WO2020062070A1 - 随机接入方法以及随机接入装置 - Google Patents

随机接入方法以及随机接入装置 Download PDF

Info

Publication number
WO2020062070A1
WO2020062070A1 PCT/CN2018/108436 CN2018108436W WO2020062070A1 WO 2020062070 A1 WO2020062070 A1 WO 2020062070A1 CN 2018108436 W CN2018108436 W CN 2018108436W WO 2020062070 A1 WO2020062070 A1 WO 2020062070A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
information
terminal device
narrowband
channel state
Prior art date
Application number
PCT/CN2018/108436
Other languages
English (en)
French (fr)
Inventor
毕文平
赵越
王宏
谢信乾
余政
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880098142.2A priority Critical patent/CN112753179B/zh
Priority to PCT/CN2018/108436 priority patent/WO2020062070A1/zh
Publication of WO2020062070A1 publication Critical patent/WO2020062070A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal

Definitions

  • the present application relates to communication technologies, and in particular, to a random access method and a random access device.
  • the random access process refers to a process from when a terminal device sends a random access preamble and starts trying to access a network device until a basic signaling connection is established with the network device.
  • the random access process based on the competition mechanism is completed in four steps, as shown in Figure 1A.
  • the first step is a random access request sent by the terminal device to the network device.
  • This random access request can also be called Msg1, which includes random access Enter the preamble
  • the second step is a random access response (RAR) message sent by the network device to the terminal device, and the RAR message may also be called Msg2
  • the third step is that the terminal device, after receiving the RAR, Among the uplink transmission resources allocated by the network device, message transmission is performed based on RAR scheduling.
  • This message may also be called Msg3.
  • the fourth step is that the network device sends contention resolution information to the terminal device. This information may also be called Msg4.
  • the terminal device can determine all the narrowbands that may be used for the downlink physical control channel used by the network device to transmit Msg4, and then perform channel state measurement on these narrowbands; then when the terminal device receives Msg2, the terminal device can determine the corresponding target Narrowband, the target narrowband is one of all narrowbands determined by the terminal device, and then the terminal device sends Msg3 to the network device, and carries channel state information in Msg3.
  • the terminal device determines all the narrow bands that may be used to transmit the downlink physical control channel used by Msg4, and measures these narrow bands, and carries the channel state information determined according to the measurement results in Msg3, that is, the terminal device is in During the measurement period, channel state measurement needs to be performed on all determined narrowbands, so the measurement time allocated to each narrowband in this measurement period is shorter, resulting in lower accuracy of downlink channel quality measurement.
  • the embodiments of the present application provide a random access method and a random access device, which are used to improve accuracy of downlink channel quality measurement.
  • a first aspect of the embodiments of the present application provides a random access method, including:
  • the terminal device may receive the first information and the second information from the network device, where the first information corresponds to the first resource, the second information is used to determine or correspond to the second resource, and the second resource is the first resource.
  • a non-empty true subset of a resource the terminal device may then determine a second resource based on the first information and the second information, the second resource may include a network device scheduling the terminal device to retransmit message three and the network device transmitting messages to four The resources used by the downlink physical control channel; the terminal device may determine the channel state information according to the second resource, and then the terminal device sends a message three to the network device, where the message three contains the channel state information.
  • the network device schedules the terminal device to retransmit message three and the resources used by the downlink physical control channel used by the network device to transmit message four may be temporarily identified by the temporary cell wireless network during the random access process.
  • the first child of the downlink physical control channel (physical downlink link control channel) configured or scrambled by the network temporary identifier (TC-RNTI) and / or the cell wireless network temporary network identifier (C-RNTI)
  • TC-RNTI network temporary identifier
  • C-RNTI cell wireless network temporary network identifier
  • the terminal device may determine the second resource according to the first information and the second information, and the second resource is a non-empty true subset of the first resource, and then determine the channel state information according to the second resource, that is, only The channel state of the second resource needs to be measured, and then the terminal device carries the channel state information determined according to the second resource in message three and sends it to the network device.
  • this embodiment only needs to measure the channel state of the second resource, and the second resource is a non-empty true subset of the first resource, that is, each resource allocated to the second resource in the measurement period The measurement time of the channel state is longer, so the measurement of the channel state information of the second resource is more accurate, thereby improving the accuracy of the downlink channel quality measurement.
  • the second information may include related information of a preamble, where the related information of the preamble may include a frequency resource for transmitting a preamble, a time resource for transmitting a preamble, and a preamble sequence (or a preamble). Code sequence number).
  • the terminal device determining the second resource according to the first information and the second information may include: the terminal device may determine the second resource according to the preamble related information and the first information.
  • the second information may be related information of the preamble, and then the terminal device may determine the second resource according to the related information of the preamble and the first information, and provides a specific terminal device to determine the second information.
  • the specific way of resources in practical applications, improves the realizability and practicability of the scheme.
  • the second information may include an indication value set, where the indication value set includes at least one indication value.
  • the terminal device determining the second resource according to the first information and the second information may include: the terminal device may The indication value set and the first information determine the second resource.
  • the second information may be an indication value set
  • the terminal device may determine the second resource by using the indication value set and the first information, and provides another specific manner in which the specific terminal device determines the second resource.
  • the diversity and practicability of the scheme are improved.
  • receiving the second information from the network device by the terminal device may include: the terminal device may receive a system message from the network device, where the system message carries a set of indication values.
  • the terminal device may receive a system message from the network device, where the system message carries a set of indication values.
  • a specific manner is provided for the terminal device to receive the second information, that is, the second information can be obtained through a system message, and in practical applications, the solution's implementability is improved.
  • system message may further include first information.
  • the terminal device may receive the first information through the system message, and provides a specific way to obtain the first information. In practical applications, the integrity and implementability of the solution are improved.
  • the second information may include a number of narrowbands or a narrowband proportion value, the number of narrowbands being an integer greater than zero, and the narrowband proportion value being greater than zero and less than one; the terminal device according to the first information and The second information determining the second resource may include: the terminal device may determine the second resource according to the number of narrowbands and the first information; or the terminal device may determine the second resource according to the narrowband ratio value and the first information.
  • another specific method for determining the second resource by the specific terminal device is provided. In practical applications, the diversity and practicability of the solution are improved.
  • the terminal receiving the second information from the network device may include: the terminal device may receive a broadcast message from the network device, and the broadcast message carries the number of narrowbands or the narrowband proportion value.
  • the terminal device may receive a broadcast message from the network device, and the broadcast message carries the number of narrowbands or the narrowband proportion value.
  • a specific manner is provided for the terminal device to receive the second information, that is, the second information can be obtained through a broadcast message. In practical applications, the solution's implementation is improved.
  • the broadcast message further carries the first information.
  • the terminal device can receive the first information through a broadcast message, and provides a specific way for the terminal device to obtain the first information. In practical applications, the diversity and practicability of the solution are improved.
  • the channel state information may include one or a combination of the following: a channel quality indicator, a number of repetitions of transmitting reference channel information, a reference signal receiving quality (RSRQ), and a reference signal receiving power (Reference Signaling Power, RSRP).
  • a channel quality indicator a number of repetitions of transmitting reference channel information
  • RSRQ reference signal receiving quality
  • RSRP reference signal receiving power
  • the channel state information specifically includes information. In practical applications, the practicality of the solution is improved.
  • the channel state information may include an average value of channel state information of the second resource, or a weighted average value of channel state information of the second resource, or channel state information of the third resource, or A weighted average of the channel state information of the three resources, where the third resource is a part or all of the second resource.
  • the content that the channel state information can specifically include is described. In practical applications, the diversity and practicability of the solution are improved.
  • the method may further include: the terminal device receives the random information sent by the network device.
  • the access response authorization and then the terminal device may determine a target resource according to the random access response authorization, the target resource being a non-empty subset of the second resource;
  • the terminal device sending a message to the network device may include: the terminal device may The network device sends message three, which includes channel state information of the target resource.
  • the terminal device may determine the target resource according to the received random access response authorization, then carry the channel state information of the target resource in message three, and send the message three to the network device. In practical applications, the practicability and integrity of the scheme can be improved.
  • the method may further include that the terminal device can receive The random access response authorization sent by the network device, and then the terminal device can determine the target resource according to the random access response authorization.
  • the terminal device sends a message to the network device.
  • Three may include: when the target resource is not in the second resource, the The terminal device may send message three to the network device, and the message three carries target channel state information of the target resource.
  • the terminal device may determine the target resource according to the received random access response authorization.
  • the terminal device carries the channel state information of the target resource in the message at this time.
  • it sends to the network equipment, which improves the integrity and practicability of the solution in practical applications.
  • the method may further include that the terminal device can receive The random access response authorization sent by the network device, and then the terminal device may determine the target resource according to the random access response authorization.
  • the terminal device sends a message to the network device.
  • Three may include: when the target resource is not in the second resource, the terminal The device may send message three to the network device. The message three does not carry channel state information.
  • the terminal device may determine the target resource according to the received random access response authorization. When the target resource is not in the first When the second resource is in the middle, the terminal device sends a message three to the network device. The message three does not carry channel state information.
  • another target resource is provided when the random access response authorization indication is not on the second resource.
  • a first aspect of the embodiments of the present application provides a random access method, including:
  • the network device may determine the first information and the second information, the first information corresponding to the first resource, the second information is used to determine the second resource, and the second resource is a non-virtual resource of the first resource.
  • the second resource includes resources used by the network device to schedule the terminal device to retransmit message three and the downlink physical control channel used by the network device to transmit message four; and then the network device sends the first information and the first information to the terminal device. Two pieces of information, the network device receives message three sent by the terminal device, the message three contains channel state information, and the channel state information is related to the second resource.
  • the network device may receive message three sent by the terminal device, and the message three includes channel state information, which is related to the second resource; that is, the terminal device only needs to measure the channel state of the second resource.
  • the second resource is a non-empty true subset of the first resource, that is, the measurement time of the channel state of each resource allocated to the second resource in the measurement period is longer. The measurement is more accurate, which improves the accuracy of the downstream quality measurement.
  • the second information includes related information of a preamble
  • the related information of the preamble may include a frequency resource for transmitting the preamble, a time resource for transmitting the preamble, and a random access sequence of the preamble. At least one of.
  • a specific content of the second information is provided, and in practical applications, the implementability and practicability of the solution are improved.
  • the second information may include an indication value set, and the indication value set may include at least one indication value.
  • the second information may include an indication value set, and the indication value set may include at least one indication value.
  • another form of the second information is provided. In practical applications, the diversity and practicability of the solution are improved.
  • the sending, by the network device, the second information to the terminal device may include: the network device sends a system message to the terminal device, where the system message carries the indicator value set.
  • the network device may send the second information to the terminal device through a system message. In practical applications, a specific form of sending the second information is provided, which improves the implementability of the solution.
  • system message further carries the first information.
  • the network device may send the first information to the terminal device through the system message. In practical applications, a specific form of sending the first information is provided, which improves the implementability of the solution.
  • the second information may include a number of narrowbands or a narrowband proportion value, the number of narrowbands is an integer greater than zero, and the narrowband proportion value is greater than zero and less than one.
  • another specifically included content of the second information is provided. In practical applications, the diversity and practicability of the solution are improved.
  • the network device sending the second information to the terminal device may include: the network device may send a broadcast message to the terminal device, and the broadcast message carries the number of narrowbands or the narrowband ratio value.
  • the network device may send the second information to the terminal device through a broadcast message. In practical applications, a specific form of sending the second information is provided, which improves the implementability of the solution.
  • the broadcast message further carries first information.
  • the network device may send the first information to the terminal device through a broadcast message.
  • another specific form of sending the first information is provided, which improves the diversity and practicality of the solution. Sex.
  • the channel state information may include one or a combination of the following: a channel quality indicator value, a number of repetitions of transmission reference channel information, RSRQ, and RSRP.
  • the channel state information is described. It specifically includes information, which improves the practicability of the solution in practical applications.
  • the channel state information may also include other parameters related to the channel state, which is not limited in this application.
  • the channel state information may include an average value of channel state information of the second resource, or a weighted average value of channel state information of the second resource, or channel state information of the third resource, or A weighted average of the channel state information of the three resources, where the third resource is a part or all of the second resource.
  • the content that the channel state information can specifically include is described. In practical applications, the diversity and practicability of the solution are improved.
  • the method may further include: the network device may send The terminal device sends a random access response authorization, and the target resource indicated by the random access response authorization is a non-empty subset of the second resource; then the terminal device receives the message sent by the terminal device.
  • Three may include: the network device receives the terminal device Message 3 is sent, and the message 3 contains channel state information of the target resource.
  • the terminal device may determine the target resource according to the received random access response authorization, then carry the channel state information of the target resource in message three, and send the message three to the network device. In practical applications, the practicability and integrity of the scheme can be improved.
  • the method may further include: the network device may send the terminal device to the terminal The device sends a random access response authorization; then the network device may receive the message sent by the terminal device.
  • the three may include: when the target resource indicated by the random access response is not the second resource, the network device receives the message sent by the terminal device.
  • the message three contains target channel state information of the target resource.
  • the terminal device carries the channel state information of the target resource in message three and sends it to the network device. In the application, the integrity and practicality of the scheme are improved
  • the method may further include: the network device may send the terminal device to the terminal The device sends a random access response authorization; then the network device may receive the message sent by the terminal device.
  • the three may include: when the target resource indicated by the random access response is not the second resource, the network device receives the message sent by the terminal device. Third, the message three does not carry channel state information.
  • another specific scheme is provided when the target resource of the random access response authorization indication is not the second resource. In practical applications, the integrity and diversity of the scheme are improved.
  • a third aspect of the embodiments of the present application provides a random access device.
  • the random access device has a function for realizing the server behavior of the first aspect.
  • the function may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the random access device has a function for realizing the server behavior of the first aspect.
  • the function may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a fifth aspect of the embodiments of the present application provides a random access device.
  • the random access device includes a processor, a memory, an input-output device, and a bus; the memory stores computer instructions; and the processor is executing the memory.
  • the computer instructions are stored in the memory, the computer instructions are stored in the memory; when the processor executes the computer instructions in the memory, the processor is configured to implement any implementation manner as in the first aspect.
  • the processor, the memory, and the input / output device are respectively connected to the bus.
  • a sixth aspect of the embodiments of the present application provides another random access device.
  • the random access device includes: a processor, a memory, an input-output device, and a bus; the memory stores computer instructions; and the processor is executing the When the computer instructions in the memory are stored, the memory stores the computer instructions; when the processor executes the computer instructions in the memory, the processor is configured to implement any implementation manner as in the second aspect.
  • the processor, the memory, and the input / output device are respectively connected to the bus.
  • a seventh aspect of the embodiments of the present application provides a chip system.
  • the chip system includes a processor, and is configured to support a network device to implement the functions involved in the first aspect, for example, to send or process data involved in the foregoing method. And / or information.
  • the chip system further includes a memory, and the memory is configured to store program instructions and data necessary for the network device.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • An eighth aspect of the embodiments of the present application provides a chip system.
  • the chip system includes a processor, and is configured to support a network device to implement the functions involved in the second aspect, for example, sending or processing data involved in the foregoing method. And / or information.
  • the chip system further includes a memory, and the memory is configured to store program instructions and data necessary for the network device.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • a ninth aspect of the embodiment of the present application provides a computer program product including instructions, which is characterized in that when it is run on a computer, the computer is caused to execute an implementation manner as in any of the first aspect or the second aspect.
  • a tenth aspect of the embodiment of the present application provides a computer-readable storage medium, which is characterized by including instructions, and when the instructions are run on a computer, the computer is caused to execute any implementation manner of the first aspect or the second aspect. .
  • a terminal device receives first information and second information from a network device, the first information is used to determine a first resource, the second information is used to determine a second resource, and the second resource Is a non-empty true subset of the first resource; then the terminal device determines the second resource according to the first information and the second information, the second resource including the network device scheduling the terminal device to retransmit message three and the network device transmission
  • the resource of the downlink physical control channel used in message four the terminal device determines the channel state information according to the second resource, and the terminal device sends a message three to the network device, and the message three contains the channel state information.
  • the terminal device may determine the second resource according to the second information and the first information, and the second resource is a non-empty true subset of the first resource, and then determine the channel state information according to the second resource, That is, only the channel state of the second resource needs to be measured, and then the terminal device carries the channel state information determined according to the second resource in message three and sends it to the network device; therefore, only the second resource's The channel state is measured, and the second resource is a non-empty true subset of the first resource, that is, the measurement time of the channel state of each resource allocated to the second resource in the measurement period is longer, then for the second resource
  • the measurement of the channel state information is more accurate, thereby improving the accuracy of the downlink quality measurement.
  • FIG. 1A is a schematic diagram of the prior art
  • FIG. 1B is a schematic diagram of a system scenario frame according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an embodiment of a random access method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another embodiment of a random access method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another embodiment of a random access method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a random access device according to an embodiment of the present application.
  • FIG. 6 is another schematic structural diagram of a random access device according to an embodiment of the present application.
  • FIG. 7 is another schematic structural diagram of a random access device according to an embodiment of the present application.
  • FIG. 8 is another schematic structural diagram of a random access device according to an embodiment of the present application.
  • the embodiments of the present application provide a random access method and a random access device, which are used to improve the accuracy of downlink quality measurement.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • TDMA frequency division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • system is used interchangeably with "network.”
  • the CDMA system can implement wireless technologies such as universal wireless terrestrial access (UTRA) and CDMA2000.
  • UTRA may include Wideband CDMA (WCDMA) technology and other CDMA modified technologies.
  • CDMA2000 can cover the Interim Standard (IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • the TDMA system can implement wireless technologies such as the Global System for Mobile Communication (GSM).
  • GSM Global System for Mobile Communication
  • OFDMA system can implement such as evolved universal wireless land access (evolved UTRA, E-UTRA), ultra mobile broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDMA And other wireless technologies.
  • UTRA and E-UTRA are UMTS and UMTS evolved versions.
