WO2021036949A1 - 一种数据的传输方法及装置 - Google Patents

一种数据的传输方法及装置 Download PDF

Info

Publication number
WO2021036949A1
WO2021036949A1 PCT/CN2020/110596 CN2020110596W WO2021036949A1 WO 2021036949 A1 WO2021036949 A1 WO 2021036949A1 CN 2020110596 W CN2020110596 W CN 2020110596W WO 2021036949 A1 WO2021036949 A1 WO 2021036949A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
terminal device
frequency
information
bandwidth
Prior art date
Application number
PCT/CN2020/110596
Other languages
English (en)
French (fr)
Inventor
郑娟
李超君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20856727.1A priority Critical patent/EP4021115A4/en
Publication of WO2021036949A1 publication Critical patent/WO2021036949A1/zh
Priority to US17/679,674 priority patent/US20220183008A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • This application relates to the field of communication technology, and in particular to a data transmission method and device.
  • the fifth-generation (the Fifth-generation, 5G) mobile communication technology new radio (NR) is a global 5G standard based on a new air interface design of orthogonal frequency division multiplexing (OFDM).
  • OFDM orthogonal frequency division multiplexing
  • the business of 5G technology is very diverse, including enhanced mobile broadband (eMBB) business, ultra-reliability low-latency communication (URLLC) business and massive machine-type communication communication, mMTC) business.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliability low-latency communication
  • mMTC massive machine-type communication communication
  • Machine communication is one of the foundations of the interconnection of all things.
  • the amount of data transmission of terminal equipment is relatively small, and the delay requirement is relatively low. Therefore, from the perspective of meeting the data transmission rate, the bandwidth of terminal equipment is relatively small, such as
  • NB-IoT narrowband internet of things
  • LTE long term evolution
  • the data transmission rate in some research scenarios is generally higher than that of the 1.4MHz MTC terminal equipment and the 180KHz NB-IoT terminal equipment under the LTE system.
  • the machine terminal equipment The bandwidth capacity of the machine needs to be larger, but considering the relationship between bandwidth and the cost of the terminal equipment (the smaller the bandwidth, the lower the equipment cost), the bandwidth capacity of the machine terminal equipment does not need to be too large. Therefore, research on this type of terminal equipment is receiving more and more attention.
  • This type of terminal equipment has a higher bandwidth capability than the LTE machine terminal equipment, but in the NR system, it can be considered as a terminal device with a lower bandwidth capability.
  • the bandwidth capability of a terminal device of 3.6 MHz is a higher bandwidth capability in an LTE system, and a lower bandwidth capability in an NR system.
  • the bandwidth capabilities of terminal equipment under the NR system are also diverse.
  • the terminal equipment under the 5G system The bandwidth capability of the device ranges from 5MHz to 100MHz.
  • the 5G system involves a large range of terminal bandwidth, it does not specifically design some terminal devices with lower bandwidth capabilities (for example, terminal devices with a maximum transmission bandwidth of 5MHz or 10MHz) based on bandwidth. Therefore, for this type of The data transmission efficiency will be lower for the latest terminal equipment.
  • This application provides a data transmission method and device to improve the data transmission efficiency of terminal equipment with low bandwidth capabilities.
  • the present application provides a data transmission method.
  • the method includes: a terminal device determines a first frequency band, and receives first information from a network device, where the first information is used to indicate the first transmission frequency band, and then according to The first information determines the first transmission frequency band, and finally the terminal device transmits data to the network device on the first transmission frequency band; wherein the bandwidth of the first frequency band is greater than that supported by the terminal device Maximum channel bandwidth; the first transmission frequency band is used for the terminal device to transmit data; the first frequency band includes the first transmission frequency band, and the bandwidth of the first transmission frequency band is not greater than the maximum channel supported by the terminal device bandwidth.
  • the network device can dynamically schedule terminal devices with low bandwidth capabilities within a larger frequency resource range, thereby obtaining greater frequency selective scheduling gain and improving data transmission efficiency.
  • the bandwidth of the first frequency band is not greater than the carrier bandwidth.
  • the terminal device determines the first frequency band by a specific method: the terminal device receives second information from the network device, and the second information is used to indicate the first frequency band ; The terminal device determines the first frequency band according to the second information; or, the first frequency band is predefined.
  • the terminal device can accurately determine the first frequency band, so that the terminal device can perform data transmission.
  • the terminal device may receive third information from the network device, where the third information is used to indicate a second frequency band; the terminal device determines the second frequency band according to the third information , The second frequency band is included in the first frequency band, and the bandwidth of the second frequency band is not greater than the maximum channel bandwidth supported by the terminal device; the first transmission frequency band is part or all of the second frequency band .
  • the terminal device can accurately determine the second frequency band, so that subsequent data transmission can be accurately performed.
  • the third information may at least include: a frequency domain resource location corresponding to the second frequency band; wherein the frequency domain resource location corresponding to the second frequency band is a frequency domain corresponding to the second frequency band.
  • the frequency domain start position and the bandwidth of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain start position and end position of the second frequency band, or the frequency domain corresponding to the second frequency band
  • the frequency domain resource position is the frequency domain start position of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain end position of the second frequency band, or the second frequency band corresponds to
  • the frequency domain resource position is the offset of the frequency domain start position of the second frequency band relative to the first frequency band in the first frequency band, or the frequency domain resource position corresponding to the second frequency band is The offset of the frequency domain termination position of the second frequency band relative to the first frequency band in the first frequency band.
  • the second frequency band can be accurately indicated through the third information.
  • the third information includes a first index, and the first index corresponds to the second frequency band in the first frequency band; the terminal device determines the first index according to the third information.
  • the specific method for the second frequency band may be: the terminal device determines the second frequency band according to the first index and the correspondence between the first index and the second frequency band.
  • the second frequency band can be accurately indicated through the third information.
  • the terminal device determines the second frequency band according to at least one of the following: location information in time when the terminal device transmits data, and the corresponding hybrid automatic repeat request when the terminal device transmits data
  • the HARQ process the number of transmissions corresponding to when the terminal device transmits data, and information related to the first frequency band where the second frequency band is located; wherein, the information related to the first frequency band where the second frequency band is located
  • the information is the index of the first frequency band or the frequency domain resource location corresponding to the first frequency band; the second frequency band is included in the first frequency band, and the bandwidth of the second frequency band is not greater than that of the terminal device
  • the maximum supported channel bandwidth; the first transmission frequency band is part or all of the second frequency band.
  • the terminal device can accurately determine the second frequency band, so that subsequent data transmission can be accurately performed.
  • the second frequency band may be predefined.
  • the data is PDSCH data.
  • the terminal device obtains a first frequency band set, and the first frequency band set includes at least one of the frequency bands corresponding to different data transmission types; the terminal device determines the first frequency band, and the specific method It may be that: the terminal device determines the first frequency band according to the data transmission type and the first frequency band set.
  • the terminal device can accurately determine the first frequency band, so that subsequent data transmission can be performed.
  • the first frequency band may be a bandwidth part (BWP).
  • BWP bandwidth part
  • the present application provides a data transmission method.
  • the method includes: a network device sends first information to a terminal device, where the first information is used to indicate a first transmission frequency band; Data is received from the terminal equipment on a transmission frequency band; wherein, the first transmission frequency band is used for the terminal equipment to transmit data, the first transmission frequency band is included in the first frequency band, and the bandwidth of the first frequency band is greater than that of the terminal equipment.
  • the bandwidth of the first transmission frequency band is not greater than the maximum channel bandwidth supported by the terminal device.
  • the network device can dynamically schedule terminal devices with low bandwidth capabilities within a larger frequency resource range, thereby obtaining greater frequency selective scheduling gain and improving data transmission efficiency.
  • the bandwidth of the first frequency band is not greater than the carrier bandwidth.
  • the network device sends second information to the terminal device, where the second information is used to indicate the first frequency band.
  • the terminal device can accurately determine the first frequency band, so that subsequent data transmission can be performed.
  • the network device sends third information to the terminal device, where the third information is used to indicate a second frequency band, the second frequency band is included in the first frequency band, and the first frequency band is included in the first frequency band.
  • the bandwidth of the second frequency band is not greater than the maximum channel bandwidth supported by the terminal device; the first transmission frequency band is part or all of the second frequency band. In this way, the terminal device can accurately determine the second frequency band, so that subsequent data transmission can be accurately performed.
  • the second information includes at least: a frequency domain resource location corresponding to the second frequency band; wherein the frequency domain resource location corresponding to the second frequency band is a frequency domain corresponding to the second frequency band
  • the start position and the bandwidth of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain start position and end position of the second frequency band, or the frequency domain resource corresponding to the second frequency band
  • the position is the start position of the frequency domain of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the end position of the frequency domain of the second frequency band, or the frequency domain corresponding to the second frequency band
  • the resource location is the offset of the frequency domain start position of the first frequency band relative to the first frequency band in the second frequency band, or the frequency domain resource location corresponding to the second frequency band is the second frequency band The offset of the frequency band within the first frequency band relative to the end position of the frequency domain of the first frequency band.
  • the second frequency band can be accurately indicated through the third information.
  • the second information includes a first index
  • the first index corresponds to the second frequency band in the first frequency band. In this way, the second frequency band can be accurately indicated through the third information.
  • the network device configures a second frequency band set for the terminal device, and the second frequency band set includes at least one of frequency bands corresponding to different data transmission types. In this way, the terminal device can subsequently accurately determine the first frequency band for data transmission.
  • the first frequency band may be BWP.
  • this application also provides a data transmission device, the data transmission device including:
  • a processor configured to determine a first frequency band, where the bandwidth of the first frequency band is greater than the maximum channel bandwidth supported by the terminal device;
  • a transceiver configured to receive first information from a network device, where the first information is used to indicate a first transmission frequency band, and the bandwidth of the first transmission frequency band is not greater than the maximum channel bandwidth supported by the terminal device, and the first The transmission frequency band is used for the terminal device to transmit data;
  • the processor is further configured to determine the first transmission frequency band according to the first information; the first frequency band includes the first transmission frequency band;
  • the transceiver is also used to transmit data to the network device on the first transmission frequency band.
  • the bandwidth of the first frequency band is not greater than the carrier bandwidth.
  • the transceiver is further configured to receive second information from the network device, and the second information is used to indicate the first frequency band;
  • the processor When determining the first frequency band, the processor is specifically configured to: determine the first frequency band according to the second information; or, the first frequency band is predefined.
  • the transceiver is further configured to receive third information from the network device, and the third information is used to indicate the second frequency band;
  • the processor is further configured to determine the second frequency band according to the third information, the second frequency band is included in the first frequency band, and the bandwidth of the second frequency band is not greater than that supported by the terminal device Maximum channel bandwidth; the first transmission frequency band is part or all of the second frequency band.
  • the third information includes at least: a frequency domain resource location corresponding to the second frequency band; wherein the frequency domain resource location corresponding to the second frequency band is a frequency domain corresponding to the second frequency band
  • the starting position and the bandwidth of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain starting position and ending position of the second frequency band, or the frequency corresponding to the second frequency band
  • the frequency domain resource position is the start position of the frequency domain of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain end position of the second frequency band, or the frequency domain end position of the second frequency band corresponds to
  • the frequency domain resource location is the offset of the second frequency band in the first frequency band relative to the frequency domain start position of the first frequency band, or the frequency domain resource location corresponding to the second frequency band is the The offset of the frequency domain termination position of the second frequency band relative to the first frequency band in the first frequency band.
  • the third information includes a first index, and the first index corresponds to the second frequency band in the first frequency band;
  • the processor when determining the second frequency band according to the third information, is specifically configured to: determine the second frequency band according to the first index and the correspondence relationship between the first index and the second frequency band frequency band.
  • the processor is further configured to determine the second frequency band according to at least one of the following: position information in time when the terminal device transmits data, and the corresponding mixture when the terminal device transmits data
  • the automatic repeat request HARQ process the number of transmissions corresponding to when the terminal device transmits data, and the information related to the first frequency band where the second frequency band is located; wherein, it is related to the first frequency band where the second frequency band is located.
  • the related information of a frequency band is the index of the first frequency band or the frequency domain resource location corresponding to the first frequency band; the second frequency band is included in the first frequency band, and the bandwidth of the second frequency band is not greater than The maximum channel bandwidth supported by the terminal device; the first transmission frequency band is part or all of the second frequency band.
  • the data is PDSCH data.
  • the processor is further configured to obtain a first frequency band set, where the first frequency band set includes at least one of frequency bands corresponding to different data transmission types;
  • the processor when determining the first frequency band, is specifically configured to determine the first frequency band according to the data transmission type and the first frequency band set.
  • the present application also provides a data transmission device, and the data transmission device includes:
  • a processing unit configured to determine a first frequency band, the bandwidth of the first frequency band is greater than the maximum channel bandwidth supported by the terminal device;
  • the transceiver unit is configured to receive first information from a network device, where the first information is used to indicate a first transmission frequency band, and the bandwidth of the first transmission frequency band is not greater than the maximum channel bandwidth supported by the terminal device, and the first The transmission frequency band is used for the terminal device to transmit data;
  • the processing unit is further configured to determine the first transmission frequency band according to the first information; the first frequency band includes the first transmission frequency band;
  • the transceiver unit is further configured to transmit data to the network device on the first transmission frequency band.
  • the bandwidth of the first frequency band is not greater than the carrier bandwidth.
  • the transceiver unit is further configured to receive second information from the network device, and the second information is used to indicate the first frequency band;
  • the processing unit when determining the first frequency band, is specifically configured to: determine the first frequency band according to the second information; or, the first frequency band is predefined.
  • the transceiver unit is further configured to receive third information from the network device, and the third information is used to indicate the second frequency band;
  • the processing unit is further configured to determine the second frequency band according to the third information, the second frequency band is included in the first frequency band, and the bandwidth of the second frequency band is not greater than that supported by the terminal device Maximum channel bandwidth; the first transmission frequency band is part or all of the second frequency band.
  • the third information includes at least: a frequency domain resource location corresponding to the second frequency band; wherein the frequency domain resource location corresponding to the second frequency band is a frequency domain corresponding to the second frequency band
  • the starting position and the bandwidth of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain starting position and ending position of the second frequency band, or the frequency corresponding to the second frequency band
  • the frequency domain resource position is the start position of the frequency domain of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain end position of the second frequency band, or the frequency domain end position of the second frequency band corresponds to
  • the frequency domain resource location is the offset of the second frequency band in the first frequency band relative to the frequency domain start position of the first frequency band, or the frequency domain resource location corresponding to the second frequency band is the The offset of the frequency domain termination position of the second frequency band relative to the first frequency band in the first frequency band.
  • the third information includes a first index, and the first index corresponds to the second frequency band in the first frequency band;
  • the processing unit when determining the second frequency band according to the third information, is specifically configured to: determine the second frequency band according to the first index and the correspondence relationship between the first index and the second frequency band frequency band.
  • the processing unit is further configured to determine the second frequency band according to at least one of the following: position information in time when the terminal device transmits data, and the corresponding mixture when the terminal device transmits data
  • the automatic repeat request HARQ process the number of transmissions corresponding to when the terminal device transmits data, and the information related to the first frequency band where the second frequency band is located; wherein, it is related to the first frequency band where the second frequency band is located.
  • the related information of a frequency band is the index of the first frequency band or the frequency domain resource location corresponding to the first frequency band; the second frequency band is included in the first frequency band, and the bandwidth of the second frequency band is not greater than The maximum channel bandwidth supported by the terminal device; the first transmission frequency band is part or all of the second frequency band.
  • the data is PDSCH data.
  • the processing unit is further configured to obtain a first frequency band set, where the first frequency band set includes at least one of frequency bands corresponding to different data transmission types;
  • the processing unit is specifically configured to determine the first frequency band according to the data transmission type and the first frequency band set when determining the first frequency band.
  • the present application also provides a data transmission device, and the data transmission device includes:
  • the transceiver is configured to send first information to a terminal device, the first information is used to indicate a first transmission frequency band, and the first transmission frequency band is used for the terminal device to transmit data, wherein the first transmission frequency band includes In the first frequency band, the bandwidth of the first frequency band is greater than the maximum channel bandwidth supported by the terminal device, and the bandwidth of the first transmission frequency band is not greater than the maximum channel bandwidth supported by the terminal device;
  • the processor is used to control the transceiver to send and receive data.
  • the bandwidth of the first frequency band is not greater than the carrier bandwidth.
  • the transceiver is further configured to send second information to the terminal device, where the second information is used to indicate the first frequency band.
  • the transceiver is further configured to: send third information to the terminal device, where the third information is used to indicate a second frequency band, and the second frequency band is included in the first frequency band , And the bandwidth of the second frequency band is not greater than the maximum channel bandwidth supported by the terminal device; the first transmission frequency band is part or all of the second frequency band.
  • the second information includes at least: a frequency domain resource location corresponding to the second frequency band; wherein the frequency domain resource location corresponding to the second frequency band is a frequency domain corresponding to the second frequency band
  • the start position and the bandwidth of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain start position and end position of the second frequency band, or the frequency domain resource corresponding to the second frequency band
  • the position is the start position of the frequency domain of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the end position of the frequency domain of the second frequency band, or the frequency domain corresponding to the second frequency band
  • the resource location is the offset of the frequency domain start position of the first frequency band relative to the first frequency band in the second frequency band, or the frequency domain resource location corresponding to the second frequency band is the second frequency band The offset of the frequency band within the first frequency band relative to the end position of the frequency domain of the first frequency band.
  • the second information includes a first index
  • the first index corresponds to the second frequency band in the first frequency band.
  • the processor is further configured to configure a second frequency band set for the terminal device, where the second frequency band set includes at least one of frequency bands corresponding to different data transmission types.
  • the present application also provides a data transmission device, the data transmission device including:
  • the transceiver unit is configured to send first information to a terminal device, the first information is used to indicate a first transmission frequency band, and the first transmission frequency band is used for the terminal device to transmit data, wherein the first transmission frequency band includes In the first frequency band, the bandwidth of the first frequency band is greater than the maximum channel bandwidth supported by the terminal device, and the bandwidth of the first transmission frequency band is not greater than the maximum channel bandwidth supported by the terminal device;
  • the processing unit is used to control the transceiver unit to send and receive data.
  • the bandwidth of the first frequency band is not greater than the carrier bandwidth.
  • the transceiver unit is further configured to send second information to the terminal device, where the second information is used to indicate the first frequency band.
  • the transceiver unit is further configured to: send third information to the terminal device, the third information is used to indicate a second frequency band, and the second frequency band is included in the first frequency band , And the bandwidth of the second frequency band is not greater than the maximum channel bandwidth supported by the terminal device; the first transmission frequency band is part or all of the second frequency band.
  • the second information includes at least: a frequency domain resource location corresponding to the second frequency band; wherein the frequency domain resource location corresponding to the second frequency band is a frequency domain corresponding to the second frequency band
  • the start position and the bandwidth of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain start position and end position of the second frequency band, or the frequency domain resource corresponding to the second frequency band
  • the position is the start position of the frequency domain of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the end position of the frequency domain of the second frequency band, or the frequency domain corresponding to the second frequency band
  • the resource location is the offset of the frequency domain start position of the first frequency band relative to the first frequency band in the second frequency band, or the frequency domain resource location corresponding to the second frequency band is the second frequency band
  • the second information includes a first index
  • the first index corresponds to the second frequency band in the first frequency band.
  • the processing unit is further configured to configure a second frequency band set for the terminal device, and the second frequency band set includes at least one of frequency bands corresponding to different data transmission types.
  • the present application also provides a communication system, which includes at least one terminal device and network device mentioned in the above design. Further, the network device in the communication system may execute any method executed by the network device in the foregoing method, and the terminal device in the communication system may execute any method executed by the terminal device in the foregoing method method.
  • the present application provides a computer-readable storage medium that stores computer-executable instructions, and when called by the computer, the computer-executable instructions are used to make the computer Any one of the above-mentioned first aspect or any one of the possible designs of the first aspect, and any one of the second aspect or any one of the methods of the second aspect is performed.
  • this application provides a computer program product containing instructions that, when run on a computer, enable the computer to execute any one of the possible designs, the second aspect, or the second aspect of the first aspect or the first aspect. Any method of any possible design of the aspect.
  • the present application provides a chip, which is coupled with a memory, and is used to read and execute program instructions stored in the memory, so as to realize the above-mentioned first aspect or any one of the possibilities of the first aspect. Design, the second aspect, or any one of the possible designs of the second aspect.
  • Figure 1 is a schematic diagram of a bandwidth capability provided by this application.
  • FIG. 2 is a schematic diagram of a synchronization signal block provided by this application.
  • FIG. 3 is an architecture diagram of a communication system provided by this application.
  • FIG. 4 is a flowchart of a data transmission method provided by this application.
  • FIG. 5 is a schematic diagram of a relationship between a first frequency band, a second frequency band, and a first transmission frequency band provided by this application;
  • FIG. 6 is a schematic diagram of the offset of the start position of the frequency domain between the first frequency band and the second frequency band provided by this application;
  • FIG. 7 is a schematic diagram of a virtual BWP distributed on the carrier bandwidth provided by this application.
  • FIG. 8 is a schematic structural diagram of a data transmission device provided by this application.
  • FIG. 9 is a structural diagram of a data transmission device provided by this application.
  • the embodiments of the present application provide a data transmission method and device, which are used to increase the frequency resource selection range of low-bandwidth terminal equipment, so as to improve the data transmission efficiency of low-bandwidth terminal equipment.
  • the method and device described in the present application are based on the same inventive concept. Since the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the carrier bandwidth also called the system bandwidth
  • the carrier bandwidth can also be expressed by the transmission bandwidth of the carrier.
  • One or more carriers can be configured on the network device. Accordingly, the transmission bandwidth corresponding to the one or more carriers configured by the network device can be understood as the system bandwidth. For example, if a network device is configured with 1 carrier and the transmission bandwidth of the carrier is 100MHz (megahertz), then the system bandwidth can be considered as 100MHz; for another example, if a network device is configured with 5 carriers, the transmission of each carrier If the bandwidth is 20MHz, the system bandwidth can also be considered as 100MHz. To facilitate the description of the solution, in this application, only the transmission bandwidth of one carrier corresponding to the system bandwidth is taken as an example for description.
  • the maximum channel bandwidth supported by the terminal device that is, the bandwidth capability of the terminal device. It can be understood that the maximum channel bandwidth supported by the terminal device is the maximum frequency resource that can be used at the same time when the terminal device performs data transmission.
  • the maximum frequency resource that can be used at the same time may be that the maximum frequency resource that can be used at the same time is continuous in the frequency domain, and/or the maximum frequency resource that the terminal device can use at the same time on one carrier.
  • the bandwidth capability of a terminal device is 5MHz, it means that when data transmission (including the reception of downlink data and/or the transmission of uplink data) is carried out between the terminal device and the network device, the maximum 5MHz frequency resource can be removed
  • the transmission bandwidth outside the protection bandwidth is scheduled in the frequency band corresponding to the "maximum data transmission bandwidth" as shown in FIG. 1.
