WO2019192008A1 - 一种信息发送的方法、信息接收的方法和设备 - Google Patents

一种信息发送的方法、信息接收的方法和设备 Download PDF

Info

Publication number
WO2019192008A1
WO2019192008A1 PCT/CN2018/082065 CN2018082065W WO2019192008A1 WO 2019192008 A1 WO2019192008 A1 WO 2019192008A1 CN 2018082065 W CN2018082065 W CN 2018082065W WO 2019192008 A1 WO2019192008 A1 WO 2019192008A1
Authority
WO
WIPO (PCT)
Prior art keywords
tbs
set includes
terminal device
value
values
Prior art date
Application number
PCT/CN2018/082065
Other languages
English (en)
French (fr)
Inventor
赵越
余政
费永强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3095944A priority Critical patent/CA3095944C/en
Priority to CN201880091834.4A priority patent/CN111903152B/zh
Priority to PCT/CN2018/082065 priority patent/WO2019192008A1/zh
Priority to EP18913760.7A priority patent/EP3767992A4/en
Publication of WO2019192008A1 publication Critical patent/WO2019192008A1/zh
Priority to US17/062,804 priority patent/US11412483B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method for sending information, a method for receiving information, and a device.
  • a large-scale application deployment of a wireless communication system can provide various types of communication to a plurality of users, for example, voice, data, multimedia services, and the like.
  • Msg3 can transmit uplink user data in Msg3, involving the use of the medium access control protocol (medium).
  • Medium Access control, MAC
  • RAR random access responses
  • the prior art MAC protocol data units include: a MAC header, 0 or more MAC RARs, and an optional padding portion.
  • the network can configure the maximum transport block size (TBS) of the terminal device, so that the terminal device can only use the largest TBS to transmit the Msg3.
  • TBS transport block size
  • the terminal device needs to add a padding bit to the Msg3 to expand the Msg3 to the maximum TBS.
  • the terminal device sends data according to this manner, the transmission resource is generated. Waste, and did not take into account the situation on the network side.
  • the embodiment of the present application provides a method for sending information, a method for receiving information, and a device, which can implement the situation on the network side as much as possible, and avoid waste of transmission resources.
  • the embodiment of the present application provides a method for sending information, including:
  • the terminal device receives a first transport block size TBS configured by the network device, where the first TBS is one TBS selected by the network device from a second TBS set, and the second TBS set includes N TBSs, the N Is a positive integer greater than one;
  • the terminal device selects one TBS from the third TBS set, and sends uplink information according to the selected TBS.
  • the network device in the embodiment of the present application may determine that the first TBS is configured, so that the terminal device may determine the third TBS set according to the first TBS, and the terminal device selects one TBS in the third TBS set.
  • the uplink information is sent, so the terminal device has the flexibility to select the TBS in the third TBS set, and the terminal device uses the TBS selected by the terminal device to send the uplink information, and the network device can determine the TBS selected by the terminal device through the third TBS set. Therefore, the TBS selected by the terminal device receives the uplink information.
  • the terminal device may select one TBS in the third TBS set for uplink information transmission, so the TBS that sends the uplink information is flexible and optional, improves resource utilization, and avoids resource waste as much as possible.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the second TBS set includes at least a TBS value of 1000 and a TBS value of 328; or
  • the second TBS set includes at least a TBS value of 1000 and a TBS value of 320.
  • the second TBS set may include 8 TBSs, and the maximum TBS value of the 8 TBSs is 1000, and the minimum TBS value is 328 or 320.
  • the TBS element included in the collection may include 8 TBSs, and the maximum TBS value of the 8 TBSs is 1000, and the minimum TBS value is 328 or 320.
  • the TBS element included in the collection may include 8 TBSs, and the maximum TBS value of the 8 TBSs is 1000, and the minimum TBS value is 328 or 320.
  • the second TBS set includes TBS values of 328, 424, 536, 616, 712, 808, 904, and 1000; or
  • the second TBS set includes TBS values of 328, 440, 504, 600, 712, 808, 936, and 1000.
  • the two ends values 328 and 1000 may constitute a second TBS set, and the second TBS set may include eight TBS values.
  • the determined 8 maximum TBS values are approximately equally spaced, reducing the number of bits filled.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 328; or
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 320.
  • the second TBS set may include 8 TBSs, the maximum TBS value of the 8 TBSs is 936, and the minimum TBS value is 328 or 320.
  • the TBS element included in the collection may include 8 TBSs, the maximum TBS value of the 8 TBSs is 936, and the minimum TBS value is 328 or 320.
  • the TBS element included in the collection may include 8 TBSs, the maximum TBS value of the 8 TBSs is 936, and the minimum TBS value is 328 or 320.
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 840, and 936; or
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 872, and 936; or
  • the second TBS set includes TBS values of 328, 392, 456, 504, 600, 712, 808, and 936; or
  • the second TBS set includes TBS values of 328, 408, 456, 504, 600, 712, 808, and 936.
  • the two ends values 328 and 936 may constitute a second TBS set, and the second TBS set may include eight TBS values.
  • the determined 8 maximum TBS values are approximately equally spaced, reducing the number of bits filled.
  • the third TBS set includes a fourth TBS, wherein the fourth TBS is the first TBS, or the fourth TBS is a TBS that is closest to the first TBS.
  • the nearest TBS refers to the TBS that is closest to the first TBS value in the column corresponding to the number of PRBs in the preset TBS table.
  • the preset TBS table is a three-party relationship table of TBS index, PRB number and TBS value in the standard.
  • the third set of TBSs further includes M-1 TBSs, where the M is a positive integer;
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the natural descending order of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the interval of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the order of the TBS index.
  • the third TBS set may include, in addition to the fourth TBS, M-1 TBSs, where the natural decrement order according to the TBS index is determined according to the number of PRBs corresponding to the preset TBS table.
  • the descending order of the TBS index is determined according to the TBS index equal interval manner, which is determined by using the same interval size, and determining according to the TBS index head and tail alternate order means that the largest TBS and the smallest TBS in the third TBS set are adjacent.
  • the first and last alternating means that the largest TBS and the smallest TBS in the third TBS set are connected end to end, and based on this, the fourth TBS can be determined.
  • the manner in which the M-1 TBSs are determined is described in the following examples in conjunction with the corresponding tables.
  • the embodiment of the present application provides a method for receiving information, including:
  • the network device determines a third TBS set according to a first transport block size TBS configured to the terminal device, where a maximum TBS in the third TBS set is less than or equal to the first TBS, and the first TBS is the network
  • the device selects one TBS from the second TBS set, the second TBS set includes N TBSs, and the N is a positive integer greater than one;
  • the network device receives uplink information sent by the terminal device according to the third TBS set.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 328; or
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 320.
  • the second TBS set includes TBS values of 328, 424, 536, 616, 712, 808, 904, and 1000; or
  • the second TBS set includes TBS values of 328, 440, 504, 600, 712, 808, 936, and 1000.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 328; or
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 320.
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 840, and 936; or
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 872, and 936; or
  • the second TBS set includes TBS values of 328, 392, 456, 504, 600, 712, 808, and 936; or
  • the second TBS set includes TBS values of 328, 408, 456, 504, 600, 712, 808, and 936.
  • the third TBS set includes a fourth TBS, wherein the fourth TBS is the first TBS, or the fourth TBS is a TBS that is closest to the first TBS.
  • the third set of TBSs further includes M-1 TBSs, where the M is a positive integer;
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the natural descending order of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the interval of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the order of the TBS index.
  • the embodiment of the present application provides a terminal device, including:
  • a receiving module configured to receive a first transport block size TBS configured by the network device, where the first TBS is one TBS selected by the network device from a second TBS set, and the second TBS set includes N TBSs, The N is a positive integer greater than one;
  • a processing module configured to determine, according to the first TBS, a third TBS set, where a maximum TBS in the third TBS set is less than or equal to the first TBS;
  • the sending module is further configured to select one TBS from the third TBS set, and send uplink information according to the selected TBS.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the second TBS set includes at least a TBS value of 1000 and a TBS value of 328; or
  • the second TBS set includes at least a TBS value of 1000 and a TBS value of 320.
  • the second TBS set includes TBS values of 328, 424, 536, 616, 712, 808, 904, and 1000; or
  • the second TBS set includes TBS values of 328, 440, 504, 600, 712, 808, 936, and 1000.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 328; or
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 320.
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 840, and 936; or
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 872, and 936; or
  • the second TBS set includes TBS values of 328, 392, 456, 504, 600, 712, 808, and 936; or
  • the second TBS set includes TBS values of 328, 408, 456, 504, 600, 712, 808, and 936.
  • the third TBS set includes a fourth TBS, wherein the fourth TBS is the first TBS, or the fourth TBS is a TBS that is closest to the first TBS.
  • the third set of TBSs further includes M-1 TBSs, where the M is a positive integer;
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the natural descending order of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the interval of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the order of the TBS index.
  • the constituent modules of the terminal device may also perform the steps described in the foregoing first aspect and various possible implementations, as described in the foregoing for the first aspect and various possible implementations. Description.
  • the embodiment of the present application provides a network device, including:
  • a processing module configured to determine, according to a first transport block size TBS configured to the terminal device, a third TBS set, where a maximum TBS in the third TBS set is less than or equal to the first TBS, where the first TBS is The network device selects one TBS from the second TBS set, the second TBS set includes N TBSs, and the N is a positive integer greater than one;
  • a receiving module configured to receive uplink information sent by the terminal device according to the third TBS set.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 328; or
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 320.
  • the second TBS set includes TBS values of 328, 424, 536, 616, 712, 808, 904, and 1000; or
  • the second TBS set includes TBS values of 328, 440, 504, 600, 712, 808, 936, and 1000.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 328; or
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 320.
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 840, and 936; or
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 872, and 936; or
  • the second TBS set includes TBS values of 328, 392, 456, 504, 600, 712, 808, and 936; or
  • the second TBS set includes TBS values of 328, 408, 456, 504, 600, 712, 808, and 936.
  • the third TBS set includes a fourth TBS, wherein the fourth TBS is the first TBS, or the fourth TBS is a TBS that is closest to the first TBS.
  • the third set of TBSs further includes M-1 TBSs, where the M is a positive integer;
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the natural descending order of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the interval of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the order of the TBS index.
  • the component modules of the network device may also perform the steps described in the foregoing second aspect and various possible implementations, as described above in the second aspect and various possible implementations. Description.
  • an embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • an embodiment of the present application provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • the embodiment of the present application provides a communication device, where the communication device may include a terminal device or an entity such as a network device or a chip, the communication device includes: a processor and a memory; the memory is configured to store an instruction; The processor is operative to execute the instructions in the memory, such that the communication device performs the method of any of the preceding or second aspects.
  • the present application provides a chip system including a processor for supporting a network device or a terminal device to implement the functions involved in the foregoing aspects, such as, for example, transmitting or processing data involved in the above method. And / or information.
  • the chip system further includes a memory for storing necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a system architecture corresponding to a method for sending information and a method for receiving information according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of interaction between a terminal device and a network device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic block diagram of a method for sending information according to an embodiment of the present disclosure
  • FIG. 4 is a schematic block diagram of a method for receiving information according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • the embodiment of the present application provides a method for sending information, a method for receiving information, and a device, which can implement the situation on the network side as much as possible, and avoid waste of transmission resources.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • FDMA single carrier frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • FDMA single carrier frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA can be replaced with "network”.
  • a CDMA system can implement wireless technologies such as universal terrestrial radio access (UTRA), CDMA2000, and the like.
  • UTRA may include wideband CDMA (WCDMA) technology and other CDMA variant technologies.
  • CDMA2000 can cover the interim standard (IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • the TDMA system can implement a wireless technology such as a global system for mobile communication (GSM).
  • GSM global system for mobile communication
  • An OFDMA system can implement such as evolved universal radio land access (evolved UTRA, E-UTRA), ultra mobile broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDMA And other wireless technologies.
  • UTRA and E-UTRA are UMTS and UMTS evolved versions.
  • the various versions of 3GPP in long term evolution (LTE) and LTE-based evolution are new versions of UMTS that use E-UTRA.
  • LTE long term evolution
  • LTE-based evolution are new versions of UMTS that use E-UTRA.
  • the fifth generation (5G) communication system and New Radio (NR) are the next generation communication systems under study.
  • the communication system can also be applied to future-oriented communication.
  • the technical solutions provided by the embodiments of the present invention are applicable to the technical solutions.
  • the system architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems, as the network architecture evolves and new service scenarios arise.
  • FIG. 1 is a schematic structural diagram of a possible radio access network (RAN) according to an embodiment of the present application.
  • the RAN may be a base station access system of a 2G network (ie, the RAN includes a base station and a base station controller), or may be a base station access system of a 3G network (ie, the RAN includes a base station and an RNC), or may be 4G.
  • the base station access system of the network ie, the RAN includes an eNB and an RNC
  • the RAN includes one or more network devices.
  • the network device may be any device having a wireless transceiver function, or a chip disposed in a device of a specific wireless transceiver function.
  • the network device includes but is not limited to: a base station (for example, a base station BS, a base station NodeB, an evolved base station eNodeB or eNB, a base station gNodeB or gNB in a fifth generation 5G communication system, a base station in a future communication system, and a connection in a WiFi system) Ingress node, wireless relay node, wireless backhaul node, etc.
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, and the like.
  • a plurality of base stations may support a network of one or more of the techniques mentioned above, or a future evolved network.
  • the core network may support the above mentioned network of one or more technologies, or a future evolved network.
  • the base station may include one or more co-site or non-co-located transmission receiving points (TRPs).
  • the network device may also be a wireless controller, a centralized unit (CU), or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the network device can also be a server, a wearable device, or an in-vehicle device.
  • the following uses a network device as a base station as an example for description.
  • the multiple network devices may be the same type of base station or different types of base stations.
  • the base station can communicate with the terminal device 1-6 or with the terminal device 1-6 via the relay station.
  • the terminal device 1-6 can support communication with multiple base stations of different technologies.
  • the terminal device can support communication with a base station supporting the LTE network, can also support communication with a base station supporting the 5G network, and can also support a base station with the LTE network.
  • dual connectivity of base stations of a 5G network For example, the terminal is connected to a radio access network (RAN) node of the wireless network.
  • RAN radio access network
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and Node B (Node).
  • B, NB base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit , BBU), or wireless fidelity (Wifi) access point (AP).
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • the terminal device 1-6 which is also called a user equipment (UE), a mobile station (MS), a mobile terminal (MT), a terminal, etc., is a voice and/or A data connectivity device, or a chip disposed in the device, for example, a handheld device having an wireless connection capability, an in-vehicle device, or the like.
  • terminal devices are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, enhancements.
  • Augmented reality (AR) equipment wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid A wireless terminal in a wireless terminal, a wireless terminal in a transportation safety, a wireless terminal in a smart city, a wireless terminal in a smart home, or the like.
  • AR Augmented reality
  • the base station and the UE1 to the UE6 form a communication system, in which the base station sends one or more of the system information, the RAR message, and the paging message to one or more of the UE1 to the UE6.
  • UEs, in addition, UE4 to UE6 also form a communication system, in which UE5 can be implemented as a function of a base station, and UE5 can send one or more of system information, control information, and paging messages to UE4 and One or more UEs in UE6.
  • FIG. 2 is a schematic diagram of an interaction process between a network device and a terminal device according to an embodiment of the present application.
  • the method for transmitting information provided by the embodiment of the present application mainly includes the following steps.
  • the terminal device receives a first transport block size TBS configured by the network device, where the first TBS is a TBS selected by the network device from the second TBS set, the second TBS set includes N TBSs, and N is a positive integer greater than 1. .
