WO2018099329A1 - 资源配置方法和资源配置装置 - Google Patents

资源配置方法和资源配置装置 Download PDF

Info

Publication number
WO2018099329A1
WO2018099329A1 PCT/CN2017/112853 CN2017112853W WO2018099329A1 WO 2018099329 A1 WO2018099329 A1 WO 2018099329A1 CN 2017112853 W CN2017112853 W CN 2017112853W WO 2018099329 A1 WO2018099329 A1 WO 2018099329A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
granularity
domain scheduling
terminal
scheduling granularity
Prior art date
Application number
PCT/CN2017/112853
Other languages
English (en)
French (fr)
Inventor
李明菊
朱亚军
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2018099329A1 publication Critical patent/WO2018099329A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a resource configuration method and a resource configuration device.
  • the existing 4G and 4.5G mobile communication technologies are based on LTE (Long Term Evolution) and LTE-A (LTE-Advanced) radio access technologies, time-frequency resource granularity and frame structure.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • frame structure mainly includes: FDD (Frequency Division Duplexing) frame structure, TDD (Time Division Duplexing) frame structure, and LAA (LTE Assisted Access) unlicensed carrier.
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • LAA LTE Assisted Access
  • each subframe is 1 ms
  • each subframe contains two slots
  • one slot is 0.5 ms
  • each slot contains 7 symbols.
  • the subcarrier spacing is mainly 15 kHz
  • one RB Resource Block
  • the NB-IoT Narrow Band Internet of Things
  • a new subcarrier spacing of 3.75 kHz is proposed, and the carrier bandwidth of NB-IoT is only 180 kHz.
  • both the FDD frame structure and the TDD frame structure use the 1 ms subframe as the time domain scheduling granularity, except for the DwPTS (Downlink Pilot Time Slot) in the special subframe in the TDD frame structure.
  • the time domain scheduling granularity is less than 1ms.
  • the downlink scheduling time domain granularity of multiplexing the DwPTS as the partial subframe also occurs, and the scheduling granularity of the 1 ms entire subframe is also used.
  • other subframes are uplink transmission or downlink transmission or time domain separation or frequency domain separation.
  • the current frame structure and the granularity of the frequency domain resources make the resource allocation inflexible, and the time interval between the uplink scheduling mechanism and the HARQ (Hybrid Automatic Repeat Request) feedback mechanism causes a large delay.
  • the 20MHz bandwidth also does not meet the high bandwidth requirements.
  • the main scenarios of future 5G communication include the following three types: eMBB (enhanced Mobile Broadband), mMTC (massive machine type communication) and URLLC (Ultra-Reliable and Low Latency Communications). Delay communication). These three scenarios are different for the type of business, and their needs are different.
  • the two main indicators of the eMBB service are high bandwidth and low latency.
  • the eMBB service may support a large bandwidth of 100 MHz, and it is likely that the entire bandwidth is directly allocated to one user at a certain time.
  • the uplink scheduling delay and the HARQ feedback delay also have delay effects; the mMTC service requires a narrowband service and requires a long battery life. This service requires a smaller granularity of the frequency domain and a wider granularity of the time domain.
  • the URLLC service it is also necessary to reduce the delay caused by the uplink scheduling delay and the HARQ feedback delay.
  • the current fixed frame structure, the fixed frequency domain resource granularity, and the time domain resource granularity may cause a large uplink scheduling delay and a long HARQ feedback delay, and a smaller carrier.
  • Bandwidth can't meet the diversified needs of the business, and 5G communication hopes to be flexible enough that any resource can be dynamically scheduled for use at any time.
  • UE#1 uses f 0 and only needs to use RB0 when f 0 , and at this time, no other user using f 0 needs to allocate resources, only UE#2 using 2f 0 , and Some resources in RB0 when UE#2 uses 2f 0 have been used by UE#1, then whether the remaining partial resources need to be allocated to UE#2, and how to design signaling to UE when assigned to UE#2 2 Which part has been used by other users is a technical problem to be solved.
  • the scheduling slot length corresponding to the service using different subcarrier spacings is different.
  • the corresponding time domain appears as follows: UE#1 uses the subcarrier spacing f0 to be 15 kHz, so that the corresponding 1 ms subframe contains 2 slots, and each slot is 7 symbols.
  • UE#2 uses the subcarrier spacing 2f0 to be 30 kHz, so that the corresponding 1 ms subframe contains 4 slots, and each slot is 7 symbols.
  • Slot is the smallest unit of time domain scheduling.
  • UE#1 has allocated its own slot 0, but the latter UE#2 also has a service to be transmitted, and UE#2 has a higher priority.
  • the second half is assigned to UE#2.
  • how to tell UE#1 is a problem that needs to be solved.
  • This problem may also occur in UE#1 and UE#2 using the same subcarrier spacing, but UE#2's time domain scheduling granularity is smaller than UE#1, such as UE#2 using 2 symbols of mini-slot. Therefore, how to design the signaling to inform the UE#2 which part has been used by other users is also a technical problem to be solved.
  • the present invention is based on at least one of the above technical problems, and proposes a new resource allocation scheme, so that a base station can ensure maximum utilization of resources when allocating resources to a plurality of terminals using different subcarrier intervals, and can accurately The terminal is instructed to know the communication resources to which it is assigned.
  • a resource configuration apparatus including: a notification unit, configured to notify a first time domain scheduling granularity used by any terminal served by a base station to perform communication, and If the second time domain scheduling granularity is used in all the terminals served by the base station, the second time domain scheduling granularity is notified to any one of the terminals; and the allocating unit is configured to allocate communication resources to all terminals served by the base station. And an indication unit, configured to send DCI resource allocation information to the any terminal when the allocation unit allocates a partial resource of the resource block under the subcarrier interval used by the any terminal to another terminal.
  • the terminal in the case that the first time domain scheduling granularity and the second time domain scheduling granularity exist in the terminal served by the base station, part of the resource allocation in the resource block of the first time domain scheduling granularity used by any terminal Used by other terminals, and notifying the terminal of such resource allocation information, so that The terminal that is occupied by the resource knows which resources are occupied.
  • the terminal can be made to accurately know the communication resources that are allocated by itself, so that the terminal can receive or transmit data through the allocated communication resources.
  • the second time domain scheduling granularity is smaller than the first time domain scheduling granularity, where the second time domain scheduling granularity is a minimum time domain scheduling granularity used in the terminal served by the base station, or
  • the second time domain scheduling granularity is a time domain scheduling granularity used in the terminal served by the base station only smaller than the first time domain scheduling granularity.
  • the other terminals may use other time domain scheduling granularity smaller than the first time domain scheduling granularity (may be a plurality of terminals of one or more types; and when the second time domain scheduling granularity is a time domain scheduling granularity used by the base station serving terminal only smaller than the first time domain scheduling granularity, the other terminal is One or more terminals of the granularity are scheduled using the second time domain.
  • the time domain scheduling granularities since there is a size relationship between the time domain scheduling granularities, it may be determined according to the first time domain scheduling granularity and the second time domain scheduling granularity to indicate to the terminal that the resource blocks are allocated to other terminals.
  • the number of bits of DCI signaling used for some resources For example, if the ratio between the first time domain scheduling granularity and the second time domain scheduling granularity is 2, and the plurality of second time domain scheduling granularities do not overlap in time, the number of bits of the DCI signaling is 2. That is, each bit corresponds to whether one of the two resources is occupied by another terminal.
  • a first time domain scheduling granularity may be There are seven second time domain scheduling granularities, for example, the first second time domain scheduling granularity includes symbols 0-6, the second includes symbols 1-7, ..., and the seventh includes symbols 7-13. Then in this case, more bits are needed to indicate the location of 7 time resource blocks.
  • the notification unit is configured to: notify, by using semi-static RRC signaling, the second time domain scheduling granularity or the first time domain scheduling granularity and the The size relationship between the second time domain scheduling granularities is described.
  • the transmission time of the semi-static RRC (Radio Resource Control) signaling is different from the transmission time of the RRC signaling that notifies the first time domain scheduling granularity.
  • a user who does not use a time domain scheduling granularity smaller than the first time domain scheduling granularity in a certain communication time only informs the user of the first time domain scheduling granularity used by the user; and if the next time period is used
  • the user of the time domain scheduling granularity smaller than the first time domain scheduling granularity informs the user of the second time domain scheduling granularity information used by other users.
  • the notification unit is configured to: notify, by using the dynamic DCI signaling, the second time domain scheduling granularity or the first time domain scheduling granularity and the first The size relationship between two-time domain scheduling granularity.
  • the second time domain scheduling granularity or the size relationship between the first time domain scheduling granularity and the second time domain scheduling granularity of the terminal is notified by dynamic DCI signaling.
  • the indication unit sends, by using the first time domain scheduling granularity, the DCI resource allocation information to the terminal that uses the first time domain granularity to communicate, when in the first time
  • the terminal that communicates using the first time domain granularity is again used in the second time domain granularity.
  • sending the DCI resource allocation information to notify the terminal, in the second time domain scheduling granularity, the resources occupied by other terminals that use the second time domain granularity to communicate, so that the first time domain granularity is used.
  • the terminal that communicates knows the resources that it is actually allocated.
  • the indication unit uses the first time domain granularity of the terminal to communicate when the resources of the terminal are not occupied by other terminals, and when the resources of the terminal are occupied by other terminals, the The second time domain granularity performs communication to send DCI resource allocation information, and informs that in this second time domain granularity, some resources are occupied by other terminals or directly informs the terminal of what resources are allocated in the current second time domain granularity. In this way, it is possible to inform the terminal which resources are occupied by other terminals that communicate using the second time domain scheduling granularity.
  • the resources allocated in the time of the first time domain granularity other than the second time domain granularity are still indicated by the DCI signaling indication of the first time domain granularity. In this case, the indication is not required.
  • Two second time domain granularity DCI signaling Two second time domain granularity DCI signaling.
  • the indicating unit uses RRC signaling to notify any use of the first time domain scheduling.
  • Granular terminal that monitors one or more of the possible second times The domain scheduling granularity of the DCI signaling transmission location.
  • the base station may notify the terminal to monitor one or more of them, that is, it may not need to monitor all possible transmission locations, and thus some terminal monitoring This, some terminals monitor that, can achieve time domain diversity, while reducing terminal energy consumption.
  • the indication unit may further send, by using the first time domain scheduling granularity, DCI resource allocation information to the terminal that uses the first time domain granularity to communicate, when in the first time
  • the next first time domain granularity is communicated to the first time domain granularity using the first time domain granularity.
  • the terminal sends the DCI resource allocation information, the information about the time-frequency resource of the terminal occupied by the second time domain granularity in the previous first time domain granularity is included, so that the first time domain granularity is used.
  • the terminal of the communication knows the resource that is actually allocated by itself in the previous first time domain scheduling granularity.
  • the user is informed that the user has occupied the user resource in the second time domain granularity in the previous first time domain granularity, and then the user needs to be informed at this time.
  • the second time domain granularity of the time position it is necessary to determine the number of DCI bits according to the first time domain granularity and the second time domain granularity to indicate the location of the second time domain granularity in the first time domain granularity.
  • the information that includes the time-frequency resource of the terminal in the second time domain granularity in the previous first time domain granularity includes the start position of the occupied time resource. And length of time and frequency domain resource location.
  • the terminal receiving the information can prepare to know which resources of its own have been occupied.
  • the resource configuration apparatus further includes: a determining unit, configured to determine, according to the first time domain scheduling granularity and the second time domain scheduling granularity, that the indication is indicated to any one of the terminals The number of bits indicated by the DCI (Downlink Control Information) signaling required for the resource resources to be allocated to some of the resources used by other terminals.
  • a determining unit configured to determine, according to the first time domain scheduling granularity and the second time domain scheduling granularity, that the indication is indicated to any one of the terminals The number of bits indicated by the DCI (Downlink Control Information) signaling required for the resource resources to be allocated to some of the resources used by other terminals.
  • the first time domain granularity is sent to the terminal using the first time domain granularity.
  • the DCI resource allocation information when other terminals need to occupy part of the resources of the terminal in the first time domain granularity in the second time domain granularity, send DCI resource allocation information to the terminal of the occupied resource in the next first time domain granularity.
  • the information that the other terminal occupies the time-frequency resource of the terminal in the second time domain granularity is included, so the terminal can know the resource that is actually allocated by the terminal.
  • a resource configuration apparatus including: a first receiving unit, configured to receive a first time domain scheduling granularity used by a terminal notified by a base station when performing communication, and a service of the base station a second time domain scheduling granularity used by the other terminal; a second receiving unit, configured to receive DCI resource allocation information sent by the base station; and a determining unit, configured to determine, according to the DCI resource allocation information, the base station to use the terminal
  • the partial resources of the used resource block are allocated to the other terminals, and the part of the resources occupied by the other terminals.
  • the terminal determines the resources allocated to itself and the resources occupied by other terminals by receiving the first time domain scheduling granularity and the second time domain scheduling granularity and the DCI resource allocation information from the base station.
  • the first receiving unit receives the second time domain scheduling granularity or the first time domain scheduling granularity and the second time domain scheduling granularity by receiving semi-static RRC signaling.
  • the size relationship between the two is preferably, the first receiving unit receives the second time domain scheduling granularity or the first time domain scheduling granularity and the second time domain scheduling granularity by receiving semi-static RRC signaling.
  • the first receiving unit receives the second time domain scheduling granularity or the first time domain scheduling granularity and the second time domain scheduling granularity by receiving dynamic DCI signaling.
  • the size relationship between the two is preferably, the first receiving unit receives the second time domain scheduling granularity or the first time domain scheduling granularity and the second time domain scheduling granularity by receiving dynamic DCI signaling.
  • the determining unit is further configured to: after the first receiving unit receives the semi-static RRC signaling or the dynamic DCI instruction that is notified of the second time domain scheduling granularity,
  • the time domain scheduling granularity is a PDCCH (Physical Downlink Control Channel) or an Enhanced Physical Downlink Control Channel (ePDCCH), and the bit information determined according to the received DCI signaling is determined. Part of the resources.
  • the terminal when the first receiving unit has received the notification that it knows that some of its resources may be occupied by the terminal using the second time domain scheduling granularity, the terminal will detect the PDCCH or the unit in the second time domain scheduling granularity. ePDCCH.
  • the determining unit will monitor one of the received RRC signaling according to the received RRC signaling. Or multiple possible second time domain scheduling granular DCI signaling transmission locations.
  • the base station may notify the terminal to monitor one or more of them, that is, it may not need to monitor all possible transmission locations, and thus some terminal monitoring This, some terminals monitor that, can achieve time domain diversity, while reducing terminal energy consumption.
  • the first time domain scheduling granularity is The unit detects the PDCCH or the ePDCCH, and after receiving the DCI resource allocation information, determines that some resources in the first first time domain granularity of the first time domain granularity are used by the base station to use the second time domain granularity.
  • the other terminal that performs communication occupies and determines the information of the occupied time-frequency resource, so that the terminal communicating using the first time domain granularity knows the resource that is actually allocated in the previous first time domain scheduling granularity.
  • a resource configuration method includes: notifying a first time domain scheduling granularity used by any terminal served by a base station when performing communication, and having a first time in all terminals served by the base station In the case of the second time domain scheduling granularity, the second time domain scheduling granularity is notified to any one of the terminals; the communication resources are allocated to all terminals served by the base station; and the subcarriers used by the any terminal are separated When part of the resources of the resource block are allocated to other terminals, the DCI resource allocation information is sent to any of the terminals.
  • the terminal allocates such resource allocation information, so that the terminal of the occupied resource knows which resources are occupied.
  • the terminal can be made to accurately know the communication resources that are allocated by itself, so that the terminal can receive or transmit data through the allocated communication resources.
  • the second time domain scheduling granularity is smaller than the first time domain scheduling granularity, where the second time domain scheduling granularity is used in a terminal served by the base station.
  • the minimum time domain scheduling granularity, or the second time domain scheduling granularity is a time domain scheduling granularity used in the terminal served by the base station only smaller than the first time domain scheduling granularity.
  • the other terminals may use other time domain scheduling granularity smaller than the first time domain scheduling granularity (may be a plurality of terminals of one or more types; and when the second time domain scheduling granularity is a time domain scheduling granularity used by the base station serving terminal only smaller than the first time domain scheduling granularity, the other terminal is One or more terminals of the granularity are scheduled using the second time domain.
  • the second time domain scheduling granularity or the first time domain scheduling granularity and the second time domain scheduling are notified to the terminal by semi-static RRC signaling.
  • the sending time of the semi-static RRC signaling is different from the sending time of the RRC signaling that is to notify the first time domain scheduling granularity.
  • a user who does not use a time domain scheduling granularity smaller than the first time domain scheduling granularity in a certain communication time only informs the user of the first time domain scheduling granularity used by the user; and if the next time period is used
