WO2018171792A1 - 一种参考信号传输方法、装置及系统 - Google Patents

一种参考信号传输方法、装置及系统 Download PDF

Info

Publication number
WO2018171792A1
WO2018171792A1 PCT/CN2018/080397 CN2018080397W WO2018171792A1 WO 2018171792 A1 WO2018171792 A1 WO 2018171792A1 CN 2018080397 W CN2018080397 W CN 2018080397W WO 2018171792 A1 WO2018171792 A1 WO 2018171792A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
mapped
ptrs
domain density
mcs
Prior art date
Application number
PCT/CN2018/080397
Other languages
English (en)
French (fr)
Inventor
孙裕
秦熠
栗忠峰
张雷鸣
窦圣跃
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710400977.6A external-priority patent/CN108632005B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18770937.3A priority Critical patent/EP3606219B1/en
Priority to JP2019552462A priority patent/JP7217234B2/ja
Priority to BR112019019951A priority patent/BR112019019951A2/pt
Priority to CA3057552A priority patent/CA3057552A1/en
Priority to KR1020197030777A priority patent/KR102308693B1/ko
Publication of WO2018171792A1 publication Critical patent/WO2018171792A1/zh
Priority to US16/580,651 priority patent/US11153134B2/en
Priority to US17/408,009 priority patent/US11916705B2/en

