WO2018076565A1 - 资源配置方法及资源配置装置 - Google Patents

资源配置方法及资源配置装置 Download PDF

Info

Publication number
WO2018076565A1
WO2018076565A1 PCT/CN2017/072677 CN2017072677W WO2018076565A1 WO 2018076565 A1 WO2018076565 A1 WO 2018076565A1 CN 2017072677 W CN2017072677 W CN 2017072677W WO 2018076565 A1 WO2018076565 A1 WO 2018076565A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier spacing
terminals
terminal
allocated
resources
Prior art date
Application number
PCT/CN2017/072677
Other languages
English (en)
French (fr)
Inventor
李明菊
朱亚军
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2018076565A1 publication Critical patent/WO2018076565A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a resource configuration method and a resource configuration device.
  • the existing 4G and 4.5G mobile communication technologies are based on LTE (Long Term Evolution) and LTE-A (LTE-Advanced) radio access technologies, time-frequency resource granularity and frame structure.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • frame structure mainly includes: FDD (Frequency Division Duplexing) frame structure, TDD (Time Division Duplexing) frame structure, and LAA (LTE Assisted Access) unlicensed carrier.
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • LAA LTE Assisted Access
  • each subframe is 1 ms
  • each subframe contains two slots
  • one slot is 0.5 ms
  • each slot contains 7 symbols.
  • the subcarrier spacing is mainly 15 kHz
  • one RB Resource Block
  • a new 3.75KHz subcarrier spacing is proposed in the NB-IoT (Narrow Band Internet of Things), and the carrier bandwidth of NB-IoT is only 180KHz.
  • both the FDD frame structure and the TDD frame structure use the 1 ms subframe as the time domain scheduling granularity, except for the DwPTS (Downlink Pilot) in the special subframe in the TDD frame structure.
  • Time Slot the downlink pilot time slot
  • the time domain scheduling granularity is less than 1 ms.
  • the downlink scheduling time domain granularity of multiplexing the DwPTS as the partial subframe also occurs, and the scheduling granularity of the 1 ms entire subframe is also used.
  • the other subframes are uplink transmission or downlink transmission or time domain separation or frequency domain separation. .
  • the current frame structure and the granularity of the frequency domain resources make the resource allocation inflexible, and the time interval between the uplink scheduling mechanism and the HARQ (Hybrid Automatic Repeat Request) feedback mechanism causes a large delay.
  • the 20MHz bandwidth also does not meet the high bandwidth requirements.
  • the main scenarios of future 5G communication include the following three types: eMBB (enhanced Mobile Broadband), mMTC (massive machine type communication) and URLLC (Ultra-Reliable and Low Latency Communications). Delay communication). These three scenarios are different for the type of business, and their needs are different.
  • the two main indicators of the eMBB service are high bandwidth and low latency.
  • the eMBB service may support a large bandwidth of 100 MHz, and it is likely that the entire bandwidth is directly allocated to one user at a certain time.
  • the uplink scheduling delay and the HARQ feedback delay also have delay effects; the mMTC service requires a narrowband service and requires a long battery life. This service requires a smaller granularity of the frequency domain and a wider granularity of the time domain.
  • the URLLC service it is also necessary to reduce the delay caused by the uplink scheduling delay and the HARQ feedback delay.
  • the current fixed frame structure, the fixed frequency domain resource granularity, and the time domain resource granularity may cause a large uplink scheduling delay and a long HARQ feedback delay, and a smaller carrier.
  • Bandwidth can't meet the diversified needs of the business, and 5G communication hopes to be flexible enough that any resource can be dynamically scheduled for use at any time.
  • UE#1 uses f 0 and only needs to use RB0 when f 0 , and at this time, no other user using f 0 needs to allocate resources, only UE#2 using 2f 0 , and Some resources in RB0 when UE#2 uses 2f 0 have been used by UE#1, then whether the remaining partial resources need to be allocated to UE#2, and how to design signaling to UE when assigned to UE#2 2 Which part has been used by other users is a technical problem to be solved.
  • the present invention is based on at least one of the above technical problems, and proposes a new resource allocation scheme, so that a base station can ensure maximum utilization of resources when allocating resources to a plurality of terminals using different subcarrier intervals, and can accurately The terminal is instructed to know the communication resources to which it is assigned.
  • a resource configuration method including: notifying a first subcarrier interval used by any terminal served by a base station when performing communication, and notifying the any terminal a second subcarrier spacing used by other terminals served by the base station; all communication resources allocated to the base station are allocated; if any resource allocated to the any of the terminals is used in the first subcarrier interval used by the terminal And the part of the resource is allocated to the other terminal, and the location of the resource block is indicated to the any one of the terminals according to the first subcarrier interval, and the location is indicated to the any terminal according to the second subcarrier interval.
  • the terminal when a part of resources in a resource block allocated to any terminal that is used in a first subcarrier interval used by the terminal is allocated to other terminals, the terminal is instructed to allocate according to the first subcarrier interval.
  • the resource block granularity corresponding to the subcarrier spacing ensures maximum utilization of resources, avoiding that a terminal using a larger subcarrier spacing uses only a part of resources in a larger resource block and the remaining part of the resources are no longer allocated to other terminals.
  • the problem of wasted resources has increased spectrum efficiency.
  • the indication manner proposed by the present invention can also ensure that the terminal can accurately know the communication resources allocated by itself, so that the terminal can receive or transmit data through the allocated communication resources.
  • a resource configuration method including: a receiving base Receiving, by the station, the first subcarrier spacing used by the terminal for communication, and the second subcarrier spacing used by other terminals served by the base station; receiving resource configuration information sent by the base station; if the resource configuration information indicates a location of a resource block allocated by the base station to the terminal at a first subcarrier interval used by the terminal, and a part of resources in the resource block used by other terminals at intervals of the second subcarrier, Determining resources in the resource block that are not used by the other terminal; communicating according to resources in the resource block that are not used by the other terminal.
  • the base station allocates resources based on the consideration of maximizing resource block utilization, and allocates according to the resource block granularity corresponding to different subcarrier intervals, so that a terminal that uses a larger subcarrier spacing can be avoided only.
  • a problem is that a part of the larger resource block is used and the remaining part of the resource is no longer allocated to other terminals.
  • the indication manner of the base station can also ensure that the terminal can accurately know the communication resources allocated by itself, so that the terminal can receive or send data through the allocated communication resources.
  • a resource configuration apparatus comprising: a notification unit, configured to notify a first subcarrier interval used by any terminal served by a base station to perform communication, and to the any terminal Notifying a second subcarrier interval used by other terminals served by the base station; an allocating unit, configured to allocate communication resources to all terminals served by the base station; and an indicating unit, configured to allocate, to the any terminal, in the allocating unit When a part of the resource blocks in the first subcarrier interval used by the resource block is allocated to other terminals, the location of the resource block is indicated to the any terminal according to the first subcarrier interval, and according to The second subcarrier interval indicates, to the any terminal, a part of resources in the resource block that are allocated for use by other terminals.
  • the terminal when a part of resources in a resource block allocated to any terminal that is used in a first subcarrier interval used by the terminal is allocated to other terminals, the terminal is instructed to allocate according to the first subcarrier interval.
  • the resource block granularity corresponding to the subcarrier spacing ensures maximum utilization of resources, avoiding that a certain terminal using a larger subcarrier spacing uses only a part of resources in a larger resource block, and the remaining part of the resources are no longer allocated to other resources.
  • the problem of wasted resources caused by the terminal improves the spectrum efficiency.
  • the indication manner proposed by the present invention can also ensure that the terminal can accurately know the communication resources allocated by itself, so that the terminal can receive or transmit data through the allocated communication resources.
  • a resource configuration apparatus comprising: a first receiving unit, configured to receive a first subcarrier spacing used by a terminal notified by a base station when performing communication, and other services served by the base station a second subcarrier interval used by the terminal; a second receiving unit, configured to receive resource configuration information sent by the base station; and a determining unit, configured to: in the resource configuration information, the location allocated by the base station to the terminal Determining, by the terminal, a location of a resource block in a first subcarrier interval, and a part of resources in the resource block that are used by other terminals at intervals of the second subcarrier, determining that the resource block is not the other one a resource used by the terminal; the communication unit is configured to perform communication according to the resource that is not used by the other terminal in the resource block determined by the determining unit.
  • the base station allocates resources based on the consideration of maximizing resource block utilization, and allocates according to the resource block granularity corresponding to different subcarrier intervals, so that a terminal that uses a larger subcarrier spacing can be avoided only.
  • a problem is that a part of the larger resource block is used and the remaining part of the resource is no longer allocated to other terminals.
  • the indication manner of the base station can also ensure that the terminal can accurately know the communication resources allocated by itself, so that the terminal can receive or send data through the allocated communication resources.
  • the base station when the base station allocates resources to a plurality of terminals using different subcarrier intervals, the base station can ensure maximum utilization of resources, and can accurately indicate that the terminal learns the allocated communication resources.
  • Figure 1 shows a schematic diagram of different users using different subcarrier spacing
  • FIG. 2 is a flow chart showing a resource configuration method according to a first embodiment of the present invention
  • FIG. 3 is a block diagram showing the structure of a resource configuration apparatus according to a first embodiment of the present invention.
  • Figure 4 shows a schematic block diagram of a base station in accordance with a first embodiment of the present invention
  • FIG. 5 is a schematic flowchart diagram of a resource configuration method according to a second embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a resource configuration apparatus according to a second embodiment of the present invention.
  • Figure 7 shows a schematic block diagram of a terminal in accordance with a first embodiment of the present invention.
  • FIG. 8 is a diagram showing a result of resource configuration according to an embodiment of the present invention.
  • Figure 9 shows a schematic block diagram of a base station in accordance with a second embodiment of the present invention.
  • Figure 10 shows a schematic block diagram of a terminal in accordance with a second embodiment of the present invention.
  • FIG. 2 is a schematic flowchart diagram of a resource configuration method according to a first embodiment of the present invention, where an execution body of the resource configuration method may be a base station.
  • a resource configuration method includes the following steps:
  • Step S20 notifying the first subcarrier spacing used by any terminal served by the base station when performing communication, and notifying the any terminal of the second subcarrier spacing used by other terminals served by the base station.
  • the first subcarrier spacing and the second subcarrier spacing may be notified to any of the terminals by semi-static RRC signaling.
  • the step of notifying the any terminal of the second subcarrier spacing used by other terminals served by the base station includes:
  • Step S22 allocating communication resources to all terminals served by the base station.
  • Step S24 if some resources allocated to the terminal in the first subcarrier interval used by the terminal are allocated to other terminals, according to the first subcarrier interval,
  • the terminal indicates the location of the resource block, and indicates, according to the second subcarrier interval, a part of resources in the resource block that are allocated to be used by other terminals.
  • the terminal when some resources are allocated to other terminals in a resource block allocated to any terminal at the first subcarrier interval used by the terminal, according to the first subcarrier spacing
  • the terminal indicates the location of the allocated resource block, and indicates to the terminal, according to the second subcarrier interval, part of resources in the resource block that are allocated to other terminals, so that the base station allocates communication resources to terminals using different subcarrier intervals.
  • the resource block granularity corresponding to different subcarrier spacings can be used to ensure maximum utilization of resources, and a terminal that uses a larger subcarrier spacing is used to use only a part of resources in a larger resource block, and the remaining resources are no longer used.
  • the problem of wasted resources caused by other terminals increases the efficiency of the spectrum.
  • the indication manner proposed by the present invention can also ensure that the terminal can accurately know the communication resources allocated by itself, so that the terminal can receive or transmit data through the allocated communication resources.
  • the second subcarrier spacing is less than or equal to the first subcarrier spacing.
  • the second subcarrier spacing may be the minimum subcarrier spacing used by the terminal served by the base station, or Only one subcarrier spacing used in the terminal served by the base station is smaller than the interval of the first subcarrier.
  • the other terminal when the second subcarrier spacing is the minimum subcarrier spacing used in the terminal served by the base station, the other terminal may be other subcarrier spacing smaller than the first subcarrier spacing (may be a type Or a plurality of terminals; and when the second subcarrier spacing is a subcarrier spacing used by the base station serving terminal only smaller than the first subcarrier spacing, the other terminal is using the second subcarrier spacing One or more terminals.
