WO2017080271A1 - 传输调度信息的方法和装置 - Google Patents

传输调度信息的方法和装置 Download PDF

Info

Publication number
WO2017080271A1
WO2017080271A1 PCT/CN2016/094789 CN2016094789W WO2017080271A1 WO 2017080271 A1 WO2017080271 A1 WO 2017080271A1 CN 2016094789 W CN2016094789 W CN 2016094789W WO 2017080271 A1 WO2017080271 A1 WO 2017080271A1
Authority
WO
WIPO (PCT)
Prior art keywords
dedicated channel
time
level dedicated
level
channel
Prior art date
Application number
PCT/CN2016/094789
Other languages
English (en)
French (fr)
Inventor
栗忠峰
吴宁
曹永照
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2018524394A priority Critical patent/JP6720304B2/ja
Priority to EP20197101.7A priority patent/EP3911068B1/en
Priority to EP16863449.1A priority patent/EP3367742B1/en
Publication of WO2017080271A1 publication Critical patent/WO2017080271A1/zh
Priority to US15/976,960 priority patent/US10869326B2/en
Priority to US17/103,207 priority patent/US11291029B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present invention relates to the field of communications and, more particularly, to a method and apparatus for transmitting scheduling information.
  • a communication technology is known to carry the scheduling information of the terminal device through the physical downlink control channel (the full name of the physical downlink control channel, the English abbreviation may be: PDCCH), and the downlink physical data channel (the full name of the English language can be:
  • the Physical Downlink Shared Channel which can be: PDSCH, carries the downlink data of the UE, and the PDCCH and the PDSCH multiplex the system bandwidth by using a time division multiplexing manner.
  • the PDCCH and the EPDCCH coexist, and the start symbol of the EPDCCH is limited to the PDCCH, and the design is complicated, which affects the use of the EPDCCH, thereby affecting the timeliness and flexibility of the transmission scheduling.
  • Embodiments of the present invention provide a method and apparatus for transmitting scheduling information, which can improve flexibility of transmission scheduling information, and improve system performance and user experience.
  • a method for transmitting scheduling information is provided, which is implemented in a communication system including at least two stages of dedicated channels for downlink control, where time-frequency resources corresponding to different levels of dedicated channels are different, wherein the dedicated channel is Detecting only by the terminal device to which it is allocated, the method includes: the network device assigning the first-level dedicated channel and the second-level dedicated channel to the target terminal device; the network device transmitting the first-level resource by using the preset first time-frequency resource The indication information of the dedicated channel; the network device sends the indication information of the second-level dedicated channel to the target terminal device by using the first-level dedicated channel; or The network device sends the indication information of the third time-frequency resource to the target terminal device by using the first-level dedicated channel, and sends the indication information of the second-level dedicated channel to the target terminal device by using the third time-frequency resource, The third time-frequency resource belongs to a time-frequency resource of the downlink data channel PDSCH.
  • the network device sends dedicated scheduling information for the target terminal device to the
  • the network device allocates the first-level dedicated channel and the second-level dedicated channel to the target terminal device, including: according to the service accessed by the target terminal device The delay requirement is to allocate a first-level dedicated channel or a second-level dedicated channel to the target terminal device.
  • the communications system further includes a common channel, where the time-frequency resource of the common channel is different from the time-frequency resource of the dedicated channel, where The common channel is detected by all the terminal devices in the communication system, the method further includes: the network device transmitting the indication information of the common channel by using a preset second time-frequency resource; the network device sending the public message through the common channel; or The network device sends the indication information of the fourth time-frequency resource through the common channel, and sends the public message by using the fourth time-frequency resource, where the fourth time-frequency resource belongs to the time-frequency resource of the downlink data channel PDSCH;
  • the message includes at least one of a random access response message, a paging message, or a system message.
  • a method for transmitting scheduling information is provided, which is implemented in a communication system including at least two stages of dedicated channels for downlink control, where time-frequency resources corresponding to different levels of dedicated channels are different, wherein the dedicated channel is
  • the method is: the target terminal device receives, by using the preset first time-frequency resource, the indication information of the first-level dedicated channel that is sent by the network device; the target terminal device is configured according to the first-level device.
  • the target terminal device Determining the first dedicated channel by using the indication information of the dedicated channel; the target terminal device receives the indication information of the second-level dedicated channel sent by the network device by using the first-level dedicated channel; or the target terminal device passes the first Receiving, by the network dedicated device, the indication information of the third time-frequency resource sent by the network device, and receiving, by using the third time-frequency resource, the indication information of the second-level dedicated channel sent by the network device, where the third time The frequency resource belongs to a time-frequency resource of the downlink data channel PDSCH; the target terminal device is configured according to the indication information of the second-level dedicated channel, Given this second stage dedicated channel; the target terminal through the second stage dedicated channel, the network device receives a dedicated scheduling transmission for the information of the target terminal apparatus.
  • the first-level dedicated channel or the second-level dedicated channel is a delay of the network device according to the service accessed by the target terminal device Ask for distribution.
  • the communications system further includes a common channel, where the time-frequency resource of the common channel is different from the time-frequency resource of the dedicated channel, where The common channel is detected by all the terminal devices in the communication system, and the method further includes: the target terminal device receiving the indication information of the common channel sent by the network device by using a preset second time-frequency resource; the target terminal device passes the Receiving, by the public channel, a public message sent by the network device; or receiving, by the target terminal device, indication information of a fourth time-frequency resource sent by the network device, and receiving, by using the fourth time-frequency resource, the network device to send
  • the common time message belongs to the time-frequency resource of the downlink data channel PDSCH; wherein the public message includes at least one of a random access response message, a paging message, or a system message.
  • an apparatus for transmitting scheduling information In a communication system including at least two stages of dedicated channels for downlink control, time-frequency resources corresponding to different levels of dedicated channels are different, wherein the dedicated channel is Detecting only by the terminal device to which the device is allocated, the device includes: an allocating unit, configured to allocate a first-level dedicated channel and a second-level dedicated channel to the target terminal device; and a sending unit, configured to pass the preset first time-frequency resource And transmitting, by the first-level dedicated channel, indication information of the second-level dedicated channel to the target terminal device; or for transmitting, by using the first-level dedicated channel, the The target terminal device sends the indication information of the third time-frequency resource, and sends the indication information of the second-level dedicated channel to the target terminal device by using the third time-frequency resource, where the third time-frequency resource belongs to the downlink data channel.
  • a time-frequency resource of the PDSCH configured to send, by using the second-level dedicated channel, dedicated scheduling information for the target terminal device to the
  • the allocating unit is configured to allocate a first-level dedicated channel or a first-level dedicated channel to the target terminal device according to a delay requirement of the service accessed by the target terminal device. Secondary dedicated channel.
  • the communications system further includes a common channel, where the time-frequency resource of the common channel is different from the time-frequency resource of the dedicated channel, where The common channel is detected by all the terminal devices in the communication system, and the sending unit is further configured to send the indication information of the common channel by using a preset second time-frequency resource; to send a public message through the common channel; or Transmitting, by using the common channel, indication information of the fourth time-frequency resource, and transmitting, by using the fourth time-frequency resource, a common message, where the fourth time-frequency resource belongs to a time-frequency resource of the downlink data channel PDSCH, where the public message includes a random Access response message, paging At least one of a message or a system message.
  • a fourth aspect provides an apparatus for transmitting scheduling information, where a time-frequency resource corresponding to each stage of a dedicated channel is different in a communication system including at least two stages of dedicated channels for downlink control, wherein the dedicated channel is only Detecting by the terminal device to be allocated, the device includes: a receiving unit, configured to receive, by using a preset first time-frequency resource, indication information of the first-level dedicated channel that is sent by the network device, and a determining unit, configured to be used according to the first Determining, by the indication information of the first-level dedicated channel, the first dedicated channel; the receiving unit is further configured to receive, by using the first-level dedicated channel, indication information of the second-level dedicated channel sent by the network device; or the receiving unit further And receiving, by the first-level dedicated channel, indication information of a third time-frequency resource sent by the network device, and receiving, by using the third time-frequency resource, indication information of the second-level dedicated channel sent by the network device,
  • the third time-frequency resource belongs to a time-frequency resource of
  • the first-level dedicated channel or the second-level dedicated channel is allocated by the network device according to a delay requirement of a service accessed by the device.
  • the communications system further includes a common channel, where the time-frequency resource of the common channel is different from the time-frequency resource of the dedicated channel, where The common channel is detected by all the terminal devices in the communication system, and the receiving unit is further configured to receive the indication information of the common channel sent by the network device by using a preset second time-frequency resource; the determining unit is further configured to be used according to the public Determining the common channel by using the indication information of the channel; the receiving unit is further configured to receive the public message sent by the network device by using the common channel; or the receiving unit is further configured to receive, by using the common channel, the fourth message sent by the network device Receiving, by the fourth time-frequency resource, the public information sent by the network device, where the fourth time-frequency resource belongs to a time-frequency resource of the downlink data channel PDSCH, where the public message includes a random access response At least one of a message, a page message, or a system message
  • the method and apparatus for transmitting scheduling information by configuring at least two levels of dedicated channels, and when performing resource scheduling on the terminal device, transmitting the first level dedicated by using the first time-frequency resource for transmitting system information And indicating information of a time-frequency resource of the channel, by using the first-level dedicated channel, sending, to the terminal device, indication information of a time-frequency resource of the second-level dedicated channel, and further, sending, by using the second-level dedicated channel, the terminal Dedicated scheduling information of the device, and thus, in transmitting the dedicated scheduling information, only the finger of the time-frequency resource of the first-level dedicated channel is transmitted
  • the dedicated scheduling information can be sent through the first-level dedicated channel and the second-level dedicated channel at any time.
  • the start symbol of the dedicated channel is not limited to the PDCCH, which can improve the flexibility of transmitting scheduling information, improve system
  • FIG. 1 is a schematic diagram showing a multiplexing manner of a system bandwidth by a PDCCH, a PDSCH, and an EPDCCH in the prior art.
  • FIG. 2 is a schematic flowchart of a method for transmitting scheduling information according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing an example of a manner of distributing time-frequency resources of a first-stage dedicated channel, a second-level dedicated channel, or a common channel according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another example of a manner of distributing time-frequency resources of a first-stage dedicated channel, a second-level dedicated channel, or a common channel according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of still another example of a manner of distributing time-frequency resources of a first-stage dedicated channel, a second-level dedicated channel, or a common channel according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing still another example of a distribution manner of a first-stage dedicated channel or a second-level dedicated channel according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing an example of a time-frequency resource allocation manner of a first-level dedicated channel or a second-level dedicated channel according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another example of a time-frequency resource configuration manner of a first-level dedicated channel or a second-level dedicated channel according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of still another example of a time-frequency resource allocation manner of a first-level dedicated channel or a second-level dedicated channel according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of still another example of a time-frequency resource allocation manner of a first-level dedicated channel or a second-level dedicated channel according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing still another example of a distribution manner of a first-stage dedicated channel and a second-level dedicated channel according to an embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of a method for transmitting scheduling information according to another embodiment of the present invention.
  • FIG. 13 is a schematic block diagram of an apparatus for transmitting scheduling information according to an embodiment of the present invention.
  • FIG. 14 is a schematic block diagram of an apparatus for transmitting scheduling information according to another embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of an apparatus for transmitting scheduling information according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of an apparatus for transmitting scheduling information according to another embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • Both the application running on the computing device and the computing device can be components.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers. Moreover, these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • the computer includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a CPU, a memory management unit (English full name may be: Memory Management Unit, English abbreviation may be: MMU), and memory (also referred to as memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, for example, a Linux system, a Unix system, an Android system, an iOS system, or a windows system, and the like, and the present invention is not particularly limited.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software. It should be understood that the above-listed computer devices are merely illustrative and the invention is not particularly limited.
  • the solution of the embodiment of the present invention can be applied to an existing cellular communication system, such as global mobile communication (the full name of the English can be: Global System for Mobile Communication, English abbreviation can be For: GSM), wideband code division multiple access (English full name can be: Wideband Code Division Multiple Access, English abbreviation can be: WCDMA), long-term evolution (English full name can be: Long Term Evolution, English abbreviation can be: LTE), In the system of code division multiple access (English full name: Code Division Multiple Access, English abbreviation can be: CDMA), the supported communication is mainly for voice and data communication. In general, a traditional base station supports a limited number of connections and is easy to implement.
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • CDMA Code Division Multiple Access
  • the supported communication is mainly for voice and data communication.
  • a traditional base station supports a limited number of connections and is easy to implement.
  • the network device is a base station, and the terminal device is a user equipment.
  • a terminal device may also be called a user equipment (English name may be: User Equipment, English abbreviation may be: UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, User terminal, terminal, wireless communication device, user agent or user device.
  • a user equipment English name may be: User Equipment, English abbreviation may be: UE
  • an access terminal a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device can be a wireless local area network (English name can be: Wireless Local Area Networks, English abbreviation can be: WLAN) in the site (English full name can be: STAION, English abbreviation can be: ST), can be cellular phones, cordless phones
  • the session initiation protocol English full name can be: Session Initiation Protocol, English abbreviation can be: SIP
  • wireless local loop English full name can be: Wireless Local Loop
  • English abbreviation can be: WLL
  • PDA Personal Digital Assistant
  • handheld device with wireless communication function computing device or other processing device connected to wireless modem, car device, wearable device and terminal in future 5G network device.
  • the network device may be a device for communicating with the mobile device, such as a network device, and the network device may be an access point in the WLAN (English full name may be: ACCESS POINT, English abbreviation may be: AP), base station in GSM or CDMA ( The English full name can be: Base Transceiver Station, English abbreviation can be: BTS), or it can be a base station in WCDMA (English full name can be: NodeB, English abbreviation can be: NB), or it can be an evolved base station in LTE ( The full English name can be: Evolutional Node B, the English abbreviation can be: eNB or eNodeB), or a relay station or access point, or an in-vehicle device, a wearable device, and a network device in a future 5G network.
  • the full English name can be: Evolutional Node B, the English abbreviation can be: eNB or eNodeB), or a relay station or access point, or an in
  • aspects or features of the present invention can be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • a computer readable medium can include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), an optical disk, such as a compact disk (English)
  • a magnetic storage device eg, a hard disk, a floppy disk, or a magnetic tape, etc.
  • an optical disk such as a compact disk (English)
  • the full name of the text can be: Compact Disk, English abbreviation can be: CD), digital versatile disk (English full name can be: Digital Versatile Disk, English abbreviation can be: DVD), smart cards and flash memory devices, for example, rewritable programmable
  • the full name of the read-only memory in English can be: Erasable Programmable Read-Only Memory, English abbreviation can be: EPROM).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 2 shows a schematic flowchart of a method 100 for transmitting scheduling information according to an embodiment of the present invention, described in a network device, the method 100 being performed in a communication system including at least two stages of dedicated channels for downlink control, The time-frequency resources corresponding to the dedicated channels at different levels are different, wherein the dedicated channel is detected only by the terminal device to which it is allocated.
  • the method 100 includes:
  • the network device allocates a first-level dedicated channel and a second-level dedicated channel to the target terminal device.
  • the network device sends, by using a preset first time-frequency resource, indication information of the first-level dedicated channel.
  • the network device sends the indication information of the second-level dedicated channel to the target terminal device by using the first-level dedicated channel;
  • the network device sends the indication information of the third time-frequency resource to the target terminal device by using the first-level dedicated channel, and sends the indication information of the second-level dedicated channel to the target terminal device by using the third time-frequency resource.
  • the third time-frequency resource belongs to a time-frequency resource of the downlink data channel PDSCH;
  • the network device sends, by using the second-level dedicated channel, dedicated scheduling information for the target terminal device to the target terminal device.
  • At least two stages of dedicated scheduling information for the downlink control dedicated channel transmission terminal device are used.
  • the “dedicated channel” refers to a channel that is only detected by the terminal device, without loss of generality, for example, if the dedicated channel #1 is allocated by the network device to the terminal device #A (ie, an example of the target terminal device), Then, the network device can send the indication information of the time-frequency resource (also referred to as “search space”) corresponding to the dedicated channel #1 to the terminal device #A, so that the terminal device #A can be in the dedicated channel #1. The corresponding time-frequency resource is detected (or searched) to obtain information sent by the network device, for example, the dedicated scheduling information for the terminal device #A. And, in addition to the system The terminal device other than the terminal device #A does not detect on the time-frequency resource corresponding to the dedicated channel #1.
  • search space also referred to as “search space”
  • the “dedicated scheduling information” refers to the information that is sent to the user equipment for the resource scheduling when the network device needs to perform resource scheduling on a terminal device.
  • the above “special scheduling for the terminal device #A” The information may include information that needs to be transmitted to the terminal device #A through a dedicated search area of the EPDCCH or PDCCH in the prior art, for example, allocation information for downlink scheduling of the terminal device #A, or uplink for the terminal device #A Scheduled authorization information, etc.
  • the dedicated scheduling information is delivered by using at least two levels of dedicated channels.
  • the second-level dedicated channel is used to deliver dedicated scheduling information
  • the first-level dedicated channel is used to send indication information for indicating a time-frequency resource (or a search space) of the second-level dedicated channel.
  • dedicated scheduling information for the terminal device #A is carried on the second-level dedicated channel assigned to the terminal device #A (hereinafter, dedicated channel #2 is referred to for convenience of understanding and explanation).
  • the network device may deliver the indication information indicating the time-frequency resource of the dedicated channel #2 through the first-level dedicated channel (for example, the dedicated channel #1) allocated to the terminal device #A.
  • the network device can directly transmit the indication information of the time-frequency resource of the dedicated channel #2 through the dedicated channel #1 (hereinafter, the instruction information #1 is written for convenience of understanding and distinction).
  • the network device may also send the indication information of a certain time-frequency resource in the PDSCH by using the downlink control information (DCI, Downlink Control Information) message (hereinafter, for convenience of understanding and difference, the indication information is recorded. #2), and the instruction information #1 is delivered by the time-frequency resource in the PDSCH indicated by the indication information #2.
  • DCI Downlink Control Information
  • the indication information is recorded. #2
  • the instruction information #1 is delivered by the time-frequency resource in the PDSCH indicated by the indication information #2.
  • the terminal device #A can directly or indirectly acquire the indication information #1 through the dedicated channel #1, and according to the indication information #1, determine the dedicated channel #2 (specifically, the time-frequency resource of the dedicated channel #2), and On the time-frequency resource of the dedicated channel #2, dedicated scheduling information for the terminal device #A is acquired.
  • the network device may send an indication of the time-frequency resource of the EPDCCH #1 to the terminal device #A according to the preset time-frequency resource for transmitting the system information (for example, the MIB), that is, an example of the first time-frequency resource.
  • the system information for example, the MIB
  • the terminal device #A can obtain the indication information of the time-frequency resource of the dedicated channel #1 through the preset time-frequency resource, thereby determining the time-frequency resource of the dedicated channel #1, and the time-frequency of the dedicated channel #1 On the resource, the indication information of the time-frequency resource of the dedicated channel #2 is acquired through the dedicated channel #1.
  • the dedicated channel is a dedicated EPDCCH.
  • the EPDCCH in the communication system may be divided into a dedicated EPDCCH and a common EPDCCH (which is subsequently described in detail for the common EPDCCH), where “dedicated EPDCCH” refers to only the The EPDCCH allocated to the terminal device detection, for example, if the dedicated EPDCCH #1 (hereinafter, for ease of understanding and explanation, referred to as EPDCCH #1 for short) is allocated to the terminal device #A by the network device, the network device can be directed to the terminal device #A
  • the indication information of the time-frequency resource (also referred to as “search space”) corresponding to the EPDCCH #1 is sent, so that the terminal device #A can detect (or search) the time-frequency resource corresponding to the EPDCCH #1. ), to obtain information delivered by the network device, for example, the dedicated scheduling information for the terminal device #A.
  • the terminal devices other than the terminal device #A in the system do not detect on the time-frequency resources corresponding to the EPDCCH #1.
  • the above-mentioned scheme in which the EPDCCH is used as the dedicated channel is only an exemplary description, and the present invention is not limited thereto.
  • the next generation enhanced downlink control channel may also be used (the full name of the English may be: Future Enhanced Physical Downlink Control)
  • the channel, the English abbreviation may be: FEPDCCH) or a dedicated PDCCH as a dedicated channel.
  • the above method 100 will be described in detail by taking a process of transmitting control information to the terminal device #A (that is, an example of the target terminal device) as an example.
  • the network device can determine the time-frequency resource of the first-level EPDCCH (that is, an example of the first-level dedicated channel) from the time-frequency resources provided by the system (hereinafter, for ease of understanding and differentiation, the time-frequency resource A is recorded).
  • the network device assigning the first-level dedicated EPDCCH to the target terminal device includes:
  • the network device determines the size of the time-frequency resource of the first-level dedicated EPDCCH according to the number of terminal devices that need to be scheduled.
  • the first-level EPDCCH in the at least two-level EPDCCH may be an EPDCCH that is regarded as being allocated to the used terminal device that needs to be scheduled, or the time-frequency of the first-level EPDCCH.
  • the resource is used as the bearer for all the ends that need to be scheduled.
  • the search space of the end device is used as the bearer for all the ends that need to be scheduled.
  • the network device can determine the size of the time-frequency resource A according to the number of terminal devices that need to be scheduled. For example, if the number of terminal devices that need to be scheduled is large, the second level needs to be allocated to each terminal device.
  • the number of EPDCCHs is also large.
  • the number of indication information of the time-frequency resources of the second-stage EPDCCH (or the time-frequency resources in the PDSCH for indicating the information of the time-frequency resources of the second-level EPDCCH) is also compared. Therefore, more time-frequency resources (for example, symbols, sub-carriers, or resource blocks) can be allocated as the time-frequency resource A described above.
  • time-frequency resource A 1 the time-frequency resource of the EPDCCH #1
  • time-frequency resource A 1 the time-frequency resource of the EPDCCH #1
  • the network device may allocate the number N of the terminal devices (hereinafter, for convenience of understanding and distinction, note, terminal device #A to terminal device #N), which are currently scheduled, to the terminal devices.
  • the length or size of the time-frequency resource A is divided into X sub-time-frequency resources (hereinafter, for ease of understanding and differentiation, note, sub-time-frequency resource #A 1 ⁇ sub-time-frequency resource #A X ), where X ⁇ N, and the one-to-one correspondence between the terminal device #A and the terminal device #N and the sub-time-frequency resource #A 1 to the sub-time-frequency resource #A N , that is, each sub-time-frequency resource is allocated to the corresponding terminal device .
  • the indication information #1 or the indication information #2 allocated to the plurality of terminal devices are all carried in the time-frequency resource A, it is necessary to enable each terminal device to distinguish which indication information is required to be acquired.
  • the network device when the network device sends the indication information #1 or the indication information #2 to the terminal device #A through the dedicated EPDCCH #1, the related information of the terminal device #A may be carried in the corresponding device of the terminal device #A.
  • the sub-time-frequency resource ie, the above-mentioned time-frequency resource A 1 ).
  • the terminal device #A can perform detection on the time-frequency resource A, and use the sub-time-frequency resource carrying the related information of the terminal device #A as the time-frequency resource A 1 , and
  • the time-frequency resource A 1 receives the indication information #1 sent by the network device to the terminal device #A (ie, the indication information of the time-frequency resource of the EPDCCH #2) or the indication information #2 (ie, the bearer indication in the PDSCH) Indication information of time-frequency resources of information #1).
  • the indication information #1 or the indication information #2 may include a resource indication portion (a portion of the indication information carrying the time-frequency resource) and a device-related information portion (a portion carrying the related information of the terminal device). Therefore, after the terminal device #A knows the location of the time-frequency resource A, it can perform detection on the time-frequency resource A, and the indication information carrying the related information of the terminal device #A is regarded as a network device sent to the terminal device. Indication information #1 or indication information #2 of A.
  • the network device may obtain a preset mapping rule, where the mapping rule may indicate a related information between the terminal device #A and the terminal device #N and the sub-time-frequency resource #A 1 to the sub-time-frequency resource #A N A correspondence.
  • the terminal device can acquire the same or corresponding mapping rule, so that, for example, for the terminal device #A, the network device and the terminal device #A can determine the same sub-time-frequency resource from the time-frequency resource A as the time-frequency resource.
  • a 1 and frequency resources to the receiving network device terminal #A transmits indication information indicating information # 1 or # 2 at this time.
  • the related information of the terminal device may include the device identifier of the terminal device. It should be understood that the related information of the terminal device #A listed above is merely an example description, and the present invention is not limited thereto, and the other can uniquely The information indicating a user equipment falls within the protection scope of the present invention, as long as the information used by the network device and each terminal device is the same or corresponding.
  • the related information of the terminal device may also include the media connection of the terminal device. Incoming control (English full name can be: Media Access Control, English abbreviation can be: MAC) address or Internet Protocol (English full name can be: Internet Protocol, English abbreviation can be: IP) address.
  • the user equipment detects only one of the first-level EPDCCH and the second-level EPDCCH at the same time.
  • the terminal device in the second frequency resource #A EPDCCH stage frequency resources by the above known network devices A 1 assigned to the terminal #A (hereinafter, for ease of understanding and Before distinguishing, as described in the time-frequency resource B), the second-level EPDCCH cannot be detected or searched, and only the first-level EPDCCH is detected.
  • the terminal device #A can search only frequency resource B or the detection when stopped for the time frequency resource A for 1 Search and detection of the first level EPDCCH.
  • the network device can release and re-allocate the time-frequency resource A 1 to other terminal devices.
  • the time-frequency resources of the first-level dedicated channel belong to at least two resource blocks RB.
  • the allocation of the time-frequency resources of the first-stage EPDCCH may be a unit of a resource block (the full name of the resource block may be: RB):
  • the time-frequency resource of the first-level EPDCCH may belong to at least two RBs. It should be noted that “belonging to at least two RBs” means that the time-frequency resources of the first-level EPDCCH may include all time-frequency resources of at least two RBs.
  • the partial time-frequency resource of the at least two RBs may also be included, for example, including half of the number of sub-carriers or symbols of each RB.
  • At least two RBs to which the time-frequency resources of the first-level dedicated channel belong are discontinuous.
  • FIG. 4 is a schematic diagram showing another example of a manner of distributing time-frequency resources of the first-stage EPDCCH.
  • the time-frequency resources of the first-stage EPDCCH may be carried in at least two non-adjacent RB. Thereby, the diversity gain of the transmission can be improved.
  • the time-frequency resources of the first-level dedicated channel are located at two ends of the preset bandwidth in the frequency domain.
  • FIG. 3 shows an example of a distribution pattern of time-frequency resources of the first-stage EPDCCH.
  • the time-frequency resource of the first-stage EPDCCH may belong to at least two RBs at both ends of the preset bandwidth.
  • the preset bandwidth refers to a bandwidth pre-agreed by the network device and the terminal device.
  • the preset bandwidth may be a system bandwidth used by the communication system.
  • At least two RBs to which the time-frequency resource of the first-level dedicated channel belongs are consecutive, wherein the time-frequency resource of the first-level dedicated channel belonging to the first RB and the first-level resource belonging to the second RB
  • the time-frequency resources of the dedicated channel are discontinuous.
  • the time-frequency resource of the first-stage EPDCCH may belong to at least two RBs, and Of the at least two RBs, only a part (for example, half of the number) of subcarriers are used as time-frequency resources of the first-stage EPDCCH. And, when the time-frequency resources of the first-stage EPDCCH may belong to two RBs, the sub-carriers used as the time-frequency resources of the first-stage EPDCCH are discontinuous.
  • the time-frequency resource of the first-level dedicated channel includes the first K symbols of the same transmission time interval TTI, and K ⁇ 1.
  • FIG. 5 is a schematic diagram showing another example of a manner of distributing time-frequency resources of the first-stage EPDCCH.
  • the time-frequency resources of the first-stage EPDCCH may be the first K of the RBs to which the PDCCH belongs.
  • a symbol, and the remaining symbols of the RB can be used as, for example, a time-frequency resource of the PDSCH.
  • the specific value of the foregoing K may be arbitrarily determined as needed, and is not limited.
  • the time-frequency resource of the first-level EPDCCH may be the first symbol of the RB to which the RB belongs. Or, the first 4 symbols.
  • the network device allocates the first-level dedicated channel and the second-level dedicated channel to the target terminal device, including:
  • the terminal device can obtain the second-level dedicated EPDCCH by using the time-frequency resource of the first-level dedicated EPDCCH without detecting all the symbols of one RB.
  • the indication information of the time-frequency resource can speed up the scheduling speed for the terminal device and reduce the service access delay of the terminal device.
  • the time-frequency resources of the first-level dedicated channel belong to M resource blocks RB in the same TTI, and M ⁇ 1.
  • the time-frequency resource of the first-stage EPDCCH may be M RBs of the RB to which the TTI belongs, and the remaining RBs in the TTI may serve as, for example, a time-frequency resource of the PDSCH.
