WO2023070630A1 - 资源调度方法及基站 - Google Patents

资源调度方法及基站 Download PDF

Info

Publication number
WO2023070630A1
WO2023070630A1 PCT/CN2021/127778 CN2021127778W WO2023070630A1 WO 2023070630 A1 WO2023070630 A1 WO 2023070630A1 CN 2021127778 W CN2021127778 W CN 2021127778W WO 2023070630 A1 WO2023070630 A1 WO 2023070630A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
current subframe
crs
base station
scheduling
Prior art date
Application number
PCT/CN2021/127778
Other languages
English (en)
French (fr)
Inventor
蔡雷
李海波
Original Assignee
上海华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海华为技术有限公司 filed Critical 上海华为技术有限公司
Priority to PCT/CN2021/127778 priority Critical patent/WO2023070630A1/zh
Publication of WO2023070630A1 publication Critical patent/WO2023070630A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a resource scheduling method and a base station.
  • LTE and NR new radio dynamic spectrum sharing scenarios, because LTE and NR share the same resource in the frequency domain for scheduling, when the neighbor cell is doing downlink NR physical downlink shared channel
  • the LTE pilot signal of the serving cell such as the cell-specific reference signal (CRS)
  • CRS cell-specific reference signal
  • the LTE CRS signal will cause greater interference to the demodulation of the NR PDSCH signal of the neighboring cell, resulting in the deterioration of the NR downlink experience rate.
  • the embodiment of the present application provides a resource scheduling method and a base station to solve the problem that the CRS signal sent by the LTE cell causes relatively large interference caused by the demodulation of the NR PDSCH signal of the neighboring cell.
  • the first aspect of the embodiment of the present application provides a resource scheduling method, the method includes the base station judging whether the current subframe meets the cell-specific reference signal CRS off condition; if the current subframe meets the CRS off condition, the base station will The target resource unit RE occupied by the cell-specific reference signal CRS is punctured, and the target RE is the RE occupied by N-1 CRS antenna ports among the N CRS antenna ports configured in the LTE cell, where N is an integer greater than or equal to 2.
  • the transmission of part of the CRS can be turned off without affecting the normal operation of the LTE cell service, thereby reducing the interference caused by the demodulation of the NR PDSCH signal in the neighboring cell.
  • the current subframe that satisfies the CRS off condition is: the current subframe is an unscheduled subframe. Turning off part of the CRS transmission in unscheduled subframes can reduce the impact on the service transmission of the LTE cell, and improve the demodulation performance of the NR PDSCH signal in the neighboring cell.
  • the current subframe satisfies the CRS off condition as follows: the current subframe is an unscheduled subframe and is not a measurement protection subframe, and the measurement protection subframe is the first M frame subframe of the scheduling subframe.
  • M is an integer greater than or equal to 1
  • L is an integer greater than or equal to 0
  • the scheduling subframe is a subframe used to send public control information and/or downlink control information, Or the subframe to which the control channel resource CCE has been allocated. Not turning off the CRS of the M-frame subframe or the L-frame subframe of the scheduled subframe can reduce the impact on the demodulation performance of the user terminal in the LTE cell.
  • the current subframe meets the CRS off condition: the current subframe is not a subframe for sending common control information/subframe of downlink control information/subframe with allocated control channel resource CCE, And the current subframe is only used to transmit pre-scheduled data. In this way, the turn-off ratio of the CRS can be further improved.
  • the method further includes: if the current subframe does not meet the CRS off condition, the base station judges whether the current subframe meets the scheduling condition; if the current subframe meets the scheduling condition, the base station schedules the current subframe to transmit data to be transmitted ; If the current subframe does not satisfy the scheduling condition, the base station does not schedule the current subframe to transmit the data to be transmitted, but schedules the subsequent subframe to transmit the data to be transmitted. In this way, the influence on the demodulation performance of the terminal in the LTE cell can be reduced.
  • the scheduling condition that the current subframe satisfies is: the subframe is used to transmit downlink control information, and the first M frames of the current subframe all send CRS with full bandwidth. Service transmission is performed without affecting the demodulation performance of the terminal in the LTE cell on the downlink subframe.
  • the current subframe does not meet the scheduling conditions: there are subframes that do not send CRS with full bandwidth in the first M frames of the current subframe; the base station does not schedule the current subframe to transmit data to be transmitted but schedules subsequent subframes
  • the transmission of the data to be transmitted includes: the base station sends the CRS through the full bandwidth of the current subframe and does not schedule the current subframe to transmit the data to be transmitted; the base station schedules the subsequent target subframe to transmit the data to be transmitted, and the target subframe is the M frame subframe for sending the CRS with the full bandwidth The next subframe of the frame. Service transmission is performed without affecting the demodulation performance of the terminal in the LTE cell on the downlink subframe.
  • the current subframe does not satisfy the scheduling condition: the current subframe is not a subframe used to send common control information/subframe of downlink control information/subframe assigned control channel resource CCE, and The current subframe is only used to transmit pre-scheduled data; the base station does not schedule the current subframe to transmit data to be transmitted and schedules subsequent subframes to transmit data to be transmitted includes: the base station does not schedule the current subframe to transmit pre-scheduled data, but schedules subsequent subframes for transmission Pre-scheduled data is transmitted in a subframe for sending common control information/a subframe for downlink control information/a subframe for which control channel resource CCEs have been allocated. Aggregation and scheduling of low-priority data can further increase the shutdown ratio of the CRS.
  • the base station puncturing the target resource unit RE occupied by the cell-specific reference signal CRS in the current subframe includes: the base station puncturing the target RE of the target resource block in the current subframe, with the target resource block as the center A resource block other than a resource block. In this way, the measurement of the received power of the terminal reference signal is guaranteed to be stable when part of the CRS transmission is turned off.
  • the target resource block is a resource block other than the central resource block and the inter-frequency measurement resource block
  • the inter-frequency measurement resource block is a resource block corresponding to a part of the bandwidth used for inter-frequency measurement in the same bandwidth. Inter-frequency measurement can compensate the impact of CRS shutdown on the received power of the terminal measurement reference signal, and improve the signal-to-noise ratio of the terminal.
  • the second aspect of the embodiment of the present application provides a base station, the base station includes: a judging module, used to judge whether the current subframe meets the cell-specific reference signal CRS off condition; a puncturing module, used when the current subframe meets the CRS off condition condition, the target resource unit RE occupied by the cell-specific reference signal CRS in the current subframe is punctured, and the target RE is the RE occupied by N-1 CRS antenna ports among the N CRS antenna ports configured in the LTE cell, and N is An integer greater than or equal to 2.
  • the current subframe that satisfies the CRS off condition is: the current subframe is an unscheduled subframe.
  • the current subframe satisfies the CRS off condition as follows: the current subframe is an unscheduled subframe and is not a measurement protection subframe, and the measurement protection subframe is the first M frame subframe of the scheduling subframe.
  • M is an integer greater than or equal to 1
  • L is an integer greater than or equal to 0
  • the scheduling subframe is a subframe used to send public control information and/or downlink control information, Or the subframe to which the control channel resource CCE has been allocated.
  • the current subframe meets the CRS off condition: the current subframe is not a subframe for sending common control information/subframe of downlink control information/subframe with allocated control channel resource CCE, And the current subframe is only used to transmit pre-scheduled data.
  • the judging module is also used to judge whether the current subframe satisfies the scheduling condition when the current subframe does not meet the CRS off condition; the scheduling module is used to schedule the subframe when the current subframe satisfies the scheduling condition The current subframe transmits the data to be transmitted; and when the current subframe does not meet the scheduling condition, the current subframe is not scheduled to transmit the data to be transmitted and the subsequent subframe is scheduled to transmit the data to be transmitted.
  • the scheduling condition that the current subframe satisfies is: the subframe is used to transmit downlink control information, and the first M frames of the current subframe all send CRS with full bandwidth.
  • the current subframe does not meet the scheduling condition: there are subframes in the first M frames of the current subframe that do not send CRS with full bandwidth; the scheduling module is specifically used to send CRS through the full bandwidth of the current subframe without The current subframe is scheduled to transmit the data to be transmitted; the subsequent target subframe is scheduled to transmit the data to be transmitted, and the target subframe is a subframe subsequent to the M frame subframe in which the CRS is sent in full bandwidth.
  • the current subframe does not satisfy the scheduling condition: the current subframe is not a subframe used to send common control information/subframe of downlink control information/subframe assigned control channel resource CCE, and The current subframe is only used to transmit pre-scheduled data; the scheduling module is specifically used to not schedule the current subframe to transmit pre-scheduled data, but to schedule subsequent subframes/allocated subframes for sending common control information/downlink control information
  • the subframes of the control channel resource CCE transmit pre-scheduled data.
  • the puncturing module is specifically configured to: puncture the target REs of the target resource block in the current subframe, where the target resource block is a resource block other than the central resource block.
  • the target resource block is a resource block other than the central resource block and the inter-frequency measurement resource block
  • the inter-frequency measurement resource block is a resource block corresponding to a part of the bandwidth used for inter-frequency measurement in the same bandwidth.
  • the third aspect of the embodiment of the present application provides a base station, the base station includes a memory; and a processor coupled to the memory, the processor is configured to execute the first aspect and any possible steps thereof based on the instructions stored in the memory device.
  • the resource scheduling method of the implementation is configured to execute the first aspect and any possible steps thereof based on the instructions stored in the memory device.
  • the fourth aspect of the embodiments of the present application provides a computer-readable storage medium, including instructions, when the computer-readable storage medium runs on the base station, the base station executes the resource scheduling method of the first aspect and any possible implementation thereof.
  • FIG. 1 is a schematic diagram of a communication system provided by the present application.
  • FIG. 2 is a schematic flowchart of an embodiment of a resource scheduling method provided by the present application
