WO2019052455A1 - 数据信道参数配置方法及装置 - Google Patents
数据信道参数配置方法及装置 Download PDFInfo
- Publication number
- WO2019052455A1 WO2019052455A1 PCT/CN2018/105155 CN2018105155W WO2019052455A1 WO 2019052455 A1 WO2019052455 A1 WO 2019052455A1 CN 2018105155 W CN2018105155 W CN 2018105155W WO 2019052455 A1 WO2019052455 A1 WO 2019052455A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parameter
- data channel
- determining
- type
- information
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0057—Physical resource allocation for CQI
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
Definitions
- the present application relates to the field of communications, for example, to a data channel parameter configuration method and apparatus.
- the downlink physical layer control channel plays a very important role.
- the control information of the physical layer is mainly used to: (1) send downlink scheduling information to the user equipment (User Equipment, UE) ( DL Assignment), so that the UE receives the downlink data channel, and the data channel can carry some high-level signaling messages in addition to the bearer data; (2) send uplink scheduling information (UL Grant) to the UE, so that the UE sends the uplink data channel; Sending an aperiodic CQI report request; (4) notifying the main control channel (MCCH) change; (5) transmitting an uplink power control command; (6) hybrid automatic repeat reQuest (HARQ) Related information; (7) Radio Network Tempory Identity (RNTI): This information is implicitly included in the Cyclic Redundancy Check (CRC).
- the information carried by the downlink physical control channel is called Downlink Control Information (DCI).
- DCI Downlink Control Information
- the DCI may indicate cell level information, and is generally scrambled using SI (system information)-RNTI/P(paging)-RNTI/RA (random access)-RNTI.
- SI system information
- P(paging)-RNTI/RA random access
- C-RNTI/SPS C-RNTI/Temporary C-RNTI Scrambling with different RNTIs actually represents that the message is directed to different groups of users and different roles. If the RNTI information used during scrambling is not known, the contents of these control messages cannot be accurately solved; in general, the control channels and their corresponding search spaces can be classified into the following two categories, as shown in Table 1.
- search space corresponds to two kinds of search space public search space and proprietary search space, or two types of control channel public control channel and proprietary control channel; characterized in that the public search space / control channel is shared by multiple UEs, proprietary The search space/control channel is sent to a specific UE.
- the PDCCH can directly carry some physical layer control information. As shown in FIG. 1 , the PDCCH can also be used to transmit control information from a higher layer or data information. These high-level information is treated as physical layer data at the physical layer.
- a part of the important information in the PDCCH is used to indicate the related configuration of the data channel, and mainly includes the following aspects: resource allocation indication information, reference signal parameter indication information, rate matching information, and transmission parameter indication information.
- resource allocation indication information In the new Radio Access Technology (NR), due to the increasing bandwidth, the reference signal design is more and more complex, the rate matching needs to be considered and the transmission parameters that need to be indicated are increasing, resulting in DCI. The cost is huge.
- the physical layer signaling overhead is a valuable resource because the robustness of the control channel is very high. Generally, the actual transmission rate is very low, and the modulation and coding scheme is also low-order, and the actual transmission resources occupied are many. If there are a large number of UEs, the overhead is very serious, and the overhead of DCI needs to be optimized.
- the present application provides a data channel parameter configuration method and apparatus to at least solve the problem of large DCI overhead in the related art.
- the present application provides a data channel parameter configuration method, including: determining a configurable parameter state set corresponding to a data channel parameter according to the first type of information, where the first type of information includes at least one of the following: a service type, a downlink control Information parameters, channel types, physical broadcast channel information, and synchronization signal information; selecting a parameter state to be used from the set of configurable parameter states.
- the present application further provides a data channel parameter determining method, including: determining, according to the first type of information, a configurable parameter state set corresponding to the data channel parameter, where the first type of information includes at least one of the following: a service type, a downlink Controlling information parameters, channel types, physical broadcast channel information, and synchronization signal information; performing data channel reception demodulation according to parameter states in the set of configurable parameter states.
- the present application further provides a data channel parameter configuration apparatus, including: a determining module, configured to determine, according to the first type of information, a configurable parameter state set corresponding to the data channel parameter, wherein the first type of information includes at least one of the following : a service type, a downlink control information parameter, a channel type, physical broadcast channel information, and synchronization signal information; and a selection module configured to select a parameter state to be used from the set of configurable parameter states.
- a determining module configured to determine, according to the first type of information, a configurable parameter state set corresponding to the data channel parameter, wherein the first type of information includes at least one of the following : a service type, a downlink control information parameter, a channel type, physical broadcast channel information, and synchronization signal information
- a selection module configured to select a parameter state to be used from the set of configurable parameter states.
- the present application further provides a data channel parameter determining apparatus, including: a determining module, configured to determine a configurable parameter state set corresponding to a data channel parameter according to the first type of information, wherein the first type of information includes at least one of the following a service type, a downlink control information parameter, a channel type, physical broadcast channel information, and synchronization signal information; and a demodulation module configured to perform data channel reception demodulation according to the parameter status.
- a data channel parameter determining apparatus including: a determining module, configured to determine a configurable parameter state set corresponding to a data channel parameter according to the first type of information, wherein the first type of information includes at least one of the following a service type, a downlink control information parameter, a channel type, physical broadcast channel information, and synchronization signal information; and a demodulation module configured to perform data channel reception demodulation according to the parameter status.
- the DCI overhead is reduced by using some differentiated information that can be obtained in advance, thereby solving the problem of large DCI overhead, thereby achieving the effect of higher utilization of the physical layer signaling overhead.
- 1 is a schematic diagram of downlink physical control channel carrying information according to the related art
- FIG. 2 is a flowchart of a data channel parameter configuration method according to an embodiment of the present application
- FIG. 3 is a flowchart of a method for determining a data channel parameter according to an embodiment of the present application
- FIG. 5 is a schematic diagram of continuous resource allocation according to an embodiment of the present application.
- FIG. 6 is a schematic structural diagram of a data channel parameter configuration apparatus according to an embodiment of the present application.
- FIG. 7 is a schematic structural diagram of a data channel parameter determining apparatus according to an embodiment of the present application.
- FIG. 2 is a flowchart of a data channel parameter configuration method according to an embodiment of the present application. As shown in FIG. 2, the method includes the following steps S202 and S204.
- step S202 a configurable parameter state set corresponding to the data channel parameter is determined according to the first type of information.
- the first type of information includes at least one of the following: a service type, a downlink control information parameter, and a channel type.
- step S204 a parameter state to be used is selected from the set of configurable parameter states.
- the DCI overhead is reduced by using some pre-acquisition information that can be obtained in advance, thereby solving the problem of large DCI overhead, and further achieving the effect of higher physical layer signaling overhead utilization.
- the method further includes: transmitting the selected indication information of the parameter status to the receiving end.
- the data channel parameter is a resource allocation parameter
- determining a set of configurable parameter states corresponding to the data channel parameter includes at least one of: determining a configurable resource block or a set of resource block groups; determining that the resource can be continuously allocated.
- determining, according to the service type, the configurable parameter status set corresponding to the data channel parameter comprises: determining that at least two different types of service types use different configuration parameter status sets.
- the service type includes at least one of the following: an ultra-high reliability ultra-low latency communication service, a large-scale Internet of Things service, and a mobile broadband enhanced service.
- the first type of information is a downlink control information parameter
- determining, according to the downlink control information parameter, a set of configurable parameter states corresponding to the data channel parameter including: according to a downlink control information type, a downlink control information scrambling manner,
- the downlink control information location or the downlink control information refers to the demodulation pilot sequence to determine a configurable parameter state set corresponding to the data channel parameter.
- the data channel parameter is a demodulation pilot parameter
- determining a configurable parameter state set corresponding to the data channel parameter includes determining a parameter state set of at least one of the following: a port multiplexing mode, a symbol number, and a port number. , pattern density, additional demodulation pilots, pilot power, and pilot sequences.
- the data channel parameter is a transmission parameter
- determining a configurable parameter state set corresponding to the data channel parameter includes determining a parameter state set of at least one of the following: a physical resource block precoding binding parameter, and a quasi-public position indication Parameters, code block group parameters, hybrid automatic repeat request parameters, and modulation and coding strategy parameters.
- the resource block is the same as a resource block occupied by at least one of a broadcast control channel and a synchronization signal.
- determining the configurable parameter state set corresponding to the data channel parameter according to the first type of information includes: determining, according to at least one of a transmission bandwidth of the physical broadcast channel and a transmission bandwidth of the synchronization signal, that the data channel is available for scheduling bandwidth.
- the data channel includes a downlink data channel and an uplink data channel
- the parameter status expression forms are different, and the parameter types are different, and the corresponding parameter state expression forms may also be different, and the common expression form may be Values, patterns, sequences, etc.
- the receiving end may acquire the parameter state by a predetermined reservation, and when the parameter state set is multiple, the selected indication information of the parameter state needs to be sent. To the receiving end.
