WO2019001523A1 - 控制信息传输方法和设备 - Google Patents

控制信息传输方法和设备 Download PDF

Info

Publication number
WO2019001523A1
WO2019001523A1 PCT/CN2018/093422 CN2018093422W WO2019001523A1 WO 2019001523 A1 WO2019001523 A1 WO 2019001523A1 CN 2018093422 W CN2018093422 W CN 2018093422W WO 2019001523 A1 WO2019001523 A1 WO 2019001523A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
frequency
indication information
units
Prior art date
Application number
PCT/CN2018/093422
Other languages
English (en)
French (fr)
Inventor
杜白
彭金磷
张鹏
伊斯兰陶菲克尔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711105497.3A external-priority patent/CN109218000B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020207001639A priority Critical patent/KR102313370B1/ko
Priority to AU2018294476A priority patent/AU2018294476B2/en
Priority to RU2020103741A priority patent/RU2761375C2/ru
Priority to JP2019572612A priority patent/JP6985430B2/ja
Priority to EP18824269.7A priority patent/EP3641456B1/en
Priority to BR112019028214-9A priority patent/BR112019028214A2/pt
Publication of WO2019001523A1 publication Critical patent/WO2019001523A1/zh
Priority to US16/728,971 priority patent/US11445488B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of wireless communications, and in particular, to a control information transmission method and device in a wireless communication system.
  • the international telecommunication union defines three types of application scenarios for 5G and future mobile communication systems: enhanced mobile broadband (eMBB), high reliable low latency communication (ultra reliable and low latency). Communications, URLLC) and massive machine type communications (mMTC).
  • eMBB enhanced mobile broadband
  • URLLC high reliable low latency communication
  • mMTC massive machine type communications
  • Typical eMBB services include: ultra high definition video, augmented reality (AR), virtual reality (VR), etc.
  • the main features of these services are large amount of transmitted data and high transmission rate.
  • Typical URLLC services include: wireless control in industrial manufacturing or production processes, motion control of driverless cars and drones, and tactile interaction applications such as remote repair and remote surgery.
  • the main features of these services are ultra-reliable. Sex, low latency, less data transfer and burstiness.
  • Typical mMTC services include: smart grid distribution automation, smart city, etc. The main features are huge number of networked devices, small amount of transmitted data, and insensitive data transmission delay. These mMTC terminals need to meet low cost and very long standby. The demand for time.
  • a longer time unit is usually used for data transmission to improve transmission efficiency.
  • one time slot of 15 kHz subcarrier spacing is used, corresponding to seven time domain symbols.
  • the corresponding length of time is 0.5 milliseconds (millisecond, ms).
  • URLLC service data usually uses shorter time units to meet the requirements of ultra-short delay, for example, two time domain symbols with 15 kHz subcarrier spacing, or one time slot with 60 kHz subcarrier spacing, corresponding to seven time domains. Symbol, the corresponding length of time is 0.125ms.
  • the network device Due to the burstiness of the data of the URLLC service, in order to improve the system resource utilization, the network device usually does not reserve resources for downlink data transmission of the URLLC service.
  • the URLLC service data arrives at the network device, if there is no idle time-frequency resource at this time, the network device cannot wait for the scheduled transmission of the eMBB service data to complete the URLLC service data in order to meet the ultra-short delay requirement of the URLLC service.
  • Schedule The network device may allocate resources for URLLC service data in a preemption manner. As shown in FIG.
  • the preemption herein refers to that the network device selects part or all of the time-frequency resources for transmitting the URLLC service data on the time-frequency resources that have been allocated for transmitting the eMBB service data, and the network device is used for transmitting.
  • the data of the eMBB service is not transmitted on the time-frequency resource of the URLLC service data.
  • the present application provides a control information transmission method for indicating which part of eMBB service data is affected by URLLC service data, and can improve data transmission efficiency.
  • the first aspect provides a control information transmission method, including: determining, by the network device, first indication information, where the first indication information is used to indicate whether information transmission in the first time-frequency resource is affected;
  • the physical downlink control channel sends the first indication information.
  • the network device sends the first indication information to the terminal device through the physical downlink control channel, to notify whether the data transmission of the terminal device is affected by other information transmission, including being preempted and interfered, so as to assist the terminal.
  • the device receives and decodes data.
  • the first indication information is also referred to as preemption indication information.
  • the terminal device determines whether data transmission on some or all of the time-frequency resources is affected by other information transmission. If yes, the data corresponding to the affected area may be discarded, and the data of the area is not Participate in decoding and HARQ merging, thereby improving the decoding success rate, thereby improving data transmission efficiency.
  • the network device sends the first control information, where the first control information includes frequency domain location information of the first time-frequency resource.
  • the preemption indication a resource area of a preemption indication may be defined, which is called a PI region (corresponding to the first time-frequency resource described above).
  • the preemption indication is used to indicate which part of the time-frequency resource is preempted within the PI region.
  • the first control information is used to indicate the time-frequency range of the PI region, so that the terminal device can determine, according to the first indication information and the first control information, which part of the data transmission on the time-frequency resource is affected.
  • the frequency domain location information of the first time-frequency resource includes start location offset information and frequency domain width information.
  • the terminal device determines the frequency domain location of the PI region by receiving the frequency domain location information in the first control information.
  • the reference point information of the frequency domain location of the first time-frequency resource may be included in the frequency domain location information and sent by the network device to the terminal device, or may be predefined by the system.
  • the time domain location information of the first time-frequency resource may be predefined by the system, or may be included in the first control information, and sent by the network device to the terminal device.
  • the first indication information includes second indication information of length m bits, where m is an integer greater than 1, and each bit of the second indication information is used for And indicating whether information transmission of a second time unit of the first time-frequency resource is affected, wherein a time domain length of the second time unit is smaller than a time domain length of the first time-frequency resource.
  • the PI region can be divided into m second time units in the time domain, thereby indicating whether resource preemption occurs on each second time unit by using the first indication information.
  • the first indication information includes second indication information of length m bits, and each of the second indication information is used to indicate the first time frequency Whether information transmission in a second time-frequency resource in the resource is affected, wherein m is an integer greater than 1, and a frequency domain width of the second time-frequency resource is less than or equal to a frequency domain width of the first time-frequency resource .
  • the PI region can be divided into two time-frequency resources in the time-frequency and two-time resources, so that the first indication information indicates whether resource preemption occurs on each second time-frequency resource.
  • the granularity of the indication can be made finer, so that the data on the time-frequency resource that is not preempted due to the excessively coarse granularity is also discarded by the terminal device, thereby improving the data transmission efficiency.
  • the network device when the first indication information indicates that part or all of the time-frequency resources of the CSI-RS of the terminal device at the time T0 are preempted or affected, the network device receives the time from the T3. CSI measurement results of the terminal device.
  • the terminal device can feed back more accurate CSI measurement results to the network device, thereby improving data transmission efficiency.
  • a second aspect provides a control information transmission method, including: receiving, by a terminal device, first indication information by using a physical downlink control channel, where the first indication information is used to indicate whether information transmission in the first time-frequency resource is affected; The terminal device determines, according to the first indication information, whether the information transmission in the third time-frequency resource is affected, wherein the third time-frequency resource is a time-frequency resource used for downlink information transmission between the terminal device and the network device.
  • the control information transmission method of the second aspect is the method of the receiving device side corresponding to the control information transmission method of the first aspect, and thus the beneficial effects of the method of the first aspect or the corresponding possible implementation of the first aspect can also be achieved. I will not repeat them here.
  • the terminal device receives first control information, where the first control information includes frequency domain location information of the first time-frequency resource.
  • the frequency domain location information of the first time-frequency resource includes start location offset information and frequency domain width information.
  • the first indication information includes second indication information of length m bits, where m is an integer greater than 1, and each bit of the second indication information is used for And indicating whether information transmission of a second time unit of the first time-frequency resource is affected, wherein a time domain length of the second time unit is smaller than a time domain length of the first time-frequency resource.
  • the first indication information includes second indication information of length m bits, and each of the second indication information is used to indicate the first time frequency Whether information transmission in a second time-frequency resource in the resource is affected, wherein m is an integer greater than 1, and a frequency domain width of the second time-frequency resource is less than or equal to a frequency domain width of the first time-frequency resource .
  • the terminal device determines whether there is data or control in the first time-frequency resource corresponding to the monitoring occasion of the first indication information when the monitoring timing of the first indication information arrives. The information is sent to the terminal device. If data or control information is sent to the terminal device in the first time-frequency resource, the first indication information is monitored to confirm whether the network device sends the first indication information.
  • the terminal device monitors the first indication information only when necessary, thereby saving processing resources of the terminal device and reducing energy consumption of the terminal device.
  • the terminal device may perform content removal based on the content of the first indication information.
  • the CSI-RS on the preempted or affected time-frequency resource re-calculates the CSI-RS of the remaining part, updates the CSI measurement result, and feeds back the updated CSI measurement result to the network device at time T3.
  • the terminal device can feed back more accurate CSI measurement results to the network device, thereby improving data transmission efficiency.
  • a communication apparatus comprising a processing unit, a transmitting unit, to perform the method of the first aspect or any possible implementation of the first aspect.
  • a communication apparatus comprising a processor, a memory and a transceiver to perform the method of the first aspect or any possible implementation of the first aspect.
  • a communication device comprising a processing unit, a receiving unit, to perform the method in any of the possible implementations of the second aspect or the second aspect.
  • a communication apparatus comprising a processor, a memory and a transceiver to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • a computer readable storage medium is provided, the instructions being stored in the computer readable storage medium, when executed on a computer, causing the computer to perform the first aspect or any possible implementation of the first aspect The method in the way.
  • a computer readable storage medium is provided, the instructions being stored in the computer readable storage medium, when executed on a computer, causing the computer to perform any of the possible implementations of the second aspect or the second aspect The method in the way.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the second aspect or the second aspect.
  • a chip product of a network device is provided to perform the method of the first aspect or any possible implementation of the first aspect.
  • a chip product of a terminal device is provided to perform the method of any of the second aspect or the second aspect.
  • 1 is a schematic diagram of URLLC service data preemption for time-frequency resources for transmitting eMBB service data
  • FIG. 2 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied;
  • FIG. 3 is a schematic diagram of a relationship between a PI region and a preempted time-frequency resource according to an embodiment of the present application
  • 3A is a schematic diagram of a relationship between a time unit for transmitting a PI and a time domain range of a PI region according to an embodiment of the present application;
  • FIG. 3B is a schematic diagram of another relationship between a time unit for transmitting a PI and a time domain range of a PI region according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a method for determining a frequency domain location of a PI region according to an embodiment of the present application
  • 4A is a schematic diagram of a scenario in which a time-frequency resource of a PI region is discontinuous according to an embodiment of the present application
  • FIG. 4B is a schematic diagram of a non-continuous scenario of time-frequency resources of another PI region according to an embodiment of the present application.
  • FIG. 4C is a schematic diagram of a non-continuous scenario of time-frequency resources of another PI region according to an embodiment of the present application.
  • 4D is a schematic diagram of another non-continuous time-frequency resource of a PI region according to an embodiment of the present application.
  • 4E is a schematic diagram of a method for determining a PI region segmentation according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a method for transmitting control information according to an embodiment of the present application.
  • FIG. 5A is a schematic diagram of timing of CSI feedback provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another communication apparatus according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another communication apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication apparatus according to an embodiment of the present application.
  • the mobile communication system includes a core network device 210, a radio access network device 220, and at least one terminal device (such as the terminal device 230 and the terminal device 240 in FIG. 2).
  • the terminal device is connected to the radio access network device by means of a wireless connection, and the radio access network device is connected to the core network device by wireless or wired.
  • the core network device and the wireless access network device may be independent physical devices, or may integrate the functions of the core network device with the logical functions of the wireless access network device on the same physical device, or may be a physical device.
  • the functions of some core network devices and the functions of some wireless access network devices are integrated.
  • the terminal device can be fixed or mobile.
  • FIG. 2 is only a schematic diagram.
  • the communication system may further include other network devices, such as a wireless relay device and a wireless backhaul device, which are not shown in FIG. 2.
  • the embodiment of the present application does not limit the number of core network devices, radio access network devices, and terminal devices included in the mobile communication system.
  • the radio access network device is an access device that the terminal device accesses to the mobile communication system by using a wireless device, and may be a base station NodeB, an evolved base station eNodeB, a 5G mobile communication system, or a new radio (NR) communication system.
  • a radio access network device is referred to as a network device.
  • a network device refers to a radio access network device.
  • 5G and NR may be equivalent.
  • the terminal device may also be referred to as a terminal terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), and the like.
  • the terminal device can be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and an industrial control (industrial control).
  • Wireless terminal wireless terminal in self driving, wireless terminal in remote medical surgery, wireless terminal in smart grid, wireless in transport safety A terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • Radio access network equipment and terminal equipment can be deployed on land, including indoors or outdoors, handheld or on-board; they can also be deployed on the water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the application scenarios of the radio access network device and the terminal device are not limited.
  • the embodiments of the present application can be applied to downlink signal transmission, and can also be applied to uplink signal transmission, and can also be applied to device to device (D2D) signal transmission.
  • the transmitting device is a radio access network device, and the corresponding receiving device is a terminal device.
  • the transmitting device is a terminal device, and the corresponding receiving device is a wireless access network device.
  • the transmitting device is a terminal device, and the corresponding receiving device is also a terminal device.
  • the embodiment of the present application does not limit the transmission direction of the signal.
  • the radio access network device and the terminal device and the terminal device and the terminal device and the terminal device can communicate through a licensed spectrum, or can communicate through an unlicensed spectrum, or can simultaneously pass the licensed spectrum and Authorize the spectrum for communication.
  • the radio access network device and the terminal device and the terminal device and the terminal device can communicate through the spectrum below 6G, or can communicate through the spectrum of 6G or higher, and can simultaneously use the spectrum below 6G and the spectrum above 6G. Communicate.
  • the embodiment of the present application does not limit the spectrum resources used between the radio access network device and the terminal device.
  • the following describes an example of a downlink transmission in which the transmitting device is a network device and the receiving device is a terminal device.
  • a similar method can also be applied to an uplink transmission in which the transmission device is a terminal device, a reception device is a network device, and a D2D transmission to which the transmission device is a terminal device, and the reception device is also a terminal device.
  • the network device may allocate resources for the URLLC service in a preemptive manner.
  • the URLLC service data preempts part or all of the time-frequency resources for transmitting the eMBB service data
  • the transmit power of the eMBB service data is set to zero on the preempted time-frequency resource, or is not on the preempted time-frequency resource.
  • Sending eMBB service data which may also be called eMBB service data being punctured or time-frequency resources for transmitting eMBB service data, is punctured.
  • the terminal device receiving the eMBB service data may use the URLLC service data as the eMBB service data for decoding and the hybrid automatic repeat request (HARQ) merge. It will seriously affect the decoding of eMBB service data and the performance of HARQ merging.
  • HARQ hybrid automatic repeat request
  • the network device may send the indication information of the auxiliary reception to the terminal device, where the indication information of the auxiliary reception is used to notify the terminal device to receive Preempt or interfere with the affected time-frequency region to assist the terminal device in receiving and decoding data.
  • the terminal device may discard the data corresponding to the received time-frequency region, and the data of the region does not participate in decoding and HARQ combining, thereby improving decoding success. Rate, improve data transmission efficiency.
  • the indication information for the auxiliary reception may also be referred to as a puncturing indication or a pre-emption indication (PI).
  • PI pre-emption indication
  • the indication information of the auxiliary reception may also be used to indicate that a part of the time-frequency resources used for transmitting the eMBB service data is a reserved resource or an interference management resource.
  • the reserved resources herein may be reserved for use in a long term evolution (LTE) system.
  • LTE long term evolution
  • the first three time domain symbols of one subframe may be reserved for the physical downlink control channel of the LTE (physical downlink control channel, PDCCH) used.
  • the interference management resource herein may be a time-frequency resource for transmitting a reference signal or a zero-power reference signal.
  • time-frequency resources are simply referred to as occupied time-frequency resources: time-frequency resources reserved for time-frequency resources for transmitting eMBB service data, and time-frequency resources for transmitting eMBB service data.
  • occupied time-frequency resources for transmitting eMBB service data: one type is occupied by preemption mode, and the eMBB data on the occupied time-frequency resources is punctured, or It can be understood that the transmit power of the service data of the eMBB on the occupied time-frequency resource is set to zero; the other type is occupied by the rate matching method, and the eMBB service data is not carried on the occupied time-frequency resource, and the network device When data mapping is performed on the eMBB service data, the occupied time-frequency resource is not used as the time-frequency resource that carries the eMBB data.
  • the following takes an example of the time-frequency resource for transmitting the eMBB service data by using the URLLC service data as an example. It can be understood that the embodiment of the present application can also be applied to other application scenarios, for example, the first information preempts the time-frequency resource used for transmitting the second information, or the first information and the second information are at the same time frequency. The resources are sent and interfere with each other. This application does not limit the application scenario.
  • the business data affected here may be uMTC services or other services in addition to eMBB services. It can be understood that there are two ways for the first information to occupy the time-frequency resource for transmitting the second information, one is the preemption mode as described above, and the other is the rate matching manner as described above.
  • the network device may send the preemption indication information to the eMBB terminal device to tell the eMBB terminal device which time-frequency resources are preempted.
  • the preemption indication is used to indicate which part of the time-frequency resource is preempted within the PI region.
  • Figure 3 shows an example of the relationship between a PI region and the preempted time-frequency resource. As shown in FIG. 3, the time-frequency resource A is a PI region, and the time-frequency resource B is a time-frequency resource that is preempted.
  • the time-frequency resource B is equal to the time-frequency resource A. It can be understood that, due to the problem that the granularity of the PI indication is not fine enough, there may be an indicated preempted time-frequency resource B that is larger than the time-frequency resource area in which the preemption actually occurs.
  • PI can be sent in two ways:
  • UE-specific PI UE-specific PI
  • each eMBB UE is sent to a PI, which is used to indicate the location of the time-frequency resource that is preempted or punctured, and is carried in the UE-specific downlink control.
  • the DCI is sent by the network device to the UE through a physical downlink control channel (PDCCH).
  • PDCCH physical downlink control channel
  • sending one PI to each eMBB UE may be sent to each eMBB UE that is performing data transmission, or may be sent to each eMBB UE with resources being preempted.
  • the PI region is a resource allocated to the eMBB UE for data transmission.
  • the other is a group common PI, that is, a PI is sent to a group of eMBB UEs, and the PI is used to indicate the location of the time-frequency resource that the group of UEs is preempted or punctured, and the bearer is sent to the group.
  • a group common PI that is, a PI is sent to a group of eMBB UEs, and the PI is used to indicate the location of the time-frequency resource that the group of UEs is preempted or punctured, and the bearer is sent to the group.
  • the public DCI of the UE The public DCI is transmitted by the network device to a group of UEs through the PDCCH.
  • the PI region may include time-frequency resources for transmitting service data of a plurality of eMBB UEs.
  • each UE in the group of eMBB UEs determines an intersection between the scheduled time-frequency resource and the time-frequency resource B of the UE, where the intersection is the time-frequency of the UE being punctured. The location of the resource.
  • the group common PI is required to be sent to multiple eMBB UEs in the same group, and the transmission time interval (TTI) of different UEs in the same group, the data transmission duration of one scheduling, the subcarrier spacing, and other parameters. It may be different, so there is a need to determine a PI region, so that the UEs in the group can determine the preempted or punctured time-frequency resource B according to the range of the PI region and the information in the PI, and allocate the combination to The time-frequency resource of the UE further determines the time-frequency resource C that is preempted or punctured in the time-frequency resource allocated to the UE, so that the UE performs special processing, such as discarding, on the data received on the time-frequency resource C. The data on the time-frequency resource C, the data on the time-frequency resource C does not participate in decoding and HARQ combining.
  • TTI transmission time interval
  • the network device and the UE need to determine the granularity of the time-frequency resources that the PI can indicate.
  • the granularity of the fixed time-frequency resource when used, when the PI region changes, the number of bits required to indicate the PI of the preempted resource changes.
  • Another possible implementation manner is to fix the number of bits of the PI.
  • the granularity of the time-frequency resource indicated by each bit of the corresponding PI changes.
  • Embodiment 1 how to determine the PI region
  • the determination of the PI region is divided into three parts: determining the time domain position, frequency domain position and numerology of the PI region.
  • the transmission period of the PI is T first time units, and when the PI is transmitted in the Nth first time unit, the time domain position of the PI region is from the NX to the NY first time unit.
  • T and N are positive integers
  • X is an integer greater than zero and less than or equal to N
  • Y is an integer greater than or equal to zero and less than N
  • X is greater than Y.
  • the time domain length of the PI region is X–Y+1 first time units.
  • T X–Y+1, that is, the transmission period of the PI is equal to the length of time of the PI region.
  • the transmission period of the PI is 4 time slots
  • the transmission period of the PI is a first time unit, and when the PI is transmitted in the Nth first time unit, the time domain position of the PI region is the NX first time unit, where X Is an integer greater than or equal to zero and less than or equal to N.
  • the time unit for transmitting the PI may be a certain time unit within the time domain range of the PI region; as shown in FIG. 3B, the time unit for transmitting the PI may also be the time of the PI region. A time unit outside the domain. The present application does not limit the relationship between the time unit for transmitting the PI and the time domain range of the PI region.
  • the first time unit here may be a time unit under a specific numerology, specifically a time domain symbol, a mini-slot, a time slot or a subframe under the numerology; the first time unit It may also be a time unit unrelated to numerology, for example, may be 1 ms, 0.5 ms, 0.25 ms, 0.125 ms, or 0.25 microsecond (microsecond, ⁇ s).
  • the numerology herein includes a subcarrier spacing (SCS) and a cyclic prefix (CP) length, and at least one of the SCS and CP lengths is different for different numerologies.
  • SCS subcarrier spacing
  • CP cyclic prefix
  • the SCS is equal to 15 kilohertz (kilo hertz, kHz)
  • the CP is a normal CP
  • the SCS in a numerology is equal to 60 kHz
  • the CP is a normal CP
  • the SCS in a numerology is equal to 15 kHz
  • the CP is an extended CP.
  • the SCS in a numerology is 60 kHz
  • the CP is an extended CP.
  • the time domain location of the PI region can be predefined by the system.
  • the protocol determines the time domain location of the PI region in different scenarios.
  • the time domain location of the PI region can also be notified to the UE by signaling after the network device determines the location.
  • the signaling in the present application may be radio resource control (RRC) signaling or physical layer signaling, or may be signaling of a medium access control (MAC) layer.
  • RRC radio resource control
  • MAC medium access control
  • the control information transmission or signaling in the present application may be one or more of RRC signaling, physical layer signaling, or MAC layer signaling, unless otherwise specified.
  • Physical layer signaling is typically carried by the PDCCH.
  • the network device can configure different PI monitoring periods according to the service attributes of the UE. For example, for the mMTC service, the PI monitoring period configured for the UE is relatively large. Further, the network device may divide the UEs having the same service type into the same group, and the network device determines the PI transmission period according to the PI monitoring period of the same group of UEs, and determines the time domain length of the PI region. For example, one possible implementation is that the time domain length of the PI region is equal to the transmission period of the PI, which is equal to the monitoring period of the PI.
  • BP bandwidth part
  • 5G The concept of bandwidth part (BP) is introduced in 5G.
  • BP is a concept in the frequency domain, referring to resources in a frequency domain that can be continuous or discrete.
  • the network device configures a BP for the UE, all data transmissions of the UE are performed in the BP.
  • Different UEs can be configured with different BPs.
  • this common BP as the default BP (default) BP).
  • the frequency domain location of the PI region can be predefined by the system.
  • the protocol determines the frequency domain location of the PI region in different scenarios.
  • the frequency domain location of the PI region can also be notified to the UE by signaling after the network device determines the location.
  • the frequency domain position of the PI region can be indicated by using a predefined parameter as a reference point.
  • the predefined parameter can be one of the following parameters: a synchronization signal block (SS block), a default BP, Downstream carrier center, direct current (DC) subcarrier.
  • the SS block includes a primary synchronization signal, a secondary synchronization signal, and a Physical Broadcast Channel (PBCH) for initial access by the UE.
  • the network device can configure multiple SS blocks in the frequency domain, and the UE may detect multiple SS blocks and select one to access.
  • the downlink carrier center is the center frequency of the downlink carrier.
  • DC subcarrier the DC component in the carrier. In LTE, the DC subcarrier uses the center frequency point, but the NR may not use the center frequency of the downlink carrier.
  • the following uses the SS block when the UE accesses as the reference point to indicate the frequency domain location of the PI region.