  • the user of the time domain scheduling granularity smaller than the first time domain scheduling granularity informs the user of the second time domain scheduling granularity information used by other users.
  • the second time domain scheduling granularity or the first time domain scheduling granularity and the second time domain scheduling granularity are notified to the any terminal by dynamic DCI signaling.
  • the second time domain scheduling granularity or the size relationship between the first time domain scheduling granularity and the second time domain scheduling granularity of the terminal is notified by dynamic DCI signaling.
  • the DCI resource allocation information is sent to the terminal that uses the first time domain granularity to communicate with the first time domain scheduling granularity, when the first time domain granularity is used.
  • the second time domain granularity is used to send the terminal to the terminal that communicates using the first time domain granularity. Determining, by the terminal, the resources occupied by other terminals in the second time domain scheduling granularity that are communicated by using the second time domain granularity, so that the first time domain granularity is used for communication.
  • the terminal knows the resources that it is actually allocated.
  • the communication when the resources of the terminal are not occupied by other terminals, Communicate with the first time domain granularity of the terminal.
  • the communication sends the DCI resource allocation information by using the second time domain granularity of the terminal occupying the resource, so that the terminal can be notified in this manner. Which resources are occupied by other terminals that communicate using the second time domain scheduling granularity.
  • the RRC signaling is used to notify any terminal that uses the first time domain scheduling granularity. And monitoring a DCI signaling transmission location of one or more possible second time domain scheduling granularities.
  • the base station may notify the terminal to monitor one or more of them, that is, it may not need to monitor all possible transmission locations, and thus some terminal monitoring This, some terminals monitor that, can achieve time domain diversity, while reducing terminal energy consumption.
  • the DCI resource allocation information is sent to the terminal that communicates by using the first time domain granularity by using the first time domain scheduling granularity, when in the first time domain granularity
  • the next one time domain granularity is sent to the terminal that communicates using the first time domain granularity to send DCI resources.
  • the terminal When the information is allocated, the information of the last time domain granularity occupying the time-frequency resource of the terminal in the second time domain granularity, so that the communication is performed by using the first time domain granularity
  • the terminal knows the resources that are actually allocated in the first time domain scheduling granularity.
  • the time domain scheduling granularities since there is a size relationship between the time domain scheduling granularities, it may be determined according to the first time domain scheduling granularity and the value of the second time domain scheduling granularity to indicate to the terminal that the resource block is allocated to other terminals.
  • the number of bits of DCI signaling used when part of the resources are used. For example, if the ratio between the first time domain scheduling granularity and the second time domain scheduling granularity is 2, and the plurality of second time domain scheduling granularities do not overlap in time, the number of bits of the DCI signaling is 2. That is, each bit corresponds to whether one of the two resources is occupied by another terminal.
  • the first time domain scheduling granularity is 14 symbols
  • the second time domain scheduling granularity is 7 symbols
  • a first time domain scheduling granularity may be There are 7 second time domain scheduling granularities, such as the first second time domain scheduling granularity containing symbols 0 to 6, the second contains symbols 1 to 7..., and the seventh contains symbols 7 to 13. Then in this case, more bits are needed to indicate the location of 7 time resource blocks.
  • the information that includes the time-frequency resource of the terminal in the second time domain granularity in the previous first time domain granularity includes the starting position and the length of time of the occupied time resource, and Frequency domain resource location.
  • the terminal receiving the information can prepare to know which resources of its own have been occupied.
  • the DCI resource allocation information is sent to the terminal using the first time domain granularity in the first time domain granularity, and when the other terminal needs to occupy the partial resource of the terminal in the first time domain granularity in the second time domain granularity. And transmitting the DCI resource allocation information to the terminal of the occupied resource in the next first time domain granularity, where the information includes the information that the other terminal occupies the time-frequency resource of the terminal in the second time domain granularity, so The terminal can know from the information the resources that it is actually allocated.
  • a resource configuration method including: receiving a first time domain scheduling granularity used by a terminal notified by a base station when performing communication, and a second time used by other terminals served by the base station a domain scheduling granularity; receiving DCI resource allocation information sent by the base station; determining, according to the DCI resource allocation information, that the base station allocates part of resources of the resource block used by the terminal to other terminals, by the other terminal The part of the resources occupied.
  • the terminal determines the resources allocated to itself and the resources occupied by other terminals by receiving the first time domain scheduling granularity and the second time domain scheduling granularity and the DCI resource allocation information from the base station.
  • the second time domain scheduling granularity or the size relationship between the first time domain scheduling granularity and the second time domain scheduling granularity is received by receiving semi-static RRC signaling. .
  • the second time domain scheduling granularity or a size relationship between the first time domain scheduling granularity and the second time domain scheduling granularity is received by receiving dynamic DCI signaling.
  • the method further includes: receiving the notification that the second time domain adjustment After the semi-static RRC signaling or the dynamic DCI instruction of the granularity, the PDCCH or the ePDCCH is detected in units of the second time domain scheduling granularity, and the bit information is determined according to the bit information indicated by the received DCI signaling. Part of the resources.
  • the terminal when the second time domain scheduling granularity information has been received, and the part of the resource may be occupied by the terminal using the second time domain scheduling granularity, the terminal will use the second time domain scheduling granularity as a unit. Detecting PDCCH or ePDCCH.
  • the PDCCH or the ePDCCH determines that some resources in the first first time domain granularity of the first time domain granularity are used by the base station to communicate by using the second time domain granularity.
  • the other terminals occupy and determine the information of the occupied time-frequency resources, so that the terminal communicating using the first time domain granularity knows the resources that are actually allocated in the previous first time domain scheduling granularity.
  • the terminal detects the PDCCH by using the first time domain granularity.
  • the ePDCCH determines that a part of the time domain granularity before the first time domain granularity is occupied by the user that communicates with the second time domain granularity and confirms the occupied time-frequency resource.
  • the information is such that the terminal using the first time domain granularity knows itself that the resource is actually allocated in the last first time domain granularity.
  • the base station may notify the terminal to monitor one or more of them, that is, it may not need to monitor all possible transmission locations, and thus some terminal monitoring This, some terminals monitor that, can achieve time domain diversity, while reducing terminal energy consumption.
  • the base station when the base station allocates resources to multiple terminals using different time domain granularities, the base station can ensure maximum utilization of resources, and can accurately indicate that the terminal is informed that the terminal is allocated. Communication resources to.
  • Figure 1 shows a schematic diagram of different users using different subcarrier spacing
  • Figure 2 shows a schematic diagram of resource allocation for different time domain scheduling granularities
  • FIG. 3 is a flow chart showing a resource configuration method according to a first embodiment of the present invention
  • FIG. 4 is a block diagram showing the structure of a resource configuration apparatus according to a first embodiment of the present invention.
  • Figure 5 shows a schematic block diagram of a base station in accordance with a first embodiment of the present invention
  • FIG. 6 is a flow chart showing a resource configuration method according to a second embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a resource configuration apparatus according to a second embodiment of the present invention.
  • Figure 8 shows a schematic block diagram of a terminal in accordance with a first embodiment of the present invention
  • Figure 9 shows a schematic block diagram of a base station in accordance with a second embodiment of the present invention.
  • Figure 10 shows a schematic block diagram of a terminal in accordance with a second embodiment of the present invention.
  • FIG. 3 is a schematic flowchart diagram of a resource configuration method according to a first embodiment of the present invention, where an execution body of the resource configuration method may be a base station.
  • a resource configuration method includes the following steps:
  • Step S302 notifying the first time domain scheduling granularity used by any terminal served by the base station when performing communication, and in the case of having the second time domain scheduling granularity among all the terminals served by the base station, to any one of the terminals Notifying the second time domain scheduling granularity;
  • Step S304 allocating communication resources to all terminals served by the base station
  • Step S306 When allocating part of resources of the resource block in the subcarrier interval used by the any terminal to other terminals, the DCI resource allocation information is sent to any of the terminals.
  • the terminal allocates such resource allocation information, so that the terminal of the occupied resource knows which resources are occupied.
  • the terminal can be made to accurately know the communication resources that are allocated by itself, so that the terminal can receive or transmit data through the allocated communication resources.
  • the second time domain scheduling granularity is smaller than the first time domain scheduling granularity, where the second time domain scheduling granularity is the minimum time domain scheduling granularity used by the terminal served by the base station, or the second time domain scheduling granularity is the base station serving granularity.
  • the time domain scheduling granularity used in the terminal is only smaller than the first time domain scheduling granularity.
  • the other terminals may use other time domain scheduling granularity smaller than the first time domain scheduling granularity (may be a plurality of terminals of one or more types; and when the second time domain scheduling granularity is a time domain scheduling granularity used by the base station serving terminal only smaller than the first time domain scheduling granularity, the other terminal is One or more terminals of the granularity are scheduled using the second time domain.
  • the second time domain scheduling granularity or the first time domain scheduling granularity and the second time domain scheduling granularity may be notified to the terminal by semi-static RRC signaling. Size relationship.
  • the transmission time of the semi-static RRC signaling is different from the transmission time of the RRC signaling that notifies the first time domain scheduling granularity.
  • the semi-static RRC signaling is used to inform the user of the time domain scheduling granularity t1 when transmitting and receiving data by itself. Then, at different times, another RRC signaling different from the RRC signaling informing the time domain scheduling granularity t1 is used to notify the time domain scheduling granularity t2 or the time domain scheduling granularity.
  • the user does not use the time domain scheduling granularity smaller than the time domain scheduling granularity t1 during this time, only the time domain scheduling granularity t1 used by the user is notified, and the time domain smaller than the time domain scheduling granularity t1 is used for the next period of time.
  • the user of the scheduling granularity t2 notifies the user of the information of the time domain scheduling granularity t2 used by other users by another RRC signaling.
  • the DCI resource allocation information is sent to the terminal that uses the first time domain granularity to communicate with the first time domain scheduling granularity, when there is And transmitting, by the second time domain granularity, the DCI to the terminal that uses the first time domain granularity to communicate, when the part of the resource is occupied by another terminal that communicates by using the second time domain granularity under the base station; Resource allocation information, to inform the terminal of the resources occupied by other terminals in the second time domain scheduling granularity that are communicated by using the second time domain granularity, so that the first time domain granularity is used for communication.
  • the terminal knows the resources that it is actually allocated.
  • the first time domain granularity of the terminal is used for communication, and when the resources of the terminal are occupied by other terminals, the second time of the terminal occupying the resources
  • the domain granularity performs communication to transmit DCI resource allocation information, thereby being able to inform the terminal in this way which resources are occupied by other terminals that communicate using the second time domain scheduling granularity.
  • the base station may notify the terminal to monitor one or more of them, that is, it may not need to monitor all possible transmission locations, and thus some terminal monitoring This, some terminals monitor that, can achieve time domain diversity, while reducing terminal energy consumption.
  • the second time domain scheduling granularity or the size relationship between the first time domain scheduling granularity and the second time domain scheduling granularity is also notified to the terminal by dynamic DCI signaling.
  • the DCI signaling may be used to notify the user of the time domain scheduling granularity t2 value or the time domain scheduling granularity t1 and the time domain scheduling granularity.
  • the DCI resource allocation information is included.
  • the information of the time-frequency resource of the terminal is occupied by the second time domain granularity in a first time domain granularity, so that the terminal that communicates by using the first time domain granularity learns the previous first Time domain scheduling granularity of the resources that are actually allocated by itself.
  • the DCI resource allocation information is sent to the terminal using the first time domain granularity in the first time domain granularity, and when the other terminal needs to occupy the partial resource of the terminal in the first time domain granularity in the second time domain granularity. And transmitting the DCI resource allocation information to the terminal of the occupied resource in the next first time domain granularity, where the information includes the information that the other terminal occupies the time-frequency resource of the terminal in the second time domain granularity, so The terminal can know from the information the resources that it is actually allocated.
  • the resource configuration method further includes: determining, according to the value of the first time domain scheduling granularity and the second time domain scheduling granularity, that the resource block is indicated to any one of the terminals The number of bits indicated by the DCI signaling required to be allocated to some of the resources used by other terminals.
  • the time domain scheduling granularities since there is a size relationship between the time domain scheduling granularities, it may be determined according to the first time domain scheduling granularity and the value of the second time domain scheduling granularity to indicate to the terminal that the resource block is allocated to other terminals.
  • the number of bits of DCI signaling used when part of the resources are used. For example, if the ratio between the first time domain scheduling granularity and the second time domain scheduling granularity is 2, and the plurality of second time domain scheduling granularities do not overlap in time, the number of bits of the DCI signaling is 2. That is, each bit corresponds to whether one of the two resources is occupied by another terminal.
  • a first time domain scheduling granularity may be There are seven second time domain scheduling granularities, for example, the first second time domain scheduling granularity includes symbols 0-6, the second includes symbols 1-7, ..., and the seventh includes symbols 7-13. Then in this case, more bits are needed to indicate the location of 7 time resource blocks.
  • the information that the time-frequency resource of the terminal is occupied by the second time domain granularity in the previous first time domain granularity includes the start position and the length of time of the occupied time resource. And the location of the frequency domain resource.
  • the terminal receiving the information can prepare to know which resources of its own have been occupied.
  • FIG. 4 is a block diagram showing the structure of a resource configuration apparatus according to a first embodiment of the present invention.
  • the resource configuration apparatus 400 includes: a notification unit 402, configured to notify a first time domain scheduling granularity used by any terminal served by a base station when performing communication, and And if the second time domain scheduling granularity is received by all the terminals served by the base station, the second time domain scheduling granularity is notified to any one of the terminals; and the allocating unit 404 is configured to serve all terminals that serve the base station. Allocating a communication resource; the instructing unit 406, configured to send a DCI resource allocation to the any terminal when the allocation unit allocates a part of resources of the resource block under the subcarrier interval used by the any terminal to other terminals information.
  • the terminal allocates such resource allocation information, so that the terminal of the occupied resource knows which resources are occupied.
  • the terminal can be made to accurately know the communication resources that are allocated by itself, so that the terminal can receive or transmit data through the allocated communication resources.
  • the second time domain scheduling granularity is smaller than the first time domain scheduling granularity, where the second time domain scheduling granularity is a minimum time domain scheduling granularity used in the terminal served by the base station, or
  • the second time domain scheduling granularity is a time domain scheduling granularity used in the terminal served by the base station only smaller than the first time domain scheduling granularity.
  • the other terminals may use other time domain scheduling granularity smaller than the first time domain scheduling granularity (may be Is a plurality of terminals of one or more types; and the second time domain scheduling granularity is a time domain scheduling granularity used in the terminal served by the base station only smaller than the first time domain scheduling granularity
  • the other terminals described above are one or more terminals that use the second time domain scheduling granularity.
  • the time domain scheduling granularities since there is a size relationship between the time domain scheduling granularities, it may be determined according to the size relationship between the first time domain scheduling granularity and the second time domain scheduling granularity to indicate to the terminal that the resource blocks are allocated to other The number of bits of DCI signaling used when part of the resources used by the terminal. For example, if the ratio between the first time domain scheduling granularity and the second time domain scheduling granularity is 2, and the plurality of second time domain scheduling granularities do not overlap in time, the number of bits of the DCI signaling is 2. That is, each bit corresponds to whether one of the two resources is occupied by another terminal.
  • first time domain scheduling granularity is 14 symbols
  • second time domain scheduling granularity is 7 symbols
  • a first time domain scheduling granularity may be There are 7 second time domain scheduling granularities, for example, the first second time domain scheduling granularity includes symbols 0-6, the second contains symbols 1-7, ..., and the seventh contains symbols 7-13, then this case More bits are needed to indicate the location of 7 time resource blocks.