  • FIG. 3 is a schematic structural diagram of a scheduling subframe and a measurement protection subframe provided by the present application
  • FIG. 4 is a CRS resource mapping diagram of a central resource block in the case of 4 CRS antenna ports
  • FIG. 5 is a CRS resource mapping diagram of a target resource block in the case of 4 CRS antenna ports
  • FIG. 6 is a schematic flowchart of another embodiment of the resource scheduling method provided by the present application.
  • FIG. 7 is a schematic structural diagram of an embodiment of a base station provided by the present application.
  • Fig. 8 is a schematic structural diagram of another embodiment of a base station provided in the present application.
  • the embodiment of the present application provides a resource scheduling method and a base station, which are used to reduce the large interference caused by the demodulation of the NR PDSCH signal of the neighboring cell caused by the sending of the CRS signal by the LTE cell.
  • the embodiment of the present application may be applicable to a communication system, as shown in FIG. 1 , which is a schematic diagram of the communication system provided in the present application.
  • the communication system includes a base station and a user terminal, and the user terminal is a user equipment that communicates with the base station, including a 4G user terminal and a 5G user terminal, corresponding to the user terminal of the target LTE cell and the user terminal of the target NR cell in the embodiment of the present application, the base station It is a dual-mode base station, one is LTE and the other is NR.
  • the frequency spectrum used by the LTE system and the NR system overlaps partially or completely.
  • the base station includes at least one LTE cell and at least one NR cell.
  • the subcarriers of the NR system and the LTE system have the same spacing, for example, the subcarrier spacing is 15KHZ, so that the subcarriers of the NR system and the LTE system are orthogonal, and the interference between subcarriers can be reduced.
  • the lengths of the OFDM symbols of the subcarriers of the NR system and the LTE system are equal, for example, the lengths of the Orthogonal Frequency Division Multiplexing (OFDM) symbols are both one-seventh of a millisecond.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the interval between the subcarriers of the NR system and the LTE system may also be equal. In this case, a certain guard interval needs to be reserved between the NR system and the LTE system to reduce the interference between the subcarriers.
  • cyclic prefix (Cyclic Prefix, CP) length of the subcarriers of the NR system and the LTE system is equal.
  • the cyclic prefix refers to the prefix added before the OFDM symbol enters the channel, and is used to fill the guard interval.
  • a cell-specific reference signal (CRS) in LTE is a cell-level reference signal used for measurement, demodulation, etc.
  • LTE CRS is sent discretely over the entire system bandwidth of a fixed OFDM symbol, and CRS is distributed over the entire bandwidth.
  • the CRS will be sent in full bandwidth. In this way, it will cause greater interference to the demodulation of the NR PDSCH signal of the neighboring cell, resulting in the deterioration of the NR downlink experience rate.
  • FIG. 2 is a schematic flowchart of an embodiment of a resource scheduling method provided in the present application.
  • the execution subject of this embodiment is the base station. This embodiment includes the following steps:
  • S201 The base station judges whether the current subframe satisfies a cell-specific reference signal off condition.
  • the base station dynamically monitors the user status of the LTE cell and the scheduling situation of the current subframe, so as to judge whether the current subframe meets the shutdown condition for shutting down the cell-specific reference signal (CRS) therein.
  • Turning off the CRS means punching holes in the time-frequency resources occupied by the CRS in the subframe, that is, sending with zero power on the time-frequency resources occupied by the CRS.
  • the base station obtains in real time or periodically the number of connected user terminals in the LTE cell and whether the connected user terminals are in a dynamic discontinuous reception (DRX) state.
  • DRX dynamic discontinuous reception
  • the base station configures DRX for the user terminal after detecting that there is no data transmission with the user terminal, and the user terminal enters the sleep state periodically and wakes up periodically.
  • the number of user terminals in the connected state of the current LTE cell is 0, or the user terminals in the connected state are in the DRX state, it means that the current base station and the user terminal have no business data to transmit.
  • Public control information such as system information (SIB) messages
  • SIB system information
  • the base station can determine which subframes of which system frames are paging subframes or SIB subframes. In this case, the base station judges whether the current subframe meets the CRS shutdown condition of the cell. Specifically, the base station judges whether the current subframe is a paging subframe or an SIB subframe.
  • the base station can determine that the current subframe meets the CRS off condition, and execute S202; if the current subframe is a SIB subframe and/or paging subframe, the base station can determine that the current subframe does not meet the CRS off condition , the CRS is sent in full bandwidth of the current subframe.
  • the base station may also determine the first M frame and the last L frame of the scheduled subframe as measurement protection subframes.
  • the measurement protection subframe does not turn off CRS transmission, that is, the measurement protection subframe transmits CRS in full bandwidth.
  • the base station judges whether the current subframe meets the CRS shutdown condition of the cell. Specifically, the base station judges whether the current subframe is a paging subframe or an SIB subframe or a measurement protection subframe.
  • the base station can determine that the current subframe meets the CRS off condition, and execute S202; if the current subframe is a SIB subframe and/or paging subframe, or the current subframe is a measurement protection subframe frame, the base station can determine that the current subframe does not meet the CRS off condition, and send the CRS with full bandwidth in the current subframe.
  • the base station can determine which subframes of which system frames are paging subframes or SIB subframes, and then can also determine which subframes of which system frames are not paging subframes or SIB subframes according to the paging subframe or SIB subframe frame, that is, a subframe that is determined not to be scheduled. In this case, the base station judges whether the current subframe meets the CRS shutdown condition of the cell. Specifically, the base station judges whether the current subframe is an unscheduled subframe.
  • the base station can Determine that the current subframe satisfies the CRS off condition, and execute S202; if the current subframe is a scheduled subframe, the base station may determine that the current subframe does not meet the CRS off condition, and send CRS in full bandwidth of the current subframe. For example, the base station can determine that the 9th frame of each system frame is a paging subframe, then it can determine that subframes 0 to 8 are unscheduled subframes, and the current subframe is any subframe in subframes 0 to 8 , the base station may determine that the current subframe satisfies the CRS off condition. The same is true when the base station configures the measurement protection subframe.
  • the 9th frame of each system frame is the paging subframe
  • the 0th frame and the 6th to 8th frames are the measurement protection subframes.
  • the base station may determine that the current subframe satisfies the CRS off condition.
  • FIG. 3 is a schematic structural diagram of a scheduling subframe and a measurement protection subframe provided in the present application. It can be understood that the number of measured protection subframes in FIG. 3 is only an example, and is not a limitation to the present application.
  • the base station can determine that the current subframe meets the CRS off condition, and execute S202; if the current subframe is a scheduled subframe, use For subframes in which public control information and/or downlink control information are sent, or subframes in which control channel resource CCEs have been allocated, the base station can determine that the current subframe does not meet the CRS off condition, and send CRS in full bandwidth in the current subframe.
  • the base station determines whether the current subframe is scheduled or is a measurement protection subframe, and if the base station determines that the current subframe is not scheduled and is not a measurement protection subframe, the base station can determine that the current subframe meets the CRS off condition, and execute S202; If the current subframe is a scheduling subframe or a measurement protection subframe, the base station may determine that the current subframe does not meet the CRS off condition, and send the CRS with full bandwidth in the current subframe.
  • some pre-scheduled subframes scheduled only for transmitting pre-scheduled data may also be determined as subframes meeting the CRS shutdown condition.
  • the base station performs uplink pre-scheduling for the user terminals.
  • the process of the base station to pre-schedule the user terminal in uplink is: the base station periodically sends an uplink grant (UL grant) to the user terminal to notify the base station of the resources configured for the user terminal.
  • UL grant uplink grant
  • the user terminal transmits uplink data to the base station using resources configured for it by the base station.
  • the base station will frequently configure resources for the user terminal through pre-scheduled subframes, which will occupy time-frequency resources. Therefore, the CRSs of some pre-scheduled subframes meeting the shutdown conditions can be turned off.
  • the base station judges whether the current subframe is a subframe used to send common control information (ie, a paging subframe/SIB subframe), or a subframe used to send downlink control information (downlink control information (DCI) DCI subframe, or a subframe to which control channel resource CCE has been allocated, if the current subframe is neither a paging subframe nor a DCI subframe and a subframe to which control channel resource CCE has been allocated, The base station further judges whether the initial transmission scheduling queue of the current subframe only includes pre-scheduled data (ie, UL grant). If the initial transmission scheduling queue only includes pre-scheduling data, the base station can determine that the current subframe meets the CRS shutdown condition, and executes S202.
  • DCI downlink control information
  • the target resource element (resource element, RE) is the RE occupied by N-1 CRS antenna ports among the N CRS antenna ports configured in the LTE cell, and N is an integer greater than or equal to 2.
  • the base station when an LTE cell is configured with 4 CRS antenna ports, the base station only reserves one of the CRS antenna ports to send CRS, and the other 3 ports do not send CRS, that is, the base station punctures the target resource units occupied by the CRS in the current subframe.
  • the base station can puncture the target RE of the target resource block (RB) in the current subframe, and the target resource block is the one other than the central resource block
  • the resource block that is, the CRS channel in the central resource block is not punctured.
  • the central resource block is a plurality of resource blocks at the central frequency point of the system bandwidth. Taking the system bandwidth of 20M as an example, the central resource block may be at least central 6RB.
  • Figure 4 is a CRS resource mapping diagram of the center resource block in the case of 4 CRS antenna ports
  • Figure 5 is a CRS resource mapping diagram of the target resource block in the case of 4 CRS antenna ports. It can be seen that three-fourths of the CRS channels in the target resource block are punctured to minimize the interference of the CRS channels to neighboring cells while ensuring the normal operation of LTE cell services.
  • the base station performs RSRP measurement compensation on the user terminal to compensate for the measurement deviation of the user terminal under CRS off.
  • a carrier with a preset bandwidth is deployed in the same carrier of dynamic spectrum sharing (DSS), and all CRS antenna ports in resource blocks within the preset bandwidth send CRS.
