WO2020199038A1 - 一种数据传输方法和设备 - Google Patents

一种数据传输方法和设备 Download PDF

Info

Publication number
WO2020199038A1
WO2020199038A1 PCT/CN2019/080668 CN2019080668W WO2020199038A1 WO 2020199038 A1 WO2020199038 A1 WO 2020199038A1 CN 2019080668 W CN2019080668 W CN 2019080668W WO 2020199038 A1 WO2020199038 A1 WO 2020199038A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
control information
identification information
bit
transmission block
Prior art date
Application number
PCT/CN2019/080668
Other languages
English (en)
French (fr)
Inventor
余政
毕文平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980094454.0A priority Critical patent/CN113692761B/zh
Priority to PCT/CN2019/080668 priority patent/WO2020199038A1/zh
Priority to EP19922347.0A priority patent/EP3937560A4/en
Publication of WO2020199038A1 publication Critical patent/WO2020199038A1/zh
Priority to US17/487,995 priority patent/US20220021487A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a data transmission method and device.
  • the data channel may be a physical downlink data channel or a physical uplink data channel.
  • one CI can be used to schedule multiple data channels, or one CI can be used to schedule multiple transmission blocks.
  • bit overhead of the CI scheduling transport block is too large. Especially considering the high reliability of the control channel performance, too much bit overhead requires more transmission resources. How to reduce the indication overhead of the CI scheduling transport block is still waiting for solution.
  • the embodiments of the present application provide a data transmission method and device, which are used to reduce the indication overhead of a CI scheduling transmission block and reduce the occupation of transmission resources.
  • an embodiment of the present application provides a data transmission method, including: a first communication device receives identification information sent by a second communication device; when the identification information indicates that one piece of control information can be used for scheduling multiple transmission blocks, Acquiring, by the first communication device, transmission block allocation information sent by the second communication device, where the transmission block allocation information indicates the number N of transmission blocks scheduled by the control information and the bit status corresponding to each transmission block; According to the identification information and the bit status corresponding to each transmission block, the first communication device uses at least one transmission block indicated by the control information to send data to the second communication device or receive the first communication device. 2.
  • the at least one transmission block belongs to the N transmission blocks; or, when the identification information indicates that one control information can only be used for scheduling of one transmission block, the first communication device obtains all The HARQ process index information of the hybrid automatic repeat request sent by the second communication device, where the HARQ process index information indicates the HARQ process index corresponding to a transport block scheduled by the control information; the first communication device is based on the The identification information and the HARQ process index corresponding to the one transmission block are used to send data to the second communication device or receive data sent by the second communication device.
  • the second communication device in order to enable the first communication device to obtain the number of transmission blocks determined by the second communication device, the second communication device may generate identification information and send the identification information to the first communication device, thereby This enables the first communication device to obtain the number of transmission blocks determined by the second communication device according to the received identification information.
  • the identification information generated by the second communication device in the embodiment of the present application may be used to indicate that one control information can be used for scheduling of multiple transmission blocks, or one control information can only be used for one transmission block
  • the second communication device further sends transmission block allocation information, or when the number of transmission blocks indicated by the identification information is one, the second communication device further sends HARQ process index information .
  • the bit overhead of control information can be optimized, and the transmission performance of control information can be improved.
  • receiving, by the first communication device, the identification information sent by the second communication device includes: receiving, by the first communication device, control information sent by the second communication device, the control information Including the identification information; or, the first communication device receives high-level signaling sent by the second communication device, and the high-level signaling includes the identification information.
  • the second communication device may use multiple methods to send the identification information. For example, the second communication device may use high-level signaling, which may include identification information, so that the first communication device may receive the high-level signaling, and the identification information generated by the second communication device may be obtained by parsing the high-level signaling.
  • the second communication device may use physical layer signaling, which may include identification information, so that the first communication device can receive the physical layer signaling, and by analyzing the physical layer signaling, the second communication device generates The identification information.
  • the physical layer signaling may be the aforementioned control information, and further, the control information may include identification information.
  • an embodiment of the present application also provides a data transmission method, including: a second communication device generates identification information, the identification information is used to indicate that one piece of control information can be used for scheduling of multiple transmission blocks, or one piece of control information Can only be used for scheduling of one transmission block; when the identification information indicates that one control information can be used for scheduling of multiple transmission blocks, the second communication device sends the identification information and the transmission block to the first communication device Allocation information, where the transmission block allocation information indicates the number of transmission blocks scheduled by the control information N and the bit status corresponding to each transmission block; the second communication device according to the bit status corresponding to each transmission block Using at least one transmission block indicated by the control information to send data to the first communication device or receive data sent by the first communication device, the at least one transmission block belongs to the N transmission blocks; or When the identification information indicates that one control information can only be used for scheduling of one transmission block, the second communication device sends the identification information and the hybrid automatic repeat request HARQ process index information to the first communication device, where The HARQ process index
  • the sending, by the second communication device, the identification information to the first communication device includes: the second communication device sending control information to the first communication device, the The control information includes the identification information; or, the second communication device sends high-layer signaling to the first communication device, and the high-layer signaling includes the identification information.
  • the second communication device may use multiple methods to send the identification information. For example, the second communication device may use high-level signaling, which may include identification information, so that the first communication device may receive the high-level signaling, and the identification information generated by the second communication device may be obtained by parsing the high-level signaling.
  • the second communication device may use physical layer signaling, which may include identification information, so that the first communication device can receive the physical layer signaling, and by analyzing the physical layer signaling, the second communication device generates The identification information.
  • the physical layer signaling may be the aforementioned control information, and further, the control information may include identification information.
  • an embodiment of the present application provides a communication device.
  • the communication device is specifically a first communication device.
  • the first communication device includes: a processing module and a transceiver module, wherein the processing module is configured to The transceiver module receives the identification information sent by the second communication device; the processing module is further used for the identification information indicating that one piece of control information can be used for scheduling of multiple transmission blocks, obtain the second The transmission block allocation information sent by the communication device, wherein the transmission block allocation information indicates the number N of transmission blocks scheduled by the control information and the bit status corresponding to each transmission block; according to the identification information and each transmission block The bit status corresponding to the block, using at least one transmission block indicated by the control information, sending data to the second communication device through the transceiver module, or receiving data sent by the second communication device through the transceiver module, The at least one transmission block belongs to the N transmission blocks; or, the processing module is further used for when the identification information indicates that a piece of control information can only be used for scheduling of one transmission block, obtain the second
  • the processing module is configured to receive control information sent by the second communication device through the transceiver module, and the control information includes the identification information; or, through the The transceiver module receives high-level signaling sent by the second communication device, where the high-level signaling includes the identification information.
  • the component modules of the first communication device can also perform the steps described in the first aspect and various possible implementations. For details, see the first aspect and various possible implementations described above. In the description.
  • an embodiment of the present application provides a communication device, the communication device is specifically a second communication device, the second communication device includes: a processing module and a transceiver module, wherein the processing module is configured to generate an identifier Information, the identification information is used to indicate that one piece of control information can be used for scheduling of multiple transmission blocks, or one piece of control information can only be used for the scheduling of one transmission block; the processing module is also used for the identification information to indicate one
  • the identification information and transmission block allocation information are sent to the first communication device through the transceiver module, wherein the transmission block allocation information indicates the control information scheduling The number N of transmission blocks and the bit status corresponding to each transmission block; according to the bit status corresponding to each transmission block, at least one transmission block indicated by the control information is used to send to the first transmission block through the transceiver module
  • the communication device sends data, or receives data sent by the first communication device through the transceiver module, and the at least one transmission block belongs to
  • the processing module is configured to send control information to the first communication device through the transceiver module, and the control information includes the identification information; or, through the transceiver module The module sends high-level signaling to the first communication device, where the high-level signaling includes the identification information.
  • the component modules of the second communication device can also execute the steps described in the foregoing second aspect and various possible implementations. For details, see the foregoing description of the second aspect and various possible implementations. In the description.
  • the control information when the identification information indicates that one piece of control information can be used for scheduling of multiple transmission blocks, the control information further includes the Transmission block allocation information; or, when the identification information indicates that one piece of control information can only be used to schedule one transmission block, the control information further includes the HARQ process index information.
  • the control information has at least two different bit structures.
  • the control information is DCI, and one DCI indicates the transmission of multiple TBs.
  • the DCI information can carry transmission block allocation information.
  • the first communication device can obtain the transmission through the DCI information.
  • one DCI can also schedule transmission of only one TB, the DCI information can carry HARQ process index information, and the first communication device can obtain the HARQ process index information through the DCI information.
  • the transmission block allocation information includes M bits, and the M bits are b 0 , b 1 ,..., b ( M-1) , and the b 0 is the leftmost bit among the M bits, b (M-1) is the rightmost bit among the M bits; among the M bits
  • the transmission block allocation information includes M bits, and the value of M can be determined in a specific scenario, for example, according to the transmission capabilities of the first communication device and the second communication device and the configured transmission mode.
  • the M bits are b 0 ,b 1 ,...,b (M-1)
  • b 0 is the leftmost bit among the M bits
  • b (M-1) is the rightmost bit among the M bits
  • the bits of, that is, the communication device obtains the value of each bit in b 0 , b 1 ,..., b (M-1) from left to right.
  • the first non-zero bit determines the number of TBs scheduled by the control information
  • K can be a pre-configured positive integer.
  • K can represent the maximum number of TBs that can be scheduled by one control information.
  • the number of TBs scheduled by the control information is determined, for example, (Kc) TBs are scheduled by the control information.
  • each of the (Kj) bits on the right side of b j is associated with a TB.
  • the value of each of the (Kj) bits on the right side of b j can be used to determine the state of a TB, and each of the (Kj) bits on the right side of b j can be used to determine The state of the TB associated with each bit.
  • each of the (Kj) bits to the right of the b j is associated with a TB, including: the b j
  • the p-th bit of the (Kj) bits on the right is associated with the p-th TB indicated by the control information, the p is an integer, and the p is equal to any one of the following values: 1, 2, ... (Kj).
  • bit b j bits associated with the right side (of Kj) 1 of the first control information indicating a TB the bit correlation (of Kj) th bit b j in the right side of the second control information indicating a first 2 TB, it is possible to determine the state of the TB bit associated with each bit b j by the right side (of Kj) for each bit.
  • the bit state of the p-th bit among the (Kj) bits on the right side of b j is corresponding to the p-th TB
  • TB bit states corresponding to the p-th wherein the control information indicates a bit state may be a bit b j in the right side (of Kj) of the p-th bits, so by the right bit b j (of Kj) bits
  • the status can determine the bit status corresponding to the TB indicated by the control information.
  • the values of M, K, and c can be configured according to specific scenarios.
  • the identification information includes X bits, and the X is a positive integer; the bit status of the X bits of the identification information There is a bit status indicating that: the control information can be used for scheduling of multiple transmission blocks, and the control information includes the transmission block allocation information, and the i-th TB in the N transmission blocks TB is TB i , if the bit status corresponding to the TB i is 0, the TB i is a newly transmitted TB, and if the bit status corresponding to the TB i is 1, then the TB i is a retransmitted TB; and/or, One of the bit states of the X bits of the identification information indicates that the control information can be used for scheduling of multiple transmission blocks, and the control information includes the transmission block allocation information, and the N The i-th TB in the TB is TB i .
  • the TB i is a newly transmitted TB. If the bit state corresponding to the TB i is 1, the first The communication device does not transmit the TB i or ignores the TB i ; and/or, one of the bit states of the X bits of the identification information indicates that the control information can be used for multiple transmission blocks Scheduling, and the control information includes the transmission block allocation information, the i-th TB in the N TBs is TB i , if the bit state corresponding to the TB i is 1, then the TB i is retransmission TB, if the bit state corresponding to the TB i is 0, the first communication device does not transmit the TB i or ignores the TB i ; and/or, in the X bit state of the identification information There is a bit state indicating that the control information can only be used for scheduling of one transmission block; wherein, the N is a positive integer, the i is an integer, and the i
  • the second communication device uses at least one transmission block indicated by the control information to send data to the first communication device according to the bit status corresponding to each transmission block , Or receiving the data sent by the first communication device, including: the second communication device uses the control information according to the bit status of the X bits of the identification information and the bit status corresponding to each transmission block The indicated at least one transmission block sends data to the first communication device or receives data sent by the first communication device.
  • the processing module included in the second communication device is specifically configured to use the X bit status of the identification information and the bit status corresponding to each transmission block.
  • the at least one transmission block indicated by the control information sends data to the first communication device through the transceiver module included in the second communication device, or receives data sent by the first communication device.
  • the X 2; and/or the value of N is 1, 2, ..., 8; or , The value of N is 2,...,8; or, the value of N is 1, 2, 3, 4; or, the value of N is 2, 3, and 4.
  • the embodiments of the present application provide a computer-readable storage medium that stores instructions in the computer-readable storage medium, which when run on a computer, causes the computer to execute the above-mentioned first or second aspect Methods.
  • embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the method described in the first or second aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device may include entities such as a terminal device or a network device.
  • the communication device includes: a processor and a memory; the memory is used to store instructions; In executing the instructions in the memory, the communication device executes the method according to any one of the first aspect or the second aspect.
  • the present application provides a chip system including a processor for supporting communication devices to implement the functions involved in the above aspects, for example, sending or processing data and/or information involved in the above methods .
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data for the communication device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a system architecture applied by a data transmission method according to an embodiment of the application
  • FIG. 2 is a schematic block diagram of an interaction flow between a first communication device and a second communication device according to an embodiment of the application;
  • FIG. 3 is a schematic block diagram of another interaction process between a first communication device and a second communication device according to an embodiment of the application;
  • FIG. 4a is a schematic diagram of a control information scheduling transmission block provided by an embodiment of this application.
  • 4b is a schematic diagram of another control information scheduling transmission block provided by an embodiment of this application.
  • 5 is a schematic diagram of the bit status indicated by 9 bits included in the transmission block allocation information provided by an embodiment of the application;
  • FIG. 6 is a schematic diagram of downlink control information carrying identification information provided by an embodiment of this application.
  • FIG. 7a is a schematic diagram of a bit structure indicated by identification information provided in an embodiment of the application.
  • FIG. 7b is a schematic diagram of another bit structure indicated by the identification information provided in an embodiment of this application.
  • FIG. 8a is a schematic diagram of a function indicated by identification information provided by an embodiment of the application.
  • FIG. 8b is a schematic diagram of another function indicated by the identification information provided by an embodiment of this application.
  • FIG. 8c is a schematic diagram of another function indicated by the identification information provided by an embodiment of this application.
  • FIG. 8d is a schematic diagram of another function indicated by the identification information provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of a 3-bit indication mode of DCI provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of the composition structure of a first communication device according to an embodiment of the application.
  • FIG. 11 is a schematic diagram of the composition structure of a second communication device according to an embodiment of this application.
  • FIG. 12 is a schematic diagram of the composition structure of another first communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of the composition structure of another second communication device according to an embodiment of the application.
  • the embodiments of the present application provide a data transmission method and device, which are used to reduce the indication overhead of a CI scheduling transmission block and reduce the occupation of transmission resources.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • UTRA universal terrestrial radio access
  • WCDMA wideband CDMA
  • CDMA2000 can cover the interim standard (IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • the TDMA system can implement wireless technologies such as the global system for mobile communication (GSM).
  • GSM global system for mobile communication
  • OFDMA system can realize such as evolved universal wireless terrestrial access (UTRA, E-UTRA), ultra mobile broadband (ultra mobile broadband, UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDMA And other wireless technologies.
  • UTRA and E-UTRA are UMTS and UMTS evolved versions.
  • 3GPP is a new version of UMTS using E-UTRA in long term evolution (LTE) and various versions based on LTE evolution.
  • the fifth generation (5Generation, "5G”) communication system and the New Radio (“NR”) are next-generation communication systems that are under study.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems such as V2X, LTE-V, V2V, Internet of Vehicles, MTC, IoT, LTE-M, M2M, and the Internet of Things.
  • the communication system may also be applicable to future-oriented communication technologies, all of which are applicable to the technical solutions provided in the embodiments of the present application.
  • the system architecture and business scenarios described in the embodiments of this application are intended to illustrate the technical solutions of the embodiments of this application more clearly, and do not constitute a limitation on the technical solutions provided in the embodiments of this application. Those of ordinary skill in the art will know that with the network With the evolution of architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are equally applicable to similar technical problems.
  • the communication system may include: a first communication device and a second communication device, and data transmission can be performed between the first communication device and the second communication device.
  • the first communication device may include: a terminal device
  • the second communication device may include: a network device.
  • the first communication device may include: one terminal device
  • the second communication device may include: another terminal device.
  • the first communication device may include: a network device
  • the second communication device may include: another network device.
  • Fig. 1 shows a schematic structural diagram of a possible radio access network (RAN) according to an embodiment of the present application.
  • the RAN may be a base station access system of a 2G network (that is, the RAN includes a base station and a base station controller), or may be a base station access system of a 3G network (that is, the RAN includes a base station and an RNC), or may be 4G
  • the base station access system of the network that is, the RAN includes an eNB and RNC
  • the RAN includes one or more network devices.
  • the network device may be any device with a wireless transceiver function, or a chip set in a device with a specific wireless transceiver function.
  • the network equipment includes, but is not limited to: base stations (such as base stations BS, base stations NodeB, evolved base stations eNodeB or eNB, base stations gNodeB or gNB in the fifth generation 5G communication system, base stations in future communication systems, and connections in WiFi systems. Ingress node, wireless relay node, wireless backhaul node), etc.
  • the base station may be: macro base station, micro base station, pico base station, small station, relay station, etc. Multiple base stations can support the network of one or more technologies mentioned above, or the future evolution network.
  • the core network may support the network of one or more technologies mentioned above, or a future evolution network.
  • the base station may include one or more co-site or non co-site transmission receiving points (transmission receiving points, TRP).
  • the network device may also be a wireless controller, a centralized unit (CU), or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device.
  • the following description takes the network device as a base station as an example.
  • the multiple network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal equipment 1-6, and can also communicate with the terminal equipment 1-6 through a relay station.
  • the terminal device 1-6 can support communication with multiple base stations of different technologies.
  • the terminal device can support communication with a base station supporting an LTE network, a base station supporting a 5G network, and a base station supporting an LTE network.
  • the dual connection of the base station of the 5G network For example, the terminal is connected to the RAN node of the wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B) B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit) , BBU), or wireless fidelity (Wifi) access point (AP), etc.
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • Terminal equipment 1-6 also known as user equipment (UE), mobile station (MS), mobile terminal (MT), terminal, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminal equipment 1-6 is a way to provide users with voice and/or A device with data connectivity, or a chip set in the device, for example, a handheld device with a wireless connection function, a vehicle-mounted device, etc.
  • terminal devices are: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented Augmented reality (AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid)
  • the terminal device provided in the embodiment of the present application may be a low-complexity terminal device and/or a terminal device in the coverage enhancement A mode.
  • the base station and UE1 to UE6 form a communication system.
  • the base station sends one or more of system information, RAR messages, and paging messages to one or more of UE1 to UE6.
  • UE4 to UE6 also constitute a communication system.
  • UE5 can be implemented as a base station.
  • UE5 can send one or more of system information, control information and paging messages to UE4 and One or more UEs in UE6.
  • the control information in the embodiment of this application may specifically include downlink control information.
  • the second communication device generates identification information.
  • the identification information has two indication functions: one is to indicate that one piece of control information can be used for scheduling multiple transmission blocks, and the other is to indicate that one piece of control information can only Used for scheduling of a transport block.
  • the interaction process shown in Figure 2 is executed.
  • Figure 3 shows the interactive process.
  • Figure 2 is a schematic diagram of an interaction flow between a network device and a terminal device provided in an embodiment of this application.
  • the data transmission method provided in an embodiment of this application mainly includes the following steps:
  • the second communication device generates identification information.
  • the identification information can be used to indicate that one piece of control information can be used for scheduling of multiple transmission blocks, or can be used to indicate that one piece of control information can only be used for scheduling of one transmission block.
  • the control information is generated by the second communication device, and the second communication device issues a control instruction to the first communication device through the control information.
  • the control information is represented by CI.
  • the second communication device determines the number of transport blocks (transport block, TB) used for data transmission.
  • the number of transmission blocks determined by the second communication device may be one or more, and multiple transmission blocks refer to 2 or 3 or 4... or 8 transmissions.
  • the second communication device schedules multiple transmission blocks through the control information, the second communication device also needs to determine the newly transmitted transmission block and/or the retransmitted transmission block among all transmission blocks scheduled by the control information.
  • the control information determines that all the transmission blocks scheduled can be all newly transmitted transmission blocks or retransmitted transmission blocks, or some transmission blocks in all transmission blocks are new transmissions, and some transmission blocks are retransmissions. .
  • the control information can schedule 8 transmission blocks, namely TB1, TB2..., TB7, TB8.
  • the control information can schedule 4 transmission blocks, namely TB1, TB2, TB3, and TB4.
  • Each TB in FIG. 4a and FIG. 4b corresponds to a transmission state, for example, TB1 is a newly transmitted transmission block, and TB2 is a retransmitted transmission block.