  • the maximum frequency resource used by a terminal device with a bandwidth capability of 5MHz during data transmission is lower than 5MHz (excluding the protection bandwidth), in order to simplify the description, it can also be understood as being usable
  • the maximum frequency resource is equal to the bandwidth capability.
  • the bandwidth capability of the terminal device is equal to the minimum bandwidth that the NR system has access to.
  • the minimum bandwidth available for accessing the NR system can be understood as the transmission bandwidth corresponding to the downlink signal/information that the terminal device needs to access the NR system and the necessary protection bandwidth; or, the minimum bandwidth available for accessing the NR system
  • the minimum bandwidth can be understood as the transmission bandwidth corresponding to the downlink signal/information that the terminal device needs to access to the NR system. It should be noted that in the first way of understanding "terminal equipment with low bandwidth capability", when comparing the bandwidth capability of the terminal equipment with the minimum bandwidth of the access NR system, or both include the necessary protection bandwidth , Or neither includes the necessary protection bandwidth.
  • Synchronization signal block (synchronization signal bock, SSB): SSB includes primary synchronization signal (primary synchronization signal, PSS), secondary synchronization signal (secondary synchronization signal, SSS), and physical broadcast channel (physical broadcast channel, PBCH). SSB occupies 4 orthogonal frequency division multiplexing (OFDM) symbols in time. PSS and SSS are transmitted on the first and third OFDM symbols respectively, and the corresponding transmission bandwidth is 12 resource blocks. (resource block, RB) (more precisely, the transmission bandwidth of PSS and SSS corresponds to 127 sub-carriers).
  • source block, RB resource block
  • the information contained in PBCH is transmitted on the second, third, and fourth OFDM symbols, among which the second and fourth OFDM symbols On the symbol, the transmission bandwidth is 20 RBs (corresponding to 240 sub-carriers), and in the third OFDM symbol, the transmission bandwidth is 8 RBs (corresponding to 96 sub-carriers), as an example, as shown in FIG. 2.
  • the transmission bandwidth corresponding to the SSB is 20 RBs, and one RB includes 12 subcarriers. Therefore, according to different subcarrier spacing (SCS), the transmission bandwidth corresponding to the SSB is different.
  • SCS subcarrier spacing
  • Table 1 below shows examples of transmission bandwidths corresponding to SSB under several different subcarrier spacings.
  • SI system information
  • the necessary SI can be understood as the minimum system information that the terminal device needs to obtain before initiating random access to the network device.
  • the terminal device can determine the control information of scheduling system information block type 1 (system information block type 1, SIB1) through the control information in the PBCH, and then use the control information of scheduling SIB1 (hereinafter referred to as SIB1 control information) ), determine SIB1, where SIB1 includes necessary information required by the terminal device to initiate random access to the network device, such as a random access preamble.
  • SIB1 control information scheduling SIB1
  • the terminal device can receive SSB and SIB1 at different times, the maximum value between the transmission bandwidth corresponding to SSB and the transmission bandwidth corresponding to SIB1 can be used as the minimum bandwidth of the access NR system. Further, if the terminal device acquires SIB1, it needs to read SIB1 control information first, and then determine SIB1 according to the SIB1 control information, then the transmission bandwidth corresponding to SIB1 can be represented by the transmission bandwidth corresponding to SIB1 control information or the transmission bandwidth corresponding to SIB1.
  • the transmission bandwidth corresponding to SIB1 can be used to control the transmission bandwidth of SIB1.
  • the information is represented by the transmission bandwidth corresponding to the PDCCH or the transmission bandwidth corresponding to the PDSCH carrying SIB1.
  • the maximum value between the minimum transmission bandwidth corresponding to SIB1 and the transmission bandwidth corresponding to SSB may be used as the minimum bandwidth of the access NR system.
  • the transmission bandwidth corresponding to SIB1 control information may be 24 RBs, or 48 RBs, or 96.
  • 24 RBs (4.32MHz) can be used as the minimum transmission bandwidth corresponding to SIB1.
  • the transmission bandwidth corresponding to SSB is 20 RBs (3.6MHz), so The minimum bandwidth of the access NR system can be understood as 4.32MHz; for example, when the subcarrier interval corresponding to SSB is 30KHz and the subcarrier interval corresponding to PDCCH including SIB1 control information is 15KHz, the transmission bandwidth corresponding to SIB1 control information It may be 48 RBs or 96 RBs. Similarly, in order to determine the minimum bandwidth of the access NR system, 48 RBs (8.64MHz) can be used as the minimum transmission bandwidth corresponding to SIB1, taking into account the corresponding SSB The transmission bandwidth is 20 RBs (7.2MHz), so the minimum bandwidth of the access NR system can be understood as 8.64MHz.
  • the minimum bandwidth of the access NR system can be 5MHz and 10MHz, respectively. Accordingly, the terminal equipment with bandwidth capabilities of 5MHz and 10MHz can be regarded as the above two examples.
  • the low-bandwidth capable terminal equipment can be regarded as the above two examples.
  • SIB1 control information can also be carried in other physical layer channels, such as enhanced physical downlink control channel (EPDCCH), and SIB1 can also be carried in other physical layer channels, which is not specifically limited in this application. .
  • EPCCH enhanced physical downlink control channel
  • the second understanding Determine whether the terminal device is a low-bandwidth capable terminal device based on the relationship between the sum of the bandwidth part (BWP) transmission bandwidth configured for the terminal device and the system bandwidth.
  • BWP bandwidth part
  • the network device has configured the maximum number of BWPs for the terminal device at the same time, and the transmission bandwidth corresponding to each configured BWP is equal to the bandwidth capability of the terminal device.
  • the transmission bandwidth corresponding to all configured BWPs is still less than the system bandwidth, in this application, such terminal devices can also be understood as terminal devices with low bandwidth capabilities.
  • the frequency resources corresponding to each BWP in all configured BWPs do not overlap with each other.
  • the bandwidth capability of a terminal device is 5MHz or 10MHz
  • the network device can configure 4 BWPs for the terminal device at the same time on a carrier, then on this carrier, the terminal device is configured at the same time
  • the total transmission bandwidth corresponding to the BWP is up to 20MHz. Since 20MHz is less than 50MHz, the terminal device can also be regarded as a terminal device with low bandwidth capability.
  • the third understanding According to the relationship between the frequency range of the terminal device's dynamic transmission and the system bandwidth, determine whether the terminal device is a low-bandwidth capable terminal device.
  • the terminal device can be regarded as It is a terminal device with low bandwidth capability.
  • the specific threshold may be equal to the system bandwidth corresponding to the carrier, or equal to X times the system bandwidth corresponding to the carrier, where X is a decimal or fraction greater than 0 and not greater than 1.
  • Data transmission realized through physical layer signaling can be regarded as dynamic transmission.
  • the physical layer signaling here includes the transmission of signaling through physical layer downlink control channels such as PDCCH and EPDCCH.
  • Data transmission includes uplink data and/or downlink data transmission, and data may include information and/or signals.
  • the downlink control channel in the embodiment of the present application may also be NR-PDCCH and other channels newly defined in the future communication protocol that have similar functions to the downlink control channel.
  • the embodiments of this application do not limit the types and names of downlink control channels, which are collectively referred to as PDCCH.
  • the PDCCH carries downlink control information (downlink control information, DCI), and the DCI may include resource allocation information and/or other control information of one or more terminal devices.
  • DCI downlink control information
  • the frequency resource corresponding to the data transmitted by the terminal device is within the pre-configured frequency resource range, then such data transmission can be understood as Dynamic transmission.
  • the network equipment can pre-configure the frequency resource range for data transmission through radio resource control (radio resource control, RRC) signaling (for example, the frequency range corresponding to the BWP configured through RRC signaling in the NR), then the frequency resource range
  • RRC radio resource control
  • the network equipment is first required to reconfigure the frequency resource range of the data transmission for the terminal equipment through RRC signaling (for example, reconfiguration).
  • RRC signaling for example, reconfiguration
  • Configure BWP reconfiguration BWP
  • data transmission with the network device can be performed within the reconfigured frequency resource range. Since this process requires RRC reconfiguration, the delay is relatively large. Therefore, data transmission in which the frequency resource corresponding to the data transmission is outside the range of the pre-configured data transmission frequency resource is not considered as dynamic transmission.
  • terminal devices with low bandwidth capabilities may also have other definitions, which are not specifically limited. For example, if the bandwidth capability of a terminal device is less than a certain threshold (for example, Y MHz, Y is a number greater than zero), the terminal device can be considered as a terminal device with low bandwidth capability.
  • a certain threshold for example, Y MHz, Y is a number greater than zero
  • the transmission bandwidth or the data transmission bandwidth may include the protection bandwidth, although the protection bandwidth is not used for data transmission.
  • the 5MHz can include the protection bandwidth, but the network device and the terminal device During data transmission, the actual maximum available data transmission bandwidth is less than 5MHz.
  • the terminal device can be understood as a low-bandwidth capable terminal device.
  • Terminal Equipment for a terminal device that supports carrier aggregation (CA), as long as the terminal device has the above characteristics on one of the carriers, the terminal device can be understood as a low-bandwidth capable terminal device.
  • At least one (item) involved in this application refers to one (item) or multiple (items); multiple (item) refers to two (items) or more than two (items).
  • FIG. 3 shows the architecture of a possible communication system to which the data transmission method provided by the embodiment of the present application is applicable.
  • the architecture of the communication system includes network equipment and terminal equipment, where:
  • the network device is a device with a wireless transceiver function, a node in a radio access network (RAN), or a chip that can be set in the network device.
  • the network equipment includes but is not limited to: next generation NodeB (gNB), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B, NB) ), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB, or femto), pico cell base station (pico) , Baseband unit (BBU), access point (AP), wireless relay node (relay), wireless backhaul node, transmission point (transmission and The reception point, TRP or transmission point, TP, etc., may also be a network node that constitutes a gNB or transmission point, such as a baseband unit (BBU), or a distributed unit (DU).
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU implements radio resource control (RRC), packet data convergence protocol (PDCP) layer functions
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless link.
  • RLC radio link control
  • media access control media access control
  • MAC physical (physical, PHY) layer functions. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, and the CU can also be divided into network equipment in the core network CN, which is not limited.
  • the terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment , User agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, wireless relay nodes, and so on.
  • terminal devices with wireless transceiver functions and chips that can be installed in the aforementioned terminal devices are collectively referred to as terminal devices.
  • Data is transmitted between the network device and the terminal device through an air interface.
  • the terminal devices involved in the solution of this application can be understood as terminal devices with low bandwidth capabilities.
  • the communication system shown in FIG. 3 may be a wireless communication system, but not limited to a 4.5G or 5G wireless communication system, and a further evolution system based on long term evolution (LTE) or NR, and Various future communication systems, such as 6G systems or other communication networks.
  • LTE long term evolution
  • NR NR
  • Various future communication systems such as 6G systems or other communication networks.
  • the data transmission method provided by the embodiment of the present application is applicable to the communication system as shown in FIG. 3.
  • the specific process of the method includes:
  • Step 401 The terminal device determines a first frequency band, and the bandwidth of the first frequency band is greater than the maximum channel bandwidth supported by the terminal device.
  • the first frequency band is used to transmit data, for example, the terminal equipment and network equipment can transmit uplink data and/or downlink data, that is, the first frequency band can also transmit other data, such as PDCCH data, etc. , This application does not limit this.
  • the first frequency band may be composed of continuous frequency resources in the frequency domain within one carrier, for example, composed of continuous subcarriers, resource elements (RE), and RBs.
  • one carrier for example, composed of continuous subcarriers, resource elements (RE), and RBs.
  • RE resource elements
  • the bandwidth of the first frequency band is not greater than the carrier bandwidth.
  • the carrier bandwidth here may be understood as the carrier bandwidth configured by the network device for the terminal device, and the configured carrier bandwidth may be equal to or smaller than the system bandwidth on the network device side.
  • the system bandwidth on the network device side is 100 MHz
  • the carrier bandwidth configured for the terminal device may be 20 MHz, or 40 MHz, or other values less than or equal to 100 MHz.
  • Step 402 The terminal device receives first information from the network device, where the first information is used to indicate a first transmission frequency band, the first transmission frequency band is used for the terminal device to transmit data, and the first transmission frequency band is The bandwidth is not greater than the maximum channel bandwidth supported by the terminal device.
  • Step 403 The terminal device determines the first transmission frequency band according to the first information; the first frequency band includes the first transmission frequency band.
  • Step 404 The terminal device transmits data to the network device on the first transmission frequency band.
  • the terminal device determining the first frequency band may include at least the following two ways:
  • the terminal device receives second information from a network device, where the second information is used to indicate the first frequency band; the terminal device determines the first frequency band according to the second information.
  • the second information may be first frequency band information
  • the first frequency band information may include information corresponding to the first frequency band, such as the bandwidth of the first frequency band, and the first frequency band in the first frequency band.
  • Channel data configuration information for example, the control channel may include but not limited to PDCCH, EPDCCH, physical uplink control channel (PUCCH)), configuration information when using the first frequency band to transmit shared channel data (for example, ,
  • the shared channel may include but is not limited to PDSCH, physical uplink shared channel (physical uplink shared channel, PUSCH), etc.
  • the first frequency band is predefined.
  • the second information may be RRC signaling, media access control (MAC) signaling, physical layer signaling, etc. sent by the network device, or may also be the network device
  • Other signaling sent may be, for example, a combination of the foregoing signaling; of course, the second information may also be sent through the foregoing signaling, that is, the second information is included in the foregoing signaling, and this application does not deal with this. limited.
  • signaling can also be understood as messages, information, and so on.
  • the network device may configure one or more first frequency bands for the terminal device, and the configuration of each first frequency band may be an independent configuration or a joint configuration, that is, multiple first frequency bands correspond to Part or all of the first frequency band information is the same.
  • the network device configures multiple first frequency bands for the terminal device, the corresponding frequency domain resources between the different first frequency bands may or may not overlap, which is not specifically limited in this application.
  • the terminal device may select the first frequency band among the configured one or more first frequency bands.
  • the first frequency band may be a bandwidth part (BWP).
  • the network device may configure multiple BWPs for the terminal device through RRC signaling, and then indicate the activated BWP among the multiple BWPs through physical layer signaling. After that, the network device and the terminal device The data transmission between the terminal equipment is carried out within the activated BWP; for another example, the network equipment can configure the activated BWP for the terminal equipment only through RRC signaling, and then the data transmission between the terminal equipment and the network equipment is carried out in the activated BWP. Activated within the BWP.
  • the difference between the activated BWP and the configured but not activated BWP can include at least one of the following three points:
  • the terminal device does not expect to receive downlink channel data and/or downlink signals, such as PDSCH data, PDCCH data, channel state information reference signal (CSI-RS) ), where if the CSI-RS is used for radio resource management (radio resource management, RRM), the terminal device can use the CSI-RS to perform RRM measurement on the configured but not activated BWP.
  • downlink channel data and/or downlink signals such as PDSCH data, PDCCH data, channel state information reference signal (CSI-RS)
  • RRM radio resource management
  • the terminal device On the configured but not activated BWP, the terminal device does not expect to send uplink channel data and/or uplink signals, such as PUSCH data, PUCCH data, and sounding reference signal (Sounding Reference Signal, SRS).
  • uplink channel data and/or uplink signals such as PUSCH data, PUCCH data, and sounding reference signal (Sounding Reference Signal, SRS).
  • SRS Sounding Reference Signal
  • the terminal device performs data transmission with the network device within the frequency resources included in the activated BWP.
  • the behavior of the terminal device can be the same as the behavior of the terminal device on the configured but not activated BWP Same, that is, satisfy the above d1 and d2.
  • different data transmission types require different frequency bands for data transmission.
  • the network device can configure different BWPs (that is, configure different frequency bands) for different data transmission types.
  • different data transmission types may include: service data, control data, and reference signals used for measurement.
  • the service data may include data carried on PUSCH and PDSCH, and the reference signals used for measurement may include CSI-RS.
  • the frequency band (BWP) can be designed specifically for different data transmission types to ensure the transmission efficiency of various data transmissions.
  • the BWP configured for transmission of service data for example, data carried on PUSCH or PDSCH
  • the BWP configured for transmission of control data for example, carried on PDCCH or PUCCH
  • the bandwidth corresponding to the BWP configured for service data transmission can be greater than the bandwidth corresponding to the BWP configured for control data transmission.
  • the terminal device can obtain energy saving (ie, reduced power consumption) when receiving the control data carried in the control channel
  • the frequency selective scheduling gain can be obtained; for example, for the same terminal device, the BWP configured for service data transmission and the BWP configured for measurement reference signal transmission may be different More specifically, the bandwidth corresponding to the BWP configured for service data transmission can be greater than the bandwidth corresponding to the BWP configured for measurement reference signal transmission.
  • the frequency selective scheduling gain can be guaranteed for service data transmission;
  • the reference signal transmission can ensure that the measurement signal can be measured to obtain a finer channel state, thereby improving the data transmission efficiency.
  • the data carried in the PUSCH and the data carried in the PDSCH can also be regarded as different types of data, and the data carried in the PDCCH and the data carried in the PUCCH can also be regarded as different. Type of data.
  • the bandwidth of the BWP may be greater than the maximum channel bandwidth supported by the terminal device, or may not be greater than the maximum channel bandwidth supported by the terminal device.
  • the BWP may also be referred to as a virtual BWP.
  • data carried on PUSCH and PDSCH can be understood as data transmitted through PUSCH and PDSCH
  • data carried on PDCCH and PUCCH can be understood as data transmitted through PDCCH and PUCCH.
  • the terminal device may determine the first frequency band when determining that the data to be transmitted is PDSCH data.
  • the terminal device may obtain a first frequency band set, and the first frequency band set includes at least one of frequency bands corresponding to different data transmission types; the terminal device may determine the first frequency band by a specific method: The terminal device determines the first frequency band according to the data transmission type and the first frequency band set.
  • the first frequency band set may include a second frequency band set, or the first frequency band set may include a second frequency band set and a third frequency band set.
  • the second frequency band set is configured by the network device for the terminal device, the second frequency band set includes at least one of the frequency bands corresponding to different data transmission types; the third frequency band set is a predefined Yes, the third frequency band set includes at least one of frequency bands corresponding to different data transmission types.
  • the terminal device when the terminal device acquires the first frequency band set, one way is that the terminal device acquires the correspondence between the data transmission type and the frequency band, and it may subsequently be determined according to the required data transmission type and the aforementioned correspondence.
  • the first frequency band another way is that the terminal device obtains frequency band information, and subsequently can determine the first frequency band according to a predefined or specific indication.
  • the frequency bands included in the first frequency band set may be a frequency band greater than the maximum channel bandwidth supported by the terminal device, or a frequency band not greater than the maximum channel bandwidth supported by the terminal device and greater than the maximum channel bandwidth supported by the terminal device.
  • the frequency band with the largest channel bandwidth supported by the terminal device For example, a frequency band greater than the maximum channel bandwidth supported by the terminal device may be used to transmit PDSCH data, and a frequency band not greater than the maximum channel bandwidth supported by the terminal device may be used to transmit PDCCH or a reference signal.
  • the reference signal may be, for example, a CSI-RS. In this way, transmitting different data through frequency bands of different bandwidths can improve data transmission efficiency.
  • the first information may be scheduling information sent by the network device to the terminal device.
  • the first information may also include other control information required for data transmission, such as the time resource corresponding to the data transmission (that is, when the data transmission occurs), and the data transmission corresponding to the time resource.
  • Modulation coding scheme (MCS), power configuration information corresponding to data transmission, transport block size (transport block size, TBS), etc. may also include other control information related to data transmission, which is not specifically limited in this application.
  • MCS Modulation coding scheme
  • TBS transport block size
  • the data in the data transmission here may include service data, control data, and signals, and may also include other types of information transmitted between the terminal device and the network device, and so on.
  • the terminal device may receive scheduling information through at least one of RRC signaling, MAC signaling, and physical layer signaling, that is, the scheduling information may be carried in RRC signaling, MAC signaling, and physical layer signaling.
  • the terminal device For example, for a data scheduling mode with a scheduling grant (grant free), the terminal device generally receives control information through a physical layer downlink control channel (the control information can be regarded as scheduling information), and then determines the relationship with the control information according to the control information.
  • Data transmission between network devices corresponds to time-frequency resources, TBS, etc., and transmits data on the corresponding time-frequency resources; another example is for data scheduling methods without scheduling permission, especially uplink data transmission, the network equipment generally It will first configure control information related to data transmission for the terminal device through RRC signaling (this control information can be regarded as scheduling information), such as frequency resources, TBS, etc.
  • this control information can be regarded as scheduling information
  • the terminal device When the terminal device has uplink data to send, it will According to the control information related to the data transmission pre-configured by the RRC signaling, the data is sent on the corresponding frequency domain resource.
  • the terminal device further receives third information from the network device, and the third information is used to indicate a second frequency band; the terminal device determines the The second frequency band, the second frequency band is included in the first frequency band, and the bandwidth of the second frequency band is not greater than the maximum channel bandwidth supported by the terminal device; the first transmission frequency band is the frequency of the second frequency band Part or all.
  • FIG. 5 shows the relationship between the first frequency band, the second frequency band, and the first transmission frequency band.
  • the terminal device and the network device transmit data to each other in the first transmission frequency band in the second frequency band.
  • the second frequency band may be composed of continuous frequency resources in the frequency domain within one carrier, for example, composed of continuous subcarriers, REs, and RBs.
  • the third information may be RRC signaling, MAC signaling, physical layer signaling, etc. sent by the network device, or may also be other signaling sent by the network device, for example, may be of the foregoing signaling. Combination; Of course, the third information may also be sent through the above-mentioned signaling, that is, the third information is included in the above-mentioned signaling, which is not limited in this application.
  • the third information may include at least a frequency domain resource location corresponding to the second frequency band; wherein the frequency domain resource location corresponding to the second frequency band may be from the frequency domain corresponding to the second frequency band.
  • the start position and the bandwidth of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain start position and end position of the second frequency band, or the frequency domain corresponding to the second frequency band
  • the resource position is the frequency domain start position of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain end position of the second frequency band, or the frequency domain corresponding to the second frequency band
  • the position of the frequency domain resource is the offset of the second frequency band in the first frequency band relative to the start position of the frequency domain of the first frequency band, or the frequency domain resource position corresponding to the second frequency band is the first frequency band.
  • the offset of the frequency domain start position of the second frequency band relative to the first frequency band in the first frequency band may be the frequency domain start position of the first frequency band and the frequency domain start position of the first frequency band.
  • the offset of the start position of the frequency domain between the first frequency band and the second frequency band may be as shown in FIG. 6.
  • the network device can directly indicate the offset through downlink control information (DCI) included in the physical layer control channel.
  • DCI downlink control information
  • the frequency domain resource position corresponding to the second frequency band is the offset of the frequency domain termination position of the second frequency band relative to the first frequency band in the first frequency band, and may be the first frequency band.
  • Other descriptions are similar to the above-mentioned offset of the frequency domain start position of the second frequency band relative to the first frequency band in the first frequency band, and reference may be made to each other, and the message description is omitted here.
  • the third information may include a first index, and the first index corresponds to the second frequency band in the first frequency band; the terminal device determines the first index according to the third information.
  • the specific method may be: the terminal device determines the second frequency band according to the first index and the correspondence relationship between the first index and the second frequency band.
  • the network device may pre-configure the specific position of the second frequency band in the frequency domain through high-level signaling such as RRC signaling, and then combine the physical layer signaling to indicate the effective second frequency band, where the effective second frequency band is the same as
  • the aforementioned activated BWP can have a similar understanding, that is, the data transmission between the network device and the terminal device can only be performed within the effective second frequency band.
  • RRM measurement data transmission such as reference signals
  • It can also be performed in a non-valid second frequency band.
  • the network device configures the first frequency band, it may simultaneously configure the second frequency band included in the first frequency band, and then combine physical layer signaling to indicate the specific effective second frequency band.
  • the first frequency band configured by the network device includes four second frequency bands, and each second frequency band corresponds to a unique index (here, the first index), and the network device can use 2 bits to indicate the specific effect. For example, 00 corresponds to the first second frequency band, 01 corresponds to the second second frequency band, 10 corresponds to the third second frequency band, and 11 corresponds to the fourth second frequency band. At this time, there is a first index Correspondence with the second frequency band.
  • the terminal device may determine the second frequency band according to at least one of the following parameters: location information in time when the terminal device transmits data, and corresponding information when the terminal device transmits data
  • the hybrid automatic repeat request (HARQ) process the number of transmissions corresponding to when the terminal device transmits data, and information related to the first frequency band where the second frequency band is located;
  • the related information of the first frequency band where the second frequency band is located is the index of the first frequency band or the frequency domain resource location corresponding to the first frequency band; the second frequency band is included in the first frequency band, and
  • the bandwidth of the second frequency band is not greater than the maximum channel bandwidth supported by the terminal device; the first transmission frequency band is part or all of the second frequency band.
  • the position information in time when the terminal device transmits data can use slot index, OFDM symbol index, odd-numbered slot index, and even-numbered time sequence index. It can also be other time-related information, which is not specifically limited in this application.
  • the time slot index can be an absolute index or a relative index within a certain time range.