Links

Images

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to a reference signal transmission method, apparatus, and system.
  • the frequency device the local oscillator
  • the random jitter of the local oscillator causes the output carrier signal to carry phase noise.
  • the phase noise is directly related to the carrier frequency: the phase noise power varies by 20 log(n), and n is the frequency multiplier, that is, the doubling of the carrier frequency increases the phase noise power by 6 dB. Therefore, for high frequency wireless communication, the phase noise effect cannot be ignored.
  • the 3rd Generation Partnership Project (3GPP) has included high-frequency into the spectrum range adopted in the future evolution of the new wireless radio network (NR), so the phase noise-related impact needs to be included. Design considerations.
  • Phase noise is a physical quantity that varies randomly in time, as shown by the wavy line in Figure 1.
  • OFDM Orthogonal Frequency Division Multiplexing
  • CPE Common Phase Error
  • ICI Inter-Carier Interference
  • the CPE is the phase noise average of the duration of one OFDM symbol, as shown by the horizontal line segment in the symbol in FIG.
  • the CPE has the same effect on different subcarriers within the symbol, as shown by the rotation of all modulation constellation symbols within the OFDM symbol by a common phase, ie the effect represented by block A in Figure 2. .
  • the ICI is caused by the phase carrier to corrupt the subcarrier orthogonality of the OFDM symbol, and the influence on the different subcarriers of the same OFDM is different, resulting in a cloud-like dispersion of the constellation modulation symbol points, that is, the influence represented by the circle B in FIG.
  • the subcarrier spacing is greater than 15KHz, the impact of ICI on system performance is usually negligible.
  • the system design mainly considers the CPE effect caused by phase noise.
  • CSI channel state information
  • SRS Sounding Reference Signal
  • the SRS is used to estimate the quality of the uplink channel.
  • the network side scheduler needs to perform scheduling according to the uplink channel quality, and allocates those resource blocks (RBs) with good instantaneous channel state to the uplink physical shared channel (PUSCH) transmission of the terminal, and also needs to be based on
  • the quality of the instantaneous channel state selects different transmission parameters, such as coding rate and modulation order, and different parameters related to multi-antenna transmission.
  • the SRS transmission should cover the frequency band of interest to the scheduler, which can be implemented in two ways, as shown in Figure 3A: a. By transmitting a "wideband SRS" with a sufficiently large frequency domain span to cover the entire interest. frequency band. b. By transmitting multiple "narrowband SRS" on multiple symbols, performing frequency hopping, and then combining a series of transmitted SRSs, the entire frequency band of interest can be covered, and the "narrowband SRS" on each symbol is in the frequency domain. There are no overlapping subcarriers.
  • Different terminals can send SRSs on the same set of resource blocks, which can be distinguished by different "combs".
  • the subcarriers of the solid line portion are used for SRS transmission of one terminal, and the subcarriers of the dotted line portion can be used for SRS transmission of other terminals.
  • multiple terminals may also utilize different cyclic shifts to ensure orthogonality of SRS transmitted by different terminals. By cyclic shifting, multiple terminals can use the same time-frequency resource, the same "comb" to transmit SRS and ensure mutual orthogonality.
  • terminal 1 and terminal 2 use different cyclic shifts to share the same time-frequency resources and maintain orthogonality.
  • the high-frequency phase noise coherence time is short, and the phase error caused by phase noise is different for each OFDM symbol.
  • the existing frequency hopping SRS needs to jointly estimate the CSI by using the subband SRS on multiple OFDM symbols, and the CSI estimated by the SRS on different symbols has different phase deviations, resulting in inaccurate CSI estimation.
  • To estimate the relative phase deviation between different symbols it is necessary to have the same channel as the reference, and the narrowband SRSs for frequency hopping are distributed on the sub-bands that do not overlap each other, and the channels of the sub-bands are different from each other, so the frequency band positions are not mutually different.
  • the overlapping narrowband SRS itself cannot estimate the relative phase deviation between the symbols.
  • CSI-RS Channel State Information Reference Signal
  • CSI-RS is mainly used for channel quality feedback.
  • the CSI-RS will be transmitted on multiple OFDM symbols.
  • OFDM Orthogonal Cover Code
  • CSI-RSs of different antenna ports such as port 17 and port 18
  • OCC Orthogonal Cover Code
  • CDM Code Division Multiplex
  • multiple antenna ports of the CSI-RS perform code division in the frequency domain, but when estimating CSI, it is still necessary to combine multiple OFDM symbols, and phase noise on different symbols causes different phase deflections, resulting in inaccurate CSI estimation.
  • the CSI-RS is coded in the time domain
  • the CSI-RSs of the at least two antenna ports are transmitted on the same time-frequency resource unit (RE), and the CSI-RS signals received by the receiving end are sent by at least two antenna ports.
  • the signal undergoes superposition after the channel. Due to the orthogonal cover code, the channel on different symbols is the superimposed value of the channel experienced by at least 2 antenna ports and the orthogonal cover code, and the channels on different symbols are completely different. Therefore, the CSI-RS that does the time domain code division itself cannot estimate the relative phase error value.
  • the antenna ports of multiple CSI-RSs are frequency-divided in the frequency domain, and there is a need to combine CSI-RS estimation CSI on multiple symbols, since different CSI-RSs on different symbols use different antenna ports, different antennas are generally considered.
  • the channel experienced by the port is different, so there is no same channel as the reference for phase noise estimation, so the phase deviation caused by phase noise cannot be estimated.
  • the present application provides a reference signal transmission method, apparatus and system, which can improve the accuracy of channel state estimation.
  • the present application provides a reference signal transmission method, which may include: a terminal transmitting a first reference signal and a second reference signal to a network device.
  • the network device receives the first reference signal and the second reference signal sent by the terminal.
  • the first reference signal is mapped on multiple symbols for estimating channel state information.
  • the second reference signal may be mapped on at least 2 of the plurality of symbols for phase tracking.
  • the subcarriers to which the second reference signal on at least 2 symbols are mapped have the same frequency domain position.
  • a relative between each of the plurality of symbols can be calculated by using the second reference signal on the subcarrier corresponding to the same frequency domain position. Phase error improves the accuracy of CSI estimation.
  • the first reference signal may be a sounding reference signal SRS
  • the second reference signal may be an uplink reference signal (PTRS) for phase tracking.
  • PTRS uplink reference signal
  • the second reference signal may correspond to the following resource mapping manners.
  • the first resource mapping manner the subcarriers to which the second reference signal is mapped and the subbands of the first reference signal are adjacent in the frequency domain. That is to say, PTRS can be mapped at one or both ends of the SRS subband.
  • the PTRS may be mapped on the first m (m is a positive integer) subcarrier of the SRS subband, or may be mapped on the back n (n is a positive integer) subcarrier of the SRS subband, and may also be mapped in front of the SRS subband.
  • m and n may or may not be equal.
  • the PTRS resource mapping rule may be summarized as, but not limited to, if the SRS subband is in the lowest frequency domain position in the terminal processing bandwidth, the PTRS may be mapped on the last n subcarriers of the SRS subband. If the SRS subband is in the highest frequency domain location in the terminal processing bandwidth, the PTRS may be mapped on the first m subcarriers of the SRS subband. If the SRS subband is in the intermediate frequency domain position in the terminal processing bandwidth, the PTRS may be mapped on the first m subcarriers of the SRS subband or on the last n subcarriers of the SRS subband.
  • the terminal processing bandwidth is a total frequency hopping bandwidth of the sounding reference signal allocated by the network device to the terminal, that is, the total bandwidth of the channel that the network device requires the terminal to complete the sounding.
  • the resource location of the second reference signal can be determined by the resource location of the first reference signal.
  • the determining policy may be predefined by the protocol, or may be configured by the network device to send high-level signaling (such as RRC signaling) or PDCCH signaling.
  • the multiple terminals may employ different cyclic shift values to ensure orthogonality of the SRSs of the respective transmissions.
  • the PTRS and the SRS may adopt the same cyclic shift value.
  • PTRS and SRS can adopt the same "comb" mode, that is, PTRS and SRS correspond to the same comb-tooth spacing.
  • the subcarriers mapped by the PTRS and the subbands of the SRS are adjacent in the frequency domain, the subcarriers mapped by the PTRS on at least two symbols have the same frequency domain. Position, therefore, at the same frequency domain location, the relative phase error between the symbols in the SRS hopping period can be calculated using PTRS, thereby improving the accuracy of the CSI estimation.
  • the second resource mapping manner on each symbol mapped by the second reference signal, the subcarrier positions mapped by the second reference signal are the same. That is to say, on each symbol mapped by the PTRS, the PTRS is mapped on the same one or more subcarriers. Specifically, the same one or more subcarriers may be distributed in a frequency domain or may be discretely distributed.
  • the cyclic shift value of the SRS can be used to determine the frequency domain location of the PTRS.
  • the mapping rule between the subcarrier position mapped by the PTRS and the cyclic shift value of the SRS may be a protocol pre-defined, or the network device may send the command high layer signaling (such as RRC signaling) or PDCCH signaling. To configure. Different cyclic shift values correspond to different subcarrier positions.
  • the subcarriers mapped by the PTRS have the same frequency domain location as the subcarriers mapped by the SRS on one (or more) symbols, then on the one (or more) symbols Do not map PTRS.
  • the second resource mapping manner is implemented, because the subcarrier positions mapped by the PTRS are the same on each symbol mapped by the PTRS. Therefore, at the same frequency domain position, the relative phase error between the respective symbols in the SRS hopping period can be calculated, thereby improving the accuracy of the CSI estimation.
  • the network device may further send resource configuration information to the terminal, to indicate, on which time-frequency resources the terminal transmits the first reference signal and the second Reference signal.
  • the resource locations corresponding to the first reference signal and the second reference signal may be predefined by a protocol. That is, the network device does not need to send the resource configuration information to the terminal.
  • the resource location corresponding to the first reference signal may be predefined by a protocol.
  • the resource configuration information may include a resource mapping rule between the second reference signal and the first reference signal.
  • the terminal can determine the resource location of the second reference signal according to the resource mapping rule between the second reference signal and the first reference signal provided by the application.
  • the resource mapping rule between the second reference signal and the first reference signal may be predefined by a protocol, or may be configured by the network device by using high layer signaling or a PDCCH.
  • the network device does not need to send the resource configuration information to the terminal.
  • the resource configuration information may include resource configuration information of the first reference signal, and resource mapping rules between the second reference signal and the first reference signal.
  • the terminal can determine the second reference according to the resource mapping rule between the second reference signal and the first reference signal and the resource location of the first reference signal provided by the terminal.
  • the resource mapping rule between the second reference signal and the first reference signal may be predefined by a protocol, or may be configured by the network device by using high layer signaling or a PDCCH.
  • the resource configuration information may include only resource location information of the first reference signal.
  • the present application provides a reference signal transmission method, which may include: a network device transmitting a first reference signal and a second reference signal to a terminal.
  • the terminal receives the first reference signal and the second reference signal sent by the network device.
  • the first reference signal is mapped on multiple symbols for estimating channel state information.
  • the second reference signal may be mapped on at least 2 of the plurality of symbols for phase tracking.
  • the subcarriers to which the second reference signal on at least 2 symbols are mapped have the same frequency domain position.
  • a relative between each of the plurality of symbols can be calculated by using the second reference signal on the subcarrier corresponding to the same frequency domain position. Phase error improves the accuracy of CSI estimation.
  • the first reference signal may be a channel state information reference signal CSI-RS
  • the second reference signal may be a downlink reference signal (PTRS) for phase tracking.
  • CSI-RS channel state information reference signal
  • PTRS downlink reference signal
  • the CSI-RS is mapped over multiple symbols, and the PTRS and CSI-RS can be mapped on the same symbol.
  • the subcarriers mapped by the PTRS may correspond to the same frequency domain location. Specifically, in the frequency domain, the subcarriers mapped by the PTRS and the subcarriers mapped by the CSI-RS may or may not be adjacent.
  • the resource location of the PTRS may be protocol-predefined, or may be configured by the network device to send high-layer signaling (such as RRC signaling) or PDCCH signaling.
  • the antenna port transmitting the PTRS is one or more of the antenna ports transmitting the CSI-RS, or the antenna port transmitting the PTRS and the antenna port transmitting the CSI-RS are quasi-common Address.
  • the network device may further send resource configuration information to the terminal, to indicate, on which time-frequency resources, the terminal receives the first reference signal and the second Reference signal.
  • the resource locations corresponding to the first reference signal and the second reference signal may be predefined by a protocol. That is, the network device does not need to send the resource configuration information to the terminal.
  • the resource location corresponding to the first reference signal may be predefined by a protocol.
  • the resource configuration information may include a resource mapping rule between the second reference signal and the first reference signal.
  • the terminal can determine the resource location of the second reference signal according to the resource mapping rule between the second reference signal and the first reference signal provided by the application.
  • the resource mapping rule between the second reference signal and the first reference signal may be predefined by a protocol, or may be configured by the network device by using high layer signaling or a PDCCH.
  • the network device does not need to send the resource configuration information to the terminal.
  • the resource configuration information may include resource configuration information of the first reference signal, and resource mapping rules between the second reference signal and the first reference signal.
  • the terminal can determine the second reference according to the resource mapping rule between the second reference signal and the first reference signal and the resource location of the first reference signal provided by the terminal.
  • the resource mapping rule between the second reference signal and the first reference signal may be predefined by a protocol, or may be configured by the network device by using high layer signaling or a PDCCH.
  • the resource configuration information may include only resource location information of the first reference signal.
  • the present application provides a reference signal transmission method, which may include: configuring, by a network device, a time-frequency resource of the second reference signal in a user scheduling bandwidth according to a time domain density and a frequency domain density of the second reference signal, where And transmitting, to the terminal, the second reference signal, and/or resource location information of the second reference signal.
  • the terminal receives the resource location information sent by the network device, and receives the second reference signal on the resource indicated by the resource location information according to the resource location information.
  • the present application provides a reference signal transmission method, which may include: configuring, by a network device, a time-frequency resource of the second reference signal in a user scheduling bandwidth according to a time domain density and a frequency domain density of the second reference signal,
  • the network device sends the resource location information of the second reference signal to the terminal.
  • the terminal receives the resource location information sent by the network device, and sends the second reference signal to the network device on the resource indicated by the resource location information.
  • the network device receives the second reference signal sent by the terminal.
  • the second reference signal is configured during data transmission for phase tracking during data transmission, and the reliability of data transmission can be improved.
  • the subcarriers mapped with the second reference signal are evenly distributed within the user scheduling bandwidth with a resource block granularity.
  • the subcarrier position mapped by the second reference signal may be represented by two indexes: an index of the resource block mapped by the second reference signal and the resource block of the second reference signal in the mapping Subcarrier index within.
  • the implementation of determining the subcarrier index of the second reference signal within the mapped resource block may include the following:
  • the subcarrier index of the second reference signal within the mapped resource block may be determined by a subcarrier position mapped by a demodulation reference signal (DMRS).
  • DMRS demodulation reference signal
  • the second reference signal may be mapped on one or more subcarriers mapped by the DMRS.
  • the second reference signal maps one or more of the DMRSs mapped by the DMRS antenna ports corresponding to the second reference signal antenna ports.
  • the second reference signal and the DMRS respectively sent by the corresponding second reference signal antenna port and DMRS antenna port have the same subcarrier position.
  • the corresponding second reference signal antenna port and the DMRS antenna port satisfy the following relationship: the DMRS antenna port is the same as the second reference signal antenna port, or the DMRS antenna port and the second reference signal antenna port are The quasi-co-location (QCL), or DMRS antenna port has the same precoding as the second reference signal antenna port.
  • the receiving end can determine which PTRS antenna port the DMRS antenna port uses for phase tracking through the DMRS antenna port and the PTRS antenna port relationship, and which DMRS antenna port is estimated for the channel estimation required for the PTRS antenna port to implement phase estimation.
  • the subcarrier index of the second reference signal in the mapped resource block may be determined according to the cell ID, and the cell ID may be represented as
  • the subcarrier index and the second reference signal in the mapped resource block are There may be a mapping relationship between them, ie different Corresponding to different subcarrier indexes, the mapping relationship may be predefined by the protocol, or may be configured by the network device through high layer signaling (such as RRC signaling) or PDCCH.
  • the mapping relationship may be predefined by the protocol, or may be configured by the network device through high layer signaling (such as RRC signaling) or PDCCH.
  • the second reference signal in the time domain, may be distributed in part or all of an uplink shared channel (PUSCH) or a downlink shared channel (PDSCH) scheduled to the user.
  • the time domain density of the second reference signal may include: the second reference signal is continuously mapped on each symbol of the PUSCH (or PDSCH), or every 2 symbols on the PUSCH (or PDSCH) Map once, or map once every 4 symbols of the PUSCH (or PDSCH).
  • an index of the start symbol mapped by the second reference signal may be determined by a time domain density of the second reference signal, and may be as follows:
  • the starting symbol position of the second reference signal is the first of a physical uplink shared channel or a physical downlink shared channel scheduled for the user. If the time domain density is mapped once every 2 symbols of the second reference signal, the starting symbol position of the second reference signal is a physical uplink shared channel or a physical downlink shared channel scheduled for the user. a second symbol; if the time domain density is mapped once every 4 symbols of the second reference signal, the starting symbol position of the second reference signal is a physical uplink shared channel or physical downlink sharing scheduled to the user. The first symbol of the channel.
  • mapping rule of the second reference signal may further include the following:
  • the second reference signal is not mapped on the resource particles mapped with the other reference signals, or the second reference signal is zero power on the resource particles, or the second reference signal is Other reference signals are punched.
  • the subcarriers to which the other reference signals are mapped do not map the second reference signal. Specifically, on a symbol mapped with the other reference signal, subcarriers of the second reference signal are mapped on other subcarriers than the subcarriers mapped by the other reference signals.
  • all symbols of the PUSCH (or PDSCH) scheduled to the user do not map the second reference signal.
  • subcarriers of the second reference signal are mapped to subcarriers other than the subcarriers mapped by the other reference signals on.
  • the second reference signal is mapped on adjacent symbols to which symbols of the other reference signals are mapped. That is, the PTRS is also mapped on the previous and/or next symbols of the symbols to which other reference signals are mapped.
  • the mapping of the second reference signal on adjacent symbols of the symbols of the other reference signal maps is determined by symbol positions of the other reference signal maps.
  • the mapping of the second reference signal in a time slot is determined according to a symbol of the other reference signal mapping.
  • mapping the second reference signal on a neighboring symbol to which the symbol of the other reference signal is mapped, and using the adjacent symbol of the symbol mapped with the other reference signal as a time domain reference reference, according to the The time domain density of the two reference signals maps the second reference signal.
  • mapping of the second reference signal on adjacent symbols of symbols of the other reference signal mapping is determined by symbol positions of the other reference signal mapping, and the real-time domain reference is mapped according to symbols mapped by other reference signals. determine.
  • the mapping of the second reference signal in a time slot is determined according to a symbol of the other reference signal mapping.
  • mapping rule of the second reference signal determines a mapping rule of the second reference signal according to whether a physical downlink/uplink shared channel is mapped on a symbol mapped with the other reference signal. Specifically, on the symbol mapped with the other reference signal, the physical downlink/uplink shared channel is simultaneously mapped, and the second reference signal adopts the second or third mapping rule; If the physical downlink/uplink shared channel is not mapped on the symbols of other reference signals, the first or fourth or fifth mapping rule is adopted.
  • the number of subcarriers actually mapped by the second reference signal may be less than or equal to the calculated subcarrier.
  • the number of carriers The following describes in detail the manner in which the second reference signal is mapped on the symbol on which the other reference signal is mapped:
  • the subcarrier position mapped by the second reference signal may and may not be mapped in the bandwidth available for PUSCH (or PDSCH) transmission.
  • the subcarrier positions of the second reference signal are mapped on the symbol of the reference signal.
  • the actual mapping in the bandwidth that can be used for PUSCH (or PDSCH) transmission is as described above.
  • the number of subcarriers of the second reference signal is less than the number of subcarriers required to map the second reference signal for the bandwidth available for PUSCH (or PDSCH) transmission, then within the bandwidth available for PUSCH (or PDSCH) transmission And additionally adding other subcarriers to map the second reference signal.
  • the second reference signals are evenly distributed within the bandwidth available for PUSCH (or PDSCH) transmission. Mapping the subcarrier position of the second reference signal on the symbol need not coincide with mapping the subcarrier position of the second reference signal on the symbol without mapping the other reference signal.
  • the number of subcarriers mapped by the second reference signal is available on the symbol i for the physical uplink shared channel
  • the bandwidth of the transmission or the bandwidth of the physical downlink shared channel transmission, and the frequency domain density of the second reference signal are determined. I ⁇ 0, which is a positive integer.
  • the time domain density may be related to at least one of a bandwidth part (BP), a CP type, a subcarrier spacing, and an MCS, the time domain density and a bandwidth part (bandwidth part)
  • BP bandwidth part
  • CP type CP type
  • MCS bandwidth part
  • the correspondence between at least one of the BP, the CP type, the subcarrier spacing, and the MCS may be predefined or configured by higher layer signaling.
  • each subcarrier interval may correspond to one or more MCS thresholds.
  • the time domain density corresponding to the MCS between two adjacent MCS thresholds is the same.
  • the one or more MCS thresholds may be predefined or configured by higher layer signaling.
  • different subcarrier intervals may correspond to different modulation order thresholds. That is to say, for different subcarrier spacings, different correspondence tables of modulation order thresholds and time domain densities can be configured.
  • the respective modulation order thresholds of different subcarrier intervals may be predefined by a protocol, or may be configured by a network device by using high layer signaling (for example, RRC signaling).
  • the time domain density may be related to at least one of a bandwidth part (BP) and an MCS, and the correspondence between the time domain density and at least one of the BP and the MCS may be
  • the protocol is predefined or configured by higher layer signaling.
  • BP can be a continuous resource in the frequency domain.
  • a BP contains consecutive K subcarriers, and K is an integer greater than zero.
  • a BP is a frequency domain resource in which N consecutive non-overlapping consecutive physical resource blocks PRB are located, N is an integer greater than 0, and the subcarrier spacing of the PRB may be 15k, 30k, 60k or other subcarrier spacing. value.
  • a BP is a frequency domain resource where N non-overlapping consecutive physical resource block PRB groups are located, and one PRB group includes M consecutive PRBs, and both M and N are integers greater than 0, and the subcarrier spacing of the PRB is It can be 15k, 30k, 60k or other subcarrier spacing values.
  • the length of the BP is less than or equal to the maximum bandwidth supported by the terminal.
  • one BP corresponds to one or more subcarrier spacings.
  • each BP can correspond to one set of MCS thresholds, and different MCS thresholds correspond to different time-domain densities of PTRSs.
  • the MCS threshold may be predefined or configured by higher layer signaling.
  • mapping tables of modulation order thresholds and time domain densities may be configured.
  • the respective modulation order thresholds of different BPs may be predefined by a protocol, or may be configured by a network device by using high layer signaling (for example, RRC signaling).
  • the frequency domain density may be related to at least one of a bandwidth part (BP), a CP type, the user scheduling bandwidth, a subcarrier spacing, and an MCS, where the frequency domain density
  • BP bandwidth part
  • the correspondence with at least one of the CP type, the user scheduling bandwidth, the subcarrier spacing, the MCS, and the bandwidth part (BP) is predefined or configured by higher layer signaling.
  • each subcarrier spacing may correspond to one or more scheduling bandwidth BW thresholds; the frequency domain density corresponding to the scheduling bandwidth between two adjacent BW thresholds is the same.
  • the one or more BW thresholds may be predefined or configured by higher layer signaling.
  • different subcarrier spacings may correspond to different scheduling bandwidth thresholds. That is to say, for different subcarrier spacings, different correspondence table between scheduling bandwidth threshold and time domain density can be configured.
  • the scheduling bandwidth threshold corresponding to each of the different subcarrier intervals may be predefined by a protocol, or may be configured by the network device by using high layer signaling (for example, RRC signaling).
  • each BP can correspond to a set of scheduling bandwidth thresholds, and different scheduling bandwidth thresholds correspond to frequency domain densities of different PTRSs.
  • the scheduling bandwidth threshold may be predefined or configured by higher layer signaling.
  • different correspondence table between the scheduling bandwidth threshold and the frequency domain density may be configured.
  • the respective scheduling bandwidth thresholds of the different BPs may be predefined by the protocol, or may be configured by the network device by using high layer signaling (for example, RRC signaling).
  • the application provides a data transmission method, which may include: when uplink transmitting HARQ-ACK, RI or CQI, the terminal may encode the HARQ-ACK according to the time domain density and the frequency domain density of the PTRS.
  • the RI or the CQI performs rate matching, and sends the matched encoded data to the network device.
  • the network device receives the encoded data sent by the terminal.
  • the second reference signal is used for phase tracking.
  • the encoded data is obtained by rate matching the encoded data according to a time domain density and a frequency domain density of a second reference signal mapped within a user scheduled bandwidth.
  • the time domain density and frequency domain density of the PTRS may determine the amount of resources occupied by the second reference signal within the user scheduled bandwidth.
  • the time-frequency resource occupied by the second reference signal needs to be removed, and the coded modulation symbol number Q' can be expressed as follows:
  • a network device comprising a plurality of functional modules for respectively performing the method provided by the first aspect, or the method provided by any one of the possible implementations of the first aspect.
  • a terminal comprising a plurality of functional modules for respectively performing the method provided by the first aspect, or the method provided by any one of the possible implementations of the first aspect.
  • a network device for performing the reference signal transmission method described in the first aspect.
  • the wireless network device can include a memory and a processor, a transmitter, and a receiver coupled to the memory, wherein: the transmitter is configured to transmit a signal to another wireless network device, such as a terminal, the receiver Receiving a signal transmitted by the other wireless network device, such as a terminal, for storing an implementation code of a reference signal transmission method described in the first aspect, the processor for executing a program code stored in the memory That is, the method provided by the first aspect, or the method provided by any of the possible embodiments of the first aspect.
  • a terminal for performing the reference signal transmission method described in the first aspect.
  • the terminal can include a memory and a processor, transmitter and receiver coupled to the memory, wherein: the transmitter is for transmitting a signal to another wireless network device, such as a network device, the receiver is for Receiving, by the another wireless network device, such as a network device, a signal for storing an implementation code of a reference signal transmission method described in the first aspect, the processor for executing a program code stored in the memory That is, the method provided by the first aspect, or the method provided by any of the possible embodiments of the first aspect.
  • a tenth aspect a network device is provided, comprising a plurality of functional modules for respectively performing the method provided by the second aspect, or the method provided by any one of the possible embodiments of the second aspect.
  • a terminal comprising a plurality of functional modules for performing the method provided by the second aspect, or the method provided by any one of the possible embodiments of the second aspect.
  • a network device for performing the reference signal transmission method described in the second aspect.
  • the wireless network device can include a memory and a processor, a transmitter, and a receiver coupled to the memory, wherein: the transmitter is configured to transmit a signal to another wireless network device, such as a terminal, the receiver Receiving a signal sent by the other wireless network device, such as a terminal, for storing an implementation code of a reference signal transmission method described in the second aspect, the processor for executing a program code stored in the memory That is, the method provided by the second aspect, or the method provided by any of the possible embodiments of the second aspect.
  • a terminal for performing the reference signal transmission method described in the second aspect.
  • the terminal can include a memory and a processor, transmitter and receiver coupled to the memory, wherein: the transmitter is for transmitting a signal to another wireless network device, such as a network device, the receiver is for Receiving, by the another wireless network device, such as a network device, a signal for storing an implementation code of a reference signal transmission method described in the second aspect, the processor for executing a program code stored in the memory That is, the method provided by the second aspect, or the method provided by any of the possible embodiments of the second aspect.
  • a network device comprising a plurality of functional modules for performing the method provided by the third aspect, or the method provided by any one of the possible implementations of the third aspect.
  • a terminal comprising a plurality of functional modules for performing the method provided by the third aspect, or the method provided by any one of the possible embodiments of the third aspect.
  • a network device for performing the reference signal transmission method described in the third aspect.
  • the wireless network device can include a memory and a processor, a transmitter, and a receiver coupled to the memory, wherein: the transmitter is configured to transmit a signal to another wireless network device, such as a terminal, the receiver Receiving a signal transmitted by the other wireless network device, such as a terminal, the memory is used to store implementation code of a reference signal transmission method described in the third aspect, the processor is configured to execute program code stored in the memory That is, the method provided by the third aspect, or the method provided by any of the possible embodiments of the third aspect is performed.
  • a terminal for performing the reference signal transmission method described in the third aspect.
  • the terminal can include a memory and a processor, transmitter and receiver coupled to the memory, wherein: the transmitter is for transmitting a signal to another wireless network device, such as a network device, the receiver is for Receiving, by the another wireless network device, such as a network device, a signal for storing an implementation code of a reference signal transmission method described in the third aspect, the processor for executing a program code stored in the memory That is, the method provided by the third aspect, or the method provided by any of the possible embodiments of the third aspect is performed.
  • a network device comprising a plurality of functional modules for performing the method provided by the fourth aspect, or the method provided by any one of the possible embodiments of the fourth aspect.
  • a terminal comprising a plurality of functional modules for performing the method provided by the fourth aspect, or the method provided by any one of the possible embodiments of the fourth aspect.
  • a network device for performing the reference signal transmission method described in the fourth aspect.
  • the wireless network device can include a memory and a processor, a transmitter, and a receiver coupled to the memory, wherein: the transmitter is configured to transmit a signal to another wireless network device, such as a terminal, the receiver Receiving a signal transmitted by the other wireless network device, such as a terminal, the memory is used to store implementation code of a reference signal transmission method described in the fourth aspect, the processor is configured to execute program code stored in the memory That is, the method provided by the fourth aspect, or the method provided by any of the possible embodiments of the fourth aspect is performed.
  • a terminal for performing the reference signal transmission method described in the fourth aspect.
  • the terminal can include a memory and a processor, transmitter and receiver coupled to the memory, wherein: the transmitter is for transmitting a signal to another wireless network device, such as a network device, the receiver is for Receiving, by the another wireless network device, such as a network device, a signal for storing an implementation code of a reference signal transmission method described in the fourth aspect, the processor for executing a program code stored in the memory That is, the method provided by the fourth aspect, or the method provided by any of the possible embodiments of the fourth aspect is performed.
  • a twenty-second aspect a network device is provided, comprising a plurality of functional modules for respectively performing the method provided by any one of the fifth aspect or the fifth aspect possible embodiments.
  • a twenty-third aspect a terminal is provided, comprising a plurality of functional modules for performing the method provided by any one of the fifth aspect or the fifth aspect possible embodiment.
  • a network device for performing the reference signal transmission method described in the fifth aspect.
  • the network device can include a memory and a processor, a transmitter and a receiver coupled to the memory, wherein: the transmitter is for transmitting a signal to another wireless network device, such as a terminal, the receiver is for Receiving, by the other wireless network device, for example, a terminal, a signal for storing an implementation code of a data transmission method described in the fifth aspect, the processor for executing program code stored in the memory, ie A method provided by any one of the fifth or fifth possible embodiments.
  • a terminal for performing the reference signal transmission method described in the fifth aspect.
  • the terminal can include a memory and a processor, transmitter and receiver coupled to the memory, wherein: the transmitter is for transmitting a signal to another wireless network device, such as a network device, the receiver is for Receiving, by the another wireless network device, such as a network device, a signal for storing an implementation code of a data transmission method described in the fifth aspect, the processor for executing a program code stored in the memory, That is, the method provided by any one of the fifth aspect or the fifth aspect possible embodiment is performed.
  • a communication system comprising: a network device and a terminal.
  • the network device may be the network device described in the sixth aspect or the eighth aspect, where the terminal may be the network device described in the seventh aspect or the ninth aspect.
  • the network device may be the network device described in the tenth or twelfth aspect
  • the terminal may be the network device described in the eleventh or thirteenth aspect.
  • the network device may be the network device described in the fourteenth aspect or the sixteenth aspect
  • the terminal may be the network device described in the fifteenth aspect or the seventeenth aspect.
  • the network device may be the network device described in the eighteenth aspect or the twentieth aspect
  • the terminal may be the network device described in the nineteenth aspect or the twenty-first aspect.
  • the network device may be the network device described in the twenty-second aspect or the twenty-fourth aspect
  • the terminal may be the network device described in the twenty-third aspect or the twenty-fifth aspect.
  • a twenty-seventh aspect a computer readable storage medium storing a program for implementing the method described in the first aspect or the second aspect or the third aspect or the fourth aspect or the fifth aspect Code, the program code comprising execution instructions to run the method of the first aspect or the second aspect or the third aspect or the fourth aspect or the fifth aspect.
  • a method of communication comprising:
  • One possible design includes one or more BP values, one or more sets of MCS thresholds for some or all of the BPs, or one or more sets of MCS thresholds for some or all of the BP groups. Transmitting one or more BPs or one or more BP groups with a corresponding group or more through higher layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above Configuration information of the group MCS threshold.
  • higher layer signaling such as RRC signaling, or MAC CE
  • a possible design includes one or more BP values, and one or more sets of MCS thresholds corresponding to one or more BPs, or corresponding to the one or more BP groups, according to pre-stored information.
  • One or more sets of MCS thresholds are included in A possible design.
  • one BP group consists of one or more BPs, the BPs in the BP group have the same subcarrier spacing, or the BPs in the BP group have the same parameter set numerology.
  • the base station configures one or more BP packet information, and may send one through high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above. Or multiple BP grouping information.
  • the BP packet information can be used to indicate one or more BPs within the BP group.
  • the base station configures the BP packet rule information, and may send the BP packet rule information by using high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the BP packet rule information can be used to indicate a BP packet rule.
  • the grouping rule is a group of BPs having the same subcarrier spacing; optionally, the grouping rule may also be a group of BPs having the same parameter set numerology.
  • the correspondence information between the MCS threshold and the time domain density is configured for the BP, or the correspondence relationship between the MCS threshold and the time domain density is configured for the BP group. Transmitting one or more BPs or one or more BP groups and corresponding ones by higher layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above Or configuration information of a plurality of correspondences between MCS threshold values and time domain density.
  • higher layer signaling such as RRC signaling, or MAC CE
  • the correspondence relationship between the MCS threshold value and the time domain density corresponding to the BP or the correspondence between the MCS threshold value and the time domain density corresponding to the BP group is obtained according to the pre-stored information. information.
  • Another possible design includes one or more BP values, one or more sets of scheduling bandwidth thresholds for some or all of the BPs, or one or more sets of scheduling bandwidth gates for some or all of the BP groups.
  • Limit. Transmitting one or more BPs or one or more BP groups with a corresponding group or more through higher layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above Configuration information of the group scheduling bandwidth threshold.
  • a possible design including one or more BP values, acquiring one or more sets of scheduling bandwidth thresholds corresponding to one or more BPs according to pre-stored information, or corresponding to the one or more BP groups One or more sets of scheduling bandwidth thresholds.
  • the correspondence information between the scheduling bandwidth threshold and the frequency domain density is configured for the BP, or the correspondence relationship between the scheduling bandwidth threshold and the frequency domain density is configured for the BP group. Transmitting one or more BPs or one or more BP groups and corresponding ones by higher layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above Or configuration information of a plurality of correspondence relationship between the scheduling bandwidth threshold and the frequency domain density.
  • higher layer signaling such as RRC signaling, or MAC CE
  • the information about the correspondence between the scheduling bandwidth threshold and the frequency domain density corresponding to the BP is obtained according to the pre-stored information, or the scheduling bandwidth threshold and the frequency domain density corresponding to the BP group. Correspondence information.
  • multiple BPs are configured to the peer device through high layer signaling, and the peer device may be a terminal.
  • the indication information is sent by the MAC CE or the DCI to indicate the currently activated BP, and the indication information may be a BP number or index information.
  • the correspondence between the MCS threshold value or the MCS threshold value and the time domain density corresponding to the BP currently activated by the peer device is determined according to the BP currently activated for the peer device. information;
  • the group of MCS thresholds or MCS thresholds corresponding to the BPs currently activated by the peer device are determined according to the BP group to which the BP that is currently activated by the peer device belongs. Correspondence information of domain density;
  • Correspondence relationship information determining, according to the BP currently activated by the peer device, a set of scheduling bandwidth thresholds or scheduling bandwidth thresholds and frequency domain densities corresponding to the BPs currently activated by the peer device.
  • the set of scheduling bandwidth thresholds or scheduling bandwidth thresholds corresponding to the BPs currently activated by the peer device are determined according to the BP group to which the BP that is currently activated by the peer device belongs. Correspondence information with frequency domain density;
  • the execution body of the method provided in the twenty-eighth aspect may be a base station or a terminal.
  • multiple candidate BPs configured by the base station are received through high layer signaling, and the high layer signaling may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the high layer signaling may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • signaling from a base station is received, the signaling being used to indicate a currently activated BP, and the signaling may be a MAC CE or a DCI.
  • the high-level signaling from the base station is received, where the signaling is used to indicate the rule information of the BP packet or to indicate the BP group to which the currently activated BP belongs or to indicate the BP packet information.
  • the high layer signaling may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the BP packet information can be used to indicate one or more BPs within the BP group.
  • BP packets are determined based on predefined or pre-stored rules.
  • the BP packet is determined according to the subcarrier spacing, and the BPs in the BP group have the same subcarrier spacing; optionally, the BP packet is determined according to the parameter set numerology, and the BPs in the BP group have the same numerology.
  • the correspondence relationship between the MCS threshold and the time domain density is pre-stored, wherein one or more BPs correspond to one or more correspondences between the MCS threshold and the time domain density.
  • one or more BP groups correspond to one or more correspondence information of the MCS threshold value and the time domain density.
  • the correspondence between the scheduling bandwidth threshold and the frequency domain density is pre-stored, where one or more BPs correspond to one or more of the scheduling bandwidth thresholds and the frequency domain density. Relationship information, or one or more BP groups corresponding to one or more correspondence relationship between the scheduling bandwidth threshold and the frequency domain density.
  • the configuration information from the base station is received by the high layer signaling, where the configuration information is used to indicate one or more sets of scheduling bandwidth thresholds corresponding to one or more BPs, or one or more BPs.
  • the high layer signaling may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the configuration information from the base station is received by the high layer signaling, where the configuration information is used to indicate one or more sets of MCS thresholds corresponding to one or more BPs, or one or more BP groups. Corresponding one or more sets of MCS thresholds.
  • the high layer signaling may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the configuration information from the base station is received by the high layer signaling, where the configuration information is used to indicate the correspondence relationship between one or more MCS threshold values and time domain density corresponding to one or more BPs. Or correspondence information of one or more MCS threshold values and time domain density corresponding to one or more BP groups.
  • the high layer signaling may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the configuration information from the base station is received by the high layer signaling, where the configuration information is used to indicate the correspondence between one or more scheduling bandwidth threshold values corresponding to one or more BPs and the frequency domain density.
  • the terminal pre-stores at least one of the following information:
  • determining, according to the BP group to which the currently activated BP belongs determining a correspondence relationship between a group of MCS thresholds or MCS thresholds and time domain densities corresponding to the BP group;
  • determining, according to the BP group to which the currently activated BP belongs determining correspondence relationship between a set of scheduling bandwidth threshold scheduling bandwidth threshold values and frequency domain density corresponding to the BP group;
  • a method of communication comprising:
  • the PTRS is obtained from the one or more symbols based on the time domain density and the frequency domain density.
  • the signaling from the peer device is received, the signaling carrying information indicating one or more BPs, and the signaling may be RRC signaling.
  • the signaling from the peer device is received, the signaling carrying information indicating the currently activated BP, and the signaling may be MAC CE or DCI signaling.
  • the signaling is used to indicate rule information of the BP packet or to indicate a BP group to which the currently activated BP belongs or for indicating BP group information.
  • the BP group to which the currently activated BP belongs is determined according to a predefined or pre-stored rule.
  • the BP group to which the currently activated BP belongs is determined according to the subcarrier interval, and the BP in the BP group Have the same subcarrier spacing.
  • the BP group to which the currently activated BP belongs is determined according to the parameter set numerology, and the BPs in the BP group have the same parameter set numerology.
  • the correspondence relationship between the MCS threshold and the time domain density is pre-stored, wherein one or more BPs correspond to one or more correspondences between the MCS threshold and the time domain density.
  • one or more BP groups correspond to one or more correspondence information of the MCS threshold value and the time domain density.
  • the correspondence between the scheduling bandwidth threshold and the frequency domain density is pre-stored, where one or more BPs correspond to one or more of the scheduling bandwidth thresholds and the frequency domain density. Relationship information, or one or more BP groups corresponding to one or more correspondence relationship between the scheduling bandwidth threshold and the frequency domain density.
  • the configuration information from the base station is received by the high layer signaling, where the configuration information is used to indicate one or more sets of scheduling bandwidth thresholds corresponding to one or more BPs, or one or more BPs.
  • the high layer signaling may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the configuration information from the base station is received by the high layer signaling, where the configuration information is used to indicate one or more sets of MCS thresholds corresponding to one or more BPs, or one or more BP groups. Corresponding one or more sets of MCS thresholds.
  • the high layer signaling may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the configuration information from the base station is received by the high layer signaling, where the configuration information is used to indicate the correspondence relationship between one or more MCS threshold values and time domain density corresponding to one or more BPs. Or correspondence information of one or more MCS threshold values and time domain density corresponding to one or more BP groups.
  • the high layer signaling may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the configuration information from the base station is received by the high layer signaling, where the configuration information is used to indicate the correspondence between one or more scheduling bandwidth threshold values corresponding to one or more BPs and the frequency domain density.
  • the terminal pre-stores at least one of the following information:
  • determining, according to the BP group to which the currently activated BP belongs determining a correspondence relationship between a group of MCS thresholds or MCS thresholds and time domain densities corresponding to the BP group;
  • determining, according to the BP group to which the currently activated BP belongs determining correspondence relationship between a set of scheduling bandwidth threshold scheduling bandwidth threshold values and frequency domain density corresponding to the BP group;
  • correspondence information of one or more BPs with scheduling bandwidth and frequency domain density is received.
  • correspondence information of one or more BP groups and scheduling bandwidth and frequency domain density is received.
  • the execution subject of the above twenty-ninth aspect may be a terminal or a base station.
  • the execution subject is a base station, there is a special design, specifically:
  • One possible design includes one or more BP values, one or more sets of MCS thresholds for some or all of the BPs, or one or more sets of MCS thresholds for some or all of the BP groups. Transmitting one or more BPs or one or more BP groups with a corresponding group or more through higher layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above Configuration information of the group MCS threshold.
  • higher layer signaling such as RRC signaling, or MAC CE
  • a possible design includes one or more BP values, and one or more sets of MCS thresholds corresponding to one or more BPs, or corresponding to the one or more BP groups, according to pre-stored information.
  • One or more sets of MCS thresholds are included in A possible design.
  • one BP group consists of one or more BPs, the BPs in the BP group have the same subcarrier spacing, or the BPs in the BP group have the same parameter set numerology.
  • the base station configures one or more BP packet information, and may send one through high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above. Or multiple BP grouping information.
  • the BP packet information can be used to indicate one or more BPs within the BP group.
  • the base station configures the BP packet rule information, and may send the BP packet rule information by using high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the BP packet rule information can be used to indicate a BP packet rule.
  • the grouping rule is a group of BPs having the same subcarrier spacing; optionally, the grouping rule may also be a group of BPs having the same parameter set numerology.
  • the correspondence information between the MCS threshold and the time domain density is configured for the BP, or the correspondence relationship between the MCS threshold and the time domain density is configured for the BP group. Transmitting one or more BPs or one or more BP groups and corresponding ones by higher layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above Or configuration information of a plurality of correspondences between MCS threshold values and time domain density.
  • higher layer signaling such as RRC signaling, or MAC CE
  • Another possible design includes one or more BP values, one or more sets of scheduling bandwidth thresholds for some or all of the BPs, or one or more sets of scheduling bandwidth gates for some or all of the BP groups.
  • Limit. Transmitting one or more BPs or one or more BP groups with a corresponding group or more through higher layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above Configuration information of the group scheduling bandwidth threshold.
  • a possible design including one or more BP values, acquiring one or more sets of scheduling bandwidth thresholds corresponding to one or more BPs according to pre-stored information, or corresponding to the one or more BP groups One or more sets of scheduling bandwidth thresholds.
  • the BP is configured to configure the correspondence relationship between the bandwidth threshold and the frequency domain density, or the mapping relationship between the scheduling bandwidth threshold and the frequency domain density is configured for the BP group. Transmitting one or more BPs or one or more BP groups and corresponding ones by higher layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above Or configuration information of a plurality of correspondence relationship between the scheduling bandwidth threshold and the frequency domain density.
  • higher layer signaling such as RRC signaling, or MAC CE
  • multiple BPs are configured for higher-level signaling to the terminal device.
  • the indication information is sent by the MAC CE or the DCI to indicate the currently activated BP, and the indication information may be a BP number or index information.
  • the correspondence between the MCS threshold value or the MCS threshold value and the time domain density corresponding to the BP currently activated by the peer device is determined according to the BP currently activated for the peer device. information;
  • the group of MCS thresholds or MCS thresholds corresponding to the BPs currently activated by the peer device are determined according to the BP group to which the BP that is currently activated by the peer device belongs. Correspondence information of domain density;
  • Correspondence relationship information determining, according to the BP currently activated by the peer device, a set of scheduling bandwidth thresholds or scheduling bandwidth thresholds and frequency domain densities corresponding to the BPs currently activated by the peer device.
  • the set of scheduling bandwidth thresholds or scheduling bandwidth thresholds corresponding to the BPs currently activated by the peer device are determined according to the BP group to which the BP that is currently activated by the peer device belongs. Correspondence information with frequency domain density;
  • an apparatus including a processing unit and a communication unit, wherein
  • a processing unit configured to determine a time domain density of the phase tracking reference signal PTRS according to the currently activated bandwidth portion BP and a modulation order MCS; determining a frequency domain density of the PTRS according to the currently activated bandwidth portion BP and a scheduling bandwidth ;
  • a communication unit configured to map the PTRS to one or more symbols or to multiple subcarriers according to the time domain density and the frequency domain density.
  • the processing unit is further configured to: configure one or more sets of MCS thresholds for one or more of the BPs, or configure a set of MCS thresholds for one or more of the BP groups;
  • the communication unit is further configured to: send one or more BPs or one or more BP groups and corresponding by high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the foregoing. Configuration information for one or more sets of MCS thresholds.
  • the processing unit is further configured to: determine the BP group according to the subcarrier spacing, or determine the BP group according to the parameter set numerology.
  • the processing unit is further configured to: configure BP packet information, the BP packet information being usable to indicate one or more BPs within the BP group.
  • the packet information may be sent through higher layer signaling, which may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the processing unit is further configured to: configure BP grouping rule information, which may be through high layer signaling, such as RRC signaling, or MAC CE, or broadcast message, or system message or a combination of at least two of the above, Send BP packet rule information.
  • BP packet rule information can be used to indicate a BP packet rule.
  • a storage unit is further configured to store a rule for dividing a plurality of BPs into a BP group
  • the processing unit is further configured to: determine, according to the pre-stored rules, a BP group to which the current BP belongs.
  • the processing unit is further configured to: configure BP grouping rule information,
  • the processing unit is further configured to: configure a correspondence relationship between the MCS threshold and the time domain density for the BP, or configure a correspondence between the MCS threshold and the time domain density for the BP group. Relationship information; the communication unit is further configured to: send the BP or BP group and the corresponding MCS gate by using high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the foregoing Correspondence information configuration information of the limit value and the time domain density.
  • high layer signaling such as RRC signaling, or MAC CE
  • Another possible design includes a storage unit, configured to store correspondence information between the MCS threshold value and the time domain density corresponding to the BP, or the MCS threshold value and the time domain density corresponding to the BP group. Correspondence information.
  • the processing unit is further configured to: configure one or more sets of scheduling bandwidth thresholds for one or more of the BPs, or configure one or more groups for one or more of the BP groups. Scheduling a bandwidth threshold; the communication unit is further configured to: send one or more BPs or one or a combination of higher layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the foregoing Configuration information of multiple BP groups and corresponding one or more groups of scheduling bandwidth thresholds.
  • higher layer signaling such as RRC signaling, or MAC CE
  • the processing unit is further configured to: configure, for the BP, a correspondence relationship between a bandwidth threshold and a frequency domain density, or configure a scheduling bandwidth threshold and a frequency domain density for the BP group.
  • the communication unit is further configured to: send the BP or BP group and the corresponding group by using high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the foregoing The configuration information of the correspondence between the scheduling bandwidth threshold and the frequency domain density.
  • Another possible design includes a storage unit, configured to store correspondence information between the MCS threshold value and the time domain density corresponding to the BP, or the MCS threshold value and the time domain density corresponding to the BP group. Correspondence information.
  • the communication unit is further configured to: send multiple BPs to the peer device, such as RRC signaling, through high layer signaling.
  • the communication unit is further configured to: send the indication information to the peer device, to indicate the currently activated BP, and the indication message may be MAC CE signaling or DCI.
  • the processing unit is further configured to determine, according to the BP that is currently activated by the peer device, a set of MCS thresholds or MCS thresholds corresponding to the BPs currently activated by the peer device. Correspondence information of time domain density;
  • the processing unit is further configured to: determine, according to the BP group to which the BP that is currently activated by the peer device belongs, a set of MCS thresholds corresponding to the BPs currently activated by the peer device or Correspondence relationship between MCS threshold and time domain density;
  • the processing unit is further configured to: determine a time domain density of the PTRS according to the currently scheduled MCS and the corresponding relationship information.
  • the processing unit is further configured to determine, according to the BP that is currently activated by the peer device, a set of scheduling bandwidth thresholds or scheduling bandwidth thresholds corresponding to the BPs currently activated by the peer device. Correspondence information between the value and the frequency domain density;
  • the processing unit is further configured to: determine, according to the BP group to which the BP that is currently activated by the peer device belongs, a set of scheduling bandwidth thresholds corresponding to the BP that is currently activated by the peer device. Or scheduling the correspondence relationship between the bandwidth threshold and the frequency domain density;
  • the processing unit is further configured to: determine a frequency domain density of the PTRS according to the currently scheduled scheduling bandwidth and the correspondence information.
  • the device is a terminal or a network device.
  • the apparatus provided in the thirtieth aspect may be a base station or a terminal.
  • the communication unit is further configured to receive, by using the high layer signaling, multiple candidate BPs configured by the base station, high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or at least The combination of two.
  • high layer signaling such as RRC signaling, or MAC CE
  • the communication unit is further configured to receive signaling from the base station, where the signaling is used to indicate a currently activated BP, and the signaling may be a MAC CE or a DCI.
  • the communication unit receives high-level signaling from the base station, where the signaling is used to indicate rule information of the BP packet or to indicate a BP group to which the currently activated BP belongs or for indicating BP group information.
  • the high layer signaling may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the BP packet information can be used to indicate one or more BPs within the BP group.
  • a storage unit is further configured to store a rule for dividing a plurality of BPs into BP groups, and determining, according to the pre-stored rules, a BP group to which the current BP belongs.
  • Another possible design further includes a storage unit, configured to store correspondence information between the MCS threshold and the time domain density, where one or more BPs correspond to one or more of the MCS thresholds and times Correspondence information of the domain density, or one or more BP groups corresponding to one or more correspondences between the MCS threshold and the time domain density.
  • Another possible design includes a storage unit, configured to store correspondence information between a scheduling bandwidth threshold and a frequency domain density, where one or more BPs correspond to one or more of the scheduling bandwidth thresholds. Correspondence information with the frequency domain density, or one or more BP groups corresponding to one or more correspondence relationship between the scheduling bandwidth threshold and the frequency domain density.
  • the communication unit is further configured to receive configuration information from the base station by using high layer signaling, where the configuration information is used to indicate one or more sets of scheduling bandwidth thresholds corresponding to one or more BPs, Or one or more BP groups correspond to one or more sets of scheduling bandwidth thresholds.
  • the high layer signaling may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the communication unit is further configured to receive configuration information from the base station by using high layer signaling, where the configuration information is used to indicate one or more groups of MCS thresholds corresponding to one or more BPs, or One or more sets of MCS thresholds corresponding to one or more BP groups.
  • the high layer signaling may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the communication unit is further configured to receive configuration information from the base station by using high layer signaling, where the configuration information is used to indicate one or more MCS thresholds corresponding to one or more BPs.
  • the high layer signaling may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the communication unit is further configured to receive configuration information from the base station by using high layer signaling, where the configuration information is used to indicate one or more scheduling bandwidth thresholds corresponding to one or more BPs.
  • the storage unit is also used to store at least one of the following information:
  • the processing unit is further configured to: determine, according to the currently activated BP, a correspondence relationship between a set of MCS thresholds or MCS thresholds and time domain densities corresponding to the currently activated BPs;
  • the processing unit is further configured to: determine, according to the BP group to which the currently activated BP belongs, determine a group of MCS threshold values or MCS threshold values corresponding to the BP group and time domain density Relationship information;
  • the processing unit is further configured to: determine a time domain density of the PTRS according to the currently scheduled MCS and the corresponding relationship information.
  • the processing unit is further configured to: determine, according to the currently activated BP, a correspondence between a set of scheduling bandwidth thresholds or scheduling bandwidth thresholds and frequency domain densities corresponding to the currently activated BPs information;
  • the processing unit is further configured to: determine, according to the BP group to which the currently activated BP belongs, a set of scheduling bandwidth thresholds, a bandwidth threshold value and a frequency domain density corresponding to the BP group Correspondence relationship information;
  • the processing unit is further configured to: determine a frequency domain density of the PTRS according to the current scheduling bandwidth and the correspondence information.
  • an apparatus including a processing unit and a communication unit, wherein
  • a communication unit configured to receive one or more symbols, and the one or more symbols are mapped with a phase tracking reference signal PTRS;
  • a processing unit configured to acquire a time domain density of the PTRS according to a current bandwidth part BP and a modulation order MCS;
  • the PTRS is obtained from the one or more symbols according to the time domain density and the frequency domain density.
  • the device further includes a storage unit, configured to store a correspondence information table of the MCS and the time domain density, where each BP corresponds to one of the correspondence relationship information tables, or each BP group Corresponding to one of the correspondence relationship information tables.
  • the communication unit is further configured to receive signaling from the peer device, the signaling carrying information indicating one or more BPs.
  • the communication unit is further configured to receive signaling from the peer device, the signaling carrying information indicating the currently activated BP.
  • the communication unit is further configured to receive signaling from the peer device, where the signaling is used to indicate rule information of the BP packet or to indicate that the currently activated BP belongs to
  • the BP group is either used to indicate BP group information.
  • the storage unit is configured to store a rule that divides multiple BPs into BP groups, and the processing unit is configured to determine, according to the pre-stored rules, a BP group to which the current BP belongs.
  • the storage unit is configured to store correspondence information between the MCS threshold and the time domain density, where the one or more BPs correspond to one or more of the MCS threshold and the time domain density. Correspondence relationship information, or one or more BP groups corresponding to one or more correspondence relationship information of the MCS threshold value and the time domain density.
  • the storage unit is configured to store correspondence information between the scheduling bandwidth threshold and the frequency domain density, where one or more BPs correspond to one or more of the scheduling bandwidth thresholds and frequencies. Correspondence information of the domain density, or one or more BP groups corresponding to one or more correspondence relationship between the scheduling bandwidth threshold and the frequency domain density.
  • the communication unit is further configured to receive configuration information from the base station by using high layer signaling, where the configuration information is used to indicate one or more sets of scheduling bandwidth thresholds corresponding to one or more BPs, or One or more sets of scheduling bandwidth thresholds corresponding to one or more BP groups.
  • the high layer signaling may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the communication unit is further configured to receive configuration information from the base station by using high layer signaling, where the configuration information is used to indicate one or more groups of MCS thresholds corresponding to one or more BPs, or one One or more sets of MCS thresholds corresponding to multiple BP groups.
  • the high layer signaling may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the communication unit is further configured to receive configuration information from the base station by using high layer signaling, where the configuration information is used to indicate one or more MCS thresholds and time domains corresponding to one or more BPs. Correspondence relationship information of density, or correspondence information of one or more MCS threshold values and time domain density corresponding to one or more BP groups.
  • the high layer signaling may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the communication unit is further configured to receive configuration information from the base station by using high layer signaling, where the configuration information is used to indicate one or more scheduling bandwidth thresholds and frequencies corresponding to one or more BPs.
  • a storage unit is used to store at least one of the following information:
  • the processing unit is further configured to: determine, according to the currently activated BP, a correspondence between a group of MCS thresholds or MCS thresholds and time domain densities corresponding to the currently activated BPs information;
  • the processing unit is further configured to: determine, according to the BP group to which the currently activated BP belongs, a set of MCS thresholds or MCS thresholds and time domain densities corresponding to the BP group. Correspondence information;
  • the processing unit is further configured to: determine a time domain density of the PTRS according to the currently scheduled MCS and the corresponding relationship information.
  • the processing unit is further configured to: determine, according to the currently activated BP, a set of scheduling bandwidth thresholds or scheduling bandwidth thresholds and frequency domain densities corresponding to the currently activated BPs. Correspondence relationship information;
  • the processing unit is further configured to: determine, according to the BP group to which the currently activated BP belongs, a set of scheduling bandwidth threshold scheduling bandwidth threshold values and frequency domains corresponding to the BP group Correspondence information of density;
  • the processing unit is further configured to: determine a frequency domain density of the PTRS according to the current scheduling bandwidth and the correspondence relationship information.
  • the communication unit is further configured to receive correspondence information between one or more BPs and a scheduling bandwidth and a frequency domain density.
  • the communication unit is further configured to receive correspondence information between one or more BP groups and scheduling bandwidth and frequency domain density.
  • the communication unit is further configured to receive correspondence information of one or more BPs and MCSs and time domain densities.
  • the communication unit is further configured to receive correspondence information between the one or more BP groups and the MCS and the time domain density.
  • the device is a terminal or a network device.
  • the apparatus provided in the thirty-first aspect may be a terminal or a base station.
  • a base station there is a special design, specifically:
  • the processing unit is further configured to: configure one or more sets of MCS thresholds for some or all of the BPs, or configure one or more sets of MCS thresholds for some or all of the BP groups.
  • the communication unit is further configured to: send one or more BPs or one or more BP groups by using high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the foregoing Configuration information of the corresponding one or more sets of MCS thresholds.
  • the processing unit is further configured to: acquire one or more sets of MCS thresholds corresponding to one or more BPs, or a group corresponding to the one or more BP groups according to pre-stored information or Multiple sets of MCS thresholds.
  • a storage unit is further configured to store a rule for dividing a plurality of BPs into a BP group
  • the processing unit is further configured to: determine, according to the pre-stored rules, a BP group to which the current BP belongs.
  • the processing unit is further configured to: the base station configure one or more BP packet information, and the communication unit is further configured to use high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message. Or a combination of at least two of the above, transmitting one or more BP packet information.
  • the BP packet information can be used to indicate one or more BPs within the BP group.
  • the processing unit is further configured to: configure, by the base station, BP packet rule information, where the communication unit is further configured to: use high layer signaling, such as RRC signaling, or MAC CE, or broadcast message, or system message or The combination of at least two of the above sends BP packet rule information.
  • high layer signaling such as RRC signaling, or MAC CE
  • the processing unit is further configured to: configure correspondence information between the MCS threshold and the time domain density for the BP, or configure a correspondence between the MCS threshold and the time domain density for the BP group. information.
  • the communication unit is further configured to: send one or more BPs or one or more BP groups by using high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the foregoing Corresponding configuration information of the correspondence between the one or more MCS threshold values and the time domain density.
  • the processing unit is further configured to: configure one or more sets of scheduling bandwidth thresholds for some or all of the BPs, or configure one or more sets of scheduling bandwidth thresholds for some or all of the BP groups.
  • the communication unit is further configured to: send one or more BPs or one or more BP groups and corresponding by high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the foregoing. Configuration information for one or more sets of scheduling bandwidth thresholds.
  • the processing unit is further configured to: acquire one or more sets of scheduling bandwidth thresholds corresponding to one or more BPs, or one corresponding to the one or more BP groups according to the pre-stored information. Group or groups of scheduling bandwidth thresholds.
  • the processing unit is further configured to: configure, for the BP, a correspondence relationship between a bandwidth threshold and a frequency domain density, or configure a scheduling bandwidth threshold and a frequency domain density for the BP group. Correspondence information.
  • the communication unit is further configured to send one or more BPs or one or more BP groups and corresponding through high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the foregoing. Configuration information of the one or more scheduling relationship values of the scheduling bandwidth threshold and the frequency domain density.
  • the base station pre-stores at least one of the following information:
  • the communication unit is further configured to: configure multiple BPs to the terminal device by using high layer signaling.
  • the communication unit is further configured to: send the indication information by using the MAC CE or the DCI, and indicate the currently activated BP, where the indication information may be a BP number or index information.
  • the processing unit is further configured to determine, according to the BP that is currently activated by the peer device, a set of MCS thresholds or MCS thresholds corresponding to the BPs currently activated by the peer device. Correspondence information of time domain density;
  • the processing unit is further configured to: determine, according to the BP group to which the BP that is currently activated by the peer device belongs, a set of MCS thresholds corresponding to the BPs currently activated by the peer device or Correspondence relationship between MCS threshold and time domain density;
  • the processing unit is further configured to: determine a time domain density of the PTRS according to the currently scheduled MCS and the corresponding relationship information.
  • the processing unit is further configured to determine, according to the BP that is currently activated by the peer device, a set of scheduling bandwidth thresholds or scheduling bandwidth thresholds corresponding to the BPs currently activated by the peer device. Correspondence information between the value and the frequency domain density;
  • the processing unit is further configured to: determine, according to the BP group to which the BP that is currently activated by the peer device belongs, a set of scheduling bandwidth thresholds corresponding to the BP that is currently activated by the peer device. Or scheduling the correspondence relationship between the bandwidth threshold and the frequency domain density;
  • the processing unit is further configured to: determine a frequency domain density of the PTRS according to the currently scheduled scheduling bandwidth and the corresponding relationship information.
  • the frequency domain density is any value of 0, 1/2, 1/4, 1/8, 1/16.
  • the time domain density is any value of 0, 1/2, 1/4, or 1.
  • Figure 1 shows a schematic diagram of phase noise involved in the present application
  • FIG. 2 is a schematic diagram showing phase rotation caused by phase noise according to the present application.
  • 3A-3C are schematic diagrams showing resource allocation manners of sounding reference signals according to the present application.
  • FIG. 4 is a schematic diagram showing a resource allocation manner of a channel state information reference signal according to the present application.
  • FIG. 5 is a schematic structural diagram of a wireless communication system according to the present application.
  • FIG. 6 is a schematic structural diagram of a terminal provided by the present application.
  • FIG. 7 is a schematic structural diagram of a network device provided by the present application.
  • FIG. 8 is a schematic diagram showing time-frequency resources involved in the present application.
  • FIG. 9 is a schematic flowchart diagram of a reference signal transmission method provided by the present application.
  • FIG. 10 is a schematic flowchart diagram of another reference signal transmission method provided by the present application.
  • FIG. 11 is a schematic flowchart diagram of still another reference signal transmission method provided by the present application.
  • FIG. 12 is a schematic diagram of resource mapping of a phase tracking reference signal for channel estimation provided by the present application.
  • FIG. 13A is a schematic diagram of resource mapping of another phase tracking reference signal for channel estimation provided by the present application.
  • FIG. 13B is a schematic diagram of resource mapping of another phase tracking reference signal for channel estimation provided by the present application.
  • FIG. 14 is a schematic diagram of resource mapping of a phase tracking reference signal for channel estimation provided by the present application.
  • FIG. 15 is a schematic diagram showing resource mapping of a phase tracking reference signal for channel estimation provided by the present application.
  • 16 is a schematic diagram of resource mapping of a phase tracking reference signal for channel estimation provided by the present application.
  • 17 is a schematic diagram of resource mapping of a sounding reference signal provided by the present application.
  • FIG. 18 is a schematic diagram of resource mapping of a channel state information reference signal provided by the present application.
  • 19 is a schematic diagram of resource mapping of a phase tracking reference signal for data transmission provided by the present application.
  • FIG. 20A is a schematic diagram of determining a resource location of a phase tracking reference signal according to a resource location of a demodulation reference signal according to the present application;
  • FIG. 20B is a schematic diagram of determining a resource location of a phase tracking reference signal according to a resource location of a demodulation reference signal according to the present application;
  • 21 is a schematic diagram of determining a resource location of a phase tracking reference signal according to a cell identifier according to the present application.
  • FIG. 22 is a schematic diagram showing resource mapping of phase tracking reference signals of several different time domain densities provided by the present application.
  • 23A-23L are schematic diagrams showing resource mapping of several phase tracking reference signals for avoiding resource conflicts provided by the present application
  • 24A-24C are diagrams showing resource mappings of several phase tracking reference signals mapped on a single symbol mapped with other reference signals provided by the present application;
  • FIG. 25 is a schematic structural diagram of a wireless communication system, a terminal, and a network device provided by the present application.
  • FIG. 5 shows a wireless communication system to which the present application relates.
  • the wireless communication system can work in a high frequency band, is not limited to a Long Term Evolution (LTE) system, and can be a fifth generation mobile communication (5th generation, 5G) system, a new air interface (NR). System, machine to machine (Machine to Machine, M2M) system.
  • LTE Long Term Evolution
  • 5G fifth generation mobile communication
  • NR new air interface
  • M2M machine to machine
  • the wireless communication system 10 can include one or more network devices 101, one or more terminals 103, and a core network 115. among them:
  • the network device 101 can be a base station, and the base station can be used for communicating with one or more terminals, and can also be used for communicating with one or more base stations having partial terminal functions (such as a macro base station and a micro base station, such as an access point, Communication between).
  • the base station may be a Base Transceiver Station (BTS) in a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) system, or may be an evolved base station in an LTE system (Evolutional Node B). , eNB), and base stations in 5G systems, new air interface (NR) systems.