  • the value of N may be equal to 8, and the network device selects one TBS from the second set of TBSs as the first TBS.
  • the maximum TBS in the second TBS set may be 1000
  • the minimum TBS in the second TBS set may be 328 or 320.
  • six values between 328 and 1000 are selected, and the second set of TBSs is composed of ⁇ 328, 424, 536, 616, 712, 808, 904, 1000 ⁇ .
  • the maximum TBS in the second TBS set may be 936
  • the minimum TBS in the second TBS set may be 328 or 320, and then selected at 328 and 936 according to the principle of approximately equal intervals.
  • the middle 6 values, the obtained second TBS set is ⁇ 328, 408, 504, 584, 680, 776, 808, 936 ⁇
  • the first TBS may be one of the TBS values in the second TBS set.
  • the terminal device determines, according to the first TBS, a third TBS set, where a maximum TBS in the third TBS set is smaller than the first TBS.
  • the third TBS set is determined according to the first TBS. For example, for the TBS value in the third TBS set, the TBS that is smaller than the first TBS or equal to the first TBS may be selected from the second TBS set to form the third TBS set. It is defined that the third TBS set may also not be selected from the second TBS set, but the third TBS is determined according to the first TBS in combination with the preset TBS table.
  • the terminal device selects one TBS from the third TBS set, and sends uplink information according to the selected TBS.
  • the terminal device After determining the third TBS set, the terminal device selects a TBS according to the size of the message to be sent, and sends the uplink information to the network device according to the selected TBS.
  • the network device determines, according to a first transport block size TBS configured to the terminal device, a third TBS set, where the first TBS is a TBS selected by the network device from the second TBS set, and the second TBS set includes N TBS, N Is a positive integer greater than one.
  • the value of N may be 8
  • the first TBS may be the largest TBS configured by the system, and the first TBS may be selected from the second set of TBSs.
  • the network device receives uplink information sent by the terminal device according to the third TBS set.
  • the network device performs blind detection according to the third TBS set to determine the TBS used by the terminal device, and uses the determined TBS to send the uplink information.
  • the network device in the embodiment of the present application can determine that the first TBS is configured, so that the terminal device can determine the third TBS set according to the first TBS, and the terminal device selects one of the third TBS sets.
  • the TBS sends the uplink information, so the terminal device has the flexibility to select the TBS in the third TBS set, and the terminal device uses the TBS selected by the terminal device to send the uplink information, and the network device can determine the terminal device selection by using the third TBS set.
  • the TBS thereby receiving the uplink information using the TBS selected by the terminal device.
  • the terminal device may select one TBS in the third TBS set for uplink information transmission, so the TBS that sends the uplink information is flexible and optional, improves resource utilization, and avoids resource waste as much as possible.
  • the embodiment of the present application provides a method for sending information, including:
  • the terminal device receives a first transport block size TBS configured by the network device, where the first TBS is a TBS selected by the network device from the second TBS set, and the second TBS set includes N TBSs, where N is a positive integer greater than 1. .
  • the value of N may be equal to 8, and the network device selects one TBS from the second set of TBSs as the first TBS.
  • the maximum TBS in the second TBS set may be 1000
  • the minimum TBS in the second TBS set may be 328 or 320.
  • six values between 328 and 1000 are selected, and the second set of TBSs is composed of ⁇ 328, 424, 536, 616, 712, 808, 904, 1000 ⁇ .
  • the maximum TBS in the second TBS set may be 936
  • the minimum TBS in the second TBS set may be 328 or 320, and then selected at 328 and 936 according to the principle of approximately equal intervals.
  • the middle 6 values, the obtained second TBS set is ⁇ 328, 408, 504, 584, 680, 776, 808, 936 ⁇
  • the first TBS may be one of the TBS values in the second TBS set.
  • the terminal device determines, according to the first TBS, a third TBS set, where a maximum TBS in the third TBS set is less than or equal to the first TBS.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the second TBS set includes at least a TBS value of 1000 and a TBS value of 328; or,
  • the second TBS set includes at least a TBS value of 1000 and a TBS value of 320.
  • the second TBS set may include 8 TBSs, the maximum TBS value of the 8 TBSs is 1000, and the minimum TBS is 328 or 320.
  • the TBS element included in the second TBS set is determined in combination with the implementation scenario.
  • the second TBS set includes TBS values of 328, 424, 536, 616, 712, 808, 904, and 1000; or, the second TBS set includes TBS values of 328, 440, 504, 600, 712, 808, 936, and 1000.
  • the two ends values 328 and 1000 may constitute a second TBS set, and the second TBS set may include eight TBS values.
  • the determined eight maximum TBS values are approximately equal intervals, so that the uplink information of any size between 328 and 1000 transmitted by the terminal device can approximately equally reduce the number of bits filled.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 328; or,
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 320.
  • the second TBS set may include 8 TBSs, the maximum TBS value of the 8 TBSs is 936, and the minimum TBS value is 328 or 320.
  • the TBS element included in the collection may include 8 TBSs, the maximum TBS value of the 8 TBSs is 936, and the minimum TBS value is 328 or 320.
  • the TBS element included in the collection may include 8 TBSs, the maximum TBS value of the 8 TBSs is 936, and the minimum TBS value is 328 or 320.
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 840, and 936; or
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 872, and 936; or
  • the second TBS set includes TBS values of 328, 392, 456, 504, 600, 712, 808, and 936; or
  • the second TBS set includes TBS values of 328, 408, 456, 504, 600, 712, 808, and 936.
  • the two ends values 328 and 936 may constitute a second TBS set, and the second TBS set may include eight TBS values.
  • the determined eight maximum TBS values are approximately equal intervals, so that the uplink information of any size between 328 and 936 transmitted by the terminal device can approximately equally reduce the number of filled bits.
  • the third TBS set includes a fourth TBS, wherein the fourth TBS is the first TBS, or the fourth TBS is the TBS closest to the first TBS.
  • the nearest TBS refers to the TBS that is closest to the first TBS value in the column corresponding to the number of PRBs in the preset TBS table.
  • the preset TBS table is a three-party relationship table of TBS index, PRB number and TBS value in the standard.
  • the third set of TBSs further includes M-1 TBSs, where M is a positive integer;
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the natural descending order of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the interval of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the order of the TBS index.
  • the third TBS set may include, in addition to the fourth TBS, M-1 TBSs, where the natural decrement order according to the TBS index is determined according to the number of PRBs corresponding to the preset TBS table.
  • the descending order of the TBS index is determined according to the TBS index equal interval manner, which is determined by using the same interval size, and determining according to the TBS index head and tail alternate order means that the largest TBS and the smallest TBS in the third TBS set are adjacent.
  • the first and last alternating means that the largest TBS and the smallest TBS in the third TBS set are connected end to end, and based on this, the fourth TBS can be determined.
  • the manner in which the M-1 TBSs are determined is described in the following examples in conjunction with the corresponding tables.
  • the terminal device selects one TBS from the third TBS set, and sends uplink information according to the selected TBS.
  • the terminal device determines a maximum of four values that are selectable less than or equal to the maximum TBS value of the broadcast.
  • the terminal device Due to the coverage level ModeB, the terminal device only supports QPSK, and the uplink grant can always carry the largest TBS of the system message broadcast, for example, the maximum TBS is 936. Therefore, the TBS value of the optional Msg3 when Msg3 carries data is determined, and the data underlined in Table 1 below is determined.
  • Sort the underlined data in the table and select the six values between 328 and 936 according to the principle of approximately equal intervals to get ⁇ 328,408,504,584,680,776,808,936 ⁇ , or ⁇ 328,408,504,584,680,776,872,936 ⁇ , due to ⁇ 776,808,936 ⁇ or ⁇ 776,872,936 ⁇ adjacent
  • the gradient between the two values is quite different. You can replace the second-to-last value with 840 in the table to get ⁇ 328,408,504,584,680,776,840,936 ⁇ .
  • the first type When ModeB is specified in the standard, the modulation order is 2, that is, QPSK.
  • the set of maximum TBS values notified by the system information at this time is ⁇ 328, 408, 504, 584, 680, 776, 808, 936 ⁇ , or ⁇ 328, 408, 504, 584, 680, 776, 872, 936 ⁇ , or ⁇ 328, 408, 504, 584, 680, 776, 840, 936 ⁇ .
  • the modulation order is 2, that is, QPSK.
  • the network device and the terminal device determine the TBS index according to the standard TS36.213 Table 7.1.7.2.1-1, the allocated physical resource PRB number and the TBS value, and then determine according to the TBS index and the standard TS36.213 Table 8.6.1-1. Modulation order.
  • the set of maximum TBS values notified by the system information at this time is ⁇ 328, 408, 504, 584, 680, 776, 808, 936 ⁇ or ⁇ 328, 408, 504, 584, 680, 776, 872, 936 ⁇ .
  • the terminal device supports QPSK and 16QAM under the coverage level ModeA, and the uplink grant can always carry the maximum TBS of the system message broadcast, for example, the maximum TBS is 1000, thereby determining the TBS value of the optional Msg3 when the Msg3 carries data. , as indicated by the underlined data in Table 2 below.
  • the data underlined in the table is sorted, and according to the principle of approximately equal intervals, six values between 328 and 1000, ⁇ 328, 424, 536, 616, 712, 808, 904, 1000 ⁇ are selected.
  • the network device and the terminal device determine the TBS index according to the standard TS36.213 Table 7.1.7.2.1-1, the number of allocated physical resource PRBs and the TBS value, wherein, optionally, the number of PRBs is a network device. Configured in the uplink grant of the MAC RAR. After determining the TBS index, the modulation order is then determined according to the TBS index and TS36.213 Table 8.6.1-1 in the standard. At this time, the set of the maximum TBS value notified by the system information is ⁇ 328, 424, 536, 616, 712, 808, 904, 1000 ⁇ .
  • the eight maximum TBS values that can be determined in the embodiment of the present application are approximately equal intervals, and the number of bits of padding is reduced.
  • the following describes an application scenario in which the terminal device selects one TBS from the third TBS set, that is, a maximum of four values less than or equal to the maximum TBS can be selected to form a third TBS set.
  • the third TBS set includes M-1 TBSs in addition to the fourth TBS.
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the natural descending order of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the interval of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the order of the TBS index.
  • the third TBS set may include M-1 TBSs in addition to the fourth TBS, where the natural decrement order determination according to the TBS index is determined according to the descending order of the TBS indexes in the TBS table, according to the TBS index, etc.
  • the interval mode is determined by using the same interval size.
  • the first and last alternate order determines that the largest TBS and the smallest TBS are adjacent in the third TBS set, and the first and last alternate refers to the largest in the third TBS set.
  • the TBS and the smallest TBS are connected end to end, based on which the fourth TBS can be determined.
  • the terminal device queries the following Table 4 according to the maximum TBS and the number of physical resource blocks N configured by the network, and selects Min_TBS ⁇ TBS ⁇ Max_TBS to at most K TBS values in the column corresponding to the number N of physical resource blocks in the table (including the network)
  • the maximum TBS of the notification there are a total of K values), wherein the sequential selection refers to the selection according to the natural descending order of the TBS index.
  • the terminal device determines the K TBS values corresponding to the Max_TBS notified by the network according to the method described above, and selects a TBS value (which is greater than or equal to the minimum value of the transmission transport block size) that best matches the transmission transport block size, and transmits the PUSCH.
  • the network side determines the K TBS values corresponding to the Max_TBS by the same method, the network side receives the PUSCH, and the network side detects the received PUSCH by using the K TBS values.
  • the terminal device queries the following table 5 according to the maximum TBS and the number of physical resource blocks N configured by the network, and selects Min_TBS ⁇ TBS ⁇ Max_TBS at most in the column corresponding to the number N of physical resource blocks in the table.
  • K TBS values including the maximum TBS of the network notification, a total of N values
  • Max_TBS is the maximum TBS value configured by the network
  • K is a positive integer greater than or equal to 1
  • N is The predetermined value or the value of the network configuration, for example, N is equal to four.
  • Max_TBS of the network configuration is one of the corresponding columns, then starting from Max_TBS, select up to K values at equal intervals.
  • Max_TBS of the network configuration is not one of the corresponding columns, then a maximum of K-1 values are selected at equal intervals starting from the first or second TBS value less than Max_TBS.
  • the K values corresponding to Max_TBS are: ⁇ 1000, 936, 712, 504 ⁇ or ⁇ 1000, 808, 600, 408 ⁇ .
  • the terminal device determines the K TBS values corresponding to the Max_TBS notified by the network according to the method described above, and selects a TBS value (which is greater than or equal to the minimum value of the transmission transport block size) that best matches the transmission transport block size, and transmits the PUSCH.
  • the network side determines the K TBS values corresponding to the Max_TBS by the same method, the network side receives the PUSCH, and the network side detects the received PUSCH by using the K TBS values.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the terminal device queries the following table 6 according to the maximum TBS and the number of physical resource blocks N configured by the network, and selects Min_TBS ⁇ TBS ⁇ Max_TBS and at most K TBS values in the column corresponding to the number N of physical resource blocks in the table.
  • the maximum TBS including the network notification has a total of N values.
  • the configured value, for example N is equal to 4.
  • Max_TBS of the network configuration is one of the corresponding columns, then starting from Max_TBS, up to K values are alternately selected.
  • Max_TBS of the network configuration is not one of the corresponding columns, then starting from the first or second TBS value less than Max_TBS, etc. alternately select a maximum of K-1 values.
  • the K values corresponding to Max_TBS are: ⁇ 1000, 936, 328, 712 ⁇ or ⁇ 1000, 808, 328, 600 ⁇ .
  • the terminal device determines the K TBS values corresponding to the Max_TBS notified by the network according to the method described above, and selects a TBS value (which is greater than or equal to the minimum value of the transmission transport block size) that best matches the transmission transport block size, and transmits the PUSCH.
  • the network side determines the K TBS values corresponding to the Max_TBS by the same method, the network side receives the PUSCH, and the network side detects the received PUSCH by using the K TBS values.
  • the method for determining the modulation order by the terminal device and the network device is: the number of PRBs configured by the determined TBS and the network, according to the TBS table TS36.213 Table 7.1.7.2.1- 1 Determine the corresponding TBS index, and then determine the corresponding modulation order according to the determined TBS index according to TS36.213 Table 8.6.1-1.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the K values corresponding to Max_TBS corresponding to each Max_TBS of the network configuration are preset.
  • the set of values of the network configuration Max_TBS is ⁇ 328, 424, 536, 616, 712, 808, 904, 1000 ⁇ .
  • Max_TBS values corresponds to a maximum of K values less than or equal to Max_TBS, and a maximum of K consecutive values including Max_TBS, and K is an integer less than or equal to 4.
  • each Max_TBS corresponds to a value less than or equal to Max_TBS of the first two of the set of 4 values in the above table.
  • the method for determining the modulation order corresponding to the TBS value in the third set includes:
  • the modulation order is determined according to the TBS value in the column corresponding to the current physical resource block number and the TBS value in the third TBS set, and the closest includes two cases: the minimum value in the TBS value in the set is greater than the minimum value in the set. The maximum value of the TBS value.
  • the eight largest TBS values Max_TBS of the network configuration are the eight largest TBS values Max_TBS of the network configuration.
  • Max_TBS corresponds to a maximum of four determination methods (embodiments 1 to 4) and values that are less than or equal to the TBS value of Max_TBS.
  • the eight largest TBS values of the network configuration Max_TBS the gradient between adjacent values is approximately equal, reducing the number of padding. Up to 4 TBS values less than or equal to MaxTBS.
  • Lookup table method It is not necessary to standardize specific values, and the terminal device and the network device determine a specific value according to the specific number of RBs and the notified MaxTBS.
  • MaxTBS the corresponding less than or equal to N values smaller than MaxTBS are determined according to the notified MaxTBS and N values (for some MaxTBS, the number of less than MaxTBS is less than K).
  • the network enables EDT in per CE level. Reduce signaling overhead and enable EDT based on the presence or absence of signaling to notify MaxTBS.
  • the network device in the embodiment of the present application can determine that the first TBS is configured, so that the terminal device can determine the third TBS set according to the first TBS, and the terminal device selects one of the third TBS sets.
  • the TBS sends the uplink information, so the terminal device has the flexibility to select the TBS in the third TBS set, and the terminal device uses the TBS selected by the terminal device to send the uplink information, and the network device can determine the terminal device selection by using the third TBS set.
  • the TBS thereby receiving the uplink information using the TBS selected by the terminal device.
  • the terminal device may select one TBS in the third TBS set for uplink information transmission, so the TBS that sends the uplink information is flexible and optional, improves resource utilization, and avoids resource waste as much as possible.
  • the foregoing embodiment describes the method for transmitting information provided by the embodiment of the present application from the perspective of the terminal device.
  • the method for receiving information provided by the embodiment of the present application is described from the perspective of the network device. Please refer to FIG.
  • An embodiment provides a method for receiving information, including:
  • the network device determines, according to a first transport block size TBS configured to the terminal device, a third TBS set, where the first TBS is a TBS selected by the network device from the second TBS set, and the second TBS set includes N TBS, N Is a positive integer greater than one.
  • the value of N may be equal to 8, and the network device selects one TBS from the second set of TBSs as the first TBS.
  • the maximum TBS in the second TBS set may be 1000
  • the minimum TBS in the second TBS set may be 328 or 320.
  • six values between 328 and 1000 are selected, and the second set of TBSs is composed of ⁇ 328, 424, 536, 616, 712, 808, 904, 1000 ⁇ .
  • the maximum TBS in the second TBS set may be 936