  • the time slot index can be an absolute index within 10 ms.
  • the duration of a time slot is 0.5 ms, then There are 20 time slots in a 10ms, corresponding to 20 time slot indexes: for example, from time slot 0 to time slot 19, the corresponding time slot index of 20 time slots in another 10ms is also from time slot 0 to time slot 19 Time slot 19.
  • the time slot index is represented by a relative index
  • the network equipment and the terminal equipment are between time slot 0 to time slot 4 and time slot 5 to Data transmission on time slot 9, time slot 10 to time slot 14, and time slot 15 to time slot 19 can correspond to the first second frequency band, the second second frequency band, the third second frequency band, and the first frequency band respectively.
  • Four second frequency bands; or, the data transmission between the network equipment and the terminal equipment in the time slot (4*m+n-1) may correspond to the nth second frequency band.
  • the values of n are 1, 2, 3, and 4, and the values of m are 0, 1, 2, 3, and 4.
  • the correspondence between the second frequency band and the time position information of the second frequency band may also have other manifestations, which is not specifically limited in this application.
  • the corresponding number of transmission times when the terminal device transmits data refers to the number of transmission times corresponding to the data transmitted by the network device and the terminal device for the same HARQ process. Specifically, for the same HARQ process, the number of transmission times corresponding to the transmitted data can have the following three situations:
  • the network device and the terminal device start to record the number of transmissions corresponding to the transmission data from the first use of the HARQ transmission data, until the re-counting condition is satisfied. For example, within a pre-configured time, the number of transmissions corresponding to the HARQ transmission data is used, and there is a one-to-one correspondence between the number of transmissions and the second frequency band included in the first frequency band. For example, assuming that the first frequency band includes 4 second frequency bands, the first transmission using the HARQ may correspond to the first second frequency band, and the second transmission using the HARQ may correspond to the second second frequency band, Repeat the analogy in turn, that is, the fifth transmission using the HARQ can correspond to the first second frequency band again.
  • the first frequency band includes multiple second frequency bands
  • different second frequency bands may be sorted corresponding to different indexes.
  • the first second frequency band can be understood as the first frequency band.
  • the second frequency band with index number 1 or 0 included in one frequency band, or the order of the second frequency band can be determined according to the size of the starting frequency position corresponding to different second frequency bands, or there can be other ordering methods. Specific restrictions.
  • the second frequency bands corresponding to the first data transmission of different HARQ processes may be the same or different.
  • the network device and the terminal device record the number of transmissions corresponding to the transmitted data.
  • the subsequent network device and the terminal device also need to retransmit the data to ensure as much as possible Receive the data correctly.
  • the HARQ process (that is, the HARQ process corresponding to the correctly received data) can be reused to transmit new data.
  • the network device and the terminal device have undergone three transmissions to ensure correct reception, and the three transmissions may correspond to different second frequency bands included in the first frequency band, for example, the first frequency band.
  • the second transmission corresponds to the first second frequency band
  • the second transmission corresponds to the second second frequency band
  • the third transmission corresponds to the third second frequency band.
  • redundancy versions (RV) corresponding to data transmission can also be understood as different transmission times corresponding to the transmitted data.
  • the available redundancy versions include 0, 1, 2, 3, and different redundancy versions can correspond to different second frequency bands included in the first frequency band, or new data transmission and retransmission.
  • the data transmission corresponds to a different second frequency band.
  • redundancy versions 1, 2, and 3 can all correspond to retransmitted data. Therefore, redundancy versions 1, 2, and 3 can also correspond to the same second frequency band included in the first frequency band, but are different from the redundancy version 0 ( Generally applied to newly transmitted data) the corresponding second frequency band may be different.
  • the corresponding HARQ process when the terminal device transmits data There is a corresponding relationship between the HARQ process corresponding to data transmission and the second frequency band corresponding to the data transmission.
  • the network device configures the first When the frequency band is configured, if the number of HARQ processes and/or HARQ process index numbers that can be used by the first frequency band are configured, the second frequency band included in the first frequency band may only be between the HARQ process configured in the first frequency band Have a corresponding relationship.
  • the corresponding relationship can be a protocol specification, pre-configuration or RRC signaling configuration, or it can be For notification through other signaling forms, such as MAC signaling and physical layer signaling, this application does not make specific limitations.
  • the second frequency band may be predefined (may also be referred to as a protocol specification). For example, it may be pre-defined that the bandwidth of the second frequency band is the same as the maximum channel bandwidth supported by the terminal device. In this case, the maximum channel bandwidth supported by the terminal device is Y MHz. The bandwidth of the frequency band is also Y MHz, where Y is a number greater than zero.
  • the terminal device can be scheduled in a larger frequency resource range (The second frequency band including scheduling resources is included in the first frequency band, and the second frequency band can be dynamically changed within the first frequency band), so for data transmission, more frequency selective scheduling gain can be obtained; on the other hand, Since the second frequency band is not greater than the maximum channel bandwidth supported by the terminal device, and the scheduled resource is included in the second frequency band, normal data transmission between the terminal device and the network device is ensured.
  • the radio frequency (RF) filter is adjusted first to ensure that it can receive and/or transmit within the corresponding frequency resource range. data.
  • the size of the RF filter is generally related to the maximum channel bandwidth supported by the terminal device. Since the second frequency band is not greater than the maximum channel bandwidth supported by the terminal device, it can be guaranteed that the terminal device can receive through the RF filter. To the data scheduled in the second frequency band.
  • the network device configures the first frequency band (or understood as configuring the first frequency band information for the terminal device) for the terminal device through RRC signaling, and the first frequency band can be regarded as a virtual BWP. Assume that on a carrier with a carrier bandwidth of 50 MHz, the network device configures 4 virtual BWPs for the terminal device.
  • the 50MHz system carrier includes 270 RBs that can be used for data transmission (assuming that the subcarrier interval corresponding to the system carrier is 15KHz), if the frequencies included in the 4 virtual BWPs
  • the resources do not overlap each other and occupy all the carrier bandwidth, the bandwidth of the 4 virtual BWPs can be 68, 68, 67, and 67 RBs respectively.
  • FIG. 7 shows a schematic diagram of virtual BWPs distributed on the carrier bandwidth.
  • the network device indicates the activated BWP index of the terminal device through physical layer signaling, for example, through control information (such as DCI) carried in the physical downlink control channel.
  • control information such as DCI
  • a virtual BWP 2 ie, The first frequency band
  • the second frequency band activated in the BWP 2 is indicated by the aforementioned DCI.
  • the behavior of the terminal device on the activated second frequency band is similar to the behavior of the terminal device on the activated BWP described above, except that the behavior of the terminal device on the activated BWP is similar to that of the second frequency band.
  • the bandwidth is equal to the maximum channel bandwidth supported by the terminal device.
  • both the terminal device and the network device can perform data transmission.
  • the bandwidth of the second frequency band may also be 5MHz.
  • the data bandwidth can be 25 RBs. It is assumed that the data transmission between the terminal device and the network device is scheduled with a resource block group (RBG) as the granularity, that is, in this mode, the terminal device and the network device are
  • RBG resource block group
  • the network device can indicate the activated virtual BWP and the second frequency band included in the activated virtual BWP through 2 bits and 4 bits, respectively; when one RBG includes 8 RBs At this time, the network device may indicate the activated virtual BWP and the second frequency band included in the activated virtual BWP through 2bit and 3bit, respectively.
  • the network device may also indicate specific data transmission resources in the activated second frequency band through the above DCI. Assuming that the data transmission between the terminal device and the network device is scheduled with RBG as the granularity, and one RBG is composed of continuous RBs in the frequency domain, when the RBG includes 4 RBs and 8 RBs, At most 7 bits and 4 bits are required in the second frequency band to indicate the frequency resources to be scheduled.
  • the second frequency band can be dynamically changed through DCI signaling within a larger frequency resource range, the data transmission of the terminal device can obtain greater frequency selective scheduling gain.
  • Table 2 shows the number of physical layer bits required when the subcarrier spacing is 15KHz and under different carrier bandwidths using the scheduling resource indication method of this application and the frequency domain resource indication method of the prior art, where It is a data transmission mode with a data scheduling granularity of RBG, where the RBG size indicates the number of RBs included in one RBG.
  • Carrier bandwidth 30MHz 40MHz 50MHz Virtual BWP bandwidth 40RB 54RB 67or 68RB RBG size 4or 8RB 4or 8RB 4or 8RB Bit overhead of this application 11or 7bits 12or 8bits 13or 9bits Existing technology bit overhead 11or 6bits 15or 8bits 18or 10bits
  • the terminal device determines the first frequency band and receives first information from the network device.
  • the first information is used to indicate the first transmission frequency band, and then the terminal device determines the first frequency band according to the first information.
  • the first transmission frequency band, and finally data is transmitted to the network device on the first transmission frequency band; wherein the bandwidth of the first frequency band is greater than the maximum channel bandwidth supported by the terminal device; the first transmission frequency band is used Transmitting data at the terminal device; the first frequency band includes the first transmission frequency band.
  • the embodiments of the present application also provide a data transmission device, which is applied to the communication system shown in FIG. 3 to implement the data transmission method shown in FIG. 4.
  • the data transmission device 800 includes: a processing unit 801 and a transceiver unit 802.
  • the data transmission device 800 may be a terminal device, which is used to perform the operation of the terminal device in the data transmission method described in FIG. 4; the data transmission device 800 may be a network device, which is used to execute the above figure. 4 The operation of the network device in the data transmission method. specific:
  • the processing unit 801 is configured to determine a first frequency band, and the bandwidth of the first frequency band is greater than the maximum channel bandwidth supported by the terminal device;
  • the transceiving unit 802 is configured to receive first information from a network device, the first information is used to indicate a first transmission frequency band, the first transmission frequency band is used for the terminal device to transmit data, and the first transmission frequency band The bandwidth of is not greater than the maximum channel bandwidth supported by the terminal device;
  • the processing unit 801 is further configured to determine the first transmission frequency band according to the first information; the first frequency band includes the first transmission frequency band;
  • the transceiving unit 802 is further configured to transmit data to the network device on the first transmission frequency band.
  • the bandwidth of the first frequency band is not greater than the carrier bandwidth.
  • the transceiving unit 802 is further configured to receive second information from the network device, and the second information is used to indicate the first frequency band;
  • the processing unit 801 when determining the first frequency band, is specifically configured to: determine the first frequency band according to the second information; or, the first frequency band is predefined.
  • the transceiving unit 802 is further configured to receive third information from the network device, and the third information is used to indicate the second frequency band;
  • the processing unit 801 is further configured to determine the second frequency band according to the third information, the second frequency band is included in the first frequency band, and the bandwidth of the second frequency band is not greater than that supported by the terminal device The maximum channel bandwidth of; the first transmission frequency band is part or all of the second frequency band.
  • the third information includes at least: a frequency domain resource position corresponding to the second frequency band; wherein the frequency domain resource position corresponding to the second frequency band is a frequency domain start position corresponding to the second frequency band and The bandwidth of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain start position and the end position of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is The frequency domain start position of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain end position of the second frequency band, or the frequency domain resource position corresponding to the second frequency band Is the offset of the frequency domain start position of the second frequency band relative to the first frequency band in the first frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain resource position of the second frequency band in the first frequency band The offset of the end position of the frequency domain relative to the first frequency band within the first frequency band.
  • the third information includes a first index, and the first index corresponds to the second frequency band in the first frequency band;
  • the processing unit 801 when determining the second frequency band according to the third information, is specifically configured to: determine the second frequency band according to the first index and the correspondence between the first index and the second frequency band Two frequency bands.
  • the processing unit 801 is further configured to determine the second frequency band according to at least one of the following: position information in time when the terminal device transmits data, and the terminal device transmits data The corresponding hybrid automatic repeat request HARQ process when the terminal device transmits data, the corresponding transmission times when the terminal device transmits data, and information related to the first frequency band where the second frequency band is located;
  • the related information of the first frequency band is the index of the first frequency band or the frequency domain resource location corresponding to the first frequency band; the second frequency band is included in the first frequency band, and the second frequency band
  • the bandwidth of is not greater than the maximum channel bandwidth supported by the terminal device; the first transmission frequency band is part or all of the second frequency band.
  • the data is PDSCH data.
  • the processing unit 801 is further configured to obtain a first frequency band set, where the first frequency band set includes at least one of frequency bands corresponding to different data transmission types;
  • the processing unit 801 is specifically configured to determine the first frequency band according to the data transmission type and the first frequency band set when determining the first frequency band.
  • the terminal device determines the first frequency band, and receive first information from the network device.
  • the first information is used to indicate the first transmission frequency band, and then according to the first frequency band.
  • a piece of information determines the first transmission frequency band, and finally transmits data to the network device on the first transmission frequency band; wherein the bandwidth of the first frequency band is greater than the maximum channel bandwidth supported by the terminal device;
  • a transmission frequency band is used for the terminal device to transmit data; the first frequency band includes the first transmission frequency band.
  • the transceiving unit 802 is configured to send first information to a terminal device, where the first information is used to indicate a first transmission frequency band, and the first transmission frequency band is used for the terminal device to transmit data.
  • the transmission frequency band is included in a first frequency band, the bandwidth of the first frequency band is greater than the maximum channel bandwidth supported by the terminal device, and the bandwidth of the first transmission frequency band is not greater than the maximum channel bandwidth supported by the terminal device;
  • the processing unit 801 is configured to control the transceiver unit 802 to send and receive data (or information, signals, etc.).
  • the bandwidth of the first frequency band is not greater than the carrier bandwidth.
  • the transceiving unit 802 is further configured to send second information to the terminal device, where the second information is used to indicate the first frequency band.
  • the transceiving unit 802 is further configured to send third information to the terminal device, the third information is used to indicate a second frequency band, and the second frequency band is included in the first frequency band. Frequency band, and the bandwidth of the second frequency band is not greater than the maximum channel bandwidth supported by the terminal device; the first transmission frequency band is part or all of the second frequency band.
  • the second information includes at least: a frequency domain resource location corresponding to the second frequency band; wherein the frequency domain resource location corresponding to the second frequency band is the start of the frequency domain corresponding to the second frequency band
  • the position and the bandwidth of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain start position and the end position of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is The frequency domain start position of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain end position of the second frequency band, or the frequency domain resource position corresponding to the second frequency band Is the offset of the frequency domain start position of the second frequency band relative to the first frequency band in the first frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain resource position of the second frequency band in the first frequency band The offset of the end position of the frequency domain relative to the first frequency band within the first frequency band.
  • the second information includes a first index
  • the first index corresponds to the second frequency band in the first frequency band.
  • the processing unit 801 is further configured to configure a second frequency band set for the terminal device, where the second frequency band set includes at least one of frequency bands corresponding to different data transmission types.
  • the data transmission device (here, network device) provided in the embodiment of the application is used to send first information to the terminal device, where the first information is used to indicate a first transmission frequency band, and the first transmission frequency band is used for the terminal
  • the device transmits data; the data is received from the terminal device on the first transmission frequency band, wherein the first transmission frequency band is included in the first frequency band, and the bandwidth of the first frequency band is greater than the maximum channel supported by the terminal device bandwidth.
  • the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including a number of instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the embodiments of the present application also provide a data transmission device, which is applied to the communication system shown in FIG. 3 to implement the data transmission method shown in FIG. 4.
  • the data transmission device 900 may include a transceiver 901 and a processor 902, and optionally may also include a memory 903.
  • the processor 902 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP, or the like.
  • the processor 902 may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL), or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL generic array logic
  • the processor 902 realizes the above-mentioned functions, it can be realized by hardware, and of course, it can also be realized by hardware executing corresponding software.
  • the transceiver 901 and the processor 902 are connected to each other.
  • the transceiver 901 and the processor 902 are connected to each other through a bus 904;
  • the bus 904 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard structure (Extended Industry Standard). Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of presentation, only one thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • the memory 903 is coupled with the processor 902, and is used to store programs and the like necessary for the data transmission device 900.
  • the program may include program code, and the program code includes computer operation instructions.
  • the memory 903 may include RAM, or may also include non-volatile memory, such as at least one disk memory.
  • the processor 902 executes the application program stored in the memory 903 to realize the function of the data transmission device 900.
  • the data transmission device 900 may be a terminal device, which is used to perform the operation of the terminal device in the data transmission method described in FIG. 4; the data transmission device 900 may be a network device, which is used to execute the above figure.
  • the processor 902 is configured to determine a first frequency band, where the bandwidth of the first frequency band is greater than the maximum channel bandwidth supported by the terminal device;
  • the transceiver 901 is configured to receive first information from a network device, the first information is used to indicate a first transmission frequency band, the first transmission frequency band is used for the terminal device to transmit data, and the first transmission frequency band The bandwidth of is not greater than the maximum channel bandwidth supported by the terminal device;
  • the processor 902 is further configured to determine the first transmission frequency band according to the first information; the first frequency band includes the first transmission frequency band;
  • the transceiver 901 is also configured to transmit data to the network device on the first transmission frequency band.
  • the bandwidth of the first frequency band is not greater than the carrier bandwidth.
  • the transceiver 901 is further configured to receive second information from the network device, and the second information is used to indicate the first frequency band;
  • the processor 902 when determining the first frequency band, is specifically configured to: determine the first frequency band according to the second information; or, the first frequency band is predefined.
  • the transceiver 901 is further configured to receive third information from the network device, and the third information is used to indicate a second frequency band;
  • the processor 902 is further configured to determine the second frequency band according to the third information, the second frequency band is included in the first frequency band, and the bandwidth of the second frequency band is not greater than that supported by the terminal device The maximum channel bandwidth of; the first transmission frequency band is part or all of the second frequency band.
  • the third information includes at least: a frequency domain resource position corresponding to the second frequency band; wherein the frequency domain resource position corresponding to the second frequency band is a frequency domain start position corresponding to the second frequency band And the bandwidth of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain start position and end position of the second frequency band, or the frequency domain resource position corresponding to the second frequency band Is the frequency domain start position of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain end position of the second frequency band, or the frequency domain resource corresponding to the second frequency band
  • the position is the offset of the frequency domain start position of the second frequency band relative to the first frequency band in the first frequency band, or the frequency domain resource position corresponding to the second frequency band is the second frequency band The offset of the end position of the frequency domain relative to the first frequency band within the first frequency band.
  • the third information includes a first index, and the first index corresponds to the second frequency band in the first frequency band;
  • the processor 902 when determining the second frequency band according to the third information, is specifically configured to: determine the second frequency band according to the first index and the correspondence relationship between the first index and the second frequency band Two frequency bands.
  • the processor 902 is further configured to determine the second frequency band according to at least one of the following: position information in time when the terminal device transmits data, and when the terminal device transmits data The corresponding hybrid automatic repeat request HARQ process, the number of transmissions corresponding to when the terminal device transmits data, and information related to the first frequency band where the second frequency band is located;
  • the related information of the first frequency band is an index of the first frequency band or a frequency domain resource location corresponding to the first frequency band;
  • the second frequency band is included in the first frequency band, and the bandwidth of the second frequency band is not greater than the maximum channel bandwidth supported by the terminal device; the first transmission frequency band is part or all of the second frequency band.
  • the data is PDSCH data.
  • the processor 902 is further configured to obtain a first frequency band set, where the first frequency band set includes at least one of frequency bands corresponding to different data transmission types;
  • the processor 902 is specifically configured to determine the first frequency band according to the data transmission type and the first frequency band set when determining the first frequency band.
  • the terminal device determines the first frequency band, and receive first information from the network device.
  • the first information is used to indicate the first transmission frequency band, and then according to the first frequency band.
  • a piece of information determines the first transmission frequency band, and finally transmits data to the network device on the first transmission frequency band; wherein the bandwidth of the first frequency band is greater than the maximum channel bandwidth supported by the terminal device;
  • a transmission frequency band is used for the terminal device to transmit data; the first frequency band includes the first transmission frequency band.
  • the transceiver 901 is configured to send first information to a terminal device, the first information is used to indicate a first transmission frequency band, and the first transmission frequency band is used for the terminal device to transmit data.
  • the transmission frequency band is included in a first frequency band, the bandwidth of the first frequency band is greater than the maximum channel bandwidth supported by the terminal device, and the bandwidth of the first transmission frequency band is not greater than the maximum channel bandwidth supported by the terminal device;
  • the processor 902 is configured to control the transceiver 901 to send and receive data (or information, signals, etc.).
  • the bandwidth of the first frequency band is not greater than the carrier bandwidth.
  • the transceiver 901 is further configured to send second information to the terminal device, where the second information is used to indicate the first frequency band.
  • the transceiver 901 is further configured to: send third information to the terminal device, where the third information is used to indicate a second frequency band, and the second frequency band is included in the first frequency band.
  • the third information is used to indicate a second frequency band, and the second frequency band is included in the first frequency band.
  • a frequency band, and the bandwidth of the second frequency band is not greater than the maximum channel bandwidth supported by the terminal device; the first transmission frequency band is part or all of the second frequency band.
  • the second information includes at least: a frequency domain resource location corresponding to the second frequency band; wherein the frequency domain resource location corresponding to the second frequency band is the start of the frequency domain corresponding to the second frequency band
  • the position and the bandwidth of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain start position and the end position of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is The frequency domain start position of the second frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain end position of the second frequency band, or the frequency domain resource position corresponding to the second frequency band Is the offset of the frequency domain start position of the second frequency band relative to the first frequency band in the first frequency band, or the frequency domain resource position corresponding to the second frequency band is the frequency domain resource position of the second frequency band in the first frequency band The offset of the end position of the frequency domain relative to the first frequency band within the first frequency band.
  • the second information includes a first index
  • the first index corresponds to the second frequency band in the first frequency band.
  • the processor 902 is further configured to configure a second frequency band set for the terminal device, and the second frequency band set includes at least one of frequency bands corresponding to different data transmission types.
  • the data transmission device (here, network device) provided in the embodiment of the application is used to send first information to the terminal device, where the first information is used to indicate a first transmission frequency band, and the first transmission frequency band is used for the terminal
  • the device transmits data; the data is received from the terminal device on the first transmission frequency band, wherein the first transmission frequency band is included in the first frequency band, and the bandwidth of the first frequency band is greater than the maximum channel supported by the terminal device bandwidth.
  • a data transmission method and device determines the first frequency band and receives first information from the network device.
  • the first information is used to indicate the first transmission frequency band, and then Determine the first transmission frequency band according to the first information, and finally transmit data to the network device on the first transmission frequency band; wherein the bandwidth of the first frequency band is greater than the maximum channel bandwidth supported by the terminal device
  • the first transmission frequency band is used for the terminal device to transmit data; the first frequency band includes the first transmission frequency band.
  • the signaling involved in the embodiments of this application may be carried in one or more of a physical downlink control channel, a physical downlink shared channel, and a signal, which is not limited in this application.
  • the signal may be a demodulation reference signal (DMRS), CSI-RS, and so on.
  • DMRS demodulation reference signal
  • CSI-RS CSI-RS
  • the data transmission method provided in this application can also be used for non-backward compatible terminal devices, such as NR version (release) 17 or NR. Terminal equipment after release 17, or terminal equipment in future communication systems. This application does not limit this.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据的传输方法及装置,用以提高低带宽能力终端设备的数据传输效率。方法为:终端设备确定第一频带,并从网络设备接收第一信息,所述第一信息用于指示第一传输频带,然后根据所述第一信息确定所述第一传输频带,最后在所述第一传输频带上向所述网络设备传输数据;其中,所述第一频带的带宽大于所述终端设备支持的最大信道带宽;所述第一传输频带用于所述终端设备传输数据;所述第一频带包含所述第一传输频带。这样,网络设备可以在更大的频率资源范围内动态调度低带宽能力的终端设备,从而获得更大的频率选择性调度增益,提高数据传输效率。