  • the following three possible indication modes are listed:
  • the offset of the frequency domain start position of the PI region with respect to the SS block and the frequency domain width of the PI region are indicated. Since the SS block is a range in the frequency domain, when indicating and calculating the offset, the frequency domain start position, the frequency domain termination position, or the frequency domain point of the SS block can be used as a reference point, in FIG. The frequency domain termination position of the SS block is used as a reference point to calculate the frequency domain start position offset of the PI region.
  • the default BP is similar to the SS block and corresponds to a frequency domain resource. Therefore, according to the frequency domain location indication method of the SS region based on the SS block, the frequency domain location indication method of the PI region based on the default BP can be directly obtained. Add a statement.
  • the frequency domain position indication method of the PI region in which the following row carrier center is the reference point can be directly obtained by referring to the indication method in FIG. 4 with reference to the frequency domain termination position of the SS block, and details are not described herein.
  • the relevant parameters used to indicate the frequency domain position of the PI region can be given by referring to a certain numerology.
  • the offset and the frequency domain width are all in units of SCS under the numerology. .
  • the indication of the time domain position and the frequency domain position of the PI region can be given by referring to a numerology, which is called the numerology of the PI region.
  • the numerology of multiple eMBB UEs in the PI region may be different, it is necessary to determine a reference numerology for a group of UEs that receive the group common PI.
  • the numerology of the reference may be predefined by a protocol; or the network device determines the reference numerology and then notifies the UE by signaling; or the network device and the UE both default the numerology of the PI region and the numerology of the data channel or the control channel of the UE. the same.
  • the time-frequency location of the PI region and the location of the preempted time-frequency resource indicated by the PI cannot be determined according to the numerology of the UE.
  • the time-frequency range of the PI region may be determined according to the numerology of the PI region, and the range of the preempted time-frequency resource is further determined according to the content indicated by the PI.
  • the SCS in the numerology of the PI region is 60 kHz.
  • the time-frequency position indicating the preemption is 10 consecutive resource blocks (RBs) starting from the frequency point A, and four symbols are consecutively started at the time t. While UE 1 is a 15 kHz SCS, then for it, the preempted time-frequency position is 40 RBs starting at frequency A, and one symbol starting at time t.
  • the time-frequency resources of the PI region are discontinuous
  • the time-frequency resources in the PI region may be discontinuous. For example, if some time-frequency resources are control information of eMBB or time-frequency resources that are exclusive to service data and cannot be preempted by URLLC service data, the PI region may not include these. Time-frequency resources that cannot be preempted.
  • the first two time domain symbols of a time slot having seven time domain symbols are control areas of the eMBB, and the control information for transmitting the eMBB cannot be preempted by the URLLC service data.
  • the time domain range is two time slots, and then there are 10 time domain symbols that can actually be preempted in the PI region, and the ten time domain symbols are discrete in time. It can be understood that the resources that cannot be preempted in this application may also be reserved for use by LTE or interference management resources.
  • a part of the frequency domain resources are configured to be used only for eMBB data transmission, and cannot be used for URLLC data transmission, and the PI region may not include the part of the frequency domain resources.
  • both the area for eMBB data transmission only and the area reserved for eMBB control information are included in the PI region.
  • time-frequency region of the PI region time-frequency resources that cannot be preempted are discretely distributed.
  • the PI region configured by the network device to the terminal device or the predefined PI region of the system may be a continuous block including the time-frequency resource that cannot be preempted.
  • the terminal device can learn the time-frequency resources that cannot be preempted according to the predefined system.
  • the terminal device can also obtain time-frequency resources that cannot be preempted by the signaling sent by the network device.
  • the time-frequency region of the PI region includes a time-frequency resource that cannot be preempted
  • the terminal device may determine, according to the division of the pre-emptive resource and the non-preemptable resource in the PI region, that the resource indication portion in the PI includes several bits.
  • the indication mode is used by the PI, and whether the indicated time-frequency resource includes a non-preemptable resource may be predefined by the system or the network device may notify the terminal device by signaling.
  • the time-frequency resource that cannot be preempted herein refers to a time-frequency resource that cannot be preempted for downlink data transmission.
  • the time-frequency resource that cannot be preempted may include at least one of the following time-frequency resources: used for transmitting the PDCCH.
  • the UE can obtain the slot configuration through two types of signaling: one is cell-specific signaling, such as a broadcast message through RRC and/or a DCI common to the cell; the other is UE-level. (UE specific) signaling, for example, through RRC signaling at the UE level and/or DCI at the UE level.
  • the slot configuration herein may include the configuration of each symbol in the slot: whether the symbol is for uplink transmission or for downlink transmission, or the symbol is a GAP symbol, or the symbol is an unknown symbol.
  • UE-level signaling it can only be received by a specific UE. Therefore, the PI region cannot use the slot configuration of the UE level as a reference for defining the PI region.
  • the network device or the terminal device uses the slot configuration of the UE level as a reference for defining the PI region, for example, excluding the uplink symbols configured in the signaling of the UE level from the PI region, different UEs may understand the PI region. Differently, the network device cannot notify the preempted resource location in the PI region through the common DCI. Therefore, the PI region can only use the slot configuration at the cell level as a reference for defining the PI region, and can exclude the uplink symbols configured in the cell-level signaling from the PI region, or can also configure the GAAP configured in the cell-level signaling. The symbols are excluded from the PI region, and unknown symbols configured in the cell-level signaling may also be excluded from the PI region.
  • the cell-level signaling is configured with 14 symbols numbered 0 to 13 in one slot, 10 symbols numbered 0 to 4 and 7 to 11 are downlink symbols, and symbols numbered 5 and 12 are GAP symbols.
  • the symbols numbered 6 and 13 are the up symbols. Then the network device and the terminal device can exclude the uplink symbols numbered 6 and 13 from the PI region, and can also exclude the GAP symbols numbered 5 and 12 from the PI region.
  • Embodiment 2 Design of PI under fixed bit length
  • the number of blind detections of the DCI by the UE can be reduced. Because the PI is carried by the DCI, when the bit length of the PI changes with the change of the PI region, the UE needs to perform blind detection on the DCIs with different lengths to confirm whether the network device sends the PI.
  • the PI region is also referred to as a first time-frequency resource.
  • the content of the DCI carried on the PDCCH is only PI, we can also refer to the PI as being carried by the PDCCH. In this case, the PI and the DCI can be replaced equally.
  • the PI includes a field A, and the field A is used to indicate the time-frequency resource B that is preempted.
  • the length of the field A is fixed to m bits. The following describes how the field A indicates the time-frequency resource B.
  • the PI region is divided into m sub-regions, and each bit in the domain A corresponds to the m sub-regions one-to-one, and is used to indicate whether information transmission in each sub-region is affected.
  • m is a positive integer.
  • a value of 1 in the field A indicates that the corresponding sub-region is preempted.
  • a value of 0 indicates that the corresponding sub-region is not preempted.
  • a value of 0 indicates that the corresponding sub-region is preempted.
  • a value of 1 indicates that the corresponding sub-region is not preempted. If m is equal to 1, it indicates that 1 bit is used to indicate whether there is a punch in the PI region.
  • the information transmission here is affected by the transmission of information transmission information by other information transmission preemption or the information transmission is interfered by other information transmission. In the present application, information transmission is affected and information transmission is preempted and interchangeable.
  • the information transmission here includes data transmission, signaling transmission, reference signal transmission and the like.
  • the PI region has n third time units, n is a positive integer, and the third time unit can be a time domain symbol, a microslot, a time slot, a sub-frame, or other time.
  • the time unit of length The PI region is divided from the time domain into min(n, m) second time units, each of the m bits being used to indicate whether information transmission in a second time unit in the PI region is affected.
  • min(n,m) represents the minimum of n and m.
  • the second time unit here is the above sub-region.
  • the PI region is divided into n second time units, and each second time unit corresponds to one third time unit.
  • n bits in the field A for indicating whether the time-frequency resources of the n second time units are preempted.
  • the first n bits in the field A are used to indicate whether the time-frequency resources of the n second time units are Preemption
  • the last m–n bits in field A are set to default values and have no specific meaning.
  • the PI region is divided into m second time units, each second time unit corresponding to k third time units, and each bit in the m bits is used to indicate the time of one second time unit Whether the frequency resource is preempted, k is a positive integer.
  • the PI region is divided into m second time units, where m ⁇ r second time units correspond to k third time units, and r second time units correspond to k+1 third time units, for example: first mr The second time unit corresponds to k third time units, and the second r time units correspond to k+1 third time units; or the first r second time units correspond to k+1 third time units, after m – r second time units correspond to k third time units.
  • Each of the m bits is used to indicate whether the time-frequency resource of a second time unit is preempted.
  • the PI region includes f frequency domain units and n third time units, where the frequency domain unit may be a subcarrier or an RB, or may be an RB group, or may be another frequency domain composed of at least two RBs. Unit, where f and n are both positive integers. Then the PI region includes f*n time-frequency units, and each time-frequency unit corresponds to a frequency domain unit on a third time unit. The time-frequency units on the PI region may be numbered sequentially, either in the time domain or in the frequency domain, or in the frequency domain. This application does not limit this.
  • each sub-region in the f*n sub-regions corresponds to one time-frequency unit, for example, each sub-region in the first f*n sub-regions corresponds to one time-frequency unit.
  • the first f*n bits in the field A are used to indicate whether the information transmission on the f*n time-frequency units is preempted, and the last m–f*n bits in the field A are set to default values, and no specific meaning.
  • each sub-region in the m sub-regions corresponds to k time-frequency units, and k is a positive integer.
  • m–r sub-regions correspond to k time-frequency units
  • r sub-regions correspond to k+1 time-frequency units
  • the first m–r subs in m sub-regions -region corresponds to k time-frequency units
  • the next r sub-regions in m sub-regions correspond to k+1 time-frequency units
  • the first r sub-regions in m sub-regions correspond to k+1
  • the time-frequency units, the m-r sub-regions in the m sub-regions correspond to k time-frequency units.
  • the system pre-defines the mapping relationship between the time domain length of the PI region and the time domain segmentation granularity of the PI region as shown in Table 1.
  • the symbol in the present application refers to a time domain symbol, which may be an orthogonal frequency division multiplexing (OFDM) symbol, or may be a discrete fourier transform spread OFDM (discrete fourier transform spread OFDM). DFT-s-OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • DFT-s-OFDM discrete fourier transform spread OFDM
  • PI region time domain length Time domain segmentation granularity of PI region 7 symbols (1 time slot) 1 symbol, 2 symbols 14 symbols (2 time slots) 2 symbols, 7 symbols
  • the frequency domain is finely divided, the time domain is divided coarsely. Conversely, if the frequency domain is coarsely divided, the time domain is relatively fine. .
  • the PI region is divided into m sub-regions, so a strategy is needed to further determine which segmentation method is adopted, so that the network device and the UE have the same understanding of the segmentation method.
  • a possible strategy is to determine the segmentation method by the system pre-defined rule A, so that the network device and the UE have the same understanding of the segmentation method; another possible strategy is that the network device determines the segmentation method according to the rule B, and then passes the signaling. The method notifies the UE of the segmentation method, so that the network device and the UE have the same understanding of the segmentation method.
  • the signaling here may be RRC signaling, MAC layer signaling or physical layer signaling.
  • the factors considered by the rule A and the rule B may include the frequency domain width of the PI region, the frequency domain segmentation granularity (ie, the frequency domain unit), the time domain length of the PI region, and the time domain segmentation granularity of the PI region (ie, the third At least one of the time unit) and the time-frequency region size of the PI region.
  • the segmentation method that divides only in the time domain is selected; when the time domain length of the PI region is less than or equal to the threshold A, the segmentation that simultaneously performs segmentation in the time domain and the frequency domain is selected. method.
  • the time-frequency region size of the PI region is smaller than the threshold B, a method of simultaneously splitting in the time domain and the frequency domain is selected, and a smaller time domain segmentation granularity B and a frequency domain segmentation granularity B are selected; when the PI region is When the time-frequency region size is greater than or equal to the threshold B is less than the threshold C, the method of simultaneously splitting in the time domain and the frequency domain is selected, and the medium time domain segmentation granularity C and the frequency domain segmentation granularity C are selected; when the time-frequency region of the PI region is When the threshold C is greater than or equal to, the method of simultaneously splitting in the time domain and the frequency domain is selected, and the larger time domain segmentation granularity D and the frequency domain segmentation granularity D are selected. Since the time-frequency region size of the PI region can be obtained by the time domain length and the frequency domain width of the PI region, the segmentation method can also be determined according to the time domain length of the PI region and the
  • Table 2 shows a possible selection strategy table for selecting a segmentation method according to the PI region frequency domain width and the PI region time domain length.
  • the values in the individual cells in Table 2 are only for the purpose of illustration.
  • the specific considerations and the selection strategy can be designed according to the actual needs, which is not limited in this application.
  • the table may be in the form of a table in a specific implementation, or may be implemented by a branch selection and judgment statement such as if else or switch case in a similar programming language C language.
  • the scheme of flexibly selecting the segmentation method according to actual needs can flexibly adapt to various possible scenarios and achieve the maximum efficiency of the PI indication.
  • the PI region includes f frequency domain units and n third time units.
  • the network device and/or the terminal device divides the n third time units in the PI region into m1 second time units, where m1 is a positive integer; and divides the f frequency domain units in the PI region into n1 second frequency domains. Unit, n1 is a positive integer.
  • the PI region is divided into m1*n1 second time-frequency units, wherein each second time-frequency unit corresponds to a second frequency-domain unit on a second time unit.
  • the PI region includes 14 symbols and 100 RBs, and divides the time domain of the PI region into seven second time units, each of which corresponds to two symbols, and divides the frequency domain of the PI region into two.
  • a two-frequency domain unit each of the second frequency domain units corresponding to 50 RBs.
  • the PI region is divided into 14 second time-frequency units, each of which corresponds to 50 RBs on two symbols.
  • how the network device and/or the terminal device divides the n third time units in the PI region into m1 second time units can be directly obtained by referring to the related description in (2.1) above.
  • How the network device and/or the terminal device divides the f frequency domain units in the PI region into n1 second frequency domain units can be directly obtained by referring to the related description in (2.2) above.
  • a field A of length m is used to indicate whether m1*n1 second time-frequency units are preempted.
  • the specific indication method is as follows:
  • each bit in the field A is used to indicate whether a second time-frequency unit is preempted.
  • each of the m-q2 bits in the field A is used to indicate whether the q1 second time-frequency units are preempted, and each of the q2 bits in the field A is used to indicate q1+1 second time respectively. Whether the frequency unit is preempted. For example, each of the first m-q2 bits in the field A is used to indicate whether the q1 second time-frequency units are preempted, and each of the last q2 bits in the field A is used to indicate q1+1.
  • each of the last m-q2 bits in the field A is used to indicate whether the q1 second time-frequency units are preempted, and the first q2 bits in the field A are Each bit is used to indicate whether q1+1 second time-frequency units are preempted.
  • the m1*n1 bit in the field A is used to indicate whether m1*n1 second time-frequency units are preempted.
  • each of the first m1*n1 bits in the field A is used to indicate whether each of the second time-frequency units in the m1*n1 second time-frequency units is preempted, and the last m– in the field A ⁇ ( M1*n1) bits can be set to default values without specific meaning; or each of the last m1*n1 bits in field A is used to indicate each of m1*n1 second time-frequency units Whether the second time-frequency unit is preempted, the first m–(m1*n1) bits in the field A can be set as default values, and have no specific meaning.
  • the number order of the m1*n1 second time-frequency units may be in the time domain and then in the frequency domain, or may be in the frequency domain and then in the time domain.
  • the PI region is divided into seven second time units in the time domain, and is divided into two second frequency domain units in the frequency domain as an example.
  • the numbers of the second frequency domain unit, the second time unit, and the second time-frequency unit may start from 0 or start from 1, and the numbering starts with 0 as an example.
  • the second time unit numbered 0 corresponds to two second time-frequency units numbered 0 and 1, and the second time unit numbered 1
  • the second time-frequency unit numbered 0 may be corresponding to the second time-frequency unit with a large frequency, or may be corresponding to the second time-frequency unit with a small frequency. This application is not limited.
  • the second frequency-domain unit numbered 0 corresponds to the seven second time-frequency units numbered 0 to 6, and the second number is 1.
  • the frequency domain unit corresponds to seven second time-frequency units numbered 7 to 13.
  • the second frequency domain unit numbered 0 may be corresponding to the second frequency domain unit with a large frequency value, or may be corresponding to the second frequency domain unit with a small frequency value, which is not limited in this application.
  • a sub-region in which the preemption occurs may be first indicated in the PI, and then the sub-region is further divided into multiple A mini-region indicates which mini-regions in the sub-region are preempted.
  • the PI includes a field B to indicate which sub-region is preempted.
  • Field B can also be referred to as an indication field.
  • the indication field has a value of 6. It should be noted that in the present application, the values of the various numbers are related to a specific numbering method. For example, the numbering may start from 0 or start from 1. If the number starts from 1, the number of the sixth sub-region is 6; if the number starts from 0, the number of the sixth sub-region is 5.
  • the value of the indication field may be 5 or may be 6, depending on the numbering method, which is not limited in this application.
  • the sub-region indicated by the field B may also be referred to as a target sub-region.
  • the field C and the field D may be further included in the PI, where the field C is used to indicate a segmentation method in the target sub-region, and the field D is used to indicate which mini-regions in the sub-region are preempted.
  • Field C can also be referred to as an option field.
  • Field D may use a bit bitmap of length L bits to indicate which mini-regions are preempted, where L is a positive integer.
  • FIG. 4E illustrates a method for dividing a PI region according to an embodiment of the present application.
  • the PI region is divided into 16 sub-regions, and some or all of the time-frequency resources in the sixth sub-region are preempted.
  • the field B in the PI is used to indicate that the sixth sub-region is preempted
  • the field C is used to indicate that the sixth sub-region is divided into four mini-regions by using 2*2, and the field D is passed.
  • the 4 bits indicate which of the 4 mini-regions in the 6th sub-region are preempted.
  • the P*Q segmentation method means that the region to be divided is divided into a P portion in the time domain and a Q portion in the frequency domain, wherein P and Q are positive integers.
  • Table 2A is an example of the bit lengths of the field B, the field C, and the field D, where the field B and the field C are 2 bits each, and the field D is 14 bits.
  • the 2-bit C field is used to indicate one of the following four partitioning modes: 2*7, 7*2, 3*4, 4*3.
  • the length of field B (indicating field)
  • the length of field C (select field) Length of field D 2 bits 2 bits 14 bits
  • one bit of the field D corresponds one-to-one with the mini-reigion in the target sub-region.
  • the field C indicates that the division mode of 2*7 or 7*2 is adopted
  • 14 bits of the field D correspond one-to-one with 14 mini-regions in the target sub-region.
  • the bit length L of the field D is greater than the number of mini-regions in the target sub-region, that is, L>P*Q
  • the first P*Q bits or the last P*Q bits in the field D and the target sub-region The P*Q mini-reigion in the one-to-one correspondence.
  • the field C indicates that the partitioning mode of 3*4 or 4*3 is adopted
  • the first 12 bits or the last 12 bits in the D field are in one-to-one correspondence with the 12 mini-regions in the target sub-region, and the remaining ones 2 bits are reserved bits.
  • the first 9 mini-regions in the target sub-region correspond to one bit in the field D
  • the last 6 mini-regions in the target sub-region corresponds to one bit in the field D.
  • the bit lengths of the field B, the field C, and the field D are fixed, so that the terminal device can separately parse the values of the three fields after receiving the PI.
  • the length of the field B, the field C, and the field D can be dynamically changed according to the actual application scenario, so as to improve the indication accuracy of the PI as much as possible, and reduce the amount of valid data discarded by the terminal device after receiving the PI, and improve the data. Transmission rate.
  • the PI may further include a field E for indicating the format of the PI.
  • the format of the PI may include: whether the field B exists and the bit length of the field B; whether the field C exists and the bit length of the field C; the bit length of the field D.
  • the field E can be used to dynamically indicate the bit lengths of the field B, the field C, and the field D.
  • Field E can also be referred to as a format indication field.
  • the total length of the field B, the field C, the field D, and the field E may be fixed to a certain value.
  • the total length of the field B, the field C, the field D, and the field E is 23 bits, wherein the length of the field E is 2 bits, and the sum of the lengths of the field B, the field C, and the field D is 21 bits.
  • the PI includes the field D but does not include the field B and the field C.
  • the length of the field D is 21 bits.
  • the field D is used to indicate whether the resources of the sub-region in the PI region are preempted.
  • the value of the field E is 1, the PI includes the field B and the field D but does not include the field C.
  • the length of the field B is 2 bits, and the length of the field D is 19 bits; when the value of the field E is 2
  • the PI includes a field C and a field D.
  • the length of the field C is 2 bits, and the length of the field D is 19 bits.
  • the field C indicates the division manner in which the PI region is divided into sub-regions, and the field D is used to indicate Whether the resource of the sub-region in the PI region is preempted; when the value of the field E is 3, the PI includes the field B, the field C, and the field D.
  • the length of the field B is 2 bits, and the length of the field C is 2 bits.
  • the length of the field D is 17 bits.
  • the format of the PI may also be distinguished by using different radio network temporary identifiers (RNTIs), that is, using different RNTIs to scramble DCI cyclic redundancy codes (CRCs). , wherein the DCI includes PI.
  • RNTIs radio network temporary identifiers
  • CRCs DCI cyclic redundancy codes
  • the payload of the PI can be reduced by 2 bits under the premise that the indication precision is unchanged, or the number of bits for effectively indicating the preempted area can be increased by two bits, thereby improving the indication accuracy of the PI.
  • RNTI0, RNTI1, RNTI2, and RNTI3 respectively indicate different formats of PI, that is, different values indicating the lengths of the field B, the field C, and the field D.
  • the format of the PI may also be indicated by the time-frequency location of the bearer PI, or the format of the PI may be semi-statically indicated by RRC signaling.
  • the DCI may include W PIs, where W is a positive integer, and each PI includes a field B, a field C, a field D, and a field E, where the field B and the field C are optional.
  • W is used to indicate whether data transmission of one or a group of terminal devices is preempted.
  • the grouping of the terminal devices may be divided according to a bandwidth part (BWP) of the terminal device. For example, terminal devices configured with the same BWP are grouped into one group.
  • BWP bandwidth part
  • the value of W can be configured by the network device to the terminal device through RRC signaling.
  • Embodiment 3 Design of PI with bit length variation
  • the preempted time-frequency resource B can be more effectively indicated. For example, when the PI region is relatively small, you can select fewer bits and reduce the PI overhead. When the PI region is larger, you can select more bits, making the indication granularity smaller and more accurate. If the time-frequency resource is preempted, the UE that receives the preemption indication discards the data on the large-time time-frequency resource, so that the data transmission efficiency can be effectively improved.
  • Different PI formats will result in different DCI formats.
  • the set A ⁇ PI1, PI2 ⁇ , where the field A in PI1 has 7 bits, and the field A in PI2 has 14 bits.
  • the format PI1 is used; when the time domain size of the PI region is 2 slots, the format PI2 is used.
  • the set A ⁇ PI1, PI2, PI3 ⁇ , where the field A in PI1 has 7 bits, the field A in PI2 has 14 bits, and the field A in PI3 has 21 bits.
  • the format PI1 is used; when the number of time-frequency units of the PI region is greater than RB2, the format PI3 is used; when the number of time-frequency units in the PI region is greater than RB1 and smaller than When equal to RB2, the format PI2 is used.
  • the definition of the time-frequency unit herein can be referred to the second embodiment of the present application.
  • Both RB1 and RB2 are positive integers, which are thresholds of time-frequency units, and RB1 is smaller than RB2.
  • the network device and the UE may also determine the format of the PI according to the PI monitoring period of the UE. For example, the longer the PI monitoring period, the longer the bit length of field A in the selected PI.
  • the foregoing method for determining the PI format may be: pre-defining the rule C by the system, and determining the format of the PI according to the rule, and the network device and the UE may obtain the input parameter of the rule, so that the network device and the UE can determine the PI according to the rule C.
  • the format is consistent with the understanding of the PI format; another possible strategy is that the network device determines the format of the PI according to the rule D, and then notifies the UE of the PI format by means of signaling, so that the network device and the UE are in the PI format. Understand the same.
  • the signaling here may be RRC signaling, MAC layer signaling or physical layer signaling.
  • the factors considered by the rule C and the rule D may include the frequency domain width of the PI region, the frequency domain segmentation granularity (ie, the frequency domain unit), the time domain length of the PI region, and the time domain segmentation granularity of the PI region (ie, the third At least one of a time unit), a PI monitoring period, a PI transmission period, a numerology, and a time-frequency region size of the PI region.
  • Table 3 shows a possible selection policy table for selecting the PI format according to the PI region frequency domain width, the PI region time domain length, and the numerology.
  • the values in the individual cells in Table 3 are only for the purpose of illustration. The specific considerations and the selection strategy can be designed according to actual needs, which is not limited in this application. This scheme of flexibly selecting PI according to actual needs can flexibly adapt to various possible scenarios and achieve a better compromise between PI indication efficiency and PI indication overhead.
  • Embodiment 4 PI design with fixed granularity in the frequency domain
  • the frequency domain of the PI region is segmented according to a fixed granularity, for example, according to the granularity of a resource block group (RBG).
  • the PI indicates in the frequency domain whether each sub-region after the partition is preempted.
  • the size of the RBG may be determined according to a frequency domain width of the PI region. For example, if the frequency domain width of the PI region is less than 10 MHz (MegaHertz, MHz), the RBG may be two resource blocks (RBs); when the frequency region width of the PI region is greater than 10 MHz and less than 20 MHz, the RBG may be four. RB.
  • the frequency domain division of the PI region there are k sub-regions including p RBs, one sub-region containing r RBs, or k-1 sub-regions including p RBs, and one sub-region containing p + r RBs.
  • the time domain of the PI region can also be segmented in a similar manner.
  • the fixed time domain granularity is x symbols. The specific segmentation process is the same as the segmentation process in the above frequency domain, and will not be described here.
  • the frequency domain processing of the PI region is performed based on the numerology of the PI region.
  • FIG. 5 is a method for transmitting control information according to Embodiment 5 of the present application, the method includes:
  • the network device determines first indication information, where the first indication information is used to indicate whether information transmission in the first time-frequency resource is affected. It can be understood that the content of the first indication information is determined according to a scheduling result before the first indication information is sent.