  • the first level dedicated channel comprises at least one channel element CE within the first TTI.
  • the first-level dedicated channel (specifically, the time-frequency resource of the first-level dedicated channel) may be in units of a channel element (CE, Channel Element).
  • CE Channel Element
  • the partitioning is performed, that is, the first-level dedicated channel may include at least one of one TTI (ie, an example of the first TTI).
  • the time-frequency resource of the first-level dedicated channel is configured in a centralized configuration or a distributed configuration in the first TTI, where
  • the distributed configuration means that when the RBs allocated to the first-level dedicated channel in the first TTI are only used to carry the first-level dedicated channel, each time-frequency resource of the CE belongs to the first TTI. At least two RBs, or
  • the resource unit RE included in each of the CEs is discontinuous in the frequency domain
  • the centralized configuration means that when the RBs allocated to the first-level dedicated channel in the first TTI are only used to carry the first-level dedicated channel, each time-frequency resource of the CE belongs to the first TTI.
  • the resource units RE included in each of the CEs are consecutive in the frequency domain.
  • the first-level dedicated channels may be centrally configured in the same TTI, or the first-level dedicated channels may be distributedly configured in the same TTI.
  • the first-level dedicated channel can multiplex each RB in the same TTI with other channels by using frequency division multiplexing, that is, the RBs allocated to the first dedicated channel in one TTI are only used. It carries the first-level dedicated channel and cannot be used to carry other channels (for example, PDSCH).
  • the network device may divide the time-frequency resource A into sub-time-frequency resources #A 1 to sub-time-frequency resources #A X , and each sub-time-frequency sub-time-frequency resource is used to carry the first level of one terminal device.
  • a dedicated channel if each of the sub-time-frequency resources includes one or more CEs in the same TTI, and each CE may belong to at least two RBs, the first-level dedicated channel may be considered to be distributedly configured in the TTI.
  • a CE that a network device allocates to a terminal device can belong to at least two RBs. Further, the CE can include at least two RBs. Partial time-frequency resources, for example, include partial symbols of each RB, and the remaining symbols of the same RB may be allocated to CEs of other terminal devices as first-level dedicated channels allocated to other terminal devices.
  • the CE that the network device assigns to a terminal device (for example, CE#1) can be used for
  • the first stage dedicated channel may belong to at least two RBs, and the CE may include partial time-frequency resources of at least two RBs, for example, including partial sub-carriers of each RB.
  • CE#1 to CE#4 shown in FIG. 7 may be respectively allocated to a plurality of terminal devices as the first-level dedicated channels of the plurality of terminal devices.
  • CEs #1 to CE#4 shown in FIG. 7 may be allocated to the same terminal device as the first-level dedicated channel of one terminal device.
  • the first-level dedicated channel When the first-level dedicated channel and the other channels are multiplexed by the same TTI in a frequency division multiplexing manner, the first-level dedicated channel is included in the first-level dedicated channel, and the time-frequency resources of each CE belong to at least two RBs.
  • the first-level dedicated channel can be distributed (or dispersedly) in the system bandwidth, so that the diversity gain can be effectively increased, and the reliability and practicability of the present invention can be further improved.
  • the first-level dedicated channel may multiplex each RB in the same TTI with other channels in a time division multiplexing manner, for example, as shown in FIG. 5, assigned to the first dedicated in one TTI.
  • Some of the symbols in the RB of the channel are used to carry the first-level dedicated channel, and other symbols in the same RB may be other channels (for example, PDSCH).
  • the first-level dedicated channel may be considered to be distributed. Configured in this TTI.
  • a CE (for example, CE#1) allocated by a network device to one terminal device may belong to a part (for example, 2 RBs) in the same TTI, and further, the CE may include partial symbols of 2 RBs ( For example, the first symbol), the remaining symbols of the same RB may be allocated to other channels (eg, PDSCH).
  • a CE for example, CE#1 allocated by a network device to one terminal device may belong to a part (for example, 2 RBs) in the same TTI, and further, the CE may include partial symbols of 2 RBs ( For example, the first symbol), the remaining symbols of the same RB may be allocated to other channels (eg, PDSCH).
  • the first-stage dedicated channel is included in one or more CEs, and the RE included in each CE is discontinuous, so that the first The dedicated channels are distributed (or distributed) in the system bandwidth, so that the diversity gain can be effectively increased, further improving the reliability and practicability of the present invention.
  • the first-level dedicated channel can multiplex each RB in the same TTI with other channels by using frequency division multiplexing, that is, the RBs allocated to the first dedicated channel in one TTI are only used. It carries the first-level dedicated channel and cannot be used to carry other channels (for example, PDSCH).
  • the network device may divide the time-frequency resource A into sub-time-frequency resources #A 1 to sub-time-frequency resources #A X , and each sub-time-frequency sub-time-frequency resource is used to carry the first level of one terminal device.
  • a dedicated channel if each of the sub-time-frequency resources includes one or more CEs in the same TTI, and the time-frequency resources of each CE may belong to the same RB, the first-level dedicated channel may be considered to be centrally configured. In TTI.
  • the CE (the first-level dedicated channel used to carry the terminal device) allocated by the network device to one terminal device may belong to the same RB. Moreover, the CE allocated to one terminal device may occupy only part of the symbols or partial subcarriers in one RB, and other symbols or subcarriers may be allocated to other terminal devices, and serve as the first stage dedicated channel of other terminal devices. Time-frequency resources.
  • CE#1 to CE#4 shown in FIG. 9 can be respectively assigned to a plurality of terminal devices as the first-level dedicated channels of the plurality of terminal devices.
  • the first-level dedicated channel and the other channel are multiplexed by the same TTI in a frequency division multiplexing manner, by making the first-level dedicated channel include one or more CEs, and the time-frequency resources of each CE belong to the same RB,
  • the first-level dedicated channel is configured centrally (or centrally) in the system bandwidth, so that the channel with better channel quality can be selected to centrally configure the first-level dedicated channel according to the interference condition of the channel, thereby further improving the reliability of the present invention. Sex and practicality.
  • the first-level dedicated channel may multiplex each RB in the same TTI with other channels in a time division multiplexing manner, for example, as shown in FIG. 5, assigned to the first dedicated in one TTI.
  • Some of the symbols in the RB of the channel are used to carry the first-level dedicated channel, and other symbols in the same RB may be other channels (for example, PDSCH).
  • the first-level dedicated channel includes one or more CEs in the same TTI, and the resource elements (RE, Resource Element) included in each CE are consecutive, the first-level dedicated channel centralized configuration can be considered. In this TTI.
  • a CE (for example, CE#1) allocated by a network device to one terminal device may belong to all RBs in the same TTI. Further, the CE may include partial symbols of all RBs in the same TTI (for example, One symbol), the remaining symbols of the same RB can be allocated to other channels (for example, PDSCH).
  • the first stage can be made by making the first-level dedicated channel include one or more CEs and making the REs included in each CE continuous.
  • the dedicated channel is centrally (or centrally) configured in the system bandwidth, so that the channel with better channel quality can be selected to centrally configure the first-level dedicated channel according to the interference condition of the channel, thereby further improving the reliability and practicability of the present invention.
  • the first-level dedicated channel may further include a time-frequency resource for carrying a reference channel (or a pilot signal).
  • each port can independently occupy one time-frequency resource, for example, the ports shown in FIG. 3 to FIG. 7, for example, port #1 to port #4, or port #A to port. Any port in #D can be a port.
  • multiple ports may multiplex the same time-frequency resource, for example, the ports shown in FIG. 8 to FIG. 10, for example, port #E may include multiple (for example, four) ports.
  • port #F in FIG. 10 may include a plurality of (for example, four) ports, and port #E is different from the port included in port #F.
  • the time-frequency resources of the second-level dedicated channel belong to at least two resource blocks RB.
  • the allocation of the time-frequency resources of the second-stage EPDCCH may be in units of RBs, that is, the time-frequency resources of the second-level EPDCCH may belong to at least two RBs, and it should be noted that “belonging to at least two RBs” is
  • the time-frequency resource of the second-level EPDCCH may include all time-frequency resources of at least two RBs, and may also include partial time-frequency resources of the at least two RBs, for example, including half of the number of sub-carriers of each RB or symbol.
  • At least two RBs to which the time-frequency resources of the second-level dedicated channel belong are discontinuous.
  • the time-frequency resources of the second-stage EPDCCH may be carried in at least two RBs that are not adjacent. Thereby, the diversity gain of the transmission can be improved.
  • the time-frequency resources of the second-level dedicated channel are located at two ends of the predetermined bandwidth in the frequency domain.
  • the time-frequency resource of the second-stage EPDCCH may belong to at least two RBs at both ends of the predetermined bandwidth.
  • the preset bandwidth refers to a bandwidth pre-agreed by the network device and the terminal device.
  • the preset bandwidth may be a system bandwidth used by the communication system.
  • At least two RBs to which the time-frequency resource of the second-level dedicated channel belongs are consecutive, wherein the time-frequency resource of the second-level dedicated channel belonging to the third RB and the second part belonging to the fourth RB
  • the time-frequency resources of the dedicated channel are discontinuous.
  • the time-frequency resource of the second-stage EPDCCH may belong to at least two RBs, and only a part (for example, half of the number) of the at least two RBs are used as the time-frequency of the second-stage EPDCCH. Resources. Moreover, when the time-frequency resources of the second-stage EPDCCH may belong to two RBs, the sub-carriers used as the time-frequency resources of the second-stage EPDCCH are discontinuous.
  • the time-frequency resource of the second-level dedicated channel includes the first K symbols of the same transmission time interval TTI, and K ⁇ 1.
  • the time-frequency resource of the second-stage EPDCCH may be the first K symbols of the RB to which the RB belongs, and the remaining symbols of the RB may be, for example, a time-frequency resource of the PDSCH.
  • FIG. 6 shows the timing of the second-level EPDCCH.
  • the specific value of the foregoing K may be arbitrarily determined as needed, and is not limited.
  • the time-frequency resource of the second-level EPDCCH may be the first symbol of the RB to which the RB belongs. Or, the first 4 symbols.
  • the network device allocates the first-level dedicated channel and the second-level dedicated channel to the target terminal device, including:
  • the terminal device can obtain the scheduling information by using the time-frequency resource of the second-level dedicated EPDCCH without detecting all the symbols of one RB. Speed up the scheduling speed for the terminal device and reduce the service access delay of the terminal device.
  • the time-frequency resources of the second-level dedicated channel belong to M resource blocks RB in the same TTI, and M ⁇ 1.
  • the time-frequency resource of the second-stage EPDCCH may be M RBs of the RB to which the TTI belongs, and the remaining RBs in the TTI may serve as, for example, a time-frequency resource of the PDSCH.
  • the second level dedicated channel comprises at least one channel element CE within the first TTI.
  • the second-level dedicated channel (specifically, the time-frequency resource of the second-level dedicated channel) may be divided into units of a channel unit (CE, Channel Element), that is,
  • the second level dedicated channel may include at least one of a TTI (ie, an instance of the first TTI).
  • the time-frequency resource of the second-level dedicated channel is configured in a centralized configuration or a distributed configuration in the first TTI, where
  • the distributed configuration means that when the RBs allocated to the second-level dedicated channel in the first TTI are only used to carry the second-level dedicated channel, each time-frequency resource of the CE belongs to the first TTI. At least two RBs, or
  • the resource unit RE included in each of the CEs is discontinuous in the frequency domain
  • the centralized configuration means that when the RBs allocated to the second-level dedicated channel in the first TTI are only used to carry the second-level dedicated channel, each time-frequency resource of the CE belongs to the first TTI.
  • the resource units RE included in each of the CEs are consecutive in the frequency domain.
  • the second-level dedicated channels may be centrally configured in the same TTI, or the second-level dedicated channels may be distributedly configured in the same TTI.
  • the second-level dedicated channel can multiplex the RBs in the same TTI with other channels by using frequency division multiplexing, that is, the RBs allocated to the first dedicated channel in one TTI are only used. It carries the second-level dedicated channel and cannot be used to carry other channels (for example, PDSCH).
  • the second-level dedicated channel includes one or more CEs within the same TTI, and each CE may belong to at least two RBs, the second-level dedicated channel may be considered to be distributedly configured in the TTI.
  • a CE that a network device allocates to a terminal device can belong to at least two RBs. Further, the CE can include at least two RBs. Partial time-frequency resources, for example, including partial symbols of each RB, and, The remaining symbols of the same RB can be assigned to CEs of other terminal devices.
  • the CE that the network device allocates to one terminal device may belong to at least two RBs, and the CE may include partial time-frequency resources of at least two RBs, for example, a partial sub-carrier including each RB.
  • CE#1 to CE#4 shown in FIG. 7 can be respectively allocated to a plurality of terminal devices as the second-level dedicated channels of the plurality of terminal devices.
  • CEs #1 to CE#4 shown in FIG. 7 may be allocated to the same terminal device as the second-level dedicated channel of one terminal device.
  • the second-level dedicated channel When the second-level dedicated channel and the other channels are multiplexed with the same TTI by frequency division multiplexing, the second-level dedicated channel is included in the second-level dedicated channel, and the time-frequency resources of each CE belong to at least two RBs.
  • the second-level dedicated channel can be distributed (or distributedly) in the system bandwidth, so that the diversity gain can be effectively increased, and the reliability and practicability of the present invention can be further improved.
  • the second-level dedicated channel may multiplex each RB in the same TTI with other channels in a time division multiplexing manner, for example, as shown in FIG. 5, assigned to the first dedicated in one TTI.
  • Some of the symbols in the RB of the channel are used to carry the second-level dedicated channel, and other symbols in the same RB may be other channels (for example, PDSCH).
  • the second-level dedicated channel may be considered to be distributed. Configured in this TTI.
  • a CE (for example, CE#1) allocated by a network device to one terminal device may belong to a part (for example, 2 RBs) in the same TTI, and further, the CE may include partial symbols of 2 RBs ( For example, the first symbol), the remaining symbols of the same RB may be allocated to other channels (eg, PDSCH).
  • a CE for example, CE#1 allocated by a network device to one terminal device may belong to a part (for example, 2 RBs) in the same TTI, and further, the CE may include partial symbols of 2 RBs ( For example, the first symbol), the remaining symbols of the same RB may be allocated to other channels (eg, PDSCH).
  • the second-level dedicated channel and the other channel are multiplexed in the same TTI by time division multiplexing
  • the second-level dedicated channel is included in one or more CEs, and the RE included in each CE is discontinuous, so that the second The dedicated channels are distributed (or distributed) in the system bandwidth, so that the diversity gain can be effectively increased, further improving the reliability and practicability of the present invention.
  • the second-level dedicated channel can multiplex the RBs in the same TTI with other channels by using frequency division multiplexing, that is, the RBs allocated to the first dedicated channel in one TTI are only used. It carries the second-level dedicated channel and cannot be used to carry other channels (for example, PDSCH).
  • a second-level dedicated channel includes one or more CEs in the same TTI, and the time-frequency resources of each CE can belong to the same RB, the second-level dedicated channel can be considered as a centralized configuration. In this TTI.
  • the CE (the second-level dedicated channel for carrying the terminal device) allocated by the network device to one terminal device may belong to the same RB. Moreover, the CE allocated to one terminal device may occupy only part of the symbols or partial subcarriers in one RB, and other symbols or subcarriers may be allocated to other terminal devices, and serve as the second level dedicated channel of other terminal devices. Time-frequency resources.
  • CE#1 to CE#4 shown in FIG. 9 can be respectively assigned to a plurality of terminal devices as the second-level dedicated channels of the plurality of terminal devices.
  • the second-level dedicated channel and the other channels are multiplexed with the same TTI by frequency division multiplexing, by making the second-level dedicated channel include one or more CEs, and the time-frequency resources of each CE belong to the same RB,
  • the second-level dedicated channel is configured centrally (or centrally) in the system bandwidth, so that the channel with better channel quality can be selected to centrally configure the second-level dedicated channel according to the interference condition of the channel, thereby further improving the reliability of the present invention. Sex and practicality.
  • the second-level dedicated channel may multiplex each RB in the same TTI with other channels in a time division multiplexing manner, for example, as shown in FIG. 5, assigned to the first dedicated in one TTI.
  • Some of the symbols in the RB of the channel are used to carry the second-level dedicated channel, and other symbols in the same RB may be other channels (for example, PDSCH).
  • the second-level dedicated channel includes one or more CEs in the same TTI, and the resource elements (RE, Resource Element) included in each CE are consecutive, the second-level dedicated channel can be considered as a centralized configuration. In this TTI.
  • a CE (for example, CE#1) allocated by a network device to one terminal device may belong to all RBs in the same TTI. Further, the CE may include partial symbols of all RBs in the same TTI (for example, One symbol), the remaining symbols of the same RB can be allocated to other channels (for example, PDSCH).
  • the second level can be made by making the second-level dedicated channel include one or more CEs and making the REs included in each CE continuous.
  • the dedicated channel is centrally (or centrally) configured in the system bandwidth, so that the channel with better channel quality can be selected to centrally configure the second-level dedicated channel according to the interference condition of the channel, thereby further improving the reliability and practicability of the present invention.
  • the second-level dedicated channel may further include a time-frequency resource for carrying a reference channel (or a pilot signal).
  • each port can independently occupy one time-frequency resource, for example, the ports shown in FIG. 3 to FIG. 7, for example, port #1 to port #4, or port #A to port. Any port in #D can be a port.
  • multiple ports may multiplex the same time-frequency resource, for example, the ports shown in FIG. 8 to FIG. 10, for example, port #E may include multiple (for example, four) ports.
  • port #F in FIG. 10 may include a plurality of (for example, four) ports, and port #E is different from the port included in port #F.
  • the first configuration pattern is the same as the second configuration pattern, wherein
  • the first configuration pattern is a configuration pattern of a time-frequency resource for transmitting a reference signal in each of the CEs of the first-level dedicated channel;
  • the second configuration pattern is a configuration pattern of a time-frequency resource for transmitting a reference signal in each of the CEs of the second-level dedicated channel.
  • the configuration pattern of the time-frequency resource for carrying the reference signal (or the pilot signal) in the first-level dedicated channel may be the second level.
  • the configuration pattern of the time-frequency resource for carrying the reference signal (or the pilot signal) in the dedicated channel is the same.
  • the third configuration pattern is different from the fourth configuration pattern, where
  • the third configuration pattern is: when the time-frequency resource of the second-level dedicated channel is configured centrally in the first TTI, the time-frequency of the reference signal used in each of the CEs of the second-level dedicated channel Resource configuration pattern,
  • the fourth configuration pattern is: when the time-frequency resource of the second-level dedicated channel is distributedly configured in the first TTI, the time-frequency of the reference signal used in each of the CEs of the second-level dedicated channel The configuration pattern of the resource.
  • the CE may be a Control Channel Element (CCE), an Enhanced Control Channel Element (ECCE), or other types of control channels.
  • CCE Control Channel Element
  • ECCE Enhanced Control Channel Element
  • the unit is not particularly limited in the present invention.
  • FIG. 11 is a diagram showing an example of a configuration of a first-stage dedicated channel, a second-level dedicated channel, and a downlink data channel.
  • the dedicated channel (including the first-stage and second-level dedicated channels) and the partial downlink data channel may be configured in a time division multiplexing manner, and in addition, the dedicated channel and another part of the downlink data.
  • the channel can be configured in a frequency division multiplexing manner, and the first-level dedicated channel and the second-level dedicated channel can be configured in a frequency division multiplexing manner.
  • the communication system further includes a common channel, where the time-frequency resource of the common channel is different from the time-frequency resource of the dedicated channel, where the common channel is detected by all the terminal devices in the communication system, the method further includes:
  • the network device sends the indication information of the common channel by using a preset second time-frequency resource
  • the network device sends a public message through the common channel
  • the network device sends the indication information of the fourth time-frequency resource through the common channel, and sends the public message by using the fourth time-frequency resource, where the fourth time-frequency resource belongs to the time-frequency resource of the downlink data channel PDSCH;
  • the public message includes at least one of a random access response message, a paging message, or a system message.
  • the "common channel” can be detected by each terminal device in the system.
  • the “common message” may be a message that the network device sends to each terminal device in the system by, for example, a broadcast form.
  • the foregoing “common message” may include an existing need to transmit through a common search area of the PDCCH.
  • a message to each terminal device such as a system message, such as a random access response message or a paging message.
  • the common channel is a common enhanced downlink control channel EPDCCH channel.
  • the EPDCCH in the communication system may be divided into a dedicated EPDCCH and a common EPDCCH, and the “common EPDCCH” refers to an EPDCCH detected by all terminal devices in the system.
  • the above-mentioned scheme in which the EPDCCH is used as the dedicated channel is only an exemplary description, and the present invention is not limited thereto.
  • the next generation enhanced downlink control channel may also be used (the full name of the English may be: Future Enhanced Physical Downlink Control)
  • the channel, the English abbreviation may be: FEPDCCH) or a common PDCCH as a common channel.
  • the network device can be based on a preset time-frequency resource for transmitting system information (for example, MIB). (that is, an example of the second time-frequency resource), the instruction information of the time-frequency resource of the common channel is sent to the terminal device, so that the terminal device in the system can obtain the time-frequency resource of the common channel by using the preset time-frequency resource.
  • system information for example, MIB
  • the instruction information of the time-frequency resource of the common channel is sent to the terminal device, so that the terminal device in the system can obtain the time-frequency resource of the common channel by using the preset time-frequency resource.
  • the indication information thereby determining the time-frequency resource of the common channel.
  • the network device may send the public message through the common channel, so that the terminal device may perform receiving processing (or search processing) on the time-frequency resource of the common channel to obtain the public message.
  • the network device may send the indication information of a certain time-frequency resource in the PDSCH through the common channel, and send the common message on the time-frequency resource in the PDSCH, so that the terminal device can acquire the time-frequency resource in the PDSCH through the common channel.
  • the indication information further determines a time-frequency resource used to carry the public message in the PDSCH, and performs receiving processing on the time-frequency resource to obtain the public message.
  • the indication information of the time-frequency resource of the common channel for example, the common EPDCCH
  • the indication information of the time-frequency resource of the first-level dedicated channel for example, the first-level EPDCCH
  • the same message transmission can also be sent by different messages.
  • the invention is not particularly limited.
  • the manner of distributing the time-frequency resources of the common EPDCCH may be similar to the manner of distributing the time-frequency resources of the first-level EPDCCH (for example, the manner shown in FIG. 3 to FIG. 8).
  • the detailed description is omitted, namely:
  • the time-frequency resource of the common channel includes the first K symbols of the same transmission time interval TTI, and K ⁇ 1.
  • the time-frequency resources of the common channel belong to M resource blocks RB in the same TTI, and M ⁇ 1.
  • the time-frequency resources of the common channel belong to at least two resource blocks RB.
  • At least two RBs to which the time-frequency resource of the common channel belongs are discontinuous.
  • At least two RBs to which the time-frequency resource of the common channel belongs are consecutive, wherein a time-frequency resource of the common channel belonging to the first RB and a time-frequency resource of the common channel belonging to the second RB are discontinuous.
  • the time-frequency resources of the common channel are located at two ends of a predetermined system bandwidth in the frequency domain.
  • the preset bandwidth refers to a bandwidth pre-agreed by the network device and the terminal device.
  • the preset bandwidth may be a communication system. The system bandwidth used.
  • the method for transmitting scheduling information by configuring at least two levels of dedicated channels, and when performing resource scheduling on the terminal device, transmitting the first-level dedicated channel by using the first time-frequency resource for transmitting system information
  • the indication information of the time-frequency resource is used to send the indication information of the time-frequency resource of the second-level dedicated channel to the terminal device by using the first-level dedicated channel, and further, the second-level dedicated channel may be used to send the information about the terminal device.
  • Dedicated scheduling information so that, in the process of transmitting the dedicated scheduling information, time-frequency resources for transmitting system information are occupied only when the indication information of the time-frequency resources of the first-level dedicated channel is transmitted, and the terminal device is informed After the time-frequency resource of the first-level dedicated channel, the dedicated scheduling information can be sent through the first-level dedicated channel and the second-level dedicated channel at any time, which can improve the flexibility of the transmission scheduling information and improve system performance and user experience.
  • the method for transmitting scheduling information of the present invention can be applied to multiple-input multiple-output (MIMO, Multiple-Input Multiple-Output) ) The scene of the transmission.
  • MIMO Multiple-Input Multiple-Output
  • the transmission of the scheduling information is no longer dependent on the existing PDCCH, and the configuration of the PDCCH in the prior art can be discarded, thereby further improving the flexibility of resource allocation.
  • a method for transmitting scheduling information according to an embodiment of the present invention is described in detail from the perspective of a network device.
  • FIG. 12 the transmission scheduling information according to an embodiment of the present invention will be described from the perspective of a terminal device. Methods.
  • FIG. 12 shows a schematic flow diagram of a method 200 of transmitting information according to an embodiment of the present invention, as described in terms of a terminal device, the method 200 being performed in a communication system including at least two stages of dedicated channels for downlink control, each The time-frequency resources corresponding to the level-specific channels are different, wherein the dedicated channel is detected only by the terminal device to which it is allocated.
  • the method 200 includes:
  • the target terminal device receives the indication information of the first-level dedicated channel that is sent by the network device by using the preset first time-frequency resource.
  • the target terminal device determines the first dedicated channel according to the indication information of the first-level dedicated channel.
  • the target terminal device receives the indication information of the second-level dedicated channel sent by the network device by using the first-level dedicated channel;
  • the target terminal device determines the second-level dedicated channel according to the indication information of the second-level dedicated channel.
  • the target terminal device receives the dedicated scheduling information sent by the network device for the target terminal device by using the second-level dedicated channel.
  • the time-frequency resource of the first-level dedicated channel or the second-level dedicated channel includes the first K symbols of the same transmission time interval TTI, and K ⁇ 1.
  • the time-frequency resources of the first-level dedicated channel or the second-level dedicated channel belong to M resource blocks RB in the same TTI, and M ⁇ 1.
  • the first-level dedicated channel or the second-level dedicated channel is allocated by the network device according to a delay requirement of a service accessed by the target terminal device.
  • the time-frequency resources of the first-level dedicated channel belong to at least two resource blocks RB.
  • At least two RBs to which the time-frequency resources of the first-level dedicated channel belong are discontinuous.
  • At least two RBs to which the time-frequency resource of the first-level dedicated channel belongs are consecutive, wherein the time-frequency resource of the first-level dedicated channel belonging to the first RB and the first-level resource belonging to the second RB
  • the time-frequency resources of the dedicated channel are discontinuous.
  • the time-frequency resources of the first-level dedicated channel are located at two ends of the predetermined bandwidth in the frequency domain.
  • the first stage dedicated channel or the second stage dedicated channel comprises at least one channel element CE within the first TTI.
  • the time-frequency resource of the first-level dedicated channel or the second-level dedicated channel is configured in a centralized configuration or a distributed configuration in the first TTI, where
  • the distributed configuration refers to: when the RB allocated to the first dedicated channel in the first TTI is only used to carry the first-level dedicated channel, or the first TTI is allocated to the second dedicated channel.
  • each time-frequency resource of the CE belongs to at least two RBs in the first TTI, or
  • each resource unit RE included in the CE is discontinuous in the frequency domain
  • the centralized configuration refers to: when the RB allocated to the first dedicated channel in the first TTI is only used to carry the first-level dedicated channel, or the first TTI is allocated to the second dedicated channel.
  • the RB is only used to carry the second-level dedicated channel, each time-frequency resource of the CE belongs to the same RB in the first TTI, or
  • each resource unit RE included in the CE is continuous in the frequency domain.
  • the first configuration pattern is the same as the second configuration pattern, wherein
  • the first configuration pattern is a configuration pattern of a time-frequency resource for transmitting a reference signal in each of the CEs of the first-level dedicated channel;
  • the second configuration pattern is a configuration pattern of a time-frequency resource for transmitting a reference signal in each of the CEs of the second-level dedicated channel.
  • the third configuration pattern is different from the fourth configuration pattern, where
  • the third configuration pattern is: when the time-frequency resource of the second-level dedicated channel is configured centrally in the first TTI, the time-frequency of the reference signal used in each of the CEs of the second-level dedicated channel Resource configuration pattern,
  • the fourth configuration pattern is: when the time-frequency resource of the second-level dedicated channel is distributedly configured in the first TTI, the time-frequency of the reference signal used in each of the CEs of the second-level dedicated channel The configuration pattern of the resource.
  • the communication system further includes a common channel, where the time-frequency resource of the common channel is different from the time-frequency resource of the dedicated channel, where the common channel is detected by all the terminal devices in the communication system, the method further includes:
  • the target terminal device receives the indication information of the common channel sent by the network device by using a preset second time-frequency resource
  • the target terminal device receives the indication information of the fourth time-frequency resource sent by the network device by using the common channel, and receives the public message sent by the network device by using the fourth time-frequency resource, where the fourth time-frequency resource belongs to the PDSCH Time-frequency resources;
  • the public message includes at least one of a random access response message, a paging message, or a system message.
  • the common channel is a common enhanced downlink control channel EPDCCH.
  • the dedicated channel is a dedicated EPDCCH.
  • the time-frequency resource of the common channel includes the first K symbols of the same transmission time interval TTI, and K ⁇ 1.
  • the time-frequency resources of the common channel belong to M resource blocks RB in the same TTI, and M ⁇ 1.
  • the time-frequency resources of the common channel belong to at least two resource blocks RB.
  • At least two RBs to which the time-frequency resource of the common channel belongs are discontinuous.
  • At least two RBs to which the time-frequency resource of the common channel belongs are consecutive, wherein a time-frequency resource of the common channel belonging to the first RB and a time-frequency resource of the common channel belonging to the second RB are discontinuous.
  • the time-frequency resources of the common channel are located in the frequency domain at both ends of the system bandwidth used by the communication system.
  • the operation of the terminal device in the method 200 is similar to the operation of the terminal device in the method 100, and the operation of the network device in the method 200 is similar to the operation of the network device in the method 100.
  • the operation of the network device in the method 200 is similar to the operation of the network device in the method 100.
  • detailed description thereof is omitted.
  • the method for transmitting scheduling information by configuring at least two levels of dedicated channels, and when performing resource scheduling on the terminal device, transmitting the first-level dedicated channel by using the first time-frequency resource for transmitting system information
  • the indication information of the time-frequency resource is used to send the indication information of the time-frequency resource of the second-level dedicated channel to the terminal device by using the first-level dedicated channel, and further, the second-level dedicated channel may be used to send the information about the terminal device.