  • DSS dynamic spectrum sharing
  • the RSRP1 of the preset bandwidth cell with different frequencies is obtained.
  • the base station calculates the difference between RSRP0 and RSRP1, which can be considered as the impact of CRS shutdown on the measurement of the user terminal.
  • the base station After the base station obtains the RSRP measurement deviation of the user terminal, it compensates the channel quality indication (CQI) of the terminal by issuing NomPdschRsEpreOffset to the user terminal through radio resource control (radio resource control, RRC) reconfiguration signaling, NomPdschRsEpreOffset
  • CQI channel quality indication
  • RRC radio resource control
  • NomPdschRsEpreOffset The value range can be -1, 0, 1, 2, 3, 4, 5, 6, and the unit is 2db.
  • the difference between RSRP0 and RSRP1 is used to determine the value of NomPdschRsEpreOffset to compensate the signal-to-noise ratio of the user terminal in the serving cell.
  • FIG. 6 is a schematic flowchart of another embodiment of the resource scheduling method provided by the present application.
  • the execution subject of this embodiment is a base station, and this embodiment includes the following steps:
  • S601 The base station judges whether the current subframe satisfies the CRS off condition.
  • S601 is similar to S201 , so details will not be repeated here.
  • S602 The base station punctures target resource units occupied by CRSs in the current subframe.
  • S602 is similar to S202, so it will not be repeated here.
  • S603 The base station judges whether the current subframe satisfies the scheduling condition.
  • the base station performs S604; if the current subframe does not meet the scheduling condition, the base station performs S605.
  • the base station judges whether the current subframe is suitable for scheduling to transmit data. For example, if part of the CRS in the previous subframe is turned off, which will affect the accuracy of RSRP measurement in the next subframe, then the subframe is not suitable for data transmission.
  • judging whether the current subframe meets the scheduling conditions is divided into the following situations:
  • the base station judges whether downlink control information (DCI) is included in the data to be transmitted in the current subframe; if the data to be transmitted includes DCI, it means that there is data with a higher priority to be transmitted, and the base station continues to judge the data of the current subframe.
  • DCI downlink control information
  • the CRS is sent in full bandwidth in the first M frames. If the base station determines that the first M frames of the current subframe have full bandwidth to send CRS, then the base station determines that the current subframe meets the scheduling conditions, and execute S604; if the base station determines that there are subframes in the first M frames of the current subframe that do not have full bandwidth to send CRS, then The base station determines that the current subframe does not satisfy the scheduling condition, and executes S605.
  • DCI downlink control information
  • the base station judges whether the current subframe is a subframe for sending common control information/subframe of downlink control information/subframe with allocated control channel resource CCE, if the current subframe It is a subframe used to send common control information, or a subframe used to send downlink control information, or a subframe to which control channel resource CCE has been allocated, the base station determines that the current subframe satisfies the scheduling condition, and executes S604; if the current subframe is both It is not a subframe used to send common control information, nor a subframe used to send downlink control information, nor a subframe that has allocated control channel resource CCE.
  • Scheduling data if there is only pre-scheduling data in the initial transmission scheduling queue, the base station determines that the current subframe does not meet the scheduling conditions, and executes S605; if the initial transmission scheduling queue does not contain pre-scheduling data, the base station normally schedules subframes for the initial transmission scheduling queue .
  • S604 The base station schedules the current subframe to transmit data to be transmitted.
  • the current subframe satisfies the scheduling condition, which means that the previous subframes in which part of the CRS channel is turned off have little impact on the current subframe, and the current subframe can be scheduled to transmit data to be transmitted.
  • the base station does not schedule the current subframe to transmit the data to be transmitted, but schedules subsequent subframes to transmit the data to be transmitted.
  • the current subframe is not scheduled to transmit the data to be transmitted but the subsequent subframe is scheduled to transmit the data to be transmitted, specifically:
  • the base station sends CRS through the full bandwidth of the current subframe and does not schedule the current subframe to transmit the data to be transmitted; the base station schedules the subsequent target subframe to transmit the data to be transmitted, and the target subframe is the M frame that sends the CRS in the full bandwidth including the current subframe The subframe following the subframe.
  • the CRS channel of the previous subframe part of the current subframe is turned off, then starting from the current subframe, the CRS is sent in the full bandwidth of M consecutive subframes, and the M+1th frame is the target subframe; if the current subframe The first X frame (X is a positive integer less than M) starts to send CRS with full bandwidth, then the current subframe and subsequent subframes send CRS with full bandwidth, until there are consecutive M frames of subframes with full bandwidth to send CRS, then consecutive M frames The subframe next to the subframe in which the CRS is sent in full bandwidth is scheduled for transmitting data to be transmitted.
  • X is a positive integer less than M
  • the CRS channel of the second previous subframe of the current subframe is turned off, and the previous subframe of the current subframe sends CRS with full bandwidth, then the current subframe and the next subframe of the current subframe The CRS is sent in full bandwidth, and the second subframe after the current subframe is the target subframe.
  • the current subframe is not scheduled to transmit the data to be transmitted but the subsequent subframe is scheduled to transmit the data to be transmitted, specifically:
  • the base station does not schedule the current subframe to transmit pre-scheduled data, but schedules subsequent subframes for sending common control information/subframes of downlink control information/subframes with allocated control channel resource CCEs to transmit pre-scheduled data.
  • the current subframe is the 5th subframe, which is a pre-scheduled subframe
  • the scheduled subframe with the shortest distance from the 5th subframe is the paging subframe of the 9th subframe
  • the original subframe can be sent based on the 5th subframe
  • the UL Grants are aggregated into the 9th subframe, and the 5th subframe is not scheduled to send data.
  • FIG. 7 is a schematic structural diagram of an embodiment of a base station provided by the present application.
  • the base station of this embodiment includes:
  • a judging module 701 configured to judge whether the current subframe satisfies the cell-specific reference signal CRS off condition.
  • the puncturing module 702 is configured to puncture the target resource unit RE occupied by the cell-specific reference signal CRS in the current subframe when the current subframe satisfies the CRS off condition, and the target RE is the N CRS antenna ports configured by the LTE cell REs occupied by N-1 CRS antenna ports in , where N is an integer greater than or equal to 2.
  • the current subframe that satisfies the CRS off condition is: the current subframe is an unscheduled subframe.
  • the current subframe satisfies the CRS off condition as follows: the current subframe is an unscheduled subframe and is not a measurement protection subframe, and the measurement protection subframe is the first M frame subframe of the scheduling subframe.
  • M is an integer greater than or equal to 1
  • L is an integer greater than or equal to 0
  • the scheduling subframe is a subframe used to send common control information and/or downlink control information, Or the subframe to which the control channel resource CCE has been allocated.
  • the current subframe meets the CRS off condition: the current subframe is not a subframe for sending common control information/subframe of downlink control information/subframe with allocated control channel resource CCE, And the current subframe is only used to transmit pre-scheduled data.
  • the judging module 701 is also used to judge whether the current subframe satisfies the scheduling condition when the current subframe does not meet the CRS off condition; the scheduling module is used to: when the current subframe satisfies the scheduling condition, Scheduling the current subframe to transmit the data to be transmitted; and scheduling the subsequent subframe to transmit the data to be transmitted instead of scheduling the current subframe to transmit the data to be transmitted when the current subframe does not meet the scheduling condition.
  • the scheduling condition that the current subframe satisfies is: the subframe is used to transmit downlink control information, and the first M frames of the current subframe all send CRS with full bandwidth.
  • the current subframe does not meet the scheduling condition: there are subframes in the first M frames of the current subframe that do not send CRS with full bandwidth; the scheduling module is specifically used to send CRS through the full bandwidth of the current subframe without The current subframe is scheduled to transmit the data to be transmitted; the subsequent target subframe is scheduled to transmit the data to be transmitted, and the target subframe is a subframe subsequent to the M frame subframe in which the CRS is sent in full bandwidth.
  • the current subframe does not satisfy the scheduling condition: the current subframe is not a subframe used to send common control information/subframe of downlink control information/subframe assigned control channel resource CCE, and The current subframe is only used to transmit pre-scheduled data; the scheduling module is specifically used to not schedule the current subframe to transmit pre-scheduled data, but to schedule subsequent subframes/allocated subframes for sending common control information/downlink control information
  • the subframes of the control channel resource CCE transmit pre-scheduled data.
  • the puncturing module 702 is specifically configured to: puncture the target REs of the target resource block in the current subframe, where the target resource block is a resource block other than the central resource block.
  • the target resource block is a resource block other than the central resource block and the inter-frequency measurement resource block
  • the inter-frequency measurement resource block is a resource block corresponding to a part of the bandwidth used for inter-frequency measurement in the same bandwidth.
  • FIG. 8 is a schematic structural diagram of another embodiment of the base station provided in the present application.
  • the base station 800 includes: a memory 801 and a processor 802 coupled to the memory 801.
  • the processor 802 It is configured to execute the spectrum resource sharing method in any embodiment of the present invention based on the instructions stored in the memory 801 .
  • the memory 801 may include, for example, a system memory, a fixed non-volatile storage medium, and the like.
  • the system memory stores, for example, an operating system, an application program, a boot loader (Boot Loader), a database, and other programs.
  • the embodiment of the present application also relates to a computer storage medium, where the computer storage medium is used for storing computer software instructions used by the above-mentioned base station, which includes a program for executing a program designed for the base station.
  • the base station may be the base station as described in FIG. 7 or FIG. 8 .
  • the embodiment of the present application also relates to a computer program product, where the computer program product includes computer software instructions, and the computer software instructions can be loaded by a processor to implement the process in the above embodiment shown in FIG. 2 .
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), magnetic disk or optical disc and other media that can store program codes. .