  • the first communication device may work in coverage enhancement mode B, or coverage enhancement level 2, or coverage enhancement level 3.
  • the maximum number of transmission blocks scheduled by the control information may be 4.
  • the first communication device may also work in other modes, for example, it may work in coverage enhancement mode A, or coverage enhancement level 0, or coverage enhancement level 1.
  • the maximum number of transmission blocks scheduled by the control information may be 8.
  • the second communication device may generate flag information.
  • the identification information is used to indicate that one piece of control information can be used for scheduling of multiple transmission blocks, or one piece of control information can only be used for scheduling of one transmission block.
  • one control information can be used for scheduling of multiple transmission blocks means that one control information can schedule multiple transmission blocks
  • the scheduling of one control information can only be used for one transmission block means that one transmission block cannot schedule multiple transmission blocks. It is used for scheduling of a single transmission block.
  • the second communication device sends the identification information and transmission block allocation information to the first communication device, where the transmission block allocation information indicates the transmission block scheduled by the control information The number N and the bit state corresponding to each transmission block.
  • the identification information when the identification information indicates that one piece of control information can be used for scheduling of multiple transmission blocks, the identification information also indicates that the second communication device sends transmission block allocation information, which may also be referred to as TB Allocation indication information, or TB scheduling indication information.
  • the second communication device generates transmission block allocation information according to the number N of transmission blocks scheduled by the control information and the bit state corresponding to each transmission block.
  • the second communication device sends identification information and transmission block allocation information to the first communication device.
  • the transmission block allocation information includes M bits, and the M bits are b 0 , b 1 ,..., b (M-1) .
  • the bit status of the M bits can indicate the number of transmission blocks N and the number of transmission blocks scheduled by the control information. Bit status corresponding to each transport block.
  • the second communication device may generate identification information and send the identification information to the first communication device, Therefore, the first communication device can obtain the number of transmission blocks determined by the second communication device according to the received identification information.
  • the identification information sent by the second communication device is used to indicate that one control information schedules multiple transmission blocks
  • the identification information may also indicate that the first communication device receives the transmission block allocation information sent by the second communication device.
  • the second communication device sends identification information and transmission block allocation information to the first communication device.
  • the identification information and transmission block allocation information can be transmitted using the same information, or the identification information and transmission block allocation information Different information is used for transmission, for example, identification information is transmitted through high-level signaling, and transmission block allocation information is transmitted through control information.
  • the second communication device sending identification information to the first communication device in step 202 includes:
  • the second communication device sends control information to the first communication device, where the control information includes identification information.
  • the second communication device sends high-level signaling to the first communication device, and the high-level signaling includes identification information.
  • the second communication device may use multiple methods to send the identification information.
  • the second communication device may use high-level signaling, which may include identification information, so that the first communication device may receive the high-level signaling, and the identification information generated by the second communication device may be obtained by parsing the high-level signaling.
  • the high-level signaling may include: radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the second communication device may use physical layer signaling, which may include identification information, so that the first communication device can receive the physical layer signaling, and by analyzing the physical layer signaling, the second communication device generates The identification information.
  • the physical layer signaling may be the aforementioned control information, and further, the control information may include identification information.
  • the control information when the identification information indicates that one piece of control information can be used for scheduling of multiple transmission blocks, the control information further includes transmission block allocation information.
  • transmission block allocation information and identification information can be transmitted through control information.
  • control information For the positional relationship between the transmission block allocation information and identification information in the control information, and the number of bits occupied by the transmission block allocation information and identification information in the control information , Not limited.
  • the transmission block allocation information and identification information are transmitted through the control information, so that the first communication device can obtain the transmission block allocation information and the identification information by receiving the control information, and then complete the data transmission according to the transmission block allocation information and the identification information.
  • the second communication device uses at least one transmission block indicated by the control information to send data to the first communication device according to the bit status corresponding to each transmission block, and the at least one transmission block belongs to N transmission blocks. or,
  • the second communication device uses at least one transmission block indicated by the control information according to the bit status corresponding to each transmission block to receive data sent by the first communication device, and at least one transmission block belongs to N transmission blocks.
  • the second communication device may use at least one of the information indicated by the control information according to the determined bit status corresponding to each transmission block.
  • the transmission block performs data transmission with the first communication device. For example, the second communication device determines the number of transmission blocks that can be used for current data transmission according to the identification information, and the second communication device determines the state of the transmission blocks that can be used for current data transmission according to the determined bit status of each transmission block.
  • the first communication device determines the number of transmission blocks that can be used for current data transmission according to the identification information, and the first communication device determines the state of the transmission blocks that can be used for current data transmission according to the determined bit status of each transmission block. Further, when the second communication device sends data to the first communication device, the second communication device also needs to determine whether each transmission block in all transmission blocks scheduled by the control information is a newly transmitted transmission block or a retransmitted transmission block .
  • the first communication device receives identification information sent by the second communication device.
  • the second communication device may generate identification information and send the identification information to the first communication device, Therefore, the first communication device can obtain the number of transmission blocks determined by the second communication device according to the received identification information.
  • the identification information sent by the second communication device is used to indicate that one control information schedules multiple transmission blocks
  • the identification information may also indicate that the first communication device receives the transmission block allocation information sent by the second communication device.
  • step 211 that the first communication device receives the identification information sent by the second communication device may include the following steps:
  • the first communication device receives the high-level signaling sent by the second communication device, and the high-level signaling includes identification information.
  • the first communication device receives the control information sent by the second communication device, where the control information includes identification information.
  • the second communication device may use multiple methods to send the identification information.
  • the second communication device may use high-level signaling, which may include identification information, so that the first communication device may receive the high-level signaling, and the identification information generated by the second communication device may be obtained by parsing the high-level signaling.
  • the high-level signaling may include: RRC signaling.
  • the second communication device may use physical layer signaling, which may include identification information, so that the first communication device can receive the physical layer signaling, and by analyzing the physical layer signaling, the second communication device generates The identification information.
  • the physical layer signaling may be the aforementioned control information, and further, the control information may include identification information.
  • the first communication device obtains the transmission block allocation information sent by the second communication device, where the transmission block allocation information indicates the number of transmission blocks scheduled by the control information N and the bit state corresponding to each transport block.
  • the identification information when the identification information indicates that one piece of control information can be used for scheduling of multiple transmission blocks, the identification information also indicates that the second communication device sends transmission block allocation information, which may also be referred to as TB Allocation indication information, or TB scheduling indication information.
  • the first communication device receives the transmission block allocation information sent by the second communication device, and determines the number N of transmission blocks scheduled by the control information and the bit status corresponding to each transmission block according to the transmission block allocation information.
  • the transmission block allocation information includes M bits, and the M bits are b 0 , b 1 ,..., b (M-1) .
  • the bit status of the M bits can indicate the number of transmission blocks N and the number of transmission blocks scheduled by the control information. Bit status corresponding to each transport block.
  • the first communication device uses at least one transmission block indicated by the control information to receive data sent by the second communication device according to the identification information and the bit status corresponding to each transmission block, and the at least one transmission block belongs to N transmission blocks.
  • the first communication device uses at least one transmission block indicated by the control information to send data to the second communication device according to the identification information and the bit status corresponding to each transmission block, and the at least one transmission block belongs to N transmission blocks.
  • the second communication device may use at least one of the indication information indicated by the control information according to the identification information and the determined bit status corresponding to each transmission block.
  • the transmission block performs data transmission with the first communication device. For example, the second communication device determines the number of transmission blocks that can be used for current data transmission according to the identification information, and the second communication device determines the state of the transmission blocks that can be used for current data transmission according to the determined bit status of each transmission block.
  • the first communication device determines the number of transmission blocks that can be used for current data transmission according to the identification information, and the first communication device determines the state of the transmission blocks that can be used for current data transmission according to the determined bit status of each transmission block. Further, when the first communication device sends data to the second communication device, the first communication device also needs to determine whether each transmission block among all transmission blocks scheduled by the control information is a newly transmitted transmission block or a retransmitted transmission block .
  • FIG. 3 is a schematic diagram of an interaction process between a network device and a terminal device provided in an embodiment of this application.
  • the data transmission method provided in an embodiment of this application mainly includes the following steps:
  • the second communication device generates identification information, where the identification information is used to indicate that one piece of control information can be used for scheduling of multiple transmission blocks, or that one piece of control information can only be used for scheduling of one transmission block.
  • step 301 is similar to step 201 in the foregoing embodiment, and will not be repeated here.
  • the second communication device sends the identification information and the hybrid automatic retransmission request (HARQ) process index information to the first communication device, where
  • HARQ process index information indicates the HARQ process index corresponding to a transport block scheduled by the control information.
  • the identification information when the identification information indicates that one control information can only be used for scheduling of one transmission block, the identification information also indicates that the second communication device sends HARQ process index information.
  • the second communication device generates HARQ process index information according to a transmission block scheduled by the control information and the HARQ process index corresponding to a transmission block.
  • the HARQ process index information may also be referred to as HARQ process index indication information, and the second communication device reports to the first communication device Send identification information and HARQ process index information. For example, there may be 3 bits in the control information for HARQ process index indication.
  • the second communication device sends identification information and transmission block allocation information to the first communication device.
  • the identification information and transmission block allocation information can be transmitted using the same information, or the identification information and transmission block allocation information Different information is used for transmission, for example, identification information is transmitted through high-level signaling, and transmission block allocation information is transmitted through control information.
  • the control information when the identification information indicates that one piece of control information can only be used for scheduling one transport block, the control information includes HARQ process index information.
  • HARQ process index information and identification information can be transmitted through control information.
  • control information For the position relationship between HARQ process index information and identification information in control information, and the number of bits occupied by HARQ process index information and identification information in control information , Not limited.
  • the HARQ process index information and identification information are transmitted through the control information, so that the first communication device can obtain the transmission HARQ process index information and identification information by receiving the control information, and then complete data transmission according to the transmission HARQ process index information and identification information.
  • the control information when the identification information indicates that one piece of control information can be used for scheduling multiple transmission blocks, the control information also includes transmission block allocation information, or the identification information indicates that one piece of control information can only be used for scheduling one transmission block When scheduling, the control information also includes HARQ process index information.
  • the control information has at least two different bit structures.
  • the control information is DCI
  • one DCI indicates the transmission of multiple TBs
  • the DCI adopts the first bit structure
  • the UE interprets the bit information of the DCI according to the first bit structure.
  • one DCI can also schedule transmission of only one TB.
  • the DCI adopts the second bit structure, and the UE interprets the bit information of the DCI according to the second bit structure.
  • the first bit structure and the second bit structure will be illustrated in detail.
  • the second communication device sends data to the first communication device according to the HARQ process index corresponding to one transmission block, or,
  • the second communication device receives the data sent by the first communication device according to the HARQ process index corresponding to one transmission block.
  • the second communication device may perform data transmission with the first communication device according to the HARQ process index corresponding to a determined transmission block. For example, the second communication device determines the number of transmission blocks that can be used for current data transmission according to the identification information, and the second communication device determines the HARQ process index that can be used for current data transmission according to the HARQ process index corresponding to the determined transmission block. Similarly, the first communication device determines the number of transmission blocks that can be used for current data transmission according to the identification information, and the first communication device determines the HARQ process index that can be used for current data transmission according to the HARQ process index corresponding to the determined transmission block. Further, when the second communication device sends data to the first communication device, the second communication device also needs to determine whether each transmission block in all transmission blocks scheduled by the control information is a newly transmitted transmission block or a retransmitted transmission block .
  • step 303 and step 304 can determine which step to execute according to the application scenario, and there is no limitation here.
  • the first communication device receives the identification information sent by the second communication device.
  • the second communication device in order to enable the first communication device to obtain the number of transmission blocks determined by the second communication device, the second communication device may generate identification information and send the identification information to the first communication device, Therefore, the first communication device can obtain the number of transmission blocks determined by the second communication device according to the received identification information.
  • the identification information sent by the second communication device when used to indicate that one control information can only be used for scheduling of one transmission block, the identification information may also indicate that the first communication device receives the HARQ process index information sent by the second communication device.
  • the first communication device obtains the HARQ process index information of the hybrid automatic repeat request sent by the second communication device, where the HARQ process index information indicates the control information scheduling The HARQ process index corresponding to a transport block of.
  • the first communication device receives the data sent by the second communication device according to the identification information and the HARQ process index corresponding to a transmission block.
  • the first communication device sends data to the second communication device according to the identification information and the HARQ process index corresponding to a transmission block.
  • the second communication device may perform data with the first communication device according to the identification information and the HARQ process index corresponding to the determined transmission block. transmission. For example, the second communication device determines the number of transmission blocks that can be used for current data transmission according to the identification information, and the second communication device determines the HARQ process index that can be used for current data transmission according to the HARQ process index corresponding to the determined transmission block. Similarly, the first communication device determines the number of transmission blocks that can be used for current data transmission according to the identification information, and the first communication device determines the HARQ process index that can be used for current data transmission according to the HARQ process index corresponding to the determined transmission block. Further, when the first communication device sends data to the second communication device, the first communication device also needs to determine whether each transmission block among all transmission blocks scheduled by the control information is a newly transmitted transmission block or a retransmitted transmission block .
  • the transport block allocation information generated by the second communication device includes M bits, the M bits are b 0 , b 1 ,..., b (M-1) , and b 0 is M bits The leftmost bit in, b (M-1) is the rightmost bit among M bits;
  • M is a positive integer
  • K is a positive integer
  • the K is less than the M
  • j is an integer, and j is equal to any one of the following values: 0,1,2,...(M-1);
  • c is an integer, and c is equal to any of the following values: 0,1,2,...(M-1).
  • the transmission block allocation information includes M bits, and the value of M can be determined in a specific scenario, for example, according to the transmission capabilities of the first communication device and the second communication device and the configured transmission mode.
  • the M bits are b 0 ,b 1 ,...,b (M-1)
  • b 0 is the leftmost bit among the M bits
  • b (M-1) is the rightmost bit among the M bits
  • the bits of, that is, the communication device obtains the value of each bit in b 0 , b 1 ,..., b (M-1) from left to right.
  • the first non-zero bit determines the number of TBs scheduled by the control information
  • K can be a pre-configured positive integer.
  • K can represent the maximum number of TBs that can be scheduled by one control information.
  • the number of TBs scheduled by the control information is determined, for example, (Kc) TBs are scheduled by the control information.
  • the information schedules (Kj) TBs, and the state of the (Kj) TBs scheduled by the control information can be determined by the bit states of b j+1 ,...,b (M-1) .
  • the method of the embodiment of the present application is described by taking the bit position where the first bit on the left is 1 indicating the number of TBs scheduled by the control information as an example.
  • the number of TBs scheduled by the control information is indicated by the bit where the first bit on the right side of b 0 , b 1 ,..., b (M-1) is 1.
  • the number of TBs scheduled by the control information is indicated by the bit where the first bit on the left side of b 0 , b 1 ,..., b (M-1) is 0.
  • the number of TBs scheduled by the control information is indicated by the bit where the first bit on the right side of b 0 , b 1 ,..., b (M-1) is 0.
  • each of the (Kj) bits to the right of b j is associated with a TB.
  • each of the (Kj) bits on the right side of b j can be used to determine the state of a TB, and each of the (Kj) bits on the right side of b j can be used to determine The state of the TB associated with each bit.
  • the bit associated with each bit b j in the right side (of Kj) in a the TB comprising: a bit association (of Kj) th bit b j in the right side of the p-th
  • p is an integer
  • p is equal to any one of the following values: 1, 2, ... (Kj).
  • bit b j bits associated with the right side (of Kj) 1 of the first control information indicating a TB the bit correlation (of Kj) th bit b j in the right side of the second control information indicating a first 2 TB, it is possible to determine the state of the TB bit associated with each bit b j by the right side (of Kj) for each bit.
  • each bit (of Kj) th bit b j in the right side of a TB comprising: b j bits associated with the right side (of Kj) th (of Kj) number of TB
  • the HARQ process index is continuous. Further, when the HARQ process index (of Kj) b j bits associated with the right side (of Kj) TB is a continuous, said (of Kj) of a first TB TB is fixed to the HARQ process index 0.
  • the HARQ process indexes of all TBs indicated by the control information can be quickly determined through the continuous HARQ process indexes of (Kj) TBs.
  • the bit state of the p-th bit among the (Kj) bits to the right of b j is the bit state corresponding to the p-th TB.
  • TB bit states corresponding to the p-th wherein the control information indicates a bit state may be a bit b j in the right side (of Kj) of the p-th bits, so by the right bit b j (of Kj) bits
  • the status can determine the bit status corresponding to the TB indicated by the control information.
  • the identification information includes X bits, and X is a positive integer
  • One of the bit states of the X bits of the identification information indicates that the control information can be used for scheduling of multiple transmission blocks, and the control information includes the transmission block allocation information, the i-th one of the N transmission blocks TB TB TB I is, if the TB bit states corresponding to I 0, I is the TB TB new transmission, if the TB bit states corresponding to I 1, I is a retransmission of the TB TB; and / or,
  • One of the bit states of the X bits of the identification information indicates that the control information can be used for scheduling of multiple transmission blocks, and the control information includes the transmission block allocation information, and the i-th TB in the N TBs is TB i , if the bit status corresponding to TB i is 0, then TB i is a newly transmitted TB; if the bit status corresponding to TB i is 1, the first communication device does not transmit TB i or ignores TB i ; and/or,
  • One of the bit states of the X bits of the identification information indicates that the control information can be used for scheduling of multiple transmission blocks, and the control information includes the transmission block allocation information, and the i-th TB in the N TBs is TB i , if the bit status corresponding to TB i is 1, then TB i is a retransmission TB, if the bit status corresponding to TB i is 0, the first communication device does not transmit TB i or ignores TB i ; and/or,
  • One of the bit states of the X bits of the identification information indicates that the control information can only be used for scheduling of one transmission block.
  • N is a positive integer
  • i is an integer
  • i is equal to any of the following values: 1, 2, ..., N, or 0, 1, ..., (N-1).
  • one of the bit states of the X bits of the identification information indicates the first function, that is, one control information can be used for scheduling of multiple transmission blocks, if the second communication device indicates that the bit state of a certain TB is 0 , The TB is a newly transmitted TB, and the first communication device transmits the newly transmitted TB. If the second communication device indicates that the bit status of a certain TB is 1, the TB is a retransmission TB, and the first communication device transmits the retransmission TB.
  • the control information adopts a first bit structure, and the first communication device interprets the bit information of the control information according to the first bit structure. Without limitation, it is also possible to determine that the TB is a new transmission based on the bit status being 1, or to determine the TB as a retransmission based on the bit status being 0.
  • Another bit state of the X bits of the identification information indicates the second function, that is, one piece of control information indicates the transmission of multiple TBs. If the second communication device indicates that the bit status of a certain TB is 0, the TB is a newly transmitted TB, and the first communication device transmits the newly transmitted TB. If the second communication device indicates that the bit status of a certain TB is 1, it indicates that the first communication device does not transmit the TB or ignores the TB indicated by the second communication device.
  • the TB may be a retransmission TB and/or an unscheduled TB.
  • the control information adopts a first bit structure, and the first communication device interprets the bit information of the control information according to the first bit structure. It will be appreciated that the present application example, the first communication apparatus does not transmit the TB i or ignore specific scenario TB i can be configured by way of a first communication apparatus does not transmit or negligible manner.
  • Another bit state among the X bits of the identification information indicates the third function, that is, one piece of control information indicates the transmission of multiple TBs. If the second communication device indicates that the bit status of a certain TB is 1, the TB is a retransmission TB, and the first communication device transmits the retransmission TB. If the second communication device indicates that the bit status of a certain TB is 0, the first communication device is instructed not to transmit the TB or the TB indicated by the second communication device is ignored.
  • the TB may be a newly transmitted TB and/or an unscheduled TB.
  • the control information adopts a first bit structure, and the first communication device interprets the bit information of the control information according to the first bit structure.
  • the other bit state among the X bits of the identification information indicates the fourth function, that is, one piece of control information can only be used for scheduling of one transmission block.
  • the control information adopts a second bit structure, and the first communication device interprets the bit information of the control information according to the second bit structure.
  • the second communication device uses at least one transmission block indicated by the control information to send data to the first communication device or receive data sent by the first communication device according to the bit status corresponding to each transmission block ,include:
  • the second communication device uses at least one transmission block indicated by the control information to send data to the first communication device or receive data sent by the first communication device data.
  • the second communication device needs to use the bit status of the X bits of the identification information and each transmission block For the corresponding bit status, at least one transmission block indicated by the control information is used for data transmission and reception.
  • the number of bits of the identification information X 2; and/or,
  • N is 1, 2, ..., 8; or,
  • N is 2, ..., 8; or,
  • N 1, 2, 3, 4; or,
  • N 2, 3, and 4.
  • the identification information has 4 bit states: 00, 01, 10, 11, for example, the identification information includes 2 bits, which indicate the aforementioned first function and second function , The third function, one or more of the fourth function.
  • the value of X can be configured according to the scenario.
  • the number of TB blocks indicated by the control information in the embodiment of this application is N
  • the maximum value of N can be 8
  • the value of N can be any of 1, 2, ..., 8, for example, N
  • the value of is 1, or 3, or 4, or 5, or 6, or 7, etc.
  • the value of N can be any of 2,..., 8.
  • the maximum value of N can be 4, the value of N can be any of 1, 2, 3, and 4, and the value of N can be any of 2, 3, and 4.
  • Specific scenarios can be used to determine the number of TB blocks indicated by the control information.
  • the second communication device in order to enable the first communication device to obtain the number of transmission blocks determined by the second communication device, the second communication device may generate identification information and send the identification information To the first communication device, so that the first communication device can obtain the number of transmission blocks determined by the second communication device according to the received identification information.
  • the identification information generated by the second communication device in the embodiment of the present application may be used to indicate that one control information can be used for scheduling of multiple transmission blocks, or one control information can only be used for one transmission block
  • the second communication device further sends transmission block allocation information, or when the number of transmission blocks indicated by the identification information is one, the second communication device further sends HARQ process index information .
  • the bit overhead of control information can be optimized, and the transmission performance of control information can be improved.
  • the first communication device sends identification information to the second communication device.
  • the first communication device may be a base station, or a device with transmission capability.
  • the second communication device may be user equipment, or a device with receiving capability, or a base station.
  • the aforementioned control information is specifically DCI.
  • the first communication device sends identification information to the second communication device through downlink control information. That is, the downlink control information includes the identification information.
  • the first communication device sends the identification information to the second communication device through radio resource control signaling or media access control signaling. That is, the radio resource control signaling or media access control signaling includes the identification information.
  • the transmission in this embodiment of the application is sending or receiving. If one end of the communication implements transmission as sending, the opposite end of the communication implements reception.
  • FIG. 5 it is a schematic diagram of the bit state indicated by the 9 bits included in the transport block allocation information provided in this embodiment of the application.
  • K+1 bits can be used to indicate the number of TBs scheduled by the DCI and the bit status corresponding to each TB in the TBs scheduled by the DCI.
  • a total of K+1 bits from b 0 to b K indicate the number N of TBs scheduled by the DCI and the bit status corresponding to each of the N TBs.
  • N is a positive integer. For example, N takes a value from 2 to K or N takes a value from 1 to K.
  • N is a positive integer.
  • N can take values from 2 to 8 or N can take values from 1 to 8.
  • the first bit on the left is 1 bit indicating the DCI scheduling The number of TB.
  • b 0 1
  • a total of 8 bits from b 1 to b 8 indicate the bit status corresponding to each of the 8 TBs scheduled by DCI.
  • b 1 1
  • the status of the bits on the left side of b 1 are all 0, indicating that DCI schedules 7 TBs.
  • a total of 7 bits from b 2 to b 8 indicate the bit status corresponding to each of the 7 TBs scheduled by the DCI.
  • b 2 1
  • the status of the bits on the left of b 2 are all 0, which means that the DCI schedules 6 TBs.
  • a total of 6 bits from b 3 to b 8 indicate the bit status corresponding to each of the 6 TBs scheduled by DCI.
  • b 3 1
  • the status of the bits on the left of b 3 are all 0, which means that DCI schedules 5 TBs.
  • a total of 5 bits from b 4 to b 8 indicate the bit status corresponding to each of the 5 TBs scheduled by the DCI.
  • b 4 1
  • the status of the bits on the left side of b 4 are all 0, which means that DCI schedules 4 TBs.
  • a total of 4 bits from b 5 to b 8 indicate the bit status corresponding to each of the 4 TBs scheduled by the DCI.
  • b 5 1
  • the status of the bits on the left of b 5 are all 0, which means that the DCI schedules 3 TBs.
  • a total of 3 bits b 6 to b 8 indicate the bit status corresponding to each of the 3 TBs scheduled by the DCI.
  • b 6 1
  • the status of the bits on the left side of b 6 are all 0, indicating that DCI schedules 2 TBs.
  • a total of 2 bits b 7 to b 8 indicate the bit status corresponding to each TB in the 2 TBs scheduled by the DCI.
  • b 7 1
  • the status of the bits to the left of b 7 are all 0, which means that DCI schedules 1 TB.
  • the b 8 bits indicate the bit status corresponding to 1 TB scheduled by DCI.
  • the status bit b 7 to the left are 0, then a scheduled DCI TB.
  • the b 7 and b 8 bits indicate the 1 TB HARQ process index (process number) scheduled by the DCI and the bit status corresponding to this TB.
  • Table 3 shows an indication method.
  • b 6 bits left of the state shown in FIG 4 are all 0, then the two scheduling DCI TB.
  • a total of 3 bits of b 6 , b 7 and b 8 indicate the HARQ process numbers of the 2 TBs scheduled by the DCI and the bit states corresponding to these 2 TBs.
  • Table 5 shows an indication method.
  • K 8
  • b 0 0
  • b 1 0
  • b 2 0
  • b 3 0
  • b 4 0
  • b 5 0
  • b 6 , b 7 and b 8 indicate The HARQ process index of 2 TBs and the bit status corresponding to each TB.
  • n0 and n1 are positive integers.
  • n2 and n3 are positive integers.
  • the bit position where the first bit on the left is 1 indicates the number of TBs scheduled by the DCI to illustrate the method of the embodiment of the present application.
  • some transformations or replacements of the bit positions or bit states implemented above still fall within the protection scope of the embodiments of the present application.
  • the number of TBs scheduled by DCI is indicated by the bit where the first bit on the right side of b 0 to b 8 is 1.
  • the number of TBs scheduled by DCI is indicated by the bit where the first bit from the left of b 0 to b 8 is 0.
  • the number of TBs scheduled by DCI is indicated by the bit where the first bit on the right side of b 0 to b 8 is 0.
  • a total of 5 bits from b 0 to b 4 indicate the number N of TBs scheduled by the DCI and the bit status corresponding to each TB in the N TBs.
  • N is a positive integer.
  • N can have a value of 2 to 4 or N can have a value of 1 to 4.
  • the 5 bits b 0 to b 4 from left to right (b0 is the leftmost bit, b4 is the rightmost bit), and the first bit on the left with 1 indicates the TB scheduled by DCI number.
  • b 0 1
  • a total of 4 bits from b 1 to b 4 indicate the bit status corresponding to each of the 4 TBs scheduled by DCI.
  • b 1 1
  • the status of the bits on the left side of b 1 are all 0, indicating that the DCI schedules 3 TBs.
  • a total of 3 bits b 2 to b 4 indicate the bit status corresponding to each of the 3 TBs scheduled by the DCI.
  • b 2 1
  • the status of the bits to the left of b 2 are all 0, which means that DCI schedules 2 TBs.
  • a total of 2 bits from b 3 to b 4 indicate the bit status corresponding to each of the 2 TBs scheduled by the DCI.
  • b 3 1
  • the status of the bits to the left of b 3 are all 0, which means that DCI schedules 1 TB.
  • b 4 indicates the bit status corresponding to 1 TB scheduled by DCI.
  • the status of the bits on the left side of b 2 are all 0, indicating that the DCI schedules 2 TBs.
  • a total of 3 bits of b 2 , b 3 and b 4 indicate the HARQ process number of the 2 TBs scheduled by the DCI and the bit status corresponding to the 2 TBs.
  • Table 9 shows an indication method.
  • n0 and n1 are positive integers.
  • n2 and n3 are positive integers.
  • Fig. 6 is a schematic diagram of downlink control information carrying identification information provided by an embodiment of this application, and the identification information may be the identification information in the downlink control information.
  • the identification information indicates that the downlink control information is used for multi-TB scheduling.
  • the identification information may further indicate the UE's processing of multiple TBs scheduled by the downlink control information. Further, the identification information may also indicate that the row control information is used for single TB scheduling.
  • the identification information includes 2 bits, and these 2 bits indicate one or more of the first function, the second function, the third function, and the fourth function.
  • the first function One DCI indicates the transmission of multiple TBs. If the base station indicates that the bit status of a certain TB is 0, the TB is a newly transmitted TB, and the UE transmits the newly transmitted TB. If the base station indicates that the bit status of a certain TB is 1, the TB is a retransmission TB, and the UE transmits the retransmission TB.
  • the DCI adopts the first bit structure, and the UE interprets the bit information of the DCI according to the first bit structure.
  • One DCI indicates the transmission of multiple TBs. If the base station indicates that the bit status of a certain TB is 0, the TB is a newly transmitted TB, and the UE transmits the newly transmitted TB. If the base station indicates that the bit status of a certain TB is 1, the UE is instructed not to transmit the TB or ignore the TB indicated by the base station.
  • the TB may be a retransmission TB and/or an unscheduled TB.
  • the DCI adopts the first bit structure, and the UE interprets the bit information of the DCI according to the first bit structure.
  • One DCI indicates the transmission of multiple TBs. If the base station indicates that the bit status of a certain TB is 1, the TB is a retransmission TB, and the UE transmits the retransmission TB. If the base station indicates that the bit status of a certain TB is 0, the UE is instructed not to transmit the TB or ignore the TB indicated by the base station.
  • the TB may be a newly transmitted TB and/or an unscheduled TB.
  • the DCI adopts the first bit structure, and the UE interprets the bit information of the DCI according to the first bit structure.
  • the fourth function One DCI only schedules one TB transmission.
  • the DCI adopts a second bit structure, and the UE interprets the bit information of the DCI according to the second bit structure.
  • the base station indicates the function of DCI, which is equivalent to indicating the DCI bit structure.
  • Bit state DCI function DCI bit structure 00 First function First bit structure 01 Second function First bit structure 10 Third function First bit structure 11 Fourth function Second bit structure
  • the DCI includes identification information, and the DCI also includes TB allocation indication information or TB scheduling indication information.
  • TB allocation indication information or TB scheduling indication information includes 8 to 10 bits.
  • the DCI can schedule multiple TB blocks at the same time.
  • Figure 7a is a schematic diagram of a bit structure indicated by identification information provided by an embodiment of the application, illustrating a first bit structure of downlink control information.
  • TB allocation indication information or TB scheduling indication information includes 9 bits, which corresponds to the foregoing The b 0 to b 8 bits.
  • Figure 7b is a schematic diagram of another bit structure indicated by the identification information provided by an embodiment of the application.
  • the DCI includes the identification information, and the DCI only schedules one TB block, and the DCI also includes the Information indicated by the HARQ process index of the TB.
  • Fig. 7b illustrates a second bit structure of downlink control information, and 3 bits are used to indicate the HARQ process index of a single TB scheduled by DCI.
  • Fig. 8a is a schematic diagram of a function indicated by the identification information provided by an embodiment of the application.
  • the identification information is 00, indicating the fourth function. Therefore, DCI schedules 1 TB block. And the DCI indicates that the HARQ index of the TB is 3.
  • the DCI also uses 5 bits to indicate the modulation coding scheme (MCS).
  • MCS modulation coding scheme
  • Fig. 8b is a schematic diagram of another function indicated by the identification information provided by an embodiment of the application.
  • b1 to b8 indicate the bit status of the bit corresponding to each TB in the 8 TBs in a bitmap manner.
  • the state of a bit in b1 to b8 is 0, which indicates that the TB corresponding to the bit is newly transmitted.
  • the status of a bit in b1 to b8 is 1, which indicates that the TB corresponding to the bit is retransmission.
  • TB1, TB4, TB6, and TB8 are newly transmitted TBs
  • TB2, TB3, TB5, and TB7 are retransmitted TBs.
  • FIG. 8c is a schematic diagram of another function indicated by the identification information provided by an embodiment of the application.
  • b1 to b8 indicate the bit status of the bit corresponding to each TB in the 8 TB blocks in a bitmap manner.
  • the state of a bit in b1 to b8 is 0, which indicates that the TB corresponding to the bit is newly transmitted.
  • the status of a bit in b1 to b8 is 1, which means that the UE does not transmit or ignores the TB corresponding to the bit.
  • the UE only transmits new transmissions to TB1, TB4, TB6, and TB8, and the UE does not transmit or ignores TB2, TB3, TB5, and TB7.
  • FIG. 8d is a schematic diagram of another function indicated by the identification information provided by an embodiment of the application.
  • b1 to b8 indicate the bit status of the bit corresponding to each TB in the 8 TB blocks in a bitmap manner.
  • the status of a bit in b1 to b8 is 1, which indicates that the TB corresponding to the bit is retransmission.
  • the status of a bit in b1 to b8 is 0, which means that the UE does not transmit or ignores the TB corresponding to the bit.
  • the UE only retransmits TB2, TB3, TB5, and TB7, and the UE does not transmit or ignores TB1, TB4, TB6, and TB8.
  • the first communication device generates identification information, the identification information is 3 bits, and different bit states of the identification information are associated with different TB indications.
  • Figure 9 is a schematic diagram of a 3-bit indication method for DCI provided by an embodiment of the application.
  • one DCI can schedule a maximum of two TB blocks
  • one bit in the DCI indicates whether the DCI is used for scheduling of 1 TB or 2 TB of scheduling.
  • one bit in the DCI indicates that the DCI is used for scheduling of 1 TB
  • one bit in the DCI indicates the HARQ process number of the transmitted TB
  • one bit in the DCI indicates a new data indicator (NDI).
  • the new data indication may indicate whether the TB is initially transmitted or retransmitted.
  • one bit in the DCI indicates that the DCI is used for scheduling of 2 TBs
  • DCI can support multi-TB scheduling with a few bits, thereby improving scheduling flexibility and resource efficiency.
  • FIG. 10 is a schematic diagram of the composition structure of a first communication device in an embodiment of this application.
  • the first communication device 1000 includes a processing module 1001 and a transceiver module 1002, wherein,
  • the processing module 1001 is configured to obtain the identification information sent by the second communication device through the transceiver module 1002;
  • the processing module 1001 is also used to obtain the transmission block allocation information sent by the second communication device through the transceiver module 1002 when the identification information indicates that a piece of control information can be used for scheduling of multiple transmission blocks, wherein
  • the transmission block allocation information indicates the number N of transmission blocks scheduled by the control information and the bit status corresponding to each transmission block; the control information is used according to the identification information and the bit status corresponding to each transmission block
  • the indicated at least one transmission block sends data to the second communication device through the transceiving module 1002, or receives data sent by the second communication device through the transceiving module 1002, at least one transmission block belongs to N transmission blocks ;or,
  • the processing module 1001 is also used to obtain the HARQ process of the hybrid automatic retransmission request sent by the second communication device through the transceiver module 1002 when the identification information indicates that one control information can only be used for the scheduling of one transmission block Index information, wherein the HARQ process index information indicates the HARQ process index corresponding to a transport block scheduled by the control information; according to the identification information and the HARQ process index corresponding to the one transport block, the transceiver module 1002 Send data to the second communication device, or receive data sent by the second communication device through the transceiver module 1002.
  • the processing module 1001 is configured to receive control information sent by the second communication device through the transceiver module 1002, where the control information includes the identification information; or, through the The transceiver module 1002 receives high-level signaling sent by the second communication device, where the high-level signaling includes the identification information.
  • the first communication device 1100 includes: a processing module 1101 and a transceiver module 1102, where:
  • the processing module 1101 is configured to generate identification information, where the identification information is used to indicate that one piece of control information can be used for scheduling of multiple transmission blocks, or that one piece of control information can only be used for scheduling of one transmission block;
  • the processing module 1101 is further configured to send the identification information and the transmission block allocation to the first communication device through the transceiver module 1102 when the identification information indicates that one piece of control information can be used for scheduling of multiple transmission blocks Information, wherein the transmission block allocation information indicates the number N of transmission blocks scheduled by the control information and the bit status corresponding to each transmission block. According to the bit status corresponding to each transmission block, use at least one transmission block indicated by the control information to send data to the first communication device through the transceiver module 1102, or receive the data through the transceiver module 1102 For data sent by the first communication device, at least one transmission block belongs to N transmission blocks; or,
  • the processing module 1101 is also used for when the identification information indicates that a piece of control information can only be used for the scheduling of one transmission block, to send the identification information and hybrid automatic repetition to the first communication device through the transceiver module 1102.
  • Send a request for HARQ process index information where the HARQ process index information indicates the HARQ process index corresponding to a transport block scheduled by the control information; according to the HARQ process index corresponding to the one transport block, the transceiver module 1102 sends The first communication device sends data, or receives data sent by the first communication device through the transceiver module 1102.
  • the processing module 1101 is configured to send control information to the first communication device through the transceiver module 1102, where the control information includes the identification information; or, through the transceiver module 1102, The module 1102 sends high-level signaling to the first communication device, where the high-level signaling includes the identification information.
  • the control information when the identification information indicates that one piece of control information can be used for scheduling of multiple transmission blocks, the control information includes the transmission block allocation information; or,
  • the control information includes the HARQ process index information.
  • the transmission block allocation information includes M bits, the M bits are b 0 , b 1 ,..., b (M-1) , and the b 0 is the M The leftmost bit among the bits, b (M-1) is the rightmost bit among the M bits.
  • the M is a positive integer
  • the K is a positive integer
  • the K is less than the M
  • the j is an integer, and the j is equal to any one of the following values: 0, 1, 2, ... (M-1);
  • the c is an integer, and the c is equal to any one of the following values: 0, 1, 2, ... (M-1).
  • each of the (Kj) bits to the right of b j is associated with a TB.
  • each of the (Kj) bits on the right side of b j is associated with a TB, including:
  • the p-th bit among the (Kj) bits to the right of the b j is associated with the p-th TB indicated by the control information
  • the p is an integer, and the p is equal to any one of the following values: 1, 2, ... (K-j).
  • the p-th bit of the (Kj) bits to the right of b j is associated with the p-th TB indicated by the control information, including:
  • the bit state of the p-th bit among the (Kj) bits to the right of b j is the bit state corresponding to the p-th TB.
  • the identification information includes X bits, and the X is a positive integer
  • One of the bit states of the X bits of the identification information indicates that the control information can be used for scheduling of multiple transmission blocks, and the control information includes the transmission block allocation information, and the N
  • the i-th TB in the transmission block TB is TB i . If the bit state corresponding to TB i is 0, then TB i is a new transmission TB; if the bit state corresponding to TB i is 1, then TB i is the retransmission TB; and/or,
  • One of the bit states of the X bits of the identification information indicates that the control information can be used for scheduling of multiple transmission blocks, and the control information includes the transmission block allocation information, and the N
  • the i-th TB in the TB is TB i . If the bit state corresponding to the TB i is 0, then the TB i is a newly transmitted TB. If the bit state corresponding to the TB i is 1, the first The communication device does not transmit the TB i or ignores the TB i ; and/or,
  • One of the bit states of the X bits of the identification information indicates that the control information can be used for scheduling of multiple transmission blocks, and the control information includes the transmission block allocation information, and the N
  • the i-th TB in the TB is TB i . If the bit state corresponding to the TB i is 1, then the TB i is a retransmission TB; if the bit state corresponding to the TB i is 0, the first The communication device does not transmit the TB i or ignores the TB i ; and/or,
  • One of the bit states of the X bits of the identification information indicates that: the control information can only be used for scheduling of one transmission block;
  • the N is a positive integer
  • the i is an integer
  • the i is equal to any one of the following values: 1, 2, ..., N, or 0, 1, ..., (N-1).
  • the processing module included in the second communication device is specifically configured to use the X bit status of the identification information and the bit status corresponding to each transmission block. At least one transmission block indicated by the control information sends data to the first communication device through the transceiver module included in the second communication device, or receives data sent by the first communication device.
  • said X 2; and/or,
  • N is 1, 2, ..., 8; or,
  • N is 2, ..., 8; or,
  • N 1, 2, 3, 4; or,
  • N 2, 3, and 4.
  • the second communication device in order to enable the first communication device to obtain the number of transmission blocks determined by the second communication device, the second communication device may generate identification information and send the identification information To the first communication device, so that the first communication device can obtain the number of transmission blocks determined by the second communication device according to the received identification information.
  • the identification information generated by the second communication device in the embodiment of the present application may be used to indicate that one control information can be used for scheduling of multiple transmission blocks, or one control information can only be used for one transmission block
  • the second communication device further sends transmission block allocation information, or when the number of transmission blocks indicated by the identification information is one, the second communication device further sends HARQ process index information .
  • the bit overhead of control information can be optimized, and the transmission performance of control information can be improved.
  • An embodiment of the present application further provides a computer storage medium, wherein the computer storage medium stores a program, and the program executes a part or all of the steps recorded in the foregoing method embodiment.
  • the device is a first communication device, and the first communication device may include: a processor 121 (for example, a CPU), a memory 122, and a transmitter 124
  • the transmitter 124 and the receiver 123 are coupled to the processor 121, and the processor 121 controls the sending action of the transmitter 124 and the receiving action of the receiver 123.
  • the memory 122 may include a high-speed RAM memory, or may also include a non-volatile memory NVM, such as at least one disk memory.
  • the memory 122 may store various instructions for completing various processing functions and implementing the methods of the embodiments of the present application. step.
  • the first communication device involved in the embodiment of the present application may further include one or more of a power supply 125, a communication bus 126, and a communication port 127.
  • the receiver 123 and the transmitter 124 may be integrated in the transceiver of the first communication device, or may be independent receiving and transmitting antennas on the first communication device.
  • the communication bus 126 is used to implement communication connections between components.
  • the aforementioned communication port 127 is used to implement connection and communication between the first communication device and other peripherals.
  • the above-mentioned memory 122 is used to store computer executable program code, and the program code includes instructions; when the processor 121 executes the instructions, the instructions cause the processor 121 to perform the processing actions of the first communication device in the above method embodiments.
  • the transmitter 124 to execute the sending action of the first communication device in the foregoing method embodiment, its implementation principle and technical effect are similar, and will not be repeated here.
  • the device is a second communication device.
  • the second communication device may include a processor (for example, a CPU) 131, a memory 132, and a receiver 133.
  • the receiver 133 and the transmitter 134 are coupled to the processor 131, and the processor 131 controls the receiving action of the receiver 133 and the sending action of the transmitter 134.
  • the memory 132 may include a high-speed RAM memory, or may also include a non-volatile memory NVM, such as at least one disk memory.
  • the memory 132 may store various instructions for completing various processing functions and implementing the methods of the embodiments of the present application step.
  • the second communication device involved in the embodiment of the present application may further include one or more of a power supply 135, a communication bus 136, and a communication port 137.
  • the receiver 133 and the transmitter 134 may be integrated in the transceiver of the second communication device, or may be independent receiving and transmitting antennas on the second communication device.
  • the communication bus 136 is used to implement communication connections between components.
  • the aforementioned communication port 137 is used to implement connection and communication between the second network device and other peripherals.
  • the chip when the communication device is a chip in a terminal device or a network device, the chip includes: a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input. /Output interface, pin or circuit, etc.
  • the processing unit can execute the computer-executable instructions stored in the storage unit, so that the chip in the terminal executes the wireless communication method of any one of the foregoing first aspect.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit in the terminal located outside the chip, such as a read-only memory (read-only memory). -only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above
  • the first aspect is an integrated circuit for program execution of the wireless communication method.
  • the device embodiments described above are merely illustrative, and the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physically separate
  • the physical unit can be located in one place or distributed across multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the connection relationship between the modules indicates that they have a communication connection between them, which can be specifically implemented as one or more communication buses or signal lines. Those of ordinary skill in the art can understand and implement it without creative work.
  • this application can be implemented by means of software plus necessary general hardware.
  • it can also be implemented by dedicated hardware including dedicated integrated circuits, dedicated CPUs, dedicated memory, Dedicated components and so on to achieve.
  • all functions completed by computer programs can be easily implemented with corresponding hardware.
  • the specific hardware structure used to achieve the same function can also be diverse, such as analog circuits, digital circuits or dedicated Circuit etc.
  • software program implementation is a better implementation in more cases.
  • the technical solution of this application essentially or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, such as a computer floppy disk.
  • a readable storage medium such as a computer floppy disk.
  • U disk mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc., including several instructions to make a computer device (which can be A personal computer, server, or network device, etc.) execute the method described in each embodiment of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