  • the minimum TBS in the second TBS set may be 328 or 320, and then selected at 328 and 936 according to the principle of approximately equal intervals.
  • the middle 6 values, the obtained second TBS set is ⁇ 328, 408, 504, 584, 680, 776, 808, 936 ⁇
  • the first TBS may be one of the TBS values in the second TBS set.
  • the network device receives uplink information sent by the terminal device according to the third TBS set.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 328; or,
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 320.
  • the second TBS set may include 8 TBSs, the maximum TBS value of the 8 TBSs is 1000, and the minimum TBS is 328 or 320.
  • the TBS element included in the second TBS set is determined in combination with the implementation scenario.
  • the second TBS set includes TBS values of 328, 424, 536, 616, 712, 808, 904, and 1000; or
  • the second TBS set includes TBS values of 328, 440, 504, 600, 712, 808, 936, and 1000.
  • the two ends values 328 and 1000 may constitute a second TBS set, and the second TBS set may include eight TBS values.
  • the determined eight maximum TBS values are approximately equal intervals, so that the uplink information of any size between 328 and 1000 transmitted by the terminal device can approximately equally reduce the number of filled bits.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 328; or,
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 320.
  • the second TBS set may include 8 TBSs, the maximum TBS value of the 8 TBSs is 936, and the minimum TBS value is 328 or 320.
  • the TBS element included in the collection may include 8 TBSs, the maximum TBS value of the 8 TBSs is 936, and the minimum TBS value is 328 or 320.
  • the TBS element included in the collection may include 8 TBSs, the maximum TBS value of the 8 TBSs is 936, and the minimum TBS value is 328 or 320.
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 840, and 936; or,
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 872, and 936; or
  • the second TBS set includes TBS values of 328, 392, 456, 504, 600, 712, 808, and 936; or
  • the second TBS set includes TBS values of 328, 408, 456, 504, 600, 712, 808, and 936.
  • the two ends values 328 and 936 may constitute a second TBS set, and the second TBS set may include eight TBS values.
  • the determined eight maximum TBS values are approximately equal intervals, so that the uplink information of any size between 328 and 936 sent by the terminal device can approximately equally reduce the number of bits filled.
  • the third TBS set includes a fourth TBS, wherein the fourth TBS is the first TBS, or the fourth TBS is the TBS closest to the first TBS.
  • the second TBS set further includes M-1 TBSs, where M is a positive integer
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the natural descending order of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the interval of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the order of the TBS index.
  • the third TBS set may include, in addition to the fourth TBS, M-1 TBSs, where the natural decrement order according to the TBS index is determined according to the number of PRBs corresponding to the preset TBS table.
  • the descending order of the TBS index is determined according to the TBS index equal interval manner, which is determined by using the same interval size, and determining according to the TBS index head and tail alternate order means that the largest TBS and the smallest TBS in the third TBS set are adjacent.
  • the first and last alternating means that the largest TBS and the smallest TBS in the third TBS set are connected end to end, and based on this, the fourth TBS can be determined.
  • the manner in which the M-1 TBSs are determined is described in the following examples in conjunction with the corresponding tables.
  • the network device in the embodiment of the present application can determine that the first TBS is configured, so that the terminal device can determine the third TBS set according to the first TBS, and the terminal device selects one of the third TBS sets.
  • the TBS sends the uplink information, so the terminal device has the flexibility to select the TBS in the third TBS set, and the terminal device uses the TBS selected by the terminal device to send the uplink information, and the network device can determine the terminal device selection by using the third TBS set.
  • the TBS thereby receiving the uplink information using the TBS selected by the terminal device.
  • the terminal device may select one TBS in the third TBS set for uplink information transmission, so the TBS that sends the uplink information is flexible and optional, improves resource utilization, and avoids resource waste as much as possible.
  • a terminal device 500 provided by an embodiment of the present disclosure may include:
  • the receiving module 501 is configured to receive a first transport block size TBS configured by the network device, where the first TBS is one TBS selected by the network device from a second TBS set, and the second TBS set includes N TBSs. , N is a positive integer greater than one;
  • the processing module 502 is configured to determine, according to the first TBS, a third TBS set, where a maximum TBS in the third TBS set is less than or equal to the first TBS;
  • the sending module 503 is further configured to select one TBS from the third TBS set, and send uplink information according to the selected TBS.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the second TBS set includes at least a TBS value of 1000 and a TBS value of 328; or
  • the second TBS set includes at least a TBS value of 1000 and a TBS value of 320.
  • the second TBS set includes TBS values of 328, 424, 536, 616, 712, 808, 904, and 1000; or
  • the second TBS set includes TBS values of 328, 440, 504, 600, 712, 808, 936, and 1000.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 328; or
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 320.
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 840, and 936; or
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 872, and 936; or
  • the second TBS set includes TBS values of 328, 392, 456, 504, 600, 712, 808, and 936; or
  • the second TBS set includes TBS values of 328, 408, 456, 504, 600, 712, 808, and 936.
  • the third TBS set includes a fourth TBS, wherein the fourth TBS is the first TBS, or the fourth TBS is a TBS that is closest to the first TBS.
  • the third set of TBSs further includes M-1 TBSs, where the M is a positive integer;
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the natural descending order of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the interval of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the order of the TBS index.
  • the network device in the embodiment of the present application can determine that the first TBS is configured, so that the terminal device can determine the third TBS set according to the first TBS, and the terminal device selects one of the third TBS sets.
  • the TBS sends the uplink information, so the terminal device has the flexibility to select the TBS in the third TBS set, and the terminal device uses the TBS selected by the terminal device to send the uplink information, and the network device can determine the terminal device selection by using the third TBS set.
  • the TBS thereby receiving the uplink information using the TBS selected by the terminal device.
  • the terminal device may select one TBS in the third TBS set for uplink information transmission, so the TBS that sends the uplink information is flexible and optional, improves resource utilization, and avoids resource waste as much as possible.
  • the embodiment of the present application provides a network device 600, including:
  • the processing module 601 is configured to determine, according to a first transport block size TBS configured to the terminal device, a third TBS set, where the first TBS is one TBS selected by the network device from the second TBS set, and the second The TBS set includes N TBSs, and the N is a positive integer greater than one;
  • the receiving module 602 is configured to receive uplink information sent by the terminal device according to the third TBS set.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 328; or
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 320.
  • the second TBS set includes TBS values of 328, 424, 536, 616, 712, 808, 904, and 1000; or
  • the second TBS set includes TBS values of 328, 440, 504, 600, 712, 808, 936, and 1000.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 328; or
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 320.
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 840, and 936; or
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 872, and 936; or
  • the second TBS set includes TBS values of 328, 392, 456, 504, 600, 712, 808, and 936; or
  • the second TBS set includes TBS values of 328, 408, 456, 504, 600, 712, 808, and 936.
  • the third TBS set includes a fourth TBS, wherein the fourth TBS is the first TBS, or the fourth TBS is a TBS that is closest to the first TBS.
  • the third set of TBSs further includes M-1 TBSs, where the M is a positive integer;
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the natural descending order of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the interval of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the order of the TBS index.
  • the network device 600 further includes: a sending module 603, configured to send the first TBS to the terminal device.
  • the network device in the embodiment of the present application can determine that the first TBS is configured, so that the terminal device can determine the third TBS set according to the first TBS, and the terminal device selects one of the third TBS sets.
  • the TBS sends the uplink information, so the terminal device has the flexibility to select the TBS in the third TBS set, and the terminal device uses the TBS selected by the terminal device to send the uplink information, and the network device can determine the terminal device selection by using the third TBS set.
  • the TBS thereby receiving the uplink information using the TBS selected by the terminal device.
  • the terminal device may select one TBS in the third TBS set for uplink information transmission, so the TBS that sends the uplink information is flexible and optional, improves resource utilization, and avoids resource waste as much as possible.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium stores a program, and the program executes some or all of the steps described in the foregoing method embodiments.
  • FIG. 7 is a schematic structural diagram of still another device according to an embodiment of the present application.
  • the device is a terminal device, and the terminal device may include: a processor 131 (eg, a CPU), a memory 132, a transmitter 134, and a receiver 133.
  • the transmitter 134 and the receiver 133 are coupled to the processor 131, which controls the transmitting action of the transmitter 134 and the receiving action of the receiver 133.
  • the memory 132 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored for performing various processing functions and implementing the methods of embodiments of the present application. step.
  • the terminal device involved in the embodiment of the present application may further include one or more of a power source 135, a communication bus 136, and a communication port 137.
  • the receiver 133 and the transmitter 134 may be integrated in the transceiver of the terminal device, or may be separate receiving and transmitting antennas on the terminal device.
  • Communication bus 136 is used to implement a communication connection between components.
  • the communication port 137 is used to implement connection communication between the terminal device and other peripheral devices.
  • the foregoing memory 132 is configured to store computer executable program code, and the program code includes instructions.
  • the instruction causes the processor 131 to perform the processing action of the terminal device in the foregoing method embodiment, so that The transmitter 134 performs the transmission operation of the terminal device in the above method embodiment.
  • the receiver 133 is configured to receive a first transport block size TBS configured by the network device, where the first TBS is one TBS selected by the network device from the second TBS set, and the second TBS set includes N TBSs. , N is a positive integer greater than one;
  • the processor 131 is configured to determine, according to the first TBS, a third TBS set, where a maximum TBS in the third TBS set is less than or equal to the first TBS;
  • the transmitter 134 is further configured to select one TBS from the third TBS set, and send uplink information according to the selected TBS.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the second TBS set includes at least a TBS value of 1000 and a TBS value of 328; or
  • the second TBS set includes at least a TBS value of 1000 and a TBS value of 320.
  • the second TBS set includes TBS values of 328, 424, 536, 616, 712, 808, 904, and 1000; or
  • the second TBS set includes TBS values of 328, 440, 504, 600, 712, 808, 936, and 1000.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 328; or
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 320.
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 840, and 936; or
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 872, and 936; or
  • the second TBS set includes TBS values of 328, 392, 456, 504, 600, 712, 808, and 936; or
  • the second TBS set includes TBS values of 328, 408, 456, 504, 600, 712, 808, and 936.
  • the third TBS set includes a fourth TBS, wherein the fourth TBS is the first TBS, or the fourth TBS is a TBS that is closest to the first TBS.
  • the third set of TBSs further includes M-1 TBSs, where the M is a positive integer;
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the natural descending order of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the interval of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the order of the TBS index.
  • the network device in the embodiment of the present application can determine that the first TBS is configured, so that the terminal device can determine the third TBS set according to the first TBS, and the terminal device selects one of the third TBS sets.
  • the TBS sends the uplink information, so the terminal device has the flexibility to select the TBS in the third TBS set, and the terminal device uses the TBS selected by the terminal device to send the uplink information, and the network device can determine the terminal device selection by using the third TBS set.
  • the TBS thereby receiving the uplink information using the TBS selected by the terminal device.
  • the terminal device may select one TBS in the third TBS set for uplink information transmission, so the TBS that sends the uplink information is flexible and optional, improves resource utilization, and avoids resource waste as much as possible.
  • FIG. 8 is a schematic structural diagram of still another device according to an embodiment of the present application.
  • the device is a network device, and the network device may include: a processor (for example, a CPU) 141, a memory 142, a receiver 143, and a transmitter 144.
  • the receiver 143 and the transmitter 144 are coupled to the processor 141, which controls the receiving action of the receiver 143 and the transmitting action of the transmitter 144.
  • the memory 142 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored for performing various processing functions and implementing the methods of embodiments of the present application. step.
  • NVM non-volatile memory
  • the network device involved in the embodiment of the present application may further include one or more of a power source 145, a communication bus 146, and a communication port 147.
  • the receiver 143 and the transmitter 144 may be integrated in a transceiver of the network device, or may be separate receiving and transmitting antennas on the network device.
  • Communication bus 146 is used to implement a communication connection between components.
  • the communication port 147 is used to implement connection communication between the network device and other peripheral devices.
  • the memory 142 is used to store computer executable program code, and the program code includes instructions.
  • the instruction causes the processor 141 to perform the processing action of the network device in the foregoing method embodiment, so that The transmitter 144 performs the sending action of the network device in the above method embodiment.
  • the processor 141 is configured to determine, according to a first transport block size TBS configured to the terminal device, a third TBS set, where a maximum TBS in the third TBS set is less than or equal to the first TBS, the first TBS Is a TBS selected by the network device from a second set of TBSs, the second set of TBSs includes N TBSs, and the N is a positive integer greater than one;
  • the receiver 143 is configured to receive uplink information sent by the terminal device according to the third TBS set.
  • the terminal device is in coverage enhancement level 0, coverage enhancement level 1, or coverage enhancement mode A;
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 328; or
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 320.
  • the second TBS set includes TBS values of 328, 424, 536, 616, 712, 808, 904, and 1000; or
  • the second TBS set includes TBS values of 328, 440, 504, 600, 712, 808, 936, and 1000.
  • the terminal device is in coverage enhancement level 2, coverage enhancement level 3, or coverage enhancement mode B;
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 328; or
  • the second TBS set includes at least a TBS value of 936 and a TBS value of 320.
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 840, and 936; or
  • the second TBS set includes TBS values of 328, 408, 504, 584, 680, 776, 872, and 936; or
  • the second TBS set includes TBS values of 328, 392, 456, 504, 600, 712, 808, and 936; or
  • the second TBS set includes TBS values of 328, 408, 456, 504, 600, 712, 808, and 936.
  • the third TBS set includes a fourth TBS, wherein the fourth TBS is the first TBS, or the fourth TBS is a TBS that is closest to the first TBS.
  • the third set of TBSs further includes M-1 TBSs, where the M is a positive integer;
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the natural descending order of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the interval of the TBS index; or
  • the M-1 TBSs are started with the fourth TBS, and the columns corresponding to the number of PRBs in the preset TBS table are determined according to the order of the TBS index.
  • the network device in the embodiment of the present application can determine that the first TBS is configured, so that the terminal device can determine the third TBS set according to the first TBS, and the terminal device selects one of the third TBS sets.
  • the TBS sends the uplink information, so the terminal device has the flexibility to select the TBS in the third TBS set, and the terminal device uses the TBS selected by the terminal device to send the uplink information, and the network device can determine the terminal device selection by using the third TBS set.
  • the TBS thereby receiving the uplink information using the TBS selected by the terminal device.
  • the terminal device may select one TBS in the third TBS set for uplink information transmission, so the TBS that sends the uplink information is flexible and optional, improves resource utilization, and avoids resource waste as much as possible.
  • the chip comprises: a processing unit and a communication unit
  • the processing unit may be, for example, a processor
  • the communication unit may be, for example, an input/output interface, Pin or circuit, etc.
  • the processing unit may execute computer execution instructions stored by the storage unit to cause the chip within the terminal to perform the wireless communication method of any of the above aspects.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal, such as a read-only memory (read) -only memory, ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • the processor mentioned in any of the above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the integrated circuit of the program execution of the first aspect wireless communication method may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be Physical units can be located in one place or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, and specifically may be implemented as one or more communication buses or signal lines.
  • U disk mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk, etc., including a number of instructions to make a computer device (may be A personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present application.
  • a computer device may be A personal computer, server, or network device, etc.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息发送的方法、信息接收的方法及设备。其中,一种信息发送的方法包括:终端设备接收网络设备配置的第一传输块大小TBS,其中所述第一TBS是所述网络设备从第二TBS集合中选择的一个TBS,所述第二TBS集合包含N个TBS,所述N是大于1的正整数;所述终端设备根据所述第一TBS确定第三TBS集合,所述第三TBS集合中的最大TBS小于或等于所述第一TBS;所述终端设备从所述第三TBS集合中选择一个TBS,根据选择的TBS发送上行信息。本中请实施例提供的方法和设备可以应用于通信系统,例如,V2X、LTE-V、V2V、车联网、MTC、IoT、LTE-M,M2M,物联网等。