  • the DCI signaling is sent in the second time domain scheduling granularity to inform the terminal of the occupied time-frequency resources, there is no need to additionally indicate that the second time domain scheduling granularity is located in the first time domain scheduling granularity, because the terminal is based on The monitored DCI can be used to know that the current second time domain scheduling granularity is occupied by other terminals. If the following first time domain scheduling granularity sends DCI signaling to inform the terminal of the occupied time-frequency resources, the additional DCI signaling bits are needed to indicate the second time domain scheduling occupied by the resources of other terminals. The granularity is at the location where the previous first time domain scheduling granularity is located.
  • the notification unit 402 is specifically configured to notify the any terminal of the second time domain scheduling granularity or the first time domain scheduling granularity by semi-static RRC signaling.
  • the transmission time of the semi-static RRC (Radio Resource Control) signaling is different from the transmission time of the RRC signaling that notifies the first time domain scheduling granularity.
  • a user who does not use a time domain scheduling granularity smaller than the first time domain scheduling granularity in a certain communication time only informs the user of the first time domain scheduling granularity used by the user; and if the next time period is used
  • the user of the time domain scheduling granularity smaller than the first time domain scheduling granularity informs the user of the second time domain scheduling granularity information used by other users.
  • the notification unit is configured to: notify, by using the dynamic DCI signaling, the second time domain scheduling granularity or the first time domain scheduling granularity and the first The size relationship between two-time domain scheduling granularity.
  • the second time domain scheduling granularity or the size relationship between the first time domain scheduling granularity and the second time domain scheduling granularity of the terminal is notified by dynamic DCI signaling.
  • the instructing unit 406 sends DCI resource allocation information to the terminal that uses the first time domain granularity to communicate at the first time domain scheduling granularity, when in the first When some of the time domain granularity is occupied by other terminals under the base station that communicate using the second time domain granularity, the second time domain granularity is again used to communicate with the first time domain granularity. Transmitting, by the terminal, the DCI resource allocation information, to inform the terminal, in the second time domain scheduling granularity, the resources occupied by other terminals that use the second time domain granularity to communicate, so that the first time domain is used.
  • the terminal that communicates with the granularity knows the resource that it is actually allocated.
  • the indication unit 406 uses the first time domain granularity of the terminal to communicate when the resources of the terminal are not occupied by other terminals, and when the resources of the terminal are occupied by other terminals, the terminal of the resource occupying
  • the second time domain granularity performs communication to send DCI resource allocation information, and informs that in this second time domain granularity, some resources are occupied by other terminals or directly informs the terminal what is the allocated resource in the current second time domain granularity. In this way, it is possible to inform the terminal which resources are occupied by other terminals that communicate using the second time domain scheduling granularity.
  • the resources allocated in the time of the first time domain granularity other than the second time domain granularity are still indicated by the DCI signaling indication of the first time domain granularity. In this case, the indication is not required.
  • Two second time domain granularity DCI signaling Two second time domain granularity DCI signaling.
  • the indicating unit uses RRC signaling to notify any use of the first time domain scheduling.
  • a granularity terminal that monitors one or more possible second time domain scheduling granularity DCI signaling transmission locations.
  • the base station may notify the terminal to monitor one or more of them, that is, it may not need to monitor all possible transmission locations, and thus some terminal monitoring This, some terminals monitor that, can be achieved Time domain diversity while reducing terminal power consumption.
  • the instructing unit 406 sends DCI resource allocation information to the terminal that uses the first time domain granularity to communicate at the first time domain scheduling granularity, when in the first When some of the time domain granularity is occupied by other terminals under the base station that communicate using the second time domain granularity, the next first time domain granularity is communicated to the first time domain granularity.
  • the terminal sends the DCI resource allocation information, the information about the time-frequency resource of the terminal occupied by the second time domain granularity in the previous first time domain granularity is included, so that the first time domain granularity is used.
  • the terminal that communicates knows the resources that are actually allocated in the previous first time domain scheduling granularity.
  • the user is informed that the user has occupied the user resource in the second time domain granularity in the previous first time domain granularity, and then the user needs to be informed at this time.
  • the occupied time resource is the second time domain granularity at which time position, and the number of DCI bits needs to be determined according to the first time domain granularity and the second time domain granularity to indicate that the second time domain granularity is in the first time domain granularity. position.
  • the information that includes the time-frequency resource of the terminal in the second time domain granularity in the previous first time domain granularity includes the start position of the occupied time resource. And length of time and frequency domain resource location.
  • the terminal receiving the information can prepare to know which resources of its own have been occupied.
  • the resource configuration apparatus further includes: a determining unit 408, configured to determine, according to the first time domain scheduling granularity and the value of the second time domain scheduling granularity, The number of bits indicated by DCI (Downlink Control Information) signaling required by a terminal to indicate a part of resources allocated to other terminals in the resource block.
  • a determining unit 408 configured to determine, according to the first time domain scheduling granularity and the value of the second time domain scheduling granularity, The number of bits indicated by DCI (Downlink Control Information) signaling required by a terminal to indicate a part of resources allocated to other terminals in the resource block.
  • the DCI resource allocation information is sent to the terminal using the first time domain granularity in the first time domain granularity, and the other terminal needs to occupy the partial resource of the terminal in the first time domain granularity in the second time domain granularity. Transmitting DCI resource allocation information to the terminal of the occupied resource in the next first time domain granularity, where the other terminal is included in the second time domain.
  • the degree occupies the information of the time-frequency resource of the terminal, so the terminal can know from the information the resource that it is actually allocated.
  • Fig. 5 shows a schematic block diagram of a base station according to a first embodiment of the present invention.
  • a base station 500 includes: a resource configuration apparatus 400 as shown in FIG.
  • FIG. 6 is a schematic flowchart diagram of a resource configuration method according to a second embodiment of the present invention, where an execution body of the resource configuration method may be a terminal.
  • the resource configuration method according to the second embodiment of the present invention includes the following steps:
  • Step S602 receiving a first time domain scheduling granularity used by the terminal notified by the base station when performing communication, and a second time domain scheduling granularity used by other terminals served by the base station;
  • Step S604 Receive DCI resource allocation information sent by the base station, and determine, according to the DCI resource allocation information, that the base station allocates part of resources of the resource block used by the terminal to other terminals, and is occupied by the other terminal.
  • the partial resources The partial resources.
  • the terminal determines the resources allocated to itself and the resources occupied by other terminals by receiving the first time domain scheduling granularity and the second time domain scheduling granularity and the DCI resource allocation information from the base station.
  • the second time domain scheduling granularity or the size relationship between the first time domain scheduling granularity and the second time domain scheduling granularity is received by receiving semi-static RRC signaling. .
  • the second time domain scheduling granularity or a size relationship between the first time domain scheduling granularity and the second time domain scheduling granularity is received by receiving dynamic DCI signaling.
  • the method further includes: after receiving the semi-static RRC signaling or the dynamic DCI instruction that notifies the second time domain scheduling granularity, using the second time domain scheduling granularity
  • the PDCCH or the ePDCCH is detected for the unit, and the partial resources are determined according to the bit information indicated by the received DCI signaling.
  • the domain scheduling granularity detects the PDCCH or ePDCCH in units.
  • the PDCCH or the ePDCCH determines that some resources in the first first time domain granularity of the first time domain granularity are used by the base station to communicate by using the second time domain granularity.
  • the other terminals occupy and determine the information of the occupied time-frequency resources, so that the terminal communicating using the first time domain granularity knows the resources that are actually allocated in the previous first time domain scheduling granularity.
  • the terminal when the second time domain scheduling granularity information has been received, and the part of the resource may be occupied by the terminal using the second time domain scheduling granularity, the terminal detects the PDCCH by using the first time domain granularity. ePDCCH. After receiving the DCI resource allocation information, determining that a part of the time domain granularity before the first time domain granularity is occupied by the user communicating with the second time domain granularity and confirming the occupied time-frequency resource information Thus, the terminal using the first time domain granularity is made aware of the resources that itself is actually allocated in the last first time domain granularity.
  • the base station may notify the terminal to monitor one or more of them, that is, it may not need to monitor all possible transmission locations, and thus some terminal monitoring This, some terminals monitor that, can achieve time domain diversity, while reducing terminal energy consumption.
  • the user based on the notification of the RRC signaling regarding the time domain scheduling granularity t1, the user only needs to detect the PDCCH or the ePDCCH in units of the time domain scheduling granularity t1, for example, the PDCCH only appears in the time domain granularity in units of t1.
  • the first one or several symbols, the middle and the back will not appear (of course, the smallest PDCCH detection unit is t1. If there are multiple subframes, only the PDCCH of the first subframe of multiple subframes needs to be detected. The frame does not need to be detected.
  • the user obtains the information of the time domain scheduling granularity t1, and the DCI signaling gives the time domain information allocated to the user (single time granularity scheduling may be It is a time when the length of a certain position is t1 or a time when the multi-time granularity scheduling is a time of a certain position of a certain position is t1).
  • the user detects the RRC or DCI signaling, and learns the information of the second time domain scheduling granularity t2, and the user knows that the user needs to detect the PDCCH or ePDCCH in the time domain scheduling granularity t2 in the next period of time.
  • the first one or several symbols in the time domain scheduling granularity t2 are required to inform the user that the RB resources have been allocated to the user. It is occupied by someone else during the next one or more t2 time periods.
  • the user may continue to detect the PDCCH or the ePDCCH in the first time domain scheduling granularity, and the first time domain scheduling is performed at this time.
  • the DCI signaling sent in units of granularity indicates whether resources in the previous first time domain scheduling granularity are occupied by terminals in the time domain second time domain scheduling granularity.
  • FIG. 7 is a block diagram showing the structure of a resource configuration apparatus according to a second embodiment of the present invention.
  • the resource configuration apparatus 700 includes: a first receiving unit 702, configured to receive a first time domain scheduling granularity used by a terminal notified by a base station when performing communication, and The second time domain scheduling granularity used by the other terminals served by the base station; the second receiving unit 704 is configured to receive the DCI resource allocation information sent by the base station, and the determining unit 706 is configured to determine, according to the DCI resource allocation information, And the part of the resources occupied by the other terminal when the base station allocates a part of resources of the resource block used by the terminal to other terminals.
  • the terminal determines the resources allocated to itself and the resources occupied by other terminals by receiving the first time domain scheduling granularity and the second time domain scheduling granularity and the DCI resource allocation information from the base station.
  • the first receiving unit 702 receives the second time domain scheduling granularity or the first time domain scheduling granularity and the second time domain scheduling granularity by receiving semi-static RRC signaling.
  • the relationship between size is preferably, the first receiving unit 702 receives the second time domain scheduling granularity or the first time domain scheduling granularity and the second time domain scheduling granularity by receiving semi-static RRC signaling.
  • the first receiving unit 702 receives the second time domain scheduling granularity or the first time domain scheduling granularity and the second time domain scheduling granularity by receiving dynamic DCI signaling.
  • the relationship between size is preferably, the first receiving unit 702 receives the second time domain scheduling granularity or the first time domain scheduling granularity and the second time domain scheduling granularity by receiving dynamic DCI signaling.
  • the determining unit 706 is further configured to: after the first receiving unit 602 receives the semi-static RRC signaling or the dynamic DCI instruction that is notified of the second time domain scheduling granularity,
  • the second time domain scheduling granularity is a PDCCH (Physical Downlink Control Channel) or an Enhanced Physical Downlink Control Channel (ePDCCH), and is determined according to bit information indicated by the received DCI signaling.
  • the partial resources are PDCCH (Physical Downlink Control Channel) or an Enhanced Physical Downlink Control Channel (ePDCCH), and is determined according to bit information indicated by the received DCI signaling.
  • the terminal when the first receiving unit 702 has received the second time domain scheduling granularity information, and knows that some of its resources may be occupied by the terminal using the second time domain scheduling granularity, the terminal will use the second time.
  • the domain scheduling granularity detects the PDCCH or ePDCCH in units.
  • the first time domain scheduling granularity is The unit detects the PDCCH or the ePDCCH, and after receiving the DCI resource allocation information, determines that some resources in the first first time domain granularity of the first time domain granularity are used by the base station to use the second time domain granularity.
  • the other terminal that performs communication occupies and determines the information of the occupied time-frequency resource, so that the terminal communicating using the first time domain granularity knows the resource that is actually allocated in the previous first time domain scheduling granularity.
  • the terminal detects the PDCCH by using the first time domain granularity.
  • the ePDCCH determines that a part of the time domain granularity before the first time domain granularity is occupied by the user that communicates with the second time domain granularity and confirms the occupied time-frequency resource.
  • the information is such that the terminal using the first time domain granularity knows itself that the resource is actually allocated in the last first time domain granularity.
  • the determining unit will monitor one of the received RRC signaling according to the received RRC signaling. Or multiple possible second time domain scheduling granular DCI signaling transmission locations.
  • the base station may notify the terminal to monitor one or more of them, that is, without monitoring all The location that may be sent, so some terminals monitor this, and some terminals monitor that, which can achieve time domain diversity while reducing terminal power consumption.
  • Fig. 8 shows a schematic block diagram of a terminal in accordance with a first embodiment of the present invention.
  • a terminal 800 includes: a resource configuration apparatus 700 as shown in FIG. 6.
  • the technical solution of the present invention is mainly directed to the use of multiple different time domain scheduling granularities by multiple users in 5G NR (New Radio), and a corresponding signaling indication method for time domain resources is proposed. as follows:
  • the semi-static RRC signaling is used to inform the user of the time domain scheduling granularity t1 used when transmitting and receiving data, and to inform the user of the minimum time domain scheduling granularity t2 used by the user under the base station or to inform the user of the time domain scheduling granularity t1 and
  • the ratio t1/t2 of the time domain scheduling granularity t2 obviously, if the difference or ratio of t1 and t2 is larger, it is necessary to indicate that the number of bits required for t2 to be located at multiple positions in t1 is larger.
  • the time domain scheduling granularity ratio may also be 128, and the number of required bits will be very large.
  • the base station needs to adopt some principles when allocating time resources, except that the user time resource using the smaller time granularity as described above is as continuous as possible, and if the time domain scheduling granularity is t1, the time is extracted. Part of the use of another user with a time domain resource of t2, to ensure that the value of t1/t2 is as small as possible, so that the number of bits will be much less.
  • the time domain scheduling granularity t1 used by the user when transmitting and receiving data can also be notified by semi-static RRC signaling, and the user is notified of only the ratio used by the user under the base station.
  • the sub-time domain scheduling granularity t3 with a small time domain scheduling granularity t1 or the ratio t1/t3 of the time domain scheduling granularity t1 and the time domain scheduling granularity t3 is notified to the user, and the subsequent indication method is similar to the above.
  • Figure 9 shows a schematic block diagram of a base station in accordance with a second embodiment of the present invention.
  • a base station includes a processor 1, an output device 3, and a memory 5.
  • the processor 1, the output device 3, and the memory 5 may be connected by a bus 4 or other means, as exemplified by the connection through the bus 4 in FIG.
  • the memory 5 is used to store a set of program codes, and the processor 1 calls the program code stored in the memory 5 for performing the following operations:
  • the partial resources are indicated to the any terminal.
  • Figure 10 shows a schematic block diagram of a terminal in accordance with a second embodiment of the present invention.
  • a terminal includes a processor 1', an input device 2', and a memory 5'.
  • the processor 1', the input device 2' and the memory 5' may be connected by a bus 4' or other means, as exemplified by the connection through the bus 4' in FIG.
  • the memory 5' is used to store a set of program codes, and the processor 1' calls the program code stored in the memory 5' for performing the following operations:
  • the base station when the base station allocates a part of resources of the resource block used by the terminal to the other terminal according to the DCI resource allocation information, the part of the resource occupied by the other terminal is used in the method of the embodiment of the present invention.
  • the steps can be adjusted, merged, and deleted according to actual needs.
  • the resource configuration apparatus, the terminal, and the unit in the base station in the embodiment of the present invention may be combined, divided, and deleted according to actual needs.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read Only Memory Erasable Programmable Read Only Memory
  • OTPROM One-Time Programmable Read-Only Memory
  • EEPROM Electro-Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • the present invention provides a new resource configuration scheme, so that a base station can ensure maximum resource utilization when allocating resources to multiple terminals using different subcarrier intervals. And it can accurately indicate that the terminal knows the communication resources to which it is assigned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种资源配置方法及资源配置装置,其中,资源配置方法包括:通知基站服务的任一终端在进行通信时使用的第一时域调度粒度,以及在所述基站服务的所有终端中具有第二时域调度粒度的情况下,向所述任一终端通知所述第二时域调度粒度;向基站服务的所有终端分配通信资源;在将任一终端使用的子载波间隔下的资源块的部分资源分配给其它终端使用时,向任一终端指示所述部分资源。本发明的技术方案使得基站在向使用不同时域调度粒度的多个终端分配资源时,能够保证资源的最大化利用,并且能够准确指示终端获知被分配到的通信资源。