  • the first indication information is the indication information of the auxiliary reception, and the first time-frequency resource is the PI region.
  • the time domain location and the frequency domain location in the first time-frequency resource are predefined by a system predefined or protocol.
  • the network device sends the first control information, where the first control information includes frequency domain location information of the first time-frequency resource; the time domain location in the first time-frequency resource is predefined by a system predefined or protocol.
  • the frequency domain location information of the first time-frequency resource included in the first control information is determined by a frequency domain location where the eMBB UE and the URLLC UE coexist.
  • the first control information may be transmitted by one or more of RRC signaling, physical layer signaling, or MAC layer signaling.
  • the network device sends the first control information, where the first control information includes time domain location information of the first time-frequency resource; the frequency domain location information in the first time-frequency resource is predefined by a system predefined or protocol.
  • the network device sends first control information, where the first control information includes time domain location information and frequency domain location information of the first time-frequency resource.
  • the frequency domain location information of the first time-frequency resource includes start location offset information and frequency domain width information.
  • the frequency domain location information of the first time-frequency resource may further include reference point information of the frequency domain location.
  • the reference point of the frequency domain location, the starting location offset and the frequency domain width jointly determine the frequency domain location of the first time-frequency resource, wherein the reference point of the frequency domain location may be predetermined by a system or protocol, or may be The first control information is sent by the network device to the UE.
  • the terminal device receives the first control information.
  • the method for determining the time domain location information of the first time-frequency resource may refer to the first embodiment.
  • the values of the three variables X, Y and T in the first embodiment are predefined, or the values of the two variables X and Y are predefined;
  • the first control information includes value information of three variables of X, Y, and T, or the first control information includes value information of two variables of X and Y, or the first control information includes X.
  • the variable value information of Y, and the values of the variables not included in the first control information in X, Y, and T are predefined by the system or predefined by the protocol.
  • the method for determining the frequency domain location information of the first time-frequency resource may refer to the first embodiment.
  • the reference point, the starting position offset and the frequency domain width of the frequency domain location in Embodiment 1 may be predefined; for the signaling manner, the first control information
  • the information including the reference point of the frequency domain position, the start offset, and the frequency domain width, or the first control information includes one of the reference point information of the frequency domain position, the start position offset information, and the frequency domain width information.
  • Two information, not included in the first control information is predefined by the system or predefined by the protocol.
  • the network device needs to notify the terminal device of the manner in which the time-frequency resource is occupied in a display or implicit manner.
  • the terminal device can perform different processing according to different manners in which time-frequency resources are occupied.
  • the terminal device directly discards the data on the occupied time-frequency resource, does not participate in decoding, and does not participate in HARQ combining, and determines each code block (CB) according to the time-frequency resource used for data transmission.
  • CB code block
  • the position of each CB on the time-frequency resource is determined according to the occupied time-frequency resource and the time-frequency resource used for data transmission, and further inverse rate matching and decoding processing are performed. Through such display or implicit indication, the terminal device can correctly determine the location of each CB on the time-frequency resource, and ensure that the network device and the terminal device have the same understanding of the mapping manner of the data on the time-frequency resource, thereby ensuring reception.
  • the data can be decoded correctly.
  • the first possible implementation manner is that the first indication information includes a first field, where the first field is used to indicate a manner in which information transmission in the first time-frequency resource is affected, that is, a time-frequency resource in the first time-frequency resource.
  • Occupied mode Preemption mode and rate matching mode.
  • the length of the first field may be one bit.
  • the first field has a value of 1 for the preemption mode.
  • the first field has a value of 0 for the preemption mode.
  • the first field has a value of 1 for the preemption mode. the way.
  • the second possible implementation manner is that the first indication information includes a second field, and the second field is used to indicate which resource type occupies the time-frequency resource in the first time-frequency resource.
  • the URLLC service may be represented by 0, with 1 indicating reserved resources and 2 indicating interference management resources.
  • each resource type may correspond to a manner in which the time-frequency resource is occupied.
  • the URLLC service corresponds to the preemption mode, and the reserved resource and the interference management resource all correspond to the rate matching mode.
  • a third possible implementation manner is that the first indication information includes a first field and a second field, and there is no binding relationship between the resource type and the manner in which the time-frequency resource is occupied.
  • the fourth possible implementation manner is to implicitly notify the manner in which the time-frequency resource is occupied by defining a correspondence between the control resource set (CORESET) and the time-frequency resource occupied mode.
  • the first indication information is sent on the CORESET1, indicating that the time-frequency resource is occupied in the preemptive manner, and the first indication information is sent on the CORESET2, indicating that the time-frequency resource is occupied in a rate matching manner.
  • the fifth possible implementation manner is to implicitly notify the manner in which the time-frequency resource is occupied by defining a correspondence between the radio network temporary identifier (RNTI) and the time-frequency resource occupied mode.
  • RNTI radio network temporary identifier
  • the first indication information is scrambled by using RNTI1, indicating that the time-frequency resource is occupied in a preemptive manner, and the first indication information is scrambled by using RNTI2, indicating that the time-frequency resource is occupied in a rate matching manner.
  • RNTI1 and RNTI2 There may be multiple RNTI1 and RNTI2 that satisfy the above mapping relationship.
  • a sixth possible implementation manner is to implicitly notify the manner in which the time-frequency resource is occupied by defining a correspondence between a payload size of the first indication information and a manner in which the time-frequency resource is occupied.
  • the load size of the first indication information is p1, indicating that the time-frequency resource is occupied in a preemptive manner
  • the load size of the first indication information is p2, indicating that the time-frequency resource is occupied in a rate matching manner.
  • a seventh possible implementation manner is to determine a manner in which time-frequency resources are occupied by sending a time domain location of the first indication information. For example, the time domain location of the first indication information is sent before the first time-frequency resource, and the time-frequency resource may be occupied by the rate matching manner; when the time domain location of the first indication information is sent after the first time-frequency resource , the time indicating that the time-frequency resource is occupied in the preemptive manner; when the time domain location in which the first indication information is sent is located in the first time-frequency resource, when the first indication information is sent in the first n time-domain symbols The time-frequency resource is occupied in the rate matching manner. When the first indication information is sent in the last m time-domain symbols, it may indicate that the time-frequency resource is occupied in the preemptive manner.
  • An eighth possible implementation manner is: pre-configuring different resource regions, and determining, according to the first time-frequency resource or the location of the affected time-frequency resource indicated by the first indication information, determining a manner in which the time-frequency resource is occupied.
  • the pre-configured coexistence area of the URLLC and the eMBB is B1
  • the area reserved for LTE is B2
  • the resource area used for interference management is B3.
  • the time-frequency resource is considered to be occupied in a preemptive manner, when the terminal device finds that the first indication information is affected.
  • the frequency resource is located in B2 or B3
  • the time-frequency resource is considered to be occupied by rate matching.
  • the network device sends the first indication information by using a PDCCH.
  • the network device sends the first indication information by using the PDCCH on the Nth first time unit.
  • the terminal device receives the first indication information.
  • the first time unit here is the length of time under a certain numerology, and may be a time domain symbol, a minislot, a time slot or a subframe under the numerology.
  • the numerology here can be the same or different from the numerology used for data transmission.
  • the length of the first time unit is equal to the time domain length of the first time-frequency resource.
  • the foregoing first indication information includes second indication information of length m bits, where m is an integer greater than 1, and each bit of the second indication information is used to indicate a second one of the first time-frequency resources. Whether the information transmission of the time unit is affected, wherein the time domain length of the second time unit is less than or equal to the time domain length of the first time frequency resource.
  • the second indication information here corresponds to the field A in the second embodiment. For a detailed definition of the second time unit, reference may be made to the second embodiment.
  • the foregoing first indication information includes second indication information of length m bits, where each bit of the second indication information is used to indicate information in a second time-frequency resource in the first time-frequency resource. Whether the transmission is affected, where m is an integer greater than 1, and the frequency domain width of the second time-frequency resource is less than or equal to the frequency domain width of the first time-frequency resource.
  • m is an integer greater than 1
  • the frequency domain width of the second time-frequency resource is less than or equal to the frequency domain width of the first time-frequency resource.
  • the network device can send the first indication information when the sending timing of the first indication information arrives.
  • the sending opportunity may be determined by the sending period. For example, if the sending period of the first indication information is 4 time slots, the network device may send the first indication information every 4 time slots, where the first indication information is used to indicate Whether the frequency resources are affected and which part of the time-frequency resources are affected.
  • the network device may first determine whether there is a time-frequency resource for information transmission in the PI region, and the affected area includes being preempted. If the time-frequency resource is affected in the PI region, the first indication information is sent to indicate which part of the time-frequency resource is affected.
  • the sending timing of the first indication information sent by the network device may be jointly determined by the sending period and the sending offset.
  • the sending period is T first time units
  • the reference reference for sending the offset may be a radio frame, a sub- The starting position of a time unit such as a frame or a time slot
  • the transmission offset may be K first time units.
  • the receiving timing of receiving the first indication information by the terminal device is the same as the sending timing of the first indication information sent by the network device, and the receiving timing of receiving the first indication information by the terminal device may also be referred to as a monitoring occasion or a detecting occasion.
  • the terminal device may monitor the first indication information when the monitoring timing of the first indication information arrives.
  • the monitoring timing is determined by the monitoring period. For example, if the monitoring period of the first indication information is 4 time slots, the terminal device may monitor the first indication information every 4 time slots to confirm whether the network device sends the first time. Instructions. If the network device sends the first indication information, the first indication information is demodulated and decoded.
  • the terminal device may also determine, when the monitoring opportunity of the first indication information arrives, whether data or control information is sent to the terminal device in the first time-frequency resource corresponding to the monitoring occasion of the first indication information, if If data or control information is sent to the terminal device in the time-frequency resource, the first indication information is monitored to confirm whether the network device sends the first indication information.
  • the terminal device may determine, after the monitoring time of the first indication information arrives, the first time-frequency resource is removed from the unpreemptable time-frequency resource. Whether there is data or control information in the time-frequency resource is sent to the terminal device.
  • the non-preemptable time-frequency resource may be a reserved time-frequency resource, and the reserved time-frequency resource may be used for forward compatibility or backward compatibility, and may also be used for sending an RS or the like. If data or control information is sent to the terminal device in the time-frequency resource after the non-preemptable time-frequency resource is removed from the first time-frequency resource, the first indication information is monitored to confirm whether the network device sends the first indication. information. If the network device sends the first indication information, the first indication information is demodulated and decoded.
  • the control information here includes reference information or reference signals.
  • the first time-frequency resource corresponding to the monitoring occasion of the first indication information may be obtained by referring to the first embodiment.
  • the terminal device monitors the first indication information only when necessary, thereby saving processing resources of the terminal device and reducing energy consumption of the terminal device.
  • the channel state information may be fed back to the terminal device.
  • the timing is adjusted.
  • the RS here may be a CSI-RS or other RSs.
  • the CSI-RS is taken as an example below. If the time-frequency resources used by the terminal device to receive the CSI-RS are preempted or affected, the CSI measurement performed by the terminal using the pre-empted or affected time-frequency resources may have a large deviation.
  • the terminal device After the terminal device determines that the time-frequency resource used for receiving the CSI-RS is preempted or affected by the first indication information, the CSI-RS on the part of the time-frequency resource may be removed, and the CSI measurement is performed again to update the CSI measurement. result. Considering that the update of the CSI measurement result may affect the feedback timing of the CSI, the terminal device may adjust the timing of the CSI feedback to enable the terminal device to feed back more accurate CSI measurement results to the network device.
  • FIG. 5A is a schematic diagram of timing of CSI feedback according to an embodiment of the present application.
  • the terminal device receives the CSI-RS at time T0 and performs CSI measurement based on the CSI-RS.
  • T1 is a time when the terminal device receives the first indication information, and T1 is greater than T0.
  • T2 is the time at which the terminal device feeds back CSI based on the CSI-RS received at time T0.
  • T3 is the time at which the terminal device feeds back the updated CSI.
  • T3 is less than equal T2
  • the CSI can be fed back at time T2 or fed back at time T3.
  • T3 is greater than T2, the CSI is fed back at time T3.
  • the terminal device adjusts the CSI feedback timing from T2 to T3.
  • the terminal device may cull the CSI on the preempted or affected time-frequency resource based on the content of the first indication information.
  • the RS re-calculates the CSI-RS of the remaining part, updates the CSI measurement result, and feeds back the updated CSI measurement result to the network device at time T3.
  • the terminal device further receives the second indication information from the network device, where the second indication information is used to indicate whether the terminal device needs to monitor the first indication information.
  • the network device sends the second indication information to the UE to instruct the UE to monitor the first indication information to determine the data transmission of the eMBB UE. Whether the resource is preempted by URLLC.
  • the CSI feedback time is adjusted from the time T2 to the time T3.
  • Another possible implementation manner is: when T3 is greater than or equal to T2 and T2 is greater than T1, if the terminal device needs to monitor the first indication information but does not detect the first indication information, or the received first indication information indicates the time of T0.
  • the time-frequency resources of the CSI-RS are not preempted or affected, and the terminal device feeds back the CSI measurement result to the network device at time T2.
  • the parameters related to the CSI feedback timing may also be determined by the network side, and then notified to the terminal device by using RRC signaling or physical layer signaling, where the parameters related to the CSI feedback timing may include ⁇ t1 and ⁇ t2.
  • the terminal device determines, according to the first indication information, whether information transmission in the third time-frequency resource is affected, where the third time-frequency resource is a time-frequency resource used for downlink information transmission between the terminal device and the network device.
  • the time-frequency resource in which the third time-frequency resource and the first time-frequency resource may overlap may also have no overlapping time-frequency resources.
  • the third time-frequency resource does not overlap with the first time-frequency resource, the information transmission of the terminal device is not affected by the URLLC service or other information transmission.
  • the terminal device needs to further determine according to the content of the first indication information.
  • the terminal device first determines the affected time-frequency resource B according to the content of the first indication information and the time-frequency range of the first time-frequency resource. And determining whether the time-frequency resource B and the third time-frequency resource have overlapping time-frequency resources.
  • the terminal device may discard the information received on the time-frequency resource C, and the information received on the time-frequency resource C does not participate in decoding and HARQ combining.
  • the first embodiment to the fifth embodiment may be combined or referenced according to the inherent logic of the technical solution to form a new embodiment, and details are not described herein.
  • the control information transmission method provided by the embodiment of the present application is introduced from the perspective of the interaction between the network device as the transmitting device, the terminal device as the receiving device, and the sending device and the receiving device.
  • various devices such as a transmitting device and a receiving device, etc., in order to implement the above functions, include hardware structures and/or software modules corresponding to the respective functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and method steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • FIG. 6 and FIG. 7 are schematic structural diagrams of two possible communication devices provided by an embodiment of the present application.
  • the communication device implements the functions of the network device as the transmitting device in the foregoing method embodiments, and thus can also achieve the beneficial effects of the foregoing method embodiments.
  • the communication device may be the radio access network device 220 as shown in FIG. 2.
  • the communication device 600 includes a processing unit 610 and a transmitting unit 620.
  • the processing unit 610 is configured to determine first indication information, where the first indication information is used to indicate whether information transmission in the first time-frequency resource is affected.
  • the sending unit 620 is configured to send the first indication information by using a physical downlink control channel.
  • the sending unit 620 is further configured to send first control information, where the first control information includes frequency domain location information of the first time-frequency resource.
  • the frequency domain location information of the first time-frequency resource includes start location offset information and frequency domain width information.
  • the first indication information includes second indication information of length m bits, where m is an integer greater than 1, and each bit of the second indication information is used to indicate the first time-frequency resource. Whether the information transmission of a second time unit is affected, wherein the time domain length of the second time unit is less than or equal to the time domain length of the first time-frequency resource.
  • the first indication information includes second indication information of length m bits, where each bit of the second indication information is used to indicate one second time frequency resource of the first time-frequency resource Whether the information transmission is affected, wherein m is an integer greater than 1, and the frequency domain width of the second time-frequency resource is less than or equal to the frequency domain width of the first time-frequency resource.
  • communication device 700 includes a processor 710, a transceiver 720, and a memory 730, wherein memory 730 can be used to store code executed by processor 710.
  • the various components in the communication device 700 communicate with one another via internal connection paths, such as by control and/or data signals over the bus.
  • the processor 710 is configured to determine first indication information, where the first indication information is used to indicate whether information transmission in the first time-frequency resource is affected.
  • the transceiver 720 is configured to send the first indication information by using a physical downlink control channel.
  • the transceiver 720 is further configured to send first control information, where the first control information includes frequency domain location information of the first time-frequency resource.
  • the frequency domain location information of the first time-frequency resource includes start location offset information and frequency domain width information.
  • the first indication information includes second indication information of length m bits, where m is an integer greater than 1, and each bit of the second indication information is used to indicate the first time-frequency resource. Whether the information transmission of a second time unit is affected, wherein the time domain length of the second time unit is less than or equal to the time domain length of the first time-frequency resource.
  • the first indication information includes second indication information of length m bits, where each bit of the second indication information is used to indicate one second time frequency resource of the first time-frequency resource Whether the information transmission is affected, wherein m is an integer greater than 1, and the frequency domain width of the second time-frequency resource is less than or equal to the frequency domain width of the first time-frequency resource.
  • processing unit 610 the processor 710, the transmitting unit 620, and the transceiver 720 can be directly obtained by referring to the foregoing method embodiments.
  • the information sending function in the foregoing method to the fifth embodiment is performed by the sending unit 620 and the transceiver 720.
  • the remaining data processing functions are all performed by the processing unit 610 and the processor 710, and are not described herein.
  • the communication device implements the functions of the terminal device as the receiving device in the foregoing method embodiment, and thus the beneficial effects of the foregoing method embodiments can also be achieved.
  • the communication device may be the terminal device 230 or the terminal device 240 as shown in FIG. 2.
  • the communication device 800 includes a receiving unit 810 and a processing unit 820.
  • the receiving unit 810 is configured to receive, by using a physical downlink control channel, first indication information, where the first indication information is used to indicate whether information transmission in the first time-frequency resource is affected.
  • the processing unit 820 is configured to determine, according to the first indication information, whether the information transmission in the third time-frequency resource is affected, where the third time-frequency resource is a time-frequency for downlink information transmission between the terminal device and the network device. Resources.
  • the receiving unit 810 is further configured to receive first control information, where the first control information includes frequency domain location information of the first time-frequency resource.
  • the frequency domain location information of the first time-frequency resource includes start location offset information and frequency domain width information.
  • the first indication information includes second indication information of length m bits, where m is an integer greater than 1, and each bit of the second indication information is used to indicate the first time-frequency resource. Whether the information transmission of a second time unit is affected, wherein the time domain length of the second time unit is less than or equal to the time domain length of the first time-frequency resource.
  • the first indication information includes second indication information of length m bits, where each bit of the second indication information is used to indicate one second time frequency resource of the first time-frequency resource Whether the information transmission is affected, wherein m is an integer greater than 1, and the frequency domain width of the second time-frequency resource is less than or equal to the frequency domain width of the first time-frequency resource.
  • communication device 900 includes a processor 920, a transceiver 910, and a memory 930, wherein memory 930 can be used to store code executed by processor 920.
  • the various components in the communication device 900 communicate with one another via internal connection paths, such as by control and/or data signals over the bus.
  • the transceiver 910 is configured to receive, by using a physical downlink control channel, first indication information, where the first indication information is used to indicate whether information transmission in the first time-frequency resource is affected.
  • the processor 920 is configured to determine, according to the first indication information, whether the information transmission in the third time-frequency resource is affected, where the third time-frequency resource is a time-frequency for downlink information transmission between the terminal device and the network device. Resources.
  • the transceiver 910 is further configured to receive first control information, where the first control information includes frequency domain location information of the first time-frequency resource.
  • the frequency domain location information of the first time-frequency resource includes start location offset information and frequency domain width information.
  • the first indication information includes second indication information of length m bits, where m is an integer greater than 1, and each bit of the second indication information is used to indicate the first time-frequency resource. Whether the information transmission of a second time unit is affected, wherein the time domain length of the second time unit is less than or equal to the time domain length of the first time-frequency resource.
  • the first indication information includes second indication information of length m bits, where each bit of the second indication information is used to indicate one second time frequency resource of the first time-frequency resource Whether the information transmission is affected, wherein m is an integer greater than 1, and the frequency domain width of the second time-frequency resource is less than or equal to the frequency domain width of the first time-frequency resource.
  • Figures 7 and 9 only show one design of the communication device.
  • the communication device can include any number of receivers and processors, and all communication devices that can implement embodiments of the present application are within the scope of the present application.
  • receiving unit 810 transceiver 910 and processing unit 820, and processor 920 can be directly obtained by referring to the above method embodiments.
  • the information receiving function in the foregoing method embodiment 1 to method embodiment 5 is completed by the receiving unit 810 and the transceiver 910, and the remaining data processing functions are all completed by the processing unit 820 and the processor 920, and are not described herein. Add a statement.
  • the device embodiment shown in FIG. 6 to FIG. 9 above is obtained by referring to the above partial method embodiments. It is to be understood that, with reference to other method embodiments of the present application and the device embodiments shown in FIG. 6 to FIG. 9 , corresponding device embodiments of other method embodiments of the present application may be obtained, and no further details are provided herein.
  • the network device chip implements the functions of the network device in the foregoing method embodiment.
  • the network device chip sends the first indication information and the first control information to other modules in the network device, such as a radio frequency module or an antenna.
  • the first indication information and the first control information are sent to the terminal device via other modules of the network device.
  • the terminal device chip When the embodiment of the present application is applied to a terminal device chip, the terminal device chip implements the function of the terminal device in the foregoing method embodiment.
  • the terminal device chip receives the first indication information and the first control information from other modules in the terminal device, such as a radio frequency module or an antenna, where the first indication information and the first control information are sent by the network device to the terminal device.
  • processors in the embodiment of the present application may be a central processing unit (CPU), and may be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof.
  • a general purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory (Programmable ROM). , PROM), Erasable PROM (EPROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Register, Hard Disk, Mobile Hard Disk, CD-ROM, or well known in the art Any other form of storage medium.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a transmitting device or a receiving device. Of course, the processor and the storage medium can also exist as discrete components in the transmitting device or the receiving device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions can be from a website site, computer, server or data center to another website site by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Transfer from a computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a Solid State Disk (SSD)) or the like.
  • plural refers to two or more.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character “/” in this article generally indicates that the contextual object is an “or” relationship; in the formula, the character “/” indicates that the contextual object is a "divide” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种控制信息传输方法和设备,涉及无线通信领域,用以提升数据传输效率。该方法包括:网络设备确定第一指示信息,所述第一指示信息用于指示第一时频资源内的信息传输是否被影响;所述网络设备通过物理下行控制信道发送所述第一指示信息;终端设备接收该第一指示信息,并根据该第一指示信息确定第三时频资源内的信息传输是否被影响,其中,所述第三时频资源为终端设备和网络设备之间用于下行信息传输的时频资源。

