UE to indicate the target feedback interval.
  • the second UE may select any feedback interval from the intersection of A feedback intervals and B feedback intervals as the target feedback interval.
  • the second UE shall determine the target feedback interval from the intersection of A feedback intervals and B feedback intervals.
  • the embodiment of the present application does not limit the method for the second UE to specifically determine the target feedback interval.
  • the first information in the second method or the third method may be a radio resource control (RRC) message, or the first information is included in the RRC message.
  • RRC radio resource control
  • the first UE may also detect whether the source ID in the side control information matches the source ID of the second UE, thereby determining the second information associated with the second UE.
  • the side control information is associated with the first SL data, or is used to schedule the first SL data. For example, if the first UE can receive data from both the second UE and the third UE, the first information a may be configured between the first UE and the second UE, and the first information b may be configured between the first UE and the third UE, wherein the target feedback interval indicated in the first information a and the first information b may be the same or different.
  • the first UE After the first UE receives a side control information, it may first identify the source ID in the side control information, determine that the sender of the side control information is the second UE or the third UE according to the source ID, and then determine the target feedback interval according to the first information a or the first information b and the above steps.
  • the fourth manner may include S404e: the first UE sends the second information to the second UE, and correspondingly, the second UE receives the second information from the first UE; or the second UE sends the second information to the first UE, and correspondingly, the first UE receives the second information from the second UE.
  • S404e may occur before the second UE sends the side control information, or simultaneously with the second UE sending the side control information.
  • the second information may include an association relationship between one or more of the SL HARQ process identifier, priority information, or resource information and the feedback interval. That is, in the second information, one feedback interval may be associated with one or more of the SL HARQ process identifier, priority, or resource.
  • the second information may include one or more of the following: an association relationship between X 1 SL HARQ process identifiers and X 1 feedback intervals, an association relationship between X 2 priorities and X 2 feedback intervals, an association relationship between X 3 resources and X 3 feedback intervals, an association relationship between a combination of X 4 SL HARQ process identifiers and priorities and X 4 feedback intervals, an association relationship between a combination of X 5 SL HARQ process identifiers and resources and X 5 feedback intervals, an association relationship between a combination of X 6 priorities and resources and X 6 feedback intervals, or an association relationship between a combination of X 7 SL HARQ process identifiers, priorities, and resources and X 7 feedback intervals.
  • the resources included in the second information are resources used to transmit SL data, such as periodic resources, and the resources for transmitting the first SL data may be resources in one period of the periodic resources.
  • X1 , X2 , X3 , X4 , X5 , X6 , and X7 are all positive integers, and these values may be the same or different.
  • the resource included in the second information can be indicated by one or more of the following: the time domain offset of the resource, the time domain period of the resource, the frequency domain starting position of the resource, or the number of frequency domain units occupied by the resource in the frequency domain.
  • the time domain offset of the resource is, for example, the time offset of the resource relative to the 0th frame, and the unit is, for example, a time unit.
  • the frequency domain starting position of the resource is, for example, the index of the starting frequency domain unit of the resource.
  • the second information may be a radio resource control (RRC) message, or the second information may be included in an RRC message.
  • RRC radio resource control
  • the first UE and the second UE may execute S404a and/or S404b before executing S404e, that is, the first UE or the second UE may configure the association relationship in the second information according to one or more feedback intervals included in the capability information reported by itself and the opposite UE.
  • the second UE sends side control information to the first UE, the side control information can schedule the first SL data, the side control information can include third information, and the first UE can determine the target feedback interval according to the third information.
  • the third information includes one or more of the SL HARQ process identifier, priority information, or resource information, and the first UE can determine the feedback interval associated with the third information in combination with the second information, and the feedback interval is the target feedback interval.
  • the third information includes the first SL HARQ process identifier, and the first UE determines that the first SL HARQ process identifier is associated with the third feedback interval based on the second information, then the first UE can determine that the third feedback interval is the target feedback interval.
  • the third information includes information about the first priority, and the first UE determines that the first priority is associated with the third feedback interval based on the second information, then the first UE can determine that the third feedback interval is the target feedback interval.
  • the third information includes information about the first resource
  • the first UE determines that the first resource is associated with the third feedback interval based on the second information (for example, the second information includes the association relationship between the third resource and the third feedback interval, wherein the third resource is a periodic resource, and the first resource is a resource of the third resource in a certain period), then the first UE can determine that the third feedback interval is the target feedback interval.
  • the third information includes information about the first priority and the first SL HARQ process identifier, and the first UE determines that the combination of the first priority and the first SL HARQ process identifier is associated with the third feedback interval based on the second information, then the first UE can determine that the third feedback interval is the target feedback interval, and so on, no more examples are given.
  • the target feedback interval can be determined (for example, the second UE can determine the target feedback interval in the first mode as above, or determine the target feedback interval in other ways, for example, the second UE can determine any one of the feedback intervals in the intersection of A feedback intervals and B feedback intervals as the target feedback interval), for example, the second UE determines the third feedback interval among the multiple feedback intervals associated with the first resource pool as the target feedback interval.
  • the second UE can determine the third information associated with the target feedback interval based on the second information.
  • the second UE can send side control information to the first UE, and the side control information includes the third information, and the third information can be used by the first UE to determine the target feedback interval based on the second information.
  • the second UE/first UE determines different feedback intervals according to the needs of different services, and then associates different services with at least one of the priority, HARQ process identifier, and resource to determine the second information, and then sends the second information to the first UE/second UE.
  • the second UE sends SL data to the first UE
  • the third information is carried in the SCI
  • the first UE determines the target feedback interval according to the association relationship configured in the second information and at least one of the priority, HARQ process identifier, and resource carried in the third information.
  • the first UE may also detect whether the source ID in the side control information matches the source ID of the second UE, thereby determining the second information associated with the second UE. For example, if the first UE can receive data from both the second UE and the third UE, the second information a may be configured between the first UE and the second UE, and the second information b may be configured between the first UE and the third UE.
  • the first UE After the first UE receives a side control information, it may first identify the source ID in the side control information, determine whether the sender of the side control information is the second UE or the third UE based on the source ID, and then determine the target feedback interval based on the second information a or the second information b and the above steps.
  • the second UE sends side control information to the first UE, and the side control information can schedule the first SL data.
  • the side control information can also be used to indicate the target feedback interval. After the first UE receives the side control information, the target feedback interval is determined.
  • the implementation method of the side control information can refer to the introduction in the fourth method above.
  • the second UE may determine the target feedback interval in the first manner as described above.
  • the first UE and the second UE may execute S404a before executing S403, that is, the second UE may determine the target feedback interval corresponding to the first SL data according to one or more feedback intervals included in the capability information reported by itself and the first UE.
  • the second UE may determine the target feedback interval in other ways instead of in the first manner as described above, and then send side control information to the first UE to indicate the target feedback interval.
  • the second UE One feedback interval may be selected from the intersection of the A feedback intervals and the B feedback intervals as the target feedback interval.
  • the configuration of the first method, the second method and the third method is relatively simple, and the fourth method and the fifth method are slightly more complicated, but the target feedback interval can be indicated more dynamically. Different target feedback intervals can be determined between the first UE and the second UE for different SL data.
  • the first UE determines a first feedback resource unit according to a position of the first resource and a target feedback interval.
  • the first feedback resource unit may be used to send feedback information of the first SL data, such as SL HARQ ACK or SL HARQ NACK.
  • the first UE may first determine a time unit for sending the feedback information. The step of determining the time unit may occur before S406, or it may be considered that S406 includes the step of determining the time unit.
  • the first UE can determine at least one time unit in the first resource pool according to the feedback cycle, and the at least one time unit can be used to transmit feedback information. It can be understood that the first UE determines the position of the time unit that can be used to transmit feedback information according to the feedback cycle, for example, the first UE determines at least one time unit including PSFCH (each time unit in at least one time unit includes PSFCH). The first UE can determine the second time unit from at least one time unit according to the first time unit and the target feedback interval, and the second time unit is the time unit determined by the first UE for transmitting the feedback information of the first SL data.
  • the second time unit is the first time unit in at least one time unit that is located after the first time unit and the interval with the first time unit is greater than or equal to the target feedback interval.
  • the feedback cycle configured by the configuration information is 4, then in the first resource pool, time slot 0, time slot 4, time slot 8... are time slots including feedback resource units, that is, at least one time unit includes time slot 0, time slot 4, time slot 8... Among them, time slot 0 is not drawn in Figure 5A.
  • the first time unit where the first SL data is located is time slot 3, and the first UE determines that the target feedback interval is 2 time slots, then among time slots 0, time slot 4, time slot 8..., the first time slot that is located after time slot 3 and whose time interval with time slot 3 is greater than or equal to the target feedback interval is time slot 8, so the first UE determines that the second time unit is time slot 8.
  • the first UE may number these non-continuous time slots according to logical time slots. Then the first UE determines at least one logical time slot that can be used to transmit feedback information according to the feedback period, and then determines the physical time slot used to transmit the feedback information according to the correspondence between the at least one logical time slot and the physical time slot.
  • the first UE may determine the time unit associated with the second time unit.
  • the first UE may determine the time unit associated with the second time unit in different ways. Due to the difference in the ways, the process of determining the first feedback resource unit may also be affected, which are introduced as follows.
  • the first UE may determine the time unit associated with the second time unit according to the second time unit and the multiple feedback intervals associated with the first resource pool, and then determine the first feedback resource unit. For example, the first UE may determine the time unit associated with the second time unit according to the second time unit and the multiple feedback intervals associated with the first resource pool, for example, the number of determined time units is N 1 , and N 1 is, for example, a positive integer greater than or equal to the feedback period.
  • the N 1 time units may include the third time unit, and if the third time unit does not meet the above conditions, then the N 1 time units do not include the third time unit.
  • the fourth feedback interval may be any one of the multiple feedback intervals associated with the first resource pool.
  • the number of multiple feedback intervals associated with the first resource pool is L (in this application, L is an integer greater than or equal to 2), and the L feedback intervals are respectively K 1 , K 2 , ..., K L , the index of the second time unit is, for example, n, and the feedback period is, for example, P.
  • the first UE may determine some time units associated with the second time unit, for example, the index set of time units associated with the second time unit under feedback interval K 1 is [nK 1 –P+1, n–K 1 ]; for feedback interval K 2 , the first UE may determine some time units associated with the second time unit, for example, the index set of time units associated with the second time unit under feedback interval K 2 is [nK 2 –P+1, n–K 2 ]; ..., similarly, for feedback interval K L , the first UE may determine some time units associated with the second time unit, for example, the index set of time units associated with the second time unit under feedback interval K L is [nK L –P+1, n–K L ], and for other feedback intervals, the first UE may determine the time units associated with the second time unit in a similar manner, which will not be described in detail. It can be seen that the time units corresponding to each index set include, when the first resource pool is only configured with the feedback interval corresponding to the
  • the first UE can determine L sets (each set is identified by an index set of time units), and the time units corresponding to all indexes included in the union of the L sets can be used as N 1 time units.
  • the first UE can be processed in the manner of index sets, or there may be no concept of sets.
  • the first UE determines one or more time units according to each feedback interval in multiple feedback intervals, and all time units determined by the first UE according to the multiple feedback intervals can be As N 1 time units.
  • the process of the first UE determining N 1 time units may occur before S406, or it can be considered that S406 includes the process of determining N 1 time units.
  • the first UE and the second UE are used as examples to describe the process of determining the feedback resource unit
  • these UEs may use feedback intervals different from the target feedback intervals determined by the first UE and the second UE for feedback, such as using a feedback interval other than the target feedback interval among the multiple feedback intervals associated with the first resource pool.
  • the feedback resource unit on the second time unit can be used by UEs of any feedback interval. Therefore, when determining the time unit associated with the second time unit, it is necessary to consider not only the target feedback interval between the first UE and the second UE, but also other feedback intervals associated with the first resource pool. Therefore, under mode A, the first UE can determine the time unit associated with the second time unit based on the multiple feedback intervals associated with the first resource pool.
  • the association of the second time unit with N1 time units can be understood as that the second time unit is associated with N1 time units according to a first relationship. Further, some time units can be excluded from the N1 time units to determine the remaining N3 time units, N3 is a positive integer less than or equal to N1 , and the N3 time units are associated with the second time unit according to a second relationship. For example, if the N1 time units include the fourth time unit, and the second time unit is the first time unit in the at least one time unit (including the PSFCH time unit) that is located after the fourth time unit and the interval with the fourth time unit is greater than or equal to the fourth feedback interval, then the N3 time units include the fourth time unit.
  • the fourth feedback interval is any one of the multiple feedback intervals. That is, in some cases, due to reasons such as limited time unit numbers, the number of time units actually associated with the second time unit may be less than N1 .
  • the time slot numbers (such as the numbers of logical time slots) in the first resource pool are recorded as 0 to T max -1, and the size of T max can be determined according to the configuration information of the first resource pool. Since T max is a positive integer of finite size, the numbers of each time slot will be periodically repeated in the order of 0 to T max -1, 0 to T max -1, ... in time. When T max is not an integer multiple of the feedback period P, the number of time units actually associated with the second time unit may be less than N 1.
  • T max is not an integer multiple of the feedback period P
  • the number of time units actually associated with the second time unit may be less than N 1.
  • the embodiment of the present application only lists a situation where the number of time units actually associated with a time unit containing PSFCH is less than N 1. In addition to this, there may be other situations. For example, a time slot cannot be used for SL data transmission, etc., which can be excluded from the N 1 time units according to a similar method as mentioned above, which does not affect the implementation of the embodiment of the present application.
  • the first UE can determine the feedback resource units associated with one time unit and one frequency domain unit in the feedback resource units on the second time unit. It is introduced in S401 that the configuration information can also configure the feedback resource units that can be used to transmit PSFCH on the sub-time units used to transmit PFSCH in the time unit including PSFCH. For example, the configuration information configures M 1 feedback resource units on the sub-time units that can be used to transmit PSFCH in the second time unit, and these M 1 feedback resource units can be used to transmit PSFCH, then the first UE can determine the feedback resource units associated with one time unit and one frequency domain unit in the M 1 feedback resource units. Among them, M 1 is, for example, a positive integer greater than or equal to N 1.
  • the indexes of the M 1 feedback resource units are 0 to M 1 -1 respectively.
  • An optional manner for the first UE to determine the feedback resource unit associated with a time unit and a frequency domain unit in the second time unit is that, in N 1 time units, time unit i and frequency domain unit j are associated with feedback resource units [(i+j ⁇ N 1 ) ⁇ C 1 , (i+j ⁇ N 1 +1) ⁇ C 1 -1] in M 1 feedback resource units, where [(i+j ⁇ N 1 ) ⁇ C 1 , (i+j ⁇ N 1 +1) ⁇ C 1 -1] represents an index set of feedback resource units.
  • D represents the number of frequency domain units included in the first resource pool, and D is a positive integer.
  • the M 1 feedback resource units on the second time unit are equally divided into D ⁇ N 1 time units and D frequency domain units for data.
  • a data transmission resource unit (which may have a different resource resolution from the feedback resource unit) may be used as a data transmission resource unit, that is, a time unit and a frequency domain unit on the time unit may constitute a data transmission resource unit, each of which may equally divide the M 1 feedback resource units.
  • the order of bisection of the feedback resource units may be the order of time domain first and frequency domain second.
  • the order of bisection may also be the order of frequency domain first and frequency domain second, which will not be described in detail here.
  • the configuration information of the resource pool may make the condition that M 1 is an integer multiple of D ⁇ N 1 hold true, so that C 1 is a positive integer. If there is a special case where M 1 is not an integer multiple of D ⁇ N 1 , C 1 may also be rounded up or down accordingly.
  • an optional manner for the first UE to determine the feedback resource unit associated with one time unit and one frequency domain unit in the second time unit is that, among the N 3 time units associated with the second time unit, the time unit i and the frequency domain unit j are associated with the feedback resource unit [(i+j ⁇ N 1 ) ⁇ C 1 , (i+j ⁇ N 1 +1) ⁇ C 1 -1] among the M 1 feedback resource units, where: In this way, when the number of time units actually associated with the second time unit is less than N1 , the above corresponding method can also be referred to determine a feedback resource unit associated with a time unit and a frequency domain unit.
  • an optional manner for the first UE to determine the feedback resource unit associated with one time unit and one frequency domain unit in the second time unit is that, among the N 3 time units associated with the second time unit, the time unit i and the frequency domain unit j are associated with the feedback resource unit [(i+j ⁇ N 3 ) ⁇ C 3 , (i+j ⁇ N 3 +1) ⁇ C 3 -1] among the M 1 feedback resource units, where:
  • the configuration information of the resource pool can make the condition that M1 is an integer multiple of D ⁇ N3 hold true, so that C3 is a positive integer. If there is a special case where M1 is not an integer multiple of D ⁇ N3 , C3 can also be rounded up or down accordingly. In this way, when the number of time units actually associated with the second time unit is less than N1 , it can be considered to divide the M1 feedback resource units equally into the time units and frequency domain units in the N3 time units.
  • the first UE may determine one or more associated feedback resource units based on the time unit and frequency domain unit included in the first resource occupied by the first SL data. If the first SL data occupies one time unit and one frequency domain unit, for example, the first SL data is transmitted in time unit i and frequency domain unit j (that is, the first resource includes time unit i in the time domain and frequency domain unit j in the frequency domain), the first UE may determine that the feedback resource unit associated with time unit i and frequency domain unit j in M 1 feedback resource units (for example, feedback resource unit [(i+j ⁇ N 1 ) ⁇ C 1 , (i+j ⁇ N 1 +1) ⁇ C 1 -1]) is the feedback resource unit associated with the first SL data.
  • M 1 feedback resource units for example, feedback resource unit [(i+j ⁇ N 1 ) ⁇ C 1 , (i+j ⁇ N 1 +1) ⁇ C 1 -1]
  • the feedback resource units associated with the time unit where the first SL data is located and each of the frequency domain units therein can be considered as feedback resource units associated with the first time unit; or, optionally, the feedback resource units associated with the time unit where the first SL is located and the starting frequency domain unit can be considered as feedback resource units associated with the first SL data.
  • the first UE and the second UE can adopt one of the above two methods by default, or can be configured through high-level information, such as through configuration information, and the first UE and the second UE determine to use one of the above two methods based on the configuration information.
  • the feedback resource unit associated with the time unit where the first SL data is located and each frequency domain unit therein can be considered as the feedback resource unit associated with the first time unit, that is, for each time unit where the first SL data is located and each frequency domain unit therein, the corresponding feedback resource unit can be determined in the above manner, and the union of the feedback resource units finally determined is the feedback resource unit associated with the first SL data; or, optionally, the feedback resource unit associated with the starting time unit and the starting frequency domain unit where the first SL data is located can be considered as the feedback resource unit associated with the first SL data.
  • the first UE and the second UE can adopt one of the above two methods by default, or can be configured through high-level information, such as through configuration information, and the first UE and the second UE determine to use one of the above two methods based on the configuration information.
  • the number of feedback resource units associated with the first SL data in the second time unit determined by the first UE may be one or more, then the first UE may determine the first feedback resource unit from at least one feedback resource unit, and the number of the first feedback resource unit may be at least one.
  • the manner in which the first UE determines the first feedback resource unit from at least one feedback resource unit may refer to the relevant introduction in the previous text.
  • time slot 0 is not drawn in FIG. 6A.
  • the first UE takes the union of the two determined time slots, and can determine that the time slots associated with time slot 8 include time slots 3 to time slot 7, so these five time slots (and corresponding subchannels) can be associated with one or more PRBs on time slot 8 for transmitting PSFCH.
  • the time units associated with the second time unit may include time slots 3 to 7.
  • the mapping of PRBs, time slots, and subchannels comprehensively considers various feedback intervals associated with the first resource pool, and certain PRBs can be allocated to all time slots associated with the PSFCH time slot, thereby solving the resource conflict problem.
  • time slot 3 is the first time slot among the five time slots associated with time slot 8; if the second UE sends feedback information to the second UE in time slot 4, then time slot 3 is the last time slot among the five time slots associated with time slot 4 (the remaining 2 time slots associated with time slot 4 are not drawn in Figure 6A). Therefore, it can be found that although the resource location of the first SL data has not changed, due to the different feedback intervals, the time slots used to send feedback information may be different, and the position of the first SL data in the N1 or N3 time slots associated with the feedback time slot is also different. Therefore, the PRB used to transmit feedback information mapping determined by the above mapping relationship may also be different.