Description

资源配置方法和资源配置装置 技术领域
本发明涉及通信技术领域,具体而言,涉及一种资源配置方法和一种资源配置装置。
背景技术
现有的4G以及4.5G移动通信技术,都是基于LTE(Long Term Evolution,长期演进)及LTE-A(LTE-Advanced)的无线接入技术、时频资源粒度和帧结构等。比如目前LTE系统能支持的最大单载波带宽为20MHz,若要支持更大带宽,只能依靠载波聚合(Carrier Aggregation,简称CA)的使用。另外,目前的帧结构主要包括:FDD(Frequency Division Duplexing,频分双工)帧结构、TDD(Time Division Duplexing,时分双工)帧结构和LAA(LTE Assisted Access,LTE辅助接入)非授权载波使用的动态帧结构。不管是哪种帧结构,都包含10个子帧,每个子帧为1ms,每个子帧包含两个slot(时隙),一个slot为0.5ms,每个slot又包含7个symbol(符号)。频域方面,在LTE系统中,子载波间隔主要是15kHz,一个RB(Resource Block,资源块)包含了12个子载波。而在NB-IoT(Narrow Band Internet of Things,基于蜂窝的窄带物联网)中又提出一种新的3.75kHz的子载波间隔,而且NB-IoT的载波带宽仅有180kHz。
在资源分配方面,FDD帧结构和TDD帧结构都是以1ms子帧为时域调度粒度,除了TDD帧结构中的特殊子帧内的DwPTS(Downlink Pilot Time Slot,下行导频时隙)用于传输数据时,时域调度粒度是小于1ms的。同样在LAA非授权载波使用的帧结构中也出现了复用DwPTS作为partial subframe的下行调度时域粒度,同时也使用了1ms整子帧的调度粒度。而在FDD帧结构和TDD帧结构中,除了TDD帧结构中的特殊子帧 既有下行发送时间和上行发送时间外,其它的子帧都是上行发送或下行发送要么时域分开要么频域分开。
可见,目前的帧结构和频域资源的粒度都会使得资源分配不够灵活,而上行调度机制与HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)反馈机制等的时间间隔又使得时延较大,20MHz带宽也不满足高带宽需求。
未来5G通信主要场景包括以下三种:eMBB(enhanced Mobile Broadband,增强的移动宽带网络),mMTC(massive Machine Type Communication,大规模机器类通讯)和URLLC(Ultra-Reliable and Low Latency Communications,高可靠低时延通信)。这三种场景所针对的业务类型不一样,其需求也不一样。比如:eMBB业务的两个主要指标是高带宽和低时延,在未来的高频通信上,eMBB业务可能支持100MHz的大带宽,而且很可能某个时刻整个带宽都直接分配给一个用户使用,而上行调度时延和HARQ反馈时延也会带来时延影响;mMTC业务需要的是窄带服务,需要电池寿命很长,这种业务就需要更小粒度的频域和更宽粒度的时域资源;对于URLLC业务,也需要减少上行调度时延和HARQ反馈时延带来的时延影响。
也就是说由于业务的多样化,使得目前固定的帧结构、固定的频域资源粒度和时域资源粒度会造成较大的上行调度时延和较长的HARQ反馈时延,并且较小的载波带宽也无法满足业务的多样化需求,而5G通信希望能够做到足够灵活,任何一个资源都可能动态的进行调度以随时使用。
目前,针对5G的讨论会议已经达成了以下共识:对于同一个载波上的不同业务,可以有不同的子载波间隔。具体如图1所示,若最小的子载波间隔为f0,其次有2f0、4f0和8f0,那么相应的RB(Resource Block,资源块)的大小也成倍数关系。这种情况下,比如UE#1使用的是f0,且只需要使用f0时的RB0,而这时候没有别的使用f0的用户需要分配资源,只有使用2f0的UE#2,而UE#2使用2f0时的RB0中的部分资源已经被UE#1使用了,那么剩余的部分资源是否需要分配给UE#2,并且当分配给UE#2时该如何设计信令告知UE#2哪部分已经被其它用户使用了都是亟 待解决的技术问题。
类似于存在频域指示的问题,同时也存在时域指示的问题,如图2所示,比如使用不同的子载波间隔的业务对应的调度slot长度不一样。那么相应的时域出现如下情况:UE#1使用子载波间隔f0为15kHz,这样对应的的1ms子帧包含2个slot,每个slot为7个符号。UE#2使用子载波间隔2f0为30kHz,这样对应的的1ms子帧包含4个slot,每个slot为7个符号。其中Slot为时域调度最小单元。那么可能出现的问题就是UE#1已经分配了自身的slot 0,但是后面UE#2也有业务需要传输了,而且UE#2的优先级更高,这时对于某些RB在UE#1的slot0后半部分就分给了UE#2。这种情况下,如何告知UE#1是需要解决的问题。这种问题也可能出现在UE#1和UE#2使用同样的子载波间隔,但是UE#2的时域调度粒度比UE#1更小,比如UE#2使用2个符号的mini-slot。因此,同样如何设计信令告知UE#2哪部分已经被其它用户使用了也是亟待解决的技术问题。
发明内容
本发明正是基于上述技术问题至少之一,提出了一种新的资源配置方案,使得基站在向使用不同子载波间隔的多个终端分配资源时,能够保证资源的最大化利用,并且能够准确指示终端获知被分配到的通信资源。
有鉴于此,根据本发明的第一方面,提出了一种资源配置装置,包括:通知单元,用于通知基站服务的任一终端在进行通信时使用的第一时域调度粒度,以及在所述基站服务的所有终端中具有第二时域调度粒度的情况下,向所述任一终端通知所述第二时域调度粒度;分配单元,用于向所述基站服务的所有终端分配通信资源;指示单元,用于在所述分配单元将所述任一终端使用的子载波间隔下的资源块的部分资源分配给其它终端使用时,向所述任一终端发送DCI资源分配信息。
在该技术方案中,在基站服务的终端中存在第一时域调度粒度和第二时域调度粒度的情况下,将任一终端使用的第一时域调度粒度的资源块中的部分资源分配给其他终端使用,同时通知终端这样的资源分配信息,使 得被占用资源的终端知道哪些资源被占用。通过这样的技术方案,可以使得终端能够准确获知自身被分配的通信资源,以便于终端通过被分配的通信资源来接收或发送数据。
在上述技术方案中,优选地,第二时域调度粒度小于所述第一时域调度粒度,其中,第二时域调度粒度是所述基站服务的终端中使用的最小时域调度粒度,或所述第二时域调度粒度是所述基站服务的终端中使用的仅比所述第一时域调度粒度小的时域调度粒度。
在该技术方案中,当第二时域调度粒度是基站服务的终端中使用的最小子载波间隔时,上述的其它终端可以是使用比第一时域调度粒度小的其它时域调度粒度(可以是一种或多种)的多个终端;而在第二时域调度粒度是基站服务的终端中使用的仅比第一时域调度粒度小的一个时域调度粒度时,上述的其它终端是使用第二时域调度粒度的一个或多个终端。
在该技术方案中,由于时域调度粒度之间是存在大小关系的,因此可以根据第一时域调度粒度与第二时域调度粒度来确定向终端指示资源块中被分配给其它终端使用的部分资源时所使用的DCI信令的比特数。譬如,若第一时域调度粒度与第二时域调度粒度之间的比值为2,且多个第二时域调度粒度之间时间上不重叠,则该DCI信令的比特数为2,即每个比特对应指示两块资源中的其中一块资源是否被其它终端占用。但如果多个第二时域调度粒度之间时间上可以重叠,比如第一时域调度粒度是14个符号,第二时域调度粒度是7个符号,那么一个第一时域调度粒度内可以有7个第二时域调度粒度,比如第一个第二时域调度粒度包含符号0~6,第二个包含符号1~7……,第七个包含符号7~13。那么这种情况下就需要更多的比特数来指示7个时间资源块位置。
在上述任一技术方案中,优选地,通知单元具体用于:通过半静态的RRC信令向所述任一终端通知所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
在上述任一技术方案中,优选地,半静态的RRC(Radio Resource Control,无线资源控制)信令的发送时间不同于通知第一时域调度粒度的RRC信令的发送时间。
在该方案中,例如某段通信时间没有使用比第一时域调度粒度小的时域调度粒度的用户,则只通知用户自身使用的第一时域调度粒度;而如果接下来一段时间有使用比第一时域调度粒度小的时域调度粒度的用户,则给用户通知其他用户使用的第二时域调度粒度的信息。
在上述任一技术方案中,优选地,通知单元具体用于:通过动态DCI信令向所述任一终端通知所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
在该技术方案中,通过动态DCI信令来通知终端第二时域调度粒度或第一时域调度粒度与第二时域调度粒度之间的大小关系。
在上述任一技术方案中,优选地,指示单元以所述第一时域调度粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息,当在所述第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用时,以所述第二时域粒度再次向使用所述第一时域粒度进行通信的所述终端发送所述DCI资源分配信息,以告知所述终端所述第二时域调度粒度中被使用所述第二时域粒度进行通信的其他终端占用的资源,从而使得使用所述第一时域粒度进行通信的所述终端获知自身实际被分配的资源。
在该技术方案中,指示单元在终端的资源没有被其他终端占用的情况下,使用终端的第一时域粒度进行通信,在终端的资源被其他终端占用时,其以占用资源的终端的第二时域粒度进行通信发送DCI资源分配信息,告知在这个第二时域粒度里部分资源被别的终端占用或者直接告知该终端在当前第二时域粒度里,他被分配的资源是什么,从而通过这种方式能够告知终端,使用第二时域调度粒度进行通信的其他终端占用了哪些资源。而在除该第二时域粒度之外的其它第一时域粒度的时间内分配的资源还是按照第一时域粒度的DCI信令指示所示,这种情况下,不需要指示是第几个第二时域粒度的DCI信令。
在该技术方案中,如果第一时域调度粒度中存在一个或多个可能的第二时域调度粒度的DCI信令发送位置,所述指示单元使用RRC信令通知任意使用第一时域调度粒度的终端,监测其中的一个或多个可能的第二时 域调度粒度的DCI信令发送位置。
通过这样的技术方案,对于可能有多个第二时域调度粒度的发送位置的情况,基站可以通知终端监测其中的一个或多个,即可以不用监测所有可能发送的位置,这样有的终端监测这个,有的终端监测那个,可以实现时域分集,同时减少终端耗能。
在该技术方案中,优选地,指示单元还可以以所述第一时域调度粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息,当在所述第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用时,在接下来的一个第一时域粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息时,包含上一第一时域粒度中以所述第二时域粒度为单位占用了所述终端的时频资源的信息,从而使得使用所述第一时域粒度进行通信的所述终端获知上一第一时域调度粒度中自身实际被分配的资源。
在这种情况下,是在后一个第一时域粒度中告知该用户前一个第一时域粒度里有以第二时域粒度占用了该用户资源的用户,那么这个时候需要告知该用户是处于哪个时间位置的第二时域粒度,这里就需要根据第一时域粒度与第二时域粒度来确定DCI比特数从而指示第二时域粒度在第一时域粒度的位置。
在上述技术方案中,优选地,包含上一第一时域粒度中以所述第二时域粒度为单位占用了所述终端的时频资源的信息中,包含占用的时间资源的起始位置和时间长度以及频域资源位置。
通过在时频资源的信息中包含占用的时间资源的起始位置和时间长度以及频域资源位置,可以使得收到该信息的终端能够准备知道自身的哪些资源已经被占用。
在上述技术方案中,优选地,资源配置装置还包括:确定单元,用于根据所述第一时域调度粒度与所述第二时域调度粒度,确定在向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源时所需的DCI(Downlink Control Information,下行控制信息)信令指示的比特数。
在该技术方案中,以第一时域粒度向使用第一时域粒度的终端发送 DCI资源分配信息,当其他终端需要以第二时域粒度占用该第一时域粒度中终端的部分资源时,在接下来的一个第一时域粒度向被占用资源的终端发送DCI资源分配信息,在该信息中,包含了其它终端以第二时域粒度占用了终端的时频资源的信息,所以该终端能够从该信息中知道自身实际被分配的资源。
根据本发明的第二方面,还提供了一种资源配置装置,包括:第一接收单元,用于接收基站通知的终端在进行通信时使用的第一时域调度粒度,以及所述基站服务的其它终端使用的第二时域调度粒度;第二接收单元,用于接收所述基站发送的DCI资源分配信息;确定单元,用于根据所述DCI资源分配信息,确定所述基站将所述终端使用的资源块的部分资源分配给其它终端使用时,被所述其他终端占用的所述部分资源。
在该技术方案中,终端通过从基站接收第一时域调度粒度和第二时域调度粒度,以及DCI资源分配信息,得以确定分配给其自身的资源和被其他终端占用的资源。
在上述技术方案中,优选地,第一接收单元通过接收半静态的RRC信令来接收所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
在上述技术方案中,优选地,所述第一接收单元通过接收动态DCI信令来接收所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
在上述技术方案中,优选地,确定单元还用于在第一接收单元接收到通知所述第二时域调度粒度的半静态的RRC信令或所述动态DCI指令之后,以所述第二时域调度粒度为单位检测PDCCH(Physical Downlink Control Channel,下行物理控制信道)或ePDCCH(Enhanced Physical Downlink Control Channel,增强下行物理控制信道),根据接收到的DCI信令指示的比特信息来确定所述部分资源。
在该技术方案中,当第一接收单元已经接收到通知,知道其部分资源可能被使用第二时域调度粒度的终端占用时,终端将以所述第二时域调度粒度为单位检测PDCCH或ePDCCH。
在上述技术方案中,如果第一时域调度粒度中存在一个或多个可能的第二时域调度粒度的DCI信令发送位置,那么确定单元将根据接收到的RRC信令,监测其中的一个或多个可能的第二时域调度粒度的DCI信令发送位置。
通过这样的技术方案,对于可能有多个第二时域调度粒度的发送位置的情况,基站可以通知终端监测其中的一个或多个,即可以不用监测所有可能发送的位置,这样有的终端监测这个,有的终端监测那个,可以实现时域分集,同时减少终端耗能。
在上述技术方案中,优选地,确定单元在接收到通知所述第二时域调度粒度的所述半静态的RRC信令或所述动态DCI指令之后,以所述第一时域调度粒度为单位检测PDCCH或ePDCCH,在接收到所述DCI资源分配信息之后,确定在所述第一时域粒度的上一第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用并确定被占用的时频资源的信息,从而使得使用所述第一时域粒度进行通信的所述终端获知上一第一时域调度粒度中自身实际被分配的资源。
根据本发明的第三方面,提供了一种资源配置方法,包括:通知基站服务的任一终端在进行通信时使用的第一时域调度粒度,以及在所述基站服务的所有终端中具有第二时域调度粒度的情况下,向所述任一终端通知所述第二时域调度粒度;向所述基站服务的所有终端分配通信资源;在将所述任一终端使用的子载波间隔下的资源块的部分资源分配给其它终端使用时,向所述任一终端发送DCI资源分配信息。
在该技术方案中,在基站服务的终端中存在第一时域调度粒度和第二时域调度粒度的情况下,将任一终端使用的第一时域调度粒度的资源块中的部分资源分配给其他终端使用,同时通知终端这样的资源分配信息,使得被占用资源的终端知道哪些资源被占用。通过这样的技术方案,可以使得终端能够准确获知自身被分配的通信资源,以便于终端通过被分配的通信资源来接收或发送数据。
在上述技术方案中,优选地,所述第二时域调度粒度小于所述第一时域调度粒度,其中,所述第二时域调度粒度是所述基站服务的终端中使用 的最小时域调度粒度,或所述第二时域调度粒度是所述基站服务的终端中使用的仅比所述第一时域调度粒度小的时域调度粒度。
在该技术方案中,当第二时域调度粒度是基站服务的终端中使用的最小子载波间隔时,上述的其它终端可以是使用比第一时域调度粒度小的其它时域调度粒度(可以是一种或多种)的多个终端;而在第二时域调度粒度是基站服务的终端中使用的仅比第一时域调度粒度小的一个时域调度粒度时,上述的其它终端是使用第二时域调度粒度的一个或多个终端。
在上述任一技术方案中,优选地,通过半静态的RRC信令向所述任一终端通知所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
在上述任一技术方案中,优选地,所述半静态的RRC信令的发送时间不同于通知所述第一时域调度粒度的RRC信令的发送时间。