Description

控制信息传输方法和设备
本申请要求于2017年06月30日提交中国专利局、申请号为201710525762.7、发明名称为“控制信息传输方法和设备”的中国专利申请的优先权,要求于2017年08月11日提交中国专利局、申请号为201710685344.4、发明名称为“控制信息传输方法和设备”的中国专利申请的优先权,要求于2017年09月08日提交中国专利局、申请号为201710804109.4、发明名称为“控制信息传输方法和设备”的中国专利申请的优先权,并要求于2017年09月29日提交中国专利局、申请号为201710906170.X、发明名称为“控制信息传输方法和设备”和于2017年11月10日提交中国专利局、申请号为201711105497.3、发明名称为“控制信息传输方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信领域,尤其涉及无线通信系统中的控制信息传输方法和设备。
背景技术
移动通信技术已经深刻地改变了人们的生活,但人们对更高性能的移动通信技术的追求从未停止。为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,第五代(the fifth generation,5G)移动通信系统应运而生。国际电信联盟(international telecommunication union,ITU)为5G以及未来的移动通信系统定义了三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。
典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是要求超高可靠性、低延时,传输数据量较少以及具有突发性。典型的mMTC业务有:智能电网配电自动化、智慧城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感,这些mMTC终端需要满足低成本和非常长的待机时间的需求。
不同业务对移动通信系统的需求不同,如何更好地同时支持多种不同业务的数据传输需求,是当前5G移动通信系统所需要解决的技术问题。例如,如何同时支持URLLC业务和eMBB业务就是当前5G移动通信系统的讨论热点之一。
由于eMBB业务的数据量比较大,而且传输速率比较高,因此通常采用较长的时间单元进行数据传输以提高传输效率,例如,采用15kHz子载波间隔的一个时隙,对应7个时域符号,对应的时间长度为0.5毫秒(millisecond,ms)。URLLC业务数据通常采用较短的时间单元,以满足超短时延的需求,例如,采用15kHz子载波间隔的2个时域符号,或者采用60kHz子载波间隔的一个时隙,对应7个时域符号,对应的时间长度为0.125ms。
由于URLLC业务的数据的突发性,为了提高系统资源利用率,网络设备通常不会为URLLC业务的下行数据传输预留资源。当URLLC业务数据到达网络设备时,如果此时没有空闲的时频资源,网络设备为了满足URLLC业务的超短时延需求,无法等待将本次调度的eMBB业务数据传输完成之后再对URLLC业务数据进行调度。网络设备可以采用抢占(preemption)的方式,为URLLC业务数据分配资源。如图1所示,这里的抢占是指网络设备在已经分配的、用于传输eMBB业务数据的时频资源上选择部分或全部的时频资源用于传输URLLC业务数据,网络设备在用于传输URLLC业务数据的时频资源上不发送eMBB业务的数据。
如何让接收eMBB业务数据的终端设备知道哪部分数据受到URLLC业务数据的影响是本申请要解决的技术问题。
发明内容
本申请提供了一种控制信息传输方法,用于指示哪部分eMBB业务数据受到URLLC业务数据的影响,可以提高数据传输效率。
第一方面,提供了一种控制信息传输方法,包括:网络设备确定第一指示信息,所述第一指示信息用于指示第一时频资源内的信息传输是否被影响;所述网络设备通过物理下行控制信道发送所述第一指示信息。在该控制信息传输方法中,网络设备通过物理下行控制信道向终端设备发送第一指示信息,用于通知终端设备的数据传输是否被其它信息传输所影响,包括被抢占以及被干扰,以便辅助终端设备对数据的接收和译码。在本申请中,该第一指示信息也称为抢占指示信息。终端设备收到该第一指示信息后,确定是否有部分或全部时频资源上的数据传输被其它信息传输所影响,如果有,可以把对应受影响的区域的数据丢弃,该区域的数据不参与译码以及HARQ合并,从而提高译码成功率,进而提高数据传输效率。
在第一方面的一种可能的实现方式中,网络设备发送第一控制信息,所述第一控制信息包括所述第一时频资源的频域位置信息。为了简化抢占指示的设计,可以定义一个抢占指示的资源区域,称为PI region(对应上述的第一时频资源)。抢占指示用于指示在该PI region范围内具体哪部分时频资源被抢占。这里的第一控制信息就是用于指示上述PI region的时频范围,从而使得终端设备根据第一指示信息和第一控制信息,可以确定出哪部分的时频资源上的数据传输被影响了。
在第一方面的一种可能的实现方式中,所述第一时频资源的频域位置信息包括起始位置偏移量信息和频域宽度信息。终端设备通过接收第一控制信息中的频域位置信息,进而确定出PI region的频域位置。第一时频资源的频域位置的基准点信息可以包括在上述频域位置信息中由网络设备发送给终端设备,也可以系统预定义。第一时频资源的时域位置信息可以通过系统预定义,也可以包括在第一控制信息中,由网络设备发送给终端设备。
在第一方面的一种可能的实现方式中,所述第一指示信息包括长度为m比特的第二指示信息,其中,m为大于1的整数,第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时间单元的信息传输是否被影响,其中,所述第二时间单元的时域长度小于所述第一时频资源的时域长度。通过这种实现方式,可以将PI region在时域上划分为m个第二时间单元,从而通过第一指示信息指示每个第二时间单元上是否发 生了资源抢占。
在第一方面的一种可能的实现方式中,所述第一指示信息包括长度为m比特的第二指示信息,所述第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时频资源内的信息传输是否被影响,其中,m为大于1的整数,所述第二时频资源的频域宽度小于等于所述第一时频资源的频域宽度。通过这种实现方式,可以将PI region在时频两个维度进行划分,划分成m个第二时频资源,从而通过第一指示信息指示每个第二时频资源上是否发生了资源抢占,能够让指示的粒度更精细,从而避免由于指示粒度过粗导致部分没有发生抢占的时频资源上的数据也被终端设备丢弃,进而可以提高数据传输效率。
在第一方面的一种可能的实现方式中,网络设备通过RRC信令或物理层信令将CSI反馈时序参数Δt1或Δt2通知给终端设备,其中,Δt1=T3-T1,Δt2=T3–T2,T1为终端设备接收第一指示信息的时刻,T2为终端设备基于T0时刻接收到的CSI-RS反馈CSI的时刻,T3为终端设备反馈更新后的CSI的时刻。
在第一方面的一种可能的实现方式中,当第一指示信息指示T0时刻的终端设备的CSI-RS的时频资源部分或全部被抢占或受影响时,网络设备在T3时刻接收来自该终端设备的CSI测量结果。通过使用本实现方式中的方法,可以使得终端设备将更准确的CSI测量结果反馈给网络设备,提升数据传输效率。
第二方面,提供了一种控制信息传输方法,包括:终端设备通过物理下行控制信道接收第一指示信息,所述第一指示信息用于指示第一时频资源内的信息传输是否被影响;终端设备根据第一指示信息确定第三时频资源内的信息传输是否被影响,其中,所述第三时频资源为终端设备和网络设备之间用于下行信息传输的时频资源。
第二方面的控制信息传输方法是与第一方面的控制信息传输方法相对应的接收设备侧的方法,因此也能实现第一方面或第一方面的对应可能的实现方式中的方法的有益效果,在此不加赘述。
在第二方面的一种可能的实现方式中,所述终端设备接收第一控制信息,所述第一控制信息包括所述第一时频资源的频域位置信息。
在第二方面的一种可能的实现方式中,所述第一时频资源的频域位置信息包括起始位置偏移量信息和频域宽度信息。
在第二方面的一种可能的实现方式中,所述第一指示信息包括长度为m比特的第二指示信息,其中,m为大于1的整数,第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时间单元的信息传输是否被影响,其中,所述第二时间单元的时域长度小于所述第一时频资源的时域长度。
在第二方面的一种可能的实现方式中,所述第一指示信息包括长度为m比特的第二指示信息,所述第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时频资源内的信息传输是否被影响,其中,m为大于1的整数,所述第二时频资源的频域宽度小于等于所述第一时频资源的频域宽度。
在第二方面的一种可能的实现方式中,终端设备在第一指示信息的监测时机到达时,判断在该第一指示信息的监测时机所对应的第一时频资源中是否有数据或控制信息发送给该终端设备,如果在该第一时频资源中有数据或控制信息发送给该终端设备,则 对第一指示信息进行监测,以确认网络设备是否发送了第一指示信息。通过采用该实现方式,终端设备只在必要的时候对第一指示信息进行监测,从而可以节约终端设备的处理资源,降低终端设备的能耗。
在第二方面的一种可能的实现方式中,终端设备通过RRC信令或物理层信令接收来自网络设备的CSI反馈时序参数Δt1或Δt2,其中,Δt1=T3-T1,Δt2=T3–T2,T1为终端设备接收第一指示信息的时刻,T2为终端设备基于T0时刻接收到的CSI-RS反馈CSI的时刻,T3为终端设备反馈更新后的CSI的时刻。
在第二方面的一种可能的实现方式中,当第一指示信息指示T0时刻的CSI-RS的时频资源部分或全部被抢占或受影响时,终端设备可以基于第一指示信息的内容剔除被抢占或受影响的时频资源上的CSI-RS,对剩余部分的CSI-RS重新进行CSI测量,更新CSI测量结果,并在T3时刻将更新后的CSI测量结果反馈给网络设备。通过使用本实现方式中的方法,可以使得终端设备将更准确的CSI测量结果反馈给网络设备,提升数据传输效率。
第三方面,提供了一种通信装置,包括处理单元、发送单元,以执行第一方面或第一方面的任意可能的实现方式中的方法。
第四方面,提供了一种通信装置,包括处理器、存储器和收发器,以执行第一方面或第一方面的任意可能的实现方式中的方法。
第五方面,提供了一种通信装置,包括处理单元、接收单元,以执行第二方面或第二方面的任意可能的实现方式中的方法。
第六方面,提供了一种通信装置,包括处理器、存储器和收发器,以执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提了供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提了供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第二方面或第二方面的任意可能的实现方式中的方法。
第十一方面,提供了一种网络设备的芯片产品,以执行第一方面或第一方面的任意可能的实现方式中的方法。
第十二方面,提供了一种终端设备的芯片产品,以执行第二方面或第二方面的任意可能的实现方式中的方法。
附图说明
图1为URLLC业务数据抢占用于传输eMBB业务数据的时频资源的示意图;
图2为本申请的实施例应用的移动通信系统的架构示意图;
图3为本申请的实施例提供的PI region和被抢占的时频资源之间的关系示意图;
图3A为本申请的实施例提供的一种发送PI的时间单元与PI region的时域范围之间的关系示意图;
图3B为本申请的实施例提供的另一种发送PI的时间单元与PI region的时域范围之间的关系示意图;
图4为本申请的实施例提供的确定PI region的频域位置的方法示意图;
图4A为本申请的实施例提供的一种PI region的时频资源非连续的场景示意图;
图4B为本申请的实施例提供的另一种PI region的时频资源非连续的场景示意图;
图4C为本申请的实施例提供的另一种PI region的时频资源非连续的场景示意图;
图4D为本申请的实施例提供的另一种PI region的时频资源非连续的场景示意图;
图4E为本申请的实施例提供的确定PI region的分割方法示意图;
图5为本申请的实施例提供的一种控制信息的传输方法示意图;
图5A为本申请的实施例提供的CSI反馈时序示意图;
图6为本申请的实施例提供的一种通信装置的结构示意图;
图7为本申请的实施例提供的另一种通信装置的结构示意图;
图8为本申请的实施例提供的另一种通信装置的结构示意图;
图9为本申请的实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
图2是本申请的实施例应用的移动通信系统的架构示意图。如图2所示,该移动通信系统包括核心网设备210、无线接入网设备220和至少一个终端设备(如图2中的终端设备230和终端设备240)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图2只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图2中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
无线接入网设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站eNodeB、5G移动通信系统或新一代无线(new radio,NR)通信系统中的基站、未来移动通信系统中的基站、WiFi系统中的接入节点等,本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,在本申请中,网络设备均指无线接入网设备。在本申请中,术语5G和NR可以等同。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical  surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
无线接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对无线接入网设备和终端设备的应用场景不做限定。
本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于设备到设备(device to device,D2D)的信号传输。对于下行信号传输,发送设备是无线接入网设备,对应的接收设备是终端设备。对于上行信号传输,发送设备是终端设备,对应的接收设备是无线接入网设备。对于D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例对信号的传输方向不做限定。
无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对无线接入网设备和终端设备之间所使用的频谱资源不做限定。
下面以发送设备是网络设备、接收设备是终端设备的下行传输为例进行描述。但类似的方法也可以应用到发送设备是终端设备、接收设备是网络设备的上行传输,以及应用到发送设备是终端设备、接收设备也是终端设备的D2D传输。
如背景技术中所述,网络设备可以采用抢占的方式为URLLC业务分配资源。当URLLC业务数据抢占了用于传输eMBB业务数据的部分或全部时频资源时,在被抢占的时频资源上eMBB业务数据的发射功率被设为零,或者在被抢占的时频资源上没有发送eMBB业务数据,也可以称为eMBB业务数据被打孔或用于传输eMBB业务数据的时频资源被打孔。如果接收eMBB业务数据的终端设备不知道哪部分数据受到抢占的影响,那么该终端设备将可能把URLLC业务数据当做eMBB业务数据进行译码和混合自动重传请求(hybrid automatic repeat request,HARQ)合并,将严重影响eMBB业务数据的译码以及HARQ合并的性能。
当用于传输eMBB业务数据的时频资源受到URLLC业务数据的抢占或受到其它干扰影响的时候,网络设备可以向终端设备发送辅助接收的指示信息,该辅助接收的指示信息用于通知终端设备受到抢占或干扰影响的时频区域,以便辅助终端设备对数据的接收和译码。对于网络设备,终端设备收到该辅助接收的指示信息后,可以把对应在该受影响的时频区域接收到的数据丢弃,该区域的数据不参与译码以及HARQ合并,从而提高译码成功率,提高数据传输效率。当用于传输eMBB业务数据的时频资源受到URLLC业务数据的抢占时,辅助接收的指示信息也可以称为打孔指示(puncturing indication)或抢占指示(pre-emption indication,PI),本申请对辅助接收的指示信息的具体名称不作限定。
辅助接收的指示信息还可以用于指示用于传输eMBB业务数据的时频资源中有一部分资源是预留资源或干扰管理资源。这里的预留资源可以是预留给长期演进(long term  evolution,LTE)系统使用,例如,一个子帧的前三个时域符号可以预留给LTE的物理下行控制信道(physical downlink control channel,PDCCH)使用。这里的干扰管理资源可以为用于发送参考信号或零功率参考信号的时频资源。
在本申请中,以下几种时频资源都简称为被占用的时频资源:用于传输eMBB业务数据的时频资源中被预留的时频资源、用于传输eMBB业务数据的时频资源中用于干扰管理的时频资源、用于传输eMBB业务数据的时频资源中用于传输其它业务数据或其它信令的时频资源。用于传输eMBB业务数据的时频资源有两类不同的被占用方式:一类是通过抢占方式被占用,此时在被占用的时频资源上的eMBB的数据被打孔打掉,或者也可以理解为被占用的时频资源上的eMBB的业务数据的发射功率被置为零;另一类是通过速率匹配方式被占用,在被占用的时频资源上不承载eMBB业务数据,网络设备在对eMBB业务数据做数据映射的时候不将被占用的时频资源作为承载eMBB数据的时频资源。
下面以URLLC业务数据抢占用于传输eMBB业务数据的时频资源为例,对本申请的实施例进行描述。可以理解的是,本申请的实施例也可以应用于其它应用场景,例如,第一信息抢占了用于传输第二信息的时频资源,或者,第一信息与第二信息在相同的时频资源上发送并相互产生干扰。本申请对应用场景不作限定。这里被影响的业务数据除了eMBB业务之外,也可能是uMTC业务或其它业务。可以理解的是,第一信息占用用于传输第二信息的时频资源也有两种方式,一种是如上所述的抢占方式,另一种是如上所述的速率匹配的方式。
如前所述,网络设备为了辅助eMBB终端设备进行数据接收,可以给eMBB终端设备发送抢占指示信息,以告诉eMBB终端设备哪些时频资源被抢占了。为了简化抢占指示的设计,可以定义一个抢占指示的资源区域,称为PI region。抢占指示用于指示在该PI region范围内具体哪部分时频资源被抢占。图3给出了一个PI region和被抢占的时频资源之间的关系的一个示例。如图3所示,时频资源A为PI region,时频资源B为被抢占的时频资源。当PI region内的时频资源都被抢占时,时频资源B等于时频资源A。可以理解的是,由于PI指示的粒度不够细的问题,可能会存在指示的被抢占的时频资源B比实际发生抢占的时频资源区域要大。
PI可以使用两种方法发送:
一种是UE特定的PI(UE-specific PI),即给每个eMBB UE发送给一个PI,该PI用于指示被抢占或被打孔的时频资源的位置,承载在UE特定的下行控制信息(downlink control information,DCI)中。DCI由网络设备通过物理下行控制信道(physical downlink control channel,PDCCH)发送给UE。这里的给每个eMBB UE发送一个PI可以是给每个正在进行数据传输的eMBB UE发送,也可以是给每个有资源被抢占的eMBB UE发送。此时PI region就是给该eMBB UE分配的用于数据传输的资源。
另一种是组公共PI(group common PI),即给一组eMBB UE发送一个PI,该PI用于指示该组UE被抢占或被打孔的时频资源的位置,承载在发送给该组UE的公共DCI中。公共DCI由网络设备通过PDCCH发送给一组UE。此时,PI region可以包含用于传输多个eMBB UE的业务数据的时频资源。该组eMBB UE中的每一个UE在接收到PI后,确定出该UE被调度的时频资源与时频资源B之间的交集(intersection),该交集即为该UE 被打孔的时频资源的位置。
