WO2024094091A1 - 子带配置的方法和通信装置 - Google Patents

子带配置的方法和通信装置 Download PDF

Info

Publication number
WO2024094091A1
WO2024094091A1 PCT/CN2023/129189 CN2023129189W WO2024094091A1 WO 2024094091 A1 WO2024094091 A1 WO 2024094091A1 CN 2023129189 W CN2023129189 W CN 2023129189W WO 2024094091 A1 WO2024094091 A1 WO 2024094091A1
Authority
WO
WIPO (PCT)
Prior art keywords
subband
time
frequency
flexible
downlink
Prior art date
Application number
PCT/CN2023/129189
Other languages
English (en)
French (fr)
Inventor
陆绍中
郭志恒
宋兴华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024094091A1 publication Critical patent/WO2024094091A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • Embodiments of the present application relate to the field of communications, and more specifically, to a sub-band configuration method and a communication device.
  • Subband full duplex means that in the TDD system, network equipment uses different subbands for uplink and downlink transmission to achieve both reception and transmission in one time slot or one orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • the subbands of SBFD are semi-statically configured, and the positions of the time-frequency resources used for uplink transmission and downlink transmission in a time slot or a symbol are fixed, resulting in poor flexibility of the SBFD system. For example, when there are more downlink services and less uplink services, the uplink subband resources are seriously wasted, and the downlink resources cannot support the heavy downlink services; conversely, when there are more uplink services and less downlink services, the downlink subband resources are seriously wasted, and the uplink resources cannot support the heavy uplink services.
  • the embodiments of the present application provide a sub-band configuration method and a communication device, which can improve the flexibility of the SBFD system and thus improve the utilization rate of frequency domain resources.
  • a communication method is provided.
  • the method can be executed by a terminal device, or can also be executed by a component of the terminal device (such as a chip or circuit).
  • a component of the terminal device such as a chip or circuit
  • the method may include: a terminal device receives a first signaling and a second signaling from a network device, the first signaling indicates a first time unit set, the second signaling indicates a first sub-band pattern, the first sub-band pattern indicates a transmission direction of a frequency unit included in a first frequency domain resource, and the first frequency domain resource includes one or more flexible frequency units, wherein the flexible frequency unit can be used for both uplink transmission and downlink transmission, and the first frequency domain resource is a frequency unit set configured by the network device for the terminal device; the terminal device determines the transmission direction of the first time-frequency resource according to the first sub-band pattern, the first time-frequency resource is a time-frequency resource consisting of a frequency unit in the first frequency domain resource and a first time unit, and the first time unit is any time unit in the first time unit set.
  • the first subband pattern only acts on the first frequency domain resource on the first time unit set.
  • a flexible frequency unit that can be used for both uplink transmission and downlink transmission is introduced on the first frequency domain resource through the first subband pattern, so that the terminal device can adaptively use the flexible frequency unit for uplink and downlink transmission within the first time unit set according to the situation of the uplink and downlink services, thereby improving the flexibility of the SBFD system and the utilization rate of frequency domain resources.
  • the method also includes: the terminal device determines the transmission direction of the second time-frequency resource based on the transmission direction of the second time unit, the second time-frequency resource is a time-frequency resource composed of a frequency unit and a second time unit in the first frequency domain resource, and the second time unit is any time unit outside the first time unit set.
  • the first subband pattern does not act on time units outside the first time unit set, and the time units outside the first time unit set determine the transmission direction of their corresponding time-frequency resources based on the transmission direction of each time unit.
  • the first subband pattern indicates that all frequency units in the first frequency domain resource are flexible frequency units; or, the first subband pattern indicates that the first frequency domain resource includes at most one downlink subband, one flexible subband and one uplink subband, wherein one downlink subband is located at the starting position of the first frequency domain resource, one uplink subband is located at the ending position of the first frequency domain resource, and one flexible subband is located between one downlink subband and one uplink subband; or, the first subband pattern indicates that the first frequency domain resource includes at most one uplink subband, one flexible subband and one downlink subband, wherein one uplink subband is located at the starting position of the first frequency domain resource, one downlink subband is located at the ending position of the first frequency domain resource.
  • a flexible subband is located between a downlink subband and an uplink subband; or, the first subband pattern indicates that the first frequency domain resources include at most a first downlink subband, a first flexible subband, a first uplink subband, a second flexible subband and a second downlink subband, wherein the first downlink subband is located at the starting position of the first frequency domain resources, the second downlink subband is located at the end position of the first frequency domain resources, the first flexible subband is located between the first downlink subband and the first uplink subband, and the second flexible subband is located between the first uplink subband and the second downlink subband; wherein the frequency units in the uplink subband are all uplink frequency units, the frequency units in the downlink subband are all downlink frequency units, and the frequency units in the flexible subband are all flexible frequency units.
  • the first subband pattern may also be other patterns including flexible subbands, which is not limited in the present application.
  • the first subband pattern when the first subband pattern indicates that the first frequency domain resources include at most one downlink subband, one flexible subband and one uplink subband, the first subband pattern specifically indicates that the first frequency domain resources include only one downlink subband and one flexible subband, or the first subband pattern specifically indicates that the first frequency domain resources include only one flexible subband and one uplink subband.
  • the first subband pattern when the first subband pattern indicates that the first frequency domain resources include at most one uplink subband, one flexible subband and one downlink subband, the first subband pattern specifically indicates that the first frequency domain resources include only one flexible subband and one downlink subband, or the first subband pattern specifically indicates that the first frequency domain resources include only one uplink subband and one flexible subband.
  • the first subband pattern when the first subband pattern indicates that the first frequency domain resources include at most a first downlink subband, a first flexible subband, a first uplink subband, a second flexible subband, and a second downlink subband, the first subband pattern specifically indicates that the first frequency domain resources include only the first downlink subband, the flexible subband, and the second downlink subband, wherein the flexible subband is located between the first downlink subband and the second downlink subband, or, the first subband pattern specifically indicates that the first frequency domain resources include only the first flexible subband, the uplink subband, and the second flexible subband, wherein the uplink subband is located between the first flexible subband and the second flexible subband.
  • transmission directions of all frequency units in a flexible subband in the first frequency domain resources are the same.
  • the second signaling further includes location information of at least one guard band, where the guard band is located between subbands of different types in the first frequency domain resources.
  • the second signaling further includes position information of each subband in the one or more subbands determined by the first frequency domain resource based on the first subband pattern.
  • the method also includes: the terminal device receives a third signaling from the network device, the third signaling indicates a second subband pattern, the second subband pattern is used to update the transmission direction of the frequency units included in the first frequency unit set, the first frequency unit set includes the frequency units corresponding to the flexible frequency units determined by the first frequency domain resources based on the first subband pattern; the terminal device updates the transmission direction of the third time-frequency resource according to the second subband pattern, the third time-frequency resource is a time-frequency resource consisting of a frequency unit in the first frequency unit set and the first time unit.