  • 3GPP is a new version of UMTS using E-UTRA in long term evolution (LTE) and various versions based on LTE evolution.
  • LTE long term evolution
  • NR New Radio
  • the communication system may also be applicable to future-oriented communication technologies, and all are applicable to the technical solutions provided in the embodiments of the present application.
  • the system architecture and service scenarios described in the embodiments of the present application are to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the person can know that with the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 1B shows a schematic structural diagram of a possible radio access network (radio access network, RAN for short) according to an embodiment of the present application.
  • the RAN may be a base station access system of a 2G network (that is, the RAN includes a base station and a base station controller), or may be a base station access system of a 3G network (that is, the RAN includes a base station and an RNC), or may be 4G
  • a base station access system of the network that is, the RAN includes an eNB and an RNC
  • the RAN includes one or more network devices.
  • the network device may be any device having a wireless transmitting and receiving function, or a chip provided in a device with a specific wireless transmitting and receiving function.
  • the network equipment includes, but is not limited to, a base station (for example, a base station BS, a base station NodeB, an eNodeB or an eNB, a base station gNodeB or gNB in a fifth generation 5G communication system, a base station in a future communication system, and a connection in a WiFi system).
  • the base station can be: macro base station, pico base station, pico base station, small station, relay station, etc.
  • Multiple base stations may support a network of one or more technologies mentioned above, or a future evolved network.
  • the core network may support a network of one or more technologies mentioned above, or a future evolved network.
  • the base station may include one or more co-sited or non-co-sited transmission receiving points (TRP).
  • the network device may also be a wireless controller, a centralized unit (CU), or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the network device may also be a server, a wearable device, or a vehicle-mounted device.
  • the following description uses a network device as an example of a base station.
  • the multiple network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal equipment 1-2, and can also communicate with the terminal equipment 1-2 through the relay station.
  • Terminal equipment 1-2 can support communication with multiple base stations of different technologies.
  • terminal equipment can support communication with base stations supporting LTE networks, can also support communication with base stations supporting 5G networks, and can also support base stations with LTE networks.
  • LTE networks can support communication with base stations supporting LTE networks
  • 5G networks can also support base stations with LTE networks.
  • LTE networks base stations supporting 5G networks
  • LTE networks base stations supporting LTE networks
  • base stations supporting 5G networks can also support base stations with LTE networks.
  • the dual connection of the base stations of the 5G network For example, a terminal is connected to a radio access network (RAN) node of a wireless network.
  • RAN radio access network
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home NodeB, or home NodeB, HNB), baseband unit , BBU), or wireless fidelity (Wifi) access point (access point, AP), etc.
  • a network device may include a centralized unit (CU) node, a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • Terminal equipment 1-2 also known as user equipment (UE), mobile station (MS), mobile terminal (MT), terminal, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminal devices are: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals in wireless communication, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • the network device is described by using a base station and the terminal device by using a UE as an example.
  • the UE can determine all narrowbands of the downlink physical control channel that may be used by the base station to transmit Msg4 before receiving Msg1, and then perform channel state measurement on these narrowband ; Then when the UE receives the Msg2 sent by the base station, the UE can determine the corresponding target narrowband at this time, the target narrowband is one of all the narrowbands determined by the UE, and then the UE sends Msg3 to the base station and carries the Msg3 in the Target narrowband channel state information.
  • the UE determines the narrowband of the downlink physical control channel used by all possible base stations to transmit Msg4, and measures these narrowbands, and carries them in Msg3, that is, the UE needs to channel all the narrowbands determined during the measurement period. State measurement, then the measurement time allocated to each narrowband in this measurement period is shorter, that is, the time for the UE to measure the channel state of the target narrowband is shorter, resulting in lower accuracy of the downlink channel quality measurement.
  • an embodiment of the present application provides a random access method for improving accuracy of downlink channel quality measurement.
  • the terminal device receives first information and second information from the network device, the first information corresponds to the first resource, the second information corresponds to or is used to determine a second resource, and the second resource is a non-empty true subset of the first resource
  • the terminal device may determine the second resource according to the second information and the first information.
  • the terminal device may also determine the second resource based on the second information only, and the second resource includes the second resource.
  • the network device schedules the terminal device to retransmit message three and the downlink physical control channel resources used by the network device to transmit message four; the terminal device can determine the channel state information according to the second resource; then the terminal device can send a message to the network device Third, the message three contains the channel state information. That is, in the technical solution of the present application, the terminal device determines the second resource according to the second information and the first information. In some possible implementation manners, the terminal device may determine the second resource only based on the second information.
  • the second resource is A non-empty true subset of the first resource, and then the terminal device determines channel state information according to the second resource, that is, the terminal device only needs to measure the channel state information of the second resource, and the second resource is a non-empty of the first resource Null true subset, that is, the measurement time of the channel state of each resource allocated to the second resource in the measurement period is longer, so the measurement of the channel state of the second resource is more accurate, thereby improving the measurement of the downlink channel quality Accuracy.
  • the second resource includes resources used by the base station to schedule the UE to retransmit Msg3 and the downlink physical control channel used by the base station to transmit Msg4.
  • the resources may be used by the TC-RNTI and / Or the resources used by the first subframe of the PDCCH configured or scrambled by the C-RNTI; optionally, the resources used by the first subframe of the PDCCH may include a machine-type communication downlink physical control channel (MTC physical downlink link at least one of the resources used in the first subframe of the control channel (MPDCCH) and the resources used in the first subframe of the narrowband downlink physical control channel (NPDCCH).
  • MTC physical downlink link at least one of the resources used in the first subframe of the control channel (MPDCCH)
  • NPDCCH narrowband downlink physical control channel
  • message three is After the terminal device receives the random access response, the message is transmitted in the uplink transmission resource allocated by the network device, and message four is the conflict resolution information sent by the network device to the terminal device.
  • the type of the first resource may include a resource frequency, a narrowband, or a single carrier
  • the type of the second resource may include a frequency, a narrowband, or a single carrier, which is not specifically limited in this application.
  • only the type of the first resource is narrowband and the type of the second resource is narrowband are used as an example for description, that is, the first resource is a first narrowband and the second resource is a second narrowband as an example. Instructions.
  • the terminal device may determine the second narrowband according to the second information and the first information. In some possible implementation manners, the terminal device may determine the second narrowband only based on the second information, where the second information may specifically It is multiple types of information. The following describes it by way of example:
  • the second information is related information of the preamble, and the related information of the preamble may be at least one of a frequency resource for transmitting the preamble, a time resource for transmitting the preamble, or at least one of the preamble sequence.
  • the terminal device The second narrowband is determined according to the first information and related information of the preamble.
  • the second information is an indication value set sent by the base station to the UE, where the indication value set includes at least one indication value, where the indication value may be one of a narrowband number, a preset value, or an offset, where ,
  • the offset is the narrowband number corresponding to the narrowband used by the downlink physical control channel used to transmit Msg4, relative to the first subframe of the downlink physical control channel used to transmit the random access response or the narrowband used by the random access response.
  • the offset of the narrowband number of the NMS, or the offset of the narrowband number corresponding to the narrowband of the physical downlink control channel transmitting Msg4 with respect to the narrowband number corresponding to the narrowband used to transmit the preamble is not specifically limited here.
  • the terminal device determines the second narrowband according to the first information and the indication value set, and when the indication value set is a narrowband number set, the terminal device may determine the second narrowband according to the indication value set.
  • the second information is the number of narrowbands sent by the base station to the UE, where the number of narrowbands is the number of narrowbands included in the second narrowband.
  • the terminal device determines the second narrowband according to the number of the narrowbands and the first information.
  • An embodiment of the random access method in the embodiments of the present application includes:
  • the base station determines first information and related information of a preamble.
  • the base station may determine first information and related information of the preamble, where the first information includes the narrowband and advance data used for transmitting the first subframe of the physical downlink control channel of the random access response. At least one of transmission instruction information and current working bandwidth.
  • the advance data transmission instruction information is used to indicate a signal transmission mode used by the current UE, and can be divided into a non-early data transmission (non-EDT) scenario and an EDT scenario.
  • non-EDT non-early data transmission
  • EDT EDT scenario
  • the total number of bits corresponding to the narrowband used by the base station for transmitting the downlink physical control channel of Msg4 is 2, that is, all corresponding downlink physical control that may be used for transmitting Msg4.
  • the number of narrow-band k1 used by the channel is four;
  • the total number of bits corresponding to the narrowband used by the base station to transmit the Msg4 physical downlink control channel varies.
  • the coverage enhancement level is coverage enhancement mode B (CEmodeB)
  • CEmodeB coverage enhancement mode B
  • the total number of bits is 3, then all corresponding corresponding downlink physical control channels used by Msg4 may be used.
  • the related information of the preamble may include at least one of a frequency resource for transmitting the preamble, a time resource for transmitting the preamble, and a preamble sequence, and the preamble sequence may specifically refer to a number index of the preamble sequence.
  • the base station sends the first information and related information of the preamble to the UE.
  • the base station After the base station determines the first information and related information of the preamble, it may send the first information and related information of the preamble to the UE.
  • the UE determines a second narrowband according to the first information and related information of the preamble.
  • the first information corresponds to the first narrowband; an optional method: The UE may determine the first narrowband according to the first information, where the first narrowband includes all the data that may be used by the base station to schedule the UE to retransmit Msg3 and the base station to transmit Msg4.
  • the narrowband used by the downlink physical control channel may specifically be the narrowband used by the first subframe of the PDCCH that may be configured or scrambled by the TC-RNTI and / or C-RNTI in the random access process. .
  • the UE may determine the total number of narrowbands that may be used to transmit Msg4 downlink physical control channels according to the advance data transmission instruction information in the first information and the coverage enhancement level used by the current UE, and then the UE may The first narrowband is determined by the narrowband used for the random access response authorization, the number of narrowbands corresponding to the current operating bandwidth, and the total number of narrowbands, where the first narrowband includes all the possible narrowband access processes, which are And / or the narrow band used by the first subframe of the PDCCH configured or scrambled by the C-RNTI.
  • bandwidth 1.4MHz 3MHz 5MHz 10MHz 15MHz 20MHz Number of RBs included in the downlink bandwidth 6RB 15RB 25RB 50RB 75RB 100RB Number of narrowbands included in the downlink bandwidth 1 2 4 8 12 16
  • the total number of narrowband bits used for the downlink physical control channel used to transmit Msg4 is 2, so the corresponding total number of narrowband k1 used by all physical downlink control channels that may be used to transmit Msg4. It is 4, and then according to the used narrowband authorized by the random access response, that is, the narrowband NB RAR used by Msg2, and the number of narrowbands corresponding to the current operating bandwidth N NB2 are calculated respectively.
  • the narrowband numbers are NB RAR mod N NB2 , (NB RAR +1) mod N NB2 , (NB RAR +2) mod N NB2, and (NB RAR +3) mod N NB2 .
  • the calculation formula for each narrowband number is shown in Table 2:
  • the terminal device determines the first narrowband according to the first information, that is, the first narrowband includes the narrowband used for transmitting the downlink physical control channel of Msg4 as shown in 2.
  • the table shown in Table 2 is used for transmission.
  • the narrowband used by the downlink physical control channel of Msg3 or Msg4 is represented by the narrowband number of the narrowband, that is, the calculation formula of each narrowband indicated in the table is the calculation formula of each narrowband number.
  • the current operating bandwidth is 5MHz
  • the current data transmission uses the EDT scenario and the coverage enhancement level used is CEmodeB.
  • the number of narrowbands corresponding to the current operating bandwidth is 4.
  • the current coverage enhancement level is CemodeB
  • the total number of narrowband bits used to transmit the downlink physical control channel of Msg4 is 3, so the corresponding narrowband total used by all physical downlink control channels that may be used to transmit Msg4.
  • the number k1 is four; that is, as shown in Table 3, the narrowband number used for transmitting the downlink physical control channel of Msg3 or Msg4 is "000", “001", “010”, “011”, “100””,” 101 “,” 110 “, and” 111 ", and then calculate the narrowband number values of" 000 “,” 001 ", and” 001 "according to the narrowband NB RAR used by Msg2 and the number of narrowbands corresponding to the current operating bandwidth as N NB2 .
  • the narrowband numbers of "010", “011”, “100”, “101", “110”, and “111” are shown in Table 3:
  • the terminal device determines the first narrowband according to the first information, that is, the first narrowband includes the narrowband of the downlink physical control channel transmitting Msg4 as shown in Table 3.
  • the first information corresponds to the first narrowband
  • the first narrowband may be determined by the UE according to the first information described above, or may correspond to the first narrowband by other methods, which is not limited in this application.
  • the terminal device determines the second narrowband according to the first information and related information of the preamble, where the second narrowband is a non-empty true subset of the first narrowband, and the second narrowband includes the TC-RNTI and / or C during the random access process.
  • the narrow band used by the first subframe of the PDCCH configured or scrambled by the RNTI the following illustrates one by one the relevant information of the preamble.
  • the relevant information of the preamble can be the frequency resource of transmitting the preamble and the time of transmitting the preamble.
  • the relevant information of the preamble is the frequency resource for transmitting the preamble
  • the terminal device may determine the second narrowband according to the frequency resource of the preamble and the first information; an optional implementation manner: the terminal device may obtain an offset, where the offset may be used for transmitting a downlink physical control channel of Msg4 The offset of the narrowband number corresponding to the narrowband number corresponding to the narrowband number corresponding to the narrowband used to transmit the preamble; where the offset can be obtained by the UE by receiving a system message sent by the base station, or it can be specified in the communication protocol .
  • the offset is greater than zero and less than a certain value of k1, k1 is the scene corresponding to different data transmission methods and the narrowband used by all physical downlink control channels that may be used to transmit Msg4 under the coverage enhancement level.
  • N NB corresponds to the current working bandwidth of the UE
  • the number of narrowbands; then the narrowband used for the downlink physical control channel of Msg4 can be Mod (NB RAR + k2, N NB2 ).
  • k2 is a non-negative integer less than or equal to offset, NB RAR and N NB2 Is the information carried in the first message.
  • the downlink physical control channel used to transmit Msg4 The narrowbands used are NB RAR mod N NB2 , (NB RAR +1) mod N NB2, and (NB RAR +2) mod N NB2 , that is, the second narrowband includes the numbers NB RAR mod N NB2 , (NB RAR +1) The narrow band of mod N NB2 and (NB RAR +2) mod N NB2 .
  • the terminal device determines the second narrowband according to the frequency resource of the preamble and the first information, and the second narrowband may include only one narrowband.
  • the terminal device obtains an offset offset, the terminal device can determine NB RAR and N NB2 according to the first information, and N NB is the number of narrowbands corresponding to the current working bandwidth of the UE; then the terminal device It can be determined that the narrowband used for transmitting the downlink physical control channel of Msg4 is Mod (NB RAR + offset, N NB2 ).
  • the technical solution for determining the second narrowband by using the frequency resource of the preamble is described by way of example. In practical applications, as long as the second narrowband is determined by using the frequency resource of the preamble, it belongs to The scope of protection of this application.
  • the relevant information of the preamble is the time resource for transmitting the preamble
  • the narrow band used by the physical control channel can be Mod (NB RAR + k2, N NB2 ), where k2 is a non-negative integer less than or equal to Peamble-time1, then it can be known that the second narrow band includes NB RAR mod N NB2 and (NB RAR +1 ) mod N NB2 .
  • the terminal device determines the second narrowband according to the time resource of the preamble and the first information, and the second narrowband may include only one narrowband.
  • the technical solution for determining the second narrowband by using the time resource of the preamble is described by way of example. In practice, as long as the scheme for determining the second narrowband is based on the time resource of the preamble, It belongs to the protection scope of this application.
  • the relevant information of the preamble is a preamble sequence.
  • the terminal device may determine the second narrowband according to the preamble sequence and the first information.
  • the preamble sequence may be a preamble sequence number Preamble-ID
  • Peamble-ID1 mod (Preamble-ID, k1)
  • k1 4
  • k1 8
  • N NB is the number of narrowbands corresponding to the UE's current operating bandwidth.
  • the narrow band used for the downlink physical control channel for transmitting Msg4 may be Mod (NB RAR + k2, N NB2 ), optionally, k2 is an integer less than or equal to Peamble-ID1.
  • the preamble sequence can be numbered by the preamble sequence, and at the same time-frequency resource location, the base station configures 64 possible preamble sequences for the user, and the user can choose one for transmission or in a non-competitive random access scenario
  • the base station allocates a corresponding preamble to the UE, and the preamble has a corresponding sequence number, so the Preamble-ID may be one of 0 to 63.
  • the narrowband used by the channel can be Mod (NB RAR + k2, N NB2 ), where k2 is an integer less than or equal to Peamble-ID1, then it can be known that the second narrowband includes NB RAR mod N NB2 and (NB RAR +1) mod N NB2 And (NB RAR +2) mod N NB2 .
  • the terminal device determines the second narrowband according to the preamble sequence and the first information, and the second narrowband may include only one narrowband.
  • the UE determines channel state information according to the second narrowband.
  • the UE can determine the channel state information according to the second narrowband. It can be known from step 203 that the second narrowband determined by the UE is a non-empty subset of the first narrowband. Therefore, compared to the prior art, the UE allocates to each of the second narrowbands. The measurement time of the narrow band is longer, so the measurement corresponding to each narrow band can be more accurate, thereby improving the measurement accuracy of the downlink channel quality.
  • the preamble-related information is the frequency resource of transmitting the preamble.
  • the second narrowband is NB RAR mod N NB2 , (NB RAR +1) mod N NB2, and ( NB RAR +2) mod N NB2 , that is, the UE only needs to measure the three narrow bands, and compared to the first narrow band measurement in the prior art, the time allocated to each narrow band can be longer, of which,
  • the first narrowband includes NB RAR mod N NB2 , (NB RAR +1) mod N NB2 , (NB RAR +2) mod N NB2, and (NB RAR +4) mod N NB2 .
  • the UE sends a message three to the base station, and the message three includes the channel state information.
  • the UE may send message three to the base station, where message three may include channel state information.
  • the channel state information contained in the message 3 may be an average value of the channel state information of the second narrowband, or a weighted average value of the channel state information of the second narrowband, or calculated based on the channel state information of the second narrowband in another manner
  • Obtaining a channel state value may also be channel state information of part or all of the second narrow band, which is not specifically limited in this application.
  • the UE may receive a random access response grant sent by the base station, where the random access response grant carries an instruction for transmitting the downlink physical control channel used for Msg4.
  • Target narrowband The UE may determine the target narrowband used for the downlink physical control channel for transmitting Msg4 according to the random access response authorization.
  • the target narrowband is included in the second narrowband, and then the UE sends Msg3 to the base station.
  • the Msg3 Carry channel state information.
  • the channel state information may be an average value of the channel state information of the target narrowband, or a weighted average of the channel state information of the target narrowband, or calculated in other ways based on the channel state information of the target narrowband.
  • a channel state value of, or channel state information of some or all of the target narrow bands For example, in step 203, it is assumed that the second narrowband determined by the UE includes NB RAR mod N NB2 , (NB RAR +1) mod N NB2, and (NB RAR +2) mod N NB2 , and at this time the random access response authorization
  • the indicated target narrowband is a narrowband whose narrowband number is (NB RAR +1) mod N NB2 .
  • the UE can carry the channel state information of (NB RAR +1) mod N NB2 in Msg3.
  • the UE may carry the channel state information of the target narrowband in Msg3 and send it to the base station, and the UE may also Msg3 does not carry any channel state information, and is not specifically limited here.
  • the base station sends message four to the UE.
  • the base station can send Msg4 to the UE. Specifically, the base station may send Msg4 to the user according to the channel state information carried in Msg3, or the base station may send Msg4 without reference to the channel state information, which is not limited in this application.
  • the channel state information may include a channel quality indicator value, the number of repetitions of the transmission reference channel information, RSRQ and RSRP, and may further include a more relevant index of the channel state, which is not specifically limited in this application; for example, it is assumed that the channel The status information includes all the channel status information of the second narrowband, then the channel status information includes the channel quality indicator value of each narrowband in the second narrowband, the number of repetitions of the information on the downlink physical control channel transmitting Msg4, and the reference of each narrowband Signal reception quality and reference signal reception power of each narrowband.
  • the terminal device receives first information and related information of a preamble from a network device, the first information is used to determine a first resource, and the related information of the preamble is used to determine a second resource, the second resource Is a non-empty true subset of the first resource; then the terminal device determines the second resource according to the first information and related information of the preamble, the second resource including the network device scheduling the terminal device to retransmit Msg3 and the network device
  • the terminal device can determine the second resource according to the preamble-related information and the first information, and the second resource is a non-empty true subset of the first resource, and then determine the channel state according to the second resource Information, that is, only the channel state of the second resource needs to be measured, and then the terminal device carries the channel state information determined according to the second resource in Msg3 and sends it to the network device; therefore, only the second resource is required in this application
  • the second resource is a non-empty true subset of the first resource, that is, the measurement time of the channel state of each resource allocated to the second resource in the measurement period is longer, then for the second resource