  • the first UE may determine the time unit associated with the second time unit according to the target feedback interval, and further determine the first feedback resource unit.
  • the first UE can determine the first feedback resource unit within the feedback resource unit set corresponding to the target feedback interval. Different feedback intervals correspond to different feedback resource unit sets, so there will be no conflict when UEs using different feedback intervals determine the feedback resource unit. Therefore, in mode B, when the first UE determines the time unit associated with the second time unit, it only needs to consider the target feedback interval, and other feedback intervals other than the target feedback interval in the multiple feedback intervals do not need to be considered, which can simplify the execution process of the first UE. For example, the first UE can determine the time unit associated with the second time unit based on the second time unit and the target feedback interval.
  • the number of time units associated with the second time unit determined by the first UE is N 2 , and N 2 can be a positive integer equal to the feedback period.
  • N 2 can be a positive integer equal to the feedback period.
  • N2 time units may include the third time unit; if the third time unit does not meet the above conditions, then N2 time units do not include the third time unit.
  • the target feedback interval is recorded as K D
  • the index of the second time unit is recorded as n
  • the feedback period is recorded as P.
  • the first UE can determine N 2 time units.
  • the first UE can be processed in the manner of an index set, for example, the first UE determines an index set of time units associated with the second time unit, and the index set includes N 2 time units; or there may be no concept of a set, for example, the first UE determines N 2 time units according to the target feedback interval, and these N 2 time units do not belong to a certain set.
  • the process of the first UE determining N 2 time units may occur before S406, or it can also be considered that S406 includes the process of determining N 2 time units.
  • the association between the second time unit and the N2 time units can be understood as the association between the second time unit and the N2 time units according to a third relationship. Further, some time units can be excluded from the N2 time units to determine the remaining N4 time units, N4 is a positive integer less than or equal to N2 , and the N4 time units and the second time unit are associated according to a fourth relationship. For example, if the N2 time units include the fourth time unit, and the second time unit is the first time unit in the at least one time unit (including the PSFCH time unit) that is located after the fourth time unit and the interval with the fourth time unit is greater than or equal to the target feedback interval, then the N4 time units include the fourth time unit.
  • the second time unit may actually be incomplete.
  • the case where the number of time units associated with the actual connection is less than N 2.
  • N 1 and N 3 are examples of the relationship between N 1 and N 3 above, which will not be repeated here.
  • the first UE can determine the feedback resource units associated with one time unit and one frequency domain unit in the feedback resource units on the second time unit.
  • the configuration information in S401 configures multiple feedback resource unit sets on the sub-time units that can be used to transmit PSFCH in the second time unit, and the multiple feedback resource unit sets correspond to multiple feedback intervals one by one, wherein the first feedback resource unit set corresponds to the target feedback interval, and the first feedback resource unit set includes, for example, M 2 feedback resource units, and these M 2 feedback resource units can be used to transmit PSFCH, then the first UE can determine the feedback resource units associated with one time unit and one frequency domain unit in the M 2 feedback resource units.
  • M 2 is, for example, a positive integer greater than or equal to N 2.
  • the indexes of the M 2 feedback resource units are 0 to M 2 -1, respectively.
  • An optional manner for the first UE to determine the feedback resource unit associated with a time unit and a frequency domain unit in the second time unit is that, among N 2 time units, time unit i and frequency domain unit j are associated with feedback resource units [(i+j ⁇ N 2 ) ⁇ C 2 , (i+j ⁇ N 2 +1) ⁇ C 2 -1] among M 2 feedback resource units, where [(i+j ⁇ N 2 ) ⁇ C 2 , (i+j ⁇ N 2 +1) ⁇ C 2 -1] represents an index set of feedback resource units.
  • D represents the number of frequency domain units included in the first resource pool, and D is a positive integer.
  • the M 2 feedback resource units on the second time unit are equally divided into D ⁇ N 2 resource units consisting of N 2 (or P) time units and D frequency domain units (the resource resolution of the feedback resource unit may be different), that is, a time unit and a frequency domain unit on the time unit can constitute a resource unit, each of which can equally divide the M 2 feedback resource units.
  • the order of bisection may be the order of first the time domain and then the frequency domain.
  • the order of bisection may also be the order of first the frequency domain and then the frequency domain, which will not be described in detail here.
  • the configuration information of the resource pool may make the condition that M 2 is an integer multiple of D ⁇ N 2 hold true, so that C 2 is a positive integer. If there is a special case where M 2 is not an integer multiple of D ⁇ N 2 , C 2 may also be rounded up or down accordingly.
  • the first UE determines the feedback resource unit associated with one time unit and one frequency domain unit in the second time unit by, in N 4 time units, the time unit i and the frequency domain unit j are associated with the feedback resource unit [(i+j ⁇ N 2 ) ⁇ C 2 , (i+j ⁇ N 2 +1) ⁇ C 2 -1] in M 2 feedback resource units, where:
  • the above corresponding method can also be referred to to determine a feedback resource unit associated with a time unit and a frequency domain unit.
  • the first UE determines the feedback resource unit associated with one time unit and one frequency domain unit in the second time unit in the following manner: in N 4 time units, time unit i and frequency domain unit j are associated with feedback resource units [(i+j ⁇ N 4 ) ⁇ C 4 , (i+j ⁇ N 4 +1) ⁇ C 4 -1] in M 2 feedback resource units, where:
  • the configuration information of the resource pool can make the condition that M 2 is an integer multiple of D ⁇ N 4 hold true, so that C 4 is a positive integer. If there is a special case where M 2 is not an integer multiple of D ⁇ N 4 , C 4 can also be rounded up or down accordingly. In this way, when the number of time units actually associated with the second time unit is less than N 2 , it can be considered to divide the M 2 feedback resource units equally into the time units and frequency domain units in the N 4 time units.
  • the first UE can determine one or more associated feedback resource units based on the time unit and frequency domain unit included in the first resource occupied by the first SL data. If the first SL data occupies one time unit and one frequency domain unit, for example, the first SL data is transmitted in time unit i and frequency domain unit j (that is, the first resource includes time unit i and frequency domain unit j), then the first UE can determine that the feedback resource unit associated with time unit i and frequency domain unit j in M 2 feedback resource units (for example, feedback resource unit [(i+j ⁇ N 2 ) ⁇ C 2 , (i+j ⁇ N 2 +1) ⁇ C 2 -1]) is the feedback resource unit associated with the first SL data.
  • M 2 feedback resource units for example, feedback resource unit [(i+j ⁇ N 2 ) ⁇ C 2 , (i+j ⁇ N 2 +1) ⁇ C 2 -1]
  • the time unit where the first SL data is located can be considered as the feedback resource unit associated with the first time unit.
  • the feedback resource unit associated with the time unit where the first SL data is located and the starting frequency domain unit can be considered as the feedback resource unit associated with the first SL data.
  • the feedback resource unit associated with the time unit where the first SL data is located and each frequency domain unit therein can be considered as the feedback resource unit associated with the first time unit, that is, for each time unit where the first SL data is located and each frequency domain unit therein, the corresponding feedback resource unit can be determined in the above manner, and the union of the feedback resource units finally determined is the feedback resource unit associated with the first time unit; or, optionally, the feedback resource unit associated with the starting time unit and the starting frequency domain unit where the first SL data is located can be considered as the feedback resource unit associated with the first SL data.
  • the first UE and the second UE can adopt one of the above methods by default, or can be configured through high-level information, such as through configuration information, and the first UE and the second UE determine to use one of the above methods based on the configuration information.
  • the number of feedback resource units associated with the first SL data in the second time unit determined by the first UE may be one or more, then the first UE can determine the first feedback resource unit from at least one feedback resource unit, and the number of the first feedback resource unit may be at least one.
  • the first UE determines the first feedback resource unit from at least one feedback resource unit please refer to the relevant introduction above.
  • time slot 0 is not drawn in Figure 6B.
  • the first UE can select PRB from the PRB set represented by the horizontal line part in time slot 8 to send feedback information.
  • the first UE can select PRB from the PRB set represented by the vertical line part in time slot 4 to send feedback information. It can be seen that although the resource location of the first SL data has not changed, due to the different feedback intervals, the time slots used to send feedback information may be different, and the PRBs mapped to the feedback information may also be different.
  • the second UE determines a first feedback resource unit according to the position of the first resource and the target feedback interval.
  • the second UE needs to receive feedback information of the first SL data, so it can also determine the first feedback resource unit.
  • the second UE can determine the first feedback resource unit in a manner similar to or the same as the first UE, so please refer to the introduction of S406.
  • S407 may occur before S406, or after S406, or simultaneously with S406.
  • the first UE sends feedback information of the first SL data to the second UE in the first feedback resource unit.
  • the second UE receives the feedback information from the first UE in the first feedback resource unit.
  • the time unit occupied by the feedback information is the second time unit.
  • the feedback information is, for example, SL HARQ ACK or SL HARQ NACK.
  • multiple feedback intervals can be associated with the first resource pool, and two UEs can select a suitable feedback interval (the selected feedback interval is referred to as a target feedback interval) from them when communicating, and the target feedback interval can meet the capabilities and latency requirements of the two UEs.
  • a suitable feedback interval the selected feedback interval is referred to as a target feedback interval
  • the target feedback interval can meet the capabilities and latency requirements of the two UEs.
  • the UE can select a feedback interval with a smaller value as the target feedback interval to meet the latency requirement of the service; if the service performed by the UE has a low latency requirement, the UE can select a feedback interval with a larger value as the target feedback interval, which can both meet the latency requirement of the service and not place excessive demands on the capabilities of the UE, and can Reduce the cost of the UE. It can be seen that by adopting the solution of the embodiment of the present application, the latency requirements of different services can be met.
  • the mapping relationship between data transmission resources and feedback resources is designed by comprehensively considering multiple feedback intervals associated with the resource pool, so that after introducing multiple associated feedback intervals on a resource pool, it can also ensure that the feedback resources corresponding to different data transmission resources are also different, avoiding conflicts in feedback resources.
  • FIG7 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the communication device 700 may be the first UE or the circuit system of the first UE described in the embodiment shown in FIG4 , and is used to implement the method corresponding to the first UE in the above method embodiment.
  • the communication device 700 may be the second UE or the circuit system of the second UE in the embodiment shown in FIG4 , and is used to implement the method corresponding to the second UE in the above method embodiment.
  • a circuit system is a chip system.
  • the communication device 700 includes at least one processor 701.
  • the processor 701 can be used for internal processing of the device to implement certain control processing functions.
  • the processor 701 includes instructions.
  • the processor 701 can store data.
  • different processors can be independent devices, can be located in different physical locations, and can be located on different integrated circuits.
  • different processors can be integrated into one or more processors, for example, integrated on one or more integrated circuits.
  • the communication device 700 includes one or more memories 703 for storing instructions.
  • data may also be stored in the memory 703.
  • the processor and the memory may be provided separately or integrated together.
  • the communication device 700 includes a communication line 702 and at least one communication interface 704. Since the memory 703, the communication line 702 and the communication interface 704 are all optional, they are all indicated by dotted lines in FIG. 7 .
  • the communication device 700 may further include a transceiver and/or an antenna.
  • the transceiver may be used to send information to other devices or receive information from other devices.
  • the transceiver may be referred to as a transceiver, a transceiver circuit, an input/output interface, etc., and is used to implement the transceiver function of the communication device 700 through an antenna.
  • the transceiver includes a transmitter and a receiver.
  • the transmitter may be used to generate a radio frequency signal from a baseband signal
  • the receiver may be used to convert the radio frequency signal into a baseband signal.
  • Processor 701 may include a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the communication link 702 may include a pathway to transmit information between the above-mentioned components.
  • the communication interface 704 uses any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), wired access networks, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • wired access networks etc.
  • the memory 703 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 703 may exist independently and be connected to the processor 701 through the communication line 702. Alternatively, the memory 703 may also be integrated with the processor 701.
  • the memory 703 is used to store computer-executable instructions for executing the solution of the present application, and the execution is controlled by the processor 701.
  • the processor 701 is used to execute the computer-executable instructions stored in the memory 703, thereby implementing the steps performed by the first UE described in the embodiment shown in FIG. 4, or implementing the steps performed by the second UE described in the embodiment shown in FIG. 4.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application code, which is not specifically limited in the embodiments of the present application.
  • the processor 701 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 7 .
  • the communication device 700 may include multiple processors, such as the processor 701 and the processor 705 in FIG. 7. Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
  • the chip When the device shown in FIG. 7 is a chip, for example, a chip of a first UE or a chip of a second UE, the chip includes a processor 701 (may also include a processor 705), a communication line 702 and a communication interface 704, and optionally, a memory 703.
  • the communication interface 704 may be an input interface, a pin or a circuit, etc.
  • the memory 703 may be a register, a cache, etc.
  • the processor 701 and the processor 705 may be a general-purpose CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling the execution of the program of the communication method of any of the above embodiments.
  • the embodiment of the present application may divide the functional modules of the device according to the above method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated module may be implemented in the form of hardware or in the form of software functional modules.
  • the division of modules in the embodiment of the present application is schematic, which is only a logical function division, and there may be other division methods in actual implementation.
  • Figure 8 shows a schematic diagram of a device, and the device 800 may be the first UE or the second UE involved in the above method embodiments, or a chip in the first UE or a chip in the second UE.
  • the device 800 includes a sending unit 801, a processing unit 802 and a receiving unit 803.
  • the device 800 can be used to implement the steps performed by the first UE or the second UE in the communication method of the embodiment of the present application.
  • the relevant features can refer to the embodiment shown in Figure 4 above and will not be repeated here.
  • the functions/implementation processes of the sending unit 801, the receiving unit 803, and the processing unit 802 in FIG8 may be implemented by the processor 701 in FIG7 calling the computer execution instructions stored in the memory 703.
  • the functions/implementation processes of the processing unit 802 in FIG8 may be implemented by the processor 701 in FIG7 calling the computer execution instructions stored in the memory 703, and the functions/implementation processes of the sending unit 801 and the receiving unit 803 in FIG8 may be implemented by the communication interface 704 in FIG7.
  • the functions/implementation processes of the sending unit 801 and the receiving unit 803 can also be implemented through pins or circuits.
  • the present application also provides a computer-readable storage medium, which stores a computer program or instruction.
  • the computer program or instruction When the computer program or instruction is executed, the method performed by the first UE or the second UE in the aforementioned method embodiment is implemented.
  • the functions described in the above embodiments can be implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of the present application can be essentially or in other words, the part that contributes or the part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • Storage media include: various media that can store program codes, such as USB flash drives, mobile hard drives, ROM, RAM, magnetic disks, or optical disks.
  • the present application also provides a computer program product, which includes: a computer program code, when the computer program code is run on a computer, the computer executes the method executed by the first UE or the second UE in any of the aforementioned method embodiments.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is used to execute the method executed by the first UE or the second UE involved in any of the above method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that a computer can access or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid state drive (SSD)), etc.
  • the various illustrative logic units and circuits described in the embodiments of the present application can be implemented or operated by a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or other programmable logic devices, discrete gates or transistor logic, discrete hardware components, or any combination of the above.
  • the general-purpose processor can be a microprocessor, and optionally, the general-purpose processor can also be any traditional processor, controller, microcontroller or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (EPROM), EEPROM, register, hard disk, removable disk, CD-ROM or any other form of storage medium in the art.
  • the storage medium can be connected to the processor so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium can be arranged in an ASIC, and the ASIC can be arranged in a terminal device.