Description

一种信息发送的方法、信息接收的方法和设备 技术领域
本申请实施例涉及通信领域,尤其涉及一种信息发送的方法、信息接收的方法和设备。
背景技术
目前无线通信系统大规模应用部署,可向多个用户提供各种类型的通信,例如,语音、数据、多媒体业务等。
在当前的长期演进(long term evolution,LTE)技术的讨论过程中,对于随机接入过程中的第三条消息即Msg3,可以在Msg3中传输上行用户数据,涉及利用媒体接入控制协议(medium access control,MAC)随机接入响应(random access responses,RAR)。
现有技术中MAC协议数据单元(protocol data units,PDU)包括:MAC头部(header)、0或多个MAC RAR及可选的填充部分。现有技术中,网络可以配置终端设备最大的传输块大小(transport block size,TBS),使得终端设备只能使用该最大的TBS来传输Msg3,但是,并不是所有的终端设备都需要使用该最大的TBS,若终端设备需要的TBS小于网络配置的最大TBS,则终端设备就需要在Msg3中增加填充比特,以将Msg3扩容至最大TBS,终端设备按照这种方式发送数据时会造成对传输资源的浪费,且没有考虑到网络侧的情况。
发明内容
本申请实施例提供了一种信息发送的方法、信息接收的方法和设备,能够实现尽量考虑到网络侧的情况,且避免对传输资源的浪费。
第一方面,本申请实施例提供一种信息发送的方法,包括:
终端设备接收网络设备配置的第一传输块大小TBS,其中所述第一TBS是所述网络设备从第二TBS集合中选择的一个TBS,所述第二TBS集合包含N个TBS,所述N是大于1的正整数;
所述终端设备根据所述第一TBS确定第三TBS集合,所述第三TBS集合中的最大TBS小于或等于所述第一TBS;
所述终端设备从所述第三TBS集合中选择一个TBS,根据选择的TBS发送上行信息。
在本申请实施例中,本申请实施例中网络设备可以确定配置第一TBS,从而终端设备可以根据该第一TBS确定出第三TBS集合,终端设备选择第三TBS集合中的某一个TBS来发送上行信息,因此终端设备具备选择第三TBS集合中的TBS的灵活性,终端设备使用该终端设备选择出的TBS来发送上行信息,网络设备可以通过第三TBS集合确定出终端设备选择的TBS,从而使用终端设备选择的TBS接收到上行信息。本申请实施例中终端设备可以选择第三TBS集合中的一个TBS用于上行信息发送,因此发送上行信息的TBS是灵活可选的,提高了资源利用率,尽可能的避免资源浪费。
在一种可能的设计中,
所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
所述第二TBS集合中至少包括TBS取值为1000和TBS取值为328;或,
所述第二TBS集合中至少包括TBS取值为1000和TBS取值为320。
例如,当终端设备采用覆盖增强模式A时,第二TBS集合可以包括8个TBS,8个TBS中最大TBS取值为1000,最小TBS取值为328或320,具体结合实现场景确定第二TBS集合所包括的TBS元素。
在一种可能的设计中,
所述第二TBS集合包含的TBS取值为328,424,536,616,712,808,904和1000;或,
所述第二TBS集合包含的TBS取值为328,440,504,600,712,808,936和1000。
例如,根据近似等间隔地原则,选取在328和1000中间的6个值,再加上两端值328和1000可以构成第二TBS集合,第二TBS集合可以包括8个TBS取值。确定的8个最大TBS值近似等间隔,降低填充的比特位数。
在一种可能的设计中,
所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
例如,当终端设备采用覆盖增强模式B时,第二TBS集合可以包括8个TBS,8个TBS中最大TBS取值为936,最小TBS取值为328或320,具体结合实现场景确定第二TBS集合所包括的TBS元素。
在一种可能的设计中,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,840和936;或,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,872和936;或,
所述第二TBS集合包含的TBS取值为328,392,456,504,600,712,808和936;或,
所述第二TBS集合包含的TBS取值为328,408,456,504,600,712,808和936。
例如,根据近似等间隔地原则,选取在328和936中间的6个值,再加上两端值328和936可以构成第二TBS集合,第二TBS集合可以包括8个TBS取值。确定的8个最大TBS值近似等间隔,降低填充的比特位数。
在一种可能的设计中,
所述第三TBS集合包含第四TBS,其中,所述第四TBS是所述第一TBS,或所述第四TBS是所述第一TBS最邻近的TBS。
其中,最邻近的TBS是指在预设的TBS表格里PRB个数对应的列中与第一TBS值最接近的TBS。预设的TBS表格为标准中TBS索引、PRB个数和TBS值三者关系表格。
在一种可能的设计中,
所述第三TBS集合还包括M-1个TBS,其中所述M是正整数;
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引自然递减顺序确定;或,
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引等间隔方式确定;或,
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引首尾交替顺序确定。
其中,第三TBS集合除了包括第四TBS之外,还可以包括M-1个TBS,其中,根据TBS索引自然递减顺序确定指的是根据预设的TBS表里PRB个数对应的列中按照TBS索引的递减顺序确定,根据TBS索引等间隔方式确定是指采用相同的间隔大小来确定,根据TBS索引首尾交替顺序确定是指在第三TBS集合中最大的TBS和最小的TBS是相邻的,首尾交替是指第三TBS集合中最大的TBS和最小的TBS是首尾相接,基于此可以确定第四TBS。后续实施例中结合相应的表格说明M-1个TBS的确定方式。
第二方面,本申请实施例提供一种信息接收的方法,包括:
网络设备根据配置给终端设备的第一传输块大小TBS确定第三TBS集合,其中,所述第三TBS集合中的最大TBS小于或等于所述第一TBS,所述第一TBS是所述网络设备从第二TBS集合中选择的一个TBS,所述第二TBS集合包含N个TBS,所述N是大于1的正整数;
所述网络设备根据所述第三TBS集合接收所述终端设备发送的上行信息。
在一种可能的设计中,
所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
在一种可能的设计中,
所述第二TBS集合包含的TBS取值为328,424,536,616,712,808,904和1000;或,
所述第二TBS集合包含的TBS取值为328,440,504,600,712,808,936和1000。
在一种可能的设计中,
所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
在一种可能的设计中,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,840和936;或,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,872和936;或,
所述第二TBS集合包含的TBS取值为328,392,456,504,600,712,808和936;或,
所述第二TBS集合包含的TBS取值为328,408,456,504,600,712,808和936。
在一种可能的设计中,
所述第三TBS集合包含第四TBS,其中,所述第四TBS是所述第一TBS,或所述第四TBS是所述第一TBS最邻近的TBS。
在一种可能的设计中,
所述第三TBS集合还包括M-1个TBS,其中所述M是正整数;
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引自然递减顺序确定;或,
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引等间隔方式确定;或,
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引首尾交替顺序确定。
第三方面,本申请实施例提供一种终端设备,包括:
接收模块,用于接收网络设备配置的第一传输块大小TBS,其中所述第一TBS是所述网络设备从第二TBS集合中选择的一个TBS,所述第二TBS集合包含N个TBS,所述N是大于1的正整数;
处理模块,用于根据所述第一TBS确定第三TBS集合,所述第三TBS集合中的最大TBS小于或等于所述第一TBS;
发送模块,还用于从所述第三TBS集合中选择一个TBS,根据选择的TBS发送上行信息。
在一种可能的设计中,
所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
所述第二TBS集合中至少包括TBS取值为1000和TBS取值为328;或,
所述第二TBS集合中至少包括TBS取值为1000和TBS取值为320。
在一种可能的设计中,
所述第二TBS集合包含的TBS取值为328,424,536,616,712,808,904和1000;或,
所述第二TBS集合包含的TBS取值为328,440,504,600,712,808,936和1000。
在一种可能的设计中,
所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
在一种可能的设计中,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,840和936;或,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,872和936;或,
所述第二TBS集合包含的TBS取值为328,392,456,504,600,712,808和936;或,
所述第二TBS集合包含的TBS取值为328,408,456,504,600,712,808和936。
在一种可能的设计中,
所述第三TBS集合包含第四TBS,其中,所述第四TBS是所述第一TBS,或所述第四TBS是所述第一TBS最邻近的TBS。
在一种可能的设计中,
所述第三TBS集合还包括M-1个TBS,其中所述M是正整数;
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引自然递减顺序确定;或,
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引等间隔方式确定;或,
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引首尾交替顺序确定。
在本申请的第三方面中,终端设备的组成模块还可以执行前述第一方面以及各种可能的实现方式中所描述的步骤,详见前述对第一方面以及各种可能的实现方式中的说明。
第四方面,本申请实施例提供一种网络设备,包括:
处理模块,用于根据配置给终端设备的第一传输块大小TBS确定第三TBS集合,其中,所述第三TBS集合中的最大TBS小于或等于所述第一TBS,所述第一TBS是所述网络设备从第二TBS集合中选择的一个TBS,所述第二TBS集合包含N个TBS,所述N是大于1的正整数;
接收模块,用于根据所述第三TBS集合接收所述终端设备发送的上行信息。
在一种可能的设计中,
所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
在一种可能的设计中,
所述第二TBS集合包含的TBS取值为328,424,536,616,712,808,904和1000;或,
所述第二TBS集合包含的TBS取值为328,440,504,600,712,808,936和1000。
在一种可能的设计中,
所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
在一种可能的设计中,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,840和936;或,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,872和936;或,
所述第二TBS集合包含的TBS取值为328,392,456,504,600,712,808和936;或,
所述第二TBS集合包含的TBS取值为328,408,456,504,600,712,808和936。
在一种可能的设计中,
所述第三TBS集合包含第四TBS,其中,所述第四TBS是所述第一TBS,或所述第四TBS是所述第一TBS最邻近的TBS。
在一种可能的设计中,
所述第三TBS集合还包括M-1个TBS,其中所述M是正整数;
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引自然递减顺序确定;或,
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引等间隔方式确定;或,
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引首尾交替顺序确定。
在本申请的第四方面中,网络设备的组成模块还可以执行前述第二方面以及各种可能的实现方式中所描述的步骤,详见前述对第二方面以及各种可能的实现方式中的说明。
第五方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第六方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置可以包括终端设备或者网络设备或者芯片等实体,所述通信装置包括:处理器、存储器;所述存储器用于存储指令;所述处理器用于执行所述存储器中的所述指令,使得所述通信装置执行如前述第一方面或第二方面中任一项所述的方法。
第八方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备或终端设备实现上述方面中所涉及的功能,例如,例如发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1为本申请实施例提供的一种信息发送的方法、信息接收的方法对应的系统架构示意图;
图2为本申请实施例提供的终端设备和网络设备之间的交互流程示意图;
图3为本申请实施例提供的一种信息发送的方法的流程方框示意图;
图4为本申请实施例提供的一种信息接收的方法的流程方框示意图;
图5为本申请实施例提供的一种终端设备的组成结构示意图;
图6为本申请实施例提供的一种网络设备的组成结构示意图;
图7为本申请实施例提供的另一种终端设备的组成结构示意图;
图8为本申请实施例提供的另一种网络设备的组成结构示意图。
具体实施方式
本申请实施例提供了一种一种信息发送的方法、信息接收的方法和设备,能够实现尽量考虑到网络侧的情况,且避免对传输资源的浪费。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
本发明实施例的技术方案可以应用于各种数据处理的通信系统,例如:例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier,FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。CDMA系统可以实现例如通用无线陆地接入(universal terrestrial radio access,UTRA),CDMA2000等无线技术。UTRA可以包括宽带CDMA(wideband CDMA,WCDMA)技术和其它CDMA变形的技术。CDMA2000可以覆盖过渡标准(interim standard,IS)2000(IS-2000),IS-95和IS-856 标准。TDMA系统可以实现例如全球移动通信系统(global system for mobile communication,GSM)等无线技术。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)、IEEE 802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。第五代(5 Generation,简称:“5G”)通信系统、新空口(New Radio,简称“NR)是正在研究当中的下一代通信系统。此外,所述通信系统还可以适用于面向未来的通信技术,都适用本发明实施例提供的技术方案。本发明实施例描述的系统架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
图1示出了本申请实施例的一种可能的无线接入网(radio access network,简称RAN)的结构示意图。所述RAN可以为2G网络的基站接入系统(即所述RAN包括基站和基站控制器),或可以为3G网络的基站接入系统(即所述RAN包括基站和RNC),或可以为4G网络的基站接入系统(即所述RAN包括eNB和RNC),或可以为5G网络的基站接入系统。
所述RAN包括一个或多个网络设备。所述网络设备可以是任意一种具有无线收发功能的设备,或,设置于具体无线收发功能的设备内的芯片。所述网络设备包括但不限于:基站(例如基站BS,基站NodeB、演进型基站eNodeB或eNB、第五代5G通信系统中的基站gNodeB或gNB、未来通信系统中的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点)等。基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的一种或者多种技术的网络,或者未来演进网络。所述核心网可以支持上述提及一种或者多种技术的网络,或者未来演进网络。基站可以包含一个或多个共站或非共站的传输接收点(Transmission receiving point,TRP)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)或者分布单元(distributed unit,DU)等。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备1-6进行通信,也可以通过中继站与终端设备1-6进行通信。终端设备1-6可以支持与不同技术的多个基站进行通信,例如,终端设备可以支持与支持LTE网络的基站通信,也可以支持与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布 单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
终端设备1-6,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、终端等,是一种向用户提供语音和/或数据连通性的设备,或,设置于该设备内的芯片,例如,具有无线连接功允许的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
在本申请实施例中,基站和UE1~UE6组成一个通信系统,在该通信系统中,基站发送系统信息、RAR消息和寻呼消息中的一种或多种给UE1~UE6中的一个或多个UE,此外,UE4~UE6也组成一个通信系统,在该通信系统中,UE5可以作为基站的功能实现,UE5可以发送系统信息、控制信息和寻呼消息中的一种或多种给UE4和UE6中的一个或多个UE。
请参阅图2所示,为本申请实施例提供的网络设备和终端设备之间的一种交互流程示意图,本申请实施例提供的信息传输的方法,主要包括如下步骤。
201、终端设备接收网络设备配置的第一传输块大小TBS,其中第一TBS是网络设备从第二TBS集合中选择的一个TBS,第二TBS集合包含N个TBS,N是大于1的正整数。
例如N的取值可以等于8,网络设备从第二TBS集合中选择出一个TBS作为第一TBS。例如当终端设备采用覆盖增强模式A时,第二TBS集合中最大TBS可以为1000,第二TBS集合中最小TBS可以为328或者320。根据近似等间隔地原则,选取在328和1000中间的6个值,构成的第二TBS集合为{328,424,536,616,712,808,904,1000}。