  • the measurement of the channel state information of the resource is more accurate, thereby improving the accuracy of the downlink quality measurement.
  • An embodiment of the random access method in the embodiments of the present application includes:
  • the base station determines a first set of information and indication values.
  • the base station may determine the first information and the set of indication values. For details about the content included in the first information, refer to the description of step 201 in FIG. 2, and details are not described herein again.
  • the base station may determine the set of indication values.
  • the indication value set may include at least one indication value, and the indication value may be a narrowband number, a preset value, an offset, or the like, which is not specifically limited herein.
  • the base station may determine the indication value set according to a preset rule.
  • the base station can determine the narrowband used by the downlink physical control channel that may be used to transmit Msg4 according to a preset rule. It can be selected from the first narrowband. Sending at least one narrowband to the UE, and then sending the indication value set to the UE to notify the UE to perform channel state measurement on the narrowband corresponding to the indication value set.
  • the indicated value set includes one or more offsets.
  • the offset can be a non-negative integer less than k1, that is,
  • the value of offset can be any value from 0,1,2,3.
  • the base station sends the first information and an indication value set to the UE.
  • the base station may send the first information and the indication value set to the UE. It should be noted that the base station may send the first information and indication value set to the UE through a broadcast message, and may also send the first information and indication value set through other message types, which is not specifically limited herein.
  • the UE determines a second narrowband according to the first information and the indication value set.
  • the UE may determine the first narrowband according to the first information.
  • first information For a specific process of the UE determining the first narrowband according to the first information, reference may be made to the related description in step 203 in FIG. 2, and details are not described herein again.
  • the UE may determine the second narrowband according to the first set of information and indication values, where the second narrowband is a non-empty true subset of the first narrowband, and the second narrowband includes a random access process configured by the TC-RNTI and / or C-RNTI Or the narrowband used in the first subframe of the scrambled downlink physical control channel; and the indication value set includes at least one indication value, and the indication value set may be a narrowband number set, a preset value set, or an offset set; below
  • the process of the UE determining the second narrowband according to the three types of indicator value sets is explained one by one:
  • the indicated value set is a narrowband number set
  • the second narrowband includes a narrowband with a narrowband number of 1 and a narrowband with a narrowband number of 2. .
  • the optional indicator value set is a narrowband number set
  • the UE determines that the second narrowband may be determined according to the narrowband number set, and may not be determined in combination with the first information.
  • the indicated value set is a set of preset values
  • the UE receives a set of preset values sent by the base station.
  • the set of preset values includes at least one preset value, and the preset value is a non-negative integer less than k1, and then the UE may determine the preset value set.
  • the second narrow band For example, if the set of preset values is ⁇ 1,2 ⁇ , then it can be known that the narrowband set is (NB RAR + preset value) mod N NB2 , and the UE can determine that the second narrowband includes the narrowband number as (NB RAR +1) mod N The narrowband of NB2 and the narrowband number is (NB RAR +2) mod N NB2 .
  • the UE may determine that the second narrowband includes a narrowband with a narrowband number of NB RAR mod N NB2 and a narrowband number of (NB RAR +1) mod N The narrowband of NB2 and the narrowband numbered (NB RAR +2) mod N NB2 .
  • the indicated value set includes one or more offsets
  • the UE receives the offset sent by the base station.
  • the UE may determine the value of k2 according to the offset, where offset is a non-negative integer less than k1; k2 is a non-negative integer less than or equal to offset; and then the UE may Value to determine the second narrowband.
  • the UE can determine that the second narrowband is a narrowband number NB RAR mod N NB2 , Narrowband number (NB RAR +1) mod N NB2 narrowband and narrowband number (NB RAR +2) mod N NB2 narrowband, narrowband number (NB RAR +3) mod N NB2 narrowband and narrowband number (NB RAR +4) mod N NB2 narrow band.
  • indication values there are many types of indication values that can be included in the indication value set.
  • the above examples are just some possible implementations. In practical applications, as long as the scheme for determining the second narrowband according to the indication value set is included in the present Application for protection.
  • the UE determines channel state information according to the second narrowband.
  • the UE sends message three to the base station.
  • the base station sends message four to the UE.
  • Steps 304 to 306 are similar to steps 204 to 206 in FIG. 2 described above, and details are not described herein again.
  • the terminal device receives first information and an indication value set from a network device, the first information is used to determine a first resource, the indication value set is used to determine a second resource, and the second resource is the first resource.
  • a non-empty true subset of resources the terminal device then determines the second resource according to the first set of information and indication values, the second resource including the downlink used by the network device to schedule the terminal device to retransmit Msg3 and the network device to transmit Msg4 Resources of the physical control channel; the terminal device determines the channel state information according to the second resource, the terminal device sends Msg3 to the network device, and the Msg3 contains the channel state information.
  • the terminal device may determine the second resource according to the set of indication values and the first information, and the second resource is a non-empty true subset of the first resource, and then determine the channel state information according to the second resource, That is, only the channel state of the second resource needs to be measured, and then the terminal device carries the channel state information determined according to the second resource in Msg3 and sends it to the network device; therefore, only the channel of the second resource is required in this application.
  • State measurement, and the second resource is a non-empty true subset of the first resource, that is, the measurement time of the channel state of each resource allocated to the second resource in the measurement period is longer. The measurement of the channel state information is more accurate, thereby improving the accuracy of the downlink quality measurement.
  • FIG. 4 describes an embodiment of a method for random access in the third embodiment according to the present application.
  • An embodiment of the random access method in the embodiments of the present application includes:
  • the base station determines the first information and the number of narrowbands.
  • the base station may determine the first information and the number of narrowbands, and for details included in the first information, refer to the related description of step 201 in FIG. 2, and details are not described herein again.
  • the base station can determine the number of narrowbands according to preset rules.
  • k1 N NB
  • N NB is the number of narrowbands corresponding to the current working bandwidth of the UE
  • the base station sends the first information and the number of narrowbands to the UE.
  • the base station may send the first information and the number of narrowbands to the UE. It should be noted that the base station may send the first information and the number of narrowbands to the UE through a broadcast message, and may also send the first information and the number of narrowbands through other message types, which is not limited herein.
  • the UE determines a second narrowband according to the first information and the number of narrowbands.
  • the UE may determine the first narrowband according to the first information.
  • the UE may determine the first narrowband according to the first information.
  • the UE may determine the second narrowband according to the first information and the number of narrowbands. Specifically, the UE may determine the second narrowband according to a preset rule, the number of narrowbands, and the first information, where the second narrowband is a non-empty true subset of the first narrowband.
  • the second narrowband includes the narrowband used in the first subframe of the downlink physical control channel where the random access process is configured or scrambled by the TC-RNTI and / or C-RNTI.
  • the UE determines the second narrowband according to the preset rule, the number of narrowbands, and the first information. Among them, there can be multiple types of preset rules. The examples are described below one by one, and the UE according to the corresponding preset rules, the number of narrowbands, and the first A message determines the second narrowband process:
  • the preset rule is in the form of a symmetrical center narrowband.
  • k2 ⁇ 0, k-1, 1, k1-2 .... k / 2-1, k1-k / 2 ⁇
  • k2 ⁇ 0, k1-1,1, k1-2 ... ceil (k / 2) -1 ⁇ .
  • the function ceil (x) is a round-up operation on x; then, it can be seen that the second narrow band is (NB RAR + k2) mod N NB2 .
  • the second narrowband is the narrowband with the narrowband number NB RAR mod N NB2 and the narrowband is (NB RAR +3) mod N NB2 .
  • the UE can determine that the second narrowband is a narrowband with the number NB RAR mod N NB2 , and the narrowband number is (NB RAR +1) The narrow band of mod N NB2 and the narrow band number (NB RAR +3) of the narrow band of mod N NB2 .
  • the second narrowband determined by the two preset rules a and b has a certain frequency interval between the narrowband allocated for transmission of the downlink physical control channel of Msg4 and Msg2. Therefore, the narrowband of the downlink physical control channel of transmission of Msg4 and The possibility of the narrow band of Msg2 entering deep fading at the same time is lower, which enhances the robustness of the narrow band used to transmit the downlink physical control channel of Msg4.
  • the symmetric structure value is a more natural value.
  • the second narrowband determined by such a preset rule can make the measurement frequency interval of each narrowband of the second narrowband shorter, the correlation is stronger, the measurement result is more accurate, and for each narrowband in the second narrowband, When the channel state measurement is completed, the switching time required to switch to the next narrowband in the second narrowband is shorter, that is, the returning time is shorter.
  • preset rules may also include various rules other than the above examples.
  • the above examples are just some possible implementations. Any formulas, tables, other Correspondence relationships or other predefined rules are covered by the scope of this application.
  • the technical solution of determining the second narrowband by the number of narrowbands of the terminal device is described by way of example. In actual application, as long as the scheme of determining the second narrowband according to the number of narrowbands belongs to the present application The scope of protection.
  • the UE determines channel state information according to the second narrowband.
  • the UE sends message three to the base station.
  • the base station sends message four to the UE.
  • Steps 404 to 406 are similar to steps 204 to 206 in FIG. 2 described above, and details are not described herein again.
  • the second information may also be a narrowband ratio.
  • the narrowband ratio is a ratio of the number of narrowbands in the second narrowband to the number of narrowbands in the first narrowband, and then the UE receives the narrowband.
  • the terminal device may determine the number of narrowbands of the second narrowband according to the narrowband proportional value and the first information, and may also determine the first narrowband according to the narrowband proportional value and a preset value in the protocol or a preset value configured by the network device.
  • the preset value in the protocol may refer to a non-EDT scenario.
  • the preset value is 4.
  • the preset value is 8.
  • the preset value is N NB .
  • N NB is the number of narrowbands corresponding to the current working bandwidth of the UE.
  • the terminal device may also determine the number of narrowbands of the second narrowband by other methods, which is not limited here. Then, the UE determines the second narrowband, the measurement channel state information, and carries the channel state information in message three according to the foregoing steps 403 to 406 in FIG. 4, and details are not described herein again.
  • a terminal device receives first information and a number of narrowbands from a network device, the first information is used to determine a first resource, the number of narrowbands is used to determine a second resource, and the second resource is the first resource.
  • a non-empty true subset of resources the terminal device then determines the second resource based on the first information and the number of narrowbands, the second resource including the network device scheduling the terminal device to retransmit message three and the network device transmitting message four Resources of the downlink physical control channel; the terminal device determines the channel state information according to the second resource, the terminal device sends a message three to the network device, and the message three includes the channel state information.
  • the terminal device may determine the second resource according to the number of narrowbands and the first information, and the second resource is a non-empty true subset of the first resource, and then determine the channel state information according to the second resource, That is, only the channel state of the second resource needs to be measured, and then the terminal device carries the channel state information determined according to the second resource in message three and sends it to the network device; therefore, only the second resource's The channel state is measured, and the second resource is a non-empty true subset of the first resource, that is, the measurement time of the channel state of each resource allocated to the second resource in the measurement period is longer, then for the second resource
  • the measurement of the channel state information is more accurate, thereby improving the accuracy of the downlink quality measurement.
  • FIG. 5 is an embodiment of the random access device in the embodiment of the present application.
  • the transceiver module 501 is configured to receive first information and second information from a network device.
  • the first information corresponds to a first resource.
  • the second information is used to determine a second resource.
  • the second resource is a non-empty resource of the first resource.
  • a processing module 502 is configured to determine a second resource according to the first information and the second information, and the second resource includes a downlink physical control channel used by the network device to schedule the terminal device to retransmit message three and the network device to transmit message four. Resources used; and for determining channel state information based on the second resource;
  • the transceiver module 501 is further configured to send a message three to the network device, where the message three includes the channel state information.
  • the second information includes preamble related information
  • the preamble related information includes at least one of a frequency resource for transmitting a preamble, a time resource for transmitting a preamble, and a preamble sequence
  • the processing module 502 The determining the second resource according to the first information and the second information may include: determining the second resource according to related information of the preamble and the first information.
  • the second information includes an indication value set
  • the indication value set includes at least one indication value.
  • the processing module 502 for determining the second resource according to the first information and the second information may include: The indication value set and the first information determine the second resource.
  • the transceiver module 501 is specifically configured to:
  • a system message is received from the network device, and the system message carries the indication value set.
  • system message further carries first information.
  • the second information includes the number of narrowbands or the ratio of the narrowbands.
  • the number of the narrowbands is an integer greater than zero.
  • the ratio of the narrowbands is greater than zero and less than one.
  • the processing module 502 is configured to use the first information and
  • the second information determining the second resource may include: determining the second resource according to the number of narrowbands and the first information; or determining the second resource according to the narrowband ratio and the first information.
  • the transceiver module 501 is specifically configured to:
  • the broadcast message carrying the number of narrowbands or carrying the narrowband ratio value.
  • the broadcast message also carries first information.
  • the channel state information includes one or a combination of the following: a channel quality indicator value, the number of repetitions of transmission reference channel information, RSRQ and RSRP, or other parameters capable of characterizing channel quality information, which are not specifically limited in this article. .
  • the channel state information includes an average value of channel state information of the second resource, or a weighted average value of channel state information of the second resource, or channel state information of the third resource, or a channel of the third resource A weighted average of state information, and the third resource is a part or all of the second resource.
  • the transceiver module 501 is further configured to receive a random access response authorization sent by the network device; the processing module 502 is further configured to determine a target resource according to the random access response authorization, and the target resource is the first resource.
  • the message three sent by the transceiver module 501 includes channel state information of the target resource.
  • the transceiver module 501 is further configured to receive a random access response authorization sent by the network device; the processing module 502 is further configured to determine a target resource according to the random access response authorization;
  • the message 3 sent by the transceiver module 501 carries the channel state information of the target resource.
  • the transceiver module 501 is further configured to receive a random access response authorization sent by the network device; the processing module 502 is further configured to determine a target resource according to the random access response authorization;
  • the message sent by the transceiver module 501 does not carry channel state information.
  • the transceiver module 501 receives first information and second information from a network device.
  • the first information is used to determine a first resource
  • the second information is used to determine a second resource
  • the second resource is the first resource.
  • a non-empty true subset of a resource then the processing module 502 determines the second resource according to the first information and the second information, the second resource including the network device scheduling the terminal device to retransmit message three and the network device transmitting message four
  • the processing module 502 can determine the second resource according to the second information and the first information, and the second resource is a non-empty true subset of the first resource, and then determine the channel state information according to the second resource That is, only the channel state of the second resource needs to be measured, and then the transceiver module 501 carries the channel state information determined according to the second resource in message three and sends the channel state information to the network device; therefore, only the second resource is required in this application.
  • the channel state of the resource is measured, and the second resource is a non-empty true subset of the first resource, that is, the measurement time of the channel state of each resource allocated to the second resource in the measurement period is longer, then for the first
  • the measurement of the channel state information of the two resources is more accurate, thereby improving the accuracy of the downlink quality measurement.
  • FIG. 6 is an embodiment of the random access device in the embodiment of the present application.
  • a processing module 601 is configured to determine first information and second information, where the first information corresponds to a first resource, and the second information is used to determine a second resource, where the second resource is a non-empty true subset of the first resource,
  • the second resource includes resources used by the random access device to schedule the terminal device to retransmit message three and a downlink physical control channel used by the network device to transmit message four;
  • the transceiver module 602 is configured to send the first information and the second information to a terminal device;
  • the transceiver module 602 is further configured to receive message three sent by the terminal device, where the message three includes channel state information, and the channel state information is related to the second resource.
  • the second information may include related information of the preamble, and the related information of the preamble may include a frequency resource for transmitting the preamble, a time resource for transmitting the preamble, and a random access sequence of the preamble. At least one.
  • the second information may include an indication value set
  • the indication value set may include an indication value
  • the transceiver module 602 is configured to:
  • system message further carries the first information.
  • the second information may include a number of narrowbands or a ratio of narrowbands.
  • the number of narrowbands is an integer greater than zero.
  • the ratio of narrowbands is greater than zero and less than one.
  • the transceiver module 602 is configured to:
  • the broadcast message further carries the first information.
  • the channel state information may include one or a combination of the following: a channel quality indicator value, the number of repetitions of transmission reference channel information, RSRQ and RSRP, or other parameters capable of characterizing channel quality information, which are not described in detail in this article. limited.
  • the channel state information may include an average value of channel state information of the second resource, or a weighted average value of channel state information of the second resource, or channel state information of the third resource, or A weighted average of the channel state information, and the third resource is a part or all of the second resource.
  • the transceiver module 602 is further configured to send a random access response authorization to the terminal device, and the target resource indicated by the random access response authorization is a non-empty subset of the second resource;
  • the third message received by the transceiver module 602 contains channel state information of the target resource.
  • the transceiver module 602 is further configured to:
  • the message three received by the transceiver module 602 includes target channel state information of the target resource.
  • the transceiver module 602 is further configured to:
  • the message three received by the transceiver module 602 does not include channel state information.
  • the processing module 601 may determine the first information and the second information, and then the transceiver module 602 sends the first information and the second information to the terminal device.
  • the transceiver module 602 may receive the message three sent by the terminal device.
  • the message three includes Channel state information, which is determined by the terminal device according to the second resource; that is, the terminal device only needs to measure the channel state of the second resource, and the second resource is a non-empty true subset of the first resource, That is, the measurement time of the channel state of each resource allocated to the second resource in the measurement period is longer, and then the measurement of the channel state information of the second resource is more accurate, thereby improving the accuracy of the downlink quality measurement.
  • An embodiment of the present application further provides a UE.
  • the UE may be a random access device. As shown in FIG. 7, for convenience of explanation, only a part related to the embodiment of the present invention is shown, and specific technical details are not disclosed. Please refer to the method part of the embodiment of the present invention.
  • the terminal device may be any terminal device including a mobile phone, a tablet computer, a PDA (Personal Digital Assistant), a POS (Point of Sales), and a vehicle-mounted computer.
  • the terminal device is a mobile phone as an example:
  • FIG. 7 is a block diagram showing a partial structure of a mobile phone related to a terminal device according to an embodiment of the present invention.
  • the mobile phone includes: a radio frequency (RF) circuit 1110, a memory 1120, an input unit 1130, a display unit 1140, a sensor 1150, an audio circuit 1160, a wireless fidelity (WiFi) module 1170, and a processor 1180. , And power supply 1190 and other components.
  • RF radio frequency
  • the mobile phone may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the processing module 502 in the foregoing embodiment may specifically be the processor 1180 in this embodiment, and therefore the specific implementation of the processor 1180 is not described again.
  • This application also provides a random access device 800. Please refer to FIG. 8.
  • An embodiment of the random access device in the embodiment of the present application includes:
  • the processor 801, the memory 802, and the input-output device 803 are connected to the bus 804, respectively, and computer instructions are stored in the memory.
  • the processing module 601 in the foregoing embodiment may specifically be the processor 801 in this embodiment, and therefore the specific implementation of the processor 801 is not described again.
  • the transceiver module 602 in the foregoing embodiment may specifically be the input / output device 803 in this embodiment.
  • the chip when the network device or terminal device is a chip in a terminal, the chip includes: a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input. / Output interface, pin or circuit, etc.
  • the processing unit may execute computer execution instructions stored in the storage unit, so that a chip in the terminal executes the random access method according to any one of the first aspect or the second aspect.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit in the terminal that is located outside the chip, such as a read-only memory (read -only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific intergrated circuit (ASIC), or one or more for controlling the above.
  • the first aspect of the data processing method is a program executed by an integrated circuit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • wire for example, coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless for example, infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, which may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium. , Including a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes .

Abstract

本申请实施例提供了一种随机接入方法以及随机接入装置,用于提高下行质量测量的准确性。本申请实施例方法包括:终端设备从网络设备接收第一信息和第二信息,所述第一信息对应第一资源,所述第二信息用于确定第二资源,所述第二资源为所述第一资源的非空真子集;所述终端设备根据所述第一信息及所述第二信息确定所述第二资源,所述第二资源包括网络设备调度所述终端设备重传消息三以及所述网络设备传输消息四所使用的下行物理控制信道所使用的资源;所述终端设备根据所述第二资源确定信道状态信息;所述终端设备向所述网络设备发送消息三,所述消息三中包含所述信道状态信息。

Description

随机接入方法以及随机接入装置 技术领域
本申请涉及通信技术,尤其涉及一种随机接入方法以及随机接入装置。
背景技术
随机接入过程是指从终端设备发送随机接入前导码开始尝试接入网络设备到与网络设备间建立起基本的信令连接之前的过程。
基于竞争机制的随机接入过程分四步完成,如图1A所示:第1步骤是终端设备向网络设备发送的随机接入请求,该随机接入请求也可称为Msg1,其中包含随机接入前导码;第2步骤为网络设备向终端设备发送的随机接入响应(random access response,RAR)消息,该RAR消息也可称为Msg2;第3步骤为终端设备在接收到RAR后,在网络设备分配的上行传输资源中,基于RAR调度进行消息传输,该消息也可称为Msg3;第4个步骤为网络设备向终端设备发送竞争解决信息,该信息也可称为Msg4。
终端设备可以确定所有可能用于网络设备传输Msg4所使用的下行物理控制信道的窄带,然后对这些窄带进行信道状态测量;然后在该终端设备接收到Msg2时,此时终端设备可以确定对应的目标窄带,该目标窄带是该终端设备确定的所有窄带中的其中一个窄带,然后终端设备向网络设备发送Msg3,并在Msg3中携带信道状态信息。
但是,由于终端设备确定的是所有可能用于传输Msg4所使用的下行物理控制信道的窄带,并对这些窄带进行测量,并在Msg3中携带根据测量结果确定的信道状态信息,也就是终端设备在测量周期内需要对确定的所有窄带进行信道状态测量,那么在该测量周期内分配到每个窄带的测量时间较短,导致下行信道质量测量的准确性较低。
发明内容
本申请实施例提供了一种随机接入方法以及随机接入装置,用于提高下行信道质量测量的准确性。
本申请实施例的第一方面提供一种随机接入方法,包括:
在随机接入的过程中,终端设备可以从网络设备接收第一信息和第二信息,其中,第一信息对应第一资源,第二信息用于确定或对应第二资源,第二资源为第一资源的非空真子集;然后终端设备可以根据该第一信息以及第二信息确定第二资源,该第二资源可以包括网络设备调度该终端设备重传消息三以及该网络设备传输消息四所使用的下行物理控制信道所使用的资源;终端设备可以根据第二资源确定信道状态信息,然后终端设备向网络设备发送消息三,其中,消息三包含有信道状态信息。该网络设备调度该终端设备重传消息三以及该网络设备传输消息四所使用的下行物理控制信道所使用的资源,可以是在随机接入过程中,被临时小区无线网络临时标识(temporary cell radio network temporary  identifier,TC-RNTI)和/或小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)所配置或者加扰的下行物理控制信道(physical downlink control channel,PDCCH)的第一个子帧所使用的资源。
本实施例中,终端设备可以根据第一信息以及第二信息确定第二资源,且该第二资源为该第一资源的非空真子集,然后根据该第二资源确定信道状态信息,即只需要对第二资源的信道状态进行测量,然后终端设备在消息三中携带根据第二资源确定得到的信道状态信息并向该网络设备发送。换一句话说,本实施例只需要对第二资源的信道状态进行测量,且该第二资源为该第一资源的非空真子集,也就是在测量周期内分配到第二资源的每个资源的信道状态的测量时间更长,那么对于第二资源的信道状态信息的测量更为精准,从而提高了下行信道质量测量的准确性。
一种可能的实现方式中,该第二信息可以包括前导码的相关信息,其中,该前导码的相关信息可以包括传输前导码的频率资源、传输前导码的时间资源以及前导码序列(或前导码序列编号)中的至少一种。终端设备根据该第一信息及第二信息确定第二资源可以包括:终端设备可以根据前导码的相关信息以及第一信息确定该第二资源。
在该可能的实现方式中,第二信息可以为前导码的相关信息,然后终端设备可以根据该前导码的相关信息以及第一信息确定第二资源,提供了一种具体的终端设备确定第二资源的具体方式,在实际应用中,提高了方案的可实现性和实用性。
另一种可能的实现方式中,第二信息可以包括指示值集合,该指示值集合包括至少一个指示值;终端设备根据该第一信息及第二信息确定第二资源可以包括:终端设备可以根据指示值集合以及第一信息确定第二资源。
在该可能的实现方式中,第二信息可以为指示值集合,终端设备可以该指示值集合以及第一信息确定第二资源,提供了另一种具体的终端设备确定第二资源的具体方式,在实际应用中,提升了方案的多样性以及实用性。
另一种可能的实现方式,终端设备从该网络设备接收第二信息可以包括:终端设备可以从网络设备接收系统消息,该系统消息携带指示值集合。在该可能的实现方式中,提供了一种终端设备接收第二信息的具体方式,即可以通过系统消息来获取第二信息,在实际应用中,提升了方案的可实现性。
另一种可能的实现方式,该系统消息还可以包括第一信息。在该可能的实现方式中,终端设备可以通过该系统消息接收第一信息,提供了一种具体的获取第一信息的方式,在实际应用中,提高了方案的完整性和可实现性。
另一种可能的实现方式中,第二信息可以包括窄带个数或者窄带比例值,该窄带个数为大于零的整数,该窄带比例值大于零且小于一;该终端设备根据第一信息以及第二信息确定第二资源可以包括:终端设备可以根据窄带个数以及第一信息确定第二资源;或者终端设备可以根据该窄带比例值以及第一信息确定第二资源。在该可能的实现方式中,提供了另一种具体的终端设备确定第二资源的具体方式,在实际应用中,提升了方案的多样性 以及实用性。
另一种可能的实现方式中,终端从网络设备接收第二信息可以包括:终端设备可以从网络设备接收广播消息,该广播消息携带该窄带个数或者该窄带比例值。在该可能的实现方式中,提供了一种终端设备接收第二信息的具体方式,即可以通过广播消息来获取第二信息,在实际应用中,提升了方案的可实现性。
另一种可能的实现方式中,该广播消息还携带该第一信息。在该可能的实现方式中,终端设备可以通过广播消息接收第一信息,提供了一种具体的终端设备获取第一信息的方式,在实际应用中,提升了方案的多样性和实用性。
另一种可能实现方式中,该信道状态信息可以包括以下之一或者组合:信道质量指示值、传输参考信道信息的重复次数、参考信号接收质量(reference signal receiving quality,RSRQ)以及参考信号接收功率(reference signal receiving power,RSRP),在该可能的实现方式中,说明了信道状态信息具体包括信息,在实际应用中,提高了方案的实用性。
另一种可能的实现方式中,该信道状态信息可以包括第二资源的信道状态信息的平均值,或者第二资源的信道状态信息的加权平均值,或者第三资源的信道状态信息,或者第三资源的信道状态信息的加权平均值,其中,第三资源为第二资源的一部分或者全部。在该可能的实现方式中,说明了信道状态信息具体可以包括的内容,在实际应用中,提升了方案的多样性和实用性。
另一种可能的实现方式中,在终端设备接收网络设备发送的第一信息和第二信息之后,终端设备向网络设备发送消息三之前,该方法还可以包括:终端设备接收网络设备发送的随机接入响应授权,然后终端设备可以根据该随机接入响应授权确定目标资源,该目标资源为该第二资源的非空子集;该终端设备向该网络设备发送消息三可以包括:终端设备可以向网络设备发送消息三,该消息三中包含该目标资源的信道状态信息。在该可能的实现方式中,终端设备可以根据接收到的随机接入响应授权确定目标资源,然后在消息三中携带目标资源的信道状态信息,并向网络设备发送该消息三。在实际应用中,可以提高了方案的实用性和完整性。
另一种可能的实现方式,在该终端设备接收网络设备发送的第一信息和第二信息之后,在该终端设备向该网络设备发送消息三之前,该方法还可以包括:该终端设备可以接收该网络设备发送的随机接入响应授权,然后终端设备可以根据该随机接入响应授权确定目标资源;终端设备向网络设备发送消息三可以包括:当该目标资源不在该第二资源中时,该终端设备可以向该网络设备发送消息三,该消息三携带该目标资源的目标信道状态信息。在该可能的实现方式中,该终端设备可以根据接收到的随机接入响应授权确定目标资源,当目标资源不在该第二资源中时,此时终端设备将目标资源的信道状态信息携带在消息三并向网络设备发送,在实际应用中,提高了方案的完整性和实用性。
另一种可能的实现方式,在该终端设备接收网络设备发送的第一信息和第二信息之后, 在该终端设备向该网络设备发送消息三之前,该方法还可以包括:该终端设备可以接收该网络设备发送的随机接入响应授权,然后终端设备可以根据该随机接入响应授权确定目标资源;终端设备向网络设备发送消息三可以包括:当该目标资源不在该第二资源中时,终端设备可以向该网络设备发送消息三,该消息三不携带信道状态信息,在该可能的实现方式中,该终端设备可以根据接收到的随机接入响应授权确定目标资源,当目标资源不在该第二资源中时,终端设备向网络设备发送消息三,该消息三不携带信道状态信息,在该可能的实现方式中,提供了另一种当随机接入响应授权指示的目标资源不在第二资源的情况下的具体方案,在实际应用中,提升了方案的完整性和多样性。
本申请实施例的第一方面提供一种随机接入方法,包括:
在随机接入过程中,网络设备可以确定第一信息和第二信息,该第一信息对应第一资源,该第二信息用于确定第二资源,该第二资源为该第一资源的非空子集,该第二资源包括该网络设备调度该终端设备重传消息三以及该网络设备传输消息四所使用的下行物理控制信道所使用的资源;然后网络设备向终端设备发送第一信息和第二信息,该网络设备接收该终端设备发送的消息三,该消息三中包含信道状态信息,该信道状态信息与该第二资源相关。
本实施例中,网络设备可以接收终端设备发送的消息三,该消息三包含信道状态信息,该信道状态信息与该第二资源相关;即终端设备只需要对第二资源的信道状态进行测量,且该第二资源为该第一资源的非空真子集,也就是在测量周期内分配到第二资源的每个资源的信道状态的测量时间更长,那么对于第二资源的信道状态信息的测量更为精准,从而提高了下行质量测量的准确性。
一种可能的实现方式中,该第二信息包括前导码的相关信息,该前导码的相关信息可以包括传输前导码的频率资源、传输该前导妈的时间资源和该前导码的随机接入序列中的至少一种。在该可能的实现方式中,提供了一种第二信息的具体内容,在实际应用中,提升了方案的可实现性和实用性。
另一种可能的实现方式中,该第二信息可以包括指示值集合,该指示值集合可以包括至少一个指示值。在该可能的实现方式中,提供了第二信息的另一种形式,在实际应用中,提高了方案的多样性和实用性。
另一种可能的实现方式中,该网络设备向该终端设备发送第二信息可以包括:该网络设备向该终端设备发送系统消息,该系统消息携带该指示值集合。在该可能的实现方式中,该网络设备可以通过系统消息向该终端设备发送第二信息,在实际应用中,提供了一种具体的发送第二信息的形式,提升了方案的可实现性。
另一种可能的实现方式中,该系统消息还携带该第一信息。在该可能的实现方式中,网络设备可以通过该系统消息向终端设备发送第一信息,在实际应用中,提供了一种具体的发送第一信息的形式,提升了方案的可实现性。
另一种可能的实现方式中,该第二信息可以包括窄带个数或者窄带比例值,该窄带个 数为大于零的整数,该窄带比例值大于零且小于一。在该可能的实现方式中,提供了第二信息的另一种具体包括的内容,在实际应用中,提高了方案的多样性和实用性。
另一种可能的实现方式中,网络设备向终端设备发送第二信息可以包括:网络设备可以向终端设备发送广播消息,该广播消息携带该窄带个数或者该窄带比例值。在该可能的实现方式中,该网络设备可以通过广播消息向该终端设备发送第二信息,在实际应用中,提供了一种具体的发送第二信息的形式,提升了方案的可实现性。
另一种可能的实现方式中,该广播消息还携带第一信息。在该可能的实现方式中,网络设备可以通过广播消息向该终端设备发送第一信息,在实际应用中,提供了另一种具体的发送第一信息的形式,提升了方案的多样性和实用性。
另一种可能实现方式中,该信道状态信息可以包括以下之一或者组合:信道质量指示值、传输参考信道信息的重复次数、RSRQ以及RSRP,在该可能的实现方式中,说明了信道状态信息具体包括信息,在实际应用中,提高了方案的实用性;另外,该信道状态信息还可以包括其他与信道状态相关的参数,具体本申请不做限定。
另一种可能的实现方式中,该信道状态信息可以包括第二资源的信道状态信息的平均值,或者第二资源的信道状态信息的加权平均值,或者第三资源的信道状态信息,或者第三资源的信道状态信息的加权平均值,其中,第三资源为第二资源的一部分或者全部。在该可能的实现方式中,说明了信道状态信息具体可以包括的内容,在实际应用中,提升了方案的多样性和实用性。
另一种可能的实现方式中,在网络设备向该终端设备发送第一信息和第二信息之后,在该网络设备接收该终端设备发送的消息三之前,该方法还可以包括:网络设备可以向该终端设备发送随机接入响应授权,该随机接入响应授权指示的目标资源为第二资源的非空子集;然后终端设备接收该终端设备发送的消息三可以包括:该网络设备接收该终端设备发送的消息三,该消息三中包含目标资源的信道状态信息。在该可能的实现方式中,终端设备可以根据接收到的随机接入响应授权确定目标资源,然后在消息三中携带目标资源的信道状态信息,并向网络设备发送该消息三。在实际应用中,可以提高了方案的实用性和完整性。
另一种可能的实现方式中,在网络设备向该终端设备发送第一信息和第二信息之后,在网络设备接收该终端设备发送的消息三之前,该方法还可以包括:网络设备可以向终端设备发送随机接入响应授权;然后网络设备可以接收该终端设备发送的消息三可以包括:当该随机接入响应收指示的目标资源不在第二资源时,该网络设备接收该终端设备发送的消息三,该消息三包含该目标资源的目标信道状态信息。在该可能的实现方式中,当随机接入响应授权所指示的目标资源不在该第二资源中时,此时终端设备将目标资源的信道状态信息携带在消息三并向网络设备发送,在实际应用中,提高了方案的完整性和实用性
另一种可能的实现方式中,在网络设备向该终端设备发送第一信息和第二信息之后,在网络设备接收该终端设备发送的消息三之前,该方法还可以包括:网络设备可以向终端 设备发送随机接入响应授权;然后网络设备可以接收该终端设备发送的消息三可以包括:当该随机接入响应收指示的目标资源不在第二资源时,该网络设备接收该终端设备发送的消息三,该消息三不携带信道状态信息。在该可能的实现方式中,提供了另一种当随机接入响应授权指示的目标资源不在第二资源的情况下的具体方案,在实际应用中,提升了方案的完整性和多样性。
本申请实施例第三方面提供了一种随机接入装置,该随机接入装置具有实现上述第一方面服务器行为的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能对应的模块。
本申请实施例第四方面提供了另一种随机接入装置,该随机接入装置具有实现上述第一方面服务器行为的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能对应的模块。
本申请实施例中第五方面提供了一种随机接入装置,该随机接入装置包括:处理器、存储器、输入输出设备以及总线;该存储器中存储有计算机指令;该处理器在执行该存储器中的计算机指令时,该存储器中存储有计算机指令;该处理器在执行该存储器中的计算机指令时,用于实现如第一方面任意一种实现方式。
一种可能的实现方式中,该处理器、存储器、输入输出设备分别与该总线相连。
本申请实施例中第六方面提供了另一种随机接入装置,该随机接入装置包括:处理器、存储器、输入输出设备以及总线;该存储器中存储有计算机指令;该处理器在执行该存储器中的计算机指令时,该存储器中存储有计算机指令;该处理器在执行该存储器中的计算机指令时,用于实现如第二方面任意一种实现方式。
一种可能的实现方式中,该处理器、存储器、输入输出设备分别与该总线相连。
本申请实施例第七方面提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述第一方面中所涉及的功能,例如,例如发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例第八方面提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述第二方面中所涉及的功能,例如,例如发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例第九方面提供了一种包括指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得该计算机执行如第一方面或第二方面中任一种的实现方式。
本申请实施例第十方面提供了一种计算机可读存储介质,其特征在于,包括指令,当该指令在计算机上运行时,使得计算机执行如第一方面或第二方面中任一种实现方式。
本发明实施例提供的技术方案中,终端设备从网络设备接收第一信息和第二信息,该第一信息用于确定第一资源,该第二信息用于确定第二资源,该第二资源为该第一资源的非空真子集;然后该终端设备根据第一信息及第二信息确定该第二资源,该第二资源包括该网络设备调度该终端设备重传消息三以及该网络设备传输消息四所使用的下行物理控制信道的资源;该终端设备根据该第二资源确定该信道状态信息,该终端设备向该网络设备发送消息三,该消息三中包含该信道状态信息。通过本申请的技术方案,终端设备可以根据第二信息以及第一信息确定第二资源,且该第二资源为该第一资源的非空真子集,然后根据该第二资源确定信道状态信息,即只需要对第二资源的信道状态进行测量,然后终端设备在消息三中携带根据第二资源确定得到的信道状态信息并向该网络设备发送;因此,本申请中只需要对第二资源的信道状态进行测量,且该第二资源为该第一资源的非空真子集,也就是在测量周期内分配到第二资源的每个资源的信道状态的测量时间更长,那么对于第二资源的信道状态信息的测量更为精准,从而提高了下行质量测量的准确性。
附图说明
图1A为现有技术的一个示意图;
图1B为本申请实施例中一种系统场景框架示意图;
图2为本申请实施例中随机接入方法的一种实施例示意图;
图3为本申请实施例中随机接入方法的另一种实施例示意图;
图4为本申请实施例中随机接入方法的另一种实施例示意图;
图5为本申请实施例中随机接入装置的一种结构示意图;
图6为本申请实施例中随机接入装置的另一种结构示意图;
图7为本申请实施例中随机接入装置的另一种结构示意图;
图8为本申请实施例中随机接入装置的另一种结构示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着新技术的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例提供了一种随机接入方法以及随机接入设备,用于提高下行质量测量的准确性
本申请实施例实施例的技术方案可以应用于各种通信系统,例如:例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。CDMA系统可以实现例如通用无线陆地接入(universal terrestrial radio access,UTRA),CDMA2000等无线技术。UTRA可以包括宽带CDMA(wideband CDMA,WCDMA)技术和其它CDMA变形的技术。CDMA2000可以覆盖过渡标准(interim standard,IS)2000(IS-2000),IS-95和IS-856标准。TDMA系统可以实现例如全球移动通信系统(global system for mobile communication,GSM)等无线技术。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)、IEEE 802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。第五代(5Generation,简称:“5G”)通信系统、新空口(New Radio,简称“NR”)是正在研究当中的下一代通信系统。此外,所述通信系统还可以适用于面向未来的通信技术,都适用本申请实施例实施例提供的技术方案。本申请实施例实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例实施例的技术方案,并不构成对于本申请实施例实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例实施例提供的技术方案对于类似的技术问题,同样适用。
图1B示出了本申请实施例的一种可能的无线接入网(radio access network,简称RAN)的结构示意图。所述RAN可以为2G网络的基站接入系统(即所述RAN包括基站和基站控制器),或可以为3G网络的基站接入系统(即所述RAN包括基站和RNC),或可以为4G网络的基站接入系统(即所述RAN包括eNB和RNC),或可以为5G网络的基站接入系统。
所述RAN包括一个或多个网络设备。所述网络设备可以是任意一种具有无线收发功能的设备,或,设置于具体无线收发功能的设备内的芯片。所述网络设备包括但不限于:基站(例如基站BS,基站NodeB、演进型基站eNodeB或eNB、第五代5G通信系统中的基站gNodeB或gNB、未来通信系统中的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点)等。基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的一种或者多种技术的网络,或者未来演进网络。所述核心网可以支持上述提及一种或者多种技术的网络,或者未来演进网络。基站可以包含一个或多个共站或非共站的传输接收点(transmission receiving point,TRP)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized  unit,CU)或者分布单元(distributed unit,DU)等。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备1-2进行通信,也可以通过中继站与终端设备1-2进行通信。终端设备1-2可以支持与不同技术的多个基站进行通信,例如,终端设备可以支持与支持LTE网络的基站通信,也可以支持与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
终端设备1-2,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、终端等,是一种向用户提供语音和/或数据连通性的设备,或,设置于该设备内的芯片,例如,具有无线连接功允许的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。在后续的实施例中,网络设备以基站、终端设备以UE为例进行说明。
目前,基站与UE之间的随机接入过程中如图1A所示,UE可以在接收到Msg1之前确定所有可能用于基站传输Msg4的下行物理控制信道的窄带,然后对这些窄带进行信道状态测量;然后UE接收到基站发送的Msg2时,此时UE可以确定对应的目标窄带,该目标窄带是前述UE确定的所有窄带中的其中一个窄带,然后UE向基站发送Msg3,并在Msg3中携带该目标窄带的信道状态信息。但是,由于UE确定的是所有可能基站传输Msg4所使用的下行物理控制信道的窄带,并对这些窄带进行测量,并在Msg3中携带,也就是UE在测量周期内需要对确定的所有窄带进行信道状态测量,那么在该测量周期内分配到每个窄带的测量时间较短,也即UE用于测量目标窄带的信道状态的时间较短,导致下行信道质量测量的准确性较低。