  • the resource configuration method further includes: determining, according to a ratio between the first subcarrier spacing and the second subcarrier spacing, to any of the terminals The number of bits of DCI signaling used when indicating a part of resources in the resource block that are allocated for use by other terminals.
  • the ratio between the first subcarrier spacing and the second subcarrier spacing ie, a multiple relationship
  • step S22 shown in FIG. 2 specifically has the following two allocation schemes:
  • a communication resource is allocated to each terminal according to a resource block granularity corresponding to a subcarrier interval used by each of the terminals.
  • the method further includes:
  • Communication resources are sequentially allocated to each of the terminals in descending order of the used subcarrier spacing, wherein for a terminal using a larger subcarrier spacing, some resources in the resource blocks allocated thereto are allowed to be Assigned to other terminals that use smaller subcarrier spacing; or
  • the communication resources are sequentially allocated to each of the terminals in order of the subcarrier spacing used, wherein for the terminals using the larger subcarrier spacing, some resources in the resource blocks allocated thereto are not allowed. Reassigned to other terminals using smaller subcarrier spacing; or
  • Communication resources are sequentially allocated to each of the terminals in order of small to large subcarrier spacing used, wherein some resources are allowed to be allocated to the resource blocks allocated to the terminals using the larger subcarrier spacing.
  • the number of bits of the above DCI signaling can be reduced by:
  • a contiguous resource block is allocated to at least one terminal having a subcarrier spacing used in all terminals that is less than or equal to a first predetermined value.
  • the resource blocks allocated to at least one terminal with a small subcarrier spacing are discontinuous, for example, resources allocated to a terminal are at a larger subcarrier interval.
  • the resource block After a plurality of discontinuous locations in the resource block, after allocating the resource block to the terminal using the larger subcarrier interval, it is necessary to indicate the allocation of the resource block to other terminals through a more detailed indication manner. In part, it may cause a problem that the number of bits of DCI signaling is large, so that consecutive resource blocks may be allocated to terminals using smaller subcarrier spacings (less than or equal to the first predetermined value).
  • a ratio between the any subcarrier spacing and the another subcarrier spacing should be less than or Equal to the second predetermined value.
  • the ratio between the two subcarrier spacings is larger, it indicates that the resource block sizes corresponding to the two subcarrier intervals are also different, for example, the ratio between the subcarrier spacing 1 and the subcarrier spacing 2 is 2.
  • UE#1 uses subcarrier spacing 1 and UE#2 uses subcarrier spacing 2, then when part (two parts in total) of the resource blocks of UE#1 under subcarrier spacing 1 is allocated to UE#2, The base station only needs to indicate to UE#1 which part of the resource block is occupied by UE#2 through 2 bit DCI signaling.
  • the UE#1 uses the subcarrier spacing 1
  • the UE#3 uses the subcarrier spacing 3
  • the resource block with the UE#1 at the subcarrier spacing 1 is used.
  • the base station needs to indicate to UE#1 whether each part of the eight parts of the resource block is occupied by UE#3 through 8-bit DCI signaling, which obviously increases DCI.
  • the number of bits of signaling Therefore, if it is necessary to allocate some resources in a resource block at a certain subcarrier interval to a terminal using another subcarrier interval, the ratio between the two subcarrier intervals should be as small as possible.
  • the remaining resources of the terminal that are not allocated to use the smaller subcarrier interval are less than or equal to the third predetermined value, the remaining resources are not allowed to be reallocated to the use.
  • the terminal of the larger subcarrier spacing is not allowed to be reallocated to the use.
  • mode 3 when only a small portion of the resource blocks in the larger subcarrier interval remain, if the part of the resource is allocated to the terminal using the larger subcarrier spacing, then more bits of the DCI signal are needed.
  • the terminal is instructed to indicate to the terminal, so when only a small portion of the resource blocks in the larger subcarrier interval remain, the part of the resource is no longer allocated to the terminal using the larger subcarrier spacing.
  • the resource configuration method further includes:
  • the location of the resource block allocated to the terminal is indicated to the any terminal. And indicating to the any terminal that there is no part of the resources allocated to other terminals in the resource block.
  • FIG. 3 is a block diagram showing the structure of a resource configuration apparatus according to a first embodiment of the present invention.
  • the resource configuration apparatus 300 includes a notification unit 302, an allocation unit 304, and an indication unit 306.
  • the notification unit 302 is configured to notify the first subcarrier interval used by any terminal served by the base station when performing communication, and notify the any terminal of the second subcarrier spacing used by other terminals served by the base station;
  • the unit 304 is configured to allocate communication resources to all terminals served by the base station;
  • the indication unit 306 is configured to allocate, in the resource block of the first subcarrier interval used by the allocation unit 304 to the any terminal, When a part of resources are allocated to other terminals, the location of the resource block is indicated to the any terminal according to the first subcarrier interval, and the terminal is instructed according to the second subcarrier interval. Some resources in the resource block that are allocated to other terminals.
  • the location of the allocated resource block is indicated to the terminal according to the first subcarrier interval, and the terminal is indicated to the terminal according to the second subcarrier interval.
  • Partial resources allocated to other terminals so that when the base station allocates communication resources to terminals using different subcarrier intervals, the base station can ensure the maximum utilization of resources according to the resource block granularity corresponding to different subcarrier intervals, thereby avoiding a certain use.
  • the terminal with large subcarrier spacing only uses a part of the resources in the larger resource block, and the remaining part of the resources is no longer allocated to the resources caused by other terminals, which improves the spectrum efficiency.
  • the indication manner proposed by the present invention can also ensure that the terminal can accurately know the communication resources allocated by itself, so that the terminal can receive or transmit data through the allocated communication resources.
  • the second subcarrier spacing is less than or equal to the first subcarrier spacing, wherein the second subcarrier spacing is a minimum subcarrier spacing used in a terminal served by the base station.
  • the second subcarrier spacing is one subcarrier spacing used in the terminal served by the base station only smaller than the first subcarrier spacing.
  • the other terminal when the second subcarrier spacing is the minimum subcarrier spacing used in the terminal served by the base station, the other terminal may be other subcarrier spacing smaller than the first subcarrier spacing (may be a type Or a plurality of terminals; and when the second subcarrier spacing is a subcarrier spacing used by the base station serving terminal only smaller than the first subcarrier spacing, the other terminal is using the second subcarrier spacing One or more terminals.
  • the resource configuration apparatus 300 further includes: a determining unit 308, configured to determine, according to a ratio between the first subcarrier spacing and the second subcarrier spacing, The number of bits of DCI signaling used when indicating any of the resource blocks allocated to other terminals used by other terminals to the any of the terminals.
  • the ratio between the first subcarrier spacing and the second subcarrier spacing ie, a multiple relationship
  • the notification unit 302 is specifically configured to:
  • the allocating unit 304 is specifically configured to:
  • a communication resource is allocated to each terminal according to a resource block granularity corresponding to a subcarrier interval used by each of the terminals.
  • the allocating unit 304 allocates communication resources to each terminal according to the resource block granularity corresponding to the subcarrier spacing used by each terminal in all the terminals, the allocating unit 304 specifically Used for:
  • Communication resources are sequentially allocated to each of the terminals in descending order of the used subcarrier spacing, wherein for a terminal using a larger subcarrier spacing, some resources in the resource blocks allocated thereto are allowed to be Assigned to other terminals that use smaller subcarrier spacing; or
  • the communication resources are sequentially allocated to each of the terminals in order of the subcarrier spacing used, wherein for the terminals using the larger subcarrier spacing, some resources in the resource blocks allocated thereto are not allowed. Reassigned to other terminals using smaller subcarrier spacing; or
  • Communication resources are sequentially allocated to each of the terminals in order of small to large subcarrier spacing used, wherein some resources are allowed to be allocated to the resource blocks allocated to the terminals using the larger subcarrier spacing.
  • the allocation unit 304 specifically allocates resources by:
  • At least one end of the subcarrier spacing used in all terminals is less than or equal to the first predetermined value The end allocates consecutive resource blocks.
  • the resource blocks allocated to at least one terminal with a small subcarrier spacing are discontinuous, for example, resources allocated to a terminal are at a larger subcarrier interval.
  • the resource block After a plurality of discontinuous locations in the resource block, after allocating the resource block to the terminal using the larger subcarrier interval, it is necessary to indicate the allocation of the resource block to other terminals through a more detailed indication manner. In part, it may cause a problem that the number of bits of DCI signaling is large, so that consecutive resource blocks may be allocated to terminals using smaller subcarrier spacings (less than or equal to the first predetermined value).
  • a ratio between the any subcarrier spacing and the another subcarrier spacing should be less than or Equal to the second predetermined value.
  • the ratio between the two subcarrier spacings is larger, it indicates that the resource block sizes corresponding to the two subcarrier intervals are also different, for example, the ratio between the subcarrier spacing 1 and the subcarrier spacing 2 is 2.
  • UE#1 uses subcarrier spacing 1 and UE#2 uses subcarrier spacing 2, then when part (two parts in total) of the resource blocks of UE#1 under subcarrier spacing 1 is allocated to UE#2, The base station only needs to indicate to UE#1 which part of the resource block is occupied by UE#2 through 2 bit DCI signaling.
  • the UE#1 uses the subcarrier spacing 1
  • the UE#3 uses the subcarrier spacing 3
  • the resource block with the UE#1 at the subcarrier spacing 1 is used.
  • the base station needs to indicate to UE#1 whether each part of the eight parts of the resource block is occupied by UE#3 through 8-bit DCI signaling, which obviously increases DCI.
  • the number of bits of signaling Therefore, if it is necessary to allocate some resources in a resource block at a certain subcarrier interval to a terminal using another subcarrier interval, the ratio between the two subcarrier intervals should be as small as possible.
  • the remaining resources of the terminal that are not allocated to use the smaller subcarrier interval are less than or equal to the third predetermined value, the remaining resources are not allowed to be reallocated to the use.
  • the terminal of the larger subcarrier spacing is not allowed to be reallocated to the use.
  • mode three only a small portion of the resource blocks in the larger subcarrier spacing are left. If the part of the resource is allocated to the terminal using the larger subcarrier spacing, then more bits of DCI signaling are needed to indicate to the terminal, so only the resource blocks in the larger subcarrier interval are When a small part of resources remain, this part of the resources is no longer allocated to terminals that use larger subcarrier spacing.
  • the indicating unit 306 is further configured to:
  • the allocating unit 304 If the resources allocated by the allocating unit 304 to the any of the resource blocks in the first subcarrier interval used by the terminal are not allocated to other terminals, only the terminal is indicated to the terminal. The location of the allocated resource block; or
  • the any terminal is instructed to allocate to the terminal.
  • the location of the resource block and indicates to any of the terminals that there are no resources allocated to other terminals in the resource block.
  • the notification unit 302 is specifically configured to notify the any sub-terminal and the second sub-carrier interval to the any terminal by semi-static RRC signaling.
  • Fig. 4 shows a schematic block diagram of a base station according to a first embodiment of the present invention.
  • a base station 400 includes: a resource configuration apparatus 300 as shown in FIG.
  • FIG. 5 is a schematic flowchart diagram of a resource configuration method according to a second embodiment of the present invention, where an execution body of the resource configuration method may be a terminal.
  • a resource configuration method includes the following steps:
  • Step S50 Receive a first subcarrier spacing used by the terminal notified by the base station when performing communication, and a second subcarrier spacing used by other terminals served by the base station.
  • Step S52 Receive resource configuration information sent by the base station.
  • Step S54 if the resource configuration information indicates a location of a resource block allocated by the base station to the terminal at a first subcarrier interval used by the terminal, and the resource block is used by another terminal.
  • the partial resources used by the second subcarrier interval determine resources of the resource blocks that are not used by the other terminals.
  • Step S56 performing communication according to resources in the resource block that are not used by other terminals.
  • the resource configuration information indicates the location of the resource block allocated by the base station to the terminal at the first subcarrier interval used by the terminal, and the other subcarrier in the resource block is the second subcarrier.
  • the base station allocates resources based on the consideration of the maximum utilization of the resource blocks, and allocates according to the resource block granularity corresponding to different subcarrier intervals, so that one of the larger subcarriers can be avoided.