又如,当终端设备采用覆盖增强模式B时,第二TBS集合中最大TBS可以为936,第二TBS集合中最小TBS可以为328或者320,然后根据近似等间隔地原则,选取在328和936中间的6个值,得到的第二TBS集合为{328,408,504,584,680,776,808,936},第一TBS可以是该第二TBS集合中的某一个TBS值。
202、终端设备根据第一TBS确定第三TBS集合,第三TBS集合中的最大TBS小于或第一TBS。
其中,第三TBS集合根据第一TBS来确定,例如对于第三TBS集合中的TBS值,可以从第二TBS集合中选择小于第一TBS或者等于第一TBS的TBS构成第三TBS集合,不限定的是,第三TBS集合也可以不从第二TBS集合中选择,而是根据第一TBS结合预设的TBS表格确定出第三TBS。
203、终端设备从第三TBS集合中选择一个TBS,根据选择的TBS发送上行信息。
其中,终端设备确定出第三TBS集合之后,根据所要发送的消息的大小选择某一个TBS,根据选择的TBS向网络设备发送上行信息。
204、网络设备根据配置给终端设备的第一传输块大小TBS确定第三TBS集合,其中第一TBS是网络设备从第二TBS集合中选择的一个TBS,第二TBS集合包含N个TBS,N是大 于1的正整数。
例如N的取值可以8,第一TBS可以是系统配置的最大的TBS,该第一TBS可以从第二TBS集合中来选择。
205、网络设备根据第三TBS集合接收终端设备发送的上行信息。
其中,网络设备根据第三TBS集合进行盲检,以确定出终端设备所使用的TBS,并使用确定出的TBS来发送上行信息。
通过前述实施例的举例说明可知,本申请实施例中网络设备可以确定配置第一TBS,从而终端设备可以根据该第一TBS确定出第三TBS集合,终端设备选择第三TBS集合中的某一个TBS来发送上行信息,因此终端设备具备选择第三TBS集合中的TBS的灵活性,终端设备使用该终端设备选择出的TBS来发送上行信息,网络设备可以通过第三TBS集合确定出终端设备选择的TBS,从而使用终端设备选择的TBS接收到上行信息。本申请实施例中终端设备可以选择第三TBS集合中的一个TBS用于上行信息发送,因此发送上行信息的TBS是灵活可选的,提高了资源利用率,尽可能的避免资源浪费。
接下来分别从终端设备和网络设备的角度描述本申请实施例提供的方法,首先请参阅图3所示,本申请实施例提供一种信息发送的方法,包括:
301、终端设备接收网络设备配置的第一传输块大小TBS,其中第一TBS是网络设备从第二TBS集合中选择的一个TBS,第二TBS集合包含N个TBS,N是大于1的正整数。
例如N的取值可以等于8,网络设备从第二TBS集合中选择出一个TBS作为第一TBS。例如当终端设备采用覆盖增强模式A时,第二TBS集合中最大TBS可以为1000,第二TBS集合中最小TBS可以为328或者320。根据近似等间隔地原则,选取在328和1000中间的6个值,构成的第二TBS集合为{328,424,536,616,712,808,904,1000}。
又如,当终端设备采用覆盖增强模式B时,第二TBS集合中最大TBS可以为936,第二TBS集合中最小TBS可以为328或者320,然后根据近似等间隔地原则,选取在328和936中间的6个值,得到的第二TBS集合为{328,408,504,584,680,776,808,936},第一TBS可以是该第二TBS集合中的某一个TBS值。
302、终端设备根据第一TBS确定第三TBS集合,第三TBS集合中的最大TBS小于或等于第一TBS。
在本申请的一些实施例中,终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
第二TBS集合中至少包括TBS取值为1000和TBS取值为328;或,
第二TBS集合中至少包括TBS取值为1000和TBS取值为320。
例如,第二TBS集合可以包括8个TBS,8个TBS中最大TBS取值为1000,最小TBS取值为328或320,具体结合实现场景确定第二TBS集合所包括的TBS元素。
在本申请的一些实施例中,第二TBS集合包含的TBS取值为328,424,536,616,712,808,904和1000;或,所述第二TBS集合包含的TBS取值为328,440,504,600,712,808,936和1000。
例如,根据近似等间隔地原则,选取在328和1000中间的6个值,再加上两端值328和1000可以构成第二TBS集合,第二TBS集合可以包括8个TBS取值。确定的8个最大 TBS值近似等间隔,从而对终端设备发送的在328和1000中间任意大小的上行信息都能近似等概率的降低填充的比特位数。
在本申请的一些实施例中,终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
第二TBS集合中至少包括TBS取值为936和TBS取值为320。
例如,当终端设备采用覆盖增强模式B时,第二TBS集合可以包括8个TBS,8个TBS中最大TBS取值为936,最小TBS取值为328或320,具体结合实现场景确定第二TBS集合所包括的TBS元素。
进一步的,在本申请的一些实施例中,第二TBS集合包含的TBS取值为328,408,504,584,680,776,840和936;或,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,872和936;或,
所述第二TBS集合包含的TBS取值为328,392,456,504,600,712,808和936;或,
所述第二TBS集合包含的TBS取值为328,408,456,504,600,712,808和936。
例如,根据近似等间隔地原则,选取在328和936中间的6个值,再加上两端值328和936可以构成第二TBS集合,第二TBS集合可以包括8个TBS取值。确定的8个最大TBS值近似等间隔,从而对终端设备发送的在328和936中间任意大小的上行信息都能近似等概率的降低填充的比特位数。
在本申请的一些实施例中,第三TBS集合包含第四TBS,其中,第四TBS是第一TBS,或第四TBS是第一TBS最邻近的TBS。
其中,最邻近的TBS是指在预设的TBS表格里PRB个数对应的列中与第一TBS值最接近的TBS。预设的TBS表格为标准中TBS索引、PRB个数和TBS值三者关系表格。
在本申请的一些实施例中,第三TBS集合还包括M-1个TBS,其中M是正整数;
M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引自然递减顺序确定;或,
M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引等间隔方式确定;或,
M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引首尾交替顺序确定。
其中,第三TBS集合除了包括第四TBS之外,还可以包括M-1个TBS,其中,根据TBS索引自然递减顺序确定指的是根据预设的TBS表里PRB个数对应的列中按照TBS索引的递减顺序确定,根据TBS索引等间隔方式确定是指采用相同的间隔大小来确定,根据TBS索引首尾交替顺序确定是指在第三TBS集合中最大的TBS和最小的TBS是相邻的,首尾交替是指第三TBS集合中最大的TBS和最小的TBS是首尾相接,基于此可以确定第四TBS。后续实施例中结合相应的表格说明M-1个TBS的确定方式。
303、终端设备从第三TBS集合中选择一个TBS,根据选择的TBS发送上行信息。
接下来对本申请实施例进行举例说明,详细描述确定系统广播的最大TBS值的集合,以及终端设备确定可选择的小于等于广播的最大TBS值的最多4个值。
由于覆盖等级ModeB下,终端设备只支持QPSK,同时上行授权总是能承载下系统消息广播的最大的TBS,例如最大TBS为936。从而确定了Msg3携带数据时,可选的Msg3的TBS值,如下表1中用下划线标出的数据。
表1
Figure PCTCN2018082065-appb-000001
对表格中用下划线标出的数据进行排序,根据近似等间隔地原则,选取在328和936中间的6个值,得到{328,408,504,584,680,776,808,936},或者{328,408,504,584,680,776,872,936},由于{776,808,936}或者{776,872,936}相邻两个值之间的梯度相差比较大,可以用表格中的840替换倒数第二个值,得到{328,408,504,584,680,776,840,936}。
具体的实施例包括以下两种:
第一种:标准中规定ModeB时,调制阶次为2,即QPSK。此时系统信息通知的最大TBS值的集合为{328,408,504,584,680,776,808,936},或者{328,408,504,584,680,776,872,936},或者{328,408,504,584,680,776,840,936}。
第二种:如果标准中不规定ModeB时调制阶次为2,即QPSK。网络设备和终端设备根据标准TS36.213 Table 7.1.7.2.1-1,分配的物理资源PRB个数和TBS值确定TBS索引,然后根据TBS索引和标准中TS36.213 Table 8.6.1-1确定调制阶次。此时系统信息通知的最大TBS值的集合为{328,408,504,584,680,776,808,936}或者{328,408,504,584,680,776,872,936}。
由于覆盖等级ModeA下,终端设备支持QPSK和16QAM,同时上行授权总是能承载下系 统消息广播的最大的TBS,例如最大TBS为1000,从而确定了Msg3携带数据时,可选的Msg3的TBS值,如下面表2中用下划线标出的数据。
表2
Figure PCTCN2018082065-appb-000002
对表格中下划线标出的数据进行排序,根据近似等间隔地原则,选取在328和1000中间的6个值,{328,424,536,616,712,808,904,1000}。
具体实施方式为:网络设备和终端设备根据标准TS36.213 Table 7.1.7.2.1-1,分配的物理资源PRB个数和TBS值确定TBS索引,其中,可选的,PRB个数为网络设备在MAC RAR的上行授权中配置的。确定出TBS索引之后,然后根据TBS索引和标准中TS36.213 Table 8.6.1-1确定调制阶次。此时系统信息通知的最大TBS值的集合为{328,424,536,616,712,808,904,1000}。
通过前述举例说明可知,本申请实施例可以确定的8个最大TBS值近似等间隔,降低填充(padding)的比特位数。
接下来说明本申请实施例描述终端设备从第三TBS集合中选择出一个TBS的应用场景,即可以最多选择4个小于等于最大TBS的值构成第三TBS集合。第三TBS集合除了包括第四TBS,还包括M-1个TBS。
M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引自然递减顺序确定;或,
M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引等间隔方式确定;或,
M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引首尾交替顺序确定。
其中,第三TBS集合除了包括第四TBS之外,还可以包括M-1个TBS,其中,根据TBS索引自然递减顺序确定指的是根据TBS表中TBS索引的递减顺序确定,根据TBS索引等间隔方式确定是指采用相同的间隔大小来确定,根据TBS索引首尾交替顺序确定是指在第三TBS集合中最大的TBS和最小的TBS是相邻的,首尾交替是指第三TBS集合中最大的TBS和最小的TBS是首尾相接,基于此可以确定第四TBS。
具体实施方式一:
终端设备根据网络配置的最大TBS和物理资源块个数N,查询如下的表4,在表格中物理资源块个数N对应的列中依次选择Min_TBS≤TBS≤Max_TBS至多K个TBS值(包含网络通知的最大TBS,一共有K个值),其中依次选择指的是根据TBS索引自然递减顺序进行选择。Max_TBS为网络配置的最大的TBS值,Min_TBS=328或者Min_TBS=296,K,N为大于等于1的正整数,N为预定的值或者网络配置的值,例如N等于4。
举例说明,网络配置的最大TBSMax_TBS=1000,物理资源个数N=6,K=4,那么此时Max_TBS对应的K个值为:{1000,936,808,712}。举例说明,网络配置的最大TBSMax_TBS=456,物理资源个数N=3,K=4,那么此时Max_TBS对应的3个值为:{456,392,328},此时最大TBS对应的小于等于Max_TBS=456的TBS值一共有3个。
终端设备根据上面所述的方法确定网络通知的Max_TBS对应的K个TBS值,从中选择与发送传输块大小最匹配的TBS值(大于等于发送传输块大小的最小值),发送PUSCH。
网络侧通过同样的方法确定Max_TBS对应的K个TBS值,网络侧接收PUSCH,网络侧用K个TBS值检测接收的PUSCH。
表4
Figure PCTCN2018082065-appb-000003
具体实施方式二:
终端设备根据网络配置的最大TBS和物理资源块个数N,查询如下表5,在表格中物理资源块个数N对应的列中采用等间隔方式(间隔为Δ)选择Min_TBS≤TBS≤Max_TBS至多K个TBS值(包含网络通知的最大TBS,一共有N个值),Max_TBS为网络配置的最大的TBS值,Min_TBS=328或者Min_TBS=296,K,N为大于等于1的正整数,N为预定的值或者网络配置的值,例如N等于4。
如果网络配置的Max_TBS为对应列中的某一个,那么从Max_TBS开始,等间隔地选最多K个值。
举例说明,网络配置的最大TBSMax_TBS=456,物理资源个数N=3,K=4,间隔Δ=2,那么此时Max_TBS对应的2个值为:{456,328},此时最大TBS对应的小于等于Max_TBS=456的TBS值一共有2个。
如果网络配置的Max_TBS不是对应列中的某一个,那么从小于Max_TBS的第一个或者第二个TBS值开始,等间隔地选最多K-1个值。
举例说明,网络配置的最大TBSMax_TBS=1000,物理资源个数N=6,K=4,那么此时Max_TBS对应的K个值为:{1000,936,712,504}或者{1000,808,600,408}。
终端设备根据上面所述的方法确定网络通知的Max_TBS对应的K个TBS值,从中选择与发送传输块大小最匹配的TBS值(大于等于发送传输块大小的最小值),发送PUSCH。网络侧通过同样的方法确定Max_TBS对应的K个TBS值,网络侧接收PUSCH,网络侧用K个TBS值检测接收的PUSCH。
表5
Figure PCTCN2018082065-appb-000004
具体实施方式三:
终端设备根据网络配置的最大TBS和物理资源块个数N,查询如下表6,在表格中物理资源块个数N对应的列中采用首尾交替顺序选择Min_TBS≤TBS≤Max_TBS至多K个TBS值(包含网络通知的最大TBS,一共有N个值),Max_TBS为网络配置的最大的TBS值,Min_TBS=328或者Min_TBS=296,K,N为大于等于1的正整数,N为预定的值或者网络配置的值,例如N等于4。
如果网络配置的Max_TBS为对应列中的某一个,那么从Max_TBS开始,交替地选最多K个值。
举例说明,网络配置的最大TBSMax_TBS=456,物理资源个数N=3,K=4,间隔Δ=2,那么此时Max_TBS对应的3个值为:{456,328,396},此时最大TBS对应的小于等于Max_TBS=456的TBS值一共有3个。
如果网络配置的Max_TBS不是对应列中的某一个,那么从小于Max_TBS的第一个或者第二个TBS值开始,等交替地选最多K-1个值。
举例说明,网络配置的最大TBSMax_TBS=1000,物理资源个数N=6,K=4,那么此时Max_TBS对应的K个值为:{1000,936,328,712}或{1000,808,328,600}。
终端设备根据上面个所述的方法确定网络通知的Max_TBS对应的K个TBS值,从中选择与发送传输块大小最匹配的TBS值(大于等于发送传输块大小的最小值),发送PUSCH。
网络侧通过同样的方法确定Max_TBS对应的K个TBS值,网络侧接收PUSCH,网络侧用K个TBS值检测接收的PUSCH。
表6
Figure PCTCN2018082065-appb-000005
对于上面所述的实施方式一至实施方式三,终端设备和网络设备确定调制阶次的方法为:由确定的TBS和网络配置的PRB个数,根据TBS表格TS36.213 Table 7.1.7.2.1-1确定对应的TBS索引,然后由确定出的TBS索引,根据TS36.213 Table 8.6.1-1,确定相应的调制阶次。
实施方式四:
网络配置的每一个Max_TBS对应的小于等于Max_TBS的K个值是预设的。
如下表7所示,例如网络配置Max_TBS的值的集合为{328,424,536,616,712,808,904,1000}。
每一个Max_TBS值对应的最多K个小于等于Max_TBS的值为包括Max_TBS在内的连续的最多K个值,K为小于等于4的整数。
表7
Figure PCTCN2018082065-appb-000006
由于Max_TBS=1000/904/808比较大,对应的最多K个小于等于Max_TBS的值为等间隔选 取的Max_TBS,如下表8所示。
表8
Figure PCTCN2018082065-appb-000007
如果K值是网络配置的,且N值小于4,例如等于2,那么每个Max_TBS对应的小于等于Max_TBS的值为上述表格中的4个值的集合中的前两个。
对于实施方式四,第三集合中的TBS值对应的调制阶次的确定方法,包括:
根据最大的Max_TBS和物理资源块个数确定调制阶次;
根据当前物理资源块个数对应的列中和第三TBS集合中TBS值最接近的TBS值确定调制阶次,最接近包括两种情况:大于集合中的TBS值中的最小值和小于集合中的TBS值的最大值。
本申请实施例中,网络配置的8个最大的TBS值Max_TBS。
Max_TBS对应的最多4个小于等于Max_TBS的TBS值的确定方法(实施方式一至四)和值。网络配置的8个最大的TBS值Max_TBS:相邻值之间的梯度近似相等,减少padding个数。最多4个小于等于MaxTBS的TBS值。查表法:不需要标准化具体的值,终端设备和网络设备根据具体的RB个数及通知的MaxTBS确定具体的值。根据8个MaxTBS值确定:根据通知的MaxTBS和N值确定对应的小于等于N个小于MaxTBS的值(对于某些MaxTBS,小于MaxTBS的个数不足K个)。网络按照per CE level地使能EDT。减少信令开销,基于通知MaxTBS的信令的有无使能EDT。
通过前述实施例的举例说明可知,本申请实施例中网络设备可以确定配置第一TBS,从而终端设备可以根据该第一TBS确定出第三TBS集合,终端设备选择第三TBS集合中的某一个TBS来发送上行信息,因此终端设备具备选择第三TBS集合中的TBS的灵活性,终端设备使用该终端设备选择出的TBS来发送上行信息,网络设备可以通过第三TBS集合确定出终端设备选择的TBS,从而使用终端设备选择的TBS接收到上行信息。本申请实施例中终端设备可以选择第三TBS集合中的一个TBS用于上行信息发送,因此发送上行信息的TBS是灵活可选的,提高了资源利用率,尽可能的避免资源浪费。
前述实施例从终端设备的角度描述了本申请实施例提供的信息发送的方法,接下来从网络设备的角度来描述本申请实施例提供的信息接收的方法,请参阅图4所示,本申请实施例提供一种信息接收的方法,包括:
401、网络设备根据配置给终端设备的第一传输块大小TBS确定第三TBS集合,其中第 一TBS是网络设备从第二TBS集合中选择的一个TBS,第二TBS集合包含N个TBS,N是大于1的正整数。
例如N的取值可以等于8,网络设备从第二TBS集合中选择出一个TBS作为第一TBS。例如当终端设备采用覆盖增强模式A时,第二TBS集合中最大TBS可以为1000,第二TBS集合中最小TBS可以为328或者320。根据近似等间隔地原则,选取在328和1000中间的6个值,构成的第二TBS集合为{328,424,536,616,712,808,904,1000}。