数据传输方法中,第一通信设备接收第二通信设备发送的标识信息;标识信息指示一个控制信息能够用于多个传输块的调度时,第一通信设备获取传输块分配信息,传输块分配信息指示控制信息调度的传输块个数和每个传输块对应的比特状态;第一通信设备这些信息发送数据或者接收数据;或者,标识信息指示一个控制信息只能用于一个传输块的调度时,第一通信设备获取HARQ进程索引信息,HARQ进程索引信息指示了控制信息调度的一个传输块对应的HARQ进程索引;第一通信设备根据这些信息发送数据或者接收数据。前述的方法和设备可以应用于通信系统,例如V2X、LTE-V、V2V、车联网、MTC、IoT、LTE-M,M2M,物联网等。

Description

一种数据传输方法和设备 技术领域
本申请实施例涉及通信领域,尤其涉及一种数据传输方法和设备。
背景技术
在通信系统中,通常一个控制信息(control information,CI)调度一个传输块(transport block,TB)。数据信道可以是物理下行数据信道或物理上行数据信道。
为了降低CI传输的开销,节省传输资源,可以使用一个CI调度多个数据信道,或者使用一个CI调度多个传输块。
当一个CI调度多个传输块时,该CI需要指示调度的传输块的数目和指示每个传输块是否成功接收。例如,一个CI调度8个传输块时,CI需要8个比特按照位图指示方式指示调度的传输块的个数,还需要8个比特指示按照位图指示方式指示每个传输块是否成功接收,这样最大需要8+8=16比特的指示开销。
由此可见,在现有技术中,一个CI调度多个传输块时,该CI需要指示的信息更多,因此需要的指示开销更大。
上述现有技术中,CI调度传输块的比特开销过大,特别考虑到高可靠性的控制信道性能,太多的比特开销需要消耗更多的传输资源,如何降低CI调度传输块的指示开销仍有待解决。
发明内容
本申请实施例提供了一种数据传输方法和设备,用于降低CI调度传输块的指示开销,减少对传输资源的占用。
为解决上述技术问题,本申请实施例提供以下技术方案:
第一方面,本申请实施例提供一种数据传输方法,包括:第一通信设备接收第二通信设备发送的标识信息;所述标识信息指示一个控制信息能够用于多个传输块的调度时,所述第一通信设备获取所述第二通信设备发送的传输块分配信息,其中所述传输块分配信息指示了所述控制信息调度的传输块个数N和每个传输块对应的比特状态;所述第一通信设备根据所述标识信息和所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,向所述第二通信设备发送数据,或者接收所述第二通信设备发送的数据,所述至少一个传输块属于所述N个传输块;或者,所述标识信息指示一个控制信息只能用于一个传输块的调度时,所述第一通信设备获取所述第二通信设备发送的混合自动重发请求HARQ进程索引信息,其中所述HARQ进程索引信息指示了所述控制信息调度的一个传输块对应的HARQ进程索引;所述第一通信设备根据所述标识信息和所述一个传输块对应的HARQ进程索引,向所述第二通信设备发送数据,或者接收所述第二通信设备发送的数据。
在本申请实施例中,为了使第一通信设备能够获取到该第二通信设备确定的传输块个数,第二通信设备可以生成一个标识信息,将该标识信息发送给第一通信设备,从而使得第一通信设备能够根据接收到的标识信息来获取到该第二通信设备确定的传输块个数。为 了节省控制信息的指示开销,本申请实施例中第二通信设备所生成的标识信息可以用于指示一个控制信息能够用于多个传输块的调度,或者一个控制信息只能用于一个传输块的调度,根据标识信息指示的传输块个数为多个时第二通信设备进一步发送传输块分配信息,或者根据标识信息指示的传输块个数为一个时第二通信设备进一步发送HARQ进程索引信息。本申请实施例中可以优化控制信息的比特开销,提升控制信息的传输性能。
在第一方面的一种可能设计中,所述第一通信设备接收第二通信设备发送的标识信息包括:所述第一通信设备接收所述第二通信设备发送的控制信息,所述控制信息包括所述标识信息;或者,所述第一通信设备接收所述第二通信设备发送的高层信令,所述高层信令包括所述标识信息。其中,第二通信设备生成标识信息之后,第二通信设备可以采用多种方式来发送该标识信息。例如第二通信设备可以采用高层信令,该高层信令可以包括标识信息,从而第一通信设备可以接收该高层信令,通过解析该高层信令可以得到第二通信设备生成的标识信息。另外,第二通信设备可以采用物理层信令,该物理层信令可以包括标识信息,从而第一通信设备可以接收该物理层信令,通过解析该物理层信令可以得到第二通信设备生成的标识信息。例如该物理层信令可为:前述的控制信息,进一步的,该控制信息可以包括标识信息。
第二方面,本申请实施例还提供一种数据传输方法,包括:第二通信设备生成标识信息,所述标识信息用于指示一个控制信息能够用于多个传输块的调度,或者一个控制信息只能用于一个传输块的调度;所述标识信息指示一个控制信息能够用于多个传输块的调度时,所述第二通信设备向所述第一通信设备发送所述标识信息和传输块分配信息,其中所述传输块分配信息指示了所述控制信息调度的传输块个数N和每个传输块对应的比特状态;所述第二通信设备根据所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,向所述第一通信设备发送数据,或者接收所述第一通信设备发送的数据,所述至少一个传输块属于所述N个传输块;或者,所述标识信息指示一个控制信息只能用于一个传输块的调度时,所述第二通信设备向所述第一通信设备发送所述标识信息和混合自动重发请求HARQ进程索引信息,其中所述HARQ进程索引信息指示了所述控制信息调度的一个传输块对应的HARQ进程索引;所述第二通信设备根据所述一个传输块对应的HARQ进程索引,向所述第一通信设备发送数据,或者接收所述第一通信设备发送的数据。
在第二方面的一种可能设计中,所述第二通信设备向所述第一通信设备发送所述标识信息包括:所述第二通信设备向所述第一通信设备发送控制信息,所述控制信息包括所述标识信息;或者,所述第二通信设备向所述第一通信设备发送高层信令,所述高层信令包括所述标识信息。其中,第二通信设备生成标识信息之后,第二通信设备可以采用多种方式来发送该标识信息。例如第二通信设备可以采用高层信令,该高层信令可以包括标识信息,从而第一通信设备可以接收该高层信令,通过解析该高层信令可以得到第二通信设备生成的标识信息。另外,第二通信设备可以采用物理层信令,该物理层信令可以包括标识信息,从而第一通信设备可以接收该物理层信令,通过解析该物理层信令可以得到第二通信设备生成的标识信息。例如该物理层信令可为:前述的控制信息,进一步的,该控制信息可以包括标识信息。
第三方面,本申请实施例提供一种通信设备,所述通信设备具体为第一通信设备,所 述第一通信设备包括:处理模块和收发模块,其中,所述处理模块,用于通过所述收发模块接收第二通信设备发送的标识信息;所述处理模块,还用于所述标识信息指示一个控制信息能够用于多个传输块的调度时,通过所述收发模块获取所述第二通信设备发送的传输块分配信息,其中所述传输块分配信息指示了所述控制信息调度的传输块个数N和每个传输块对应的比特状态;根据所述标识信息和所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,通过所述收发模块向所述第二通信设备发送数据,或者通过所述收发模块接收所述第二通信设备发送的数据,所述至少一个传输块属于所述N个传输块;或者,所述处理模块,还用于所述标识信息指示一个控制信息只能用于一个传输块的调度时,通过所述收发模块获取所述第二通信设备发送的混合自动重发请求HARQ进程索引信息,其中所述HARQ进程索引信息指示了所述控制信息调度的一个传输块对应的HARQ进程索引;根据所述标识信息和所述一个传输块对应的HARQ进程索引,通过所述收发模块向所述第二通信设备发送数据,或者通过所述收发模块接收所述第二通信设备发送的数据。
在第三方面的一种可能设计中,所述处理模块,用于通过所述收发模块接收所述第二通信设备发送的控制信息,所述控制信息包括所述标识信息;或者,通过所述收发模块接收所述第二通信设备发送的高层信令,所述高层信令包括所述标识信息。
在本申请的第三方面中,第一通信设备的组成模块还可以执行前述第一方面以及各种可能的实现方式中所描述的步骤,详见前述对第一方面以及各种可能的实现方式中的说明。
第四方面,本申请实施例提供一种通信设备,所述通信设备具体为第二通信设备,所述第二通信设备包括:处理模块和收发模块,其中,所述处理模块,用于生成标识信息,所述标识信息用于指示一个控制信息能够用于多个传输块的调度,或者一个控制信息只能用于一个传输块的调度;所述处理模块,还用于所述标识信息指示一个控制信息能够用于多个传输块的调度时,通过所述收发模块向所述第一通信设备发送所述标识信息和传输块分配信息,其中所述传输块分配信息指示了所述控制信息调度的传输块个数N和每个传输块对应的比特状态;根据所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,通过所述收发模块向所述第一通信设备发送数据,或者通过所述收发模块接收所述第一通信设备发送的数据,所述至少一个传输块属于所述N个传输块;或者,所述处理模块,还用于所述标识信息指示一个控制信息只能用于一个传输块的调度时,通过所述收发模块向所述第一通信设备发送所述标识信息和混合自动重发请求HARQ进程索引信息,其中所述HARQ进程索引信息指示了所述控制信息调度的一个传输块对应的HARQ进程索引;根据所述一个传输块对应的HARQ进程索引,通过所述收发模块向所述第一通信设备发送数据,或者通过所述收发模块接收所述第一通信设备发送的数据。
在第四方面的一种可能设计中,所述处理模块,用于通过所述收发模块向所述第一通信设备发送控制信息,所述控制信息包括所述标识信息;或者,通过所述收发模块向所述第一通信设备发送高层信令,所述高层信令包括所述标识信息。
在本申请的第四方面中,第二通信设备的组成模块还可以执行前述第二方面以及各种可能的实现方式中所描述的步骤,详见前述对第二方面以及各种可能的实现方式中的说明。
在第一方面或者第二方面或者第三方面或者第四方面的一种可能设计中,所述标识信息指示一个控制信息能够用于多个传输块的调度时,所述控制信息还包括所述传输块分配 信息;或者,所述标识信息指示一个控制信息只能用于调度一个传输块的调度时,所述控制信息还包括所述HARQ进程索引信息。其中,控制信息至少具有两种不同的比特结构,例如控制信息为DCI,一个DCI指示多个TB的传输,该DCI信息中可以携带传输块分配信息,第一通信设备可以通过DCI信息获取到传输块分配信息,一个DCI还可以只调度一个TB的传输,该DCI信息中可以携带HARQ进程索引信息,第一通信设备可以通过DCI信息获取到HARQ进程索引信息。
在第一方面或者第二方面或者第三方面或者第四方面的一种可能设计中,所述传输块分配信息包括M个比特,所述M个比特为b 0,b 1,…,b (M-1),并且所述b 0是所述M个比特中的最左侧的比特,b (M-1)是所述M个比特中的最右侧的比特;所述M个比特中第j+1个比特为b j,所述b j=1,且在所述M个比特中,位于所述b j左侧的比特的状态都为0,则所述控制信息调度了(K-j)个TB;或,所述M个比特中第c+1个比特为b c,所述b c=0,且在所述M个比特中,位于所述b c左侧的比特的状态都为0,则所述控制信息调度了(K-c)个TB;其中,所述M是正整数,所述K是正整数,所述K小于所述M;所述j是整数,且所述j等于如下取值中的任意一个:0,1,2,…(M-1);所述c是整数,且所述c等于如下取值中的任意一个:0,1,2,…(M-1)。
其中,传输块分配信息包括M个比特,M的取值大小可以具体场景来确定,例如根据第一通信设备和第二通信设备的传输能力以及所配置的传输模式来确定。例如M个比特为b 0,b 1,…,b (M-1),并且b 0是M个比特中的最左侧的比特,b (M-1)是M个比特中的最右侧的比特,即通信设备在b 0,b 1,…,b (M-1)中从左至右依次获取各个比特的取值。M个比特中第j+1个比特为b j,b j=1,且在M个比特中,位于b j左侧的比特的状态都为0,则控制信息调度了(K-j)个TB,从第一个非0的比特决定了控制信息调度的TB个数,K可以是预先配置的正整数,例如K可以表示一个控制信息能够调度的最大TB个数。另外,在M个比特中第c+1个比特为b c,b c=0,且在M个比特中,位于b c左侧的比特的状态都为0,连续取值都为0的比特决定了控制信息调度的TB个数,例如控制信息调度了(K-c)个TB。
在第一方面或者第二方面或者第三方面或者第四方面的一种可能设计中,所述b j右侧的(K-j)个比特中的每个比特关联一个TB。其中,对于b j右侧的(K-j)个比特中的每个比特的取值都可以用于确定一个TB的状态,通过b j右侧的(K-j)个比特中的每个比特可以确定出每个比特所关联的TB的状态。
在第一方面或者第二方面或者第三方面或者第四方面的一种可能设计中,所述b j右侧的(K-j)个比特中的每个比特关联一个TB,包括:所述b j右侧的(K-j)个比特中的第p个比特关联所述控制信息指示的第p个TB,所述p是整数,且所述p等于如下取值中的任意一个:1,2,…(K-j)。例如,b j右侧的(K-j)个比特中的第1个比特关联控制信息指示的第1个TB,b j右侧的(K-j)个比特中的第2个比特关联控制信息指示的第2个TB,因此通过b j右侧的(K-j)个比特中的每个比特可以确定出每个比特所关联的TB的状态。
在第一方面或者第二方面或者第三方面或者第四方面的一种可能设计中,所述b j右侧的(K-j)个比特中的第p个比特的比特状态是第p个TB对应的比特状态。其中,控制信息指示的第p个TB对应的比特状态可以是b j右侧的(K-j)个比特中的第p个比特的比特状态,因此通过b j右侧的(K-j)个比特的比特状态可以确定出控制信息指示的TB对应的比特状态。
在第一方面或者第二方面或者第三方面或者第四方面的一种可能设计中,所述M=9,所述K=8;和/或,所述M=5,所述K=4;和/或,所述c=6或7;和/或,所述c=2或3。具体可以根据场景来配置M和K的取值,例如M=K+1。另外本申请实施例中可以根据具体场景来配置M、K、c的取值。
在第一方面或者第二方面或者第三方面或者第四方面的一种可能设计中,所述标识信息包括X个比特,所述X为正整数;所述标识信息的X个比特的比特状态中有一种比特状态指示了:所述控制信息能够用于多个传输块的调度,且所述控制信息包括所述传输块分配信息,所述N个传输块TB中的第i个TB为TB i,若所述TB i对应的比特状态为0,则所述TB i为新传TB,若所述TB i对应的比特状态为1,则所述TB i是重传TB;和/或,所述标识信息的X个比特的比特状态中有一种比特状态指示了:所述控制信息能够用于多个传输块的调度,且所述控制信息包括所述传输块分配信息,所述N个TB中的第i个TB为TB i,若所述TB i对应的比特状态为0,则所述TB i为新传TB,若所述TB i对应的比特状态为1,则所述第一通信设备不传输所述TB i或者忽略所述TB i;和/或,所述标识信息的X个比特的比特状态中有一种比特状态指示了:所述控制信息能够用于多个传输块的调度,且所述控制信息包括所述传输块分配信息,所述N个TB中的第i个TB为TB i,若所述TB i对应的比特状态为1,则所述TB i为重传TB,若所述TB i对应的比特状态为0,则所述第一通信设备不传输所述TB i或者忽略所述TB i;和/或,所述标识信息的X个比特的比特状态中有一种比特状态指示了:所述控制信息只能够用于一个传输块的调度;其中,所述N是正整数,所述i是整数,且所述i等于如下取值中的任意一个:1,2,…,N,或者0,1,…,(N-1)。
在第二方面的一种可能设计中,所述第二通信设备根据所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,向所述第一通信设备发送数据,或者接收所述第一通信设备发送的数据,包括:所述第二通信设备根据所述标识信息的X个比特的比特状态以及所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,向所述第一通信设备发送数据,或者接收所述第一通信设备发送的数据。
在第四方面的一种可能设计中,所述第二通信设备包括的处理模块,具体用于根据所述标识信息的X个比特的比特状态以及所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,通过所述第二通信设备包括的收发模块向所述第一通信设备发送数据,或者接收所述第一通信设备发送的数据。
在第一方面或者第二方面或者第三方面或者第四方面的一种可能设计中,所述X=2;和/或,所述N的取值为1,2,……,8;或者,所述N的取值为2,……,8;或者,所述N的取值为1,2,3,4;或者,所述N的取值为2,3,4。
第五方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一或第二方面所述的方法。
第六方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一或第二方面所述的方法。
第七方面,本申请实施例提供一种通信设备,该通信设备可以包括终端设备或者网络设备等实体,所述通信设备包括:处理器、存储器;所述存储器用于存储指令;所述处理器用于执行所述存储器中的所述指令,使得所述通信设备执行如前述第一方面或第二方面 中任一项所述的方法。
第八方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持通信设备实现上述方面中所涉及的功能,例如,发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存通信设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1为本申请实施例提供的一种数据传输方法所应用的系统架构示意图;
图2为本申请实施例提供的第一通信设备和第二通信设备的一种交互流程方框示意图;
图3为本申请实施例提供的第一通信设备和第二通信设备的另一种交互流程方框示意图;
图4a为本申请实施例提供的一种控制信息调度传输块的示意图;
图4b为本申请实施例提供的另一种控制信息调度传输块的示意图;
图5为本申请实施例提供的传输块分配信息包括的9个比特指示的比特状态示意图;
图6为本申请实施例提供的下行控制信息承载标识信息的示意图;
图7a为本申请实施例提供的标识信息指示的一种比特结构的示意图;
图7b为本申请实施例提供的标识信息指示的另一种比特结构的示意图;
图8a为本申请实施例提供的标识信息指示的一种功能示意图;
图8b为本申请实施例提供的标识信息指示的另一种功能示意图;
图8c为本申请实施例提供的标识信息指示的另一种功能示意图;
图8d为本申请实施例提供的标识信息指示的另一种功能示意图;
图9为本申请实施例提供的DCI使用3比特的指示方式示意图;
图10为本申请实施例提供的一种第一通信设备的组成结构示意图;
图11为本申请实施例提供的一种第二通信设备的组成结构示意图;
图12为本申请实施例提供的另一种第一通信设备的组成结构示意图;
图13为本申请实施例提供的另一种第二通信设备的组成结构示意图。
具体实施方式
本申请实施例提供了一种数据传输方法和设备,用于降低CI调度传输块的指示开销,减少对传输资源的占用。
下面结合附图,对本申请的实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
本申请实施例的技术方案可以应用于各种数据处理的通信系统,例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。CDMA系统可以实现例如通用无线陆地接入(universal terrestrial radio access,UTRA),CDMA2000等无线技术。UTRA可以包括宽带CDMA(wideband CDMA,WCDMA)技术和其它CDMA变形的技术。CDMA2000可以覆盖过渡标准(interim standard,IS)2000(IS-2000),IS-95和IS-856标准。TDMA系统可以实现例如全球移动通信系统(global system for mobile communication,GSM)等无线技术。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)、IEEE 802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。第五代(5Generation,简称:“5G”)通信系统、新空口(New Radio,简称“NR”)是正在研究当中的下一代通信系统。本申请实施例的技术方案可以应用于诸如V2X、LTE-V、V2V、车联网、MTC、IoT、LTE-M、M2M及物联网等的各类通信系统。此外,所述通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供的通信系统可以包括:第一通信设备和第二通信设备,第一通信设备和第二通信设备之间可以进行数据传输。例如第一通信设备可以包括:终端设备,第二通信设备可以包括:网络设备。或者第一通信设备可以包括:一个终端设备,第二通信设备可以包括:另一个终端设备。或者第一通信设备可以包括:一个网络设备,第二通信设备可以包括:另一个网络设备。
图1示出了本申请实施例的一种可能的无线接入网(radio access network,RAN)的结构示意图。所述RAN可以为2G网络的基站接入系统(即所述RAN包括基站和基站控制器),或可以为3G网络的基站接入系统(即所述RAN包括基站和RNC),或可以为4G网络的基站接入系统(即所述RAN包括eNB和RNC),或可以为5G网络的基站接入系统。
所述RAN包括一个或多个网络设备。所述网络设备可以是任意一种具有无线收发功能的设备,或,设置于具体无线收发功能的设备内的芯片。所述网络设备包括但不限于:基站(例如基站BS,基站NodeB、演进型基站eNodeB或eNB、第五代5G通信系统中的基站gNodeB或gNB、未来通信系统中的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点)等。基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的一种或者多种技术的网络,或者未来演进网络。所述核心网可以支持上述提及一种或者多种技术的网络,或者未来演进网络。基站可以包含一个或多个共站或非共站的传输接收点(transmission receiving point,TRP)。网络设备还可以是云无线接入 网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)或者分布单元(distributed unit,DU)等。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备1-6进行通信,也可以通过中继站与终端设备1-6进行通信。终端设备1-6可以支持与不同技术的多个基站进行通信,例如,终端设备可以支持与支持LTE网络的基站通信,也可以支持与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。例如将终端接入到无线网络的RAN节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
终端设备1-6,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、终端等,是一种向用户提供语音和/或数据连通性的设备,或,设置于该设备内的芯片,例如,具有无线连接功允许的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例提供的终端设备可以是低复杂度终端设备和/或处于覆盖增强A模式下的终端设备。
在本申请实施例中,基站和UE1至UE6组成一个通信系统,在该通信系统中,基站发送系统信息、RAR消息和寻呼消息中的一种或多种给UE1至UE6中的一个或多个UE,此外,UE4至UE6也组成一个通信系统,在该通信系统中,UE5可以作为基站的功能实现,UE5可以发送系统信息、控制信息和寻呼消息中的一种或多种给UE4和UE6中的一个或多个UE。
为解决现有技术中CI调度传输块的指示开销过大问题,本申请实施例提出如下的数据传输方法,适用于控制信息调度传输块场景中,本申请实施例中控制信息具体可以包括下行控制信息。本申请实施例中第二通信设备生成标识信息,该标识信息的指示作用有两种:一种是指示一个控制信息能够用于多个传输块的调度,另一种是指示一个控制信息只能用于一个传输块的调度。当标识信息用于指示一个控制信息能够用于多个传输块的调度时,执行图2所示的交互流程,当标识信息用于指示一个控制信息只能用于一个传输块的调度时,执行图3所示的交互流程。
首先请参阅图2所示,为本申请实施例提供的网络设备和终端设备之间的一种交互流 程示意图,本申请实施例提供的数据传输方法,主要包括如下步骤:
201、第二通信设备生成标识信息。
例如,标识信息可以用于指示一个控制信息能够用于多个传输块的调度,或者可以用于指示一个控制信息只能用于一个传输块的调度。
在本申请实施例中,控制信息由第二通信设备生成,第二通信设备通过控制信息向第一通信设备下发控制指令,后续举例中该控制信息用CI表示。例如,第二通信设备确定用于数据传输的传输块(transport block,TB)个数(number)。例如,第二通信设备确定的传输块个数可以是1个或者多个,多个传输块指的是2个或者3个或者4个…、或者8个传输等。在第二通信设备通过控制信息调度多个传输块时,第二通信设备还需要确定控制信息调度的所有传输块中新传的传输块,和/或重传的传输块。其中,控制信息确定调度的所有传输块中可以是全部新传的传输块,也可以是重传的传输块,或者所有的传输块中有的传输块是新传,有的传输块为重传。
举例说明如下,如图4a所示,控制信息可以调度8个传输块,分别为TB1、TB2…、TB7、TB8。又如图4b所示,控制信息可以调度4个传输块,分别为TB1、TB2、TB3、TB4。图4a和图4b中的每个TB都对应一种传输状态,例如TB1为新传的传输块,TB2为重传的传输块。