  • the processor and the storage medium can also be arranged in different components in the terminal device.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • the first UE or the second UE may perform some or all of the steps in the embodiment of the present application, and these steps or operations are only examples. In the embodiment of the present application, other operations or variations of various operations may also be performed. In addition, the various steps may be performed in different orders presented in the embodiment of the present application, and it is possible that not all operations in the embodiment of the present application need to be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及装置。第一终端设备确定配置信息,该配置信息用于配置第一资源池以及第一资源池关联的多个反馈间隔。第一终端设备在第一资源接收第一侧行数据,第一资源的时域资源包括第一资源池内的第一时间单元。第一终端设备确定目标反馈间隔,该目标反馈间隔为该多个反馈间隔中的一个。第一终端设备根据第一资源的位置以及该目标反馈间隔确定第一反馈资源单元,该第一反馈资源单元位于第二时间单元上,第二时间单元与第一时间单元之间的间隔大于或等于该目标反馈间隔。通过为一个资源池关联多个反馈间隔,使得使用该资源池的不同的设备能够选择各自合适的反馈间隔,从而能够满足不同业务的时延需求。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年09月27日提交中国国家知识产权局、申请号为202211183624.2、申请名称为“一种反馈信道发送方法及侧行通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2022年11月15日提交中国国家知识产权局、申请号为202211431079.4、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
侧行链路(sidelink,SL)是长期演进(long term evolution,LTE)系统以及第五代移动通信(the fifth generation,5G)新无线(new radio,NR)系统中使能的,不必通过基站而能够实现设备到设备(device to device,D2D)直接通信的重要技术。由于设备和设备之间的传输不需要通过基站转发,因此SL通信可以实现更短的延时,更高的空间复用效率以及更低的核心网负载,在车联万物(vehicle to everything,V2X)、智能家居、短距传输、虚拟/增强现实(virtual/augmented reality,VR/AR)、智慧工厂等局部通信需求比较高的场景中有着巨大的作用。
在SL通信中,用户设备(user equipment,UE)1向UE2发送SL数据后,UE2可以向UE1发送反馈信息,用于向UE1指示UE2是否成功接收该SL数据。要发送该反馈信息,UE1和UE2就需要确定能够用于发送该反馈信息的资源所在的位置,例如要确定能够用于发送该反馈信息的物理资源块(physical resource block,PRB)的索引。用于确定该PRB的索引的参数包括最小反馈间隔,最小反馈间隔是指用于发送该反馈信息的时隙(slot)与该SL数据所在的时隙之间的最小时间间隔。目前,一个SL资源池会被配置一个最小反馈间隔,所有使用该SL资源池的UE都按照该最小反馈间隔来确定用于发送反馈信息的PRB的索引。
这样所带来的问题是,不同业务对时延的要求可能不同,有些对时延要求较高的业务期望最小反馈间隔能够尽量小,而有些对时延要求较低的业务又期望最小反馈间隔能够较大。一个SL资源池固定配置一个最小反馈间隔,则无法满足不同业务的需求。例如,如果该最小反馈间隔较小,则导致执行对时延要求较低的业务的UE也需要按照较小的最小时间间隔来通信,会增加这些UE的成本;而如果该最小反馈间隔较大,又无法满足对时延要求较高的业务的时延需求。
发明内容
本申请实施例提供一种通信方法及装置,用于使得最小反馈间隔能够满足不同业务的时延需求。
第一方面,提供第一种通信方法,该方法可由终端设备执行,或由包括终端设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能,该芯片系统或功能模块例如设置在终端设备中。该终端设备例如称为第一终端设备。该方法包括:确定配置信息,所述配置信息用于配置第一资源池以及所述第一资源池关联的多个反馈间隔,所述第一资源池用于所述第一终端设备与其他终端设备通信(例如,用于第一终端设备发送和或接收信号);在第一资源接收第一侧行数据,所述第一资源的时域资源包括所述第一资源池内的第一时间单元;确定目标反馈间隔,所述目标反馈间隔为所述多个反馈间隔中的一个;根据所述第一资源的位置以及所述目标反馈间隔确定第一反馈资源单元,所述第一反馈资源单元位于第二时间单元上,所述第二时间单元与所述第一时间单元之间的间隔大于或等于所述目标反馈间隔。
本申请实施例可以为第一资源池关联多个反馈间隔,两个终端设备在通信时可以从中选择一种合适的反馈间隔(将选择的反馈间隔称为目标反馈间隔),该目标反馈间隔能够满足这两个终端设备的能力以及时延需求。通过为一个资源池关联多个反馈间隔,使得使用该资源池的不同的设备能够选择各自合适的反馈间隔。例如,如果终端设备执行的业务对时延要求较高,则该终端设备可以选择值较小的反馈间隔作为目标反馈间隔,以满足该业务的时延需求;如果终端设备执行的业务对时延要求较低,则该终 端设备可以选择值较大的反馈间隔作为目标反馈间隔,既能够满足该业务的时延需求,也不会对该终端设备的能力有过高的要求,能够降低该终端设备的成本。可见,通过采用本申请实施例的方案,能够满足不同业务的时延需求。同时在本申请实施例中,综合考虑资源池关联的多个反馈间隔设计了数据传输资源到反馈资源之间的映射关系,从而在一个资源池上引入了多个关联的反馈间隔后,也能保证不同数据传输资源对应的反馈资源也不同,避免了反馈资源的冲突。
在一种可选的实施方式中,所述方法还包括:在所述第一反馈资源单元发送所述第一侧行数据的反馈信息。确定第一反馈资源单元后,第一终端设备可以利用第一反馈资源单元发送第一侧行数据的反馈信息,该反馈信息可指示第一侧行数据接收成功或失败。
在一种可选的实施方式中,所述方法还包括:确定第一反馈间隔和第二反馈间隔中的较大值为所述目标反馈间隔,或确定第一反馈间隔为所述目标反馈间隔,其中,所述第一反馈间隔为所述第一终端设备支持的反馈间隔,所述第一反馈间隔属于所述多个反馈间隔,所述第二反馈间隔为第二终端设备支持的反馈间隔,所述第二反馈间隔属于所述多个反馈间隔。第一终端设备和第二终端设备确定了第一反馈间隔和第二反馈间隔的较大值,相当于在第一资源池支持的多个反馈间隔中,确定了两个终端设备都能支持的最小的反馈间隔作为目标反馈间隔。使得该目标反馈间隔既符合两个终端设备的能力,又能尽量减小传输时延。或者,考虑到第一设备需要进行SL数据的解调以及反馈信号的生成,第一设备和第二设备按照第一设备支持的反馈间隔来确定目标反馈间隔。
在一种可选的实施方式中,所述第一反馈间隔为所述第一终端设备支持的A个反馈间隔中的值最小的反馈间隔,所述第二反馈间隔所述第二终端设备支持的B个反馈间隔中的值最小的反馈间隔,所述A个反馈间隔属于所述多个反馈间隔,所述B个反馈间隔属于所述多个反馈间隔,A和B均为正整数。第一终端设备可以支持所述多个反馈间隔中的A个反馈间隔,第二终端设备可以支持所述多个反馈间隔中的B个反馈间隔,那么可以从A个反馈间隔中确定值最小的反馈间隔,即第一反馈间隔,以及从B个反馈间隔中确定值最小的反馈间隔,即第二反馈间隔,从而可以最终确定两个终端设备都能支持的最小的反馈间隔。
在一种可选的实施方式中,所述方法还包括:向第二终端设备发送第一信息,所述第一信息用于指示所述目标反馈间隔。在这种方式下,第一终端设备确定目标反馈间隔,并向第二终端设备发送第一信息,第一信息可指示目标反馈间隔。第二终端设备根据第一信息就可以确定目标反馈间隔,而不必第二终端设备再执行更多的确定目标反馈间隔的过程。既使得两个终端设备所确定的目标反馈间隔一致,也减少了第二终端设备的工作量。
在一种可选的实施方式中,所述方法还包括:接收来自第二终端设备的第一信息,所述第一信息用于指示所述目标反馈间隔;确定目标反馈间隔,包括:根据所述第一信息确定所述目标反馈间隔。在这种方式下,第二终端设备确定目标反馈间隔,并向第一终端设备发送第一信息,第一信息可指示目标反馈间隔。第一终端设备根据第一信息就可以确定目标反馈间隔,而不必第一终端设备再执行更多的确定目标反馈间隔的过程。既使得两个终端设备所确定的目标反馈间隔一致,也减少了第一终端设备的工作量。
在一种可选的实施方式中,所述方法还包括:在接收所述第一侧行数据之前,接收来自第二终端设备的第二信息,或向第二终端设备发送第二信息,其中,所述第二信息包括X个反馈间隔与X个侧行HARQ进程标识之间的关联关系,或包括X个反馈间隔与X个优先级之间的关联关系,或包括X个反馈间隔与X个传输资源之间的关联关系,其中,所述第二信息包括的所述X个反馈间隔属于所述多个反馈间隔,X为正整数。
在一种可选的实施方式中,所述方法还包括:接收侧行控制信息,所述侧行控制信息用于调度第一侧行数据;确定目标反馈间隔,包括:所述侧行控制信息包括第一侧行HARQ进程标识的信息,根据所述第二信息确定所述第一侧行HARQ进程标识与第三反馈间隔关联,确定所述第三反馈间隔为所述目标反馈间隔;或,所述侧行控制信息包括第一优先级的信息,根据所述第二信息确定所述第一优先级与第三反馈间隔关联,确定所述第三反馈间隔为所述目标反馈间隔;或,所述侧行控制信息包括所述第一资源的信息,根据所述第二信息确定所述第一资源与第三反馈间隔关联,确定所述第三反馈间隔为所述目标反馈间隔。其中,该侧行控制信息用于调度第一侧行数据,也可以理解为该侧行控制信息与第一侧行数据关联。该侧行控制信息包括第一资源的信息,可以理解为,该侧行控制信息包括了第三资源的信息,该第三资源包括一个或多个资源,这一个或多个资源包括第一资源,第三资源内除第一资源外的 其他资源可以是第二终端设备为第二终端设备的重传所预留的资源。另外,第二信息包括的可以是第一资源与第三反馈间隔之间的关联关系,则第一终端设备可以根据第一资源确定第三反馈间隔;或者,第二信息包括的也可以是第三资源与第三反馈间隔之间的关联关系,其中第三资源为周期性的资源,第一资源为第三资源在一个周期内的资源,因此也可以确定第一资源与第三反馈间隔关联。
在这种方式下,目标反馈间隔的确定过程较为灵活,例如,在执行不同的业务时,或者在传输不同的侧行数据时,两个终端设备可以选择不同的反馈间隔作为目标反馈间隔,使得所选择的目标反馈间隔与当前的场景更为匹配。而且这种方式可以认为是隐式指示目标反馈间隔,从而无需通过额外的显式信息指示目标反馈间隔,能够减小信令开销。
在一种可选的实施方式中,所述方法还包括:接收侧行控制信息,所述侧行控制信息用于调度所述第一侧行数据,且所述侧行控制信息还用于指示所述目标反馈间隔;确定目标反馈间隔,包括:根据所述侧行控制信息确定所述目标反馈间隔。在这种方式下,目标反馈间隔的确定过程较为灵活,例如,在执行不同的业务时,或者在传输不同的侧行数据时,终端设备可以选择不同的反馈间隔作为目标反馈间隔,使得所选择的目标反馈间隔与当前的场景更为匹配。
在一种可选的实施方式中,所述方法还包括:向第二终端设备发送第一能力信息,和/或,接收来自第二终端设备的第二能力信息,其中,所述第一能力信息指示所述多个反馈间隔中的至少一个反馈间隔,所述第二能力信息指示所述多个反馈间隔中的至少一个反馈间隔。两个终端设备可以彼此发送各自的能力信息,使得两个终端设备都能获知自己以及对端设备支持的反馈间隔,从而有助于两个终端设备确定目标反馈间隔。
在一种可选的实施方式中,所述配置信息包括反馈周期的信息,所述方法还包括:根据所述反馈周期确定所述第一资源池中的至少一个时间单元,所述至少一个时间单元包括用于传输反馈信息的反馈资源单元;根据所述第一时间单元以及所述目标反馈间隔,从所述至少一个时间单元中确定所述第二时间单元,所述第二时间单元为所述至少一个时间单元中位于所述第一时间单元之后、且与所述第一时间单元的间隔大于或等于所述目标反馈间隔的第一个时间单元。第一终端设备要发送反馈信息,就要确定用于发送该反馈信息的时间单元。本申请实施例中,第一终端设备根据反馈周期、第一时间单元以及目标反馈间隔,可以确定用于发送反馈信息的第二时间单元,能够匹配终端设备的实际能力和需求。
在一种可选的实施方式中,所述方法还包括:根据所述第二时间单元以及所述多个反馈间隔确定与所述第二时间单元关联的N1个时间单元,其中,当第三时间单元位于所述第二时间单元之前、所述第三时间单元与所述第二时间单元之间的间隔大于或等于第四反馈间隔、且所述第三时间单元与所述第二时间单元之间的间隔小于所述第四反馈间隔加上所述反馈周期时,所述N1个时间单元包括所述第三时间单元,其中,所述第四反馈间隔为所述多个反馈间隔中的任意一个反馈间隔,N1为正整数。与第二时间单元关联的N1个时间单元是指,在这N1个时间单元上传输的侧行数据,其反馈信息可以在第二时间单元上发送。虽然本申请实施例仅以第一终端设备和第二终端设备为例来进行描述确定反馈资源单元的过程,但是在第一资源池上还可能存在着其他的终端设备的通信过程,这些终端设备传输数据以及对应的反馈信息时可能会使用与第一终端设备和第二终端设备确定的目标反馈间隔不同的反馈间隔进行反馈,例如使用第一资源池关联的多个反馈间隔中除目标反馈间隔之外的一个反馈间隔。而在本申请实施例中,第二时间单元上的反馈资源单元可以被任意反馈间隔的终端设备所使用,因此在确定第二时间单元关联的时间单元时,不仅需要考虑第一终端设备和第二终端设备之间的目标反馈间隔,还需要考虑第一资源池关联的其他反馈间隔。因此第一终端设备可以根据第一资源池关联的多个反馈间隔来确定第二时间单元关联的时间单元。
可选的,上述第二时间单元与N1个时间单元关联,可以理解为第二时间单元与N1个时间单元按照第一关系关联。进一步的,在上述N1个时间单元中可以排除部分时间单元而确定剩余的N3个时间单元,N3为小于或等于N1的正整数,该N3个时间单元和第二时间单元按照第二关系关联。例如,若N1个时间单元包括第四时间单元,且第二时间单元为所述至少一个时间单元(包含用于传输反馈信息的反馈资源单元的时间单元)中位于第四时间单元之后、且与第四时间单元的间隔大于或等于第四反馈间隔的第一个时间单元,则N3个时间单元包括第四时间单元,其中第四反馈间隔为多个反馈间隔中的任意一个反馈间隔。即在某些情况下,由于时间单元编号有限等原因,可能出现第二时间单元实际关联的时间单元数量小于N1的情况。
在一种可选的实施方式中,所述N1个时间单元中,时间单元i以及频域单元j关联M1个反馈资源单 元中的反馈资源单元[(i+j·N1)·C1,(i+j·N1+1)·C1-1],其中,D表示所述第一资源池包含的频域单元的数量,所述M1个反馈资源单元为所述第二时间单元上的反馈资源单元(或者说,M1表示所述第二时间单元上的反馈资源单元的数量),M1为大于或等于N1的正整数,D为正整数。可选的,M1个反馈资源单元可以由所述配置信息来配置。在确定N1个时间单元后,第一终端设备就可以根据如上公式确定与第一时间单元以及用于传输第一侧行数据的频域单元关联的反馈资源单元。一般情况下,资源池的配置信息可以使得M1为D·N1的整数倍的条件成立,从而使得C1为正整数。如果出现M1不为D·N1的整数倍的特殊情况,C1也可以进行相应的四舍五入,或者上取整或者下取整。
通过该关联方法,该N1个时间单元中,任何一个时间单元以及频域单元对应的资源都能在第二时间单元上映射其对应的反馈资源单元,且不同时间单元或频域单元对应的资源映射的反馈资源单元不同。因此,即使第一资源池上配置了多个反馈间隔,只要满足不同SL数据对应的时间单元或者频域单元不同,那么它们对应的反馈资源单元也不同,即不会产生反馈资源的冲突问题。
在一种可选的实施方式中,所述N3个时间单元中,时间单元i以及频域单元j关联M1个反馈资源单元中的反馈资源单元[(i+j·N1)·C1,(i+j·N1+1)·C1-1],其中,通过该方式,当第二时间单元实际关联的时间单元数量小于N1时,也可以参考上述对应的方法确定一个时间单元以及频域单元关联的反馈资源单元。
在一种可选的实施方式中,所述N3个时间单元中,时间单元i以及频域单元j关联M1个反馈资源单元中的反馈资源单元[(i+j·N3)·C3,(i+j·N3+1)·C3-1],其中,一般情况下,资源池的配置信息可以使得M1为D·N3的整数倍的条件成立,从而使得C3为正整数。如果出现M1不为D·N3的整数倍的特殊情况,C3也可以进行相应的四舍五入,或上取整或者下取整。通过该方式,当第二时间单元实际关联的时间单元数量小于N1时,可以考虑将M1个反馈资源单元平分给N3个时间单元中的时间单元以及频域单元。
在一种可选的实施方式中,所述方法还包括:根据所述第二时间单元以及所述目标反馈间隔确定与所述第二时间单元关联的N2个时间单元,其中,当第三时间单元位于所述第二时间单元之前、所述第三时间单元与所述第二时间单元之间的间隔大于或等于所述目标反馈间隔、且所述第三时间单元与所述第二时间单元之间的间隔小于所述目标反馈间隔加上所述反馈周期时,所述N2个时间单元包括所述第三时间单元,N2为正整数。可选的,所述第二时间单元包括多个反馈资源单元集合,所述多个反馈资源单元集合与所述多个反馈间隔一一对应,其中的每个反馈资源单元集合包括一个或多个反馈资源单元,所述M2个反馈资源单元属于所述第二时间单元上与所述目标反馈间隔关联的反馈资源单元集合,所述配置信息包括所述多个反馈资源单元集合与所述多个反馈间隔的对应关系。也就是说,所述配置信息可以配置多个反馈资源单元集合(例如反馈资源单元的索引集合)与多个反馈间隔的对应关系,例如反馈资源单元集合与反馈间隔一一对应。其中的每个反馈资源单元集合可以包括一个或多个反馈资源单元(例如包括一个或多个反馈资源单元的索引),不同的反馈资源单元集合可以没有交集。在这种配置方式下,不同的反馈间隔对应的反馈资源单元集合不同,则采用不同反馈间隔的终端设备在确定反馈资源单元时不会出现冲突的情况,因此第一终端设备在确定与第二时间单元关联的时间单元时,只需考虑目标反馈间隔即可,对于多个反馈间隔中除了目标反馈间隔外的其他反馈间隔则不必考虑,能够简化第一终端设备的执行过程。可选的,N2可以为等于该反馈周期的正整数。
可选的,上述第二时间单元与N2个时间单元关联,可以理解为第二时间单元与N2个时间单元按照第三关系关联。进一步的,在上述N2个时间单元中可以排除部分时间单元而确定剩余的N4个时间单元,N4为小于或等于N2的正整数,该N4个时间单元和第二时间单元按照第四关系关联。例如,若N2个时间单元包括第四时间单元,且第二时间单元为所述至少一个时间单元(包含用于传输反馈信息的反馈资源单元的时间单元)中位于第四时间单元之后、且与第四时间单元的间隔大于或等于目标反馈间隔的第一 个时间单元,则N4个时间单元包括第四时间单元。即在某些情况下,由于时间单元编号有限等原因,会出现第二时间单元实际关联的时间单元数量小于N2的情况。
在一种可选的实施方式中,所述N2个时间单元中,时间单元i以及频域单元j关联M2个反馈资源单元中的反馈资源单元[(i+j·N2)·C2,(i+j·N2+1)·C2-1],其中,D表示所述第一资源池包含的频域单元的数量,所述M2个反馈资源单元为所述第二时间单元上与所述目标反馈间隔关联的反馈资源单元(或者,M2表示所述第二时间单元上与所述目标反馈间隔关联的反馈资源单元的数量),M2为大于或等于N2的正整数,D为正整数。在确定N2个时间单元后,第一终端设备就可以根据如上公式确定与第一时间单元以及用于传输第一侧行数据的频域单元关联的反馈资源单元。一般情况下,资源池的配置信息可以使得M2为D·N2的整数倍的条件成立,从而使得C2为正整数。如果出现M2不为D·N2的整数倍的特殊情况,C2也可以进行相应的四舍五入,或者上取整或者下取整。
同时通过该关联方法,所述N2个时间单元中,任何一个时间单元以及频域单元对应的资源都能在第二时间单元上映射其对应的反馈资源单元,且不同时间单元或频域单元对应的资源映射的反馈资源单元不同,因此对于同一个反馈间隔,只要满足不同SL数据对应的时间单元或者频域单元不同,那么他们对应的反馈资源单元也不同,即不会产生反馈资源的冲突问题。
在一种可选的实施方式中,所述N4个时间单元中,时间单元i以及频域单元j关联M2个反馈资源单元中的反馈资源单元[(i+j·N2)·C2,(i+j·N2+1)·C2-1],其中,通过该方式,当第二时间单元实际关联的时间单元数量小于N2时,也可以参考上述对应的方法确定一个时间单元以及频域单元关联的反馈资源单元。
在一种可选的实施方式中,所述N4个时间单元中,时间单元i以及频域单元j关联M2个反馈资源单元中的反馈资源单元[(i+j·N4)·C4,(i+j·N4+1)·C4-1],其中,一般情况下,资源池的配置信息可以使得M2为D·N4的整数倍的条件成立,从而使得C4为正整数。如果出现M2不为D·N4的整数倍的特殊情况,C4也可以进行相应的四舍五入,或者上取整或者下取整。通过该方式,当第二时间单元实际关联的时间单元数量小于N2时,可以考虑将M2个反馈资源单元平分给N4个时间单元中的时间单元以及频域单元。