有鉴于此,本申请实施例提供了一种随机接入方法,用于提高下行信道质量测量的准确性。终端设备从网络设备接收第一信息和第二信息,该第一信息对应第一资源,该第二 信息对应或用于确定第二资源,该第二资源为该第一资源的非空真子集;可选的,终端设备可以根据第二信息以及第一信息确定该第二资源,在一些可能的实现方式中,终端设备也可以仅根据第二信息确定第二资源,该第二资源包括该网络设备调度该终端设备重传消息三以及该网络设备传输消息四所使用的下行物理控制信道的资源;终端设备可以根据该第二资源确定信道状态信息;然后终端设备可以向该网络设备发送消息三,该消息三中包含该信道状态信息。即在本申请的技术方案中,终端设备根据第二信息以及第一信息确定第二资源,在一些可能的实现方式中,终端设备可以仅根据第二信息确定第二资源,该第二资源为该第一资源的非空真子集,然后该终端设备根据该第二资源确定信道状态信息,即终端设备只需要对第二资源的信道状态信息进行测量,而第二资源是第一资源的非空真子集,那也就是在测量周期内分配到第二资源的每个资源的信道状态的测量时间更长,所以对第二资源的信道状态的测量更为精准,从而提高对下行信道质量测量的准确性。
本申请实施例中,第二资源包括基站调度该UE重传Msg3以及该基站传输Msg4所使用的下行物理控制信道所使用的资源,具体可以是在随机接入过程中,被TC-RNTI和/或C-RNTI所配置或加扰的PDCCH的第一个子帧所使用的资源;可选的,该PDCCH的第一子帧所使用的资源可以包括机器类通信下行物理控制信道(MTC physical downlink control channel,MPDCCH)的第一个子帧所使用的资源和窄带下行物理控制信道(NB physical downlink control channel,NPDCCH)第一个子帧所使用的资源中的至少一种,其次,消息三为终端设备在接收到随机接入响应之后,在网络设备为其分配的上行传输资源中传输的消息,消息四为网络设备向终端设备发送的冲突解决信息。第一资源的类型可以包括资源频率、窄带或者单载波等,第二资源的类型可以包括频率、窄带或者单载波等,具体本申请不做限定。在后续的实施例中,仅以该第一资源的类型为窄带,该第二资源的类型为窄带为例进行说明,即第一资源为第一窄带,第二资源为第二窄带为例进行说明。
本申请实施例中,终端设备可以根据第二信息和第一信息确定第二窄带,在一些可能的实现方式中,终端设备可以仅根据第二信息确定第二窄带,其中,第二信息具体可以是多种类型的信息。下面通过举例的方式具体说明:
方式一:第二信息为前导码的相关信息,且该前导码的相关信息可以为传输该前导码的频率资源、传输该前导码的时间资源或者该前导码序列中的至少一种,终端设备根据该第一信息以及前导码的相关信息确定第二窄带。
方式二:第二信息为基站向UE发送的指示值集合,该指示值集合包括至少一个指示值;其中,该指示值可以是窄带编号、预设值或者为偏移量中的一种,其中,偏移量为传输Msg4所使用的下行物理控制信道所使用的窄带对应的窄带编号相对于传输随机接入响应的下行物理控制信道第一个子帧或随机接入响应所使用的窄带所对应的窄带编号的偏移量,或者为传输Msg4的物理下行控制信道的窄带对应的窄带编号相对于传输该前导码所使用的窄带对应的窄带编号的偏移量,具体此处不做限定。终端设备根据该第一信息和指示值集合确定第二窄带,其中,当该指示值集合为窄带编号集合时,该终端设备可以根据该指示值 集合确定第二窄带。
方式三:第二信息为基站向UE发送的窄带个数,其中,窄带个数为第二窄带中所包含的窄带个数。终端设备根据该窄带个数以及第一信息确定第二窄带。
下面结合具体的实施例对上述各种方式进行说明:
请参阅图2,介绍本申请实施例通过方式一随机接入的方法实施例。本申请实施例中随机接入方法的一个实施例包括:
201、基站确定第一信息和前导码的相关信息。
在随机接入的过程中,基站可以确定第一信息以及前导码的相关信息,其中,第一信息包括传输随机接入响应的物理下行控制信道的第一个子帧所使用的窄带、提前数据传输指示信息、当前工作带宽中的至少一个。而提前数据传输指示信息用于指示当前UE所使用的信号传输方式,可以分为非提前数据传输(non-early data transmission,non-EDT)场景和EDT场景。其中,在非EDT场景下每个覆盖增强级别下,基站用于传输Msg4的下行物理控制信道所使用的窄带所对应的比特总数为2,也即对应的所有可能用于传输Msg4的下行物理控制信道所使用的窄带个数k1为4个;
而在EDT场景且在不同覆盖增强级别下,基站用于传输Msg4的物理下行控制信道所使用的窄带所对应的比特总数各不相同。例如,在EDT场景,且覆盖增强级别为覆盖增加级别B(coverage enhancement mode B,CEmodeB)下,其比特总数为3,那么对应的所有可能用于传输Msg4所使用的下行物理控制信道所使用的窄带个数k1为8个;而在EDT场景下,且覆盖增强级别为CemodeA下,其比特总数为
Figure PCTCN2018108436-appb-000001
其中,
Figure PCTCN2018108436-appb-000002
ceil(x)是指对x向上取整,N NB为当前工作的下行带宽包含的窄带个数,而N NB=floor
Figure PCTCN2018108436-appb-000003
floor(x)是指对x向下取整,
Figure PCTCN2018108436-appb-000004
为当前下行带宽所包含的RB个数,那么对应的所有可能用于传输Msg4的下行物理控制信道所使用的窄带个数k1为N NB。而前导码的相关信息可以包括传输前导码的频率资源、传输前导码的时间资源和前导码序列中的至少一种,而前导码序列具体可以是指前导码序列的编号index。
202、基站向UE发送第一信息和前导码的相关信息。
基站确定了第一信息和前导码的相关信息后,可以向UE发送该第一信息和该前导码的相关信息。
203、UE根据第一信息以及前导码的相关信息确定第二窄带。
第一信息对应第一窄带;一种可选的方式:UE可以根据该第一信息确定第一窄带,其中,第一窄带包括所有可能用于基站调度UE重传Msg3以及基站传输Msg4所使用的下行物理控制信道所使用的窄带,具体可以是所有可能用于在随机接入过程中,被TC-RNTI和/或C-RNTI所配置或加扰的PDCCH的第一个子帧所使用的窄带。具体过程为:UE可以根据第一信息中的提前数据传输指示信息以及当前UE所使用的覆盖增强级别确定所有可能用于传输Msg4的下行物理控制信道所使用的窄带总个数,然后UE根据该随机接入响应授权所使用的窄带、当前工作带宽所对应的窄带个数以及该窄带总个数确定第一窄带,其中, 第一窄带包括所有可能用于随机接入过程,被TC-RNTI和/或C-RNTI所配置或加扰的PDCCH的第一个子帧所使用的窄带。
下面通过举例说明,假设当前UE工作带宽为3MHz(兆赫兹)、当前数据传输方式为非EDT场景,那么根据表1可知,当前带宽所对应的窄带个数为2个。
表1
带宽 1.4MHz 3MHz 5MHz 10MHz 15MHz 20MHz
下行带宽包含的RB数 6RB 15RB 25RB 50RB 75RB 100RB
下行带宽包含的窄带数 1 2 4 8 12 16
而在非EDT场景下,用于传输Msg4的下行物理控制信道所使用的窄带使用的比特总数为2,那么其对应的所有可能用于传输Msg4的物理下行控制信道所使用的窄带总个数k1为4个,然后根据随机接入响应授权的所使用的窄带,也即Msg2所使用的窄带NB RAR,以及当前工作带宽所对应窄带个数N NB2分别计算得到窄带编号分别为NB RARmod N NB2、(NB RAR+1)mod N NB2、(NB RAR+2)mod N NB2和(NB RAR+3)mod N NB2的窄带,具体针对每个窄带编号的计算公式如表2所示:
表2
Figure PCTCN2018108436-appb-000005
由表2可知,那么终端设备根据第一信息确定第一窄带,即第一窄带包括如2所示的传输Msg4的下行物理控制信道所使用的窄带,其中,表2中所示的用于传输Msg3或者Msg4的下行物理控制信道所使用的窄带是通过该窄带的窄带编号来表示的,即表中指示的每个窄带的计算公式为每个窄带编号的计算公式。
下面再次举例说明,假设当前工作带宽为5MHz,当前数据传输使用EDT场景且使用的覆盖增强级别为CEmodeB,那么根据上述表1可知,当前工作带宽所对应的窄带个数为4个;而在EDT场景下,且当前的覆盖增强级别为CemodeB,用于传输Msg4的下行物理控制信道的窄带使用的比特总数为3,那么其对应的所有可能用于传输Msg4的物理下行控制信道所使用的窄带总个数k1为4个;即如表3所示,用于传输Msg3或Msg4的下行物理控制信道所使用的窄带编号值为“000”、“001”、“010”、“011”、“100”、“101”、“110”以及“111”,然后根据Msg2所使用的窄带NB RAR,以及当前工作带宽所对应窄带个数为N NB2分别计算窄带编号值为“000”、“001”、“010”、“011”、“100”、“101”、“110”以及“111”的窄带编 号,具体每个窄带编号的计算公式如表3所示:
表3
Figure PCTCN2018108436-appb-000006
由表3可知,那么终端设备根据第一信息确定第一窄带,即第一窄带包括如表3所示的传输Msg4的下行物理控制信道的窄带。
需要说明的是,第一信息对应第一窄带,而第一窄带可以由上述说明的通过UE根据第一信息来确定,也可以是通过其他方式来对应第一窄带,具体本申请不做限定。
终端设备根据第一信息和前导码的相关信息确定第二窄带,其中,第二窄带为第一窄带的非空真子集,第二窄带包括在随机接入过程中被TC-RNTI和/或C-RNTI所配置或加扰的PDCCH的第一个子帧所使用的窄带;下面逐一举例说明前导码的相关信息为该前导码的相关信息可以为传输前导码的频率资源、传输前导码的时间资源或者前导码序列的具体确定第二窄带的过程:
a、前导码的相关信息为传输前导码的频率资源;
终端设备可以根据前导码的频率资源和第一信息确定第二窄带;一种可选的实现方式:终端设备可以获取偏移量offset,其中,该offset可以为传输Msg4的下行物理控制信道所使用的窄带所对应的窄带编号相对于传输该前导码所使用的窄带所对应的窄带编号的偏移量;其中,该offset可以是UE通过接收基站发送的系统消息获取,也可以是通信协议中规定。可选的,假设offset为大于零且小于k1中的某个值,k1为不同数据传输方式对应的场景以及覆盖增强级别下所对应的所有可能用于传输Msg4的物理下行控制信道所使用的窄带总个数,其中,在非EDT场景下k1=4,在EDT场景且处于CemodeB下,k1=8,在EDT场景且处于CemodeA下,k1=N NB,N NB为UE当前工作带宽所对应的窄带个数;那么用于传输Msg4的下行物理控制信道所使用的窄带可以为Mod(NB RAR+k2,N NB2),可选的,k2为小于等于offset的非负整数,NB RAR和N NB2为第一信息中携带的信息。
例如,NB RAR=0,N NB2=4,offset=2,则k2={0,1,2},假设当前的数据传输方式为非EDT场景,那么可知,用于传输Msg4的下行物理控制信道所使用的窄带为NB RARmod N NB2、(NB RAR+1)mod N NB2和(NB RAR+2)mod N NB2,即第二窄带包括编号为NB RARmod N NB2、(NB RAR+1)mod N NB2和(NB RAR+2)mod N NB2的窄带。
本实施例中,终端设备根据前导码的频率资源以及第一信息确定第二窄带,该第二窄带可以只包括一个窄带。一种可能的实现方式,例如,该终端设备获取偏移量offset,终端设备可以根据第一信息可以确定NB RAR和N NB2,N NB为UE当前工作带宽所对应的窄带个数;然后终端设备可以确定用于传输Msg4的下行物理控制信道所使用的窄带为Mod(NB RAR+offset,N NB2)。
需要说明的是,上述示例仅仅是一种可能的实现方式,与上述可选的实现方式得到相同结果的任何公式、表格、其他对应关系或者其他预定义的规则等,都属于本申请的保护范围。
本实施例中,通过举例的方式说明了终端设备通过前导码的频率资源确定第二窄带的技术方案,而在实际应用中,只要通过前导码的频率资源来确定第二窄带的方案,都属于本申请保护的范围。
b、前导码的相关信息为传输前导码的时间资源;
终端设备可以根据传输前导码的时间资源和第一信息确定第二窄带;一种可能的实现方式,Peamble-time1=mod(preamble-time,k1),其中,在非EDT场景下k1=4,在EDT场景且处于CemodeB下,k1=8,在EDT场景且处于CemodeA下,k1=N NB,N NB为UE当前工作带宽所对应的窄带个数;preamble-time为传输前导码的时间资源,则可知用于Msg4的下行物理控制信道所使用的窄带可以为Mod(NB RAR+k2,N NB2),可选的,k2为小于等于Peamble-time1的非负整数。
例如,preamble-time=61,k1=4,那么Peamble-time1=1,那么可知k2的取值为{0,1},而NB RAR=0,N NB2=4,那么用于传输Msg4的下行物理控制信道所使用的窄带可以为Mod(NB RAR+k2,N NB2),其中k2为小于等于Peamble-time1的非负整数,那么可知第二窄带包括NB RARmod N NB2和(NB RAR+1)mod N NB2
本实施例中,终端设备根据前导码的时间资源以及第一信息确定第二窄带,该第二窄带可以只包括一个窄带。一种可选的方式,例如,Peamble-time1=mod(preamble–time,k1),该终端设备可以确定用于传输Msg4的下行物理控制信道所使用的窄带为Mod(NB RAR+Peamble-time1,N NB2)。假设preamble-time=61,k1=4,那么Peamble-time1=1,则第二窄带为Mod(NB RAR+1N NB2)。
需要说明的是,上述示例仅仅是一种可能的实现方式,与示例公式得到相同结果的任何公式、表格、其他对应关系或者或者其他预定义的规则等,都属于本申请保护的范围。
本实施例中,通过举例的方式说明了终端设备通过前导码的时间资源确定第二窄带的技术方案,而在实际应用中,只要是根据前导码的时间资源来确定第二窄带的方案,都属 于本申请保护的范围。
c、前导码的相关信息为前导码序列。
终端设备可以根据前导码序列和第一信息确定第二窄带;一种可能的实现方式中,前导码序列可以为前导码序列编号Preamble-ID,而Peamble-ID1=mod(Preamble-ID,k1),其中,在非EDT场景下k1=4,在EDT场景且处于CemodeB下,k1=8,在EDT场景且处于CemodeA下,k1=N NB,N NB为UE当前工作带宽所对应的窄带个数;然后可知用于传输Msg4的下行物理控制信道所使用的窄带可以为Mod(NB RAR+k2,N NB2),可选的,k2为小于等于Peamble-ID1的整数。具体的,前导码序列可以前导码序列编号,而在相同的时频资源位置,基站为用户配置了64种可能的前导码序列,用户可以选择一个进行传输,或者在非竞争随机接入的场景,基站为UE分配对应的前导码,该前导码有相应的序列编号,所以Preamble-ID可以为0至63中的一个。
例如,Preamble-ID=62,k1=4,则Peamble-ID1=2,则k2取值为{0,1,2},NB RAR=0,N NB2=4,那么用于Msg4的下行物理控制信道所使用的窄带可以为Mod(NB RAR+k2,N NB2),其中k2为小于等于Peamble-ID1的整数,那么可知第二窄带包括NB RARmod N NB2、(NB RAR+1)mod N NB2和(NB RAR+2)mod N NB2
本实施例中,终端设备根据前导码序列以及第一信息确定第二窄带,该第二窄带可以只包括一个窄带。一种可选的方式,例如,Peamble-ID1=mod(Preamble-ID,k1),该终端设备可以确定用于传输Msg4的下行物理控制信道所使用的窄带为Mod(NB RAR+Peamble-ID1,N NB2)。假设,Preamble-ID=62,k1=4,则Peamble-ID1=2,那么该第二窄带为Mod(NB RAR+2,N NB2)。
需要说明的是,上述示例仅仅是一种可能的实现方式,与示例公式得到相同结果的任何公式、表格、其他对应关系或者其他预定义的规则等,都属于本申请保护的范围。
本实施例中,通过举例的方式说明了终端设备通过前导码序列确定第二窄带的技术方案,而在实际应用中,只要是根据前导码序列来确定第二窄带的方案,都属于本申请保护的范围。
204、UE根据第二窄带确定信道状态信息。
UE可以根据第二窄带确定信道状态信息,由步骤203可知,UE确定的第二窄带为第一窄带的非空子集,所以相对于现有技术当而言,UE分配到第二窄带中每个窄带的测量时间更长,那么对应每个窄带的测量可以更为精准,从而提高了下行信道质量的测量准确性。
例如,由步骤203中,前导码的相关信息为传输前导码的频率资源这种可选方式中的例子可知,第二窄带为NB RARmod N NB2、(NB RAR+1)mod N NB2和(NB RAR+2)mod N NB2,即UE只需要对该三个窄带进行测量,而相比于现有技术当中需要对第一窄带进行测量,分配到每个窄带的时间可以更长,其中,第一窄带包括NB RARmod N NB2、(NB RAR+1)mod N NB2、(NB RAR+2)mod N NB2和(NB RAR+4)mod N NB2
205、UE向基站发送消息三,该消息三包含该信道状态信息。
UE可以向基站发送消息三,其中,消息三可以包括信道状态信息。需要说明的是,消息三包含的信道状态信息可以是第二窄带的信道状态信息的平均值,或者是第二窄带的信道状态信息加权平均值或者其他方式根据该第二窄带的信道状态信息计算得到一个信道状态值,还可以是第二窄带中部分或者全部窄带的信道状态信息,具体本申请不做限定。
需要说明的是,在步骤201之后,在步骤205之前,UE可以接收基站发送的随机接入响应授权,其中,该随机接入响应授权中携带指示用于传输Msg4的下行物理控制信道所使用的目标窄带,UE可以根据该随机接入响应授权确定用于传输Msg4的下行物理控制信道所使用的目标窄带,其中,该目标窄带包含于该第二窄带,然后UE向基站发送Msg3,该Msg3中携带信道状态信息,可选的,该信道状态信息可以是目标窄带的信道状态信息的平均值,或者是目标窄带的信道状态信息的加权平均值或者其他方式根据该目标窄带的信道状态信息计算得到的一个信道状态值,又或者是目标窄带中部分或者全部窄带的信道状态信息。例如,在步骤203中,假设UE确定的第二窄带包括NB RARmod N NB2、(NB RAR+1)mod N NB2和(NB RAR+2)mod N NB2,而此时随机接入响应授权中指示的目标窄带为窄带编号为(NB RAR+1)mod N NB2的窄带,则此时UE可以在Msg3当中携带(NB RAR+1)mod N NB2的信道状态信息。
另外,当该UE接收到随机接入响应授权指示的目标窄带不在该第二窄带中时,那么此时UE可以在Msg3中携带该目标窄带的信道状态信息并向该基站发送,UE也可以在Msg3中不携带任何信道状态信息,具体此处不做限定。
206、基站向该UE发送消息四。
基站接收UE发送的Msg3之后,基站可以向UE发送Msg4。具体的,基站可以根据Msg3中携带的信道状态信息向用户发送Msg4,也可以是基站发送Msg4,并不参考该信道状态信息,具体本申请不做限定。
可选的,该信道状态信息可以包括信道质量指示值、传输参考信道信息的重复次数、RSRQ和RSRP,还可以包括更多的信道状态的相关指数,具体本申请不做限定;例如,假设信道状态信息包括第二窄带的全部信道状态信息,那么该信道状态信息包括第二窄带中每个窄带的信道质量指示值,传输Msg4的下行物理控制信道上的信息的重复次数、每个窄带的参考信号接收质量以及每个窄带的参考信号接收功率等。
本申请实施例中,终端设备从网络设备接收第一信息和前导码的相关信息,该第一信息用于确定第一资源,该前导码的相关信息用于确定第二资源,该第二资源为该第一资源的非空真子集;然后该终端设备根据第一信息及前导码的相关信息确定该第二资源,该第二资源包括该网络设备调度该终端设备重传Msg3以及该网络设备传输Msg4所使用的下行物理控制信道的资源;该终端设备根据该第二资源确定该信道状态信息,该终端设备向该网络设备发送Msg3,该Msg3中包含该信道状态信息。通过本申请的技术方案,终端设备可以根据前导码的相关信息以及第一信息确定第二资源,且该第二资源为该第一资源的非空真子集,然后根据该第二资源确定信道状态信息,即只需要对第二资源的信道状态进行 测量,然后终端设备在Msg3中携带根据第二资源确定得到的信道状态信息并向该网络设备发送;因此,本申请中只需要对第二资源的信道状态进行测量,且该第二资源为该第一资源的非空真子集,也就是在测量周期内分配到第二资源的每个资源的信道状态的测量时间更长,那么对于第二资源的信道状态信息的测量更为精准,从而提高了下行质量测量的准确性。
请参阅图3,介绍本申请实施例通过方式二随机接入的方法实施例。本申请实施例中随机接入方法的一个实施例包括:
301、基站确定第一信息和指示值集合。
在随机接入过程中,基站可以确定第一信息和指示值集合,其中,第一信息包括的内容具体参见前述图2中步骤201的描述,这里不再赘述。基站可以确定指示值集合。一种可选的方式,该指示值集合可以包括至少一个指示值,指示值可以为窄带编号、预设值或者偏移量offset等,具体此处不做限定。其中,当指示值为预设值时,可选的,该预设值为小于k1的非负整数;当指示值为offset时,指示值集合只包括一个或多个offset;在非EDT场景下k1=4,在EDT场景且处于CemodeB下,k1=8,在EDT场景且处于CemodeA下,k1=N NB,N NB为UE当前工作带宽所对应的窄带个数。offset为传输Msg4的下行物理控制信道所使用的窄带相对于传输前导码所使用的窄带的偏移量,或者为传输Msg4的下行物理控制信道所使用的窄带相对于传输随机接入响应的下行物理控制信道所使用的窄带的偏移量。基站可以根据预设规则确定该指示值集合。例如,当指示值集合为预设值的集合时,假设k1=4,该指示值集合可以为{0},{1},{2},{3},{0,1},{0,2},{0,3},{1,2},{1,3},{2,3},{0,1,2},{0,1,3},{0,2,3},{1,2,3}中的其中一种,具体可以是基站侧根据预设规则来确定后续可能用于传输Msg4的下行物理控制信道所使用的窄带,可以是从第一窄带中选择其中的至少一个窄带,然后通过向UE发送该指示值集合以通知UE对该指示值集合所对应的窄带进行信道状态测量。
另外,当指示值为offset时,那么此时指示值集合包括一个或多个offset;以一个offset为例说明,假设k1=4,可选的,该offset可以为小于k1的非负整数,即offset的取值可以为0,1,2,3的某一个值。
302、基站向UE发送第一信息和指示值集合。
基站确定第一信息和指示值集合之后,可以向UE发送该第一信息和该指示值集合。需要说明的是,基站可以通过广播消息向UE发送该第一信息和指示值集合,还可以通过其他消息类型发送该第一信息和指示值集合,具体此处不做限定。
303、UE根据第一信息以及指示值集合确定第二窄带。
UE可以根据第一信息确定第一窄带,具体UE根据第一信息确定第一窄带的过程可以参见前述图2中的步骤203中的相关描述,具体此处不再赘述。