在该方案中,例如某段通信时间没有使用比第一时域调度粒度小的时域调度粒度的用户,则只通知用户自身使用的第一时域调度粒度;而如果接下来一段时间有使用比第一时域调度粒度小的时域调度粒度的用户,则给用户通知其他用户使用的第二时域调度粒度的信息。
在上述任一技术方案中,优选地,通过动态DCI信令向所述任一终端通知所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
在该技术方案中,通过动态DCI信令来通知终端第二时域调度粒度或第一时域调度粒度与第二时域调度粒度之间的大小关系。
在上述任一技术方案中,优选地,以所述第一时域调度粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息,当在所述第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用时,以所述第二时域粒度再次向使用所述第一时域粒度进行通信的所述终端发送所述DCI资源分配信息,以告知所述终端所述第二时域调度粒度中被使用所述第二时域粒度进行通信的其他终端占用的资源,从而使得使用所述第一时域粒度进行通信的所述终端获知自身实际被分配的资源。在该技术方案中,在终端的资源没有被其他终端占用的情况下,使 用终端的第一时域粒度进行通信,在终端的资源被其他终端占用时,其以占用资源的终端的第二时域粒度进行通信发送DCI资源分配信息,从而通过这种方式能够告知终端,使用第二时域调度粒度进行通信的其他终端占用了哪些资源。
在该技术方案中,如果第一时域调度粒度中存在一个或多个可能的第二时域调度粒度的DCI信令发送位置,则使用RRC信令通知任意使用第一时域调度粒度的终端,监测其中的一个或多个可能的第二时域调度粒度的DCI信令发送位置。
通过这样的技术方案,对于可能有多个第二时域调度粒度的发送位置的情况,基站可以通知终端监测其中的一个或多个,即可以不用监测所有可能发送的位置,这样有的终端监测这个,有的终端监测那个,可以实现时域分集,同时减少终端耗能。
在上述技术方案中,优选地,以所述第一时域调度粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息,当在所述第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用时,在接下来的一个第一时域粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息时,包含上一第一时域粒度中以所述第二时域粒度为单位占用了所述终端的时频资源的信息,从而使得使用所述第一时域粒度进行通信的所述终端获知上一第一时域调度粒度中自身实际被分配的资源。
在该技术方案中,由于时域调度粒度之间是存在大小关系的,因此可以根据第一时域调度粒度与第二时域调度粒度的值来确定向终端指示资源块中被分配给其它终端使用的部分资源时所使用的DCI信令的比特数。譬如,若第一时域调度粒度与第二时域调度粒度之间的比值为2,且多个第二时域调度粒度之间时间上不重叠,则该DCI信令的比特数为2,即每个比特对应指示两块资源中的其中一块资源是否被其它终端占用。但如果多个第二时域调度粒度之间时间上可以重叠,比如第一时域调度粒度是14个符号,第二时域调度粒度是7个符号,那么一个第一时域调度粒度内可以有7个第二时域调度粒度,比如第一个第二时域调度粒度包含符号 0~6,第二个包含符号1~7……,第七个包含符号7~13。那么这种情况下就需要更多的比特数来指示7个时间资源块位置。上述技术方案中,包含上一第一时域粒度中以所述第二时域粒度为单位占用了所述终端的时频资源的信息中,包含占用的时间资源的起始位置和时间长度以及频域资源位置。
通过在时频资源的信息中包含占用的时间资源的起始位置和时间长度以及频域资源位置,可以使得收到该信息的终端能够准备知道自身的哪些资源已经被占用。在该技术方案中,以第一时域粒度向使用第一时域粒度的终端发送DCI资源分配信息,当其他终端需要以第二时域粒度占用该第一时域粒度中终端的部分资源时,在接下来的一个第一时域粒度向被占用资源的终端发送DCI资源分配信息,在该信息中,包含了其它终端以第二时域粒度占用了终端的时频资源的信息,所以该终端能够从该信息中知道自身实际被分配的资源。
根据本发明的第四方面,还提供了一种资源配置方法,包括:接收基站通知的终端在进行通信时使用的第一时域调度粒度,以及所述基站服务的其它终端使用的第二时域调度粒度;接收所述基站发送的DCI资源分配信息;根据所述DCI资源分配信息,确定所述基站将所述终端使用的资源块的部分资源分配给其它终端使用时,被所述其他终端占用的所述部分资源。
在该技术方案中,终端通过从基站接收第一时域调度粒度和第二时域调度粒度,以及DCI资源分配信息,得以确定分配给其自身的资源和被其他终端占用的资源。
在上述技术方案中,优选地,通过接收半静态的RRC信令来接收所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
在上述技术方案中,优选地,通过接收动态DCI信令来接收所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
在上述技术方案中,优选地,还包括:在接收到通知所述第二时域调 度粒度的所述半静态的RRC信令或所述动态DCI指令之后,以所述第二时域调度粒度为单位检测PDCCH或ePDCCH,根据接收到的DCI信令指示的比特信息来确定所述部分资源。
在该技术方案中,当已经接收到第二时域调度粒度信息后,知道其部分资源可能被使用第二时域调度粒度的终端占用时,终端将以所述第二时域调度粒度为单位检测PDCCH或ePDCCH。
在上述技术方案中,优选地,在接收到通知所述第二时域调度粒度的所述半静态的RRC信令或所述动态DCI指令之后,以所述第一时域调度粒度为单位检测PDCCH或ePDCCH,在接收到所述DCI资源分配信息之后,确定在所述第一时域粒度的上一第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用并确定被占用的时频资源的信息,从而使得使用所述第一时域粒度进行通信的所述终端获知上一第一时域调度粒度中自身实际被分配的资源。
在该技术方案中,当已经接收到第二时域调度粒度信息后,知道其部分资源可能被使用第二时域调度粒度的终端占用时,终端还是以第一时域粒度为单位检测PDCCH或ePDCCH,在接收到所述DCI资源分配信息之后,确定该第一时域粒度之前的一个时域粒度中有部分资源被以第二时域粒度进行通信的用户占用并确认被占用的时频资源信息,从而使得使用第一时域粒度的终端获知自己在上一个第一时域粒度中自身实际被分配的资源。
如果第一时域调度粒度中存在一个或多个可能的第二时域调度粒度的DCI信令发送位置,则根据接收到的RRC信令,监测其中的一个或多个可能的第二时域调度粒度的DCI信令发送位置。
通过这样的技术方案,对于可能有多个第二时域调度粒度的发送位置的情况,基站可以通知终端监测其中的一个或多个,即可以不用监测所有可能发送的位置,这样有的终端监测这个,有的终端监测那个,可以实现时域分集,同时减少终端耗能。
通过以上技术方案,使得基站在向使用不同时域粒度的多个终端分配资源时,能够保证资源的最大化利用,并且能够准确指示终端获知被分配 到的通信资源。
附图说明
图1示出了不同用户使用不同子载波间隔的示意图;
图2示出了不同时域调度粒度的资源分配的示意图;
图3示出了根据本发明的第一个实施例的资源配置方法的流程示意图;
图4示出了根据本发明的第一个实施例的资源配置装置的结构示意图;
图5示出了根据本发明的第一个实施例的基站的示意框图;
图6示出了根据本发明的第二个实施例的资源配置方法的流程示意图;
图7示出了根据本发明的第二个实施例的资源配置装置的结构示意图;
图8示出了根据本发明的第一个实施例的终端的示意框图;
图9示出了根据本发明的第二个实施例的基站的示意框图;
图10示出了根据本发明的第二个实施例的终端的示意框图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
图3示出了根据本发明的第一个实施例的资源配置方法的流程示意图,该资源配置方法的执行主体可以是基站。
如图3所示,根据本发明的第一个实施例的资源配置方法,包括以下步骤:
步骤S302,通知基站服务的任一终端在进行通信时使用的第一时域调度粒度,以及在所述基站服务的所有终端中具有第二时域调度粒度的情况下,向所述任一终端通知所述第二时域调度粒度;
步骤S304,向所述基站服务的所有终端分配通信资源;
步骤S306,在将所述任一终端使用的子载波间隔下的资源块的部分资源分配给其它终端使用时,向所述任一终端发送DCI资源分配信息。
在该技术方案中,在基站服务的终端中存在第一时域调度粒度和第二时域调度粒度的情况下,将任一终端使用的第一时域调度粒度的资源块中的部分资源分配给其他终端使用,同时通知终端这样的资源分配信息,使得被占用资源的终端知道哪些资源被占用。通过这样的技术方案,可以使得终端能够准确获知自身被分配的通信资源,以便于终端通过被分配的通信资源来接收或发送数据。
优选地,第二时域调度粒度小于第一时域调度粒度,其中,第二时域调度粒度是基站服务的终端中使用的最小时域调度粒度,或第二时域调度粒度是基站服务的终端中使用的仅比第一时域调度粒度小的时域调度粒度。
在该技术方案中,当第二时域调度粒度是基站服务的终端中使用的最小子载波间隔时,上述的其它终端可以是使用比第一时域调度粒度小的其它时域调度粒度(可以是一种或多种)的多个终端;而在第二时域调度粒度是基站服务的终端中使用的仅比第一时域调度粒度小的一个时域调度粒度时,上述的其它终端是使用第二时域调度粒度的一个或多个终端。
在该技术方案中,可以通过半静态的RRC信令向所述任一终端通知所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
在该技术方案中,半静态的RRC信令的发送时间不同于通知所述第一时域调度粒度的RRC信令的发送时间。
在该技术方案中,通过半静态的RRC信令告知用户其自身发送接收数据时的时域调度粒度t1。然后在不同的时间,使用与告知时域调度粒度t1的RRC信令不同的另一RRC信令通知时域调度粒度t2或时域调度粒 度t1与时域调度粒度t2之比。比如这段时间没有使用比时域调度粒度t1小的时域调度粒度的用户,则只通知用户自身使用的时域调度粒度t1;接下来一段时间有使用比时域调度粒度t1小的时域调度粒度t2的用户,则通过另一RRC信令来通知给该用户其他用户所使用的时域调度粒度t2的信息。
在该实施例中,优选地,以所述第一时域调度粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息,当在所述第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用时,以所述第二时域粒度再次向使用所述第一时域粒度进行通信的所述终端发送所述DCI资源分配信息,以告知所述终端所述第二时域调度粒度中被使用所述第二时域粒度进行通信的其他终端占用的资源,从而使得使用所述第一时域粒度进行通信的所述终端获知自身实际被分配的资源。
在该技术方案中,在终端的资源没有被其他终端占用的情况下,使用终端的第一时域粒度进行通信,在终端的资源被其他终端占用时,其以占用资源的终端的第二时域粒度进行通信发送DCI资源分配信息,从而通过这种方式能够告知终端,使用第二时域调度粒度进行通信的其他终端占用了哪些资源。
在该技术方案中,如果第一时域调度粒度中存在一个或多个可能的第二时域调度粒度的DCI信令发送位置,使用RRC信令通知任意使用第一时域调度粒度的终端,监测其中的一个或多个可能的第二时域调度粒度的DCI信令发送位置。
通过这样的技术方案,对于可能有多个第二时域调度粒度的发送位置的情况,基站可以通知终端监测其中的一个或多个,即可以不用监测所有可能发送的位置,这样有的终端监测这个,有的终端监测那个,可以实现时域分集,同时减少终端耗能。
在该实施例中,也通过动态DCI信令向所述任一终端通知所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。例如,因为可能RRC信令来不及通知用户,所以可以同样使用DCI信令告知用户时域调度粒度t2的值或时域调度粒度t1与时域调度粒 度t2的大小关系。
优选地,以所述第一时域调度粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息,当在所述第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用时,在接下来的一个第一时域粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息时,包含上一第一时域粒度中以所述第二时域粒度为单位占用了所述终端的时频资源的信息,从而使得使用所述第一时域粒度进行通信的所述终端获知上一第一时域调度粒度中自身实际被分配的资源。
在该技术方案中,以第一时域粒度向使用第一时域粒度的终端发送DCI资源分配信息,当其他终端需要以第二时域粒度占用该第一时域粒度中终端的部分资源时,在接下来的一个第一时域粒度向被占用资源的终端发送DCI资源分配信息,在该信息中,包含了其它终端以第二时域粒度占用了终端的时频资源的信息,所以该终端能够从该信息中知道自身实际被分配的资源。
在上述技术方案中,优选地,该资源配置方法还包括:根据所述第一时域调度粒度与所述第二时域调度粒度的值,确定在向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源时所需的DCI信令指示的比特数。
在该技术方案中,由于时域调度粒度之间是存在大小关系的,因此可以根据第一时域调度粒度与第二时域调度粒度的值来确定向终端指示资源块中被分配给其它终端使用的部分资源时所使用的DCI信令的比特数。譬如,若第一时域调度粒度与第二时域调度粒度之间的比值为2,且多个第二时域调度粒度之间时间上不重叠,则该DCI信令的比特数为2,即每个比特对应指示两块资源中的其中一块资源是否被其它终端占用。但如果多个第二时域调度粒度之间时间上可以重叠,比如第一时域调度粒度是14个符号,第二时域调度粒度是7个符号,那么一个第一时域调度粒度内可以有7个第二时域调度粒度,比如第一个第二时域调度粒度包含符号0~6,第二个包含符号1~7……,第七个包含符号7~13。那么这种情况下就需要更多的比特数来指示7个时间资源块位置。
上述技术方案中,包含上一第一时域粒度中以所述第二时域粒度为单位占用了所述终端的时频资源的信息中,还包含占用的时间资源的起始位置和时间长度以及频域资源位置。
通过在时频资源的信息中包含占用的时间资源的起始位置和时间长度以及频域资源位置,可以使得收到该信息的终端能够准备知道自身的哪些资源已经被占用。
图4示出了根据本发明的第一个实施例的资源配置装置的结构示意图。
如图4所示,根据本发明的第一个实施例的资源配置装置400,包括:通知单元402,用于通知基站服务的任一终端在进行通信时使用的第一时域调度粒度,以及在所述基站服务的所有终端中具有第二时域调度粒度的情况下,向所述任一终端通知所述第二时域调度粒度;分配单元404,用于向所述基站服务的所有终端分配通信资源;指示单元406,用于在所述分配单元将所述任一终端使用的子载波间隔下的资源块的部分资源分配给其它终端使用时,向所述任一终端发送DCI资源分配信息。
在该技术方案中,在基站服务的终端中存在第一时域调度粒度和第二时域调度粒度的情况下,将任一终端使用的第一时域调度粒度的资源块中的部分资源分配给其他终端使用,同时通知终端这样的资源分配信息,使得被占用资源的终端知道哪些资源被占用。通过这样的技术方案,可以使得终端能够准确获知自身被分配的通信资源,以便于终端通过被分配的通信资源来接收或发送数据。
在上述技术方案中,优选地,第二时域调度粒度小于所述第一时域调度粒度,其中,第二时域调度粒度是所述基站服务的终端中使用的最小时域调度粒度,或所述第二时域调度粒度是所述基站服务的终端中使用的仅比所述第一时域调度粒度小的时域调度粒度。
在该技术方案中,当第二时域调度粒度是基站服务的终端中使用的最小子载波间隔时,上述的其它终端可以是使用比第一时域调度粒度小的其它时域调度粒度(可以是一种或多种)的多个终端;而在第二时域调度粒度是基站服务的终端中使用的仅比第一时域调度粒度小的一个时域调度粒 度时,上述的其它终端是使用第二时域调度粒度的一个或多个终端。
在该技术方案中,由于时域调度粒度之间是存在大小关系的,因此可以根据第一时域调度粒度与第二时域调度粒度的大小关系来确定向终端指示资源块中被分配给其它终端使用的部分资源时所使用的DCI信令的比特数。譬如,若第一时域调度粒度与第二时域调度粒度之间的比值为2,且多个第二时域调度粒度之间时间上不重叠,则该DCI信令的比特数为2,即每个比特对应指示两块资源中的其中一块资源是否被其它终端占用。但如果多个第二时域调度粒度之间时间上可以重叠,比如第一时域调度粒度是14个符号,第二时域调度粒度是7个符号,那么一个第一时域调度粒度内可以有7个第二时域调度粒度,比如第一个第二时域调度粒度包含符号0~6,第二个包含符号1~7……,第七个包含符号7~13,那么这种情况下就需要更多的比特数来指示7个时间资源块位置。