又如,当终端设备采用覆盖增强模式B时,第二TBS集合中最大TBS可以为936,第二TBS集合中最小TBS可以为328或者320,然后根据近似等间隔地原则,选取在328和936中间的6个值,得到的第二TBS集合为{328,408,504,584,680,776,808,936},第一TBS可以是该第二TBS集合中的某一个TBS值。
402、网络设备根据第三TBS集合接收终端设备发送的上行信息。
在本申请的一些实施例中,终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
第二TBS集合中至少包括TBS取值为936和TBS取值为320。
例如,第二TBS集合可以包括8个TBS,8个TBS中最大TBS取值为1000,最小TBS取值为328或320,具体结合实现场景确定第二TBS集合所包括的TBS元素。
在本申请的一些实施例中,
第二TBS集合包含的TBS取值为328,424,536,616,712,808,904和1000;或,
所述第二TBS集合包含的TBS取值为328,440,504,600,712,808,936和1000。
例如,根据近似等间隔地原则,选取在328和1000中间的6个值,再加上两端值328和1000可以构成第二TBS集合,第二TBS集合可以包括8个TBS取值。确定的8个最大TBS值近似等间隔,从而对终端设备发送的在328和1000中间任意大小的上行信息都能近似等概率的降低填充的比特位数。
在本申请的一些实施例中,
终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
第二TBS集合中至少包括TBS取值为936和TBS取值为320。
例如,当终端设备采用覆盖增强模式B时,第二TBS集合可以包括8个TBS,8个TBS中最大TBS取值为936,最小TBS取值为328或320,具体结合实现场景确定第二TBS集合所包括的TBS元素。
在本申请的一些实施例中,
第二TBS集合包含的TBS取值为328,408,504,584,680,776,840和936;或,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,872和936;或,
所述第二TBS集合包含的TBS取值为328,392,456,504,600,712,808和936;或,
所述第二TBS集合包含的TBS取值为328,408,456,504,600,712,808和936。
例如,根据近似等间隔地原则,选取在328和936中间的6个值,再加上两端值328和936可以构成第二TBS集合,第二TBS集合可以包括8个TBS取值。确定的8个最大TBS 值近似等间隔,从而对终端设备发送的在328和936中间任意大小的上行信息都能近似等概率的降低填充的比特位数。
在本申请的一些实施例中,
第三TBS集合包含第四TBS,其中,第四TBS是第一TBS,或第四TBS是第一TBS最邻近的TBS。
在本申请的一些实施例中,
第二TBS集合还包括M-1个TBS,其中M是正整数;
M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引自然递减顺序确定;或,
M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引等间隔方式确定;或,
M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引首尾交替顺序确定。
其中,第三TBS集合除了包括第四TBS之外,还可以包括M-1个TBS,其中,根据TBS索引自然递减顺序确定指的是根据预设的TBS表里PRB个数对应的列中按照TBS索引的递减顺序确定,根据TBS索引等间隔方式确定是指采用相同的间隔大小来确定,根据TBS索引首尾交替顺序确定是指在第三TBS集合中最大的TBS和最小的TBS是相邻的,首尾交替是指第三TBS集合中最大的TBS和最小的TBS是首尾相接,基于此可以确定第四TBS。后续实施例中结合相应的表格说明M-1个TBS的确定方式。
通过前述实施例的举例说明可知,本申请实施例中网络设备可以确定配置第一TBS,从而终端设备可以根据该第一TBS确定出第三TBS集合,终端设备选择第三TBS集合中的某一个TBS来发送上行信息,因此终端设备具备选择第三TBS集合中的TBS的灵活性,终端设备使用该终端设备选择出的TBS来发送上行信息,网络设备可以通过第三TBS集合确定出终端设备选择的TBS,从而使用终端设备选择的TBS接收到上行信息。本申请实施例中终端设备可以选择第三TBS集合中的一个TBS用于上行信息发送,因此发送上行信息的TBS是灵活可选的,提高了资源利用率,尽可能的避免资源浪费。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
为便于更好的实施本申请实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅图5所示,本申请实施例提供的一种终端设备500,可以包括:
接收模块501,用于接收网络设备配置的第一传输块大小TBS,其中所述第一TBS是所述网络设备从第二TBS集合中选择的一个TBS,所述第二TBS集合包含N个TBS,所述N是大于1的正整数;
处理模块502,用于根据所述第一TBS确定第三TBS集合,所述第三TBS集合中的最 大TBS小于或等于所述第一TBS;
发送模块503,还用于从所述第三TBS集合中选择一个TBS,根据选择的TBS发送上行信息。
在本申请的一些实施例中,所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
所述第二TBS集合中至少包括TBS取值为1000和TBS取值为328;或,
所述第二TBS集合中至少包括TBS取值为1000和TBS取值为320。
在本申请的一些实施例中,
所述第二TBS集合包含的TBS取值为328,424,536,616,712,808,904和1000;或,
所述第二TBS集合包含的TBS取值为328,440,504,600,712,808,936和1000。
在本申请的一些实施例中,
所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
在本申请的一些实施例中,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,840和936;或,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,872和936;或,
所述第二TBS集合包含的TBS取值为328,392,456,504,600,712,808和936;或,
所述第二TBS集合包含的TBS取值为328,408,456,504,600,712,808和936。
在本申请的一些实施例中,
所述第三TBS集合包含第四TBS,其中,所述第四TBS是所述第一TBS,或所述第四TBS是所述第一TBS最邻近的TBS。
在本申请的一些实施例中,
所述第三TBS集合还包括M-1个TBS,其中所述M是正整数;
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引自然递减顺序确定;或,
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引等间隔方式确定;或,
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引首尾交替顺序确定。
通过前述实施例的举例说明可知,本申请实施例中网络设备可以确定配置第一TBS,从而终端设备可以根据该第一TBS确定出第三TBS集合,终端设备选择第三TBS集合中的某一个TBS来发送上行信息,因此终端设备具备选择第三TBS集合中的TBS的灵活性,终端设备使用该终端设备选择出的TBS来发送上行信息,网络设备可以通过第三TBS集合确定出终端设备选择的TBS,从而使用终端设备选择的TBS接收到上行信息。本申请实施例中终端设备可以选择第三TBS集合中的一个TBS用于上行信息发送,因此发送上行信息的TBS是灵活可选的,提高了资源利用率,尽可能的避免资源浪费。
如图6所示,本申请实施例提供一种网络设备600,包括:
处理模块601,用于根据配置给终端设备的第一传输块大小TBS确定第三TBS集合,其中所述第一TBS是所述网络设备从第二TBS集合中选择的一个TBS,所述第二TBS集合包含N个TBS,所述N是大于1的正整数;
接收模块602,用于根据所述第三TBS集合接收所述终端设备发送的上行信息。
在本申请的一些实施例中,
所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
在本申请的一些实施例中,
所述第二TBS集合包含的TBS取值为328,424,536,616,712,808,904和1000;或,
所述第二TBS集合包含的TBS取值为328,440,504,600,712,808,936和1000。
在本申请的一些实施例中,
所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
在本申请的一些实施例中,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,840和936;或,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,872和936;或,
所述第二TBS集合包含的TBS取值为328,392,456,504,600,712,808和936;或,
所述第二TBS集合包含的TBS取值为328,408,456,504,600,712,808和936。
在本申请的一些实施例中,
所述第三TBS集合包含第四TBS,其中,所述第四TBS是所述第一TBS,或所述第四TBS是所述第一TBS最邻近的TBS。
在本申请的一些实施例中,
所述第三TBS集合还包括M-1个TBS,其中所述M是正整数;
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引自然递减顺序确定;或,
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引等间隔方式确定;或,
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引首尾交替顺序确定。
在本申请的一些实施例中,网络设备600还包括:发送模块603,用于向终端设备发送第一TBS。
通过前述实施例的举例说明可知,本申请实施例中网络设备可以确定配置第一TBS,从而终端设备可以根据该第一TBS确定出第三TBS集合,终端设备选择第三TBS集合中的某一个TBS来发送上行信息,因此终端设备具备选择第三TBS集合中的TBS的灵活性,终端设备使用该终端设备选择出的TBS来发送上行信息,网络设备可以通过第三TBS集合确定出终端设备选择的TBS,从而使用终端设备选择的TBS接收到上行信息。本申请实施例 中终端设备可以选择第三TBS集合中的一个TBS用于上行信息发送,因此发送上行信息的TBS是灵活可选的,提高了资源利用率,尽可能的避免资源浪费。
需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
如图7所示,为本申请实施例的又一种设备的结构示意图,该设备为终端设备,该终端设备可以包括:处理器131(例如CPU)、存储器132、发送器134和接收器133;发送器134和接收器133耦合至处理器131,处理器131控制发送器134的发送动作和接收器133的接收动作。存储器132可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器132中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的终端设备还可以包括:电源135、通信总线136以及通信端口137中的一个或多个。接收器133和发送器134可以集成在终端设备的收发器中,也可以为终端设备上分别独立的收、发天线。通信总线136用于实现元件之间的通信连接。上述通信端口137用于实现终端设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器132用于存储计算机可执行程序代码,程序代码包括指令;当处理器131执行指令时,指令使处理器131执行上述方法实施例中终端设备的处理动作,使发送器134执行上述方法实施例中终端设备的发送动作。
在本申请实施例中,
接收器133,用于接收网络设备配置的第一传输块大小TBS,其中所述第一TBS是所述网络设备从第二TBS集合中选择的一个TBS,所述第二TBS集合包含N个TBS,所述N是大于1的正整数;
处理器131,用于根据所述第一TBS确定第三TBS集合,所述第三TBS集合中的最大TBS小于或等于所述第一TBS;
发送器134,还用于从所述第三TBS集合中选择一个TBS,根据选择的TBS发送上行信息。
在本申请的一些实施例中,所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
所述第二TBS集合中至少包括TBS取值为1000和TBS取值为328;或,
所述第二TBS集合中至少包括TBS取值为1000和TBS取值为320。
在本申请的一些实施例中,
所述第二TBS集合包含的TBS取值为328,424,536,616,712,808,904和1000;或,
所述第二TBS集合包含的TBS取值为328,440,504,600,712,808,936和1000。
在本申请的一些实施例中,
所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
在本申请的一些实施例中,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,840和936;或,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,872和936;或,
所述第二TBS集合包含的TBS取值为328,392,456,504,600,712,808和936;或,
所述第二TBS集合包含的TBS取值为328,408,456,504,600,712,808和936。
在本申请的一些实施例中,
所述第三TBS集合包含第四TBS,其中,所述第四TBS是所述第一TBS,或所述第四TBS是所述第一TBS最邻近的TBS。
在本申请的一些实施例中,
所述第三TBS集合还包括M-1个TBS,其中所述M是正整数;
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引自然递减顺序确定;或,
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引等间隔方式确定;或,
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引首尾交替顺序确定。
通过前述实施例的举例说明可知,本申请实施例中网络设备可以确定配置第一TBS,从而终端设备可以根据该第一TBS确定出第三TBS集合,终端设备选择第三TBS集合中的某一个TBS来发送上行信息,因此终端设备具备选择第三TBS集合中的TBS的灵活性,终端设备使用该终端设备选择出的TBS来发送上行信息,网络设备可以通过第三TBS集合确定出终端设备选择的TBS,从而使用终端设备选择的TBS接收到上行信息。本申请实施例中终端设备可以选择第三TBS集合中的一个TBS用于上行信息发送,因此发送上行信息的TBS是灵活可选的,提高了资源利用率,尽可能的避免资源浪费。
如图8所示,为本申请实施例的又一种设备的结构示意图,该设备为网络设备,该网络设备可以包括:处理器(例如CPU)141、存储器142、接收器143和发送器144;接收器143和发送器144耦合至处理器141,处理器141控制接收器143的接收动作和发送器144的发送动作。存储器142可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器142中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的网络设备还可以包括:电源145、通信总线146以及通信端口147中的一个或多个。接收器143和发送器144可以集成在网络设备的收发器中,也可以为网络设备上分别独立的收、发天线。通信总线146用于实现元件之间的通信连接。上述通信端口147用于实现网络设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器142用于存储计算机可执行程序代码,程序代码包括指令;当处理器141执行指令时,指令使处理器141执行上述方法实施例中网络设备的处理动作,使发送器144执行上述方法实施例中网络设备的发送动作。
在本申请的一些实施例中,
处理器141,用于根据配置给终端设备的第一传输块大小TBS确定第三TBS集合,其中,所述第三TBS集合中的最大TBS小于或等于所述第一TBS,所述第一TBS是所述网络设备从第二TBS集合中选择的一个TBS,所述第二TBS集合包含N个TBS,所述N是大于1的正整数;
接收器143,用于根据所述第三TBS集合接收所述终端设备发送的上行信息。
在本申请的一些实施例中,
所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
在本申请的一些实施例中,
所述第二TBS集合包含的TBS取值为328,424,536,616,712,808,904和1000;或,
所述第二TBS集合包含的TBS取值为328,440,504,600,712,808,936和1000。
在本申请的一些实施例中,
所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
在本申请的一些实施例中,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,840和936;或,
所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,872和936;或,
所述第二TBS集合包含的TBS取值为328,392,456,504,600,712,808和936;或,
所述第二TBS集合包含的TBS取值为328,408,456,504,600,712,808和936。
在本申请的一些实施例中,
所述第三TBS集合包含第四TBS,其中,所述第四TBS是所述第一TBS,或所述第四TBS是所述第一TBS最邻近的TBS。
在本申请的一些实施例中,
所述第三TBS集合还包括M-1个TBS,其中所述M是正整数;
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引自然递减顺序确定;或,
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引等间隔方式确定;或,
所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引首尾交替顺序确定。
通过前述实施例的举例说明可知,本申请实施例中网络设备可以确定配置第一TBS,从而终端设备可以根据该第一TBS确定出第三TBS集合,终端设备选择第三TBS集合中的某一个TBS来发送上行信息,因此终端设备具备选择第三TBS集合中的TBS的灵活性,终端设备使用该终端设备选择出的TBS来发送上行信息,网络设备可以通过第三TBS集合确定出终端设备选择的TBS,从而使用终端设备选择的TBS接收到上行信息。本申请实施例中终端设备可以选择第三TBS集合中的一个TBS用于上行信息发送,因此发送上行信息的 TBS是灵活可选的,提高了资源利用率,尽可能的避免资源浪费。
在另一种可能的设计中,当该装置为终端内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述第一方面任意一项的无线通信方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面无线通信方法的程序执行的集成电路。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算 机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (32)