  • Dedicated scheduling information so that, in the process of transmitting the dedicated scheduling information, time-frequency resources for transmitting system information are occupied only when the indication information of the time-frequency resources of the first-level dedicated channel is transmitted, and the terminal device is informed After the time-frequency resource of the first-level dedicated channel, the dedicated scheduling information can be sent through the first-level dedicated channel and the second-level dedicated channel at any time, which can improve the flexibility of the transmission scheduling information and improve system performance and user experience.
  • the transmission of the scheduling information is no longer dependent on the existing PDCCH, and the configuration of the PDCCH in the prior art can be discarded, thereby further improving the flexibility of resource allocation.
  • FIG. 13 is a schematic block diagram of an apparatus 300 for transmitting information, which is configured in a communication system including at least two stages of dedicated channels for downlink control, corresponding to each stage of dedicated channels, according to an embodiment of the present invention.
  • the frequency resource is different, wherein the dedicated channel is detected only by the terminal device to which it is allocated.
  • the device 300 includes:
  • the allocating unit 310 is configured to allocate a first-level dedicated channel and a second-level dedicated channel to the target terminal device;
  • the sending unit 320 is configured to send, by using the preset first time-frequency resource, indication information of the first-level dedicated channel;
  • the third time-frequency resource belongs to a time-frequency resource of the physical downlink data channel PDSCH;
  • the time-frequency resource of the first-level dedicated channel or the second-level dedicated channel includes the first K symbols of the same transmission time interval TTI, and K ⁇ 1.
  • the time-frequency resources of the first-level dedicated channel or the second-level dedicated channel belong to M resource blocks RB in the same TTI, and M ⁇ 1.
  • the allocating unit is specifically configured to allocate, according to the delay requirement of the service accessed by the target terminal device, the first-level dedicated channel or the second-level dedicated channel to the target terminal device.
  • the time-frequency resources of the first-level dedicated channel belong to at least two resource blocks RB.
  • At least two RBs to which the time-frequency resources of the first-level dedicated channel belong are discontinuous.
  • At least two RBs to which the time-frequency resource of the first-level dedicated channel belongs are consecutive, wherein the time-frequency resource of the first-level dedicated channel belonging to the first RB and the first-level resource belonging to the second RB
  • the time-frequency resources of the dedicated channel are discontinuous.
  • the time-frequency resources of the first-level dedicated channel are located at two ends of the pre-selected bandwidth in the frequency domain.
  • the first stage dedicated channel or the second stage dedicated channel comprises at least one channel element CE within the first TTI.
  • the time-frequency resource of the first-level dedicated channel or the second-level dedicated channel is configured in a centralized configuration or a distributed configuration in the first TTI, where
  • the distributed configuration refers to: when the RB allocated to the first dedicated channel in the first TTI is only used to carry the first-level dedicated channel, or the first TTI is allocated to the second dedicated channel.
  • each time-frequency resource of the CE belongs to at least two RBs in the first TTI, or
  • each resource unit RE included in the CE is discontinuous in the frequency domain
  • the centralized configuration refers to: when the RB allocated to the first dedicated channel in the first TTI is only used to carry the first-level dedicated channel, or the first TTI is allocated to the second dedicated channel.
  • the RB is only used to carry the second-level dedicated channel, each time-frequency resource of the CE belongs to the same RB in the first TTI, or
  • each resource unit RE included in the CE is continuous in the frequency domain.
  • the first configuration pattern is the same as the second configuration pattern, wherein
  • the first configuration pattern is a configuration pattern of a time-frequency resource for transmitting a reference signal in each of the CEs of the first-level dedicated channel;
  • the second configuration pattern is a configuration pattern of a time-frequency resource for transmitting a reference signal in each of the CEs of the second-level dedicated channel.
  • the third configuration pattern is different from the fourth configuration pattern, where
  • the third configuration pattern is: when the time-frequency resource of the second-level dedicated channel is configured centrally in the first TTI, the time-frequency of the reference signal used in each of the CEs of the second-level dedicated channel Resource configuration pattern,
  • the fourth configuration pattern is: when the time-frequency resource of the second-level dedicated channel is distributedly configured in the first TTI, the time-frequency of the reference signal used in each of the CEs of the second-level dedicated channel The configuration pattern of the resource.
  • the communication system further includes a common channel, the time-frequency resource of the common channel and the dedicated channel The time-frequency resources of the channel are different, wherein the common channel is detected by all terminal devices in the communication system,
  • the sending unit is further configured to send the indication information of the common channel by using a preset second time-frequency resource
  • the public message includes at least one of a random access response message, a paging message, or a system message.
  • the common channel is a common enhanced downlink control channel EPDCCH.
  • the dedicated channel is a dedicated EPDCCH.
  • the time-frequency resource of the common channel includes the first K symbols of the same transmission time interval TTI, and K ⁇ 1.
  • the time-frequency resources of the common channel belong to M resource blocks RB in the same TTI, and M ⁇ 1.
  • the time-frequency resources of the common channel belong to at least two resource blocks RB.
  • At least two RBs to which the time-frequency resource of the common channel belongs are discontinuous.
  • At least two RBs to which the time-frequency resource of the common channel belongs are consecutive, wherein a time-frequency resource of the common channel belonging to the first RB and a time-frequency resource of the common channel belonging to the second RB are discontinuous.
  • the time-frequency resources of the common channel are located in the frequency domain at both ends of the system bandwidth used by the communication system.
  • the apparatus 300 for transmitting scheduling information may correspond to a network device in the method of the embodiment of the present invention, and each unit in the apparatus 300 for transmitting information, that is, a module and the other operations and/or functions described above are respectively implemented.
  • the corresponding flow of the method 100 in FIG. 2 is not described here for brevity.
  • the apparatus for transmitting scheduling information by configuring at least two levels of dedicated channels, and when performing resource scheduling on the terminal equipment, transmitting the first-level dedicated channel by using the first time-frequency resource for transmitting system information
  • the indication information of the time-frequency resource is used to send the indication information of the time-frequency resource of the second-level dedicated channel to the terminal device by using the first-level dedicated channel, and further, the second-level dedicated channel may be used to send the information about the terminal device.
  • the dedicated scheduling information thus, in transmission
  • the time-frequency resource for transmitting the system information is occupied only when the indication information of the time-frequency resource of the first-level dedicated channel is transmitted, and the time-frequency resource of the first-level dedicated channel is learned by the terminal device.
  • the dedicated scheduling information is delivered through the first-level dedicated channel and the second-level dedicated channel, the flexibility of the transmission scheduling information can be improved, and the system performance and user experience can be improved.
  • the transmission of the scheduling information is no longer dependent on the existing PDCCH, and the configuration of the PDCCH in the prior art can be discarded, thereby further improving the flexibility of resource allocation.
  • FIG. 14 is a schematic block diagram of an apparatus 400 for transmitting scheduling information, which is configured in a communication system including at least two stages of dedicated channels for downlink control, corresponding to each level of dedicated channels, according to an embodiment of the present invention.
  • the time-frequency resources are different, wherein the dedicated channel is detected only by the terminal device to which it is allocated.
  • the device 400 includes:
  • the receiving unit 410 is configured to receive, by using the preset first time-frequency resource, indication information of the first-level dedicated channel that is sent by the network device;
  • a determining unit 420 configured to determine the first dedicated channel according to the indication information of the first-level dedicated channel
  • the receiving unit 410 is further configured to receive, by using the first-level dedicated channel, indication information of the second-level dedicated channel sent by the network device; or
  • the receiving unit 420 is further configured to receive the indication information of the third time-frequency resource sent by the network device by using the first-level dedicated channel, and receive, by using the third time-frequency resource, the second-level dedicated by the network device.
  • the determining unit 420 is further configured to determine the second-level dedicated channel according to the indication information of the second-level dedicated channel;
  • the receiving unit 410 is further configured to receive, by using the second-level dedicated channel, dedicated scheduling information sent by the network device for the device.
  • the time-frequency resource of the first-level dedicated channel or the second-level dedicated channel includes the first K symbols of the same transmission time interval TTI, and K ⁇ 1.
  • the time-frequency resources of the first-level dedicated channel or the second-level dedicated channel belong to M resource blocks RB in the same TTI, and M ⁇ 1.
  • the first-level dedicated channel or the second-level dedicated channel is allocated by the network device according to a delay requirement of a service accessed by the device.
  • the time-frequency resources of the first-level dedicated channel belong to at least two resource blocks RB.
  • At least two RBs to which the time-frequency resources of the first-level dedicated channel belong are discontinuous.
  • At least two RBs to which the time-frequency resource of the first-level dedicated channel belongs are consecutive, wherein the time-frequency resource of the first-level dedicated channel belonging to the first RB and the first-level resource belonging to the second RB
  • the time-frequency resources of the dedicated channel are discontinuous.
  • the time-frequency resources of the first-level dedicated channel are located at two ends of the predetermined bandwidth in the frequency domain.
  • the first stage dedicated channel or the second stage dedicated channel comprises at least one channel element CE within the first TTI.
  • the time-frequency resource of the first-level dedicated channel or the second-level dedicated channel is configured in a centralized configuration or a distributed configuration in the first TTI, where
  • the distributed configuration refers to: when the RB allocated to the first dedicated channel in the first TTI is only used to carry the first-level dedicated channel, or the first TTI is allocated to the second dedicated channel.
  • each time-frequency resource of the CE belongs to at least two RBs in the first TTI, or
  • each resource unit RE included in the CE is discontinuous in the frequency domain
  • the centralized configuration refers to: when the RB allocated to the first dedicated channel in the first TTI is only used to carry the first-level dedicated channel, or the first TTI is allocated to the second dedicated channel.
  • the RB is only used to carry the second-level dedicated channel, each time-frequency resource of the CE belongs to the same RB in the first TTI, or
  • each resource unit RE included in the CE is continuous in the frequency domain.
  • the first configuration pattern is the same as the second configuration pattern, wherein
  • the first configuration pattern is a configuration pattern of a time-frequency resource for transmitting a reference signal in each of the CEs of the first-level dedicated channel;
  • the second configuration pattern is used in each of the CEs of the second-level dedicated channel for transmitting reference signals
  • the configuration pattern of the time-frequency resource of the number is used in each of the CEs of the second-level dedicated channel for transmitting reference signals.
  • the third configuration pattern is different from the fourth configuration pattern, where
  • the third configuration pattern is: when the time-frequency resource of the second-level dedicated channel is configured centrally in the first TTI, the time-frequency of the reference signal used in each of the CEs of the second-level dedicated channel Resource configuration pattern,
  • the fourth configuration pattern is: when the time-frequency resource of the second-level dedicated channel is distributedly configured in the first TTI, the time-frequency of the reference signal used in each of the CEs of the second-level dedicated channel The configuration pattern of the resource.
  • the communication system further includes a common channel, the time-frequency resource of the common channel is different from the time-frequency resource of the dedicated channel, where the common channel is detected by all terminal devices in the communication system,
  • the receiving unit is further configured to receive indication information of the common channel sent by the network device by using a preset second time-frequency resource;
  • the determining unit is further configured to determine the common channel according to the indication information of the common channel;
  • the receiving unit is further configured to receive, by using the common channel, a public message sent by the network device; or
  • the receiving unit is further configured to receive, by using the common channel, indication information of a fourth time-frequency resource sent by the network device, and receive, by using the fourth time-frequency resource, a public message sent by the network device, where the fourth time-frequency resource belongs to Time-frequency resources of PDSCH;
  • the public message includes at least one of a random access response message, a paging message, or a system message.
  • the common channel is a common enhanced downlink control channel EPDCCH.
  • the dedicated channel is a dedicated EPDCCH.
  • the time-frequency resource of the common channel includes the first K symbols of the same transmission time interval TTI, and K ⁇ 1.
  • the time-frequency resources of the common channel belong to M resource blocks RB in the same TTI, and M ⁇ 1.
  • the time-frequency resources of the common channel belong to at least two resource blocks RB.
  • At least two RBs to which the time-frequency resource of the common channel belongs are discontinuous.
  • At least two RBs to which the time-frequency resource of the common channel belongs are consecutive, wherein a time-frequency resource of the first common channel belonging to the first RB and a time of the first common channel belonging to the second RB
  • the frequency resources are not continuous.
  • the apparatus 400 for transmitting scheduling information may correspond to a terminal device in the method of the embodiment of the present invention, and each unit in the apparatus 400 for transmitting information, that is, a module and the other operations and/or functions described above are respectively implemented.
  • the corresponding flow of the method 200 in FIG. 12 is not repeated here for brevity.
  • the apparatus for transmitting scheduling information by configuring at least two levels of dedicated channels, and when performing resource scheduling on the terminal equipment, transmitting the first-level dedicated channel by using the first time-frequency resource for transmitting system information
  • the indication information of the time-frequency resource is used to send the indication information of the time-frequency resource of the second-level dedicated channel to the terminal device by using the first-level dedicated channel, and further, the second-level dedicated channel may be used to send the information about the terminal device.
  • Dedicated scheduling information so that, in the process of transmitting the dedicated scheduling information, time-frequency resources for transmitting system information are occupied only when the indication information of the time-frequency resources of the first-level dedicated channel is transmitted, and the terminal device is informed After the time-frequency resource of the first-level dedicated channel, the dedicated scheduling information can be sent through the first-level dedicated channel and the second-level dedicated channel at any time, which can improve the flexibility of the transmission scheduling information and improve system performance and user experience.
  • the transmission of the scheduling information is no longer dependent on the existing PDCCH, and the configuration of the PDCCH in the prior art can be discarded, thereby further improving the flexibility of resource allocation.
  • FIG. 15 shows a schematic block diagram of an apparatus 500 for transmitting scheduling information according to an embodiment of the present invention.
  • the apparatus 500 includes a processor 510 and a transmitter 520, and the processor 510 is connected to the transmitter 520.
  • the device 500 further includes a memory 530 that is coupled to the processor 510.
  • the device 500 includes a bus system 540.
  • the processor 510, the memory 520, and the transmitter 530 may be connected by a bus system 540, where the memory 530 may be used to store instructions, and the processor 510 is configured to execute instructions stored in the memory 530 to control the transmitter 520 to send information or Signal; the device 500 is configured to be implemented in a communication system including at least two stages of dedicated channels for downlink control, the time-frequency resources corresponding to the dedicated channels of the respective levels being different, wherein the dedicated channel is only allocated to the terminal device Detection,
  • the processor 510 executes instructions for allocating a first-level dedicated channel and a second-level dedicated channel to the target terminal device;
  • the control transmitter 520 sends the indication information of the third time-frequency resource to the target terminal device by using the first-level dedicated channel, and sends the second-level dedicated channel to the target terminal device by using the third time-frequency resource.
  • the control transmitter 520 transmits dedicated scheduling information for the target terminal device to the target terminal device through the second-level dedicated channel.
  • the time-frequency resource of the first-level dedicated channel or the second-level dedicated channel includes the first K symbols of the same transmission time interval TTI, and K ⁇ 1.
  • the time-frequency resources of the first-level dedicated channel or the second-level dedicated channel belong to M resource blocks RB in the same TTI, and M ⁇ 1.
  • the processor is specifically configured to allocate the first-level dedicated channel and the second-level dedicated channel to the target terminal device according to the delay requirement of the service accessed by the target terminal device.
  • the time-frequency resources of the first-level dedicated channel belong to at least two resource blocks RB.
  • At least two RBs to which the time-frequency resources of the first-level dedicated channel belong are discontinuous.
  • At least two RBs to which the time-frequency resource of the first-level dedicated channel belongs are consecutive, wherein the time-frequency resource of the first-level dedicated channel belonging to the first RB and the first-level resource belonging to the second RB
  • the time-frequency resources of the dedicated channel are discontinuous.
  • the time-frequency resources of the first-level dedicated channel are located at two ends of the predetermined bandwidth in the frequency domain.
  • the first stage dedicated channel or the second stage dedicated channel comprises at least one channel element CE within the first TTI.
  • the time-frequency resource of the first-level dedicated channel or the second-level dedicated channel is configured in a centralized configuration or a distributed configuration in the first TTI, where
  • the distributed configuration refers to: when the RB allocated to the first dedicated channel in the first TTI is only used to carry the first-level dedicated channel, or the first TTI is allocated to the second dedicated channel.
  • each time-frequency resource of the CE belongs to at least two RBs in the first TTI, or
  • each resource unit RE included in the CE is discontinuous in the frequency domain
  • the centralized configuration refers to: when the RB allocated to the first dedicated channel in the first TTI is only used to carry the first-level dedicated channel, or the first TTI is allocated to the second dedicated channel.
  • the RB is only used to carry the second-level dedicated channel, each time-frequency resource of the CE belongs to the same RB in the first TTI, or
  • each resource unit RE included in the CE is continuous in the frequency domain.
  • the first configuration pattern is the same as the second configuration pattern, wherein
  • the first configuration pattern is a configuration pattern of a time-frequency resource for transmitting a reference signal in each of the CEs of the first-level dedicated channel;
  • the second configuration pattern is a configuration pattern of a time-frequency resource for transmitting a reference signal in each of the CEs of the second-level dedicated channel.
  • the third configuration pattern is different from the fourth configuration pattern, where
  • the third configuration pattern is: when the time-frequency resource of the second-level dedicated channel is configured centrally in the first TTI, the time-frequency of the reference signal used in each of the CEs of the second-level dedicated channel Resource configuration pattern,
  • the fourth configuration pattern is: when the time-frequency resource of the second-level dedicated channel is distributedly configured in the first TTI, the time-frequency of the reference signal used in each of the CEs of the second-level dedicated channel The configuration pattern of the resource.
  • the communication system further includes a common channel, the time-frequency resource of the common channel is different from the time-frequency resource of the dedicated channel, wherein the common channel is detected by all terminal devices in the communication system, and the processor further uses And transmitting, by the transmitter, the indication information of the common channel by using a preset second time-frequency resource;
  • the public message includes at least one of a random access response message, a paging message, or a system message.
  • the common channel is a common enhanced physical downlink control channel EPDCCH.
  • the dedicated channel is a dedicated EPDCCH.
  • the time-frequency resource of the common channel includes the first K symbols of the same transmission time interval TTI, and K ⁇ 1.
  • the time-frequency resources of the common channel belong to M resource blocks RB in the same TTI, and M ⁇ 1.
  • the time-frequency resources of the common channel belong to at least two resource blocks RB.
  • At least two RBs to which the time-frequency resource of the common channel belongs are discontinuous.
  • At least two RBs to which the time-frequency resource of the common channel belongs are consecutive, wherein a time-frequency resource of the first common channel belonging to the first RB and a time-frequency resource of the first common channel belonging to the second RB are not continuous.
  • the device 500 is a base station, and the terminal device is a user equipment.
  • the processor 510 may be a central processing unit (“CPU"), and the processor 510 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 530 can include read only memory and random access memory and provides instructions and data to the processor 710. A portion of the memory 530 may also include a non-volatile random access memory. For example, the memory 530 can also store information of the device type.
  • the bus system 540 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 540 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 510 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 530, and processor 510 reads the information in memory 530 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the device 500 for transmitting scheduling information may correspond to the network device in the method of the embodiment of the present invention, and each unit in the device 500 for transmitting information and the other operations and/or functions described above are respectively implemented.
  • the corresponding flow of the method 100 in FIG. 2 is not described here for brevity.
  • the device for transmitting scheduling information by configuring at least two levels of dedicated channels, and when performing resource scheduling on the terminal device, transmitting the first-level dedicated channel by using the first time-frequency resource for transmitting system information
  • the indication information of the time-frequency resource is used to send the indication information of the time-frequency resource of the second-level dedicated channel to the terminal device by using the first-level dedicated channel, and further, the second-level dedicated channel may be used to send the information about the terminal device.
  • Dedicated scheduling information so that, in the process of transmitting the dedicated scheduling information, time-frequency resources for transmitting system information are occupied only when the indication information of the time-frequency resources of the first-level dedicated channel is transmitted, and the terminal device is informed After the time-frequency resource of the first-level dedicated channel, the dedicated scheduling information can be sent through the first-level dedicated channel and the second-level dedicated channel at any time, which can improve the flexibility of the transmission scheduling information and improve system performance and user experience.
  • the transmission of the scheduling information is no longer dependent on the existing PDCCH, and the configuration of the PDCCH in the prior art can be discarded, thereby further improving the flexibility of resource allocation.
  • FIG. 16 shows a schematic block diagram of an apparatus 600 for transmitting scheduling information according to an embodiment of the present invention.
  • the apparatus 600 includes a processor 610 and a receiver 620, and the processor 610 is connected to the receiver 620.
  • the device 600 further includes a memory 630 that is coupled to the processor 610.
  • the device 600 includes a bus system 640.
  • the processor 610, the memory 620, and the receiver 630 may be connected by a bus system 640.
  • the memory 630 may be used to store instructions for executing the instructions stored in the memory 630 to control the receiver 620 to send information or Signal; the device 600 is configured to be implemented in a communication system including at least two stages of dedicated channels for downlink control, the time-frequency resources corresponding to the dedicated channels of the respective levels being different, wherein the dedicated channel is only allocated to the terminal device Detection,
  • the processor 610 is configured to: control, by the receiver 620, the indication information of the first-level dedicated channel that is sent by the network device by using the preset first time-frequency resource;
  • the receiver 620 is configured to receive, by using the first-level dedicated channel, the network device to send The indication information of the second-level dedicated channel; or
  • the receiver 620 is configured to receive the indication information of the third time-frequency resource sent by the network device by using the first-level dedicated channel, and receive, by using the third time-frequency resource, the second-level dedicated The indication information of the channel, where the third time-frequency resource belongs to a time-frequency resource of the physical downlink data channel PDSCH;
  • the receiver 620 is configured to receive, by using the second-level dedicated channel, dedicated scheduling information sent by the network device for the target terminal device.
  • the time-frequency resource of the first-level dedicated channel or the second-level dedicated channel includes the first K symbols of the same transmission time interval TTI, and K ⁇ 1.
  • the time-frequency resources of the first-level dedicated channel or the second-level dedicated channel belong to M resource blocks RB in the same TTI, and M ⁇ 1.
  • the first-level dedicated channel or the second-level dedicated channel is allocated by the network device according to a delay requirement of a service accessed by the target terminal device.
  • the time-frequency resources of the first-level dedicated channel belong to at least two resource blocks RB.
  • At least two RBs to which the time-frequency resources of the first-level dedicated channel belong are discontinuous.
  • At least two RBs to which the time-frequency resource of the first-level dedicated channel belongs are consecutive, wherein the time-frequency resource of the first-level dedicated channel belonging to the first RB and the first-level resource belonging to the second RB
  • the time-frequency resources of the dedicated channel are discontinuous.
  • the time-frequency resources of the first-level dedicated channel are located at two ends of the predetermined bandwidth in the frequency domain.
  • the first stage dedicated channel or the second stage dedicated channel comprises at least one channel element CE within the first TTI.
  • the time-frequency resource of the first-level dedicated channel or the second-level dedicated channel is configured in a centralized configuration or a distributed configuration in the first TTI, where
  • the distributed configuration refers to: when the RB allocated to the first dedicated channel in the first TTI is only used to carry the first-level dedicated channel, or the first TTI is allocated to the second dedicated channel.
  • each time-frequency resource of the CE belongs to at least two RBs in the first TTI, or
  • the resource unit RE included in each of the CEs is discontinuous in the frequency domain
  • the centralized configuration refers to: when the RB allocated to the first dedicated channel in the first TTI is only used to carry the first-level dedicated channel, or the first TTI is allocated to the second dedicated channel.
  • the RB is only used to carry the second-level dedicated channel, each time-frequency resource of the CE belongs to the same RB in the first TTI, or
  • each resource unit RE included in the CE is continuous in the frequency domain.
  • the first configuration pattern is the same as the second configuration pattern, wherein
  • the first configuration pattern is a configuration pattern of a time-frequency resource for transmitting a reference signal in each of the CEs of the first-level dedicated channel;
  • the second configuration pattern is a configuration pattern of a time-frequency resource for transmitting a reference signal in each of the CEs of the second-level dedicated channel.
  • the third configuration pattern is different from the fourth configuration pattern, where
  • the third configuration pattern is: when the time-frequency resource of the second-level dedicated channel is configured centrally in the first TTI, the time-frequency of the reference signal used in each of the CEs of the second-level dedicated channel Resource configuration pattern,
  • the fourth configuration pattern is: when the time-frequency resource of the second-level dedicated channel is distributedly configured in the first TTI, the time-frequency of the reference signal used in each of the CEs of the second-level dedicated channel The configuration pattern of the resource.
  • the communication system further includes a common channel, the time-frequency resource of the common channel is different from the time-frequency resource of the dedicated channel, wherein the common channel is detected by all terminal devices in the communication system, and the processor further uses Receiving, by the receiver, the indication information of the common channel sent by the network device by using a preset second time-frequency resource;
  • the public message includes at least one of a random access response message, a paging message, or a system message.
  • the common channel is a common enhanced downlink control channel EPDCCH.
  • the dedicated channel is a dedicated EPDCCH.
  • the time-frequency resource of the common channel includes the first K symbols of the same transmission time interval TTI, and K ⁇ 1.
  • the time-frequency resources of the common channel belong to M resource blocks RB in the same TTI, and M ⁇ 1.
  • the time-frequency resources of the common channel belong to at least two resource blocks RB.
  • At least two RBs to which the time-frequency resource of the common channel belongs are discontinuous.
  • At least two RBs to which the time-frequency resource of the common channel belongs are consecutive, wherein a time-frequency resource of the first common channel belonging to the first RB and a time-frequency resource of the first common channel belonging to the second RB are not continuous.
  • the device 600 is a user equipment, and the network device is a base station.
  • the processor 610 may be a central processing unit ("CPU"), and the processor 610 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 630 can include read only memory and random access memory and provides instructions and data to the processor 710. A portion of the memory 630 may also include a non-volatile random access memory. For example, the memory 630 can also store information of the device type.
  • the bus system 640 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 640 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 610 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 630, and the processor 610 reads the information in the memory 630 and combines it
  • the hardware completes the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the device 600 for transmitting scheduling information may correspond to the terminal device in the method of the embodiment of the present invention, and each unit in the device 600 for transmitting information and the other operations and/or functions described above are respectively implemented.
  • the corresponding flow of the method 200 in FIG. 12 is not repeated here for brevity.
  • the device for transmitting scheduling information by configuring at least two levels of dedicated channels, and when performing resource scheduling on the terminal device, transmitting the first-level dedicated channel by using the first time-frequency resource for transmitting system information
  • the indication information of the time-frequency resource is used to send the indication information of the time-frequency resource of the second-level dedicated channel to the terminal device by using the first-level dedicated channel, and further, the second-level dedicated channel may be used to send the information about the terminal device.
  • Dedicated scheduling information so that, in the process of transmitting the dedicated scheduling information, time-frequency resources for transmitting system information are occupied only when the indication information of the time-frequency resources of the first-level dedicated channel is transmitted, and the terminal device is informed After the time-frequency resource of the first-level dedicated channel, the dedicated scheduling information can be sent through the first-level dedicated channel and the second-level dedicated channel at any time, which can improve the flexibility of the transmission scheduling information and improve system performance and user experience.
  • the transmission of the scheduling information is no longer dependent on the existing PDCCH, and the configuration of the PDCCH in the prior art can be discarded, thereby further improving the flexibility of resource allocation.
  • the “resource block” may also be referred to as a resource unit (the full name of the English may be: Resource Unit, and the English abbreviation may be: RU).
  • the resource block may be one type of resource unit.
  • one resource unit may be, for example, one resource block.
  • a resource block may refer to a time-frequency resource block. That is, in the above description, the RB is taken as a resource unit as an example.
  • the resource unit may be a unit of resource allocation, resource scheduling, or data transmission specified by the communication system or the communication protocol.
  • one resource unit It occupies L symbols in the time domain and N subcarriers in the frequency domain, L ⁇ 1, N ⁇ 1.
  • the embodiment of the present invention is described in detail in conjunction with the “TTI”, where the TTI is a basic transmission time unit (or the length of the transmission time period), that is, in the embodiment of the present invention, the TTI may refer to Time unit of information transmission (or one information transmission) The length of time), the time unit of one information scheduling (or the length of time for one information scheduling), and the length of the subframe.
  • TTI is a basic transmission time unit (or the length of the transmission time period)
  • the TTI may refer to Time unit of information transmission (or one information transmission) The length of time), the time unit of one information scheduling (or the length of time for one information scheduling), and the length of the subframe.
  • the foregoing time unit may refer to a transmission duration corresponding to a primary transmission opportunity (for example, a transmission opportunity obtained based on a scheduling or contention mechanism).
  • the channel unit may be a Control Channel Element (CCE), that is, in the embodiment of the present invention, the first-level dedicated channel (specifically, the time-frequency resource of the first-level dedicated channel) Or the second-level dedicated channel (specifically, the time-frequency resource of the second-level dedicated channel) may be divided in units of control channel elements CCE, or the first-level dedicated channel may include one TTI (ie, At least one CCE in the first instance of the TTI, the second-level dedicated channel may include at least one CCE in one TTI (ie, an example of the first TTI).
  • CCE Control Channel Element
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be directed to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, may be located in one place. Or it can be distributed to multiple network elements. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种传输调度信息的方法和装置,该方法包括:网络设备为目标终端设备分配第一级专用信道和第二级专用信道;该网络设备通过预设的第一时频资源发送该第一级专用信道的指示信息;该网络设备通过该第一级专用信道,向该目标终端设备发送该第二级专用信道的指示信息;该网络设备通过该第二级专用信道,向该目标终端设备发送针对该目标终端设备的专用调度信息,从而,能够提高传输调度信息的灵活性,改善系统性能和用户体验。