Abstract

本申请实施例公开了一种资源调度方法及基站,用于降低LTE小区发送的小区特定参考信号对邻区的NR下行物理共享信道的解调的干扰。本申请实施例方法包括:基站判断当前子帧是否满足小区特定参考信号CRS关断条件;若当前子帧满足CRS关断条件,基站将当前子帧中的小区特定参考信号CRS占用的目标资源单元RE打孔,目标RE为LTE小区配置的N个CRS天线端口中的N-1个CRS天线端口占用的RE,N为大于或等于2的整数。

Description

资源调度方法及基站 技术领域
本申请实施例涉及通信技术领域,尤其是涉及一种资源调度方法及基站。
背景技术
长期演进(long term evolution,LTE)和新空口(new radio,NR)动态频谱共享场景,因为LTE和NR在频域上共享同一份资源进行调度,当邻区在做下行NR物理下行共享信道(physical downlink share channel,PDSCH)调度的时候,服务小区的LTE导频信号例如小区特定参考信号(cell-specific reference signal,CRS)等发送的频域位置和周边邻区NR PDSCH调度的位置相同,这样LTE CRS的信号就会对邻区的NR PDSCH信号解调带来了较大的干扰,导致NR下行体验速率恶化。
发明内容
本申请实施例提供了一种资源调度方法及基站,以解决LTE小区发送CRS信号造成邻区的NR PDSCH信号解调带来较大的干扰的问题。
本申请实施例第一方面提供一种资源调度方法,该方法包括基站判断当前子帧是否满足小区特定参考信号CRS关断条件;若当前子帧满足CRS关断条件,基站将当前子帧中的小区特定参考信号CRS占用的目标资源单元RE打孔,目标RE为LTE小区配置的N个CRS天线端口中的N-1个CRS天线端口占用的RE,N为大于或等于2的整数。通过动态判断当前子帧是否满足CRS关断条件,能够在不影响LTE小区业务正常进行的情况下,关断部分CRS的发送,从而降低对邻区NR PDSCH信号解调带来的干扰。
在一些可能实现的方式中,当前子帧满足CRS关断条件为:当前子帧为未被调度的子帧。关断未被调度的子帧中的部分CRS发送,能够减小对LTE小区的业务传输的影响的情况下,提升邻区的NR PDSCH信号解调性能。
在一些可能实现的方式中,当前子帧满足CRS关断条件为:当前子帧为未被调度的子帧,且不为测量保护子帧,测量保护子帧为调度子帧的前M帧子帧或调度子帧的后L帧子帧,M为大于或等于1的整数,L为大于或等于0的整数,调度子帧为用于发送公共控制信息和/或下行控制信息的子帧,或已分配控制信道资源CCE的子帧。不关断被调度子帧的前M帧子帧或后L帧子帧的CRS,能够降低对LTE小区的用户终端终端的解调性能的影响。
在一些可能实现的方式中,当前子帧满足CRS关断条件为:当前子帧不为用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧,且当前子帧仅用于传输预调度数据。如此能够进一步提高CRS的关断比例。
在一些可能实现的方式中,方法还包括:若当前子帧不满足CRS关断条件,基站判断当前子帧是否满足调度条件;若当前子帧满足调度条件,基站调度当前子帧传输待传输数据;若当前子帧不满足调度条件,基站不调度当前子帧传输待传输数据而调度后续的子帧传输待传输数据。如此能够降低对LTE小区的终端的解调性能的影响。
在一些可能实现的方式中,当前子帧满足调度条件为:子帧用于传输下行控制信息,且当前子帧的前M帧均全带宽发送CRS。在不影响LTE小区的终端对下行子帧的解调性能的情况下进行业务传输。
在一些可能实现的方式中,当前子帧不满足调度条件为:当前子帧的前M帧存在未全带宽发送CRS的子帧;基站不调度当前子帧传输待传输数据而调度后续的子帧传输待传输数据包括:基站通过当前子帧全带宽发送CRS且不调度当前子帧传输待传输数据;基站调度后续的目标子帧传输待传输数据,目标子帧为全带宽发送CRS的M帧子帧的后一子帧。在不影响LTE小区的终端对下行子帧的解调性能的情况下进行业务传输。
在一些可能实现的方式中,当前子帧不满足调度条件为:当前子帧不为用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧,且当前子帧仅用于传输预调度数据;基站不调度当前子帧传输待传输数据而调度后续的子帧传输待传输数据包括:基站不调度当前子帧传输预调度数据,而调度后续的用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧传输预调度数据。对低优先级的数据进行汇聚调度,能够进一步提高CRS的关断比例。
在一些可能实现的方式中,基站将当前子帧中的小区特定参考信号CRS占用的目标资源单元RE打孔包括:基站将当前子帧中目标资源块的目标RE打孔,目标资源块为中心资源块以外的资源块。如此在关闭部分CRS发送的情况下保证终端参考信号接收功率的测量稳定。
在一些可能实现的方式中,目标资源块为中心资源块及异频测量资源块以外的资源块,异频测量资源块为同一带宽中部分用于异频测量的带宽对应的资源块。通过异频测量能够补偿CRS关断对终端测量参考信号接收功率的影响,提高终端的信噪比。
本申请实施例第二方面提供一种基站,该基站包括:判断模块,用于判断当前子帧是否满足小区特定参考信号CRS关断条件;打孔模块,用于当当前子帧满足CRS关断条件时,将当前子帧中的小区特定参考信号CRS占用的目标资源单元RE打孔,目标RE为LTE小区配置的N个CRS天线端口中的N-1个CRS天线端口占用的RE,N为大于或等于2的整数。
在一些可能实现的方式中,当前子帧满足CRS关断条件为:当前子帧为未被调度的子帧。
在一些可能实现的方式中,当前子帧满足CRS关断条件为:当前子帧为未被调度的子帧,且不为测量保护子帧,测量保护子帧为调度子帧的前M帧子帧或调度子帧的后L帧子帧,M为大于或等于1的整数,L为大于或等于0的整数,调度子帧为用于发送公共控制信息和/或下行控制信息的子帧,或已分配控制信道资源CCE的子帧。
在一些可能实现的方式中,当前子帧满足CRS关断条件为:当前子帧不为用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧,且当前子帧仅用于传输预调度数据。
在一些可能实现的方式中,判断模块还用于,当当前子帧不满足CRS关断条件时,判断当前子帧是否满足调度条件;调度模块,用于当当前子帧满足调度条件时,调度当前子帧传输待传输数据;以及用于当当前子帧不满足调度条件时,不调度当前子帧传输待传输 数据而调度后续的子帧传输待传输数据。
在一些可能实现的方式中,当前子帧满足调度条件为:子帧用于传输下行控制信息,且当前子帧的前M帧均全带宽发送CRS。
在一些可能实现的方式中,当前子帧不满足调度条件为:当前子帧的前M帧存在未全带宽发送CRS的子帧;调度模块具体用于,通过当前子帧全带宽发送CRS且不调度当前子帧传输待传输数据;调度后续的目标子帧传输待传输数据,目标子帧为全带宽发送CRS的M帧子帧的后一子帧。
在一些可能实现的方式中,当前子帧不满足调度条件为:当前子帧不为用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧,且当前子帧仅用于传输预调度数据;调度模块具体用于,不调度当前子帧传输预调度数据,而调度后续的用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧传输预调度数据。
在一些可能实现的方式中,打孔模块具体用于:将当前子帧中目标资源块的目标RE打孔,目标资源块为中心资源块以外的资源块。
在一些可能实现的方式中,目标资源块为中心资源块及异频测量资源块以外的资源块,异频测量资源块为同一带宽中部分用于异频测量的带宽对应的资源块。
本申请实施例第三方面提供一种基站,该基站包括存储器;以及耦接至存储器的处理器,处理器被配置为基于存储在存储器装置中的指令,执行如第一方面及其任意可能的实现方式的资源调度方法。
本申请实施例第四方面提供一种计算机可读存储介质,包括指令,当计算机可读存储介质在基站上运行时,使得基站执行第一方面及其任意可能的实现方式的资源调度方法。
附图说明
图1为本申请提供的通信系统的示意图;
图2为本申请提供的资源调度方法一实施例的流程示意图;
图3为本申请提供的调度子帧和测量保护子帧的结构示意图;
图4为4CRS天线端口情况下中心资源块的CRS资源映射图;
图5为4CRS天线端口情况下目标资源块的CRS资源映射图;
图6为本申请提供的资源调度方法另一实施例的流程示意图;
图7为本申请提供的基站一实施例的结构示意图;
图8为本申请提供的基站的另一实施例的结构示意图。
具体实施方式
本申请实施例提供了一种资源调度方法及基站,用于降低LTE小区发送CRS信号造成邻区NR PDSCH信号解调带来较大的干扰。