  • the transmission direction of the frequency unit in the flexible subband determined by the first frequency domain resource based on the first subband pattern can be updated again based on actual needs through the third signaling, thereby providing flexibility for the SBFD system.
  • the first time unit set is included in a first time period, and the first time period is repeated with a length of the first time period as a period.
  • the first time unit set is all flexible time units in the first time period.
  • the first signaling includes a position of a starting time unit of the first time unit set within the first time period and the number of time units included in the first time unit set.
  • the scope of action of the first subband pattern on the time domain resources can be dynamically adjusted through the first signaling according to actual needs, thereby improving the flexibility of the SBFD system.
  • the first signaling includes a first bitmap, the bits included in the first bitmap correspond one-to-one to the time units in the first time period, and the first time unit set includes time units corresponding to bits whose bit values in the first bitmap are the first values.
  • the scope of action of the first subband pattern on the time domain resources can be dynamically adjusted through the first signaling according to actual needs, thereby improving the flexibility of the SBFD system.
  • the first time period is a time period corresponding to a first time slot configuration cycle
  • the first time slot configuration cycle is a time slot configuration cycle included in the cell-level uplink and downlink time slot configuration signaling used by the terminal device.
  • the cell-level uplink and downlink time slot configuration signaling here is tdd-UL-DL-ConfigurationCommon. This signaling is carried in the SIB1 message.
  • each first time period in the periodically repeated first time period includes a first time unit set.
  • each of M first time periods in every N first time periods in the periodically repeated first time period includes a first time unit set, 1 ⁇ M ⁇ N.
  • the method also includes: the terminal device receives a fourth signaling from the network device, the fourth signaling is used to update the first time unit set to a third time unit set, the third time unit set is an empty set, the first subband pattern is effective within the third time unit set, and is no longer effective within the first time unit set; the terminal device determines the transmission direction of the fourth time-frequency resource according to the transmission direction of the third time unit, wherein the fourth time-frequency resource is a time-frequency resource composed of the third time unit and a frequency resource in the first time domain resource, and the third time unit is any time unit outside the third time unit set.
  • the third time unit is set to an empty set according to the third signaling, so that the first subband pattern is not effective on the time domain resources, that is, TDD is enabled, thereby realizing dynamic switching between SBFD and TDD, thereby improving the flexibility of the SBFD system.
  • the TDD mode can be dynamically switched to reduce interference and improve system reliability; when the interference is not severe, the SBFD mode can be dynamically switched to improve uplink/downlink resource utilization, thereby improving system spectrum efficiency.
  • a communication method is provided.
  • the method can be executed by a network device, or can also be executed by a component of the network device (such as a chip or circuit).
  • a component of the network device such as a chip or circuit.
  • the method may include: a network device determines a first signaling and a second signaling, the first signaling indicates a first time unit set, the second signaling indicates a first subband pattern, the first subband pattern indicates a transmission direction of a frequency unit included in a first frequency domain resource set, and the first frequency domain resource includes one or more flexible frequency units, wherein the flexible frequency unit can be used for both uplink transmission and downlink transmission, the first frequency domain resource is a frequency unit set configured by the network device for the terminal device, the first subband pattern is used to determine the transmission direction of the first time-frequency resource, the first time-frequency resource is a time-frequency resource composed of a frequency unit in the first frequency domain resource and a first time unit, and the first time unit is any time unit in the first time unit set; the network device sends the first signaling and the second signaling to the terminal device.
  • the first subband pattern indicates that all frequency units in the first frequency domain resource are flexible frequency units; or, the first subband pattern indicates that the first frequency domain resource includes at most one downlink subband, one flexible subband and one uplink subband, wherein one downlink subband is located at the starting position of the first frequency domain resource, one uplink subband is located at the end position of the first frequency domain resource, and one flexible subband is located between one downlink subband and one uplink subband; or, the first subband pattern indicates that the first frequency domain resource includes at most one uplink subband, one flexible subband and one downlink subband, wherein one uplink subband is located at the starting position of the first frequency domain resource, and one downlink subband is located at the end position of the first frequency domain resource.
  • a flexible subband is located between a downlink subband and an uplink subband; or, the first subband pattern indicates that the first frequency domain resources include at most a first downlink subband, a first flexible subband, a first uplink subband, a second flexible subband and a second downlink subband, wherein the first downlink subband is located at the starting position of the first frequency domain resources, the second downlink subband is located at the end position of the first frequency domain resources, the first flexible subband is located between the first downlink subband and the first uplink subband, and the second flexible subband is located between the first uplink subband and the second downlink subband; wherein the frequency units in the uplink subband are all uplink frequency units, the frequency units in the downlink subband are all downlink frequency units, and the frequency units in the flexible subband are all flexible frequency units.
  • the first subband pattern when the first subband pattern indicates that the first frequency domain resources include at most one downlink subband, one flexible subband and one uplink subband, the first subband pattern specifically indicates that the first frequency domain resources include only one downlink subband and one flexible subband, or the first subband pattern specifically indicates that the first frequency domain resources include only one flexible subband and one uplink subband.
  • the first subband pattern when the first subband pattern indicates that the first frequency domain resources include at most one uplink subband, one flexible subband and one downlink subband, the first subband pattern specifically indicates that the first frequency domain resources include only one flexible subband and one downlink subband, or the first subband pattern specifically indicates that the first frequency domain resources include only one uplink subband and one flexible subband.
  • the first subband pattern when the first subband pattern indicates that the first frequency domain resources include at most a first downlink subband, a first flexible subband, a first uplink subband, a second flexible subband, and a second downlink subband, the first subband pattern specifically indicates that the first frequency domain resources include only the first downlink subband, the flexible subband, and the second downlink subband, wherein the flexible subband is located between the first downlink subband and the second downlink subband, or, the first subband pattern specifically indicates that the first frequency domain resources include only the first flexible subband, the uplink subband, and the second flexible subband, wherein the uplink subband is located between the first flexible subband and the second flexible subband.
  • transmission directions of all frequency units in a flexible subband in the first frequency domain resources are the same.
  • the second signaling further includes location information of at least one guard band, where the guard band is located between subbands of different types in the first frequency domain resources.
  • the second signaling further includes position information of each subband in the one or more subbands determined by the first frequency domain resource based on the first subband pattern.
  • the method also includes: the network device sends a third signaling to the terminal device, the third signaling indicates a second subband pattern, the second subband pattern is used to indicate the transmission direction of the frequency units included in the first frequency unit set, the first frequency unit set includes frequency units corresponding to the flexible frequency units determined by the first frequency domain resources based on the first subband pattern, the second subband pattern is used to update the transmission direction of the third time-frequency resource, and the third time-frequency resource is a time-frequency resource composed of a frequency unit in the first frequency unit set and the first time unit.