  • the intervald terminal uses only a part of the resources in the larger resource block and the remaining part of the resources are no longer allocated to other terminals, causing waste of resources.
  • the indication manner of the base station can also ensure that the terminal can accurately know the communication resources allocated by itself, so that the terminal can receive or send data through the allocated communication resources.
  • FIG. 6 is a block diagram showing the structure of a resource configuration apparatus according to a second embodiment of the present invention.
  • a resource configuration apparatus 600 includes a first receiving unit 602, a second receiving unit 604, a determining unit 606, and a communication unit 608.
  • the first receiving unit 602 is configured to receive a first subcarrier interval used by the terminal notified by the base station when performing communication, and a second subcarrier interval used by other terminals served by the base station; and the second receiving unit 604 is configured to receive The resource configuration information sent by the base station; the determining unit 606 is configured to: in the resource configuration information, indicate a location of the resource block allocated by the base station to the terminal, where the first subcarrier is used by the terminal, and Determining, in the resource block, a resource that is not used by the other terminal in the resource block when the other terminal is used by the second subcarrier interval; the communication unit 608 is configured to determine, according to the determining unit 606, The resources in the resource block that are not used by the other terminal communicate.
  • the base station allocates resources based on the consideration of maximizing resource block utilization, and allocates according to the resource block granularity corresponding to different subcarrier intervals, so that a terminal that uses a larger subcarrier spacing can be avoided only. Some of the resources in the larger resource block are used, and the remaining part of the resources are no longer allocated to other terminals. problem.
  • the indication manner of the base station can also ensure that the terminal can accurately know the communication resources allocated by itself, so that the terminal can receive or send data through the allocated communication resources.
  • Fig. 7 shows a schematic block diagram of a terminal in accordance with a first embodiment of the present invention.
  • a terminal 700 includes: a resource configuration apparatus 600 as shown in FIG. 6.
  • the base station performs resource allocation methods:
  • the present invention proposes the following two solutions:
  • Resource allocation scheme 1 The RB formed according to the minimum subcarrier spacing used in the terminal is scheduled to be granular.
  • the number of RBs is 100, and the number is 0 to 99, and these RBs may be defined as RB(1, i), where 1 indicates that the subcarrier spacing is 1 time.
  • f 0 , i is 0 to 99;
  • the subcarrier spacing used by the terminal is 2f 0 , the number of RBs is 50, and these RBs are defined as RB(2, j), where 2 indicates that the subcarrier spacing is 2 times.
  • f 0 , j is 0 to 49; when the subcarrier spacing used by the terminal is 4f 0 , the number of RBs is 25, and these RBs are defined as RB(4, j), where 4 indicates that the subcarrier spacing is 4 times.
  • the value of f 0 , j is 0 to 24;
  • RB(4,0) is composed of RB(2,0) and RB(2,1); RB(2,0) is composed of RB(1,0) and RB(1,1) .
  • UE#1 uses subcarrier spacing f 0
  • UE#2 uses subcarrier spacing 2f 0
  • UE#3 uses subcarrier spacing 4f 0 , if formed according to the minimum subcarrier spacing used in the terminal.
  • the RB is scheduled for granularity, and there may be an allocation result as shown in FIG. 8, as follows:
  • UE#1 RB(1,7), RB(1,8);
  • UE#2 RB(1,6);
  • UE#3 RB(1,9), RB(1,10), RB(1,11).
  • Resource allocation scheme 2 RBs formed according to the subcarrier spacing of each terminal are granularity To schedule.
  • the subcarrier spacing used by UE#1 and UE#4 is f 0 , then UE#1 and UE#4 are f 0 user groups; the subcarrier spacing used by UE#2 and UE#5 is 2f 0 , Then UE#2 and UE#5 are 2f 0 user groups; UE#3 and UE#6 use subcarrier spacing is 4f 0 , then UE#3 and UE#6 are 4f 0 user groups.
  • the priorities of the UEs obtained by the foregoing resources are the same, that is, the UEs may have different delay requirements, but the base stations determine that they can be scheduled to resources in this subframe according to the delay requirement.
  • the resource base stations for which the UE needs to obtain a large bandwidth in this subframe, and how much bandwidth each UE needs to obtain in this subframe is based on the QoS (Quality of Service) of each UE and the transmitted data. And the amount of data to be transmitted, etc. to determine.
  • QoS Quality of Service
  • resource allocation is then performed according to different groups, which is divided into multiple cases:
  • the user with the largest subcarrier spacing is allocated first, and the previously allocated resources can be allocated to subsequent users. That is, communication resources are sequentially allocated to each user in descending order of the used subcarrier spacing, wherein for users using larger subcarrier spacing, some resources in the resource blocks allocated thereto are allowed to be allocated. For other users who use smaller subcarrier spacing.
  • UE#3 since the subcarrier spacing used by UE#3 is the largest, UE#3 allocates resources first, if RB(4, 2) is allocated to UE#3, and then allocates resources to UE#2, if it is to UE. #2 allocates RB(2,3), and finally allocates resources to UE#1. Since the previously allocated resources can be allocated to subsequent users, RB(1,7) and RB(1, can be allocated to UE#1. 8), some resources in RB (2, 3) and RB (4, 2) are also allocated to UE #1.
  • the user with the largest subcarrier spacing is allocated first, and the previously allocated resources cannot be allocated to subsequent users. That is, each user is allocated communication resources in order according to the subcarrier spacing used, wherein, for users using larger subcarrier spacing, some resources in the resource blocks allocated to them are not allowed. It is assigned to other users who use smaller subcarrier spacing.
  • the user with the smallest subcarrier spacing is allocated first, and the previously allocated resources may be a component of the RB under the large subcarrier spacing, and may be allocated to subsequent users. That is, each user is allocated communication resources in order according to the used subcarrier spacing from small to large, wherein some resources are allowed to be allocated to the resource blocks allocated to the users using the larger subcarrier spacing. Other users with small subcarrier spacing.
  • resources are first allocated to UE#1, if RB(1,7) and RB(1,8) are allocated to UE#1; #2 allocate resources, since RB(1,7) is part of RB(2,3), in order to ensure maximum utilization of resources, the remaining resources in RB(2,3) can be allocated to UE#2; In the case of allocating resources to the UE #3, the portion of the RB (4, 2) that is not occupied by the UE #1 may be allocated to the UE #3.
  • the user with the smallest subcarrier spacing is allocated first, and the previously allocated resources may be a component of the RB under the large subcarrier spacing, and may not be allocated to subsequent users. That is, each user is allocated communication resources in order according to the used subcarrier spacing from small to large, wherein the resource blocks allocated to the users using the larger subcarrier spacing are not allowed to be allocated to be used less. Partial resources of other users with subcarrier spacing.
  • the corresponding indication method is: firstly, the semi-static RRC signaling is used to inform the user of the subcarrier spacing value f1 used when transmitting and receiving data, and simultaneously inform the user of the minimum subcarrier spacing value f2 used by the user under the base station. Or inform the user of the ratio f1/f2 of f1 and f2. The following is an example of the ratio:
  • the ratio is 4, 4 bit DCI signaling is required, and the RB is divided into 4 parts to inform the user which parts of the RB are occupied by other users.
  • users who use smaller subcarrier spacing are restricted to allocate consecutive RBs, the RBs will be occupied less.
  • the ratio may be up to 128.
  • the number of bits required to indicate which part of the RB is allocated to other users is very large.
  • the base station needs to adopt some principles when assigning RBs, such as:
  • the subcarrier spacing value f1 used when transmitting and receiving data can also be notified to the user through semi-static RRC signaling, and the user is notified at the same time.
  • the subcarrier spacing value f3 used only by the user under the base station is smaller than the subcarrier spacing f1 or the ratio f1/f3 of the user f1 to f3 is used, and the subsequent indication method is similar to the above.
  • Figure 9 shows a schematic block diagram of a base station in accordance with a second embodiment of the present invention.
  • a base station includes a processor 1, an output device 3, and a memory 5.
  • the processor 1, the output device 3, and the memory 5 may be connected by a bus 4 or other means, as exemplified by the connection through the bus 4 in FIG.
  • the memory 5 is used to store a set of program codes, and the processor 1 calls the program code stored in the memory 5 for performing the following operations:
  • the output device 3 notifying, by the output device 3, the first subcarrier spacing used by any terminal served by the base station when performing communication, and notifying the any terminal of the second subcarrier spacing used by other terminals served by the base station;
  • the processor 1 calls the program code stored in the memory 5, and is also used to perform the following operations:
  • the processor 1 invokes the program code stored in the memory 5, and performs an operation of notifying the any terminal of the second subcarrier spacing used by other terminals served by the base station, specifically:
  • the ratio between the first subcarrier spacing and the second subcarrier spacing is notified by the output device 3 to any of the terminals.
  • the processor 1 calls the program generation stored in the memory 5.
  • the operation of allocating communication resources to all terminals served by the base station specifically:
  • a communication resource is allocated to each terminal according to a resource block granularity corresponding to a subcarrier interval used by each of the terminals.
  • the processor 1 calls the memory 5 in a case where the communication resource is allocated to each terminal according to the resource block granularity corresponding to the subcarrier spacing used by each terminal in all the terminals.
  • the program code stored in it is also used to do the following:
  • Communication resources are sequentially allocated to each of the terminals in descending order of the used subcarrier spacing, wherein for a terminal using a larger subcarrier spacing, some resources in the resource blocks allocated thereto are allowed to be Assigned to other terminals that use smaller subcarrier spacing; or
  • the communication resources are sequentially allocated to each of the terminals in order of the subcarrier spacing used, wherein for the terminals using the larger subcarrier spacing, some resources in the resource blocks allocated thereto are not allowed. Reassigned to other terminals using smaller subcarrier spacing; or
  • Communication resources are sequentially allocated to each of the terminals in order of small to large subcarrier spacing used, wherein some resources are allowed to be allocated to the resource blocks allocated to the terminals using the larger subcarrier spacing.
  • the processor 1 calls the memory 5 in a case where the communication resource is allocated to each terminal according to the resource block granularity corresponding to the subcarrier spacing used by each terminal in all the terminals.
  • the program code stored in it is also used to do the following:
  • a ratio between the any subcarrier spacing and the another subcarrier spacing should be less than or Equal to a second predetermined value
  • the remaining resources of the carrier of the carrier interval are less than or equal to the third predetermined value, the remaining resources are not allowed to be reallocated to the terminal using the larger subcarrier spacing.
  • the processor 1 calls the program code stored in the memory 5, and is also used to perform the following operations:
  • the location of the resource block allocated to the terminal is indicated to the any terminal. And indicating to the any terminal that there is no part of the resources allocated to other terminals in the resource block.
  • the processor 1 calls the program code stored in the memory 5, specifically for performing the following operations, and notifying the any sub-carrier interval and the any sub-carrier by semi-static RRC signaling.
  • the second subcarrier spacing is the same.
  • Figure 10 shows a schematic block diagram of a terminal in accordance with a second embodiment of the present invention.
  • a terminal includes a processor 1', an input device 2', and a memory 5'.
  • the processor 1', the input device 2' and the memory 5' may be connected by a bus 4' or other means, as exemplified by the connection through the bus 4' in FIG.
  • the memory 5' is used to store a set of program codes, and the processor 1' calls the program code stored in the memory 5' for performing the following operations:
  • the resource configuration information indicates a location of a resource block allocated by the base station to the terminal at a first subcarrier interval used by the terminal, and where the other terminal is the second sub a part of resources used by the carrier interval, and determining resources in the resource block that are not used by the other terminal;
  • Communication is performed according to resources in the resource block that are not used by the other terminal.