UE可以根据第一信息和指示值集合确定第二窄带,其中,第二窄带为第一窄带的非空真子集,第二窄带包括随机接入过程被TC-RNTI和/或C-RNTI所配置或者加扰的下行物理 控制信道的第一个子帧所使用的窄带;而指示值集合包括至少一个指示值,指示值集合可以是窄带编号的集合、预设值集合或者是offset的集合;下面逐一说明UE根据这三种类型的指示值集合确定第二窄带的过程:
a、指示值集合为窄带编号集合;
UE接收基站发送的窄带编号集合。例如,当k1=4时,假设此时窄带编号集合为{1,2},那么UE根据该窄带编号集合确定第二窄带,第二窄带包括窄带编号为1的窄带和窄带编号为2的窄带。需要说明的是,可选的指示值集合为窄带编号集合时,UE确定第二窄带可以根据该窄带编号集合确定,可以不需要结合第一信息来确定。
b、指示值集合为预设值的集合;
UE接收基站发送的预设值的集合,可选的,该预设值的集合包括至少一个预设值,且预设值为小于k1的非负整数,那么UE可以根据预设值的集合确定第二窄带。例如,假设预设值的集合为{1,2},那么可知窄带集合为(NB RAR+预设值)mod N NB2,UE可以确定第二窄带包括窄带编号为(NB RAR+1)mod N NB2的窄带和窄带编号为(NB RAR+2)mod N NB2的窄带。再举例说明,假设此时预设值的集合为{0,1,2},UE可以确定第二窄带包括窄带编号为NB RARmod N NB2的窄带、窄带编号为(NB RAR+1)mod N NB2的窄带以及窄带编号为(NB RAR+2)mod N NB2的窄带。
c、指示值集合包括一个或者多个offset;
UE接收基站发送的offset,可选的,UE可以根据该offset确定k2的取值,其中,offset为小于k1的非负整数;k2为小于等于offset的非负整数;然后UE可以根据k2的取值来确定第二窄带。例如,假设k1=8,offset=4,假设此时k2值的集合为{0,1,2,3,4},那么此时UE可以确定第二窄带为窄带编号为NB RARmod N NB2、窄带编号为(NB RAR+1)mod N NB2的窄带和窄带编号为(NB RAR+2)mod N NB2的窄带、窄带编号为(NB RAR+3)mod N NB2的窄带和窄带编号为(NB RAR+4)mod N NB2的窄带。
需要说明的是,指示值集合可以包括的指示值类型有多种,上述示例仅仅是一些可能的实现方式,在实际应用中,只要是根据指示值集合来确定第二窄带的方案,都属于本申请保护的范围。
304、UE根据第二窄带确定信道状态信息。
305、UE向基站发送消息三。
306、基站向UE发送消息四。
步骤304至步骤306与前述图2中的步骤204至步骤206类似,具体此处不再赘述。
本申请实施例中,终端设备从网络设备接收第一信息和指示值集合,该第一信息用于确定第一资源,该指示值集合用于确定第二资源,该第二资源为该第一资源的非空真子集;然后该终端设备根据第一信息及指示值集合确定该第二资源,该第二资源包括该网络设备调度该终端设备重传Msg3以及该网络设备传输Msg4所使用的下行物理控制信道的资源;该终端设备根据该第二资源确定该信道状态信息,该终端设备向该网络设备发送 Msg3,该Msg3中包含该信道状态信息。通过本申请的技术方案,终端设备可以根据指示值集合以及第一信息确定第二资源,且该第二资源为该第一资源的非空真子集,然后根据该第二资源确定信道状态信息,即只需要对第二资源的信道状态进行测量,然后终端设备在Msg3中携带根据第二资源确定得到的信道状态信息并向该网络设备发送;因此,本申请中只需要对第二资源的信道状态进行测量,且该第二资源为该第一资源的非空真子集,也就是在测量周期内分配到第二资源的每个资源的信道状态的测量时间更长,那么对于第二资源的信道状态信息的测量更为精准,从而提高了下行质量测量的准确性。
请参阅图4,介绍本申请实施例通过方式三随机接入的方法实施例。本申请实施例中随机接入方法的一个实施例包括:
401、基站确定第一信息和窄带个数。
在随机接入的过程中,基站可以确定第一信息和窄带个数,其中,第一信息包括的内容具体参见前述图2中步骤201的相关描述,这里具体不再赘述。
基站可以根据预设规则确定窄带个数,该窄带个数大于零且小于k1,其中,在非EDT场景下k1=4,在EDT场景且处于CemodeB下,k1=8;在EDT场景且处于CemodeA下,k1=N NB,N NB为UE当前工作带宽所对应的窄带个数;
402、基站向UE发送第一信息和窄带个数。
基站确定了第一信息和窄带个数之后,基站可以向UE发送第一信息和窄带个数。需要说明的是,基站可以通过广播消息向UE发送第一信息和窄带个数,还可以通过其他消息类型发送该第一信息和窄带个数,具体此处不做限定。
403、UE根据第一信息以及窄带个数确定第二窄带。
UE可以根据第一信息确定第一窄带,具体UE可以根据第一信息确定第一窄带的过程可以参见前述图2中的步骤203中的相关描述,具体此处不再赘述。
UE可以根据第一信息和窄带个数确定第二窄带,具体可以是UE根据预设规则、窄带个数以及第一信息确定第二窄带,其中,第二窄带为第一窄带的非空真子集,第二窄带包括随机接入过程被TC-RNTI和/或C-RNTI所配置或加扰的下行物理控制信道的第一个子帧所使用的窄带。UE根据预设规则、窄带个数以及第一信息确定第二窄带,其中,预设规则的类型可以有多种,下面逐一举例说明,并说明UE根据对应的预设规则、窄带个数和第一信息确定第二窄带的过程:
a、预设规则为以NB RAR窄带为起始窄带通过等间隔的方式确定第二窄带;具体可以是:根据公式kx=floor(k1/k),ky=k1 mod k,其中,在非EDT场景下k1=4,在EDT场景且处于CemodeB下,k1=8,在EDT场景且处于CemodeA下,k1=N NB,N NB为UE当前工作带宽所对应的窄带个数;k为第二窄带的窄带个数(也就是基站通知的窄带个数);floor(x)为对x向下取整,那么可知当k3大于等于零且小于等于(ky)时,此时,k2=k3*(kx+1),k2为预设值,k3为第二窄带的窄带编号值;当k3大于等于(ky+1)且小于等于(k-1)时,那么k2=k3*kx+ky,k2为预设值,k3为窄带编号。下面通过举例说明:
示例一:在非EDT场景下,k1=4,那么当窄带个数为1时,此时kx=floor(4/1)=4,ky=4mod 1=0,那么可知k3=0,则k2=k3*(kx+1)=0,则窄带编号集合为(NB RAR+k2)mod N NB2=NB RARmod N NB2;当窄带个数为2时,此时kx=floor(4/2)=2,ky=4 mod 2=0,那么可知k3的取值为{0,1},则当k3=0时,k2=k3*(kx+1)=0;当k3=1时,k2=k3*kx+ky=1*2+0=2,那么第二窄带包括窄带编号为NB RARmod N NB2的窄带和窄带编号为(NB RAR+2)mod N NB2的窄带。其他窄带个数类似,具体不再一一说明。具体可以参阅表4所示在不同窄带个数的情况下,第二窄带所包括的窄带所对应的窄带编号:
表4
配置的窄带个数 第二窄带的窄带编号
1 (NB RAR+k2)mod N NB2,其中,k2=0
2 (NB RAR+k2)mod N NB2,其中,k2的取值为{0,1}
3 (NB RAR+k2)mod N NB2,其中,k2的取值为{0,1,2}
示例二:在覆盖增强级别为CEmodeB的EDT场景下,那么当窄带个数为1时,此时floor(8/1)=8,ky=8 mod 1=0,那么可知k3=0,则k2=k3*(kx+1)=0,则窄带编号集合为(NB RAR+k2)mod N NB2=NB RARmod N NB2;当窄带个数为2时,此时kx=floor(8/2)=4,ky=8 mod 2=0,那么可知k3的取值为{0,1},则当k3=0时,k2=k3*(kx+1)=0;当k3=1时,k2=k3*kx+ky=4;所以k2取值为{0,4}。其他窄带个数对应第二窄带的过程类似,具体不再一一说明。具体可以参阅表5所示在不同窄带个数的情况下,第二窄带所包括的窄带所对应的窄带编号:
表5
配置的窄带个数 第二窄带的窄带编号
1 (NB RAR+k2)mod N NB2,k2=0
2 (NB RAR+k2)mod N NB2,k2的取值为{0,4}
3 (NB RAR+k2)mod N NB2,k2的取值为{0,3,6}
4 (NB RAR+k2)mod N NB2,k2的取值为{0,2,4,6}
5 (NB RAR+k2)mod N NB2,k2的取值为{0,2,4,6,7}
6 (NB RAR+k2)mod N NB2,k2的取值为{0,2,4,5,6,7}
7 (NB RAR+k2)mod N NB2,k2的取值为{0,2,3,4,5,6,7}
示例三:在覆盖增强级别为CemodeA的EDT场景下,以当前工作带宽为20MHz,即当前工作带宽对应的第一窄带的窄带个数为16个;当窄带个数为1时,此时floor(16/1)=16,ky=16 mod 1=0,那么可知k3=0,则k2=k3*(kx+1)=0,则窄带编号集合为(NB RAR+k2)mod N NB2=NB RARmod N NB2;当窄带个数为2时,此时kx=floor(16/2)=8,ky=16 mod 2=0,那么可知k3的取值为{0,1},则当k3=0时,k2=k3*(kx+1)=0;当k3=1时,k2=k2=k3*kx+ky=8,因此,k2的取值为{0,8};其他窄带个数对应第二窄带的过程类似,具体不再一一说明。具体可以参阅表6所示在不同窄带个数的情况下,第二窄带所包括的窄带所对应的窄带编号:
表6
Figure PCTCN2018108436-appb-000007
b、预设规则为以中心窄带对称的形式,当窄带个数k为偶数时,则k2={0,k-1,1,k1-2….k/2-1,k1-k/2},如果窄带个数k为奇数,则k2={0,k1-1,1,k1-2…ceil(k/2)-1}。其中,在非EDT场景下k1=4,在EDT场景且处于CemodeB下,k1=8,在EDT场景且处于CemodeA下,k1=N NB,N NB为UE当前工作带宽所对应的窄带个数;函数ceil(x)为对x进行向上取整操作;那么可知,第二窄带为(NB RAR+k2)mod N NB2。例如,k1=4,k=2时,k2取值为{0,3},那么第二窄带为窄带编号为NB RARmod N NB2的窄带和窄带编为(NB RAR+3)mod N NB2的窄带;当k1=4,k=3时,则k2取值为{0,3,1},那么UE可以确定第二窄带为窄带编号为NB RARmod N NB2的窄带、窄带编号为(NB RAR+1)mod N NB2的窄带和窄带编号为(NB RAR+3)mod N NB2的窄带。
其中,通过a和b两种预设规则确定的第二窄带,由于为传输Msg4的下行物理控制信道所分配的窄带与Msg2有一定的频率间隔,因此,传输Msg4的下行物理控制信道的窄带与Msg2的窄带同时进入深衰落的可能性较低,增强了传输Msg4的下行物理控制信道所使用的窄带的鲁棒性;其次,对称结构进行取值是一种较为自然的取值方式。
c、预设规则为取第一窄带中窄带编号按从小到大顺序的k个窄带,假设此时配置k个窄带,那么UE可以确定的窄带集合为(NB RAR+k2)mod N NB2,其中k2为大于等于零且小于(k2-1);例如,k=2,则k2的取值为{0,1},那么所确定的窄带集合为(NB RAR+k2)mod N NB2,即UE可以确定第二窄带为窄带编号为NB RARmod N NB2的窄带和窄带编号为(NB RAR+1)mod N NB2的窄带。而通过这种预设规则确定的第二窄带,可以使得对于第二窄带的每个窄带的测量频率间隔短,相关性更强一些,测量结果更准确,并且对于第二窄带中每个窄带进行信道状态测量完成时切换至该第二窄带中下一个窄带所需要切换时间较短,即returning时间较短。
需要说明的是,预设规则可以还可以包括除上述举例说明以外的其他多种规则,上述示例仅仅是一些可能的实现方式,与上述示例的预设规则得到相同结果的任何公式、表格、其他对应关系或者其他预定义的规则等,都属于本申请保护的范围。
本实施例中,通过举例的方式说明了终端设备通过窄带个数来确定第二窄带的技术方案,而在实际应用中,只要是根据窄带个数来确定第二窄带的方案,都属于本申请保护的范围。
404、UE根据第二窄带确定信道状态信息。
405、UE向基站发送消息三。
406、基站向UE发送消息四。
步骤404至步骤406与前述图2中的步骤204至步骤206类似,具体此处不再赘述。
另外,需要说明的是,第二信息也可以是窄带比例值,可选的,该窄带比例值为第二窄带的窄带个数与第一窄带的窄带个数的比值,然后UE接收到该窄带比例值之后,终端设备可以根据该窄带比例值以及以及第一信息确定第二窄带的窄带个数,也可以根据窄带比例值以及协议中的预设值或网络设备配置的预设值来确定第二窄带的窄带个数,可选的, 协议中的预设值可以是指在非EDT场景下,该预设值为4,在CemodeB的EDT场景下,该预设值为8,而在CemodeA的EDT场景下,该预设值为N NB,N NB为UE当前工作带宽所对应的窄带个数,终端设备还可以通过其他方式确定第二窄带的窄带个数,具体此处不做限定。然后UE按照前述图4中的步骤403至步骤406确定第二窄带、测量信道状态信息以及在消息三中携带信道状态信息,具体此处不再赘述。
需要说明的是,上述举例说明了终端设备通过窄带比例值来确定第二窄带的技术方案,而在实际应用中,只要是根据该窄带比例值来确定第二窄带的方案,都属于本申请保护的范围。
本申请实施例中,终端设备从网络设备接收第一信息和窄带个数,该第一信息用于确定第一资源,该窄带个数用于确定第二资源,该第二资源为该第一资源的非空真子集;然后该终端设备根据第一信息及窄带个数确定该第二资源,该第二资源包括该网络设备调度该终端设备重传消息三以及该网络设备传输消息四所使用的下行物理控制信道的资源;该终端设备根据该第二资源确定该信道状态信息,该终端设备向该网络设备发送消息三,该消息三中包含该信道状态信息。通过本申请的技术方案,终端设备可以根据窄带个数以及第一信息确定第二资源,且该第二资源为该第一资源的非空真子集,然后根据该第二资源确定信道状态信息,即只需要对第二资源的信道状态进行测量,然后终端设备在消息三中携带根据第二资源确定得到的信道状态信息并向该网络设备发送;因此,本申请中只需要对第二资源的信道状态进行测量,且该第二资源为该第一资源的非空真子集,也就是在测量周期内分配到第二资源的每个资源的信道状态的测量时间更长,那么对于第二资源的信道状态信息的测量更为精准,从而提高了下行质量测量的准确性。
上面对本申请实施例中的随机接入方法进行了描述,下面对本申请实施例中提供的一种随机接入装置进行描述,请参阅图5,本申请实施例中随机接入装置的一个实施例包括:
收发模块501,用于从网络设备接收第一信息和第二信息,该第一信息对应第一资源,该第二信息用于确定第二资源,该第二资源为该第一资源的非空真子集;
处理模块502,用于根据该第一信息及第二信息确定第二资源,该第二资源包括该网络设备调度该终端设备重传消息三以及该网络设备传输消息四所使用的下行物理控制信道所使用的资源;以及用于根据该第二资源确定信道状态信息;
该收发模块501,还用于向该网络设备发送消息三,该消息三中包含该信道状态信息。
本实施例中,该第二信息包括前导码的相关信息,该前导码的相关信息包括传输前导码的频率资源、传输前导码的时间资源和前导码序列中的至少一种;该处理模块502用于根据该第一信息及第二信息确定该第二资源可以包括:用于根据该前导码的相关信息及该第一信息确定该第二资源。
本实施例中,该第二信息包括指示值集合,该指示值集合包括至少一个指示值;该处理模块502用于根据该第一信息及第二信息确定该第二资源可以包括:用于根据该指示值集合及该第一信息,确定该第二资源。
本实施例中,该收发模块501具体用于:
从该网络设备接收系统消息,该系统消息携带该指示值集合。
本实施例中,该系统消息还携带第一信息。
本实施例中,该第二信息包括窄带个数或者窄带比例值,该窄带个数为大于零的整数,该窄带比例值大于零且小于一;该处理模块502用于根据该第一信息及第二信息确定该第二资源可以包括:用于根据该窄带个数及该第一信息,确定该第二资源;或者;根据该窄带比例值及该第一信息,确定该第二资源。
本实施例中,该收发模块501具体用于:
从该网络设备接收广播消息,该广播消息携带该窄带个数或者携带该窄带比例值。
本实施例中,该广播消息还携带第一信息。
本实施例中,该信道状态信息包括以下之一或组合:信道质量指示值,传输参考信道信息的重复次数,RSRQ及RSRP,也可以是其他能够表征信道质量信息的参数,本文不做具体限定。
本实施例中,该信道状态信息包括该第二资源的信道状态信息的平均值,或者第二资源的信道状态信息的加权平均值,或者第三资源的信道状态信息,或者第三资源的信道状态信息的加权平均值,该第三资源为该第二资源的一部分或者全部。
本实施例中,该收发模块501还用于:接收该网络设备发送的随机接入响应授权;该处理模块502还用于:根据该随机接入响应授权确定目标资源,该目标资源为该第二资源的非空子集;
该收发模块501发送的该消息三中包含该目标资源的信道状态信息。
本实施例中,该收发模块501还用于接收该网络设备发送的随机接入响应授权;该处理模块502还用于根据该随机接入响应授权确定目标资源;
当该目标资源不在该第二资源中时,该收发模块501发送的消息三携带该目标资源的信道状态信息。
本实施例中,该收发模块501还用于接收该网络设备发送的随机接入响应授权;该处理模块502还用于根据该随机接入响应授权确定目标资源;
当该目标资源不在该第二资源中时,该收发模块501发送的该消息三不携带信道状态信息。
本申请实施例中,收发模块501从网络设备接收第一信息和第二信息,该第一信息用于确定第一资源,该第二信息用于确定第二资源,该第二资源为该第一资源的非空真子集;然后该处理模块502根据第一信息及第二信息确定该第二资源,该第二资源包括该网络设备调度该终端设备重传消息三以及该网络设备传输消息四所使用的下行物理控制信道的资源;该处理模块502根据该第二资源确定该信道状态信息,该收发模块501向该网络设备发送消息三,该消息三中包含该信道状态信息。通过本申请的技术方案,处理模块502可以根据第二信息以及第一信息确定第二资源,且该第二资源为该第一资源的非空真 子集,然后根据该第二资源确定信道状态信息,即只需要对第二资源的信道状态进行测量,然后收发模块501在消息三中携带根据第二资源确定得到的信道状态信息并向该网络设备发送;因此,本申请中只需要对第二资源的信道状态进行测量,且该第二资源为该第一资源的非空真子集,也就是在测量周期内分配到第二资源的每个资源的信道状态的测量时间更长,那么对于第二资源的信道状态信息的测量更为精准,从而提高了下行质量测量的准确性。
上面对本申请实施例中的随机接入方法进行了描述,下面对本申请实施例中提供的一种随机接入装置进行描述,请参阅图6,本申请实施例中随机接入装置的一个实施例包括:
处理模块601,用于确定第一信息和第二信息,该第一信息对应第一资源,该第二信息用于确定第二资源,该第二资源为该第一资源的非空真子集,该第二资源包括该随机接入装置调度该终端设备重传消息三以及该网络设备传输消息四所使用的下行物理控制信道所使用的资源;
收发模块602,用于向终端设备发送该第一信息和该第二信息;
该收发模块602,还用于接收该终端设备发送的消息三,该消息三中包含信道状态信息,该信道状态信息与该第二资源相关。
本实施例中,该第二信息可以包括前导码的相关信息,该前导码的相关信息可以包括传输该前导码的频率资源、传输该前导码的时间资源和该前导妈的随机接入序列中的至少一种。
本实施例中,该第二信息可以包括指示值集合,该指示值集合可以包括指示一个指示值。
本实施例中,该收发模块602用于:
向终端设备发送系统消息,该系统消息携带该指示值集合。
本实施例中,该系统消息还携带该第一信息。
本实施例中,该第二信息可以包括窄带个数或者窄带比例值,该窄带个数为大于零的整数,该窄带比例值大于零且小于一。
本实施例中,该收发模块602用于:
向终端设备发送广播消息,该广播消息携带该窄带个数或者携带该窄带比例值。
本实施例中,该广播消息还携带该第一信息。
本实施例中,该信道状态信息可以包括以下之一或者组合:信道质量指示值,传输参考信道信息的重复次数,RSRQ及RSRP,也可以是其他能够表征信道质量信息的参数,本文不做具体限定。
本实施例中,该信道状态信息可以包括该第二资源的信道状态信息的平均值,或者第二资源的信道状态信息的加权平均值,或者第三资源的信道状态信息,或者第三资源的信道状态信息的加权平均值,该第三资源为该第二资源的一部分或者全部。
本实施例中,该收发模块602还用于向该终端设备发送随机接入响应授权,该随机接 入响应授权指示的目标资源为该第二资源的非空子集;
该收发模块602接收的消息三包含目标资源的信道状态信息。
本实施例中,该收发模块602还用于:
向该终端设备发送随机接入响应授权;
当该随机接入响应授权所指示的目标资源不在该第二资源中时,该收发模块602接收的消息三包含有该目标资源的目标信道状态信息。
本实施例中,该收发模块602还用于:
向该终端设备发送随机接入响应授权;
当该随机接入响应授权所指示的目标资源不在该第二资源中时,该收发模块602接收的消息三不包含信道状态信息。
本实施例中,处理模块601可以确定第一信息和第二信息,然后收发模块602向终端设备发送第一信息和第二信息,收发模块602可以接收终端设备发送的消息三,该消息三包含信道状态信息,该信道状态信息为该终端设备根据第二资源确定的;即终端设备只需要对第二资源的信道状态进行测量,且该第二资源为该第一资源的非空真子集,也就是在测量周期内分配到第二资源的每个资源的信道状态的测量时间更长,那么对于第二资源的信道状态信息的测量更为精准,从而提高了下行质量测量的准确性。
本申请实施例还提供了一种UE,该UE可以为随机接入装置,如图7所示,为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。该终端设备可以为包括手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑等任意终端设备,以终端设备为手机为例:
图7示出的是与本发明实施例提供的终端设备相关的手机的部分结构的框图。参考图7,手机包括:射频(Radio Frequency,RF)电路1110、存储器1120、输入单元1130、显示单元1140、传感器1150、音频电路1160、无线保真(wireless fidelity,WiFi)模块1170、处理器1180、以及电源1190等部件。本领域技术人员可以理解,图7中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
前述实施例中的处理模块502具体可以是本实施例中的处理器1180,因此该处理器1180的具体实现不再赘述。
本申请还提供一种随机接入装置800,请参阅图8,本申请实施例中随机接入装置一个实施例包括:
处理器801、存储器802、输入输出设备803以及总线804;
一种可能的实现方式中,该处理器801、存储器802、输入输出设备803分别与总线804相连,该存储器中存储有计算机指令。
前述实施例中的处理模块601具体可以是本实施例中的处理器801,因此该处理器801的具体实现不再赘述。前述实施例中的收发模块602则具体可以是本实施例中的输入输出设备803。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在另一种可能的设计中,当该网络设备或者终端设备为终端内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述第一方面或者第二方面任意一项的随机接入方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific intergrated circuit,ASIC),或一个或多个用于控制上述第一方面的数据处理方法的程序执行的集成电路。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (30)