在一种可选的实施方式中,所述方法还包括:确定所述第二时间单元上与所述第一资源包括的时间单元和频域单元关联的一个或多个反馈资源单元;从所述一个或多个反馈资源单元中确定所述第一反馈资源单元。按照上述公式,第一终端设备可以确定一个或多个反馈资源单元,则第一终端设备可以从一个或多个反馈资源单元中最终确定第一反馈资源单元来发送反馈信息。
在一种可选的实施方式中,所述时间单元包括时隙,所述频域单元包括子信道,所述反馈资源单元包括PRB,所述第一资源在时域上包括一个时隙或多个时隙,在频域上包括一个或多个子信道。
第二方面,提供第二种通信方法,该方法可由终端设备执行,或由包括终端设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能,该芯片系统或功能模块例如设置在终端设备中。该终端设备例如称为第二终端设备。该方法包括:确定配置信息,所述配置信息用于配置第一资源池以及所述第一资源池关联的多个反馈间隔,所述第一资源池用于所述第二终端设备与其他终端设备通信(例如,用于第二终端设备发送和或接收信号);在第一资源发送第一侧行数据,其中,所述第一资源池内的第一时间单元包括所述第一资源的时域资源;确定目标反馈间隔,所述目标反馈间隔为所述多个反馈间隔中的一个;根据所述第一资源的位置以及所述目标反馈间隔确定第一反馈资源单元,所述第一反馈资源单元位于第二时间单元上,所述第二时间单元与所述第一时间单元之间的间隔大于或等于所述目标反馈间隔。
在一种可选的实施方式中,所述方法还包括:在所述第一反馈资源单元接收所述第一侧行数据的反 馈信息。
在一种可选的实施方式中,所述方法还包括:确定第一反馈间隔和第二反馈间隔中的较大值为所述目标反馈间隔,或确定第一反馈间隔为所述目标反馈间隔,其中,所述第一反馈间隔为所述第一终端设备支持的反馈间隔,所述第一反馈间隔属于所述多个反馈间隔,所述第二反馈间隔为第二终端设备支持的反馈间隔,所述第二反馈间隔属于所述多个反馈间隔。
在一种可选的实施方式中,所述第一反馈间隔为所述第一终端设备支持的A个反馈间隔中的值最小的反馈间隔,所述第二反馈间隔所述第二终端设备支持的B个反馈间隔中的值最小的反馈间隔,所述A个反馈间隔属于所述多个反馈间隔,所述B个反馈间隔属于所述多个反馈间隔,A和B均为正整数。
在一种可选的实施方式中,所述方法还包括:向第一终端设备发送第一信息,所述第一信息用于指示所述目标反馈间隔。
在一种可选的实施方式中,所述方法还包括:接收来自第一终端设备的第一信息;确定目标反馈间隔,包括:根据所述第一信息确定所述目标反馈间隔。
在一种可选的实施方式中,所述方法还包括:在发送所述第一侧行数据之前,向第一终端设备发送第二信息,或接收来自第一终端设备的第二信息,其中,所述第二信息包括X个反馈间隔与X个侧行HARQ进程之间的关联关系,或包括X个反馈间隔与X个优先级之间的关联关系,或包括X个反馈间隔与X个传输资源之间的关联关系,其中,所述第二信息包括的所述X个反馈间隔属于所述多个反馈间隔,X为正整数。
在一种可选的实施方式中,所述方法还包括:发送所述侧行控制信息,所述侧行控制信息用于调度所述第一侧行数据。其中,所述侧行控制信息包括第一侧行HARQ进程标识的信息,所述第一侧行HARQ进程标识用于所述第一终端设备根据所述第二信息确定所述目标反馈间隔(或者,所述侧行控制信息包括第一侧行HARQ进程标识的信息,所述目标反馈间隔为所述第二信息中与所述第一HARQ进程标识关联的反馈间隔);或,所述侧行控制信息包括第一优先级的信息,所述第一优先级的信息用于所述第一终端设备根据所述第二信息确定所述目标反馈间隔(或者,所述侧行控制信息包括第一优先级的信息,所述目标反馈间隔为所述第二信息中与所述第一优先级关联的反馈间隔);或,所述侧行控制信息包括所述第一资源的信息,所述第一资源的信息用于所述第一终端设备根据所述第二信息确定所述目标反馈间隔(或者,所述侧行控制信息包括第一资源的信息,所述目标反馈间隔为所述第二信息中与所述第一资源关联的反馈间隔)。其中,该侧行控制信息用于调度第一侧行数据,也可以理解为该侧行控制信息与第一侧行数据关联。该侧行控制信息包括第一资源的信息,可以理解为,该侧行控制信息包括了第三资源的信息,该第三资源包括一个或多个资源,这一个或多个资源包括第一资源,第三资源内除第一资源外的其他资源可以是第二终端设备为第二终端设备的重传所预留的资源。另外,第二信息包括的可以是第一资源与第三反馈间隔之间的关联关系,则第二终端设备可以根据第一资源确定第三反馈间隔;或者,第二信息包括的也可以是第三资源与第三反馈间隔之间的关联关系,其中第三资源为周期性的资源,第一资源为第三资源在一个周期内的资源,因此也可以确定第一资源与第三反馈间隔关联。
在一种可选的实施方式中,所述方法还包括:发送侧行控制信息,所述侧行控制信息用于调度所述第一侧行数据,且所述侧行控制信息还用于指示所述目标反馈间隔。
在一种可选的实施方式中,所述方法还包括:向第一终端设备发送第二能力信息,和/或,接收来自第一终端设备的第一能力信息,其中,所述第一能力信息指示至少一个反馈间隔,所述第二能力信息指示至少一个反馈间隔。
在一种可选的实施方式中,所述配置信息包括反馈周期的信息,所述方法还包括:根据所述反馈周期确定所述第一资源池中的至少一个时间单元,所述至少一个时间单元包括用于传输反馈信息的反馈资源单元;根据所述第一时间单元以及所述目标反馈间隔,从所述至少一个时间单元中确定所述第二时间单元,所述第二时间单元为所述至少一个时间单元中位于所述第一时间单元之后、且与所述第一时间单元的间隔大于或等于所述目标反馈间隔的第一个时间单元。
在一种可选的实施方式中,所述方法还包括:根据所述第二时间单元以及所述多个反馈间隔确定与所述第二时间单元关联的N1个时间单元,其中,当第三时间单元位于所述第二时间单元之前、所述第三时间单元与所述第二时间单元之间的间隔大于或等于第四反馈间隔、且所述第三时间单元与所述第二时间单元之间的间隔小于所述第四反馈间隔加上所述反馈周期时,所述N1个时间单元包括所述第三时 间单元,其中,所述第四反馈间隔为所述多个反馈间隔中的任意一个反馈间隔,N1为正整数。
可选的,上述第二时间单元与N1个时间单元关联,可以理解为第二时间单元与N1个时间单元按照第一关系关联。进一步的,在上述N1个时间单元中可以排除部分时间单元而确定剩余的N3个时间单元,N3为小于或等于N1的正整数,该N3个时间单元和第二时间单元按照第二关系关联。例如,若N1个时间单元包括第四时间单元,且第二时间单元为所述至少一个时间单元(包含用于传输反馈信息的反馈资源单元的时间单元)中位于第四时间单元之后、且与第四时间单元的间隔大于或等于第四反馈间隔的第一个时间单元,则N3个时间单元包括第四时间单元,其中第四反馈间隔为多个反馈间隔中的任意一个反馈间隔。即在某些情况下,由于时间单元编号有限等原因,会出现第二时间单元实际关联的时间单元数量小于N1的情况。
在一种可选的实施方式中,所述N1个时间单元中,时间单元i以及频域单元j关联M1个反馈资源单元中的反馈资源单元[(i+j·N1)·C1,(i+j·N1+1)·C1-1],其中,D表示所述第二资源池包含的频域单元的数量,所述M1个反馈资源单元为所述第二时间单元上的反馈资源单元(或者,M1表示所述第二时间单元上的反馈资源单元的数量),M1为大于或等于N1的正整数,D为正整数。
在一种可选的实施方式中,所述N3个时间单元中,时间单元i以及频域单元j关联M1个反馈资源单元中的反馈资源单元[(i+j·N1)·C1,(i+j·N1+1)·C1-1],其中,
在一种可选的实施方式中,所述N3个时间单元中,时间单元i以及频域单元j关联M1个反馈资源单元中的反馈资源单元[(i+j·N3)·C3,(i+j·N3+1)·C3-1],其中,
在一种可选的实施方式中,所述方法还包括:根据所述第二时间单元以及所述目标反馈间隔确定与所述第二时间单元关联的N2个时间单元,其中,当第三时间单元位于所述第二时间单元之前、所述第三时间单元与所述第二时间单元之间的间隔大于或等于所述目标反馈间隔、且所述第三时间单元与所述第二时间单元之间的间隔小于所述目标反馈间隔加上所述反馈周期时,所述N2个时间单元包括所述第三时间单元,N2为正整数。可选的,N2可以为等于该反馈周期的正整数。
可选的,上述第二时间单元与N2个时间单元关联,可以理解为第二时间单元与N2个时间单元按照第三关系关联。进一步的,在上述N2个时间单元中可以排除部分时间单元而确定剩余的N4个时间单元,N4为小于或等于N2的正整数,该N4个时间单元和第二时间单元按照第四关系关联。例如,若N2个时间单元包括第四时间单元,且第二时间单元为所述至少一个时间单元(包含用于传输反馈信息的反馈资源单元的时间单元)中位于第四时间单元之后、且与第四时间单元的间隔大于或等于目标反馈间隔的第一个时间单元,则N4个时间单元包括第四时间单元。即在某些情况下,由于时间单元编号有限等原因,会出现第二时间单元实际关联的时间单元数量小于N2的情况。
在一种可选的实施方式中,所述N2个时间单元中,时间单元i以及频域单元j关联M2个反馈资源单元中的反馈资源单元[(i+j·N2)·C2,(i+j·N2+1)·C2-1],其中,D表示所述第一资源池包含的频域单元的数量,所述M2个反馈资源单元为所述第二时间单元上与所述目标反馈间隔关联的反馈资源单元(或者,M2表示所述第二时间单元上与所述目标反馈间隔关联的反馈资源单元的数量),M2为大于或等于N2的正整数,D为正整数。
在一种可选的实施方式中,所述N4个时间单元中,时间单元i以及频域单元j关联M2个反馈资源单元中的反馈资源单元[(i+j·N2)·C2,(i+j·N2+1)·C2-1],其中,
在一种可选的实施方式中,所述N4个时间单元中,时间单元i以及频域单元j关联M2个反馈资源单元中的反馈资源单元[(i+j·N4)·C4,(i+j·N4+1)·C4-1],其中,
在一种可选的实施方式中,所述第二时间单元包括多个反馈资源单元集合,所述多个反馈资源单元集合与所述多个反馈间隔一一对应,其中的每个反馈资源单元集合包括一个或多个反馈资源单元,所述 M2个反馈资源单元属于所述第二时间单元上与所述目标反馈间隔关联的反馈资源单元集合,所述配置信息包括所述多个反馈资源单元集合与所述多个反馈间隔的对应关系。
在一种可选的实施方式中,所述方法还包括:根据所述第一资源包括的时间单元和频域单元,确定所述第二时间单元上与所述第一资源包括的时间单元和频域单元关联的一个或多个反馈资源单元;从所述一个或多个反馈资源单元中确定所述第一反馈资源单元。
在一种可选的实施方式中,所述时间单元包括时隙,所述频域单元包括子信道,所述反馈资源单元包括PRB,所述第一资源在时域上包括一个时隙或多个时隙,在频域上包括一个或多个子信道。
关于第二方面或各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应实施方式的技术效果的介绍。
第三方面,提供一种通信装置。所述通信装置可以为上述第一方面至第二方面中的任一方面所述的第一终端设备。所述通信装置具备上述第一终端设备的功能。所述通信装置例如为第一终端设备,或为包括第一终端设备的较大设备,或为第一终端设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
在一种可选的实施方式中,所述处理单元,用于确定配置信息,所述配置信息用于配置第一资源池以及所述第一资源池关联的多个反馈间隔,所述第一资源池用于所述第一终端设备发送和或接收信号;所述收发单元(或,所述接收单元),用于在第一资源接收第一侧行数据,所述第一资源的时域资源包括所述第一资源池内的第一时间单元;所述处理单元,还用于确定目标反馈间隔,所述目标反馈间隔为所述多个反馈间隔中的一个;所述处理单元,还用于根据所述第一资源的位置以及所述目标反馈间隔确定第一反馈资源单元,所述第一反馈资源单元位于第二时间单元上,所述第二时间单元与所述第一时间单元之间的间隔大于或等于所述目标反馈间隔。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面至第二方面中的任一方面所述的第一终端设备的功能。
第四方面,提供一种通信装置。所述通信装置可以为上述第一方面至第二方面中的任一方面所述的第二终端设备。所述通信装置具备上述第二终端设备的功能。所述通信装置例如为第二终端设备,或为包括第二终端设备的较大设备,或为第二终端设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。关于收发单元的实现方式可参考第七方面的介绍。
在一种可选的实施方式中,所述处理单元,用于确定配置信息,所述配置信息用于配置第一资源池以及所述第一资源池关联的多个反馈间隔,所述第一资源池用于所述第二终端设备发送和或接收信号;所述收发单元(或,所述发送单元),用于在第一资源发送第一侧行数据,其中,所述第一资源池内的第一时间单元包括所述第一资源的时域资源;所述处理单元,还用于确定目标反馈间隔,所述目标反馈间隔为所述多个反馈间隔中的一个;所述处理单元,还用于根据所述第一资源的位置以及所述目标反馈间隔确定第一反馈资源单元,所述第一反馈资源单元位于第二时间单元上,所述第二时间单元与所述第一时间单元之间的间隔大于或等于所述目标反馈间隔。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面至第二方面中的任一方面所述的第二终端设备的功能。
第五方面,提供一种通信装置,该通信装置可以为远端终端设备,或者为用于远端终端设备中的芯片或芯片系统。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述各方面中由第一终端设备所执行的方法。
第六方面,提供一种通信装置,该通信装置可以为中继终端设备,或者为用于中继终端设备中的芯片或芯片系统。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述各方面中由第二终端设备所执行的方法。
第七方面,提供一种通信系统,包括远端终端设备以及中继终端设备,其中,第一终端设备用于执行如第一方面至第二方面中任一方面所述的由第一终端设备执行的方法,第二终端设备用于执行如第一方面至第二方面中任一方面所述的由第二终端设备执行的方法。例如,第一终端设备可以通过第三方面或第五方面所述的通信装置实现;第二终端设备可以通过第四方面或第六方面所述的通信装置实现。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中第一终端设备或第二终端设备所执行的方法被实现。
第九方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
第十方面,提供一种芯片系统,包括处理器和接口,所述处理器用于从所述接口调用并运行指令,以使所述芯片系统实现上述各方面的方法。
附图说明
图1为包括PSFCH的时隙的格式的一种示意图;
图2为包括PSFCH的时隙的位置的一种示意图;
图3为本申请实施例应用的一种网络架构的示意图;
图4为本申请实施例提供的一种通信方法的流程图;
图5A为本申请实施例中用于传输反馈信息的时间单元的位置的一种示意图;
图5B为本申请实施例中与第二时间单元关联的时间单元的数量可能小于或等于N1的一种示意图;
图6A和图6B为本申请实施例中确定反馈资源单元的两种示意图;
图7为本申请实施例提供的一种装置的示意图;
图8为本申请实施例提供的又一种装置的示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。另外,本申请所介绍的各个实施例中对于步骤的编号,只是为了区分不同的步骤,并不用于限定步骤之间的先后顺序。例如,S401可以发生在S402之前,或者可能发生在S402之后,或者也可能与S402同时发生。
以下,对本申请实施例中的部分用语或概念进行解释说明,以便于本领域技术人员理解。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、D2D、V2X、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、VR、AR、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时 可称为UE、终端、客户端设备(customer premise equipment,CPE)、接入站、UE站、远方站、无线通信设备、或用户装置等等。为描述方便,本申请实施例中将终端设备以UE为例进行说明。
本申请实施例中的网络设备,例如包括接入网设备,和/或核心网设备。所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于基站(基站收发站点(base transceiver station,BTS),Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),第三代合作伙伴计划(3rd generation partnership project,3GPP)后续演进的基站,无线保真(wireless fidelity,Wi-Fi)系统中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持同一种接入技术的网络,也可以支持不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。所述接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。所述接入网设备还可以是服务器等。例如,V2X技术中的网络设备可以为路侧单元(road side unit,RSU)。以下对接入网设备以基站为例进行说明。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。所述核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请实施例并不对此进行限定。以5G系统为例,所述核心网设备包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、策略控制功能(policy control function,PCF)或用户面功能(user plane function,UPF)等。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请实施例提供的技术方案可以应用于第四代移动通信技术(the 4th generation,4G)系统中,例如LTE系统,或可以应用于5G系统中,例如NR系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统,例如第六代移动通信技术(the 6th generation,6G)系统等,具体的不做限制。本申请实施例提供的技术方案可以应用于D2D场景,例如NR-D2D场景等,或者可以应用于V2X场景,例如NR-V2X场景等。例如可应用于车联网,例如V2X等,或可用于智能驾驶、辅助驾驶、或智能网联车等领域。或者可以应用于智慧工厂或工业控制场景,例如控制器与传动装置或控制器与传感器之间的通信。
下面介绍本申请实施例涉及的技术特征。
在NR系统中,SL设备可以被配置其工作所在的带宽部分(bandwidth part,BWP)以及SL资源池(resource pool),用于确定SL传输能够使用的频域资源以及时域资源,其中,时域资源包含了该SL设备能够使用的时隙以及该时隙内中能使用的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(symbol)。例如某个SL设备被配置了SL资源池,该SL资源池在频域例如包括6个子信道(subchannel),在时域包括周期为8个时隙的资源,其中每个周期中的6个时隙能用于SL传输,如图1的左边所示。由于并不是所有的时隙都能用于SL传输的,因此在一个SL资源池中可以引入逻辑时隙的概念,一个逻辑时隙对应一个可用于SL传输的物理时隙,逻辑时隙的索引可以是连续的。本文中除非特别指出,否则当出现时隙时都可以理解为逻辑时隙。另外,图1的右边为一个时隙内部的帧结构的示意。以一个时隙包含14个OFDM符号为例,例如从OFDM符号3开始可用于SL传输。其中,从时隙中的哪个OFDM符号开始可用于SL传输,可由BWP的配置信息包括的开始侧行链路符号(startSlsymbols)参数配置。在SL中,子信道是SL设备传输数据时在频域资源上的最小颗粒度,SL资源池上的一个子信道能够包含的PRB个数可由资源池配置信息所配置,该资源池配置信息可用于配置该SL资源池。