另外,如果是以第二时域调度粒度发送DCI信令来告知终端被占用的时频资源,则无需额外指示该第二时域调度粒度在第一时域调度粒度所处位置,因为终端根据监听到的DCI即可知当前第二时域调度粒度即为被其它终端占用时频资源。而如果是以下一个第一时域调度粒度发送DCI信令来告知终端被占用的时频资源,则需要该处所述额外的DCI信令比特来指出被其它终端占用资源的第二时域调度粒度在上一第一时域调度粒度所处位置。
在上述任一技术方案中,优选地,通知单元402具体用于:通过半静态的RRC信令向所述任一终端通知所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
在上述任一技术方案中,优选地,半静态的RRC(Radio Resource Control,无线资源控制)信令的发送时间不同于通知第一时域调度粒度的RRC信令的发送时间。
在该方案中,例如某段通信时间没有使用比第一时域调度粒度小的时域调度粒度的用户,则只通知用户自身使用的第一时域调度粒度;而如果接下来一段时间有使用比第一时域调度粒度小的时域调度粒度的用户,则给用户通知其他用户使用的第二时域调度粒度的信息。
在上述任一技术方案中,优选地,通知单元具体用于:通过动态DCI信令向所述任一终端通知所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
在该技术方案中,通过动态DCI信令来通知终端第二时域调度粒度或第一时域调度粒度和第二时域调度粒度之间的大小关系。
在上述任一技术方案中,优选地,指示单元406以所述第一时域调度粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息,当在所述第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用时,以所述第二时域粒度再次向使用所述第一时域粒度进行通信的所述终端发送所述DCI资源分配信息,以告知所述终端所述第二时域调度粒度中被使用所述第二时域粒度进行通信的其他终端占用的资源,从而使得使用所述第一时域粒度进行通信的所述终端获知自身实际被分配的资源。
在该技术方案中,指示单元406在终端的资源没有被其他终端占用的情况下,使用终端的第一时域粒度进行通信,在终端的资源被其他终端占用时,其以占用资源的终端的第二时域粒度进行通信发送DCI资源分配信息,告知在这个第二时域粒度里部分资源被别的终端占用或者直接告知该终端在当前第二时域粒度里,他被分配的资源是什么,从而通过这种方式能够告知终端,使用第二时域调度粒度进行通信的其他终端占用了哪些资源。而在除该第二时域粒度之外的其它第一时域粒度的时间内分配的资源还是按照第一时域粒度的DCI信令指示所示,这种情况下,不需要指示是第几个第二时域粒度的DCI信令。
在该技术方案中,如果第一时域调度粒度中存在一个或多个可能的第二时域调度粒度的DCI信令发送位置,所述指示单元使用RRC信令通知任意使用第一时域调度粒度的终端,监测其中的一个或多个可能的第二时域调度粒度的DCI信令发送位置。
通过这样的技术方案,对于可能有多个第二时域调度粒度的发送位置的情况,基站可以通知终端监测其中的一个或多个,即可以不用监测所有可能发送的位置,这样有的终端监测这个,有的终端监测那个,可以实现 时域分集,同时减少终端耗能。
在上述任一技术方案中,优选地,指示单元406以所述第一时域调度粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息,当在所述第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用时,在接下来的一个第一时域粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息时,包含上一第一时域粒度中以所述第二时域粒度为单位占用了所述终端的时频资源的信息,从而使得使用所述第一时域粒度进行通信的所述终端获知上一第一时域调度粒度中自身实际被分配的资源。
在这种情况下,是在后一个第一时域粒度中告知该用户前一个第一时域粒度里有以第二时域粒度占用了该用户资源的用户,那么这个时候需要告知该用户被占用的时间资源是处于哪个时间位置的第二时域粒度,这里就需要根据第一时域粒度与第二时域粒度来确定DCI比特数从而指示第二时域粒度在第一时域粒度的位置。
在上述技术方案中,优选地,包含上一第一时域粒度中以所述第二时域粒度为单位占用了所述终端的时频资源的信息中,包含占用的时间资源的起始位置和时间长度以及频域资源位置。
通过在时频资源的信息中包含占用的时间资源的起始位置和时间长度以及频域资源位置,可以使得收到该信息的终端能够准备知道自身的哪些资源已经被占用。
在上述任一技术方案中,优选地,资源配置装置还包括:确定单元408,用于根据所述第一时域调度粒度与所述第二时域调度粒度的值,确定在向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源时所需的DCI(Downlink Control Information,下行控制信息)信令指示的比特数。
在该技术方案中,以第一时域粒度向使用第一时域粒度的终端发送DCI资源分配信息,当其他终端需要以第二时域粒度占用该第一时域粒度中占用终端的部分资源时,在接下来的一个第一时域粒度向被占用资源的终端发送DCI资源分配信息,在该信息中,包含了其它终端以第二时域粒 度占用了终端的时频资源的信息,所以该终端能够从该信息中知道自身实际被分配的资源。
图5示出了根据本发明的第一个实施例的基站的示意框图。
如图5所示,根据本发明的第一个实施例的基站500,包括:如图4所示的资源配置装置400。
图6示出了根据本发明的第二个实施例的资源配置方法的流程示意图,该资源配置方法的执行主体可以是终端。
如图6所示,根据本发明的第二个实施例的资源配置方法,包括以下步骤:
步骤S602,接收基站通知的终端在进行通信时使用的第一时域调度粒度,以及所述基站服务的其它终端使用的第二时域调度粒度;
步骤S604接收所述基站发送的DCI资源分配信息;根据所述DCI资源分配信息,确定所述基站将所述终端使用的资源块的部分资源分配给其它终端使用时,被所述其他终端占用的所述部分资源。
在该技术方案中,终端通过从基站接收第一时域调度粒度和第二时域调度粒度,以及DCI资源分配信息,得以确定分配给其自身的资源和被其他终端占用的资源。
在上述技术方案中,优选地,通过接收半静态的RRC信令来接收所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
在上述技术方案中,优选地,通过接收动态DCI信令来接收所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
在上述技术方案中,优选地,还包括:在接收到通知所述第二时域调度粒度的所述半静态的RRC信令或所述动态DCI指令之后,以所述第二时域调度粒度为单位检测PDCCH或ePDCCH,根据接收到的DCI信令指示的比特信息来确定所述部分资源。
在该技术方案中,当已经接收到第二时域调度粒度信息后,知道其部分资源可能被使用第二时域调度粒度的终端占用时,终端将以所述第二时 域调度粒度为单位检测PDCCH或ePDCCH。
在上述技术方案中,优选地,在接收到通知所述第二时域调度粒度的所述半静态的RRC信令或所述动态DCI指令之后,以所述第一时域调度粒度为单位检测PDCCH或ePDCCH,在接收到所述DCI资源分配信息之后,确定在所述第一时域粒度的上一第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用并确定被占用的时频资源的信息,从而使得使用所述第一时域粒度进行通信的所述终端获知上一第一时域调度粒度中自身实际被分配的资源。
在该技术方案中,当已经接收到第二时域调度粒度信息后,知道其部分资源可能被使用第二时域调度粒度的终端占用时,终端还是以第一时域粒度为单位检测PDCCH或ePDCCH。,在接收到所述DCI资源分配信息之后,确定该第一时域粒度之前的一个时域粒度中有部分资源被以第二时域粒度进行通信的用户占用并确认被占用的时频资源信息,从而使得使用第一时域粒度的终端获知自己在上一个第一时域粒度中自身实际被分配的资源。
在该技术方案中,如果第一时域调度粒度中存在一个或多个可能的第二时域调度粒度的DCI信令发送位置,则根据接收到的RRC信令,监测其中的一个或多个可能的第二时域调度粒度的DCI信令发送位置。
通过这样的技术方案,对于可能有多个第二时域调度粒度的发送位置的情况,基站可以通知终端监测其中的一个或多个,即可以不用监测所有可能发送的位置,这样有的终端监测这个,有的终端监测那个,可以实现时域分集,同时减少终端耗能。
在该实施例中,基于关于时域调度粒度t1的RRC信令的通知,用户只需要以时域调度粒度t1为单位检测PDCCH或ePDCCH,比如PDCCH只出现在以t1为单位的时域粒度的前面一个或几个符号,中间和后面不会出现(当然这里说的是最小的PDCCH检测单位为t1,如果有多子帧调度的话,只需要检测多个子帧的第一个子帧的PDCCH,后面子帧的不需要检测);然后根据检测DCI信令,用户获得时域调度粒度t1的信息,同时该DCI信令给出了给用户分配的时间域信息(单时间粒度调度时可能 是某个位置的长度为t1的时间或者多时间粒度调度时是某个位置的多个长度为t1的时间)。再接下来用户检测到RRC或DCI信令,获知第二时域调度粒度t2的信息,用户就得知在接下来的一段时间内,用户需要以时域调度粒度t2为单位检测PDCCH或ePDCCH,因为可能其他用户以时域调度粒度t2为单位占用了该用户的RB资源,则需要在以时域调度粒度t2为单位的前面的一个或几个符号告知该用户,已经分配给他的RB资源在接下来的一个或多个t2时间段被别人占用了。而用户在检测到RRC或DCI信令获知第二时域调度粒度t2的信息后,用户也可能继续以第一时域调度粒度为单位检测PDCCH或ePDCCH,而这时候的以第一时域调度粒度为单位发送的DCI信令会指示前一个第一时域调度粒度内是否有资源被时域第二时域调度粒度的终端占用。
图7示出了根据本发明的第二个实施例的资源配置装置的结构示意图。
如图7所示,根据本发明的第二个实施例的资源配置装置700,包括:第一接收单元702,用于接收基站通知的终端在进行通信时使用的第一时域调度粒度,以及所述基站服务的其它终端使用的第二时域调度粒度;第二接收单元704,用于接收所述基站发送的DCI资源分配信息;确定单元706,用于根据所述DCI资源分配信息,确定所述基站将所述终端使用的资源块的部分资源分配给其它终端使用时,被所述其他终端占用的所述部分资源。
在该技术方案中,终端通过从基站接收第一时域调度粒度和第二时域调度粒度,以及DCI资源分配信息,得以确定分配给其自身的资源和被其他终端占用的资源。
在上述技术方案中,优选地,第一接收单元702通过接收半静态的RRC信令来接收所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
在上述技术方案中,优选地,所述第一接收单元702通过接收动态DCI信令来接收所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
在上述技术方案中,优选地,确定单元706还用于在第一接收单元602接收到通知所述第二时域调度粒度的半静态的RRC信令或所述动态DCI指令之后,以所述第二时域调度粒度为单位检测PDCCH(Physical Downlink Control Channel,下行物理控制信道)或ePDCCH(Enhanced Physical Downlink Control Channel,增强下行物理控制信道),根据接收到的DCI信令指示的比特信息来确定所述部分资源。
在该技术方案中,当第一接收单元702已经接收到第二时域调度粒度信息后,知道其部分资源可能被使用第二时域调度粒度的终端占用时,终端将以所述第二时域调度粒度为单位检测PDCCH或ePDCCH。
在该技术方案中,当第一接收单元702已经接收到所述第二时域调度粒度的所述半静态的RRC信令或所述动态DCI指令之后,以所述第一时域调度粒度为单位检测PDCCH或ePDCCH,在接收到所述DCI资源分配信息之后,确定在所述第一时域粒度的上一第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用并确定被占用的时频资源的信息,从而使得使用所述第一时域粒度进行通信的所述终端获知上一第一时域调度粒度中自身实际被分配的资源。
在该技术方案中,当已经接收到第二时域调度粒度信息后,知道其部分资源可能被使用第二时域调度粒度的终端占用时,终端还是以第一时域粒度为单位检测PDCCH或ePDCCH,在接收到所述DCI资源分配信息之后,确定该第一时域粒度之前的一个时域粒度中有部分资源被以第二时域粒度进行通信的用户占用并确认被占用的时频资源信息,从而使得使用第一时域粒度的终端获知自己在上一个第一时域粒度中自身实际被分配的资源。
在上述技术方案中,如果第一时域调度粒度中存在一个或多个可能的第二时域调度粒度的DCI信令发送位置,那么确定单元将根据接收到的RRC信令,监测其中的一个或多个可能的第二时域调度粒度的DCI信令发送位置。
通过这样的技术方案,对于可能有多个第二时域调度粒度的发送位置的情况,基站可以通知终端监测其中的一个或多个,即可以不用监测所有 可能发送的位置,这样有的终端监测这个,有的终端监测那个,可以实现时域分集,同时减少终端耗能。
图8示出了根据本发明的第一个实施例的终端的示意框图。
如图8所示,根据本发明的第一个实施例的终端800,包括:如图6所示的资源配置装置700。
可见,本发明的技术方案主要是针对5G NR(New Radio,新的无线技术)中的多用户使用多个不同的时域调度粒度情况,提出了相应的时域资源的信令指示方法,具体如下:
先通过半静态的RRC信令告知用户在发送和接收数据时使用的时域调度粒度t1,同时告知用户该基站下的用户中使用的最小时域调度粒度t2或者告知用户时域调度粒度t1与时域调度粒度t2的比值t1/t2,显然如果t1和t2的差值或比值越大,那么需要指示t2在t1中多处位置需要的比特数越多。
考虑到子载波间隔为3.75~480KHz,所以时域调度粒度比值最大可能也为128,这个需要的bit数将非常多。为了减少bit数,基站需要在分配时间资源时采取一些原则,除了上述所说的使用较小时间粒度的用户时间资源尽量连续外,还有就是如果将使用时域调度粒度为t1的时间中抽出一部分给使用时域资源为t2的另一个用户时,要保证t1/t2的值尽量小,这样bit数会少很多。
此外,作为本发明的另一种指示方法,也可以通过半静态的RRC信令告知用户在发送和接收数据时使用的时域调度粒度t1,同时告知用户该基站下的用户中使用的仅比时域调度粒度t1小的子时域调度粒度t3或者告知用户时域调度粒度t1与时域调度粒度t3的比值t1/t3,之后的指示方法与上述类似。
图9示出了根据本发明的第二个实施例的基站的示意框图。
如图9所示,根据本发明的第二个实施例的基站,包括:处理器1、输出装置3和存储器5。在本发明的一些实施例中,处理器1、输出装置3和存储器5可以通过总线4或其他方式连接,图9中以通过总线4连接为例。
其中,存储器5用于存储一组程序代码,处理器1调用存储器5中存储的程序代码,用于执行以下操作:
通过输出装置3通知基站服务的任一终端在进行通信时使用的第一时域调度粒度,以及在所述基站服务的所有终端中具有第二时域调度粒度的情况下,向所述任一终端通知所述第二时域调度粒度;
向所述基站服务的所有终端分配通信资源;
在将所述任一终端使用的子载波间隔下的资源块的部分资源分配给其它终端使用时,向所述任一终端指示所述部分资源。
图10示出了根据本发明的第二个实施例的终端的示意框图。
如图10所示,根据本发明的第二个实施例的终端,包括:处理器1'、输入装置2'和存储器5'。在本发明的一些实施例中,处理器1'、输入装置2'和存储器5'可以通过总线4'或其他方式连接,图10中以通过总线4'连接为例。
其中,存储器5'用于存储一组程序代码,处理器1'调用存储器5'中存储的程序代码,用于执行以下操作:
通过输入装置2'接收基站通知的终端在进行通信时使用的第一时域调度粒度,以及所述基站服务的其它终端使用的第二时域调度粒度;
通过输入装置2'接收所述基站发送的发送的DCI资源分配信息;
用于根据所述DCI资源分配信息,确定所述基站将所述终端使用的资源块的部分资源分配给其它终端使用时,被所述其他终端占用的所述部分资源本发明实施例的方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例的资源配置装置、终端和基站中的单元可以根据实际需要进行合并、划分和删减。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存 储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上结合附图详细说明了本发明的技术方案,本发明提出了一种新的资源配置方案,使得基站在向使用不同子载波间隔的多个终端分配资源时,能够保证资源的最大化利用,并且能够准确指示终端获知被分配到的通信资源。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (32)