  • the resource configuration apparatus, the terminal, and the unit in the base station in the embodiment of the present invention may be combined, divided, and deleted according to actual needs.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • OTPROM One-Time Programmable Read-Only Memory
  • EEPROM Electronically-Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • the present invention provides a new resource configuration scheme, so that a base station can ensure maximum resource utilization when allocating resources to multiple terminals using different subcarrier intervals. And it can accurately indicate that the terminal knows the communication resources to which it is assigned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种资源配置方法及资源配置装置,其中,资源配置方法包括:通知基站服务的任一终端在进行通信时使用的第一子载波间隔,并向所述任一终端通知所述基站服务的其它终端使用的第二子载波间隔;向所述基站服务的所有终端分配通信资源;若向所述任一终端分配的在其使用的第一子载波间隔下的资源块中有部分资源被分配给其它终端使用,则根据所述第一子载波间隔向所述任一终端指示所述资源块的位置,并根据所述第二子载波间隔向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源。本发明的技术方案使得基站在向使用不同子载波间隔的多个终端分配资源时,能够保证资源的最大化利用,并且能够准确指示终端获知被分配到的通信资源。

Description

资源配置方法及资源配置装置
本申请要求于2016年10月31日提交中国专利局、申请号为201610978083.0、发明名称为“资源配置方法及资源配置装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体而言,涉及一种资源配置方法和一种资源配置装置。
背景技术
现有的4G以及4.5G移动通信技术,都是基于LTE(Long Term Evolution,长期演进)及LTE-A(LTE-Advanced)的无线接入技术、时频资源粒度和帧结构等。比如目前LTE系统能支持的最大单载波带宽为20MHz,若要支持更大带宽,只能依靠载波聚合(Carrier Aggregation,简称CA)的使用。另外,目前的帧结构主要包括:FDD(Frequency Division Duplexing,频分双工)帧结构、TDD(Time Division Duplexing,时分双工)帧结构和LAA(LTE Assisted Access,LTE辅助接入)非授权载波使用的动态帧结构。不管是哪种帧结构,都包含10个子帧,每个子帧为1ms,每个子帧包含两个slot(时隙),一个slot为0.5ms,每个slot又包含7个symbol(符号)。频域方面,在LTE系统中,子载波间隔主要是15KHz,一个RB(Resource Block,资源块)包含了12个子载波。而在NB-IoT(Narrow Band Internet of Things,基于蜂窝的窄带物联网)中又提出一种新的3.75KHz的子载波间隔,而且NB-IoT的载波带宽仅有180KHz。
在资源分配方面,FDD帧结构和TDD帧结构都是以1ms子帧为时域调度粒度,除了TDD帧结构中的特殊子帧内的DwPTS(Downlink Pilot  Time Slot,下行导频时隙)用于传输数据时,时域调度粒度是小于1ms的。同样在LAA非授权载波使用的帧结构中也出现了复用DwPTS作为partial subframe的下行调度时域粒度,同时也使用了1ms整子帧的调度粒度。而在FDD帧结构和TDD帧结构中,除了TDD帧结构中的特殊子帧既有下行发送时间和上行发送时间外,其它的子帧都是上行发送或下行发送要么时域分开要么频域分开。
可见,目前的帧结构和频域资源的粒度都会使得资源分配不够灵活,而上行调度机制与HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)反馈机制等的时间间隔又使得时延较大,20MHz带宽也不满足高带宽需求。
未来5G通信主要场景包括以下三种:eMBB(enhanced Mobile Broadband,增强的移动宽带网络),mMTC(massive Machine Type Communication,大规模机器类通讯)和URLLC(Ultra-Reliable and Low Latency Communications,高可靠低时延通信)。这三种场景所针对的业务类型不一样,其需求也不一样。比如:eMBB业务的两个主要指标是高带宽和低时延,在未来的高频通信上,eMBB业务可能支持100MHz的大带宽,而且很可能某个时刻整个带宽都直接分配给一个用户使用,而上行调度时延和HARQ反馈时延也会带来时延影响;mMTC业务需要的是窄带服务,需要电池寿命很长,这种业务就需要更小粒度的频域和更宽粒度的时域资源;对于URLLC业务,也需要减少上行调度时延和HARQ反馈时延带来的时延影响。
也就是说由于业务的多样化,使得目前固定的帧结构、固定的频域资源粒度和时域资源粒度会造成较大的上行调度时延和较长的HARQ反馈时延,并且较小的载波带宽也无法满足业务的多样化需求,而5G通信希望能够做到足够灵活,任何一个资源都可能动态的进行调度以随时使用。
目前,针对5G的讨论会议已经达成了以下共识:对于同一个载波上的不同业务,可以有不同的子载波间隔。具体如图1所示,若最小的子载波间隔为f0,其次有2f0、4f0和8f0,那么相应的RB(Resource Block,资源块)的大小也成倍数关系。这种情况下,比如UE#1使用的是f0,且只 需要使用f0时的RB0,而这时候没有别的使用f0的用户需要分配资源,只有使用2f0的UE#2,而UE#2使用2f0时的RB0中的部分资源已经被UE#1使用了,那么剩余的部分资源是否需要分配给UE#2,并且当分配给UE#2时该如何设计信令告知UE#2哪部分已经被其它用户使用了都是亟待解决的技术问题。
发明内容
本发明正是基于上述技术问题至少之一,提出了一种新的资源配置方案,使得基站在向使用不同子载波间隔的多个终端分配资源时,能够保证资源的最大化利用,并且能够准确指示终端获知被分配到的通信资源。
有鉴于此,根据本发明的第一方面,提出了一种资源配置方法,包括:通知基站服务的任一终端在进行通信时使用的第一子载波间隔,并向所述任一终端通知所述基站服务的其它终端使用的第二子载波间隔;向所述基站服务的所有终端分配通信资源;若向所述任一终端分配的在其使用的第一子载波间隔下的资源块中有部分资源被分配给其它终端使用,则根据所述第一子载波间隔向所述任一终端指示所述资源块的位置,并根据所述第二子载波间隔向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源。
在该技术方案中,通过在向任一终端分配的在其使用的第一子载波间隔下的资源块中有部分资源被分配给其它终端使用时,根据第一子载波间隔向该终端指示分配的资源块的位置,并根据第二子载波间隔向该终端指示该资源块中被分配给其它终端使用的部分资源,使得基站在向使用不同子载波间隔的终端分配通信资源时,可以根据不同子载波间隔对应的资源块粒度来确保资源的最大化利用,避免了某一个使用较大子载波间隔的终端仅使用了较大资源块中的一部分资源而剩余的部分资源不再分配给其它终端造成的资源浪费的问题,提高了频谱效率。同时,通过本发明提出的指示方式也可以确保终端能够准确获知自身被分配的通信资源,以便于终端通过被分配的通信资源来接收或发送数据。
根据本发明的第二方面,还提出了一种资源配置方法,包括:接收基 站通知的终端在进行通信时使用的第一子载波间隔,以及所述基站服务的其它终端使用的第二子载波间隔;接收所述基站发送的资源配置信息;若所述资源配置信息指示了所述基站向所述终端分配的在所述终端使用的第一子载波间隔下的资源块的位置,以及所述资源块中被其它终端以所述第二子载波间隔使用的部分资源,则确定所述资源块中未被所述其它终端使用的资源;根据所述资源块中未被所述其它终端使用的资源进行通信。
在该技术方案中,当资源配置信息指示了基站向终端分配的在终端使用的第一子载波间隔下的资源块的位置,以及该资源块中被其它终端以第二子载波间隔使用的部分资源时,说明基站在分配资源时,是基于资源块最大化利用的考虑,并根据不同子载波间隔对应的资源块粒度来进行分配的,这样可以避免某一个使用较大子载波间隔的终端仅使用了较大资源块中的一部分资源而剩余的部分资源不再分配给其它终端造成的资源浪费的问题。同时,通过基站的指示方式也可以确保终端能够准确获知自身被分配的通信资源,以便于终端通过被分配的通信资源来接收或发送数据。
根据本发明的第三方面,还提出了一种资源配置装置,包括:通知单元,用于通知基站服务的任一终端在进行通信时使用的第一子载波间隔,并向所述任一终端通知所述基站服务的其它终端使用的第二子载波间隔;分配单元,用于向所述基站服务的所有终端分配通信资源;指示单元,用于在所述分配单元向所述任一终端分配的在其使用的第一子载波间隔下的资源块中有部分资源被分配给其它终端使用时,根据所述第一子载波间隔向所述任一终端指示所述资源块的位置,并根据所述第二子载波间隔向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源。
在该技术方案中,通过在向任一终端分配的在其使用的第一子载波间隔下的资源块中有部分资源被分配给其它终端使用时,根据第一子载波间隔向该终端指示分配的资源块的位置,并根据第二子载波间隔向该终端指示该资源块中被分配给其它终端使用的部分资源,使得基站在向使用不同子载波间隔的终端分配通信资源时,可以根据不同子载波间隔对应的资源块粒度来确保资源的最大化利用,避免了某一个使用较大子载波间隔的终端仅使用了较大资源块中的一部分资源而剩余的部分资源不再分配给其它 终端造成的资源浪费的问题,提高了频谱效率。同时,通过本发明提出的指示方式也可以确保终端能够准确获知自身被分配的通信资源,以便于终端通过被分配的通信资源来接收或发送数据。
根据本发明的第四方面,还提出了一种资源配置装置,包括:第一接收单元,用于接收基站通知的终端在进行通信时使用的第一子载波间隔,以及所述基站服务的其它终端使用的第二子载波间隔;第二接收单元,用于接收所述基站发送的资源配置信息;确定单元,用于在所述资源配置信息指示了所述基站向所述终端分配的在所述终端使用的第一子载波间隔下的资源块的位置,以及所述资源块中被其它终端以所述第二子载波间隔使用的部分资源时,确定所述资源块中未被所述其它终端使用的资源;通信单元,用于根据所述确定单元确定的所述资源块中未被所述其它终端使用的资源进行通信。
在该技术方案中,当资源配置信息指示了基站向终端分配的在终端使用的第一子载波间隔下的资源块的位置,以及该资源块中被其它终端以第二子载波间隔使用的部分资源时,说明基站在分配资源时,是基于资源块最大化利用的考虑,并根据不同子载波间隔对应的资源块粒度来进行分配的,这样可以避免某一个使用较大子载波间隔的终端仅使用了较大资源块中的一部分资源而剩余的部分资源不再分配给其它终端造成的资源浪费的问题。同时,通过基站的指示方式也可以确保终端能够准确获知自身被分配的通信资源,以便于终端通过被分配的通信资源来接收或发送数据。
通过以上技术方案,使得基站在向使用不同子载波间隔的多个终端分配资源时,能够保证资源的最大化利用,并且能够准确指示终端获知被分配到的通信资源。
附图说明
图1示出了不同用户使用不同子载波间隔的示意图;
图2示出了根据本发明的第一个实施例的资源配置方法的流程示意图;
图3示出了根据本发明的第一个实施例的资源配置装置的结构示意 图;
图4示出了根据本发明的第一个实施例的基站的示意框图;
图5示出了根据本发明的第二个实施例的资源配置方法的流程示意图;
图6示出了根据本发明的第二个实施例的资源配置装置的结构示意图;
图7示出了根据本发明的第一个实施例的终端的示意框图;
图8示出了根据本发明的实施例的资源配置结果示意图;
图9示出了根据本发明的第二个实施例的基站的示意框图;
图10示出了根据本发明的第二个实施例的终端的示意框图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
图2示出了根据本发明的第一个实施例的资源配置方法的流程示意图,该资源配置方法的执行主体可以是基站。
如图2所示,根据本发明的第一个实施例的资源配置方法,包括以下步骤:
步骤S20,通知基站服务的任一终端在进行通信时使用的第一子载波间隔,并向所述任一终端通知所述基站服务的其它终端使用的第二子载波间隔。
优选地,可以通过半静态的RRC信令向所述任一终端通知所述第一子载波间隔和所述第二子载波间隔。
其中,向所述任一终端通知所述基站服务的其它终端使用的第二子载波间隔的步骤,具体包括:
向所述任一终端通知所述第二子载波间隔的数值;或
向所述任一终端通知所述第一子载波间隔与所述第二子载波间隔之间的比值。
步骤S22,向所述基站服务的所有终端分配通信资源。
步骤S24,若向所述任一终端分配的在其使用的第一子载波间隔下的资源块中有部分资源被分配给其它终端使用,则根据所述第一子载波间隔向所述任一终端指示所述资源块的位置,并根据所述第二子载波间隔向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源。
在图2所示的技术方案中,通过在向任一终端分配的在其使用的第一子载波间隔下的资源块中有部分资源被分配给其它终端使用时,根据第一子载波间隔向该终端指示分配的资源块的位置,并根据第二子载波间隔向该终端指示该资源块中被分配给其它终端使用的部分资源,使得基站在向使用不同子载波间隔的终端分配通信资源时,可以根据不同子载波间隔对应的资源块粒度来确保资源的最大化利用,避免了某一个使用较大子载波间隔的终端仅使用了较大资源块中的一部分资源而剩余的部分资源不再分配给其它终端造成的资源浪费的问题,提高了频谱效率。同时,通过本发明提出的指示方式也可以确保终端能够准确获知自身被分配的通信资源,以便于终端通过被分配的通信资源来接收或发送数据。
其中,上述的第二子载波间隔小于或等于所述第一子载波间隔,在满足这个条件的基础上,第二子载波间隔具体可以是基站服务的终端中使用的最小子载波间隔,或是基站服务的终端中使用的仅比所述第一子载波间隔小的一个子载波间隔。
在该技术方案中,当第二子载波间隔是基站服务的终端中使用的最小子载波间隔时,上述的其它终端可以是使用比第一子载波间隔小的其它子载波间隔(可以是一种或多种)的多个终端;而在第二子载波间隔是基站服务的终端中使用的仅比第一子载波间隔小的一个子载波间隔时,上述的其它终端是使用第二子载波间隔的一个或多个终端。
在本发明的一个实施例中,上述的资源配置方法还包括:根据所述第一子载波间隔与所述第二子载波间隔之间的比值,确定在向所述任一终端 指示所述资源块中被分配给其它终端使用的部分资源时所使用的DCI信令的比特数。
在该实施例中,由于子载波间隔之间是存在倍数关系的,因此可以根据第一子载波间隔与第二子载波间隔之间的比值(即倍数关系)来确定向终端指示资源块中被分配给其它终端使用的部分资源时所使用的DCI信令的比特数。譬如,若第一子载波间隔与第二子载波间隔之间的比值为2,则该DCI信令的比特数为2,即每个比特对应指示两块资源中的其中一块资源是否被其它终端占用。
进一步地,图2中所示的步骤S22具体有如下两种分配方案:
分配方案一:
根据所述基站服务的所有终端中使用的最小子载波间隔对应的资源块粒度,向所述所有终端分配通信资源。
分配方案二:
根据所述所有终端中的每个终端使用的子载波间隔对应的资源块粒度,向所述每个终端分配通信资源。
进一步地,在通过分配方案二来向每个终端分配通信资源的情况下,具体还包括:
按照所使用的子载波间隔从大到小的顺序,依次向所述每个终端分配通信资源,其中,对于使用较大的子载波间隔的终端,向其分配的资源块中的部分资源允许被分配给使用较小的子载波间隔的其它终端;或
按照所使用的子载波间隔从大到小的顺序,依次向所述每个终端分配通信资源,其中,对于使用较大的子载波间隔的终端,向其分配的资源块中的部分资源不允许再被分配给使用较小的子载波间隔的其它终端;或
按照所使用的子载波间隔从小到大的顺序,依次向所述每个终端分配通信资源,其中,向使用较大的子载波间隔的终端分配的资源块中允许有部分资源已被分配给使用较小的子载波间隔的其它终端;或
按照所使用的子载波间隔从小到大的顺序,依次向所述每个终端分配通信资源,其中,向使用较大的子载波间隔的终端分配的资源块中不允许存在已被分配给使用较小的子载波间隔的其它终端的部分资源。
进一步地,在通过分配方案二来向每个终端分配通信资源的情况下,可以通过以下方式来减少上述DCI信令的比特数:
方式一:
向所有终端中使用的子载波间隔小于或等于第一预定值的至少一个终端分配连续的资源块。
在方式一中,若向使用的子载波间隔较小(即小于或等于第一预定值)的至少一个终端分配的资源块不连续,比如向某一终端分配的资源处于较大子载波间隔下的资源块中的多个不连续的位置,那么在向使用该较大子载波间隔的终端分配这个资源块之后,就需要通过较为详细的指示方式来指示这个资源块中被分配给其它终端的部分,进而会造成DCI信令的比特数较多的问题,因此可以向使用较小子载波间隔(小于或等于第一预定值)的终端尽量分配连续的资源块。
方式二:
在需要将任一子载波间隔下的资源块中的部分资源分配给使用另一子载波间隔的终端时,所述任一子载波间隔与所述另一子载波间隔之间的比值应当小于或等于第二预定值。
在方式二中,若二个子载波间隔之间的比值越大,说明这两个子载波间隔各自对应的资源块粒度也相差较大,比如子载波间隔1与子载波间隔2之间的比值为2,UE#1使用子载波间隔1,UE#2使用子载波间隔2,那么在将UE#1在子载波间隔1下的资源块中的其中一部分(一共两部分)分配给UE#2时,基站仅需通过2bit的DCI信令向UE#1指示该资源块中哪部分被UE#2占用。而若子载波间隔1与子载波间隔3之间的比值为8,UE#1使用子载波间隔1,UE#3使用子载波间隔3,那么在将UE#1在子载波间隔1下的资源块中的一部分(一共八部分)分配给UE#3时,基站需通过8bit的DCI信令向UE#1指示该资源块的八部分中每部分是否被UE#3占用,这显然是增加了DCI信令的比特数。因此若需要将某一子载波间隔下的资源块中的部分资源分配给使用另一子载波间隔的终端,则这两个子载波间隔之间的比值应尽量小。
方式三:
对于较大的子载波间隔下的资源块,若其中未被分配给使用较小的子载波间隔的终端的剩余资源小于或等于第三预定值,则不允许将所述剩余资源再分配给使用所述较大的子载波间隔的终端。
在方式三中,当较大的子载波间隔下的资源块中仅有一小部分剩余时,若再将这部分资源分配给使用较大的子载波间隔的终端,那么需要较多比特的DCI信令来向该终端进行指示,因此当较大子载波间隔下的资源块中仅有很少一部分资源剩余时,不再将这部分资源分配给使用较大子载波间隔的终端。
在本发明的其它实施例中,所述的资源配置方法还包括:
若向所述任一终端分配的在其使用的第一子载波间隔下的资源块中的资源都未被分配给其它终端使用,则仅向所述任一终端指示向其分配的资源块的位置;或
若向所述任一终端分配的在其使用的第一子载波间隔下的资源块中的资源都未被分配给其它终端使用,则向所述任一终端指示向其分配的资源块的位置,并向所述任一终端指示该资源块中不存在分配给其它终端使用的部分资源。
图3示出了根据本发明的第一个实施例的资源配置装置的结构示意图。
如图3所示,根据本发明的第一个实施例的资源配置装置300,包括:通知单元302、分配单元304和指示单元306。
其中,通知单元302用于通知基站服务的任一终端在进行通信时使用的第一子载波间隔,并向所述任一终端通知所述基站服务的其它终端使用的第二子载波间隔;分配单元304用于向所述基站服务的所有终端分配通信资源;指示单元306用于在所述分配单元304向所述任一终端分配的在其使用的第一子载波间隔下的资源块中有部分资源被分配给其它终端使用时,根据所述第一子载波间隔向所述任一终端指示所述资源块的位置,并根据所述第二子载波间隔向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源。
在该技术方案中,通过在向任一终端分配的在其使用的第一子载波间 隔下的资源块中有部分资源被分配给其它终端使用时,根据第一子载波间隔向该终端指示分配的资源块的位置,并根据第二子载波间隔向该终端指示该资源块中被分配给其它终端使用的部分资源,使得基站在向使用不同子载波间隔的终端分配通信资源时,可以根据不同子载波间隔对应的资源块粒度来确保资源的最大化利用,避免了某一个使用较大子载波间隔的终端仅使用了较大资源块中的一部分资源而剩余的部分资源不再分配给其它终端造成的资源浪费的问题,提高了频谱效率。同时,通过本发明提出的指示方式也可以确保终端能够准确获知自身被分配的通信资源,以便于终端通过被分配的通信资源来接收或发送数据。
在上述技术方案中,优选地,所述第二子载波间隔小于或等于所述第一子载波间隔,其中,所述第二子载波间隔是所述基站服务的终端中使用的最小子载波间隔,或所述第二子载波间隔是所述基站服务的终端中使用的仅比所述第一子载波间隔小的一个子载波间隔。
在该技术方案中,当第二子载波间隔是基站服务的终端中使用的最小子载波间隔时,上述的其它终端可以是使用比第一子载波间隔小的其它子载波间隔(可以是一种或多种)的多个终端;而在第二子载波间隔是基站服务的终端中使用的仅比第一子载波间隔小的一个子载波间隔时,上述的其它终端是使用第二子载波间隔的一个或多个终端。
在上述任一技术方案中,优选地,所述的资源配置装置300还包括:确定单元308,用于根据所述第一子载波间隔与所述第二子载波间隔之间的比值,确定在向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源时所使用的DCI信令的比特数。
在该技术方案中,由于子载波间隔之间是存在倍数关系的,因此可以根据第一子载波间隔与第二子载波间隔之间的比值(即倍数关系)来确定向终端指示资源块中被分配给其它终端使用的部分资源时所使用的DCI信令的比特数。譬如,若第一子载波间隔与第二子载波间隔之间的比值为2,则该DCI信令的比特数为2,即每个比特对应指示两块资源中的其中一块资源是否被其它终端占用。
在上述任一技术方案中,优选地,所述通知单元302具体用于:
向所述任一终端通知所述第二子载波间隔的数值;或
向所述任一终端通知所述第一子载波间隔与所述第二子载波间隔之间的比值。
在上述任一技术方案中,优选地,所述分配单元304具体用于:
根据所述基站服务的所有终端中使用的最小子载波间隔对应的资源块粒度,向所述所有终端分配通信资源;或
根据所述所有终端中的每个终端使用的子载波间隔对应的资源块粒度,向所述每个终端分配通信资源。
进一步地,在所述分配单元304根据所述所有终端中的每个终端使用的子载波间隔对应的资源块粒度,向所述每个终端分配通信资源的情况下,所述分配单元304具体还用于:
按照所使用的子载波间隔从大到小的顺序,依次向所述每个终端分配通信资源,其中,对于使用较大的子载波间隔的终端,向其分配的资源块中的部分资源允许被分配给使用较小的子载波间隔的其它终端;或
按照所使用的子载波间隔从大到小的顺序,依次向所述每个终端分配通信资源,其中,对于使用较大的子载波间隔的终端,向其分配的资源块中的部分资源不允许再被分配给使用较小的子载波间隔的其它终端;或
按照所使用的子载波间隔从小到大的顺序,依次向所述每个终端分配通信资源,其中,向使用较大的子载波间隔的终端分配的资源块中允许有部分资源已被分配给使用较小的子载波间隔的其它终端;或
按照所使用的子载波间隔从小到大的顺序,依次向所述每个终端分配通信资源,其中,向使用较大的子载波间隔的终端分配的资源块中不允许存在已被分配给使用较小的子载波间隔的其它终端的部分资源。
进一步地,在所述分配单元304根据所述所有终端中的每个终端使用的子载波间隔对应的资源块粒度,向所述每个终端分配通信资源的情况下,为了减少上述DCI信令的比特数,所述的分配单元304具体通过以下方式来进行分配资源:
方式一:
向所有终端中使用的子载波间隔小于或等于第一预定值的至少一个终 端分配连续的资源块。
在方式一中,若向使用的子载波间隔较小(即小于或等于第一预定值)的至少一个终端分配的资源块不连续,比如向某一终端分配的资源处于较大子载波间隔下的资源块中的多个不连续的位置,那么在向使用该较大子载波间隔的终端分配这个资源块之后,就需要通过较为详细的指示方式来指示这个资源块中被分配给其它终端的部分,进而会造成DCI信令的比特数较多的问题,因此可以向使用较小子载波间隔(小于或等于第一预定值)的终端尽量分配连续的资源块。
方式二:
在需要将任一子载波间隔下的资源块中的部分资源分配给使用另一子载波间隔的终端时,所述任一子载波间隔与所述另一子载波间隔之间的比值应当小于或等于第二预定值。
在方式二中,若二个子载波间隔之间的比值越大,说明这两个子载波间隔各自对应的资源块粒度也相差较大,比如子载波间隔1与子载波间隔2之间的比值为2,UE#1使用子载波间隔1,UE#2使用子载波间隔2,那么在将UE#1在子载波间隔1下的资源块中的其中一部分(一共两部分)分配给UE#2时,基站仅需通过2bit的DCI信令向UE#1指示该资源块中哪部分被UE#2占用。而若子载波间隔1与子载波间隔3之间的比值为8,UE#1使用子载波间隔1,UE#3使用子载波间隔3,那么在将UE#1在子载波间隔1下的资源块中的一部分(一共八部分)分配给UE#3时,基站需通过8bit的DCI信令向UE#1指示该资源块的八部分中每部分是否被UE#3占用,这显然是增加了DCI信令的比特数。因此若需要将某一子载波间隔下的资源块中的部分资源分配给使用另一子载波间隔的终端,则这两个子载波间隔之间的比值应尽量小。
方式三:
对于较大的子载波间隔下的资源块,若其中未被分配给使用较小的子载波间隔的终端的剩余资源小于或等于第三预定值,则不允许将所述剩余资源再分配给使用所述较大的子载波间隔的终端。