  • the first time unit set is included in a first time period, and the first time period is repeated with a length of the first time period as a period.
  • the first time unit set is all flexible time units in the first time period.
  • the first signaling includes a position of a starting time unit of the first time unit set within the first time period and the number of time units included in the first time unit set.
  • the first signaling includes a first bit map
  • the bits included in the first bit map correspond one-to-one to the time units in the first time period
  • the first time unit set includes time units corresponding to bits whose bit values in the first bit map are the first values.
  • the first time period is a time period corresponding to a first time slot configuration cycle
  • the first time slot configuration cycle is a time slot configuration cycle included in the cell-level uplink and downlink time slot configuration signaling used by the terminal device.
  • each first time period in the periodically repeated first time period includes a first time unit set.
  • each of M first time periods in every N first time periods in the periodically repeated first time period includes a first time unit set, 1 ⁇ M ⁇ N.
  • the method also includes: the network device sends a fourth signaling to the terminal device, the fourth signaling is used to update the first time unit set to a third time unit set, the third time unit set is an empty set, the first subband pattern is effective within the third time unit set, and is no longer effective within the first time unit set.
  • a communication device which is used to execute the method provided in the first aspect.
  • the device may include a unit and/or module, such as a processing unit and/or a communication unit, for executing the method in the first aspect and any possible implementation of the first aspect.
  • the apparatus is a terminal device.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, a chip system or a circuit used in a terminal device.
  • the communication unit may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip, the chip system or the circuit;
  • the processing unit may be at least one processor, a processing circuit or a logic circuit.
  • a communication device which is used to execute the method provided in the second aspect.
  • the device may include a unit and/or module, such as a processing unit and/or a communication unit, for executing the method in the second aspect and any possible implementation of the second aspect.
  • the device is a network device.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, chip system or circuit used in a network device.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit;
  • the processing unit may be at least one processor, processing circuit or logic circuit.
  • a communication device comprising: at least one processor, the at least one processor is coupled to at least one memory, the at least one memory is used to store computer programs or instructions, and the at least one processor is used to call and run the computer program or instructions from the at least one memory, so that the communication device executes the method in the first aspect and any possible implementation manner of the first aspect.
  • the apparatus is a terminal device.
  • the apparatus is a chip, a chip system or a circuit used in a terminal device.
  • a communication device comprising: at least one processor, the at least one processor is coupled to at least one memory, the at least one memory is used to store computer programs or instructions, and the at least one processor is used to call and run the computer program or instructions from the at least one memory, so that the communication device executes the method in the second aspect and any possible implementation of the second aspect.
  • the apparatus is a network device.
  • the apparatus is a chip, a chip system, or a circuit used in a network device.
  • a processor for executing the methods provided in the above aspects.
  • a computer-readable storage medium which stores a program code for execution by a device, wherein the program code includes a method for executing the above-mentioned first aspect or second aspect and any possible implementation of the first aspect or second aspect.
  • a computer program product comprising instructions, which, when executed on a computer, enables the computer to execute the method in the first aspect or the second aspect and any possible implementation of the first aspect or the second aspect.
  • a chip which includes a processor and a communication interface.
  • the processor reads instructions stored in a memory through the communication interface to execute the method in the first aspect or the second aspect and any possible implementation of the first aspect or the second aspect.
  • the chip also includes a memory, in which a computer program or instructions are stored, and the processor is used to execute the computer program or instructions stored in the memory.
  • the processor is used to execute the method in the above-mentioned first aspect or second aspect and any possible implementation method of the first aspect or second aspect.
  • a communication system which includes the communication device shown in the fifth aspect and the sixth aspect.
  • FIG1 is a schematic diagram of a communication system provided in an embodiment of the present application.
  • FIG2 is a time-frequency diagram of sub-band full-duplex.
  • FIG3 is a schematic block diagram of SBFD dedicated uplink and downlink time slot configuration and SBFD subband configuration.
  • FIG4 is a schematic flow chart of a subband configuration method proposed in the present application.
  • FIG. 5 is a possible example of a first time unit set included in a periodically repeated first time period.
  • FIG. 6 is another possible example of a first time unit set included in a periodically repeated first time period.
  • FIG7 is a schematic diagram of determining the transmission direction of time-frequency resources within the first time slot configuration period according to the sub-band configuration method proposed in the present application.
  • FIG8 is a schematic block diagram of a communication device 200 provided in the present application.
  • FIG9 is a schematic structural diagram of a communication device 300 provided in the present application.
  • 5G fifth generation
  • NR new radio
  • LTE long term evolution
  • IoT internet of things
  • WiFi wireless-fidelity
  • 3GPP 3rd generation partnership project
  • FIG1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system 100 includes at least one network device, such as the network device 110 shown in FIG1 ; the communication system 100 may also include at least one terminal device, such as the terminal device 120 and/or the terminal device 130 shown in FIG1 .
  • the network device 110 and the terminal device 120/130 may communicate via a wireless link to exchange information. It is understandable that the network device and the terminal device may also be referred to as a communication device.
  • a network device is a network-side device with wireless transceiver functions.
  • a network device may be a device in a radio access network (RAN) that provides wireless communication functions for terminal devices, and is called a RAN device.
  • the network device may be a base station, an evolved NodeB (eNodeB), a next generation NodeB (gNB) in a 5G mobile communication system, a base station that is subsequently evolved by 3GPP, a transmission reception point (TRP), an access node in a WiFi system, a wireless relay node, a wireless backhaul node, etc.
  • a communication system using different radio access technologies (RAT) the name of a device with a base station function may be different.
  • RAT radio access technologies
  • a network device may include one or more co-located or non-co-located transmission and reception points.
  • a network device may include one or more centralized units (CU), one or more distributed units (DU), or one or more CUs and one or more DUs.
  • CU centralized units
  • DU distributed units
  • the functions of CU can be implemented by one entity or different entities.
  • the functions of CU are further divided, that is, the control plane and the user plane are separated and implemented through different entities, namely the control plane CU entity (i.e., CU-CP entity) and the user plane CU entity (i.e., CU-UP entity).
  • the CU-CP entity and the CU-UP entity can be coupled with the DU to jointly complete the functions of the access network device.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of the radio resource control (RRC) and packet data convergence layer protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and realizing the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • Some functions of the wireless access network device can be implemented through multiple network function entities.
  • These network function entities can be network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (e.g., a cloud platform).
  • the network device may also include an active antenna unit (AAU).
  • AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • the network device can be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into a network device in the access network (radio access network, RAN), and the CU can also be divided into a network device in the core network (core network, CN), and this application does not limit this.
  • the access network device can be a road side unit (RSU).
  • RSU road side unit
  • Multiple access network devices in the communication system can be base stations of the same type or different types.
  • the base station can communicate with the terminal device, or it can communicate with the terminal device through a relay station.