SL中的信道主要包括物理侧行链路控制信道(physical sidelink control channel,PSCCH)、物理侧行链路共享信道(physical sidelink shared channel,PSSCH)、物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH)等。PSCCH可传输侧行控制信息1(sidelink control information 1,SCI1),SCI1包含该SCI1关联的PSSCH上的调度信息,例如SCI1中可以指示PSSCH的时频资源位置、PSSCH中数据采用的调制编码方式、PSSCH中数据对应的优先级等信息。因此也可以理解为SCI1可以调度PSSCH。PSSCH可传输侧行控制信息2(sidelink control information 2,SCI2)以及SL数据。其中SCI2 可以包括PSSCH上数据对应的HARQ进程号(或者标识),发送设备的源身份号(identity,ID),接收设备的目的ID等信息。PSFCH可传输数据混合自动重传(hybrid automatic repeat request,HARQ)反馈信息。在一个时隙中,能够执行SL传输的第一个OFDM符号一般都作为自动增益控制(automatic gain control,AGC)符号,可用于接收端根据接收到的功率调整接收端的功率放大器的放大系数以及模拟数字转换器(analog to digital converter,ADC)的参数,以用于后续的PSCCH和/或PSSCH的接收。在一个时隙中,从能够执行SL传输的第二个OFDM符号开始可传输PSCCH以及PSSCH,PSCCH一般在时域上可以占用2个或3个符号,具体占用的OFDM符号数量可由高层参数配置;PSCCH一般在频域上从一个子信道的起始PRB位置开始映射,总共能够占用10个、12个、15个、20个或25个PRB,具体占用的PRB个数也可由高层配置,从而使得接收端能够在一些固定的位置进行PSCCH的盲检,一般来说PSCCH占用的频域资源不能超过一个子信道。PSSCH的时域起始位置和PSCCH的时域起始位置相同(特殊情况下PSCCH占据一整个子信道且PSSCH也只占据一个子信道的情况可以理解为,PSSCH的时域起始位置和PSCCH的时域起始位置相同,但PSSCH在PSCCH所在的时域位置上占据0个频域子单元,例如PRB或者子载波),频域起始子信道和PSCCH所在的子信道为同一子信道,PSSCH可以与PSCCH进行部分频分复用,PSSCH在频域上可以占据一个或多个子信道,占据的子信道个数可由调度该PSSCH的SCI1来进行指示。在每个时隙中,最后一个用于执行SL传输的OFDM符号一般不用于发送任何信息,而是作为间隔(GAP)符号,用于SL设备完成收发状态转换。
资源池配置信息还可以包含PSFCH的配置信息,例如包括PSFCH出现的周期,即,每隔多少个时隙会出现一个包含PSFCH的时隙。例如通过资源池配置信息包括的侧行链路PSFCH周期(sl-PSFCH-Period)参数配置该周期,例如该周期表示为P,则表明每隔P个时隙会出现一个包含PSFCH资源的时隙。其中,该周期可以理解为逻辑时隙的周期,即,每隔多少个逻辑时隙会出现一个包含PSFCH的逻辑时隙。当一个时隙中包含PSFCH时,PSFCH可占据该时隙中的倒数第二个OFDM符号,并且PSFCH所在的OFDM符号之前的两个OFDM符号可分别作为GAP符号和AGC符号,对此可继续参考图1。在本文中,当一个时隙中配置有PSFCH,则可将称该时隙为PSFCH时隙或反馈时隙。资源池配置信息可指示该PSFCH所占据的OFDM符号上的哪些PRB可用于PSFCH传输,同时PSFCH与PSSCH之间也有明确的映射关系,PSSCH的接收设备可根据该映射关系确定一个PRB用于发送PSFCH。该映射关系主要由两个参数确定,一个参数是上述的PSFCH出现的周期P,另一个参数是PSSCH与其映射的PSFCH之间的最小时间间隔,该最小时间间隔可由资源池配置信息包括的侧行最小时间间隔PSFCH(sl-MinTimeGapPSFCH)参数配置。该最小时间间隔可以表征PSSCH所在的时隙与用于发送该PSSCH的反馈信息的PSFCH所在的时隙之间需要满足的最小间隔,该最小时间间隔的单位可以是时隙。设置最小时间间隔的目的,主要是考虑到接收设备要进行PSSCH的解调以及生成PSFCH上的反馈信息,需要一定的处理时间,所以要求PSSCH和PSFCH之间保持一定的时间间隔。即,一个SL设备在接收到PSSCH之后,在包含PSFCH且距离该PSSCH的最后一个时隙至少最小时间间隔的第一个时隙上可以发送PSFCH,上述时间间隔也应理解为间隔中该资源池包含的时隙数,即该时间间隔通过包含的逻辑时隙数量来体现。如图2所示,当P=4,则在时隙0、时隙4、时隙8、以及时隙12等时隙上包括PSFCH(其中时隙0和时隙12未在图2中示出),即,时隙0、时隙4、时隙8、和时隙12等时隙为PSFCH时隙。另外,sl-MinTimeGapPSFCH配置最小时间间隔为2个时隙,以时隙8为例,时隙8中的PSFCH与其对应的PSSCH需要满足至少两个时隙的间隔,因此时隙8中的PSFCH可以与时隙3~时隙6中的PSSCH对应,或者说,如果一个SL设备在时隙3~时隙6中的任一个时隙收到了PSSCH,则该SL设备可以在时隙8中的PSFCH上发送肯定应答(ACK)/否定应答(NACK)信息。类似的,时隙12中的PSFCH与时隙7~时隙10中的PSSCH对应,以此类推。
资源池配置信息可以为PSFCH时隙中用于承载PSFCH的OFDM符号配置一个或多个可用于传输PSFCH的PRB,例如可通过资源池配置信息包括的侧行链路PSFCH资源块集合(sl-PSFCH-RB-Set)参数配置个PRB用于传输PSFCH。
这些PRB的索引可以记为例如,图2中的时隙4和时隙8中的小方框表示用于传输PSFCH的PRB。进一步的,一个PSFCH时隙上用于传输PSFCH的PRB集合包括的PRB可以与该PSFCH时隙关联的时隙以及子信道具有映射关系。例如根据上文描述,图2中的时隙8为一个反馈时 隙,该反馈时隙可以和时隙3~时隙6关联,因此时隙8上用于传输PSFCH的PRB集合可以与时隙3~时隙6以及这些时隙上的子信道构成映射关系。例如,时隙8上有8个用于传输PSFCH的PRB,当该资源池上包括2个子信道时,时隙3~时隙6上有4个时隙以及2个子信道,总共构成8个数据传输资源单元(一个数据传输资源单元在时域上包括一个时隙,在频域上包括一个子信道),因此根据上述配置,一个数据传输资源单元可以对应时隙8上的一个用于传输PSFCH的PRB,例如时隙3子信道0映射时隙8上的PRB0,时隙4子信道0映射时隙8上的PRB1,等等。因此SL设备可以根据发送或接收到的PSSCH确定出该PSSCH包括的时隙以及子信道,然后根据PSSCH包括的时隙以及子信道(例如第一个时隙以及第一个子信道,或者所有时隙以及所有子信道)找到对应的一个或多个PRB,然后再从这些PRB中确定出一个PRB作为传输或接收该PSSCH对应PSFCH的PRB。最终使得当UE使用不同的时隙或者不同的子信道传输数据时,对应的反馈资源也不同,可以避免反馈资源的冲突。
例如通过上述过程可以确定与PSSCH关联的PRB数量为F个,进一步,SL设备可以根据资源池配置信息确定传输PSFCH使用的序列中可以使用的循环移位对(cyclic shift pair)个数为G个,则总共可以确定F×G个PSFCH资源。其中,PSFCH资源既包含了时频资源(即F个PRB)也包含了码域资源(即G个循环移位对)。SL设备再根据(PID+MID)mod(F×G)的值,从F×G个PSFCH资源中确定出对应的PSFCH资源。其中,PID通过PSSCH中携带的源ID来确定,MID设置为0或者根据高层配置的组ID来确定。一个PSFCH资源既可以用于传输ACK信息,也可以用于传输NACK信息,具体传输的信息可根据SL设备对于所接收的PSSCH的解码结果确定。
目前,资源池配置信息中支持的最小时间间隔通常设置为2个或3个时隙,这主要是考虑了目前设备的处理能力。但是在未来的工业场景中,有很多的业务需要极短的传输时延(例如1~2ms),当子载波间隔为15kHz时,一个时隙的长度为1ms,2个或3个时隙的反馈间隔可能会导致在时延容忍范围内没有足够的时间进行重传。因此为了满足上述的业务需求,可能会需要配置更短的最小时间间隔,例如允许设置最小时间间隔为一个时隙或者0个时隙(即同时隙内的反馈)。由于最小时间间隔是资源池配置信息所配置,可以认为是系统级的配置,为使用同一个SL资源池的SL设备所共用。那么,为了降低某些对时延要求较高的业务的传输时延,需要为SL资源池配置更小的最小时间间隔,即使有些业务的时延需求并不高,SL设备也需要按照该更小的最小时间间隔来执行,这就需要这些设备有更快的PSSCH处理能力以及PSFCH组包能力,会增加无低时延需求的设备的成本。
鉴于此,提供本申请实施例的技术方案。本申请实施例可以为第一资源池关联多个反馈间隔,两个UE在通信时可以从中选择一种合适的反馈间隔(将选择的反馈间隔称为目标反馈间隔),该目标反馈间隔能够满足这两个UE的能力以及对应特定业务的时延需求。通过为一个资源池关联多个反馈间隔,使得使用该资源池的不同的设备能够选择各自合适的反馈间隔。例如,如果UE执行的业务对时延要求较高,则该UE可以选择值较小的反馈间隔作为目标反馈间隔,以满足该业务的时延需求;如果UE执行的业务对时延要求较低,则该UE可以选择值较大的反馈间隔作为目标反馈间隔,既能够满足该业务的时延需求,也不会对该UE的能力有过高的要求,能够降低该UE的成本。可见,通过采用本申请实施例的方案,能够满足不同业务的时延需求。
可参考图3,为本申请实施例适用的一种通信网络架构。图3包括第一UE和第二UE,第一UE与第二UE之间可以进行SL通信。其中,第二UE可以向第一UE发送SL数据,第一UE可以向第二UE发送该SL数据的反馈信息。另外,图1还包括接入网设备,例如该接入网设备可以向第一UE和/或第二UE配置第一资源池。或者,第一资源池也可以不由接入网设备配置,例如在第一UE或第二UE中进行预配置,或者由其他UE或者除接入网设备外的其他网络设备(例如核心网设备等)为第一UE和/或第二UE配置。
本申请实施例中,对于SL可以称为“侧行链路”,例如SL信息可以称为侧行链路信息,SL数据可以称为侧行链路数据等。或者,对于SL也可以简称为“侧行”,例如SL信息可以简称为侧行信息, SL数据可以简称为侧行数据等,后文以此为例。
本申请实施例中,“反馈间隔”例如为“最小反馈间隔”。例如一个UE(或通信双方)选择了某个反馈间隔作为目标反馈间隔,则该UE(或通信双方)可以按照大于或等于该目标反馈间隔的反馈间隔来通信。反馈间隔的单位可以是时间单元。
本申请实施例中,时间单元例如为子帧(subframe),子时间单元例如为时隙、迷你时隙(mini-slot)、或OFDM符号等;或者,时间单元例如为时隙,子时间单元例如为迷你时隙或OFDM符号等;或者,时间单元例如为迷你时隙,子时间单元例如为OFDM符号等。频域单元例如为子带、子信道(subchannel)或载波等。反馈资源单元例如为用于传输反馈信息的PRB。第X资源可以通过时间单元和频域单元定义。例如,第一资源的时域资源可以包括第一时间单元,第一资源的频域资源可以包括第一频域单元。应理解,第一资源的时域资源除了第一时间单元外还可以包括其他时间单元,第一资源的频域资源除了第一频域单元还可以包括其他频域单元。例如第一资源为用于SL数据传输的资源,则第一资源在时域上可以包括一个或多个时隙,第一时间单元例如为其中的一个时隙,第一资源在频域上可以包括一个或多个子信道,第一频域单元例如为其中的一个子信道。本申请实施例主要以第一资源在时域上包括一个时间单元,在频域上包括一个或多个频域单元为例来进行介绍。
为了更好地介绍本申请实施例,下面结合附图介绍本申请实施例所提供的方法。后文中如无特殊说明,则本申请的各个实施例对应的附图中,虚线表示的步骤均为可选的步骤。本申请的各个实施例所提供的方法均可应用于图3所示的网络架构,例如本申请的各个实施例提供的方法所涉及的第一UE可以是图3中的第一UE,本申请的各个实施例提供的方法所涉及的第二UE可以是图3中的第二UE,本申请的各个实施例提供的方法所涉及的接入网设备可以是图3中的接入网设备。
下面介绍本申请实施例提供的一种通信方法,请参见图4,为该方法的流程图。
S401、第二UE确定配置信息。该配置信息可用于配置第一资源池,以及配置与第一资源池关联的多个反馈间隔。例如该配置信息可以包括为第一资源池配置的一个列表,该列表例如称为侧行链路时间间隔PSFCH(sl-TimeGapPSFCH)列表,该列表中可包含多个反馈间隔。即第一资源池可以支持多个反馈间隔。或者该配置信息可以配置两个反馈间隔来确定一个反馈间隔的范围,所有在该反馈间隔范围中的反馈间隔和该第一资源池关联。
第一资源池例如为SL资源池,第二UE可利用第一资源池发送和或接收信号,例如与其他UE通信。例如第二UE工作在模式(mode)2,则第二UE可以在第一资源池中选择SL资源以向其他UE发送SL信息。例如,该配置信息可为第二UE配置一个或多个SL资源池,第一资源池例如为这一个或多个SL资源池中的一个。对于这一个或多个SL资源池中的每个SL资源池,该配置信息都可以为其配置一个或多个反馈间隔,为不同的SL资源池配置的反馈间隔的数量可以相同或不同,为不同的SL资源池配置的反馈间隔可以有交集也可以没有交集。
该配置信息可以预配置在第二UE中,例如在第二UE出厂时配置在第二UE中;或者,该配置信息可以来自接入网设备,例如接入网设备为第二UE配置SL资源池以及反馈间隔,并向第二UE发送该配置信息,其中该配置信息可以通过第二UE与接入网设备之间的直连路径传输,则第二UE是接收来自接入网设备的该配置信息,或者也可以通过第二UE与接入网设备之间的非直连路径传输,则第二UE是接收来自中继UE的该配置信息,中继UE例如为第一UE或其他UE,第二UE接收了该配置信息也就确定了该配置信息;或者,还可由其他UE(例如第一UE或除第一UE外的其他UE)为第二UE配置SL资源池以及反馈间隔,则该配置信息可以来自其他UE,例如其他UE向第二UE发送该配置信息,则第二UE接收了该配置信息也就确定了该配置信息;或者,也可由第二UE自行配置SL资源池以及反馈间隔,则第二UE可以确定该配置信息。
可选的,该配置信息还可以配置反馈周期,该反馈周期为包括了反馈资源单元的时间单元的周期,例如为包括了PSFCH的时间单元的周期。本申请实施例中,可将反馈周期理解为一个反馈周期所包括的时间单元的数量。例如该配置信息配置的反馈周期为P,则表明每P个时间单元中可以存在一个包括了PSFCH的时间单元。以图2为例,例如该配置信息配置的反馈周期P为4个时隙,则表明每4个时隙中可以存在一个包括了PSFCH的时隙。例如时隙0(图中未示出)、时隙4和时隙8等时隙为包括了PSFCH的时隙。
可选的,该配置信息还可以配置包括了PSFCH的时间单元内用于传输PFSCH的子时间单元上可用于传输PSFCH的反馈资源单元,该反馈资源单元的数量可以是一个或多个。例如,该配置信息可以 按照方式A进行配置,或者按照方式B进行配置。
可选的,在包括了PSFCH的时间单元上,第二UE可以根据预定义的规则确定包含了PSFCH反馈资源单元的子时间单元,例如在图1中,当一个时隙为PSFCH时隙时,在该时隙中用于Sidelink传输的所有符号中,倒数第二个符号为用于传输PSFCH的符号(即子时间单元)。其中倒数第三个符号为PSFCH的AGC符号,UE在发送PSFCH时会在该AGC符号上发送PSFCH符号上信号的重复。
方式A、该配置信息可以配置一个反馈资源单元集合,该反馈资源单元集合包括一个或多个反馈资源单元。可选的,该配置信息可以通过sl-PSFCH-RB-Set参数配置该反馈资源单元集合。例如该反馈资源单元集合包括M1个反馈资源单元,该M1个反馈资源单元是包括了PSFCH的时间单元内用于传输PFSCH的子时间单元上可用于传输PSFCH的反馈资源单元。例如该M1个反馈资源单元的索引分别为0~M1-1。
方式B:该配置信息可以配置多个反馈资源单元集合(例如反馈资源单元的索引集合)与多个反馈间隔的对应关系,例如反馈资源单元集合与反馈间隔一一对应。其中的每个反馈资源单元集合可以包括一个或多个反馈资源单元(例如包括一个或多个反馈资源单元的索引),不同的反馈资源单元集合可以没有交集。多个反馈资源单元集合所包括的全部反馈资源单元,可以是第二时间单元上用于传输PSFCH的子时间单元上的全部或部分反馈资源单元,可理解为,将第二时间单元上用于传输PSFCH的子时间单元上的全部或部分反馈资源单元划分为多个反馈资源单元集合,令多个反馈资源单元集合与多个反馈间隔对应。
此外,该配置信息还可以包括第一资源池内的时间资源和/或频域资源的配置信息。例如该配置信息包括第一资源池内可用于SL传输的时隙索引,可用于确定第一资源池内的逻辑时隙;和/或,该配置信息可以包括如下一项或多项:第一资源池内的每个时隙中可用于SL传输的多个OFDM符号的配置信息,第一资源池内的一个或多个子信道的配置信息,或,第一资源池内的每个子信道包括的PRB个数等。这些配置信息的具体描述可以参考前文中关于SL的介绍。
S402、第一UE确定配置信息。该配置信息可用于配置第一资源池,以及配置与第一资源池关联的多个反馈间隔。
第一资源池例如为SL资源池,第一UE可利用第一资源池发送和或接收信号,例如与其他UE通信。例如第一UE可以在第一资源池监听来自其他UE的SL信息。例如,该配置信息可为第一UE配置一个或多个SL资源池,对此可参考S401的介绍。
另外关于第一UE确定该配置信息的方式,也可参考S401中第二UE确定该配置信息的方式。
可选的,第一UE确定的配置信息中和第二UE确定的配置信息中,第一资源池关联的多个反馈间隔相同。
其中,S401可以发生在S402之前,或者发生在S402之后,或者与S402同时发生。
S403、第二UE在第一资源发送第一SL数据。相应的,第一UE在第一资源接收第一SL数据。
第二UE可以从第一资源池中选择SL资源来发送第一SL数据,例如第二UE选择了第一资源。第一资源的时域资源包括第一资源池内的第一时间单元。或者,第二UE根据网络设备的指示从第一资源池中确定SL资源来发送第一SL数据。
可选的,如果第一资源时域上包括多个时间单元,第一时间单元可以是这多个时间单元中的第一个时间单元或者最后一个时间单元。
可选的,第一资源在频域上可以包括一个或多个频域单元,例如第一资源在频域上可以包括一个或多个子信道。
可选的,第二UE可以发送侧行控制信息,该侧行控制信息与第一SL数据关联,例如一种关联方式为,该侧行控制信息用于调度第一SL数据。该侧行控制信息例如为SCI,例如第一阶SCI,该第一阶SCI可以承载在PSCCH中,该PSCCH的起始时域位置与第一SL数据的起始时域位置相同,可参考图1,或者,该PSCCH的起始时域位置也可以早于第一SL数据的起始时域位置;或者,该SCI为第二阶SCI,该第二阶SCI可以承载在PSSCH中,具体不做限制。
可选的,该侧行控制信息可以包括第一资源的信息(或者称为第一资源的指示信息),例如该侧行控制信息通过第一阶SCI中的时间资源分配(time resource assignment,TRA)字段和频率资源分配(frequency resource assignment,FRA)字段指示第一资源。可选的,该侧行控制信息既可以用于调度第一SL数据的初传,也可以用于调度第一SL数据的重传,则该侧行控制信息可以包括用于初传的资 源的信息和用于重传的资源的信息。而S403中传输的第一SL数据,可以是初传数据或重传数据,因此第一资源可能是该侧行控制信息所调度的部分资源。例如,该侧行控制信息可以包括第三资源的信息,第三资源包括第一资源,因此该侧行控制信息也就包括第一资源的信息。
可选的,该侧行控制信息可以包括第一优先级的信息,该第一优先级为第一SL数据对应的优先级。
可选的,该侧行控制信息可以包括第一HARQ进程标识的信息,该第一HARQ进程标识为第一SL数据对应的HARQ进程标识。
S404、第一UE确定目标反馈间隔。
S405、第二UE确定目标反馈间隔。
由于S404和S405互相关联,因此对这两个步骤统一进行如下介绍。
第一资源是第一资源池内的资源,因此第一UE可以从与第一资源池关联的多个反馈间隔中确定一个反馈间隔作为目标反馈间隔。第一UE要确定目标反馈间隔,可以有多种方式,下面举例介绍。
1、确定目标反馈间隔的第一种方式。
第一UE和或第二UE可以确定第一反馈间隔和第二反馈间隔中的较大值为目标反馈间隔。其中,第一反馈间隔是第一UE支持的反馈间隔,第二反馈间隔是第二UE支持的反馈间隔,第一反馈间隔和第二反馈间隔都属于第一资源池上支持的多个反馈间隔。
可选的,在步骤S404之前还包括S404a和S404b。
S404a、第一UE向第二UE发送第一能力信息。相应的,第二UE从第一UE接收第一能力信息。第一能力信息指示所述多个反馈间隔中的A个反馈间隔,该A个反馈间隔属于第一资源池支持的A个反馈间隔。
S404b、第二UE向第一UE发送第二能力信息。相应的,第一UE从第二UE接收第二能力信息。第二能力信息指示所述多个反馈间隔中的B个反馈间隔,该B个反馈间隔属于第一资源池支持的B个反馈间隔。
当第一能力信息和/或第二能力信息中仅允许上报一个反馈间隔时,例如A=1,B=1时,第一能力信息中包含的1个反馈间隔可以理解为第一UE能支持的最小的反馈间隔,即第一反馈间隔;第二能力信息中包含的1个反馈间隔可以理解为第二UE能支持的最小的反馈间隔,即第二反馈间隔。第一UE和第二UE确定了第一反馈间隔和第二反馈间隔的较大值,相当于在第一资源池支持的多个反馈间隔中,确定了两个UE都能支持的最小的反馈间隔作为目标反馈间隔。
当第一能力信息和或第二能力信息中允许上报一个或多个反馈间隔时,例如A>=1,B>=1时,第一能力信息中包含的A个反馈间隔可以理解为第一UE能支持的A个反馈间隔,第二能力信息中包含的B个反馈间隔可以理解为第二UE能支持的B个反馈间隔。第一UE根据该第一UE支持的A个反馈间隔中的最小值确定第一反馈间隔,以及根据第二能力信息中的B个反馈间隔中的最小值确定第二反馈间隔;类似的,第二UE根据该第二UE支持的B个反馈间隔中的最小值确定第二反馈间隔,以及根据第一能力信息中的A个反馈间隔中的最小值确定第一反馈间隔。第一UE和第二UE根据第一反馈间隔和第二反馈间隔的较大值,从第一资源池支持的多个反馈间隔中,确定了两个UE都能支持的最小的反馈间隔作为目标反馈间隔。
可选的,第一UE和第二UE也可以将第一反馈间隔集合中最小的反馈间隔确定为目标反馈间隔,其中第一反馈间隔集合为第一能力信息中包括的A个反馈间隔构成的集合与第二能力信息中包括的B个反馈间隔构成的集合的交集。在该方式下,第一UE和第二UE从两者都支持的一个或多个反馈间隔中确定出了一个最小的反馈间隔作为目标反馈间隔。特殊的,当上述交集为空集时,第一UE和第二UE可以采取默认的反馈间隔作为目标反馈间隔,例如该目标反馈间隔为第一资源池关联的多个反馈间隔中的值最大的反馈间隔。