  1. 一种信息发送的方法,其特征在于,包括:
    终端设备接收网络设备配置的第一传输块大小TBS,其中所述第一TBS是所述网络设备从第二TBS集合中选择的一个TBS,所述第二TBS集合包含N个TBS,所述N是大于1的正整数;
    所述终端设备根据所述第一TBS确定第三TBS集合,所述第三TBS集合中的最大TBS小于或等于所述第一TBS;
    所述终端设备从所述第三TBS集合中选择一个TBS,根据选择的TBS发送上行信息。
  2. 根据权利要求1所述的方法,其特征在于,
    所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
    所述第二TBS集合中至少包括TBS取值为1000和TBS取值为328;或,
    所述第二TBS集合中至少包括TBS取值为1000和TBS取值为320。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第二TBS集合包含的TBS取值为328,424,536,616,712,808,904和1000;或,
    所述第二TBS集合包含的TBS取值为328,440,504,600,712,808,936和1000。
  4. 根据权利要求1所述的方法,其特征在于,
    所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
    所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
    所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,840和936;或,
    所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,872和936;或,
    所述第二TBS集合包含的TBS取值为328,392,456,504,600,712,808和936;或,
    所述第二TBS集合包含的TBS取值为328,408,456,504,600,712,808和936。
  6. 根据权利要求1至5任一项权利要求所述的方法,其特征在于,
    所述第三TBS集合包含第四TBS,其中,所述第四TBS是所述第一TBS,或所述第四TBS是所述第一TBS最邻近的TBS。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第三TBS集合还包括M-1个TBS,其中所述M是正整数;
    所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引自然递减顺序确定;或,
    所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引等间隔方式确定;或,
    所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引首尾交替顺序确定。
  8. 一种信息接收的方法,其特征在于,包括:
    网络设备根据配置给终端设备的第一传输块大小TBS确定第三TBS集合,其中,所述第三TBS集合中的最大TBS小于或等于所述第一TBS,所述第一TBS是所述网络设备从第 二TBS集合中选择的一个TBS,所述第二TBS集合包含N个TBS,所述N是大于1的正整数;
    所述网络设备根据所述第三TBS集合接收所述终端设备发送的上行信息。
  9. 根据权利要求8所述的方法,其特征在于,
    所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
    所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
    所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第二TBS集合包含的TBS取值为328,424,536,616,712,808,904和1000;或,
    所述第二TBS集合包含的TBS取值为328,440,504,600,712,808,936和1000。
  11. 根据权利要求8所述的方法,其特征在于,
    所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
    所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
    所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
  12. 根据权利要求11所述的方法,其特征在于,
    所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,840和936;或,
    所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,872和936;或,
    所述第二TBS集合包含的TBS取值为328,392,456,504,600,712,808和936;或,
    所述第二TBS集合包含的TBS取值为328,408,456,504,600,712,808和936。
  13. 根据权利要求8至12任一项权利要求所述的方法,其特征在于,
    所述第三TBS集合包含第四TBS,其中,所述第四TBS是所述第一TBS,或所述第四TBS是所述第一TBS最邻近的TBS。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第三TBS集合还包括M-1个TBS,其中所述M是正整数;
    所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引自然递减顺序确定;或,
    所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引等间隔方式确定;或,
    所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引首尾交替顺序确定。
  15. 一种终端设备,其特征在于,包括:
    接收模块,用于接收网络设备配置的第一传输块大小TBS,其中所述第一TBS是所述网络设备从第二TBS集合中选择的一个TBS,所述第二TBS集合包含N个TBS,所述N是大于1的正整数;
    处理模块,用于根据所述第一TBS确定第三TBS集合,所述第三TBS集合中的最大TBS小于或等于所述第一TBS;
    发送模块,还用于从所述第三TBS集合中选择一个TBS,根据选择的TBS发送上行信息。
  16. 根据权利要求15所述的终端设备,其特征在于,
    所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
    所述第二TBS集合中至少包括TBS取值为1000和TBS取值为328;或,
    所述第二TBS集合中至少包括TBS取值为1000和TBS取值为320。
  17. 根据权利要求16所述的终端设备,其特征在于,
    所述第二TBS集合包含的TBS取值为328,424,536,616,712,808,904和1000;或,
    所述第二TBS集合包含的TBS取值为328,440,504,600,712,808,936和1000。
  18. 根据权利要求15所述的终端设备,其特征在于,
    所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
    所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
    所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
  19. 根据权利要求18所述的终端设备,其特征在于,
    所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,840和936;或,
    所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,872和936;或,
    所述第二TBS集合包含的TBS取值为328,392,456,504,600,712,808和936;或,
    所述第二TBS集合包含的TBS取值为328,408,456,504,600,712,808和936。
  20. 根据权利要求15至19任一项权利要求所述的终端设备,其特征在于,
    所述第三TBS集合包含第四TBS,其中,所述第四TBS是所述第一TBS,或所述第四TBS是所述第一TBS最邻近的TBS。
  21. 根据权利要求20所述的终端设备,其特征在于,
    所述第三TBS集合还包括M-1个TBS,其中所述M是正整数;
    所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引自然递减顺序确定;或,
    所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引等间隔方式确定;或,
    所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引首尾交替顺序确定。
  22. 一种网络设备,其特征在于,包括:
    处理模块,用于根据配置给终端设备的第一传输块大小TBS确定第三TBS集合,其中,所述第三TBS集合中的最大TBS小于或等于所述第一TBS,所述第一TBS是所述网络设备从第二TBS集合中选择的一个TBS,所述第二TBS集合包含N个TBS,所述N是大于1的正整数;
    接收模块,用于根据所述第三TBS集合接收所述终端设备发送的上行信息。
  23. 根据权利要求22所述的网络设备,其特征在于,
    所述终端设备处于覆盖增强等级0、覆盖增强等级1、或覆盖增强模式A;
    所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
    所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
  24. 根据权利要求23所述的网络设备,其特征在于,
    所述第二TBS集合包含的TBS取值为328,424,536,616,712,808,904和1000;或,
    所述第二TBS集合包含的TBS取值为328,440,504,600,712,808,936和1000。
  25. 根据权利要求22所述的网络设备,其特征在于,
    所述终端设备处于覆盖增强等级2、覆盖增强等级3、或覆盖增强模式B;
    所述第二TBS集合中至少包括TBS取值为936和TBS取值为328;或,
    所述第二TBS集合中至少包括TBS取值为936和TBS取值为320。
  26. 根据权利要求25所述的网络设备,其特征在于,
    所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,840和936;或,
    所述第二TBS集合包含的TBS取值为328,408,504,584,680,776,872和936;或,
    所述第二TBS集合包含的TBS取值为328,392,456,504,600,712,808和936;或,
    所述第二TBS集合包含的TBS取值为328,408,456,504,600,712,808和936。
  27. 根据权利要求22至24任一项权利要求所述的网络设备,其特征在于,
    所述第三TBS集合包含第四TBS,其中,所述第四TBS是所述第一TBS,或所述第四TBS是所述第一TBS最邻近的TBS。
  28. 根据权利要求27所述的网络设备,其特征在于,
    所述第三TBS集合还包括M-1个TBS,其中所述M是正整数;
    所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引自然递减顺序确定;或,
    所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引等间隔方式确定;或,
    所述M-1个TBS是以第四TBS为起始,在预设的TBS表中PRB个数对应的列,根据TBS索引首尾交替顺序确定。
  29. 一种终端设备,其特征在于,所述终端设备包括:处理器,存储器;所述处理器、所述存储器之间进行相互的通信;
    所述存储器用于存储指令;
    所述处理器用于执行所述存储器中的所述指令,执行如权利要求1至7中任一项所述的方法。
  30. 一种网络设备,其特征在于,所述网络设备包括:处理器,存储器;所述处理器、所述存储器之间进行相互的通信;
    所述存储器用于存储指令;
    所述处理器用于执行所述存储器中的所述指令,执行如权利要求8至14中任一项所述的方法。
  31. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-7、或8-14任意一项所述的方法。
  32. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-7、或8-14任意一项所述的方法。
PCT/CN2018/082065 2018-04-05 2018-04-05 一种信息发送的方法、信息接收的方法和设备 WO2019192008A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3095944A CA3095944C (en) 2018-04-05 2018-04-05 Information sending method, information receiving method, and device
CN201880091834.4A CN111903152B (zh) 2018-04-05 2018-04-05 一种信息发送的方法、信息接收的方法和设备
PCT/CN2018/082065 WO2019192008A1 (zh) 2018-04-05 2018-04-05 一种信息发送的方法、信息接收的方法和设备
EP18913760.7A EP3767992A4 (en) 2018-04-05 2018-04-05 SENDING INFORMATION METHOD, RECEIVING INFORMATION METHOD AND DEVICE
US17/062,804 US11412483B2 (en) 2018-04-05 2020-10-05 Information sending method, information receiving method, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082065 WO2019192008A1 (zh) 2018-04-05 2018-04-05 一种信息发送的方法、信息接收的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/062,804 Continuation US11412483B2 (en) 2018-04-05 2020-10-05 Information sending method, information receiving method, and device