在本申请的一些实施例中,第一通信设备可以工作在覆盖增强模式B,或覆盖增强等级2,或覆盖增强等级3。当第一通信设备工作在覆盖增强模式B时,控制信息调度的最大传输块个数可以是4个。不限定的是,第一通信设备也可以工作在其他模式,例如可以工作在覆盖增强模式A,或覆盖增强等级0,或覆盖增强等级1。当第一通信设备工作在覆盖增强模式A时,控制信息调度的最大传输块个数可以是8个。
为了指示控制信息调度的传输块个数以及指示待传输的传输块类型,第二通信设备可以生成标识(flag)信息。标识信息用于指示一个控制信息能够用于多个传输块的调度,或者一个控制信息只能用于一个传输块的调度。其中,一个控制信息能够用于多个传输块的调度是指一个控制信息能够调度多个传输块,一个控制信息只能用于一个传输块的调度是指一个传输块不能调度多个传输块,而是用于单个传输块的调度。
202、标识信息指示一个控制信息能够用于多个传输块的调度时,第二通信设备向第一通信设备发送标识信息和传输块分配信息,其中传输块分配信息指示了控制信息调度的传输块个数N和每个传输块对应的比特状态。
在本申请实施例中,标识信息指示一个控制信息能够用于多个传输块的调度时,该标识信息还指示了第二通信设备发送传输块分配信息,该传输块分配信息也可以称为TB分配指示信息,或者TB调度指示信息。第二通信设备根据控制信息调度的传输块个数N和每个传输块对应的比特状态生成传输块分配信息。第二通信设备向第一通信设备发送标识信息和传输块分配信息。例如,传输块分配信息包括M个比特,M个比特为b 0,b 1,…,b (M-1),通过M个比特的比特状态可以指示控制信息调度的传输块个数N和每个传输块对应的比特状态。
在本申请的一些实施例中,为了使第一通信设备能够获取到该第二通信设备确定的传输块个数,第二通信设备可以生成标识信息,将该标识信息发送给第一通信设备,从而使 得第一通信设备能够根据接收到的标识信息来获取到该第二通信设备确定的传输块个数。另外,第二通信设备发送的标识信息用于指示一个控制信息调度多个传输块时,该标识信息还可以指示第一通信设备接收第二通信设备发送的传输块分配信息。
需要说明的是,步骤202中第二通信设备向第一通信设备发送标识信息和传输块分配信息,该标识信息和传输块分配信息可以使用同一个信息来传输,或者标识信息和传输块分配信息分别使用不同的信息来传输,例如标识信息通过高层信令来传输,传输块分配信息通过控制信息来传输。
在本申请的一些实施例中,步骤202中的第二通信设备向第一通信设备发送标识信息包括:
第二通信设备向第一通信设备发送控制信息,控制信息包括标识信息。
或者,第二通信设备向第一通信设备发送高层信令,高层信令包括标识信息。
其中,第二通信设备生成标识信息之后,第二通信设备可以采用多种方式来发送该标识信息。例如第二通信设备可以采用高层信令,该高层信令可以包括标识信息,从而第一通信设备可以接收该高层信令,通过解析该高层信令可以得到第二通信设备生成的标识信息。例如该高层信令可包括:无线资源控制(radio resource control,RRC)信令。另外,第二通信设备可以采用物理层信令,该物理层信令可以包括标识信息,从而第一通信设备可以接收该物理层信令,通过解析该物理层信令可以得到第二通信设备生成的标识信息。例如该物理层信令可为:前述的控制信息,进一步的,该控制信息可以包括标识信息。
在本申请的一些实施例中,标识信息指示一个控制信息能够用于多个传输块的调度时,控制信息还包括传输块分配信息。
其中,传输块分配信息和标识信息都可以通过控制信息来传输,对于控制信息中的传输块分配信息和标识信息的位置关系,以及传输块分配信息和标识信息在控制信息中所占用的比特数,不做限定。通过控制信息来传输传输块分配信息和标识信息,使得第一通信设备通过接收控制信息就可以获取到传输块分配信息和标识信息,进而根据传输块分配信息和标识信息来完成数据传输。
203、第二通信设备根据每个传输块对应的比特状态,使用控制信息指示的至少一个传输块,向第一通信设备发送数据,至少一个传输块属于N个传输块。或者,
204、第二通信设备根据每个传输块对应的比特状态,使用控制信息指示的至少一个传输块,接收第一通信设备发送的数据,至少一个传输块属于N个传输块。
在本申请实施例中,第二通信设备向第一通信设备发送标识信息和传输块分配信息之后,第二通信设备可以根据确定的每个传输块对应的比特状态,使用控制信息指示的至少一个传输块,和第一通信设备进行数据传输。例如第二通信设备根据标识信息确定当前数据传输可以使用的传输块个数,第二通信设备根据确定的每个传输块对应的比特状态确定当前数据传输可以使用的传输块的状态。同样的,第一通信设备根据标识信息确定当前数据传输可以使用的传输块个数,第一通信设备根据确定的每个传输块对应的比特状态确定当前数据传输可以使用的传输块的状态。进一步的,当第二通信设备向第一通信设备发送数据时,该第二通信设备还需要确定控制信息调度的所有传输块中每个传输块为新传的传输块,还是重传的传输块。
211、第一通信设备接收第二通信设备发送的标识信息。
在本申请的一些实施例中,为了使第一通信设备能够获取到该第二通信设备确定的传输块个数,第二通信设备可以生成标识信息,将该标识信息发送给第一通信设备,从而使得第一通信设备能够根据接收到的标识信息来获取到该第二通信设备确定的传输块个数。另外,第二通信设备发送的标识信息用于指示一个控制信息调度多个传输块时,该标识信息还可以指示第一通信设备接收第二通信设备发送的传输块分配信息。
在本申请的一些实施例中,步骤211第一通信设备接收第二通信设备发送的标识信息,可以包括如下步骤:
第一通信设备接收第二通信设备发送的高层信令,高层信令包括标识信息。
或者,第一通信设备接收第二通信设备发送的控制信息,控制信息包括标识信息。
其中,第二通信设备生成标识信息之后,第二通信设备可以采用多种方式来发送该标识信息。例如第二通信设备可以采用高层信令,该高层信令可以包括标识信息,从而第一通信设备可以接收该高层信令,通过解析该高层信令可以得到第二通信设备生成的标识信息。例如该高层信令可包括:RRC信令。另外,第二通信设备可以采用物理层信令,该物理层信令可以包括标识信息,从而第一通信设备可以接收该物理层信令,通过解析该物理层信令可以得到第二通信设备生成的标识信息。例如该物理层信令可为:前述的控制信息,进一步的,该控制信息可以包括标识信息。
212、标识信息指示一个控制信息能够用于多个传输块的调度时,第一通信设备获取第二通信设备发送的传输块分配信息,其中传输块分配信息指示了控制信息调度的传输块个数N和每个传输块对应的比特状态。
在本申请实施例中,标识信息指示一个控制信息能够用于多个传输块的调度时,该标识信息还指示了第二通信设备发送传输块分配信息,该传输块分配信息也可以称为TB分配指示信息,或者TB调度指示信息。第一通信设备接收第二通信设备发送的传输块分配信息,根据该传输块分配信息确定控制信息调度的传输块个数N和每个传输块对应的比特状态。例如,传输块分配信息包括M个比特,M个比特为b 0,b 1,…,b (M-1),通过M个比特的比特状态可以指示控制信息调度的传输块个数N和每个传输块对应的比特状态。
213、第一通信设备根据标识信息和每个传输块对应的比特状态,使用控制信息指示的至少一个传输块,接收第二通信设备发送的数据,至少一个传输块属于N个传输块。
214、第一通信设备根据标识信息和每个传输块对应的比特状态,使用控制信息指示的至少一个传输块,向第二通信设备发送数据,至少一个传输块属于N个传输块。
在本申请实施例中,第二通信设备向第一通信设备传输块分配指示信息之后,第二通信设备可以根据标识信息和确定的每个传输块对应的比特状态,使用控制信息指示的至少一个传输块,和第一通信设备进行数据传输。例如第二通信设备根据标识信息确定当前数据传输可以使用的传输块个数,第二通信设备根据确定的每个传输块对应的比特状态确定当前数据传输可以使用的传输块的状态。同样的,第一通信设备根据标识信息确定当前数据传输可以使用的传输块个数,第一通信设备根据确定的每个传输块对应的比特状态确定当前数据传输可以使用的传输块的状态。进一步的,当第一通信设备向第二通信设备发送数据时,该第一通信设备还需要确定控制信息调度的所有传输块中每个传输块为新传的传 输块,还是重传的传输块。
首先请参阅图3所示,为本申请实施例提供的网络设备和终端设备之间的一种交互流程示意图,本申请实施例提供的数据传输方法,主要包括如下步骤:
301、第二通信设备生成标识信息,标识信息用于指示一个控制信息能够用于多个传输块的调度,或者一个控制信息只能用于一个传输块的调度。
其中,步骤301与前述实施例中的步骤201类似,此处不再赘述。
302、标识信息指示一个控制信息只能用于一个传输块的调度时,第二通信设备向第一通信设备发送标识信息和混合自动重发请求(hybrid automatic retransmission request,HARQ)进程索引信息,其中HARQ进程索引信息指示了控制信息调度的一个传输块对应的HARQ进程索引。
在本申请实施例中,标识信息指示一个控制信息只能用于一个传输块的调度时,该标识信息还指示了第二通信设备发送HARQ进程索引信息。第二通信设备根据控制信息调度的一个传输块和一个传输块对应的HARQ进程索引生成HARQ进程索引信息,HARQ进程索引信息也可以称为HARQ进程索引指示信息,第二通信设备向第一通信设备发送标识信息和HARQ进程索引信息,例如,控制信息中可以有3个比特用于HARQ进程索引指示。
需要说明的是,步骤302中第二通信设备向第一通信设备发送标识信息和传输块分配信息,该标识信息和传输块分配信息可以使用同一个信息来传输,或者标识信息和传输块分配信息分别使用不同的信息来传输,例如标识信息通过高层信令来传输,传输块分配信息通过控制信息来传输。
在本申请的一些实施例中,标识信息指示一个控制信息只能用于调度一个传输块的调度时,控制信息包括HARQ进程索引信息。
其中,HARQ进程索引信息和标识信息都可以通过控制信息来传输,对于控制信息中的HARQ进程索引信息和标识信息的位置关系,以及HARQ进程索引信息和标识信息在控制信息中所占用的比特数,不做限定。通过控制信息来传输HARQ进程索引信息和标识信息,使得第一通信设备通过接收控制信息就可以获取到传输HARQ进程索引信息和标识信息,进而根据传输HARQ进程索引信息和标识信息来完成数据传输。
在本申请的一些实施例中,标识信息指示一个控制信息能够用于多个传输块的调度时,控制信息还包括传输块分配信息,或者标识信息指示一个控制信息只能用于调度一个传输块的调度时,控制信息还包括HARQ进程索引信息。
其中,控制信息至少具有两种不同的比特结构,例如控制信息为DCI,一个DCI指示多个TB的传输,DCI采用第一比特结构,UE按照第一比特结构解读DCI的比特信息。另外,一个DCI还可以只调度一个TB的传输,DCI采用第二比特结构,UE按照第二比特结构解读DCI的比特信息。后续实施例中对第一比特结构和第二比特结构做出详细的举例说明。
303、第二通信设备根据一个传输块对应的HARQ进程索引,向第一通信设备发送数据,或者,
304、第二通信设备根据一个传输块对应的HARQ进程索引,接收第一通信设备发送的数据。
在本申请实施例中,第二通信设备向第一通信设备传输块分配指示信息之后,第二通 信设备可以根据确定的一个传输块对应的HARQ进程索引,和第一通信设备进行数据传输。例如第二通信设备根据标识信息确定当前数据传输可以使用的传输块个数,第二通信设备根据确定的一个传输块对应的HARQ进程索引确定当前数据传输可以使用的HARQ进程索引。同样的,第一通信设备根据标识信息确定当前数据传输可以使用的传输块个数,第一通信设备根据确定的一个传输块对应的HARQ进程索引确定当前数据传输可以使用的HARQ进程索引。进一步的,当第二通信设备向第一通信设备发送数据时,该第二通信设备还需要确定控制信息调度的所有传输块中每个传输块为新传的传输块,还是重传的传输块。
需要说明的是,步骤303和步骤304可根据应用场景确定执行哪个步骤,此处不做些限定。
311、第一通信设备接收第二通信设备发送的标识信息。
在本申请的一些实施例中,为了使第一通信设备能够获取到该第二通信设备确定的传输块个数,第二通信设备可以生成标识信息,将该标识信息发送给第一通信设备,从而使得第一通信设备能够根据接收到的标识信息来获取到该第二通信设备确定的传输块个数。另外,第二通信设备发送的标识信息用于指示一个控制信息只能用于一个传输块的调度时,该标识信息还可以指示第一通信设备接收第二通信设备发送的HARQ进程索引信息。
312、标识信息指示一个控制信息只能用于一个传输块的调度时,第一通信设备获取第二通信设备发送的混合自动重发请求HARQ进程索引信息,其中HARQ进程索引信息指示了控制信息调度的一个传输块对应的HARQ进程索引。
313、第一通信设备根据标识信息和一个传输块对应的HARQ进程索引,接收第二通信设备发送的数据。
314、第一通信设备根据标识信息和一个传输块对应的HARQ进程索引,向第二通信设备发送数据。
在本申请实施例中,第二通信设备向第一通信设备传输块分配指示信息之后,第二通信设备可以根据标识信息和确定的一个传输块对应的HARQ进程索引,和第一通信设备进行数据传输。例如第二通信设备根据标识信息确定当前数据传输可以使用的传输块个数,第二通信设备根据确定的一个传输块对应的HARQ进程索引确定当前数据传输可以使用的HARQ进程索引。同样的,第一通信设备根据标识信息确定当前数据传输可以使用的传输块个数,第一通信设备根据确定的一个传输块对应的HARQ进程索引确定当前数据传输可以使用的HARQ进程索引。进一步的,当第一通信设备向第二通信设备发送数据时,该第一通信设备还需要确定控制信息调度的所有传输块中每个传输块为新传的传输块,还是重传的传输块。
在本申请的一些实施例中,第二通信设备生成的传输块分配信息包括M个比特,M个比特为b 0,b 1,…,b (M-1),并且b 0是M个比特中的最左侧的比特,b (M-1)是M个比特中的最右侧的比特;
M个比特中第j+1个比特为b j,b j=1,且在M个比特中,位于b j左侧的比特的状态都为0,则控制信息调度了(K-j)个TB;或,
M个比特中第c+1个比特为b c,b c=0,且在M个比特中,位于b c左侧的比特的状态都为0,则控制信息调度了(K-c)个TB;
其中,M是正整数,K是正整数,所述K小于所述M;
j是整数,且j等于如下取值中的任意一个:0,1,2,…(M-1);
c是整数,且c等于如下取值中的任意一个:0,1,2,…(M-1)。
其中,传输块分配信息包括M个比特,M的取值大小可以具体场景来确定,例如根据第一通信设备和第二通信设备的传输能力以及所配置的传输模式来确定。例如M个比特为b 0,b 1,…,b (M-1),并且b 0是M个比特中的最左侧的比特,b (M-1)是M个比特中的最右侧的比特,即通信设备在b 0,b 1,…,b (M-1)中从左至右依次获取各个比特的取值。M个比特中第j+1个比特为b j,b j=1,且在M个比特中,位于b j左侧的比特的状态都为0,则控制信息调度了(K-j)个TB,从第一个非0的比特决定了控制信息调度的TB个数,K可以是预先配置的正整数,例如K可以表示一个控制信息能够调度的最大TB个数。另外,在M个比特中第c+1个比特为b c,b c=0,且在M个比特中,位于b c左侧的比特的状态都为0,连续取值都为0的比特决定了控制信息调度的TB个数,例如控制信息调度了(K-c)个TB。
在本申请的一些实施例中,M个比特中第j+1个比特为b j,b j=1,且在M个比特中,位于b j左侧的比特的状态都为0,则控制信息调度了(K-j)个TB,控制信息调度的(K-j)个TB的状态可以通过b j+1,…,b (M-1)的比特状态来确定。
需要说明的是,上述实施例中以左边第一个为1的比特所在的比特位指示了控制信息调度的TB个数为例阐述本申请实施例的方法。实际上,对上述实施例的比特位置或者比特状态做一些变换或者替换,仍属于本申请实施例的保护范围。例如,以b 0,b 1,…,b (M-1)中右边第一个为1的比特所在的比特位指示了控制信息调度的TB个数。例如,以b 0,b 1,…,b (M-1)中左边第一个为0的比特所在的比特位指示了控制信息调度的TB个数。例如,以b 0,b 1,…,b (M-1)中右边第一个为0的比特所在的比特位指示了控制信息调度的TB个数。
在本申请的一些实施例中,b j右侧的(K-j)个比特中的每个比特关联一个TB。
其中,对于b j右侧的(K-j)个比特中的每个比特的取值都可以用于确定一个TB的状态,通过b j右侧的(K-j)个比特中的每个比特可以确定出每个比特所关联的TB的状态。
进一步的,在本申请的一些实施例中,b j右侧的(K-j)个比特中的每个比特关联一个TB,包括:b j右侧的(K-j)个比特中的第p个比特关联控制信息指示的第p个TB,p是整数,且p等于如下取值中的任意一个:1,2,…(K-j)。
例如,b j右侧的(K-j)个比特中的第1个比特关联控制信息指示的第1个TB,b j右侧的(K-j)个比特中的第2个比特关联控制信息指示的第2个TB,因此通过b j右侧的(K-j)个比特中的每个比特可以确定出每个比特所关联的TB的状态。
在本申请的一些实施例中,b j右侧的(K-j)个比特中的每个比特关联一个TB,包括:所述b j右侧的(K-j)个比特关联的(K-j)个TB的HARQ进程索引是连续的。进一步的,当b j右侧的(K-j)个比特关联的(K-j)个TB的HARQ进程索引是连续时,所述(K-j)个TB中的第一个TB的HARQ进程索引固定为0。通过(K-j)个TB的HARQ进程索引是连续的可以快速的确定出控制信息指示的所有TB的HARQ进程索引的取值。
在本申请的一些实施例中,b j右侧的(K-j)个比特中的第p个比特的比特状态是第p个TB对应的比特状态。
其中,控制信息指示的第p个TB对应的比特状态可以是b j右侧的(K-j)个比特中的第 p个比特的比特状态,因此通过b j右侧的(K-j)个比特的比特状态可以确定出控制信息指示的TB对应的比特状态。
在本申请的一些实施例中,M、K的取值可以满足如下关系:M=9,K=8;和/或,M=5,K=4。具体可以根据场景来配置M和K的取值,例如M=K+1。另外本申请实施例中,c=6或7;和/或,c=2或3。详见后续实施例中对M、K、c的取值的举例说明。
在本申请的一些实施例中,标识信息包括X个比特,X为正整数;
标识信息的X个比特的比特状态中有一种比特状态指示了:控制信息能够用于多个传输块的调度,且控制信息包括所述传输块分配信息,N个传输块TB中的第i个TB为TB i,若TB i对应的比特状态为0,则TB i为新传TB,若TB i对应的比特状态为1,则TB i是重传TB;和/或,
标识信息的X个比特的比特状态中有一种比特状态指示了:控制信息能够用于多个传输块的调度,且控制信息包括所述传输块分配信息,N个TB中的第i个TB为TB i,若TB i对应的比特状态为0,则TB i为新传TB,若TB i对应的比特状态为1,则第一通信设备不传输TB i或者忽略TB i;和/或,
标识信息的X个比特的比特状态中有一种比特状态指示了:控制信息能够用于多个传输块的调度,且控制信息包括所述传输块分配信息,N个TB中的第i个TB为TB i,若TB i对应的比特状态为1,则TB i为重传TB,若TB i对应的比特状态为0,则第一通信设备不传输TB i或者忽略TB i;和/或,
标识信息的X个比特的比特状态中有一种比特状态指示了:控制信息只能够用于一个传输块的调度。
其中,N是正整数,i是整数,且i等于如下取值中的任意一个:1,2,…,N,或者0,1,…,(N-1)。
其中,标识信息的X个比特的比特状态中有一种比特状态指示了第一功能,即一个控制信息能够用于多个传输块的调度,若第二通信设备指示某个TB的比特状态为0,则该TB为新传TB,则第一通信设备传输该新传TB。若第二通信设备指示某个TB的比特状态为1,则该TB是重传TB,则第一通信设备传输该重传TB。可选地,控制信息采用第一比特结构,第一通信设备按照第一比特结构解读控制信息的比特信息。不限定的是,也可以根据比特状态为1确定TB为新传,或者根据比特状态为0确定TB为重传。
标识信息的X个比特的比特状态中的另一种比特状态指示了第二功能,即一个控制信息指示多个TB的传输。若第二通信设备指示某个TB的比特状态为0,则该TB为新传TB,则第一通信设备传输该新传TB。若第二通信设备指示某个TB的比特状态为1,则指示第一通信设备不传输该TB或者忽略第二通信设备指示的该TB。可选地,该TB可以是重传TB和/或没有调度的TB。可选地,控制信息采用第一比特结构,第一通信设备按照第一比特结构解读控制信息的比特信息。可以理解的是,本申请实施例中,第一通信设备不传输TB i或者忽略TB i可以具体场景来配置第一通信设备采用不传输的方式或者忽略的方式。
标识信息的X个比特的比特状态中的另一种比特状态指示了第三功能,即一个控制信息指示多个TB的传输。若第二通信设备指示某个TB的比特状态为1,则该TB为重传TB,则第一通信设备传输该重传TB。若第二通信设备指示某个TB的比特状态为0,则指示第一 通信设备不传输该TB或者忽略第二通信设备指示的该TB。可选地,该TB可以是新传TB和/或没有调度的TB。可选地,控制信息采用第一比特结构,第一通信设备按照第一比特结构解读控制信息的比特信息。
标识信息的X个比特的比特状态中的另一种比特状态指示了第四功能,即一个控制信息只能够用于一个传输块的调度。可选地,控制信息采用第二比特结构,第一通信设备按照第二比特结构解读控制信息的比特信息。
在本申请的一些实施例中,第二通信设备根据每个传输块对应的比特状态,使用控制信息指示的至少一个传输块,向第一通信设备发送数据,或者接收第一通信设备发送的数据,包括:
第二通信设备根据标识信息的X个比特的比特状态以及每个传输块对应的比特状态,使用控制信息指示的至少一个传输块,向第一通信设备发送数据,或者接收第一通信设备发送的数据。
其中,前述对标识信息的X个比特的比特状态所指示的不同功能做了举例说明,基于标识信息的具体限定,第二通信设备需要使用标识信息的X个比特的比特状态以及每个传输块对应的比特状态,使用控制信息指示的至少一个传输块进行数据收发。
进一步的,在本申请的一些实施例中,标识信息的比特个数X=2;和/或,
所述N的取值为1,2,……,8;或者,
所述N的取值为2,……,8;或者,
所述N的取值为1,2,3,4;或者,
所述N的取值为2,3,4。
其中,若X的取值为2时,标识信息具有4种比特状态:00、01、10、11,例如,标识信息包括2个比特,这2个比特指示前述的第一功能、第二功能、第三功能,第四功能中的一种或者多种。具体可以根据场景来配置X的取值。
另外,本申请实施例中控制信息指示的TB块个数为N个,N的最大值可以为8,该N的取值可以是1,2,……,8中的任意一个值,例如N的取值1,或者3,或者4,或者5,或者6,或者7等。又如N的取值可以是2,……,8中的任意一个值。又如,N的最大值可以为4,该N的取值可以是1,2,3,4中的任意一个值,又如N的取值可以是2,3,4中的任意一个值,具体可以应用场景来确定控制信息指示的TB块个数。
通过前述的举例说明可知,在本申请实施例中,为了使第一通信设备能够获取到该第二通信设备确定的传输块个数,第二通信设备可以生成一个标识信息,将该标识信息发送给第一通信设备,从而使得第一通信设备能够根据接收到的标识信息来获取到该第二通信设备确定的传输块个数。为了节省控制信息的指示开销,本申请实施例中第二通信设备所生成的标识信息可以用于指示一个控制信息能够用于多个传输块的调度,或者一个控制信息只能用于一个传输块的调度,根据标识信息指示的传输块个数为多个时第二通信设备进一步发送传输块分配信息,或者根据标识信息指示的传输块个数为一个时第二通信设备进一步发送HARQ进程索引信息。本申请实施例中可以优化控制信息的比特开销,提升控制信息的传输性能。
为便于更好的理解和实施本申请实施例的上述方案,下面举例相应的应用场景来进行 具体说明。
本申请实施例中,第一通信设备发送标识信息给第二通信设备。第一通信设备可以是基站,或具有发送能力的设备。第二通信设备可以是用户设备,或具有接收能力的设备,或者是基站。以第一通信设备为UE,第二通信设备为基站进行示例说明,前述的控制信息具体为DCI,本申请实施例中DCI调度多个传输块时,可以降低DCI指示的开销,提高资源效率。例如,第一通信设备通过下行控制信息发送标识信息给第二通信设备。即所述下行控制信息中包含所述标识信息。或者,第一通信设备通过无线资源控制信令或者媒体接入控制信令中发送标识信息给第二通信设备。即所述无线资源控制信令或者媒体接入控制信令中包含所述标识信息。
需要说明的是,本申请实施例中传输是发送或接收。若通信的一端将传输实施为发送,则通信的对端则实施为接收。
如图5所示,为本申请实施例提供的传输块分配信息包括的9个比特指示的比特状态示意图。假设一个DCI可以调度的TB数最多为K个TB,那么可以用K+1个比特指示DCI调度的TB数及DCI调度的TB中各个TB对应的比特状态。b 0至b K共K+1个比特指示了DCI调度的TB个数N及N个TB中各个TB对应的比特状态。其中N是正整数。例如,N取值2至K或者N取值1至K。
如图5所示,K=8,b 0至b 8共9个比特指示了DCI调度的TB个数N及N个TB中各个TB对应的比特状态。其中N是正整数。例如,N取值2至8或者N取值1至8。
b 0至b 8这9个比特中,从左至右(b 0是最左边的比特,b 8是最右边的比特),左边第一个为1的比特所在的比特位指示了DCI调度的TB个数。
例如,b 0=1,则说明DCI调度了8个TB。此时,b 1至b 8共8个比特指示了DCI调度的8个TB中各个TB对应的比特状态。
例如,b 1=1,且b 1左侧的比特的状态都为0,则说明DCI调度了7个TB。此时,b 2至b 8共7个比特指示了DCI调度的7个TB中各个TB对应的比特状态。
例如,b 2=1,且b 2左侧的比特的状态都为0,则说明DCI调度了6个TB。此时,b 3至b 8共6个比特指示了DCI调度的6个TB中各个TB对应的比特状态。
例如,b 3=1,且b 3左侧的比特的状态都为0,则说明DCI调度了5个TB。此时,b 4至b 8共5个比特指示了DCI调度的5个TB中各个TB对应的比特状态。