  • the base station may also be an Access Point (AP), a TransNode (Trans TRP), a Central Unit (CU), or other network entity, and may include some or all of the functions of the above network entities. .
  • Terminals 103 may be distributed throughout wireless communication system 100, either stationary or mobile.
  • terminal 103 may be a mobile device, a mobile station, a mobile unit, an M2M terminal, a wireless unit, a remote unit, a user agent, a mobile client, and the like.
  • network device 101 can be used to communicate with terminal 103 over one or more antennas under the control of a network device controller (not shown).
  • the network device controller may be part of the core network 115 or may be integrated into the network device 101.
  • the network device 101 can be configured to transmit control information or user data to the core network 115 through a blackhaul interface 113 (such as an S1 interface).
  • the network device 101 and the network device 101 can also communicate with each other directly or indirectly through a blackhaul interface 111 (such as an X2 interface).
  • the wireless communication system shown in FIG. 5 is only for the purpose of more clearly explaining the technical solutions of the present application, and does not constitute a limitation of the present application. Those skilled in the art may know that with the evolution of the network architecture and the emergence of new business scenarios, The technical solutions provided by the embodiments of the invention are equally applicable to similar technical problems.
  • Figure 6 illustrates a terminal 200 provided by some embodiments of the present application.
  • the terminal 200 may include: one or more terminal processors 201, a memory 202, a communication interface 203, a receiver 205, a transmitter 206, a coupler 207, an antenna 208, a user interface 202, and an input and output module. (including audio input and output module 210, key input module 211, display 212, etc.). These components can be connected by bus 204 or other means, and FIG. 6 is exemplified by a bus connection. among them:
  • Communication interface 203 can be used by terminal 200 to communicate with other communication devices, such as network devices.
  • the network device may be the network device 300 shown in FIG. 8.
  • the communication interface 203 may be a Long Term Evolution (LTE) (4G) communication interface, or may be a 5G or a future communication interface of a new air interface.
  • LTE Long Term Evolution
  • 5G Fifth Generation
  • the terminal 200 may be configured with a wired communication interface 203, such as a Local Access Network (LAN) interface.
  • LAN Local Access Network
  • Transmitter 206 can be used to perform transmission processing, such as signal modulation, on signals output by terminal processor 201.
  • Receiver 205 can be used to perform reception processing, such as signal demodulation, on the mobile communication signals received by antenna 208.
  • transmitter 206 and receiver 205 can be viewed as a wireless modem.
  • the number of the transmitter 206 and the receiver 205 may each be one or more.
  • the antenna 208 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • the coupler 207 is configured to divide the mobile communication signal received by the antenna 208 into multiple channels and distribute it to a plurality of receivers 205.
  • the terminal 200 may also include other communication components such as a GPS module, a Bluetooth module, a Wireless Fidelity (Wi-Fi) module, and the like. Not limited to the above-described wireless communication signals, the terminal 200 can also support other wireless communication signals such as satellite signals, short-wave signals, and the like. Not limited to wireless communication, the terminal 200 may also be configured with a wired network interface (such as a LAN interface) to support wired communication.
  • a wired network interface such as a LAN interface
  • the input and output module can be used to implement the interaction between the terminal 200 and the user/external environment, and can include the audio input and output module 210, the key input module 211, the display 212, and the like. Specifically, the input and output module may further include: a camera, a touch screen, a sensor, and the like. The input and output modules communicate with the terminal processor 201 through the user interface 209.
  • Memory 202 is coupled to terminal processor 201 for storing various software programs and/or sets of instructions.
  • memory 202 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 202 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 202 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the memory 202 can also store a user interface program, which can realistically display the content of the application through a graphical operation interface, and receive user control operations on the application through input controls such as menus, dialog boxes, and keys. .
  • the memory 202 may be used to store an implementation program of the resource allocation method provided by one or more embodiments of the present application on the terminal 200 side.
  • the resource mapping method provided by one or more embodiments of the present application, please refer to the subsequent embodiments.
  • Terminal processor 201 can be used to read and execute computer readable instructions. Specifically, the terminal processor 201 can be used to invoke a program stored in the memory 212, such as a resource mapping method provided by one or more embodiments of the present application, to implement the program on the terminal 200 side, and execute the instructions included in the program.
  • a program stored in the memory 212 such as a resource mapping method provided by one or more embodiments of the present application, to implement the program on the terminal 200 side, and execute the instructions included in the program.
  • the terminal 200 can be the terminal 103 in the wireless communication system 100 shown in FIG. 5, and can be implemented as a mobile device, a mobile station, a mobile unit, a wireless unit, a remote unit, and a user agent. , mobile client and more.
  • the terminal 200 shown in FIG. 6 is only one implementation of the embodiment of the present application. In an actual application, the terminal 200 may further include more or less components, which are not limited herein.
  • FIG. 7 illustrates a network device 300 provided by some embodiments of the present application.
  • network device 300 can include one or more network device processors 301, memory 302, communication interface 303, transmitter 305, receiver 306, coupler 307, and antenna 308. These components can be connected by bus 304 or other means, and FIG. 7 is exemplified by a bus connection. among them:
  • Communication interface 303 can be used by network device 300 to communicate with other communication devices, such as terminal devices or other network devices.
  • the terminal device may be the terminal 200 shown in FIG. 7.
  • the communication interface 303 may be a Long Term Evolution (LTE) (4G) communication interface, or may be a 5G or a future communication interface of a new air interface.
  • LTE Long Term Evolution
  • the network device 300 may also be configured with a wired communication interface 303 to support wired communication.
  • the backhaul link between one network device 300 and other network devices 300 may be a wired communication connection.
  • Transmitter 305 can be used to perform transmission processing, such as signal modulation, on signals output by network device processor 301.
  • Receiver 306 can be used to perform reception processing on the mobile communication signals received by antenna 308. For example, signal demodulation.
  • transmitter 305 and receiver 306 can be viewed as a wireless modem. In the network device 300, the number of the transmitter 305 and the receiver 306 may each be one or more.
  • the antenna 308 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • Coupler 307 can be used to divide the mobile pass signal into multiple channels and distribute it to multiple receivers 306.
  • Memory 302 is coupled to network device processor 301 for storing various software programs and/or sets of instructions.
  • memory 302 may include high speed random access memory, and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 302 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as uCOS, VxWorks, or RTLinux.
  • the memory 302 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the network device processor 301 can be used to perform wireless channel management, implement call and communication link establishment and teardown, and provide cell handover control and the like for users in the control area.
  • the network device processor 301 may include: an Administration Module/Communication Module (AM/CM) (a center for voice exchange and information exchange), and a Basic Module (BM) (for Complete call processing, signaling processing, radio resource management, radio link management and circuit maintenance functions), code conversion and sub-multiplexer (TCSM) (for multiplexing demultiplexing and code conversion functions) )and many more.
  • AM/CM Administration Module/Communication Module
  • BM Basic Module
  • TCSM code conversion and sub-multiplexer
  • the network device processor 301 can be used to read and execute computer readable instructions. Specifically, the network device processor 301 can be used to invoke a program stored in the memory 302, such as the resource mapping method provided by one or more embodiments of the present application, on the network device 300 side, and execute the instructions included in the program. .
  • the network device 300 can be the base station 101 in the wireless communication system 100 shown in FIG. 5, and can be implemented as a base transceiver station, a wireless transceiver, a basic service set (BSS), and an extended service set (ESS). NodeB, eNodeB, access point or TRP, etc.
  • the network device 300 shown in FIG. 7 is only one implementation of the embodiment of the present application. In actual applications, the network device 300 may further include more or fewer components, which are not limited herein.
  • the embodiment of the present application provides a Resource mapping method.
  • the main principle of the present application may include inserting a Phase Tracking Reference Signal (PTRS) when transmitting a reference signal for estimating CSI on a plurality of symbols.
  • PTRS Phase Tracking Reference Signal
  • the phase tracking reference signal is also mapped on the plurality of symbols, and the subcarriers to which the phase tracking reference signal is mapped have the same frequency domain position. In this way, the phase tracking reference signal can be used for phase tracking on the subcarriers corresponding to the same frequency domain location, which is beneficial to improve the CSI estimation accuracy.
  • the resources involved in the present application refer to time-frequency resources, including time domain resources and frequency domain resources, and are usually resource elements (Resource Element, RE), Resource Block (RB), symbol (symbol), and subcarrier (subcarrier).
  • TTI Transmission Time Interval
  • the entire system resource is composed of a frequency domain and a time domain divided grid, wherein one grid represents one RE, and one RE is composed of one subcarrier in frequency and one symbol in time domain.
  • the present application provides a drawing for explaining only the embodiment of the present invention.
  • the size of the resource block in the future communication standard, the number of symbols included in the resource block, the number of subcarriers, and the like may be different.
  • the resources mentioned in this application. The blocks are not limited to the drawings.
  • the reference signal used for estimating CSI may be referred to as a first reference signal, and the phase tracking reference signal may be referred to as a second reference signal.
  • the first reference signal may be a downlink reference signal used for estimating CSI, such as a CSI-RS.
  • the first reference signal may also be an uplink reference signal for estimating CSI, such as an SRS. It is not limited to the two reference signals of SRS and CSI-RS, and other reference signals that can be used to estimate CSI, such as Cell-specific Reference Signals (CRS), also belong to the reference signal for estimating CSI involved in the present application. .
  • CRS Cell-specific Reference Signals
  • FIG. 9 shows a reference signal transmission method provided by the present application. The following expands the description:
  • the network device configures, respectively, resources corresponding to the first reference signal and the second reference signal, where the first reference signal is mapped on multiple symbols, and the second reference signal is mapped in at least one of the multiple symbols. On two symbols, the subcarriers to which the second reference signal is mapped have the same frequency domain position.
  • the network device sends resource location information to the terminal.
  • the terminal receives the resource configuration information.
  • the resource configuration information is used to indicate on which time-frequency resources the terminal receives (or transmits) the first reference signal and the second reference signal.
  • the network device and the terminal perform phase tracking and CSI estimation by using the first reference signal and the second reference signal.
  • the first reference signal may be an uplink reference signal for estimating CSI, such as an SRS
  • the second reference signal may be an uplink reference signal (PTRS) for phase tracking.
  • PTRS uplink reference signal
  • Step 1 The terminal sends the first reference signal and the second reference signal according to the resource configuration information.
  • the second reference signal may be an uplink PTRS for phase tracking.
  • Step 2 Correspondingly, the network device receives the first reference signal and the second reference signal sent by the terminal.
  • Step 3 The network device performs phase tracking and CSI estimation by using the first reference signal and the second reference signal. Specifically, the network device may estimate, by using the second reference signal, a relative phase error value between each of the plurality of symbols on a subcarrier corresponding to the same frequency domain location, thereby providing The accuracy of the CSI estimate.
  • the first reference signal may be a downlink reference signal for estimating CSI, such as a CSI-RS
  • the second reference signal may be a downlink reference signal for phase tracking (PTRS).
  • PTRS phase tracking
  • Step 1 The network device sends the first reference signal and the second reference signal to the terminal.
  • the second reference signal may be a downlink PTRS for phase tracking.
  • Step 2 Correspondingly, the terminal receives the first reference signal and the second reference signal according to the resource configuration information.
  • Step 3 The terminal performs phase tracking and CSI estimation by using the first reference signal and the second reference signal. Specifically, the terminal may use the second reference signal to estimate a relative phase error value between each of the multiple symbols on the subcarrier corresponding to the same frequency domain location, thereby providing CSI. Estimated accuracy.
  • the antenna port that sends the second reference signal may be one of antenna ports that transmit the first reference signal or Multiple.
  • the antenna port that sends the second reference signal and the antenna port that sends the first reference signal may also be Quasi-Collocated (QCL).
  • QCL Quasi-Collocated
  • the network device may send the resource configuration information to the terminal by using a Physical Downlink Control Channel (PDCCH).
  • the network device may also send the resource configuration information to the terminal by using high layer signaling, such as Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the resource locations corresponding to the first reference signal and the second reference signal may be predefined by a protocol. That is, the network device does not need to send the resource configuration information to the terminal.
  • the resource location corresponding to the first reference signal may be predefined by a protocol.
  • the resource configuration information may include a resource mapping rule between the second reference signal and the first reference signal.
  • the terminal can determine the resource location of the second reference signal according to the resource mapping rule between the second reference signal and the first reference signal provided by the application.
  • the resource mapping rule between the second reference signal and the first reference signal may be predefined by a protocol, or may be configured by the network device by using high layer signaling or a PDCCH.
  • the resource mapping rule is predefined by a protocol, the network device does not need to send the resource configuration information to the terminal.
  • the resource configuration information may include resource configuration information of the first reference signal and a resource mapping rule between the second reference signal and the first reference signal.
  • the resource configuration information of the first reference signal is used by the terminal to determine, according to the resource configuration information, a resource location mapped by the first reference signal.
  • the terminal can determine the second reference according to the resource mapping rule between the second reference signal and the first reference signal and the resource location of the first reference signal provided by the terminal.
  • the resource location of the signal may be predefined by a protocol, or may be configured by the network device by using high layer signaling or a PDCCH.
  • the resource configuration information may include only resource location information of the first reference signal.
  • the network device may further send a trigger indication to the terminal, for example, sending the trigger indication by using a Downlink Control Indicator (DCI), for triggering the terminal to send the second reference. signal.
  • DCI Downlink Control Indicator
  • the resource mapping method of the second reference signal (hereinafter referred to as PTRS) provided by the present application is described in detail below by taking the first reference signal as an SRS as an example.
  • SRS performs frequency hopping on these multiple symbols.
  • the plurality of symbols may be continuous or discontinuous.
  • the SRS subbands do not correspond to the same frequency domain location.
  • the PTRS is mapped on at least two symbols in the hop period of the SRS, and the sub-carriers mapped in the PTRS have the same frequency domain position.
  • FIG. 12 exemplarily shows a PTRS resource mapping method.
  • one or more subcarriers and SRS subbands mapped by the PTRS are adjacent in the frequency domain. That is to say, on each symbol mapped by the SRS, the PTRS can be mapped at one or both ends of the SRS subband.
  • the subcarriers mapped by the PTRS have multiple identical frequency domain locations, such as frequency domain locations X, Y, and Z, wherein each of the frequency domain locations may correspond to one or more subcarriers.
  • the PTRS may be mapped on the first m (m is a positive integer) subcarrier of the SRS subband, or may be mapped on the back n (n is a positive integer) subcarrier of the SRS subband, and may also be mapped in the SRS subcarrier.
  • m and n may or may not be equal.
  • the PTRS resource mapping rule may be summarized as, but not limited to, if the SRS subband is in the lowest frequency domain position in the terminal processing bandwidth, the PTRS may be mapped on the last n subcarriers of the SRS subband. If the SRS subband is in the highest frequency domain location in the terminal processing bandwidth, the PTRS may be mapped on the first m subcarriers of the SRS subband. If the SRS subband is in the intermediate frequency domain position in the terminal processing bandwidth, the PTRS may be mapped on the first m subcarriers of the SRS subband or on the last n subcarriers of the SRS subband.
  • the terminal processing bandwidth is a total frequency hopping bandwidth of the sounding reference signal allocated by the network device to the terminal, that is, the total bandwidth of the channel that the network device requires the terminal to complete the sounding.
  • the resource location of the second reference signal can be determined by the resource location of the first reference signal.
  • the determining policy may be predefined by the protocol, or may be configured by the network device to send high-level signaling (such as RRC signaling) or PDCCH signaling.
  • whether the PTRS needs to be sent for phase tracking and CSI estimation may be determined by means of protocol pre-defined or high-level signaling configuration.
  • the rule for configuring the PTRS may be predefined according to the frequency hopping bandwidth of the SRS. For example, when the SRS hopping bandwidth is higher than the preset bandwidth threshold, the PTRS is configured. In this way, the PTRS can be configured to avoid the SRS hopping bandwidth being small. If the SRS hopping bandwidth is small, the negative effect of configuring the PTRS overhead is greater than the beneficial effect of the phase offset estimation.
  • the examples are only one implementation provided by the present application, and may be different in practical applications and should not be construed as limiting.
  • the length of the SRS sequence on each symbol may be determined according to whether PTRS needs to be sent and whether PTRS is mapped at one end or both ends of the SRS subband.
  • two SRS sequence lengths may be configured, including: a first sequence length and a second sequence length.
  • the SRS subband of the first sequence length is mapped with PTRS at both ends.
  • the sequence length of the SRS subband on the symbols 3 and 4 in FIG. 12 is equal to the length of the first sequence.
  • the SRS subband of the second sequence length is only mapped with PTRS at one end.
  • the sequence length of the SRS subband on symbols 1, 2 in FIG. 12 is equal to the length of the second sequence.
  • the SRS subband on the symbol i adopts the first Sequence length. If only one end of the SRS subband on symbol i needs to be mapped to the PTRS, then the SRS subband on symbol i takes the second sequence length.
  • the multiple terminals may adopt different cyclic shift values to ensure orthogonality of respective transmitted SRSs.
  • the PTRS and the SRS may adopt the same cyclic shift value.
  • PTRS and SRS can adopt the same "comb" mode, that is, PTRS and SRS correspond to the same comb-tooth spacing.
  • FIG. 12 only exemplarily shows an embodiment provided by the present application.
  • the SRS frequency hopping period, the SRS frequency hopping mode, and the like may be different, and should not be limited.
  • Figures 13A-13B illustrate another PTRS resource mapping method.
  • the subcarrier positions mapped by the PTRS are the same on each symbol mapped by the PTRS. That is to say, on each symbol mapped by the PTRS, the PTRS is mapped on the same one or more subcarriers.
  • the subcarrier positions mapped by the PTRS are the same on each symbol mapped by the PTRS.
  • the subcarrier position of the PTRS is the frequency domain position X', and the frequency domain position X' may correspond to one or more subcarriers.
  • the one or more subcarriers may be distributed in a frequency domain, as shown in FIG. 13A, or may be discretely distributed, as shown in FIG. 13B.
  • the cyclic shift value of the SRS can also be used to determine the frequency domain position of the PTRS.
  • the mapping rule between the subcarrier position mapped by the PTRS and the cyclic shift value of the SRS may be a protocol pre-defined, or the network device may send the command high layer signaling (such as RRC signaling) or PDCCH signaling. To configure. Different cyclic shift values correspond to different subcarrier positions.
  • the cyclic shift value 1 corresponds to the subcarrier position X1
  • the cyclic shift value 2 corresponds to the subcarrier position X2.
  • the SRS sent by the terminal 1 adopts a cyclic shift value of 1
  • the SRS transmitted by the terminal 2 adopts a cyclic shift value of 2. Therefore, the PTRSs respectively transmitted by the terminal 1 and the terminal 2 are respectively mapped at the subcarrier position X1 and the subcarrier position X2. On the subcarrier.
  • the examples are merely illustrative of the embodiments of the invention and should not be construed as limiting.
  • the SRS frequency hopping period, the SRS frequency hopping mode, and the like may be different, and should not be limited.
  • the PTRS is mapped on each symbol in the SRS hopping period. Can be as shown in Figures 13A-13B. If the subcarriers mapped by the PTRS have the same frequency domain location as the subcarriers on which the SRS is mapped on one (or more) symbols, the PTRS is not mapped on the one (or more) symbols. For example, as shown in FIG. 14, since the subcarriers mapped by the PTRS and the subcarriers mapped by the SRS on the first symbol have the same frequency domain position Y, the PTRS is not mapped on the first symbol. It should be noted that FIG. 14 is only used to explain the embodiments of the present invention, and may be different in practical applications, and should not be construed as limiting.
  • the SRS on the first symbol and the PTRS mapped on the other symbols can be jointly estimated to be the first symbol.
  • the relative phase error value between each and other symbols thereby improving the accuracy of the CSI estimation.
  • the resource mapping method of the second reference signal is described in detail below by taking the first reference signal as a CSI-RS as an example.
  • the CSI-RSs of the multiple antenna ports are coded in the time domain, or the CSI-RSs of the multiple antenna ports are coded in the frequency domain, but the CSI needs to be combined to estimate the CSI.
  • Figures 15-16 illustrate a reference signal transmission method provided by still another embodiment of the present application.
  • the CSI-RSs of the plurality of antenna ports are coded in the time domain.
  • FIG. 16 although CSI-RSs of multiple antenna ports are coded in the frequency domain, it is necessary to combine multiple symbols to estimate CSI.
  • the CSI-RS is mapped on multiple symbols, and the PTRS and the CSI-RS are mapped on the same symbol.
  • the subcarriers mapped by the PTRS correspond to the same frequency domain location.
  • the subcarriers mapped by the PTRS and the subcarriers mapped by the CSI-RS may be adjacent (as shown in FIG. 15) or may not be adjacent (not shown).
  • the resource location of the PTRS may be pre-defined by the protocol, or may be configured by the network device to send high-level signaling (such as RRC signaling) or PDCCH signaling.
  • the relative phase error between the symbols mapped with the CSI-RS can be calculated by using the PTRS, so that the CPE corresponding to each symbol can be more accurately estimated, thereby improving the CSI estimation. accuracy.
  • FIG. 15 and FIG. 16 only exemplarily illustrate some embodiments provided by the present application.
  • antenna ports, resource multiplexing, resource mapping patterns, and the like of the CSI-RS may also be different, and should not be used.
  • the composition is limited.
  • the present application also provides a design scheme of two reference signals, and can also improve the accuracy of CSI estimation.
  • the PTRS does not need to be inserted when transmitting the (upstream or downstream) reference signal for CSI estimation.
  • the following descriptions are made from the upper and lower reference signals for CSI estimation, respectively.
  • FIG. 17 shows a design of an SRS provided by the present application.
  • part of the subcarriers of the SRS subband on at least two symbols correspond to the same frequency domain position. That is, at least two upper SRS subbands overlap in the frequency domain.
  • any symbol i in the SRS hopping period there is at least one symbol j in the SRS hopping period, and the SRS subband mapped on the symbol i and the SRS subband mapped on the symbol j have The same one or more subcarriers.
  • the frequency hopping bandwidth of the SRS can be expressed as: Where W represents the total bandwidth required for SRS detection, N represents the number of symbols included in one hop period, and M is a positive integer. It can be understood that the larger the value of M, the larger the frequency hopping bandwidth of the SRS, and the larger the frequency domain overlapping portion of the SRS subband on different symbols.
  • the SRS hopping bandwidth W on each symbol can be configured by the network device to send high layer signaling (such as RRC signaling) or PDCCH signaling.
  • the SRS hopping bandwidth on each symbol may be the same or different.
  • FIG. 17 only exemplarily shows an embodiment provided by the present application.
  • the SRS frequency hopping period, the SRS frequency hopping mode, the SRS frequency hopping bandwidth, and the like may be different, and should not be limited. .
  • FIG. 18 shows a design of a CSI-RS provided by the present application.
  • the CSI-RSs of at least two antenna ports are time-domain coded, and the CSI-RS is mapped on multiple sub-carriers.
  • Diagram (A) in Fig. 18 shows a resource map of CSI-RSs of respective antenna ports in the prior art.
  • Diagram (B) in Fig. 18 shows a resource map of CSI-RSs of respective antenna ports in the present application. As shown in (B), on one or more subcarriers, the CSI-RS does not perform time domain code division, and only transmits CSI-RS of one antenna port, and the CSI-RS of the remaining antenna ports are in the one (s). Not sent at the subcarrier position.
  • an antenna port that does not transmit a CSI-RS may be referred to as a muted port.
  • the quiet port can also be configured such that the transmit power of the CSI-RS is zero.
  • the relative phase error value between each symbol mapped with the CSI-RS can be calculated by using the CSI-RS of the single antenna port, thereby improving the accuracy of the CSI estimation.
  • the subcarrier used for mapping only the CSI-RS of the single antenna port may be pre-defined by the protocol, or may be sent by the network device to perform high layer signaling (such as RRC letter). Configure) or PDCCH signaling.
  • the antenna port (ie, the quiet port) of the CSI-RS cannot be sent at the subcarrier position(s), and may be pre-defined by the protocol, or may be sent by the network device (such as RRC signaling). Or PDCCH signaling to configure.
  • FIG. 18 only exemplarily shows an embodiment provided by the present application.
  • the antenna ports, resource multiplexing, resource mapping patterns, and the like of the CSI-RS may also be different, and should not be limited. .
  • the present application also provides a method for configuring the second reference signal PTRS during data transmission, for phase tracking during data transmission, and improving reliability of data transmission.
  • the PTRS in the frequency domain, can be uniformly mapped within the user scheduling bandwidth.
  • the PTRS may be distributed over some or all of the symbols of the uplink shared channel (PUSCH) or the downlink shared channel (PDSCH) scheduled for the user.
  • the user scheduling bandwidth may be a bandwidth allocated to the user for transmitting data traffic and control signals of the user.
  • the following describes the configuration method of PTRS in detail from the aspects of mapping rules in frequency domain, time domain, resource collision avoidance, time domain density and frequency domain density.
  • the subcarriers carrying the PTRS may be granular in size and uniformly distributed in the user scheduling bandwidth. For example, as shown in FIG. 19, in the frequency domain, PTRS occupies one subcarrier every 4 resource blocks.
  • the examples are merely illustrative of the embodiments of the invention and should not be construed as limiting.
  • the PTRS of different users adopts a Frequency Division Multiplex (FDM) manner.
  • FDM Frequency Division Multiplex
  • the PTRS of User 1 and the PTRS of User 2 occupy different subcarriers.
  • PTRSs of different users may also adopt other multiplexing methods, such as Time Division Multiplex (TDM) or Code Division Multiplexing (CDM), which are not limited herein.
  • TDM Time Division Multiplex
  • CDM Code Division Multiplexing
  • the subcarrier position mapped by the PTRS may be represented by two indexes: an index of a resource block mapped by the PTRS and a subcarrier index of the PTRS within the mapped resource block. The following describes the determination of these two indexes.
  • the total number of subcarriers mapped by the PTRS is represented as L PT-RS , and L PT-RS is a positive integer.
  • the L PT-RS subcarriers may be uniformly distributed in the resource scheduling block within the user scheduling bandwidth.
  • the user scheduling bandwidth is respectively Resource block
  • the starting resource block number in the user scheduling bandwidth when the uplink and downlink data are transmitted is Then,
  • the index of the resource block mapped by the PTRS can be expressed as:
  • the index of the resource block mapped by the PTRS can be expressed as:
  • i>0 is a positive integer.
  • L PT-RS size of the PTRS within the user scheduling bandwidth.
  • the larger the frequency domain density of PTRS the larger the value of L PT-RS .
  • the total number of resource blocks corresponding to the user scheduling bandwidth that is, in the above expression or
  • the subcarrier index of the PTRS in the mapped resource block may be determined by a subcarrier position mapped by a Demodulation Reference Signal (DMRS).
  • DMRS Demodulation Reference Signal
  • the PTRS may be mapped on one or more subcarriers to which the DMRS is mapped.
  • the PTRSs are mapped on one or more subcarriers mapped by the DMRSs transmitted by the DMRS antenna ports corresponding to the PTRS antenna ports. For example, as shown in FIG. 20B, if the PTRS antenna port corresponds to DMRS antenna port 0 or 1, the PTRS is mapped on one or more subcarriers to which the DMRS transmitted by antenna port 0 or 1 is mapped.
  • the examples are merely illustrative of the embodiments of the invention and should not be construed as limiting.
  • the PTRS and the DMRS respectively transmitted by the corresponding PTRS antenna port and the DMRS antenna port have the same subcarrier position.
  • the corresponding PTRS antenna port and the DMRS antenna port satisfy the following relationship: the DMRS antenna port is the same as the PTRS antenna port, or the DMRS antenna port and the PTRS antenna port are quasi-co-location (QCL), or the DMRS antenna port and the PTRS The antenna ports have the same precoding. In this way, the receiving end can determine which PTRS antenna port the DMRS antenna port uses for phase tracking through the DMRS antenna port and the PTRS antenna port relationship, and which DMRS antenna port is estimated for the channel estimation required for the PTRS antenna port to implement phase estimation.
  • QCL quasi-co-location
  • the subcarrier index of the PTRS in the mapped resource block may be determined according to the cell ID, and the cell ID may be represented as
  • the mapping relationship may be predefined by the protocol, or may be configured by the network device through high layer signaling (such as RRC signaling) or PDCCH.
  • the PTRS may be distributed on part or all of the symbols of the uplink shared channel (PUSCH) or the downlink shared channel (PDSCH) scheduled to the user.
  • Figure 22 exemplarily shows several time domain densities of PTRS.
  • the PTRS may be continuously mapped on each symbol of the PUSCH (or PDSCH) (ie, "1 time domain density” shown in the figure), or may be in the PUSCH (or PDSCH). Mapping once every 2 symbols (ie, "1/2 time domain density” shown in the figure) can also be mapped once every 4 symbols of PUSCH (or PDSCH) (ie, "1/ shown in the figure) 4 time domain density").
  • the index of the start symbol mapped by the PTRS may be determined by the time domain density of the PTRS.
  • the start symbol mapped by the PTRS is the first symbol of the PUSCH, that is, the symbol "3" in the resource block. If the time domain density of the PTRS is the above-mentioned "1/2 time domain density”, the start symbol mapped by the PTRS is the second symbol of the PUSCH, that is, the symbol "4" in the resource block. If the time domain density of the PTRS is the above-mentioned "1/4 time domain density”, the start symbol mapped by the PTRS is the first symbol of the PUSCH, that is, the symbol "3" in the resource block.
  • the start symbol mapped by the PTRS is the first symbol of the PDSCH, that is, the symbol "3" in the resource block. If the time domain density of the PTRS is the above-mentioned "1/2 time domain density”, the start symbol mapped by the PTRS is the second symbol of the PDSCH, that is, the symbol "4" in the resource block. If the time domain density of the PTRS is the above-mentioned "1/4 time domain density”, the start symbol mapped by the PTRS is the first symbol of the PDSCH, that is, the symbol "3" in the resource block.
  • the time domain density of the PTRS may be related to at least one of the CP type, the subcarrier spacing, and the modulation order.
  • time domain density of the PTRS and the index of the start symbol mapped by the PTRS may be different, which is not limited in this application.
  • the time domain density of the PTRS, and the mapping relationship between the time domain density of the PTRS and the index of the start symbol mapped by the PTRS may be predefined by the protocol, or may be performed by the network device through high layer signaling (such as RRC signaling). ) or PDCCH configuration.
  • mapping rules of PTRS can also include the following:
  • the PTRS is not mapped on the resource particles mapped with the other reference signals, or the PTRS is zero power on the resource particles, or the PTRS is punctured by the other reference signals, as shown in FIG. 23A.
  • the subcarriers to which the other reference signals are mapped do not map the PTRS, specifically, the subcarrier mapping of the PTRS on the symbol on which the other reference signals are mapped.
  • the subcarrier mapping of the PTRS on the symbol on which the other reference signals are mapped On other subcarriers than the subcarriers mapped by the other reference signals, specifically, as shown in FIG. 23B.
  • a PTRS is mapped on adjacent symbols to which symbols of the other reference signals are mapped. That is, the PTRS is also mapped on the previous and/or next symbols of the symbols to which other reference signals are mapped.
  • mapping of the second reference signal on adjacent symbols of symbols of the other reference signal mapping is determined by symbol positions of the other reference signal maps.
  • the mapping of the second reference signal in a time slot is determined according to a symbol of the other reference signal mapping.
  • the other reference signals are mapped on 1 OFDM symbol, and the second reference signal, that is, the PTRS, has a time domain density of 1/2. If the symbols and PTRSs mapped by the other reference signals have conflicting resources (as shown in FIG. 23D, the conflicting resources are located at the time-frequency positions of the 8th symbol and the 4th RE), the symbols mapped in the other reference signals The first 1 symbol and/or the last 1 symbol are also mapped with PTRS (as shown in FIG. 23D, and PTRS is mapped at the 7th or 9th symbol).
  • the conflicting resource refers to that if the PTRS is uniformly mapped at equal intervals in the time domain according to the time domain density, that is, every n symbols are mapped on one symbol (the value of n may be 1 or 2 or 4) If the mapped symbol positions of other reference signals have the same symbol and the same subcarriers as the equally spaced symbol positions of the PTRS time domain, the same subcarriers on the same symbol are understood as conflicting resources.
  • the time domain density of the PTRS is 1/2, if the symbols mapped by the other reference signals and the conflicting resources of the PTRS are located in the other reference signals.
  • the PTRS is also mapped on the previous symbol of the symbol mapped by the other reference signals (as shown in the right figure of FIG. 23E, the conflicting resource is located in the 8th symbol).
  • PTRS is also mapped on the symbol 7; if the symbol mapped by the other reference signal and the conflicting resource of the PTRS are located in the second of the consecutive 2 OFMD symbols of the other reference signal mapping On the symbol, the PTRS is also mapped on the next adjacent symbol of the symbol mapped by the other reference signals (as shown in the left figure of FIG. 23E, the time-frequency of the conflicting resource is located in the 8th symbol and the 4th RE) Location, symbol 9 is also mapped with PTRS).
  • the time domain density of the PTRS is 1/2, if the symbols mapped by the other reference signals and the conflicting resources of the PTRS are located in the other reference signals.
  • PTRS is also mapped on the previous symbol of the symbol mapped by the other reference signals (as shown in the right figure of FIG.
  • the conflict resource is located The time-frequency position of the 4th RE of the 6th and 8th symbols, and the PTRS is also mapped on the symbol 5; if the symbol mapped by the other reference signal and the conflicting resource of the PTRS are located in the continuous mapping of the other reference signals On the second and fourth symbols in the four OFMD symbols, PTRS is also mapped on the next adjacent symbol of the symbol mapped by the other reference signals (as shown in the left figure of FIG. 23F, the conflict resource is located The time-frequency position of the 4th RE of the 8th and 10th symbols, and PTRS is also mapped on the symbol 11.
  • the time domain density of the PTRS is 1/4, if the symbols mapped by the other reference signals and the conflicting resources of the PTRS are located in the other reference signals.
  • the other reference signals are PTRS is also mapped on the previous symbol of the mapped symbol; if the symbol mapped by the other reference signal and the conflicting resource of the PTRS are located in the third or fourth of the consecutive 4 OFMD symbols of the other reference signal mapping
  • the PTRS is also mapped on the next adjacent symbol of the symbol to which the other reference signals are mapped.
  • the time domain density of the PTRS is 1/4, if the symbols mapped by the other reference signals and the conflicting resources of the PTRS are located in the other reference signals.
  • PTRS is also mapped on the previous symbol of the symbol mapped by the other reference signals (as shown in the left figure of FIG.
  • the conflicting resource is located in the 7th symbol) And the time-frequency position of the 4th RE is mapped with PTRS on symbol 6; if the symbol mapped by the other reference signal and the conflicting resource of the PTRS are located in the second of the consecutive 2 OFMD symbols of the other reference signal mapping On the symbol, the PTRS is also mapped on the next adjacent symbol of the symbol mapped by the other reference signals (as shown in the right figure of FIG. 23I, the time-frequency of the conflicting resource is located in the 7th symbol and the 4th RE) Location, mapped with PTRS on symbol 8.)
  • the other reference signals are mapped on one OFDM symbol, and the second reference signal, that is, the time domain density of the PTRS is 1/4. If the symbols and PTRSs mapped by the other reference signals have conflicting resources (as shown in FIG. 23J, the conflicting resources are located at the time-frequency positions of the 7th symbol and the 4th RE), the symbols mapped in the other reference signals The first symbol and/or the last symbol are also mapped with PTRS, as shown in Fig. 23J.
  • the PTRS is mapped on the adjacent symbol of the symbol to which the other reference signal is mapped, and the mapping is
  • the adjacent symbols of the symbols of the other reference signals are the time domain reference reference or the anchor symbol of the PTRS, and the second reference signal is mapped according to the time domain density of the second reference signal.
  • mapping of the second reference signal on adjacent symbols of symbols of the other reference signal mapping is determined by symbol positions of the other reference signal mapping, and the real-time domain reference is mapped according to symbols mapped by other reference signals. determine.
  • the mapping of the second reference signal in a time slot is determined according to a symbol of the other reference signal mapping.
  • the time domain density of the PTRS is 1/2
  • the previous adjacent symbols of the symbols mapped by other reference signals are The latter adjacent symbol is the time domain reference reference or the anchor symbol of the PTRS, and the PTRS is mapped.
  • the PTRS mapped on the preceding one or more symbols of the symbols of other reference signal mappings must be mapped on the previous adjacent symbols of the symbols of other reference signal mappings;
  • PTRS mapped on one or more symbols following the symbols of other reference signal maps must be mapped on the next adjacent symbol of the symbols of other reference signal maps, as shown in Figure 23K.
  • the time domain density of the PTRS is 1/4, and the previous adjacent symbols of the symbols mapped by other reference signals are The latter adjacent symbol is the time domain reference reference or the anchor symbol of the PTRS, and the PTRS is mapped.
  • the PTRS mapped on the preceding one or more symbols of the symbols of other reference signal mappings must be mapped on the previous adjacent symbols of the symbols of other reference signal mappings; according to the time domain At a density of 1/4, the PTRS mapped on one or more symbols following the symbols of the other reference signal maps must be mapped on the next adjacent symbol of the symbols of the other reference signal maps, as shown in Fig. 23L.
  • determining a mapping rule of the second reference signal according to whether a physical downlink/uplink shared channel is mapped on a symbol mapped with the other reference signal. Specifically, if the physical downlink/uplink shared channel is mapped on the symbol on which the other reference signal is mapped, the second reference signal adopts the second or third mapping rule; The first or fourth or fifth mapping rule is adopted on the symbol of the other reference signal without mapping the physical downlink/uplink shared channel.
  • the bandwidth and PTRS available for PUSCH (or PDSCH) transmission according to the one or more symbols may be used.
  • the frequency domain density calculates the number of subcarriers mapped by the PTRS on the one or more symbols.
  • the calculated number of subcarriers is the number of subcarriers required to map the PTRS as required by the bandwidth available for PUSCH (or PDSCH) transmission on the one or more symbols.
  • the bandwidth available for PUSCH (or PDSCH) transmission on the one or more symbols is smaller than the PUSCH scheduled for the user.
  • the bandwidth of (or PDSCH), the number of subcarriers mapped by the PTRS on the one or more symbols is also smaller than the L PT-RS mentioned in the foregoing.
  • the number of subcarriers actually mapped by the PTRS may be less than or equal to the calculated number of subcarriers.
  • the subcarrier position mapped by the PTRS may and may not be mapped.
  • the subcarriers of the PTRS mapped on the symbols of other reference signals are identical in position.
  • the PTRS is actually mapped in the bandwidth that can be used for PUSCH (or PDSCH) transmission.
  • the number of subcarriers is smaller than the number of subcarriers required to map the PTRS for the bandwidth available for PUSCH (or PDSCH) transmission, and other subcarrier mapping PTRS is additionally added within the bandwidth available for PUSCH (or PDSCH) transmission.
  • the PTRS is evenly distributed within the bandwidth available for PUSCH (or PDSCH) transmission.
  • the subcarrier position on which the PTRS is mapped on the symbol does not need to coincide with the position of the subcarrier on which the PTRS on the symbol without the other reference signal is mapped.
  • the time domain density of the PTRS may be related to at least one of a bandwidth part (BP), a Cyclic Prefix (CP) type, a subcarrier spacing, and a modulation order.
  • BP bandwidth part
  • CP Cyclic Prefix
  • the time domain density of the PTRS has a corresponding relationship with at least one of a BP, a CP type, a subcarrier spacing, and a modulation order.
  • a BP BP
  • CP type CP type
  • subcarrier spacing a modulation order
  • the corresponding relationship may be predefined by a protocol, or may be configured by a network device by using high layer signaling, such as RRC signaling.
  • the time domain density of the PTRS refers to mapping the PTRS once every several symbols.
  • the PTRS may be continuously mapped on each symbol of the PUSCH (or PDSCH), or may be in every two PUSCH (or PDSCH). The symbol is mapped once and can also be mapped once every 4 symbols of the PUSCH (or PDSCH).
  • the time domain density of the PTRS can be determined according to the subcarrier spacing and the modulation order.
  • one or more modulation order thresholds may be configured by pre-defined or higher layer signaling, and all modulation orders between adjacent two modulation order thresholds Corresponding to the same PTRS time domain density, as shown in Table 1.
  • MCS_1, MCS_2, and MCS_3 are modulation order thresholds, and "1", "1/2", and "1/4" in the time domain density refer to the three time domain densities shown in FIG. 22, respectively.
  • the time domain density of the PTRS may be determined according to a modulation order threshold interval in which the actual modulation order MCS falls.
  • a modulation order threshold interval in which the actual modulation order MCS falls.
  • the examples are merely illustrative of the embodiments of the invention and should not be construed as limiting.
  • different subcarrier spacings may correspond to different modulation order thresholds. That is to say, for different subcarrier spacings, different correspondence tables of modulation order thresholds and time domain densities can be configured.
  • the respective modulation order thresholds of different subcarrier intervals may be predefined by a protocol, or may be configured by a network device by using high layer signaling (for example, RRC signaling).
  • high layer signaling for example, RRC signaling
  • a default subcarrier spacing (denoted as SC_1), such as 15 kHz, and one or more default thresholds corresponding to the default subcarrier spacing may be configured by protocol pre-defined or higher layer signaling. (indicated as MCS').
  • MCS_offset which is an integer
  • MCS_offset may be configured by protocol pre-defined or higher layer signaling.
  • MCS_offset which is an integer
  • the default subcarrier spacing (represented as SCS_1) may be configured by protocol pre-defined or higher layer signaling, and one or more default modulation order thresholds corresponding to the default subcarrier spacing. (indicated as MCS').
  • MCS' the default modulation order thresholds corresponding to the default subcarrier spacing.
  • the actual modulation order MCS and the default modulation order threshold MCS' may be used to determine which default modulation order threshold interval the MCS falls in, and then the default modulation order gate is utilized.
  • the time domain density corresponding to the limit interval is multiplied by the scaling factor ⁇ to determine the actual time domain density of the PTRS.
  • the correspondence between at least one of the subcarrier spacing and the modulation order and the time domain density of the PTRS may be configured by protocol pre-defined or higher layer signaling (eg, RRC signaling).
  • the time domain density of the PTRS may be configured by protocol pre-defined or higher layer signaling: the PTRS is continuously mapped on each symbol of the PUSCH (or PDSCH). In this way, PTRS can be used to assist Doppler frequency offset estimation in a high speed and large delay spread scenario.
  • ECP Extended Cyclic Prefix
  • the time domain density of the PTRS may also be determined according to a bandwidth part (BP) and a modulation order MCS.
  • BPs bandwidth part
  • MCS thresholds or MCS thresholds and time domain density correspondences may be used by the base station.
  • high-level signaling configuration such as RRC signaling, or MAC CE, or broadcast message, or system message or a combination of at least two kinds of messages above, or predefined according to the protocol.
  • the correspondence between the MCS threshold and the time domain density may be represented by a correspondence table between the MCS threshold and the time domain density, as shown in Table A.
  • the correspondence between the MCS threshold and the time domain density can be determined by a set of MCS thresholds.
  • the domain density candidate value is fixed, that is, the time domain density column in the above Table A is “No PTRS”.
  • the values of TD1, TD2, TD3" are predefined by the protocol, and the time domain density candidate values are pre-stored according to the predefined, and a set of threshold value groups is determined. After that, the correspondence between the MCS threshold value and the time domain density of the group can be determined.
  • the MCS threshold group or the MCS threshold value corresponding to one or more BPs may be the same as the time domain density correspondence. That is, one or more BPs may correspond to a set of the same MCS threshold group or the same MCS threshold and time domain density correspondence.
  • BP can be a continuous resource in the frequency domain.
  • a BP contains consecutive K subcarriers, and K is an integer greater than zero.
  • a BP is a frequency domain resource where N non-overlapping consecutive physical resource blocks (PRBs) are located, N is an integer greater than 0, and the subcarrier spacing of the PRBs may be 15k, 30k, 60k. Or other subcarrier spacing values.
  • PRBs physical resource blocks
  • a BP is a frequency domain resource in which the non-overlapping contiguous physical resource block PRB groups are located, and one PRB group includes M consecutive PRBs, and both M and N are integers greater than 0, and the subcarrier spacing of the PRB is It can be 15k, 30k, 60k or other subcarrier spacing values.
  • the length of the BP is less than or equal to the maximum bandwidth supported by the terminal.
  • one BP corresponds to one subcarrier spacing.
  • the subcarrier spacing or CP corresponding to different BPs may also be different.
  • the correspondence between the MCS threshold group or the MCS threshold value and the time domain density corresponding to one or more BPs may also be different.
  • a BP corresponds to an independent MCS threshold group or MCS threshold and time domain density.
  • the base station configures a set of MCS thresholds through signaling configuration or according to a protocol.
  • the correspondence may be as shown in Table A, and the signaling may be high layer signaling, such as RRC signaling, or MAC CE, or broadcast message, or system message or Combination of at least two kinds of messages above
  • the value of TD 1 , TD 2 , and TD 3 may be a number between 0 and 1 (including 0 and 1), such as 0, 1/2, 1/4, 1, or other values, here Just an example.
  • the specific meanings of the time domain density values 0, 1/2, 1/4, and 1 are respectively unmapped PTRS, and PTRS is mapped on one symbol per 2 OFDM symbols, and 1 in every 4 OFDM symbols. PTRS is mapped on each symbol, and PTRS is mapped on each OFDM symbol.
  • the base station configures a set of MCS thresholds by signaling or according to the protocol. Or the corresponding relationship between the MCS threshold and the time domain density.
  • the signaling may be high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or at least two messages.
  • TD 1 , TD 2 , and TD 3 may be a number between 0 and 1 (including 0 and 1), such as 0, 1/2, 1/4, 1, or other values, here Just an example.
  • the base station configures a set of MCS thresholds through signaling configuration or according to the protocol. Or the corresponding relationship between the MCS threshold and the time domain density.
  • the signaling may be high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or at least two messages.
  • TD 1 , TD 2 , and TD 3 may be a number between 0 and 1 (including 0 and 1), such as 0, 1/2, 1/4, 1, or other values, here Just an example.
  • the base station may send, by signaling, a correspondence between one or more BPs and one or more groups of MCS threshold groups to the terminal, optionally, the one or more BPs and one or more groups
  • the correspondence between the MCS threshold groups may be shown in Table D, or the base station may send, by signaling, the mutual correspondence between one or more BPs and one or more MCS thresholds and time domain density correspondences to the terminal.
  • the signaling may be high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the terminal receives the above signaling and determines a specific set of MCS thresholds based on the currently activated BP.
  • the base station may determine the correspondence between the MCS threshold group or the MCS threshold value and the time domain density according to the BP currently activated for the terminal side, as shown in Tables A, B, and C.
  • the time domain density of the PTRS is determined by assigning the MCS value of the terminal side and the determined MCS threshold value group or the MCS threshold value to the time domain density.
  • the base station maps the PTRS on one or more symbols according to the determined PTRS time domain density, and transmits the PTRS to the terminal side.
  • the base station receives the PTRS on one or more symbols based on the determined PTRS time domain density.
  • the MCS threshold group corresponding to one or more BPs or the MCS threshold value and the time domain density correspondence may be pre-stored, as shown in Tables A, B, and C, or by receiving a letter from the base station.
  • the signaling is used to indicate one or more groups of MCS threshold groups or one or more MCS thresholds and time domain density corresponding to the one or more BPs, as shown in Tables A and B.
  • the tables A, B, and C are obtained (actually, there may be a plurality of tables, and the above three ABC tables are merely examples, and the present invention is not limited thereto).
  • the terminal determines, according to the currently activated BP, which group of MCS thresholds or which MCS thresholds are associated with the time domain density or which specific table, when determining which table to use or determining the MCS threshold group or MCS threshold After the corresponding relationship with the time domain density, the time domain density of the corresponding PTRS is determined according to the interval in which the MCS is actually scheduled.
  • the terminal side receives the PTRS on one or more symbols according to the determined PTRS time domain density; in the uplink transmission, the terminal transmits the PTRS on one or more symbols according to the determined PTRS time domain density.
  • the base station may determine, according to the BP currently activated for the terminal side, a specific set of MCS thresholds or a set of MCS thresholds and time domain density correspondences.
  • the base station sends signaling, where the signaling is used to indicate the determined MCS threshold or the MCS threshold and the time domain density, and the signaling may be high layer signaling or downlink control information, and the high layer
  • the order may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the terminal receives the foregoing signaling from the base station, where the signaling is used to indicate a determined set of MCS thresholds or MCS thresholds and time domain density correspondence, and the terminal determines a set of MCS thresholds to be used according to signaling. Or the corresponding relationship between the MCS threshold and the time domain density, and determining the time domain density of the corresponding PTRS according to a threshold interval in which the MCS actually scheduled by the terminal falls.
  • the base station may configure one or more candidate BPs to the terminal by using the first signaling, and then notify the terminal of the currently activated BP by using the second signaling, where the currently activated BP is the one or more candidate BPs.
  • the first signaling may be RRC signaling
  • the second signaling may be DCI or MAC CE.
  • the base station may configure the actual MCS to the terminal by using signaling.
  • the signaling is DCI
  • the MCS occupies 5 bits or 6 bits.
  • the terminal acquires the current MCS by reading the domain of the MCS indicating the DCI signaling.
  • a BP group corresponds to the same set of MCS thresholds or MCS thresholds and time domain density correspondences.
  • the correspondence between the MCS thresholds or the MCS thresholds and the time domain densities is determined by the base station.
  • the configuration is predefined or pre-defined according to a protocol, such as high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the BP group has one or more BPs, and the BP group information may be configured by the base station and signaled to the terminal, or the BP group is predefined by the protocol by a protocol pre-defined or BP grouping rule.
  • the base station divides one or more BPs having the same subcarrier spacing into one BP group, or the base station divides one or more BPs having the same numerology into one BP group, and signals the BP group information to
  • the terminal may be a high layer signaling, such as RRC signaling, or a MAC CE, or a broadcast message, or a system message or a combination of at least two types of messages, where the BP group information includes one or more of the BP groups.
  • the terminal receives the packet information sent by the base station, and determines, according to the group information, the BP group to which the BP currently activated by the terminal belongs.
  • the BP grouping rule is predefined by the protocol.
  • the protocol pre-defined grouping rule is a group of BPs having the same subcarrier spacing.
  • the terminal determines the BP group to which the terminal currently activated by the terminal belongs according to the grouping rule predefined by the protocol. For example, if the subcarrier spacing of BP0, BP3, and BP6 is 15 kHz, then the three BPs are a group.
  • the three BPs in the BP group correspond to the same set of MCS threshold groups or MCS thresholds and time domains. Density correspondence, as shown in Table A above.
  • BP1 and BP4 have a subcarrier spacing of 60 kHz.
  • the two BPs are a group.
  • This group of BPs corresponds to the same MCS threshold group or MCS threshold and time domain density, such as Table B above.
  • the protocol pre-defined grouping rule is a group of BPs having the same numerology, and the terminal determines the BP group to which the terminal currently activated by the terminal belongs according to the grouping rule predefined by the protocol.
  • the base station may also indicate a rule of the terminal BP packet by sending signaling.
  • a plurality of BP grouping rules are predefined in the protocol, for example, a group of BPs having the same subcarrier is a group, for example, a group of BPs having the same parameter set, such as a group of BPs having the same CP type, the base station can pass
  • the signaling indicates that the grouping rule adopted by the terminal is specifically one of the above rules.
  • the terminal determines the adopted BP packet rule according to the indication signaling of the base station.
  • the base station may notify one or more candidate BPs to the terminal by using the first signaling, and then notify the terminal of the currently activated BP by using the second signaling, where the currently activated BP is the one or more candidate BPs.
  • the first signaling may be RRC signaling
  • the second signaling may be DCI or MAC CE.
  • the terminal determines the correspondence between the corresponding MCS threshold group or the MCS threshold value and the time domain density according to the BP packet to which the currently activated BP belongs, and determines the PTRS according to the MCS threshold interval in which the MCS of the actual scheduled modulation order MCS falls. Domain density.
  • Table 1 and Table 2 are only used to explain the embodiments of the present invention, and should not be construed as limiting.
  • the frequency domain density of the PTRS may be related to at least one of a CP type, the user scheduling bandwidth, a subcarrier spacing, and a modulation order. That is to say, the total number of sub-carriers L PT-RS mapped by the PTRS in the user scheduling bandwidth may be related to at least one of a CP type, the user scheduling bandwidth, a sub-carrier spacing, and a modulation order.
  • the frequency domain density of the PTRS is corresponding to at least one of a CP type, the user scheduling bandwidth, a subcarrier spacing, and a modulation order.
  • Different CP types or the user scheduling bandwidth or subcarrier spacing or modulation order correspond to different frequency domain densities.
  • the corresponding relationship may be predefined by a protocol, or may be configured by a network device by using high layer signaling, such as RRC signaling.
  • one or more scheduling bandwidth thresholds may be configured by using predefined or higher layer signaling, and all scheduling bandwidths between adjacent two scheduling bandwidth thresholds correspond to the same PTRS.
  • the frequency domain density can be as shown in Table 3.
  • the BW_1, BW_2, BW_3, BW_4, and BW_5 are the scheduling bandwidth thresholds, and the number of resource blocks included in the scheduling bandwidth of the scheduling bandwidth threshold may be represented by the frequency domain span corresponding to the scheduling bandwidth, which is not limited herein.
  • the frequency domain density "1/2" indicates that the PTRS occupies one subcarrier per 2 resource blocks.
  • the meanings of the frequency domain density "1/4", "1/8", and "1/16" can be analogized and will not be described again.
  • different subcarrier spacings may correspond to different scheduling bandwidth thresholds. That is to say, for different subcarrier spacings, different correspondence table between scheduling bandwidth threshold and time domain density can be configured.
  • the scheduling bandwidth threshold corresponding to each of the different subcarrier intervals may be predefined by a protocol, or may be configured by the network device by using high layer signaling (for example, RRC signaling).
  • a default subcarrier spacing (represented as SCS_1), such as 15 kHz, may be configured by protocol pre-defined or higher layer signaling, and one or more default scheduling bandwidth gates corresponding to the default subcarrier spacing. Limit (expressed as BW').
  • SCS_1 15KHz
  • the actual scheduling bandwidth BW plus BW_offset falls within the interval [BW_1, BW_2] at the non-default subcarrier spacing of 60 Hz
  • the frequency domain density of PTRS is 1.
  • the actual modulation order BW plus BW_offset falls within the interval [BW_2, BW_3]
  • the frequency domain density of the PTRS is 1/2.
  • a default subcarrier spacing (represented as SCS_1) may be configured by protocol pre-defined or higher layer signaling, and one or more default scheduling bandwidth thresholds corresponding to the default sub-carrier spacing ( Expressed as BW').
  • the actual scheduling bandwidth BW and the default scheduling bandwidth threshold BW' may be used to determine which default scheduling bandwidth threshold interval the BW falls in, and then the default scheduling bandwidth threshold interval is used.
  • the frequency domain density is multiplied by the scaling factor ⁇ to determine the actual frequency domain density of the PTRS.
  • the frequency domain density of the PTRS may also be determined according to a bandwidth part (BP) and a scheduling bandwidth BW.
  • BPs bandwidth part
  • One or more BPs correspond to a set of BW thresholds or BW thresholds and frequency domain density correspondences.
  • the correspondence between the BW thresholds or BW thresholds and the frequency domain density can be configured by the base station through high layer signaling.
  • the correspondence between the BW threshold and the frequency domain density may be represented by a BW threshold and a frequency domain density correspondence table, as shown in Table E.
  • the correspondence between the BW threshold and the frequency domain density may be determined by a set of BW threshold values.
  • the frequency domain density candidate value is fixed, that is, the frequency domain density column in the above table E is “No PTRS”.
  • the values of FD1, FD2, FD3, FD4, and FD5" are predefined by the protocol, and the frequency domain density candidate values are pre-stored according to the predefined, and a set of threshold value groups is determined. After that, the correspondence between the BW threshold value and the frequency domain density of the group can be determined.
  • the correspondence between the BW threshold group or the BW threshold value and the frequency domain density corresponding to one or more BPs may be the same. That is, one or more BPs may correspond to a group of identical BW threshold groups or the same BW threshold value and frequency domain density correspondence.
  • the correspondence between the BW threshold group or the BW threshold value and the frequency domain density corresponding to one or more BPs may also be different.
  • a BP corresponds to an independent MCS threshold group or MCS threshold and time domain density.
  • the BW threshold value indicates the number of resource blocks scheduled.
  • the base station configures a set of BW thresholds through signaling configuration or according to a protocol.
  • the corresponding relationship between the BW threshold and the frequency domain density the correspondence may be as shown in Table E, and the signaling may be high layer signaling, such as RRC signaling, or MAC CE, or broadcast message, or system message or Combination of at least two kinds of messages above
  • the values of the FD1, FD2, FD3, FD4, and FD5 are in the range of 0 to 1 (including 1 and 0), for example, 0, 1/16, 1/8, 1/4, 1/2, 1, etc., here is only an example, without any limitation.
  • the specific meanings of the frequency domain density values 0, 1/16, 1/8, 1/4, 1/2, and 1 are respectively unmapped PTRS, and PTRS is mapped on one subcarrier per 16 RBs.
  • PTRS is mapped to one of the eight RBs, and PTRS is mapped to one of the four RBs.
  • One subcarrier is mapped to PTRS in each of the two RBs, and one subcarrier is included in each RB.
  • PTRS is mapped (subcarriers mapped with PTRS are not required to be mapped on the subcarriers on each symbol, and PTRSs mapped on subcarriers on which symbols are determined according to time domain density).
  • the base station configures a set of BW thresholds by signaling or according to the protocol. Or the corresponding relationship between the BW threshold and the frequency domain density.
  • the signaling may be high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or at least two messages.
  • the values of the FD1, FD2, FD3, FD4, and FD5 are in the range of 0 to 1 (including 1 and 0), for example, 0, 1/16, 1/8, 1/4, 1/2, 1, etc., here is only an example, without any limitation.
  • the base station configures a set of BW thresholds through signaling configuration or according to the protocol.
  • the correspondence between the BW threshold and the frequency domain density is as shown in Table G, and the signaling may be high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or at least two types of messages.
  • the values of the FD1, FD2, FD3, FD4, and FD5 are in the range of 0 to 1 (including 1 and 0), for example, 0, 1/16, 1/8, 1/4, 1/2, 1, etc., here is only an example, without any limitation.
  • the base station may send, by signaling, a correspondence between one or more BPs and one or more groups of BW threshold groups to the terminal, optionally, the one or more BPs and one or more groups
  • the correspondence between the BW threshold group groups may be shown in Table H, or the base station may send, by signaling, the mutual correspondence between one or more BPs and one or more BW threshold values and frequency domain density correspondences to the terminal.
  • the signaling may be high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the terminal receives the above signaling and determines a specific set of BW thresholds according to the currently activated BP.
  • the mapping between the BW threshold group or the BW threshold and the frequency domain density may be determined according to the BP currently activated for the terminal side. As shown in Tables E, F, and G, the base station sends the terminal according to the scheduling.
  • the frequency of the PTRS is determined by the scheduling bandwidth of the side and the determined BW threshold group or the BW threshold and the frequency domain density.
  • the base station maps the PTRS on one or more subcarriers according to the determined PTRS frequency domain density, and sends the PTRS to the terminal side.
  • the base station receives the PTRS on one or more subcarriers according to the determined PTRS frequency domain density.
  • the BW threshold group corresponding to one or more BPs or the BW threshold value and the frequency domain density correspondence may be pre-stored, as shown in Tables E, F, and G, or by receiving a letter from the base station.
  • the signaling is used to indicate one or more groups of BW threshold groups or one or more BW threshold values corresponding to the one or more BPs, and the time domain density correspondence, as shown in Tables E and F.
  • the tables E, F, and G are obtained (actually, there may be a plurality of tables, and the above three EFG tables are merely examples, and the present invention is not limited thereto).
  • the terminal determines which group of BW thresholds or which BW thresholds are associated with the frequency domain density or which specific table according to the currently activated BP, and determines which form to use or determines the BW threshold group or the BW threshold. After the corresponding relationship with the frequency domain density, the frequency domain density of the corresponding PTRS is determined according to the interval in which the scheduled bandwidth of the actual scheduling falls.
  • the terminal side receives the PTRS on one or more subcarriers according to the determined PTRS frequency domain density; in the uplink transmission, the terminal transmits the PTRS on one or more subcarriers according to the determined PTRS frequency domain density.
  • the base station may determine, according to the BP currently activated for the terminal side, a specific set of BW thresholds or a set of BW thresholds and frequency domain density correspondences.
  • the base station sends signaling, where the signaling is used to indicate the corresponding set of BW thresholds or BW thresholds and frequency domain density correspondence, and the signaling may be high layer signaling or downlink control information, the high layer letter
  • the order may be RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the terminal receives the foregoing signaling from the base station, where the signaling is used to indicate a determined correspondence between a set of BW thresholds or BW thresholds and frequency domain densities, and the terminal determines a set of BW thresholds to be used according to signaling. Or the corresponding relationship between the BW threshold and the frequency domain density, and determining the frequency domain density of the corresponding PTRS according to a threshold interval in which the scheduling bandwidth actually scheduled by the terminal falls.
  • the base station may configure one or more candidate BPs to the terminal by using the first signaling, and then notify the terminal of the currently activated BP by using the second signaling.
  • the first signaling may be RRC signaling
  • the second signaling may be DCI or MAC CE.
  • a BP group corresponds to the same set of BW thresholds or BW thresholds and frequency domain density correspondences, and the correspondence between the BW thresholds or the BW thresholds and the frequency domain densities is passed by the base station.
  • the configuration is predefined or pre-defined according to a protocol, such as high layer signaling, such as RRC signaling, or MAC CE, or a broadcast message, or a system message or a combination of at least two of the above.
  • the BP group has one or more BPs, and the BP group information may be configured by the base station and signaled to the terminal, or the BP group is predefined by the protocol by a protocol pre-defined or BP grouping rule.
  • the base station divides one or more BPs having the same subcarrier spacing into one BP group, or the base station divides one or more BPs having the same numerology into one BP group, and signals the BP group information to
  • the terminal may be a high layer signaling, such as RRC signaling, or a MAC CE, or a broadcast message, or a system message or a combination of at least two types of messages, where the BP group information includes one or more of the BP groups.
  • the terminal receives the packet information sent by the base station, and determines, according to the group information, the BP group to which the BP currently activated by the terminal belongs.
  • the BP grouping rule is predefined by the protocol.
  • the protocol pre-defined grouping rule is a group of BPs having the same subcarrier spacing.
  • the terminal determines the BP group to which the terminal currently activated by the terminal belongs according to the grouping rule predefined by the protocol. For example, if the subcarrier spacing of BP0, BP3, and BP6 is 15 kHz, then the three BPs are a group.
  • the three BPs in the BP group correspond to the same set of MCS threshold groups or MCS thresholds and time domains. Density correspondence, as shown in Table A above.
  • BP1 and BP4 have a subcarrier spacing of 60 kHz.
  • the two BPs are a group.
  • This group of BPs corresponds to the same MCS threshold group or MCS threshold and time domain density, such as Table B above.
  • the protocol pre-defined grouping rule is a group of BPs having the same numerology, and the terminal determines the BP group to which the terminal currently activated by the terminal belongs according to the grouping rule predefined by the protocol.
  • the base station may also indicate a rule of the terminal BP packet by sending signaling.
  • a plurality of BP grouping rules are predefined in the protocol, for example, a group of BPs having the same subcarrier is a group, for example, a group of BPs having the same parameter set, such as a group of BPs having the same CP type, the base station can pass
  • the signaling indicates that the grouping rule adopted by the terminal is specifically one of the above rules.
  • the terminal determines the adopted BP packet rule according to the indication signaling of the base station.
  • the base station may notify one or more candidate BPs to the terminal by using the first signaling, and then notify the terminal of the currently activated BP by using the second signaling, where the currently activated BP is the one or more candidate BPs.
  • the first signaling may be RRC signaling
  • the second signaling may be DCI or MAC CE.
  • the terminal determines the correspondence between the corresponding BW threshold group or the BW threshold value and the frequency domain density according to the BP packet to which the currently activated BP belongs, and determines the frequency domain density of the PTRS according to the BW threshold interval in which the actual scheduling bandwidth BW falls. .
  • the network device may configure a time-frequency resource of the PTRS according to the time domain density and the frequency domain density of the PTRS within the user scheduling bandwidth, and then send the resource location information of the PTRS to the terminal.
  • the terminal may receive the resource location information of the PTRS, and send or receive the second reference signal according to the resource location information of the PTRS, for phase tracking, to facilitate feedback channel quality.
  • the user scheduling bandwidth mapped with the PTRS may also be used for uplink transmission hybrid automatic repeat-response (HARQ-ACK), rank indication (RI), or channel quality indication (CQI).
  • HARQ-ACK uplink transmission hybrid automatic repeat-response
  • RI rank indication
  • CQI channel quality indication
  • the terminal when uplinking HARQ-ACK, RI, or CQI, the terminal may perform rate matching on the encoded HARQ-ACK, RI, or CQI according to the time domain density and the frequency domain density of the PTRS, and send the matching to the eNB. Encoded data.
  • the network device can receive the matched encoded data.
  • the time domain density and frequency domain density of the PTRS may determine the amount of resources occupied by the PTRS within the user scheduled bandwidth. For the manner of determining the time domain density and the frequency domain density of the PTRS, reference may be made to the foregoing content, and details are not described herein again.
  • the time-frequency resource of the useful signal can be avoided by the PTRS, which leads to an improvement of the actual transmission code rate, thereby improving transmission reliability.
  • FIG. 25 illustrates a wireless communication system, a terminal, and a network device.
  • the wireless communication system 10 includes a terminal 400 and a network device 500.
  • the terminal 400 may be the terminal 200 in the embodiment of FIG. 6, the network device 500 may be the network device 300 in the embodiment of FIG. 7, and the wireless communication system 10 may be the wireless communication system 100 described in FIG. Described separately below.
  • the terminal 400 may include a processing unit 401 and a communication unit 403. among them:
  • the communication unit 403 can be configured to receive the first reference signal and the second reference signal, or send the first reference signal and the second reference signal;
  • the processing unit 401 is configured to perform phase tracking and channel state information estimation by using the first reference signal and the second reference signal.
  • the first reference signal is mapped on multiple symbols
  • the second reference signal may be mapped on at least two symbols of the multiple symbols
  • the subcarriers mapped by the second reference signal Corresponds to one or more of the same frequency domain locations.
  • the first reference signal may be an uplink reference signal for estimating CSI, such as an SRS
  • the second reference signal may be an uplink reference signal (PTRS) for phase tracking.
  • the communication unit 403 may be specifically configured to send the first reference signal and the second reference signal.
  • the first reference signal may be a downlink reference signal for estimating CSI, such as a CSI-RS
  • the second reference signal may be a downlink reference signal for phase tracking (PTRS).
  • the communication unit 403 may be specifically configured to receive the first reference signal and the second reference signal.
  • the communication unit 403 is further configured to receive resource location information corresponding to each of the first reference signal and the second reference signal, and according to the resource location information, to receive (or send) the a first reference signal and the second reference signal.
  • the resource locations corresponding to the first reference signal and the second reference signal may be predefined by a protocol.
  • the communication unit 403 is configured to receive only the resource location information of the first reference signal sent by the network device, and the processing unit 401 is further configured to use the mapping policy about the second reference signal provided by the application, And determining, by the resource location of the first reference signal, a resource location of the second reference signal.
  • the mapping policy of the second reference signal may be predefined by a protocol, or may be configured by the network device by using high layer signaling or a PDCCH.
  • mapping strategy of the second reference signal reference may be made to the corresponding embodiments in FIG. 12-16, and details are not described herein.
  • the antenna port used by the communication unit 403 to send the second reference signal may be one or more of the antenna ports that send the first reference signal.
  • the antenna port of the communication unit 403 for transmitting the second reference signal and the antenna port for transmitting the first reference signal may also be quasi-co-located.
  • the communication unit 403 is also configured to transmit or receive the second reference signal when the data is physically and downlink shared channel, and perform phase tracking by using the second reference signal.
  • the second reference signal may be mapped within a user scheduling bandwidth.
  • For the resource mapping manner of the second reference signal in the user scheduling bandwidth reference may be made to the corresponding embodiments in FIG. 19-24, and details are not described herein again.
  • the communication unit 403 can also be configured to transmit an uplink transmission hybrid automatic repeat-response (HARQ-ACK), a rank indication (RI), or a channel quality indicator (CQI) within the user scheduling bandwidth mapped with the PTRS.
  • HARQ-ACK uplink transmission hybrid automatic repeat-response
  • RI rank indication
  • CQI channel quality indicator
  • the processing unit 401 is further configured to perform rate matching on the encoded HARQ-ACK, RI, or CQI according to the time domain density and the frequency domain density of the PTRS, and send the matched encoded data to the network device.
  • the network device 500 may include a communication unit 501 and a processing unit 503. among them:
  • the communication unit 501 can be configured to receive the first reference signal and the second reference signal, or send the first reference signal and the second reference signal;
  • the processing unit 503 is configured to perform phase tracking and channel state information estimation by using the first reference signal and the second reference signal.
  • the first reference signal is mapped on multiple symbols
  • the second reference signal may be mapped on at least two symbols of the multiple symbols
  • the subcarriers mapped by the second reference signal Corresponds to one or more of the same frequency domain locations.
  • the processing unit 503 is further configured to configure resources corresponding to the first reference signal and the second reference signal, where the first reference signal is mapped on multiple symbols, and the second reference signal is mapped in the multiple On at least 2 symbols of the symbols, the subcarriers to which the second reference signal is mapped correspond to one or more identical frequency domain locations.
  • the communication unit 501 is further configured to send resource location information corresponding to each of the first reference signal and the second reference signal, where the terminal receives (or transmits) the first reference signal and the second reference signal.
  • the first reference signal may be an uplink reference signal for estimating CSI, such as an SRS
  • the second reference signal may be an uplink reference signal (PTRS) for phase tracking.
  • the communication unit 501 is specifically configured to receive the first reference signal and the second reference signal.
  • the first reference signal may be a downlink reference signal for estimating CSI, such as a CSI-RS
  • the second reference signal may be a downlink reference signal for phase tracking (PTRS).
  • the communication unit 501 can be specifically configured to send the first reference signal and the second reference signal.
  • the resource locations corresponding to the first reference signal and the second reference signal may be predefined by a protocol.
  • the communication unit 501 can be configured to only transmit resource location information of the first reference signal, such that the terminal 400 can perform a mapping policy for the second reference signal according to the present application, and the first The resource location of the reference signal determines the resource location of the second reference signal.
  • the mapping policy of the second reference signal may be predefined by a protocol, or may be configured by the communication unit 501 by using high layer signaling or a PDCCH.
  • mapping strategy of the second reference signal reference may be made to the corresponding embodiments in FIG. 12-16, and details are not described herein.
  • the antenna port used by the communication unit 501 to send the second reference signal may be one or more of the antenna ports that send the first reference signal.
  • the antenna port of the communication unit 501 for transmitting the second reference signal and the antenna port for transmitting the first reference signal may also be quasi-co-located.
  • the communication unit 501 is also configured to transmit or receive the second reference signal when the data is physically and downlink shared channel, and perform phase tracking by using the second reference signal.
  • the second reference signal may be mapped within a user scheduling bandwidth.
  • For the resource mapping manner of the second reference signal in the user scheduling bandwidth reference may be made to the corresponding embodiments in FIG. 19-24, and details are not described herein again.
  • the communication unit 501 can also be used to receive the rate-matched encoded data sent by the terminal 400.
  • the encoded data includes a hybrid automatic repeat-response (HARQ-ACK), a rank indication (RI), or a channel quality indicator (CQI) transmitted within a user scheduling bandwidth mapped with PTRS.
  • HARQ-ACK hybrid automatic repeat-response
  • RI rank indication
  • CQI channel quality indicator
  • the present application is implemented to insert a phase tracking reference signal when transmitting a reference signal for estimating CSI over a plurality of symbols.
  • the phase tracking reference signal is also mapped on the plurality of symbols, and the subcarriers to which the phase tracking reference signal is mapped have the same frequency domain position. In this way, the phase tracking reference signal can be used for phase tracking on the subcarriers corresponding to the same frequency domain location, which is beneficial to improve CSI estimation accuracy.
  • the program can be stored in a computer readable storage medium, when the program is executed
  • the flow of the method embodiments as described above may be included.
  • the foregoing storage medium includes various media that can store program codes, such as a ROM or a random access memory RAM, a magnetic disk, or an optical disk.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种参考信号传输方法,包括:终端发送第一参考信号和第二参考信号;相应的,网络设备接收所述第一参考信号和所述第二参考信号;其中,所述第一参考信号映射在多个符号上,用于估计信道状态信息;在所述多个符号中的至少2个符号上映射所述第二参考信号,用于相位跟踪;至少2个符号上的所述第二参考信号所映射的子载波具有相同的频域位置。上述方案可提高信道状态信息估计的准确性。