当采用group common的方式发送PI时,可能会出现一些问题需要解决。
因为该group common PI是需要发给同一组的多个eMBB UE的,而同一组内不同的UE的传输时间间隔(transmission time interval,TTI)、一次调度的数据传输持续时间、子载波间隔等参数都可能不同,所以需要有一种方法来确定PI region,让该组内的UE都能根据PI region的范围以及PI中的信息确定出被抢占或被打孔的时频资源B,并结合分配给该UE的时频资源进一步确定出分配给该UE的时频资源中被抢占或被打孔的时频资源C,以便该UE对在时频资源C上接收到的数据做特殊处理,例如丢弃时频资源C上的数据,时频资源C上的数据不参与译码以及HARQ合并。
为了简化PI的设计,网络设备和UE需要确定PI所能指示的时频资源的粒度。当采用固定的时频资源的粒度的时候,当PI region发生变化时,用于指示被抢占资源的PI所需要的比特数就会发生变化。
还有一种可能的实现方式是,固定PI的比特数,当PI region发生变化时,对应的PI的每比特所指示的时频资源的粒度就会跟着发生变化。
下面对本申请的实施例进行介绍。如果没有特殊说明,在本申请的各个实施例中使用的术语和变量的含义保持一致,可以相互引用。
实施例一、如何确定PI region
PI region的确定分为确定PI region的时域位置、频域位置和numerology三部分。
(一)PI region的时域位置的确定
一种可能的设计是:PI的发送周期为T个第一时间单元,当PI在第N个第一时间单元发送时,PI region的时域位置为从第N-X到第N-Y个第一时间单元,其中,T和N为正整数,X为大于零且小于等于N的整数,Y为大于等于零且小于N的整数,X大于Y。PI region的时域长度为X–Y+1个第一时间单元。一种可能的设计是,T=X–Y+1,即PI的发送周期等于PI region的时间长度。具体地,X=T,Y=1;或者,X=T–1,Y=0。例如,当PI的发送周期是4个时隙时,配置X=4,Y=1,那么当PI在第5个时隙上发送时,PI region的时域位置从第1个时隙到第4个时隙。
另一种可能的设计是:PI的发送周期为一个第一时间单元,当PI在第N个第一时间单元发送时,PI region的时域位置为第N-X个第一时间单元,其中,X为大于等于零且小于等于N的整数。
可以理解的是,如图3A所示,发送PI的时间单元可以是PI region的时域范围之内的某个时间单元;如图3B所示,发送PI的时间单元也可以是PI region的时域范围之外的某个时间单元。本申请对发送PI的时间单元与PI region的时域范围之间的关系不做限定。
这里的第一时间单元可以是在某一个特定的numerology下的时间单元,具体可能为该numerology下的时域符号、微时隙(mini-slot)、时隙或子帧等;第一时间单元也可以是和numerology无关的时间单元,例如,可以为1ms、0.5ms、0.25ms、0.125ms或0.25微秒(microsecond,μs)。这里的numerology包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)长度,对于不同的numerology,SCS 和CP长度中至少有一个不同。例如,一种numerology中SCS等于15千赫兹(kilo hertz,kHz),CP为普通CP;一种numerology中的SCS等于60kHz,CP为普通CP;一种numerology中的SCS等于15kHz,CP为扩展CP;一种numerology中的SCS为60kHz,CP为扩展CP。
PI region的时域位置可以系统预定义,如协议确定了不同场景下的PI region的时域位置;PI region的时域位置也可以是网络设备确定好之后,通过信令通知给UE。本申请中的信令可以是无线资源控制(radio resource control,RRC)信令或物理层信令,也可以是媒体接入控制(medium access control,MAC)层的信令。如无特殊说明,本申请中的控制信息传输或信令通知均可以是RRC信令、物理层信令或MAC层信令中的一种或几种。物理层信令通常由PDCCH承载。
网络设备可以根据UE的业务属性,配置不同的PI监测周期,例如,对于mMTC业务,配置给UE的PI监测周期比较大。进一步地,网络设备可以将具有相同业务类型的UE分为同一个组,网络设备根据同组UE的PI监测周期确定PI发送周期,并确定PI region的时域长度。例如,一种可能的实现是,PI region的时域长度等于PI的发送周期,等于PI的监测周期。
(二)PI region的频域位置的确定
在5G中引入了带宽部分(bandwidth part,BP)的概念。BP是一个频域上的概念,指一段频域上的资源,可以连续或离散。网络设备给UE配置一个BP后,该UE的所有的数据传输都在该BP中进行。不同的UE可以配置不同的BP。对于每一个UE,除了配置用于数据传输的每个UE特定的BP之外,也可能再配置一个针对一组UE的公共的BP,在这里我们将这个公共的BP称为缺省BP(default BP)。
PI region的频域位置可以系统预定义,如协议确定了不同场景下的PI region的频域位置;PI region的频域位置也可以是网络设备确定好之后,通过信令通知给UE。
PI region的频域位置可以根据某个预定义的参数作为基准点来进行指示,此预定义的参数可以是以下参数中的某一个:同步信号块(synchronization signal block,SS block),default BP,下行载波中心,直流(direct current,DC)子载波。在NR中,SS block包含主同步信号,辅同步信号,和物理广播信道(PBCH),用于UE进行初始接入。网络设备在频域上可以配置多个SS block,UE可能会检测到多个SS block,从中选择一个进行接入。下行载波中心,就是下行载波的中心频点。DC子载波,即载波中的直流分量。在LTE中DC子载波使用的就是中心频点,但是在NR可能会不使用下行载波的中心频点。
下面以UE接入时的SS block为基准点,指示PI region的频域位置,下面列了三种可能的指示方式:
(1)如图4所示,指示PI region的频域起始位置相对于SS block的偏移量,以及PI region的频域宽度。由于SS block在频域上是一个范围,因此在指示和计算偏移量时,可以用SS block的频域起始位置,频域终止位置,或者频域中点等作为参考点,图4中是用SS block的频域终止位置为参考点来计算PI region的频域起始位置偏移量的。
(2)指示PI region频域终止位置相对于SS block的偏移量,以及PI region的 频域宽度。
(3)指示PI region起始位置以及终止位置相对SS block的偏移量。
由于default BP跟SS block类似,都对应一段频域资源,因此根据上述基于SS block的PI region的频域位置指示方法可以直接得到基于default BP的PI region的频域位置的指示方法,在此不加赘述。
对于以下行载波中心为基准点的PI region的频域位置指示方法可以直接参考图4的以SS block的频域终止位置为参考的指示方法直接得到,在此不加赘述。
这里用于指示PI region的频域位置的相关参数,如偏移量和频域宽度,可以参考某一个numerology来给出,例如,偏移量和频域宽度均以该numerology下的SCS为单位。
(三)PI region的numerology的确定
根据上面的分析可以知道,PI region的时域位置和频域位置的指示都可以参考某一个numerology给出,该numerology称为PI region的numerology。
考虑到PI region内的多个eMBB UE的numerology可能不同,因此需要对接收group common PI的一组UE确定一个参考的numerology。该参考的numerology可以通过协议预定义;或者,网络设备确定了参考的numerology之后通过信令通知给UE;或者,网络设备和UE均默认PI region的numerology与该UE的数据信道或控制信道的numerology相同。
UE收到PI后,如果PI region的numerology与该UE所使用的numerology不同,则不能根据该UE的numerology确定PI region的时频位置以及PI所指示的被抢占的时频资源的位置。而可以根据PI region的numerology确定PI region的时频范围,并结合PI所指示的内容进一步确定被抢占的时频资源的范围。例如,PI region的numerology中的SCS是60kHz。指示被抢占的时频位置是从频点A开始连续10个资源块(resource block,RB),时刻t开始连续四个symbol。而UE 1是15kHz的SCS,那么对于它来说,被抢占的时频位置就是频点A开始的40个RB,时刻t开始的1个symbol。
(四)PI region的时频资源非连续
PI region中的时频资源可以是不连续的,例如,某些时频资源为eMBB的控制信息或业务数据独享的、不能被URLLC业务数据抢占的时频资源,则PI region可以不包括这些不能被抢占的时频资源。
具体的,如图4A所示,假设一个有7个时域符号的时隙的前2个时域符号为eMBB的控制区域,用于传输eMBB的控制信息,不能被URLLC业务数据抢占,PI region的时域范围为两个时隙,则此时在PI region中实际可以被抢占的时域符号有10个,这10个时域符号在时间上是离散的。可以理解的是,本申请中的不能被抢占的资源也可能是用于预留给LTE使用的或者是干扰管理资源。
如图4B所示,在PI region的频域范围内,有一部分频域资源被配置为仅用于eMBB数据传输,不能用于URLLC数据传输,则PI region可以不包括这部分频域资源。
上述两种情况也可能组合,如图4C所示,在PI region区域内既包括仅用于eMBB数据传输的区域,又包括预留给eMBB控制信息使用的区域。更一般性的,如图4D所示,在PI region的时频区域内,离散地分布着不可被抢占的时频资源。
当PI region的区域内存在不可被抢占的时频资源时,网络设备通过信令配置给终端设备的PI region或系统预定义的PI region可以是包括这部分不可被抢占的时频资源的一块连续的时频资源。终端设备可以根据系统预定义获知不可被抢占的时频资源。终端设备也可以通过网络设备发送的信令中获取到不可被抢占的时频资源。
对于上述PI region的时频区域中包括不可被抢占的时频资源时,PI region划分为sub-region的时候有两种不同的处理方式:一种是忽略这些不可被抢占的时频资源,对PI region所对应的连续的时频资源进行分割,得到多个sub-region;另一种是剔除这些不可被抢占的时频资源之后,再对PI region内可以被抢占的时频资源进行分割,得到多个sub-region。例如,在图4D中,PI在进行指示时频资源是否被抢占时,可以使用9比特分别对应图4D中的可以被抢占以及不可被抢占的资源,用于指示时频资源是否被抢占,此时有3比特是冗余的。每个比特中1代表被抢占,0代表没有被抢占;或者1代表没被抢占,0代表被抢占。或者,PI在进行指示时频资源是否被抢占时,可以使用6比特分别指示图4D中可被抢占的资源是否被抢占。终端设备可以根据PI region中可以被抢占资源和不可被抢占资源的划分情况,判断PI中资源指示部分包含几比特。上面例子中,如果使用包含不可抢占资源的PI,则是9比特,如果不包含不可抢占资源的PI,则是6比特。具体的,PI使用哪种指示方式,指示的时频资源中是否包括不可抢占的资源,可以系统预定义或者网络设备可以通过信令通知终端设备。
这里的不可被抢占的时频资源是指不能被抢占用于下行数据传输的时频资源,具体的,不可被抢占的时频资源可以包括以下时频资源中的至少一个:用于传输PDCCH的时频资源、时分双工(time division duplex,TDD)场景下配置的上行符号、TDD场景下配置的用于从下行传输转换到上行传输的间隔(GAP)符号、TDD场景下配置的未知(unknown)符号以及系统配置的预留资源。
在TDD场景下,UE可以通过两种信令获得时隙配置:一种是小区级的(cell specific)信令,例如通过RRC的广播消息和/或小区公共的DCI;另一种是UE级的(UE specific)信令,例如通过UE级的的RRC信令和/或UE级的DCI。这里的时隙配置可以包括时隙内每一个符号的配置:该符号是用于上行传输还是用于下行传输,或者该符号为GAP符号,或者该符号为未知符号。对于UE级的信令,只能被特定的UE所接收,因此,PI region不能将UE级的时隙配置作为定义PI region的参考。如果网络设备或终端设备将UE级的时隙配置作为定义PI region的参考,例如,将UE级的信令中配置的上行符号从PI region中排除,则会造成不同的UE对PI region的理解不同,使得网络设备无法通过共同的DCI来通知PI region中被抢占的资源位置。因此,PI region只能将小区级的时隙配置作为定义PI region的参考,可以将小区级的信令中配置的上行符号从PI region中排除,也可以将小区级的信令中配置的GAP符号从PI region中排除,也可以将小区级的信令中配置的未知符号从PI region中排除。
假设小区级的信令配置一个时隙内编号为0到13的14个符号中,编号为0到4和7到11的10个符号为下行符号,编号为5和12的符号为GAP符号,编号为6和和13的符号为上行符号。那么网络设备和终端设备可以将编号为6和13的上行符号从PI region中排除,还可以将编号为5和12的GAP符号从PI region中排除。
实施例二、比特长度固定下的PI的设计
如果针对不同的PI region大小均采用固定的PI比特长度,则可以减少UE对DCI的盲检次数。因为PI通过DCI来承载,当PI的比特长度随着PI region的变化而变化时,则UE需要对具有不同长度的DCI分别进行盲检,以确认网络设备是否发送了PI。在本申请中,PI region也称为第一时频资源。当承载在PDCCH上的DCI的内容只有PI的时候,我们也可以称之为PI通过PDCCH承载,此时PI与DCI可以等同替换。
方法(一)
PI中包括字段A,字段A用于指示被抢占的时频资源B,字段A的长度固定为m比特。下面对字段A是如何指示时频资源B的进行描述。
(1)将PI region分割为m个子区域(sub-region),域A中的每个比特和m个sub-region一一对应,用于指示每个sub-region中的信息传输是否被影响,其中m为正整数。域A中的比特取值为1表示对应的sub-region被抢占,比特取值为0表示对应的sub-region没有被抢占;或者,比特取值为0表示对应的sub-region被抢占,比特取值为1表示对应的sub-region没有被抢占。m等于1表示使用1比特指示PI region内是否有打孔存在,例如1表示PI region整个被打孔,0表示整个没被打孔,或者1表示PI region里存在打孔,0表示不存在打孔,当然0和1表示的含义可以对换。这里的信息传输被影响包括信息传输的传输资源被其它信息传输抢占或信息传输被其它信息传输干扰。在本申请中,信息传输被影响和信息传输被抢占可以互换。这里的信息传输包括数据传输、信令传输、参考信号传输等。
(2)具体如何将PI region分割为m个sub-region,可以有如下分割方法:
(2.1)只在时域进行分割
假设PI region有n个第三时间单元,n为正整数,第三时间单元可以是时域符号,也可以是微时隙,也可以是时隙,也可以是子帧,还可以是其它时间长度的时间单元。将PI region从时域上划分为min(n,m)个第二时间单元,m比特中的每一个比特用于指示PI region中的一个第二时间单元内的信息传输是否被影响。其中min(n,m)表示取n和m中的最小值。这里的第二时间单元即为上述的sub-region。
具体地,当n小于m时,PI region划分为n个第二时间单元,每个第二时间单元对应一个第三时间单元。字段A中有n个比特用于指示n个第二时间单元的时频资源是否被抢占,例如,字段A中的前n个比特用于指示这n个第二时间单元的时频资源是否被抢占,字段A中的后m–n个比特设为默认值,没有具体的含义。
当n=k*m时,PI region划分为m个第二时间单元,每个第二时间单元对应k个第三时间单元,m比特中的每个比特用于指示一个第二时间单元的时频资源是否被抢占,k为正整数。
当n=k*m+r时,其中,k和r为正整数,r小于m。PI region划分为m个第二时间单元,其中,m–r个第二时间单元对应k个第三时间单元,r个第二时间单元对应k+1个第三时间单元,例如:前m-r个第二时间单元对应k个第三时间单元,后r个第二时间单元对应k+1个第三时间单元;或者,前r个第二时间单元对应k+1个第三时间单元,后m–r个第二时间单元对应k个第三时间单元。m比特中的每个比 特用于指示一个第二时间单元的时频资源是否被抢占。
(2.2)只在频域进行分割
与只在时域进行分割的方案类似,在此不加赘述。
(2.3)在时域和频域同时进行分割,即将PI region从时频两个维度划分为m个sub-region,这里的sub-region也称为第二时频资源。
假设PI region包括f个频域单元,n个第三时间单元,这里的频域单元可以是子载波也可以是RB,也可以是RB组,也可以是其它的至少2个RB组成的频域单元,其中f和n均为正整数。则PI region包括f*n个时频单元,每个时频单元对应一个第三时间单元上的频域单元。可以对PI region上的时频单元按照顺序进行编号,可以先时域再频域,也可以先频域再时域。本申请对此不作限定。
当f*n小于m时,f*n个sub-region中的每个sub-region对应一个时频单元,例如,前f*n个sub-region中的每个sub-region对应一个时频单元,字段A中的前f*n个比特用于指示这f*n个时频单元上的信息传输是否被抢占,字段A中的后m–f*n个比特设为默认值,没有具体的含义。
当f*n=k*m时,m个sub-region中的每个sub-region对应k个时频单元,k为正整数。
当f*n=k*m+r时,其中,k和r为正整数,r小于m。m个sub-region中有m–r个sub-region对应k个时频单元,r个sub-region对应k+1个时频单元,例如:m个sub-region中的前m–r个sub-region对应k个时频单元,m个sub-region中的后r个sub-region对应k+1个时频单元;或者,m个sub-region中的前r个sub-region对应k+1个时频单元,m个sub-region中的后m–r个sub-region对应k个时频单元。
一种可能的实现方式是,系统预定义了如表1所示的PI region的时域长度与PI region的时域分割粒度之间的映射关系。本申请中的符号指时域符号,可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是离散傅里叶变换扩展正交频分复用(discrete fourier transform spread OFDM,DFT-s-OFDM)符号。
表1
PI region时域长度 PI region的时域分割粒度
7符号(1时隙) 1符号,2符号
14符号(2时隙) 2符号,7符号
由于字段A和PI的比特长度固定,所以,对于固定大小的PI region,如果频域分得细,则时域就分得粗,反之,如果频域分得粗,时域就分得比较细。
由于可能有多种不同的分割方法,将PI region分割为m个sub-region,因此需要有一种策略进一步确定采用哪种分割方法,从而使得网络设备和UE对分割方法的理解一致。一种可能的策略是通过系统预定义规则A,确定分割方法,使得网络设备和UE对分割方法的理解一致;另一种可能的策略是网络设备根据规则B确定分割方法,然后通过信令的方式将分割方法通知UE,从而使得网络设备和UE对分割方法的理解一致。这里的信令可以是RRC信令、MAC层信令或物理层信令。其中规则A和规则B考虑的因素可以包括PI region的频域宽度、频域分割粒度(即上述频域单元)、PI region的时 域长度、PI region的时域分割粒度(即上述的第三时间单元)以及PI region的时频区域大小中的至少一个。