  • the device for realizing the function of the network device can be the network device itself, or a device that can support the network device to realize the function, such as a chip system or a combination device or component that can realize the function of the access network device, and the device can be installed in the network device.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • Terminal equipment is a user-side device with wireless transceiver functions, which can be a fixed device, mobile device, handheld device (such as a mobile phone), wearable device, vehicle-mounted device, or a wireless device built into the above devices (such as a communication module, modem, or chip system, etc.).
  • Terminal equipment is used to connect people, objects, machines, etc., and can be widely used in various scenarios, such as: cellular communication, device-to-device (D2D) communication, V2X communication, machine-to-machine/machine-type communication (M2M/MTC) communication, Internet of Things, virtual reality (VR), augmented reality (AR), industrial control, self-driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drones, robots and other scenarios.
  • the terminal device may be a handheld terminal in cellular communication, a communication device in D2D, an IoT device in MTC, a surveillance camera in intelligent transportation and smart city, or a communication device on a drone, etc.
  • the terminal device may sometimes be referred to as user equipment (UE), user terminal, user device, user unit, user station, terminal, access terminal, access station, UE station, remote station, mobile device or wireless communication device, etc.
  • the device for realizing the function of the terminal device may be the terminal device, or may be a device that can support the terminal device to realize the function, such as a chip system or a combination device or component that can realize the function of the terminal device, and the device may be installed in the terminal device.
  • time domain symbol also called OFDM symbol. It should be noted that the time domain symbol can also be named in combination with other multiple access methods, which is not limited in the embodiment of the present application. The length of the time domain symbol can be different for different subcarrier spacings.
  • the symbols in a time slot may include three types: downlink symbols, uplink symbols and flexible symbols.
  • Uplink symbols can only be used for uplink transmission, and downlink symbols can only be used for downlink transmission.
  • Flexible symbols have no fixed transmission direction and can be used for uplink or downlink transmission according to the instructions of control signaling.
  • the symbols in a time slot can be all downlink symbols, or all uplink symbols, or all flexible symbols, or a mixture of several symbols.
  • a time unit may be a time slot, or a symbol, or a subframe, or a half frame, or a frame, or a mini-subframe, or a mini-time slot, and this application does not limit this.
  • a subband is a partial frequency band in a carrier, that is, one or more continuous physical resource blocks (PRBs) in the frequency domain.
  • PRBs physical resource blocks
  • a subband can also be understood as a frequency domain resource.
  • SBFD In the SBFD scheme, a carrier is divided into multiple non-overlapping subbands, and the transmission directions of different subbands can be different, that is, a carrier includes a non-overlapping first subband and a second subband, and the transmission directions of the first subband and the second subband are different.
  • the first subband and the second subband refer to two types of subbands with different transmission directions, and does not mean that a carrier contains only two subbands.
  • a carrier includes subband #1 and subband #2, wherein the transmission directions of subband #1 and subband #2 are different.
  • a carrier includes subband #1, subband #2 and subband #3, wherein the transmission directions of subband #1 and subband #3 are the same, and the transmission directions of subband #1 and subband #2 are different.
  • SBFD time slot The frequency resources on the SBFD time slot include 2 or more sub-bands in different transmission directions.
  • the time-frequency division of a typical SBFD scheme is shown in Figure 2, where the horizontal axis represents the time domain and the vertical axis represents the frequency domain.
  • the two rectangles filled with left slashes in Figure 2 represent a group of time-frequency resources for downlink transmission, and the rectangle filled with vertical bars represents a group of time-frequency resources for uplink transmission.
  • the time slots in the time domain occupied by these three time-frequency resources are called SBFD time slots.
  • Non-SBFD time slots The transmission direction of all frequency resources on non-SBFD time slots is the same.
  • the rectangular blocks filled with right slashes in Figure 2 represent a group of time-frequency resources for uplink transmission.
  • the time slots in the time domain occupied by them are called uplink time slots.
  • the transmission direction of all frequency resources on these time slots is uplink. These time slots can be called non-SBFD time slots.
  • TDD flexible configuration and configuration parameters The uplink and downlink time slot configuration in NR depends on tdd-UL-DL-ConfigurationCommon and tdd-UL-DL-ConfigurationDedicated, where tdd-UL-DL-ConfigurationCommon is the cell-level uplink and downlink time slot configuration signaling, and tdd-UL-DL-ConfigurationDedicated is the UE-level uplink and downlink time slot configuration signaling.
  • tdd-UL-DL-ConfigurationCommon cell-level uplink and downlink time slot configuration signaling
  • the UE sets the time slot format for each time slot of a time slot set indicated by tdd-UL-DL-ConfigurationCommon.
  • tdd-UL-DL-ConfigurationCommon includes the following information:
  • a reference subcarrier spacing (SCS) ⁇ ref indicated by the signaling referenceSubcarrierSpacing.
  • Pattern1 includes:
  • a time slot configuration period P msec indicated by the signaling dl-UL-TransmissionPeriodicity.
  • Msec means millisecond, which can also be written as ms in this application.
  • the number of downlink time slots is d slot , and the symbol of each downlink time slot is a downlink symbol, which is indicated by the signaling nrofDownlinkSlots.
  • the defined time slot configuration period P msec includes Time slots, where P is defined in Section 11.1 of TS 38.213.
  • the first d slots only include downlink symbols
  • the last ⁇ slots only include uplink symbols.
  • the d sym symbols immediately following the first d slots are downlink symbols
  • the ⁇ sym symbols immediately preceding the last ⁇ slots are uplink symbols.
  • the remaining symbols are flexible symbols, among which, is the number of symbols in a time slot.
  • pattern2 includes:
  • the number of downlink time slots is d slot,2 .
  • the symbol of each downlink time slot is a downlink symbol, which is indicated by the signaling nrofDownlinkSlots.
  • the time slot configuration period is (P+P 2 ) msec, including time slots and In S 2 time slots, the first d slot, 2 time slots only include downlink symbols, and the last ⁇ slot, 2 time slots only include uplink symbols.
  • the d sym , 2 symbols immediately following the first d slot, 2 time slots are downlink symbols, and the ⁇ sym , 2 symbols immediately before the last ⁇ slot, 2 time slots are uplink symbols.
  • the remaining The symbols are flexible symbols, among which * means multiplication.
  • tdd-UL-DL-ConfigurationDedicated (UE-level uplink and downlink time slot configuration signaling)
  • the signaling tdd-UL-DL-ConfigurationDedicated will only perform further uplink and downlink configuration on the flexible symbols configured by tdd-UL-DL-ConfigurationCommon in a time slot configuration period indicated by tdd-UL-DL-ConfigurationCommon.
  • tdd-UL-DL-ConfigurationDedicated includes the following information:
  • slotSpecificConfigurationsToAddModList provides a series of flexible symbol configuration methods.
  • slotIndex identifies a slot within the slot configuration period given in tdd-UL-DL-configurationCommon.