- FIG. 3 is a flowchart according to an embodiment of the present application. As shown in FIG. 3, the process includes the following steps S302 and S304.
- step S302 a configurable parameter state set corresponding to the data channel parameter is determined according to the first type of information.
- the first type of information includes at least one of the following: a service type, a downlink control information parameter, and a channel type.
- step S304 data channel reception demodulation is performed according to the parameter state.
- the DCI overhead is reduced by using some pre-acquisition information that can be obtained in advance, thereby solving the problem of large DCI overhead, and further achieving the effect of higher physical layer signaling overhead utilization.
- the method before the data channel receiving and demodulating according to the parameter status, the method further includes: selecting, according to the sending end indication information, the parameter status to be used from the set of configurable parameter states.
- the data channel parameter is a resource allocation parameter
- determining a set of configurable parameter states corresponding to the data channel parameter includes at least one of: determining a configurable resource block or a set of resource block groups; determining that the resource can be continuously allocated. Number of resource blocks or resource block groups; determining the number of resource blocks or resource block groups that can be allocated; determining the number of time domain symbols that can be allocated; determining the number of time slots that can be allocated.
- determining, according to the service type, the configurable parameter status set corresponding to the data channel parameter comprises: determining that at least two different types of service types use different configuration parameter status sets.
- the type of service includes at least one of the following: an ultra-high reliability ultra-low latency communication service, a large-scale Internet of Things service, and a mobile broadband enhanced service.
- the first type of information is a downlink control information parameter
- determining, according to the downlink control information parameter, a set of configurable parameter states corresponding to the data channel parameter including: according to a downlink control information type, a downlink control information scrambling manner,
- the downlink control information location or the downlink control information refers to the demodulation pilot sequence to determine a configurable parameter state set corresponding to the data channel parameter.
- the data channel parameter is a demodulation pilot parameter
- determining a configurable parameter state set corresponding to the data channel parameter includes determining a parameter state set of at least one of the following: a port multiplexing mode, a symbol number, and a port number. , pattern density, additional demodulation pilots, pilot power, and pilot sequences.
- the data channel parameter is a transmission parameter
- determining a configurable parameter state set corresponding to the data channel parameter includes determining a parameter state set of at least one of the following: a physical resource block precoding binding parameter, and a quasi-public position indication Parameters, code block group parameters, hybrid automatic repeat request parameters, and modulation and coding strategy parameters.
- the resource block is the same as a resource block occupied by at least one of a broadcast control channel and a synchronization signal.
- determining the configurable parameter state set corresponding to the data channel parameter according to the first type of information includes: determining, according to at least one of a transmission bandwidth of the physical broadcast channel and a transmission bandwidth of the synchronization signal, that the data channel is available for scheduling bandwidth.
- the receiving end may acquire the parameter state by using a predetermined time.
- the receiving end obtains the parameter from the configurable parameter according to the sending end indication information. Select the parameter status to be used in the status collection.
- a differentiated DCI design is introduced for the related configuration of the data channel, and the following embodiments are described from the configuration of the resource allocation signaling configuration, the demodulation reference signal configuration, and the transmission parameters, respectively.
- This embodiment describes the present application from the aspect of resource allocation signaling configuration.
- the non-contiguous resource allocation is as follows: the resource blocks of the system bandwidth are sequentially divided into resource groups according to the size of the resource block number, and each resource block (RB) is divided into one resource block group.
- the resource block numbers included in the multiple resource block groups are different from each other.
- the number of resource blocks included in the last resource block group is not greater than P, and the number of resource block groups (RBGs) is sequentially numbered from 0.
- a bitmap is used to represent the allocation of a plurality of resource block groups (n consecutive bits, each bit corresponding to one resource group, 1 indicating allocation, 0 indicating no allocation).
- the contiguous resource allocation is: any contiguous resource block can be determined by the starting position of the resource block and the number of resource blocks.
- the method of jointly coding the starting position of the resource block and the number of resource blocks is each tree shape. All sub-nodes corresponding to a point represent a resource situation, for example, node 13 indicates that the allocated resources are RB1, RB2, and RB3.
- the overhead will increase as the bandwidth increases. Since the bandwidth of NR is very large, the overhead will be much higher. For example, LTE can be up to 20MHz per carrier frequency, but NR can reach 100MHz per carrier frequency. Flexible resource allocation can obtain frequency domain selective fading. But if the bandwidth is large enough, then adding flexibility will not bring extra effects.
- the parameters of the resource allocation may be pre-configured in any of the following manners.
- the configuration defines the number of RB/REGs that can be continuously allocated.
- the configuration defines the number of all RB/REGs that can be allocated.
- the configuration defines all assignable time domain symbols and time slots.
- One method is to directly configure and specify the foregoing parameters, and determine the size of the resource allocation indication signaling in the DCI according to the value of the parameter. Another way is to determine these parameters through some prior agreement.
- the configuration limiting method may include the following four types.
- Ultra-relaible and Low Latency Communication (URLLC) service uses resource allocation parameter configuration definition 1;
- Massive machine type of communication (mMTc) service uses resource allocation parameter configuration limit 2, enhances mobile
- eMBB Enhanced Mobile Broadband
- the URLLC service or the mMTc service does not have a strong necessity for highly flexible resource allocation under such a large bandwidth.
- the URLLC and mMTc services also have different characteristics from the eMBB service. For example, the size of the TB block is different, the number of transport layers is different, and there is no need to have the same in resource allocation.
- the above resource allocation parameters are determined according to the DCI type, the DCI scrambling method, the DCI position, and the DCI reference demodulation pilot sequence.
- DCI Type 1 uses Resource Allocation Parameter Configuration Definition 1; DCI Type 2 uses Resource Allocation Parameter Configuration Definition 2, and DCI Type 3 uses Resource Allocation Parameter Configuration Definition 3.
- the DCI scrambling mode 1 uses the resource allocation parameter configuration definition 1; the DCI scrambling mode 2 uses the resource allocation parameter configuration definition 2, and the DCI scrambling mode 3 uses the resource allocation parameter configuration definition 3.
- the DCI position 1 uses the resource allocation parameter configuration definition 1; the DCI position 2 uses the resource allocation parameter configuration definition 2, and the DCI position 3 uses the resource allocation parameter configuration definition 3.
- the DCI reference demodulation pilot sequence 1 uses a resource allocation parameter configuration definition 1; the DCI reference demodulation pilot sequence 2 uses a resource allocation parameter configuration definition 2, and the DCI reference demodulation pilot sequence 3 uses a resource allocation parameter configuration definition 3.
- the difference between the DCI type, the scrambling code, the position, and the reference signal sequence generally means that there is a difference in the content of the control information, the transmission technique, and the like.
- paging messages, system messages, and random access messages have different ranges of content sizes. There is no need to have the same resource allocation design, nor is it necessary to have the same resource allocation design as the data information.
- the physical downlink shared channel uses the resource allocation parameter configuration to define 1; the CSI-RS signal uses the resource allocation parameter configuration to define 2.
- the physical uplink shared channel uses the resource allocation parameter configuration definition 1; the Sounding Reference Signal (SRS) signal uses the resource allocation parameter configuration definition 2.
- SRS Sounding Reference Signal
- the PUSCH uses resource allocation parameter configuration definition 1; the PDSCH uses resource allocation parameter configuration definition 2.
- the resource allocation manner of the downlink data channel PDSCH and the channel state information reference signal is not necessarily limited to be the same, and the CSI-RS may need to be more flexible.
- the resource allocation manner of the same uplink data channel PUSCH and uplink measurement reference signal SRS is not necessarily limited to the same, and the SRS may need to be more flexible.
- the above resource allocation parameters are determined according to a slot format.
- Slot format 1 uses resource allocation parameter configuration definition 1; slot format 2 signal uses resource allocation parameter configuration definition 2.
- the slot format configuration is similar to the subframe structure configuration in LTE.
- the time-domain symbol resources of the uplink and the downlink are specified. In some cases, the number of downlink symbols is large and the number of uplinks is small. In some cases, the number of downlink symbols is small and the number of uplinks is large. In different cases, the resource allocation parameter definition in the frequency domain should be considered separately.
- the initial access of the UE occurs, there is a period of time when the physical layer data needs to be transmitted, but the RRC configuration cannot be obtained. In this case, the following restrictions can be imposed on the resource allocation parameters, the overhead is reduced, and the performance can be improved. .
- This limitation is actually a pre-agreed, such as determining the time-frequency resource location that the data channel can allocate based on the broadcast channel PBCH/synchronization signal SS/other periodic reference signal (eg, CSI-RS) occupied bandwidth.
- PBCH/synchronization signal SS/other periodic reference signal eg, CSI-RS
- the frequency domain RB resources that can be used for data channel transmission are the same as the RB resources occupied by the PBCH/SS. Or a subset of the RBs occupied by the PBCH/SS, and may be the RBs occupied by the PBCH/SS and the consecutive RBs on both sides, and the number does not exceed twice the number of RBs occupied by the PBCH/SS.