例如,当PI region的时域长度大于门限A时,选择只在时域进行分割的分割方法;当PI region的时域长度小于等于门限A时,选择在时域和频域同时进行分割的分割方法。
又例如,当PI region的时频区域大小小于门限B时,选择在时域和频域同时进行分割的方法,且选择较小的时域分割粒度B和频域分割粒度B;当PI region的时频区域大小大于等于门限B小于门限C时,选择在时域和频域同时进行分割的方法,且选择中等的时域分割粒度C和频域分割粒度C;当PI region的时频区域大小大于等于门限C时,选择在时域和频域同时进行分割的方法,且选择较大的时域分割粒度D和频域分割粒度D。由于PI region的时频区域大小可以通过PI region的时域长度和频域宽度得到,因此,也可以根据PI region的时域长度和频域宽度的取值共同确定分割方法。
表2为一种可能的根据PI region频域宽度和PI region时域长度来选择分割方法的选择策略表。表2中各个单元格中的取值只是示意,具体的考虑因素以及选择策略可以根据实际需要进行设计,本申请对此不作限定。在本申请中,表格在具体实现时可以是表格的形式,也可以是通过类似编程语言C语言中的if else或switch case等分支选择和判断语句来实现。这种根据实际需要灵活选择分割方法的方案可以灵活适应各种可能的场景,达到PI指示效率的最大化。
表2
配置编号 PI region频域宽度 PI region时域长度 分割方法
1 F1 T1 1
2 F2 T2 2
3 F3 T3 3
(2.4)在时域和频域进行独立分割
假设PI region包括f个频域单元,n个第三时间单元。网络设备和/或终端设备将PI region中的n个第三时间单元划分成m1个第二时间单元,m1为正整数;将PI region中的f个频域单元划分成n1个第二频域单元,n1为正整数。PI region被划分成m1*n1个第二时频单元,其中,每个第二时频单元对应一个第二时间单元上的第二频域单元。
例如,PI region包括14个符号、100个RB,将PI region的时域分为7个第二时间单元,每个第二时间单元对应2个符号,将PI region的频域分为2个第二频域单元,每个第二频域单元对应50个RB。PI region被划分成14个第二时频单元,每个第二时频单元对应两个符号上的50个RB。
具体地,网络设备和/或终端设备如何将PI region中的n个第三时间单元划分成m1个第二时间单元,可以参考上述(2.1)中的相关描述直接得到。网络设备和/或终端设备如何将PI region中的f个频域单元划分成n1个第二频域单元,可以参考上述(2.2)中的相关描述直接得到。
长度为m比特的字段A用于指示m1*n1个第二时频单元是否被抢占,具体的指示方法如下:
当m=m1*n1时,字段A中的每一个比特分别用于指示一个第二时频单元是否被抢占。
当m<(m1*n1)时,可以表示为,m1*n1=q1*m+q2,q1和q2为正整数,且q2小于m。字段A中的m–q2比特中的每一个比特分别用于指示q1个第二时频单元是否被抢占,字段A中的q2比特中的每一个比特分别用于指示q1+1个第二时频单元是否被抢占。例如:字段A中的前m–q2比特中的每一个比特分别用于指示q1个第二时频单元是否被抢占,字段A中的后q2比特中的每一个比特分别用于指示q1+1个第二时频单元是否被抢占;或者,字段A中的后m–q2比特中的每一个比特分别用于指示q1个第二时频单元是否被抢占,字段A中的前q2比特中的每一个比特分别用于指示q1+1个第二时频单元是否被抢占。
当m>(m1*n1)时,字段A中的m1*n1比特用于指示m1*n1个第二时频单元是否被抢占。例如:字段A中的前m1*n1比特中的每一个比特分别用于指示m1*n1个第二时频单元中的每一个第二时频单元是否被抢占,字段A中的后m–(m1*n1)个比特可以设为默认值,没有具体含义;或者,字段A中的后m1*n1比特中的每一个比特分别用于指示m1*n1个第二时频单元中的每一个第二时频单元是否被抢占,字段A中的前m–(m1*n1)个比特可以设为默认值,没有具体含义。
m1*n1个第二时频单元的编号顺序可以先时域再频域,也可以先频域再时域。以PI region在时域上被划分为7个第二时间单元,在频域上被划分为2个第二频域单元为例进行说明。第二频域单元、第二时间单元以及第二时频单元的编号可以从0开始也可以从1开始,这里以0开始进行编号为例进行说明。当第二时频单元的编号顺序为先频域再时域时,编号为0的第二时间单元上对应编号为0和1的两个第二时频单元,编号为1的第二时间单元上对应编号为2和3的两个第二时频单元,依此类推。编号为0的第二时频单元可以对应频率取值大的第二时频单元,也可以对应频率取值小的第二时频单元,本申请不做限定。当第二时频单元的编号顺序为先时域再频域时,编号为0的第二频域单元上对应对应编号为0到6的7个第二时频单元,编号为1的第二频域单元上对应编号为7到13的7个第二时频单元。编号为0的第二频域单元可以对应频率取值大的第二频域单元,也可以对应频率取值小的第二频域单元,本申请不做限定。
方法(二)
为了提高抢占指示的精度,减少由于抢占指示的精度不够导致终端设备丢弃有用数据的概率,可以在PI中先指示一个发生了抢占的sub-region,然后进一步将该sub-region进行分割得到多个迷你区域(mini-region),对该sub-region内哪些mini-region被抢占了进行指示。
具体的,PI中包括字段B,用以指示哪一个sub-region被抢占。字段B也可以称为指示字段(indication field)。PI region具体是如何分割成多个sub-region的可以参考上述方法(一)中的相关描述。例如,PI region被分割成16个sub-region,其中第6个sub-region中的部分或全部时频资源被抢占,则该指示字段的取值为6。需要注意的是,在本申请中,各种编号的取值与具体的编号方法相关,例如,编号可以从0开始也可以从1开始。如果编号从1开始,则第6个sub-region的编号是6;如果编 号从0开始,则第6个sub-region的编号是5。对应地,当第6个sub-region中的部分或全部时频资源被抢占时,上述指示字段的取值可能为5、也可能为6,具体取决于编号方法,本申请对此不做限定。字段B所指示的sub-region也可以称为目标sub-region。
可选地,PI中还可以包括字段C和字段D,其中,字段C用以指示目标sub-region内的分割方法,字段D用以指示该sub-region内哪些mini-region被抢占了。字段C也可以称为选择字段(option field)。字段D可以使用长度为L比特的比特位图来指示哪些mini-region被抢占了,其中L为正整数。
图4E为本申请实施例提供的一种PI region的分割方法。如图4E所示,PI region分为16个sub-region,其中第6个sub-region中的部分或全部时频资源被抢占。此时,PI中的字段B用于指示第6个sub-region被抢占,字段C用于指示对第6个sub-region采用2*2的方式进行分割得到4个mini-region,字段D通过4比特指示第6个sub-region中的4个mini-region中哪几个mini-region被抢占了。在本申请中,P*Q的分割方式是指对待分割的区域在时域上分为P部分,在频域上分为Q部分,其中,P和Q为正整数。
表2A是字段B、字段C和字段D的比特长度的举例,其中字段B和字段C各2比特,字段D为14比特。2比特的C字段用于指示以下四种分割方式中的一种:2*7,7*2,3*4,4*3。
表2A
字段B(指示字段)的长度 字段C(选择字段)的长度 字段D的长度
2比特 2比特 14比特
当字段D的比特长度L与目标sub-region中的mini-region的个数相等时,即L=P*Q,字段D的一个比特与目标sub-region中的mini-reigion一一对应。例如,当字段C指示采用2*7或7*2的分割方式时,字段D的14比特与目标sub-region中的14个mini-region一一对应。
当字段D的比特长度L大于目标sub-region中的mini-region的个数时,即L>P*Q,字段D中前P*Q个比特或后P*Q个比特与目标sub-region中的P*Q个mini-reigion一一对应。例如,当字段C指示采用3*4或4*3的分割方式时,D字段中的前12个比特或后12个比特与目标sub-region中的12个mini-region一一对应,剩余的2比特作为保留比特。
当字段D的比特长度L小于目标sub-region中的mini-region的个数时,即L<P*Q,P*Q个mini-region中的部分mini-region共用字段D中的一个比特进行指示。具体的,假设P*Q=u*L+v,其中,u为正整数,v为大于等于零的整数,则目标sub-region中的v*(u+1)个mini-region中每u+1个mini-region分别对应字段D中的一个比特,剩余的mini-region中每u个mini-region分别对应字段D中的一个比特。例如,当字段C指示采用3*5或5*3的分割方式时,目标sub-region中的前9个mini-region分别对应字段D中的一个比特,目标sub-region中后6个mini-region中每2个 mini-region分别对应字段D中的一个比特。
上述字段B、字段C和字段D的比特长度都是固定的,以便终端设备接收到PI之后可以分别解析出这三个字段的取值。在某些场景下,字段B、字段C和字段D的长度还可以根据实际的应用场景动态变化,以便尽可能提高PI的指示精度,减少终端设备收到PI后丢弃的有效数据量,提高数据传输速率。
可选的,PI还可以包括字段E,用于指示PI的格式。PI的格式可以包括:字段B是否存在以及字段B的比特长度;字段C是否存在以及字段C的比特长度;字段D的比特长度。具体的,字段E可以用于动态指示字段B、字段C和字段D的比特长度。字段E也可以称为格式指示字段。为了减少终端设备对PDCCH的盲检次数,字段B、字段C、字段D和字段E的总长度可以固定为某一个值。如表2B所示,字段B、字段C、字段D和字段E的总长度为23比特,其中字段E的长度为2比特,字段B、字段C和字段D的长度之和为21比特。当字段E的取值为0时,PI中包括字段D但不包括字段B和字段C,此时字段D的长度为21比特,字段D用于指示PI region中sub-region的资源是否被抢占;当字段E的取值为1时,PI中包括字段B和字段D但不包括字段C,字段B的长度为2比特,字段D的长度为19比特;当字段E的取值为2时,PI中包括字段C和字段D,字段C的长度为2比特,字段D的长度为19比特,这时字段C所指示的是PI region分割成sub-region的分割方式,字段D用于指示PI region中sub-region的资源是否被抢占;当字段E的取值为3时,PI中包括字段B、字段C和字段D,字段B的长度为2比特,字段C的长度为2比特,字段D的长度为17比特。
表2B
Figure PCTCN2018093422-appb-000001
可选的,PI的格式也可以通过使用不同的无线网络临时标识(radio network temporary identifier,RNTI)来区分,即使用不同的RNTI对DCI的循环冗余码(cyclic redundancy code,CRC)进行加扰,其中,该DCI中包括PI。采用该方法,可以在指示精度不变的前提下使得PI的净荷减少2比特,或者可以使得用于有效指示抢占区域的比特数增加两比特,从而提高PI的指示精度。如下表2C所示,RNTI0、RNTI1、RNTI2和RNTI3分别指示了不同格式的PI,即指示了字段B、字段C和字段D的长度的不同取值。
表2C
Figure PCTCN2018093422-appb-000002
Figure PCTCN2018093422-appb-000003
可以理解的是,也可以通过承载PI的时频位置来指示PI的格式,或者,也可以通过RRC信令半静态指示PI的格式。
可选的,DCI可以包括W个PI,其中,W为正整数,每一个PI包括字段B、字段C、字段D和字段E,其中字段B和字段C是可选的。每一个PI用于指示一个或一组终端设备的数据传输是否被抢占。这里终端设备的分组可以根据终端设备的带宽部分(bandwith part,BWP)进行划分的,例如,配置了相同BWP的终端设备分为一组。W的取值可以由网络设备通过RRC信令配置给终端设备。
实施例三、比特长度变化的PI的设计
如果根据PI region的大小动态确定字段A的比特数,则可以更有效的指示被抢占的时频资源B。例如,当PI region比较小的时候,可以选择较少的比特数,降低PI的开销;当PI region比较大的时候,则可以选择较多的比特数,使得指示的粒度更小,能够更精准地指示被抢占的时频资源,避免只抢占了一小块时频资源却导致接收到该抢占指示的UE丢弃了一大块的时频资源上的数据,从而可以有效地提升数据传输效率。
具体地,可以定义一个PI格式的集合A={PI1,PI2,PI3,…,PIj},网络设备和UE可以根据PI region的大小动态地从集合A中选择一个PI格式作为当前使用的PI格式。PI region越大,选择的PI中字段A的比特长度越大。不同的PI格式会导致DCI格式不同。
例如,集合A={PI1,PI2},其中,PI1中字段A有7比特,PI2中字段A有14比特。当PI region的时域大小为1个slot时,使用格式PI1;当PI region的时域大小为2个slot时,使用格式PI2。
再例如,集合A={PI1,PI2,PI3},其中PI1中字段A有7比特,PI2中字段A有14比特,PI3中字段A有21比特。当PI region的时频单元个数小于等于RB1时,使用格式PI1;当PI region的时频单元个数大于RB2时,使用格式PI3;当PI region中的时频单元的个数大于RB1且小于等于RB2时,使用格式PI2。这里的时频单元的定义可以参考本申请的实施例二。RB1和RB2均为正整数,为时频单元的门限,且RB1小于RB2。
网络设备和UE也可以根据UE的PI监测周期确定PI的格式。例如,PI监测周期越长,选择的PI中的字段A的比特长度就越长。
上述确定PI格式的策略可以是通过系统预定义规则C,根据该规则确定PI的格式,网络设备和UE都可以获得该规则的输入参数,从而使得网络设备和UE都可以根据该规则C确定PI的格式,从而对PI格式的理解一致;另一种可能的策略是网络设备根据规则D确定PI的格式,然后通过信令的方式将PI格式通知UE,从而使得网络设备和UE对PI格式的理解一致。这里的信令可以是RRC信令、MAC层信令或物理层信令。其中规则C和规则D考虑的因素可以包括PI region的频域宽度、频域分割粒度(即上述频域单元)、PI region的时域长度、PI region的时域分割粒度(即上述的第三时间单元)、 PI的监测周期、PI的发送周期、numerology以及PI region的时频区域大小中的至少一个。
表3为一种可能的根据PI region频域宽度、PI region时域长度和numerology来选择PI格式的选择策略表。表3中各个单元格中的取值只是示意,具体的考虑因素以及选择策略可以根据实际需要进行设计,本申请对此不作限定。这种根据实际需要灵活选择PI的方案可以灵活适应各种可能的场景,达到PI指示效率以及PI指示开销之间的较优的折中。
表3
配置编号 PI region频域宽度 PI region时域长度 numerology PI格式
1 F1 T1 1 1
2 F2 T2 2 2
3 F3 T3 3 3
可以理解的是,也可以定义一个DCI格式的集合B={DCI1,DCI2,DCI3,…DCIk},根据上述类似的方法从集合B中选择出当前使用的DCI的格式,在此不加赘述。
确定了PI的格式之后,如何对PI region进行分割,得到m个sub-region,可以参考实施例二。
实施例四,频域固定粒度的PI设计
按照固定的粒度对PI region的频域进行分割,例如,按照资源块组(resource block group,RBG)的粒度进行分割。PI在频域上指示分割后的每一个sub-region是否被抢占。可选的,RBG的大小可以根据PI region的频域宽度确定。例如,PI region的频域宽度小于10兆赫(MegaHertz,MHz),则RBG可以为两个资源块(resource block,RB);当PI region的频域宽度大于10MHz小于20MHz时,RBG可以为4个RB。
假设一个RBG包括p个RB,PI region的频域宽度为N个RB,且N=pk+r,r<p,其中,p和N为正整数,r和k为大于等于零的整数。PI region的频域划分后,有k个sub-region包含p个RB,有一个sub-region包含r个RB;或者有k-1个sub-region包含p个RB,有一个sub-region包含有p+r个RB。PI region的时域也可以用类似的方式进行分割,固定时域粒度为x个symbol,具体的分割过程和上述频域的分割过程相同,在此不加赘述。
上述所有的实施例中,PI region的频域处理都是以PI region的numerology作为基准来进行的。
图5为本申请的实施例五提供的一种控制信息的传输方法,该方法包括:
S510,网络设备确定第一指示信息,该第一指示信息用于指示第一时频资源内的信息传输是否被影响。可以理解的是,该第一指示信息的内容根据发送该第一指示信息之前的调度结果确定。
具体地,该第一指示信息为上述辅助接收的指示信息,第一时频资源为上述PI region。
可选地,该第一时频资源中的时域位置和频域位置由系统预定义或协议预定义。
可选地,网络设备发送第一控制信息,该第一控制信息包括第一时频资源的频域位置信息;该第一时频资源中的时域位置由系统预定义或协议预定义。一种可能的实现是,第一控制信息中包括的第一时频资源的频域位置信息由eMBB UE和URLLC UE共存的频域位置确定。第一控制信息可以通过RRC信令、物理层信令或MAC层信令中的一种或几种进行传输。
可选地,网络设备发送第一控制信息,该第一控制信息包括第一时频资源的时域位置信息;该第一时频资源中的频域位置信息由系统预定义或协议预定义。
可选地,网络设备发送第一控制信息,该第一控制信息包括第一时频资源的时域位置信息和频域位置信息。
可选地,第一时频资源的频域位置信息包括起始位置偏移量信息和频域宽度信息。第一时频资源的频域位置信息还可以包括频域位置的基准点信息。频域位置的基准点、起始位置偏移量和频域宽度三者共同确定了第一时频资源的频域位置,其中频域位置的基准点可以是系统或协议预定的,也可以是通过第一控制信息由网络设备发送给UE的。
对应地,终端设备接收第一控制信息。
具体地,第一时频资源的时域位置信息的确定方法可以参考实施例一。对于系统预定义或协议预定义的方式,则实施例一中的X、Y和T三个变量的取值是预定义,或X和Y两个变量的取值是预定义的;对于通过信令通知的方式,第一控制信息中包括X、Y和T三个变量的取值信息,或第一控制信息中包括X和Y两个变量的取值信息,或第一控制信息中包括X或Y的变量取值信息,X、Y和T中不包括在第一控制信息的变量的取值由系统预定义或协议预定义。
具体地,第一时频资源的频域位置信息的确定方法可以参考实施例一。对于系统预定义或协议预定义的方式,则实施例一中的频域位置的基准点、起始位置偏移量和频域宽度可以是预定义的;对于信令通知方式,第一控制信息包括频域位置的基准点、起始偏移量和频域宽度的信息,或者第一控制信息包括频域位置的基准点信息、起始位置偏移量信息和频域宽度信息中的一个或两个,不包括在第一控制信息中的信息,则由系统预定义或协议预定义。
由于用于传输eMBB业务数据的时频资源有两类不同的被占用方式:一类是抢占方式,另一类是速率匹配方式。因此网络设备需要通过显示或隐式的方式,将时频资源被占用的方式通知给终端设备。终端设备可以根据时频资源被占用的不同方式,进行不同的处理。对于抢占方式,终端设备对被占用的时频资源上的数据直接丢弃,不参与译码以及不参与HARQ合并,根据数据传输所使用的时频资源确定每一个编码块(code block,CB)在时频资源上的位置,并进一步进行反速率匹配和译码处理;对于速率匹配方式,终端设备对被占用的时频资源上的数据直接丢弃,不参与译码以及不参与HARQ合并,终端设备根据被占用的时频资源以及数据传输所使用的时频资源确定每一个CB在时频资源上的位置,并进一步进行反速率匹配和译码处理。通过这种显示或隐式的指示,终端设备可以正确地确定每一个CB在时频资源上的位置,确保网络设备和终端设备对数据在时频资源上的映射方式的理解一致,从而确保接收数据能够被正确译码。