Description

一种数据的传输方法及装置
本申请要求在2019年08月30日提交中国专利局、申请号为201910819083.X、申请名称为“一种数据的传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据的传输方法及装置。
背景技术
第五代(the Fifth-generation,5G)移动通信技术新无线(new radio,NR),是基于正交频分复用(orthogonal frequency division multiplexing,OFDM)的全新空口设计的全球性5G标准,也是下一代非常重要的蜂窝移动技术基础。5G技术的业务非常多样,包括面向增强型移动宽带(enhanced mobile broadband,eMBB)业务、超可靠低延时通信(ultra-reliability low-latency communication,URLLC)业务以及大规模机器通信(massive machine-type communication,mMTC)业务。
机器通信为万物互联的基础之一,目前实现的机器通信,终端设备的数据传输量比较少,对时延要求也比较低,因此从满足数据传输速率角度,终端设备的带宽都比较小,比如长期演进(long term evolution,LTE)系统下讨论的MTC终端设备、窄带物联网(narrow band internet of things,NB-IoT)终端设备,前者的带宽能力可以只有1.4MHz,后者的带宽能力可以只有180KHz或200KHz。
目前在NR系统中,一些研究中的场景下的数据传输速率一般而言要高于LTE系统下的1.4MHz的MTC终端设备和180KHz的NB-IoT终端设备所具备的数据传输速率,机器终端设备的带宽能力需要更大,但是考虑到带宽与终端设备成本之间的关系(带宽越小,设备成本越低),机器终端设备的带宽能力也不需要过大。因此针对这类终端设备的研究正受到越来越多的关注。这类终端设备是相对于LTE的机器终端设备的带宽能力较高,但是在NR系统中,可以认为是具有较低带宽能力的终端设备。例如,终端设备的带宽能力为3.6MHz在LTE系统中为较高的带宽能力,而在NR系统为较低的带宽能力。
目前,NR系统下的终端设备带宽能力也多种多样,例如,根据第三代合作伙伴计划(the 3rd generation partner project,3GPP)协议(3GPP TS 38.101-1)中的描述,5G系统下的终端设备的带宽能力的取值范围为5MHz~100MHz。虽然5G系统涉及的终端带宽范围较大,但是并没有针对一些较低带宽能力终端设备(例如最大传输带宽为5MHz或者10MHz的终端设备),基于带宽进行针对性的特别设计,因此对于这种类型的终端设备,数据传输效率会较低。
发明内容
本申请提供一种数据的传输方法及装置,用以提高低带宽能力终端设备的数据传输效率。
第一方面,本申请提供了一种数据的传输方法,该方法包括:终端设备确定第一频带, 并从网络设备接收第一信息,所述第一信息用于指示第一传输频带,然后根据所述第一信息确定所述第一传输频带,最后所述终端设备在所述第一传输频带上向所述网络设备传输数据;其中,所述第一频带的带宽大于所述终端设备支持的最大信道带宽;所述第一传输频带用于所述终端设备传输数据;所述第一频带包含所述第一传输频带,所述第一传输频带的带宽不大于所述终端设备支持的最大信道带宽。
通过上述方法,可以使网络设备可以在更大的频率资源范围内动态调度低带宽能力的终端设备,从而获得更大的频率选择性调度增益,提高数据传输效率。
在一个可能的设计中,所述第一频带的带宽不大于载波带宽。
在一个可能的设计中,所述终端设备确定所述第一频带,具体方法可以为:所述终端设备从所述网络设备接收第二信息,所述第二信息用于指示所述第一频带;所述终端设备根据所述第二信息确定所述第一频带;或,所述第一频带为预定义的。
通过上述方法,所述终端设备可以准确地确定所述第一频带,以使终端设备可以进行数据传输。
在一个可能的设计中,所述终端设备可以从所述网络设备接收第三信息,所述第三信息用于指示第二频带;所述终端设备根据所述第三信息确定所述第二频带,所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
通过上述方法,所述终端设备可以准确地确定所述第二频带,以使后续准确地进行数据传输。
在一个可能的设计中,所述第三信息至少可以包括:所述第二频带对应的频域资源位置;其中,所述第二频带对应的频域资源位置为所述第二频带对应的频域起始位置和所述第二频带的带宽,或者所述第二频带对应的频域资源位置为所述第二频带的频域起始位置和终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域起始位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量,或者所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域终止位置的偏移量。
通过上述方法,可以通过所述第三信息准确地指示所述第二频带。
在一个可能的设计中,所述第三信息中包括第一索引,所述第一索引与所述第一频带中的所述第二频带对应;所述终端设备根据所述第三信息确定所述第二频带,具体方法可以为:所述终端设备根据所述第一索引和所述第一索引与所述第二频带的对应关系确定所述第二频带。
通过上述方法,可以通过所述第三信息准确地指示所述第二频带。
在一个可能的设计中,所述终端设备根据以下的至少一项确定第二频带:所述终端设备传输数据时在时间上的位置信息、所述终端设备传输数据时对应的混合自动重传请求HARQ进程、所述终端设备传输数据时所对应的传输次数、与所述第二频带所在的所述第一频带的相关信息;其中,与所述第二频带所在的所述第一频带的相关信息为所述第一频带的索引或者为所述第一频带对应的频域资源位置;所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
通过上述方法,所述终端设备可以准确地确定所述第二频带,以使后续准确地进行数据传输。
在一个可能的设计中,所述第二频带可以为预定义的。
在一个可能的设计中,所述数据为PDSCH数据。
在一个可能的设计中,所述终端设备获取第一频带集合,所述第一频带集合包括不同数据传输类型对应的频带中的至少一种;所述终端设备确定所述第一频带,具体方法可以为:所述终端设备根据数据传输类型和所述第一频带集合确定所述第一频带。
通过上述方法,所述终端设备可以准确地确定所述第一频带,以使后续可以进行数据传输。
在一个可能的设计中,所述第一频带可以为带宽部分(bandwidth part,BWP)。
第二方面,本申请提供了一种数据的传输方法,该方法包括:网络设备向终端设备发送第一信息,所述第一信息用于指示第一传输频带;所述网络设备在所述第一传输频带上从所述终端设备接收数据;其中,所述第一传输频带用于所述终端设备传输数据,所述第一传输频带包含于第一频带,所述第一频带的带宽大于所述终端设备支持的最大信道带宽,所述第一传输频带的带宽不大于所述终端设备支持的最大信道带宽。
通过上述方法,可以使网络设备可以在更大的频率资源范围内动态调度低带宽能力的终端设备,从而获得更大的频率选择性调度增益,提高数据传输效率。
在一个可能的设计中,所述第一频带的带宽不大于载波带宽。
在一个可能的设计中,所述网络设备向所述终端设备发送第二信息,所述第二信息用于指示所述第一频带。这样可以使所述终端设备准确地确定所述第一频带,以使后续可以进行数据传输。
在一个可能的设计中,所述网络设备向所述终端设备发送第三信息,所述第三信息用于指示第二频带,所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。这样,所述终端设备可以准确地确定所述第二频带,以使后续准确地进行数据传输。
在一个可能的设计中,所述第二信息至少包括:所述第二频带对应的频域资源位置;其中,所述第二频带对应的频域资源位置为所述第二频带对应的频域起始位置和第二频带的带宽,或者所述第二频带对应的频域资源位置为所述第二频带的频域起始位置和终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域起始位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量,或者所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域终止位置的偏移量。
通过上述方法,可以通过所述第三信息准确地指示所述第二频带。
在一个可能的设计中,所述第二信息包括第一索引,所述第一索引与所述第一频带中的所述第二频带对应。这样,可以通过所述第三信息准确地指示所述第二频带。
在一个可能的设计中,所述网络设备为所述终端设备配置第二频带集合,所述第二频带集合包括不同数据传输类型对应的频带中的至少一种。这样可以使所述终端设备后续准确地确定第一频带,以进行数据传输。
在一个可能的设计中,所述第一频带可以为BWP。
第三方面,本申请还提供了一种数据的传输装置,所述数据的传输装置包括:
处理器,用于确定第一频带,所述第一频带的带宽大于终端设备支持的最大信道带宽;
收发器,用于从网络设备接收第一信息,所述第一信息用于指示第一传输频带,所述第一传输频带的带宽不大于所述终端设备支持的最大信道带宽,所述第一传输频带用于所述终端设备传输数据;
所述处理器,还用于根据所述第一信息确定所述第一传输频带;所述第一频带包含所述第一传输频带;
所述收发器,还用于在所述第一传输频带上向所述网络设备传输数据。
在一个可能的设计中,所述第一频带的带宽不大于载波带宽。
在一个可能的设计中,所述收发器,还用于从所述网络设备接收第二信息,所述第二信息用于指示所述第一频带;
所述处理器,在确定所述第一频带时,具体用于:根据所述第二信息确定所述第一频带;或,所述第一频带为预定义的。
在一个可能的设计中,所述收发器,还用于从所述网络设备接收第三信息,所述第三信息用于指示第二频带;
所述处理器,还用于根据所述第三信息确定所述第二频带,所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
在一个可能的设计中,所述第三信息至少包括:所述第二频带对应的频域资源位置;其中,所述第二频带对应的频域资源位置为所述第二频带对应的频域起始位置和所述第二频带的带宽,或者所述第二频带对应的频域资源位置为所述第二频带的频域起始位置和终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域起始位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量,或者所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域终止位置的偏移量。
在一个可能的设计中,所述第三信息中包括第一索引,所述第一索引与所述第一频带中的所述第二频带对应;
所述处理器,在根据所述第三信息确定所述第二频带时,具体用于:根据所述第一索引和所述第一索引与所述第二频带的对应关系确定所述第二频带。
在一个可能的设计中,所述处理器,还用于根据以下的至少一项确定第二频带:所述终端设备传输数据时在时间上的位置信息、所述终端设备传输数据时对应的混合自动重传请求HARQ进程、所述终端设备传输数据时所对应的传输次数、与所述第二频带所在的所述第一频带的相关信息;其中,与所述第二频带所在的所述第一频带的相关信息为所述第一频带的索引或者为所述第一频带对应的频域资源位置;所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
在一个可能的设计中,所述数据为PDSCH数据。
在一个可能的设计中,所述处理器,还用于获取第一频带集合,所述第一频带集合包括不同数据传输类型对应的频带中的至少一种;
所述处理器,在确定所述第一频带时,具体用于:根据数据传输类型和所述第一频带集合确定所述第一频带。
第四方面,本申请还提供了一种数据的传输装置,所述数据的传输装置包括:
处理单元,用于确定第一频带,所述第一频带的带宽大于终端设备支持的最大信道带宽;
收发单元,用于从网络设备接收第一信息,所述第一信息用于指示第一传输频带,所述第一传输频带的带宽不大于所述终端设备支持的最大信道带宽,所述第一传输频带用于所述终端设备传输数据;
所述处理单元,还用于根据所述第一信息确定所述第一传输频带;所述第一频带包含所述第一传输频带;
所述收发单元,还用于在所述第一传输频带上向所述网络设备传输数据。
在一个可能的设计中,所述第一频带的带宽不大于载波带宽。
在一个可能的设计中,所述收发单元,还用于从所述网络设备接收第二信息,所述第二信息用于指示所述第一频带;
所述处理单元,在确定所述第一频带时,具体用于:根据所述第二信息确定所述第一频带;或,所述第一频带为预定义的。
在一个可能的设计中,所述收发单元,还用于从所述网络设备接收第三信息,所述第三信息用于指示第二频带;
所述处理单元,还用于根据所述第三信息确定所述第二频带,所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
在一个可能的设计中,所述第三信息至少包括:所述第二频带对应的频域资源位置;其中,所述第二频带对应的频域资源位置为所述第二频带对应的频域起始位置和所述第二频带的带宽,或者所述第二频带对应的频域资源位置为所述第二频带的频域起始位置和终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域起始位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量,或者所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域终止位置的偏移量。
在一个可能的设计中,所述第三信息中包括第一索引,所述第一索引与所述第一频带中的所述第二频带对应;
所述处理单元,在根据所述第三信息确定所述第二频带时,具体用于:根据所述第一索引和所述第一索引与所述第二频带的对应关系确定所述第二频带。
在一个可能的设计中,所述处理单元,还用于根据以下的至少一项确定第二频带:所述终端设备传输数据时在时间上的位置信息、所述终端设备传输数据时对应的混合自动重传请求HARQ进程、所述终端设备传输数据时所对应的传输次数、与所述第二频带所在的所述第一频带的相关信息;其中,与所述第二频带所在的所述第一频带的相关信息为所述第一频带的索引或者为所述第一频带对应的频域资源位置;所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
在一个可能的设计中,所述数据为PDSCH数据。
在一个可能的设计中,所述处理单元,还用于获取第一频带集合,所述第一频带集合包括不同数据传输类型对应的频带中的至少一种;
所述处理单元,在确定所述第一频带时,具体用于:根据数据传输类型和所述第一频带集合确定所述第一频带。
第五方面,本申请还提供了一种数据的传输装置,所述数据的传输装置包括:
收发器,用于向终端设备发送第一信息,所述第一信息用于指示第一传输频带,所述第一传输频带用于所述终端设备传输数据,其中,所述第一传输频带包含于第一频带,所述第一频带的带宽大于所述终端设备支持的最大信道带宽,所述第一传输频带的带宽不大于所述终端设备支持的最大信道带宽;
在所述第一传输频带上从所述终端设备接收数据;
处理器,用于控制所述收发器收发数据。
在一个可能的设计中,所述第一频带的带宽不大于载波带宽。
在一个可能的设计中,所述收发器,还用于:向所述终端设备发送第二信息,所述第二信息用于指示所述第一频带。
在一个可能的设计中,所述收发器,还用于:向所述终端设备发送第三信息,所述第三信息用于指示第二频带,所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
在一个可能的设计中,所述第二信息至少包括:所述第二频带对应的频域资源位置;其中,所述第二频带对应的频域资源位置为所述第二频带对应的频域起始位置和第二频带的带宽,或者所述第二频带对应的频域资源位置为所述第二频带的频域起始位置和终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域起始位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量,或者所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域终止位置的偏移量。
在一个可能的设计中,所述第二信息包括第一索引,所述第一索引与所述第一频带中的所述第二频带对应。
在一个可能的设计中,所述处理器,还用于:为所述终端设备配置第二频带集合,所述第二频带集合包括不同数据传输类型对应的频带中的至少一种。
第六方面,本申请还提供了一种数据的传输装置,所述数据的传输装置包括:
收发单元,用于向终端设备发送第一信息,所述第一信息用于指示第一传输频带,所述第一传输频带用于所述终端设备传输数据,其中,所述第一传输频带包含于第一频带,所述第一频带的带宽大于所述终端设备支持的最大信道带宽,所述第一传输频带的带宽不大于所述终端设备支持的最大信道带宽;
在所述第一传输频带上从所述终端设备接收数据;
处理单元,用于控制所述收发单元收发数据。
在一个可能的设计中,所述第一频带的带宽不大于载波带宽。
在一个可能的设计中,所述收发单元,还用于:向所述终端设备发送第二信息,所述 第二信息用于指示所述第一频带。
在一个可能的设计中,所述收发单元,还用于:向所述终端设备发送第三信息,所述第三信息用于指示第二频带,所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
在一个可能的设计中,所述第二信息至少包括:所述第二频带对应的频域资源位置;其中,所述第二频带对应的频域资源位置为所述第二频带对应的频域起始位置和第二频带的带宽,或者所述第二频带对应的频域资源位置为所述第二频带的频域起始位置和终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域起始位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量,或者所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域终止位置的偏移量。
在一个可能的设计中,所述第二信息包括第一索引,所述第一索引与所述第一频带中的所述第二频带对应。
在一个可能的设计中,所述处理单元,还用于为所述终端设备配置第二频带集合,所述第二频带集合包括不同数据传输类型对应的频带中的至少一种。
第七方面,本申请还提供了一种通信系统,所述通信系统包括至少一个上述设计中提及的终端设备和网络设备。进一步地,所述通信系统中的所述网络设备可以执行上述方法中网络设备执行的任一种方法,以及所述通信系统中的所述终端设备可以执行上述方法中终端设备执行的任一种方法。
第八方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述第一方面或第一方面的任意一种可能的设计、第二方面或第二方面的任意一种可能的设计中的任一种方法。
第九方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计、第二方面或第二方面的任意一种可能的设计中的任一种方法。
第十方面,本申请提供了一种芯片,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现上述第一方面或第一方面的任意一种可能的设计、第二方面或第二方面的任意一种可能的设计中的任一种方法。
附图说明
图1为本申请提供的一种带宽能力的示意图;
图2为本申请提供的一种同步信号块的示意图;
图3为本申请提供的一种通信系统的架构图;
图4为本申请提供的一种数据的传输方法的流程图;
图5为本申请提供的一种第一频带、第二频带和第一传输频带的关系的示意图;
图6为本申请提供的一种第一频带和第二频带之间的频域起始位置的偏移量的示意图;
图7为本申请提供的一种载波带宽上分布的虚拟BWP示意图;
图8为本申请提供的一种数据的传输装置的结构示意图;
图9为本申请提供的一种数据的传输装置的结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种数据的传输方法及装置,用以提高低带宽能力终端设备的频率资源选择范围,用以提高低带宽能力终端设备的数据传输效率。其中,本申请所述方法和装置基于同一发明构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、载波(carrier)带宽,又称之为系统带宽,还可以用载波的传输带宽来表示。网络设备上可以配置一个或多个载波,相应地,网络设备所配置的一个或多个载波所对应的传输带宽可以理解为系统带宽。例如,如果一个网络设备配置了1个载波,该载波的传输带宽为100MHz(兆赫兹),则可以认为系统带宽为100MHz;又例如,如果一个网络设备配置了5个载波,每个载波的传输带宽均为20MHz,则也可以认为系统带宽为100MHz。为了便于描述方案,在本申请中,仅以系统带宽对应一个载波的传输带宽为例说明。
2)、终端设备支持的最大信道带宽,也即终端设备的带宽能力。可以理解为,终端设备支持的最大信道带宽是当终端设备进行数据传输时,同时可以使用的最大频率资源。同时可以使用的最大频率资源,可以是同时可以使用的最大频率资源在频域上是连续的,和/或是所述终端设备在一个载波上同时可以使用的最大频率资源。例如,一个终端设备的带宽能力为5MHz,则说明当该终端设备和网络设备之间进行数据传输(包括下行数据的接收和/或上行数据的发送)时,可以最大在5MHz的频率资源内除去保护带宽之外的传输带宽对应的频带内被调度,也即在如图1所示的“最大的数据传输带宽”对应的频带内被调度。需要说明的是,在本申请中,尽管带宽能力为5MHz的终端设备在进行数据传输时,使用的最大频率资源低于5MHz(除去保护带宽),但为了简化描述,也可以理解为可以使用的最大频率资源等于带宽能力。
3)、低带宽能力的终端设备,在本申请中可以有以下三种理解:
第一种理解:该终端设备的带宽能力等于接入NR系统所具备的最小带宽。
在本申请中,接入NR系统所具备的最小带宽可以理解为终端设备接入NR系统所需要获取的下行信号/信息对应的传输带宽以及必要的保护带宽;或者,接入NR系统所具备的最小带宽可以理解为终端设备接入NR系统所需要获取的下行信号/信息对应的传输带宽。需要说明的是,在第一种理解“低带宽能力的终端设备”的方式下,终端设备的带宽能力与接入NR系统所具备的最小带宽进行比较时,或者二者都包括必要的保护带宽,或者二者都不包括必要的保护带宽。
目前,接入NR系统,至少需要获取如下下行信号/信息:
a1、同步信号块(synchronization signal bock,SSB):SSB包括主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast channel,PBCH)。SSB在时间上占用4个正交频分复用符号(orthogonal frequency division multiplexing,OFDM)符号,PSS和SSS分别在第1个和第3个OFDM符号上传输,对应的传输带宽为12个资源块(resource block,RB)(更准确地 说,PSS和SSS传输带宽对应127个子载波),PBCH包括的信息在第2、3、4个OFDM符号上传输,其中在第2个和第4个OFDM符号上,传输带宽为20个RB(对应240个子载波),在第3个OFDM符号,传输带宽为8个RB(对应96个子载波),示例性的,可以如图2所示。
基于图2,可以理解的是,SSB对应的传输带宽为20个RB,其中1个RB包括12个子载波,因此根据不同的子载波间隔(subcarrier spacing,SCS),SSB对应的传输带宽不同。例如,下表1给出了几种不同子载波间隔下,SSB对应的传输带宽的示例。
表1
SCS/KHz 15 30 120 240
SSB传输带宽/MHz 3.6 7.2 28.8 57.6