Description

传输调度信息的方法和装置
本申请要求于2015年11月11日提交中国专利局、申请号为201510767014.0、发明名称为“传输调度信息的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,并且更具体地,涉及传输调度信息的方法和装置。
背景技术
目前已知一种通信技术,通过物理下行控制信道(英文全称可以为:Physical Downlink Control Channel,英文简称可以为:PDCCH)承载终端设备的调度信息,并通过下行物理数据信道(英文全称可以为:Physical Downlink Shared Channel,英文简称可以为:PDSCH)承载UE的下行数据,并且,该PDCCH与PDSCH采用时分复用方式复用系统带宽。
为了解决PDCCH的干扰协调、信道容量受限等问题,提出了采用增强的下行控制信道(英文全称可以为:Enhanced Physical Downlink Control Channel,英文简称可以为:EPDCCH)传输调度信息的方案。
如图1所示,现有技术中,PDCCH和EPDCCH共存,导致EPDCCH的起始符号受限于PDCCH,且设计复杂,影响了EPDCCH的使用,进而影响了传输调度的及时性和灵活性。
发明内容
本发明实施例提供一种传输调度信息的方法和装置,能够提高传输调度信息的灵活性,改善系统性能和用户体验。
第一方面,提供了一种传输调度信息的方法,在包括至少两级用于下行控制的专用信道的通信系统中执行,各级专用信道所对应的时频资源不同,其中,该专用信道在仅被所分配至的终端设备检测,该方法包括:网络设备为目标终端设备分配第一级专用信道和第二级专用信道;该网络设备通过预设的第一时频资源发送该第一级专用信道的指示信息;该网络设备通过该第一级专用信道,向该目标终端设备发送该第二级专用信道的指示信息;或该 网络设备通过该第一级专用信道,向该目标终端设备发送第三时频资源的指示信息,并通过该第三时频资源,向该目标终端设备发送该第二级专用信道的指示信息,其中,该第三时频资源属于下行数据信道PDSCH的时频资源;该网络设备通过该第二级专用信道,向该目标终端设备发送针对该目标终端设备的专用调度信息。
结合第一方面,在第一方面的第一种实现方式中,该网络设备为该目标终端设备分配第一级专用信道和第二级专用信道,包括:根据该目标终端设备所访问的业务的时延要求,为述目标终端设备分配第一级专用信道或第二级专用信道。
结合第一方面及其上述实现方式,在第一方面的第二种实现方式中,该通信系统还包括公共信道,该公共信道的时频资源与该专用信道的时频资源不同,其中,该公共信道被该通信系统中的所有终端设备检测,该方法还包括:网络设备通过预设的第二时频资源发送该公共信道的指示信息;该网络设备通过该公共信道,发送公共消息;或该网络设备通过该公共信道,发送第四时频资源的指示信息,通过该第四时频资源,发送公共消息,该第四时频资源属于下行数据信道PDSCH的时频资源;其中,该公共消息包括随机接入响应消息、寻呼消息或系统消息中的至少一种。
第二方面,提供了一种传输调度信息的方法,在包括至少两级用于下行控制的专用信道的通信系统中执行,各级专用信道所对应的时频资源不同,其中,该专用信道在仅被所分配至的终端设备检测,该方法包括:目标终端设备通过预设的第一时频资源接收网络设备发送的该第一级专用信道的指示信息;该目标终端设备根据该第一级专用信道的指示信息,确定该第一专用信道;该目标终端设备通过该第一级专用信道,接收该网络设备发送的该第二级专用信道的指示信息;或该目标终端设备通过该第一级专用信道,接收该网络设备发送的第三时频资源的指示信息,并通过该第三时频资源,接收该网络设备发送的该第二级专用信道的指示信息,其中,该第三时频资源属于下行数据信道PDSCH的时频资源;该目标终端设备根据该第二级专用信道的指示信息,确定该第二级专用信道;该目标终端设备通过该第二级专用信道,接收该网络设备发送的针对该目标终端设备的专用调度信息。
结合第二方面,在第二方面的第一种实现方式中,该第一级专用信道或第二级专用信道是该网络设备根据该目标终端设备所访问的业务的时延要 求分配的。
结合第二方面及其上述实现方式,在第二方面的第二种实现方式中,该通信系统还包括公共信道,该公共信道的时频资源与该专用信道的时频资源不同,其中,该公共信道被该通信系统中的所有终端设备检测,该方法还包括:该目标终端设备通过预设的第二时频资源接收该网络设备发送的该公共信道的指示信息;该目标终端设备通过该公共信道,接收该网络设备发送的公共消息;或该目标终端设备通过该公共信道,接收该网络设备发送的第四时频资源的指示信息,通过该第四时频资源,接收该网络设备发送的公共消息,该第四时频资源属于下行数据信道PDSCH的时频资源;其中,该公共消息包括随机接入响应消息、寻呼消息或系统消息中的至少一种。
第三方面,提供了一种传输调度信息的装置,配置在包括至少两级用于下行控制的专用信道的通信系统中,各级专用信道所对应的时频资源不同,其中,该专用信道在仅被所分配至的终端设备检测,该装置包括:分配单元,用于为目标终端设备分配第一级专用信道和第二级专用信道;发送单元,用于通过预设的第一时频资源发送该第一级专用信道的指示信息;用于通过该第一级专用信道,向该目标终端设备发送该第二级专用信道的指示信息;或用于通过该第一级专用信道,向该目标终端设备发送第三时频资源的指示信息,并通过该第三时频资源,向该目标终端设备发送该第二级专用信道的指示信息,其中,该第三时频资源属于下行数据信道PDSCH的时频资源;用于通过该第二级专用信道,向该目标终端设备发送针对该目标终端设备的专用调度信息。
结合第三方面,在第三方面的第一种实现方式中,该分配单元具体用于根据该目标终端设备所访问的业务的时延要求,为述目标终端设备分配第一级专用信道或第二级专用信道。
结合第三方面及其上述实现方式,在第三方面的第二种实现方式中,该通信系统还包括公共信道,该公共信道的时频资源与该专用信道的时频资源不同,其中,该公共信道被该通信系统中的所有终端设备检测,该发送单元还用于通过预设的第二时频资源发送该公共信道的指示信息;用于通过该公共信道,发送公共消息;或用于通过该公共信道,发送第四时频资源的指示信息,通过该第四时频资源,发送公共消息,该第四时频资源属于下行数据信道PDSCH的时频资源;其中,该公共消息包括随机接入响应消息、寻呼 消息或系统消息中的至少一种。
第四方面,提供一种传输调度信息的装置,配置在包括至少两级用于下行控制的专用信道的通信系统中,各级专用信道所对应的时频资源不同,其中,该专用信道在仅被所分配至的终端设备检测,该装置包括:接收单元,用于通过预设的第一时频资源接收网络设备发送的该第一级专用信道的指示信息;确定单元,用于根据该第一级专用信道的指示信息,确定该第一专用信道;该接收单元还用于通过该第一级专用信道,接收该网络设备发送的该第二级专用信道的指示信息;或该接收单元还用于通过该第一级专用信道,接收该网络设备发送的第三时频资源的指示信息,并通过该第三时频资源,接收该网络设备发送的该第二级专用信道的指示信息,其中,该第三时频资源属于下行数据信道PDSCH的时频资源;该确定单元还用于根据该第二级专用信道的指示信息,确定该第二级专用信道;该接收单元还用于通过该第二级专用信道,接收该网络设备发送的针对该装置的专用调度信息。
结合第四方面,在第四方面的第一种实现方式中,该第一级专用信道或第二级专用信道是该网络设备根据该装置所访问的业务的时延要求分配的。
结合第四方面及其上述实现方式,在第四方面的第二种实现方式中,该通信系统还包括公共信道,该公共信道的时频资源与该专用信道的时频资源不同,其中,该公共信道被该通信系统中的所有终端设备检测,该接收单元还用于通过预设的第二时频资源接收该网络设备发送的该公共信道的指示信息;该确定单元还用于根据该公共信道的指示信息,确定该公共信道;该接收单元还用于通过该公共信道,接收该网络设备发送的公共消息;或该接收单元还用于通过该公共信道,接收该网络设备发送的第四时频资源的指示信息,通过该第四时频资源,接收该网络设备发送的公共消息,该第四时频资源属于下行数据信道PDSCH的时频资源;其中,该公共消息包括随机接入响应消息、寻呼消息或系统消息中的至少一种。
根据本发明实施例的传输调度信息的方法和装置,通过配置至少两级专用信道,并在需要对终端设备进行资源调度时,通过用于传输系统信息的第一时频资源发送第一级专用信道的时频资源的指示信息,以通过该第一级专用信道,向该终端设备发送第二级专用信道的时频资源的指示信息,进而可以通过该第二级专用信道,发送针对该终端设备的专用调度信息,从而,在传输该专用调度信息的过程中,仅在发送该第一级专用信道的时频资源的指 示信息时占用用于传输系统信息的时频资源,并在终端设备获知第一级专用信道的时频资源后,能够随时通过第一级专用信道和第二级专用信道下发该专用调度信息,并且专用信道的起始符号不受限于PDCCH,能够提高传输调度信息的灵活性,改善系统性能和用户体验。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是表示现有技术中的PDCCH、PDSCH和EPDCCH对系统带宽的复用方式的示意图。
图2是根据本发明实施例的传输调度信息的方法的示意性流程图。
图3是本发明实施例的第一级专用信道、第二级专用信道或公共信道的时频资源的分布方式的一例的示意图。
图4是本发明实施例的第一级专用信道、第二级专用信道或公共信道的时频资源的分布方式的另一例的示意图。
图5是本发明实施例的第一级专用信道、第二级专用信道或公共信道的时频资源的分布方式的再一例的示意图。
图6是本发明实施例的第一级专用信道或第二级专用信道的分布方式的再一例的示意图。
图7是本发明实施例的第一级专用信道或第二级专用信道的时频资源配置方式的一例的示意图。
图8是本发明实施例的第一级专用信道或第二级专用信道的时频资源配置方式的另一例的示意图。
图9是本发明实施例的第一级专用信道或第二级专用信道的时频资源配置方式的再一例的示意图。
图10是本发明实施例的第一级专用信道或第二级专用信道的时频资源配置方式的再一例的示意图。
图11是本发明实施例的第一级专用信道和第二级专用信道的分布方式的再一例的示意图。
图12是根据本发明另一实施例的传输调度信息的方法的示意性流程图。
图13是根据本发明实施例的传输调度信息的装置的示意性框图。
图14是根据本发明另一实施例的传输调度信息的装置的示意性框图。
图15是根据本发明实施例的传输调度信息的设备的示意性结构图。
图16是根据本发明另一实施例的传输调度信息的设备的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
在本发明实施例中,该计算机包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括CPU、存储器管理单元(英文全称可以为:Memory Management Unit,英文简称可以为:MMU)和内存(也称为存储器)等硬件。该操作系统可以是任意一种或多种通过进程实现业务处理的计算机操作系统,例如,Linux系统、Unix系统、Android系统、iOS系统或windows系统等,本发明并未特别限定。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。应理解,以上列举的计算机设备仅为示例性说明,本发明并未特别限定。
本发明实施例的方案可以应用于现有的蜂窝通信系统,如全球移动通讯(英文全称可以为:Global System for Mobile Communication,英文简称可以 为:GSM),宽带码分多址(英文全称可以为:Wideband Code Division Multiple Access,英文简称可以为:WCDMA),长期演进(英文全称可以为:Long Term Evolution,英文简称可以为:LTE),码分多址(英文全称可以为:Code Division Multiple Access,英文简称可以为:CDMA)等系统中,所支持的通信主要是针对语音和数据通信的。通常来说,一个传统基站支持的连接数有限,也易于实现。
可选地,该网络设备为基站,该终端设备为用户设备。
本发明结合终端设备描述了各个实施例。终端设备也可以称为用户设备(英文全称可以为:User Equipment,英文简称可以为:UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(英文全称可以为:Wireless Local Area Networks,英文简称可以为:WLAN)中的站点(英文全称可以为:STAION,英文简称可以为:ST),可以是蜂窝电话、无绳电话、会话启动协议(英文全称可以为:Session Initiation Protocol,英文简称可以为:SIP)电话、无线本地环路(英文全称可以为:Wireless Local Loop,英文简称可以为:WLL)站、个人数字处理(英文全称可以为:Personal Digital Assistant,英文简称可以为:PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。
此外,本发明结合网络设备描述了各个实施例。网络设备可以是网络设备等用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(英文全称可以为:ACCESS POINT,英文简称可以为:AP),GSM或CDMA中的基站(英文全称可以为:Base Transceiver Station,英文简称可以为:BTS),也可以是WCDMA中的基站(英文全称可以为:NodeB,英文简称可以为:NB),还可以是LTE中的演进型基站(英文全称可以为:Evolutional Node B,英文简称可以为:eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备。
此外,本发明的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘,例如,压缩盘(英 文全称可以为:Compact Disk,英文简称可以为:CD)、数字通用盘(英文全称可以为:Digital Versatile Disk,英文简称可以为:DVD)等,智能卡和闪存器件,例如,可擦写可编程只读存储器英文全称可以为:Erasable Programmable Read-Only Memory,英文简称可以为:EPROM)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图2示出了从网络设备描述的根据本发明一实施例的传输调度信息的方法100的示意性流程图,该方法100在包括至少两级用于下行控制的专用信道的通信系统中执行,各级专用信道所对应的时频资源不同,其中,该专用信道在仅被所分配至的终端设备检测,如图2所示,该方法100包括:
S110,网络设备为目标终端设备分配第一级专用信道和第二级专用信道;
S120,该网络设备通过预设的第一时频资源发送该第一级专用信道的指示信息;
S130,该网络设备通过该第一级专用信道,向该目标终端设备发送该第二级专用信道的指示信息;或
该网络设备通过该第一级专用信道,向该目标终端设备发送第三时频资源的指示信息,并通过该第三时频资源,向该目标终端设备发送该第二级专用信道的指示信息,其中,该第三时频资源属于下行数据信道PDSCH的时频资源;
S140,该网络设备通过该第二级专用信道,向该目标终端设备发送针对该目标终端设备的专用调度信息。
在本发明实施例中,使用至少两级用于下行控制的专用信道传输终端设备的专用调度信息。
这里,“专用信道”是指仅被所分配至终端设备检测的信道,不失一般性,例如,如果专用信道#1被网络设备分配给终端设备#A(即,目标终端设备的一例),则网络设备可以向终端设备#A下发该专用信道#1所对应的时频资源(也可以称为,“搜索空间”)的指示信息,从而终端设备#A能够在该专用信道#1所对应的时频资源进行检测(或者说,搜索),以获取网络设备下发的信息,例如,该针对终端设备#A的专用调度信息。并且,系统内的除 终端设备#A以外的终端设备不会在专用信道#1所对应的时频资源上进行检测。
另外,“专用调度信息”是指网络设备需要对一个终端设备进行资源调度时下发给该用户设备的用于该资源调度的信息,作为示例而非限定,上述“针对终端设备#A的专用调度信息”可以包括现有技术中需要通过在EPDCCH或PDCCH的专用搜索区域传输给终端设备#A的信息,例如,针对终端设备#A的下行调度的分配信息,或者,针对终端设备#A的上行调度的授权信息等。
并且,在本发明实施例中,通过至少两级专用信道下发专用调度信息。
其中,第二级专用信道用于下发专用调度信息,第一级专用信道用于下发用于指示第二级专用信道的时频资源(或者说,搜索空间)的指示信息。
不失一般性,对于针对终端设备#A的专用调度信息,承载于分配给终端设备#A的第二级专用信道(以下,为了便于理解和说明,记做专用信道#2)。
网络设备可以通过分配给终端设备#A的第一级专用信道(例如,上述专用信道#1)下发用于指示专用信道#2的时频资源的指示信息。
例如,网络设备可以通过上述专用信道#1直接下发专用信道#2的时频资源的指示信息(以下,为了便于理解和区别,记做指示信息#1)。
或者,网络设备也可以上述专用信道#1,通过例如下行控制信息(DCI,Downlink Control Information)消息下发PDSCH中的某一时频资源的指示信息(以下,为了便于理解和区别,记做指示信息#2),并通过该指示信息#2所指示的PDSCH中的时频资源,下发指示信息#1。
从而终端设备#A可以通过专用信道#1直接或间接获取指示信息#1,并根据该指示信息#1,确定专用信道#2(具体地说,是专用信道#2的时频资源),并在专用信道#2的时频资源上,获取针对终端设备#A的专用调度信息。
并且,网络设备可以根据预设的用于传输系统信息(例如,MIB)的时频资源(即,第一时频资源的一例)向终端设备#A下发EPDCCH#1的时频资源的指示信息,从而终端设备#A可以通过上述预设的时频资源,获取专用信道#1的时频资源的指示信息,从而确定专用信道#1的时频资源,并在专用信道#1的时频资源上,通过专用信道#1获取上述专用信道#2的时频资源的指示信息。
由此可见,在传输针对终端设备#A的专用调度信息的过程中,仅在传输专用信道#1的时频资源的指示信息时,占用了用于传输系统信息的时频资源,能够提高传输调度信息的灵活性,改善系统性能和用户体验。
可选地,该专用信道为专用的EPDCCH。
具体地说,在本发明实施例中,通信系统中的EPDCCH可以分为专用的EPDCCH和公用的EPDCCH(随后对该公用的EPDCCH进行详细说明),其中,“专用的EPDCCH”是指仅被所分配至终端设备检测的EPDCCH,例如,如果专用的EPDCCH#1(以下,为了便于理解和说明,简称EPDCCH#1)被网络设备分配给终端设备#A,则网络设备可以向终端设备#A下发该EPDCCH#1所对应的时频资源(也可以称为,“搜索空间”)的指示信息,从而终端设备#A能够在该EPDCCH#1所对应的时频资源进行检测(或者说,搜索),以获取网络设备下发的信息,例如,该针对终端设备#A的专用调度信息。并且,系统内的除终端设备#A以外的终端设备不会在EPDCCH#1所对应的时频资源上进行检测。
应理解,以上列举的以EPDCCH作为专用信道的方案仅为示例性说明,本发明并未限定于此,例如,还可以使用下一代增强的下行控制信道(英文全称可以为:Future Enhanced Physical Downlink Control Channel,英文简称可以为:FEPDCCH)或专用的PDCCH作为专用信道。
为了便于理解和说明,以下,以EPDCCH作为专用信道为例,对上述方法100的具体过程进行详细说明。
不失一般性,以向终端设备#A(即,目标终端设备的一例)下发控制信息的过程为例,对上述方法100进行详细说明。
网络设备可以从系统提供的时频资源中,确定第一级EPDCCH(即,第一级专用信道的一例)的时频资源(以下,为了便于理解和区分,记做,时频资源A)。
可选地,网络设备为目标终端设备分配第一级专用EPDCCH包括:
网络设备根据需要调度的终端设备的数量确定第一级专用EPDCCH的时频资源的大小。
具体地说,在本发明实施例中,上述至少两级EPDCCH中的第一级EPDCCH可以是被视为分配给当前需要调度的所用终端设备的EPDCCH,或者说,该第一级EPDCCH的时频资源被作为承载当前需要调度的所有终 端设备的搜索空间。
此情况下,网络设备可以根据当前需要调度的终端设备的数量,确定时频资源A的大小,例如,如果当前需要调度的终端设备的数量较大,则需要分配给各终端设备的第二级EPDCCH的数量也较大,相应地,第二级EPDCCH的时频资源的指示信息(或者,用于承载第二级EPDCCH的时频资源的指示信息的PDSCH中的时频资源)的数量也较多,因此,可以分配较多的时频资源(例如,符号、子载波或资源块)作为上述时频资源A。
通过根据当前需要调度的终端设备的数量,分配第一级EPDCCH的时频资源,能够避免在需要调度的终端设备较少时,仍占有较多的时频资源进行资源调度,能够避免对系统资源的浪费。
如上所述可知,上述EPDCCH#1的时频资源(以下,为了便于理解和区分,记做,时频资源A1)可以视为时频资源A的一部分。
作为实例而非限定,网络设备可以根据当前需要调度的各终端设备(以下,为了便于理解和区分,记做,终端设备#A~终端设备#N)的数量N、指示分配给各终端设备的第二级EPDCCH的时频资源的指示信息(即,指示信息#1)的长度或大小,或PDSCH中用于承载该指示信息#1的时频资源的指示信息(即,指示信息#2)的长度或大小,将时频资源A分为X个子时频资源(以下,为了便于理解和区分,记做,子时频资源#A1~子时频资源#AX),其中,X≥N,并且终端设备#A~终端设备#N与子时频资源#A1~子时频资源#AN之间的一一对应,即,每个子时频资源被分配给所对应的终端设备。
此情况下,由于分配给多个终端设备的指示信息#1或指示信息#2均承载于时频资源A,需要使各终端设备能够区分出哪个指示信息是需要获取的。
对此,例如,网络设备在通过专用EPDCCH#1向终端设备#A下发指示信息#1或指示信息#2时,可以将终端设备#A的相关信息承载于该终端设备#A所对应的子时频资源(即,上述时频资源A1)上。从而,终端设备#A在获知时频资源A的位置后,可以在时频资源A上进行检测,将携带该终端设备#A的相关信息的子时频资源作为时频资源A1,并在该时频资源A1上接收网络设备发送给该终端设备#A的指示信息#1(即,EPDCCH#2的时频资源的指示信息)或指示信息#2(即,PDSCH中用于承载指示信息#1的时频资源的指示信息)。
再例如,该指示信息#1或指示信息#2可以包括资源指示部分(承载时频资源的指示信息的部分)和设备相关信息部分(承载终端设备的相关信息的部分)。从而,终端设备#A在获知时频资源A的位置后,可以在时频资源A上进行检测,将携带该终端设备#A的相关信息的指示信息,视为网络设备发送给该终端设备#A的指示信息#1或指示信息#2。
再例如,网络设备可以获取预设的映射规则,该映射规则可以指示终端设备#A~终端设备#N的相关信息与子时频资源#A1~子时频资源#AN之间的一一对应关系。并且,终端设备可以获取相同或相对应的映射规则,从而,例如,对于终端设备#A,网络设备和该终端设备#A能够从时频资源A确定相同的子时频资源,作为时频资源A1,并在该时频资源A1上接收网络设备发送给该终端设备#A的指示信息#1或指示信息#2。
作为实例而非限定,终端设备的相关信息可以包括终端设备的设备标识,应理解,以上列举的终端设备#A的相关信息仅为实例性说明,本发明并未限定于此,其他能够唯一地指示一个用户设备的信息均落入本发明的保护范围内,只要确保网络设备和各终端设备所使用的信息相同或相对应即可,例如,终端设备的相关信息还可以包括终端设备的媒体接入控制(英文全称可以为:Media Access Control,英文简称可以为:MAC)地址或网际协议(英文全称可以为:Internet Protocol,英文简称可以为:IP)地址等。
应理解,以上列举的分配第一级EPDCCH的方法,或者说,确定第一级EPDCCH的时频资源的方法仅为示例性说明,本发明并未限定于此,也可以根据网络设备的能力,确定该网络设备能够在一个调度周期内调度的终端设备的最大数量,并根据该最大数量和各第二级EPDCCH的指示信息(即,上述指示信息#1或指示信息#2)的大小或长度,在每次分配时,分配固定数量的时频资源给第一级EPDCCH,只要使第一级EPDCCH的时频资源能够满足各第二级EPDCCH的指示信息(即,上述指示信息#1或指示信息#2)的传输需求即可。
可选地,该用户设备在同一时刻仅检测所述第一级EPDCCH和所述第二级EPDCCH中的一方。
具体地说,在本发明实施例中,在终端设备#A在通过上述时频资源A1获知网络设备分配给该终端设备#A的第二级EPDCCH的时频资源(以下,为了便于理解和区分,记做,时频资源B)之前,无法对第二级EPDCCH 进行检测或搜索,而仅检测第一级EPDCCH。
当终端设备#A在通过上述时频资源A1获知时频资源B之后,该终端设备#A可以仅在该时频资源B进行搜索或检测,而停止在时频资源A1上进行的针对第一级EPDCCH的搜索和检测。
相对应地,网络设备可以将该时频资源A1释放并重新分配给其他终端设备。
下面,对第一级EPDCCH(即,第一级专用信道的一例)的时频资源的配置方式进行详细说明。
可选地,该第一级专用信道的时频资源属于至少两个资源块RB
具体地说,第一级EPDCCH(即,第一级专用信道的一例)的时频资源的分配可以以资源块(英文全称可以为:Resource Block,英文简称可以为:RB)为单位,即,第一级EPDCCH的时频资源可以属于至少两个RB,需要说明的是,“属于至少两个RB”是指,该第一级EPDCCH的时频资源可以包括至少两个RB的全部时频资源,也可以包括该至少两个RB的部分时频资源,例如,包括每个RB的一半数量的子载波或符号。
可选地,该第一级专用信道的时频资源所属于的至少两个RB非连续。
具体地说,图4示出了第一级EPDCCH的时频资源的分布方式的另一例的示意图,如图4所示,第一级EPDCCH的时频资源可以承载于不相邻的至少两个RB中。从而,能够提高传输的分集增益。
可选地,该第一级专用信道的时频资源在频域上位于预先设定的带宽的两端。
具体地说,图3示出了第一级EPDCCH的时频资源的分布方式的一例。如图3所示,第一级EPDCCH的时频资源可以属于预先设定的带宽两端的至少两个RB。
并且,在本发明实施例中,该预先设定的带宽是指网络设备和终端设备预先约定的带宽,作为示例而非限定,该预先设定的带宽可以是通信系统所使用的系统带宽。
可选地,该第一级专用信道的时频资源所属于的至少两个RB连续,其中,属于第一RB的该第一级专用信道的时频资源与属于第二RB的该第一级专用信道的时频资源非连续。