  1. 一种资源配置装置,其特征在于,包括:
    通知单元,用于通知基站服务的任一终端在进行通信时使用的第一时域调度粒度,以及在所述基站服务的所有终端中具有第二时域调度粒度的情况下,向所述任一终端通知所述第二时域调度粒度;
    分配单元,用于向所述基站服务的所有终端分配通信资源;
    指示单元,用于在所述分配单元将所述任一终端使用的子载波间隔下的资源块的部分资源分配给其它终端使用时,向所述任一终端发送DCI资源分配信息。
  2. 根据权利要求1所述的资源配置装置,其特征在于,所述第二时域调度粒度小于所述第一时域调度粒度,
    其中,所述第二时域调度粒度是所述基站服务的终端中使用的最小时域调度粒度,或所述第二时域调度粒度是所述基站服务的终端中使用的仅比所述第一时域调度粒度小的时域调度粒度。
  3. 根据权利要求1至2中任一项所述的资源配置装置,其特征在于,所述通知单元具体用于:通过半静态的RRC信令向所述任一终端通知所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
  4. 根据权利要求3所述的资源配置装置,其特征在于,所述半静态的RRC信令的发送时间不同于通知所述第一时域调度粒度的RRC信令的发送时间。
  5. 根据权利要求1至2中任一项所述的资源配置装置,其特征在于,所述通知单元具体用于:通过动态DCI信令向所述任一终端通知所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
  6. 根据权利要求1所述的资源配置装置,其特征在于,所述指示单元以所述第一时域调度粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息,当在所述第一时域粒度中有部分资源被该基站下使 用所述第二时域粒度进行通信的其他终端占用时,以所述第二时域粒度再次向使用所述第一时域粒度进行通信的所述终端发送所述DCI资源分配信息,以告知所述终端所述第二时域调度粒度中被使用所述第二时域粒度进行通信的其他终端占用的资源,从而使得使用所述第一时域粒度进行通信的所述终端获知自身实际被分配的资源。
  7. 根据权利要求6所述的资源配置装置,其特征在于,如果第一时域调度粒度中存在一个或多个可能的第二时域调度粒度的DCI信令发送位置,所述指示单元使用RRC信令通知任意使用第一时域调度粒度的终端,监测其中的一个或多个可能的第二时域调度粒度的DCI信令发送位置。
  8. 根据权利要求1所述的资源配置装置,其特征在于,所述指示单元以所述第一时域调度粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息,当在所述第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用时,在接下来的一个第一时域粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息时,包含上一第一时域粒度中以所述第二时域粒度为单位占用了所述终端的时频资源的信息,从而使得使用所述第一时域粒度进行通信的所述终端获知上一第一时域调度粒度中自身实际被分配的资源。
  9. 根据权利要求8所述的资源配置装置,所述包含上一第一时域粒度中以所述第二时域粒度为单位占用了所述终端的时频资源的信息中,包含占用的时间资源的起始位置和时间长度以及频域资源位置。
  10. 根据权利要求8所述的资源配置装置,其特征在于,还包括:
    确定单元,用于根据所述第一时域调度粒度与所述第二时域调度粒度,确定在向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源时所需的DCI信令指示的比特数。
  11. 一种资源配置装置,其特征在于,包括:
    第一接收单元,用于接收基站通知的终端在进行通信时使用的第一时域调度粒度,以及所述基站服务的其它终端使用的第二时域调度粒度;
    第二接收单元,用于接收所述基站发送的DCI资源分配信息;
    确定单元,用于根据所述DCI资源分配信息,确定所述基站将所述终端使用的资源块的部分资源分配给其它终端使用时,被所述其他终端占用的所述部分资源。
  12. 根据权利要求11所述的资源配置装置,其特征在于,所述第一接收单元通过接收半静态的RRC信令来接收所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
  13. 根据权利要求11所述的资源配置装置,其特征在于,所述第一接收单元通过接收动态DCI信令来接收所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
  14. 根据权利要求12所述的资源配置装置,其特征在于,所述确定单元还用于在所述第一接收单元接收到通知所述第二时域调度粒度的所述半静态的RRC信令或所述动态DCI指令之后,以所述第二时域调度粒度为单位检测PDCCH或ePDCCH,根据接收到的DCI信令指示的比特信息来确定所述部分资源。
  15. 根据权利要求14所述的资源配置装置,其特征在于,如果第一时域调度粒度中存在一个或多个可能的第二时域调度粒度的DCI信令发送位置,所述确定单元根据接收到的RRC信令,监测其中的一个或多个可能的第二时域调度粒度的DCI信令发送位置。
  16. 根据权利要求11所述的资源配置装置,其特征在于,所述确定单元在接收到通知所述第二时域调度粒度的所述半静态的RRC信令或所述动态DCI指令之后,以所述第一时域调度粒度为单位检测PDCCH或ePDCCH,在接收到所述DCI资源分配信息之后,确定在所述第一时域粒度的上一第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用并确定被占用的时频资源的信息,从而使得使用所述第一时域粒度进行通信的所述终端获知上一第一时域调度粒度中自身实际被分配的资源。
  17. 一种资源配置方法,其特征在于,包括:
    通知基站服务的任一终端在进行通信时使用的第一时域调度粒度,以及在所述基站服务的所有终端中具有第二时域调度粒度的情况下,向所述 任一终端通知所述第二时域调度粒度;
    向所述基站服务的所有终端分配通信资源;
    在将所述任一终端使用的子载波间隔下的资源块的部分资源分配给其它终端使用时,向所述任一终端指示所述部分资源。
  18. 根据权利要求17所述的资源配置方法,其特征在于,所述第二时域调度粒度小于所述第一时域调度粒度,
    其中,所述第二时域调度粒度是所述基站服务的终端中使用的最小时域调度粒度,或所述第二时域调度粒度是所述基站服务的终端中使用的仅比所述第一时域调度粒度小的时域调度粒度。
  19. 根据权利要求17至18中任一项所述的资源配置方法,其特征在于,通过半静态的RRC信令向所述任一终端通知所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
  20. 根据权利要求19所述的资源配置方法,其特征在于,所述半静态的RRC信令的发送时间不同于通知所述第一时域调度粒度的RRC信令的发送时间。
  21. 根据权利要求17至18中任一项所述的资源配置方法,其特征在于,通过动态DCI信令向所述任一终端通知所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
  22. 根据权利要求17所述的资源配置方法,其特征在于,以所述第一时域调度粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息,当在所述第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用时,以所述第二时域粒度再次向使用所述第一时域粒度进行通信的所述终端发送所述DCI资源分配信息,以告知所述终端所述第二时域调度粒度中被使用所述第二时域粒度进行通信的其他终端占用的资源,从而使得使用所述第一时域粒度进行通信的所述终端获知自身实际被分配的资源。
  23. 根据权利要求22所述的资源配置方法,其特征在于,如果第一时域调度粒度中存在一个或多个可能的第二时域调度粒度的DCI信令发送位置,则使用RRC信令通知任意使用第一时域调度粒度的终端,监测其中 的一个或多个可能的第二时域调度粒度的DCI信令发送位置。
  24. 根据权利要求17所述的资源配置方法,其特征在于,以所述第一时域调度粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息,当在所述第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用时,在接下来的一个第一时域粒度向使用所述第一时域粒度进行通信的所述终端发送DCI资源分配信息时,包含上一第一时域粒度中以所述第二时域粒度为单位占用了所述终端的时频资源的信息,从而使得使用所述第一时域粒度进行通信的所述终端获知上一第一时域调度粒度中自身实际被分配的资源。
  25. 根据权利要求24所述的资源配置装置,所述包含上一第一时域粒度中以所述第二时域粒度为单位占用了所述终端的时频资源的信息中,包含占用的时间资源的起始位置和时间长度以及频域资源位置。
  26. 根据权利要求24所述的资源配置方法,其特征在于,还包括:
    根据所述第一时域调度粒度与所述第二时域调度粒度,确定在向所述任一终端指示所述资源块中被分配给其它终端使用的部分资源时所需的DCI信令指示的比特数。
  27. 一种资源配置方法,其特征在于,包括:
    接收基站通知的终端在进行通信时使用的第一时域调度粒度,以及所述基站服务的其它终端使用的第二时域调度粒度;
    接收所述基站发送的DCI资源分配信息;
    根据所述DCI资源分配信息,确定所述基站将所述终端使用的资源块的部分资源分配给其它终端使用时,被所述其他终端占用的所述部分资源。
  28. 根据权利要求27所述的资源配置方法,其特征在于,通过接收半静态的RRC信令来接收所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
  29. 根据权利要求27所述的资源配置方法,其特征在于,通过接收动态DCI信令来接收所述第二时域调度粒度或所述第一时域调度粒度与所述第二时域调度粒度之间的大小关系。
  30. 根据权利要求28所述的资源配置方法,其特征在于,还包括:
    在接收到通知所述第二时域调度粒度的所述半静态的RRC信令或所述动态DCI指令之后,以所述第二时域调度粒度为单位检测PDCCH或ePDCCH,根据接收到的DCI信令指示的比特信息来确定所述部分资源。
  31. 根据权利要求30所述的资源配置方法,其特征在于,如果第一时域调度粒度中存在一个或多个可能的第二时域调度粒度的DCI信令发送位置,则根据接收到的RRC信令,监测其中的一个或多个可能的第二时域调度粒度的DCI信令发送位置。
  32. 根据权利要求27所述的资源配置方法,其特征在于,还包括:
    在接收到通知所述第二时域调度粒度的所述半静态的RRC信令或所述动态DCI指令之后,以所述第一时域调度粒度为单位检测PDCCH或ePDCCH,在接收到所述DCI资源分配信息之后,确定在所述第一时域粒度的上一第一时域粒度中有部分资源被该基站下使用所述第二时域粒度进行通信的其他终端占用并确定被占用的时频资源的信息,从而使得使用所述第一时域粒度进行通信的所述终端获知上一第一时域调度粒度中自身实际被分配的资源。
PCT/CN2017/112853 2016-11-30 2017-11-24 资源配置方法和资源配置装置 WO2018099329A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611082822.4 2016-11-30
CN201611082822.4A CN106455103B (zh) 2016-11-30 2016-11-30 资源配置方法和资源配置装置