a2、必要的系统信息(system information,SI):在本申请中,必要的SI可以理解为终端设备在向网络设备发起随机接入之前,需要获取的最少的系统信息。例如,在NR系统中,终端设备可以通过PBCH中的控制信息,确定调度系统信息块类型1(system information block type 1,SIB1)的控制信息,再通过调度SIB1的控制信息(如下简称SIB1控制信息),确定SIB1,其中SIB1中包括终端设备向网络设备发起随机接入所需要的必要信息,例如随机接入前导(preamble)等。为了便于描述,在本申请中,必要的系统信息可以用SIB1来表示。
通过上述描述,由于终端设备可以在不同时刻分别接收SSB和SIB1,因此可以将SSB对应的传输带宽和SIB1对应的传输带宽之间的最大值作为接入NR系统所具备的最小带宽。进一步地,如果终端设备获取SIB1,需要先读取SIB1控制信息,然后根据SIB1控制信息,确定SIB1,则SIB1对应的传输带宽可以用SIB1控制信息对应的传输带宽或SIB1对应的传输带宽来表示。例如,SIB1控制信息承载在物理下行控制信道(physical downlink control channel,PDCCH)中,SIB1承载在物理下行共享信道(physical downlink shared channel,PDSCH)中,则SIB1对应的传输带宽可以用与承载SIB1控制信息的PDCCH对应的传输带宽或承载SIB1的PDSCH对应的传输带宽来表示。进一步可选地,如果SIB1对应的传输带宽有多种,可以将SIB1对应的最小传输带宽与SSB对应的传输带宽之间的最大值作为接入NR系统所具备的最小带宽。例如,当SSB对应的子载波间隔与包括SIB1控制信息的PDCCH对应的子载波间隔均为15KHz时,SIB1控制信息对应的传输带宽可能是24个RB,或者是48个RB,亦或者是96个RB,在这里为了确定接入NR系统所具备的最小带宽,可以将24个RB(4.32MHz)作为SIB1对应的最小传输带宽,考虑到SSB对应的传输带宽为20个RB(3.6MHz),所以接入NR系统所具备的最小带宽可以理解为4.32MHz;又例如,当SSB对应的子载波间隔为30KHz且包括SIB1控制信息的PDCCH对应的子载波间隔为15KHz时,SIB1控制信息对应的传输带宽可能是48个RB,也可能是96个RB,同样地,为了确定接入NR系统所具备的最小带宽,可以将48个RB(8.64MHz)作为SIB1对应的最小传输带宽,考虑到SSB对应的传输带宽为20个RB(7.2MHz),所以接入NR系统所具备的最小带宽可以理解为8.64MHz。此外,如果考虑到保护带宽的影响,上述两例中,接入NR系统所具备的最小带宽可以分别为5MHz和10MHz,相应地,带宽能力为5MHz和10MHz的终端设备可以看为上述两例中的低带宽能力的终端设备。
需要说明的是,SIB1控制信息也可以承载在其他物理层信道中,例如增强物理下行控 制信道(enhanced physical downlink control channel,EPDCCH),SIB1也可以承载在其他物理层信道中,本申请不作具体限定。
第二种理解:根据为终端设备配置的带宽部分(bandwidth part,BWP)传输带宽之和与系统带宽之间的关系,确定该终端设备是否为低带宽能力终端设备。
具体的,对于一个终端设备而言,在一个载波上,假设网络设备为该终端设备同时配置了最大个数的BWP,并且每个配置的BWP对应的传输带宽都等于终端设备的带宽能力,在这种情况下,如果所有配置的BWP对应的传输带宽之和仍然小于系统带宽,则在本申请中,这样的终端设备也可以被理解为低带宽能力的终端设备,可选地,在这种情况下,所有配置的BWP中的每个BWP对应的频率资源之间互相不重叠。假设一个载波对应的系统带宽为50MHz,一个终端设备的带宽能力为5MHz或10MHz,并且网络设备在一个载波上可以同时为该终端设备配置4个BWP,则在这个载波上,终端设备同时配置的BWP对应的总传输带宽最大为20MHz。由于20MHz小于50MHz,因此,该终端设备也可以认为是低带宽能力的终端设备。
第三种理解:根据终端设备动态传输的频率范围与系统带宽之间的关系,确定该终端设备是否为低带宽能力终端设备。
具体的,对于一个终端设备而言,在一个载波上,如果该终端设备与网络设备进行数据传输时,可以动态传输的频率资源范围小于特定阈值,则在本申请中,该终端设备可以看为是低带宽能力的终端设备。该特定阈值可以等于该载波对应的系统带宽,或者等于该载波对应的系统带宽的X倍,其中X为大于0且不大于1的小数或分数。需要说明的是,这里的动态传输可以包括如下理解:
b1、通过物理层信令实现的数据传输都可以看为动态传输。这里的物理层信令包括通过物理层下行控制信道例如PDCCH、EPDCCH传输信令。数据传输包括上行数据和/或下行数据传输,数据可以包括信息和/或信号等。需要说明的是,本申请实施例中的下行控制信道还可是NR-PDCCH以及未来通信协议中新定义的作用与下行控制信道相近的其他信道。本申请实施例不限制下行控制信道的类型和名称,都统称为PDCCH。其中,PDCCH承载的是下行控制信息(downlink control information,DCI),DCI中可以包含一个或多个终端设备的资源分配信息和/或其他控制信息。
b2、如果终端设备传输的数据(包括从网络设备接收到的数据和/或向网络设备发送的数据)所对应的频率资源,在预配置的频率资源范围内,则这样的数据传输可以理解为动态传输。例如,网络设备可以通过无线资源控制(radio resource control,RRC)信令预配置数据传输的频率资源范围(例如NR中通过RRC信令配置的BWP所对应的频率范围),则在该频率资源范围内进行的数据传输都可以看为是动态传输。另一方面,如果终端设备与网络设备之间的数据传输要在预配置的频率资源范围之外进行,则首先需要网络设备为终端设备通过RRC信令重配置数据传输的频率资源范围(例如重配置BWP),然后终端设备在正确接收到该重配置信息之后,与网络设备之间的数据传输才能在重配置的频率资源范围内进行,由于这个过程需要RRC重配置,需要延时比较大,因此数据传输对应的频率资源在预配置的数据传输频率资源范围之外的数据传输,不认为是动态传输。
需要说明的是,低带宽能力的终端设备还可以有其他定义方式,不作具体限定。例如如果一个终端设备的带宽能力小于某一阈值(比如Y MHz,Y为大于零的数),则该终端设备可以认为是低带宽能力的终端设备。
需要说明的是,在本申请中,为了描述方便,传输带宽或者说数据传输带宽是可以包括保护带宽的,尽管保护带宽并不用于数据传输。例如,描述一个终端设备的带宽能力时,如果说该终端设备的传输带宽为5MHz(或者该终端设备的带宽能力为5MHz),则该5MHz是可以包括保护带宽的,但网络设备与该终端设备进行数据传输时,实际最大可用的数据传输带宽是小于5MHz的。
需要说明的是,在本申请中,对于支持载波聚合(carrier aggregation,CA)的终端设备而言,只要在其中一个载波上,终端设备具有上述特征,该终端设备就可以理解为低带宽能力的终端设备。
4)、本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
5)、本申请中所涉及的至少一个(项)是指一个(项)或多个(项);多个(项),是指两个(项)或两个(项)以上。
6)、在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的数据的传输方法及装置进行详细说明。
图3示出了本申请实施例提供的数据的传输方法适用的一种可能的通信系统的架构,所述通信系统的架构中包括网络设备和终端设备,其中:
所述网络设备为具有无线收发功能的设备、无线接入网(radio access network,RAN)中的节点或可设置于该网络设备的芯片。该网络设备包括但不限于:下一代基站(next generation NodeB,gNB)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB,或femto)、微微蜂窝基站(pico)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点(relay)、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,对此不作限定。
所述终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用 户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、无线中继节点等等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
所述网络设备和所述终端设备之间通过空口(air interface)传输数据。
在本申请的方案中涉及到的终端设备可以理解为是低带宽能力的终端设备。
需要说明的是,图3所示的通信系统可以是无线通信系统,可以但不限于为4.5G或5G无线通信系统,以及基于长期演进(long term evolution,LTE)或者NR的进一步演进系统,以及未来的各种通信系统,例如6G系统或者其他通信网络等。
本申请实施例提供的一种数据的传输方法,适用于如图3所示的通信系统。参阅图4所示,该方法的具体流程包括:
步骤401、终端设备确定第一频带,所述第一频带的带宽大于所述终端设备支持的最大信道带宽。
具体的,所述第一频带用于传输数据,例如,所述终端设备和网络设备可以传输上行数据和/或下行数据,也即所述第一频带还可以传输其他数据,例如PDCCH数据等等,本申请对此不作限定。
示例性的,所述第一频带可以由一个载波内在频域上连续的频率资源组成,例如由连续的子载波、资源元素(resource element,RE)、RB组成。
在实际应用中,所述第一频带的带宽不大于载波带宽。可以理解的是,这里的载波带宽可以理解为网络设备为终端设备配置的载波带宽,该配置的载波带宽可以等于或者小于网络设备侧的系统带宽。例如网络设备侧的系统带宽为100MHz,为终端设备配置的载波带宽可以为20MHz,或者为40MHz、或者为其他小于或者等于100MHz的值。
步骤402、所述终端设备从网络设备接收第一信息,所述第一信息用于指示第一传输频带,所述第一传输频带用于所述终端设备传输数据,所述第一传输频带的带宽不大于所述终端设备支持的最大信道带宽。
步骤403、所述终端设备根据所述第一信息确定所述第一传输频带;所述第一频带包含所述第一传输频带。
步骤404、所述终端设备在所述第一传输频带上向所述网络设备传输数据。
在一种可选的实施方式中,步骤401中,所述终端设备确定所述第一频带,可以至少包括以下两种方式:
方式c1、所述终端设备从网络设备接收第二信息,所述第二信息用于指示所述第一频带;所述终端设备根据所述第二信息确定所述第一频带。
具体的,所述第二信息可以为第一频带信息,其中,所述第一频带信息可以包括第一频带对应的信息,例如所述第一频带的带宽、所述第一频带在所述第一频带所在的载波上的频域位置、所述终端设备在所述第一频带上进行数据传输时所使用的SCS配置、循环前 缀(cyclic prefix,CP)配置、使用所述第一频带传输控制信道数据时的配置信息(例如,控制信道可以包括但不限于PDCCH、EPDCCH、物理上行控制信道(physical uplink control channel,PUCCH))、使用所述第一频带传输共享信道数据时的配置信息(例如,共享信道可以包括但不限于PDSCH、物理上行共享信道(physical uplink shared channel,PUSCH))等等。
方式c2、所述第一频带为预定义的。
具体的,在上述方式c1中,所述第二信息可以是网络设备发送的RRC信令、介质访问控制(media access control,MAC)信令、物理层信令等等,或者还可以是网络设备发送的其他信令,例如可以是上述信令的结合;当然所述第二信息还可以是通过上述信令发送,也即所述第二信息被包含在上述信令中,本申请对此不作限定。需要说明的是,信令也可以理解为消息、信息等等。
在具体实现时,所述网络设备可以为所述终端设备配置一个或多个第一频带,每个第一频带的配置可以是独立配置,也可以是联合配置的,即多个第一频带对应的第一频带信息的部分或者全部是相同的。此外,当网络设备为终端设备配置多个第一频带时,不同的第一频带之间对应的频域资源可以用重叠,也可以没有重叠,本申请不作具体限定。所述终端设备可以在配置的一个或者多个第一频带中选择所述第一频带。
在一种实施方式中,NR系统中,所述第一频带可以为带宽部分(bandwidth part,BWP)。例如,所述网络设备可以通过RRC信令为所述终端设备配置多个BWP,然后再通过物理层信令指示多个BWP中被激活的BWP,之后,所述网络设备与所述终端设备之间的数据传输在被激活的BWP内进行;又例如,所述网络设备可以仅通过RRC信令为终端设备配置激活的BWP,然后所述终端设备与所述网络设备之间的数据传输在被激活的BWP内进行。需要说明的是,在本申请中,被激活的BWP与配置了但未被激活的BWP之间的区别可以包括如下三点中的至少一点:
d1、在配置但未被激活的BWP上,所述终端设备不期望接收下行信道数据和/或下行信号,例如PDSCH数据,PDCCH数据,信道状态信息参考信号(channel state information reference signal,CSI-RS),其中如果CSI-RS用于无线资源管理(radio resource management,RRM),则所述终端设备可以利用该CSI-RS对配置但未被激活的BWP进行RRM测量。
d2、在配置但未被激活的BWP上,所述终端设备不期望发送上行信道数据和/或上行信号,例如PUSCH数据,PUCCH数据,以及探测参考信号(Sounding Reference Signal,SRS)。
d3、在被激活的BWP上,所述终端设备在被激活的BWP包括的频率资源内和网络设备进行数据传输。在被激活的BWP上,除去上述进行数据传输的频率资源之外,在其他频率资源范围内,所述终端设备的行为,可以与所述终端设备在已配置但未被激活的BWP上的行为相同,即满足上述d1和d2。
在一种示例性的实施方式中,数据传输类型不同所需的用于传输数据的频带不同。在一个载波带宽内,对于同一个终端设备,网络设备可以针对不同的数据传输类型,配置不同的BWP(也即配置不同的频带)。其中,不同的数据传输类型可以包括:业务数据、控制数据和用于测量的参考信号,其中,业务数据可以包括承载在PUSCH、PDSCH上的数据,用于测量的参考信号可以包括CSI-RS,通过这种设计,针对不同的数据传输类型,可以有针对性地设计频带(BWP),保证各种数据传输的传输效率。例如,对于同一个终端 设备,针对业务数据(例如承载在PUSCH或PDSCH上的数据)传输配置的BWP和针对控制数据(例如承载在PDCCH或PUCCH)传输配置的BWP可以不同,更具体的,针对业务数据传输配置的BWP对应的带宽可以大于针对控制数据传输配置的BWP对应的带宽,通过这种实现方式,终端设备在接收控制信道中承载的控制数据时,可以获得节能(即功耗降低)的好处,而在接收数据信道中承载的业务数据时,可以获得频率选择性调度增益;又例如,对于同一个终端设备,针对业务数据传输配置的BWP和针对测量参考信号传输配置的BWP可以不同,更具体的,针对业务数据传输配置的BWP对应的带宽可以大于针对测量参考信号传输配置的BWP对应的带宽,通过这种实现方式,针对业务数据传输,可以保证频率选择性调度增益;针对测量的参考信号传输,可以保证测量信号可以测量得到更精细的信道状态,进而提高数据传输效率。可以理解的是,在本申请中,承载在PUSCH中的数据和承载在PDSCH中的数据也可以认为是不同类型的数据,承载在PDCCH中的数据和承载在PUCCH中的数据也可以认为是不同类型的数据。需要说明的是,BWP的带宽可以大于所述终端设备支持的最大信道带宽,也可以不大于所述终端设备支持的最大信道带宽。当BWP的带宽大于所述终端设备支持的最大信道带宽时,BWP又可以称为是虚拟BWP。
可以理解的是,在本申请中,承载在PUSCH、PDSCH上的数据可以理解为通过PUSCH、PDSCH传输的数据,承载在PDCCH、PUCCH上的数据可以理解为通过PDCCH、PUCCH传输的数据。
基于此,所述终端设备在确定需要传输的数据为PDSCH数据时,可以确定所述第一频带。
具体的,所述终端设备可以获取第一频带集合,所述第一频带集合包括不同数据传输类型对应的频带中的至少一种;所述终端设备确定所述第一频带,具体方法可以为:所述终端设备根据数据传输类型和所述第一频带集合确定所述第一频带。
其中,所述第一频带集合可以包括第二频带集合,或者所述第一频带集合可以包括第二频带集合和第三频带集合。其中,所述第二频带集合为所述网络设备为所述终端设备配置的,所述第二频带集合包括不同数据传输类型对应的频带中的至少一种;所述第三频带集合为预定义的,所述第三频带集合包括不同数据传输类型对应的频带中的至少一种。
需要说明的是,所述终端设备获取所述第一频带集合时,一种方式是,所述终端设备获取数据传输类型和频带的对应关系,后续可以根据需要的数据传输类型和上述对应关系确定第一频带;另一种方式是,所述终端设备获取频带信息,后续可以根据预定义或者特定指示来确定第一频带。
需要说明的是,所述第一频带集合中包括的频带,可以是大于所述终端设备支持的最大信道带宽的频带,或者是不大于所述终端设备支持的最大信道带宽的频带和大于所述终端设备支持的最大信道带宽的频带。例如,可以用大于所述终端设备支持的最大信道带宽的频带传输PDSCH数据,用不大于所述终端设备支持的最大信道带宽的频带传输PDCCH或者参考信号,参考信号例如可以为CSI-RS。这样通过不同带宽的频带去传输不同的数据可以提升数据传输效率。
一种具体的实施方式中,在步骤402中,所述第一信息可以为所述网络设备发送给所述终端设备的调度信息。所述第一信息除了指示所述第一传输频带以外,还可以包括数据传输所需要的其他控制信息,例如数据传输所对应的时间资源(即数据传输在什么时间发 生)、数据传输所对应的调制编码方式(modulation coding scheme,MCS)、数据传输所对应的功率配置信息、传输块大小(transport block size,TBS)等,还可以包括其他与数据传输相关的控制信息,本申请不作具体限定。需要说明的是,这里的数据传输中的数据可以包括业务数据、控制数据以及信号,还可以包括其他类型的在所述终端设备与所述网络设备之间传输的信息等等。
具体的,所述终端设备可以通过RRC信令、MAC信令、物理层信令中的至少一种接收调度信息,也即所述调度信息可以承载在RRC信令、MAC信令、物理层信令中的至少一种中。例如针对有调度准许(grant free)的数据调度方式,所述终端设备一般会通过物理层下行控制信道接收控制信息(该控制信息可以看为调度信息),然后根据该控制信息,确定与所述网络设备之间的数据传输对应的例如时频资源、TBS等,并在对应的时频资源上传输数据;又例如针对无调度准许的数据调度方式,特别是上行数据发送,所述网络设备一般会先通过RRC信令为所述终端设备配置与数据传输相关的控制信息(该控制信息可以看为调度信息),例如频率资源、TBS等,当所述终端设备有上行数据需要发送时,会根据RRC信令预先配置的数据传输相关的控制信息,在对应的频域资源上发送数据。
在一种可选的实施方式中,所述终端设备还从所述网络设备接收第三信息,所述第三信息用于指示第二频带;所述终端设备根据所述第三信息确定所述第二频带,所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。例如,图5示出了所述第一频带、所述第二频带和所述第一传输频带之间的关系。
此时,在所述第二频带中的所述第一传输频带所述终端设备与所述网络设备互相传输数据。
示例性的,所述第二频带可以由一个载波内在频域上连续的频率资源组成,例如由连续的子载波,RE,RB组成。
具体的,所述第三信息可以是所述网络设备发送的RRC信令、MAC信令、物理层信令等等,或者还可以是网络设备发送的其他信令,例如可以是上述信令的结合;当然所述第三信息还可以是通过上述信令发送,也即所述第三信息被包含在上述信令中,本申请对此不作限定。
一种示例中,所述第三信息可以至少包括所述第二频带对应的频域资源位置;其中,所述第二频带对应的频域资源位置可以为所述第二频带对应的频域起始位置和所述第二频带的带宽,或者所述第二频带对应的频域资源位置为所述第二频带的频域起始位置和终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域起始位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量,或者所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域终止位置的偏移量。
具体的,所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量,可以为所述第一频带的频域起始位置与所述第二频带的频域起始位置之间的偏移量。例如,所述第一频带和所述第二频带之间的频域起始位置的偏移量可以如图6所示。在这种实现方式下,所述网络设备可以直接通过物理层控制信道中包括的下行控制信息(downlink control information,DCI)指示该偏移量。
同理,所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域终止位置的偏移量,可以为所述第一频带的频域终止位置与所述第二频带的频域终止位置之间的偏移量。其他描述与上述所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量类似,可以相互参见,此处不再消息描述。
另一种示例中,所述第三信息中可以包括第一索引,所述第一索引与所述第一频带中的所述第二频带对应;所述终端设备根据所述第三信息确定所述第二频带时,具体方法可以为:所述终端设备根据所述第一索引和所述第一索引与第二频带的对应关系确定所述第二频带。
具体的,所述网络设备可以通过高层信令如RRC信令预先配置第二频带在频域上的具体位置,然后再结合物理层信令指示生效的第二频带,这里生效的第二频带与前述的激活的BWP可以有类似的理解,即所述网络设备与所述终端设备之间的数据传输只能在生效的第二频带内进行,特殊地,为了RRM测量的数据传输例如参考信号,也可以在非生效的第二频带内进行。例如,所述网络设备在配置所述第一频带的时候,可以同时配置在所述第一频带内所包括的第二频带,然后再结合物理层信令,指示具体生效的第二频带。例如,所述网络设备配置的所述第一频带包括4个第二频带,每个第二频带都对应唯一的一个索引(这里也即第一索引),网络设备可以再通过2bit来指示具体生效的第二频带,例如00对应第一个第二频带,01对应第二个第二频带,10对应第三个第二频带,11对应第四个第二频带,此时,存在一个第一索引与第二频带的对应关系。
在另一种可选的实施方式中,所述终端设备可以根据以下的至少一项参数确定第二频带:所述终端设备传输数据时在时间上的位置信息、所述终端设备传输数据时对应的混合自动重传请求(hybrid automatic repeat request,HARQ)进程、所述终端设备传输数据时所对应的传输次数、与所述第二频带所在的所述第一频带的相关信息;其中,与所述第二频带所在的所述第一频带的相关信息为所述第一频带的索引或者为所述第一频带对应的频域资源位置;所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
具体的,对上述信息(参数)进行详细说明:
(1)所述终端设备传输数据时在时间上的位置信息:所述终端设备传输数据时在时间上的位置信息可以用时隙(slot)索引、OFDM符号索引、奇数时隙索引、偶数时序索引等来表示,也可以是其他与时间相关的信息,本申请不作具体限定。其中,时隙索引可以是绝对索引,也可以是在某个时间范围内的相对索引,例如,时隙索引可以是在一个10ms内的绝对索引,比如1个时隙的时长是0.5ms,那么在一个10ms内共包括20个时隙,则对应20个时隙索引:例如从时隙0至时隙19,在另外一个10ms内的20个时隙对应的时隙索引也是从时隙0至时隙19。可选的,在所述第一频带内,假设包括4个第二频带,时隙索引用相对索引表示,所述网络设备与所述终端设备在时隙0至时隙4、时隙5至时隙9、时隙10至时隙14、时隙15至时隙19上进行的数据传输,可以分别对应第一个第二频带、第二个第二频带、第三个第二频带、第四个第二频带;又或者,所述网络设备与所述终端设备在时隙(4*m+n-1)上进行的数据传输,可以对应第n个第二频带,在本例中,n的取值为1、2、3、4,m的取值为0、1、2、3、4。所述第二频带与所述第二频带在时间上的位置信息之间的对应关系还可以有其他表现形式,本申请不作具体限定。