在方式三中,当较大的子载波间隔下的资源块中仅有一小部分剩余 时,若再将这部分资源分配给使用较大的子载波间隔的终端,那么需要较多比特的DCI信令来向该终端进行指示,因此当较大子载波间隔下的资源块中仅有很少一部分资源剩余时,不再将这部分资源分配给使用较大子载波间隔的终端。
在上述任一技术方案中,优选地,所述指示单元306还用于:
若所述分配单元304向所述任一终端分配的在其使用的第一子载波间隔下的资源块中的资源都未被分配给其它终端使用,则仅向所述任一终端指示向其分配的资源块的位置;或
若所述分配单元304向所述任一终端分配的在其使用的第一子载波间隔下的资源块中的资源都未被分配给其它终端使用,则向所述任一终端指示向其分配的资源块的位置,并向所述任一终端指示该资源块中不存在分配给其它终端使用的部分资源。
在上述任一技术方案中,优选地,所述通知单元302具体用于:通过半静态的RRC信令向所述任一终端通知所述第一子载波间隔和所述第二子载波间隔。
图4示出了根据本发明的第一个实施例的基站的示意框图。
如图4所示,根据本发明的第一个实施例的基站400,包括:如图3所示的资源配置装置300。
图5示出了根据本发明的第二个实施例的资源配置方法的流程示意图,该资源配置方法的执行主体可以是终端。
如图5所示,根据本发明的第二个实施例的资源配置方法,包括以下步骤:
步骤S50,接收基站通知的终端在进行通信时使用的第一子载波间隔,以及所述基站服务的其它终端使用的第二子载波间隔。
步骤S52,接收所述基站发送的资源配置信息。
步骤S54,若所述资源配置信息指示了所述基站向所述终端分配的在所述终端使用的第一子载波间隔下的资源块的位置,以及所述资源块中被其它终端以所述第二子载波间隔使用的部分资源,则确定所述资源块中未被所述其它终端使用的资源。
步骤S56,根据所述资源块中未被其它终端使用的资源进行通信。
在图5所示的技术方案中,当资源配置信息指示了基站向终端分配的在终端使用的第一子载波间隔下的资源块的位置,以及该资源块中被其它终端以第二子载波间隔使用的部分资源时,说明基站在分配资源时,是基于资源块最大化利用的考虑,并根据不同子载波间隔对应的资源块粒度来进行分配的,这样可以避免某一个使用较大子载波间隔的终端仅使用了较大资源块中的一部分资源而剩余的部分资源不再分配给其它终端造成的资源浪费的问题。同时,通过基站的指示方式也可以确保终端能够准确获知自身被分配的通信资源,以便于终端通过被分配的通信资源来接收或发送数据。
图6示出了根据本发明的第二个实施例的资源配置装置的结构示意图。
如图6所示,根据本发明的第二个实施例的资源配置装置600,包括:第一接收单元602、第二接收单元604、确定单元606和通信单元608。
其中,第一接收单元602用于接收基站通知的终端在进行通信时使用的第一子载波间隔,以及所述基站服务的其它终端使用的第二子载波间隔;第二接收单元604用于接收所述基站发送的资源配置信息;确定单元606用于在所述资源配置信息指示了所述基站向所述终端分配的在所述终端使用的第一子载波间隔下的资源块的位置,以及所述资源块中被其它终端以所述第二子载波间隔使用的部分资源时,确定所述资源块中未被所述其它终端使用的资源;通信单元608用于根据所述确定单元606确定的所述资源块中未被所述其它终端使用的资源进行通信。
在该技术方案中,当资源配置信息指示了基站向终端分配的在终端使用的第一子载波间隔下的资源块的位置,以及该资源块中被其它终端以第二子载波间隔使用的部分资源时,说明基站在分配资源时,是基于资源块最大化利用的考虑,并根据不同子载波间隔对应的资源块粒度来进行分配的,这样可以避免某一个使用较大子载波间隔的终端仅使用了较大资源块中的一部分资源而剩余的部分资源不再分配给其它终端造成的资源浪费的 问题。同时,通过基站的指示方式也可以确保终端能够准确获知自身被分配的通信资源,以便于终端通过被分配的通信资源来接收或发送数据。
图7示出了根据本发明的第一个实施例的终端的示意框图。
如图7所示,根据本发明的第一个实施例的终端700,包括:如图6所示的资源配置装置600。
可见,本发明的技术方案主要是针对5G NR(New Radio,新的无线技术)中的多用户使用多个不同的子载波间隔情况,提出了相应的频域资源的分配方法和信令指示方法,具体如下:
一、基站进行资源分配的方法:
对于资源分配方法,本发明提出了如下两种方案:
资源分配方案一:按照终端中使用的最小子载波间隔形成的RB为粒度来进行调度。
具体地,比如当终端使用的子载波间隔为f0时,RB数目为100,编号为0~99,这些RB可以定义为RB(1,i),其中的1表示子载波间隔为1倍的f0,i取值即为0~99;当终端使用的子载波间隔为2f0时,RB数目为50,这些RB定义为RB(2,j),其中的2表示子载波间隔为2倍的f0,j取值为0~49;当终端使用的子载波间隔为4f0时,RB数目为25,这些RB定义为RB(4,j),其中的4表示子载波间隔为4倍的f0,j取值为0~24;……
根据上述定义可知,RB(4,0)即为RB(2,0)和RB(2,1)组成;RB(2,0)即为RB(1,0)和RB(1,1)组成。
以三个用户为例,且UE#1使用子载波间隔f0,UE#2使用子载波间隔2f0,UE#3使用子载波间隔4f0,若按照终端中使用的最小子载波间隔形成的RB为粒度来进行调度,可能有如图8所示的分配结果,具体如下:
UE#1:RB(1,7),RB(1,8);
UE#2:RB(1,6);
UE#3:RB(1,9),RB(1,10),RB(1,11)。
资源分配方案二:按照每个终端自身的子载波间隔形成的RB为粒度 来进行调度。
具体地,比如UE#1和UE#4使用的子载波间隔为f0,那么UE#1和UE#4为f0用户群;UE#2和UE#5使用的子载波间隔为2f0,那么UE#2和UE#5为2f0用户群;UE#3和UE#6使用子载波间隔为4f0,那么UE#3和UE#6为4f0用户群。
假设上述的UE获得资源的优先级是一样的,也就是说这些UE可能有不同的时延要求,但基站根据时延要求确定它们只要在这个子帧能被调度到资源就可以。另外,这些UE在这个子帧需要得到多大带宽的资源基站也是清楚的,每个UE在这个子帧需要获得多大带宽都是基于各UE的QoS(Quality of Service,服务质量)以及已传输的数据和待传输的数据量等来确定的。
在上假设的基础上,接下来按照不同的群组进行资源分配,这又分成多种情况:
情况一:
以子载波间隔最大的用户先分配,并且前面已分配的资源可以分配给后面的用户。即按照所使用的子载波间隔从大到小的顺序,依次向每个用户分配通信资源,其中,对于使用较大的子载波间隔的用户,向其分配的资源块中的部分资源允许被分配给使用较小的子载波间隔的其它用户。
以图8为例,由于UE#3使用的子载波间隔最大,那么UE#3先分配资源,假如向UE#3分配了RB(4,2),之后向UE#2分配资源,假如向UE#2分配了RB(2,3),最后向UE#1分配资源,由于前面已分配的资源可以分配给后面的用户,因此可以向UE#1分配RB(1,7)和RB(1,8),也即将RB(2,3)和RB(4,2)中的部分资源分配给了UE#1。
情况二:
以子载波间隔最大的用户先分配,并且前面已分配的资源不可以分配给后面的用户。即按照所使用的子载波间隔从大到小的顺序,依次向每个用户分配通信资源,其中,对于使用较大的子载波间隔的用户,向其分配的资源块中的部分资源不允许再被分配给使用较小的子载波间隔的其它用户。
由于前面已分配的资源不可以分配给后面的用户,因此这种分配方案不会出现图8中向UE#1分配RB(1,7)和RB(1,8)的情况。
情况三:
以子载波间隔最小的用户先分配,前面已分配的资源可能是大子载波间隔下的RB的组成部分,可以分配给后面的用户。即按照所使用的子载波间隔从小到大的顺序,依次向每个用户分配通信资源,其中,向使用较大的子载波间隔的用户分配的资源块中允许有部分资源已被分配给使用较小的子载波间隔的其它用户。
以图8为例,由于UE#1使用的子载波间隔最小,因此先向UE#1分配资源,假如向UE#1分配了RB(1,7)和RB(1,8);之后向UE#2分配资源,由于RB(1,7)是RB(2,3)中的一部分,为了保证资源的最大化利用,可以将RB(2,3)中剩余的资源分配给UE#2;同样地,在向UE#3分配资源时,可以将RB(4,2)中未被UE#1占用的部分分配给UE#3。
情况四:
以子载波间隔最小的用户先分配,前面已分配的资源可能是大子载波间隔下的RB的组成部分,不可以分配给后面的用户。即按照所使用的子载波间隔从小到大的顺序,依次向每个用户分配通信资源,其中,向使用较大的子载波间隔的用户分配的资源块中不允许存在已被分配给使用较小的子载波间隔的其它用户的部分资源。
由于前面已分配的资源不可以分配给后面的用户,因此这种分配方案不会出现图8中向UE#2分配RB(2,3),以及向UE#3分配RB(4,2)的情况。
二、资源的信令指示方法:
对于图8中所示的资源分配场景,当基站通过DCI信令向每个用户进行指示时,对于UE#1很容易指示,直接指示RB(1,7)和RB(1,8)为向其分配的资源即可。但是对于UE#2,DCI信令需要指示RB(2,3)分配给UE#2了,同时需要指示RB(2,3)中的RB(1,7)不是分配给UE#2的。同样对于UE#3,DCI信令需要指示RB(4,2)分配给UE#3了,同时 需要指示RB(4,2)中的RB(1,8)不是给UE#3的。也就是说对于子载波间隔较大的用户除了指示占用哪几个RB之外,还需要指示每个RB中是否有被其它用户占用的部分。
对此,相应的指示方法为:先通过半静态的RRC信令告知用户在发送和接收数据时使用的子载波间隔值f1,同时告知用户该基站下的用户中使用的最小子载波间隔值f2或者告知用户f1与f2的比值f1/f2,以下以比值为例进行说明:
1、如果比值为1,则不需要额外指示RB中是否有被别的用户占用的部分,即用于指示分配给用户的RB中哪部分被其它用户占用的DCI信令为0;
2、如果比值为2,则需要2bit的DCI信令,以告知分配给用户的RB中是每一半是否被别的用户占用;
3、如果比值为4,则需要4bit的DCI信令,把该RB分成4部分,告知用户该RB中哪几个部分被别的用户占用。其中,RB被占用的情况最多有14种,其中一部分被占用的情况有4种;其中两部分被占用的情况有6种;其中三部分被占用的情况有4种。如果限制使用较小子载波间隔的用户尽量分配连续的RB的话,RB被占用的情况会少一点,比如可以是9种,即其中一部分被占用的情况有4种,两部分被占用的情况有3种,三部分被占用的情况有2种。
考虑到子载波间隔为3.75~480KHz,所以比值最大可能为128,这时在需要指示RB中哪部分被分配给其它用户时需要的bit数非常多。为了减少bit数,基站需要在分配RB时采取一些原则,比如:
①使用较小子载波间隔的用户尽量分配连续的RB;
②如果将使用子载波间隔为f1的RB中抽出一部分给使用子载波间隔为f2的RB给另一个用户时,要保证f1/f2的值尽量小;
③如果某一大子载波间隔下的资源块中有较多部分被分配给其它用户,那么剩余的部分就不要分配给使用大子载波间隔的用户。
此外,作为本发明的另一种指示方法,也可以通过半静态的RRC信令告知用户在发送和接收数据时使用的子载波间隔值f1,同时告知用户该 基站下的用户中使用的仅比子载波间隔f1小的子载波间隔值f3或者告知用户f1与f3的比值f1/f3,之后的指示方法与上述类似。
图9示出了根据本发明的第二个实施例的基站的示意框图。
如图9所示,根据本发明的第二个实施例的基站,包括:处理器1、输出装置3和存储器5。在本发明的一些实施例中,处理器1、输出装置3和存储器5可以通过总线4或其他方式连接,图9中以通过总线4连接为例。
其中,存储器5用于存储一组程序代码,处理器1调用存储器5中存储的程序代码,用于执行以下操作:
通过输出装置3通知基站服务的任一终端在进行通信时使用的第一子载波间隔,并向所述任一终端通知所述基站服务的其它终端使用的第二子载波间隔;
向所述基站服务的所有终端分配通信资源;
若向所述任一终端分配的在其使用的第一子载波间隔下的资源块中有部分资源被分配给其它终端使用,则根据所述第一子载波间隔向所述任一终端指示所述资源块的位置,并根据所述第二子载波间隔向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源。
作为一种可选的实施方式,处理器1调用存储器5中存储的程序代码,还用于执行以下操作:
根据所述第一子载波间隔与所述第二子载波间隔之间的比值,确定在向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源时所使用的DCI信令的比特数。
作为一种可选的实施方式,处理器1调用存储器5中存储的程序代码,执行向所述任一终端通知所述基站服务的其它终端使用的第二子载波间隔的操作,具体为:
通过输出装置3向所述任一终端通知所述第二子载波间隔的数值;或
通过输出装置3向所述任一终端通知所述第一子载波间隔与所述第二子载波间隔之间的比值。
作为一种可选的实施方式,处理器1调用存储器5中存储的程序代 码,执行向所述基站服务的所有终端分配通信资源的操作,具体为:
根据所述基站服务的所有终端中使用的最小子载波间隔对应的资源块粒度,向所述所有终端分配通信资源;或
根据所述所有终端中的每个终端使用的子载波间隔对应的资源块粒度,向所述每个终端分配通信资源。