  • symbols allDownlink
  • symbols allUplink
  • all symbols in this time slot are downlink symbols.
  • symbols allUplink
  • all symbols in this time slot are uplink symbols.
  • symbols explicit, nrofDownlinkSymbols indicates the number of downlink symbols in this time slot, and these downlink symbols are located in the front of this time slot, nrofUplinkSymbols indicates the number of uplink symbols in this time slot, and these uplink symbols are located in the back of this time slot; if nrofDownlinkSymbols is not configured, there are no downlink symbols in this time slot; if nrofUplinkSymbols is not configured, there are no uplink symbols in this time slot; the remaining symbols of this time slot are flexible symbols.
  • the UE can perform signal reception on this symbol; for a symbol indicated as an uplink by tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated in a time slot, the UE can perform signal transmission on this symbol.
  • the scheduling of flexible symbols is relatively flexible, and the downlink control information (DCI) scheduling determines whether the symbol is used for downlink reception or uplink transmission. For example, if the UE receives a corresponding indication in the DCI format, the UE receives the physical downlink shared channel (PDSCH) or the channel state information-reference signal (CSI-RS) in the flexible symbol set of this time slot.
  • DCI downlink control information
  • the UE receives a DCI format, a random access response (RAR) uplink (UL) grant, a fallbackRAR UL grant or a corresponding indication of a successRAR, the UE transmits a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), a physical random access channel (PRACH) or a sounding reference signal (SRS) in the flexible symbol set of this time slot.
  • RAR random access response
  • UL uplink
  • UL uplink
  • UL fallbackRAR UL grant
  • a corresponding indication of a successRAR the UE transmits a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), a physical random access channel (PRACH) or a sounding reference signal (SRS) in the flexible symbol set of this time slot.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • SRS sounding reference signal
  • SBFD dedicated uplink and downlink time slot configurations may include the following three types: XXXXX, XXXXU and DXXXU, where D represents a downlink time unit, all symbols in the downlink time unit are downlink symbols, and no uplink subband can be configured on the downlink symbol, U represents an uplink time unit, all symbols in the uplink time unit are uplink symbols, and no downlink subband can be configured on the uplink symbol, and X represents an SBFD time unit, and each symbol in the SBFD time unit can be configured with at least one uplink subband and at least one downlink subband at the same time.
  • the UE is not visible to the uplink and downlink subbands configured on the flexible symbols, that is, the UE does not know the frequency resource location of the uplink and downlink subbands. Therefore, if the UE determines to perform downlink transmission on the flexible symbols, the gNB should ensure that the UE is instructed to perform downlink reception only in the downlink subbands configured with the flexible symbols, and if the UE determines to perform uplink transmission on the flexible symbols, the gNB should ensure that the UE is instructed to perform uplink transmission only in the uplink subbands configured with the flexible symbols.
  • SBFD time unit represented by X is a flexible time unit, and each symbol in the flexible time unit is a flexible symbol.
  • XXXXXX, XXXXU and DXXXU is only an exemplary description, and the number of Xs in the network device can be configured according to actual conditions.
  • XXXXX, XXXXU and DXXXU can be configured through the cell-level uplink and downlink time slot configuration signaling and the UE-level uplink and downlink time slot configuration signaling in the conceptual explanation.
  • SBFD subband configuration SBFD subband types include uplink subband, downlink subband and guard band. Uplink subband can only be used for uplink transmission, downlink subband can only be used for downlink transmission, and guard band can neither be used for uplink transmission nor for downlink transmission.
  • FIG3 (a) is a possible example of XXXXX
  • FIG3 (b) is a possible example of XXXXU
  • FIG3 (c) is a possible example of DXXXU.
  • the subbands of SBFD are semi-statically configured, and the positions of the time-frequency resources used for uplink transmission and downlink transmission in a time slot or a symbol are fixed, resulting in poor flexibility in the subband configuration of SBFD.
  • the uplink subband resources are seriously wasted, and the downlink resources cannot support the heavy downlink services; conversely, when there are more uplink services and less downlink services, the downlink subband resources are seriously wasted, and the uplink resources cannot support the heavy uplink services.
  • the present application proposes a subband configuration method, which can effectively solve the above technical problems.
  • the method proposed in the present application is described in detail below.
  • Fig. 4 is a schematic flow chart of a subband configuration method proposed in the present application. The method includes the following steps.
  • the network device determines a first signaling and a second signaling.
  • the first signaling indicates a first time unit set, where the first time unit set includes one or more time units.
  • the second signaling indicates a first subband pattern, which is used to indicate the transmission direction of each frequency unit included in the first frequency domain resource, and the first frequency domain resource includes one or more flexible frequency units, wherein these flexible frequency units can be used for both uplink transmission and downlink transmission, and the first frequency domain resource is a set of frequency units configured by the network device for the terminal device.
  • the first subband pattern is used to determine the transmission direction of the first time-frequency resource
  • the first time-frequency resource is a time-frequency resource composed of a frequency unit and a first time unit in the first frequency domain resource
  • the first time unit is any time unit in the first time unit set.
  • the time domain resource range in which the first subband pattern is effective is the time unit in the first time unit set.
  • the first time unit set is included in a first time period, and the first time period is repeated with the length of the first time period as a period.
  • each first time period in the periodically repeated first time period includes a first time unit set.
  • each of the M first time periods in the N first time periods includes a first time unit set, 1 ⁇ M ⁇ N.
  • the positions of the M first time periods in the N first time periods can be predefined or indicated by the first signaling, and this application is not limited to this.
  • the first time period may be a time period that is predefined or indicated by the first signaling.
  • the first signaling may indicate the location information of the periodically repeated first time period, the location information including a starting position and a first duration, or the location information including a starting position and an end. It is understandable that when the location information includes a starting position information and a first duration, the terminal device considers the starting position to be the starting position of the first first time period in the periodically repeated first time period, and the first duration is the length of the first time period.
  • the terminal device when the location information includes a starting position information and an end position, the terminal device considers the starting position to be the starting position of the first first time period in the periodically repeated first time period, and the end position to be the end position of the first first time period in the periodically repeated first time period, and the length of the first time period can be determined based on the starting position and the end position.
  • the first time period may be a time period corresponding to a first time slot configuration period
  • the first time slot configuration period is a time slot configuration period included in the cell-level time slot configuration signaling (i.e., tdd-UL-DL-ConfigurationCommon).
  • tdd-UL-DL-ConfigurationCommon the cell-level time slot configuration signaling
  • the first time unit set indicated by the first signaling is all flexible symbols in the first time slot configuration period (ie, an example of the first time period).
  • the first signaling includes the position of the starting time unit S window,1 of the first time window and the window length L window,1 (ie, the number of time units included in the first time window).
  • the first time unit set is all time units in the first time window in the first time slot configuration period.
  • S window,1 is a time slot index in a first time slot configuration period, then 0 ⁇ S window,1 ⁇ S, and S is the number of time slots included in the first time slot configuration period.