(2)所述终端设备传输数据时所对应的传输次数:是指所述网络设备与所述终端设 备针对同一个HARQ进程,传输数据所对应的传输次数。具体的,针对同一个HARQ进程,传输数据所对应的传输次数,可以有如下三种情况:
情况e1、所述网络设备与所述终端设备从第一次使用所述HARQ传输数据开始记录传输数据对应的传输次数,一直到满足重新计数条件为止。例如,在一个预配置的时间内,使用所述HARQ传输数据对应的传输次数,不同的传输次数与所述第一频带所包括的所述第二频带之间具有一一对应关系。例如,假设所述第一频带包括4个第二频带,则使用该HARQ的第一次传输可以对应第一个第二频带,使用该HARQ的第二次传输可以对应第二个第二频带,依次循环类推,即使用该HARQ的第五次传输可以重新对应第一个第二频带。需要说明的是,在本申请中,如果所述第一频带包括多个第二频带,则不同的第二频带的排序可以对应不同的索引,比如第一个第二频带可以理解为所述第一频带中包括的索引号为1或0的第二频带,或者也可以根据不同的第二频带所对应的起始频率位置的大小来确定第二频带的排序,也可以有其他排序方式,不作具体限定。可选的,不同的HARQ进程的第一次数据传输对应的第二频带可以是相同的,也可以是不相同的。
情况e2、所述网络设备与所述终端设备针对同一数据传输,记录传输数据所对应的传输次数。一般而言,如果所述网络设备与所述终端设备针对同一数据传输,第一次数据传输没有成功,则后续所述网络设备与所述终端设备还需要通过重传该数据,来尽可能保证正确接收该数据。当该数据被接收侧(所述网络设备或所述终端设备)正确接收后,可以重新使用该HARQ进程(即上述被正确接收的数据对应的HARQ进程),传输新的数据。比如针对同一数据传输,所述网络设备和所述终端设备之间经历了三次传输,保证了正确接收,则这三次传输可以分别对应所述第一频带中包括的不同第二频带,例如第一次传输对应第一个第二频带,第二次传输对应第二个第二频带,第三次传输对应第三个第二频带。
情况e3、针对同一个HARQ进程,数据传输时对应的不同冗余版本(redundancy version,RV),也可以理解为传输数据所对应的不同传输次数。例如,针对同一个数据传输,可以使用的冗余版本包括0、1、2、3,不同的冗余版本可以对应所述第一频带内包括的不同第二频带,或者,新传数据和重传数据对应不同的第二频带。一般而言,冗余版本1、2、3都可以对应重传数据,因此,冗余版本1、2、3也可以对应第一频带内包括的相同第二频带,但是与冗余版本0(一般应用于新传数据)对应的第二频带可以不同。
(3)所述终端设备传输数据时对应的HARQ进程:数据传输对应的HARQ进程与该数据传输对应的第二频带之间具有对应关系,可选的,所述网络设备在配置所述第一频带的时候,如果配置了所述第一频带可以使用的HARQ进程个数和/或HARQ进程索引号,则该第一频带包括的第二频带可以只与该第一频带配置的HARQ进程之间具有对应关系。
需要说明的是,可以理解为上述涉及的至少一项参数,分别与第二频带的具体位置存在对应关系,其中,该对应关系可以是协议规范、预配置或者RRC信令配置的,也可以是通过其他信令形式例如MAC信令、物理层信令通知的,本申请不作具体限定。
又一种可选的实施方式中,所述第二频带可以为预定义(也可以称为协议规范)的。例如,可以预定义为所述第二频带的带宽与所述终端设备支持的最大信道带宽是相同的,此时,所述终端设备支持的最大信道带宽为Y MHz,则可以认为所述第二频带的带宽也为Y MHz,Y为大于零的数。
通过上述方法,一方面,由于所述第二频带包含于所述第一频带并且第一频带的带宽大于终端设备支持的最大信道带宽,因此所述终端设备可以被调度在更大的频率资源范围 内(包括调度资源的第二频带包含于第一频带,以及第二频带可以在第一频带内动态改变),因此对于数据传输而言,可以获得更多的频率选择性调度增益;另一方面,由于所述第二频带不大于该终端设备支持的最大信道带宽,而被调度资源是包含于所述第二频带,因此保证了所述终端设备和所述网络设备之间正常的数据传输。这是因为,一般而言,所述终端设备和所述网络设备进行数据传输时,会先调整射频(radio frequency,RF)滤波器,以保证可以在对应的频率资源范围内接收和/或发送数据。并且RF滤波器的大小一般是与终端设备支持的最大信道带宽相关的,由于所述第二频带不大于所述终端设备支持的最大信道带宽,因此可以保证所述终端设备可以通过RF滤波器接收到所述第二频带内调度的数据。
示例性的,基于上述描述,以下行数据传输为例,介绍一下所述网络设备与所述终端设备之间的数据传输过程:
首先,在一个载波上,所述网络设备通过RRC信令为所述终端设备配置所述第一频带(或者理解为,为终端设备配置第一频带信息),所述第一频带可以看为虚拟BWP。假设在一个载波带宽为50MHz的载波上,所述网络设备为所述终端设备配置了4个虚拟BWP。在NR系统中,考虑到保护带宽的影响,50MHz系统载波包括的可以用于数据传输的RB个数为270个(假设系统载波对应的子载波间隔为15KHz),如果4个虚拟BWP包括的频率资源相互不重叠,且占满所有的载波带宽,则4个虚拟BWP的带宽可以分别为68、68、67、67个RB。例如,图7示出了载波带宽上分布的虚拟BWP示意图。
其次,所述网络设备通过物理层信令,例如通过承载在物理下行控制信道中的控制信息(如DCI)指示所述终端设备被激活的BWP索引,在本例中,假设虚拟BWP 2(即所述第一频带)被激活,并且通过上述DCI指示在BWP 2中被激活的第二频带。需要说明的是,在本申请中,所述终端设备在被激活的第二频带上的行为,与上述描述的终端设备在被激活的BWP上行为类似,所不同的是,由于第二频带的带宽等于终端设备支持的最大信道带宽,因此在激活的第二频带的所有频域资源上,所述终端设备与所述网络设备都可以进行数据传输。假设所述终端设备的支持的最大信道带宽为5MHz,则所述第二频带的带宽也可以为5MHz,考虑到保护带宽的影响,当SCS=15KHz时,所述第二频带对应的用于传输数据的带宽可以为25个RB。假设所述终端设备和所述网络设备之间的数据传输是以资源块组(resource block group,RBG)为粒度调度的,即在这种模式下,所述终端设备和所述网络设备之间的数据传输所使用的频率资源为RBG的整数倍。当一个RBG包括4个RB时,所述网络设备可以分别通过2比特(bit)和4bit指示被激活的虚拟BWP和在被激活的虚拟BWP内包括的第二频带;当一个RBG包括8个RB时,所述网络设备可以分别通过2bit和3bit指示被激活的虚拟BWP和在被激活的虚拟BWP内包括的第二频带。
最后,所述网络设备还可以通过上述DCI指示在被激活的第二频带内,具体的数据传输资源。假设所述终端设备和所述网络设备之间的数据传输是以RBG为粒度调度的,其中一个RBG由频域上连续的RB组成,则当RBG分别包括4个RB和8个RB时,在第二频带内最多需要7bit和4bit来指示被调度的频率资源。通过上述过程,由于第二频带可以在更大的频率资源范围内通过DCI信令实现动态改变,因此,所述终端设备的数据传输可以获得更大的频率选择性调度增益。综上,针对载波带宽为50MHz且SCS=15KHz的系统而言,如果采用数据调度粒度为RBG的数据传输方式,则针对带宽能力为5MHz的终 端设备而言,当RBG分别包括4个RB和8个RB时,共需要13bit和9bit来指示终端设备数据传输对应的频率资源,相比于现有技术的实现方法(分别需要18bit和10bit),可以节省控制开销,从而提升数据传输效率。
例如,下表2给出了当子载波间隔为15KHz时,不同载波带宽下,使用本申请的调度资源指示方法与现有技术的频域资源指示方法,所需要的物理层bit数,其中采用的是数据调度粒度为RBG的数据传输方式,其中RBG大小表示1个RBG包括的RB个数。
表2
载波带宽 30MHz 40MHz 50MHz
虚拟BWP带宽 40RB 54RB 67or 68RB
RBG大小 4or 8RB 4or 8RB 4or 8RB
本申请bit开销 11or 7bits 12or 8bits 13or 9bits
现有技术bit开销 11or 6bits 15or 8bits 18or 10bits
采用本申请实施例提供的数据的传输方法,终端设备确定第一频带,并从网络设备接收第一信息,所述第一信息用于指示第一传输频带,然后根据所述第一信息确定所述第一传输频带,最后在所述第一传输频带上向所述网络设备传输数据;其中,所述第一频带的带宽大于所述终端设备支持的最大信道带宽;所述第一传输频带用于所述终端设备传输数据;所述第一频带包含所述第一传输频带。通过上述方法,网络设备可以在更大的频率资源范围内动态调度低带宽能力的终端设备,从而获得更大的频率选择性调度增益,提高数据传输效率。
基于以上实施例,本申请实施例还提供了一种数据的传输装置,该数据的传输装置应用于如图3所示的通信系统,用于实现如图4所示的数据的传输方法。参阅图8所示,该数据的传输装置800包括:处理单元801和收发单元802。其中,所述数据的传输装置800可以为终端设备,用于执行上述图4所述的数据的传输方法中终端设备的操作;所述数据的传输装置800可以为网络设备,用于执行上述图4所述的数据的传输方法中网络设备的操作。具体的:
在一个实施例中,当所述数据的传输装置800用于执行上述图4所述的数据的传输方法中终端设备的操作时:
所述处理单元801,用于确定第一频带,所述第一频带的带宽大于所述终端设备支持的最大信道带宽;
所述收发单元802,用于从网络设备接收第一信息,所述第一信息用于指示第一传输频带,所述第一传输频带用于所述终端设备传输数据,所述第一传输频带的带宽不大于所述终端设备支持的最大信道带宽;
所述处理单元801,还用于根据所述第一信息确定所述第一传输频带;所述第一频带包含所述第一传输频带;
所述收发单元802,还用于在所述第一传输频带上向所述网络设备传输数据。
具体的,所述第一频带的带宽不大于载波带宽。
在一种可选的方式中,所述收发单元802,还用于从所述网络设备接收第二信息,所述第二信息用于指示所述第一频带;
所述处理单元801,在确定所述第一频带时,具体用于:根据所述第二信息确定所述 第一频带;或,所述第一频带为预定义的。
一种示例中,所述收发单元802,还用于从所述网络设备接收第三信息,所述第三信息用于指示第二频带;
所述处理单元801,还用于根据所述第三信息确定所述第二频带,所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
具体的,所述第三信息至少包括:所述第二频带对应的频域资源位置;其中,所述第二频带对应的频域资源位置为所述第二频带对应的频域起始位置和所述第二频带的带宽,或者所述第二频带对应的频域资源位置为所述第二频带的频域起始位置和终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域起始位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量,或者所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域终止位置的偏移量。
在另一种示例中,所述第三信息中包括第一索引,所述第一索引与所述第一频带中的所述第二频带对应;
所述处理单元801,在根据所述第三信息确定所述第二频带时,具体用于:根据所述第一索引和所述第一索引与所述第二频带的对应关系确定所述第二频带。
在另一种可选的方式中,所述处理单元801,还用于根据以下的至少一项确定第二频带:所述终端设备传输数据时在时间上的位置信息、所述终端设备传输数据时对应的混合自动重传请求HARQ进程、所述终端设备传输数据时所对应的传输次数、与所述第二频带所在的所述第一频带的相关信息;其中,与所述第二频带所在的所述第一频带的相关信息为所述第一频带的索引或者为所述第一频带对应的频域资源位置;所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
示例性的,所述数据为PDSCH数据。
一种可能的实施方式中,所述处理单元801,还用于获取第一频带集合,所述第一频带集合包括不同数据传输类型对应的频带中的至少一种;
所述处理单元801,在确定所述第一频带时,具体用于:根据数据传输类型和所述第一频带集合确定所述第一频带。
采用本申请实施例提供的数据的传输装置(这里为终端设备),确定第一频带,并从网络设备接收第一信息,所述第一信息用于指示第一传输频带,然后根据所述第一信息确定所述第一传输频带,最后在所述第一传输频带上向所述网络设备传输数据;其中,所述第一频带的带宽大于所述终端设备支持的最大信道带宽;所述第一传输频带用于所述终端设备传输数据;所述第一频带包含所述第一传输频带。这样可以使网络设备可以在更大的频率资源范围内动态调度低带宽能力的终端设备,从而获得更大的频率选择性调度增益,提高数据传输效率。
在另一个实施例中,当所述数据的传输装置800用于执行上述图4所述的数据的传输方法中网络设备的操作时:
所述收发单元802,用于向终端设备发送第一信息,所述第一信息用于指示第一传输 频带,所述第一传输频带用于所述终端设备传输数据,其中,所述第一传输频带包含于第一频带,所述第一频带的带宽大于所述终端设备支持的最大信道带宽,所述第一传输频带的带宽不大于所述终端设备支持的最大信道带宽;
在所述第一传输频带上从所述终端设备接收数据;
所述处理单元801,用于控制所述收发单元802收发数据(或信息、信号等)。
具体的,所述第一频带的带宽不大于载波带宽。
一种可选的实施方式中,所述收发单元802,还用于:向所述终端设备发送第二信息,所述第二信息用于指示所述第一频带。
一种可能的方式中,所述收发单元802,还用于:向所述终端设备发送第三信息,所述第三信息用于指示第二频带,所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
一种示例中,所述第二信息至少包括:所述第二频带对应的频域资源位置;其中,所述第二频带对应的频域资源位置为所述第二频带对应的频域起始位置和第二频带的带宽,或者所述第二频带对应的频域资源位置为所述第二频带的频域起始位置和终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域起始位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量,或者所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域终止位置的偏移量。
另一种示例中,所述第二信息包括第一索引,所述第一索引与所述第一频带中的所述第二频带对应。
示例性的,所述处理单元801,还用于:为所述终端设备配置第二频带集合,所述第二频带集合包括不同数据传输类型对应的频带中的至少一种。
采用本申请实施例提供的数据的传输装置(这里为网络设备),向终端设备发送第一信息,所述第一信息用于指示第一传输频带,所述第一传输频带用于所述终端设备传输数据;在所述第一传输频带上从所述终端设备接收数据,其中,所述第一传输频带包含于第一频带,所述第一频带的带宽大于所述终端设备支持的最大信道带宽。这样可以使网络设备可以在更大的频率资源范围内动态调度低带宽能力的终端设备,从而获得更大的频率选择性调度增益,提高数据传输效率。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储 器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种数据的传输装置,所述数据的传输装置应用于如图3所示的通信系统,用于实现如图4所示的数据的传输方法。参阅图9所示,所述数据的传输装置900可以包括:收发器901和处理器902,可选的还可以包括存储器903。其中,所述处理器902可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合等等。所述处理器902还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。所述处理器902在实现上述功能时,可以通过硬件实现,当然也可以通过硬件执行相应的软件实现。
所述收发器901和所述处理器902之间相互连接。可选的,所述收发器901和所述处理器902通过总线904相互连接;所述总线904可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
所述存储器903,与所述处理器902耦合,用于存放所述数据的传输装置900必要的程序等。例如,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器903可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。所述处理器902执行所述存储器903所存放的应用程序,实现所述数据的传输装置900的功能。
其中,所述数据的传输装置900可以为终端设备,用于执行上述图4所述的数据的传输方法中终端设备的操作;所述数据的传输装置900可以为网络设备,用于执行上述图4所述的数据的传输方法中网络设备的操作。具体的:
在一个实施例中,当所述数据的传输装置900用于执行上述图4所述的数据的传输方法中终端设备的操作时:
所述处理器902,用于确定第一频带,所述第一频带的带宽大于所述终端设备支持的最大信道带宽;
所述收发器901,用于从网络设备接收第一信息,所述第一信息用于指示第一传输频带,所述第一传输频带用于所述终端设备传输数据,所述第一传输频带的带宽不大于所述终端设备支持的最大信道带宽;
所述处理器902,还用于根据所述第一信息确定所述第一传输频带;所述第一频带包含所述第一传输频带;
所述收发器901,还用于在所述第一传输频带上向所述网络设备传输数据。
具体的,所述第一频带的带宽不大于载波带宽。
在一种可选的实施方式中,所述收发器901,还用于从所述网络设备接收第二信息,所述第二信息用于指示所述第一频带;
所述处理器902,在确定所述第一频带时,具体用于:根据所述第二信息确定所述第 一频带;或,所述第一频带为预定义的。
一种可能的实施方式中,所述收发器901,还用于从所述网络设备接收第三信息,所述第三信息用于指示第二频带;
所述处理器902,还用于根据所述第三信息确定所述第二频带,所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
一种示例,所述第三信息至少包括:所述第二频带对应的频域资源位置;其中,所述第二频带对应的频域资源位置为所述第二频带对应的频域起始位置和所述第二频带的带宽,或者所述第二频带对应的频域资源位置为所述第二频带的频域起始位置和终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域起始位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量,或者所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域终止位置的偏移量。
另一种示例,所述第三信息中包括第一索引,所述第一索引与所述第一频带中的所述第二频带对应;
所述处理器902,在根据所述第三信息确定所述第二频带时,具体用于:根据所述第一索引和所述第一索引与所述第二频带的对应关系确定所述第二频带。
另一种可能的实施方式中,所述处理器902,还用于根据以下的至少一项确定第二频带:所述终端设备传输数据时在时间上的位置信息、所述终端设备传输数据时对应的混合自动重传请求HARQ进程、所述终端设备传输数据时所对应的传输次数、与所述第二频带所在的所述第一频带的相关信息;其中,与所述第二频带所在的所述第一频带的相关信息为所述第一频带的索引或者为所述第一频带对应的频域资源位置;
所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
具体的,所述数据为PDSCH数据。
一种示例性的实施方式中,所述处理器902,还用于获取第一频带集合,所述第一频带集合包括不同数据传输类型对应的频带中的至少一种;
所述处理器902,在确定所述第一频带时,具体用于:根据数据传输类型和所述第一频带集合确定所述第一频带。
采用本申请实施例提供的数据的传输装置(这里为终端设备),确定第一频带,并从网络设备接收第一信息,所述第一信息用于指示第一传输频带,然后根据所述第一信息确定所述第一传输频带,最后在所述第一传输频带上向所述网络设备传输数据;其中,所述第一频带的带宽大于所述终端设备支持的最大信道带宽;所述第一传输频带用于所述终端设备传输数据;所述第一频带包含所述第一传输频带。这样可以使网络设备可以在更大的频率资源范围内动态调度低带宽能力的终端设备,从而获得更大的频率选择性调度增益,提高数据传输效率。
在另一个实施例中,当所述数据的传输装置800用于执行上述图4所述的数据的传输方法中网络设备的操作时:
所述收发器901,用于向终端设备发送第一信息,所述第一信息用于指示第一传输频 带,所述第一传输频带用于所述终端设备传输数据,其中,所述第一传输频带包含于第一频带,所述第一频带的带宽大于所述终端设备支持的最大信道带宽,所述第一传输频带的带宽不大于所述终端设备支持的最大信道带宽;
在所述第一传输频带上从所述终端设备接收数据;
所述处理器902,用于控制所述收发器901收发数据(或信息、信号等)。
具体的,所述第一频带的带宽不大于载波带宽。
在一种可选的实施方式中,所述收发器901,还用于:向所述终端设备发送第二信息,所述第二信息用于指示所述第一频带。
一种具体的实施方式中,所述收发器901,还用于:向所述终端设备发送第三信息,所述第三信息用于指示第二频带,所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
一种示例中,所述第二信息至少包括:所述第二频带对应的频域资源位置;其中,所述第二频带对应的频域资源位置为所述第二频带对应的频域起始位置和第二频带的带宽,或者所述第二频带对应的频域资源位置为所述第二频带的频域起始位置和终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域起始位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量,或者所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域终止位置的偏移量。
另一种示例中,所述第二信息包括第一索引,所述第一索引与所述第一频带中的所述第二频带对应。
一种可能的实施方式中,所述处理器902,还用于为所述终端设备配置第二频带集合,所述第二频带集合包括不同数据传输类型对应的频带中的至少一种。
采用本申请实施例提供的数据的传输装置(这里为网络设备),向终端设备发送第一信息,所述第一信息用于指示第一传输频带,所述第一传输频带用于所述终端设备传输数据;在所述第一传输频带上从所述终端设备接收数据,其中,所述第一传输频带包含于第一频带,所述第一频带的带宽大于所述终端设备支持的最大信道带宽。这样可以使网络设备可以在更大的频率资源范围内动态调度低带宽能力的终端设备,从而获得更大的频率选择性调度增益,提高数据传输效率。
综上所述,通过本申请实施例提供一种数据的传输方法及装置,终端设备确定第一频带,并从网络设备接收第一信息,所述第一信息用于指示第一传输频带,然后根据所述第一信息确定所述第一传输频带,最后在所述第一传输频带上向所述网络设备传输数据;其中,所述第一频带的带宽大于所述终端设备支持的最大信道带宽;所述第一传输频带用于所述终端设备传输数据;所述第一频带包含所述第一传输频带。通过上述方法,网络设备可以在更大的频率资源范围内动态调度低带宽能力的终端设备,从而获得更大的频率选择性调度增益,提高数据传输效率。
需要说明的是,本申请实施例中涉及的信令可以承载在物理下行控制信道、物理下行共享信道、信号中一种或多种中,本申请对此不作限定。例如,所述信号可以为解调参考信号(demodulation reference signal,DMRS)、CSI-RS等。
需要说明的是,尽管上述实施例以低带宽能力终端设备为例进行说明,但是本申请提供的数据的传输方法也可以用于非后向兼容的终端设备,例如NR版本(release)17或NR版本(release)17以后的终端设备,或者未来通信系统中的终端设备。本申请对此不作限定。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (35)