- the time domain location can also be similarly pre-defined.
- This method can not only reduce the DCI overhead, but also better utilize the PBCH or SS or other periodic reference signals for time-frequency offset estimation to obtain better performance.
- the NR data channel reference demodulation pilot has a variety of configurations, including:
- Port multiplexing mode configuration for example, frequency division multiplexing, time division multiplexing, time domain code division multiplexing, frequency domain code division multiplexing, and time and frequency domain code division multiplexing.
- the number of symbols is configured; for example, one symbol or two symbols.
- Port number configuration for example, port numbering rules.
- the configuration of the pattern density for example, the density is 2, 3, 6RE/RB/port.
- Additional Demodulation Pilot Configuration The presence or absence of additional demodulation pilots.
- Pilot power configuration relative power of the pilot RE and the data RE.
- the parameter configuration range When configuring these parameters, you can define the parameter configuration range according to different situations. When defined, it may be a separate or joint definition for different demodulation pilot parameters.
- the URLLC service uses the demodulation pilot parameter configuration to define 1; the mMTc service uses the demodulation pilot parameter configuration to define 2, and the eMBB service uses the demodulation pilot parameter configuration to define 3.
- the pilot density of the mMTc service can only select 2,3RE/RB/port; while the URLLC can only select 3,6RE/RB/port, and the eMBB can select 2,3,6RE/RB/port.
- the configuration used is related to the characteristics of the business itself.
- the port multiplexing alternative mode set 1 corresponding to the mMTc service and the port multiplexing optional mode set 2 corresponding to the URLLC service For example, the port multiplexing alternative mode set 1 corresponding to the mMTc service and the port multiplexing optional mode set 2 corresponding to the URLLC service.
- the pilot to data power ratio corresponding to the eMBB service is 1:2
- the pilot to data power ratio corresponding to the URLLC service is 2
- the pilot to data power ratio corresponding to the mMTc service is 1.
- the above reference pilot configuration parameters are determined according to the DCI type, the DCI scrambling mode, the DCI position, and the DCI reference demodulation pilot sequence.
- DCI Type 1 uses demodulation pilot parameter configuration or configuration set 1 corresponding to its scheduled data channel;
- DCI Type 2 uses demodulation pilot parameter configuration or configuration set 2 corresponding to its scheduled data channel, and
- DCI Type 3 corresponds to its scheduled data.
- the channel uses the demodulation pilot parameter configuration or configuration set 3.
- DCI scrambling mode 1 uses demodulation pilot parameter configuration or configuration set 1 corresponding to its scheduled data channel;
- DCI scrambling mode 2 uses demodulation pilot parameter configuration or configuration set 2 corresponding to its scheduled data channel,
- DCI scrambling mode 3 Use demodulation pilot parameter configuration or configuration set 3 corresponding to its scheduled data channel.
- the transmission location 1 of the DCI corresponds to its scheduled data channel using demodulation pilot parameter configuration or configuration set 1; the transmission location 2 of the DCI corresponds to its scheduled data channel using demodulation pilot parameter configuration or configuration set 2.
- the control channel reference demodulation pilot sequence 1 for transmitting DCI corresponds to its scheduled data channel demodulation pilot parameter configuration or configuration set 1; the control channel reference demodulation pilot sequence 2 for transmitting DCI corresponds to its scheduled data channel demodulation guide Frequency parameter configuration or configuration set 2.
- the difference between the DCI type, the scrambling code, the position, and the reference signal sequence generally means that there is a difference in the content of the control information, the transmission technique, and the like. For example, paging messages, system messages, and random access messages, their importance, transmission requirements, and object-oriented objects may all be different. It is not necessary to have the same demodulation reference signal configuration.
- This embodiment specifically describes the present application from the configuration of transmission parameters.
- the transmission parameters include a PRB bundling parameter, a QCL (Quasi-co-location) indication parameter, a CBG (Codeblock group) parameter, a HARQ parameter, an MCS parameter, and the like.
- This information also requires multiple DCI bits for configuration instructions.
- the binding granularity of PRB bundling has many options.
- the binding granularity is: 1, 2, 4.
- the corresponding binding granularity set may be determined according to the service type.
- the PRB bundling binding granularity of the eMBB is 1, 2, 4; and the PRB bundling binding granularity of the URLLC is 2, 4.
- an optional configuration set of binding granularity or binding granularity may also be determined based on DCI type, DCI scrambling mode, DCI location, and DCI reference demodulation pilot sequence.
- the QCL indicates parameters, including the type of QCL and the QCL relationship. It may be determined according to the type of service, or may be determined according to the DCI type, the DCI scrambling method, the DCI position, and the DCI reference demodulation pilot sequence.
- the CBG parameters mainly include the number of CBGs, the CB division mode, and the CB mapping mode.
- the HARQ parameters mainly include: the HARQ retransmission version number and the number of retransmission processes; the MCS parameters mainly include the MCS table. These parameters or their optional configuration sets may be determined according to the type of service, or may be determined according to the DCI type, the DCI scrambling method, the DCI position, and the DCI reference demodulation pilot sequence.
- the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
- the technical solution of the present application which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
- the instructions include a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present application.
- a data channel parameter configuration device is further provided, and the device is configured to implement the foregoing embodiments and application implementation manners, and details have been omitted for description.
- the term “module” may implement a combination of software and/or hardware of a predetermined function.
- FIG. 6 is a schematic structural diagram of a data channel parameter configuration apparatus according to an embodiment of the present application, where the apparatus includes: a determining module 10 and a selecting module 20.
- the determining module 10 is configured to determine, according to the first type of information, a configurable parameter state set corresponding to the data channel parameter, where the first type of information includes at least one of the following: a service type, a downlink control information parameter, a channel type, and a physical broadcast. Channel information, and synchronization signal information.
- the selection module 20 is arranged to select a parameter state to be used from the set of configurable parameter states.
- the apparatus further includes: a sending module, configured to send the selected indication information of the parameter status to the receiving end.
- the data channel parameter is a resource allocation parameter
- the determining module 10 is further configured to determine a parameter state set of at least one of: determining a configurable resource block or a set of resource block groups; The number of allocated resource blocks or resource block groups; determine the number of all assignable resource blocks or resource block groups; determine the number of time domain symbols that can be allocated; determine the number of time slots that can be allocated.
- the determining module 10 is further configured to determine, according to the service type, that at least two different types of services adopt different configuration parameter state sets.
- the service type includes at least one of the following: an ultra-high reliability ultra-low latency communication service, a large-scale Internet of Things service, and a mobile broadband enhanced service.
- the determining module 10 is further configured to use a downlink control information type, a downlink control information scrambling mode, a downlink control information location, or a downlink control information reference solution.
- the pilot sequence is adjusted to determine a set of configurable parameter states corresponding to the data channel parameters.
- the data channel parameter is a demodulation pilot parameter
- the determining module 10 is further configured to determine a parameter state set of at least one of the following: a port multiplexing mode, a symbol number, a port number, a pattern density, Additional demodulation pilot, pilot power, and pilot sequences.
- the data channel parameter is a transmission parameter
- the determining module 10 is further configured to determine a parameter state set of at least one of the following: a physical resource block precoding binding parameter, a quasi-public position indication parameter, and a code block.
- FIG. 7 is a schematic structural diagram of a data channel parameter determining apparatus according to an embodiment of the present application, where the apparatus includes: a determining module 30 and a demodulating module 40.
- the determining module 30 is configured to determine, according to the first type of information, a set of configurable parameter states corresponding to the data channel parameter, where the first type of information includes at least one of the following: a service type, a downlink control information parameter, a channel type, and a physical broadcast. Channel information, and synchronization signal information.
- the demodulation module 40 is configured to perform data channel reception demodulation according to the parameter status in the configurable parameter status set.
- the method further includes: a selecting module, configured to select a parameter state to be used from the set of configurable parameter states according to the sending end indication information.
- the data channel parameter is a resource allocation parameter
- the determining module 30 is further configured to determine a parameter state set of at least one of: determining a configurable resource block or a set of resource block groups; The number of allocated resource blocks or resource block groups; determine the number of all assignable resource blocks or resource block groups; determine the number of time domain symbols that can be allocated; determine the number of time slots that can be allocated.
- the determining module 30 is further configured to determine, according to the service type, that at least two different types of services adopt different sets of configuration parameter states.
- the service type includes at least one of the following: an ultra-high reliability ultra-low latency communication service, a large-scale Internet of Things service, and a mobile broadband enhanced service.
- the determining module 30 is further configured to use a downlink control information type, a downlink control information scrambling mode, a downlink control information location, or a downlink control information reference solution.
- the pilot sequence is adjusted to determine a set of configurable parameter states corresponding to the data channel parameters.