Description

一种参考信号传输方法、装置及系统 技术领域
本申请涉及无线通信技术领域,尤其涉及一种参考信号传输方法、装置及系统。
背景技术
随着移动互联网技术的发展,通信速率和容量需求日益增长,现有低频谱资源愈发紧张,已难以满足需求,因此频谱资源丰富的高频无线资源成为无线通信的研究热点。在无线通信系统中,频率器件即本地振荡器是非理想的,本地振荡器的随机抖动导致输出的载波信号会带有相位噪声。相位噪声的大小和载波频率有直接关系:相噪功率按20log(n)变化,n为频率增大倍数,即载波频率每增大一倍,相噪功率增大6dB。因此,对于高频无线通信而言,相噪影响不可忽略。第三代合作伙伴计划3GPP(The 3rd Generation Partnership Project)在未来演进无线系统新空口(New Radio,NR)中,已经将高频纳入到采用的频谱范围中,因此相位噪声相关影响也需要纳入到设计的考虑范围内。
相位噪声是一个在时间上随机变化的物理量,如图1中波浪折线所示。相位噪声对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的影响分为两部分,分别为公共相位旋转(Common Phase Error,CPE)和子载波间干扰(Inter-carier Interference,ICI)。其中,CPE是一个OFDM符号持续时间内的相噪均值,如图1中符号内的水平线段所示。对某一个特定的OFDM符号而言,CPE对该符号内的不同子载波的影响是相同的,表现为该OFDM符号内所有调制星座符号旋转一个公共的相位,即图2中方框A表示的影响。ICI由相噪破坏OFDM符号的子载波正交性导致,对同一个OFDM的不同子载波影响是不同的,导致星座调制符号点的云状弥散,即图2中圆框B表示的影响。在子载波间隔大于15KHz时,ICI对系统性能产生的影响通常可忽略,系统设计主要考虑相位噪声引起的CPE影响。
目前,高频系统中,可以通过下述两种参考信号来估计信道状态信息(Channel State Information,CSI):
1.探测参考信号(Sounding Reference Signal,SRS)
SRS用于估计上行信道质量。网络侧的调度器需要根据上行信道质量进行调度,将瞬时信道状态好的那些资源块(Resource Block,RB)分配给终端的上行物理共享信道(Physical Uplink Shared Channel,PUSCH)传输,同时还需根据瞬时信道状态的好坏选择不同的传输参数,例如编码速率和调制阶数,以及和多天线传输相关的不同参数。
在频域上,SRS传输应该覆盖调度器感兴趣的频带,可以通过2种方式实现,如图3A所示:a.通过发送一个频域跨度足够大的“宽带SRS”来覆盖整个感兴趣的频带。b.通过在多个符号上发送多个“窄带SRS”,进行跳频,然后将一连串发送的SRS联合起来,就能覆盖整个感兴趣的频带,且各符号上的“窄带SRS” 在频域上没有重叠的子载波。
不同终端可以在相同资源块集合上发送SRS,彼此之间可以通过不同的“梳齿”来区分。如图3B所示,实线部分的子载波用于一个终端的SRS传输,而虚线部分的子载波可用于其他终端的SRS传输。进一步,为了实现资源复用,多个终端还可以利用不同的循环移位(Cyclic Shift)来保证不同终端传输的SRS的正交性。通过循环移位,多个终端可以使用相同的时频资源,相同的“梳齿”来发送SRS且保证相互正交。如图3C所示,终端1和终端2采用不同循环移位来共享相同的时频资源,并可保持正交性。
但是,高频相位噪声相干时间短,每个OFDM符号上由相位噪声引起的相位误差均不同。现有的跳频SRS需联合多个OFDM符号上的子带SRS估计CSI,不同符号上的SRS估计的CSI具有不同的相位偏差,导致CSI估计不准确。而估计不同符号之间的相对相位偏差,需要有相同的信道作为基准,而做跳频的窄带SRS分布在互不重叠的子带上,各子带的信道互不相同,因此频带位置互不重叠的窄带SRS本身不能估计出各符号间的相对相位偏差。
2.信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)
CSI-RS主要用于信道质量反馈。CSI-RS会在多个OFDM符号上发送。例如,如图4所示,在LTE中,不同天线端口(如端口17和端口18)的CSI-RS都传输在符号7、8上,通过时域OCC(Orthogonal Cover Code,正交覆盖码)进行区分。OCC应用于码分复用(Code Division Multiplex,CDM)方式。或者,CSI-RS的多个天线端口在频域上做码分,但是在估计CSI时,仍然需要联合多个OFDM符号,此时不同符号上相位噪声引起不同相位偏转,导致CSI估计不准确。
如果CSI-RS在时域上做码分,至少2个天线端口的CSI-RS在相同的时频资源单元(RE)上发送,接收端接收到的CSI-RS信号是至少2个天线端口发送的信号经历信道后的叠加,由于正交覆盖码,不同符号上的信道是至少2个天线端口经历的信道与正交覆盖码相乘后的叠加值,不同符号上信道完全不同。因此,做时域码分的CSI-RS本身是无法估计出相对相位误差值的。如果多个CSI-RS的天线端口在频域上做频分,而有需要联合多个符号上的CSI-RS估计CSI,由于不同符号上的CSI-RS采用不同的天线端口,一般认为不同天线端口所经历的信道是不一样的,因此没有相同信道作为相噪估计的参考基准,因此也无法估计出相噪引起的相位偏差。
发明内容
本申请提供了一种参考信号传输方法、装置及系统,可提高信道状态估计的准确性。
第一方面,本申请提供了一种参考信号传输方法,可包括:终端向网络设备发送第一参考信号和第二参考信号。相应的,所述网络设备接收到所述终端发送的所述第一参考信号和所述第二参考信号。
具体的,所述第一参考信号映射在多个符号上,用于估计信道状态信息。在 所述多个符号中的至少2个符号上可映射所述第二参考信号,用于相位跟踪。至少2个符号上的所述第二参考信号所映射的子载波具有相同的频域位置。
可以理解的,通过实施第一方面描述的方法,可以在所述相同的频域位置对应的子载波上,利用所述第二参考信号计算出所述多个符号中的各个符号之间的相对相位误差,提高CSI估计的准确性。
在第一方面中,所述第一参考信号可以是探测参考信号SRS,所述第二参考信号可以是用于相位跟踪的上行参考信号(PTRS)。
结合第一方面,所述第二参考信号可对应下述几种资源映射方式。
第一种资源映射方式:所述第二参考信号所映射的子载波和所述第一参考信号的子带在频域上相邻。也即是说,PTRS可以映射在SRS子带的一端或两端。
具体的,PTRS可以映射在SRS子带的前m(m是正整数)个子载波上,也可以映射在SRS子带的后n(n是正整数)个子载波上,还可以映射在SRS子带的前m个子载波和后n个子载波上。这里,m和n可以相等,也可以不相等。
具体的,PTRS资源映射规则可以概括为但不限于是:如果SRS子带处于终端处理带宽中的最低频域位置,则PTRS可以映射在SRS子带的后n个子载波上。如果SRS子带处于终端处理带宽中的最高频域位置,则PTRS可以映射在SRS子带的前m个子载波上。如果SRS子带处于终端处理带宽中的中间频域位置,则PTRS既可以映射在SRS子带的前m个子载波上,也可以映射在SRS子带的后n个子载波上。这里,所述终端处理带宽为所述网络设备分配给所述终端的探测参考信号的跳频总带宽,即所述网络设备要求所述终端完成探测的信道总带宽。
也即是说,所述第二参考信号的资源位置可以由所述第一参考信号的资源位置确定。这种确定策略可以由协议预定义,也可以由网络设备下发高层信令(如RRC信令)或PDCCH信令来配置。
在一些实施例中,针对多个终端需要同时发送SRS的情况,所述多个终端可以采用不同的循环移位值来保证各自传输的SRS的正交性。同样的,为了保证所述多个终端各自传输的PTRS的正交性,PTRS与SRS可以采用相同循环移位值。而且,PTRS与SRS可以采用相同的“梳齿”模式,即:PTRS与SRS对应相同的梳齿间隔。
可以理解的,实施所述第一种资源映射方式,由于PTRS所映射的子载波和SRS的子带在频域上相邻,至少2个符号上的PTRS所映射的子载波具有相同的频域位置,因此,在所述相同的频域位置上,可以利用PTRS计算出SRS跳频周期内的各个符号之间的相对相位误差,从而提高CSI估计的准确性。
第二种资源映射方式:在所述第二参考信号所映射的每一个符号上,所述第二参考信号所映射的子载波位置均相同。也即是说,在PTRS所映射的每一个符号上,PTRS均映射在相同的一个或多个子载波上。具体的,所述相同的一个或多个子载波可以在频域上集中分布,也可以离散分布。
具体的,SRS的循环移位值可用于确定PTRS的频域位置。具体的,PTRS所映射的子载波位置与SRS的循环移位值之间的映射规则可以是协议预定义的,也可以是网络设备下发指令高层信令(如RRC信令)或PDCCH信令来配置。 不同的循环移位值对应不同的子载波位置。
在一些可能的实施例中,如果PTRS所映射的子载波与SRS在一个(或多个)符号上所映射的子载波具有相同的频域位置,则在所述一个(或多个)符号上不映射PTRS。
可以理解的,实施所述第二种资源映射方式,由于在PTRS所映射的每一个符号上,PTRS所映射的子载波位置均相同。因此,在该相同的频域位置上,可以计算出SRS跳频周期内的各个符号之间的相对相位误差,从而提高CSI估计的准确性。
结合第一方面,在一些实施例中,所述网络设备还可以向所述终端发送资源配置信息,用于指示所述终端在哪些时频资源上发送所述第一参考信号和所述第二参考信号。
结合第一方面,在一些实施例中,所述第一参考信号、所述第二参考信号各自对应的资源位置可以由协议预定义。即所述网络设备不需要向所述终端发送所述资源配置信息。
结合第一方面,在一些实施例中,所述第一参考信号对应的资源位置可以由协议预定义。所述资源配置信息可以包括所述第二参考信号和所述第一参考信号之间的资源映射规则。这样所述终端根据本申请提供的关于所述第二参考信号和所述第一参考信号之间的资源映射规则,便可以确定出所述第二参考信号的资源位置。具体的,所述第二参考信号和所述第一参考信号之间的资源映射规则可以由协议预定义,也可以是所述网络设备通过高层信令或PDCCH配置的。当所述资源映射规则由协议预定义时,所述网络设备不需要向所述终端发送所述资源配置信息。
结合第一方面,在一些实施例中,所述资源配置信息可以包括所述第一参考信号的资源配置信息,以及所述第二参考信号和所述第一参考信号之间的资源映射规则。这样所述终端根据本申请提供的关于所述第二参考信号和所述第一参考信号之间的资源映射规则,以及所述第一参考信号的资源位置,便可以确定出所述第二参考信号的资源位置。具体的,所述第二参考信号和所述第一参考信号之间的资源映射规则可以由协议预定义,也可以是所述网络设备通过高层信令或PDCCH配置的。当所述资源映射规则由协议预定义时,所述资源配置信息可以仅包括所述第一参考信号的资源位置信息。
第二方面,本申请提供了一种参考信号传输方法,可包括:网络设备向终端发送第一参考信号和第二参考信号。相应的,所述终端接收到所述网络设备发送的所述第一参考信号和所述第二参考信号。
具体的,所述第一参考信号映射在多个符号上,用于估计信道状态信息。在所述多个符号中的至少2个符号上可映射所述第二参考信号,用于相位跟踪。至少2个符号上的所述第二参考信号所映射的子载波具有相同的频域位置。
可以理解的,通过实施第二方面描述的方法,可以在所述相同的频域位置对应的子载波上,利用所述第二参考信号计算出所述多个符号中的各个符号之间的相对相位误差,提高CSI估计的准确性。
在第二方面中,所述第一参考信号可以是信道状态信息参考信号CSI-RS,所述第二参考信号可以是用于相位跟踪的下行参考信号(PTRS)。
结合第二方面,在一些实施例中,CSI-RS映射在多个符号上,PTRS和CSI-RS可以映射在相同的符号上。在映射有CSI-RS的符号上,PTRS所映射的子载波可以对应相同的频域位置。具体的,在频域上,PTRS所映射的子载波和CSI-RS所映射的子载波可以相邻,也可以不相邻。
结合第二方面,在一些实施例中,PTRS的资源位置可以是协议预定义的,也可以由网络设备下发高层信令(如RRC信令)或PDCCH信令来配置。
结合第二方面,在一些实施例中,发送PTRS的天线端口为发送CSI-RS的天线端口中的一个或多个端口,或者,发送PTRS的天线端口和发送CSI-RS的天线端口是准共址的。
结合第二方面,在一些实施例中,所述网络设备还可以向所述终端发送资源配置信息,用于指示所述终端在哪些时频资源上接收所述第一参考信号和所述第二参考信号。
结合第二方面,在一些实施例中,所述第一参考信号、所述第二参考信号各自对应的资源位置可以由协议预定义。即所述网络设备不需要向所述终端发送所述资源配置信息。
结合第二方面,在一些实施例中,所述第一参考信号对应的资源位置可以由协议预定义。所述资源配置信息可以包括所述第二参考信号和所述第一参考信号之间的资源映射规则。这样所述终端根据本申请提供的关于所述第二参考信号和所述第一参考信号之间的资源映射规则,便可以确定出所述第二参考信号的资源位置。具体的,所述第二参考信号和所述第一参考信号之间的资源映射规则可以由协议预定义,也可以是所述网络设备通过高层信令或PDCCH配置的。当所述资源映射规则由协议预定义时,所述网络设备不需要向所述终端发送所述资源配置信息。
结合第二方面,在一些实施例中,所述资源配置信息可以包括所述第一参考信号的资源配置信息,以及所述第二参考信号和所述第一参考信号之间的资源映射规则。这样所述终端根据本申请提供的关于所述第二参考信号和所述第一参考信号之间的资源映射规则,以及所述第一参考信号的资源位置,便可以确定出所述第二参考信号的资源位置。具体的,所述第二参考信号和所述第一参考信号之间的资源映射规则可以由协议预定义,也可以是所述网络设备通过高层信令或PDCCH配置的。当所述资源映射规则由协议预定义时,所述资源配置信息可以仅包括所述第一参考信号的资源位置信息。
第三方面,本申请提供了一种参考信号传输方法,可包括:网络设备根据第二参考信号的时域密度和频域密度在用户调度带宽内配置所述第二参考信号的时频资源,并向终端发送所述第二参考信号,和/或所述第二参考信号的资源位置信息。相应的,所述终端接收所述网络设备发送的所述资源位置信息,并根据所述资源位置信息在所述资源位置信息指示的资源上接收所述第二参考信号。
第四方面,本申请提供了一种参考信号传输方法,可包括:网络设备根据第 二参考信号的时域密度和频域密度在用户调度带宽内配置所述第二参考信号的时频资源,可选地,网络设备向终端发送所述第二参考信号的资源位置信息。相应的,所述终端接收所述网络设备发送的所述资源位置信息,在所述资源位置信息指示的资源上向所述网络设备发送所述第二参考信号。所述网络设备接收到所述终端发送的所述第二参考信号。
可以理解的,通过实施第三方面或第四方面描述的方法,在在数据传输时配置所述第二参考信号,用于数据传输时的相位跟踪,可以提高数据传输的可靠性。
结合第三方面或第四方面,映射有所述第二参考信号的子载波以资源块为粒度均匀分布在所述用户调度带宽内。具体的,所述第二参考信号所映射的子载波位置可通过下述两种索引表示:所述第二参考信号所映射的资源块的索引和所述第二参考信号在所映射的资源块内的子载波索引。
结合第三方面或第四方面,在一些实施例中,确定所述第二参考信号在所映射的资源块内的子载波索引的实现方式可以如下包括:
第一种实现方式,所述第二参考信号在所映射的资源块内的子载波索引可以由解调参考信号(DMRS)所映射的子载波位置确定。具体的,所述第二参考信号可以映射在DMRS所映射的一个或多个子载波上。
若多个用户的天线端口发射的DMRS在频域上码分,则所述第二参考信号映射在所述第二参考信号天线端口所对应的DMRS天线端口发射的DMRS所映射的一个或多个子载波上。这里,所述相对应的所述第二参考信号天线端口和DMRS天线端口分别发送的所述第二参考信号和DMRS具有相同子载波位置。
所述相对应的所述第二参考信号天线端口和DMRS天线端口满足如下关系:DMRS天线端口与所述第二参考信号天线端口相同,或者,DMRS天线端口与所述第二参考信号天线端口是准共址(QCL)的,或者,DMRS天线端口与所述第二参考信号天线端口具有相同的预编码(precoding)。这样,接收端可以通过DMRS天线端口与PTRS天线端口关系判断DMRS天线端口利用哪一个PTRS天线端口进行相位跟踪,以及PTRS天线端口实施相位估计所需的信道估计是哪一个DMRS天线端口估计出的。
第二种实现方式,所述第二参考信号在所映射的资源块内的子载波索引可以根据小区ID确定,小区ID可表示成
Figure PCTCN2018080397-appb-000001
可选的,所述第二参考信号在所映射的资源块内的子载波索引和
Figure PCTCN2018080397-appb-000002
之间可存在映射关系,即不同的
Figure PCTCN2018080397-appb-000003
对应不同的子载波索引,这种映射关系可以由协议预定义,也可以由网络设备通过高层信令(如RRC信令)或者PDCCH配置。
可选的,所述第二参考信号在所映射的资源块内的子载波索引可表示成:
Figure PCTCN2018080397-appb-000004
其中,a是大于1的正整数,a可以由协议预定义,例如LTE中规定a=6。
结合第三方面或第四方面,在一些实施例中,在时域上,所述第二参考信号可以分布在调度给用户的上行共享信道(PUSCH)或下行共享信道(PDSCH)的部分或全部符号上。可选的,所述第二参考信号的时域密度可如下包括:所述第二参考信号连续映射在PUSCH(或PDSCH)的每个符号上,或在PUSCH(或 PDSCH)的每2个符号上映射一次,或在PUSCH(或PDSCH)的每4个符号上映射一次。
进一步的,所述第二参考信号所映射的起始符号的索引可以由所述第二参考信号的时域密度确定,可如下:
若所述时域密度为所述第二参考信号连续映射在每个符号上,则所述第二参考信号的起始符号位置为调度给用户的物理上行共享信道或物理下行共享信道的第1个符号;若所述时域密度为所述第二参考信号每2个符号映射一次,则所述第二参考信号的起始符号位置为调度给用户的物理上行共享信道或物理下行共享信道的第2个符号;若所述时域密度为所述第二参考信号每4个符号映射一次,则所述第二参考信号的起始符号位置为调度给用户的物理上行共享信道或物理下行共享信道的第1个符号。
结合第三方面或第四方面,在一些可能的场景中,除了所述第二参考信号,所述用户调度带宽内还可能映射有其他参考信号,例如CSI-RS、SRS、DMRS等,所述第二参考信号和所述其他参考信号可能出现资源冲突。在冲突资源上,所述其他参考信号可以是静默的,即零功率。为了避免资源冲突,所述第二参考信号的映射规则还可以包括下述几种:
第一种,在映射有所述其他参考信号的资源粒子上不映射所述第二参考信号,或者所述第二参考信号在该资源粒子上为零功率,或者所述第二参考信号被所述其他参考信号打孔。
第二种,在映射有所述其他参考信号的符号上,映射有所述其他参考信号的子载波不映射所述第二参考信号。具体地,在映射有所述其他参考信号的符号上,所述第二参考信号的子载波映射在除所述其他参考信号映射的子载波以外的其他子载波上。
第三种,在映射有所述其他参考信号的子载波上,调度给用户的PUSCH(或PDSCH)的全部符号均不映射所述第二参考信号。具体地,在映射有所述其他参考信号的资源块(RB)内的每个符号上,所述第二参考信号的子载波映射在除所述其他参考信号映射的子载波以外的其他子载波上。
第四种,在映射有所述其他参考信号的符号的相邻符号上映射有所述第二参考信号。即在映射有其他参考信号的符号的前一个和/或后一个符号上也映射PTRS。可选地,所述第二参考信号在所述其他参考信号映射的符号的相邻符号上的映射由所述其他参考信号映射的符号位置确定。可选地,所述第二参考信号在时隙内的映射根据所述其他参考信号映射的符号确定。
第五种,在映射有所述其他参考信号的符号的相邻符号上映射所述第二参考信号,并以映射有所述其他参考信号的符号的相邻符号为时域参考基准,根据第二参考信号的时域密度映射第二参考信号。可选地,所述第二参考信号在所述其他参考信号映射的符号的相邻符号上的映射由所述其他参考信号映射的符号位置确定,即时域参考基准根据其他参考信号所映射的符号确定。可选地,所述第二参考信号在时隙内的映射根据所述其他参考信号映射的符号确定。
第六种,根据在映射有所述其他参考信号的符号上是否映射物理下行/上行 共享信道确定所述第二参考信号的映射规则。具体地,在映射有所述其他参考信号的符号上,同时映射有物理下行/上行共享信道,则所述第二参考信号采用所述第二种或第三种映射规则;若在映射有所述其他参考信号的符号上,没有映射物理下行/上行共享信道,则采用第一种或第四种或第五种映射规则
结合第三方面或第四方面,在一些实施例中,在映射有所述其他参考信号的符号上,所述第二参考信号实际所映射的子载波数量可以小于或等于所述计算出的子载波数量。下面具体说明,所述第二参考信号在映射有所述其他参考信号的符号上的几种映射方式:
第一种,在映射有所述其他参考信号的符号上,在所述可用于PUSCH(或PDSCH)传输的带宽内,所述第二参考信号所映射的子载波位置可以和没有映射所述其他参考信号的符号上映射所述第二参考信号的子载波位置一致。
第二种,在映射有所述其他参考信号的符号上,若利用上述第一种映射方式映射所述第二参考信号,所述可用于PUSCH(或PDSCH)传输的带宽内实际映射有所述第二参考信号的子载波数量小于所述可用于PUSCH(或PDSCH)传输的带宽所要求映射所述第二参考信号的子载波数量,则在所述可用于PUSCH(或PDSCH)传输的带宽内,另外增加其他子载波映射所述第二参考信号。
第三种,在映射有所述其他参考信号的符号上,所述第二参考信号在所述可用于PUSCH(或PDSCH)传输的带宽内均匀分布。该符号上映射所述第二参考信号的子载波位置不需要与没有映射所述其他参考信号的符号上映射所述第二参考信号的子载波位置一致。
结合第三方面或第四方面,在一些实施例中,在映射有所述第二参考信号的符号i上,所述第二参考信号映射的子载波数量由符号i上可用于物理上行共享信道传输的带宽或物理下行共享信道传输的带宽,以及所述第二参考信号的频域密度确定。i≥0,是正整数。关于所述第二参考信号的频域密度的确定方式,可参考后面内容,这里不赘述。
结合第三方面或第四方面,所述时域密度可以与带宽部分(bandwidth part,BP)、CP类型、子载波间隔、MCS中至少一项相关,所述时域密度与带宽部分(bandwidth part,BP)、CP类型、子载波间隔、MCS中至少一项的对应关系可以是预定义的或由高层信令配置。
具体的,每一个子载波间隔可以对应1个或多个MCS门限值。相邻两个MCS门限值之间的MCS对应的所述时域密度是相同的。所述1个或多个MCS门限值可以是预定义的或由高层信令配置。
具体的,不同的子载波间隔可以对应不同的调制阶数门限值。也即是说,对不同的子载波间隔,可以配置不同的调制阶数门限值和时域密度的对应关系表。具体的,不同的子载波间隔各自对应的调制阶数门限值可以由协议预定义,也可以由网络设备通过高层信令(例如RRC信令)配置。
结合第三方面或第四方面,所述时域密度可以与带宽部分(bandwidth part,BP)、MCS中至少一项相关,所述时域密度与BP、MCS中至少一项的对应关系可以由协议预定义或由高层信令配置。
其中,BP可以是频域上一段连续的资源。比如,一个BP包含连续的K个子载波,K为大于0的整数。又比如,一个BP为N个不重叠的连续的物理资源块PRB所在的频域资源,N为大于0的整数,所述PRB的子载波间隔可以是15k、30k、60k或者其他子载波间隔取值。又比如,一个BP为N个不重叠的连续物理资源块PRB组所在的频域资源,一个PRB组包含M个连续的PRB,M和N均为大于0的整数,所述PRB的子载波间隔可以是15k、30k、60k或者其他子载波间隔取值。又比如,对于一个终端,BP的长度小于或等于所述终端支持的最大带宽。又比如,一个BP对应一个或多个子载波间隔。
具体的,每一个BP可以对应1组MCS门限值,不同的MCS门限值对应不同的PTRS的时域密度。所述MCS门限值可以是预定义的或由高层信令配置。
具体的,对不同的BP,可以配置不同的调制阶数门限值和时域密度的对应关系表。具体的,不同的BP各自对应的调制阶数门限值可以由协议预定义,也可以由网络设备通过高层信令(例如RRC信令)配置。
结合第三方面或第四方面,所述频域密度可以与带宽部分(bandwidth part,BP)、CP类型、所述用户调度带宽、子载波间隔、MCS中至少一项相关,所述频域密度与CP类型、所述用户调度带宽、子载波间隔、MCS、带宽部分(bandwidth part,BP)中至少一项的对应关系是预定义的或由高层信令配置。
具体的,每一个子载波间隔可以对应1个或多个调度带宽BW门限值;相邻两个BW门限值之间的调度带宽对应的所述频域密度是相同的。所述1个或多个BW门限值可以是预定义的或由高层信令配置。
具体的,不同的子载波间隔可以对应不同的调度带宽门限值。也即是说,对不同的子载波间隔,可以配置不同的调度带宽门限值和时域密度的对应关系表。具体的,不同的子载波间隔各自对应的调度带宽门限值可以由协议预定义,也可以由网络设备通过高层信令(例如RRC信令)配置。
具体的,具体的,每一个BP可以对应1组调度带宽门限值,不同的调度带宽门限值对应不同的PTRS的频域密度。所述调度带宽门限值可以是预定义的或由高层信令配置。
具体的,对不同的BP,可以配置不同的调度带宽门限值和频域密度的对应关系表。具体的,不同的BP各自对应的调度带宽门限值可以由协议预定义,也可以由网络设备通过高层信令(例如RRC信令)配置。
第五方面,本申请提供了一种数据传输方法,可包括:在上行传输HARQ-ACK、RI或者CQI时,所述终端可以根据PTRS的时域密度和频域密度对编码后的HARQ-ACK、RI或者CQI进行速率匹配,向网络设备发送匹配后的编码数据。相应的,网络设备接收终端发送的编码数据。
在第五方面中,所述第二参考信号用于相位跟踪。所述编码数据是根据映射在用户调度带宽内的第二参考信号的时域密度和频域密度对编码后的数据进行速率匹配得到的。PTRS的时域密度和频域密度可确定所述用户调度带宽内所述第二参考信号所占用的资源数量。
具体的,在计算由于用于传输HARQ-ACK、RI或者CQI编码后的调制符号 数时,需要去除所述第二参考信号占用的时频资源,编码后的调制符号数Q′可表示如下:
Figure PCTCN2018080397-appb-000005
其中,
Figure PCTCN2018080397-appb-000006
表示所述用户的上行调度带宽内用于传输PTRS的资源因子的数量,O表示输HARQ-ACK、RI或者CQI编码后的比特数,
Figure PCTCN2018080397-appb-000007
表示所述用户的上行调度带宽内的子载波数量,
Figure PCTCN2018080397-appb-000008
表示用于初始上行共享信道传输的符号数,
Figure PCTCN2018080397-appb-000009
表示调度带宽内用于初始上行共享信道传输的子载波个数,
Figure PCTCN2018080397-appb-000010
表示上行共享信道的一个偏移值
Figure PCTCN2018080397-appb-000011
表示C个码块的编码比特总和。
关于PTRS的时域密度和频域密度的确定方式,可以参考第三方面或第四方面描述的内容,这里不再赘述。
第六方面,提供了一种网络设备,包括多个功能模块,用于相应的执行第一方面所提供的方法,或者第一方面可能的实施方式中的任意一种所提供的方法。
第七方面,提供了一种终端,包括多个功能模块,用于相应的执行第一方面所提供的方法,或者第一方面可能的实施方式中的任意一种所提供的方法。
第八方面,提供了一种网络设备,用于执行第一方面描述的参考信号传输方法。所述无线网络设备可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线网络设备,例如终端,发送信号,所述接收器用于接收所述另一无线网络设备,例如终端,发送的信号,所述存储器用于存储第一方面描述的参考信号传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第一方面所提供的方法,或者第一方面可能的实施方式中的任意一种所提供的方法。
第九方面,提供了一种终端,用于执行第一方面描述的参考信号传输方法。所述终端可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线网络设备,例如网络设备,发送信号,所述接收器用于接收所述另一无线网络设备,例如网络设备,发送的信号,所述存储器用于存储第一方面描述的参考信号传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第一方面所提供的方法,或者第一方面可能的实施方式中的任意一种所提供的方法。
第十方面,提供了一种网络设备,包括多个功能模块,用于相应的执行第二方面所提供的方法,或者第二方面可能的实施方式中的任意一种所提供的方法。
第十一方面,提供了一种终端,包括多个功能模块,用于相应的执行第二方面所提供的方法,或者第二方面可能的实施方式中的任意一种所提供的方法。
第十二方面,提供了一种网络设备,用于执行第二方面描述的参考信号传输方法。所述无线网络设备可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线网络设备,例如终端,发送信号,所述接收器用于接收所述另一无线网络设备,例如终端,发送的信号,所述存储器用于存储第二方面描述的参考信号传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第二方面所提供的方法,或者第二方面可能的实施方式中的任意一种所提供的方法。
第十三方面,提供了一种终端,用于执行第二方面描述的参考信号传输方法。所述终端可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线网络设备,例如网络设备,发送信号,所述接收器用于接收所述另一无线网络设备,例如网络设备,发送的信号,所述存储器用于存储第二方面描述的参考信号传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第二方面所提供的方法,或者第二方面可能的实施方式中的任意一种所提供的方法。
第十四方面,提供了一种网络设备,包括多个功能模块,用于相应的执行第三方面所提供的方法,或者第三方面可能的实施方式中的任意一种所提供的方法。
第十五方面,提供了一种终端,包括多个功能模块,用于相应的执行第三方面所提供的方法,或者第三方面可能的实施方式中的任意一种所提供的方法。
第十六方面,提供了一种网络设备,用于执行第三方面描述的参考信号传输方法。所述无线网络设备可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线网络设备,例如终端,发送信号,所述接收器用于接收所述另一无线网络设备,例如终端,发送的信号,所述存储器用于存储第三方面描述的参考信号传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第三方面所提供的方法,或者第三方面可能的实施方式中的任意一种所提供的方法。
第十七方面,提供了一种终端,用于执行第三方面描述的参考信号传输方法。所述终端可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线网络设备,例如网络设备,发送信号,所述接收器用于接收所述另一无线网络设备,例如网络设备,发送的信号,所述存储器用于存储第三方面描述的参考信号传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第三方面所提供的方法,或者第三方面可能的实施方式中的任意一种所提供的方法。
第十八方面,提供了一种网络设备,包括多个功能模块,用于相应的执行第四方面所提供的方法,或者第四方面可能的实施方式中的任意一种所提供的方法。
第十九方面,提供了一种终端,包括多个功能模块,用于相应的执行第四方面所提供的方法,或者第四方面可能的实施方式中的任意一种所提供的方法。
第二十方面,提供了一种网络设备,用于执行第四方面描述的参考信号传输方法。所述无线网络设备可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线网络设备,例如终端,发送信 号,所述接收器用于接收所述另一无线网络设备,例如终端,发送的信号,所述存储器用于存储第四方面描述的参考信号传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第四方面所提供的方法,或者第四方面可能的实施方式中的任意一种所提供的方法。
第二十一方面,提供了一种终端,用于执行第四方面描述的参考信号传输方法。所述终端可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线网络设备,例如网络设备,发送信号,所述接收器用于接收所述另一无线网络设备,例如网络设备,发送的信号,所述存储器用于存储第四方面描述的参考信号传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第四方面所提供的方法,或者第四方面可能的实施方式中的任意一种所提供的方法。
第二十二方面,提供了一种网络设备,包括多个功能模块,用于相应的执行第五方面或者第五方面可能的实施方式中的任意一种所提供的方法。
第二十三方面,提供了一种终端,包括多个功能模块,用于相应的执行第五方面或者第五方面可能的实施方式中的任意一种所提供的方法。
第二十四方面,提供了一种网络设备,用于执行第五方面描述的参考信号传输方法。所述网络设备可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线网络设备,例如终端,发送信号,所述接收器用于接收所述另一无线网络设备,例如终端,发送的信号,所述存储器用于存储第五方面描述的数据传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第五方面或者第五方面可能的实施方式中的任意一种所提供的方法。
第二十五方面,提供了一种终端,用于执行第五方面描述的参考信号传输方法。所述终端可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线网络设备,例如网络设备,发送信号,所述接收器用于接收所述另一无线网络设备,例如网络设备,发送的信号,所述存储器用于存储第五方面描述的数据传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第五方面或者第五方面可能的实施方式中的任意一种所提供的方法。
第二十六方面,提供了一种通信系统,所述通信系统包括:网络设备和终端。
在一种实现方式中,所述网络设备可以是第六方面或第八方面描述的网络设备,所述终端可以是第七方面或第九方面描述的网络设备。
在一种实现方式中,所述网络设备可以是第十方面或第十二方面描述的网络设备,所述终端可以是第十一方面或第十三方面描述的网络设备。
在一种实现方式中,所述网络设备可以是第十四方面或第十六方面描述的网络设备,所述终端可以是第十五方面或第十七方面描述的网络设备。
在一种实现方式中,所述网络设备可以是第十八方面或第二十方面描述的网络设备,所述终端可以是第十九方面或第二十一方面描述的网络设备。
在一种实现方式中,所述网络设备可以是第二十二方面或第二十四方面描述 的网络设备,所述终端可以是第二十三方面或第二十五方面描述的网络设备。
第二十七方面,提供了一种计算机可读存储介质,所述可读存储介质上存储有实现第一方面或第二方面或第三方面或第四方面或第五方面描述的方法的程序代码,该程序代码包含运行第一方面或第二方面或第三方面或第四方面或第五方面描述的方法的执行指令。
第二十八方面,提供了一种通信的方法,包括:
根据当前激活的带宽部分BP与调制编码模式MCS,确定相位跟踪参考信号PTRS的时域密度;
根据所述当前激活的带宽部分BP与调度带宽BW,确定所述PTRS的频域密度;
根据所述时域密度和所述频域密度,映射所述PTRS到一个或多个符号上,或者映射所述PTRS到多个子载波上。
一种可能的设计中,包括一个或多个BP取值,为部分或全部BP配置一组或多组MCS门限值、或者为部分或全部BP组配置一组或多组MCS门限值。可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送一个或多个BP或一个或多个BP组与对应的一组或多组MCS门限值的配置信息。
一种可能的设计中,包括一个或多个BP取值,根据预存储的信息获取一个或多个BP对应的一组或多组MCS门限值、或者所述一个或多个BP组对应的一组或多组MCS门限值。
另一种可能的设计中,一个BP组由一个或多个BP组成,BP组内的BP具有相同的子载波间隔,或BP组内的BP具有相同的参数集numerology。可选的,根据子载波间隔,确定BP组内的BP或者确定BP组;可选的,根据参数集numerology,确定BP组内的BP或者确定BP分组。
另一种可能的设计中,基站配置一个或多个BP分组信息,可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送一个或多个BP分组信息。所述BP分组信息可用于指示BP组内的一个或多个BP。
另一种可能的设计中,基站配置BP分组规则信息,可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送BP分组规则信息。所述BP分组规则信息可用于指示BP分组规则。可选的,分组规则为具有相同子载波间隔的BP为一组;可选的,分组规则还可以为具有相同参数集numerology的BP为一组。
另一种可能的设计中,为所述BP配置MCS门限值与时域密度的对应关系信息,或者为所述BP组配置MCS门限值与时域密度的对应关系信息。可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送一个或多个BP或一个或多个BP组与对应的所述一种或多种MCS门限值与时域密度的对应关系的配置信息。
另一种可能的设计中,根据预存储的信息获取所述BP对应的MCS门限值 与时域密度的对应关系信息,或者所述BP组对应的MCS门限值与时域密度的对应关系信息。
另一种可能的设计中,包括一个或多个BP取值,为部分或全部BP配置一组或多组调度带宽门限值、或者为部分或全部BP组配置一组或多组调度带宽门限值。可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送一个或多个BP或一个或多个BP组与对应的一组或多组调度带宽门限值的配置信息。
一种可能的设计中,包括一个或多个BP取值,根据预存储的信息获取一个或多个BP对应的一组或多组调度带宽门限值、或者所述一个或多个BP组对应的一组或多组调度带宽门限值。
另一种可能的设计中,为所述BP配置调度带宽门限值与频域密度的对应关系信息,或者为所述BP组配置调度带宽门限值与频域密度的对应关系信息。可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送一个或多个BP或一个或多个BP组与对应的所述一种或多种调度带宽门限值与频域密度的对应关系信息的配置信息。
另一种可能的设计中,根据预存储的信息获取所述BP对应的调度带宽门限值与频域密度的对应关系信息,或者所述BP组对应的调度带宽门限值与频域密度的对应关系信息。
另一种可能的设计中,通过高层信令配置多个BP给对端设备,所述对端设备可以是终端。
另一种可能的设计中,通过MAC CE或DCI发送指示信息,用于指示当前激活的BP,所述指示信息可以是BP的编号或者索引信息。
另一种可能的设计中,根据当前为对端设备激活的BP,确定所述当前为对端设备激活的BP所对应的一组MCS门限值或MCS门限值与时域密度的对应关系信息;
另一种可能的设计中,根据当前为对端设备激活的BP所属于的BP组,确定所述当前为对端设备激活的BP所对应的一组MCS门限值或MCS门限值与时域密度的对应关系信息;
根据当前调度的MCS与所述对应关系信息,确定所述PTRS的时域密度。
另一种可能的设计中,根据当前为对端设备激活的BP,确定所述当前为对端设备激活的BP所对应的一组调度带宽门限值或调度带宽门限值与频域密度的对应关系信息;
另一种可能的设计中,根据当前为对端设备激活的BP所属于的BP组,确定所述当前为对端设备激活的BP所对应的一组调度带宽门限值或调度带宽门限值与频域密度的对应关系信息;
根据当前调度的调度带宽与所述对应关系信息,确定所述PTRS的频域密度。
应理解,第二十八方面所提供的方法的执行主体可以是基站,也可以是终端。
当执行主体为终端时,有特别的设计,具体为:
一种可能的设计中,通过高层信令接收基站配置的多个候选BP,所述高层 信令可以为RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。
另一种可能的设计中,接收来自基站的信令,所述信令用于指示当前激活的BP,所述信令可以为MAC CE或DCI。
另一种可能的设计中,接收来自基站的高层信令,所述信令用于指示BP分组的规则信息或者用于指示所述当前激活的BP所属于的BP组或者用于指示BP分组信息。所述高层信令可以为RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。所述BP分组信息可用于指示BP组内的一个或多个BP。
另一种可能的设计中,根据预定义或预存储的规则确定BP分组。可选的,根据子载波间隔确定BP分组,BP组内的BP具有相同的子载波间隔;可选的,根据参数集numerology确定BP分组,BP组内的BP具有相同的numerology.
另一种可能的设计中,预存储MCS门限值与时域密度的对应关系信息,其中,一个或多个BP对应一种或多种所述MCS门限值与时域密度的对应关系信息,或者,一个或多个BP组对应一种或多种所述MCS门限值与时域密度的对应关系信息。
另一种可能的设计中,预存储调度带宽门限值与频域密度的对应关系信息,其中,一个或多个BP对应一种或多种所述调度带宽门限值与频域密度的对应关系信息,或者,一个或多个BP组对应一种或多种所述调度带宽门限值与频域密度的对应关系信息。
另一种可能的设计中,通过高层信令接收来自基站的配置信息,所述配置信息用于指示一个或多个BP对应的一组或多组调度带宽门限值、或者一个或多个BP组对应的一组或多组调度带宽门限值。所述高层信令可以为RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。
另一种可能的设计中,通过高层信令接收来自基站的配置信息,所述配置信息用于指示一个或多个BP对应的一组或多组MCS门限值、或者一个或多个BP组对应的一组或多组MCS门限值。所述高层信令可以为RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。另一种可能的设计中,通过高层信令接收来自基站的配置信息,所述配置信息用于指示一个或多个BP对应的一种或多种MCS门限值与时域密度的对应关系信息、或者一个或多个BP组对应的一种或多种MCS门限值与时域密度的对应关系信息。所述高层信令可以为RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。
另一种可能的设计中,通过高层信令接收来自基站的配置信息,所述配置信息用于指示一个或多个BP对应的一种或多种调度带宽门限值与频域密度的对应关系信息,或者所述一个或多个BP组对应的一种或多种调度带宽门限值与频域密度的对应关系信息。
另一种可能的设计中,终端预存储至少以下信息之一:
BP对应的MCS门限值与时域密度的对应关系信息;
BP组对应的MCS门限值与时域密度的对应关系信息;
BP对应的调度带宽门限值与频域密度的对应关系信息;
BP组对应的调度带宽门限值与频域密度的对应关系信息。
另一种可能的设计中,根据当前激活的BP,确定所述当前激活的BP所对应的一组MCS门限值或MCS门限值与时域密度的对应关系信息;
另一种可能的设计中,根据所述当前激活的BP所属于的BP组,确定该BP组对应的一组MCS门限值或MCS门限值与时域密度的对应关系信息;
根据当前调度的MCS与所述对应关系信息,确定所述PTRS的时域密度。
另一种可能的设计中,根据当前激活的BP,确定所述当前激活的BP所对应的一组调度带宽门限值或调度带宽门限值与频域密度的对应关系信息;
另一种可能的设计中,根据所述当前激活的BP所属于的BP组,确定该BP组对应的一组调度带宽门限值调度带宽门限值与频域密度的对应关系信息;
根据当前的调度带宽与所述对应关系信息,确定所述PTRS的频域密度。第二十九方面,提供一种通信的方法,包括:
接收一个或多个符号,所述一个或多个符号上映射有相位跟踪参考信号PTRS;
根据当前激活的带宽部分BP与调制阶数MCS,获取所述PTRS的时域密度;
根据当前激活的所述带宽部分BP与调度带宽BW,获取所述PTRS的频域密度;
根据所述时域密度和所述频域密度,从所述一个或多个符号上获取所述PTRS。
一种可能的设计中,接收来自对端设备的信令,所述信令携带用于指示一个或多个BP的信息,所述信令可以为RRC信令。
另一种可能的设计中,接收来自对端设备的信令,所述信令携带用于指示当前激活的BP的信息,所述信令可以为MAC CE或DCI信令。
另一种可能的设计中,接收来自所述对端设备的信令,所述信令用于指示BP分组的规则信息或者用于指示所述当前激活的BP所属于的BP组或者用于指示BP分组信息。
另一种可能的设计中,根据预定义或预存储的规则确定当前激活的BP所属于的BP组,可选的,根据子载波间隔确定当前激活的BP所属的BP组,BP组内的BP具有相同子载波间隔。可选的,根据参数集numerology确定当前激活的BP所属的BP组,BP组内的BP具有相同的参数集numerology.
另一种可能的设计中,预存储MCS门限值与时域密度的对应关系信息,其中,一个或多个BP对应一种或多种所述MCS门限值与时域密度的对应关系信息,或者,一个或多个BP组对应一种或多种所述MCS门限值与时域密度的对应关系信息。
另一种可能的设计中,预存储调度带宽门限值与频域密度的对应关系信息,其中,一个或多个BP对应一种或多种所述调度带宽门限值与频域密度的对应关系信息,或者,一个或多个BP组对应一种或多种所述调度带宽门限值与频域密度的对应关系信息。
另一种可能的设计中,通过高层信令接收来自基站的配置信息,所述配置信息用于指示一个或多个BP对应的一组或多组调度带宽门限值、或者一个或多个BP组对应的一组或多组调度带宽门限值。所述高层信令可以为RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。
另一种可能的设计中,通过高层信令接收来自基站的配置信息,所述配置信息用于指示一个或多个BP对应的一组或多组MCS门限值、或者一个或多个BP组对应的一组或多组MCS门限值。所述高层信令可以为RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。
另一种可能的设计中,通过高层信令接收来自基站的配置信息,所述配置信息用于指示一个或多个BP对应的一种或多种MCS门限值与时域密度的对应关系信息、或者一个或多个BP组对应的一种或多种MCS门限值与时域密度的对应关系信息。所述高层信令可以为RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。
另一种可能的设计中,通过高层信令接收来自基站的配置信息,所述配置信息用于指示一个或多个BP对应的一种或多种调度带宽门限值与频域密度的对应关系信息,或者所述一个或多个BP组对应的一种或多种调度带宽门限值与频域密度的对应关系信息。
另一种可能的设计中,终端预存储至少以下信息之一:
BP对应的MCS门限值与时域密度的对应关系信息;
BP组对应的MCS门限值与时域密度的对应关系信息;
BP对应的调度带宽门限值与频域密度的对应关系信息;
BP组对应的调度带宽门限值与频域密度的对应关系信息。
另一种可能的设计中,根据所述当前激活的BP,确定所述当前激活的BP所对应的一组MCS门限值或MCS门限值与时域密度的对应关系信息;
另一种可能的设计中,根据所述当前激活的BP所属于的BP组,确定该BP组对应的一组MCS门限值或MCS门限值与时域密度的对应关系信息;
根据当前调度的MCS与所述对应关系信息,确定所述PTRS的时域密度。
另一种可能的设计中,根据当前激活的BP,确定所述当前激活的BP所对应的一组调度带宽门限值或调度带宽门限值与频域密度的对应关系信息;
另一种可能的设计中,根据所述当前激活的BP所属于的BP组,确定该BP组对应的一组调度带宽门限值调度带宽门限值与频域密度的对应关系信息;
根据当前的调度带宽与所述对应关系信息,确定所述PTRS的频域密度。
根据当前的调度带宽与所述对应关系信息,确定所述PTRS的频域密度。
另一种可能的设计中,接收一个或多个BP与调度带宽、频域密度的对应关系信息。
另一种可能的设计中,接收一个或多个BP组与调度带宽、频域密度的对应关系信息。
另一种可能的设计中,接收一个或多个BP与MCS、时域密度的对应关系信息。
另一种可能的设计中,接收一个或多个BP组与MCS、时域密度的对应关系信息。
应理解,上述第二十九方面的执行主体可以是终端,也可以是基站。当执行主体为基站时,有特别的设计,具体为:
一种可能的设计中,包括一个或多个BP取值,为部分或全部BP配置一组或多组MCS门限值、或者为部分或全部BP组配置一组或多组MCS门限值。可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送一个或多个BP或一个或多个BP组与对应的一组或多组MCS门限值的配置信息。
一种可能的设计中,包括一个或多个BP取值,根据预存储的信息获取一个或多个BP对应的一组或多组MCS门限值、或者所述一个或多个BP组对应的一组或多组MCS门限值。
另一种可能的设计中,一个BP组由一个或多个BP组成,BP组内的BP具有相同的子载波间隔,或BP组内的BP具有相同的参数集numerology。可选的,根据子载波间隔,确定BP组内的BP或者确定BP组;可选的,根据参数集numerology,确定BP组内的BP或者确定BP分组。
另一种可能的设计中,基站配置一个或多个BP分组信息,可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送一个或多个BP分组信息。所述BP分组信息可用于指示BP组内的一个或多个BP。
另一种可能的设计中,基站配置BP分组规则信息,可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送BP分组规则信息。所述BP分组规则信息可用于指示BP分组规则。可选的,分组规则为具有相同子载波间隔的BP为一组;可选的,分组规则还可以为具有相同参数集numerology的BP为一组。
另一种可能的设计中,为所述BP配置MCS门限值与时域密度的对应关系信息,或者为所述BP组配置MCS门限值与时域密度的对应关系信息。可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送一个或多个BP或一个或多个BP组与对应的所述一种或多种MCS门限值与时域密度的对应关系的配置信息。
另一种可能的设计中,包括一个或多个BP取值,为部分或全部BP配置一组或多组调度带宽门限值、或者为部分或全部BP组配置一组或多组调度带宽门限值。可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送一个或多个BP或一个或多个BP组与对应的一组或多组调度带宽门限值的配置信息。
一种可能的设计中,包括一个或多个BP取值,根据预存储的信息获取一个或多个BP对应的一组或多组调度带宽门限值、或者所述一个或多个BP组对应的一组或多组调度带宽门限值。