本申请实施例可以适用于通信系统,如图1所示,图1为本申请提供的通信系统的示意图。通信系统中包括基站和用户终端,用户终端是与基站进行通信的用户设备,包括4G 用户终端和5G用户终端,对应本申请实施例中目标LTE小区的用户终端和目标NR小区的用户终端,基站为双制式基站,一种是LTE,另一种是NR,LTE系统与NR系统所使用的频谱部分重叠或全部重叠。基站包含至少一个LTE小区和至少一个NR小区。
NR系统与LTE系统的子载波的间隔相等,如子载波的间隔都是15KHZ,如此可使NR系统和LTE系统的子载波正交,可以降低子载波之间的干扰。NR系统与LTE系统的子载波的OFDM符号的长度相等,如正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的长度都是七分之一毫秒等。当然,NR系统与LTE系统的子载波的间隔也可以相等,该情况下,需要在NR系统与LTE系统之间预留一定的保护间隔,以降低子载波之间的干扰。
另外,NR系统与LTE系统的子载波的循环前缀(Cyclic Prefix,CP)长度相等,循环前缀是指OFDM符号在进入信道之前,加入的前缀,用于填充保护间隔。
LTE中的小区特定参考信号(cell-specific reference signal,CRS)是小区级别的参考信号,用于测量、解调等。LTE CRS在固定的OFDM符号的整个系统带宽上离散发送,CRS分布在全带宽上。一般无论LTE小区是否有用户正在接收下行数据,CRS都会全带宽发送。如此,会造成就会对邻区的NR PDSCH信号解调带来了较大的干扰,导致NR下行体验速率恶化。
如图2所示,图2为本申请提供的资源调度方法一实施例的流程示意图。本实施例的执行主体为基站。本实施例包括如下步骤:
S201:基站判断当前子帧是否满足小区特定参考信号关断条件。
基站动态监控LTE小区的用户状态和当前子帧的调度情况,从而判断当前子帧是否符合关断其中的小区特定参考信号(cell-specific reference signal,CRS)的关断条件。关断CRS为在子帧中CRS占用的时频资源上打孔,即CRS占用的时频资源上0功率发送。
具体而言,基站实时或定期获取LTE小区的连接态用户终端数以及连接态用户终端是否均处于动态非连续接收(dynamic discontinuous reception,DRX)状态。连接态用户终端处于DRX状态是基站检测到没有数据与该用户终端传输后,为用户终端配置DRX,用户终端则周期性地进入休眠状态,周期性地唤醒。
若当前LTE小区的连接态用户终端数为0,或者连接态用户终端均处于DRX状态,说明当前基站与用户终端没有业务数据需要传输,基站除了周期性调度子帧传输寻呼(paging)消息、系统广播消息(system information,SIB)消息等公共控制信息,其他时隙不调度子帧向用户终端传输数据。那么,不被调度用于传输寻呼消息和SIB消息的子帧中的CRS可以关断。并且,由于用于传输寻呼消息的寻呼子帧和用于传输SIB消息的SIB子帧是周期性的,那么基站可以确定哪些系统帧的哪些子帧为寻呼子帧或SIB子帧。在该情况下,基站判断当前子帧是否满足小区CRS关断条件具体可以为,基站判断当前子帧是否为寻呼子帧或SIB子帧,若当前子帧既不为SIB子帧也不为寻呼子帧,基站则可以确定当前子帧满足CRS关断条件,执行S202;若当前子帧为SIB子帧和/或寻呼子帧,基站则可以确定当前子帧不满足CRS关断条件,当前子帧全带宽发送CRS。
可选地,为了降低CRS关断对用户终端对被调度子帧的解调性能,基站还可以确定被 调度子帧的前M帧和后L帧为测量保护子帧。测量保护子帧不关断CRS发送,即测量保护子帧全带宽发送CRS。那么,基站判断当前子帧是否满足小区CRS关断条件具体可以为,基站判断当前子帧是否为寻呼子帧或SIB子帧或测量保护子帧,若当前子帧既不为SIB子帧、寻呼子帧和测量保护子帧,基站则可以确定当前子帧满足CRS关断条件,执行S202;若当前子帧为SIB子帧和/或寻呼子帧,或当前子帧为测量保护子帧,基站则可以确定当前子帧不满足CRS关断条件,当前子帧全带宽发送CRS。
基站能够确定哪些系统帧的哪些子帧为寻呼子帧或SIB子帧,那么也就能够根据寻呼子帧或SIB子帧确定哪些系统帧的哪些子帧不为寻呼子帧或SIB子帧,即确定未被调度的子帧。在该情况下,基站判断当前子帧是否满足小区CRS关断条件具体可以为,基站判断当前子帧是否为未被调度的子帧,若当前子帧为未被调度的子帧,基站则可以确定当前子帧满足CRS关断条件,执行S202;若当前子帧为被调度的子帧,基站则可以确定当前子帧不满足CRS关断条件,当前子帧全带宽发送CRS。例如,基站可以确定每一系统帧的第9帧为寻呼子帧,那么可以确定0至8子帧为未被调度的子帧,当前子帧为0至8子帧中的任一子帧时,基站可以确定当前子帧满足CRS关断条件。当基站配置测量保护子帧时同理,例如每一系统帧的第9帧为寻呼子帧,第0帧、第6至第8帧为测量保护子帧,那么当前子帧为第1至第5子帧中的任一子帧时,基站可以确定当前子帧满足CRS关断条件。
其中,M为大于或等于1的整数,M例如具体为1、2、3、4或5等。L为大于或等于0的整数,L例如具体为0、1、2或3等。举例说明,如图3所示,图3为本申请提供的调度子帧和测量保护子帧的结构示意图。可以理解,图3中测量保护子帧的数量仅作为示例,不作为对本申请的限制。
而当当前LTE小区的连接态用户终端数不为0,且LTE小区内存在用户终端不处于DRX状态,除了周期性调度的子帧,还会有突发数据需要调度子帧进行上下行传输。因此,该情况下子帧是否有被调度需要进行逐一判断,若当前子帧未被调度,基站则可以确定当前子帧满足CRS关断条件,执行S202;若当前子帧为调度子帧,即用于发送公共控制信息和/或下行控制信息的子帧,或已分配控制信道资源CCE的子帧,基站则可以确定当前子帧不满足CRS关断条件,当前子帧全带宽发送CRS。或者,基站判断当前子帧是否被调度或为测量保护子帧,若基站判定当前子帧未被调度且不为测量保护子帧,基站则可以确定当前子帧满足CRS关断条件,执行S202;若当前子帧为调度子帧或为测量保护子帧,基站则可以确定当前子帧不满足CRS关断条件,当前子帧全带宽发送CRS。
可选地,为了提高CRS的关断率,对于一些被调度仅用于传输预调度数据的预调度子帧也可以确定为满足CRS关断条件的子帧。为了缩短基站上行调度用户终端的时延,基站对用户终端进行上行预调度。基站上行预调度用户终端的过程为:基站周期性地向用户终端发送上行许可(UL grant)以通知基站为该用户终端配置的资源。当用户终端需要上行传输数据时,用户终端使用基站为其配置的资源向基站传输上行数据。然而,无论用户终端是否需要上行传输数据,基站都会频繁地通过预调度子帧为用户终端配置资源,会占用时频资源。因而,可以对部分符合关断条件的预调度子帧的CRS进行关断。具体而言,在进行下行初传调度开始前,基站判断当前子帧是否为用于发送公共控制信息的子帧(即寻呼 子帧/SIB子帧),或用于发送下行控制信息(downlink control information,DCI)的DCI子帧,或已分配控制信道资源CCE的子帧,若当前子帧既不为寻呼子帧,也不为DCI子帧和已分配控制信道资源CCE的子帧,基站进一步判断当前子帧的初传调度队列里是否仅包括预调度数据(即UL grant),若初传调度队列里仅包括预调度数据,基站则可以确定当前子帧满足CRS关断条件,执行S202。
S202:若当前子帧满足CRS关断条件,基站将当前子帧中的CRS占用的目标资源单元打孔。
其中,目标资源单元(resource element,RE)为LTE小区配置的N个CRS天线端口中的N-1个CRS天线端口占用的RE,N为大于或等于2的整数。
例如,LTE小区配置为4CRS天线端口时,基站仅保留其中一个CRS天线端口发送CRS,其他3个端口不发送CRS,即基站将当前子帧中的CRS占用的目标资源单元打孔。
为了保证用户终端参考信号接收功率(reference signal receiving power,RSRP)测量稳定,基站可以将当前子帧中目标资源块(resource block,RB)的目标RE打孔,目标资源块为中心资源块以外的资源块,即中心资源块中的CRS信道不打孔。中心资源块即为系统带宽的中心频点处的多个资源块。以系统带宽为20M为例,中心资源块可以至少为中心6RB。
举例说明,如图4和图5所示,图4为4CRS天线端口情况下中心资源块的CRS资源映射图,图5为4CRS天线端口情况下目标资源块的CRS资源映射图。可见,目标资源块中有四分之三的CRS信道被打孔,在保证LTE小区业务能够正常运行的情况下,最大限度地降低CRS信道对邻区的干扰。