第一种可能的实现方式是,第一指示信息包括第一字段,第一字段用于指示第一时频资源内的信息传输被影响的方式,也就是第一时频资源内的时频资源被占用的方式: 抢占方式和速率匹配方式。可选的,第一字段的长度可以为一比特。第一字段的取值为1表示抢占方式,第一字段的取值为0表示速率匹配方式;或者,第一字段的取值为0表示抢占方式,第一字段的取值为1表示速率匹配方式。
第二种可能的实现方式是,第一指示信息包括第二字段,第二字段用于指示是哪种资源类型占用了第一时频资源内的时频资源。例如,可以通过0来表示URLLC业务,1表示预留资源,2表示干扰管理资源。进一步的,每一种资源类型可以对应一种时频资源被占用的方式,例如,URLLC业务对应抢占方式,预留资源和干扰管理资源都对应速率匹配方式。终端设备获得了第二字段之后,就可以获得资源被占用的方式。
第三种可能的实现方式是,第一指示信息包括第一字段和第二字段,此时资源类型与时频资源被占用的方式之间没有绑定关系。
第四种可能的实现方式是,通过定义控制资源集合(control resource set,CORESET)与时频资源被占用方式之间的对应关系,隐式地通知时频资源被占用的方式。例如,第一指示信息在CORESET1上发送,表示时频资源是以抢占方式被占用的,第一指示信息在CORESET2上发送,则表示时频资源是以速率匹配的方式被占用的。满足上述映射关系的CORESET1和CORESET2可以有多个。
第五种可能的实现方式是,通过定义无线网络临时标识(radio network temporary identifier,RNTI)与时频资源被占用方式之间的对应关系,隐式地通知时频资源被占用的方式。例如,第一指示信息使用RNTI1加扰,表示时频资源是以抢占方式被占用的,第一指示信息使用RNTI2加扰,则表示时频资源是以速率匹配的方式被占用的。满足上述映射关系的RNTI1和RNTI2可以有多个。
第六种可能的实现方式是,通过定义第一指示信息的载荷大小(payload size)与时频资源被占用方式之间的对应关系,隐式地通知时频资源被占用的方式。例如,第一指示信息的载荷大小为p1,表示时频资源是以抢占方式被占用的,第一指示信息的载荷大小为p2,则表示时频资源是以速率匹配的方式被占用的。满足上述映射关系的p1和p2可以有多个。
第七种可能的实现方式是,通过发送第一指示信息的时域位置确定时频资源被占用的方式。例如,发送第一指示信息的时域位置在第一时频资源之前,可以表示时频资源是以速率匹配方式被占用的;当发送第一指示信息的时域位置在第一时频资源之后,则可以表示时频资源是以抢占方式被占用的;当发送第一指示信息的时域位置位于第一时频资源内,则当第一指示信息是在前n个时域符号内发送的,则可以表示时频资源是以速率匹配方式被占用的,当第一指示信息是在后m个时域符号内发送的,则可以表示时频资源是以抢占方式被占用的。
第八种可能的实现方式是,预先配置不同的资源区域,根据第一时频资源或第一指示信息指示的受影响的时频资源所位于的位置不同,确定时频资源被占用的方式。例如,预先配置URLLC和eMBB的共存区为B1,预留给LTE使用的区域为B2,用于干扰管理的资源区域为B3,则当终端设备发现第一时频资源位于B1内时,则认为时频资源是以抢占的方式被占用的,当终端设备发现第一时频资源位于B2或B3内时,则认为时频资源是以速率匹配的方式被占用的。或者,当终端发现第一指示信息指示的受影响的时频资源位于B1内时,则认为时频资源是以抢占的方式被占用的,当终端设备发现第一指示 信息指示的受影响的时频资源位于B2或B3内时,则认为时频资源是以速率匹配的方式被占用的。
S520,网络设备通过PDCCH发送该第一指示信息。可选地,网络设备在第N个第一时间单元上通过PDCCH发送第一指示信息。对应的,终端设备接收该第一指示信息。
这里的第一时间单元是在某个numerology下的时间长度,可以是在该numerology下的时域符号、微时隙、时隙或子帧等。这里的numerology与数据传输使用的numerology可以相同也可以不同。可选地,第一时间单元的长度等于第一时频资源的时域长度。
可选地,上述第一指示信息包括长度为m比特的第二指示信息,其中m为大于1的整数,第二指示信息中的每一个比特用于指示第一时频资源中的一个第二时间单元的信息传输是否被影响,其中第二时间单元的时域长度小于等于第一时频资源的时域长度。这里的第二指示信息对应实施例二中的字段A。有关第二时间单元的详细定义可以参考实施例二。
可选地,上述第一指示信息包括长度为m比特的第二指示信息,该第二指示信息中的每一个比特用于指示该第一时频资源中的一个第二时频资源内的信息传输是否被影响,其中,m为大于1的整数,该第二时频资源的频域宽度小于等于该第一时频资源的频域宽度。这里的第二时频资源可以参考实施例二中的第二时频资源的定义。
可以理解的是,网络设备可以在第一指示信息的发送时机到达时发送第一指示信息。其中,发送时机可以由发送周期确定,例如,假设第一指示信息的发送周期为4个时隙,则网络设备可以每4个时隙发送一次第一指示信息,该第一指示信息用于指示是否有时频资源受影响以及具体哪部分时频资源受影响。网络设备也可以在到达第一指示信息的发送时机时,首先判断在PI region中是否有用于信息传输的时频资源受影响,这里的受影响包括被抢占。如果在PI region中有时频资源受影响,则发送第一指示信息,用于指示具体哪部分时频资源受影响。
可以理解的是,网络设备发送第一指示信息的发送时机可以由发送周期以及发送偏移共同确定,例如,发送周期为T个第一时间单元,发送偏移的参考基准可以是无线帧、子帧或时隙等时间单元的起始位置,发送偏移可以为K个第一时间单元。终端设备接收第一指示信息的接收时机与网络设备发送第一指示信息的发送时机相同,终端设备接收第一指示信息的接收时机也可以称为监测时机或检测时机。
终端设备可以在第一指示信息的监测时机到达时,对第一指示信息进行监测。其中,监测时机由监测周期确定,例如,假设第一指示信息的监测周期为4个时隙,则终端设备可以每4个时隙监测一次第一指示信息,以确认网络设备是否发送了第一指示信息。如果网络设备发送了第一指示信息,则对第一指示信息进行解调和译码。
终端设备也可以在第一指示信息的监测时机到达时,判断在该第一指示信息的监测时机所对应的第一时频资源中是否有数据或控制信息发送给该终端设备,如果在该第一时频资源中有数据或控制信息发送给该终端设备,则对第一指示信息进行监测,以确认网络设备是否发送了第一指示信息。考虑到第一时频资源中可能会包括不可抢占的时频资源,因此,终端设备可以在第一指示信息的监测时机到达时,判断第一时频资源中剔除不可抢占的时频资源后的时频资源内是否有数据或控制信息发给该终端设备。不可抢 占的时频资源可以是预留的时频资源,这里预留的时频资源可以用于前向兼容或后向兼容的目的,也可以用于发送RS等。如果第一时频资源中剔除不可抢占的时频资源后的时频资源内有数据或控制信息发给该终端设备,则对第一指示信息进行监测,以确认网络设备是否发送了第一指示信息。如果网络设备发送了第一指示信息,则对第一指示信息进行解调和译码。这里的控制信息包括参考信息或参考信号。该第一指示信息的监测时机所对应的第一时频资源可以参考实施例一获得,例如,假设该第一指示信息的监测时机为第N个第一时间单元,则对应的第一时频资源的时域位置为从第N-X到第N-Y个第一时间单元,对应的第一时频资源的频域位置也可以根据实施例一中的相关描述获得,在此不加赘述。通过本实施例,终端设备只在必要的时候对第一指示信息进行监测,从而可以节约终端设备的处理资源,降低终端设备的能耗。
当终端设备通过对第一指示信息的译码,发现用于接收参考信号(reference signal,RS)的时频资源被抢占或被影响时,可以对终端设备反馈信道状态信息(channel stateinformation,CSI)的时序进行调整。这里的RS可以是CSI-RS,也可以是其它RS,下面以CSI-RS为例进行描述。如果终端设备用于接收CSI-RS的时频资源被抢占或被影响,那么终端使用该被抢占或被影响的时频资源上的CSI-RS进行CSI测量可能会有较大的偏差。当终端设备通过第一指示信息确定用于接收CSI-RS的时频资源被抢占或被影响之后,可以将这部分时频资源上的CSI-RS剔除掉之后重新进行一次CSI测量,更新CSI测量结果。考虑到CSI测量结果的更新可能会影响到CSI的反馈时序,因此可以通过调整终端设备反馈CSI的时序来使得终端设备可以将更准确的CSI测量结果反馈给网络设备。
图5A为本申请实施例提供的一种CSI反馈时序示意图。如图5A所示,终端设备在T0时刻接收CSI-RS,并基于该CSI-RS进行CSI测量。T1为终端设备接收第一指示信息的时刻,T1大于T0。T2为终端设备基于T0时刻接收到的CSI-RS反馈CSI的时刻。T3为终端设备反馈更新后的CSI的时刻。当T3小于等T2时,CSI可以在T2时刻反馈也可以在T3时刻反馈。当T3大于T2时,CSI在T3时刻反馈。
一种可能的实施方式是,当终端设备需要监测第一指示信息时,终端设备将CSI反馈时刻从T2调整到T3。当第一指示信息指示T0时刻的CSI-RS的时频资源部分或全部被抢占或受影响时,终端设备可以基于第一指示信息的内容剔除被抢占或受影响的时频资源上的CSI-RS,对剩余部分的CSI-RS重新进行CSI测量,更新CSI测量结果,并在T3时刻将更新后的CSI测量结果反馈给网络设备。可选的,终端设备还接收来自网络设备的第二指示信息,其中,第二指示信息用于指示终端设备是否需要监测第一指示信息。例如,当该eMBB UE所接入的小区是eMBB UE和URLLC UE共存的小区,则网络设备会给UE发送第二指示信息,用于指示UE监测第一指示信息,以确定eMBB UE的数据传输资源是否被URLLC抢占。对于eMBB UE和URLLC UE共存的小区,CSI反馈时刻都从T2时刻调整为T3时刻。
另一种可能的实施方式是,当T3大于等于T2且T2大于T1时,如果终端设备需要监测第一指示信息但没有检测到第一指示信息,或者接收到的第一指示信息指示T0时刻的CSI-RS的时频资源没有被抢占或没有受到影响,终端设备在T2时刻将CSI测量结果反馈给网络设备。
上述CSI反馈时序可以协议预定义,例如,协议预定义T3=T1+Δt1,或T3=T2+Δt2。或者,CSI反馈时序相关的参数也可以由网络侧确定后,通过RRC信令或物理层信令通知给终端设备,其中,CSI反馈时序相关的参数可以包括Δt1和Δt2等。
S530,终端设备根据该第一指示信息确定第三时频资源内的信息传输是否被影响,其中,该第三时频资源为终端设备和网络设备之间用于下行信息传输的时频资源。
这里的第三时频资源跟上述第一时频资源可以有重叠的时频资源也可以没有重叠的时频资源。当第三时频资源与第一时频资源没有重叠的时频资源时,表明该终端设备的信息传输没有被URLLC业务或其它信息传输所影响。当第三时频资源与第一时频资源有重叠的时频资源时,终端设备需要根据第一指示信息的内容进一步确定。终端设备首先根据第一指示信息的内容以及第一时频资源的时频范围,确定出受影响的时频资源B。然后判断时频资源B与第三时频资源是否有重叠的时频资源,如果没有重叠的时频资源,则表明该终端设备的信息传输没有被URLLC业务或其它信息传输所影响;如果有重叠的时频资源C,则这部分重叠的时频资源C就是受URLLC业务的数据抢占影响或其它的信息传输影响的时频资源。终端设备可以将在时频资源C上接收到的信息丢弃,该时频资源C上接收到的信息不参与译码以及HARQ合并。
上述实施例一到实施例五,可以根据技术方案的内在逻辑进行组合或相互引用形成新的实施例,在此不加赘述。
上述本申请提供的实施例中,分别从作为发送设备的网络设备、作为接收设备的终端设备以及发送设备和接收设备之间交互的角度对本申请实施例提供的控制信息传输方法进行了介绍。可以理解的是,各个设备,例如发送设备和接收设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图6和图7为本申请的实施例提供的两种可能的通信装置的结构示意图。该通信装置实现上述方法实施例中作为发送设备的网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图2所示的无线接入网设备220。
如图6所示,通信装置600包括处理单元610和发送单元620。
处理单元610,用于确定第一指示信息,该第一指示信息用于指示第一时频资源内的信息传输是否被影响。
发送单元620,用于通过物理下行控制信道发送该第一指示信息。
发送单元620还用于发送第一控制信息,该第一控制信息包括该第一时频资源的频域位置信息。
可选地,所述第一时频资源的频域位置信息包括起始位置偏移量信息和频域宽度信 息。
可选地,所述第一指示信息包括长度为m比特的第二指示信息,其中,m为大于1的整数,第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时间单元的信息传输是否被影响,其中,所述第二时间单元的时域长度小于等于所述第一时频资源的时域长度。
可选地,所述第一指示信息包括长度为m比特的第二指示信息,所述第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时频资源内的信息传输是否被影响,其中,m为大于1的整数,所述第二时频资源的频域宽度小于等于所述第一时频资源的频域宽度。
如图7所示,通信装置700包括处理器710,收发器720和存储器730,其中,存储器730可以用于存储处理器710执行的代码。通信装置700中的各个组件之间通过内部连接通路互相通信,如通过总线传递控制和/或数据信号。
处理器710,用于确定第一指示信息,所述第一指示信息用于指示第一时频资源内的信息传输是否被影响。
收发器720,用于通过物理下行控制信道发送所述第一指示信息。
收发器720还用于发送第一控制信息,所述第一控制信息包括所述第一时频资源的频域位置信息。
可选地,所述第一时频资源的频域位置信息包括起始位置偏移量信息和频域宽度信息。
可选地,所述第一指示信息包括长度为m比特的第二指示信息,其中,m为大于1的整数,第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时间单元的信息传输是否被影响,其中,所述第二时间单元的时域长度小于等于所述第一时频资源的时域长度。
可选地,所述第一指示信息包括长度为m比特的第二指示信息,所述第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时频资源内的信息传输是否被影响,其中,m为大于1的整数,所述第二时频资源的频域宽度小于等于所述第一时频资源的频域宽度。
有关上述处理单元610、处理器710和发送单元620、收发器720的其它功能描述可以参考上述方法实施例直接得到。上述方法实施例一到方法实施例五中的信息发送功能由发送单元620和收发器720完成,其余的数据处理功能均由处理单元610和处理器710完成,在此不加赘述。
图8和图9为本申请的实施例的另外两种可能的通信装置的结构示意图。该通信装置实现上述方法实施例中作为接收设备的终端设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图2所示的终端设备230或终端设备240。
如图8所示,通信装置800包括接收单元810和处理单元820。
接收单元810,用于通过物理下行控制信道接收第一指示信息,所述第一指示信息用于指示第一时频资源内的信息传输是否被影响。
处理单元820,用于根据第一指示信息确定第三时频资源内的信息传输是否被影 响,其中,所述第三时频资源为终端设备和网络设备之间用于下行信息传输的时频资源。
接收单元810还用于接收第一控制信息,所述第一控制信息包括所述第一时频资源的频域位置信息。
可选地,所述第一时频资源的频域位置信息包括起始位置偏移量信息和频域宽度信息。
可选地,所述第一指示信息包括长度为m比特的第二指示信息,其中,m为大于1的整数,第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时间单元的信息传输是否被影响,其中,所述第二时间单元的时域长度小于等于所述第一时频资源的时域长度。
可选地,所述第一指示信息包括长度为m比特的第二指示信息,所述第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时频资源内的信息传输是否被影响,其中,m为大于1的整数,所述第二时频资源的频域宽度小于等于所述第一时频资源的频域宽度。
如图9所示,通信装置900包括处理器920,收发器910和存储器930,其中,存储器930可以用于存储处理器920执行的代码。通信装置900中的各个组件之间通过内部连接通路互相通信,如通过总线传递控制和/或数据信号。
收发器910,用于通过物理下行控制信道接收第一指示信息,所述第一指示信息用于指示第一时频资源内的信息传输是否被影响。
处理器920,用于根据第一指示信息确定第三时频资源内的信息传输是否被影响,其中,所述第三时频资源为终端设备和网络设备之间用于下行信息传输的时频资源。
收发器910还用于接收第一控制信息,所述第一控制信息包括所述第一时频资源的频域位置信息。
可选地,所述第一时频资源的频域位置信息包括起始位置偏移量信息和频域宽度信息。
可选地,所述第一指示信息包括长度为m比特的第二指示信息,其中,m为大于1的整数,第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时间单元的信息传输是否被影响,其中,所述第二时间单元的时域长度小于等于所述第一时频资源的时域长度。
可选地,所述第一指示信息包括长度为m比特的第二指示信息,所述第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时频资源内的信息传输是否被影响,其中,m为大于1的整数,所述第二时频资源的频域宽度小于等于所述第一时频资源的频域宽度。
可以理解的是,图7和图9仅仅示出了该通信装置的一种设计。在实际应用中,该通信装置可以包括任意数量的接收器和处理器,而所有可以实现本申请的实施例的通信装置都在本申请的保护范围之内。
有关上述接收单元810、收发器910和处理单元820、处理器920的其它功能描述可以参考上述方法实施例直接得到。上述方法实施例一到方法实施例五中的信息接收功能由接收单元810和收发器910完成,其余的数据处理功能均由处理单元820和处理器920完成,在此不加赘述,在此不加赘述。
上述图6至图9所示的装置实施例,是参考上述部分方法实施例得到的。可以理解的是,参考本申请的其它方法实施例以及上述图6至图9所示的装置实施例,可以相应得到本申请的其它方法实施例对应的装置实施例,在此不加赘述。
可以理解的是,当本申请的实施例应用于网络设备芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送上述第一指示信息和第一控制信息。该第一指示信息和第一控制信息经由网络设备的其它模块发送给终端设备。
当本申请的实施例应用于终端设备芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收上述第一指示信息和第一控制信息,该第一指示信息和第一控制信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于发送设备或接收设备中。当然,处理器和存储介质也可以作为分立组件存在于发送设备或接收设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本文中的术语“多个”是指两个或两个以上。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
以上所述,仅为本申请的实施例的具体实施方式,任何熟悉本技术领域的技术人员在本申请公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的实施例的保护范围之内。