具体地说,第一级EPDCCH的时频资源可以属于至少两个RB,并且, 该至少两个RB中,只有部分(例如,一半数量)的子载波被用于作为第一级EPDCCH的时频资源。并且,当第一级EPDCCH的时频资源可以所属于两个RB相邻时,这两个RB中被用于作为第一级EPDCCH的时频资源的子载波不连续。
可选地,该第一级专用信道的时频资源包括同一传输时间间隔TTI的前K个符号,K≥1。
具体地说,图5示出了第一级EPDCCH的时频资源的分布方式的另一例的示意图,如图5所示,第一级EPDCCH的时频资源可以为所属于的RB的前K个符号,并且该RB的剩余符号可以作为例如,PDSCH的时频资源。
应理解,以上列举的一个RB内除作为第一级EPDCCH的时频资源以外的符号的作用仅为示例性说明,本发明并未特别限定。
并且,上述K的具体数值可以根据需要任意确定,作为示例而非限定,例如,当一个RB包括7个符号时,第一级EPDCCH的时频资源可以为所属于的RB的第1个符号,或,前4个符号。
可选地,该网络设备为该目标终端设备分配第一级专用信道和第二级专用信道,包括:
根据该目标终端设备所访问的业务的时延要求,为述目标终端设备分配第一级专用信道。
具体地说,例如,当终端设备所访问的业务对时延要求较高时,终端设备无需检测一个RB的所有符号,便能够通过第一级专用EPDCCH的时频资源,获得第二级专用EPDCCH的时频资源的指示信息,从而能够加快针对该终端设备的调度速度,减少终端设备的业务访问时延。
可选地,该第一级专用信道的时频资源属于同一TTI中的M个资源块RB,M≥1。
具体地说,第一级EPDCCH的时频资源可以为一个TTI所属于的RB的M个RB,并且该TTI中剩余的RB可以作为例如,PDSCH的时频资源。
并且,上述M的具体数值可以根据需要任意确定,本发明并未特别限定。
可选地,该第一级专用信道包括第一TTI内的至少一个信道单元CE。
具体地说,在本发明实施例中,该第一级专用信道(具体地说,是该第一级专用信道的时频资源)可以以信道单元(CE,Channel Element)为单位 进行划分,即,该第一级专用信道可以包括一个TTI(即,第一TTI的一例)中的至少一个CE。
可选地,该第一级专用信道的时频资源在该第一TTI内集中式配置或分布式配置,其中,
分布式配置是指:当该第一TTI内的被分配给该第一级专用信道的RB仅用于承载该第一级专用信道时,每个该CE的时频资源属于该第一TTI内的至少两个RB,或
当该第一TTI内的被分配给该第一级专用信道的RB用于承载该第一级专用信道和其他信道时,每个该CE所包括的资源单元RE在频域上非连续;
集中式配置是指:当该第一TTI内的被分配给该第一级专用信道的RB仅用于承载该第一级专用信道时,每个该CE的时频资源属于该第一TTI内的同一RB,或
当该第一TTI内的被分配给该第一级专用信道的RB用于承载该第一级专用信道和其他信道时,每个该CE所包括的资源单元RE在频域上连续。
具体地说,在本发明实施例中,第一级专用信道可以集中式配置在同一TTI中,或者,第一级专用信道也可以分布式配置在同一TTI中。
首先,对分布式配置的情况进行详细说明。
在本发明实施例中,该第一级专用信道可以与其他信道采用频分复用方式复用同一TTI内的各RB,即,在一个TTI内的被分配给第一专用信道的RB仅用于承载第一级专用信道,而不能用于承载其他信道(例如,PDSCH)。
此情况下,例如,网络设备可以将时频资源A分为子时频资源#A1~子时频资源#AX,每个子时频子时频资源用于承载一个终端设备的第一级专用信道,如果上述各子时频资源包括同一TTI内的一个或多个CE,并且,每个CE可以属于至少两个RB,则可以认为第一级专用信道分布式配置在该TTI中。
如图7所示,网络设备分配给一个终端设备的CE(例如,CE#1,可以用于承载第一级专用信道)可以属于至少两个RB,进一步,该CE可以包括至少两个RB的部分时频资源,例如,包括每个RB的部分符号,并且,同一RB的剩余符号可以分配给其他终端设备的CE而作为分配给其他终端设备的第一级专用信道。
或者,网络设备分配给一个终端设备的CE(例如,CE#1,可以用于承 载第一级专用信道)可以属于至少两个RB,并且该CE可以包括至少两个RB的部分时频资源,例如,包括每个RB的部分子载波。
需要说明的是,图7中所示的CE#1~CE#4可以分别被分配给多个终端设备而分别作为多个终端设备的第一级专用信道。
或者,图7中所示的CE#1~CE#4中的部分或全部CE也可以被分配给多同一终端设备而分别作为一个终端设备的第一级专用信道。
在第一级专用信道与其他信道采用频分复用方式复用同一TTI时,通过使第一级专用信道包括一个或多个CE,并使每个CE的时频资源属于至少两个RB中,能够使第一级专用信道分布式(或者说,分散地)配置在系统带宽中,从而能够有效增加分集增益,进一步提高本发明的可靠性和实用性。
在本发明实施例中,该第一级专用信道可以与其他信道采用时分复用方式复用同一TTI内的各RB,例如,如图5所示,在一个TTI内的被分配给第一专用信道的RB中的部分符号用于承载第一级专用信道,同一RB中的其他符号可以其他信道(例如,PDSCH)。
此情况下,如果第一级专用信道包括同一TTI内的一个或多个CE,并且,每个CE所包括的资源单元(RE,Resource Element)不连续,则可以认为第一级专用信道分布式配置在该TTI中。
如图8所示,网络设备分配给一个终端设备的CE(例如,CE#1)可以属于同一TTI中的部分(例如,2个RB),进一步,该CE可以包括2个RB的部分符号(例如,第一个符号),同一RB的剩余符号可以分配给其他信道(例如,PDSCH)。
在第一级专用信道与其他信道采用时分复用方式复用同一TTI时,通过使第一级专用信道包括一个或多个CE,并使每个CE所包括的RE非连续,能够使第一级专用信道分布式(或者说,分散地)配置在系统带宽中,从而能够有效增加分集增益,进一步提高本发明的可靠性和实用性。
下面,对集中式配置的情况进行详细说明。
在本发明实施例中,该第一级专用信道可以与其他信道采用频分复用方式复用同一TTI内的各RB,即,在一个TTI内的被分配给第一专用信道的RB仅用于承载第一级专用信道,而不能用于承载其他信道(例如,PDSCH)。
此情况下,例如,网络设备可以将时频资源A分为子时频资源#A1~子时频资源#AX,每个子时频子时频资源用于承载一个终端设备的第一级专用 信道,如果上述各子时频资源包括同一TTI内的一个或多个CE,并且,并且,每个CE的时频资源可以属于同一RB,则可以认为第一级专用信道集中式配置在该TTI中。
如图9所示,网络设备分配给一个终端设备的CE(用于承载该终端设备的第一级专用信道)可以属于同一RB。并且,该分配给一个终端设备的CE可以仅占用一个RB中的部分符号或部分子载波,其他的符号或子载波可以被分配给其他终端设备,而作为其他终端设备的第一级专用信道的时频资源。
需要说明的是,图9中所示的CE#1~CE#4可以分别被分配给多个终端设备而分别作为多个终端设备的第一级专用信道。
在第一级专用信道与其他信道采用频分复用方式复用同一TTI时,通过使第一级专用信道包括一个或多个CE,并使每个CE的时频资源属于同一RB中,能够使第一级专用信道集中式(或者说,集中地)配置在系统带宽中,从而能够根据信道的干扰情况,选择信道质量较好的信道集中配置第一级专用信道,进一步提高本发明的可靠性和实用性。
在本发明实施例中,该第一级专用信道可以与其他信道采用时分复用方式复用同一TTI内的各RB,例如,如图5所示,在一个TTI内的被分配给第一专用信道的RB中的部分符号用于承载第一级专用信道,同一RB中的其他符号可以其他信道(例如,PDSCH)。
此情况下,如果第一级专用信道包括同一TTI内的一个或多个CE,并且,每个CE所包括的资源单元(RE,Resource Element)连续,则可以认为第一级专用信道集中式配置在该TTI中。
如图10所示,网络设备分配给一个终端设备的CE(例如,CE#1)可以属于同一TTI中的全部RB,进一步,该CE可以包括同一TTI中的全部RB的部分符号(例如,第一个符号),同一RB的剩余符号可以分配给其他信道(例如,PDSCH)。
在第一级专用信道与其他信道采用时分复用方式复用同一TTI时,通过使第一级专用信道包括一个或多个CE,并使每个CE所包括的RE连续,能够使第一级专用信道集中式(或者说,集中地)配置在系统带宽中,从而能够根据信道的干扰情况,选择信道质量较好的信道集中配置第一级专用信道,进一步提高本发明的可靠性和实用性。
应理解,以上列举的时频资源的分布方式仅为示例性说明,本发明并未限定于此,也可以根据需求进行调整。
另外,如图3至图10所示,第一级专用信道中还可以包括用于承载参考信道(或者说,导频信号)的时频资源。
并且,在本发明实施例中,每个端口可以独立的占用一个时频资源,例如,图3至图7中所示的端口,例如,端口#1~端口#4,或端口#A~端口#D中的任意端口,可以为一个端口。
或者,在本发明实施例中,多个端口可以复用同一时频资源,例如,图8至图10中所示的端口,例如,端口#E可以包括多个(例如,4个)端口,或者,图10中端口#F可以包括多个(例如,4个)端口,并且,端口#E与端口#F所包括的端口不同。
下面,对第二级EPDCCH(即,第二级专用信道的一例)的时频资源的配置方式进行详细说明。
可选地,该第二级专用信道的时频资源属于至少两个资源块RB。
具体地说,第二级EPDCCH的时频资源的分配可以以RB为单位,即,第二级EPDCCH的时频资源可以属于至少两个RB,需要说明的是,“属于至少两个RB”是指,该第二级EPDCCH的时频资源可以包括至少两个RB的全部时频资源,也可以包括该至少两个RB的部分时频资源,例如,包括每个RB的一半数量的子载波或符号。
可选地,该第二级专用信道的时频资源所属于的至少两个RB非连续。
具体地说,第二级EPDCCH的时频资源可以承载于不相邻的至少两个RB中。从而,能够提高传输的分集增益。
可选地,该第二级专用信道的时频资源在频域上位于预先规定的带宽的两端。
具体地说,第二级EPDCCH的时频资源可以属于预先规定的带宽两端的至少两个RB。
并且,在本发明实施例中,该预先设定的带宽是指网络设备和终端设备预先约定的带宽,作为示例而非限定,该预先设定的带宽可以是通信系统所使用的系统带宽。
可选地,该第二级专用信道的时频资源所属于的至少两个RB连续,其中,属于第三RB的该第二级专用信道的时频资源与属于第四RB的该第二 级专用信道的时频资源非连续。
具体地说,第二级EPDCCH的时频资源可以属于至少两个RB,并且,该至少两个RB中,只有部分(例如,一半数量)的子载波被用于作为第二级EPDCCH的时频资源。并且,当第二级EPDCCH的时频资源可以所属于两个RB相邻时,这两个RB中被用于作为第二级EPDCCH的时频资源的子载波不连续。
可选地,该第二级专用信道的时频资源包括同一传输时间间隔TTI的前K个符号,K≥1。
具体地说,第二级EPDCCH的时频资源可以为所属于的RB的前K个符号,并且该RB的剩余符号可以作为例如,PDSCH的时频资源。
应理解,以上列举的一个RB内除作为第二级EPDCCH的时频资源以外的符号的作用仅为示例性说明,本发明并未特别限定,例如,图6示出了第二级EPDCCH的时频资源的分布方式的另一例的示意图,如图6所示,分配给一个终端设备的第二级EPDCCH的时频资源可以为所属于的RB的前K个符号,并且该RB的剩余符号可以作为例如,分配给另一个终端设备的第二级EPDCCH的时频资源。
并且,上述K的具体数值可以根据需要任意确定,作为示例而非限定,例如,当一个RB包括7个符号时,第二级EPDCCH的时频资源可以为所属于的RB的第1个符号,或,前4个符号。
可选地,该网络设备为该目标终端设备分配第一级专用信道和第二级专用信道,包括:
根据该目标终端设备所访问的业务的时延要求,为述目标终端设备分配第二级专用信道。
具体地说,例如,当终端设备所访问的业务对时延要求较高时,终端设备无需检测一个RB的所有符号,便能够通过第二级专用EPDCCH的时频资源,获得调度信息,从而能够加快针对该终端设备的调度速度,减少终端设备的业务访问时延。
可选地,该第二级专用信道的时频资源属于同一TTI中的M个资源块RB,M≥1。
具体地说,第二级EPDCCH的时频资源可以为一个TTI所属于的RB的M个RB,并且该TTI中剩余的RB可以作为例如,PDSCH的时频资源。
并且,上述M的具体数值可以根据需要任意确定,本发明并未特别限定。
可选地,该第二级专用信道包括第一TTI内的至少一个信道单元CE。
具体地说,在本发明实施例中,该第二级专用信道(具体地说,是该第二级专用信道的时频资源)可以以信道单元(CE,Channel Element)为单位进行划分,即,该第二级专用信道可以包括一个TTI(即,第一TTI的一例)中的至少一个CE。
可选地,该第二级专用信道的时频资源在该第一TTI内集中式配置或分布式配置,其中,
分布式配置是指:当该第一TTI内的被分配给该第二级专用信道的RB仅用于承载该第二级专用信道时,每个该CE的时频资源属于该第一TTI内的至少两个RB,或
当该第一TTI内的被分配给该第二级专用信道的RB用于承载该第二级专用信道和其他信道时,每个该CE所包括的资源单元RE在频域上非连续;
集中式配置是指:当该第一TTI内的被分配给该第二级专用信道的RB仅用于承载该第二级专用信道时,每个该CE的时频资源属于该第一TTI内的同一RB,或
当该第一TTI内的被分配给该第二级专用信道的RB用于承载该第二级专用信道和其他信道时,每个该CE所包括的资源单元RE在频域上连续。
具体地说,在本发明实施例中,第二级专用信道可以集中式配置在同一TTI中,或者,第二级专用信道也可以分布式配置在同一TTI中。
首先,对分布式配置的情况进行详细说明。
在本发明实施例中,该第二级专用信道可以与其他信道采用频分复用方式复用同一TTI内的各RB,即,在一个TTI内的被分配给第一专用信道的RB仅用于承载第二级专用信道,而不能用于承载其他信道(例如,PDSCH)。
此情况下,如果第二级专用信道包括同一TTI内的一个或多个CE,并且,每个CE可以属于至少两个RB,则可以认为第二级专用信道分布式配置在该TTI中。
如图7所示,网络设备分配给一个终端设备的CE(例如,CE#1,可以用于承载第二级专用信道)可以属于至少两个RB,进一步,该CE可以包括至少两个RB的部分时频资源,例如,包括每个RB的部分符号,并且, 同一RB的剩余符号可以分配给其他终端设备的CE。
或者,网络设备分配给一个终端设备的CE可以属于至少两个RB,并且该CE可以包括至少两个RB的部分时频资源,例如,包括每个RB的部分子载波。
需要说明的是,图7中所示的CE#1~CE#4可以分别被分配给多个终端设备而分别作为多个终端设备的第二级专用信道。
或者,图7中所示的CE#1~CE#4中的部分或全部CE也可以被分配给多同一终端设备而分别作为一个终端设备的第二级专用信道。
在第二级专用信道与其他信道采用频分复用方式复用同一TTI时,通过使第二级专用信道包括一个或多个CE,并使每个CE的时频资源属于至少两个RB中,能够使第二级专用信道分布式(或者说,分散地)配置在系统带宽中,从而能够有效增加分集增益,进一步提高本发明的可靠性和实用性。
在本发明实施例中,该第二级专用信道可以与其他信道采用时分复用方式复用同一TTI内的各RB,例如,如图5所示,在一个TTI内的被分配给第一专用信道的RB中的部分符号用于承载第二级专用信道,同一RB中的其他符号可以其他信道(例如,PDSCH)。
此情况下,如果第二级专用信道包括同一TTI内的一个或多个CE,并且,每个CE所包括的资源单元(RE,Resource Element)不连续,则可以认为第二级专用信道分布式配置在该TTI中。
如图8所示,网络设备分配给一个终端设备的CE(例如,CE#1)可以属于同一TTI中的部分(例如,2个RB),进一步,该CE可以包括2个RB的部分符号(例如,第一个符号),同一RB的剩余符号可以分配给其他信道(例如,PDSCH)。
在第二级专用信道与其他信道采用时分复用方式复用同一TTI时,通过使第二级专用信道包括一个或多个CE,并使每个CE所包括的RE非连续,能够使第二级专用信道分布式(或者说,分散地)配置在系统带宽中,从而能够有效增加分集增益,进一步提高本发明的可靠性和实用性。
下面,对集中式配置的情况进行详细说明。
在本发明实施例中,该第二级专用信道可以与其他信道采用频分复用方式复用同一TTI内的各RB,即,在一个TTI内的被分配给第一专用信道的RB仅用于承载第二级专用信道,而不能用于承载其他信道(例如,PDSCH)。
此情况下,如果一个第二级专用信道包括同一TTI内的一个或多个CE,并且,并且,每个CE的时频资源可以属于同一RB,则可以认为该第二级专用信道集中式配置在该TTI中。
如图9所示,网络设备分配给一个终端设备的CE(用于承载该终端设备的第二级专用信道)可以属于同一RB。并且,该分配给一个终端设备的CE可以仅占用一个RB中的部分符号或部分子载波,其他的符号或子载波可以被分配给其他终端设备,而作为其他终端设备的第二级专用信道的时频资源。
需要说明的是,图9中所示的CE#1~CE#4可以分别被分配给多个终端设备而分别作为多个终端设备的第二级专用信道。
在第二级专用信道与其他信道采用频分复用方式复用同一TTI时,通过使第二级专用信道包括一个或多个CE,并使每个CE的时频资源属于同一RB中,能够使第二级专用信道集中式(或者说,集中地)配置在系统带宽中,从而能够根据信道的干扰情况,选择信道质量较好的信道集中配置第二级专用信道,进一步提高本发明的可靠性和实用性。
在本发明实施例中,该第二级专用信道可以与其他信道采用时分复用方式复用同一TTI内的各RB,例如,如图5所示,在一个TTI内的被分配给第一专用信道的RB中的部分符号用于承载第二级专用信道,同一RB中的其他符号可以其他信道(例如,PDSCH)。
此情况下,如果第二级专用信道包括同一TTI内的一个或多个CE,并且,每个CE所包括的资源单元(RE,Resource Element)连续,则可以认为第二级专用信道集中式配置在该TTI中。
如图10所示,网络设备分配给一个终端设备的CE(例如,CE#1)可以属于同一TTI中的全部RB,进一步,该CE可以包括同一TTI中的全部RB的部分符号(例如,第一个符号),同一RB的剩余符号可以分配给其他信道(例如,PDSCH)。
在第二级专用信道与其他信道采用时分复用方式复用同一TTI时,通过使第二级专用信道包括一个或多个CE,并使每个CE所包括的RE连续,能够使第二级专用信道集中式(或者说,集中地)配置在系统带宽中,从而能够根据信道的干扰情况,选择信道质量较好的信道集中配置第二级专用信道,进一步提高本发明的可靠性和实用性。
应理解,以上列举的时频资源的分布方式仅为示例性说明,本发明并未限定于此,也可以根据需求进行调整。
另外,如图3至图10所示,第二级专用信道中还可以包括用于承载参考信道(或者说,导频信号)的时频资源。
并且,在本发明实施例中,每个端口可以独立的占用一个时频资源,例如,图3至图7中所示的端口,例如,端口#1~端口#4,或端口#A~端口#D中的任意端口,可以为一个端口。
或者,在本发明实施例中,多个端口可以复用同一时频资源,例如,图8至图10中所示的端口,例如,端口#E可以包括多个(例如,4个)端口,或者,图10中端口#F可以包括多个(例如,4个)端口,并且,端口#E与端口#F所包括的端口不同。
可选地,第一配置图案与第二配置图案相同,其中
该第一配置图案是,该第一级专用信道的每个该CE中用于传输参考信号的时频资源该的配置图案;
该第二配置图案是,该第二级专用信道的每个该CE中用于传输参考信号的时频资源该的配置图案。
具体地说,在本发明实施例中,第一级专用信道(例如,第一级EPDCCH)中用于承载参考信号(或者说,导频信号)的时频资源的配置图案可以与第二级专用信道(例如,第二级EPDCCH)中用于承载参考信号(或者说,导频信号)的时频资源的配置图案相同。
可选地,第三配置图案与第四配置图案相异,其中,
该第三配置图案是,当该第二级专用信道的时频资源在该第一TTI内集中式配置该时,该第二级专用信道的每个该CE中用于传输参考信号的时频资源的配置图案,
该第四配置图案是,当该第二级专用信道的时频资源在该第一TTI内分布式配置该时,该第二级专用信道的每个该CE中用于传输参考信号的时频资源的配置图案。
需要说明的是,在本发明实施例中,上述CE可以是控制信道单元CCE(Control Channel Element),也可以是增强的控制信道单元(ECCE,Enhanced Control Channel Element)还可以是其他类型的控制信道单元,本发明并未特别限定。
图11示出了第一级专用信道、第二级专用信道和下行数据信道的配置方式的一例的示意图。如图11所示,在本发明实施例中,专用信道(包括第一级和第二级专用信道)和部分下行数据信道可以采用时分复用的方式配置,另外,专用信道和另一部分下行数据信道可以采用频分复用的方式配置,并且第一级专用信道和第二级专用信道可以采用频分复用方式配置。
应理解以上列举的第一级专用信道、第二级专用信道和下行数据信道的配置方式仅为示例性说明,本发明并未限定于此。
可选地,该通信系统还包括公共信道,该公共信道的时频资源与该专用信道的时频资源不同,其中,该公共信道被该通信系统中的所有终端设备检测,该方法还包括:
网络设备通过预设的第二时频资源发送该公共信道的指示信息;
该网络设备通过该公共信道,发送公共消息;或
该网络设备通过该公共信道,发送第四时频资源的指示信息,通过该第四时频资源,发送公共消息,该第四时频资源属于下行数据信道PDSCH的时频资源;
其中,该公共消息包括随机接入响应消息、寻呼消息或系统消息中的至少一种。
这里,“公共信道”可以被系统中的各终端设备检测。
另外,“公共消息”可以是网络设备通过例如广播形式发送给系统内的各终端设备的消息,作为示例而非限定,上述“公共消息”可以包括现有中需要通过在PDCCH的公共搜索区域传输给各终端设备的消息,例如,系统消息、如随机接入响应消息或寻呼消息等。
可选地,该公共信道为公共的增强的下行控制信道EPDCCH信道。
具体地说,在本发明实施例中,通信系统中的EPDCCH可以分为专用的EPDCCH和公用的EPDCCH,“公共的EPDCCH”是指被系统中的所有终端设备检测的EPDCCH。
应理解,以上列举的以EPDCCH作为专用信道的方案仅为示例性说明,本发明并未限定于此,例如,还可以使用下一代增强的下行控制信道(英文全称可以为:Future Enhanced Physical Downlink Control Channel,英文简称可以为:FEPDCCH)或公共的PDCCH作为公共信道。
网络设备可以根据预设的用于传输系统信息(例如,MIB)的时频资源 (即,第二时频资源的一例)向终端设备下发公共信道的时频资源的指示信息,从而,系统内的终端设备可以通过上述预设的时频资源,获取公共信道的时频资源的指示信息,从而确定公共信道的时频资源。
例如,网络设备可以通过公共信道发送上述公共消息,从而,终端设备可以在公共信道的时频资源上进行接收处理(或者说,搜索处理),以获取上述公共消息。
或者,网络设备可以通过公共信道发送PDSCH中的某一时频资源的指示信息,并在该PDSCH中的时频资源上发送公共消息,从而,终端设备可以通过公共信道获取该PDSCH中的时频资源的指示信息,进而确定PDSCH中用于承载公共消息的时频资源,并在该时频资源上进行接收处理,以获取上述公共消息。
需要说明的是,在本发明实施例中,公共信道(例如,公共EPDCCH)的时频资源的指示信息和第一级专用信道(例如,第一级EPDCCH)的时频资源的指示信息可以通过相同的消息发送也可以通过不同的消息发送本发明并未特别限定。
并且,在本发明实施例中,公共EPDCCH的时频资源的分布方式可以与上述第一级EPDCCH的时频资源的分布方式(例如,图3至图8所示方式)相似,这里,为了避免赘述,省略其详细说明,即:
可选地,该公共信道的时频资源包括同一传输时间间隔TTI的前K个符号,K≥1。
可选地,该公共信道的时频资源属于同一TTI中的M个资源块RB,M≥1。
可选地,该公共信道的时频资源属于至少两个资源块RB。
可选地,该公共信道的时频资源所属于的至少两个RB非连续。
可选地,该公共信道的时频资源所属于的至少两个RB连续,其中,属于第一RB的该公共信道的时频资源与属于第二RB的该公共信道的时频资源非连续。
可选地,该公共信道的时频资源在频域上位于预先规定的系统带宽的两端。
并且,在本发明实施例中,该预先设定的带宽是指网络设备和终端设备预先约定的带宽,作为示例而非限定,该预先设定的带宽可以是通信系统所 使用的系统带宽。
根据本发明实施例的传输调度信息的方法,通过配置至少两级专用信道,并在需要对终端设备进行资源调度时,通过用于传输系统信息的第一时频资源发送第一级专用信道的时频资源的指示信息,以通过该第一级专用信道,向该终端设备发送第二级专用信道的时频资源的指示信息,进而可以通过该第二级专用信道,发送针对该终端设备的专用调度信息,从而,在传输该专用调度信息的过程中,仅在发送该第一级专用信道的时频资源的指示信息时占用用于传输系统信息的时频资源,并在终端设备获知第一级专用信道的时频资源后,能够随时通过第一级专用信道和第二级专用信道下发该专用调度信息,能够提高传输调度信息的灵活性,改善系统性能和用户体验。
并且,由于第一级专用信道和第二级专用信道均至被分配给一个终端设备,从而,能够使本发明的传输调度信息的方法适用于多输入多输出(MIMO,Multiple-Input Multiple-Output)传输的场景。
并且,通过配置公共信道,使调度信息的传输不再依赖于现有的PDCCH,进而能够舍弃现有技术中PDCCH的配置,从而能够进一步提高资源配置的灵活性。
上文中结合图1至图11,从网络设备的角度详细描述了根据本发明实施例的传输调度信息的方法,下面将结合图12,从终端设备的角度描述根据本发明实施例的传输调度信息的方法。
图12示出了从终端设备角度描述的根据本发明实施例的传输信息的方法200的示意性流程图,该方法200在包括至少两级用于下行控制的专用信道的通信系统中执行,各级专用信道所对应的时频资源不同,其中,该专用信道在仅被所分配至的终端设备检测,如图12所示,该方法200包括:
S210,目标终端设备通过预设的第一时频资源接收网络设备发送的该第一级专用信道的指示信息;
S220,该目标终端设备根据该第一级专用信道的指示信息,确定该第一专用信道;
S230,该目标终端设备通过该第一级专用信道,接收该网络设备发送的该第二级专用信道的指示信息;或
该目标终端设备通过该第一级专用信道,接收该网络设备发送的第三时频资源的指示信息,并通过该第三时频资源,接收该网络设备发送的该第二 级专用信道的指示信息,其中,该第三时频资源属于物理下行数据信道PDSCH的时频资源;