  1. 一种数据的传输方法,其特征在于,包括:
    终端设备确定第一频带,所述第一频带的带宽大于所述终端设备支持的最大信道带宽;
    所述终端设备从网络设备接收第一信息,所述第一信息用于指示第一传输频带,所述第一传输频带的带宽不大于所述终端设备支持的最大信道带宽,所述第一传输频带用于所述终端设备传输数据;
    所述终端设备根据所述第一信息确定所述第一传输频带;所述第一频带包含所述第一传输频带;
    所述终端设备在所述第一传输频带上向所述网络设备传输数据。
  2. 如权利要求1所述的方法,其特征在于,包括:
    所述第一频带的带宽不大于载波带宽。
  3. 如权利要求1-2任一项所述的方法,其特征在于,所述终端设备确定所述第一频带,包括:
    所述终端设备从所述网络设备接收第二信息,所述第二信息用于指示所述第一频带;
    所述终端设备根据所述第二信息确定所述第一频带;或
    所述第一频带为预定义的。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备接收第三信息,所述第三信息用于指示第二频带;
    所述终端设备根据所述第三信息确定所述第二频带,所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
  5. 如权利要求4所述的方法,其特征在于,包括:
    所述第三信息至少包括:所述第二频带对应的频域资源位置;
    其中,所述第二频带对应的频域资源位置为所述第二频带对应的频域起始位置和所述第二频带的带宽,或者所述第二频带对应的频域资源位置为所述第二频带的频域起始位置和终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域起始位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量,或者所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域终止位置的偏移量。
  6. 如权利要求4所述的方法,其特征在于,所述第三信息中包括第一索引,所述第一索引与所述第一频带中的所述第二频带对应;
    所述终端设备根据所述第三信息确定所述第二频带,包括:
    所述终端设备根据所述第一索引和所述第一索引与所述第二频带的对应关系确定所述第二频带。
  7. 如权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据以下的至少一项确定第二频带:所述终端设备传输数据时在时间上的位置信息、所述终端设备传输数据时对应的混合自动重传请求HARQ进程、所述终端设备传输数据时所对应的传输次数、与所述第二频带所在的所述第一频带的相关信息;
    其中,与所述第二频带所在的所述第一频带的相关信息为所述第一频带的索引或者为所述第一频带对应的频域资源位置;
    所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述数据为PDSCH数据。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备获取第一频带集合,所述第一频带集合包括不同数据传输类型对应的频带中的至少一种;
    所述终端设备确定所述第一频带,包括:
    所述终端设备根据数据传输类型和所述第一频带集合确定所述第一频带。
  10. 一种数据的传输方法,其特征在于,包括:
    网络设备向终端设备发送第一信息,所述第一信息用于指示第一传输频带,所述第一传输频带用于所述终端设备传输数据,其中,所述第一传输频带包含于第一频带,所述第一频带的带宽大于所述终端设备支持的最大信道带宽,所述第一传输频带的带宽不大于所述终端设备支持的最大信道带宽;
    所述网络设备在所述第一传输频带上从所述终端设备接收数据。
  11. 如权利要求10所述的方法,其特征在于,包括:
    所述第一频带的带宽不大于载波带宽。
  12. 如权利要求10-11任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二信息,所述第二信息用于指示所述第一频带。
  13. 如权利要求10-12任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三信息,所述第三信息用于指示第二频带,所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
  14. 如权利要求13所述的方法,其特征在于,包括:
    所述第二信息至少包括:所述第二频带对应的频域资源位置;
    其中,所述第二频带对应的频域资源位置为所述第二频带对应的频域起始位置和第二频带的带宽,或者所述第二频带对应的频域资源位置为所述第二频带的频域起始位置和终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域起始位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量,或者所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域终止位置的偏移量。
  15. 如权利要求13所述的方法,其特征在于,所述第二信息包括第一索引,所述第一索引与所述第一频带中的所述第二频带对应。
  16. 如权利要求10-15任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备为所述终端设备配置第二频带集合,所述第二频带集合包括不同数据传输类型对应的频带中的至少一种。
  17. 一种数据的传输装置,其特征在于,包括:
    处理器,用于确定第一频带,所述第一频带的带宽大于终端设备支持的最大信道带宽;
    收发器,用于从网络设备接收第一信息,所述第一信息用于指示第一传输频带,所述第一传输频带的带宽不大于所述终端设备支持的最大信道带宽,所述第一传输频带用于所述终端设备传输数据;
    所述处理器,还用于根据所述第一信息确定所述第一传输频带;所述第一频带包含所述第一传输频带;
    所述收发器,还用于在所述第一传输频带上向所述网络设备传输数据。
  18. 如权利要求17所述的装置,其特征在于,包括:
    所述第一频带的带宽不大于载波带宽。
  19. 如权利要求17-18任一项所述的装置,其特征在于,
    所述收发器,还用于从所述网络设备接收第二信息,所述第二信息用于指示所述第一频带;
    所述处理器,在确定所述第一频带时,具体用于:
    根据所述第二信息确定所述第一频带;或
    所述第一频带为预定义的。
  20. 如权利要求17-19任一项所述的装置,其特征在于,
    所述收发器,还用于从所述网络设备接收第三信息,所述第三信息用于指示第二频带;
    所述处理器,还用于根据所述第三信息确定所述第二频带,所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
  21. 如权利要求20所述的装置,其特征在于,包括:
    所述第三信息至少包括:所述第二频带对应的频域资源位置;
    其中,所述第二频带对应的频域资源位置为所述第二频带对应的频域起始位置和所述第二频带的带宽,或者所述第二频带对应的频域资源位置为所述第二频带的频域起始位置和终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域起始位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量,或者所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域终止位置的偏移量。
  22. 如权利要求20所述的装置,其特征在于,所述第三信息中包括第一索引,所述第一索引与所述第一频带中的所述第二频带对应;
    所述处理器,在根据所述第三信息确定所述第二频带时,具体用于:
    根据所述第一索引和所述第一索引与所述第二频带的对应关系确定所述第二频带。
  23. 如权利要求17-19任一项所述的装置,其特征在于,
    所述处理器,还用于根据以下的至少一项确定第二频带:所述终端设备传输数据时在时间上的位置信息、所述终端设备传输数据时对应的混合自动重传请求HARQ进程、所述终端设备传输数据时所对应的传输次数、与所述第二频带所在的所述第一频带的相关信息;
    其中,与所述第二频带所在的所述第一频带的相关信息为所述第一频带的索引或者为所述第一频带对应的频域资源位置;
    所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
  24. 如权利要求17-23任一项所述的装置,其特征在于,所述数据为PDSCH数据。
  25. 如权利要求17-24任一项所述的装置,其特征在于,
    所述处理器,还用于获取第一频带集合,所述第一频带集合包括不同数据传输类型对应的频带中的至少一种;
    所述处理器,在确定所述第一频带时,具体用于:
    根据数据传输类型和所述第一频带集合确定所述第一频带。
  26. 一种数据的传输装置,其特征在于,包括:
    收发器,用于向终端设备发送第一信息,所述第一信息用于指示第一传输频带,所述第一传输频带用于所述终端设备传输数据,其中,所述第一传输频带包含于第一频带,所述第一频带的带宽大于所述终端设备支持的最大信道带宽,所述第一传输频带的带宽不大于所述终端设备支持的最大信道带宽;
    在所述第一传输频带上从所述终端设备接收数据;
    处理器,用于控制所述收发器收发数据。
  27. 如权利要求26所述的装置,其特征在于,包括:
    所述第一频带的带宽不大于载波带宽。
  28. 如权利要求26-27任一项所述的装置,其特征在于,所述收发器,还用于:
    向所述终端设备发送第二信息,所述第二信息用于指示所述第一频带。
  29. 如权利要求26-28任一项所述的装置,其特征在于,所述收发器,还用于:
    向所述终端设备发送第三信息,所述第三信息用于指示第二频带,所述第二频带包含于所述第一频带,且所述第二频带的带宽不大于所述终端设备支持的最大信道带宽;所述第一传输频带为所述第二频带的部分或者全部。
  30. 如权利要求29所述的装置,其特征在于,包括:
    所述第二信息至少包括:所述第二频带对应的频域资源位置;
    其中,所述第二频带对应的频域资源位置为所述第二频带对应的频域起始位置和第二频带的带宽,或者所述第二频带对应的频域资源位置为所述第二频带的频域起始位置和终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域起始位置,或者,所述第二频带对应的频域资源位置为所述第二频带的频域终止位置,或者,所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域起始位置的偏移量,或者所述第二频带对应的频域资源位置为所述第二频带在所述第一频带内相对于所述第一频带的频域终止位置的偏移量。
  31. 如权利要求29所述的装置,其特征在于,所述第二信息包括第一索引,所述第一索引与所述第一频带中的所述第二频带对应。
  32. 如权利要求26-31任一项所述的装置,其特征在于,所述处理器,还用于:
    为所述终端设备配置第二频带集合,所述第二频带集合包括不同数据传输类型对应的频带中的至少一种。
  33. 一种通信系统,其特征在于,包括:如权利要求17-25任一项所述的数据的传输装置和如权利要求26-32任一项所述的数据的传输装置。
  34. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-9任意一项所述的方法,或者执行如权利要求10-16任意一项所述的方法。
  35. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-9任意一项所述的方法,或者执行如权利要求10-16任意一项所述的方法。
PCT/CN2020/110596 2019-08-30 2020-08-21 一种数据的传输方法及装置 WO2021036949A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20856727.1A EP4021115A4 (en) 2019-08-30 2020-08-21 DATA TRANSMISSION METHOD AND APPARATUS
US17/679,674 US20220183008A1 (en) 2019-08-30 2022-02-24 Data Transmission Method And Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910819083.X 2019-08-30
CN201910819083.XA CN112449424B (zh) 2019-08-30 2019-08-30 一种数据的传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/679,674 Continuation US20220183008A1 (en) 2019-08-30 2022-02-24 Data Transmission Method And Apparatus