- the data channel parameter is a demodulation pilot parameter
- the determining module is further configured to determine a parameter state set of at least one of: port multiplexing mode, number of symbols, port number, pattern density, and additional The pilot, pilot power, and pilot sequences are demodulated.
- the data channel parameter is a transmission parameter
- the determining module 30 is further configured to determine a parameter state set of at least one of the following: a physical resource block precoding binding parameter, a quasi-public position indication parameter, and a code block.
- the foregoing modules may be implemented by software or hardware.
- the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
- Embodiments of the present application also provide a storage medium.
- the above storage medium may be arranged to store program code set to perform the steps of the embodiments in the foregoing.
- the foregoing storage medium may include, but is not limited to, a USB flash drive, a read-only memory (ROM), a random access memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk.
- ROM read-only memory
- RAM random access memory
- mobile hard disk a magnetic disk
- optical disk a variety of media that can store program code.
- modules or steps of the present application can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in a network composed of multiple computing devices.
- they may be implemented by program code executable by the computing device, such that they may be stored in the storage device for execution by the computing device, and in some cases may be performed in a different order than that illustrated herein.
- the application is not limited to any particular combination of hardware and software.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
公开了一种数据信道参数配置方法及装置,该方法包括:根据第一类信息确定数据信道参数对应的可配置参数状态集合,其中,所述第一类信息包括以下至少之一:业务类型、下行控制信息参数、信道类型、物理广播信道信息、同步信号信息;从所述可配置参数状态集合中选择需要使用的参数状态。
Description
本申请要求在2017年09月12日提交中国专利局、申请号为201710819092.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本申请涉及通信领域,例如涉及一种数据信道参数配置方法及装置。
无线通信系统中,下行物理层控制信道(Physical Downlink Control Channel,PDCCH)有着非常重要的作用,物理层的控制信息主要用于:(1)向用户终端(User Equipment,UE)发送下行调度信息(DL Assignment),以便UE接收下行数据信道,数据信道中除了承载数据还可以承载一些高层的信令消息;(2)向UE发送上行调度信息(UL Grant),以便UE发送上行数据信道;(3)发送非周期性CQI上报请求;(4)通知主控信道(Main Control Channel,MCCH)变化;(5)发送上行功控命令;(6)混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)相关信息;(7)携带无线网络临时标识(Radio Network Tempory Identity,RNTI):该信息隐式包含在循环冗余码校验(Cyclical Redundancy Check,CRC)中等。
下行物理控制信道携带的信息称为下行控制信息(Downlink Control Information,DCI)。DCI可能指示小区级的信息,一般使用SI(system information)-RNTI/P(paging)-RNTI/RA(random access)-RNTI加扰。还有一些其他类型的加扰,比如TPC-PUCCH-RNTI,G-RNTI or SC-RNTI。也可能指示UE级的信息,使用C-RNTI/SPS C-RNTI/Temporary C-RNTI加扰。用不同的RNTI加扰实际上是代表了该消息面向不同的用户组及不同的作用。如果不能获知加扰时使用的RNTI信息,是不能准确的解出这些控制消息内容的;总的来说,控制信道及其对应的搜索空间可以分为以下两类,如表1所示。
表1:控制信道及搜索空间类型
对应于两种搜索空间公有搜索空间与专有搜索空间,或者称其为两类控制信道公有控制信道与专有控制信道;其特点是公有搜索空间/控制信道是多个UE共享的,专有搜索空间/控制信道是发给某个特定UE的。
PDCCH可以直接携带一些物理层控制信息,如图1所示,PDCCH也可以用于传输来自高层的控制信息,或者是数据信息。这些来自高层信息在物理层都会被看成是物理层数据。
PDCCH中有一部分重要信息是用于指示数据信道的相关配置,主要包括以下的一些方面:资源分配指示信息、参考信号参数指示信息、速率匹配信息,以及传输参数指示信息。在新无线接入技术(New Radio access technology,NR)中,由于带宽越来越大,参考信号设计越来越复杂,速率匹配需要考虑的情况以及需要指示的传输参数越来越多,造成DCI开销很大。物理层信令开销是及其宝贵的资源,因为控制信道的鲁棒性要求很高,一般实际传输时码率很低,调制编码方式也是低阶,占用的实际传输资源是很多的。如果存在大量的UE,开销浪费会很严重,需要优化DCI的开销。
发明内容
本申请提供了一种数据信道参数配置方法及装置,以至少解决相关技术中DCI开销大的问题。
本申请提供了一种数据信道参数配置方法,包括:根据第一类信息确定数据信道参数对应的可配置参数状态集合,其中,所述第一类信息包括以下至少之一:业务类型、下行控制信息参数、信道类型、物理广播信道信息、以及同步信号信息;从所述可配置参数状态集合中选择需要使用的参数状态。
本申请还提供了一种数据信道参数确定方法,包括:根据第一类信息确定数据信道参数对应的可配置参数状态集合,其中,所述第一类信息包括以下至少之一:业务类型、下行控制信息参数、信道类型、物理广播信道信息、以及同步信号信息;根据所述可配置参数状态集合中的参数状态进行数据信道接收解调。
本申请还提供了一种数据信道参数配置装置,包括:确定模块,设置为根据第一类信息确定数据信道参数对应的可配置参数状态集合,其中,所述第一类信息包括以下至少之一:业务类型、下行控制信息参数、信道类型、物理广播信道信息、以及同步信号信息;选择模块,设置为从所述可配置参数状态集合中选择需要使用的参数状态。
本申请还提供了一种数据信道参数确定装置,包括:确定模块,设置为根据第一类信息确定数据信道参数对应的可配置参数状态集合,其中,所述第一类信息包括以下至少之一:业务类型、下行控制信息参数、信道类型、物理广播信道信息、以及同步信号信息;解调模块,设置为根据所述参数状态进行数据信道接收解调。
通过本申请,采用一些预先能够获取的差异化信息来减小DCI开销,从而解决了DCI开销大的问题,进而达到了物理层信令开销利用率更高的效果。
附图概述
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据相关技术的下行物理控制信道携带信息示意图;
图2是根据本申请实施例的数据信道参数配置方法流程图;
图3是根据本申请实施例的数据信道参数确定方法流程图;
图4是根据本申请实施例的非连续资源分配示意图;
图5是根据本申请实施例的连续资源分配示意图;
图6是根据本申请实施例的数据信道参数配置装置结构示意图;
图7是根据本申请实施例的数据信道参数确定装置结构示意图。
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。在本实施例中,提供了一种数据信道参数配置方法,图2是根据本申请实施例的数 据信道参数配置方法的流程图,如图2所示,该方法包括如下步骤S202和步骤S204。
在步骤S202中,根据第一类信息确定数据信道参数对应的可配置参数状态集合。
其中,所述第一类信息包括以下至少之一:业务类型、下行控制信息参数、以及信道类型。
在步骤S204中,从所述可配置参数状态集合中选择需要使用的参数状态。
通过上述步骤,采用一些预先能够获取的差异化信息来减小DCI开销,从而解决了DCI开销大的问题,进而达到了物理层信令开销利用率更高的效果。