例如,b 4=1,且b 4左侧的比特的状态都为0,则说明DCI调度了4个TB。此时,b 5至b 8共4个比特指示了DCI调度的4个TB中各个TB对应的比特状态。
例如,b 5=1,且b 5左侧的比特的状态都为0,则说明DCI调度了3个TB。此时,b 6至b 8共3个比特指示了DCI调度的3个TB中各个TB对应的比特状态。
例如,b 6=1,且b 6左侧的比特的状态都为0,则说明DCI调度了2个TB。此时,b 7至b 8共2个比特指示了DCI调度的2个TB中各个TB对应的比特状态。
例如,b 7=1,且b 7左侧的比特的状态都为0,则说明DCI调度了1个TB。此时,b 8比特指示了DCI调度的1个TB对应的比特状态。
如下表1所示,为K=8时,b 0至b 8共9个比特指示了DCI调度的TB个数及各个TB对应的比特状态。
表1:
TB块个数 b 0 b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8
8 b 0=1 b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8
7 b 0=0 b 1=1 b 2 b 3 b 4 b 5 b 6 b 7 b 8
6 b 0=0 b 1=0 b 2=1 b 3 b 4 b 5 b 6 b 7 b 8
5 b 0=0 b 1=0 b 2=0 b 3=1 b 4 b 5 b 6 b 7 b 8
4 b 0=0 b 1=0 b 2=0 b 3=0 b 4=1 b 5 b 6 b 7 b 8
3 b 0=0 b 1=0 b 2=0 b 3=0 b 4=0 b 5=1 b 6 b 7 b 8
2 b 0=0 b 1=0 b 2=0 b 3=0 b 4=0 b 5=0 b 6=1 b 7 b 8
1 b 0=0 b 1=0 b 2=0 b 3=0 b 4=0 b 5=0 b 6=0 b 7=1 b 8
可选地,如表2所示,b 7左侧的比特的状态都为0,则说明DCI调度了1个TB。此时,b 7和b 8比特指示了DCI调度的1个TB HARQ进程索引(process number)及这一个TB对应的比特状态。表3给出了一种指示方法。
如下表2所示,为K=8时,b 0至b 8共9个比特指示了DCI调度的TB个数及各个TB对应的比特状态。
表2:
TB块个数 b 0 b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8
8 b 0=1 b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8
7 b 0=0 b 1=1 b 2 b 3 b 4 b 5 b 6 b 7 b 8
6 b 0=0 b 1=0 b 2=1 b 3 b 4 b 5 b 6 b 7 b 8
5 b 0=0 b 1=0 b 2=0 b 3=1 b 4 b 5 b 6 b 7 b 8
4 b 0=0 b 1=0 b 2=0 b 3=0 b 4=1 b 5 b 6 b 7 b 8
3 b 0=0 b 1=0 b 2=0 b 3=0 b 4=0 b 5=1 b 6 b 7 b 8
2 b 0=0 b 1=0 b 2=0 b 3=0 b 4=0 b 5=0 b 6=1 b 7 b 8
1 b 0=0 b 1=0 b 2=0 b 3=0 b 4=0 b 5=0 b 6=0 b 7 b 8
如下表3所示,为K=8,b 0=0、b 1=0、b 2=0、b 3=0、b 4=0、b 5=0、b 6=0时,b 7和b 8指示一个TB的HARQ进程索引及TB状态。
表3:
Figure PCTCN2019080668-appb-000001
可选地,如下表4所示,b 6左侧的比特的状态都为0,则说明DCI调度了2个TB。此时,b 6,b 7和b 8共3个比特指示了DCI调度的2个TB的HARQ process number及这2个TB对应的比特状态。表5给出了一种指示方法。
表4:
TB块个数 b 0 b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8
8 b 0=1 b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8
7 b 0=0 b 1=1 b 2 b 3 b 4 b 5 b 6 b 7 b 8
6 b 0=0 b 1=0 b 2=1 b 3 b 4 b 5 b 6 b 7 b 8
5 b 0=0 b 1=0 b 2=0 b 3=1 b 4 b 5 b 6 b 7 b 8
4 b 0=0 b 1=0 b 2=0 b 3=0 b 4=1 b 5 b 6 b 7 b 8
3 b 0=0 b 1=0 b 2=0 b 3=0 b 4=0 b 5=1 b 6 b 7 b 8
2 b 0=0 b 1=0 b 2=0 b 3=0 b 4=0 b 5=0 b 6 b 7 b 8
如下表5所示,为K=8,b 0=0、b 1=0、b 2=0、b 3=0、b 4=0、b 5=0,b 6,b 7和b 8指示2个TB的HARQ进程索引及各TB对应的比特状态。
表5:
Figure PCTCN2019080668-appb-000002
其中,n0,n1是正整数。其中,n2,n3是正整数。例如,n0=0,n1=1,n2=2,n3=3。
需要说明的是,以上是以左边第一个为1的比特所在的比特位指示了DCI调度的TB个数为例阐述本申请实施例的方法。实际上,对上述实施的比特位置或者比特状态做一些变换或者替换,仍属于本申请实施例的保护范围。例如,以b 0至b 8中右边第一个为1的比特所在的比特位指示了DCI调度的TB个数。例如,以b 0至b 8中左边第一个为0的比特所在的比特位指示了DCI调度的TB个数。例如,以b 0至b 8中右边第一个为0的比特所在的比特位指示了DCI调度的TB个数。
接下来以K=4为例进行说明,b 0至b 4共5个比特指示了DCI调度的TB个数N及N个TB中各个TB对应的比特状态。其中N是正整数。例如,N取值2至4或者N取值1至4。b 0至b 4这5个比特中,从左至右(b0是最左边的比特,b4是最右边的比特),左边第一个为1的比特所在的比特位指示了DCI调度的TB个数。
例如,b 0=1,则说明DCI调度了4个TB。此时,b 1至b 4共4个比特指示了DCI调度的4个TB中各个TB对应的比特状态。例如,b 1=1,且b 1左侧的比特的状态都为0,则说明DCI调度了3个TB。此时,b 2至b 4共3个比特指示了DCI调度的3个TB中各个TB对应的比特状态。例如,b 2=1,且b 2左侧的比特的状态都为0,则说明DCI调度了2个TB。此时,b 3至b 4共2个比特指示了DCI调度的2个TB中各个TB对应的比特状态。例如,b 3=1,且b 3左侧的比特的状态都为0,则说明 DCI调度了1个TB。此时,b 4指示了DCI调度的1个TB对应的比特状态。
如下所示的表6例示了K=4,且b 0=0、b 1=0、b 2=0时,用b 3和b 4指示一个TB的HARQ进程索引及TB状态。
表6:
TB块个数 b 0 b 1 b 2 b 3 b 4
4 b 0=1 b 1 b 2 b 3 b 4
3 b 0=0 b 1=1 b 2 b 3 b 4
2 b 0=0 b 1=0 b 2=1 b 3 b 4
1 b 0=0 b 1=0 b 2=0 b 3 b 4
表7为K=4,b 0=0、b 1=0、b 2=0,b 3和b 4指示一个TB的HARQ进程索引及TB状态。
表7:
Figure PCTCN2019080668-appb-000003
可选地,如下表8所示,b 2左侧的比特的状态都为0,则说明DCI调度了2个TB。此时,b 2,b 3和b 4共3个比特指示了DCI调度的2个TB的HARQ process number及这2个TB对应的比特状态。表9给出了一种指示方法。
表8:
TB块个数 b 0 b 1 b 2 b 3 b 4
4 b 0=1 b 1 b 2 b 3 b 4
3 b 0=0 b 1=1 b 2 b 3 b 4
2 b 0=0 b 1=0 b 2 b 3 b 4
表9为K=4,b 0=0、b 1=0,b 2,b 3和b 4指示2个TB的HARQ进程索引及各TB对应的比特状态。
表9:
Figure PCTCN2019080668-appb-000004
其中,n0,n1是正整数。其中,n2,n3是正整数。例如,n0=0,n1=1,n2=2,n3=3。
图6为本申请实施例提供的下行控制信息承载标识信息的示意图,标识信息可以是下行控制信息中的标识信息。该标识信息指示了下行控制信息是用于多TB的调度。当标识信息指示了下行控制信息是用于多TB的调度时,该标识信息还可以进一步指示了UE对下行控制信息调度的多个TB的处理。进一步地,该标识信息还可以指示行控制信息是用于单TB的调度。
例如,标识信息包括2个比特,这2个比特指示了第一功能、第二功能、第三功能、第四功能中的一种或者多种。
第一功能:一个DCI指示多个TB的传输。若基站指示某个TB的比特状态为0,则该TB为新传TB,则UE传输该新传TB。若基站指示某个TB的比特状态为1,则该TB是重传TB,则UE传输该重传TB。可选地,DCI采用第一比特结构,UE按照第一比特结构解读DCI的比特信息。
第二功能:一个DCI指示多个TB的传输。若基站指示某个TB的比特状态为0,则该TB为新传TB,则UE传输该新传TB。若基站指示某个TB的比特状态为1,则指示UE不传输该TB或者忽略基站指示的该TB。可选地,该TB可以是重传TB和/或没有调度的TB。可选地,DCI采用第一比特结构,UE按照第一比特结构解读DCI的比特信息。
第三功能:一个DCI指示多个TB的传输。若基站指示某个TB的比特状态为1,则该TB为重传TB,则UE传输该重传TB。若基站指示某个TB的比特状态为0,则指示UE不传输该TB或者忽略基站指示的该TB。可选地,该TB可以是新传TB和/或没有调度的TB。可选地,DCI采用第一比特结构,UE按照第一比特结构解读DCI的比特信息。
第四功能:一个DCI只调度一个TB的传输。可选地,DCI采用第二比特结构,UE按照第二比特结构解读DCI的比特信息。
如下表10所示,用2个比特例示了一种DCI中的标识信息指示了第一功能、第二功能、第三功能,第四功能以及DCI的比特结构。可选地,比特结构可以根据功能隐含地得出。例如,第一功能、第二功能和第三功能对应的都是第一比特结构。例如,第四功能对应的是第二比特结构。因此,基站指示了DCI的功能,就相当于指示了DCI比特结构。
表10:
比特状态 DCI功能 DCI比特结构
00 第一功能 第一比特结构
01 第二功能 第一比特结构
10 第三功能 第一比特结构
11 第四功能 第二比特结构
如下表11所示,用2个比特指示了第一功能、第二功能、第三功能和第四功能。
表11:
比特状态 DCI功能 DCI比特结构
00 第四功能 第二比特结构
01 第一功能 第一比特结构
10 第二功能 第一比特结构
11 第三功能 第一比特结构
在第一比特结构的下行控制信息中,DCI包括标识信息,DCI还包括TB分配指示信息或TB调度指示信息。例如,TB分配指示信息或TB调度指示信息包括8至10个比特。该DCI可以同时调度多个TB块。图7a为本申请实施例提供的标识信息指示的一种比特结构的示意图,示意了一种第一比特结构的下行控制信息,TB分配指示信息或TB调度指示信息包括9个比特,即对应前述的b 0至b 8比特。
图7b为本申请实施例提供的标识信息指示的另一种比特结构的示意图,在第二比特结构的下行控制信息中,DCI包括标识信息,DCI只调度一个TB块,且DCI还包括对该TB的HARQ process索引指示的信息。图7b中,示意了一种第二比特结构的下行控制信息,用3个比特指示DCI调度的单个TB的HARQ process索引。
图8a为本申请实施例提供的标识信息指示的一种功能示意图,标识信息为00,指示了第四功能。因此DCI调度了1个TB块。且DCI指示了该TB的HARQ索引为3。该DCI中还用5个比特指示了调制编码方式modulation coding scheme,MCS)。
图8b为本申请实施例提供的标识信息指示的另一种功能示意图,标识信息为01,指示了第一功能,且b0=1。因此DCI指示了8个TB块。b1至b8按照比特位图(bitmap)方式指示8个TB中每个TB对应的比特的比特状态。b1至b8中的某个比特状态为0,表示该比特对应的TB为新传。b1至b8中的某个比特状态为1,表示该比特对应的TB为重传。如图8b所示,TB1,TB4,TB6,TB8为新传TB,TB2,TB3,TB5,TB7为重传TB。
图8c为本申请实施例提供的标识信息指示的另一种功能示意图,标识信息为10,指示了第二功能,且b0=1。因此DCI指示了8个TB块。b1至b8按照bitmap方式指示8个TB块中每个TB对应的比特的比特状态。b1至b8中的某个比特状态为0,表示该比特对应的TB为新传。b1至b8中的某个比特状态为1,表示UE不传输或者忽略该比特对应的TB。如图8c所示,UE只对TB1,TB4,TB6,TB8进行新传传输,UE不传输或者忽略TB2,TB3,TB5,TB7。
图8d为本申请实施例提供的标识信息指示的另一种功能示意图,标识信息为11,指示了第三功能,且b0=1。因此DCI指示了8个TB块。b1至b8按照bitmap方式指示8个TB块中每个TB对应的比特的比特状态。b1至b8中的某个比特状态为1,表示该比特对应的TB为重传。b1至b8中的某个比特状态为0,表示UE不传输或者忽略该比特对应的TB。如图8d所示,UE只对TB2,TB3,TB5,TB7进行重传传输,UE不传输或者忽略TB1,TB4,TB6,TB8。
下述给出了当一个DCI可以调度最多两个TB块时的指示方法。如下表12所示,用3比特指示DCI调度了一个TB还是2个TB,并且指示了调度的TB是新传还是重传。
第一通信设备生成标识信息,标识信息为3个比特,标识信息的不同比特状态关联不同的TB指示。
表12:
比特状态 TB指示
000 TB0,新传
001 TB1,新传
010 TB0,重传
011 TB1,重传
100 TB0新传;TB1新传;
101 TB0新传;TB1重传;
110 TB0重传;TB1新传;
111 TB0重传;TB1重传;
图9为本申请实施例提供的DCI使用3比特的指示方式示意图,当一个DCI可以调度最多两个TB块时,DCI中的一个比特指示该DCI是用于1个TB的调度还是用于2个TB的调度。
当DCI中的一个比特指示该DCI是用于1个TB的调度时,DCI中有一个比特指示传输的TB的HARQ process number,DCI中一个比特指示新数据指示(new data indicator,NDI)。新数据指示可以指示TB是初传还是重传。
当DCI中的一个比特指示该DCI是用于2个TB的调度时,DCI中有2个比特按照位图的方式指示传输的TB及指示TB是初传还是重传。
在本申请实施例中,DCI能够用很少的比特支持多TB调度,从而提高调度的灵活性和提高资源效率。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
为便于更好的实施本申请实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅图10所示,为本申请实施例中第一通信设备的组成结构示意图,所述第一通信设备1000包括:处理模块1001和收发模块1002,其中,
所述处理模块1001,用于通过所述收发模块1002获取第二通信设备发送的标识信息;
所述处理模块1001,还用于所述标识信息指示一个控制信息能够用于多个传输块的调度时,通过所述收发模块1002获取所述第二通信设备发送的传输块分配信息,其中所述传输块分配信息指示了所述控制信息调度的传输块个数N和每个传输块对应的比特状态;根据所述标识信息和所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,通过所述收发模块1002向所述第二通信设备发送数据,或者通过所述收发模块1002接收所述第二通信设备发送的数据,至少一个传输块属于N个传输块;或者,
所述处理模块1001,还用于所述标识信息指示一个控制信息只能用于一个传输块的调度时,通过所述收发模块1002获取所述第二通信设备发送的混合自动重发请求HARQ进程索引信息,其中所述HARQ进程索引信息指示了所述控制信息调度的一个传输块对应的HARQ进程索引;根据所述标识信息和所述一个传输块对应的HARQ进程索引,通过所述收发模块1002向所述第二通信设备发送数据,或者通过所述收发模块1002接收所述第二通信设备发送的数据。
在本申请的一些实施例中,所述处理模块1001,用于通过所述收发模块1002接收所述第二通信设备发送的控制信息,所述控制信息包括所述标识信息;或者,通过所述收发模块1002接收所述第二通信设备发送的高层信令,所述高层信令包括所述标识信息。
请参阅图11所示,为本申请实施例中第二通信设备的组成结构示意图,所述第一 通信设备1100包括:处理模块1101和收发模块1102,其中,
所述处理模块1101,用于生成标识信息,所述标识信息用于指示一个控制信息能够用于多个传输块的调度,或者一个控制信息只能用于一个传输块的调度;
所述处理模块1101,还用于所述标识信息指示一个控制信息能够用于多个传输块的调度时,通过所述收发模块1102向所述第一通信设备发送所述标识信息和传输块分配信息,其中所述传输块分配信息指示了所述控制信息调度的传输块个数N和每个传输块对应的比特状态。根据所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,通过所述收发模块1102向所述第一通信设备发送数据,或者通过所述收发模块1102接收所述第一通信设备发送的数据,至少一个传输块属于N个传输块;或者,
所述处理模块1101,还用于所述标识信息指示一个控制信息只能用于一个传输块的调度时,通过所述收发模块1102向所述第一通信设备发送所述标识信息和混合自动重发请求HARQ进程索引信息,其中所述HARQ进程索引信息指示了所述控制信息调度的一个传输块对应的HARQ进程索引;根据所述一个传输块对应的HARQ进程索引,通过所述收发模块1102向所述第一通信设备发送数据,或者通过所述收发模块1102接收所述第一通信设备发送的数据。
在本申请的一些实施例中,所述处理模块1101,用于通过所述收发模块1102向所述第一通信设备发送控制信息,所述控制信息包括所述标识信息;或者,通过所述收发模块1102向所述第一通信设备发送高层信令,所述高层信令包括所述标识信息。
在本申请的一些实施例中,所述标识信息指示一个控制信息能够用于多个传输块的调度时,所述控制信息包括所述传输块分配信息;或者,
所述标识信息指示一个控制信息只能用于调度一个传输块的调度时,所述控制信息包括所述HARQ进程索引信息。
在本申请的一些实施例中,所述传输块分配信息包括M个比特,所述M个比特为b 0,b 1,…,b (M-1),并且所述b 0是所述M个比特中的最左侧的比特,b (M-1)是所述M个比特中的最右侧的比特。
所述M个比特中第j+1个比特为b j,所述b j=1,且在所述M个比特中,位于所述b j左侧的比特的状态都为0,则所述控制信息调度了(K-j)个TB;或,
所述M个比特中第c+1个比特为b c,所述b c=0,且在所述M个比特中,位于所述b c左侧的比特的状态都为0,则所述控制信息调度了(K-c)个TB;
其中,所述M是正整数,所述K是正整数,所述K小于所述M;
所述j是整数,且所述j等于如下取值中的任意一个:0,1,2,…(M-1);
所述c是整数,且所述c等于如下取值中的任意一个:0,1,2,…(M-1)。
在本申请的一些实施例中,所述b j右侧的(K-j)个比特中的每个比特关联一个TB。
在本申请的一些实施例中,所述b j右侧的(K-j)个比特中的每个比特关联一个TB,包括:
所述b j右侧的(K-j)个比特中的第p个比特关联所述控制信息指示的第p个TB,
所述p是整数,且所述p等于如下取值中的任意一个:1,2,…(K-j)。
在本申请的一些实施例中,所述b j右侧的(K-j)个比特中的第p个比特关联所述控制信 息指示的第p个TB,包括:
所述b j右侧的(K-j)个比特中的第p个比特的比特状态是第p个TB对应的比特状态。
在本申请的一些实施例中,所述M=9,所述K=8;和/或,
所述M=5,所述K=4;和/或,
所述c=6或7;和/或,
所述c=2或3。
在本申请的一些实施例中,所述标识信息包括X个比特,所述X为正整数;
所述标识信息的X个比特的比特状态中有一种比特状态指示了:所述控制信息能够用于多个传输块的调度,且所述控制信息包括所述传输块分配信息,所述N个传输块TB中的第i个TB为TB i,若所述TB i对应的比特状态为0,则所述TB i为新传TB,若所述TB i对应的比特状态为1,则所述TB i是重传TB;和/或,
所述标识信息的X个比特的比特状态中有一种比特状态指示了:所述控制信息能够用于多个传输块的调度,且所述控制信息包括所述传输块分配信息,所述N个TB中的第i个TB为TB i,若所述TB i对应的比特状态为0,则所述TB i为新传TB,若所述TB i对应的比特状态为1,则所述第一通信设备不传输所述TB i或者忽略所述TB i;和/或,
所述标识信息的X个比特的比特状态中有一种比特状态指示了:所述控制信息能够用于多个传输块的调度,且所述控制信息包括所述传输块分配信息,所述N个TB中的第i个TB为TB i,若所述TB i对应的比特状态为1,则所述TB i为重传TB,若所述TB i对应的比特状态为0,则所述第一通信设备不传输所述TB i或者忽略所述TB i;和/或,
所述标识信息的X个比特的比特状态中有一种比特状态指示了:所述控制信息只能够用于一个传输块的调度;
其中,所述N是正整数,所述i是整数,且所述i等于如下取值中的任意一个:1,2,…,N,或者0,1,…,(N-1)。
在本申请的一些实施例中,所述第二通信设备包括的处理模块,具体用于根据所述标识信息的X个比特的比特状态以及所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,通过所述第二通信设备包括的收发模块向所述第一通信设备发送数据,或者接收所述第一通信设备发送的数据。
在本申请的一些实施例中,所述X=2;和/或,
所述N的取值为1,2,……,8;或者,
所述N的取值为2,……,8;或者,
所述N的取值为1,2,3,4;或者,
所述N的取值为2,3,4。
通过前述的举例说明可知,在本申请实施例中,为了使第一通信设备能够获取到该第二通信设备确定的传输块个数,第二通信设备可以生成一个标识信息,将该标识信息发送给第一通信设备,从而使得第一通信设备能够根据接收到的标识信息来获取到该第二通信设备确定的传输块个数。为了节省控制信息的指示开销,本申请实施例中第二通信设备所生成的标识信息可以用于指示一个控制信息能够用于多个传输块的调度,或者一个控制信息只能用于一个传输块的调度,根据标识信息指示的传输块个数为多个时第二通信设备进 一步发送传输块分配信息,或者根据标识信息指示的传输块个数为一个时第二通信设备进一步发送HARQ进程索引信息。本申请实施例中可以优化控制信息的比特开销,提升控制信息的传输性能。
需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
如图12所示,为本申请实施例的又一种设备的结构示意图,该设备为第一通信设备,该第一通信设备可以包括:处理器121(例如CPU)、存储器122、发送器124和接收器123;发送器124和接收器123耦合至处理器121,处理器121控制发送器124的发送动作和接收器123的接收动作。存储器122可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器122中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的第一通信设备还可以包括:电源125、通信总线126以及通信端口127中的一个或多个。接收器123和发送器124可以集成在第一通信设备的收发器中,也可以为第一通信设备上分别独立的收、发天线。通信总线126用于实现元件之间的通信连接。上述通信端口127用于实现第一通信设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器122用于存储计算机可执行程序代码,程序代码包括指令;当处理器121执行指令时,指令使处理器121执行上述方法实施例中第一通信设备的处理动作,使发送器124执行上述方法实施例中第一通信设备的发送动作,其实现原理和技术效果类似,在此不再赘述。
如图13所示,为本申请实施例的又一种设备的结构示意图,该设备为第二通信设备,该第二通信设备可以包括:处理器(例如CPU)131、存储器132、接收器133和发送器134;接收器133和发送器134耦合至处理器131,处理器131控制接收器133的接收动作和发送器134的发送动作。存储器132可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器132中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的第二通信设备还可以包括:电源135、通信总线136以及通信端口137中的一个或多个。接收器133和发送器134可以集成在第二通信设备的收发器中,也可以为第二通信设备上分别独立的收、发天线。通信总线136用于实现元件之间的通信连接。上述通信端口137用于实现第二网络设备与其他外设之间进行连接通信。
在另一种可能的设计中,当通信设备为终端设备或者网络设备内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述第一方面任意一项的无线通信方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其 他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面无线通信方法的程序执行的集成电路。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (18)