另一种可能的设计中,为所述BP配置调度带宽门限值与频域密度的对应关 系信息,或者为所述BP组配置调度带宽门限值与频域密度的对应关系信息。可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送一个或多个BP或一个或多个BP组与对应的所述一种或多种调度带宽门限值与频域密度的对应关系信息的配置信息。
另一种可能的设计中,通过高层信令配置多个BP给终端设备。
另一种可能的设计中,通过MAC CE或DCI发送指示信息,用于指示当前激活的BP,所述指示信息可以是BP的编号或者索引信息。
另一种可能的设计中,根据当前为对端设备激活的BP,确定所述当前为对端设备激活的BP所对应的一组MCS门限值或MCS门限值与时域密度的对应关系信息;
另一种可能的设计中,根据当前为对端设备激活的BP所属于的BP组,确定所述当前为对端设备激活的BP所对应的一组MCS门限值或MCS门限值与时域密度的对应关系信息;
根据当前调度的MCS与所述对应关系信息,确定所述PTRS的时域密度。
另一种可能的设计中,根据当前为对端设备激活的BP,确定所述当前为对端设备激活的BP所对应的一组调度带宽门限值或调度带宽门限值与频域密度的对应关系信息;
另一种可能的设计中,根据当前为对端设备激活的BP所属于的BP组,确定所述当前为对端设备激活的BP所对应的一组调度带宽门限值或调度带宽门限值与频域密度的对应关系信息;
根据当前调度的调度带宽与所述对应关系信息,确定所述PTRS的频域密度。
第三十方面,提供一种装置,包括处理单元和通信单元,其中,
处理单元,用于根据当前激活的带宽部分BP与调制阶数MCS,确定相位跟踪参考信号PTRS的时域密度;根据所述当前激活的带宽部分BP与调度带宽,确定所述PTRS的频域密度;
通信单元,用于根据所述时域密度和所述频域密度,映射所述PTRS到一个或多个符号上,或者映射到多个子载波上。
一种可能的设计中,处理单元还用于:为一个或多个所述BP配置一组或多组MCS门限值、或者为一个或多个所述BP组配置一组MCS门限值;通信单元还用于:通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送一个或多个BP或一个或多个BP组与对应的一组或多组MCS门限值的配置信息。
另一种可能的设计中,处理单元还用于:根据子载波间隔,确定BP组,或者根据参数集numerology,确定BP组。
另一种可能的设计中,处理单元还用于:配置BP分组信息,所述BP分组信息可用于指示BP组内的一个或多个BP。分组信息可以通过高层信令发送,所述高层信令可以为RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。
另一种可能的设计中,处理单元还用于:配置BP分组规则信息,可以通过 高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送BP分组规则信息。所述BP分组规则信息可用于指示BP分组规则。
另一种可能的设计中,还包括存储单元,用于存储将多个BP分为BP组的规则,处理单元还用于:根据所述预存储的规则,确定当前的BP所属的BP组。
另一种可能的设计中,处理单元还用于:配置BP分组规则信息,
另一种可能的设计中,处理单元还用于:为所述BP配置一个MCS门限值与时域密度的对应关系信息,或者为所述BP组配置MCS门限值与时域密度的对应关系信息;通信单元还用于:通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送所述BP或BP组与对应的MCS门限值与时域密度的对应关系信息配置信息。
另一种可能的设计中,还包括存储单元,用于存储所述BP对应的MCS门限值与时域密度的对应关系信息,或者所述BP组对应的MCS门限值与时域密度的对应关系信息。
另一种可能的设计中,处理单元还用于:为一个或多个所述BP配置一组或多组调度带宽门限值、或者为一个或多个所述BP组配置一组或多组调度带宽门限值;通信单元还用于:通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送一个或多个BP或一个或多个BP组与对应的一组或多组调度带宽门限值的配置信息。
另一种可能的设计中,处理单元还用于:为所述BP配置调度带宽门限值与频域密度的对应关系信息,或者为所述BP组配置调度带宽门限值与频域密度的对应关系信息;通信单元还用于:可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送所述BP或BP组与对应的调度带宽门限值与频域密度的对应关系配置信息。
另一种可能的设计中,还包括存储单元,用于存储所述BP对应的MCS门限值与时域密度的对应关系信息,或者所述BP组对应的MCS门限值与时域密度的对应关系信息。
另一种可能的设计中,通信单元还用于:通过高层信令发送多个BP给对端设备,比如RRC信令。
另一种可能的设计中,通信单元还用于:发送指示信息给对端设备,用于指示当前激活的BP,所述指示消息可以为MAC CE信令或DCI。
另一种可能的设计中,处理单元还用于:根据当前为对端设备激活的BP,确定所述当前为对端设备激活的BP所对应的一组MCS门限值或MCS门限值与时域密度的对应关系信息;
另一种可能的设计中,处理单元还用于:根据当前为对端设备激活的BP所属于的BP组,确定所述当前为对端设备激活的BP所对应的一组MCS门限值或MCS门限值与时域密度的对应关系信息;
另一种可能的设计中,处理单元还用于:根据当前调度的MCS与所述对应关系信息,确定所述PTRS的时域密度。
另一种可能的设计中,处理单元还用于:根据当前为对端设备激活的BP,确定所述当前为对端设备激活的BP所对应的一组调度带宽门限值或调度带宽门限值与频域密度的对应关系信息;
另一种可能的设计中,处理单元还用于:根据当前为对端设备激活的BP所属于的BP组,确定所述当前为对端设备激活的BP所对应的一组调度带宽门限值或调度带宽门限值与频域密度的对应关系信息;
另一种可能的设计中,处理单元还用于:根据当前调度的调度带宽与所述对应关系信息,确定所述PTRS的频域密度。
另一种可能的设计中,所述装置为终端或网络设备。
应理解,第三十方面所提供的装置可以是基站,也可以是终端。
当为终端时,有特别的设计,具体为:
一种可能的设计中,通信单元,还用于通过高层信令接收基站配置的多个候选BP,高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。
另一种可能的设计中,通信单元,还用于接收来自基站的信令,所述信令用于指示当前激活的BP,所述信令可以为MAC CE或DCI。
另一种可能的设计中,通信单元,接收来自基站的高层信令,所述信令用于指示BP分组的规则信息或者用于指示所述当前激活的BP所属于的BP组或者用于指示BP分组信息。所述高层信令可以为RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。所述BP分组信息可用于指示BP组内的一个或多个BP。另一种可能的设计中,还包括存储单元,用于存储将多个BP分为BP组的规则,根据所述预存储的规则,确定当前的BP所属的BP组。
另一种可能的设计中,还包括存储单元,用于存储MCS门限值与时域密度的对应关系信息,其中,一个或多个BP对应一种或多种所述MCS门限值与时域密度的对应关系信息,或者,一个或多个BP组对应一种或多种所述MCS门限值与时域密度的对应关系信息。
另一种可能的设计中,还包括存储单元,用于存储调度带宽门限值与频域密度的对应关系信息,其中,一个或多个BP对应一种或多种所述调度带宽门限值与频域密度的对应关系信息,或者,一个或多个BP组对应一种或多种所述调度带宽门限值与频域密度的对应关系信息。
另一种可能的设计中,通信单元,还用于通过高层信令接收来自基站的配置信息,所述配置信息用于指示一个或多个BP对应的一组或多组调度带宽门限值、或一个或多个BP组对应一组或多组调度带宽门限值。所述高层信令可以为RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。
另一种可能的设计中,通信单元,还用于通过高层信令接收来自基站的配置信息,所述配置信息用于指示一个或多个BP对应的一组或多组MCS门限值、或者一个或多个BP组对应的一组或多组MCS门限值。所述高层信令可以为RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。
另一种可能的设计中,通信单元,还用于通过高层信令接收来自基站的配置 信息,所述配置信息用于指示一个或多个BP对应的一种或多种MCS门限值与时域密度的对应关系信息、或者一个或多个BP组对应的一种或多种MCS门限值与时域密度的对应关系信息。所述高层信令可以为RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。
另一种可能的设计中,通信单元,还用于通过高层信令接收来自基站的配置信息,所述配置信息用于指示一个或多个BP对应的一种或多种调度带宽门限值与频域密度的对应关系信息,或者所述一个或多个BP组对应的一种或多种调度带宽门限值与频域密度的对应关系信息。
另一种可能的设计中,存储单元,还用于存储以下信息至少之一:
BP对应的MCS门限值与时域密度的对应关系信息;
BP组对应的MCS门限值与时域密度的对应关系信息;
BP对应的调度带宽门限值与频域密度的对应关系信息;
所述BP组对应的调度带宽门限值与频域密度的对应关系信息。
另一种可能的设计中,处理单元还用于:根据当前激活的BP,确定所述当前激活的BP所对应的一组MCS门限值或MCS门限值与时域密度的对应关系信息;
另一种可能的设计中,处理单元还用于:根据所述当前激活的BP所属于的BP组,确定该BP组对应的一组MCS门限值或MCS门限值与时域密度的对应关系信息;
处理单元还用于:根据当前调度的MCS与所述对应关系信息,确定所述PTRS的时域密度。
另一种可能的设计中,处理单元还用于:根据当前激活的BP,确定所述当前激活的BP所对应的一组调度带宽门限值或调度带宽门限值与频域密度的对应关系信息;
另一种可能的设计中,处理单元还用于:根据所述当前激活的BP所属于的BP组,确定该BP组对应的一组调度带宽门限值调度带宽门限值与频域密度的对应关系信息;
处理单元还用于:根据当前的调度带宽与所述对应关系信息,确定所述PTRS的频域密度。
第三十一方面,提供一种装置,包括处理单元和通信单元,其中,
通信单元,用于接收一个或多个符号,所述一个或多个符号上映射有相位跟踪参考信号PTRS;
处理单元,用于根据当前的带宽部分BP与调制阶数MCS,获取所述PTRS的时域密度;
根据所述当前的带宽部分BP与调度带宽,获取所述PTRS的频域密度;
根据所述时域密度和频域密度,从所述一个或多个符号上获取所述PTRS。
一种可能的设计中,所述装置还包括存储单元,用于存储MCS与时域密度的对应关系信息表,其中,每个BP对应一张所述对应关系信息表,或者,每个BP组对应一张所述对应关系信息表。
另一种可能的设计中,通信单元,还用于接收来自对端设备的信令,所述信令携带用于指示一个或多个BP的信息。
另一种可能的设计中,通信单元,还用于接收来自对端设备的信令,所述信令携带用于指示当前激活的BP的信息。
另一种可能的设计中,通信单元,还用于接收来自所述对端设备的信令,所述信令用于指示BP分组的规则信息或者用于指示所述当前激活的BP所属于的BP组或者用于指示BP分组信息。另一种可能的设计中,存储单元,用于存储将多个BP分为BP组的规则,处理单元,用于根据所述预存储的规则,确定当前的BP所属的BP组。
另一种可能的设计中,存储单元,用于存储MCS门限值与时域密度的对应关系信息,其中,一个或多个BP对应一种或多种所述MCS门限值与时域密度的对应关系信息,或者,一个或多个BP组对应一种或多种所述MCS门限值与时域密度的对应关系信息。
另一种可能的设计中,存储单元,用于存储调度带宽门限值与频域密度的对应关系信息,其中,一个或多个BP对应一种或多种所述调度带宽门限值与频域密度的对应关系信息,或者,一个或多个BP组对应一种或多种所述调度带宽门限值与频域密度的对应关系信息。
另一种可能的设计中,通信单元还用于通过高层信令接收来自基站的配置信息,所述配置信息用于指示一个或多个BP对应的一组或多组调度带宽门限值、或者一个或多个BP组对应的一组或多组调度带宽门限值。所述高层信令可以为RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。
另一种可能的设计中,通信单元还用于通过高层信令接收来自基站的配置信息,所述配置信息用于指示一个或多个BP对应的一组或多组MCS门限值、或者一个或多个BP组对应的一组或多组MCS门限值。所述高层信令可以为RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。
另一种可能的设计中,通信单元还用于通过高层信令接收来自基站的配置信息,所述配置信息用于指示一个或多个BP对应的一种或多种MCS门限值与时域密度的对应关系信息、或者一个或多个BP组对应的一种或多种MCS门限值与时域密度的对应关系信息。所述高层信令可以为RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合。
另一种可能的设计中,通信单元还用于通过高层信令接收来自基站的配置信息,所述配置信息用于指示一个或多个BP对应的一种或多种调度带宽门限值与频域密度的对应关系信息,或者所述一个或多个BP组对应的一种或多种调度带宽门限值与频域密度的对应关系信息。
另一种可能的设计中,存储单元,用于存储至少以下信息之一:
BP对应的MCS门限值与时域密度的对应关系信息;
BP组对应的MCS门限值与时域密度的对应关系信息;
BP对应的调度带宽门限值与频域密度的对应关系信息;
BP组对应的调度带宽门限值与频域密度的对应关系信息。
另一种可能的设计中,所述处理单元还用于:根据当前激活的BP,确定所述当前激活的BP所对应的一组MCS门限值或MCS门限值与时域密度的对应关系信息;
另一种可能的设计中,所述处理单元还用于:根据所述当前激活的BP所属于的BP组,确定该BP组对应的一组MCS门限值或MCS门限值与时域密度的对应关系信息;
所述处理单元还用于:根据当前调度的MCS与所述对应关系信息,确定所述PTRS的时域密度。
另一种可能的设计中,所述处理单元还用于:根据当前激活的BP,确定所述当前激活的BP所对应的一组调度带宽门限值或调度带宽门限值与频域密度的对应关系信息;
另一种可能的设计中,所述处理单元还用于:根据所述当前激活的BP所属于的BP组,确定该BP组对应的一组调度带宽门限值调度带宽门限值与频域密度的对应关系信息;
所述处理单元还用于:根据当前的调度带宽与所述对应关系信息,确定所述PTRS的频域密度。
另一种可能的设计中,所述通信单元,还用于接收一个或多个BP与调度带宽、频域密度的对应关系信息。
另一种可能的设计中,所述通信单元,还用于接收一个或多个BP组与调度带宽、频域密度的对应关系信息。
另一种可能的设计中,所述通信单元,还用于接收一个或多个BP与MCS、时域密度的对应关系信息。
另一种可能的设计中,所述通信单元,还用于接收一个或多个BP组与MCS、时域密度的对应关系信息。
另一种可能的设计中,所述装置为终端或网络设备。
应理解,第三十一方面的所提供的装置可以是终端,也可以是基站。当为基站时,有特别的设计,具体为:
一种可能的设计中,处理单元还用于:为部分或全部BP配置一组或多组MCS门限值、或者为部分或全部BP组配置一组或多组MCS门限值。通信单元还用于:可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送一个或多个BP或一个或多个BP组与对应的一组或多组MCS门限值的配置信息。
一种可能的设计中,处理单元还用于:根据预存储的信息获取一个或多个BP对应的一组或多组MCS门限值、或者所述一个或多个BP组对应的一组或多组MCS门限值。
另一种可能的设计中,还包括存储单元,用于存储将多个BP分为BP组的规则,处理单元还用于:根据所述预存储的规则,确定当前的BP所属的BP组。
另一种可能的设计中,处理单元还用于:基站配置一个或多个BP分组信息,通信单元还用于通过高层信令,比如RRC信令,或MAC CE,或广播消息,或 系统消息或以上至少之二的组合,发送一个或多个BP分组信息。所述BP分组信息可用于指示BP组内的一个或多个BP。
另一种可能的设计中,处理单元还用于:基站配置BP分组规则信息,通信单元还用于:可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送BP分组规则信息。
另一种可能的设计中,处理单元还用于:为所述BP配置MCS门限值与时域密度的对应关系信息,或者为所述BP组配置MCS门限值与时域密度的对应关系信息。通信单元还用于:可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送一个或多个BP或一个或多个BP组与对应的所述一种或多种MCS门限值与时域密度的对应关系的配置信息。
另一种可能的设计中,处理单元还用于:为部分或全部BP配置一组或多组调度带宽门限值、或者为部分或全部BP组配置一组或多组调度带宽门限值。通信单元还用于:通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送一个或多个BP或一个或多个BP组与对应的一组或多组调度带宽门限值的配置信息。
另一种可能的设计中,处理单元还用于:根据预存储的信息获取一个或多个BP对应的一组或多组调度带宽门限值、或者所述一个或多个BP组对应的一组或多组调度带宽门限值。
另一种可能的设计中,处理单元还用于:为所述BP配置调度带宽门限值与频域密度的对应关系信息,或者为所述BP组配置调度带宽门限值与频域密度的对应关系信息。通信单元还用于可以通过高层信令,比如RRC信令,或MAC CE,或广播消息,或系统消息或以上至少之二的组合,发送一个或多个BP或一个或多个BP组与对应的所述一种或多种调度带宽门限值与频域密度的对应关系信息的配置信息。
另一种可能的设计中,基站预存储至少以下信息之一:
BP对应的MCS门限值与时域密度的对应关系信息;
BP组对应的MCS门限值与时域密度的对应关系信息;
BP对应的调度带宽门限值与频域密度的对应关系信息;
BP组对应的调度带宽门限值与频域密度的对应关系信息。
另一种可能的设计中,通信单元还用于:通过高层信令配置多个BP给终端设备。
另一种可能的设计中,通信单元还用于:通过MAC CE或DCI发送指示信息,用于指示当前激活的BP,所述指示信息可以是BP的编号或者索引信息。
另一种可能的设计中,处理单元还用于:根据当前为对端设备激活的BP,确定所述当前为对端设备激活的BP所对应的一组MCS门限值或MCS门限值与时域密度的对应关系信息;
另一种可能的设计中,处理单元还用于:根据当前为对端设备激活的BP所属于的BP组,确定所述当前为对端设备激活的BP所对应的一组MCS门限值或 MCS门限值与时域密度的对应关系信息;
处理单元还用于:根据当前调度的MCS与所述对应关系信息,确定所述PTRS的时域密度。
另一种可能的设计中,处理单元还用于:根据当前为对端设备激活的BP,确定所述当前为对端设备激活的BP所对应的一组调度带宽门限值或调度带宽门限值与频域密度的对应关系信息;
另一种可能的设计中,处理单元还用于:根据当前为对端设备激活的BP所属于的BP组,确定所述当前为对端设备激活的BP所对应的一组调度带宽门限值或调度带宽门限值与频域密度的对应关系信息;
处理单元还用于:根据当前调度的调度带宽与所述对应关系信息,确定所述PTRS的频域密度。
结合第二十八至三十一任一方面,所述频域密度为0、1/2、1/4、1/8、1/16中的任意取值。
结合第二十八至三十一任一方面,所述时域密度为0、1/2、1/4、1中的任意取值。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1示出了本申请涉及的相位噪声的示意图;
图2示出了本申请涉及的相位噪声引起相位旋转的示意图;
图3A-3C示出了本申请涉及的探测参考信号的资源配置方式的示意图;
图4示出了本申请涉及的信道状态信息参考信号的资源配置方式的示意图;
图5示出了本申请涉及的一种无线通信系统的架构示意图;
图6示出了本申请提供的一种终端的结构示意图;
图7示出了本申请提供的一种网络设备的结构示意图;
图8示出了本申请涉及的时频资源的示意图;
图9示出了本申请提供的一种参考信号传输方法的流程示意图;
图10示出了本申请提供的另一种参考信号传输方法的流程示意图;
图11示出了本申请提供的再一种参考信号传输方法的流程示意图;
图12示出了本申请提供的一种用于信道估计的相位跟踪参考信号的资源映射示意图;
图13A示出了本申请提供的另一种用于信道估计的相位跟踪参考信号的资源映射示意图;
图13B示出了本申请提供的另一种用于信道估计的相位跟踪参考信号的资源映射示意图;
图14示出了本申请提供的再一种用于信道估计的相位跟踪参考信号的资源映射示意图;
图15示出了本申请提供的再一种用于信道估计的相位跟踪参考信号的资源 映射示意图;
图16示出了本申请提供的再一种用于信道估计的相位跟踪参考信号的资源映射示意图;;
图17示出了本申请提供的一种探测参考信号的资源映射示意图;
图18示出了本申请提供的一种信道状态信息参考信号的资源映射示意图;
图19示出了本申请提供的一种用于数据传输的相位跟踪参考信号的资源映射示意图;
图20A示出了本申请提供的一种根据解调参考信号的资源位置确定相位跟踪参考信号的资源位置的示意图;
图20B示出了本申请提供的一种根据解调参考信号的资源位置确定相位跟踪参考信号的资源位置的示意图;
图21示出了本申请提供的一种根据小区标识确定相位跟踪参考信号的资源位置的示意图;
图22示出了本申请提供的几种不同时域密度的相位跟踪参考信号的资源映射示意图;
图23A-23L示出了本申请提供的几种避免资源冲突的相位跟踪参考信号的资源映射示意图;
图24A-24C示出了本申请提供的几种在映射有其他参考信号的单个符号上映射相位跟踪参考信号的资源映射示意图;
图25示出了本申请提供的一种无线通信系统、终端及网络设备的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
图5示出了本申请涉及的无线通信系统。所述无线通信系统可以工作在高频频段上,不限于长期演进(Long Term Evolution,LTE)系统,还可以是未来演进的第五代移动通信(the 5th Generation,5G)系统、新空口(NR)系统,机器与机器通信(Machine to Machine,M2M)系统等。如图5所示,无线通信系统10可包括:一个或多个网络设备101,一个或多个终端103,以及核心网115。其中:
网络设备101可以为基站,基站可以用于与一个或多个终端进行通信,也可以用于与一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。基站可以是时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统中的基站收发台(Base Transceiver Station,BTS),也可以是LTE系统中的演进型基站(Evolutional Node B,eNB),以及5G系统、新空口(NR)系统中的基站。另外,基站也可以为接入点(Access Point,AP)、传输节点(Trans TRP)、中心单元(Central Unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。
终端103可以分布在整个无线通信系统100中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端103可以是移动设备、移动台(mobile station)、移动单元(mobile unit)、M2M终端、无线单元,远程单元、用户代理、移动客户端等等。
具体的,网络设备101可用于在网络设备控制器(未示出)的控制下,通过一个或多个天线与终端103通信。在一些实施例中,所述网络设备控制器可以是核心网115的一部分,也可以集成到网络设备101中。具体的,网络设备101可用于通过回程(blackhaul)接口113(如S1接口)向核心网115传输控制信息或者用户数据。具体的,网络设备101与网络设备101之间也可以通过回程(blackhaul)接口111(如X2接口),直接地或者间接地,相互通信。
图5示出的无线通信系统仅仅是为了更加清楚的说明本申请的技术方案,并不构成对本申请的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
参考图6,图6示出了本申请的一些实施例提供的终端200。如图6所示,终端200可包括:一个或多个终端处理器201、存储器202、通信接口203、接收器205、发射器206、耦合器207、天线208、用户接口202,以及输入输出模块(包括音频输入输出模块210、按键输入模块211以及显示器212等)。这些部件可通过总线204或者其他方式连接,图6以通过总线连接为例。其中:
通信接口203可用于终端200与其他通信设备,例如网络设备,进行通信。具体的,所述网络设备可以是图8所示的网络设备300。具体的,通信接口203可以是长期演进(LTE)(4G)通信接口,也可以是5G或者未来新空口的通信接口。不限于无线通信接口,终端200还可以配置有有线的通信接口203,例如局域接入网(Local Access Network,LAN)接口。
发射器206可用于对终端处理器201输出的信号进行发射处理,例如信号调 制。接收器205可用于对天线208接收的移动通信信号进行接收处理,例如信号解调。在本申请的一些实施例中,发射器206和接收器205可看作一个无线调制解调器。在终端200中,发射器206和接收器205的数量均可以是一个或者多个。天线208可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器207用于将天线208接收到的移动通信信号分成多路,分配给多个的接收器205。
除了图6所示的发射器206和接收器205,终端200还可包括其他通信部件,例如GPS模块、蓝牙(Bluetooth)模块、无线高保真(Wireless Fidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,终端200还可以支持其他无线通信信号,例如卫星信号、短波信号等等。不限于无线通信,终端200还可以配置有有线网络接口(如LAN接口)来支持有线通信。
所述输入输出模块可用于实现终端200和用户/外部环境之间的交互,可主要包括包括音频输入输出模块210、按键输入模块211以及显示器212等。具体的,所述输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,所述输入输出模块均通过用户接口209与终端处理器201进行通信。
存储器202与终端处理器201耦合,用于存储各种软件程序和/或多组指令。具体的,存储器202可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器202可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器202还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。存储器202还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
在本申请的一些实施例中,存储器202可用于存储本申请的一个或多个实施例提供的资源分配方法在终端200侧的实现程序。关于本申请的一个或多个实施例提供的资源映射方法的实现,请参考后续实施例。
终端处理器201可用于读取和执行计算机可读指令。具体的,终端处理器201可用于调用存储于存储器212中的程序,例如本申请的一个或多个实施例提供的资源映射方法在终端200侧的实现程序,并执行该程序包含的指令。
可以理解的,终端200可以是图5示出的无线通信系统100中的终端103,可实施为移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
需要说明的,图6所示的终端200仅仅是本申请实施例的一种实现方式,实际应用中,终端200还可以包括更多或更少的部件,这里不作限制。
参考图7,图7示出了本申请的一些实施例提供的网络设备300。如图7所示,网络设备300可包括:一个或多个网络设备处理器301、存储器302、通信接口303、发射器305、接收器306、耦合器307和天线308。这些部件可通过总线304或者其他式连接,图7以通过总线连接为例。其中:
通信接口303可用于网络设备300与其他通信设备,例如终端设备或其他网络设备,进行通信。具体的,所述终端设备可以是图7所示的终端200。具体的,通信接口303通信接口203可以是长期演进(LTE)(4G)通信接口,也可以是5G或者未来新空口的通信接口。不限于无线通信接口,网络设备300还可以配置有有线的通信接口303来支持有线通信,例如一个网络设备300与其他网络设备300之间的回程链接可以是有线通信连接。
发射器305可用于对网络设备处理器301输出的信号进行发射处理,例如信号调制。接收器306可用于对天线308接收的移动通信信号进行接收处理。例如信号解调。在本申请的一些实施例中,发射器305和接收器306可看作一个无线调制解调器。在网络设备300中,发射器305和接收器306的数量均可以是一个或者多个。天线308可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器307可用于将移动通信号分成多路,分配给多个的接收器306。
存储器302与网络设备处理器301耦合,用于存储各种软件程序和/或多组指令。具体的,存储器302可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器302可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器302还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
网络设备处理器301可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内的用户提供小区切换控制等。具体的,网络设备处理器301可包括:管理/通信模块(Administration Module/Communication Module,AM/CM)(用于话路交换和信息交换的中心)、基本模块(Basic Module,BM)(用于完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(Transcoder and SubMultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。
本申请实施例中,网络设备处理器301可用于读取和执行计算机可读指令。具体的,网络设备处理器301可用于调用存储于存储器302中的程序,例如本申请的一个或多个实施例提供的资源映射方法在网络设备300侧的实现程序,并执行该程序包含的指令。
可以理解的,网络设备300可以是图5示出的无线通信系统100中的基站101,可实施为基站收发台,无线收发器,一个基本服务集(BSS),一个扩展服务集(ESS),NodeB,eNodeB,接入点或TRP等等。
需要说明的,图7所示的网络设备300仅仅是本申请实施例的一种实现方式,实际应用中,网络设备300还可以包括更多或更少的部件,这里不作限制。
基于前述无线通信系统100、终端200以及网络设备300分别对应的实施例,在联合多个符号(承载有参考信号)估计CSI时,为了提高CSI估计的准确性,本申请实施例提供了一种资源映射方法。
本申请的主要原理可包括:在多个符号上传输用于估计CSI的参考信号时,插入相位跟踪参考信号(Phase Tracking Reference Signal,PTRS)。并且,所述相位跟踪参考信号也映射在所述多个符号上,所述相位跟踪参考信号所映射的子载波具有相同的频域位置。这样,在所述相同的频域位置对应的子载波上,所述相位跟踪参考信号可用于相位跟踪,利于提高CSI估计精度。
本申请涉及的资源是指时频资源,包括时域资源和频域资源,通常以资源粒子(Resource Element,RE),资源块(Resource Block,RB),符号(symbol),子载波(subcarrier),传输间隔(Transmission Time Interval,TTI)表示。如图8所示,整个系统资源由频域和时域分割的格子组成,其中,1个格子表示1个RE,1个RE由频率上一个子载波,时域上一个符号构成。1个RB由时域上连续T(T为正整数)个符号,频域上连续M(M为正整数)个子载波构成。例如,在LTE中,T=7,M=12。
需要说明的,本申请提供附图仅仅用于解释本发明实施例,未来通信标准中的资源块的大小、资源块所包括的符号数量和子载波数量等等都可能不同,本申请提及的资源块不限于附图所示。
本申请中,可以将所述用于估计CSI的参考信号称为第一参考信号,可以将所述相位跟踪参考信号称为第二参考信号。具体的,所述第一参考信号可以是用于估计CSI的下行参考信号,例如CSI-RS。所述第一参考信号也可以是用于估计CSI的上行参考信号,例如SRS。不限于SRS和CSI-RS这两种参考信号,其他可用于估计CSI的参考信号,例如小区特定参考信号(Cell-specific Reference Signals,CRS),也属于本申请涉及的用于估计CSI的参考信号。
需要说明的,对于未来以及其他在高频频段上需要联合多个符号进行信道测量或数据传输的场景,本申请实施例同样适用。
图9示出了本申请提供的一种参考信号传输方法。下面展开描述:
S101,网络设备配置第一参考信号和第二参考信号各自对应的资源,其中,所述第一参考信号映射在多个符号上,所述第二参考信号映射在所述多个符号中的至少2个符号上,所述第二参考信号所映射的子载波具有相同的频域位置。
S103,所述网络设备向终端发送资源位置信息。相应的,所述终端接收到所述资源配置信息。所述资源配置信息用于指示所述终端在哪些时频资源上接收(或发送)所述第一参考信号和所述第二参考信号。
S105,所述网络设备和所述终端利用所述第一参考信号和所述第二参考信号进行相位跟踪和CSI估计。
在本申请的一种实现方式中,所述第一参考信号可以是用于估计CSI的上行参考信号,例如SRS,所述第二参考信号可以是用于相位跟踪的上行参考信号(PTRS)。具体的,如图10所示,上述步骤S105可实现如下:
步骤一,所述终端根据所述资源配置信息,发送所述第一参考信号和所述第二参考信号。这时,所述第二参考信号可以是用于相位跟踪的上行PTRS。
步骤二,相应地,所述网络设备接收所述终端发送的所述第一参考信号和所述第二参考信号。
步骤三,所述网络设备利用所述第一参考信号和所述第二参考信号进行相位跟踪和CSI估计。具体的,所述网络设备可以在所述相同的频域位置对应的子载波上,利用所述第二参考信号估计出所述多个符号中的各个符号之间的相对相位误差值,进而提供CSI估计的准确性。
在本申请的另一种实现方式中,所述第一参考信号可以是用于估计CSI的下行参考信号,例如CSI-RS,所述第二参考信号可以是用于相位跟踪的下行参考信号(PTRS)。具体的,如图11所示,上述步骤S105可实现如下:
步骤一,所述网络设备向所述终端发送所述第一参考信号和所述第二参考信号。这时,所述第二参考信号可以是用于相位跟踪的下行PTRS。
步骤二,相应地,所述终端根据所述资源配置信息,接收所述第一参考信号和所述第二参考信号。
步骤三,所述终端利用所述第一参考信号和所述第二参考信号进行相位跟踪和CSI估计。具体的,所述终端可以在所述相同的频域位置对应的子载波上,利用所述第二参考信号估计出所述多个符号中的各个符号之间的相对相位误差值,进而提供CSI估计的准确性。
在一些实施例中,当所述第一参考信号是用于估计CSI的下行参考信号时,发送所述第二参考信号的天线端口可以是发送所述第一参考信号的天线端口中的一个或多个。发送所述第二参考信号的天线端口与发送所述第一参考信号的天线端口也可以是准共址(Quasi-Collocated,QCL)的。这样,可以通过端口号或者准共址信息指示第一参考信号与第二参考信号的发送端口之间的对应关系,接收端通过对应关系可以知道第二参考信号的哪一个具体天线端口可以用于第一参考信号的天线端口的相位误差估计。
本申请中,所述网络设备可以通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)向所述终端发送所述资源配置信息。所述网络设备也可以通过高层信令,例如无线资源控制(Radio Resource Control,RRC)信令,向所述终端发送所述资源配置信息。
在一些实施例中,所述第一参考信号、所述第二参考信号各自对应的资源位置可以由协议预定义。即所述网络设备不需要向所述终端发送所述资源配置信息。
在一些实施例中,所述第一参考信号对应的资源位置可以由协议预定义。所述资源配置信息可以包括所述第二参考信号和所述第一参考信号之间的资源映射规则。这样所述终端根据本申请提供的关于所述第二参考信号和所述第一参考信号之间的资源映射规则,便可以确定出所述第二参考信号的资源位置。具体的,所述第二参考信号和所述第一参考信号之间的资源映射规则可以由协议预定义,也可以是所述网络设备通过高层信令或PDCCH配置的。当所述资源映射规则由协议预定义时,所述网络设备不需要向所述终端发送所述资源配置信息。
在一些实施例中,所述资源配置信息可以包括所述第一参考信号的资源配置信息,以及所述第二参考信号和所述第一参考信号之间的资源映射规则。所述第一参考信号的资源配置信息用于终端根据所述资源配置信息确定所述第一参考信号所映射的资源位置。这样所述终端根据本申请提供的关于所述第二参考信号 和所述第一参考信号之间的资源映射规则,以及所述第一参考信号的资源位置,便可以确定出所述第二参考信号的资源位置。具体的,所述第二参考信号和所述第一参考信号之间的资源映射规则可以由协议预定义,也可以是所述网络设备通过高层信令或PDCCH配置的。当所述资源映射规则由协议预定义时,所述资源配置信息可以仅包括所述第一参考信号的资源位置信息。
在一些实施例中,所述网络设备还可以向所述终端发送触发指示,例如通过下行控制指示(Downlink Control Indicator,DCI)发送所述触发指示,用于触发所述终端发送所述第二参考信号。
下面以所述第一参考信号是SRS为例,详细说明本申请提供的所述第二参考信号(下面称为PTRS)的资源映射方法。其中,SRS在这多个符号上做跳频。这多个符号可以是连续的,也可以是不连续的。在SRS所映射的每一个符号上,SRS子带没有对应相同的频域位置。SRS的跳频周期内的至少两个符号上映射有PTRS,映射有PTRS的子载波具有相同的频域位置。
参考图12,图12示例性的示出了一种PTRS资源映射方法。如图12所示,在SRS所映射的每一个符号上,PTRS所映射的一个或多个子载波和SRS子带在频域上相邻。也即是说,在SRS所映射的每一个符号上,PTRS可以映射在SRS子带的一端或两端。
如图12所示,PTRS所映射的子载波具有多个相同的频域位置,例如频域位置X、Y、Z,其中每一个频域位置均可以对应一个或多个子载波。
如图12所示,PTRS可以映射在SRS子带的前m(m是正整数)个子载波上,也可以映射在SRS子带的后n(n是正整数)个子载波上,还可以映射在SRS子带的前m个子载波和后n个子载波上。这里,m和n可以相等,也可以不相等。
具体的,PTRS资源映射规则可以概括为但不限于是:如果SRS子带处于终端处理带宽中的最低频域位置,则PTRS可以映射在SRS子带的后n个子载波上。如果SRS子带处于终端处理带宽中的最高频域位置,则PTRS可以映射在SRS子带的前m个子载波上。如果SRS子带处于终端处理带宽中的中间频域位置,则PTRS既可以映射在SRS子带的前m个子载波上,也可以映射在SRS子带的后n个子载波上。这里,所述终端处理带宽为所述网络设备分配给所述终端的探测参考信号的跳频总带宽,即所述网络设备要求所述终端完成探测的信道总带宽。
也即是说,所述第二参考信号的资源位置可以由所述第一参考信号的资源位置确定。这种确定策略可以由协议预定义,也可以由网络设备下发高层信令(如RRC信令)或PDCCH信令来配置。
本申请中,可以通过协议预定义或高层信令配置的方式来确定是否需要发送PTRS来进行相位跟踪和CSI估计。具体的,可以根据SRS的跳频带宽预定义配置PTRS的规则。例如,当SRS跳频带宽高于预设带宽门限时,配置PTRS。这样,可以避免SRS跳频带宽很小时依旧配置PTRS,若SRS跳频带宽很小,配置PTRS占用的开销带来的负面效果比其进行相位偏差估计带来的有益效果影响更大。示例仅仅是本申请提供的一种实现方式,实际应用中还可以不同,不应构成 限定。
在一些可选的实施例中,当在多个符号上做SRS跳频时,可以根据是否需要发送PTRS,以及PTRS是映射在SRS子带的一端还是两端,来确定各个符号上SRS序列长度。可选的,可以配置两种SRS序列长度,包括:第一序列长度和第二序列长度。其中,所述第一序列长度的SRS子带的两端都映射有PTRS,例如图12中符号3、4上的SRS子带的序列长度等于所述第一序列长度。所述第二序列长度的SRS子带仅一端映射有PTRS,例如图12中符号1、2上的SRS子带的序列长度等于所述第二序列长度。
也即是说,在需要发送PTRS来进行相位跟踪和CSI估计的前提下,如果需要在符号i上的SRS子带的两端都映射PTRS,则符号i上的SRS子带采用所述第一序列长度。如果仅需要在符号i上的SRS子带的一端映射PTRS,则符号i上的SRS子带采用所述第二序列长度。
本申请中,针对多个终端需要同时发送SRS的情况,所述多个终端可以采用不同的循环移位值来保证各自传输的SRS的正交性。同样的,为了保证所述多个终端各自传输的PTRS的正交性,PTRS与SRS可以采用相同循环移位值。而且,PTRS与SRS可以采用相同的“梳齿”模式,即:PTRS与SRS对应相同的梳齿间隔。
可以理解的,实施图12所示的实施例,由于SRS跳频周期内的每一个符号都映射有SRS,且PTRS所映射的子载波具有相同的频域位置,因此,在这多个相同的频域位置上,可以利用PTRS计算出SRS跳频周期内的各个符号之间的相对相位误差值,从而提高CSI估计的准确性。
需要说明的,图12仅仅示例性的示出了本申请提供的一种实施例,实际应用中,SRS跳频周期、SRS跳频方式等等还可以不同,不应构成限定。
参考图13A-13B,图13A-13B示出了另一种PTRS资源映射方法。如图13A-13B所示,在PTRS所映射的每一个符号上,PTRS所映射的子载波位置均相同。也即是说,在PTRS所映射的每一个符号上,PTRS均映射在相同的一个或多个子载波上。
如图13A-13B所示,在PTRS所映射的每一个符号上,PTRS所映射的子载波位置均相同。例如每一个符号上,PTRS的子载波位置都是频域位置X’,频域位置X’可以对应一个或多个子载波。所述一个或多个子载波可以在频域上集中分布,可如图13A所示,也可以离散分布,可如图13B所示。
本申请中,SRS的循环移位值还可用于确定PTRS的频域位置。具体的,PTRS所映射的子载波位置与SRS的循环移位值之间的映射规则可以是协议预定义的,也可以是网络设备下发指令高层信令(如RRC信令)或PDCCH信令来配置。不同的循环移位值对应不同的子载波位置。
例如,如图13A-13B所示,根据预定义的映射规则,循环移位值1对应子载波位置X1,循环移位值2对应子载波位置X2。由于终端1发送的SRS采用循环移位值1,终端2发送的SRS采用循环移位值2,因此,终端1、终端2各自发送的PTRS分别映射在子载波位置X1、子载波位置X2指示的子载波上。示例仅 仅用于解释本发明实施例,不应构成限定。
可以理解的,实施图13A-13B所示的实施例,由于SRS跳频周期内的每一个符号都映射有SRS,且PTRS所映射的子载波位置均相同,因此,在该相同的频域位置上,可以计算出SRS跳频周期内的各个符号之间的相对相位误差值,从而提高CSI估计的准确性。
需要说明的,图13A-13B仅仅示例性的示出了本申请提供的一种实施例,实际应用中,SRS跳频周期、SRS跳频方式等等还可以不同,不应构成限定。
在一些可能的实施例中,如果PTRS所映射的子载波与SRS在每一个符号上所映射的子载波都不具有相同的频域位置,则PTRS映射在SRS跳频周期内的每一个符号上,可如图13A-13B所示。如果PTRS所映射的子载波与SRS在一个(或多个)符号上所映射的子载波具有相同的频域位置,则在所述一个(或多个)符号上不映射PTRS。例如,如图14所示,由于PTRS所映射的子载波与SRS在第1个符号上所映射的子载波具有相同的频域位置Y,因此,在第1个符号上不映射PTRS。需要说明的,图14仅仅用于解释本发明实施例,实际应用中还可以不同,不应构成限定。
可以理解的,针对图14这种资源映射情况,在频域位置Y对应的子载波上,可以联合映射在第1个符号上的SRS和映射在其他各个符号上的PTRS估计出第1个符号和其他各个符号之间的相对相位误差值,从而提高CSI估计的准确性。
下面以所述第一参考信号是CSI-RS为例,详细说明所述第二参考信号(PTRS)的资源映射方法。其中,多个天线端口的CSI-RS在时域上做码分,或者多个天线端口的CSI-RS虽在频域上做码分,但需要联合多个符号估计CSI。
参考图15-16,图15-16示出了本申请的再一个实施例提供的参考信号传输方法。如图15所示,多个天线端口的CSI-RS在时域上做码分。如图16所示,多个天线端口的CSI-RS虽在频域上做码分,但需要联合多个符号估计CSI。在图15或图16分别对应的实施例中,CSI-RS映射在多个符号上,PTRS和CSI-RS映射在相同的符号上。在映射有CSI-RS的符号上,PTRS所映射的子载波对应相同的频域位置。
具体的,在频域上,PTRS所映射的子载波和CSI-RS所映射的子载波可以相邻(如图15所示),也可以不相邻(未示出)。
具体的,PTRS的资源位置可以是协议预定义的,也可以由网络设备下发高层信令(如RRC信令)或PDCCH信令来配置。
可以理解的,在PTRS所映射的子载波上,可以利用PTRS计算出映射有CSI-RS的各个符号之间的相对相位误差,可更加准确的估计出各个符号对应的CPE,从而提高CSI估计的准确性。
需要说明的,图15和图16仅仅示例性的示出了本申请提供的一些实施例,实际应用中,CSI-RS的天线端口、资源复用、资源映射图样等等还可以不同,不应构成限定。
另外,本申请还提供了两种参考信号的设计方案,也可以提高CSI估计的准确性。在这两种方法中,在传输用于CSI估计的(上行或下行)参考信号时,不 需要插入PTRS。下面分别从用于CSI估计的上、下行参考信号描述。
参考图17,图17示出了本申请提供的一种SRS的设计方案。如图17所示,一个SRS跳频周期内,至少2个符号上的SRS子带的部分子载波对应相同的频域位置。即,至少2个上的SRS子带在频域上重叠。
具体的,对于SRS跳频周期内的任意一个符号i,在该SRS跳频周期内存在至少一个符号j,映射在符号i上的SRS子带和映射在符号j上的SRS子带之间具有相同的1个或多个子载波。
本申请中,在一个符号上,SRS的跳频带宽可以表示为:
Figure PCTCN2018080397-appb-000012
其中,W表示需要SRS探测的总带宽,N表示一个跳频周期包含的符号数量,M是正整数。可以理解的,M的值越大,SRS的跳频带宽就越大,不同符号上的SRS子带具有的频域重叠部分也越大。
具体的,各个符号上的SRS跳频带宽W可以通过网络设备下发高层信令(如RRC信令)或PDCCH信令来配置。一个SRS跳频周期内,各个符号上的SRS跳频带宽可以相同,也可以不同。
可以理解的,实施图17所示的实施例,由于SRS跳频周期内的不同符号上的SRS子带的部分子载波对应相同的频域位置,因此,在所述部分子载波上,可以计算出SRS跳频周期内的各个符号之间的相对相位误差值,从而提高CSI估计的准确性。
需要说明的,图17仅仅示例性的示出了本申请提供的一种实施例,实际应用中,SRS跳频周期、SRS跳频方式、SRS跳频带宽等等还可以不同,不应构成限定。
参考图18,图18示出了本申请提供的一种CSI-RS的设计方案。如图18所示,至少两个天线端口的CSI-RS做时域码分,CSI-RS映射在多个子载波上。图18中的图(A)示出了现有技术中各个天线端口的CSI-RS的资源映射图。图18中的图(B)示出了本申请中各个天线端口的CSI-RS的资源映射图。如图(B)所示,在一个(些)子载波上,CSI-RS不做时域码分,只发送一个天线端口的CSI-RS,其余天线端口的CSI-RS在该一个(些)子载波位置上不发送。
这里,在所述一个(些)子载波上,不发送CSI-RS的天线端口可以称为静默端口(muted port)。可选的,静默端口也可以被配置为CSI-RS的发射功率为零。
可以理解的,在所述一个(些)子载波位置上,可以利用单个天线端口的CSI-RS计算出映射有CSI-RS的各个符号之间的相对相位误差值,从而提高CSI估计的准确性。
具体的,用于仅映射单个天线端口的CSI-RS的子载波,即用来估计相位噪声的子载波位置,可以由协议预定义的,也可以由网络设备下发高层信令(如RRC信令)或PDCCH信令来配置。
具体的,在所述一个(些)子载波位置上,不能发送CSI-RS的天线端口(即静默端口),可以由协议预定义的,也可以由网络设备下发指令(如RRC信令)或PDCCH信令来配置。
需要说明的,图18仅仅示例性的示出了本申请提供的一种实施例,实际应用中,CSI-RS的天线端口、资源复用、资源映射图样等等还可以不同,不应构成限定。
本申请还提供了在数据传输时配置所述第二参考信号PTRS的方法,用于数据传输时的相位跟踪,提高数据传输的可靠性。
如图19所示,在频域上,PTRS可以均匀的映射在用户调度带宽内。在时域上,PTRS可以分布在调度给用户的上行共享信道(PUSCH)或下行共享信道(PDSCH)的部分或全部符号上。这里,用户调度带宽可以是调度给用户的用于传输用户的数据业务和控制信号的带宽。
下面将从频域、时域上的映射规则、资源冲突避免、时域密度以及频域密度这几个方面详细描述PTRS的配置方法。
(一)PTRS在频域上的映射规则
具体的,承载PTRS的子载波可以资源块为粒度,均匀的分布在用户调度带宽内。例如,如图19所示,在频域上,PTRS每4个资源块占一个子载波。示例仅仅用于解释本发明实施例,不应构成限定。
具体的,不同用户的PTRS采用频分复用(Frequency Division Multiplex,FDM)的方式,如图19所示,用户1的PTRS和用户2的PTRS占用不同子载波。实际应用中,不同用户的PTRS还可以采用其他复用方式,例如时分复用(Time Division Multiplex,TDM)或码分复用(CDM),这里不作限制。
本申请中,PTRS所映射的子载波位置可通过下述两种索引表示:PTRS所映射的资源块的索引和PTRS在所映射的资源块内的子载波索引。下面分别说明这两种索引的确定方式。
1.首先,确定PTRS所映射的资源块的索引。
在所述用户调度带宽内,PTRS所映射的子载波的总数表示成L PT-RS,L PT-RS是正整数。这L PT-RS个子载波可以资源块为粒度均匀分布在所述用户调度带宽内。
举例说明,若上、下行数据传输时所述用户调度带宽分别为
Figure PCTCN2018080397-appb-000013
个资源块,上、下行数据传输时所述用户调度带宽内的起始资源块编号为
Figure PCTCN2018080397-appb-000014
那么,
下行数据传输时,PTRS所映射的资源块的索引可以表示成:
Figure PCTCN2018080397-appb-000015
上行数据传输时,PTRS所映射的资源块的索引可以表示成:
Figure PCTCN2018080397-appb-000016
其中,i>0,是正整数。
可以理解的,L PT-RS的大小和用户调度带宽内的PTRS的频域密度相关。二者的数学关系可表示成:L PT-RS=PTRS的频域密度*所述用户调度带宽对应的资源块总数。用户调度带宽内,PTRS的频域密度越大,L PT-RS的取值就越大。关于PTRS的频域密度的确定方式,可参考后面内容,这里不赘述。所述用户调度带宽对应的资源块总数即上述表达式中的
Figure PCTCN2018080397-appb-000017
Figure PCTCN2018080397-appb-000018
2.其次,确定PTRS在所映射的资源块内的子载波索引。
第一种实现方式,PTRS在所映射的资源块内的子载波索引可以由解调参考信号(Demodulation Reference Signal,DMRS)所映射的子载波位置确定。具体的,如图20A所示,PTRS可以映射在DMRS所映射的一个或多个子载波上。
若多个用户的天线端口发射的DMRS在频域上码分,可如图20B所示,则PTRS映射在PTRS天线端口所对应的DMRS天线端口发射的DMRS所映射的一个或多个子载波上。例如,如图20B所示,若PTRS天线端口和DMRS天线端口0或1相对应,则PTRS映射在天线端口0或1发射的DMRS所映射的一个或多个子载波上。示例仅仅用于解释本发明实施例,不应构成限定。
这里,所述相对应的PTRS天线端口和DMRS天线端口分别发送的PTRS和DMRS具有相同子载波位置。
所述相对应的PTRS天线端口和DMRS天线端口满足如下关系:DMRS天线端口与PTRS天线端口相同,或者,DMRS天线端口与PTRS天线端口是准共址(QCL)的,或者,DMRS天线端口与PTRS天线端口具有相同的预编码(precoding)。这样,接收端可以通过DMRS天线端口与PTRS天线端口关系判断DMRS天线端口利用哪一个PTRS天线端口进行相位跟踪,以及PTRS天线端口实施相位估计所需的信道估计是哪一个DMRS天线端口估计出的。
第二种实现方式,PTRS在所映射的资源块内的子载波索引可以根据小区ID确定,小区ID可表示成
Figure PCTCN2018080397-appb-000019
可选的,PTRS在所映射的资源块内的子载波索引和
Figure PCTCN2018080397-appb-000020
之间可存在映射关系,即不同的
Figure PCTCN2018080397-appb-000021
对应不同的子载波索引,这种映射关系可以由协议预定义,也可以由网络设备通过高层信令(如RRC信令)或者PDCCH配置。
可选的,PTRS在所映射的资源块内的子载波索引可表示成:
Figure PCTCN2018080397-appb-000022
其中,a是大于1的正整数,a可以由协议预定义,例如LTE中规定a=6。举例说明,假设
Figure PCTCN2018080397-appb-000023
计算出:
Figure PCTCN2018080397-appb-000024
那么,如图21所示,当小区ID为1的时候,PTRS在所映射的资源块内的子载波索引为1,即PTRS映射在资源块中的子载波1上。
(二)PTRS在时域上的映射规则
具体的,在时域上,PTRS可以分布在调度给用户的上行共享信道(PUSCH)或下行共享信道(PDSCH)的部分或全部符号上。图22示例性的示出了PTRS的几种时域密度。如图22所示,在时域上,PTRS可以连续映射在PUSCH(或PDSCH)的每个符号上(即图中所示的“1时域密度”),也可以在PUSCH(或PDSCH) 的每2个符号上映射一次(即图中所示的“1/2时域密度”),还可以在PUSCH(或PDSCH)的每4个符号上映射一次(即图中所示的“1/4时域密度”)。
进一步的,PTRS所映射的起始符号的索引可以由PTRS的时域密度确定。
针对上行数据传输,若PTRS的时域密度是上述“1时域密度”,则PTRS所映射的起始符号是PUSCH的第1个符号,即资源块中的符号“3”。若PTRS的时域密度是上述“1/2时域密度”,则PTRS所映射的起始符号是PUSCH的第2个符号,即资源块中的符号“4”。若PTRS的时域密度是上述“1/4时域密度”,则PTRS所映射的起始符号是PUSCH的第1个符号,即资源块中的符号“3”。
同样的,针对下行数据传输,若PTRS的时域密度是上述“1时域密度”,则PTRS所映射的起始符号是PDSCH的第1个符号,即资源块中的符号“3”。若PTRS的时域密度是上述“1/2时域密度”,则PTRS所映射的起始符号是PDSCH的第2个符号,即资源块中的符号“4”。若PTRS的时域密度是上述“1/4时域密度”,则PTRS所映射的起始符号是PDSCH的第1个符号,即资源块中的符号“3”。
这里,PTRS的时域密度可以和CP类型、子载波间隔、调制阶数中至少一项相关,可参见后面内容,这里不赘述。
需要说明的,不限于上述几种情况,PTRS的时域密度、PTRS所映射的起始符号的索引还可以不同,本申请不作限制。
具体的,PTRS的时域密度,以及PTRS的时域密度和PTRS所映射的起始符号的索引之间的映射关系可以由协议预定义,也可以由网络设备通过高层信令(如RRC信令)或者PDCCH配置。
(三)资源冲突避免
除了PTRS,所述用户调度带宽内还可能映射有其他参考信号,例如CSI-RS、SRS、DMRS等,PTRS和所述其他参考信号可能出现资源冲突。在冲突资源上,所述其他参考信号可以是静默的,即零功率。为了避免资源冲突,PTRS的映射规则还可以包括下述几种:
第一种,在映射有所述其他参考信号的资源粒子上不映射PTRS,或者PTRS在该资源粒子上为零功率,或者PTRS被所述其他参考信号打孔,具体可如图23A所示。
第二种,在映射有所述其他参考信号的符号上,映射有所述其他参考信号的子载波不映射PTRS,具体地,在映射有所述其他参考信号的符号上,PTRS的子载波映射在除所述其他参考信号映射的子载波以外的其他子载波上,具体可如图23B所示。
第三种,在映射有所述其他参考信号的子载波上,调度给用户的PUSCH(或PDSCH)的全部符号均不映射PTRS。具体地,在映射有所述其他参考信号的资源块(RB)内的每个符号上,PTRS的子载波映射在除所述其他参考信号映射的子载波以外的其他子载波上,具体可如图23C所示。
第四种,在映射有所述其他参考信号的符号的相邻符号上映射有PTRS。即在映射有其他参考信号的符号的前一个和/或后一个符号上也映射PTRS。可选地, 所述第二参考信号在所述其他参考信号映射的符号的相邻符号上的映射由所述其他参考信号映射的符号位置确定。可选地,所述第二参考信号在时隙内的映射根据所述其他参考信号映射的符号确定。
可选地,所述其他参考信号映射在1个OFDM符号上,所述第二参考信号即PTRS的时域密度为1/2。若所述其他参考信号所映射的符号和PTRS具有冲突资源(如图23D所示,冲突资源位于第8个符号和第4个RE的时频位置),则在所述其他参考信号映射的符号的前1个符号和/或后1个符号也映射有PTRS(如图23D所示,PTRS映射在第7个或第9个符号)。
可以理解的,所述冲突资源是指,若PTRS根据时域密度在时域范围内等间隔均匀映射,即每隔n个符号映射在1个符号上(n的取值可以为1或2或4),其他参考信号的映射符号位置与PTRS时域等间隔均匀映射的符号位置具有相同的符号并且有相同的子载波,则这个相同的符号上的相同子载波理解为冲突资源。
可选地,若所述其他参考信号映射在连续2个OFDM符号上,PTRS的时域密度为1/2,若所述其他参考信号所映射的符号和PTRS的冲突资源位于所述其他参考信号映射的连续2个OFMD符号的第一个符号上,则在所述其他参考信号所映射的符号的前一个符号上也映射有PTRS(如图23E右图所示,冲突资源位于第8个符号和第4个RE的时频位置,符号7上也映射有PTRS);若所述其他参考信号所映射的符号和PTRS的冲突资源位于所述其他参考信号映射的连续2个OFMD符号的第二个符号上,则在所述其他参考信号所映射的符号的后一个相邻符号上也映射有PTRS(如图23E左图所示,冲突资源位于第8个符号和第4个RE的时频位置,符号9上也映射有PTRS)。
可选地,若所述其他参考信号映射在连续4个OFDM符号上,PTRS的时域密度为1/2,若所述其他参考信号所映射的符号和PTRS的冲突资源位于所述其他参考信号映射的连续4个OFMD符号的第一个和第三个符号上,则在所述其他参考信号所映射的符号的前一个符号上也映射有PTRS(如图23F右图所示,冲突资源位于第6和第8个符号的第4个RE的时频位置,符号5上也映射有PTRS);若所述其他参考信号所映射的符号和PTRS的冲突资源位于所述其他参考信号映射的连续4个OFMD符号内的第二个和第四个符号上,则在所述其他参考信号所映射的符号的后一个相邻符号上也映射有PTRS(如图23F左图所示,冲突资源位于第8和第10个符号的第4个RE的时频位置,符号11上也映射有PTRS)。
可选地,若所述其他参考信号映射在连续4个OFDM符号上,PTRS的时域密度为1/4,若所述其他参考信号所映射的符号和PTRS的冲突资源位于所述其他参考信号映射的连续4个OFMD符号的第一个或第二个符号上(如图23G所示,冲突资源位于第7个符号和第4个RE的时频位置),则在所述其他参考信号所映射的符号的前一个符号上也映射有PTRS;若所述其他参考信号所映射的符号和PTRS的冲突资源位于所述其他参考信号映射的连续4个OFMD符号内的第三个或第四个符号上(如图23H所示,冲突资源位于第7个符号和第4个RE的时频位置),则在所述其他参考信号所映射的符号的后一个相邻符号上 也映射有PTRS。
可选地,若所述其他参考信号映射在连续2个OFDM符号上,PTRS的时域密度为1/4,若所述其他参考信号所映射的符号和PTRS的冲突资源位于所述其他参考信号映射的连续2个OFMD符号的第一个符号上,则在所述其他参考信号所映射的符号的前一个符号上也映射有PTRS(如图23I左图所示,冲突资源位于第7个符号和第4个RE的时频位置,在符号6上映射有PTRS);若所述其他参考信号所映射的符号和PTRS的冲突资源位于所述其他参考信号映射的连续2个OFMD符号的第二个符号上,则在所述其他参考信号所映射的符号的后一个相邻符号上也映射有PTRS(如图23I右图所示,冲突资源位于第7个符号和第4个RE的时频位置,在符号8上映射有PTRS)。
可选地,所述其他参考信号映射在1个OFDM符号上,所述第二参考信号即PTRS的时域密度为1/4。若所述其他参考信号所映射的符号和PTRS具有冲突资源(如图23J所示,冲突资源位于第7个符号和第4个RE的时频位置),则在所述其他参考信号映射的符号的前1个符号和/或后1个符号也映射有PTRS,如图23J所示.第五种,在映射有所述其他参考信号的符号的相邻符号上映射PTRS,并以映射有所述其他参考信号的符号的相邻符号为时域参考基准或PTRS的锚符号,根据第二参考信号的时域密度映射第二参考信号。可选地,所述第二参考信号在所述其他参考信号映射的符号的相邻符号上的映射由所述其他参考信号映射的符号位置确定,即时域参考基准根据其他参考信号所映射的符号确定。可选地,所述第二参考信号在时隙内的映射根据所述其他参考信号映射的符号确定。
可选地,如所述其他参考信号映射在1个或连续2个或连续4个OFDM符号上,PTRS的时域密度为1/2,以其他参考信号映射的符号的前一个相邻符号与后一个相邻符号为时域参考基准或PTRS的锚符号,映射PTRS。具体地,根据时域密度1/2,映射在其他参考信号映射的符号的前面1个或多个符号上的PTRS一定映射在其他参考信号映射的符号的前一个相邻符号上;根据时域密度1/2,映射在其他参考信号映射的符号的后面1个或多个符号上的PTRS一定映射在其他参考信号映射的符号的后一个相邻符号上,如图23K所示。
可选地,如所述其他参考信号映射在1个或连续2个或连续4个OFDM符号上,PTRS的时域密度为1/4,以其他参考信号映射的符号的前一个相邻符号与后一个相邻符号为时域参考基准或PTRS的锚符号,映射PTRS。具体地,根据时域密度1/4,映射在其他参考信号映射的符号的前面1个或多个符号上的PTRS一定映射在其他参考信号映射的符号的前一个相邻符号上;根据时域密度1/4,映射在其他参考信号映射的符号的后面1个或多个符号上的PTRS一定映射在其他参考信号映射的符号的后一个相邻符号上,如图23L所示。
第六种,根据在映射有所述其他参考信号的符号上是否映射物理下行/上行共享信道确定所述第二参考信号的映射规则。具体地,若在映射有所述其他参考信号的符号上,同时映射有物理下行/上行共享信道,则所述第二参考信号采用所述第二种或第三种映射规则;若在映射有所述其他参考信号的符号上,没有映 射物理下行/上行共享信道,则采用所述第一种或第四种或第五种映射规则。
本申请中,在所述用户调度带宽内,在映射有所述其他参考信号的一个或多个符号上,可以根据所述一个或多个符号上可用于PUSCH(或PDSCH)传输的带宽和PTRS的频域密度计算出所述一个或多个符号上PTRS所映射的子载波数量。这个计算出的子载波数量即所述一个或多个符号上所述可用于PUSCH(或PDSCH)传输的带宽所要求映射PTRS的子载波数量。关于PTRS的频域密度的确定方式,可参考后面内容,这里不赘述。
可以理解的,由于所述一个或多个符号上的部分带宽被所述其他参考信号占用,因此,所述一个或多个符号上可用于PUSCH(或PDSCH)传输的带宽小于调度给用户的PUSCH(或PDSCH)的带宽,所述一个或多个符号上PTRS所映射的子载波数量也小于前述内容中提及的L PT-RS
在映射有所述其他参考信号的符号上,PTRS实际所映射的子载波数量可以小于或等于所述计算出的子载波数量。下面具体说明,PTRS在映射有所述其他参考信号的符号上的几种映射方式:
第一种,如图24A所示,在映射有所述其他参考信号的符号上,在所述可用于PUSCH(或PDSCH)传输的带宽内,PTRS所映射的子载波位置可以和没有映射所述其他参考信号的符号上映射PTRS的子载波位置一致。
第二种,如图24B所示,在映射有所述其他参考信号的符号上,若利用上述第一种映射方式映射PTRS,所述可用于PUSCH(或PDSCH)传输的带宽内实际映射有PTRS的子载波数量小于所述可用于PUSCH(或PDSCH)传输的带宽所要求映射PTRS的子载波数量,则在所述可用于PUSCH(或PDSCH)传输的带宽内,另外增加其他子载波映射PTRS。
第三种,如图24C所示,在映射有所述其他参考信号的符号上,PTRS在所述可用于PUSCH(或PDSCH)传输的带宽内均匀分布。该符号上映射PTRS的子载波位置不需要与没有映射所述其他参考信号的符号上映射PTRS的子载波位置一致。
(四)PTRS的时域密度
本申请中,PTRS的时域密度可以与带宽部分(bandwidth part,BP)、循环前缀(Cyclic Prefix,CP)类型、子载波间隔、调制阶数中至少一项相关。
具体的,所PTRS的时域密度与BP、CP类型、子载波间隔、调制阶数中至少一项是存在对应关系的。不同的BP、CP类型或子载波间隔或调制阶数可以对应不同的时域密度。具体的,所述对应关系可以是协议预定义的,也可以是网络设备通过高层信令(如RRC信令)配置的。
根据前述内容可知,PTRS的时域密度是指每几个符号映射一次PTRS,比如:PTRS可以连续映射在PUSCH(或PDSCH)的每个符号上,也可以在PUSCH(或PDSCH)的每2个符号上映射一次,还可以在PUSCH(或PDSCH)的每4个符号上映射一次。
本申请中,可以根据子载波间隔和调制阶数确定PTRS的时域密度。具体的,针对1个确定的子载波间隔值,可以通过预定义或高层信令配置一个或多个调制 阶数门限值,相邻两个调制阶数门限值之间的全部调制阶数对应相同的PTRS时域密度,可如表1所示。
调制阶数 时域密度
0<=MCS<MCS_1 0
MCS_1<=MCS<MCS_2 1/4
MCS_2<=MCS<MCS_3 1/2
MCS_3<=MCS 1
表1
其中,MCS_1,MCS_2,MCS_3为调制阶数门限值,时域密度中的“1”、“1/2”、“1/4”分别是指图22所示的3种时域密度。
具体的,在确定的子载波间隔下,可以根据实际调制阶数MCS落入的调制阶数门限区间来确定出PTRS的时域密度。例如,假设表2表示默认子载波间隔SCS_1=15KHz下的调制阶数门限值,如果实际调制阶数MCS落入区间[MCS_2,MCS_3],则PTRS的时域密度为1/2。示例仅仅用于解释本发明实施例,不应构成限定。
本申请中,不同的子载波间隔可以对应不同的调制阶数门限值。也即是说,对不同的子载波间隔,可以配置不同的调制阶数门限值和时域密度的对应关系表。
具体的,不同的子载波间隔各自对应的调制阶数门限值可以由协议预定义,也可以由网络设备通过高层信令(例如RRC信令)配置。
在一些可选的实施例中,可以通过协议预定义或高层信令配置默认的子载波间隔(表示成SC_1),例如15kHz,以及该默认的子载波间隔对应的一个或多个默认门限值(表示成MCS’)。并且,对于其他非默认子载波间隔,可以通过协议预定义或高层信令配置相应的调制阶数偏移值(表示成MCS_offset,为整数),MCS_offset+MCS=MCS’,其中,MCS表示其他非默认子载波间隔下的实际调制阶数。在其他非默认子载波间隔下,可以利用实际的调制阶数MCS加上所述调制阶数偏移值MCS_offset来确定出PTRS的时域密度。
举例说明,若表2表示默认子载波间隔SCS_1=15KHz下的调制阶数门限值,在非默认子载波间隔60Hz下,如果实际的调制阶数MCS加上MCS_offset落入区间[0,MCS_1],则PTRS的时域密度为0。如果实际的调制阶数MCS加上MCS_offset落入区间[MCS_1,MCS_2],则PTRS的时域密度为1/4。示例仅仅用于解释本发明实施例,不应构成限定。
调制阶数 时域密度
0<=MCS’<MCS_1 0
MCS_1<=MCS’<MCS_2 1/4
MCS_2<=MCS’<MCS_3 1/2
MCS_3<=MCS’ 1
表2
在一些可选的实施例中,可以通过协议预定义或高层信令配置默认的子载波 间隔(表示成SCS_1),以及该默认的子载波间隔对应的一个或多个默认调制阶数门限值(表示成MCS’)。并且,对于其他非默认子载波间隔(表示成SCS_n),可以通过协议预定义或高层信令配置相应的缩放因子β(0<β<1),可以定义β=SCS_1/SCS_n。在其他非默认子载波间隔下,可以利用实际的调制阶数MCS和默认调制阶数门限值MCS’确定MCS落在哪一个默认调制阶数门限值区间,然后利用该默认调制阶数门限值区间对应的时域密度乘以缩放因子β来确定出PTRS的实际时域密度。
举例说明,若表2表示默认子载波间隔SCS_1=60KHz下的调制阶数门限值,在非默认子载波间隔120Hz下,如果实际的调制阶数MCS落入[MCS_2,MCS_3]中,则PTRS的实际时域密度是时域密度“1/2”与缩放因子β的乘积最接近的时域密度。由于β=60/120=1/2,因此,所述PTRS的实际时域密度是1/4。示例仅仅用于解释本发明实施例,不应构成限定。
本申请中,针对不同的CP类型或长度,可以通过协议预定义或者高层信令(例如RRC信令)配置子载波间隔和调制阶数中至少一项与PTRS的时域密度之间的对应关系。
可选的,针对扩展循环前缀(Extended Cyclic Prefix,ECP),可以通过协议预定义或者高层信令配置PTRS的时域密度为:PTRS连续映射在PUSCH(或PDSCH)的每个符号上。这样,可实现在高速大时延扩展场景中,利用PTRS辅助多普勒频偏估计。
本申请中,还可以根据带宽部分(bandwidth part,BP)与调制阶数MCS确定PTRS的时域密度。可选地,一个或多个BP可以对应一组MCS门限值或MCS门限值与时域密度对应关系,这一组MCS门限值或MCS门限值与时域密度对应关系可以由基站通过高层信令配置,比如RRC信令、或MAC CE、或广播消息,或系统消息或以上至少两种消息的组合,或根据协议预定义。可选地,MCS门限值与时域密度对应关系可以通过MCS门限值与时域密度对应关系表格表示,如表A所示。
具体的,可以通过一组MCS门限值确定MCS门限值与时域密度的对应关系,举例来说,当时域密度候选值是固定的时,即上述表A中时域密度一列“No PTRS,TD1,TD2,TD3”的值是由协议预定义的,根据预定义将时域密度候选值预存储,确定一组门限值组
Figure PCTCN2018080397-appb-000025
后,即可确定该组MCS门限值与时域密度对应关系。
可选地,一个或多个BP对应的MCS门限值组或MCS门限值与时域密度对应关系可以相同。即一个或多个BP可以对应一组相同的MCS门限值组或相同的MCS门限值与时域密度对应关系。其中,BP可以是频域上一段连续的资源。比如,一个BP包含连续的K个子载波,K为大于0的整数。又比如,一个BP为N个不重叠的连续的物理资源块(physical resource block,PRB)所在的频域资源,N为大于0的整数,所述PRB的子载波间隔可以是15k、30k、60k或者其他子载波间隔取值。又比如,一个BP为N个不重叠的连续物理资源块PRB组所在的频域资源,一个PRB组包含M个连续的PRB,M和N均为大于0的整数, 所述PRB的子载波间隔可以是15k、30k、60k或者其他子载波间隔取值。又比如,对于一个终端,BP的长度小于或等于所述终端支持的最大带宽。又比如,一个BP对应一个子载波间隔。又比如,不同的BP对应的子载波间隔或CP也可能不同。
可选的,一个或多个BP对应的MCS门限值组或MCS门限值与时域密度对应关系也可以不同。例如,一个BP对应一个独立的MCS门限值组或MCS门限值与时域密度对应关系。
举例说明,对于第一BP,基站通过信令配置或根据协议预定义一组MCS门限值
Figure PCTCN2018080397-appb-000026
或MCS门限值与时域密度对应关系,所述对应关系可以如表A所示,所述信令可以为高层信令,比如RRC信令、或MAC CE、或广播消息,或系统消息或以上至少两种消息的组合
Figure PCTCN2018080397-appb-000027
表A
其中,TD 1、TD 2、TD 3的取值可以是0~1之间的数(包括0和1),比如0、1/2、1/4、1,还可以是其他取值,这里仅为示例。具体的,时域密度值0、1/2、1/4、1的具体含义分别为不映射PTRS,每2个OFDM符号中有1个符号上映射有PTRS,每4个OFDM符号中有1个符号上映射有PTRS,每个OFDM符号上均映射有PTRS。
对于第二BP,基站通过信令配置或根据协议预定义一组MCS门限值
Figure PCTCN2018080397-appb-000028
或MCS门限值与时域密度对应关系,如表B所示,所述信令可以为高层信令,比如RRC信令、或MAC CE、或广播消息,或系统消息或以上至少两种消息的组合
Figure PCTCN2018080397-appb-000029
Figure PCTCN2018080397-appb-000030
表B
其中,TD 1、TD 2、TD 3的取值可以是0~1之间的数(包括0和1),比如0、1/2、1/4、1,还可以是其他取值,这里仅为示例。
依此类推,对于第n个BP,基站通过信令配置或根据协议预定义一组MCS门限值
Figure PCTCN2018080397-appb-000031
或MCS门限值与时域密度对应关系,如表C所示,所述信令可以为高层信令,比如RRC信令、或MAC CE、或广播消息,或系统消息或以上至少两种消息的组合
Figure PCTCN2018080397-appb-000032
表C
其中,TD 1、TD 2、TD 3的取值可以是0~1之间的数(包括0和1),比如0、1/2、1/4、1,还可以是其他取值,这里仅为示例。
可选地,基站可以通过信令将一个或多个BP与一组或多组MCS门限值组的对应关系发送给终端,可选地,所述一个或多个BP与一组或多组MCS门限值组的对应关系可以用表D所示,或者基站可以通过信令将一个或多个BP与一种或多种MCS门限值与时域密度对应关系的相互对应关系发送给终端,所述信令可以为高层信令,比如RRC信令、或MAC CE、或广播消息,或系统消息或以上至少两种消息的组合。终端接收上述信令,并根据当前激活的BP确定一组具体的MCS门限值。
Figure PCTCN2018080397-appb-000033
Figure PCTCN2018080397-appb-000034
表D
表D对于基站来说,可以根据当前为终端侧激活的BP确定上述一组MCS门限值组或MCS门限值与时域密度对应关系,如表A、B、C所示,基站根据调度给终端侧的MCS值以及确定的MCS门限值组或MCS门限值与时域密度对应关系,来确定PTRS的时域密度。在下行发送中,基站根据确定的PTRS时域密度将PTRS映射在一个或多个符号上,并将PTRS发送至终端侧。在上行接收中,基站根据确定的PTRS时域密度在一个或多个符号上接收PTRS。
对于终端来说,可以通过预存储一个或多个BP对应的MCS门限值组或MCS门限值与时域密度对应关系,如表A、B、C所示,或者通过接收来自基站的信令,所述信令用于指示上述一个或多个BP对应的一组或多组MCS门限值组或一种或多种MCS门限值与时域密度对应关系,如表A、B、C所示,来获取所述表格A、B、C(实际可能是多个表格,上述ABC三个表格仅为示例,不对本发明做出任何限定)。终端根据当前激活的BP确定采用哪组MCS门限值或哪种MCS门限与时域密度对应关系或哪一个具体表格,当确定了采用哪个表格或确定了MCS门限值组或MCS门限值与时域密度对应关系后,再根据实际调度的MCS所落入的区间,来确定对应的所述PTRS的时域密度。在下行接收中,终端侧根据确定的PTRS时域密度在一个或多个符号上接收PTRS;在上行发送中,终端根据确定的PTRS时域密度在一个或多个符号上发送PTRS。
可选的,基站可以根据当前为终端侧激活的BP确定具体的一组MCS门限值或一组MCS门限值与时域密度对应关系。基站发送信令,该信令用于指示上述确定的一组MCS门限值或MCS门限值与时域密度对应关系,所述信令可以为高层信令或下行控制信息,所述高层信令可以为RRC信令、或MAC CE、或广播消息,或系统消息或以上至少两种消息的组合。终端接收来自基站的上述信令,所述信令用于指示确定的一组MCS门限值或MCS门限值与时域密度对应关系,终端根据信令确定需采用的一组MCS门限值或MCS门限值与时域密度对应关系,根据终端实际调度的MCS所落入的门限区间,来确定对应的所述PTRS的时域密度。
可选地,基站可以通过第一信令配置一个或多个候选的BP给终端,然后通过第二信令通知终端当前激活的BP,所述当前激活的BP是所述一个或多个候选BP中的一个。其中,第一信令可以是RRC信令,第二信令可以是DCI或者MAC CE。
可选地,基站可以通过信令配置实际的MCS给终端。比如,所述信令为DCI,所述MCS占5比特或6比特。终端通过读取该DCI信令的指示MCS的域,来获取当前的MCS。
可选的,一个BP组对应相同的一组MCS门限值或MCS门限值与时域密度对应关系,这一组MCS门限值或MCS门限值与时域密度对应关系由基站通过信 令配置或根据协议预定义,所述信令为高层信令,比如RRC信令、或MAC CE、或广播消息,或系统消息或以上至少两种消息的组合。所述BP组内具有一个或多个BP,BP组信息可以由基站配置并通过信号发送给终端,或BP组由协议预定义或BP分组规则由协议预定义。可选地,基站将具有相同子载波间隔的一个或多个BP分为一个BP组,或者基站将具有相同numerology的一个或多个BP分为一个BP组,并将BP组信息通过信号发送给终端,所述信号可以为高层信令,比如RRC信令、或MAC CE、或广播消息,或系统消息或以上至少两种消息的组合,所述BP组信息包括BP组内的一个或多个BP,或BP组编号,或BP组的子载波间隔,或BP组的numerology,或BP组内的一个或多个BP的编号或索引值。终端接收基站发送的分组信息,根据分组信息确定终端当前激活的BP所属于的BP组。
或BP分组规则由协议预定义,可选地,协议预定义的分组规则为具有相同子载波间隔的BP为一组。终端根据协议预定义的分组规则确定终端当前激活的BP所属于的BP组。例如,BP0,BP3,BP6的子载波间隔均为15KHz,则这三个BP为一组,这个BP组内的三个BP对应相同的一组MCS门限值组或MCS门限值与时域密度对应关系,比如上述表A所示。BP1,BP4的子载波间隔均为60KHz,则这两个BP为一组,这一组BP对应相同的MCS门限值组或MCS门限值与时域密度对应关系,比如上述表B。可选地,协议预定义的分组规则为具有相同numerology的BP为一组,终端根据协议预定义的分组规则确定终端当前激活的BP所属于的BP组。
可选地,基站还可以通过发送信令指示终端BP分组的规则。举例说明,协议里预定义多种BP分组规则,比如具有相同子载波的BP为一组,比如具有相同参数集nuemerology的BP为一组,比如具有相同CP类型的BP为一组,基站可以通过信令指示终端所采用的分组规则具体为上述规则中的哪一种。终端根据基站的指示信令确定所采用的BP分组规则。可选地,基站可以通过第一信令通知一个或多个候选BP给终端,然后通过第二信令通知终端当前激活的BP,所述当前激活的BP是所述一个或多个候选BP中的一个。其中,第一信令可以是RRC信令,第二信令可以是DCI或者MAC CE。
终端根据当前激活的BP所属的BP分组,确定对应的MCS门限值组或MCS门限值与时域密度对应关系,根据实际调度的调制阶数MCS落入的MCS门限区间确定出PTRS的时域密度。
需要说明的,表1和表2、表A、表B、表C、表D仅仅用于解释本发明实施例,不应构成限定。
(五)PTRS的频域密度
本申请中,PTRS的频域密度可以与CP类型、所述用户调度带宽、子载波间隔、调制阶数中至少一项相关。也即是说,PTRS在所述用户调度带宽内映射的子载波总数L PT-RS可以与CP类型、所述用户调度带宽、子载波间隔、调制阶数中至少一项相关。
具体的,所PTRS的频域密度与CP类型、所述用户调度带宽、子载波间隔、 调制阶数中至少一项是存在对应关系的。不同的CP类型或所述用户调度带宽或子载波间隔或调制阶数对应不同的频域密度。具体的,所述对应关系可以是协议预定义的,也可以是网络设备通过高层信令(如RRC信令)配置的。
具体的,针对1个确定的子载波间隔,可以通过预定义或高层信令配置一个或多个调度带宽门限值,相邻两个调度带宽门限值之间的全部调度带宽对应相同的PTRS频域密度,可如表3所示。
Figure PCTCN2018080397-appb-000035
表3
其中,BW_1,BW_2,BW_3,BW_4和BW_5为调度带宽门限值,调度带宽门限可用调度带宽包含的资源块个数,也可以调度带宽对应的频域跨度表示,这里不作限制。频域密度“1/2”表示PTRS每2个资源块占一个子载波。频域密度“1/4”、“1/8”、“1/16”的意义可类推,不再赘述。
具体的,在确定的子载波间隔下,可以根据实际调度带宽BW落入的调度带宽门限区间来确定出PTRS的频域密度。例如,假设表3表示默认子载波间隔SCS_1=15KHz下的调度带宽门限值,如果实际调度带宽BW落入区间[BW_2,BW_3],则PTRS的频域密度为1/2。示例仅仅用于解释本发明实施例,不应构成限定。
本申请中,不同的子载波间隔可以对应不同的调度带宽门限值。也即是说,对不同的子载波间隔,可以配置不同的调度带宽门限值和时域密度的对应关系表。
具体的,不同的子载波间隔各自对应的调度带宽门限值可以由协议预定义,也可以由网络设备通过高层信令(例如RRC信令)配置。
在一些可选的实施例中,可以通过协议预定义或高层信令配置默认的子载波间隔(表示成SCS_1),例如15kHz,以及该默认的子载波间隔对应的一个或多个默认调度带宽门限值(表示成BW’)。并且,对于其他非默认子载波间隔,可以通过协议预定义或高层信令配置相应的调度带宽偏移值(表示成BW_offset,为整数),BW_offset+BW=BW’,其中,BW表示其他非默认子载波间隔下的实际调度带宽。在其他非默认子载波间隔下,可以利用实际的调度带宽BW加上所述调度带宽偏移值BW_offset来确定出PTRS的频域密度。
举例说明,若表4表示默认子载波间隔SCS_1=15KHz下的调度带宽门限值,在非默认子载波间隔60Hz下,如果实际的调度带宽BW加上BW_offset落入区间[BW_1,BW_2],则PTRS的频域密度为1。如果实际的调制阶数BW加上BW_offset 落入区间[BW_2,BW_3],则PTRS的频域密度为1/2。示例仅仅用于解释本发明实施例,不应构成限定。
调度带宽门限 频域密度(每个资源块中的子载波个数)
0<=BW’<BW_1 0
BW_1<=BW’<BW_2 1
BW_2<=BW’<BW_3 1/2
BW_3<=BW‘<BW_4 1/4
BW_4<=BW’<BW_5 1/8
BW_5<=BW’ 1/16
表4
在一些可选的实施例中,可以通过协议预定义或高层信令配置默认的子载波间隔(表示成SCS_1),以及该默认的子载波间隔对应的一个或多个默认调度带宽门限值(表示成BW’)。并且,对于其他非默认子载波间隔(表示成SCS_n),可以通过协议预定义或高层信令配置相应的缩放因子β(0<β<1),可以定义β=SCS_n/SCS_1。在其他非默认子载波间隔下,可以利用实际的调度带宽BW和默认调度带宽门限值BW’确定BW落在哪一个默认调度带宽门限值区间,然后利用该默认调度带宽门限值区间对应的频域密度乘以缩放因子β来确定出PTRS的实际频域密度。
举例说明,若表4表示默认子载波间隔SCS_1=60KHz下的调制阶数门限值,在非默认子载波间隔120Hz下,如果实际的调度带宽BW落入[BW_3,BW_4]中,则PTRS的实际频域密度是频域密度“1/4”与缩放因子β的乘积最接近的频域密度。由于β=120/60=2,因此,所述PTRS的实际时域密度是1/2。示例仅仅用于解释本发明实施例,不应构成限定。
本申请中,还可以根据带宽部分(bandwidth part,BP)与调度带宽BW确定PTRS的频域密度。一个或多个BP对应一组BW门限值或BW门限值与频域密度对应关系,这一组BW门限值或BW门限值与频域密度对应关系可以由基站通过高层信令配置,比如RRC信令、或MAC CE、或广播消息,或系统消息或以上至少两种消息的组合,或根据协议预定义。可选地,BW门限值与频域密度对应关系可以通过BW门限值与频域密度对应关系表格表示,如表E所示。
具体的,可以通过一组BW门限值确定BW门限值与频域密度的对应关系,举例来说,当频域密度候选值是固定的时,即上述表E中频域密度一列“No PTRS,FD1,FD2,FD3,FD4,FD5”的值是由协议预定义的,根据预定义将频域密度候选值预存储,确定一组门限值组
Figure PCTCN2018080397-appb-000036
后,即可确定该组BW门限值与频域密度对应关系。
可选地,一个或多个BP对应的BW门限值组或BW门限值与频域密度对应关系可以相同。即一个或多个BP可以对应一组相同的BW门限值组或相同的BW 门限值与频域密度对应关系。
可选的,一个或多个BP对应的BW门限值组或BW门限值与频域密度对应关系也可以不同。例如,一个BP对应一个独立的MCS门限值组或MCS门限值与时域密度对应关系。可选的,BW门限值表示调度的资源块个数。
举例说明,对于第一BP,基站通过信令配置或根据协议预定义一组BW门限值
Figure PCTCN2018080397-appb-000037
或BW门限值与频域密度对应关系,所述对应关系可以如表E所示,所述信令可以为高层信令,比如RRC信令、或MAC CE、或广播消息,或系统消息或以上至少两种消息的组合
Figure PCTCN2018080397-appb-000038
表E
其中,所述FD1、FD2、FD3、FD4、FD5的取值范围为0~1的数值(包括1和0),比如,0,1/16、1/8、1/4、1/2、1等,这里仅为示例,不作任何限定。具体的,频域密度值0,1/16、1/8、1/4、1/2、1的具体含义分别为不映射PTRS,每16个RB中有1个子载波上映射有PTRS,每8个RB中有1个子载波上映射有PTRS,每4个RB中有1个子载波上映射有PTRS,每2个RB中有1个子载波上映射有PTRS,每个RB中有1个子载波上映射有PTRS(映射有PTRS的子载波不要求在每个符号上的该子载波上均有映射,在哪些符号上的子载波上映射有PTRS需根据时域密度确定)。
对于第二BP,基站通过信令配置或根据协议预定义一组BW门限值
Figure PCTCN2018080397-appb-000039
或BW门限值与频域密度对应关系,如表F所示,所述信令可以为高层信令,比如RRC信令、或MAC CE、或广播消息,或系统消息或以上至少两种消息的组合
Figure PCTCN2018080397-appb-000040
Figure PCTCN2018080397-appb-000041
表F
其中,所述FD1、FD2、FD3、FD4、FD5的取值范围为0~1的数值(包括1和0),比如,0,1/16、1/8、1/4、1/2、1等,这里仅为示例,不作任何限定。
依此类推,对于第n个BP,基站通过信令配置或根据协议预定义一组BW门限值
Figure PCTCN2018080397-appb-000042
或BW门限值与频域密度对应关系如表G所示,所述信令可以为高层信令,比如RRC信令、或MAC CE、或广播消息,或系统消息或以上至少两种消息的组合
Figure PCTCN2018080397-appb-000043
表G
其中,所述FD1、FD2、FD3、FD4、FD5的取值范围为0~1的数值(包括1和0),比如,0,1/16、1/8、1/4、1/2、1等,这里仅为示例,不作任何限定。
可选地,基站可以通过信令将一个或多个BP与一组或多组BW门限值组的对应关系发送给终端,可选地,所述一个或多个BP与一组或多组BW门限值组的对应关系可以用表H所示,或者基站可以通过信令将一个或多个BP与一种或多种BW门限值与频域密度对应关系的相互对应关系发送给终端,所述信令可以为高层信令,比如RRC信令、或MAC CE、或广播消息,或系统消息或以上至 少两种消息的组合。终端接收上述信令,并根据当前激活的BP确定一组具体的BW门限值。
Figure PCTCN2018080397-appb-000044
表H
对于基站来说,可以根据当前为终端侧激活的BP确定上述一组BW门限值组或BW门限值与频域密度对应关系,如表E、F、G所示,基站根据调度给终端侧的调度带宽以及确定的BW门限值组或BW门限值与频域密度对应关系,来确定PTRS的频域密度。在下行发送中,基站根据确定的PTRS频域密度将PTRS映射在一个或多个子载波上,并将PTRS发送至终端侧。在上行接收中,基站根据确定的PTRS频域密度在一个或多个子载波上接收PTRS。
对于终端来说,可以通过预存储一个或多个BP对应的BW门限值组或BW门限值与频域密度对应关系,如表E、F、G所示,或者通过接收来自基站的信令,所述信令用于指示上述一个或多个BP对应的一组或多组BW门限值组或一种或多种BW门限值与时域密度对应关系,如表E、F、G所示,来获取所述表格E、F、G(实际可能是多个表格,上述EFG三个表格仅为示例,不对本发明做出任何限定)。终端根据当前激活的BP确定采用哪组BW门限值或哪种BW门限与频域密度对应关系或哪一个具体表格,当确定了采用哪个表格或确定了BW门限值组或BW门限值与频域密度对应关系后,再根据实际调度的调度带宽所落入的区间,来确定对应的所述PTRS的频域密度。在下行接收中,终端侧根据确定的PTRS频域密度在一个或多个子载波上接收PTRS;在上行发送中,终端根据确定的PTRS频域密度在一个或多个子载波上发送PTRS。
可选的,基站可以根据当前为终端侧激活的BP确定具体的一组BW门限值或一组BW门限值与频域密度对应关系。基站发送信令,该信令用于指示上述确定的一组BW门限值或BW门限值与频域密度对应关系,所述信令可以为高层信令或下行控制信息,所述高层信令可以为RRC信令、或MAC CE、或广播消息,或系统消息或以上至少两种消息的组合。终端接收来自基站的上述信令,所述信令用于指示确定的一组BW门限值或BW门限值与频域密度对应关系,终端根据信令确定需采用的一组BW门限值或BW门限值与频域密度对应关系,根据终端实际调度的调度带宽所落入的门限区间,来确定对应的所述PTRS的频域密度。
可选地,基站可以通过第一信令配置一个或多个候选的BP给终端,然后通 过第二信令通知终端当前激活的BP。其中,第一信令可以是RRC信令,第二信令可以是DCI或者MAC CE。
可选的,一个BP组对应相同的一组BW门限值或BW门限值与频域密度对应关系,这一组BW门限值或BW门限值与频域密度对应关系由基站通过信令配置或根据协议预定义,所述信令为高层信令,比如RRC信令、或MAC CE、或广播消息,或系统消息或以上至少两种消息的组合。所述BP组内具有一个或多个BP,BP组信息可以由基站配置并通过信号发送给终端,或BP组由协议预定义或BP分组规则由协议预定义。可选地,基站将具有相同子载波间隔的一个或多个BP分为一个BP组,或者基站将具有相同numerology的一个或多个BP分为一个BP组,并将BP组信息通过信号发送给终端,所述信号可以为高层信令,比如RRC信令、或MAC CE、或广播消息,或系统消息或以上至少两种消息的组合,所述BP组信息包括BP组内的一个或多个BP,或BP组编号,或BP组的子载波间隔,或BP组的numerology,或BP组内的一个或多个BP的编号或索引值。终端接收基站发送的分组信息,根据分组信息确定终端当前激活的BP所属于的BP组。
或BP分组规则由协议预定义,可选地,协议预定义的分组规则为具有相同子载波间隔的BP为一组。终端根据协议预定义的分组规则确定终端当前激活的BP所属于的BP组。例如,BP0,BP3,BP6的子载波间隔均为15KHz,则这三个BP为一组,这个BP组内的三个BP对应相同的一组MCS门限值组或MCS门限值与时域密度对应关系,比如上述表A所示。BP1,BP4的子载波间隔均为60KHz,则这两个BP为一组,这一组BP对应相同的MCS门限值组或MCS门限值与时域密度对应关系,比如上述表B。可选地,协议预定义的分组规则为具有相同numerology的BP为一组,终端根据协议预定义的分组规则确定终端当前激活的BP所属于的BP组。
可选地,基站还可以通过发送信令指示终端BP分组的规则。举例说明,协议里预定义多种BP分组规则,比如具有相同子载波的BP为一组,比如具有相同参数集nuemerology的BP为一组,比如具有相同CP类型的BP为一组,基站可以通过信令指示终端所采用的分组规则具体为上述规则中的哪一种。终端根据基站的指示信令确定所采用的BP分组规则。
可选地,基站可以通过第一信令通知一个或多个候选BP给终端,然后通过第二信令通知终端当前激活的BP,所述当前激活的BP是所述一个或多个候选BP中的一个。其中,第一信令可以是RRC信令,第二信令可以是DCI或者MAC CE。
终端根据当前激活的BP所属的BP分组,确定对应的BW门限值组或BW门限值与频域密度对应关系,根据实际的调度带宽BW落入的BW门限区间确定出PTRS的频域密度。
需要说明的,表3、表4以及表E~H仅仅用于解释本发明实施例,不应构成限定。
本申请中,所述网络设备可以在所述用户调度带宽内根据PTRS的时域密度 和频域密度配置PTRS的时频资源,然后向所述终端发送PTRS的资源位置信息。相应的,所述终端可以接收到所述PTRS的资源位置信息,并根据所述PTRS的资源位置信息发送或接收所述第二参考信号,用于相位跟踪,利于反馈信道质量。
另外,映射有PTRS的所述用户调度带宽还可用于上行传输混合自动重传-应答(HARQ-ACK)、秩指示(Rank Indication,RI)或者信道质量指示(Channel Quality Indication,CQI)。
本申请中,在上行传输HARQ-ACK、RI或者CQI时,所述终端可以根据PTRS的时域密度和频域密度对编码后的HARQ-ACK、RI或者CQI进行速率匹配,向eNB发送匹配后的编码数据。相应的,所述网络设备可以接收到所述匹配后的编码数据。PTRS的时域密度和频域密度可确定所述用户调度带宽内PTRS所占用的资源数量。关于PTRS的时域密度和频域密度的确定方式,可以参考前述内容,这里不再赘述。
具体的,在计算由于用于传输HARQ-ACK、RI或者CQI编码后的调制符号数时,需要去除PTRS占用的时频资源,编码后的调制符号数Q′可表示如下:
Figure PCTCN2018080397-appb-000045
其中,
Figure PCTCN2018080397-appb-000046
表示所述用户的上行调度带宽内用于传输PTRS的资源因子的数量,O表示输HARQ-ACK、RI或者CQI编码后的比特数,
Figure PCTCN2018080397-appb-000047
表示所述用户的上行调度带宽内的子载波数量,
Figure PCTCN2018080397-appb-000048
表示用于初始上行共享信道传输的符号数,
Figure PCTCN2018080397-appb-000049
表示调度带宽内用于初始上行共享信道传输的子载波个数,
Figure PCTCN2018080397-appb-000050
表示上行共享信道的一个偏移值
Figure PCTCN2018080397-appb-000051
表示C个码块的编码比特总和。
可以理解的,通过在速率匹配时考虑上行PTRS所占用的资源影响,可以避免PTRS占用有用信号的时频资源,导致实际传输码率的提升,从而提高传输可靠性。
参见图25,图25示出了本申请提供一种无线通信系统、终端及网络设备。无线通信系统10包括:终端400和网络设备500。其中,终端400可以为图6实施例中的终端200,网络设备500可以为图7实施例中的网络设备300,无线通信系统10可以是图5描述的无线通信系统100。下面分别描述。
如图25所示,终端400可包括:处理单元401和通信单元403。其中:
通信单元403可用于接收第一参考信号和第二参考信号,或者发送所述第一参考信号和所述第二参考信号;
处理单元401可用于利用所述第一参考信号和所述第二参考信号进行相位跟踪和信道状态信息估计。
本申请中,所述第一参考信号映射在多个符号上,所述第二参考信号可以映射在所述多个符号中的至少2个符号上,所述第二参考信号所映射的子载波对应一个或多个相同的频域位置。
在本申请的一种实现方式中,所述第一参考信号可以是用于估计CSI的上行 参考信号,例如SRS,所述第二参考信号可以是用于相位跟踪的上行参考信号(PTRS)。这时,通信单元403可具体用于发送所述第一参考信号和所述第二参考信号。
在本申请的另一种实现方式中,所述第一参考信号可以是用于估计CSI的下行参考信号,例如CSI-RS,所述第二参考信号可以是用于相位跟踪的下行参考信号(PTRS)。这时,通信单元403可具体用于接收所述第一参考信号和所述第二参考信号。
在一些实施例中,通信单元403还可用于接收所述第一参考信号和所述第二参考信号各自对应的资源位置信息,并根据所述资源位置信息,用于接收(或发送)所述第一参考信号和所述第二参考信号。
在一些实施例中,所述第一参考信号、所述第二参考信号各自对应的资源位置可以由协议预定义。在一些实施例中,通信单元403可用于仅仅接收网络设备发送的所述第一参考信号的资源位置信息,处理单元401还可用于根据本申请提供的关于所述第二参考信号的映射策略,以及所述第一参考信号的资源位置,确定出所述第二参考信号的资源位置。所述第二参考信号的映射策略可以由协议预定义,也可以是所述网络设备通过高层信令或PDCCH配置的。
关于所述第二参考信号的映射策略,可参考图12-16分别对应的实施例,这里不赘述。
本申请中,通信单元403用于发送所述第二参考信号的天线端口可以是发送所述第一参考信号的天线端口中的一个或多个。通信单元403用于发送所述第二参考信号的天线端口与发送所述第一参考信号的天线端口也可以是准共址的。
另外,通信单元403也可用于在物理上、下行共享信道传输数据时,发送或接收所述第二参考信号,利用所述第二参考信号进行相位跟踪。具体的,所述第二参考信号可以映射在用户调度带宽内。关于所述第二参考信号在所述用户调度带宽内的资源映射方式可参考图19-24分别对应的实施例,这不再赘述。
另外,通信单元403也可用于在映射有PTRS的所述用户调度带宽内传输上行传输混合自动重传-应答(HARQ-ACK)、秩指示(RI)或者信道质量指示(CQI)。并且,处理单元401也可用于根据PTRS的时域密度和频域密度对编码后的HARQ-ACK、RI或者CQI进行速率匹配,向所述网络设备发送匹配后的编码数据。
可以理解的,关于终端400包括的各个功能单元的具体实现可参考前述各个实施例,这里不再赘述。
如图25所示,网络设备500可包括:通信单元501和处理单元503。其中:
通信单元501可用于接收第一参考信号和第二参考信号,或者发送所述第一参考信号和所述第二参考信号;
处理单元503可用于利用所述第一参考信号和所述第二参考信号进行相位跟踪和信道状态信息估计。
本申请中,所述第一参考信号映射在多个符号上,所述第二参考信号可以映射在所述多个符号中的至少2个符号上,所述第二参考信号所映射的子载波对应 一个或多个相同的频域位置。
具体的,处理单元503还可用于配置第一参考信号和第二参考信号各自对应的资源,其中,所述第一参考信号映射在多个符号上,所述第二参考信号映射在所述多个符号中的至少2个符号上,所述第二参考信号所映射的子载波对应一个或多个相同的频域位置。通信单元501还可用于发送所述第一参考信号和所述第二参考信号各自对应的资源位置信息,用于终端接收(或发送)所述第一参考信号和所述第二参考信号。
在本申请的一种实现方式中,所述第一参考信号可以是用于估计CSI的上行参考信号,例如SRS,所述第二参考信号可以是用于相位跟踪的上行参考信号(PTRS)。这时,通信单元501可具体用于接收所述第一参考信号和所述第二参考信号。
在本申请的另一种实现方式中,所述第一参考信号可以是用于估计CSI的下行参考信号,例如CSI-RS,所述第二参考信号可以是用于相位跟踪的下行参考信号(PTRS)。这时,通信单元501可具体用于发送所述第一参考信号和所述第二参考信号。
在一些实施例中,所述第一参考信号、所述第二参考信号各自对应的资源位置可以由协议预定义。在一些实施例中,通信单元501可用于仅仅发送所述第一参考信号的资源位置信息,这样终端400便可以根据本申请提供的关于所述第二参考信号的映射策略,以及所述第一参考信号的资源位置,确定出所述第二参考信号的资源位置。所述第二参考信号的映射策略可以由协议预定义,也可以是通信单元501通过高层信令或PDCCH配置的。
关于所述第二参考信号的映射策略,可参考图12-16分别对应的实施例,这里不赘述。
本申请中,通信单元501用于发送所述第二参考信号的天线端口可以是发送所述第一参考信号的天线端口中的一个或多个。通信单元501用于发送所述第二参考信号的天线端口与发送所述第一参考信号的天线端口也可以是准共址的。
另外,通信单元501也可用于在物理上、下行共享信道传输数据时,发送或接收所述第二参考信号,利用所述第二参考信号进行相位跟踪。具体的,所述第二参考信号可以映射在用户调度带宽内。关于所述第二参考信号在所述用户调度带宽内的资源映射方式可参考图19-24分别对应的实施例,这不再赘述。
另外,通信单元501也可用于接收终端400发送的进行速率匹配后的编码数据。所述编码数据包括传输在映射有PTRS的用户调度带宽内的混合自动重传-应答(HARQ-ACK)、秩指示(RI)或者信道质量指示(CQI)。
可以理解的,关于网络设备500包括的各个功能单元的具体实现可参考前述各个实施例,这里不再赘述。
综上,实施本申请,在多个符号上传输用于估计CSI的参考信号时,插入相位跟踪参考信号。并且,所述相位跟踪参考信号也映射在所述多个符号上,所述相位跟踪参考信号所映射的子载波具有相同的频域位置。这样,在所述相同的频域位置对应的子载波上,所述相位跟踪参考信号可用于相位跟踪,利于提高CSI 估计精度。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (31)