可选地,为了进一步降低CRS关断对用户终端的RSRP测量可能会带来误差影响,基站对用户终端进行RSRP测量补偿,弥补用户终端在CRS关断下的测量偏差。在动态频谱共享(dynamic spectrum sharing,DSS)相同载波内部署一个预设带宽的载波,预设带宽内的资源块内所有CRS天线端口均发送CRS。通过异频测量该预设带宽小区的RSRP,得到异频预设带宽小区的RSRP1。假设当前用户终端测量到的服务小区的RSRP为RSRP0,基站计算RSRP0和RSRP1的差值,可认为该差值即为CRS关断对该用户终端测量带来的影响。基站得到用户终端的RSRP的测量偏差后,通过对用户终端下发无线资源控制(radio resource control,RRC)重配置信令下发NomPdschRsEpreOffset来补偿终端的信道质量指示(channel quality indication,CQI),NomPdschRsEpreOffset取值范围可以为-1,0,1,2,3,4,5,6,单位为2db。RSRP0和RSRP1的差值用于确定NomPdschRsEpreOffset的取值,以对服务小区的用户终端的信噪比进行补偿。
在先子帧的CRS关断会对在后的子帧的物理控制下行信道(physical downlink control channel,PDCCH)/PDSCH解调有影响,本申请还提供如下实施例降低CRS关断对LTE小区内的用户终端的PDCCH/PDSCH的解调性能的影响。如图6所示,图6为本申请提供的资源调度方法另一实施例的流程示意图。本实施例的执行主体为基站,本实施例包括如下步骤:
S601:基站判断当前子帧是否满足CRS关断条件。
若当前子帧满足CRS关断条件,则执行S602;若当前子帧不满足CRS关断条件,则执行S603。
S601与S201类似,故在此不再赘述。
S602:基站将当前子帧中的CRS占用的目标资源单元打孔。
S602与S202类似,故在此不再赘述。
S603:基站判断当前子帧是否满足调度条件。
若当前子帧满足调度条件,基站则执行S604;若当前子帧不满足调度条件,基站则执行S605。
基站判断当前子帧是否适合被调度用来传输数据,例如,前一子帧的部分CRS被关断,会影响下一子帧RSRP测量准确性,则该子帧不适合用来传输数据。
根据待传输数据中的数据的优先级程度不同,判断当前子帧是否满足调度条件分为以下情况:
情况一,数据优先级别高
基站判断当前子帧的待传输数据中是否包括下行控制信息(downlink control information,DCI);若待传输数据中包括DCI,说明有优先级比较高的数据需要传输,则基站继续判断当前子帧的前M帧均全带宽发送CRS。若基站确定当前子帧的前M帧均全带宽发送CRS,则基站确定当前子帧满足调度条件,执行S604;若基站确定当前子帧的前M帧中存在子帧没有全带宽发送CRS,则基站确定当前子帧不满足调度条件,执行S605。
情况二,数据优先级别低
当当前子帧用于下行初传调度时,基站判断当前子帧是否为用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧,若当前子帧为用于发送公共控制信息的子帧,或用于发送下行控制信息的子帧,或已分配控制信道资源CCE的子帧,基站确定当前子帧满足调度条件,执行S604;若当前子帧既不为用于发送公共控制信息的子帧,也不为用于发送下行控制信息的子帧,还不为已分配控制信道资源CCE的子帧,基站进一步判断判断初传调度队列里是否只有预调度数据,若初传调度队列里只有预调度数据,基站确定当前子帧不满足调度条件,执行S605;若初传调度队列里不知包括预调度数据,基站则为初传调度队列正常调度子帧。
S604:基站调度当前子帧传输待传输数据。
当前子帧满足调度条件,说明前面关断部分CRS信道的子帧对当前子帧的影响较小,可以调度当前子帧传输待传输数据。
S605:基站不调度当前子帧传输待传输数据而调度后续的子帧传输待传输数据。
对应于步骤S603中情况一,不调度当前子帧传输待传输数据而调度后续的子帧传输待传输数据,具体为:
基站通过当前子帧全带宽发送CRS且不调度当前子帧传输待传输数据;基站调度后续的目标子帧传输待传输数据,目标子帧为包括当前子帧在内的全带宽发送CRS的M帧子帧的后一子帧。
具体地,若当前子帧的前一子帧部分CRS信道关断,那么从当前子帧开始,连续M帧 子帧全带宽发送CRS,第M+1帧则为目标子帧;若当前子帧的第前X帧(X为小于M的正整数)开始全带宽发送CRS,那么当前子帧及后续子帧全带宽发送CRS,直至有连续的M帧子帧全带宽发送CRS,那么连续M帧全带宽发送CRS的子帧的下一子帧被调度用于传输待传输数据。
例如,M为3时,当前子帧的往前的第二子帧部分CRS信道关断,当前子帧的前一子帧全带宽发送CRS,那么当前子帧和当前子帧的下一子帧均全带宽发送CRS,当前子帧往后的第二子帧为目标子帧。
对应于步骤S603中情况二,不调度当前子帧传输待传输数据而调度后续的子帧传输待传输数据,具体为:
基站不调度当前子帧传输预调度数据,而调度后续的用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧传输预调度数据。
例如,当前子帧为第5子帧,为预调度子帧,与第5子帧间隔最短的被调度子帧为第9子帧的寻呼子帧,那么可以将原本基于第5子帧发送的UL Grant汇聚到第9子帧中,而不调度第5子帧发送数据。
如图7所示,图7为本申请提供的基站一实施例的结构示意图,本实施例的基站包括:
判断模块701,用于判断当前子帧是否满足小区特定参考信号CRS关断条件.
打孔模块702,用于当当前子帧满足CRS关断条件时,将当前子帧中的小区特定参考信号CRS占用的目标资源单元RE打孔,目标RE为LTE小区配置的N个CRS天线端口中的N-1个CRS天线端口占用的RE,N为大于或等于2的整数。
在一些可能实现的方式中,当前子帧满足CRS关断条件为:当前子帧为未被调度的子帧。
在一些可能实现的方式中,当前子帧满足CRS关断条件为:当前子帧为未被调度的子帧,且不为测量保护子帧,测量保护子帧为调度子帧的前M帧子帧或调度子帧的后L帧子帧,M为大于或等于1的整数,L为大于或等于0的整数,调度子帧为用于发送公共控制信息和/或下行控制信息的子帧,或已分配控制信道资源CCE的子帧。
在一些可能实现的方式中,当前子帧满足CRS关断条件为:当前子帧不为用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧,且当前子帧仅用于传输预调度数据。
在一些可能实现的方式中,判断模块701还用于,当当前子帧不满足CRS关断条件时,判断当前子帧是否满足调度条件;调度模块,用于当当前子帧满足调度条件时,调度当前子帧传输待传输数据;以及用于当当前子帧不满足调度条件时,不调度当前子帧传输待传输数据而调度后续的子帧传输待传输数据。
在一些可能实现的方式中,当前子帧满足调度条件为:子帧用于传输下行控制信息,且当前子帧的前M帧均全带宽发送CRS。
在一些可能实现的方式中,当前子帧不满足调度条件为:当前子帧的前M帧存在未全带宽发送CRS的子帧;调度模块具体用于,通过当前子帧全带宽发送CRS且不调度当前子帧传输待传输数据;调度后续的目标子帧传输待传输数据,目标子帧为全带宽发送CRS的 M帧子帧的后一子帧。
在一些可能实现的方式中,当前子帧不满足调度条件为:当前子帧不为用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧,且当前子帧仅用于传输预调度数据;调度模块具体用于,不调度当前子帧传输预调度数据,而调度后续的用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧传输预调度数据。
在一些可能实现的方式中,打孔模块702具体用于:将当前子帧中目标资源块的目标RE打孔,目标资源块为中心资源块以外的资源块。
在一些可能实现的方式中,目标资源块为中心资源块及异频测量资源块以外的资源块,异频测量资源块为同一带宽中部分用于异频测量的带宽对应的资源块。
本申请实施例还提供了一种基站,图8为本申请提供的基站的另一实施例的结构示意图,该基站800包括:存储器801以及耦接至该存储器801的处理器802,处理器802被配置为基于存储在存储器801中的指令,执行本发明中任意一个实施例中的频谱资源共享的方法。
其中,存储器801例如可以包括系统存储器、固定非易失性存储介质等。系统存储器例如存储有操作系统、应用程序、引导装载程序(Boot Loader)、数据库以及其他程序等。
本申请实施例还涉及一种计算机存储介质,该计算机存储介质用于储存为上述基站所用的计算机软件指令,其包括用于执行为基站所设计的程序。
该基站可以如图7或图8所描述的基站。
本申请实施例还涉及一种计算机程序产品,该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现上述图2所示实施例中的流程。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者 说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (22)