在第一种方式下,第一UE和第二UE先通过互相发送能力信息来指示各自支持的反馈间隔,然后各自根据两个UE之间的能力确定目标反馈间隔,但因为确定的规则是统一的,所以两个UE确定出来的目标反馈间隔也是相同的。通过该方式,一方面第一UE和第二UE确定的目标反馈间隔两个UE都能够实现,另一方面能够使得目标反馈间隔尽可能地小,使能UE能够更快地反馈,减小反馈时延。
2、确定目标反馈间隔的第二种方式。
可选的,第二种方式可包括上述S404b。
可选的,第二种方式可包括S404c:第一UE向第二UE发送第一信息,该第一信息用于指示目标 反馈间隔,第二UE从第一UE接收第一信息,并根据第一信息确定目标反馈间隔。
在该方式中,第一UE根据该第一UE支持的一个或多个反馈间隔以及第二UE的第二能力信息确定目标反馈间隔,并向第二UE发送第一信息,第一信息可指示目标反馈间隔。第二UE根据第一信息就可以确定目标反馈间隔,而不必第二UE再执行更多的确定目标反馈间隔的过程。
例如,第一UE可按照如上的第一种方式确定目标反馈间隔,只是第二UE不必按照如上的第一种方式确定目标反馈间隔,而是第一UE向第二UE发送第一信息指示目标反馈间隔即可。或者,第一UE也可以不按照如上第一种方式,而是按照其他方式确定目标反馈间隔,再向第二UE发送第一信息以指示该目标反馈间隔。例如第一UE可以从A个反馈间隔与B个反馈间隔的交集中任选一个反馈间隔作为目标反馈间隔。第一UE要从A个反馈间隔与B个反馈间隔的交集中确定目标反馈间隔。本申请实施例对第一UE具体确定目标反馈间隔的方法不做限定。
3、确定目标反馈间隔的第三种方式。
可选的,第三种方式可包括上述S404a。
可选的,第三种方式可包括S404d:第二UE向第一UE发送第一信息,该第一信息用于指示目标反馈间隔,第一UE从第二UE接收第一信息,并根据第一信息确定目标反馈间隔。
在该方式中,第二UE根据该第二UE支持的一个或多个反馈间隔以及第一UE的第一能力信息确定目标反馈间隔,并向第一UE发送第一信息,第一信息可指示目标反馈间隔。第一UE根据第一信息就可以确定目标反馈间隔,而不必第一UE再执行更多的确定目标反馈间隔的过程。
例如,第二UE可按照如上的第一种方式确定目标反馈间隔,只是第一UE不必按照如上的第一种方式确定目标反馈间隔,而是第二UE向第一UE发送第一信息指示目标反馈间隔即可。或者,第二UE也可以不按照如上第一种方式,而是按照其他方式确定目标反馈间隔,再向第一UE发送第一信息以指示该目标反馈间隔。例如第二UE可以从A个反馈间隔与B个反馈间隔的交集中任选一个反馈间隔作为目标反馈间隔。第二UE要从A个反馈间隔与B个反馈间隔的交集中确定目标反馈间隔。本申请实施例对第二UE具体确定目标反馈间隔的方法不做限定。
可选的,第二种方式或第三种方式中的第一信息可以是无线资源控制(radio resource control,RRC)消息,或者该第一信息包括在RRC消息中。
可选的,在通过第二种方式或第三种方式确定目标反馈间隔时,第一UE还可以检测侧行控制信息中的源ID是否与第二UE的源ID匹配,从而确定与第二UE关联的第二信息。其中,该侧行控制信息与第一SL数据关联,或用于调度第一SL数据。例如第一UE既可以从第二UE接收数据,也可以从第三UE接收数据,则第一UE可以和第二UE之间可以配置第一信息a,第一UE和第三UE之间也可以配置第一信息b,其中第一信息a和第一信息b中指示的目标反馈间隔可以相同或不同。当第一UE接收到一个侧行控制信息之后,可以先识别该侧行控制信息中的源ID,根据该源ID确定该侧行控制信息的发送端为第二UE或者第三UE,再根据第一信息a或第一信息b以及上述步骤确定目标反馈间隔。
4、确定目标反馈间隔的第四种方式。
可选的,第四种方式可以包括S404e:第一UE向第二UE发送第二信息,相应的,第二UE从第一UE接收第二信息;或者,第二UE向第一UE发送第二信息,相应的,第一UE从第二UE接收第二信息。S404e可以发生在第二UE发送侧行控制信息之前,或者与第二UE发送侧行控制信息同时发生。
其中,第二信息可包括SL HARQ进程标识、优先级的信息、或资源的信息中的一项或多项与反馈间隔之间的关联关系。也就是说,在第二信息中,一个反馈间隔可以关联SL HARQ进程标识、优先级、或资源中的一项或多项。例如第二信息可包括如下一项或多项:X1个SL HARQ进程标识与X1个反馈间隔之间的关联关系,X2个优先级与X2个反馈间隔之间的关联关系,X3个资源与X3个反馈间隔之间的关联关系,X4个SL HARQ进程标识和优先级构成的组合与X4个反馈间隔之间的关联关系,X5个SL HARQ进程标识和资源构成的组合与X5个反馈间隔之间的关联关系,X6个优先级和资源构成的组合与X6个反馈间隔之间的关联关系,或,X7个SL HARQ进程标识、优先级、以及资源构成的组合与X7个反馈间隔之间的关联关系。其中,第二信息所包括的资源,为用于传输SL数据的资源,例如周期性的资源,传输第一SL数据的资源可以为该周期性资源中在一个周期中的资源。其中,X1、X2、X3、X4、X5、X6、X7均为正整数,这几个值可以相同或不同。
可选的,第二信息中所包括的资源,可以通过如下一项或多项进行指示:该资源的时域偏置,该资源的时域周期,该资源的频域起始位置,或,该资源在频域占用的频域单元的数量。其中,资源的时域偏置例如为该资源相对于第0个帧(frame)的时间偏移,单位例如为时间单元。资源的频域起始位置例如为该资源的起始频域单元的索引。
可选的,该第二信息可以是无线资源控制(radio resource control,RRC)消息,或者该第二信息包括在RRC消息中。
可选的,第一UE和第二UE在执行S404e之前可以执行S404a和/或S404b,即第一UE或第二UE可以根据自己以及对端UE上报的能力信息中包括的一个或多个反馈间隔来配置第二信息中的关联关系。
在该方式下,如S403中描述,第二UE向第一UE发送侧行控制信息,该侧行控制信息可调度第一SL数据,该侧行控制信息可包括第三信息,第一UE根据第三信息可以确定目标反馈间隔。例如,第三信息包括SL HARQ进程标识、优先级的信息、或资源的信息中的一项或多项,第一UE可结合第二信息确定第三信息所关联的反馈间隔,该反馈间隔就是目标反馈间隔。
例如,第三信息包括第一SL HARQ进程标识,第一UE根据第二信息确定第一SL HARQ进程标识与第三反馈间隔关联,则第一UE可以确定第三反馈间隔为目标反馈间隔。或者,第三信息包括第一优先级的信息,第一UE根据第二信息确定第一优先级与第三反馈间隔关联,则第一UE可以确定第三反馈间隔为目标反馈间隔。或者,第三信息包括第一资源的信息,第一UE根据第二信息确定第一资源与第三反馈间隔关联(例如第二信息包括第三资源与第三反馈间隔之间的关联关系,其中第三资源为一个周期性的资源,第一资源为第三资源在某个周期的一个资源),则第一UE可以确定第三反馈间隔为目标反馈间隔。或者,第三信息包括第一优先级的信息和第一SL HARQ进程标识,第一UE根据第二信息确定第一优先级和第一SL HARQ进程标识构成的组合与第三反馈间隔关联,则第一UE可以确定第三反馈间隔为目标反馈间隔,等等,不再多举例。
在第四种方式下,对于第二UE来说,可以确定目标反馈间隔(例如第二UE可按照如上第一种方式确定目标反馈间隔,或者按照其他方式确定目标反馈间隔,例如第二UE可以确定A个反馈间隔和B个反馈间隔的交集中的任一个反馈间隔为目标反馈间隔),例如第二UE确定第一资源池关联的多个反馈间隔中的第三反馈间隔为目标反馈间隔。确定目标反馈间隔后,第二UE可以根据第二信息确定与该目标反馈间隔关联的第三信息。确定第三信息后,第二UE可以向第一UE发送侧行控制信息,该侧行控制信息包括第三信息,该第三信息就可以用于第一UE根据第二信息确定目标反馈间隔。
或者,第二UE/第一UE根据不同业务的需求确定不同的反馈间隔,然后将不同的业务与优先级、HARQ进程标识、资源中的至少一项关联起来,从而确定第二信息,然后将第二信息发送给第一UE/第二UE。之后第二UE给第一UE发送SL数据时,在SCI中携带该第三信息,第一UE根据第二信息中配置的关联关系以及第三信息中携带的优先级、HARQ进程标识、资源中的至少一项确定目标反馈间隔。
可选的,第一UE还可以检测侧行控制信息中的源ID是否和第二UE的源ID匹配,从而确定与第二UE关联的第二信息。例如第一UE既可以从第二UE接收数据,也可以从第三UE接收数据,则第一UE可以和第二UE之间可以配置第二信息a,第一UE和第三UE之间也可以配置第二信息b。当第一UE接收到一个侧行控制信息之后,可以先识别该侧行控制信息中的源ID,根据该源ID确定该侧行控制信息的发送端为第二UE或第三UE,再根据第二信息a或第二信息b以及上述步骤确定目标反馈间隔。
5、确定目标反馈间隔的第五种方式。
在S403中,或者在S403之前,第二UE向第一UE发送侧行控制信息,该侧行控制信息可调度第一SL数据。另外,该侧行控制信息除了调度第一SL数据外,还可以用于指示该目标反馈间隔。则第一UE接收该侧行控制信息后就确定了目标反馈间隔。该侧行控制信息的实现方式可参考如上第四种方式中的介绍。
例如,第二UE可按照如上的第一种方式确定目标反馈间隔,例如第一UE和第二UE在执行S403之前可以执行S404a,即第二UE可以根据自己以及第一UE上报的能力信息中包括的一个或多个反馈间隔来确定第一SL数据对应的目标反馈间隔。或者,第二UE也可以不按照如上第一种方式,而是按照其他方式确定目标反馈间隔,再向第一UE发送侧行控制信息以指示该目标反馈间隔。例如第二UE 可以从A个反馈间隔与B个反馈间隔的交集中任选一个反馈间隔作为目标反馈间隔。
在如上五种方式中,第一种方式、第二种方式和第三种方式的配置比较简单,第四种方式和第五种方式过程稍微复杂一些,但是可以更动态地指示目标反馈间隔,第一UE和第二UE之间针对不同的SL数据,可以确定不同的目标反馈间隔。
S406、第一UE根据第一资源的位置以及目标反馈间隔确定第一反馈资源单元。
第一反馈资源单元可用于发送第一SL数据的反馈信息,例如SL HARQ ACK或SL HARQ NACK。第一UE要确定第一反馈资源单元,可以先确定用于发送该反馈信息的时间单元。其中,确定时间单元的步骤可以发生在S406之前,或者也可以认为,S406包括确定时间单元的步骤。
例如,第一UE可以根据反馈周期确定第一资源池中的至少一个时间单元,这至少一个时间单元都可以用于传输反馈信息。可理解为,第一UE根据反馈周期确定能够用于传输反馈信息的时间单元的位置,例如第一UE确定了包括PSFCH的至少一个时间单元(至少一个时间单元中的每个时间单元都包括PSFCH)。第一UE根据第一时间单元以及目标反馈间隔,可以从至少一个时间单元中确定第二时间单元,第二时间单元即为第一UE确定的用于传输第一SL数据的反馈信息的时间单元。例如,第二时间单元为至少一个时间单元中位于第一时间单元之后、且与第一时间单元的间隔大于或等于目标反馈间隔的第一个时间单元。例如参考图5A,以时间单元为时隙为例,配置信息配置的反馈周期为4,则在第一资源池中,时隙0、时隙4、时隙8……为包括反馈资源单元的时隙,即,至少一个时间单元包括时隙0、时隙4、时隙8……。其中,时隙0在图5A中未画出。例如,第一SL数据所在的第一时间单元为时隙3,且第一UE确定目标反馈间隔为2个时隙,则时隙0、时隙4、时隙8……中,位于时隙3之后、且与时隙3之间的时间间隔大于或等于目标反馈间隔的第一个时隙为时隙8,因此第一UE确定第二时间单元为时隙8。
可选的,如果第一资源池包括的时隙在时间上是非连续的时隙,第一UE可以将这些非连续的时隙按照逻辑时隙进行编号。则第一UE根据反馈周期确定可以用于传输反馈信息的至少一个逻辑时隙,再根据这些至少一个逻辑时隙与物理时隙的对应关系确定用于传输反馈信息的物理时隙。
在确定第二时间单元后,第一UE可以确定与第二时间单元关联的时间单元。本申请实施例中,根据配置信息的不同实现方式,第一UE可以采用不同的方式确定与第二时间单元关联的时间单元,由于该方式的不同,也可能影响确定第一反馈资源单元的过程,如下分别介绍。
当配置信息采用S401所述的方式A实现时,第一UE可以根据第二时间单元以及第一资源池关联的多个反馈间隔确定与第二时间单元关联的时间单元,进而确定第一反馈资源单元。例如,第一UE可以根据第二时间单元以及第一资源池关联的多个反馈间隔,确定与第二时间单元关联的时间单元,例如确定的时间单元的数量为N1个,N1例如为大于或等于反馈周期的正整数。例如,如果一个时间单元(称为第三时间单元)位于第二时间单元之前、第三时间单元与第二时间单元之间的间隔大于或等于第四反馈间隔、且第三时间单元与第二时间单元之间的间隔小于第四反馈间隔加上反馈周期,则N1个时间单元可包括第三时间单元,如果第三时间单元不满足如上条件,则N1个时间单元不包括第三时间单元。第四反馈间隔可以是第一资源池关联的多个反馈间隔中的任意一个反馈间隔。
上述过程也可以理解为如下过程,与第一资源池关联的多个反馈间隔的数量为L(在本申请中,L为大于或等于2的整数),记这L个反馈间隔分别为K1,K2,…,KL,第二时间单元的索引例如为n,反馈周期例如为P。针对反馈间隔K1,第一UE可以确定与第二时间单元关联的部分时间单元,例如在反馈间隔K1下与第二时间单元关联的时间单元的索引集合为[n-K1–P+1,n–K1];针对反馈间隔K2,第一UE可以确定与第二时间单元关联的部分时间单元,例如在反馈间隔K2下与第二时间单元关联的时间单元的索引集合为[n-K2–P+1,n–K2];……,同理,针对反馈间隔KL,第一UE可以确定与第二时间单元关联的部分时间单元,例如在反馈间隔KL下与第二时间单元关联的时间单元的索引集合为[n-KL–P+1,n–KL],针对其他反馈间隔,第一UE可以按照类似方式确定与第二时间单元关联的时间单元,不多赘述。可以看到,每个索引集合对应的时间单元包括,当第一资源池仅被配置该索引集合对应的反馈间隔而未被配置其他反馈间隔时,根据该反馈间隔所确定的与第二时间单元关联的时间单元。
通过如上过程,第一UE可以确定L个集合(其中每个集合通过时间单元的索引集合来标识),这L个集合的并集所包括的全部索引对应的时间单元,就可以作为N1个时间单元。其中在计算过程中,第一UE可以按照索引集合的方式处理,或者也可能没有集合的概念,例如第一UE根据多个反馈间隔中的每个反馈间隔确定了一个或多个时间单元,第一UE根据多个反馈间隔所确定的全部时间单元就可以 作为N1个时间单元。其中,第一UE确定N1个时间单元的过程可以发生在S406之前,或者也可以认为S406中包括确定N1个时间单元的过程。
虽然本申请实施例中仅以第一UE和第二UE为例来进行描述确定反馈资源单元的过程,但是在第一资源池上还存在着其他的UE进行通信,这些UE传输数据以及对应的反馈信息时可能会使用与第一UE和第二UE确定的目标反馈间隔不同的反馈间隔进行反馈,例如使用第一资源池关联的多个反馈间隔中除目标反馈间隔之外的一个反馈间隔。而在方式A下,第二时间单元上的反馈资源单元可以被任意反馈间隔的UE所使用,因此在确定第二时间单元关联的时间单元时,不仅需要考虑第一UE和第二UE之间的目标反馈间隔,还需要考虑第一资源池关联的其他反馈间隔。因此在方式A下,第一UE可以根据第一资源池关联的多个反馈间隔来确定第二时间单元关联的时间单元。
可选的,上述第二时间单元与N1个时间单元关联可以理解为,第二时间单元与N1个时间单元按照第一关系关联。进一步的,在上述N1个时间单元中可以排除部分时间单元而确定剩余的N3个时间单元,N3为小于或等于N1的正整数,该N3个时间单元和第二时间单元按照第二关系关联。例如,若N1个时间单元包括第四时间单元,且第二时间单元为所述至少一个时间单元(包含PSFCH的时间单元)中位于第四时间单元之后、且与第四时间单元的间隔大于或等于第四反馈间隔的第一个时间单元,则N3个时间单元包括第四时间单元。其中,第四反馈间隔为所述多个反馈间隔中的任意一个反馈间隔。即,在某些情况下,由于时间单元编号有限等原因,可能出现第二时间单元实际关联的时间单元数量小于N1的情况。
举例来说,记第一资源池中的时隙编号(例如逻辑时隙的编号)为0~Tmax–1,Tmax的大小可以根据第一资源池的配置信息确定。由于Tmax为有限大小的正整数,因此在时间上,各个时隙的编号会按照0~Tmax–1,0~Tmax–1,……这样的顺序进行周期性的重复。当Tmax不是反馈周期P的整数倍时,可能会出现第二时间单元实际关联的时间单元数量小于N1的情况。以下以Tmax为99,反馈周期P=4举例。按照该配置,通常而言每隔4个时隙会出现一个包含PSFCH的时隙,例如时隙0,4,8,……96中包括PSFCH。但由于Tmax=99不是反馈周期P=4的整数倍,因此如图5B所示,在两个相邻循环的交界处,会出现相邻的两个包含PSFCH的时隙(例如图5B中的时隙96和时隙0)之间的间隔小于P=4的情况。当图5B中的时隙0为上述的第二时间单元时,假设第一资源池支持K1=2和K2=1两个反馈间隔,按照上述方法确定出与时隙0关联的N1个时间单元为图5B中的时隙94~时隙98(确定过程可参照关于图6A的描述),即,N1=5。但对于图5B中的时隙94而言,无论按照K2=1的反馈间隔还是按照K1=2的反馈间隔,其最近的反馈资源(即,用于传输时隙94的SL数据对应的反馈信息的时间单元,或者说包括PSFCH的时间单元)均为时隙96,因此实际上与时隙0关联的时间单元只有图5B中的时隙95至时隙98中的N3=4个时隙,该数量是小于N1的。
本申请实施例此处仅列举了一种一个包含PSFCH的时间单元实际关联的时间单元数小于N1的情况,除此之外可能还会有其他情况,例如其中某个时隙无法用于SL数据传输等,也可按照上述类似的方法从所述N1个时间单元中进行排除即可,不影响本申请实施例方案的实施。
在确定N1个时间单元后,第一UE就可以确定第二时间单元上的反馈资源单元中与一个时间单元以及一个频域单元关联的反馈资源单元。在S401中介绍了,该配置信息中还可以配置包括了PSFCH的时间单元内用于传输PFSCH的子时间单元上可用于传输PSFCH的反馈资源单元。例如该配置信息配置第二时间单元内可用于传输PSFCH的子时间单元上的M1个反馈资源单元,这M1个反馈资源单元能够用于传输PSFCH,则第一UE可以确定M1个反馈资源单元中与一个时间单元以及一个频域单元关联的反馈资源单元。其中,M1例如为大于或等于N1的正整数。例如该M1个反馈资源单元的索引分别为0~M1-1。第一UE确定第二时间单元中与一个时间单元以及一个频域单元关联的反馈资源单元的一种可选的方式为,在N1个时间单元中,时间单元i以及频域单元j关联M1个反馈资源单元中的反馈资源单元[(i+j·N1)·C1,(i+j·N1+1)·C1-1],其中,[(i+j·N1)·C1,(i+j·N1+1)·C1-1]表示反馈资源单元的索引集合。D表示第一资源池包含的频域单元的数量,D为正整数。可理解为,第二时间单元上的M1个反馈资源单元平分给了N1个时间单元以及D个频域单元构成的D·N1个用于数 据传输的资源单元(与反馈资源单元的资源分辨率可以不同),即,一个时间单元与该时间单元上的一个频域单元可构成一个数据传输资源单元,其中的每个数据传输资源单元可以平分M1个反馈资源单元中的个反馈资源单元,平分的顺序可以是先时域后频域的顺序。可选的,平分的顺序也可以是先频域后频域的顺序,此处不再展开描述。一般情况下,资源池的配置信息可以使得M1为D·N1的整数倍的条件成立,从而使得C1为正整数。如果出现M1不为D·N1的整数倍的特殊情况,C1也可以进行相应的四舍五入,或者上取整或者下取整。
在一种可选的实施方式中,第一UE确定第二时间单元中与一个时间单元以及一个频域单元关联的反馈资源单元的一种可选的方式为,在与第二时间单元关联的N3个时间单元中,时间单元i以及频域单元j关联M1个反馈资源单元中的反馈资源单元[(i+j·N1)·C1,(i+j·N1+1)·C1-1],其中,通过该方式,当第二时间单元实际关联的时间单元数量小于N1时,也可以参考上述对应的方法确定一个时间单元以及频域单元关联的反馈资源单元。
在一种可选的实施方式中,第一UE确定第二时间单元中与一个时间单元以及一个频域单元关联的反馈资源单元的一种可选的方式为,在与第二时间单元关联的N3个时间单元中,时间单元i以及频域单元j关联M1个反馈资源单元中的反馈资源单元[(i+j·N3)·C3,(i+j·N3+1)·C3-1],其中,一般情况下,资源池的配置信息可以使得M1为D·N3的整数倍的条件成立,从而使得C3为正整数。如果出现M1不为D·N3的整数倍的特殊情况,C3也可以进行相应的四舍五入,或上取整或者下取整。通过该方式,当第二时间单元实际关联的时间单元数量小于N1时,可以考虑将M1个反馈资源单元平分给N3个时间单元中的时间单元以及频域单元。
第一UE可以根据第一SL数据占用的第一资源包括的时间单元以及频域单元,确定关联的一个或多个反馈资源单元。如果第一SL数据占用一个时间单元以及一个频域单元,例如第一SL数据在时间单元i以及频域单元j传输(即第一资源在时域上包括时间单元i,在频域上包括频域单元j),则第一UE可以确定时间单元i以及频域单元j在M1个反馈资源单元中关联的反馈资源单元(例如反馈资源单元[(i+j·N1)·C1,(i+j·N1+1)·C1-1])为第一SL数据关联的反馈资源单元。
或者,如果第一SL数据占用一个时间单元和/或多个频域单元,则与第一SL数据所在的时间单元和其中的每个频域单元关联的反馈资源单元都可以认为是第一时间单元关联的反馈资源单元;或者,可选的,与第一SL所在的时间单元以及起始频域单元关联的反馈资源单元可以认为是第一SL数据关联的反馈资源单元。第一UE和第二UE可以默认采用上述两种方法中的一种,也可以通过高层信息进行配置,例如通过配置信息进行配置,第一UE和第二UE根据该配置信息确定使用上述两种方法中的一种。