  • the position of the starting time unit is the position of the first symbol of the time slot.
  • S window,1 can be the symbol index in the first time slot configuration period, then Indicates the number of symbols included in a time slot.
  • the unit of L window,1 is ms, then 0 ⁇ L window,1 ⁇ P, P is the length of the first time slot configuration period, in ms; if the unit of L window,1 is time slot, 0 ⁇ L window,1 ⁇ S, S is the number of time slots included in the first time slot period; the unit of L window,1 is symbol, then
  • the first signaling includes a first bit map, the bits included in the first bit map correspond one-to-one to the time units in the first time slot configuration period, and the first time unit set includes time units corresponding to bits whose bit values in the first bit map are the first value.
  • the first value is 1, which means that the time unit corresponding to the bit with the bit value of 1 is included in the first time unit set, otherwise, it is not included in the first time unit set.
  • a bit in the first bitmap corresponds to a time slot in the first time slot configuration period, and the first bitmap includes S bits in total, where S is the number of time slots included in the first time slot configuration period.
  • one bit in the first bitmap corresponds to one symbol in the first time slot configuration period, and the first bitmap includes bits, Indicates the number of symbols included in a time slot.
  • each first time slot configuration period includes a first time unit set.
  • N first time slot configuration periods in every M first time slot configuration periods include a first time unit set.
  • the above implementation is described by taking the case where the cell-level uplink and downlink time slot configuration signaling only includes one time slot configuration period as an example.
  • the cell-level uplink and downlink time slot configuration signaling includes two time slot configuration periods (for example, the first time slot configuration period and the second time slot configuration period)
  • the first signaling can indicate the first time unit set and the second time unit set.
  • the first time unit set includes flexible symbols within the first time slot configuration period
  • the second time unit set includes flexible symbols within the second time slot configuration period
  • the first signaling includes information about the first time window within the first time slot configuration period and information about the second time window within the second time slot configuration period
  • the first time unit set is the time unit within the first time window
  • the second time unit set is the time unit within the second time window
  • the first signaling includes a first bit map and a second bit map, the bits included in the first bit map correspond one-to-one to the time units in the first time slot configuration period
  • the bits included in the second bit map correspond one-to-one to the time units in the second time slot configuration period
  • the first time unit set includes time units corresponding to bits whose bit values in the first bit map are the first value
  • the second time unit set includes time units corresponding to bits whose bit values in the second bit map are the first value.
  • the network device may configure only one subband pattern, that is, only configure the first subband pattern, then the time domain resource range in which the first subband pattern is effective may be the time units in the first time unit set and the second time unit set.
  • the network device may also configure a subband pattern for each of the first time unit set and the second time unit set. For example, the network device configures subband pattern #1 and subband pattern #2, the time domain resource range in which subband pattern #1 is effective is the time units in the first time unit set, and the time domain resource range in which subband pattern #2 is effective is the time units in the second time unit set.
  • the second signaling indicates a first sub-band pattern, and the first sub-band pattern is used to indicate the type of each frequency unit included in the first frequency domain resource.
  • the types of frequency units include uplink frequency units, downlink frequency units and flexible frequency units.
  • the uplink frequency unit can only be used for uplink transmission
  • the downlink frequency unit can only be used for downlink transmission
  • the flexible frequency unit can be used for both uplink transmission and downlink transmission.
  • the type of frequency unit in this application can also be described as the transmission direction of the frequency unit.
  • the first subband pattern may be one of the following four patterns.
  • Pattern 1 indicates that all frequency units in the first frequency domain resource are flexible frequency units.
  • Pattern 2 indicates that the first frequency domain resources include at most one downlink subband, one flexible subband and one uplink subband, wherein one downlink subband is located at the starting position of the first frequency domain resources, one uplink subband is located at the end position of the first frequency domain resources, and one flexible subband is located between a downlink subband and an uplink subband.
  • Pattern 3 indicates that the first frequency domain resource includes at most one uplink subband, one flexible subband and one downlink subband, wherein one uplink subband is located at the starting position of the first frequency domain resource, one downlink subband is located at the ending position of the first frequency domain resource, and one flexible subband is located between one downlink subband and one uplink subband; or,
  • Pattern 4 indicates that the first frequency domain resources include at most a first downlink subband, a first flexible subband, a first uplink subband, a second flexible subband and a second downlink subband, wherein the first downlink subband is located at the starting position of the first frequency domain resources, the second downlink subband is located at the end position of the first frequency domain resources, the first flexible subband is located between the first downlink subband and the first uplink subband, and the second flexible subband is located between the first uplink subband and the second downlink subband.
  • a subband includes at least one frequency unit, the frequency units in an uplink subband are all uplink frequency units, the frequency units in a downlink subband are all downlink frequency units, and the frequency units in a flexible subband are all flexible frequency units.
  • the transmission directions of all frequency units in the flexible subband in the present application are the same. That is, if some frequency units in a flexible subband are instructed (for example, by a network device) to perform uplink transmission, then other frequency units in the flexible subband except for these frequency units can only perform uplink transmission and cannot be instructed to perform downlink transmission, and vice versa.
  • a flexible subband includes 100 resource blocks (RBs)
  • the network device instructs the terminal device to perform uplink transmission on RB#0-RB#49 of flexible subband #1
  • the network device can no longer instruct the terminal device to perform downlink transmission on RB#50-RB#99 of flexible subband #1.
  • the terminal device can only perform uplink transmission on RB#50-RB#99 of flexible subband #1.
  • the network device cannot instruct all terminal devices served by the network device to perform downlink transmission on the flexible subband (RB#0-RB#99), but only uplink transmission.
  • the first subband pattern may also be other patterns including flexible subbands, which is not limited in the present application.
  • the network device when the first subband pattern is pattern two, pattern three or pattern four, the network device also needs to indicate to the terminal device through a second signaling the specific location information of each subband in one or more subbands determined by the first frequency domain resource based on the first subband pattern.
  • the following example illustrates how the second signaling indicates specific location information of each subband in the first frequency domain resource when the first subband pattern is pattern two, pattern three, or pattern four.
  • the second signaling includes L RB,1 and L RB,2 , where L RB,1 and L RB,2 indicate that the first L RB,1 RB of the first frequency domain resource is the first downlink subband, the last L RB,2 RB of the first frequency domain resource is the first uplink subband, and the remaining L RB,2 RBs in the first frequency domain resource are the first uplink subband.
  • RBs are the first flexible subbands, where is the number of RBs contained in the first frequency domain resource, where:
  • first L RB, 1 RB here refers to the continuous L RB, 1 RB including the RB with the smallest index in the first frequency domain resource in the direction of the RB index from small to large.
  • the second L RB, 2 RBs here refers to the continuous L RB, 2 RBs including the RB with the largest index in the first frequency domain resource in the direction of the RB index from large to small. The same description will not be repeated in the following text.