S240,该目标终端设备根据该第二级专用信道的指示信息,确定该第二级专用信道;
S250,该目标终端设备通过该第二级专用信道,接收该网络设备发送的针对该目标终端设备的专用调度信息。
可选地,该第一级专用信道或该第二级专用信道的时频资源包括同一传输时间间隔TTI的前K个符号,K≥1。
可选地,该第一级专用信道或该第二级专用信道的时频资源属于同一TTI中的M个资源块RB,M≥1。
可选地,该第一级专用信道或第二级专用信道是该网络设备根据该目标终端设备所访问的业务的时延要求分配的。
可选地,该第一级专用信道的时频资源属于至少两个资源块RB。
可选地,该第一级专用信道的时频资源所属于的至少两个RB非连续。
可选地,该第一级专用信道的时频资源所属于的至少两个RB连续,其中,属于第一RB的该第一级专用信道的时频资源与属于第二RB的该第一级专用信道的时频资源非连续。
可选地,该第一级专用信道的时频资源在频域上位于该预先规定的带宽的两端。
可选地,该第一级专用信道或该第二级专用信道包括第一TTI内的至少一个信道单元CE。
可选地,该第一级专用信道或该第二级专用信道的时频资源在该第一TTI内集中式配置或分布式配置,其中,
分布式配置是指:当该第一TTI内的被分配给该第一专用信道的RB仅用于承载该第一级专用信道,或该第一TTI内的被分配给该第二专用信道的RB仅用于承载该第二级专用信道时,每个该CE的时频资源属于该第一TTI内的至少两个RB,或
当该第一TTI内的被分配给该第一专用信道的RB用于承载该第一级专用信道和其他信道,或该第一TTI内的被分配给该第二专用信道的RB用于承载该第二级专用信道和其他信道时,每个该CE所包括的资源单元RE在频域上非连续;
集中式配置是指:当该第一TTI内的被分配给该第一专用信道的RB仅用于承载该第一级专用信道,或该第一TTI内的被分配给该第二专用信道的RB仅用于承载该第二级专用信道时,每个该CE的时频资源属于该第一TTI内的同一RB,或
当该第一TTI内的被分配给该第一专用信道的RB用于承载该第一级专用信道和其他信道,或该第一TTI内的被分配给该第二专用信道的RB用于承载该第二级专用信道和其他信道时,每个该CE所包括的资源单元RE在频域上连续。
可选地,第一配置图案与第二配置图案相同,其中
该第一配置图案是,该第一级专用信道的每个该CE中用于传输参考信号的时频资源该的配置图案;
该第二配置图案是,该第二级专用信道的每个该CE中用于传输参考信号的时频资源该的配置图案。
可选地,第三配置图案与第四配置图案相异,其中,
该第三配置图案是,当该第二级专用信道的时频资源在该第一TTI内集中式配置该时,该第二级专用信道的每个该CE中用于传输参考信号的时频资源的配置图案,
该第四配置图案是,当该第二级专用信道的时频资源在该第一TTI内分布式配置该时,该第二级专用信道的每个该CE中用于传输参考信号的时频资源的配置图案。
可选地,该通信系统还包括公共信道,该公共信道的时频资源与该专用信道的时频资源不同,其中,该公共信道被该通信系统中的所有终端设备检测,该方法还包括:
该目标终端设备通过预设的第二时频资源接收该网络设备发送的该公共信道的指示信息;
该目标终端设备通过该公共信道,接收该网络设备发送的公共消息;或
该目标终端设备通过该公共信道,接收该网络设备发送的第四时频资源的指示信息,通过该第四时频资源,接收该网络设备发送的公共消息,该第四时频资源属于PDSCH的时频资源;
其中,该公共消息包括随机接入响应消息、寻呼消息或系统消息中的至少一种。
可选地,该公共信道为公共的增强的下行控制信道EPDCCH。
可选地,该专用信道为专用的EPDCCH。
可选地,该公共信道的时频资源包括同一传输时间间隔TTI的前K个符号,K≥1。
可选地,该公共信道的时频资源属于同一TTI中的M个资源块RB,M≥1。
可选地,该公共信道的时频资源属于至少两个资源块RB。
可选地,该公共信道的时频资源所属于的至少两个RB非连续。
可选地,该公共信道的时频资源所属于的至少两个RB连续,其中,属于第一RB的该公共信道的时频资源与属于第二RB的该公共信道的时频资源非连续。
可选地,该公共信道的时频资源在频域上位于该通信系统所使用的系统带宽的两端。
上述方法200中终端设备的动作与上述方法100中终端设备的动作相似,并且上述方法200中网络设备的动作与上述方法100中网络设备的动作相似,这里,为了避免赘述,省略其详细说明。
根据本发明实施例的传输调度信息的方法,通过配置至少两级专用信道,并在需要对终端设备进行资源调度时,通过用于传输系统信息的第一时频资源发送第一级专用信道的时频资源的指示信息,以通过该第一级专用信道,向该终端设备发送第二级专用信道的时频资源的指示信息,进而可以通过该第二级专用信道,发送针对该终端设备的专用调度信息,从而,在传输该专用调度信息的过程中,仅在发送该第一级专用信道的时频资源的指示信息时占用用于传输系统信息的时频资源,并在终端设备获知第一级专用信道的时频资源后,能够随时通过第一级专用信道和第二级专用信道下发该专用调度信息,能够提高传输调度信息的灵活性,改善系统性能和用户体验。
并且,通过配置公共信道,使调度信息的传输不再依赖于现有的PDCCH,进而能够舍弃现有技术中PDCCH的配置,从而能够进一步提高资源配置的灵活性。
以上,结合图1至图12详细说明了根据本发明实施例的传输调度信息的方法,下面,结合图13至图14详细说明根据本发明实施例的传输调度信息的装置。
图13示出了根据本发明实施例的传输信息的装置300的示意性框图,该装置300配置在包括至少两级用于下行控制的专用信道的通信系统中,各级专用信道所对应的时频资源不同,其中,该专用信道在仅被所分配至的终端设备检测,如图13所示,该装置300包括:
分配单元310,用于为目标终端设备分配第一级专用信道和第二级专用信道;
发送单元320,用于通过预设的第一时频资源发送该第一级专用信道的指示信息;
用于通过该第一级专用信道,向该目标终端设备发送该第二级专用信道的指示信息;或
用于通过该第一级专用信道,向该目标终端设备发送第三时频资源的指示信息,并通过该第三时频资源,向该目标终端设备发送该第二级专用信道的指示信息,其中,该第三时频资源属于物理下行数据信道PDSCH的时频资源;
用于通过该第二级专用信道,向该目标终端设备发送针对该目标终端设备的专用调度信息。
可选地,该第一级专用信道或该第二级专用信道的时频资源包括同一传输时间间隔TTI的前K个符号,K≥1。
可选地,该第一级专用信道或该第二级专用信道的时频资源属于同一TTI中的M个资源块RB,M≥1。
可选地,该分配单元具体用于根据该目标终端设备所访问的业务的时延要求,为述目标终端设备分配第一级专用信道或第二级专用信道。
可选地,该第一级专用信道的时频资源属于至少两个资源块RB。
可选地,该第一级专用信道的时频资源所属于的至少两个RB非连续。
可选地,该第一级专用信道的时频资源所属于的至少两个RB连续,其中,属于第一RB的该第一级专用信道的时频资源与属于第二RB的该第一级专用信道的时频资源非连续。
可选地,该第一级专用信道的时频资源在频域上位于预选设定的带宽的两端。
可选地,该第一级专用信道或该第二级专用信道包括第一TTI内的至少一个信道单元CE。
可选地,该第一级专用信道或该第二级专用信道的时频资源在该第一TTI内集中式配置或分布式配置,其中,
分布式配置是指:当该第一TTI内的被分配给该第一专用信道的RB仅用于承载该第一级专用信道,或该第一TTI内的被分配给该第二专用信道的RB仅用于承载该第二级专用信道时,每个该CE的时频资源属于该第一TTI内的至少两个RB,或
当该第一TTI内的被分配给该第一专用信道的RB用于承载该第一级专用信道和其他信道,或该第一TTI内的被分配给该第二专用信道的RB用于承载该第二级专用信道和其他信道时,每个该CE所包括的资源单元RE在频域上非连续;
集中式配置是指:当该第一TTI内的被分配给该第一专用信道的RB仅用于承载该第一级专用信道,或该第一TTI内的被分配给该第二专用信道的RB仅用于承载该第二级专用信道时,每个该CE的时频资源属于该第一TTI内的同一RB,或
当该第一TTI内的被分配给该第一专用信道的RB用于承载该第一级专用信道和其他信道,或该第一TTI内的被分配给该第二专用信道的RB用于承载该第二级专用信道和其他信道时,每个该CE所包括的资源单元RE在频域上连续。
可选地,第一配置图案与第二配置图案相同,其中
该第一配置图案是,该第一级专用信道的每个该CE中用于传输参考信号的时频资源该的配置图案;
该第二配置图案是,该第二级专用信道的每个该CE中用于传输参考信号的时频资源该的配置图案。
可选地,第三配置图案与第四配置图案相异,其中,
该第三配置图案是,当该第二级专用信道的时频资源在该第一TTI内集中式配置该时,该第二级专用信道的每个该CE中用于传输参考信号的时频资源的配置图案,
该第四配置图案是,当该第二级专用信道的时频资源在该第一TTI内分布式配置该时,该第二级专用信道的每个该CE中用于传输参考信号的时频资源的配置图案。
可选地,该通信系统还包括公共信道,该公共信道的时频资源与该专用 信道的时频资源不同,其中,该公共信道被该通信系统中的所有终端设备检测,
该发送单元还用于通过预设的第二时频资源发送该公共信道的指示信息;
用于通过该公共信道,发送公共消息;或
用于通过该公共信道,发送第四时频资源的指示信息,通过该第四时频资源,发送公共消息,该第四时频资源属于PDSCH的时频资源;
其中,该公共消息包括随机接入响应消息、寻呼消息或系统消息中的至少一种。
可选地,该公共信道为公共的增强的下行控制信道EPDCCH。
可选地,该专用信道为专用的EPDCCH。
可选地,该公共信道的时频资源包括同一传输时间间隔TTI的前K个符号,K≥1。
可选地,该公共信道的时频资源属于同一TTI中的M个资源块RB,M≥1。
可选地,该公共信道的时频资源属于至少两个资源块RB。
可选地,该公共信道的时频资源所属于的至少两个RB非连续。
可选地,该公共信道的时频资源所属于的至少两个RB连续,其中,属于第一RB的该公共信道的时频资源与属于第二RB的该公共信道的时频资源非连续。
可选地,该公共信道的时频资源在频域上位于该通信系统所使用的系统带宽的两端。
根据本发明实施例的传输调度信息的装置300可对应于本发明实施例的方法中的网络设备,并且,传输信息的装置300中的各单元即模块和上述其他操作和/或功能分别为了实现图2中的方法100的相应流程,为了简洁,在此不再赘述。
根据本发明实施例的传输调度信息的装置,通过配置至少两级专用信道,并在需要对终端设备进行资源调度时,通过用于传输系统信息的第一时频资源发送第一级专用信道的时频资源的指示信息,以通过该第一级专用信道,向该终端设备发送第二级专用信道的时频资源的指示信息,进而可以通过该第二级专用信道,发送针对该终端设备的专用调度信息,从而,在传输 该专用调度信息的过程中,仅在发送该第一级专用信道的时频资源的指示信息时占用用于传输系统信息的时频资源,并在终端设备获知第一级专用信道的时频资源后,能够随时通过第一级专用信道和第二级专用信道下发该专用调度信息,能够提高传输调度信息的灵活性,改善系统性能和用户体验。
并且,通过配置公共信道,使调度信息的传输不再依赖于现有的PDCCH,进而能够舍弃现有技术中PDCCH的配置,从而能够进一步提高资源配置的灵活性。
图14示出了根据本发明实施例的传输调度信息的装置400的示意性框图,该装置400配置在包括至少两级用于下行控制的专用信道的通信系统中,各级专用信道所对应的时频资源不同,其中,该专用信道在仅被所分配至的终端设备检测,如图14所示,该装置400包括:
接收单元410,用于通过预设的第一时频资源接收网络设备发送的该第一级专用信道的指示信息;
确定单元420,用于根据该第一级专用信道的指示信息,确定该第一专用信道;
该接收单元410还用于通过该第一级专用信道,接收该网络设备发送的该第二级专用信道的指示信息;或
该接收单元420还用于通过该第一级专用信道,接收该网络设备发送的第三时频资源的指示信息,并通过该第三时频资源,接收该网络设备发送的该第二级专用信道的指示信息,其中,该第三时频资源属于物理下行数据信道PDSCH的时频资源;
该确定单元420还用于根据该第二级专用信道的指示信息,确定该第二级专用信道;
该接收单元410还用于通过该第二级专用信道,接收该网络设备发送的针对该装置的专用调度信息。
可选地,该第一级专用信道或该第二级专用信道的时频资源包括同一传输时间间隔TTI的前K个符号,K≥1。
可选地,该第一级专用信道或该第二级专用信道的时频资源属于同一TTI中的M个资源块RB,M≥1。
可选地,该第一级专用信道或第二级专用信道是该网络设备根据该装置所访问的业务的时延要求分配的。
可选地,该第一级专用信道的时频资源属于至少两个资源块RB。
可选地,该第一级专用信道的时频资源所属于的至少两个RB非连续。
可选地,该第一级专用信道的时频资源所属于的至少两个RB连续,其中,属于第一RB的该第一级专用信道的时频资源与属于第二RB的该第一级专用信道的时频资源非连续。
可选地,该第一级专用信道的时频资源在频域上位于预先规定的带宽的两端。
可选地,该第一级专用信道或该第二级专用信道包括第一TTI内的至少一个信道单元CE。
可选地,该第一级专用信道或该第二级专用信道的时频资源在该第一TTI内集中式配置或分布式配置,其中,
分布式配置是指:当该第一TTI内的被分配给该第一专用信道的RB仅用于承载该第一级专用信道,或该第一TTI内的被分配给该第二专用信道的RB仅用于承载该第二级专用信道时,每个该CE的时频资源属于该第一TTI内的至少两个RB,或
当该第一TTI内的被分配给该第一专用信道的RB用于承载该第一级专用信道和其他信道,或该第一TTI内的被分配给该第二专用信道的RB用于承载该第二级专用信道和其他信道时,每个该CE所包括的资源单元RE在频域上非连续;
集中式配置是指:当该第一TTI内的被分配给该第一专用信道的RB仅用于承载该第一级专用信道,或该第一TTI内的被分配给该第二专用信道的RB仅用于承载该第二级专用信道时,每个该CE的时频资源属于该第一TTI内的同一RB,或
当该第一TTI内的被分配给该第一专用信道的RB用于承载该第一级专用信道和其他信道,或该第一TTI内的被分配给该第二专用信道的RB用于承载该第二级专用信道和其他信道时,每个该CE所包括的资源单元RE在频域上连续。
可选地,第一配置图案与第二配置图案相同,其中
该第一配置图案是,该第一级专用信道的每个该CE中用于传输参考信号的时频资源该的配置图案;
该第二配置图案是,该第二级专用信道的每个该CE中用于传输参考信 号的时频资源该的配置图案。
可选地,第三配置图案与第四配置图案相异,其中,
该第三配置图案是,当该第二级专用信道的时频资源在该第一TTI内集中式配置该时,该第二级专用信道的每个该CE中用于传输参考信号的时频资源的配置图案,
该第四配置图案是,当该第二级专用信道的时频资源在该第一TTI内分布式配置该时,该第二级专用信道的每个该CE中用于传输参考信号的时频资源的配置图案。
可选地,该通信系统还包括公共信道,该公共信道的时频资源与该专用信道的时频资源不同,其中,该公共信道被该通信系统中的所有终端设备检测,
该接收单元还用于通过预设的第二时频资源接收该网络设备发送的该公共信道的指示信息;
该确定单元还用于根据该公共信道的指示信息,确定该公共信道;
该接收单元还用于通过该公共信道,接收该网络设备发送的公共消息;或
该接收单元还用于通过该公共信道,接收该网络设备发送的第四时频资源的指示信息,通过该第四时频资源,接收该网络设备发送的公共消息,该第四时频资源属于PDSCH的时频资源;
其中,该公共消息包括随机接入响应消息、寻呼消息或系统消息中的至少一种。
可选地,该公共信道为公共的增强的下行控制信道EPDCCH。
可选地,该专用信道为专用的EPDCCH。
可选地,该公共信道的时频资源包括同一传输时间间隔TTI的前K个符号,K≥1。
可选地,该公共信道的时频资源属于同一TTI中的M个资源块RB,M≥1。
可选地,该公共信道的时频资源属于至少两个资源块RB。
可选地,该公共信道的时频资源所属于的至少两个RB非连续。
可选地,该公共信道的时频资源所属于的至少两个RB连续,其中,属于第一RB的该第公共信道的时频资源与属于第二RB的该第公共信道的时 频资源非连续。
根据本发明实施例的传输调度信息的装置400可对应于本发明实施例的方法中的终端设备,并且,传输信息的装置400中的各单元即模块和上述其他操作和/或功能分别为了实现图12中的方法200的相应流程,为了简洁,在此不再赘述。
根据本发明实施例的传输调度信息的装置,通过配置至少两级专用信道,并在需要对终端设备进行资源调度时,通过用于传输系统信息的第一时频资源发送第一级专用信道的时频资源的指示信息,以通过该第一级专用信道,向该终端设备发送第二级专用信道的时频资源的指示信息,进而可以通过该第二级专用信道,发送针对该终端设备的专用调度信息,从而,在传输该专用调度信息的过程中,仅在发送该第一级专用信道的时频资源的指示信息时占用用于传输系统信息的时频资源,并在终端设备获知第一级专用信道的时频资源后,能够随时通过第一级专用信道和第二级专用信道下发该专用调度信息,能够提高传输调度信息的灵活性,改善系统性能和用户体验。
并且,通过配置公共信道,使调度信息的传输不再依赖于现有的PDCCH,进而能够舍弃现有技术中PDCCH的配置,从而能够进一步提高资源配置的灵活性。
以上,结合图1至图12详细说明了根据本发明实施例的传输调度信息的方法,下面,结合图15至图16详细说明根据本发明实施例的传输信息的设备。
图15示出了根据本发明实施例的传输调度信息的设备500的示意性框图,如图15所示,该设备500包括:处理器510和发送器520,处理器510和发送器520相连,可选地,该设备500还包括存储器530,存储器530与处理器510相连,进一步可选地,该设备500包括总线系统540。其中,处理器510、存储器520和发送器530可以通过总线系统540相连,该存储器530可以用于存储指令,该处理器510用于执行该存储器530存储的指令,以控制发送器520发送信息或信号;该设备500配置在包括至少两级用于下行控制的专用信道的通信系统中执行,各级专用信道所对应的时频资源不同,其中,该专用信道在仅被所分配至的终端设备检测,
处理器510,执行指令,以用于为目标终端设备分配第一级专用信道和第二级专用信道;
用于控制发射器520通过预设的第一时频资源发送该第一级专用信道的指示信息;
用于控制发射器520通过该第一级专用信道,向该目标终端设备发送该第二级专用信道的指示信息;或
用于控制发射器520通过该第一级专用信道,向该目标终端设备发送第三时频资源的指示信息,并通过该第三时频资源,向该目标终端设备发送该第二级专用信道的指示信息,其中,该第三时频资源属于物理下行数据信道PDSCH的时频资源;
用于控制发射器520通过该第二级专用信道,向该目标终端设备发送针对该目标终端设备的专用调度信息。
可选地,该第一级专用信道或该第二级专用信道的时频资源包括同一传输时间间隔TTI的前K个符号,K≥1。
可选地,该第一级专用信道或该第二级专用信道的时频资源属于同一TTI中的M个资源块RB,M≥1。
可选地,该处理器具体用于根据该目标终端设备所访问的业务的时延要求,为述目标终端设备分配第一级专用信道和第二级专用信道。
可选地,该第一级专用信道的时频资源属于至少两个资源块RB。
可选地,该第一级专用信道的时频资源所属于的至少两个RB非连续。
可选地,该第一级专用信道的时频资源所属于的至少两个RB连续,其中,属于第一RB的该第一级专用信道的时频资源与属于第二RB的该第一级专用信道的时频资源非连续。
可选地,该第一级专用信道的时频资源在频域上位于预先规定的带宽的两端。
可选地,该第一级专用信道或该第二级专用信道包括第一TTI内的至少一个信道单元CE。
可选地,该第一级专用信道或该第二级专用信道的时频资源在该第一TTI内集中式配置或分布式配置,其中,
分布式配置是指:当该第一TTI内的被分配给该第一专用信道的RB仅用于承载该第一级专用信道,或该第一TTI内的被分配给该第二专用信道的RB仅用于承载该第二级专用信道时,每个该CE的时频资源属于该第一TTI内的至少两个RB,或
当该第一TTI内的被分配给该第一专用信道的RB用于承载该第一级专用信道和其他信道,或该第一TTI内的被分配给该第二专用信道的RB用于承载该第二级专用信道和其他信道时,每个该CE所包括的资源单元RE在频域上非连续;
集中式配置是指:当该第一TTI内的被分配给该第一专用信道的RB仅用于承载该第一级专用信道,或该第一TTI内的被分配给该第二专用信道的RB仅用于承载该第二级专用信道时,每个该CE的时频资源属于该第一TTI内的同一RB,或
当该第一TTI内的被分配给该第一专用信道的RB用于承载该第一级专用信道和其他信道,或该第一TTI内的被分配给该第二专用信道的RB用于承载该第二级专用信道和其他信道时,每个该CE所包括的资源单元RE在频域上连续。
可选地,第一配置图案与第二配置图案相同,其中
该第一配置图案是,该第一级专用信道的每个该CE中用于传输参考信号的时频资源该的配置图案;
该第二配置图案是,该第二级专用信道的每个该CE中用于传输参考信号的时频资源该的配置图案。
可选地,第三配置图案与第四配置图案相异,其中,
该第三配置图案是,当该第二级专用信道的时频资源在该第一TTI内集中式配置该时,该第二级专用信道的每个该CE中用于传输参考信号的时频资源的配置图案,
该第四配置图案是,当该第二级专用信道的时频资源在该第一TTI内分布式配置该时,该第二级专用信道的每个该CE中用于传输参考信号的时频资源的配置图案。
可选地,该通信系统还包括公共信道,该公共信道的时频资源与该专用信道的时频资源不同,其中,该公共信道被该通信系统中的所有终端设备检测,该处理器还用于控制该发射器通过预设的第二时频资源发送该公共信道的指示信息;
用于控制该发射器通过该公共信道,发送公共消息;或
用于控制该发射器通过该公共信道,发送第四时频资源的指示信息,通过该第四时频资源,发送公共消息,该第四时频资源属于PDSCH的时频资 源;
其中,该公共消息包括随机接入响应消息、寻呼消息或系统消息中的至少一种。
可选地,该公共信道为公共的增强的物理下行控制信道EPDCCH。
可选地,该专用信道为专用的EPDCCH。
可选地,该公共信道的时频资源包括同一传输时间间隔TTI的前K个符号,K≥1。
可选地,该公共信道的时频资源属于同一TTI中的M个资源块RB,M≥1。
可选地,该公共信道的时频资源属于至少两个资源块RB。
可选地,该公共信道的时频资源所属于的至少两个RB非连续。
可选地,该公共信道的时频资源所属于的至少两个RB连续,其中,属于第一RB的该第公共信道的时频资源与属于第二RB的该第公共信道的时频资源非连续。
可选地,该设备500为基站,该终端设备为用户设备。
应理解,在本发明实施例中,该处理器510可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器510还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器530可以包括只读存储器和随机存取存储器,并向处理器710提供指令和数据。存储器530的一部分还可以包括非易失性随机存取存储器。例如,存储器530还可以存储设备类型的信息。
该总线系统540除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统540。
在实现过程中,上述方法的各步骤可以通过处理器510中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。 该存储介质位于存储器530,处理器510读取存储器530中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的传输调度信息的设备500可对应于本发明实施例的方法中的网络设备,并且,传输信息的设备500中的各单元即模块和上述其他操作和/或功能分别为了实现图2中的方法100的相应流程,为了简洁,在此不再赘述。
根据本发明实施例的传输调度信息的设备,通过配置至少两级专用信道,并在需要对终端设备进行资源调度时,通过用于传输系统信息的第一时频资源发送第一级专用信道的时频资源的指示信息,以通过该第一级专用信道,向该终端设备发送第二级专用信道的时频资源的指示信息,进而可以通过该第二级专用信道,发送针对该终端设备的专用调度信息,从而,在传输该专用调度信息的过程中,仅在发送该第一级专用信道的时频资源的指示信息时占用用于传输系统信息的时频资源,并在终端设备获知第一级专用信道的时频资源后,能够随时通过第一级专用信道和第二级专用信道下发该专用调度信息,能够提高传输调度信息的灵活性,改善系统性能和用户体验。
并且,通过配置公共信道,使调度信息的传输不再依赖于现有的PDCCH,进而能够舍弃现有技术中PDCCH的配置,从而能够进一步提高资源配置的灵活性。
图16示出了根据本发明实施例的传输调度信息的设备600的示意性框图,如图16所示,该设备600包括:处理器610和接收器620,处理器610和接收器620相连,可选地,该设备600还包括存储器630,存储器630与处理器610相连,进一步可选地,该设备600包括总线系统640。其中,处理器610、存储器620和接收器630可以通过总线系统640相连,该存储器630可以用于存储指令,该处理器610用于执行该存储器630存储的指令,以控制接收器620发送信息或信号;该设备600配置在包括至少两级用于下行控制的专用信道的通信系统中执行,各级专用信道所对应的时频资源不同,其中,该专用信道在仅被所分配至的终端设备检测,
处理器610,执行指令,以用于控制该接收器620通过预设的第一时频资源接收网络设备发送的该第一级专用信道的指示信息;
用于根据该第一级专用信道的指示信息,确定该第一专用信道;
用于控制该接收器620通过该第一级专用信道,接收该网络设备发送的 该第二级专用信道的指示信息;或
用于控制该接收器620通过该第一级专用信道,接收该网络设备发送的第三时频资源的指示信息,并通过该第三时频资源,接收该网络设备发送的该第二级专用信道的指示信息,其中,该第三时频资源属于物理下行数据信道PDSCH的时频资源;
用于根据该第二级专用信道的指示信息,确定该第二级专用信道;
用于控制该接收器620通过该第二级专用信道,接收该网络设备发送的针对该目标终端设备的专用调度信息。
可选地,该第一级专用信道或该第二级专用信道的时频资源包括同一传输时间间隔TTI的前K个符号,K≥1。
可选地,该第一级专用信道或该第二级专用信道的时频资源属于同一TTI中的M个资源块RB,M≥1。
可选地,该第一级专用信道或该第二级专用信道是该网络设备根据该目标终端设备所访问的业务的时延要求分配的。
可选地,该第一级专用信道的时频资源属于至少两个资源块RB。
可选地,该第一级专用信道的时频资源所属于的至少两个RB非连续。