  1. 一种资源调度方法,其特征在于,所述方法包括:
    基站判断当前子帧是否满足小区特定参考信号CRS关断条件;
    若所述当前子帧满足所述CRS关断条件,所述基站将所述当前子帧中的小区特定参考信号CRS占用的目标资源单元RE打孔,所述目标RE为LTE小区配置的N个CRS天线端口中的N-1个CRS天线端口占用的RE,所述N为大于或等于2的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述当前子帧满足所述CRS关断条件为:
    所述当前子帧为未被调度的子帧。
  3. 根据权利要求1所述的方法,其特征在于,所述当前子帧满足所述CRS关断条件为:
    所述当前子帧为未被调度的子帧,且不为测量保护子帧,所述测量保护子帧为调度子帧的前M帧子帧或所述调度子帧的后L帧子帧,所述M为大于或等于1的整数,所述L为大于或等于0的整数,所述调度子帧为用于发送公共控制信息和/或下行控制信息的子帧,或已分配控制信道资源CCE的子帧。
  4. 根据权利要求1所述的方法,其特征在于,所述当前子帧满足所述CRS关断条件为:
    所述当前子帧不为用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧,且所述当前子帧仅用于传输预调度数据。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    若所述当前子帧不满足所述CRS关断条件,所述基站判断所述当前子帧是否满足调度条件;
    若所述当前子帧满足所述调度条件,所述基站调度所述当前子帧传输待传输数据;
    若所述当前子帧不满足所述调度条件,所述基站不调度所述当前子帧传输所述待传输数据而调度后续的子帧传输所述待传输数据。
  6. 根据权利要求5所述的方法,其特征在于,所述当前子帧满足所述调度条件为:
    所述子帧用于传输下行控制信息,且所述当前子帧的前M帧均全带宽发送所述CRS。
  7. 根据权利要求5或6所述的方法,其特征在于,所述当前子帧不满足所述调度条件为:所述当前子帧的前M帧存在未全带宽发送所述CRS的子帧;
    所述基站不调度所述当前子帧传输所述待传输数据而调度后续的子帧传输所述待传输数据包括:
    所述基站通过所述当前子帧全带宽发送所述CRS且不调度所述当前子帧传输所述待传输数据;
    所述基站调度后续的目标子帧传输所述待传输数据,所述目标子帧为全带宽发送所述CRS的M帧子帧的后一子帧。
  8. 根据权利要求5所述的方法,其特征在于,所述当前子帧不满足所述调度条件为:
    所述当前子帧不为用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧,且所述当前子帧仅用于传输预调度数据;
    所述基站不调度所述当前子帧传输所述待传输数据而调度后续的子帧传输所述待传输数据包括:
    所述基站不调度所述当前子帧传输所述预调度数据,而调度后续的用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧传输所述预调度数据。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述基站将所述当前子帧中的小区特定参考信号CRS占用的目标资源单元RE打孔包括:
    所述基站将所述当前子帧中目标资源块的目标RE打孔,所述目标资源块为中心资源块以外的资源块。
  10. 根据权利要求9所述的方法,其特征在于,所述目标资源块为所述中心资源块及异频测量资源块以外的资源块,所述异频测量资源块为同一带宽中部分用于异频测量的带宽对应的资源块。
  11. 一种基站,其特征在于,所述基站包括:
    判断模块,用于判断当前子帧是否满足小区特定参考信号CRS关断条件;
    打孔模块,用于当所述当前子帧满足所述CRS关断条件时,将所述当前子帧中的小区特定参考信号CRS占用的目标资源单元RE打孔,所述目标RE为LTE小区配置的N个CRS天线端口中的N-1个CRS天线端口占用的RE,所述N为大于或等于2的整数。
  12. 根据权利要求11所述的基站,其特征在于,所述当前子帧满足所述CRS关断条件为:
    所述当前子帧为未被调度的子帧。
  13. 根据权利要求11所述的基站,其特征在于,所述当前子帧满足所述CRS关断条件为:
    所述当前子帧为未被调度的子帧,且不为测量保护子帧,所述测量保护子帧为调度子帧的前M帧子帧或所述调度子帧的后L帧子帧,所述M为大于或等于1的整数,所述L为大于或等于0的整数,所述调度子帧为用于发送公共控制信息和/或下行控制信息的子帧,或已分配控制信道资源CCE的子帧。
  14. 根据权利要求11所述的基站,其特征在于,所述当前子帧满足所述CRS关断条件为:
    所述当前子帧不为用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧,且所述当前子帧仅用于传输预调度数据。
  15. 根据权利要求11至14中任一项所述的基站,其特征在于,
    所述判断模块还用于,当所述当前子帧不满足所述CRS关断条件时,判断所述当前子帧是否满足调度条件;
    调度模块,用于当所述当前子帧满足所述调度条件时,调度所述当前子帧传输待传输数据;以及用于当所述当前子帧不满足所述调度条件时,不调度所述当前子帧传输所述待传输数据而调度后续的子帧传输所述待传输数据。
  16. 根据权利要求15所述的基站,其特征在于,所述当前子帧满足所述调度条件为:
    所述子帧用于传输下行控制信息,且所述当前子帧的前M帧均全带宽发送所述CRS。
  17. 根据权利要求15或16所述的基站,其特征在于,所述当前子帧不满足所述调度条件为:所述当前子帧的前M帧存在未全带宽发送所述CRS的子帧;
    所述调度模块具体用于,通过所述当前子帧全带宽发送所述CRS且不调度所述当前子帧传输所述待传输数据;调度后续的目标子帧传输所述待传输数据,所述目标子帧为包括所述当前子帧在内的全带宽发送所述CRS的M帧子帧的后一子帧。
  18. 根据权利要求15所述的基站,其特征在于,所述当前子帧不满足所述调度条件为:
    所述当前子帧不为用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧,且所述当前子帧仅用于传输预调度数据;
    所述调度模块具体用于,不调度所述当前子帧传输所述预调度数据,而调度后续的用于发送公共控制信息的子帧/下行控制信息的子帧/已分配控制信道资源CCE的子帧传输所述预调度数据。
  19. 根据权利要求11至18中任一项所述的基站,其特征在于,所述打孔模块具体用于:将所述当前子帧中目标资源块的目标RE打孔,所述目标资源块为中心资源块以外的资源块。
  20. 根据权利要求19所述的基站,其特征在于,所述目标资源块为所述中心资源块及异频测量资源块以外的资源块,所述异频测量资源块为同一带宽中部分用于异频测量的带宽对应的资源块。
  21. 一种基站,其特征在于,所述基站包括存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器装置中的指令,执行如权利要求1-10中任一项所述的资源调度方法。
  22. 一种计算机可读存储介质,其特征在于,包括指令,当所述计算机可读存储介质在基站上运行时,使得所述基站执行所述权利要求1-10中任一项所述的资源调度方法。
PCT/CN2021/127778 2021-10-30 2021-10-30 资源调度方法及基站 WO2023070630A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127778 WO2023070630A1 (zh) 2021-10-30 2021-10-30 资源调度方法及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127778 WO2023070630A1 (zh) 2021-10-30 2021-10-30 资源调度方法及基站