在一实施例中,该方法还包括:将选出的所述参数状态的指示信息发送给接收端。
在一实施例中,所述数据信道参数为资源分配参数,确定数据信道参数对应的可配置参数状态集合包括以下至少之一:确定可配置的资源块或资源块组的集合;确定可连续分配的资源块或资源块组的数目;确定所有可分配的资源块或资源块组的数目;确定可分配的时域符号数目;确定可分配的时隙数目。
在一实施例中,所述第一类信息为业务类型时,根据业务类型确定数据信道参数对应的可配置参数状态集合包括:确定至少2类不同的业务类型采用不同的配置参数状态集合。
在一实施例中,所述业务类型包括以下至少之一:超高可靠超低时延通信业务、大规模物联网业务、以及移动宽带增强业务。
在一实施例中,所述第一类信息为下行控制信息参数时,根据下行控制信息参数确定数据信道参数对应的可配置参数状态集合包括:根据下行控制信息类型、下行控制信息加扰方式、下行控制信息位置或下行控制信息参考解调导频序列来确定数据信道参数对应的可配置参数状态集合。
在一实施例中,所述数据信道参数为解调导频参数,确定数据信道参数对应的可配置参数状态集合包括确定以下至少之一的参数状态集合:端口复用方式、符号数目、端口编号、图样密度、附加解调导频、导频功率、以及导频序列。
在一实施例中,所述数据信道参数为传输参数,确定数据信道参数对应的可配置参数状态集合包括确定以下至少之一的参数状态集合:物理资源块预编码绑定参数、准公位置指示参数、码块组参数、混合自动重传请求参数、以及 调制与编码策略参数。
在一实施例中,所述数据信道参数对应的可配置参数状态集合包括资源块时,所述资源块与广播控制信道和同步信号中的至少一个占用的资源块相同。
在一实施例中,根据第一类信息确定数据信道参数对应的可配置参数状态集合,包括:根据物理广播信道的发送带宽和同步信号的发送带宽中的至少一个确定数据信道的可用于调度的带宽。
在本实施例中,数据信道包括下行数据信道和上行数据信道,并且,参数状态表现形式有多种,参数类型不同,其对应的参数状态表现形式也会存在区别,常见的表现形式可以为取值、图样、以及序列等。
在本实施例中,当所述参数状态集合为唯一时,接收端可以通过预先预定获取参数状态,当所述参数状态集合为多个时,需将选出的所述参数状态的指示信息发送给接收端。
在本实施例中,还提供了一种数据信道参数确定方法,图3是根据本申请实施例的流程图,如图3所示,该流程包括如下步骤S302和步骤S304。
在步骤S302中,根据第一类信息确定数据信道参数对应的可配置参数状态集合。
其中,所述第一类信息包括以下至少之一:业务类型、下行控制信息参数、以及信道类型。
在步骤S304中,根据所述参数状态进行数据信道接收解调。
通过上述步骤,采用一些预先能够获取的差异化信息来减小DCI开销,从而解决了DCI开销大的问题,进而达到了物理层信令开销利用率更高的效果。
在一实施例中,在根据参数状态进行数据信道接收解调之前,还包括:根据发送端指示信息从所述可配置参数状态集合中选出需要使用的参数状态。
在一实施例中,所述数据信道参数为资源分配参数,确定数据信道参数对应的可配置参数状态集合包括以下至少之一:确定可配置的资源块或资源块组的集合;确定可连续分配的资源块或资源块组的数目;确定可分配的资源块或资源块组的数目;确定可分配的时域符号数目;确定可分配的时隙数目。
在一实施例中,所述第一类信息为业务类型时,根据业务类型确定数据信道参数对应的可配置参数状态集合包括:确定至少2类不同的业务类型采用不同的配置参数状态集合。
在一实施例中,所述业务类型包括以下至少之一:超高可靠超低时延通信 业务、大规模物联网业务、以及移动宽带增强业务。
在一实施例中,所述第一类信息为下行控制信息参数时,根据下行控制信息参数确定数据信道参数对应的可配置参数状态集合包括:根据下行控制信息类型、下行控制信息加扰方式、下行控制信息位置或下行控制信息参考解调导频序列确定数据信道参数对应的可配置参数状态集合。
在一实施例中,所述数据信道参数为解调导频参数,确定数据信道参数对应的可配置参数状态集合包括确定以下至少之一的参数状态集合:端口复用方式、符号数目、端口编号、图样密度、附加解调导频、导频功率、以及导频序列。
在一实施例中,所述数据信道参数为传输参数,确定数据信道参数对应的可配置参数状态集合包括确定以下至少之一的参数状态集合:物理资源块预编码绑定参数、准公位置指示参数、码块组参数、混合自动重传请求参数、以及调制与编码策略参数。
在一实施例中,所述数据信道参数对应的可配置参数状态集合包括资源块时,所述资源块与广播控制信道和同步信号中的至少一个占用的资源块相同。
在一实施例中,根据第一类信息确定数据信道参数对应的可配置参数状态集合,包括:根据物理广播信道的发送带宽和同步信号的发送带宽中的至少一个确定数据信道的可用于调度的带宽。
在本实施例中,当所述参数状态集合为唯一时,接收端可以通过预先预定获取参数状态,当所述参数状态集合为多个时,接收端根据发送端指示信息从所述可配置参数状态集合中选出需要使用的参数状态。
在本申请中,针对数据信道的相关配置,引入了差异化的DCI设计,下面的实施例分别从资源分配信令配置、解调参考信号配置和传输参数的配置进行描述。
实施例1
本实施例从资源分配信令配置方面对本申请进行描述,常用的资源分配方式有以下两种,包括非连续资源分配和连续资源分配。
非连续资源分配为:将系统带宽的资源块,按照资源块编号的大小,从低到高,顺次划分为资源组,每P个资源块(Resource block,RB)划分为一个资源块组,多个资源块组间包含的资源块编号互不相同,最后一个资源块组中包含的资源块数量不大于P,并依次从0开始为这些资源块组(Resource block group, RBG)编号。使用位图(bitmap)表示多个资源块组的分配情况(n个连续的比特,每一个比特对应于一个资源组,1表示分配,0表示没有分配)。
连续资源分配为:任意连续的资源块都可以通过资源块起始位置和资源块数量确定,为了减少信令开销,对资源块起始位置和资源块数量联合编码的方法是每一个树形结点对应的所有子结点都代表了一种资源情况,例如:结点13表示分配的资源为RB1、RB2和RB3。
不管哪种方法,都会随着带宽的变大而增加开销。由于NR的带宽非常大,因此开销也会多很多,例如,LTE最大为20MHz每个载频,但NR可以达到100MHz每个载频。灵活的资源分配可以获取频域选择性衰落。但如果带宽大到一定程度的时候再增加灵活性不会带来额外的效果。
因此,可以采用以下任意一种方式对资源分配的参数进行预先配置限定。
1)配置限定资源分配时可以配置的RB/REG set。
2)配置限定可连续分配的RB/REG数目。
3)配置限定所有可以分配的RB/REG数目。
4)如果存在时域的资源分配,也可以预先配置限定,可以分配的时域符号数目。
5)配置限定所有可分配的时域符号、时隙。
一种方式是直接对上述参数进行配置指定,并根据所述参数的取值来确定DCI中资源分配指示信令的大小。另外一种方式则是通过一些预先的约定来确定这些参数。
上述限定一般建议为UE级的配置、还可以扩展到进行DCI级、业务级、以及信道级的配置,例如配置限定方法可以包含以下四种。
1)根据业务类型来确定上述资源分配参数。
低时延高可靠连接(Ultra-relaible and Low Latency Communication,URLLC)业务使用资源分配参数配置限定1;大规模物联网(massive machine type of communication,mMTc)业务使用资源分配参数配置限定2,增强移动宽带(Enhanced mobile broadband,eMBB)业务使用资源分配参数配置限定3。
URLLC业务或mMTc业务,其并没有很强的必要性在这样大的带宽下具有高度灵活性的资源分配。并且URLLC和mMTc业务与eMBB业务之间也有不同的特点,例如,TB块的大小考虑不同,传输层数不同,在资源分配上没有必要有完全相同。
2)根据DCI类型、DCI加扰方式、DCI位置、以及DCI参考解调导频序列来确定上述资源分配参数。
DCI类型1使用资源分配参数配置限定1;DCI类型2使用资源分配参数配置限定2,DCI类型3使用资源分配参数配置限定3。
DCI加扰方式1使用资源分配参数配置限定1;DCI加扰方式2使用资源分配参数配置限定2,DCI加扰方式3使用资源分配参数配置限定3。
DCI位置1使用资源分配参数配置限定1;DCI位置2使用资源分配参数配置限定2,DCI位置3使用资源分配参数配置限定3。
DCI参考解调导频序列1使用资源分配参数配置限定1;DCI参考解调导频序列2使用资源分配参数配置限定2,DCI参考解调导频序列3使用资源分配参数配置限定3。
DCI类型、扰码、位置及参考信号序列的区别一般意味着控制信息的内容,传输技术等存在区别。如paging消息、系统消息、以及随机接入消息,其内容大小的变动范围也是不同的。没有必要有相同的资源分配设计,也没有必要与数据信息的资源分配设计相同。
3)根据信道/信号类型来确定上述资源分配参数。
物理下行数据信道(Physical downlink shared channel,PDSCH)使用资源分配参数配置限定1;CSI-RS信号使用资源分配参数配置限定2。
物理上行数据信道(Physical uplink shared channel,PUSCH)使用资源分配参数配置限定1;测量参考信号(Sounding reference signal,SRS)信号使用资源分配参数配置限定2。
PUSCH使用资源分配参数配置限定1;PDSCH使用资源分配参数配置限定2。
一般来说下行数据信道PDSCH和下行测量参考导频CSI-RS(Channel state information reference signal)的资源分配方式是没有必要限制为相同的,CSI-RS可能需要更灵活一些。同样的上行数据信道PUSCH和上行测量参考信号SRS的资源分配方式是没有必要限制为相同的,SRS可能需要更灵活一些。
4)根据时隙格式(Slot format)来确定上述资源分配参数。
时隙格式1使用资源分配参数配置限定1;时隙格式2信号使用资源分配参数配置限定2。
时隙格式配置类似与LTE中的子帧结构配置。会指定上下行的时域符号资 源,有的情况下行符号数目多而上行少,有的时候下行符号数目少而上行多。不同的情况要分别考虑在频域上的资源分配参数限定。
在UE初始接入时,会存在一段时间有物理层数据需要传输,但还不能获取RRC配置的情况下,此时对于资源分配参数也可以进行以下的限定,减小开销,并且还能够提高性能。
这种限定实际是一种预先约定,比如根据广播信道PBCH/同步信号SS/其它周期参考信号(例如CSI-RS)占用带宽来确定数据信道可以分配的时频资源位置。