  1. 一种参考信号传输方法,其特征在于,包括:
    网络设备根据参考信号的时域密度和频域密度在用户调度带宽内配置所述参考信号的时频资源;和
    所述网络设备向终端发送所述参考信号和/或所述参考信号的资源位置信息。
  2. 根据权利要求1所述的方法,其特征在于:
    当所述用户调度带宽内还映射有其他参考信号时,在映射有所述其他参考信号的资源粒子上不映射所述参考信号,或者所述参考信号在映射有所述其他参考信号的资源粒子上为零功率,或者所述参考信号被所述其他参考信号打孔。
  3. 根据权利要求1或2所述的方法,其特征在于,所述时域密度与带宽部分BP、子载波间隔、调制编码模式MCS中至少一项相关。
  4. 根据权利要求3所述的方法,其特征在于,每一个BP对应一组MCS门限值,不同的MCS门限值对应不同的时域密度。
  5. 根据权利要求1所述的方法,其特征在于,所述频域密度与带宽部分BP、所述用户调度带宽、子载波间隔、调制编码模式MCS中至少一项相关。
  6. 根据权利要求5所述的方法,其特征在于,每一个BP对应1组调度带宽门限值,不同的调度带宽门限值对应不同的频域密度。
  7. 一种网络设备,包括:
    处理器,用于根据参考信号的时域密度和频域密度在用户调度带宽内配置参考信号的时频资源;和
    发射器用于向终端发送所述参考信号和/或所述参考信号的资源位置信息。
  8. 根据权利要求7所述的网络设备,其特征在于:
    所述处理器还用于:当所述用户调度带宽内还映射有其他参考信号时,在映射有所述其他参考信号的资源粒子上不映射所述参考信号,或者所述参考信号在映射有所述其他参考信号的资源粒子上为零功率,或者所述参考信号被所述其他参考信号打孔。
  9. 根据权利要求7或8所述的网络设备,其特征在于,所述时域密度与带宽部分BP、子载波间隔和调制编码模式MCS中至少一项相关,所述时域密度与所述BP、所述子载波间隔和所述MCS中至少一项的对应关系是预定义的或由高层信令配置给所述终端。
  10. 根据权利要求7所述的网络设备,其特征在于,所述频域密度与带宽部分BP、所述用户调度带宽、子载波间隔和调制编码模式MCS中至少一项相关,所述频域密度与所述用户调度带宽、所述子载波间隔、所述MCS和所述BP中至少一项的对应关系是预定义的或由高层信令配置给所述终端。
  11. 一种参考信号传输方法,其特征在于,所述方法包括:
    接收来自网络设备的参考信号的资源位置信息;和
    根据所述资源位置信息在所述资源位置信息指示的资源上接收所述参考信号;
    其中,所述参考信号的时域密度与带宽部分BP、子载波间隔和调制编码模式MCS中至少一项相关;
    所述参考信号的频域密度与所述带宽部分BP、所述用户调度带宽、所述子载波间隔和所述调制编码模式MCS中至少一项相关。
  12. 根据权利要求11所述的方法,其特征在于,每一个BP对应1组MCS门限值,不同的MCS门限值对应不同的时域密度。
  13. 根据权利要求11所述的方法,其特征在于,每一个BP对应1组调度带宽门限值,不同的调度带宽门限值对应不同的频域密度。
  14. 一种终端,包括:
    接收器,用于接收网络设备发送的资源位置信息;和
    处理器,用于在所述资源位置信息指示的资源上接收参考信号;
    其中,所述参考信号的时域密度与带宽部分BP、子载波间隔和调制编码模式MCS中至少一项相关;
    所述参考信号的频域密度与所述带宽部分BP、所述用户调度带宽、所述子载波间隔和调制编码模式MCS中至少一项相关。
  15. 根据权利要求14所述的终端,其特征在于,每一个BP对应一组MCS门限值,不同的MCS门限值对应不同的时域密度。
  16. 根据权利要求14所述的终端,其特征在于,每一个BP对应一组调度带宽门限值,不同的调度带宽门限值对应不同的频域密度。
  17. 一种通信方法,其特征在于,包括:
    根据当前激活的带宽部分BP与调制编码模式MCS,确定相位跟踪参考信号PTRS的时域密度;
    根据所述当前激活的带宽部分BP与调度带宽BW,确定所述PTRS的频域密度;和
    根据所述时域密度和所述频域密度,映射所述PTRS到一个或多个符号上,或者映射所述PTRS到多个子载波上。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    为一个或多个所述BP配置一组或多组MCS门限值。
  19. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    存储所述BP对应的MCS门限值与时域密度的对应关系信息。
  20. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    为一个或多个所述BP配置一组或多组调度带宽门限值。
  21. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    存储所述BP对应的调度带宽门限值与频域密度的对应关系信息。
  22. 一种装置,包括:
    处理单元,用于根据当前激活的带宽部分BP与调制编码模式MCS,确定相位跟踪参考信号PTRS的时域密度;和根据所述当前激活的带宽部分BP与调度带宽,确定所述PTRS的频域密度;
    通信单元,用于根据所述时域密度和所述频域密度,映射所述PTRS到一个 或多个符号上,或者映射所述PTRS到多个子载波上。
  23. 根据权利要求22所述的装置,其特征在于:
    所述处理单元还用于为一个或多个所述BP配置一组或多组MCS门限值。
  24. 根据权利要求22或23所述的装置,其特征在于,还包括存储单元,用于存储所述BP对应的MCS门限值与时域密度的对应关系信息。
  25. 根据权利要求22~24任意一项所述的装置,其特征在于:
    所述处理单元还用于为一个或多个所述BP配置一组或多组调度带宽门限值。
  26. 根据权利要求25所述的装置,其特征在于,还包括存储单元,用于存储所述BP对应的调度带宽门限值与频域密度的对应关系信息。
  27. 一种参考信号传输方法,其特征在于,包括:
    网络设备接收第一参考信号和第二参考信号,其中:所述第一参考信号映射在多个符号上,用于估计信道状态信息;所述第二参考信号映射在所述多个符号中的至少2个符号上,用于相位跟踪;至少2个符号上的所述第二参考信号所映射的子载波具有相同的频域位置。
  28. 一种参考信号传输方法,其特征在于,包括:
    终端发送第一参考信号和第二参考信号;其中:所述第一参考信号映射在多个符号上,用于估计信道状态信息;所述第二参考信号映射在所述多个符号中的至少2个符号上,用于相位跟踪;至少2个符号上的所述第二参考信号所映射的子载波具有相同的频域位置。
  29. 一种网络设备,其特征在于,包括:
    通信单元,用于接收第一参考信号和第二参考信号;其中:所述第一参考信号映射在多个符号上,用于估计信道状态信息;所述第二参考信号映射在所述多个符号中的至少2个符号上,用于相位跟踪;至少2个符号上的所述第二参考信号所映射的子载波具有相同的频域位置。
  30. 一种终端,其特征在于,包括:
    通信单元,用于发送第一参考信号和第二参考信号;其中:所述第一参考信号映射在多个符号上,用于估计信道状态信息;所述第二参考信号映射在所述多个符号中的至少2个符号上,用于相位跟踪;至少2个符号上的所述第二参考信号所映射的子载波具有相同的频域位置。
  31. 一种计算机可读存储介质,所述可读存储介质上存储有程序代码,该程序代码包含用于运行权利要求1~6,11~13,17~21以及28任意一项描述的方法的执行指令。
PCT/CN2018/080397 2017-03-24 2018-03-24 一种参考信号传输方法、装置及系统 WO2018171792A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP18770937.3A EP3606219B1 (en) 2017-03-24 2018-03-24 Method, apparatus and system for reference signal transmission
JP2019552462A JP7217234B2 (ja) 2017-03-24 2018-03-24 参照信号送信方法、装置、およびシステム
BR112019019951A BR112019019951A2 (pt) 2017-03-24 2018-03-24 método, aparelho e sistema de transmissão de sinal de referência
CA3057552A CA3057552A1 (en) 2017-03-24 2018-03-24 Reference signal transmission method, apparatus, and system
KR1020197030777A KR102308693B1 (ko) 2017-03-24 2018-03-24 참조 신호 송신 방법, 장치 및 시스템
US16/580,651 US11153134B2 (en) 2017-03-24 2019-09-24 Reference signal transmission method, apparatus, and system
US17/408,009 US11916705B2 (en) 2017-03-24 2021-08-20 Reference signal transmission method, apparatus, and system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710184763 2017-03-24
CN201710184763.X 2017-03-24
CN201710400977.6 2017-05-31
CN201710400977.6A CN108632005B (zh) 2017-03-24 2017-05-31 一种参考信号传输方法、装置及系统
CN201710444726.8 2017-06-13
CN201710444726.8A CN108632006B (zh) 2017-03-24 2017-06-13 一种参考信号传输方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/580,651 Continuation US11153134B2 (en) 2017-03-24 2019-09-24 Reference signal transmission method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2018171792A1 true WO2018171792A1 (zh) 2018-09-27