作为一种可选的实施方式,在根据所述所有终端中的每个终端使用的子载波间隔对应的资源块粒度,向所述每个终端分配通信资源的情况下,处理器1调用存储器5中存储的程序代码,还用于执行以下操作:
按照所使用的子载波间隔从大到小的顺序,依次向所述每个终端分配通信资源,其中,对于使用较大的子载波间隔的终端,向其分配的资源块中的部分资源允许被分配给使用较小的子载波间隔的其它终端;或
按照所使用的子载波间隔从大到小的顺序,依次向所述每个终端分配通信资源,其中,对于使用较大的子载波间隔的终端,向其分配的资源块中的部分资源不允许再被分配给使用较小的子载波间隔的其它终端;或
按照所使用的子载波间隔从小到大的顺序,依次向所述每个终端分配通信资源,其中,向使用较大的子载波间隔的终端分配的资源块中允许有部分资源已被分配给使用较小的子载波间隔的其它终端;或
按照所使用的子载波间隔从小到大的顺序,依次向所述每个终端分配通信资源,其中,向使用较大的子载波间隔的终端分配的资源块中不允许存在已被分配给使用较小的子载波间隔的其它终端的部分资源。
作为一种可选的实施方式,在根据所述所有终端中的每个终端使用的子载波间隔对应的资源块粒度,向所述每个终端分配通信资源的情况下,处理器1调用存储器5中存储的程序代码,还用于执行以下操作:
向所述所有终端中使用的子载波间隔小于或等于第一预定值的至少一个终端分配连续的资源块;和/或
在需要将任一子载波间隔下的资源块中的部分资源分配给使用另一子载波间隔的终端时,所述任一子载波间隔与所述另一子载波间隔之间的比值应当小于或等于第二预定值;和/或
对于较大的子载波间隔下的资源块,若其中未被分配给使用较小的子 载波间隔的终端的剩余资源小于或等于第三预定值,则不允许将所述剩余资源再分配给使用所述较大的子载波间隔的终端。
作为一种可选的实施方式,处理器1调用存储器5中存储的程序代码,还用于执行以下操作:
若向所述任一终端分配的在其使用的第一子载波间隔下的资源块中的资源都未被分配给其它终端使用,则仅向所述任一终端指示向其分配的资源块的位置;或
若向所述任一终端分配的在其使用的第一子载波间隔下的资源块中的资源都未被分配给其它终端使用,则向所述任一终端指示向其分配的资源块的位置,并向所述任一终端指示该资源块中不存在分配给其它终端使用的部分资源。
作为一种可选的实施方式,处理器1调用存储器5中存储的程序代码,具体用于执行以下操作,通过半静态的RRC信令向所述任一终端通知所述第一子载波间隔和所述第二子载波间隔。
图10示出了根据本发明的第二个实施例的终端的示意框图。
如图10所示,根据本发明的第二个实施例的终端,包括:处理器1'、输入装置2'和存储器5'。在本发明的一些实施例中,处理器1'、输入装置2'和存储器5'可以通过总线4'或其他方式连接,图10中以通过总线4'连接为例。
其中,存储器5'用于存储一组程序代码,处理器1'调用存储器5'中存储的程序代码,用于执行以下操作:
通过输入装置2'接收基站通知的终端在进行通信时使用的第一子载波间隔,以及所述基站服务的其它终端使用的第二子载波间隔;
通过输入装置2'接收所述基站发送的资源配置信息;
若所述资源配置信息指示了所述基站向所述终端分配的在所述终端使用的第一子载波间隔下的资源块的位置,以及所述资源块中被其它终端以所述第二子载波间隔使用的部分资源,则确定所述资源块中未被所述其它终端使用的资源;
根据所述资源块中未被所述其它终端使用的资源进行通信。
本发明实施例的方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例的资源配置装置、终端和基站中的单元可以根据实际需要进行合并、划分和删减。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上结合附图详细说明了本发明的技术方案,本发明提出了一种新的资源配置方案,使得基站在向使用不同子载波间隔的多个终端分配资源时,能够保证资源的最大化利用,并且能够准确指示终端获知被分配到的通信资源。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种资源配置装置,其特征在于,包括:
    通知单元,用于通知基站服务的任一终端在进行通信时使用的第一子载波间隔,并向所述任一终端通知所述基站服务的其它终端使用的第二子载波间隔;
    分配单元,用于向所述基站服务的所有终端分配通信资源;
    指示单元,用于在所述分配单元向所述任一终端分配的在其使用的第一子载波间隔下的资源块中有部分资源被分配给其它终端使用时,根据所述第一子载波间隔向所述任一终端指示所述资源块的位置,并根据所述第二子载波间隔向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源。
  2. 根据权利要求1所述的资源配置装置,其特征在于,所述第二子载波间隔小于或等于所述第一子载波间隔,
    其中,所述第二子载波间隔是所述基站服务的终端中使用的最小子载波间隔,或所述第二子载波间隔是所述基站服务的终端中使用的仅比所述第一子载波间隔小的一个子载波间隔。
  3. 根据权利要求1或2所述的资源配置装置,其特征在于,还包括:
    确定单元,用于根据所述第一子载波间隔与所述第二子载波间隔之间的比值,确定在向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源时所使用的DCI信令的比特数。
  4. 根据权利要求1至3中任一项所述的资源配置装置,其特征在于,所述通知单元具体用于:
    向所述任一终端通知所述第二子载波间隔的数值;或
    向所述任一终端通知所述第一子载波间隔与所述第二子载波间隔之间的比值。
  5. 根据权利要求1至4中任一项所述的资源配置装置,其特征在于,所述分配单元具体用于:
    根据所述基站服务的所有终端中使用的最小子载波间隔对应的资源块粒度,向所述所有终端分配通信资源;或
    根据所述所有终端中的每个终端使用的子载波间隔对应的资源块粒度,向所述每个终端分配通信资源。
  6. 根据权利要求5所述的资源配置装置,其特征在于,在所述分配单元根据所述所有终端中的每个终端使用的子载波间隔对应的资源块粒度,向所述每个终端分配通信资源的情况下,所述分配单元具体还用于:
    按照所使用的子载波间隔从大到小的顺序,依次向所述每个终端分配通信资源,其中,对于使用较大的子载波间隔的终端,向其分配的资源块中的部分资源允许被分配给使用较小的子载波间隔的其它终端;或
    按照所使用的子载波间隔从大到小的顺序,依次向所述每个终端分配通信资源,其中,对于使用较大的子载波间隔的终端,向其分配的资源块中的部分资源不允许再被分配给使用较小的子载波间隔的其它终端;或
    按照所使用的子载波间隔从小到大的顺序,依次向所述每个终端分配通信资源,其中,向使用较大的子载波间隔的终端分配的资源块中允许有部分资源已被分配给使用较小的子载波间隔的其它终端;或
    按照所使用的子载波间隔从小到大的顺序,依次向所述每个终端分配通信资源,其中,向使用较大的子载波间隔的终端分配的资源块中不允许存在已被分配给使用较小的子载波间隔的其它终端的部分资源。
  7. 根据权利要求5所述的资源配置装置,其特征在于,在所述分配单元根据所述所有终端中的每个终端使用的子载波间隔对应的资源块粒度,向所述每个终端分配通信资源的情况下,所述分配单元具体还用于:
    向所述所有终端中使用的子载波间隔小于或等于第一预定值的至少一个终端分配连续的资源块;和/或
    在需要将任一子载波间隔下的资源块中的部分资源分配给使用另一子载波间隔的终端时,所述任一子载波间隔与所述另一子载波间隔之间的比值应当小于或等于第二预定值;和/或
    对于较大的子载波间隔下的资源块,若其中未被分配给使用较小的子载波间隔的终端的剩余资源小于或等于第三预定值,则不允许将所述剩余 资源再分配给使用所述较大的子载波间隔的终端。
  8. 根据权利要求1至7中任一项所述的资源配置装置,其特征在于,所述指示单元还用于:
    若所述分配单元向所述任一终端分配的在其使用的第一子载波间隔下的资源块中的资源都未被分配给其它终端使用,则仅向所述任一终端指示向其分配的资源块的位置;或
    若所述分配单元向所述任一终端分配的在其使用的第一子载波间隔下的资源块中的资源都未被分配给其它终端使用,则向所述任一终端指示向其分配的资源块的位置,并向所述任一终端指示该资源块中不存在分配给其它终端使用的部分资源。
  9. 根据权利要求1至8中任一项所述的资源配置装置,其特征在于,所述通知单元具体用于:通过半静态的RRC信令向所述任一终端通知所述第一子载波间隔和所述第二子载波间隔。
  10. 一种资源配置装置,其特征在于,包括:
    第一接收单元,用于接收基站通知的终端在进行通信时使用的第一子载波间隔,以及所述基站服务的其它终端使用的第二子载波间隔;
    第二接收单元,用于接收所述基站发送的资源配置信息;
    确定单元,用于在所述资源配置信息指示了所述基站向所述终端分配的在所述终端使用的第一子载波间隔下的资源块的位置,以及所述资源块中被其它终端以所述第二子载波间隔使用的部分资源时,确定所述资源块中未被所述其它终端使用的资源;
    通信单元,用于根据所述确定单元确定的所述资源块中未被所述其它终端使用的资源进行通信。
  11. 一种资源配置方法,其特征在于,包括:
    通知基站服务的任一终端在进行通信时使用的第一子载波间隔,并向所述任一终端通知所述基站服务的其它终端使用的第二子载波间隔;
    向所述基站服务的所有终端分配通信资源;
    若向所述任一终端分配的在其使用的第一子载波间隔下的资源块中有部分资源被分配给其它终端使用,则根据所述第一子载波间隔向所述任一 终端指示所述资源块的位置,并根据所述第二子载波间隔向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源。
  12. 根据权利要求11所述的资源配置方法,其特征在于,所述第二子载波间隔小于或等于所述第一子载波间隔,
    其中,所述第二子载波间隔是所述基站服务的终端中使用的最小子载波间隔,或所述第二子载波间隔是所述基站服务的终端中使用的仅比所述第一子载波间隔小的一个子载波间隔。
  13. 根据权利要求11或12所述的资源配置方法,其特征在于,还包括:
    根据所述第一子载波间隔与所述第二子载波间隔之间的比值,确定在向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源时所使用的DCI信令的比特数。
  14. 根据权利要求11至13中任一项所述的资源配置方法,其特征在于,向所述任一终端通知所述基站服务的其它终端使用的第二子载波间隔的步骤,具体包括:
    向所述任一终端通知所述第二子载波间隔的数值;或
    向所述任一终端通知所述第一子载波间隔与所述第二子载波间隔之间的比值。
  15. 根据权利要求11至14中任一项所述的资源配置方法,其特征在于,向所述基站服务的所有终端分配通信资源的步骤,具体包括:
    根据所述基站服务的所有终端中使用的最小子载波间隔对应的资源块粒度,向所述所有终端分配通信资源;或
    根据所述所有终端中的每个终端使用的子载波间隔对应的资源块粒度,向所述每个终端分配通信资源。
  16. 根据权利要求15所述的资源配置方法,其特征在于,在根据所述所有终端中的每个终端使用的子载波间隔对应的资源块粒度,向所述每个终端分配通信资源的情况下,还包括:
    按照所使用的子载波间隔从大到小的顺序,依次向所述每个终端分配通信资源,其中,对于使用较大的子载波间隔的终端,向其分配的资源块 中的部分资源允许被分配给使用较小的子载波间隔的其它终端;或
    按照所使用的子载波间隔从大到小的顺序,依次向所述每个终端分配通信资源,其中,对于使用较大的子载波间隔的终端,向其分配的资源块中的部分资源不允许再被分配给使用较小的子载波间隔的其它终端;或
    按照所使用的子载波间隔从小到大的顺序,依次向所述每个终端分配通信资源,其中,向使用较大的子载波间隔的终端分配的资源块中允许有部分资源已被分配给使用较小的子载波间隔的其它终端;或
    按照所使用的子载波间隔从小到大的顺序,依次向所述每个终端分配通信资源,其中,向使用较大的子载波间隔的终端分配的资源块中不允许存在已被分配给使用较小的子载波间隔的其它终端的部分资源。
  17. 根据权利要求15所述的资源配置方法,其特征在于,在根据所述所有终端中的每个终端使用的子载波间隔对应的资源块粒度,向所述每个终端分配通信资源的情况下,还包括:
    向所述所有终端中使用的子载波间隔小于或等于第一预定值的至少一个终端分配连续的资源块;和/或
    在需要将任一子载波间隔下的资源块中的部分资源分配给使用另一子载波间隔的终端时,所述任一子载波间隔与所述另一子载波间隔之间的比值应当小于或等于第二预定值;和/或
    对于较大的子载波间隔下的资源块,若其中未被分配给使用较小的子载波间隔的终端的剩余资源小于或等于第三预定值,则不允许将所述剩余资源再分配给使用所述较大的子载波间隔的终端。
  18. 根据权利要求11至17中任一项所述的资源配置方法,其特征在于,还包括:
    若向所述任一终端分配的在其使用的第一子载波间隔下的资源块中的资源都未被分配给其它终端使用,则仅向所述任一终端指示向其分配的资源块的位置;或