  • pattern 2 when pattern 2 indicates that the first frequency domain resources include at most one downlink subband, one flexible subband and one uplink subband, pattern 2 specifically indicates that the first frequency domain resources include only one downlink subband and one flexible subband (hereinafter referred to as pattern #21), or, pattern 2 specifically indicates that the first frequency domain resources include only one flexible subband and one uplink subband (hereinafter referred to as pattern #22).
  • the second signaling includes L RB,1 , where L RB,1 indicates that the first L RB,1 RBs of the first frequency domain resource are the first downlink subband, and the remaining L RBs in the first frequency domain resource are RBs are the first flexible subbands, where is the number of RBs included in the first frequency domain resource, where:
  • the method of this example is used for configuration only when the downlink subband is configured on a flexible symbol.
  • the second signaling includes L RB,1 , where L RB,1 indicates that the last L RB,1 RBs of the first frequency domain resource are the first flexible subband, and the remaining L RBs in the first frequency domain resource are RBs are the first downlink subband, where: is the number of RBs included in the first frequency domain resource, where:
  • the method of this example is used for configuration.
  • the second signaling includes L RB,2 , where L RB,2 indicates that the first L RB,2 RBs of the first frequency domain resource are the first flexible subband, and the remaining L RBs in the first frequency domain resource are the first flexible subband.
  • RBs are the first uplink subband, where: is the number of RBs included in the first frequency domain resource, where:
  • the method of this example is used for configuration.
  • the second signaling includes L RB,2 , where L RB,2 indicates that the last L RB,2 RBs of the first frequency domain resource are the first uplink subband, and the remaining L RBs in the first frequency domain resource are RBs are the first flexible subbands, where is the number of RBs included in the first frequency domain resource, where:
  • the method of this example is used for configuration only when the uplink subband is configured on a flexible symbol.
  • the second signaling includes L RB,1 and L RB,2 , where L RB,1 and L RB,2 indicate that the first L RB,2 RBs of the first frequency domain resource are the first uplink subband, the last L RB,1 RB of the first frequency domain resource is the first downlink subband, and the remaining L RB,1 RB of the first frequency domain resource is the first downlink subband.
  • RBs are the first flexible subbands, where
  • pattern three when pattern three indicates that the first frequency domain resources include at most one uplink subband, one flexible subband and one downlink subband, pattern three specifically indicates that the first frequency domain resources include only one flexible subband and one downlink subband (hereinafter referred to as pattern #31), or, pattern three specifically indicates that the first frequency domain resources include only one uplink subband and one flexible subband (hereinafter referred to as pattern #32).
  • the second signaling includes L RB,1 , where L RB,1 indicates that the first L RB,1 RBs of the first frequency domain resource are the first flexible subband, and the remaining L RBs in the first frequency domain resource are the first flexible subband.
  • RBs are the first downlink subband, where: is the number of RBs included in the first frequency domain resource, where:
  • the method of this example is used for configuration.
  • the second signaling includes L RB,1 , where L RB,1 indicates that the last L RB,1 RBs of the first frequency domain resource are the first downlink subband, and the remaining L RBs in the first frequency domain resource are RBs are the first flexible subbands, where is the number of RBs included in the first frequency domain resource, where:
  • the method of this example is used for configuration only when the downlink subband is configured on a flexible symbol.
  • the second signaling includes L RB,2 , where L RB,2 indicates the first L RB of the first frequency domain resource, 2 RBs are the first uplink subband, and the remaining L RBs in the first frequency domain resource are L RBs.
  • RBs are the first flexible subbands, where is the number of RBs included in the first frequency domain resource, where:
  • the method of this example is used for configuration only when the uplink subband is configured on a flexible symbol.
  • the second signaling includes L RB,2 , where L RB,2 indicates that the last L RB,2 RBs of the first frequency domain resource are the first flexible subband, and the remaining L RBs in the first frequency domain resource are RBs are the first uplink subband, where: is the number of RBs included in the first frequency domain resource, where:
  • the method of this example is used for configuration.
  • the second signaling includes L RB,1 , L RB,2 , S RB,2 and L RB,3 , wherein L RB,1 , L RB,2 , S RB,2 and L RB,3 indicate that the first L RB,1 RBs of the first frequency domain resource are the first downlink subband, the last L RB,3 RBs of the first frequency domain resource are the second downlink subband, the RBs from the L RB,1 +1th RB of the first frequency domain resource to the S RB,2th RB of the first frequency domain resource, a total of S RB,2 -L RB,1 RBs are the first flexible subband, the L RB,2 RBs starting from the S RB,2 +1th RB of the first frequency domain resource are the first uplink subband, the RBs from the S RB ,2 +L RB, 2 +1th RB of the first frequency domain resource to the S RB,
  • one or more of the above parameters may be configured in the second signaling, as long as the position information of each subband of the first frequency domain resource can be determined based on the configured parameters.
  • the value of the parameter not configured is 0 by default.
  • S RB,2 indicates the middle position of the first uplink subband. or in, Indicates rounding up, rounding down, or rounding off.
  • pattern four when pattern four indicates that the first frequency domain resources include at most a first downlink subband, a first flexible subband, a first uplink subband, a second flexible subband and a second downlink subband, pattern four specifically indicates that the first frequency domain resources include only a first downlink subband, a flexible subband and a second downlink subband (hereinafter referred to as pattern #41), wherein the flexible subband is located between the first downlink subband and the second downlink subband, or, pattern four specifically indicates that the first frequency domain resources include only a first flexible subband, an uplink subband and a second flexible subband (hereinafter referred to as pattern #42), wherein the uplink subband is located between the first flexible subband and the second flexible subband.
  • the second signaling includes S RB,2 and L RB,2 , wherein S RB,2 and L RB,2 indicate that starting from the S RB,2 +1th RB of the first frequency domain resource and ending at the S RB,2 +L RB,2th RB of the first frequency domain resource, a total of L RB,2 RBs are flexible subbands, starting from the starting RB of the first frequency domain resource to the S RB, 2th RB is the first downlink subband, starting from the S RB,2 +L RB,2 +1th RB of the first frequency domain resource and ending at the last RB of the first frequency domain resource is the second downlink subband, wherein the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to is the number of RBs included in the first frequency domain resource.
  • the method of this example is used for configuration only when the flexible row subband is configured on the downlink symbol.
  • the second signaling includes L RB,1 and L RB,3 , wherein L RB,1 indicates that the first L RB,1 RB of the first frequency domain resource is the first downlink subband, L RB,3 indicates that the last L RB,3 RB of the first frequency domain resource is the second downlink subband, and the remaining L RB,3 RBs in the first frequency domain resource are the second downlink subband.
  • RBs are flexible subbands, where is the number of RBs contained in the first frequency domain resource, 0 ⁇
  • the method of this example is used for configuration only when the downlink subband is configured on a flexible symbol.