  1. 一种数据传输方法,其特征在于,包括:
    第一通信设备接收第二通信设备发送的标识信息;
    所述标识信息指示一个控制信息能够用于多个传输块的调度时,所述第一通信设备获取所述第二通信设备发送的传输块分配信息,其中所述传输块分配信息指示了所述控制信息调度的传输块个数N和每个传输块对应的比特状态;所述第一通信设备根据所述标识信息和所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,向所述第二通信设备发送数据,或者接收所述第二通信设备发送的数据,所述至少一个传输块属于所述N个传输块;或者,
    所述标识信息指示一个控制信息只能用于一个传输块的调度时,所述第一通信设备获取所述第二通信设备发送的混合自动重发请求HARQ进程索引信息,其中所述HARQ进程索引信息指示了所述控制信息调度的一个传输块对应的HARQ进程索引;所述第一通信设备根据所述标识信息和所述一个传输块对应的HARQ进程索引,向所述第二通信设备发送数据,或者接收所述第二通信设备发送的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一通信设备接收第二通信设备发送的标识信息包括:
    所述第一通信设备接收所述第二通信设备发送的控制信息,所述控制信息包括所述标识信息;
    或者,所述第一通信设备接收所述第二通信设备发送的高层信令,所述高层信令包括所述标识信息。
  3. 一种数据传输方法,其特征在于,包括:
    第二通信设备生成标识信息,所述标识信息用于指示一个控制信息能够用于多个传输块的调度,或者一个控制信息只能用于一个传输块的调度;
    所述标识信息指示一个控制信息能够用于多个传输块的调度时,所述第二通信设备向所述第一通信设备发送所述标识信息和传输块分配信息,其中所述传输块分配信息指示了所述控制信息调度的传输块个数N和每个传输块对应的比特状态;所述第二通信设备根据所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,向所述第一通信设备发送数据,或者接收所述第一通信设备发送的数据,所述至少一个传输块属于所述N个传输块;或者,
    所述标识信息指示一个控制信息只能用于一个传输块的调度时,所述第二通信设备向所述第一通信设备发送所述标识信息和混合自动重发请求HARQ进程索引信息,其中所述HARQ进程索引信息指示了所述控制信息调度的一个传输块对应的HARQ进程索引;所述第二通信设备根据所述一个传输块对应的HARQ进程索引,向所述第一通信设备发送数据,或者接收所述第一通信设备发送的数据。
  4. 根据权利要求3所述的方法,其特征在于,所述第二通信设备向所述第一通信设备发送所述标识信息包括:
    所述第二通信设备向所述第一通信设备发送控制信息,所述控制信息包括所述标识信息;
    或者,所述第二通信设备向所述第一通信设备发送高层信令,所述高层信令包括所述标识信息。
  5. 一种通信设备,其特征在于,所述通信设备具体为第一通信设备,所述第一通信设备包括:处理模块和收发模块,其中,
    所述处理模块,用于通过所述收发模块接收第二通信设备发送的标识信息;
    所述处理模块,还用于所述标识信息指示一个控制信息能够用于多个传输块的调度时,通过所述收发模块获取所述第二通信设备发送的传输块分配信息,其中所述传输块分配信息指示了所述控制信息调度的传输块个数N和每个传输块对应的比特状态;根据所述标识信息和所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,通过所述收发模块向所述第二通信设备发送数据,或者通过所述收发模块接收所述第二通信设备发送的数据,所述至少一个传输块属于所述N个传输块;或者,
    所述处理模块,还用于所述标识信息指示一个控制信息只能用于一个传输块的调度时,通过所述收发模块获取所述第二通信设备发送的混合自动重发请求HARQ进程索引信息,其中所述HARQ进程索引信息指示了所述控制信息调度的一个传输块对应的HARQ进程索引;根据所述标识信息和所述一个传输块对应的HARQ进程索引,通过所述收发模块向所述第二通信设备发送数据,或者通过所述收发模块接收所述第二通信设备发送的数据。
  6. 根据权利要求5所述的通信设备,其特征在于,所述处理模块,用于通过所述收发模块接收所述第二通信设备发送的控制信息,所述控制信息包括所述标识信息;或者,通过所述收发模块接收所述第二通信设备发送的高层信令,所述高层信令包括所述标识信息。
  7. 一种通信设备,其特征在于,所述通信设备具体为第二通信设备,所述第二通信设备包括:处理模块和收发模块,其中,
    所述处理模块,用于生成标识信息,所述标识信息用于指示一个控制信息能够用于多个传输块的调度,或者一个控制信息只能用于一个传输块的调度;
    所述处理模块,还用于所述标识信息指示一个控制信息能够用于多个传输块的调度时,通过所述收发模块向所述第一通信设备发送所述标识信息和传输块分配信息,其中所述传输块分配信息指示了所述控制信息调度的传输块个数N和每个传输块对应的比特状态;根据所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,通过所述收发模块向所述第一通信设备发送数据,或者通过所述收发模块接收所述第一通信设备发送的数据,所述至少一个传输块属于所述N个传输块;或者,
    所述处理模块,还用于所述标识信息指示一个控制信息只能用于一个传输块的调度时,通过所述收发模块向所述第一通信设备发送所述标识信息和混合自动重发请求HARQ进程索引信息,其中所述HARQ进程索引信息指示了所述控制信息调度的一个传输块对应的HARQ进程索引;根据所述一个传输块对应的HARQ进程索引,通过所述收发模块向所述第一通信设备发送数据,或者通过所述收发模块接收所述第一通信设备发送的数据。
  8. 根据权利要求7所述的通信设备,其特征在于,所述处理模块,用于通过所述收发模块向所述第一通信设备发送控制信息,所述控制信息包括所述标识信息;或者,通过所述收发模块向所述第一通信设备发送高层信令,所述高层信令包括所述标识信息。
  9. 根据权利要求1至8中任一项所述的方法或通信设备,其特征在于,
    所述标识信息指示一个控制信息能够用于多个传输块的调度时,所述控制信息还包括所述传输块分配信息;或者,
    所述标识信息指示一个控制信息只能用于调度一个传输块的调度时,所述控制信息还包括所述HARQ进程索引信息。
  10. 根据权利要求1至9中任一项所述的方法或通信设备,其特征在于,
    所述传输块分配信息包括M个比特,所述M个比特为b 0,b 1,…,b (M-1),并且所述b 0是所述M个比特中的最左侧的比特,b (M-1)是所述M个比特中的最右侧的比特;
    所述M个比特中第j+1个比特为b j,所述b j=1,且在所述M个比特中,位于所述b j左侧的比特的状态都为0,则所述控制信息调度了(K-j)个TB;或,
    所述M个比特中第c+1个比特为b c,所述b c=0,且在所述M个比特中,位于所述b c左侧的比特的状态都为0,则所述控制信息调度了(K-c)个TB;
    其中,所述M是正整数,所述K是正整数,所述K小于所述M;
    所述j是整数,且所述j等于如下取值中的任意一个:0,1,2,…(M-1);
    所述c是整数,且所述c等于如下取值中的任意一个:0,1,2,…(M-1)。
  11. 根据权利要求10所述的方法或通信设备,其特征在于,所述b j右侧的(K-j)个比特中的每个比特关联一个TB。
  12. 根据权利要求11所述的方法或通信设备,其特征在于,所述b j右侧的(K-j)个比特中的每个比特关联一个TB,包括:
    所述b j右侧的(K-j)个比特中的第p个比特关联所述控制信息指示的第p个TB,
    所述p是整数,且所述p等于如下取值中的任意一个:1,2,…(K-j)。
  13. 根据权利要求12所述的方法或通信设备,其特征在于,所述b j右侧的(K-j)个比特中的第p个比特的比特状态是第p个TB对应的比特状态。
  14. 根据权利要求10至13中任一项权利要求所述的方法或通信设备,其特征在于,
    所述M=9,所述K=8;和/或,
    所述M=5,所述K=4;和/或,
    所述c=6或7;和/或,
    所述c=2或3。
  15. 根据权利要求1至14中任一项权利要求所述的方法或通信设备,其特征在于,
    所述标识信息包括X个比特,所述X为正整数;
    所述标识信息的X个比特的比特状态中有一种比特状态指示了:所述控制信息能够用于多个传输块的调度,且所述控制信息包括所述传输块分配信息,所述N个传输块TB中的第i个TB为TB i,若所述TB i对应的比特状态为0,则所述TB i为新传TB,若所述TB i对应的比特状态为1,则所述TB i是重传TB;和/或,
    所述标识信息的X个比特的比特状态中有一种比特状态指示了:所述控制信息能够用于多个传输块的调度,且所述控制信息包括所述传输块分配信息,所述N个TB中的第i个TB为TB i,若所述TB i对应的比特状态为0,则所述TB i为新传TB,若所述TB i对应的比特状态为1,则所述第一通信设备不传输所述TB i或者忽略所述TB i;和/或,
    所述标识信息的X个比特的比特状态中有一种比特状态指示了:所述控制信息能够用 于多个传输块的调度,且所述控制信息包括所述传输块分配信息,所述N个TB中的第i个TB为TB i,若所述TB i对应的比特状态为1,则所述TB i为重传TB,若所述TB i对应的比特状态为0,则所述第一通信设备不传输所述TB i或者忽略所述TB i;和/或,
    所述标识信息的X个比特的比特状态中有一种比特状态指示了:所述控制信息只能够用于一个传输块的调度;
    其中,所述N是正整数,所述i是整数,且所述i等于如下取值中的任意一个:1,2,…,N,或者0,1,…,(N-1)。
  16. 根据权利要求15所述的方法,其特征在于,所述第二通信设备根据所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,向所述第一通信设备发送数据,或者接收所述第一通信设备发送的数据,包括:
    所述第二通信设备根据所述标识信息的X个比特的比特状态以及所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,向所述第一通信设备发送数据,或者接收所述第一通信设备发送的数据。
  17. 根据权利要求15所述的通信设备,其特征在于,所述第二通信设备包括的处理模块,具体用于根据所述标识信息的X个比特的比特状态以及所述每个传输块对应的比特状态,使用所述控制信息指示的至少一个传输块,通过所述第二通信设备包括的收发模块向所述第一通信设备发送数据,或者接收所述第一通信设备发送的数据。
  18. 根据权利要求15所述的方法或通信设备,其特征在于,
    所述X=2;和/或,
    所述N的取值为1,2,……,8;或者,
    所述N的取值为2,……,8;或者,
    所述N的取值为1,2,3,4;或者,
    所述N的取值为2,3,4。
PCT/CN2019/080668 2019-03-29 2019-03-29 一种数据传输方法和设备 WO2020199038A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980094454.0A CN113692761B (zh) 2019-03-29 2019-03-29 一种数据传输方法和设备
PCT/CN2019/080668 WO2020199038A1 (zh) 2019-03-29 2019-03-29 一种数据传输方法和设备
EP19922347.0A EP3937560A4 (en) 2019-03-29 2019-03-29 DATA TRANSMISSION METHOD AND DEVICE
US17/487,995 US20220021487A1 (en) 2019-03-29 2021-09-28 Data transmission method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080668 WO2020199038A1 (zh) 2019-03-29 2019-03-29 一种数据传输方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/487,995 Continuation US20220021487A1 (en) 2019-03-29 2021-09-28 Data transmission method and device