可选地,该第一级专用信道的时频资源所属于的至少两个RB连续,其中,属于第一RB的该第一级专用信道的时频资源与属于第二RB的该第一级专用信道的时频资源非连续。
可选地,该第一级专用信道的时频资源在频域上位于预先规定的带宽的两端。
可选地,该第一级专用信道或该第二级专用信道包括第一TTI内的至少一个信道单元CE。
可选地,该第一级专用信道或该第二级专用信道的时频资源在该第一TTI内集中式配置或分布式配置,其中,
分布式配置是指:当该第一TTI内的被分配给该第一专用信道的RB仅用于承载该第一级专用信道,或该第一TTI内的被分配给该第二专用信道的RB仅用于承载该第二级专用信道时,每个该CE的时频资源属于该第一TTI内的至少两个RB,或
当该第一TTI内的被分配给该第一专用信道的RB用于承载该第一级专用信道和其他信道,或该第一TTI内的被分配给该第二专用信道的RB用于 承载该第二级专用信道和其他信道时,每个该CE所包括的资源单元RE在频域上非连续;
集中式配置是指:当该第一TTI内的被分配给该第一专用信道的RB仅用于承载该第一级专用信道,或该第一TTI内的被分配给该第二专用信道的RB仅用于承载该第二级专用信道时,每个该CE的时频资源属于该第一TTI内的同一RB,或
当该第一TTI内的被分配给该第一专用信道的RB用于承载该第一级专用信道和其他信道,或该第一TTI内的被分配给该第二专用信道的RB用于承载该第二级专用信道和其他信道时,每个该CE所包括的资源单元RE在频域上连续。
可选地,第一配置图案与第二配置图案相同,其中
该第一配置图案是,该第一级专用信道的每个该CE中用于传输参考信号的时频资源该的配置图案;
该第二配置图案是,该第二级专用信道的每个该CE中用于传输参考信号的时频资源该的配置图案。
可选地,第三配置图案与第四配置图案相异,其中,
该第三配置图案是,当该第二级专用信道的时频资源在该第一TTI内集中式配置该时,该第二级专用信道的每个该CE中用于传输参考信号的时频资源的配置图案,
该第四配置图案是,当该第二级专用信道的时频资源在该第一TTI内分布式配置该时,该第二级专用信道的每个该CE中用于传输参考信号的时频资源的配置图案。
可选地,该通信系统还包括公共信道,该公共信道的时频资源与该专用信道的时频资源不同,其中,该公共信道被该通信系统中的所有终端设备检测,该处理器还用于控制该接收器通过预设的第二时频资源接收该网络设备发送的该公共信道的指示信息;
用于控制该接收器通过该公共信道,接收该网络设备发送的公共消息;或
用于控制该接收器通过该公共信道,接收该网络设备发送的第四时频资源的指示信息,通过该第四时频资源,接收该网络设备发送的公共消息,该第四时频资源属于PDSCH的时频资源;
其中,该公共消息包括随机接入响应消息、寻呼消息或系统消息中的至少一种。
可选地,该公共信道为公共的增强的下行控制信道EPDCCH。
可选地,该专用信道为专用的EPDCCH。
可选地,该公共信道的时频资源包括同一传输时间间隔TTI的前K个符号,K≥1。
可选地,该公共信道的时频资源属于同一TTI中的M个资源块RB,M≥1。
可选地,该公共信道的时频资源属于至少两个资源块RB。
可选地,该公共信道的时频资源所属于的至少两个RB非连续。
可选地,该公共信道的时频资源所属于的至少两个RB连续,其中,属于第一RB的该第公共信道的时频资源与属于第二RB的该第公共信道的时频资源非连续。
可选地,该设备600为用户设备,该网络设备为基站。
应理解,在本发明实施例中,该处理器610可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器610还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器630可以包括只读存储器和随机存取存储器,并向处理器710提供指令和数据。存储器630的一部分还可以包括非易失性随机存取存储器。例如,存储器630还可以存储设备类型的信息。
该总线系统640除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统640。
在实现过程中,上述方法的各步骤可以通过处理器610中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器630,处理器610读取存储器630中的信息,结合其 硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的传输调度信息的设备600可对应于本发明实施例的方法中的终端设备,并且,传输信息的设备600中的各单元即模块和上述其他操作和/或功能分别为了实现图12中的方法200的相应流程,为了简洁,在此不再赘述。
根据本发明实施例的传输调度信息的设备,通过配置至少两级专用信道,并在需要对终端设备进行资源调度时,通过用于传输系统信息的第一时频资源发送第一级专用信道的时频资源的指示信息,以通过该第一级专用信道,向该终端设备发送第二级专用信道的时频资源的指示信息,进而可以通过该第二级专用信道,发送针对该终端设备的专用调度信息,从而,在传输该专用调度信息的过程中,仅在发送该第一级专用信道的时频资源的指示信息时占用用于传输系统信息的时频资源,并在终端设备获知第一级专用信道的时频资源后,能够随时通过第一级专用信道和第二级专用信道下发该专用调度信息,能够提高传输调度信息的灵活性,改善系统性能和用户体验。
并且,通过配置公共信道,使调度信息的传输不再依赖于现有的PDCCH,进而能够舍弃现有技术中PDCCH的配置,从而能够进一步提高资源配置的灵活性。
需要说明的是,上文结合“资源块”对本发明实施例进行了详细说明。在本发明实施例中,“资源块”也可以称为:资源单位(英文全称可以为:Resource Unit,英文简称可以为:RU)。或者说,在本发明实施例中,资源块可以是资源单位的一种。
即,作为示例而非限定,在本发明实施例中,一个资源单位可以为例如,一个资源块。另外,在本发明实施例中,资源块可以是指时频资源块。即,在上述说明中,是以RB作为资源单元为例进行说明的。
需要说明的是,在本发明实施例中,资源单位可以是通信系统或通信协议规定的资源分配、资源调度或数据传输的单位,作为示例而非限定,在本发明实施例中,一个资源单位在时域上占L个符号,在频域上占N个子载波,L≥1,N≥1。
另外,上文结合“TTI”对本发明实施例进行了详细说明,其中,TTI是一个基本的传输时间单元(或者说,传输时间周期的长度),即,在本发明实施例中,TTI可以指一次信息传输的时间单元(或者说,一次信息传输 的时间长度)、一次信息调度的时间单元(或者说,一次信息调度的时间长度)、子帧长度。
需要说明的是,在本发明实施例中,上述时间单元可以是指一次传输机会(例如,基于调度或竞争机制获得的传输机会)所对应的传输时长。
并且,上文结合“信道单元”对本发明实施例进行了说明。其中,该信道单位可以为控制信道单元(Control Channel Element,CCE),即,在本发明实施例中,该第一级专用信道(具体地说,是该第一级专用信道的时频资源)或第二级专用信道(具体地说,是该第二级专用信道的时频资源)可以以控制信道单元CCE为单位进行划分,或者说,该第一级专用信道可以包括一个TTI(即,第一TTI的一例)中的至少一个CCE,该第二级专用信道可以包括一个TTI(即,第一TTI的一例)中的至少一个CCE。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种传输调度信息的方法,其特征在于,在包括至少两级用于下行控制的专用信道的通信系统中执行,各级专用信道所对应的时频资源不同,其中,所述专用信道在仅被所分配至的终端设备检测,所述方法包括:
    网络设备为目标终端设备分配第一级专用信道和第二级专用信道;
    所述网络设备通过预设的第一时频资源发送所述第一级专用信道的指示信息;
    所述网络设备通过所述第一级专用信道,向所述目标终端设备发送所述第二级专用信道的指示信息;或
    所述网络设备通过所述第一级专用信道,向所述目标终端设备发送第三时频资源的指示信息,并通过所述第三时频资源,向所述目标终端设备发送所述第二级专用信道的指示信息,其中,所述第三时频资源属于物理下行数据信道PDSCH的时频资源;
    所述网络设备通过所述第二级专用信道,向所述目标终端设备发送针对所述目标终端设备的专用调度信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一级专用信道或所述第二级专用信道的时频资源包括同一传输时间间隔TTI的前K个符号,K≥1。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一级专用信道或所述第二级专用信道的时频资源属于同一TTI中的M个资源单位,M≥1,其中,一个资源单位在时域占L个符号,在频域占N个子载波,L≥1,N≥1。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一级专用信道的时频资源属于至少两个资源单位,
    所述第一级专用信道的时频资源所属于的至少两个资源单位非连续,或者
    所述第一级专用信道的时频资源所属于的至少两个资源单位连续,其中,属于第一资源单位的所述第一级专用信道的时频资源与属于第二资源单位的所述第一级专用信道的时频资源非连续。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一级专用信道的时频资源在频域上位于所述通信系统所使用的系统预先规定 的带宽的两端。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一级专用信道或所述第二级专用信道包括第一TTI内的至少一个控制信道单元,所述控制信道单元用于承载下行控制信息。
  7. 根据权利要求6所述的方法,其特征在于,所述第一级专用信道或所述第二级专用信道的时频资源在所述第一TTI内集中式配置或分布式配置,其中,
    分布式配置是指:当所述第一TTI内的被分配给所述第一级专用信道的资源单位仅用于承载所述第一级专用信道,或所述第一TTI内的被分配给所述第二级专用信道的资源单位仅用于承载所述第二级专用信道时,每个所述控制信道单元的时频资源属于所述第一TTI内的至少两个资源单位,或
    当所述第一TTI内的被分配给所述第一级专用信道的资源单位用于承载所述第一级专用信道和其他信道,或所述第一TTI内的被分配给所述第二级专用信道的资源单位用于承载所述第二级专用信道和其他信道时,每个所述控制信道单元所包括的资源单元RE在频域上非连续;
    集中式配置是指:当所述第一TTI内的被分配给所述第一级专用信道的资源单位仅用于承载所述第一级专用信道,或所述第一TTI内的被分配给所述第二级专用信道的资源单位仅用于承载所述第二级专用信道时,每个所述控制信道单元的时频资源属于所述第一TTI内的同一资源单位,或
    当所述第一TTI内的被分配给所述第一级专用信道的资源单位用于承载所述第一级专用信道和其他信道,或所述第一TTI内的被分配给所述第二级专用信道的资源单位用于承载所述第二级专用信道和其他信道时,每个所述控制信道单元所包括的RE在频域上连续。
  8. 根据权利要求6或7所述的方法,其特征在于,第一配置图案与第二配置图案相同,其中
    所述第一配置图案是,所述第一级专用信道的每个所述控制信道单元中用于传输参考信号的时频资源的配置图案;
    所述第二配置图案是,所述第二级专用信道的每个所述控制信道单元中用于传输参考信号的时频资源的配置图案。
  9. 根据权利要求7所述的方法,其特征在于,第三配置图案与第四配置图案相异,其中,
    所述第三配置图案是,当所述第二级专用信道的时频资源在所述第一TTI内集中式配置时,所述第二级专用信道的每个所述控制信道单元中用于传输参考信号的时频资源的配置图案,
    所述第四配置图案是,当所述第二级专用信道的时频资源在所述第一TTI内分布式配置时,所述第二级专用信道的每个所述控制信道单元中用于传输参考信号的时频资源的配置图案。
  10. 一种传输调度信息的方法,其特征在于,在包括至少两级用于下行控制的专用信道的通信系统中执行,各级专用信道所对应的时频资源不同,其中,所述专用信道在仅被所分配至的终端设备检测,所述方法包括:
    目标终端设备通过预设的第一时频资源接收网络设备发送的所述第一级专用信道的指示信息;
    所述目标终端设备根据所述第一级专用信道的指示信息,确定所述第一专用信道;
    所述目标终端设备通过所述第一级专用信道,接收所述网络设备发送的所述第二级专用信道的指示信息;或
    所述目标终端设备通过所述第一级专用信道,接收所述网络设备发送的第三时频资源的指示信息,并通过所述第三时频资源,接收所述网络设备发送的所述第二级专用信道的指示信息,其中,所述第三时频资源属于物理下行数据信道PDSCH的时频资源;
    所述目标终端设备根据所述第二级专用信道的指示信息,确定所述第二级专用信道;
    所述目标终端设备通过所述第二级专用信道,接收所述网络设备发送的针对所述目标终端设备的专用调度信息。
  11. 根据权利要求10所述的方法,其特征在于,所述第一级专用信道或所述第二级专用信道的时频资源包括同一传输时间间隔TTI的前K个符号,K≥1。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一级专用信道或所述第二级专用信道的时频资源属于同一TTI中的M个资源单位,M≥1,其中,一个资源单位在时域占L个符号,在频域占N个子载波,L≥1,N≥1。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述第 一级专用信道的时频资源属于至少两个资源单位,
    所述第一级专用信道的时频资源所属于的至少两个资源单位非连续,或者
    所述第一级专用信道的时频资源所属于的至少两个资源单位连续,其中,属于第一资源单位的所述第一级专用信道的时频资源与属于第二资源单位的所述第一级专用信道的时频资源非连续。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述第一级专用信道的时频资源在频域上位于预先规定的所述通信系统所使用的系统带宽的两端。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述第一级专用信道或所述第二级专用信道包括第一TTI内的至少一个控制信道单元,所述控制信道单元用于承载下行控制信息。
  16. 根据权利要求15所述的方法,其特征在于,所述第一级专用信道或所述第二级专用信道的时频资源在所述第一TTI内集中式配置或分布式配置,其中,
    分布式配置是指:当所述第一TTI内的被分配给所述第一级专用信道的资源单位仅用于承载所述第一级专用信道,或所述第一TTI内的被分配给所述第二级专用信道的资源单位仅用于承载所述第二级专用信道时,每个所述控制信道单元的时频资源属于所述第一TTI内的至少两个资源单位,或
    当所述第一TTI内的被分配给所述第一级专用信道的资源单位用于承载所述第一级专用信道和其他信道,或所述第一TTI内的被分配给所述第二级专用信道的资源单位用于承载所述第二级专用信道和其他信道时,每个所述控制信道单元所包括的资源单元RE在频域上非连续;
    集中式配置是指:当所述第一TTI内的被分配给所述第一级专用信道的资源单位仅用于承载所述第一级专用信道,或所述第一TTI内的被分配给所述第二级专用信道的资源单位仅用于承载所述第二级专用信道时,每个所述控制信道单元的时频资源属于所述第一TTI内的同一资源单位,或
    当所述第一TTI内的被分配给所述第一级专用信道的资源单位用于承载所述第一级专用信道和其他信道,或所述第一TTI内的被分配给所述第二级专用信道的资源单位用于承载所述第二级专用信道和其他信道时,每个所述控制信道单元所包括的RE在频域上连续。
  17. 根据权利要求15或16所述的方法,其特征在于,第一配置图案与第二配置图案相同,其中
    所述第一配置图案是,所述第一级专用信道的每个所述控制信道单元中用于传输参考信号的时频资源的配置图案;
    所述第二配置图案是,所述第二级专用信道的每个所述控制信道单元中用于传输参考信号的时频资源的配置图案。
  18. 根据权利要求16所述的方法,其特征在于,第三配置图案与第四配置图案相异,其中,
    所述第三配置图案是,当所述第二级专用信道的时频资源在所述第一TTI内集中式配置时,所述第二级专用信道的每个所述控制信道单元中用于传输参考信号的时频资源的配置图案,
    所述第四配置图案是,当所述第二级专用信道的时频资源在所述第一TTI内分布式配置时,所述第二级专用信道的每个所述控制信道单元中用于传输参考信号的时频资源的配置图案。
  19. 一种传输调度信息的装置,其特征在于,配置在包括至少两级用于下行控制的专用信道的通信系统中,各级专用信道所对应的时频资源不同,其中,所述专用信道在仅被所分配至的终端设备检测,所述装置包括:
    分配单元,用于为目标终端设备分配第一级专用信道和第二级专用信道;
    发送单元,用于通过预设的第一时频资源发送所述第一级专用信道的指示信息;
    用于通过所述第一级专用信道,向所述目标终端设备发送所述第二级专用信道的指示信息;或
    用于通过所述第一级专用信道,向所述目标终端设备发送第三时频资源的指示信息,并通过所述第三时频资源,向所述目标终端设备发送所述第二级专用信道的指示信息,其中,所述第三时频资源属于物理下行数据信道PDSCH的时频资源;
    用于通过所述第二级专用信道,向所述目标终端设备发送针对所述目标终端设备的专用调度信息。
  20. 根据权利要求19所述的装置,其特征在于,所述第一级专用信道或所述第二级专用信道的时频资源包括同一传输时间间隔TTI的前K个符 号,K≥1。
  21. 根据权利要求19或20所述的装置,其特征在于,所述第一级专用信道或所述第二级专用信道的时频资源属于同一TTI中的M个资源单位,M≥1,其中,一个资源单位在时域占L个符号,在频域占N个子载波,L≥1,N≥1。
  22. 根据权利要求19至21中任一项所述的装置,其特征在于,所述第一级专用信道或所述第二级专用信道包括第一TTI内的至少一个控制信道单元CCE,所述第一级专用信道或所述第二级专用信道的时频资源在所述第一TTI内集中式配置或分布式配置,其中,
    分布式配置是指:当所述第一TTI内的被分配给所述第一级专用信道的资源单位仅用于承载所述第一级专用信道,或所述第一TTI内的被分配给所述第二级专用信道的资源单位仅用于承载所述第二级专用信道时,每个所述CCE的时频资源属于所述第一TTI内的至少两个资源单位,或
    当所述第一TTI内的被分配给所述第一级专用信道的资源单位用于承载所述第一级专用信道和其他信道,或所述第一TTI内的被分配给所述第二级专用信道的资源单位用于承载所述第二级专用信道和其他信道时,每个所述CCE所包括的资源单元RE在频域上非连续;
    集中式配置是指:当所述第一TTI内的被分配给所述第一级专用信道的资源单位仅用于承载所述第一级专用信道,或所述第一TTI内的被分配给所述第二级专用信道的资源单位仅用于承载所述第二级专用信道时,每个所述CCE的时频资源属于所述第一TTI内的同一资源单位,或
    当所述第一TTI内的被分配给所述第一级专用信道的资源单位用于承载所述第一级专用信道和其他信道,或所述第一TTI内的被分配给所述第二级专用信道的资源单位用于承载所述第二级专用信道和其他信道时,每个所述CCE所包括的资源单元RE在频域上连续。
  23. 根据权利要求22所述的装置,其特征在于,第一配置图案与第二配置图案相同,其中
    所述第一配置图案是,所述第一级专用信道的每个所述CCE中用于传输参考信号的时频资源的配置图案;
    所述第二配置图案是,所述第二级专用信道的每个所述CCE中用于传输参考信号的时频资源的配置图案。
  24. 根据权利要求22所述的装置,其特征在于,第三配置图案与第四配置图案相异,其中,
    所述第三配置图案是,当所述第二级专用信道的时频资源在所述第一TTI内集中式配置时,所述第二级专用信道的每个所述CCE中用于传输参考信号的时频资源的配置图案,
    所述第四配置图案是,当所述第二级专用信道的时频资源在所述第一TTI内分布式配置时,所述第二级专用信道的每个所述CCE中用于传输参考信号的时频资源的配置图案。
  25. 一种传输调度信息的装置,其特征在于,配置在包括至少两级用于下行控制的专用信道的通信系统中,各级专用信道所对应的时频资源不同,其中,所述专用信道在仅被所分配至的终端设备检测,所述装置包括:
    接收单元,用于通过预设的第一时频资源接收网络设备发送的所述第一级专用信道的指示信息;
    确定单元,用于根据所述第一级专用信道的指示信息,确定所述第一专用信道;
    所述接收单元还用于通过所述第一级专用信道,接收所述网络设备发送的所述第二级专用信道的指示信息;或
    所述接收单元还用于通过所述第一级专用信道,接收所述网络设备发送的第三时频资源的指示信息,并通过所述第三时频资源,接收所述网络设备发送的所述第二级专用信道的指示信息,其中,所述第三时频资源属于物理下行数据信道PDSCH的时频资源;
    所述确定单元还用于根据所述第二级专用信道的指示信息,确定所述第二级专用信道;
    所述接收单元还用于通过所述第二级专用信道,接收所述网络设备发送的针对所述装置的专用调度信息。
  26. 根据权利要求25所述的装置,其特征在于,所述第一级专用信道或所述第二级专用信道的时频资源包括同一传输时间间隔TTI的前K个符号,K≥1。
  27. 根据权利要求25或26所述的装置,其特征在于,所述第一级专用信道或所述第二级专用信道的时频资源属于同一TTI中的M个资源单位,M≥1,一个资源单位在时域占L个符号,在频域占N个子载波,L≥1,N≥1。
  28. 根据权利要求25至27中任一项所述的装置,其特征在于,所述第一级专用信道的时频资源属于至少两个资源单位,
    所述第一级专用信道的时频资源所属于的至少两个资源单位非连续,或者
    所述第一级专用信道的时频资源所属于的至少两个资源单位连续,其中,属于第一资源单位的所述第一级专用信道的时频资源与属于第二资源单位的所述第一级专用信道的时频资源非连续。
  29. 根据权利要求25至28中任一项所述的方法,其特征在于,所述第一级专用信道或所述第二级专用信道包括第一TTI内的至少一个控制信道单元CCE,所述第一级专用信道或所述第二级专用信道的时频资源在所述第一TTI内集中式配置或分布式配置,其中,
    分布式配置是指:当所述第一TTI内的被分配给所述第一级专用信道的资源单位仅用于承载所述第一级专用信道,或所述第一TTI内的被分配给所述第二级专用信道的资源单位仅用于承载所述第二级专用信道时,每个所述CCE的时频资源属于所述第一TTI内的至少两个资源单位,或
    当所述第一TTI内的被分配给所述第一级专用信道的资源单位用于承载所述第一级专用信道和其他信道,或所述第一TTI内的被分配给所述第二级专用信道的资源单位用于承载所述第二级专用信道和其他信道时,每个所述CCE所包括的资源单元RE在频域上非连续;
    集中式配置是指:当所述第一TTI内的被分配给所述第一专用信道的资源单位仅用于承载所述第一级专用信道,或所述第一TTI内的被分配给所述第二专用信道的资源单位仅用于承载所述第二级专用信道时,每个所述CCE的时频资源属于所述第一TTI内的同一资源单位,或
    当所述第一TTI内的被分配给所述第一专用信道的资源单位用于承载所述第一级专用信道和其他信道,或所述第一TTI内的被分配给所述第二专用信道的资源单位用于承载所述第二级专用信道和其他信道时,每个所述CCE所包括的资源单元RE在频域上连续。
  30. 根据权利要求29所述的方法,其特征在于,第一配置图案与第二配置图案相同,第三配置图案与第四配置图案相异,其中
    所述第一配置图案是,所述第一级专用信道的每个所述CCE中用于传输参考信号的时频资源的配置图案;
    所述第二配置图案是,所述第二级专用信道的每个所述CCE中用于传输参考信号的时频资源的配置图案;
    所述第三配置图案是,当所述第二级专用信道的时频资源在所述第一TTI内集中式配置时,所述第二级专用信道的每个所述CCE中用于传输参考信号的时频资源的配置图案;
    所述第四配置图案是,当所述第二级专用信道的时频资源在所述第一TTI内分布式配置时,所述第二级专用信道的每个所述CCE中用于传输参考信号的时频资源的配置图案。
PCT/CN2016/094789 2015-11-11 2016-08-12 传输调度信息的方法和装置 WO2017080271A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018524394A JP6720304B2 (ja) 2015-11-11 2016-08-12 スケジューリング情報送信方法および装置
EP20197101.7A EP3911068B1 (en) 2015-11-11 2016-08-12 Scheduling information transmission method and apparatus
EP16863449.1A EP3367742B1 (en) 2015-11-11 2016-08-12 Method and apparatus for transmitting scheduling information
US15/976,960 US10869326B2 (en) 2015-11-11 2018-05-11 Scheduling information transmission method and apparatus
US17/103,207 US11291029B2 (en) 2015-11-11 2020-11-24 Scheduling information transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510767014.0A CN106686741B (zh) 2015-11-11 2015-11-11 传输调度信息的方法、装置、存储介质和通信系统
CN201510767014.0 2015-11-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/976,960 Continuation US10869326B2 (en) 2015-11-11 2018-05-11 Scheduling information transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2017080271A1 true WO2017080271A1 (zh) 2017-05-18