Family

ID=63584178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080397 WO2018171792A1 (zh) 2017-03-24 2018-03-24 一种参考信号传输方法、装置及系统

Country Status (1)

Country Link
WO (1) WO2018171792A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021145384A (ja) * 2017-09-29 2021-09-24 株式会社Nttドコモ 端末、基地局、方法およびシステム
WO2021242626A1 (en) * 2020-05-24 2021-12-02 Qualcomm Incorporated Modulation and coding schemes for high band wireless communications
EP4040890A4 (en) * 2019-11-08 2022-10-26 Huawei Technologies Co., Ltd. REFERENCE SIGNAL TRANSMISSION METHOD AND APPARATUS
US11824803B2 (en) * 2021-03-25 2023-11-21 Telefonaktiebolaget Lm Ericsson (Publ) Phase tracking reference signaling for a wireless communication network
US11924142B2 (en) 2020-05-14 2024-03-05 Sony Goup Corporation Coverage enhancement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130259009A1 (en) * 2012-03-29 2013-10-03 Futurewei Technologies, Inc. System and Method for Transmitting a Reference Signal
US20150381331A1 (en) * 2013-02-12 2015-12-31 Lg Electronics Inc. A method of transmitting a reference signal from a base station to a user equipment in a wireless communication system and apparatus therefor
CN105357160A (zh) * 2014-08-19 2016-02-24 北京三星通信技术研究有限公司 发送参考信号的方法及装置、接收参考信号的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130259009A1 (en) * 2012-03-29 2013-10-03 Futurewei Technologies, Inc. System and Method for Transmitting a Reference Signal
US20150381331A1 (en) * 2013-02-12 2015-12-31 Lg Electronics Inc. A method of transmitting a reference signal from a base station to a user equipment in a wireless communication system and apparatus therefor
CN105357160A (zh) * 2014-08-19 2016-02-24 北京三星通信技术研究有限公司 发送参考信号的方法及装置、接收参考信号的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3606219A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021145384A (ja) * 2017-09-29 2021-09-24 株式会社Nttドコモ 端末、基地局、方法およびシステム
JP7262515B2 (ja) 2017-09-29 2023-04-21 株式会社Nttドコモ 端末、基地局、方法およびシステム
US11770836B2 (en) 2017-09-29 2023-09-26 Ntt Docomo, Inc. Terminals and base station
EP4040890A4 (en) * 2019-11-08 2022-10-26 Huawei Technologies Co., Ltd. REFERENCE SIGNAL TRANSMISSION METHOD AND APPARATUS
US11924142B2 (en) 2020-05-14 2024-03-05 Sony Goup Corporation Coverage enhancement
WO2021242626A1 (en) * 2020-05-24 2021-12-02 Qualcomm Incorporated Modulation and coding schemes for high band wireless communications
US11824803B2 (en) * 2021-03-25 2023-11-21 Telefonaktiebolaget Lm Ericsson (Publ) Phase tracking reference signaling for a wireless communication network

Similar Documents

Publication Publication Date Title
CN108632006B (zh) 一种参考信号传输方法、装置及系统
CN110166209B (zh) 下行控制信息传输方法
AU2018215316B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
US10979194B2 (en) Resource indication method, user equipment, and network device
EP3579638A1 (en) Base station device, terminal device, communication method, and integrated circuit
WO2017130970A2 (ja) 基地局装置、端末装置および通信方法
WO2018171792A1 (zh) 一种参考信号传输方法、装置及系统
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
CN103250455B (zh) 基站装置、移动终端装置以及通信控制方法
WO2012029873A1 (ja) 無線通信システム、無線基地局装置及び移動端末装置
US20180192321A1 (en) Reference Signal In A Communications Network
WO2018228500A1 (zh) 一种调度信息传输方法及装置
WO2018000929A1 (zh) 一种子帧配置方法及相关设备
WO2019096004A1 (zh) 资源配置方法、装置和系统
EP3059876B1 (en) Downlink resource indication method, apparatus and system for multiple-point-coordination network in lte system
CN108811074B (zh) 信息传输方法及装置
TWI797105B (zh) 上行傳輸方法、裝置、終端設備、接入網設備及系統
CN107889251B (zh) 一种时域资源单元集合结构的确定方法、网络设备及终端
WO2016070675A1 (zh) 下行信息发送、下行信息接收方法及装置
WO2021204128A1 (zh) 一种传输块尺寸确定方法及装置
JP5856244B2 (ja) 無線通信システム、無線通信方法、無線基地局装置及び移動端末装置
WO2014183680A1 (zh) 一种传输下行信号的方法、装置及终端设备
CN109076513A (zh) 下行控制信息的发送方法、检测方法和设备
EP3186994B1 (en) Wireless communication apparatuses and methods for managing resource for interference coordination therein
WO2014000618A1 (zh) 下行用户专用dm-rs传输方法和ue及网络侧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3057552

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019552462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019019951

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197030777

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018770937

Country of ref document: EP

Effective date: 20191024

ENP Entry into the national phase

Ref document number: 112019019951

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190924