Publications (1)

Publication Number Publication Date
WO2021036949A1 true WO2021036949A1 (zh) 2021-03-04

Family

ID=74684892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110596 WO2021036949A1 (zh) 2019-08-30 2020-08-21 一种数据的传输方法及装置

Country Status (4)

Country Link
US (1) US20220183008A1 (zh)
EP (1) EP4021115A4 (zh)
CN (2) CN112449424B (zh)
WO (1) WO2021036949A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023216929A1 (zh) * 2022-05-12 2023-11-16 华为技术有限公司 一种通信的方法和装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11812440B2 (en) * 2020-04-03 2023-11-07 Qualcomm Incorporated Bandwidth part operation for single downlink control information multi-cell scheduling
US20240080825A1 (en) * 2021-01-18 2024-03-07 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for determining bandwidth part
WO2023279306A1 (zh) * 2021-07-07 2023-01-12 北京小米移动软件有限公司 频带分组方法及装置
CN116545597A (zh) * 2022-01-26 2023-08-04 华为技术有限公司 接收同步信号块的方法和通信装置
CN117956489A (zh) * 2022-10-27 2024-04-30 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN117998625A (zh) * 2022-11-04 2024-05-07 华为技术有限公司 一种通信方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220809A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 一种下行物理控制信道的发送、接收方法及相应装置
CN104956753A (zh) * 2013-01-24 2015-09-30 索尼公司 移动通信基站和用于基于ue能力分配虚拟载波外部的资源的方法
CN108633059A (zh) * 2017-03-25 2018-10-09 华为技术有限公司 资源配置、确定部分带宽及指示部分带宽的方法及设备
WO2019022494A2 (ko) * 2017-07-25 2019-01-31 삼성전자주식회사 무선 통신 시스템에서 대역폭을 결정하기 위한 장치 및 방법
WO2019097828A1 (ja) * 2017-11-14 2019-05-23 日本電気株式会社 無線通信装置、方法、プログラム、及び記録媒体
WO2019095212A1 (zh) * 2017-11-16 2019-05-23 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8885560B2 (en) * 2011-06-27 2014-11-11 Telefonaktiebolaget L M Ericsson (Publ) Cellular communication system support for limited bandwidth communication devices
GB2510138A (en) * 2013-01-24 2014-07-30 Sony Corp Allocating communications resources within different frequency ranges according to the relative capability of a communications device
US10694504B2 (en) * 2015-12-22 2020-06-23 Sony Mobile Communications Inc. Co-deployment of narrowband and wideband carriers
WO2018194412A1 (ko) * 2017-04-20 2018-10-25 엘지전자 주식회사 무선 통신 시스템에서 자원을 할당하는 방법 및 장치
CN109151912B (zh) * 2017-06-16 2021-02-05 华为技术有限公司 一种通信方法、用户设备、网络设备和通信系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220809A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 一种下行物理控制信道的发送、接收方法及相应装置
CN104956753A (zh) * 2013-01-24 2015-09-30 索尼公司 移动通信基站和用于基于ue能力分配虚拟载波外部的资源的方法
CN108633059A (zh) * 2017-03-25 2018-10-09 华为技术有限公司 资源配置、确定部分带宽及指示部分带宽的方法及设备
WO2019022494A2 (ko) * 2017-07-25 2019-01-31 삼성전자주식회사 무선 통신 시스템에서 대역폭을 결정하기 위한 장치 및 방법
WO2019097828A1 (ja) * 2017-11-14 2019-05-23 日本電気株式会社 無線通信装置、方法、プログラム、及び記録媒体
WO2019095212A1 (zh) * 2017-11-16 2019-05-23 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4021115A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023216929A1 (zh) * 2022-05-12 2023-11-16 华为技术有限公司 一种通信的方法和装置

Also Published As

Publication number Publication date
EP4021115A1 (en) 2022-06-29
EP4021115A4 (en) 2022-09-14
CN112449424A (zh) 2021-03-05
CN115580938A (zh) 2023-01-06
US20220183008A1 (en) 2022-06-09
CN112449424B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
WO2021036949A1 (zh) 一种数据的传输方法及装置
US11310790B2 (en) Frequency domain resource adjustment method and apparatus, indication information sending method and apparatus, and system
KR102009618B1 (ko) 통신 장치 및 방법
CN108282870B (zh) 一种资源指示方法、用户设备及网络设备
CN108521321B (zh) 用于发送和接收下行链路控制信息的方法和装置
WO2021062613A1 (zh) 数据传输的方法和设备
TWI713402B (zh) 業務傳輸的方法和裝置
US20200280981A1 (en) Method and apparatus for managing resource pool in wireless communication system
WO2018082544A1 (zh) 无线通信的方法和装置
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
EP3917256A1 (en) Multiple downlink control information-based transmission method, device, system, and storage medium
WO2019052455A1 (zh) 数据信道参数配置方法及装置
WO2020025042A1 (zh) 资源配置的方法和终端设备
JP7315182B2 (ja) サイドリンク情報の伝送方法、通信デバイス、およびネットワークデバイス
TWI771337B (zh) 傳輸上行控制訊息的方法、終端設備和網路設備
WO2021032021A1 (zh) 一种通信方法及装置
EP3633892B1 (en) Data transmission method and device, and communication system
US20220200769A1 (en) SRS Transmission Method And Apparatus
US11166266B2 (en) Information sending method and apparatus and information receiving method and apparatus
US20240049264A1 (en) Physical sidelink feedback channel (psfch) transmission method and terminal device
US20210204312A1 (en) Downlink control information transmission method and apparatus
US9491725B2 (en) User equipment and methods for device-to-device communication over an LTE air interface
WO2021227849A1 (zh) 通信方法和通信装置
WO2018218539A1 (zh) 一种调度系统信息块的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020856727

Country of ref document: EP

Effective date: 20220322