Family

ID=58694723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094789 WO2017080271A1 (zh) 2015-11-11 2016-08-12 传输调度信息的方法和装置

Country Status (5)

Country Link
US (2) US10869326B2 (zh)
EP (2) EP3911068B1 (zh)
JP (1) JP6720304B2 (zh)
CN (2) CN111556571B (zh)
WO (1) WO2017080271A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150463B (zh) * 2017-06-16 2020-12-25 华为技术有限公司 信息发送、接收方法及装置
WO2020062070A1 (zh) * 2018-09-28 2020-04-02 华为技术有限公司 随机接入方法以及随机接入装置
WO2021098683A1 (en) * 2019-11-18 2021-05-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication methods, user equipment and network device
CN114079554A (zh) * 2020-08-21 2022-02-22 深圳市中兴微电子技术有限公司 数据传输方法、装置、通信节点及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404526A (zh) * 2008-11-03 2009-04-08 中兴通讯股份有限公司 下行控制信息处理方法
CN102186251A (zh) * 2011-04-29 2011-09-14 中兴通讯股份有限公司 下行控制信息的传输方法及系统
CN102858014A (zh) * 2011-06-30 2013-01-02 华为技术有限公司 控制信令的发送和接收方法及设备
US20140126491A1 (en) * 2012-11-02 2014-05-08 Texas Instruments Incorporated Efficient Allocation of Uplink HARQ-ACK Resources for LTE Enhanced Control Channel

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9281917B2 (en) * 2007-01-03 2016-03-08 Nokia Technologies Oy Shared control channel structure
US8130780B2 (en) * 2007-06-15 2012-03-06 Futurewei Technologies, Inc. Method and apparatus for assigning resources in a wireless system with multiple regions
US8442566B2 (en) * 2009-01-07 2013-05-14 Samsung Electronics Co., Ltd. Coordinated multipoint (CoMP) joint transmission using channel information feedback and higher rank dedicated beam-forming
CN102202408B (zh) * 2010-03-22 2014-01-01 华为技术有限公司 多子帧调度方法、系统和设备
CN102740468A (zh) * 2011-04-02 2012-10-17 华为技术有限公司 分配信道资源的方法、基站设备、终端设备和通信系统
CN102869049B (zh) * 2011-07-04 2015-07-08 华为技术有限公司 传输控制信道指示信息的方法、基站和用户设备
WO2013012283A2 (ko) * 2011-07-20 2013-01-24 엘지전자 주식회사 무선접속시스템에서 향상된 물리하향링크제어채널 할당 방법 및 장치
EP2747319B1 (en) * 2011-08-16 2019-04-17 LG Electronics Inc. Method for base station to mulitiplex downlink control channel in wireless communication system and apparatus therefor
CN102958133B (zh) * 2011-08-25 2015-04-08 华为技术有限公司 接入通信系统的方法、下行信息发送方法、终端及基站
US9510219B2 (en) 2011-11-01 2016-11-29 Lg Electronics Inc. Method and wireless device for monitoring downlink control channel
CN103096493B (zh) * 2011-11-04 2016-07-06 华为技术有限公司 接收和发送控制信道的方法、用户设备和基站
KR20130078406A (ko) * 2011-12-30 2013-07-10 주식회사 팬택 무선 통신 시스템에서 기지국의 리소스 매핑방법 및 단말의 e-pdcch 수신방법, 그 기지국, 그 단말
CN103248468B (zh) * 2012-02-01 2017-04-12 华为技术有限公司 解调导频信号处理方法、基站及用户设备
US9445409B2 (en) 2012-03-21 2016-09-13 Mediatek, Inc. Method for search space configuration of enhanced physical downlink control channel
CN103795509A (zh) * 2012-11-02 2014-05-14 北京三星通信技术研究有限公司 一种传输harq指示信息的方法和设备
WO2014121511A1 (zh) * 2013-02-08 2014-08-14 华为技术有限公司 信息发送的方法、信息接收的方法及其装置
WO2014172876A1 (zh) * 2013-04-25 2014-10-30 华为技术有限公司 传输上行信号的方法、用户设备和网络设备
CN104584665B (zh) * 2013-05-22 2019-08-20 华为技术有限公司 无线传输的方法、网络设备和用户设备
WO2017065468A1 (en) * 2015-10-14 2017-04-20 Lg Electronics Inc. Method and apparatus for controlling backoff procedure for coverage enhancement in wireless communication system
US10849115B2 (en) * 2018-09-10 2020-11-24 Apple Inc. Downlink control channel design in new radio systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404526A (zh) * 2008-11-03 2009-04-08 中兴通讯股份有限公司 下行控制信息处理方法
CN102186251A (zh) * 2011-04-29 2011-09-14 中兴通讯股份有限公司 下行控制信息的传输方法及系统
CN102858014A (zh) * 2011-06-30 2013-01-02 华为技术有限公司 控制信令的发送和接收方法及设备
US20140126491A1 (en) * 2012-11-02 2014-05-08 Texas Instruments Incorporated Efficient Allocation of Uplink HARQ-ACK Resources for LTE Enhanced Control Channel

Also Published As

Publication number Publication date
JP6720304B2 (ja) 2020-07-08
US20180263050A1 (en) 2018-09-13
CN111556571A (zh) 2020-08-18
US10869326B2 (en) 2020-12-15
EP3911068B1 (en) 2024-04-10
US11291029B2 (en) 2022-03-29
CN106686741B (zh) 2020-04-14
EP3911068A1 (en) 2021-11-17
EP3367742B1 (en) 2020-12-23
EP3367742A4 (en) 2018-11-14
JP2018537907A (ja) 2018-12-20
CN111556571B (zh) 2023-11-14
US20210084676A1 (en) 2021-03-18
EP3367742A1 (en) 2018-08-29
CN106686741A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN106851744B (zh) 无线通信的方法和装置
CN111148240B (zh) 资源配置方法及装置
JP2020527882A (ja) 制御情報伝送方法およびデバイス
US11128422B2 (en) Narrowband physical broadcast channel transmission method and device
WO2019096004A1 (zh) 资源配置方法、装置和系统
US11291029B2 (en) Scheduling information transmission method and apparatus
CN110267227B (zh) 一种数据传输方法、相关设备及系统
WO2018141180A1 (zh) 控制信息的传输方法、接收方法、装置、基站及终端
KR20200013815A (ko) 다운링크 제어 정보 dci 송신 방법 및 장치
WO2016070675A1 (zh) 下行信息发送、下行信息接收方法及装置
WO2018228537A1 (zh) 信息发送、接收方法及装置
JP2019517208A (ja) ダウンリンク制御情報の送信方法、ダウンリンク制御情報の検出方法、及びデバイス
WO2018171792A1 (zh) 一种参考信号传输方法、装置及系统
US20190124705A1 (en) Identifier management method, apparatus, and system
WO2017133340A1 (zh) 下行控制信道的确定方法及装置、终端、基站
JP2022137141A (ja) 帯域幅分割の構成方法及びネットワーク装置、端末
WO2017133013A1 (zh) 一种传输控制信令的方法及设备
US11212707B2 (en) Allocation of resources to a wireless device
US11166266B2 (en) Information sending method and apparatus and information receiving method and apparatus
EP3648527B1 (en) Method, device, and system for transmitting downlink control information
US9313006B2 (en) Methods and apparatus for resource element mapping
CN110495119B (zh) 下行控制信道的配置方法及网络设备、终端
WO2018014297A1 (zh) 信息传输装置、方法以及无线通信系统
WO2016101615A1 (zh) 数据传输、数据处理方法及装置
TW201642692A (zh) 一種無線通訊方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863449

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018524394

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016863449

Country of ref document: EP