或者,如果第一SL数据占用多个时间单元和/或多个频域单元,可选的,与第一SL数据所在的时间单元和其中的每个频域单元关联的反馈资源单元都可以认为是第一时间单元关联的反馈资源单元,即,对于第一SL数据所在的每个时间单元和其中的每个频域单元,都可以按照如上方式确定相应的反馈资源单元,最终确定的反馈资源单元的并集为第一SL数据关联的反馈资源单元;或者,可选的,与第一SL数据所在的起始时间单元和起始频域单元关联的反馈资源单元可以认为是第一SL数据关联的反馈资源单元。第一UE和第二UE可以默认采用上述两种方法中的一种,也可以通过高层信息进行配置,例如通过配置信息进行配置,第一UE和第二UE根据该配置信息确定使用上述两种方法中的一种。
通过如上过程,第一UE确定的第二时间单元内与第一SL数据关联的反馈资源单元的数量可能是一个或多个,则第一UE可以从至少一个反馈资源单元中确定第一反馈资源单元,第一反馈资源单元的数量可以是至少一个。第一UE从至少一个反馈资源单元中确定第一反馈资源单元的方式,可参考前文的相关介绍。
举例来说,可参考图6A,以时间单元为时隙、反馈资源单元为PRB为例。例如配置信息配置的反馈周期为P=4个时隙,则在第一资源池中,时隙0、时隙4、时隙8……为包括反馈资源单元的时隙,可将这些时隙称为PSFCH时隙。其中,时隙0在图6A中未画出。另外,配置信息为第一资源池配置了两个反馈间隔,分别为K1=2和K2=1。例如对于图6A中的第二个PSFCH时隙(时隙8)而言,第一UE按照K1=2,可以确定时隙8关联4个时隙,分别为时隙3~时隙6;按照K2=1,第一UE可以确定时隙8关联4个时隙,分别为时隙4~时隙7。第一UE将确定的2组时隙取并集,可以确定与时隙8关联的时隙包括时隙3~时隙7,因此这五个时隙(以及对应的子信道)可以关联时隙8上用于传输PSFCH的一个或多个PRB。例如第一UE确定时隙8为第二时间单元,则与该第二时间单元关联的时间单元就可以包括时隙3~时隙7。这种方式下,在每个PSFCH时隙中,PRB和时隙以及子信道的映射综合考虑了第一资源池关联的各种反馈间隔,为该PSFCH时隙关联的所有时隙都能分配一定的PRB,从而解决了资源冲突问题。
其中,第一UE和第二UE究竟采用哪个反馈间隔,可以通过前文所介绍的方式确定,不多赘述。例如第二UE在时隙3向第一UE发送SL数据,且第一UE和第二UE确定目标反馈间隔为K1=2,则第一UE需要在第二个PSFCH时隙(时隙8)向第二UE发送反馈信息。又例如,第二UE在时隙3向第一UE发送SL数据,且第一UE和第二UE确定目标反馈间隔为K2=1,则第一UE需要在第一个PSFCH时隙(时隙4)向第二UE发送反馈信息。可以看到,如果第一UE在时隙8向第二UE发送反馈信息,则在与时隙8关联的五个时隙中,时隙3为其中的第一个时隙;如果第二UE在时隙4向第二UE发送反馈信息,则在与时隙4关联的五个时隙中,时隙3为其中的最后一个时隙(与时隙4关联的剩余2个时隙在图6A中未画出)。因此可以发现,虽然第一SL数据的资源位置没有发生变化,但是由于反馈间隔的不同,导致用于发送反馈信息的时隙可能不同,第一SL数据在反馈时隙关联的N1个或N3个时隙中的位置也不同,因此通过上述映射关系确定的用于传输反馈信息映射的PRB也可能不同。
当配置信息采用S401所述的方式B实现时,第一UE可以根据目标反馈间隔确定与第二时间单元关联的时间单元,进而确定第一反馈资源单元。
根据如上介绍可知,如果目标反馈间隔为多个反馈间隔中的一个,则第一UE在目标反馈间隔对应的反馈资源单元集合内确定第一反馈资源单元即可,不同的反馈间隔对应的反馈资源单元集合不同,则采用不同反馈间隔的UE在确定反馈资源单元时不会出现冲突的情况,因此在方式B中,第一UE在确定与第二时间单元关联的时间单元时,只需考虑目标反馈间隔即可,对于多个反馈间隔中除了目标反馈间隔外的其他反馈间隔则不必考虑,能够简化第一UE的执行过程。例如,第一UE可以根据第二时间单元以及目标反馈间隔,确定与第二时间单元关联的时间单元,例如第一UE确定的与第二时间单元关联的时间单元的数量为N2个,N2可以是等于反馈周期的正整数。例如,如果一个时间单元(称为第三时间单元)位于第二时间单元之前、第三时间单元与第二时间单元之间的间隔大于或等于目标反馈间隔、且第三时间单元与第二时间单元之间的间隔小于目标反馈间隔加上反馈周期,则N2个时间单元可包括第三时间单元,如果第三时间单元不满足如上条件,则N2个时间单元不包括第三时间单元。
例如将目标反馈间隔记为KD,第二时间单元的索引例如为n,反馈周期例如为P。则第一UE可以确定与第二时间单元关联的部分时间单元,例如与第二时间单元关联的时间单元的索引集合为[n-KD–P+1,n–KD],可以发现第二时间单元关联了P个时间单元,因此有N2=P,故第二时间单元关联的时间单元的索引集合也可以记为[n-KD–N2+1,n–KD]。
通过如上过程,第一UE可以确定N2个时间单元。其中在计算过程中,第一UE可以按照索引集合的方式处理,例如第一UE确定与第二时间单元关联的时间单元的索引集合,该索引集合包括N2个时间单元;或者也可能没有集合的概念,例如第一UE根据目标反馈间隔确定了N2个时间单元,这N2个时间单元并不属于某个集合。其中,第一UE确定N2个时间单元的过程可以发生在S406之前,或者也可以认为S406中包括确定N2个时间单元的过程。
可选的,上述第二时间单元与N2个时间单元关联可以理解为,第二时间单元与N2个时间单元按照第三关系关联。进一步的,在上述N2个时间单元中可以排除部分时间单元而确定剩余的N4个时间单元,N4为小于或等于N2的正整数,该N4个时间单元和第二时间单元按照第四关系关联。例如,若N2个时间单元包括第四时间单元,且第二时间单元为所述至少一个时间单元(包含PSFCH的时间单元)中位于第四时间单元之后、且与第四时间单元的间隔大于或等于目标反馈间隔的第一个时间单元,则N4个时间单元包括第四时间单元。即在某些情况下,由于时间单元编号有限等原因,可能出现第二时间单元实 际关联的时间单元数量小于N2的情况。具体细节可参考前文对于N1和N3关系的描述,此处不再赘述。
在确定N2个和/或N4个时间单元后,第一UE就可以确定第二时间单元上的反馈资源单元中与一个时间单元以及一个频域单元关联的反馈资源单元。例如S401中的配置信息配置第二时间单元内可用于传输PSFCH的子时间单元上的多个反馈资源单元集合,该多个反馈资源单元集合与多个反馈间隔一一对应,其中第一反馈资源单元集合与目标反馈间隔对应,第一反馈资源单元集合例如包括M2个反馈资源单元,这M2个反馈资源单元能够用于传输PSFCH,则第一UE可以确定M2个反馈资源单元中与一个时间单元以及一个频域单元关联的反馈资源单元。其中,M2例如为大于或等于N2的正整数。例如该M2个反馈资源单元的索引分别为0~M2-1。第一UE确定第二时间单元中与一个时间单元以及一个频域单元关联的反馈资源单元的一种可选的方式为,在N2个时间单元中,时间单元i以及频域单元j关联M2个反馈资源单元中的反馈资源单元[(i+j·N2)·C2,(i+j·N2+1)·C2-1],其中,[(i+j·N2)·C2,(i+j·N2+1)·C2-1]表示反馈资源单元的索引集合。D表示第一资源池包含的频域单元的数量,D为正整数。可理解为,第二时间单元上的M2个反馈资源单元平分给了N2(或者P)个时间单元以及D个频域单元构成的D·N2个资源单元(与反馈资源单元的资源分辨率可以不同),即,一个时间单元与该时间单元上的一个频域单元可构成一个资源单元,其中的每个资源单元可以平分M2个反馈资源单元中的个反馈资源单元,平分的顺序可以是先时域后频域的顺序。可选的,平分的顺序也可以是先频域后频域的顺序,此处不再展开描述。一般情况下,资源池的配置信息可以使得M2为D·N2的整数倍的条件成立,从而使得C2为正整数。如果出现M2不为D·N2的整数倍的特殊情况,C2也可以进行相应的四舍五入,或者上取整或者下取整。
在一种可选的实施方式中,第一UE确定第二时间单元中与一个时间单元以及一个频域单元关联的反馈资源单元的方式为,在N4个时间单元中,时间单元i以及频域单元j关联M2个反馈资源单元中的反馈资源单元[(i+j·N2)·C2,(i+j·N2+1)·C2-1],其中,通过该方式,当第二时间单元实际关联的时间单元数量小于N2时,也可以参考上述对应的方法确定一个时间单元以及频域单元关联的反馈资源单元。
在另一种可选的实施方式中,第一UE确定第二时间单元中与一个时间单元以及一个频域单元关联的反馈资源单元的方式为,在N4个时间单元中,时间单元i以及频域单元j关联M2个反馈资源单元中的反馈资源单元[(i+j·N4)·C4,(i+j·N4+1)·C4-1],其中,一般情况下,资源池的配置信息可以使得M2为D·N4的整数倍的条件成立,从而使得C4为正整数。如果出现M2不为D·N4的整数倍的特殊情况,C4也可以进行相应的四舍五入,或者上取整或者下取整。通过该方式,当第二时间单元实际关联的时间单元数量小于N2时,可以考虑将所述M2个反馈资源单元平分给所述N4个时间单元中的时间单元以及频域单元。
第一UE可以根据第一SL数据占用的第一资源包括的时间单元以及频域单元,确定关联的一个或多个反馈资源单元。如果第一SL数据占用一个时间单元以及一个频域单元,例如第一SL数据在时间单元i以及频域单元j传输(即第一资源包括时间单元i以及频域单元j),则第一UE可以确定时间单元i以及频域单元j在M2个反馈资源单元中关联的反馈资源单元(例如反馈资源单元[(i+j·N2)·C2,(i+j·N2+1)·C2-1])为第一SL数据关联的反馈资源单元。
或者,如果第一SL数据占用一个时间单元和或多个频域单元,则与第一SL数据所在的时间单元 和其中的每个频域单元关联的反馈资源单元都可以认为是第一时间单元关联的反馈资源单元。或者,可选的,与第一SL数据所在的时间单元以及起始频域单元关联的反馈资源单元可以认为是第一SL数据关联的反馈资源单元。
或者,如果第一SL数据占用多个时间单元和多个频域单元,可选的,与第一SL数据所在的时间单元和其中的每个频域单元关联的反馈资源单元都可以认为是第一时间单元关联的反馈资源单元,即,对于第一SL数据所在的每个时间单元和其中的每个频域单元,都可以按照如上方式确定相应的反馈资源单元,最终确定的反馈资源单元的并集为第一时间单元关联的反馈资源单元;或者,可选的,与第一SL数据所在的起始时间单元和起始频域单元关联的反馈资源单元可以认为是第一SL数据关联的反馈资源单元。第一UE和第二UE可以默认采用上述几种方法中的一种,也可以通过高层信息进行配置,例如通过配置信息进行配置,第一UE和第二UE根据该配置信息确定使用上述几种方法中的一种。
通过如上过程,第一UE确定的第二时间单元内与第一SL数据关联的反馈资源单元的数量可能是一个或多个,则第一UE可以从至少一个反馈资源单元中确定第一反馈资源单元,第一反馈资源单元的数量可以是至少一个。关于第一UE从至少一个反馈资源单元中确定第一反馈资源单元的方式,可参考前文相关介绍。
举例来说,可参考图6B,以时间单元为时隙、反馈资源单元为PRB为例。例如配置信息配置的反馈周期为P=4个时隙,则在第一资源池中,时隙0、时隙4、时隙8……为包括反馈资源单元的时隙,可将这些时隙称为PSFCH时隙。其中,时隙0在图6B中未画出。另外,配置信息为第一资源池配置了两个反馈间隔,分别为K1=2和K2=1。例如对于图6B中的第二个PSFCH时隙(时隙8)而言,第一UE按照K1=2,可以确定时隙8关联4个时隙,分别为时隙3~时隙6;按照K2=1,第一UE可以确定时隙8关联4个时隙,分别为时隙4~时隙7。例如第一UE确定时隙8为第二时间单元,那么,如果目标反馈间隔为K1=2,则与该第二时间单元关联的时间单元可以包括时隙3~时隙6;或者,如果目标反馈间隔为K2=1,则与该第二时间单元关联的时间单元可以包括时隙4~时隙7。在PSFCH时隙中,用于传输反馈信息的PSFCH符号上的PRB可以划分为两个PRB集合,其中每个PRB集合对应一种反馈间隔,例如PSFCH时隙中横线表示的PRB集合对应K1=2的反馈间隔,竖线表示的PRB集合对应K2=1的反馈间隔。因此在每个PSFCH时隙中,不同的反馈间隔对应不同的PRB,彼此之间不会存在资源冲突。
其中,第一UE和第二UE究竟采用哪个反馈间隔,可以通过前文所介绍的方式确定,不多赘述。例如第二UE在时隙3向第一UE发送SL数据,且第一UE和第二UE确定目标反馈间隔为K1=2,则第一UE需要在时隙8向第二UE发送反馈信息。其中,第一UE可以在时隙8上横线部分表示的PRB集合中选择PRB来发送反馈信息。又例如,第二UE在时隙3向第一UE发送SL数据,且第一UE和第二UE确定目标反馈间隔为K2=1,则第一UE需要在时隙4向第二UE发送反馈信息。其中,第一UE可以在时隙4上竖线部分表示的PRB集合中选择PRB来发送反馈信息。可以看到,虽然第一SL数据的资源位置没有发生变化,但是由于反馈间隔的不同,导致用于发送反馈信息的时隙可能不同,反馈信息映射的PRB也可能不同。
S407、第二UE根据第一资源的位置以及目标反馈间隔确定第一反馈资源单元。
第二UE要接收第一SL数据的反馈信息,因此也可以确定第一反馈资源单元。第二UE确定第一反馈资源单元的方式与第一UE确定第一反馈资源单元的方式可以类似或相同,因此可参考S406的介绍。
其中,S407可以发生在S406之前,或者发生在S406之后,或者与S406同时发生。
S408、第一UE在第一反馈资源单元向第二UE发送第一SL数据的反馈信息。相应的,第二UE在第一反馈资源单元接收来自第一UE的该反馈信息。其中,该反馈信息占用的时间单元为第二时间单元。该反馈信息例如为SL HARQ ACK或SL HARQ NACK。
本申请实施例可以为第一资源池关联多个反馈间隔,两个UE在通信时可以从中选择一种合适的反馈间隔(将选择的反馈间隔称为目标反馈间隔),该目标反馈间隔能够满足这两个UE的能力以及时延需求。通过为一个资源池关联多个反馈间隔,使得使用该资源池的不同的设备能够选择各自合适的反馈间隔。例如,如果UE执行的业务对时延要求较高,则该UE可以选择值较小的反馈间隔作为目标反馈间隔,以满足该业务的时延需求;如果UE执行的业务对时延要求较低,则该UE可以选择值较大的反馈间隔作为目标反馈间隔,既能够满足该业务的时延需求,也不会对该UE的能力有过高的要求,能够 降低该UE的成本。可见,通过采用本申请实施例的方案,能够满足不同业务的时延需求。同时在本申请实施例中,综合考虑资源池关联的多个反馈间隔设计了数据传输资源到反馈资源之间的映射关系,从而在一个资源池上引入了多个关联的反馈间隔后,也能保证不同数据传输资源对应的反馈资源也不同,避免了反馈资源的冲突。
图7给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置700可以是图4所示的实施例所述的第一UE或该第一UE的电路系统,用于实现上述方法实施例中对应于第一UE的方法。或者,所述通信装置700可以是图4所示的实施例中的第二UE或该第二UE的电路系统,用于实现上述方法实施例中对应于第二UE的方法。具体的功能可以参见上述方法实施例中的说明。其中,例如一种电路系统为芯片系统。
该通信装置700包括至少一个处理器701。处理器701可以用于装置的内部处理,实现一定的控制处理功能。可选地,处理器701包括指令。可选地,处理器701可以存储数据。可选地,不同的处理器可以是独立的器件,可以位于不同物理位置,可以位于不同的集成电路上。可选地,不同的处理器可以集成在一个或多个处理器中,例如,集成在一个或多个集成电路上。
可选地,通信装置700包括一个或多个存储器703,用以存储指令。可选地,所述存储器703中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选地,通信装置700包括通信线路702,以及至少一个通信接口704。其中,因为存储器703、通信线路702以及通信接口704均为可选项,因此在图7中均以虚线表示。
可选地,通信装置700还可以包括收发器和/或天线。其中,收发器可以用于向其他装置发送信息或从其他装置接收信息。所述收发器可以称为收发机、收发电路、输入输出接口等,用于通过天线实现通信装置700的收发功能。可选地,收发器包括发射机(transmitter)和接收机(receiver)。示例性地,发射机可以用于将基带信号生成射频(radio frequency)信号,接收机可以用于将射频信号转换为基带信号。
处理器701可以包括一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路702可包括一通路,在上述组件之间传送信息。
通信接口704,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器703可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器703可以是独立存在,通过通信线路702与处理器701相连接。或者,存储器703也可以和处理器701集成在一起。
其中,存储器703用于存储执行本申请方案的计算机执行指令,并由处理器701来控制执行。处理器701用于执行存储器703中存储的计算机执行指令,从而实现图4所示的实施例中所述的第一UE所执行的步骤,或,实现图4所示的实施例所述的第二UE所执行的步骤。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器701可以包括一个或多个CPU,例如图7中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置700可以包括多个处理器,例如图7中的处理器701和处理器705。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
当图7所示的装置为芯片时,例如是第一UE的芯片,或第二UE的芯片,则该芯片包括处理器701 (还可以包括处理器705)、通信线路702和通信接口704,可选的,该可包括存储器703。具体地,通信接口704可以是输入接口、管脚或电路等。存储器703可以是寄存器、缓存等。处理器701和处理器705可以是一个通用的CPU,微处理器,ASIC,或一个或多个用于控制上述任一实施例的通信方法的程序执行的集成电路。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图8示出了一种装置示意图,该装置800可以是上述各个方法实施例中所涉及的第一UE或第二UE,或者为第一UE中的芯片或第二UE中的芯片。该装置800包括发送单元801、处理单元802和接收单元803。
应理解,该装置800可以用于实现本申请实施例的通信方法中由第一UE或第二UE执行的步骤,相关特征可以参照上文图4所示实施例,此处不再赘述。
可选的,图8中的发送单元801、接收单元803以及处理单元802的功能/实现过程可以通过图7中的处理器701调用存储器703中存储的计算机执行指令来实现。或者,图8中的处理单元802的功能/实现过程可以通过图7中的处理器701调用存储器703中存储的计算机执行指令来实现,图8中的发送单元801和接收单元803的功能/实现过程可以通过图7中的通信接口704来实现。
可选的,当该装置800是芯片或电路时,则发送单元801和接收单元803的功能/实现过程还可以通过管脚或电路等来实现。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令被运行时,实现前述方法实施例中由第一UE或第二UE所执行的方法。这样,上述实施例中所述功能可以软件功能单元的形式实现并作为独立的产品销售或使用。基于这样的理解,本申请的技术方案本质上或者说对做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述任一方法实施例中由第一UE或第二UE所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例所涉及的第一UE或第二UE所执行的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field-programmable gate array,FPGA),或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、EEPROM、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本申请的各个实施例中的内容可以相互参考,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的,本申请实施例中,第一UE或第二UE可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例中,还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。

Claims (40)

  1. 一种通信方法,其特征在于,应用于第一终端设备,所述方法包括:
    确定配置信息,所述配置信息用于配置第一资源池以及所述第一资源池关联的多个反馈间隔,所述第一资源池用于所述第一终端设备发送和/或接收信号;
    在第一资源接收第一侧行数据,所述第一资源的时域资源包括所述第一资源池内的第一时间单元;
    确定目标反馈间隔,所述目标反馈间隔为所述多个反馈间隔中的一个;
    根据所述第一资源的位置以及所述目标反馈间隔确定第一反馈资源单元,所述第一反馈资源单元位于第二时间单元上,所述第二时间单元与所述第一时间单元之间的间隔大于或等于所述目标反馈间隔。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述第一反馈资源单元发送所述第一侧行数据的反馈信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    确定第一反馈间隔和第二反馈间隔中的较大值为所述目标反馈间隔,或确定第一反馈间隔为所述目标反馈间隔,其中,所述第一反馈间隔为所述第一终端设备支持的反馈间隔,所述第一反馈间隔属于所述多个反馈间隔,所述第二反馈间隔为第二终端设备支持的反馈间隔,所述第二反馈间隔属于所述多个反馈间隔。