Claims (27)

  1. 一种控制信息的传输方法,其特征在于,所述方法包括:
    网络设备确定第一指示信息,所述第一指示信息用于指示第一时频资源内的信息传输是否被影响;
    所述网络设备通过物理下行控制信道发送所述第一指示信息。
  2. 一种控制信息的传输方法,其特征在于,所述方法包括:
    终端设备通过物理下行控制信道接收第一指示信息,所述第一指示信息用于指示第一时频资源内的信息传输是否被影响;
    终端设备根据所述第一指示信息确定第三时频资源内的信息传输是否被影响,其中,所述第三时频资源为终端设备和网络设备之间用于下行信息传输的时频资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息包括长度为m比特的第二指示信息,所述第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时间单元内的信息传输是否被影响,其中,m为大于1的整数,所述第二时间单元的时域长度小于所述第一时频资源的时域长度。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息包括长度为m比特的第二指示信息,所述第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时频单元内的信息传输是否被影响,其中,m为大于1的整数,所述第二时频单元对应一个第二时间单元上的第二频域单元。
  5. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述第一时频资源包括m个第二时间单元,所述第一时频资源包括n个第三时间单元,n=k*m+r,m、n、k和r为正整数,r小于m;前r个第二时间单元对应k+1个第三时间单元,后m–r个第二时间单元对应k个第三时间单元。
  6. 根据权利要求4所述的方法,其特征在于,
    所述第一时频资源包括m1个第二时间单元,所述第一时频资源包括n个第三时间单元,n=k1*m1+r1,m1、n、k1和r1为正整数,r1小于m1;前r1个第二时间单元对应k1+1个第三时间单元,后m1–r1个第二时间单元对应k1个第三时间单元;
    所述第一时频资源包括n1个第二频域单元,所述第一时频资源包括f个频域单元,f=k2*n1+r2,n1、f、k2和r2为正整数,r2小于n1;前r2个第二频域单元对应k2+1个频域单元,后n1–r2个第二频域单元对应k2个频域单元。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述方法还包括:
    所述第一时频资源的时间长度等于所述第一指示信息的监测周期。
  8. 根据权利要求7所述的方法,其特征在于,当所述第一指示信息在第N个第一时间单元发送且所述第一指示信息的发送周期为T个所述第一时间单元时,所述第一时频资源的时域位置从第N-T个所述第一时间单元到第N-1个所述第一时间单元,其中,N和T为正整数,且T小于等于N。
  9. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于确定第一指示信息,所述第一指示信息用于指示第一时频资源内的信息传输是否被影响;
    发送单元,用于通过物理下行控制信道发送所述第一指示信息。
  10. 一种通信装置,其特征在于,所述装置包括:
    接收单元,用于通过物理下行控制信道接收第一指示信息,所述第一指示信息用于指示第一时频资源内的信息传输是否被影响;
    处理单元,用于根据所述第一指示信息确定第三时频资源内的信息传输是否被影响,其中,所述第三时频资源为终端设备和网络设备之间用于下行信息传输的时频资源。
  11. 根据权利要求9或10所述的装置,其特征在于,所述第一指示信息包括长度为m比特的第二指示信息,所述第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时间单元内的信息传输是否被影响,其中,m为大于1的整数,所述第二时间单元的时域长度小于所述第一时频资源的时域长度。
  12. 根据权利要求9或10所述的装置,其特征在于,所述第一指示信息包括长度为m比特的第二指示信息,所述第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时频单元内的信息传输是否被影响,其中,m为大于1的整数,所述第二时频单元对应一个第二时间单元上的第二频域单元。
  13. 根据权利要求11所述的装置,其特征在于,所述方法还包括:
    所述第一时频资源包括m个第二时间单元,所述第一时频资源包括n个第三时间单元,n=k*m+r,m、n、k和r为正整数,r小于m;前r个第二时间单元对应k+1个第三时间单元,后m–r个第二时间单元对应k个第三时间单元。
  14. 根据权利要求12所述的装置,其特征在于,
    所述第一时频资源包括m1个第二时间单元,所述第一时频资源包括n个第三时间单元,n=k1*m1+r1,m1、n、k1和r1为正整数,r1小于m1;前r1个第二时间单元对应k1+1个第三时间单元,后m1–r1个第二时间单元对应k1个第三时间单元;
    所述第一时频资源包括n1个第二频域单元,所述第一时频资源包括f个频域单元,f=k2*n1+r2,n1、f、k2和r2为正整数,r2小于n1;前r2个第二频域单元对应k2+1个频域单元,后n1–r2个第二频域单元对应k2个频域单元。
  15. 根据权利要求9至14任一项所述的装置,其特征在于,所述方法还包括:
    所述第一时频资源的时间长度等于所述第一指示信息的监测周期。
  16. 根据权利要求15所述的装置,其特征在于,当所述第一指示信息在第N个第一时间单元发送且所述第一指示信息的发送周期为T个所述第一时间单元时,所述第一时频资源的时域位置从第N-T个所述第一时间单元到第N-1个所述第一时间单元,其中,N和T为正整数,且T小于等于N。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现如权利要求1至8任一项所述的方法。
  18. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序被执行时,实现如权利要求1至8任一项所述的方法。
  19. 一种通信装置,包括处理器、收发器和存储器,其中,所述存储器用于存储所述处理器执行的代码,所述处理器、所述收发器和所述存储器之间通过内部连接通路互相通信,其特征在于:
    所述处理器用于确定第一指示信息,所述第一指示信息用于指示第一时频资源内的 信息传输是否被影响;
    所述收发器用于通过物理下行控制信道发送所述第一指示信息。
  20. 一种通信装置,包括处理器、收发器和存储器,其中,所述存储器用于存储所述处理器执行的代码,所述处理器、所述收发器和所述存储器之间通过内部连接通路互相通信,其特征在于:
    所述收发器用于通过物理下行控制信道接收第一指示信息,所述第一指示信息用于指示第一时频资源内的信息传输是否被影响;所述处理器用于根据所述第一指示信息确定第三时频资源内的信息传输是否被影响,其中,所述第三时频资源为终端设备和网络设备之间用于下行信息传输的时频资源。
  21. 根据权利要求19或20所述的装置,其特征在于,所述第一指示信息包括长度为m比特的第二指示信息,所述第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时间单元内的信息传输是否被影响,其中,m为大于1的整数,所述第二时间单元的时域长度小于所述第一时频资源的时域长度。
  22. 根据权利要求19或20所述的装置,其特征在于,所述第一指示信息包括长度为m比特的第二指示信息,所述第二指示信息中的每一个比特用于指示所述第一时频资源中的一个第二时频单元内的信息传输是否被影响,其中,m为大于1的整数,所述第二时频单元对应一个第二时间单元上的第二频域单元。
  23. 根据权利要求21所述的装置,其特征在于,所述方法还包括:
    所述第一时频资源包括m个第二时间单元,所述第一时频资源包括n个第三时间单元,n=k*m+r,m、n、k和r为正整数,r小于m;前r个第二时间单元对应k+1个第三时间单元,后m–r个第二时间单元对应k个第三时间单元。
  24. 根据权利要求22所述的装置,其特征在于,
    所述第一时频资源包括m1个第二时间单元,所述第一时频资源包括n个第三时间单元,n=k1*m1+r1,m1、n、k1和r1为正整数,r1小于m1;前r1个第二时间单元对应k1+1个第三时间单元,后m1–r1个第二时间单元对应k1个第三时间单元;
    所述第一时频资源包括n1个第二频域单元,所述第一时频资源包括f个频域单元,f=k2*n1+r2,n1、f、k2和r2为正整数,r2小于n1;前r2个第二频域单元对应k2+1个频域单元,后n1–r2个第二频域单元对应k2个频域单元。
  25. 根据权利要求19至24任一项所述的装置,其特征在于,所述方法还包括:
    所述第一时频资源的时间长度等于所述第一指示信息的监测周期。
  26. 根据权利要求25所述的装置,其特征在于,当所述第一指示信息在第N个第一时间单元发送且所述第一指示信息的发送周期为T个所述第一时间单元时,所述第一时频资源的时域位置从第N-T个所述第一时间单元到第N-1个所述第一时间单元,其中,N和T为正整数,且T小于等于N。
  27. 一种芯片,用于实现如权利要求1至8任一项所述的方法。
PCT/CN2018/093422 2017-06-30 2018-06-28 控制信息传输方法和设备 WO2019001523A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207001639A KR102313370B1 (ko) 2017-06-30 2018-06-28 제어 정보 송신 방법 및 디바이스
AU2018294476A AU2018294476B2 (en) 2017-06-30 2018-06-28 Control information transmission method and device
RU2020103741A RU2761375C2 (ru) 2017-06-30 2018-06-28 Способ передачи управляющей информации и устройство
JP2019572612A JP6985430B2 (ja) 2017-06-30 2018-06-28 制御情報伝送方法およびデバイス
EP18824269.7A EP3641456B1 (en) 2017-06-30 2018-06-28 Control information transmission method and device
BR112019028214-9A BR112019028214A2 (pt) 2017-06-30 2018-06-28 dispositivo e método de transmissão de informações de controle
US16/728,971 US11445488B2 (en) 2017-06-30 2019-12-27 Control information transmission method and device

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201710525762 2017-06-30
CN201710525762.7 2017-06-30
CN201710685344 2017-08-11
CN201710685344.4 2017-08-11
CN201710804109.4 2017-09-08
CN201710804109 2017-09-08
CN201710906170.X 2017-09-29
CN201710906170 2017-09-29
CN201711105497.3A CN109218000B (zh) 2017-06-30 2017-11-10 控制信息传输方法和设备
CN201711105497.3 2017-11-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/728,971 Continuation US11445488B2 (en) 2017-06-30 2019-12-27 Control information transmission method and device

Publications (1)

Publication Number Publication Date
WO2019001523A1 true WO2019001523A1 (zh) 2019-01-03

Family

ID=64741105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093422 WO2019001523A1 (zh) 2017-06-30 2018-06-28 控制信息传输方法和设备

Country Status (1)

Country Link
WO (1) WO2019001523A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210050974A1 (en) * 2019-08-13 2021-02-18 Qualcomm Incorporated Puncturing indicator of a portion of a reference signal within an unpunctured portion of the reference signal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455103A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 资源配置方法和资源配置装置
CN106851846A (zh) * 2017-01-23 2017-06-13 深圳市金立通信设备有限公司 一种控制信息发送方法、基站、用户设备及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455103A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 资源配置方法和资源配置装置
CN106851846A (zh) * 2017-01-23 2017-06-13 深圳市金立通信设备有限公司 一种控制信息发送方法、基站、用户设备及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "On Pre-emption Indication for DL Multiplexing of URLLC and eMBB", 3GPP TSG RAN WGI MEETING #89 R1-1708124, 6 May 2017 (2017-05-06), XP051262259 *
See also references of EP3641456A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210050974A1 (en) * 2019-08-13 2021-02-18 Qualcomm Incorporated Puncturing indicator of a portion of a reference signal within an unpunctured portion of the reference signal
US11695524B2 (en) * 2019-08-13 2023-07-04 Qualcomm Incorporated Puncturing indicator of a portion of a reference signal within an unpunctured portion of the reference signal
US20230318774A1 (en) * 2019-08-13 2023-10-05 Qualcomm Incorporated Puncturing indicator of a portion of a reference signal within an unpunctured portion of the reference signal

Similar Documents

Publication Publication Date Title
US11445488B2 (en) Control information transmission method and device
WO2019129012A1 (zh) 控制信息的传输方法
US11304220B2 (en) Method and device for scheduling transmissions based on channel numerology
US11071136B2 (en) System and method for multiplexing traffic
WO2017045496A1 (zh) 一种下行控制方法及装置
TWI665926B (zh) 電信裝置及方法
WO2020094019A1 (zh) 信息传输方法及装置
CN111148207B (zh) 一种功率余量报告的上报方法、获取方法及装置
WO2020088688A1 (zh) 资源配置方法及装置
WO2020135417A1 (zh) 由用户设备执行的方法以及用户设备
WO2021227755A1 (zh) 一种切换方法及装置
AU2018284889B2 (en) Bandwidth resource configuration method, apparatus, and system
WO2020156559A1 (zh) 一种数据传输方法、网络设备和终端设备
WO2018228537A1 (zh) 信息发送、接收方法及装置
CN111436085B (zh) 通信方法及装置
US20190124705A1 (en) Identifier management method, apparatus, and system
WO2017080271A1 (zh) 传输调度信息的方法和装置
CN116158164A (zh) 用户设备和基站
CN110831130B (zh) 数据传输方法及装置
WO2019001523A1 (zh) 控制信息传输方法和设备
WO2022151501A1 (zh) 一种通信方法及装置
WO2018127221A1 (zh) 一种资源指示方法及相关设备
WO2020237408A1 (zh) 信号处理方法以及装置
WO2021056330A1 (zh) 数据处理的方法和装置
CN116033570A (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019572612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019028214

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207001639

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018294476

Country of ref document: AU

Date of ref document: 20180628

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018824269

Country of ref document: EP

Effective date: 20200117

ENP Entry into the national phase

Ref document number: 112019028214

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191230