    若向所述任一终端分配的在其使用的第一子载波间隔下的资源块中的资源都未被分配给其它终端使用,则向所述任一终端指示向其分配的资源块的位置,并向所述任一终端指示该资源块中不存在分配给其它终端使用 的部分资源。
  19. 根据权利要求11至18中任一项所述的资源配置方法,其特征在于,通过半静态的RRC信令向所述任一终端通知所述第一子载波间隔和所述第二子载波间隔。
  20. 一种资源配置方法,其特征在于,包括:
    接收基站通知的终端在进行通信时使用的第一子载波间隔,以及所述基站服务的其它终端使用的第二子载波间隔;
    接收所述基站发送的资源配置信息;
    若所述资源配置信息指示了所述基站向所述终端分配的在所述终端使用的第一子载波间隔下的资源块的位置,以及所述资源块中被其它终端以所述第二子载波间隔使用的部分资源,则确定所述资源块中未被所述其它终端使用的资源;
    根据所述资源块中未被所述其它终端使用的资源进行通信。
PCT/CN2017/072677 2016-10-31 2017-01-25 资源配置方法及资源配置装置 WO2018076565A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610978083.0A CN106455081B (zh) 2016-10-31 2016-10-31 资源配置方法及资源配置装置
CN201610978083.0 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018076565A1 true WO2018076565A1 (zh) 2018-05-03

Family

ID=58207454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072677 WO2018076565A1 (zh) 2016-10-31 2017-01-25 资源配置方法及资源配置装置

Country Status (2)

Country Link
CN (1) CN106455081B (zh)
WO (1) WO2018076565A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455103B (zh) * 2016-11-30 2022-12-20 宇龙计算机通信科技(深圳)有限公司 资源配置方法和资源配置装置
CN108541063B (zh) * 2017-03-01 2020-09-08 中兴通讯股份有限公司 一种多载波小区增强的方法及装置
EP3982681A1 (en) * 2017-03-24 2022-04-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information sending method and apparatus, terminal, access network device and system
CN108633058B (zh) * 2017-03-24 2021-05-07 华为技术有限公司 一种资源分配方法及基站、ue
CN110337831B (zh) * 2017-04-18 2021-09-14 华为技术有限公司 传输数据的方法和设备
CN106941724B (zh) 2017-05-09 2020-12-22 宇龙计算机通信科技(深圳)有限公司 数据处理方法及装置
WO2019105389A1 (en) * 2017-11-28 2019-06-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for allocating a resource in a user equipment and user equipment
CN111418244B (zh) * 2017-12-21 2022-05-06 Oppo广东移动通信有限公司 一种信息传输的方法、装置及计算机存储介质
CN109996341B (zh) * 2017-12-29 2023-03-24 华为技术有限公司 控制信息的传输方法
KR20200118174A (ko) 2018-02-08 2020-10-14 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 자원 구성 방법 및 장치, 컴퓨터 저장 매체
WO2019153189A1 (zh) * 2018-02-08 2019-08-15 Oppo广东移动通信有限公司 一种资源配置方法及装置、计算机存储介质
WO2019153202A1 (zh) 2018-02-08 2019-08-15 Oppo广东移动通信有限公司 一种资源配置方法及装置、计算机存储介质
EP3751927A4 (en) * 2018-02-08 2020-12-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. RESOURCE CONFIGURATION METHOD AND DEVICE AND COMPUTER STORAGE MEDIUM
AU2018407192A1 (en) * 2018-02-08 2020-10-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource configuration method and device, and computer storage medium
WO2019237347A1 (zh) * 2018-06-15 2019-12-19 富士通株式会社 资源分配和接收方法、装置及通信系统
CN111417200B (zh) * 2019-01-07 2023-04-07 中国移动通信有限公司研究院 上行传输方法、资源指示方法、终端及网络设备
CN111436097B (zh) * 2019-01-11 2022-03-04 中国移动通信有限公司研究院 一种资源分配的方法、装置及计算机可读存储介质
CN115315917A (zh) * 2020-03-25 2022-11-08 联想(新加坡)私人有限公司 应用不规则子载波间距

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101204033A (zh) * 2005-06-22 2008-06-18 三星电子株式会社 正交频分复用系统中用于给传输上行链路分组数据分配资源的方法和传输设备
CN101895508A (zh) * 2006-01-27 2010-11-24 富士通株式会社 无线电通信系统
EP2259483A2 (en) * 2005-08-24 2010-12-08 Motorola, Inc. Resource allocation in an OFDM cellular communication system
CN102113398A (zh) * 2008-08-01 2011-06-29 Lg电子株式会社 在包括中继站的无线通信系统中的对于回程链路和接入链路的资源分配方法
CN102740375A (zh) * 2011-04-11 2012-10-17 中兴通讯股份有限公司 一种无线参数配置和信号发送的方法及装置
CN103716146A (zh) * 2008-01-04 2014-04-09 松下电器产业株式会社 基站及移动台装置、资源块分配及数据接收方法、集成电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1906611A1 (en) * 2006-09-28 2008-04-02 Alcatel Lucent Method for improving inter cell interference cancellation in a cellular radio communication system and corresponding base station and subscriber station
KR101565417B1 (ko) * 2008-08-08 2015-11-03 엘지전자 주식회사 다중 주파수 대역 시스템에서의 자원 할당하는 방법 및 장치
GB2511796A (en) * 2013-03-13 2014-09-17 Sony Corp Transmitters, receivers and methods of transmitting and receiving
CN105979597B (zh) * 2016-06-27 2020-02-21 宇龙计算机通信科技(深圳)有限公司 通信资源的分配方法、分配装置、基站和终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101204033A (zh) * 2005-06-22 2008-06-18 三星电子株式会社 正交频分复用系统中用于给传输上行链路分组数据分配资源的方法和传输设备
EP2259483A2 (en) * 2005-08-24 2010-12-08 Motorola, Inc. Resource allocation in an OFDM cellular communication system
CN101895508A (zh) * 2006-01-27 2010-11-24 富士通株式会社 无线电通信系统
CN103716146A (zh) * 2008-01-04 2014-04-09 松下电器产业株式会社 基站及移动台装置、资源块分配及数据接收方法、集成电路
CN102113398A (zh) * 2008-08-01 2011-06-29 Lg电子株式会社 在包括中继站的无线通信系统中的对于回程链路和接入链路的资源分配方法
CN102740375A (zh) * 2011-04-11 2012-10-17 中兴通讯股份有限公司 一种无线参数配置和信号发送的方法及装置

Also Published As

Publication number Publication date
CN106455081B (zh) 2022-12-20
CN106455081A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2018076565A1 (zh) 资源配置方法及资源配置装置
US11930508B2 (en) Downlink control information transmission method
WO2018076566A1 (zh) 资源调度方法及资源调度装置
WO2018099329A1 (zh) 资源配置方法和资源配置装置
WO2018126777A1 (zh) Pdsch资源确定方法及装置、终端、基站和存储介质
US11395291B2 (en) Allocating transmission resources in communication networks that provide low latency services
US8767658B2 (en) Method and base station for sending uplink scheduling grant control signaling
CN111181694B (zh) 一种上行控制信息的传输方法及装置
WO2017128878A1 (zh) 一种资源配置方法、网络侧设备、终端及计算机存储介质
CN108111281B (zh) 数据信道参数配置方法及装置
WO2013026414A1 (zh) 接入通信系统的方法、下行信息发送方法、终端及基站
WO2015184912A1 (zh) 一种信道和信号传输方法及相应的终端、基站
WO2018141180A1 (zh) 控制信息的传输方法、接收方法、装置、基站及终端
WO2012022239A1 (zh) 一种控制信道传输和资源确定方法、基站及用户设备
WO2013097120A1 (zh) 下行控制信道的搜索空间的映射方法和装置
WO2016070675A1 (zh) 下行信息发送、下行信息接收方法及装置
WO2021062918A1 (zh) 一种资源的动态指示方法及装置
WO2020143773A1 (zh) 传输资源选择方法及装置
WO2017132964A1 (zh) 一种上行数据传输方法及相关设备
WO2018171352A1 (zh) 一种数据传输方法及终端
KR20200051792A (ko) 다운링크 데이터 송신에 사용되는 자원을 결정 및 구성하는 방법, 단말 및 기지국
US11258571B2 (en) Downlink control information transmission method, apparatus, and system
WO2020143734A1 (zh) 资源配置方法、装置、存储介质及电子装置
WO2017080271A1 (zh) 传输调度信息的方法和装置
US20180310291A1 (en) Control signal sending method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863482

Country of ref document: EP

Kind code of ref document: A1