例如,可以用于数据信道传输的频域RB资源与PBCH/SS占用的RB资源相同。或者是PBCH/SS占用的RB的子集,还可以是PBCH/SS占用的RB以及其两侧的连续的RB,数目不超过PBCH/SS占用RB数目的两倍。时域位置也可以进行类似的预先的限定。
这种方法不但能减小DCI开销,数据信道还能够更好的利用PBCH或SS或其它周期参考信号进行时频偏的估计,获得更好的性能。
实施例2
本实施例从解调参考信号配置方面对本申请进行具体的描述。NR的数据信道参考解调导频有多种配置,包括:
端口复用方式配置;例如频分复用方式、时分复用方式、时域码分复用方式、频域码分复用方式,以及时频域码分复用方式等。
符号数目配置;比如一个符号还是两个符号。
端口编号配置;比如端口的编号规则。
图样密度的配置;比如密度为口2,3,6RE/RB/port。
Additional解调导频配置:存在或者不存在additional解调导频。
导频功率配置:导频RE和数据RE的相对功率。
在配置这些参数时,可以根据不同的情况分别进行参数配置范围的限定。在限定时,可以是针对不同的解调导频参数独立或者联合的限定。
1)根据业务类型来确定导频参数。
URLLC业务使用解调导频参数配置限定1;mMTc业务使用解调导频参数配置限定2,eMBB业务使用解调导频参数配置限定3。
例如,mMTc业务的导频密度只能选择2,3RE/RB/port;而URLLC则只能选择3,6RE/RB/port,eMBB可以选择2,3,6RE/RB/port。采用何种配置 与其业务本身特点有关。
又例如,mMTc业务对应的端口复用可选方式集合1,而URLLC业务对应的端口复用可选方式集合2。
又例如,eMBB业务对应的导频与数据功率比为1∶2,而URLLC业务对应的导频与数据功率比为2,mMTc业务对应的导频与数据功率比为1。
2)根据DCI类型、DCI加扰方式、DCI位置、以及DCI参考解调导频序列来确定上述参考导频配置参数。
DCI类型1对应其调度的数据信道使用解调导频参数配置或配置集合1;DCI类型2对应其调度的数据信道使用解调导频参数配置或配置集合2,DCI类型3对应其调度的数据信道使用解调导频参数配置或配置集合3。
DCI加扰方式1对应其调度的数据信道使用解调导频参数配置或配置集合1;DCI加扰方式2对应其调度的数据信道使用解调导频参数配置或配置集合2,DCI加扰方式3对应其调度的数据信道使用解调导频参数配置或配置集合3。
DCI的传输位置1对应其调度的数据信道使用解调导频参数配置或配置集合1;DCI的传输位置2对应其调度的数据信道使用解调导频参数配置或配置集合2。
传输DCI的控制信道参考解调导频序列1对应其调度的数据信道解调导频参数配置或配置集合1;传输DCI的控制信道参考解调导频序列2对应其调度的数据信道解调导频参数配置或配置集合2。
DCI类型、扰码、位置及参考信号序列的区别一般意味着控制信息的内容,传输技术等存在区别。如paging消息、系统消息、以及随机接入消息,其重要性,传输的要求、面向的对象都可能是不同的。没有必要有相同解调参考信号配置。
本实施例从传输参数的配置方面对本申请进行具体的描述。
传输参数包括PRB bundling参数、QCL(Quasi-co-location)指示参数、CBG(Codeblock group)参数、HARQ参数、MCS参数等。这些信息也需要多个DCI bit来进行配置指示。我们也可以考虑与前面类似的方式来减小开销,比如:PRB bundling的绑定粒度有多种选择,例如,绑定粒度为:1,2,4。
在一实施例中,可以根据业务类型来确定其对应的绑定粒度集合,例如,eMBB的PRB bundling绑定粒度为1,2,4;URLLC的PRB bundling绑定粒度为2,4。在另一个实施例中,也可以根据DCI类型、DCI加扰方式、DCI位置、 以及DCI参考解调导频序列来确定绑定粒度或者绑定粒度的可选配置集合。
QCL指示参数,主要包括QCL的类型和QCL关系。可以根据业务类型来确定,也可以根据DCI类型、DCI加扰方式、DCI位置、以及DCI参考解调导频序列来确定。
CBG参数,主要包括CBG的个数、CB划分方式,以及CB的映射方式;HARQ参数主要包括:HARQ重传版本号,重传进程数;MCS参数主要包括MCS表格。这些参数或者其可选配置集合都可以根据业务类型来确定,也可以根据DCI类型、DCI加扰方式、DCI位置、以及DCI参考解调导频序列来确定。
通过上面实施例描述的配置方式,可以达到节约DCI开销的技术效果,并利用PDCCH的一些特征来隐含指示PDSCH的参数。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在本实施例中还提供了一种数据信道参数配置装置,该装置设置为实现上述实施例及应用实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本申请实施例的数据信道参数配置装置结构示意图,该装置包括:确定模块10和选择模块20。
确定模块10,设置为根据第一类信息确定数据信道参数对应的可配置参数状态集合,其中,所述第一类信息包括以下至少之一:业务类型、下行控制信息参数、信道类型、物理广播信道信息、以及同步信号信息。
选择模块20,设置为从所述可配置参数状态集合中选择需要使用的参数状态。
在一实施例中,所述装置还包括:发送模块,设置为将选出的所述参数状态的指示信息发送给接收端。
在一实施例中,所述数据信道参数为资源分配参数,所述确定模块10还设置为确定以下至少之一的参数状态集合:确定可配置的资源块或资源块组的集合;确定可连续分配的资源块或资源块组的数目;确定所有可分配的资源块或资源块组的数目;确定可分配的时域符号数目;确定可分配的时隙数目。
在一实施例中,所述第一类信息为业务类型时,所述确定模块10还设置为根据业务类型确定至少2类不同的业务类型采用不同的配置参数状态集合。
在一实施例中,所述业务类型包括以下至少之一:超高可靠超低时延通信业务、大规模物联网业务、以及移动宽带增强业务。
在一实施例中,所述第一类信息为下行控制信息参数时,所述确定模块10还设置为根据下行控制信息类型、下行控制信息加扰方式、下行控制信息位置或下行控制信息参考解调导频序列来确定数据信道参数对应的可配置参数状态集合。
在一实施例中,所述数据信道参数为解调导频参数,所述确定模块10还设置为确定以下至少之一的参数状态集合:端口复用方式、符号数目、端口编号、图样密度、附加解调导频、导频功率、以及导频序列。
在一实施例中,所述数据信道参数为传输参数,所述确定模块10还设置为确定以下至少之一的参数状态集合:物理资源块预编码绑定参数、准公位置指示参数、码块组参数、混合自动重传请求参数、以及调制与编码策略参数。
图7是根据本申请实施例的数据信道参数确定装置结构示意图,该装置包括:确定模块30和解调模块40。
确定模块30,设置为根据第一类信息确定数据信道参数对应的可配置参数状态集合,其中,所述第一类信息包括以下至少之一:业务类型、下行控制信息参数、信道类型、物理广播信道信息、以及同步信号信息。
解调模块40,设置为根据所述可配置参数状态集合中的参数状态进行数据信道接收解调。
在一实施例中,还包括:选择模块,设置为根据发送端指示信息从所述可配置参数状态集合中选出需要使用的参数状态。
在一实施例中,所述数据信道参数为资源分配参数,所述确定模块30还设置为确定以下至少之一的参数状态集合:确定可配置的资源块或资源块组的集合;确定可连续分配的资源块或资源块组的数目;确定所有可分配的资源块或资源块组的数目;确定可分配的时域符号数目;确定可分配的时隙数目。
在一实施例中,所述确定模块30还设置为根据业务类型确定至少2类不同的业务类型采用不同的配置参数状态集合。
在一实施例中,所述业务类型包括以下至少之一:超高可靠超低时延通信业务、大规模物联网业务、以及移动宽带增强业务。
在一实施例中,所述第一类信息为下行控制信息参数时,所述确定模块30还设置为根据下行控制信息类型、下行控制信息加扰方式、下行控制信息位置或下行控制信息参考解调导频序列来确定数据信道参数对应的可配置参数状态集合。
在一实施例中,所述数据信道参数为解调导频参数,所述确定模块还设置为确定以下至少之一的参数状态集合:端口复用方式、符号数目、端口编号、图样密度、附加解调导频、导频功率、以及导频序列。
在一实施例中,所述数据信道参数为传输参数,所述确定模块30还设置为确定以下至少之一的参数状态集合:物理资源块预编码绑定参数、准公位置指示参数、码块组参数、混合自动重传请求参数、以及调制与编码策略参数。
在一实施例中,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本申请的实施例还提供了一种存储介质。在本实施例中,上述存储介质可以被设置为存储设置为执行前文中实施例步骤的程序代码。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。本实施例中的具体示例可以参考上述实施例及应用实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
Claims (36)
- 一种数据信道参数配置方法,包括:根据第一类信息确定数据信道参数对应的可配置参数状态集合,其中,所述第一类信息包括以下至少之一:业务类型、下行控制信息参数、信道类型、物理广播信道信息、以及同步信号信息;从所述可配置参数状态集合中选择需要使用的参数状态。
- 根据权利要求2所述的方法,还包括:将选出的所述参数状态的指示信息发送给接收端。
- 根据权利要求1所述的方法,其中,所述数据信道参数为资源分配参数,确定数据信道参数对应的可配置参数状态集合包括以下至少之一:确定可配置的资源块或资源块组的集合;确定可连续分配的资源块或资源块组的数目;确定所有可分配的资源块或资源块组的数目;确定可分配的时域符号数目;确定可分配的时隙数目。
- 根据权利要求1所述的方法,其中,所述第一类信息为业务类型时,根据业务类型确定数据信道参数对应的可配置参数状态集合包括:确定至少2类不同的业务类型采用不同的配置参数状态集合。
- 根据权利要求4所述的方法,其中,所述业务类型包括以下至少之一:超高可靠超低时延通信业务、大规模物联网业务、以及移动宽带增强业务。
- 根据权利要求1所述的方法,其中,所述第一类信息为下行控制信息参数时,根据下行控制信息参数确定数据信道参数对应的可配置参数状态集合包括:根据下行控制信息类型、下行控制信息加扰方式、下行控制信息位置或下行控制信息参考解调导频序列来确定数据信道参数对应的可配置参数状态集合。
- 根据权利要求1所述的方法,其中,所述数据信道参数为解调导频参数,确定数据信道参数对应的可配置参数状态集合包括确定以下至少之一的参数状态集合:端口复用方式、符号数目、端口编号、图样密度、附加解调导频、导频功率、以及导频序列。