  4. 根据权利要求3所述的方法,其特征在于,所述第一反馈间隔为所述第一终端设备支持的A个反馈间隔中的值最小的反馈间隔,所述第二反馈间隔所述第二终端设备支持的B个反馈间隔中的值最小的反馈间隔,所述A个反馈间隔属于所述多个反馈间隔,所述B个反馈间隔属于所述多个反馈间隔,A和B均为正整数。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述方法还包括:
    向第二终端设备发送第一信息,所述第一信息用于指示所述目标反馈间隔。
  6. 根据权利要求1或2所述的方法,其特征在于,
    所述方法还包括:接收来自第二终端设备的第一信息,所述第一信息用于指示所述目标反馈间隔;
    确定目标反馈间隔,包括:根据所述第一信息确定所述目标反馈间隔。
  7. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    在接收所述第一侧行数据之前,接收来自第二终端设备的第二信息,或向第二终端设备发送第二信息,其中,
    所述第二信息包括X个反馈间隔与X个侧行HARQ进程标识之间的关联关系,或包括X个反馈间隔与X个优先级之间的关联关系,或包括X个反馈间隔与X个传输资源之间的关联关系,其中,所述第二信息包括的所述X个反馈间隔属于所述多个反馈间隔,X为正整数。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    接收侧行控制信息,所述侧行控制信息用于调度所述第一侧行数据;
    确定目标反馈间隔,包括:
    所述侧行控制信息包括第一侧行HARQ进程标识的信息,根据所述第二信息确定所述第一侧行HARQ进程标识与第三反馈间隔关联,确定所述第三反馈间隔为所述目标反馈间隔;或,
    所述侧行控制信息包括第一优先级的信息,根据所述第二信息确定所述第一优先级与第三反馈间隔关联,确定所述第三反馈间隔为所述目标反馈间隔;或,
    所述侧行控制信息包括所述第一资源的信息,根据所述第二信息确定所述第一资源与第三反馈间隔关联,确定所述第三反馈间隔为所述目标反馈间隔。
  9. 根据权利要求1或2所述的方法,其特征在于,
    所述方法还包括:接收侧行控制信息,所述侧行控制信息用于调度所述第一侧行数据,且所述侧行控制信息还用于指示所述目标反馈间隔;
    确定目标反馈间隔,包括:根据所述侧行控制信息确定所述目标反馈间隔。
  10. 根据权利要求3~9任一项所述的方法,其特征在于,所述方法还包括:
    向第二终端设备发送第一能力信息,和/或,接收来自所述第二终端设备的第二能力信息,其中,所述第一能力信息指示所述多个反馈间隔中的至少一个反馈间隔,所述第二能力信息指示所述多个反馈间隔中的至少一个反馈间隔。
  11. 根据权利要求1~10任一项所述的方法,其特征在于,其中,所述配置信息包括反馈周期的信息,所述方法还包括:
    根据所述反馈周期确定所述第一资源池中的至少一个时间单元,所述至少一个时间单元包括用于传输反馈信息的反馈资源单元;
    根据所述第一时间单元以及所述目标反馈间隔,从所述至少一个时间单元中确定所述第二时间单元,所述第二时间单元为所述至少一个时间单元中位于所述第一时间单元之后、且与所述第一时间单元的间隔大于或等于所述目标反馈间隔的第一个时间单元。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    根据所述第二时间单元以及所述多个反馈间隔确定与所述第二时间单元关联的N1个时间单元,其中,当第三时间单元位于所述第二时间单元之前、所述第三时间单元与所述第二时间单元之间的间隔大于或等于第四反馈间隔、且所述第三时间单元与所述第二时间单元之间的间隔小于所述第四反馈间隔加上所述反馈周期时,所述N1个时间单元包括所述第三时间单元,其中,所述第四反馈间隔为所述多个反馈间隔中的任意一个反馈间隔,N1为正整数。
  13. 根据权利要求12所述的方法,其特征在于,
    所述N1个时间单元中,时间单元i以及频域单元j关联M1个反馈资源单元中的反馈资源单元[(i+j·N1)·C1,(i+j·N1+1)·C1-1],其中,D表示所述第一资源池包含的频域单元的数量,M1表示所述第二时间单元上的反馈资源单元的数量,M1为大于或等于N1的正整数,D为正整数。
  14. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    根据所述第二时间单元以及所述目标反馈间隔确定与所述第二时间单元关联的N2个时间单元,其中,当第三时间单元位于所述第二时间单元之前、所述第三时间单元与所述第二时间单元之间的间隔大于或等于所述目标反馈间隔、且所述第三时间单元与所述第二时间单元之间的间隔小于所述目标反馈间隔加上所述反馈周期时,所述N2个时间单元包括所述第三时间单元,N2为正整数。
  15. 根据权利要求14所述的方法,其特征在于,
    所述N2个时间单元中,时间单元i以及频域单元j关联M2个反馈资源单元中的反馈资源单元[(i+j·N2)·C2,(i+j·N2+1)·C2-1],其中,D表示所述第一资源池包含的频域单元的数量,M2表示所述第二时间单元上与所述目标反馈间隔关联的反馈资源单元的数量,M2为大于或等于N2的正整数,D为正整数。
  16. 根据权利要求15所述的方法,其特征在于,所述第二时间单元包括多个反馈资源单元集合,所述多个反馈资源单元集合与所述多个反馈间隔一一对应,其中的每个反馈资源单元集合包括一个或多个反馈资源单元,所述M2个反馈资源单元属于所述第二时间单元上与所述目标反馈间隔关联的反馈资源单元集合,所述配置信息包括所述多个反馈资源单元集合与所述多个反馈间隔的对应关系。
  17. 根据权利要求13、15或16所述的方法,其特征在于,所述方法还包括:
    确定所述第二时间单元上与所述第一资源包括的时间单元和频域单元关联的一个或多个反馈资源单元;
    从所述一个或多个反馈资源单元中确定所述第一反馈资源单元。
  18. 根据权利要求1~17任一项所述的方法,其特征在于,所述时间单元包括时隙,所述频域单元包括子信道,所述反馈资源单元包括物理资源块PRB,所述第一资源在时域上包括一个时隙或多个时隙,在频域上包括一个或多个子信道。
  19. 一种通信方法,其特征在于,应用于第二终端设备,所述方法包括:
    确定配置信息,所述配置信息用于配置第一资源池以及所述第一资源池关联的多个反馈间隔,所述第一资源池用于所述第二终端设备发送和或接收信号;
    在第一资源发送第一侧行数据,其中,所述第一资源池内的第一时间单元包括所述第一资源的时域资源;
    确定目标反馈间隔,所述目标反馈间隔为所述多个反馈间隔中的一个;
    根据所述第一资源的位置以及所述目标反馈间隔确定第一反馈资源单元,所述第一反馈资源单元位 于第二时间单元上,所述第二时间单元与所述第一时间单元之间的间隔大于或等于所述目标反馈间隔。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    在所述第一反馈资源单元接收所述第一侧行数据的反馈信息。
  21. 根据权利要求19或20所述的方法,其特征在于,所述方法还包括:
    确定第一反馈间隔和第二反馈间隔中的较大值为所述目标反馈间隔,或确定第一反馈间隔为所述目标反馈间隔,其中,所述第一反馈间隔为所述第一终端设备支持的反馈间隔,所述第一反馈间隔属于所述多个反馈间隔,所述第二反馈间隔为第二终端设备支持的反馈间隔,所述第二反馈间隔属于所述多个反馈间隔。
  22. 根据权利要求21所述的方法,其特征在于,所述第一反馈间隔为所述第一终端设备支持的A个反馈间隔中的值最小的反馈间隔,所述第二反馈间隔所述第二终端设备支持的B个反馈间隔中的值最小的反馈间隔,所述A个反馈间隔属于所述多个反馈间隔,所述B个反馈间隔属于所述多个反馈间隔,A和B均为正整数。
  23. 根据权利要求19~22任一项所述的方法,其特征在于,所述方法还包括:
    向第一终端设备发送第一信息,所述第一信息用于指示所述目标反馈间隔。
  24. 根据权利要求19或20所述的方法,其特征在于,
    所述方法还包括:接收来自第一终端设备的第一信息;
    确定目标反馈间隔,包括:根据所述第一信息确定所述目标反馈间隔。
  25. 根据权利要求19或20所述的方法,其特征在于,所述方法还包括:
    在发送所述第一侧行数据之前,向第一终端设备发送第二信息,或接收来自第一终端设备的第二信息,其中,
    所述第二信息包括X个反馈间隔与X个侧行HARQ进程之间的关联关系,或包括X个反馈间隔与X个优先级之间的关联关系,或包括X个反馈间隔与X个传输资源之间的关联关系,其中,所述第二信息包括的所述X个反馈间隔属于所述多个反馈间隔,X为正整数。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    发送所述侧行控制信息,所述侧行控制信息用于调度所述第一侧行数据,其中,
    所述侧行控制信息包括第一侧行HARQ进程标识的信息,所述第一侧行HARQ进程标识用于所述第一终端设备根据所述第二信息确定所述目标反馈间隔,或,
    所述侧行控制信息包括第一优先级的信息,所述第一优先级的信息用于所述第一终端设备根据所述第二信息确定所述目标反馈间隔,或,
    所述侧行控制信息包括所述第一资源的信息,所述第一资源的信息用于所述第一终端设备根据所述第二信息确定所述目标反馈间隔。
  27. 根据权利要求19或20所述的方法,其特征在于,所述方法还包括:
    发送侧行控制信息,所述侧行控制信息用于调度所述第一侧行数据,且所述侧行控制信息还用于指示所述目标反馈间隔。
  28. 根据权利要求21~27任一项所述的方法,其特征在于,所述方法还包括:
    向第一终端设备发送第二能力信息,和/或,接收来自第一终端设备的第一能力信息,其中,所述第一能力信息指示至少一个反馈间隔,所述第二能力信息指示至少一个反馈间隔。
  29. 根据权利要求19~28任一项所述的方法,其特征在于,其中,所述配置信息包括反馈周期的信息,所述方法还包括:
    根据所述反馈周期确定所述第一资源池中的至少一个时间单元,所述至少一个时间单元包括用于传输反馈信息的反馈资源单元;
    根据所述第一时间单元以及所述目标反馈间隔,从所述至少一个时间单元中确定所述第二时间单元,所述第二时间单元为所述至少一个时间单元中位于所述第一时间单元之后、且与所述第一时间单元的间隔大于或等于所述目标反馈间隔的第一个时间单元。
  30. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    根据所述第二时间单元以及所述多个反馈间隔确定与所述第二时间单元关联的N1个时间单元,其中,当第三时间单元位于所述第二时间单元之前、所述第三时间单元与所述第二时间单元之间的间隔大于或等于第四反馈间隔、且所述第三时间单元与所述第二时间单元之间的间隔小于所述第四反馈间隔加 上所述反馈周期时,所述N1个时间单元包括所述第三时间单元,其中,所述第四反馈间隔为所述多个反馈间隔中的任意一个反馈间隔,N1为正整数。
  31. 根据权利要求30所述的方法,其特征在于,
    所述N1个时间单元中,时间单元i以及频域单元j关联M1个反馈资源单元中的反馈资源单元[(i+j·N1)·C1,(i+j·N1+1)·C1-1],其中,D表示所述第二资源池包含的频域单元的数量,M1表示所述第二时间单元上的反馈资源单元的数量,M1为大于或等于N1的正整数,D为正整数。
  32. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    根据所述第二时间单元以及所述目标反馈间隔确定与所述第二时间单元关联的N2个时间单元,其中,当第三时间单元位于所述第二时间单元之前、所述第三时间单元与所述第二时间单元之间的间隔大于或等于所述目标反馈间隔、且所述第三时间单元与所述第二时间单元之间的间隔小于所述目标反馈间隔加上所述反馈周期时,所述N2个时间单元包括所述第三时间单元,N2为正整数。
  33. 根据权利要求32所述的方法,其特征在于,
    所述N2个时间单元中,时间单元i以及频域单元j关联M2个反馈资源单元中的反馈资源单元[(i+j·N2)·C2,(i+j·N2+1)·C2-1],其中,D表示所述第一资源池包含的频域单元的数量,M2表示所述第二时间单元上与所述目标反馈间隔关联的反馈资源单元的数量,M2为大于或等于N2的正整数,D为正整数。
  34. 根据权利要求33所述的方法,其特征在于,所述第二时间单元包括多个反馈资源单元集合,所述多个反馈资源单元集合与所述多个反馈间隔一一对应,其中的每个反馈资源单元集合包括一个或多个反馈资源单元,所述M2个反馈资源单元属于所述第二时间单元上与所述目标反馈间隔关联的反馈资源单元集合,所述配置信息包括所述多个反馈资源单元集合与所述多个反馈间隔的对应关系。
  35. 根据权利要求31、33或34所述的方法,其特征在于,所述方法还包括:
    根据所述第一资源包括的时间单元和频域单元,确定所述第二时间单元上与所述第一资源包括的时间单元和频域单元关联的一个或多个反馈资源单元;
    从所述一个或多个反馈资源单元中确定所述第一反馈资源单元。
  36. 根据权利要求19~35任一项所述的方法,其特征在于,所述时间单元包括时隙,所述频域单元包括子信道,所述反馈资源单元包括物理资源块PRB,所述第一资源在时域上包括一个时隙或多个时隙,在频域上包括一个或多个子信道。
  37. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求1~18任一项所述的方法,或用于执行如权利要求19~36任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~18任一项所述的方法,或使得所述计算机执行如权利要求19~36任一项所述的方法。
  39. 一种芯片系统,其特征在于,所述芯片系统包括:
    处理器和接口,所述处理器用于从所述接口调用并运行指令,当所述处理器执行所述指令时,实现如权利要求1~18任一项所述的方法,或实现如权利要求19~36任一项所述的方法。
  40. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~18任一项所述的方法,或使得所述计算机执行如权利要求19~36任一项所述的方法。
PCT/CN2023/119303 2022-09-27 2023-09-18 一种通信方法及装置 WO2024067189A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211183624 2022-09-27
CN202211183624.2 2022-09-27
CN202211431079.4A CN117793674A (zh) 2022-09-27 2022-11-15 一种通信方法及装置
CN202211431079.4 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024067189A1 true WO2024067189A1 (zh) 2024-04-04

Family

ID=90385744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119303 WO2024067189A1 (zh) 2022-09-27 2023-09-18 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117793674A (zh)
WO (1) WO2024067189A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113810161A (zh) * 2020-06-15 2021-12-17 上海朗帛通信技术有限公司 一种副链路无线通信的方法和装置
CN114026808A (zh) * 2019-06-21 2022-02-08 三星电子株式会社 用于在通信系统中发送或接收侧链路反馈的方法和装置
US20220201654A1 (en) * 2019-04-09 2022-06-23 Idac Holdings, Inc. Nr sl psfch transmission and monitoring
US20220256504A1 (en) * 2019-10-30 2022-08-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User equipment and method for hybrid automatic repeat request reporting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220201654A1 (en) * 2019-04-09 2022-06-23 Idac Holdings, Inc. Nr sl psfch transmission and monitoring
CN114026808A (zh) * 2019-06-21 2022-02-08 三星电子株式会社 用于在通信系统中发送或接收侧链路反馈的方法和装置
US20220256504A1 (en) * 2019-10-30 2022-08-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User equipment and method for hybrid automatic repeat request reporting
CN113810161A (zh) * 2020-06-15 2021-12-17 上海朗帛通信技术有限公司 一种副链路无线通信的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Remaining issues of physical layer procedure for NR-V2X", 3GPP DRAFT; R1-2000492, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051852890 *

Also Published As

Publication number Publication date
CN117793674A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
US10903963B2 (en) System and method for adaptive TTI coexistence with LTE
WO2018228500A1 (zh) 一种调度信息传输方法及装置
US20150201401A1 (en) Radio resource reservation in framed communication system
JP2020523888A (ja) 無線通信方法およびデバイス
WO2019157936A1 (zh) 一种信号传输方法及装置
US11129173B2 (en) Method and apparatus for transmitting sidelink feedback information
US11659565B2 (en) Method and apparatus of retransmission using adjacent configured grant resource in wireless communications systems
WO2019010808A1 (zh) 传输控制方法及装置
JP2022523144A (ja) コンポーネントキャリア上の制御チャネルを取り扱うための技術
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
TWI826057B (zh) 一種實體上行控制通道的發送方法、接收方法及通信裝置
WO2023051324A1 (zh) 一种随机接入前导的发送方法、接收方法及通信装置
WO2024067189A1 (zh) 一种通信方法及装置
WO2022028268A1 (zh) 通信方法及装置
WO2024099173A1 (zh) 一种通信方法及装置
WO2024067186A1 (zh) 一种通信方法及装置
WO2024067184A1 (zh) 一种通信方法及装置
WO2024067266A1 (zh) 一种通信方法、装置及系统
WO2023011218A1 (zh) 一种资源共享方法及通信装置
WO2023165468A1 (zh) 一种资源确定方法及装置
WO2021208981A1 (zh) 一种目标信息发送方法、接收方法和装置
WO2024093834A1 (zh) 一种通信方法及装置
WO2023011097A1 (zh) 反馈信息传输方法及相关装置
WO2024099166A1 (zh) 侧行链路通信方法和装置
WO2022222109A1 (zh) 资源选取方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870423

Country of ref document: EP

Kind code of ref document: A1