  1. 一种随机接入方法,其特征在于,所述方法包括:
    终端设备从网络设备接收第一信息和第二信息,所述第一信息对应第一资源,所述第二信息用于确定第二资源,所述第二资源为所述第一资源的非空真子集;
    所述终端设备根据所述第一信息及所述第二信息确定所述第二资源,所述第二资源包括网络设备调度所述终端设备重传消息三以及所述网络设备传输消息四所使用的下行物理控制信道所使用的资源;
    所述终端设备根据所述第二资源确定信道状态信息;
    所述终端设备向所述网络设备发送消息三,所述消息三中包含所述信道状态信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第二信息包括前导码的相关信息,所述前导码的相关信息包括传输前导码的频率资源、传输所述前导码的时间资源和前导码序列中的至少一种;
    所述终端设备根据所述第一信息及所述第二信息确定所述第二资源包括:
    所述终端设备根据所述前导码的相关信息及所述第一信息确定所述第二资源。
  3. 根据权利要求1所述的方法,其特征在于,所述第二信息包括指示值集合,所述指示值集合包括至少一个指示值;
    所述终端设备根据所述第一信息及所述第二信息确定所述第二资源包括:
    所述终端设备根据所述指示值集合及所述第一信息,确定所述第二资源。
  4. 根据权利要求1所述的方法,其特征在于,所述第二信息包括窄带个数或者窄带比例值,所述窄带个数为大于零的整数,所述窄带比例值大于零且小于一;
    所述终端设备根据所述第一信息及所述第二信息确定所述第二资源包括:
    所述终端设备根据所述窄带个数及所述第一信息,确定所述第二资源;
    或者;
    所述终端设备根据所述窄带比例值及所述第一信息,确定所述第二资源。
  5. 根据权利要求1至4中的任一项所述的方法,其特征在于,所述信道状态信息包括以下之一或组合:信道质量指示值,传输参考信道信息的重复次数,参考信号接收质量RSRQ,及参考信号接收功率RSRP。
  6. 根据权利要求1至5中的任一项所述的方法,其特征在于,所述信道状态信息包括所述第二资源的信道状态信息的平均值或者第三资源的信道状态信息,所述第三资源为所述第二资源的一部分或者全部。
  7. 根据权利要求1至6中的任一项所述的方法,其特征在于,所述终端设备接收网络设备发送的第一信息和第二信息之后,所述终端设备向所述网络设备发送消息三之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的随机接入响应授权;
    所述终端设备根据所述随机接入响应授权确定目标资源,所述目标资源为所述第二资 源的非空子集;
    所述终端设备向所述网络设备发送消息三包括:
    所述终端设备向所述网络设备发送消息三,所述消息三中包含所述目标资源的信道状态信息。
  8. 一种随机接入方法,其特征在于,所述方法包括:
    网络设备确定第一信息和第二信息,所述第一信息对应第一资源,所述第二信息用于确定第二资源,所述第二资源为所述第一资源的非空真子集,所述第二资源包括所述网络设备调度终端设备重传消息三以及所述网络设备传输消息四所使用的下行物理控制信道所使用的资源;
    网络设备向终端设备发送所述第一信息和所述第二信息;
    所述网络设备接收所述终端设备发送的消息三,所述消息三中包含信道状态信息,所述信道状态信息与所述第二资源相关。
  9. 根据权利要求8所述的方法,其特征在于,所述第二信息包括前导码的相关信息,所述前导码的相关信息包括传输前导码的频率资源、传输所述前导码的时间资源和前导码序列中的至少一种。
  10. 根据权利要求8所述的方法,其特征在于,所述第二信息包括指示值集合,所述指示值集合包括至少一个指示值。
  11. 根据权利要求8所述的方法,其特征在于,所述第二信息包括窄带个数或者窄带比例值,所述窄带个数为大于零的整数,所述窄带比例值大于零且小于一。
  12. 根据权利要求8至11中的任一项所述的方法,其特征在于,所述信道状态信息包括以下之一或组合:信道质量指示值,传输参考信道信息的重复次数,参考信号接收质量RSRQ,及参考信号接收功率RSRP。
  13. 根据权利要求8至12中的任一项所述的方法,其特征在于,所述信道状态信息包括所述第二资源的信道状态信息的平均值或者第三资源的信道状态信息,所述第三资源为所述第二资源的一部分或者全部。
  14. 根据权利要求8至13中的任一所述的方法,其特征在于,所述网络设备向所述终端设备发送第一信息和第二信息之后,所述网络设备接收所述终端设备发送的消息三之前,所述方法还包括:
    所述网络设备向所述终端设备发送随机接入响应授权,所述随机接入响应授权指示的目标资源为所述第二资源的非空子集;
    所述网络设备接收所述终端设备发送的消息三包括:
    所述网络设备接收所述终端设备发送的消息三,所述消息三中包含所述目标资源的信道状态信息。
  15. 一种随机接入装置,其特征在于,所述随机接入装置包括:
    收发模块,用于从网络设备接收第一信息和第二信息,所述第一信息对应第一资源, 所述第二信息用于确定第二资源,所述第二资源为所述第一资源的非空真子集;
    处理模块,用于根据所述第一信息及所述第二信息确定所述第二资源,所述第二资源包括网络设备调度所述终端设备重传消息三以及所述网络设备传输消息四所使用的下行物理控制信道所使用的资源;以及用于根据所述第二资源确定信道状态信息;
    所述收发模块,还用于向所述网络设备发送消息三,所述消息三中包含所述信道状态信息。
  16. 根据权利要求15所述的随机接入装置,其特征在于,所述第二信息包括前导码的相关信息,所述前导码的相关信息包括传输前导码的频率资源、传输所述前导码的时间资源和前导码序列中的至少一种;所述处理模块用于根据所述第一信息及所述第二信息确定所述第二资源包括:用于根据所述前导码的相关信息及所述第一信息确定所述第二资源。
  17. 根据权利要求15所述的随机接入装置,其特征在于,所述第二信息包括指示值集合,所述指示值集合包括至少一个指示值;所述处理模块用于根据所述第一信息及所述第二信息确定所述第二资源包括:用于根据所述指示值集合及所述第一信息,确定所述第二资源。
  18. 根据权利要求15所述的随机接入装置,其特征在于,所述第二信息包括窄带个数或者窄带比例值,所述窄带个数为大于零的整数,所述窄带比例值大于零且小于一;所述处理模块用于根据所述第一信息及所述第二信息确定所述第二资源包括:用于根据所述窄带个数及所述第一信息,确定所述第二资源;或者;根据所述窄带比例值及所述第一信息,确定所述第二资源。
  19. 根据权利要求15至18中的任一项所述随机接入装置,其特征在于,所述信道状态信息包括以下之一或组合:信道质量指示值,传输参考信道信息的重复次数,参考信号接收质量RSRQ,及参考信号接收功率RSRP。
  20. 根据权利要求15至19中的任一项所述的随机接入装置,其特征在于,所述信道状态信息包括所述第二资源的信道状态信息的平均值或者第三资源的信道状态信息,所述第三资源为所述第二资源的一部分或者全部。
  21. 根据权利要求15至20中的任一项所述的随机接入装置,其特征在于,
    所述收发模块还用于:接收所述网络设备发送的随机接入响应授权;
    所述处理模块还用于:根据所述随机接入响应授权确定目标资源,所述目标资源为所述第二资源的非空子集;
    所述收发模块发送的所述消息三中包含所述目标资源的信道状态信息。
  22. 一种随机接入装置,其特征在于,所述随机接入装置包括:
    处理模块,用于确定第一信息和第二信息,所述第一信息对应第一资源,所述第二信息用于确定第二资源,所述第二资源为所述第一资源的非空真子集,所述第二资源包括所述网络设备调度终端设备重传消息三以及所述网络设备传输消息四所使用的下行物理控制信道所使用的资源;
    收发模块,用于向终端设备发送所述第一信息和所述第二信息;
    所述收发模块,还用于接收所述终端设备发送的消息三,所述消息三中包含信道状态信息,所述信道状态信息与所述第二资源相关。
  23. 根据权利要求22所述的随机接入装置,其特征在于,所述第二信息包括前导码的相关信息,所述前导码的相关信息包括传输前导码的频率资源、传输所述前导码的时间资源和前导码序列中的至少一种。
  24. 根据权利要求22所述的随机接入装置,其特征在于,第二信息包括指示值集合,所述指示值集合包括至少一个指示值。
  25. 根据权利要求22所述的随机接入装置,其特征在于,所述第二信息包括窄带个数或者窄带比例值,所述窄带个数为大于零的整数,所述窄带比例值大于零且小于一。
  26. 根据权利要求22至25中的任一项所述的随机接入装置,其特征在于,所述信道状态信息包括以下之一或组合:信道质量指示值,传输参考信道信息的重复次数,参考信号接收质量RSRQ,及参考信号接收功率RSRP。
  27. 根据权利要求22至26中的任一项所述的随机接入装置,其特征在于,所述信道状态信息包括所述第二资源的信道状态信息的平均值或者第三资源的信道状态信息,所述第三资源为所述第二资源的一部分或者全部。
  28. 根据权利要求22至27中的任一项所述的随机接入装置,其特征在于,所述收发模块还用于:向所述终端设备发送随机接入响应授权,所述随机接入响应授权指示的目标资源为所述第二资源的非空子集;
    所述收发模块接收的所述消息三中包含所述目标资源的信道状态信息。
  29. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行如权利要求1至14中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至14中任一项所述的方法。
PCT/CN2018/108436 2018-09-28 2018-09-28 随机接入方法以及随机接入装置 WO2020062070A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880098142.2A CN112753179B (zh) 2018-09-28 2018-09-28 随机接入方法以及随机接入装置
PCT/CN2018/108436 WO2020062070A1 (zh) 2018-09-28 2018-09-28 随机接入方法以及随机接入装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108436 WO2020062070A1 (zh) 2018-09-28 2018-09-28 随机接入方法以及随机接入装置