Publications (1)

Publication Number Publication Date
WO2018099329A1 true WO2018099329A1 (zh) 2018-06-07

Family

ID=58223131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112853 WO2018099329A1 (zh) 2016-11-30 2017-11-24 资源配置方法和资源配置装置

Country Status (2)

Country Link
CN (1) CN106455103B (zh)
WO (1) WO2018099329A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110730507A (zh) * 2018-07-16 2020-01-24 珠海市魅族科技有限公司 一种确认消息帧资源的分配方法、分配装置及通信设备
CN110769501A (zh) * 2018-07-25 2020-02-07 中兴通讯股份有限公司 下行检测、发送方法、装置及通信系统、终端、基站

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455103B (zh) * 2016-11-30 2022-12-20 宇龙计算机通信科技(深圳)有限公司 资源配置方法和资源配置装置
CN113115443B (zh) 2017-02-27 2022-12-23 维沃软件技术有限公司 一种资源分配指示方法、基站及终端
CN108631969B (zh) * 2017-03-21 2021-01-15 中国移动通信有限公司研究院 一种指示信息的发送方法、接收方法、基站及终端
CN108633015B (zh) 2017-03-22 2020-02-14 华为技术有限公司 接收数据的方法及其装置和发送数据的方法及其装置
CN108737042B (zh) * 2017-04-18 2021-01-22 上海诺基亚贝尔股份有限公司 用于无线通信网络中的数据传输的方法和设备
EP3565346B1 (en) * 2017-04-18 2021-09-22 Huawei Technologies Co., Ltd. Method and device for data transmission
CN108811052B (zh) * 2017-04-28 2021-05-14 电信科学技术研究院 一种下行控制信道检测接收方法、终端和网络侧设备
US20200059331A1 (en) * 2017-05-03 2020-02-20 Sony Corporation Infrastructure equipment, mobile terminal, computer software and methods
US10863522B2 (en) * 2017-05-03 2020-12-08 Huawei Technologies Co., Ltd. System and method for coexistence of low latency and latency tolerant communications
CN108810978B (zh) * 2017-05-04 2022-03-18 上海诺基亚贝尔软件有限公司 用于通信资源管理的方法和设备
CN108811115B (zh) * 2017-05-05 2021-07-23 北京紫光展锐通信技术有限公司 eMBB业务数据的抢占处理方法、装置、基站及用户设备
CN108809582B (zh) * 2017-05-05 2021-07-20 华为技术有限公司 一种数据传输的方法和装置
CN106941724B (zh) * 2017-05-09 2020-12-22 宇龙计算机通信科技(深圳)有限公司 数据处理方法及装置
CN108966349B (zh) * 2017-05-18 2021-11-30 华为技术有限公司 通信方法和通信设备
CN109150449B (zh) * 2017-06-16 2020-07-24 华为技术有限公司 传输控制信息的方法、终端设备和网络设备
WO2018232755A1 (zh) * 2017-06-23 2018-12-27 北京小米移动软件有限公司 抢占时频资源的确定方法及装置和用户设备
WO2018232757A1 (zh) * 2017-06-23 2018-12-27 北京小米移动软件有限公司 抢占时频资源的确定方法及装置、用户设备和基站
WO2019001523A1 (zh) * 2017-06-30 2019-01-03 华为技术有限公司 控制信息传输方法和设备
CN109218000B (zh) 2017-06-30 2023-04-07 华为技术有限公司 控制信息传输方法和设备
CN109699063B (zh) * 2017-10-24 2021-10-26 普天信息技术有限公司 一种抢占指示信令的处理和发送方法、终端和基站
CN109788531B (zh) * 2017-11-13 2022-04-12 珠海市魅族科技有限公司 用于移动终端或基站的数据半静态调度方法及装置
CN109842942B (zh) * 2017-11-28 2022-11-04 珠海市魅族科技有限公司 盲检下行物理层控制信令的方法、装置及通信设备
WO2019127109A1 (zh) 2017-12-27 2019-07-04 北京小米移动软件有限公司 调度方法、基站、终端及存储介质
CN109996341B (zh) * 2017-12-29 2023-03-24 华为技术有限公司 控制信息的传输方法
CN110149719B (zh) * 2018-02-14 2023-01-13 华为技术有限公司 通信方法、网络设备和终端设备
CN112202539B (zh) * 2018-02-23 2022-01-04 Oppo广东移动通信有限公司 下行控制信息传输方法、终端设备和网络设备
CN110474736B (zh) 2018-05-11 2021-07-16 华为技术有限公司 通信方法和通信装置
RU2763959C1 (ru) * 2018-05-11 2022-01-11 Хуавэй Текнолоджиз Ко., Лтд. Способ связи и устройство связи
CN110798291B (zh) * 2018-08-02 2022-04-15 中兴通讯股份有限公司 一种信息传输的方法、装置、设备和计算机可读存储介质
CN113727469A (zh) * 2018-08-06 2021-11-30 北京小米移动软件有限公司 信息调度、收发方法及装置、基站和用户设备
CN110830220B (zh) * 2018-08-10 2021-07-16 华为技术有限公司 通信方法和通信装置
CN110972279B (zh) * 2018-09-28 2022-07-26 成都华为技术有限公司 传输数据的方法和装置
CN109769306A (zh) * 2019-03-20 2019-05-17 北京智芯微电子科技有限公司 适用于电力无线专网的共享信道资源调度分配方法及系统
CN117354809A (zh) * 2022-06-24 2024-01-05 中兴通讯股份有限公司 资源调度方法及使用方法、网络设备、终端设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547482A (zh) * 2008-03-28 2009-09-30 中兴通讯股份有限公司 无线资源调度方法
CN105979597A (zh) * 2016-06-27 2016-09-28 宇龙计算机通信科技(深圳)有限公司 通信资源的分配方法、分配装置、基站和终端
CN106385709A (zh) * 2016-10-31 2017-02-08 宇龙计算机通信科技(深圳)有限公司 资源调度方法及资源调度装置
CN106455103A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 资源配置方法和资源配置装置
CN106455081A (zh) * 2016-10-31 2017-02-22 宇龙计算机通信科技(深圳)有限公司 资源配置方法及资源配置装置
CN107241288A (zh) * 2017-06-19 2017-10-10 宇龙计算机通信科技(深圳)有限公司 业务复用场景下指示被占用的资源的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1894335B1 (en) * 2005-06-22 2019-11-13 Samsung Electronics Co., Ltd. Method and transmission apparatus for allocating resources to transmit uplink packet data in an orthogonal frequency division multiplexing system
CN104468030B (zh) * 2014-08-26 2018-06-05 上海华为技术有限公司 一种数据传输方法、用户设备及基站
US10791546B2 (en) * 2014-11-07 2020-09-29 Qualcomm Incorporated PUCCH for MTC devices
CN106304097B (zh) * 2015-05-15 2021-09-03 中兴通讯股份有限公司 资源使用方法、装置及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547482A (zh) * 2008-03-28 2009-09-30 中兴通讯股份有限公司 无线资源调度方法
CN105979597A (zh) * 2016-06-27 2016-09-28 宇龙计算机通信科技(深圳)有限公司 通信资源的分配方法、分配装置、基站和终端
CN106385709A (zh) * 2016-10-31 2017-02-08 宇龙计算机通信科技(深圳)有限公司 资源调度方法及资源调度装置
CN106455081A (zh) * 2016-10-31 2017-02-22 宇龙计算机通信科技(深圳)有限公司 资源配置方法及资源配置装置
CN106455103A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 资源配置方法和资源配置装置
CN107241288A (zh) * 2017-06-19 2017-10-10 宇龙计算机通信科技(深圳)有限公司 业务复用场景下指示被占用的资源的方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110730507A (zh) * 2018-07-16 2020-01-24 珠海市魅族科技有限公司 一种确认消息帧资源的分配方法、分配装置及通信设备
CN110769501A (zh) * 2018-07-25 2020-02-07 中兴通讯股份有限公司 下行检测、发送方法、装置及通信系统、终端、基站
CN110769501B (zh) * 2018-07-25 2023-09-29 中兴通讯股份有限公司 下行检测、发送方法、装置及通信系统、终端、基站

Also Published As

Publication number Publication date
CN106455103A (zh) 2017-02-22
CN106455103B (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2018099329A1 (zh) 资源配置方法和资源配置装置
CN106385709B (zh) 资源调度方法及资源调度装置
US11057872B2 (en) Method and device for transmitting uplink control information
CN106301738B (zh) 基于帧结构的通信方法
EP3611972B1 (en) Monitoring a narrowband control channel for a wideband system to reduce power consumption
WO2018076565A1 (zh) 资源配置方法及资源配置装置
AU2016264077B2 (en) Terminal device, base station device, and communication method
US20200328850A1 (en) Method and terminal for data transmission
CN110249572B (zh) 用于短pdcch操作的方法和装置
US10873420B2 (en) Method and terminal for data transmission
US11277858B2 (en) Uplink transmission scheme
US9948432B2 (en) Methods and apparatuses for signaling in dynamic time division duplex systems
US10182451B2 (en) Method and apparatus for requesting scheduling in cellular mobile communication system
WO2016015318A1 (zh) 一种数据传输方法和通信设备
WO2013026414A1 (zh) 接入通信系统的方法、下行信息发送方法、终端及基站
CN108605314B (zh) 一种上行数据传输方法及相关设备
US11291029B2 (en) Scheduling information transmission method and apparatus
WO2016070675A1 (zh) 下行信息发送、下行信息接收方法及装置
CN109690988A (zh) 下行控制信息监听、发送、接收方法及装置
CN111436085B (zh) 通信方法及装置
WO2019019951A1 (zh) 传输信息的方法、终端设备和网络设备
US10820313B2 (en) Method for sending control information, apparatus, and system
JP6235715B2 (ja) Ul−dlコンフィグレーションのシグナリングのための方法及び装置
WO2023070630A1 (zh) 资源调度方法及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876845

Country of ref document: EP

Kind code of ref document: A1