Publications (1)

Publication Number Publication Date
WO2019192008A1 true WO2019192008A1 (zh) 2019-10-10

Family

ID=68099746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082065 WO2019192008A1 (zh) 2018-04-05 2018-04-05 一种信息发送的方法、信息接收的方法和设备

Country Status (5)

Country Link
US (1) US11412483B2 (zh)
EP (1) EP3767992A4 (zh)
CN (1) CN111903152B (zh)
CA (1) CA3095944C (zh)
WO (1) WO2019192008A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036310A (zh) * 2009-09-29 2011-04-27 大唐移动通信设备有限公司 一种数据传输方法和设备
CN104105162A (zh) * 2013-04-05 2014-10-15 华为技术有限公司 基站与终端之间传递信息的方法、基站、终端和系统
WO2016183717A1 (zh) * 2015-05-15 2016-11-24 华为技术有限公司 传输公共消息的方法和相关设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3100535T3 (da) * 2014-01-29 2019-05-27 Interdigital Patent Holdings Inc Uplink-sendinger i trådløs kommunikation
WO2016025899A1 (en) * 2014-08-15 2016-02-18 Interdigital Patent Holding, Inc. Supporting random access and paging procedures for reduced capability wtrus in an lte system
US10575205B2 (en) * 2014-10-20 2020-02-25 Qualcomm Incorporated Transport block size determination
CN105813199A (zh) 2014-12-30 2016-07-27 夏普株式会社 针对寻呼消息的资源分配方法及网络节点和用户设备
US10425938B2 (en) * 2015-11-06 2019-09-24 Kt Corporation Method of determining modulation order and transport block size in downlink data channel, and apparatus thereof
WO2018175521A1 (en) * 2017-03-24 2018-09-27 Intel IP Corporation Sub-prb resource allocation for pusch in even further enhanced mtc
CN110167185B (zh) * 2018-02-14 2022-05-17 华为技术有限公司 随机接入过程中传输数据的方法和装置
CN110351833B (zh) * 2018-04-02 2024-02-20 夏普株式会社 用户设备执行的方法、基站执行的方法、用户设备和基站
CN111886817B (zh) * 2018-04-04 2021-12-10 华为技术有限公司 数据传输方法、通信设备及网络设备
CN113490285B (zh) * 2018-04-04 2022-12-06 中兴通讯股份有限公司 一种传输方法及装置、计算机可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036310A (zh) * 2009-09-29 2011-04-27 大唐移动通信设备有限公司 一种数据传输方法和设备
CN104105162A (zh) * 2013-04-05 2014-10-15 华为技术有限公司 基站与终端之间传递信息的方法、基站、终端和系统
WO2016183717A1 (zh) * 2015-05-15 2016-11-24 华为技术有限公司 传输公共消息的方法和相关设备

Also Published As

Publication number Publication date
CA3095944A1 (en) 2019-10-10
US20210022119A1 (en) 2021-01-21
CA3095944C (en) 2023-11-07
EP3767992A1 (en) 2021-01-20
CN111903152B (zh) 2023-06-20
US11412483B2 (en) 2022-08-09
CN111903152A (zh) 2020-11-06
EP3767992A4 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
CN107079500B (zh) 为覆盖受限设备处理随机接入响应消息的系统、装置和方法
EP3043611B1 (en) Method, device and system for transmitting information
TW201831002A (zh) 處理新無線能力的裝置及方法
US11540329B2 (en) Information transmission method, terminal device, and network device
US11546102B2 (en) Data sending method, information sending method, and apparatus
JP2023078303A (ja) V2xトラフィックに対応するための制御チャネル構造設計
WO2021072909A1 (zh) 一种信息处理方法和终端设备以及网络设备
US11564246B2 (en) Information transmission method, communications device, and network device
WO2016168967A1 (zh) 一种分量载波组的配置方法及设备
WO2020029300A1 (zh) 一种tdd系统中的资源分配方法和设备
WO2019191993A1 (zh) 一种信息传输的方法和设备
WO2019192008A1 (zh) 一种信息发送的方法、信息接收的方法和设备
WO2020164149A1 (zh) 一种数据传输方法和设备
WO2019192001A1 (zh) 一种信息传输方法和设备
WO2020220266A1 (zh) 一种信息传输方法和通信设备
WO2019191995A1 (zh) 一种信息处理方法和设备
WO2020164148A1 (zh) 一种数据传输方法和设备
WO2023131296A1 (zh) 一种配置方法及其装置
WO2020164147A1 (zh) 一种数据传输方法和设备
WO2022022103A1 (zh) 非周期探测参考信号的发送方法及设备
WO2020199038A1 (zh) 一种数据传输方法和设备
WO2021062834A1 (zh) 一种信息处理方法和终端设备以及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3095944

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018913760

Country of ref document: EP

Effective date: 20201012