Publications (1)

Publication Number Publication Date
WO2020062070A1 true WO2020062070A1 (zh) 2020-04-02

Family

ID=69952762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108436 WO2020062070A1 (zh) 2018-09-28 2018-09-28 随机接入方法以及随机接入装置

Country Status (2)

Country Link
CN (1) CN112753179B (zh)
WO (1) WO2020062070A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115669167A (zh) * 2020-05-26 2023-01-31 深圳传音控股股份有限公司 数据传输方法、设备及计算机可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117979456A (zh) * 2022-10-19 2024-05-03 华为技术有限公司 一种随机接入方法以及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052065A (zh) * 2013-01-16 2015-11-11 高通股份有限公司 用于长期演进机器类型通信的信道状态信息以及自适应调制和编码设计
CN105532060A (zh) * 2013-09-27 2016-04-27 联发科技(新加坡)私人有限公司 上报信道状态的方法
CN105991220A (zh) * 2015-01-30 2016-10-05 中兴通讯股份有限公司 Ue上报csi及触发ue上报csi的方法和装置
WO2018084571A1 (en) * 2016-11-01 2018-05-11 Lg Electronics Inc. Method and apparatus for configuring subband aggregation in nr carrier in wireless communication system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8755791B2 (en) * 2012-05-11 2014-06-17 Blackberry Limited Method and system for low power downlink transmission in heterogeneous networks
US9264997B2 (en) * 2012-07-03 2016-02-16 Qualcomm Incorporated Apparatus and methods of energy efficient communication
CN104041165B (zh) * 2013-01-04 2018-05-04 华为技术有限公司 一种数据传输方法、装置、网络设备及用户设备
EP3089542B1 (en) * 2014-01-24 2021-06-09 Huawei Technologies Co., Ltd. Random access method and device
US10149307B2 (en) * 2014-08-01 2018-12-04 Samsung Electronics Co., Ltd. Method and apparatus for providing feedback between base transceiver stations through cooperative communication in wireless communication system
CN111556571B (zh) * 2015-11-11 2023-11-14 华为技术有限公司 传输调度信息的方法和装置
EP3531784B1 (en) * 2016-12-26 2020-09-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Random access method and apparatus
CN109644432B (zh) * 2016-12-30 2021-01-12 Oppo广东移动通信有限公司 用于随机接入的方法和装置
EP3668247A4 (en) * 2017-08-10 2021-03-10 Beijing Xiaomi Mobile Software Co., Ltd. RANDOM ACCESS PROCESS AND DEVICE, USER EQUIPMENT, AND BASE STATION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052065A (zh) * 2013-01-16 2015-11-11 高通股份有限公司 用于长期演进机器类型通信的信道状态信息以及自适应调制和编码设计
CN105532060A (zh) * 2013-09-27 2016-04-27 联发科技(新加坡)私人有限公司 上报信道状态的方法
CN105991220A (zh) * 2015-01-30 2016-10-05 中兴通讯股份有限公司 Ue上报csi及触发ue上报csi的方法和装置
WO2018084571A1 (en) * 2016-11-01 2018-05-11 Lg Electronics Inc. Method and apparatus for configuring subband aggregation in nr carrier in wireless communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115669167A (zh) * 2020-05-26 2023-01-31 深圳传音控股股份有限公司 数据传输方法、设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN112753179B (zh) 2022-06-14
CN112753179A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2019206075A1 (zh) 一种多播传输方法和通信设备
US10939410B2 (en) Communication method, user equipment, and network device
WO2019213841A1 (zh) 无线通信的方法、终端设备和网络设备
US20210250899A1 (en) Paging Method, Terminal Device, And Network Device
WO2018098790A1 (zh) 测量方法、终端设备和网络设备
US20160278127A1 (en) A Network Node, a User Equipment and Methods Therein for Random Access
TW201830889A (zh) 通信方法、終端設備和網絡設備
US11540329B2 (en) Information transmission method, terminal device, and network device
WO2020078318A1 (zh) 通信方法及装置
KR20230002537A (ko) 포지셔닝 신호 처리 방법 및 장치
JP2021527966A (ja) 情報決定方法、端末機器及びネットワーク機器
WO2016149920A1 (zh) 一种终端设备、网络设备,以及寻呼消息的传输方法
AU2020206899B2 (en) Method and apparatus for two-step random access procedure
WO2020062070A1 (zh) 随机接入方法以及随机接入装置
CN111162885A (zh) 一种多频段指示方法和通信设备
WO2020088189A1 (en) Method and apparatus for lbt option selection for wideband operation
US9924497B2 (en) Method for transmitting signal in device-to-device proximity service, base station, and user equipment
CN111937472A (zh) 一种数据发送方法、信息发送方法及装置
JP2018074192A (ja) 無線通信システム、基地局装置、無線通信制御装置及び無線通信制御方法
WO2022031457A1 (en) Physical random access channel for new radio positioning
EP3764709A1 (en) Information transmission method and device
US11218994B2 (en) Method for demodulating shared reference signal, terminal device, and network device
WO2018137246A1 (zh) 终端设备定位方法以及网络设备
WO2020199038A1 (zh) 一种数据传输方法和设备
WO2019192008A1 (zh) 一种信息发送的方法、信息接收的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935561

Country of ref document: EP

Kind code of ref document: A1