Publications (1)

Publication Number Publication Date
WO2020199038A1 true WO2020199038A1 (zh) 2020-10-08

Family

ID=72664799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080668 WO2020199038A1 (zh) 2019-03-29 2019-03-29 一种数据传输方法和设备

Country Status (4)

Country Link
US (1) US20220021487A1 (zh)
EP (1) EP3937560A4 (zh)
CN (1) CN113692761B (zh)
WO (1) WO2020199038A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107682128A (zh) * 2017-08-31 2018-02-09 宇龙计算机通信科技(深圳)有限公司 数据传输方法、装置、设备及存储介质
CN108282864A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 通信方法、网络侧设备和终端设备
US20180317213A1 (en) * 2017-05-01 2018-11-01 Huawei Technologies Co., Ltd. Systems and methods for downlink control channel signaling for uplink transmission

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10531452B2 (en) * 2016-07-11 2020-01-07 Qualcomm Incorporated Hybrid automatic repeat request feedback and multiple transmission time interval scheduling
CN108633020B (zh) * 2017-03-23 2021-06-15 华为技术有限公司 一种控制信息发送、接收方法及相关设备
CN109392152B (zh) * 2017-08-11 2023-06-09 华为技术有限公司 通信方法和通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282864A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 通信方法、网络侧设备和终端设备
US20180317213A1 (en) * 2017-05-01 2018-11-01 Huawei Technologies Co., Ltd. Systems and methods for downlink control channel signaling for uplink transmission
CN107682128A (zh) * 2017-08-31 2018-02-09 宇龙计算机通信科技(深圳)有限公司 数据传输方法、装置、设备及存储介质

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON,: "Feature Lead Summary for Scheduling of Multiple DL/UL Transport Blocks for LTE-MTC", R1-1903245, 3GPP TSG RAN WG1 MEETING #96, URL: HTTP://WWW.3GPP.ORG/FTP/TSG_RAN/WG1_RL1/TSGR1_96/DOCS, 26 February 2019 (2019-02-26), XP051600942, DOI: 20191217141433X *
See also references of EP3937560A4 *
SIERRA WIRELESS,: "LTE-M Multiple Transport Block Grant Design Considerations", R1-1901630, 3GPP TSG RAN WG1 MEETING #96, URL: HTTP://WWW.3GPP.ORG/FTP/TSG_RAN/WG1_RL1/TSGR1_96/DOCS, 15 February 2019 (2019-02-15), XP051599327, DOI: 20191217141638A *
ZTE,: "Summary on Multiple TB Scheduling Enhancement for NB-IoT", R1-1903257, 3GPP TSG RAN WG1 MEETING #96, URL: HTTP://WWW.3GPP.ORG/FTP/TSG_RAN/WG1_RL1/TSGR1_96/DOCS, 27 February 2019 (2019-02-27), XP051600952, DOI: 20191217141030X *

Also Published As

Publication number Publication date
EP3937560A1 (en) 2022-01-12
CN113692761B (zh) 2024-06-07
US20220021487A1 (en) 2022-01-20
CN113692761A (zh) 2021-11-23
EP3937560A4 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
WO2021072689A1 (zh) 一种信息处理方法和终端设备以及网络设备
US11997686B2 (en) Transmission apparatus and method of feedback information
WO2020220253A1 (zh) 一种信息传输方法和通信设备
US11540329B2 (en) Information transmission method, terminal device, and network device
US11564246B2 (en) Information transmission method, communications device, and network device
JP2021512518A (ja) データ伝送方法及び端末装置
CN110730513B (zh) 一种通信方法及装置
WO2019192004A1 (zh) 一种数据发送方法、信息发送方法及装置
WO2021155604A1 (zh) 信息处理方法及设备
US20220217759A1 (en) Information processing method, terminal device, and network device
US11968668B2 (en) Data transmission method and device
WO2020164149A1 (zh) 一种数据传输方法和设备
WO2020199038A1 (zh) 一种数据传输方法和设备
WO2021035450A1 (zh) 一种数据传输方法和通信设备
WO2020220266A1 (zh) 一种信息传输方法和通信设备
WO2019191995A1 (zh) 一种信息处理方法和设备
WO2019191993A1 (zh) 一种信息传输的方法和设备
WO2020164147A1 (zh) 一种数据传输方法和设备
WO2021031023A1 (zh) 一种信息处理方法和通信设备
WO2019192008A1 (zh) 一种信息发送的方法、信息接收的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019922347

Country of ref document: EP

Effective date: 20211006