- 根据权利要求2所述的方法,其中,所述数据信道参数为传输参数,确定数据信道参数对应的可配置参数状态集合包括确定以下至少之一的参数状态集合:物理资源块预编码绑定参数、准公位置指示参数、码块组参数、混合自动重传请求参数、以及调制与编码策略参数。
- 根据权利要求3所述的方法,其中,所述数据信道参数对应的可配置参数状态集合包括资源块时,所述资源块与广播控制信道和同步信号中的至少一个占用的资源块相同。
- 根据权利要求1所述的方法,其中,根据第一类信息确定数据信道参数对应的可配置参数状态集合,包括:根据物理广播信道的发送带宽和同步信号的发送带宽中的至少一个确定数据信道的可用于调度的带宽。
- 一种数据信道参数确定方法,包括:根据第一类信息确定数据信道参数对应的可配置参数状态集合,其中,所述第一类信息包括以下至少之一:业务类型、下行控制信息参数、信道类型、物理广播信道信息、以及同步信号信息;根据所述可配置参数状态集合中的参数状态进行数据信道接收解调。
- 根据权利要求11所述的方法,在根据所述参数状态进行数据信道接收解调之前,还包括:根据发送端指示信息从所述可配置参数状态集合中选出需要使用的参数状态。
- 根据权利要求11所述的方法,其中,所述数据信道参数为资源分配参数,确定数据信道参数对应的可配置参数状态集合包括以下至少之一:确定可配置的资源块或资源块组的集合;确定可连续分配的资源块或资源块组的数目;确定可分配的资源块或资源块组的数目;确定可分配的时域符号数目;确定可分配的时隙数目。
- 根据权利要求11所述的方法,其中,所述第一类信息为业务类型时,根据业务类型确定数据信道参数对应的可配置参数状态集合包括:确定至少2类不同的业务类型采用不同的配置参数状态集合。
- 根据权利要求14所述的方法,其中,所述业务类型包括以下至少之一:超高可靠超低时延通信业务、大规模物联网业务、以及移动宽带增强业务。
- 根据权利要求11所述的方法,其中,所述第一类信息为下行控制信息 参数时,根据下行控制信息参数确定数据信道参数对应的可配置参数状态集合包括:根据下行控制信息类型、下行控制信息加扰方式、下行控制信息位置或下行控制信息参考解调导频序列确定数据信道参数对应的可配置参数状态集合。
- 根据权利要求11所述的方法,其中,所述数据信道参数为解调导频参数,确定数据信道参数对应的可配置参数状态集合包括确定以下至少之一的参数状态集合:端口复用方式、符号数目、端口编号、图样密度、附加解调导频、导频功率、以及导频序列。
- 根据权利要求12所述的方法,其中,所述数据信道参数为传输参数,确定数据信道参数对应的可配置参数状态集合包括确定以下至少之一的参数状态集合:物理资源块预编码绑定参数、准公位置指示参数、码块组参数、混合自动重传请求参数、以及调制与编码策略参数。
- 根据权利要求13所述的方法,其中,所述数据信道参数对应的可配置参数状态集合包括资源块时,所述资源块与广播控制信道和同步信号中的至少一个占用的资源块相同。
- 根据权利要求11所述的方法,其中,根据第一类信息确定数据信道参数对应的可配置参数状态集合,包括:根据物理广播信道的发送带宽和同步信号的中的至少一个发送带宽确定数据信道的可用于调度的带宽。
- 一种数据信道参数配置装置,包括:确定模块,设置为根据第一类信息确定数据信道参数对应的可配置参数状态集合,其中,所述第一类信息包括以下至少之一:业务类型、下行控制信息参数、信道类型、物理广播信道信息、以及同步信号信息;选择模块,设置为从所述可配置参数状态集合中选择需要使用的参数状态。
- 根据权利要求21所述的装置,还包括:发送模块,设置为将选出的所述参数状态的指示信息发送给接收端。
- 根据权利要求21所述的装置,其中,所述数据信道参数为资源分配参数,所述确定模块还设置为确定以下至少之一的参数状态集合:确定可配置的资源块或资源块组的集合;确定可连续分配的资源块或资源块组的数目;确定所有可分配的资源块或资源块组的数目;确定可分配的时域符号数目;确定可分配的时隙数目。
- 根据权利要求21所述装置,其中,所述第一类信息为业务类型时,所述确定模块还设置为根据业务类型确定至少2类不同的业务类型采用不同的配置参数状态集合。
- 根据权利要求24所述的装置,其中,所述业务类型包括以下至少之一:超高可靠超低时延通信业务、大规模物联网业务、以及移动宽带增强业务。
- 根据权利要求21所述的装置,其中,所述第一类信息为下行控制信息参数时,所述确定模块还设置为根据下行控制信息类型、下行控制信息加扰方式、下行控制信息位置或下行控制信息参考解调导频序列来确定数据信道参数对应的可配置参数状态集合。
- 根据权利要求21所述的装置,其中,所述数据信道参数为解调导频参数,所述确定模块还设置为确定以下至少之一的参数状态集合:端口复用方式、符号数目、端口编号、图样密度、附加解调导频、导频功率、以及导频序列。
- 根据权利要求22所述的装置,其中,所述数据信道参数为传输参数,所述确定模块还设置为确定以下至少之一的参数状态集合:物理资源块预编码绑定参数、准公位置指示参数、码块组参数、混合自动重传请求参数、以及调制与编码策略参数。
- 一种数据信道参数确定装置,包括:确定模块,设置为根据第一类信息确定数据信道参数对应的可配置参数状态集合,其中,所述第一类信息包括以下至少之一:业务类型、下行控制信息参数、信道类型、物理广播信道信息、以及同步信号信息;解调模块,设置为根据所述可配置参数状态集合中的参数状态进行数据信道接收解调。
- 根据权利要求29所述的装置,还包括:选择模块,设置为根据发送端指示信息从所述可配置参数状态集合中选出需要使用的参数状态。
- 根据权利要求29所述的装置,其中,所述数据信道参数为资源分配参数,所述确定模块还设置为确定以下至少之一的参数状态集合:确定可配置的资源块或资源块组的集合;确定可连续分配的资源块或资源块组的数目;确定所有可分配的资源块或资源块组的数目;确定可分配的时域符号数目;确定可分配的时隙数目。
- 根据权利要求29所述装置,其中,所述确定模块还设置为根据业务类型确定至少2类不同的业务类型采用不同的配置参数状态集合。
- 根据权利要求32所述的装置,其中,所述业务类型包括以下至少之一:超高可靠超低时延通信业务、大规模物联网业务、以及移动宽带增强业务。
- 根据权利要求29所述的装置,其中,所述第一类信息为下行控制信息参数时,所述确定模块还设置为根据下行控制信息类型、下行控制信息加扰方式、下行控制信息位置或下行控制信息参考解调导频序列来确定数据信道参数对应的可配置参数状态集合。
- 根据权利要求29所述的装置,其中,所述数据信道参数为解调导频参数,所述确定模块还设置为确定以下至少之一的参数状态集合:端口复用方式、符号数目、端口编号、图样密度、附加解调导频、导频功率、以及导频序列。
- 根据权利要求29所述的装置,其中,所述数据信道参数为传输参数,所述确定模块还设置为确定以下至少之一的参数状态集合:物理资源块预编码绑定参数、准公位置指示参数、码块组参数、混合自动重传请求参数、以及调制与编码策略参数。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710819092.X | 2017-09-12 | ||
CN201710819092.XA CN108111281B (zh) | 2017-09-12 | 2017-09-12 | 数据信道参数配置方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019052455A1 true WO2019052455A1 (zh) | 2019-03-21 |
Family
ID=62207369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/105155 WO2019052455A1 (zh) | 2017-09-12 | 2018-09-12 | 数据信道参数配置方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108111281B (zh) |
WO (1) | WO2019052455A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111278131A (zh) * | 2019-08-12 | 2020-06-12 | 维沃移动通信有限公司 | 一种调度方法、网络设备及终端 |
WO2021089041A1 (en) * | 2019-11-07 | 2021-05-14 | FG Innovation Company Limited | Method and user equipment for construction of downlink control information format |
US12074752B2 (en) | 2019-05-17 | 2024-08-27 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving data in a wireless communication system |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108111281B (zh) * | 2017-09-12 | 2022-03-01 | 中兴通讯股份有限公司 | 数据信道参数配置方法及装置 |
CN112335284B (zh) * | 2018-06-20 | 2023-10-20 | 鸿颖创新有限公司 | 用于处理eMBB和URLLC同时传输的方法和装置 |
GB2575475A (en) * | 2018-07-11 | 2020-01-15 | Tcl Communication Ltd | Transmission techniques in a cellular network |
KR20210038602A (ko) * | 2018-08-03 | 2021-04-07 | 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 | 무선 통신의 방법, 단말 장치와 네트워크 장치 |
EP3834535A4 (en) * | 2018-08-10 | 2022-03-23 | Lenovo (Beijing) Limited | METHOD AND APPARATUS FOR INDICATING SLOT SIZE INFORMATION |
CN110839281B (zh) * | 2018-08-15 | 2022-03-29 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的用户设备、基站中的方法和装置 |