Publications (1)

Publication Number Publication Date
WO2023070630A1 true WO2023070630A1 (zh) 2023-05-04

Family

ID=86158958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127778 WO2023070630A1 (zh) 2021-10-30 2021-10-30 资源调度方法及基站

Country Status (1)

Country Link
WO (1) WO2023070630A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102823167A (zh) * 2010-03-24 2012-12-12 Lg电子株式会社 无线电通信系统中减少小区间干扰的方法和设备
US20190230579A1 (en) * 2017-05-17 2019-07-25 Gilles Charbit Method And Apparatus For Handling Cell-Specific Reference Signal Muting In Mobile Communications
CN111526591A (zh) * 2019-02-01 2020-08-11 北京三星通信技术研究有限公司 无线通信系统中的传输方法、无线电节点和计算机可读介质
CN112187428A (zh) * 2014-11-07 2021-01-05 瑞典爱立信有限公司 无线电信网络中的网络节点和方法
US20210226760A1 (en) * 2017-03-24 2021-07-22 Apple Inc. Design of cell specific reference signal (crs) muting for even further enhanced machine type communication (efemtc)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102823167A (zh) * 2010-03-24 2012-12-12 Lg电子株式会社 无线电通信系统中减少小区间干扰的方法和设备
CN112187428A (zh) * 2014-11-07 2021-01-05 瑞典爱立信有限公司 无线电信网络中的网络节点和方法
US20210226760A1 (en) * 2017-03-24 2021-07-22 Apple Inc. Design of cell specific reference signal (crs) muting for even further enhanced machine type communication (efemtc)
US20190230579A1 (en) * 2017-05-17 2019-07-25 Gilles Charbit Method And Apparatus For Handling Cell-Specific Reference Signal Muting In Mobile Communications
CN111526591A (zh) * 2019-02-01 2020-08-11 北京三星通信技术研究有限公司 无线通信系统中的传输方法、无线电节点和计算机可读介质

Similar Documents

Publication Publication Date Title
US11895584B2 (en) Power saving operations for communication systems
US20220417980A1 (en) Methods, Devices, and Apparatuses for Beam Management
EP3756397B1 (en) Improved activation of secondary cells for carrier aggregation and dual connectivity
EP3005592B1 (en) Time division duplex wireless communication system
CN107113878B (zh) 无线电接入节点、通信终端及其中执行的方法
KR102196895B1 (ko) 모바일 무선 통신 디바이스에서의 전력 절약을 위한 제어 지시자
CN108781431B (zh) 用于针对发现信号传输调度寻呼消息的网络节点、方法和计算机程序产品
US10306499B2 (en) Method and apparatus for performing measurement in an extension carrier
EP2584845B1 (en) Uplink control channel transmission control method in a multi-carrier system and terminal using same
EP3396889B1 (en) Method and arrangement for reconfiguring mapping of carrier indicator filed to component carrier
US10314033B2 (en) Flexible multiplexing of users with difference requirements in a 5G frame structure
EP3823341A1 (en) Method and apparatus for controlling secondary cell
JP2012519410A (ja) 多重搬送波システムにおけるチャネル状態報告方法及び装置
US20140086167A1 (en) Method and apparatus for transmitting a sounding reference signal by a terminal
KR20130092584A (ko) 사운딩 참조 신호 전송 방법 및 장치
US10681623B2 (en) Methods and apparatus for cell access via anchor carrier
CN107926035B (zh) 用于向第二通信设备发送一个或多个控制信号的第一通信设备及其中的方法
CN111436085B (zh) 通信方法及装置
CN115191094A (zh) 通信方法、装置及设备
US20220150734A1 (en) Technique for Handling Control Channels on Component Carriers
CN110798900B (zh) 一种通信失败恢复的方法和装置
US20220279557A1 (en) User equipment, scheduling node, method for user equipment, and method for scheduling node
US9781720B2 (en) Component carrier (de)activation in communication systems using carrier aggregation
US20240121798A1 (en) Methods, apparatus and systems for a control channel monitoring procedure
WO2023070630A1 (zh) 资源调度方法及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961981

Country of ref document: EP

Kind code of ref document: A1