CN110972266B (zh) | 2018-09-28 | 2022-12-30 | 成都华为技术有限公司 | 配置时隙格式的方法和通信装置 |
CN111262661B (zh) | 2018-12-14 | 2022-04-26 | 维沃移动通信有限公司 | 系统信息接收方法、系统信息发送方法及设备 |
CN112350811A (zh) * | 2019-08-07 | 2021-02-09 | 华为技术有限公司 | 资源配置的方法以及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013042982A1 (en) * | 2011-09-23 | 2013-03-28 | Pantech Co., Ltd. | Method and apparatus for transmitting and receiving reference signal |
CN105101422A (zh) * | 2014-05-09 | 2015-11-25 | 中兴通讯股份有限公司 | 信息的发送、处理方法及装置 |
CN106559879A (zh) * | 2015-09-25 | 2017-04-05 | 中兴通讯股份有限公司 | 信息发送及确定、关系确定的方法及装置 |
CN107371249A (zh) * | 2016-05-13 | 2017-11-21 | 中兴通讯股份有限公司 | 传输参数的配置方法及基站、信息传输方法及终端 |
CN108111281A (zh) * | 2017-09-12 | 2018-06-01 | 中兴通讯股份有限公司 | 数据信道参数配置方法及装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101252774B (zh) * | 2008-03-26 | 2012-07-18 | 中兴通讯股份有限公司 | 一种时分双工系统物理随机接入信道参数配置及指示方法 |
CN108811141B (zh) * | 2011-03-31 | 2023-10-24 | 华为技术有限公司 | 时分双工系统中子帧配置的方法、基站及用户设备 |
CN102739594A (zh) * | 2011-04-12 | 2012-10-17 | 中兴通讯股份有限公司 | 一种无线帧参数配置和信号发送的方法及装置 |
US10182467B2 (en) * | 2015-08-06 | 2019-01-15 | Innovative Technology Lab Co., Ltd. | Apparatus and method for transmitting uplink control information through a physical uplink control channel |
CN106559182B (zh) * | 2015-09-25 | 2020-06-16 | 中兴通讯股份有限公司 | 信道参数的配置获取方法、装置及系统 |
CN106953672B (zh) * | 2016-01-07 | 2020-04-14 | 中兴通讯股份有限公司 | 一种多天线系统中信道信息反馈的方法及终端 |
CN107148053B (zh) * | 2016-03-01 | 2021-10-29 | 中兴通讯股份有限公司 | 一种数据配置方法和装置 |
-
2017
- 2017-09-12 CN CN201710819092.XA patent/CN108111281B/zh active Active
-
2018
- 2018-09-12 WO PCT/CN2018/105155 patent/WO2019052455A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013042982A1 (en) * | 2011-09-23 | 2013-03-28 | Pantech Co., Ltd. | Method and apparatus for transmitting and receiving reference signal |
CN105101422A (zh) * | 2014-05-09 | 2015-11-25 | 中兴通讯股份有限公司 | 信息的发送、处理方法及装置 |
CN106559879A (zh) * | 2015-09-25 | 2017-04-05 | 中兴通讯股份有限公司 | 信息发送及确定、关系确定的方法及装置 |
CN107371249A (zh) * | 2016-05-13 | 2017-11-21 | 中兴通讯股份有限公司 | 传输参数的配置方法及基站、信息传输方法及终端 |
CN108111281A (zh) * | 2017-09-12 | 2018-06-01 | 中兴通讯股份有限公司 | 数据信道参数配置方法及装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12074752B2 (en) | 2019-05-17 | 2024-08-27 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving data in a wireless communication system |
CN111278131A (zh) * | 2019-08-12 | 2020-06-12 | 维沃移动通信有限公司 | 一种调度方法、网络设备及终端 |
CN111278131B (zh) * | 2019-08-12 | 2023-12-05 | 维沃移动通信有限公司 | 一种调度方法、网络设备及终端 |
WO2021089041A1 (en) * | 2019-11-07 | 2021-05-14 | FG Innovation Company Limited | Method and user equipment for construction of downlink control information format |
US11589342B2 (en) | 2019-11-07 | 2023-02-21 | FG Innovation Company Limited | Method and user equipment for construction of downlink control information format |
Also Published As
Publication number | Publication date |
---|---|
CN108111281A (zh) | 2018-06-01 |
CN108111281B (zh) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11871434B2 (en) | Method for transmitting and receiving control information of a mobile communication system | |
WO2019052455A1 (zh) | 数据信道参数配置方法及装置 | |
CN110582952B (zh) | 用于无线通信系统中发送和接收控制信道的方法、装置和系统 | |
CN113692059B (zh) | 无线通信系统中的方法和设备 | |
US11683788B2 (en) | System and method for data channel transmission and reception | |
WO2018076565A1 (zh) | 资源配置方法及资源配置装置 | |
CN106664702B (zh) | 一种数据传输方法、装置及系统 | |
CN110999245B (zh) | 无线通信网络中的波形指示 | |
WO2015169026A1 (zh) | 通信数据发送方法、装置及用户设备 | |
US20140369292A1 (en) | Wireless Communication Method and Communication Apparatus | |
WO2019029401A1 (zh) | 参考信号信息的配置方法及装置 | |
CN115765947A (zh) | 无线通信系统的数据发送方法和接收方法及其设备 | |
WO2018228500A1 (zh) | 一种调度信息传输方法及装置 | |
WO2016106905A1 (zh) | 一种用户设备、接入网设备和反馈信息发送和接收方法 | |
WO2018141180A1 (zh) | 控制信息的传输方法、接收方法、装置、基站及终端 | |
WO2014176967A1 (zh) | 一种解调参考信号图样信息的选取方法、系统及装置 | |
KR20150090800A (ko) | 무선 통신 시스템에서 D2D(Device to Device) 통신의 자원 할당을 통한 송신/수신 단말의 동작 방법 및 장치 | |
TW201824908A (zh) | 傳輸信息的方法、網絡設備和終端設備 | |
WO2016070675A1 (zh) | 下行信息发送、下行信息接收方法及装置 | |
TWI771337B (zh) | 傳輸上行控制訊息的方法、終端設備和網路設備 | |
WO2018121052A1 (zh) | 上行控制的资源确定方法、装置、发送端和接收端 | |
WO2020029949A1 (zh) | 时域资源配置方法 | |
WO2018126870A1 (en) | Resource block waveform transmission structures for uplink communications | |
WO2017133340A1 (zh) | 下行控制信道的确定方法及装置、终端、基站 | |
US20180048441A1 (en) | Determining reference signal locations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18856108 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/09/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18856108 Country of ref document: EP Kind code of ref document: A1 |