  • the second signaling includes S RB,2 and L RB,2 , wherein S RB,2 and L RB,2 indicate that from the S RB,2 +1th RB of the first frequency domain resource to the S RB,2 +L RB,2th RB of the first frequency domain resource, a total of L RB,2 RBs are the uplink subband, from the starting RB of the first frequency domain resource to the S RB,2th RB is the first flexible subband, and from the S RB,2 +L RB,2 +1th RB of the first frequency domain resource to the last RB of the first frequency domain resource is the second flexible subband, wherein the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to is the number of RBs included in the first frequency domain resource.
  • the method of this example is used for configuration only when the uplink subband is configured on a flexible symbol.
  • the second signaling includes L RB,1 and L RB,3 , wherein L RB,1 indicates that the first L RB,1 RB of the first frequency domain resource is the first flexible subband, L RB,3 indicates that the last L RB,3 RB of the first frequency domain resource is the second flexible subband, and the remaining L RB,3 RBs in the first frequency domain resource are the second flexible subband.
  • RBs are uplink subbands, where: is the number of RBs contained in the first frequency domain resource, 0 ⁇
  • the method of this example is used for configuration.
  • the position of the subband in (1) to (3) above is determined based on the parameters indicated by the second signaling with RB as the granularity.
  • the present application also proposes another method for determining the position of the subband with RB set (RBS) as the granularity.
  • an RBS includes multiple RBs.
  • the number of RBs included in an RBS is There are several possible configurations.
  • Example 1 is predefined.
  • Example 2 is indicated by the second signaling.
  • Example 3 Predefined For example, The candidate set is ⁇ 2,4,8,16 ⁇ , where the indexes corresponding to 2,4,8,16 are 0, 1, 2, 3 respectively, and the second signaling indicates the predefined The index in the candidate set of .
  • Example 4 Method for determining a multiplexed resource block group (RBG). The following briefly introduces the method for determining RBG.
  • RBG is a set of continuous virtual resource blocks (VRBs).
  • VRBs virtual resource blocks
  • the total number N RBG of RBGs contained in a BWP i is calculated by the following formula:
  • P is the number of RBs contained in an RBG configured by the network device. is the total number of RBs included in BWP i , is the index of the starting RB of BWP i , Indicates rounding up.
  • the size of the first RBG among N RBGs is if The size of the last RBG is Otherwise, the size of the last RBG is P; the size of all other RBGs is P.
  • the total number of RBSs included in the first frequency domain resource is The number of RBs contained in each RBS can also be obtained by the method for determining the multiplexed RBG. Specifically, replace P in the method for determining the RBG with
  • the following describes how to determine the position of the subband of the first frequency domain resource with RBS as the granularity according to the parameter indicated by the second signaling with reference to specific diagrams.
  • the second signaling includes L RBS,1 , L RBS,2 , L RB,1 and L RB,2 , wherein L RBS,1 , L RBS,2 , L RB,1 and L RB,2 indicate that the first L RBS, all RBs in 1 RBS and the L RB, 1 RB immediately following the first frequency domain resource are the first downlink subband, the second L RBS, all RBs in 2 RBS and the L RB, 2 RBs immediately preceding the first frequency domain resource are the first uplink subband, and the remaining RBs in the first frequency domain resource except the first downlink subband and the first uplink subband are the first flexible subband.
  • the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to
  • pattern 2 when pattern 2 indicates that the first frequency domain resources include at most one downlink subband, one flexible subband and one uplink subband, pattern 2 specifically indicates that the first frequency domain resources include only one downlink subband and one flexible subband (hereinafter referred to as pattern #21), or, pattern 2 specifically indicates that the first frequency domain resources include only one flexible subband and one uplink subband (hereinafter referred to as pattern #22).
  • the second signaling includes L RBS,1 and L RB,1 , wherein L RBS,1 and L RB,1 indicate that all RBs in the first L RBS,1 RBS and the immediately following L RB,1 RB of the first frequency domain resource are the first downlink subband, and the remaining RBs in the first frequency domain resource except the first downlink subband are the first flexible subband.
  • the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to
  • the method of this example is used for configuration only when the downlink subband is configured on a flexible symbol.
  • the second signaling includes L RBS,2 and L RB,2 , wherein L RBS,2 and L RB,2 indicate that all RBs in the L RBS,2 RBSs after the first frequency domain resource and the L RB,2 RBs immediately before are the first flexible subband, and the remaining RBs in the first frequency domain resource except the first flexible subband are the first downlink subband.
  • the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to
  • the method of this example is used for configuration.
  • the second signaling includes L RBS,1 and L RB,1 , wherein L RBS,1 and L RB,1 indicate that all RBs in the first L RBS,1 RBS and the immediately following L RB,1 RB of the first frequency domain resource are the first flexible subband, and the remaining RBs in the first frequency domain resource except the first flexible subband are the first uplink subband.
  • the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to
  • the method of this example is used for configuration.
  • the second signaling includes L RBS,2 and L RB,2 , wherein L RBS,2 and L RB,2 indicate that all RBs in the L RBS,2 RBSs after the first frequency domain resource and the L RB,2 RBs immediately before are the first uplink subband, and the remaining RBs in the first frequency domain resource except the first uplink subband are the first flexible subband.
  • the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to
  • the method of this example is used for configuration only when the uplink subband is configured on a flexible symbol.
  • the second signaling includes L RBS,1 , L RBS,2 , L RB,1 and L RB,2 , wherein L RBS,1 , L RBS,2 , L RB,1 and L RB,2 indicate that the first L RBS, all RBs in the 2 RBSs and the L RB, 2 RBs immediately following the first frequency domain resource are the first uplink subband, the second L RBS, all RBs in the 1 RBS and the L RB, 1 RB immediately preceding the first frequency domain resource are the first downlink subband, and the remaining RBs in the first frequency domain resource except the first downlink subband and the first uplink subband are the first flexible subband.
  • the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to
  • pattern three when pattern three indicates that the first frequency domain resources include at most one uplink subband, one flexible subband and one downlink subband, pattern three specifically indicates that the first frequency domain resources include only one flexible subband and one downlink subband (hereinafter referred to as pattern #31), or, pattern three specifically indicates that the first frequency domain resources include only one uplink subband and one flexible subband (hereinafter referred to as pattern #32).
  • the second signaling includes L RBS,2 and L RB,2 , wherein L RBS,2 and L RB,2 indicate that all RBs in the first L RBS,2 RBSs and the L RB,2 RBs immediately following the first frequency domain resource are the first flexible subband, and the remaining RBs in the first frequency domain resource except the first flexible subband are the first downlink subband.
  • the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to
  • the method of this example is used for configuration.
  • the second signaling includes L RBS,1 and L RB,1 , wherein L RBS,1 and L RB,1 indicate that all RBs in the L RBS,1 RBS after the first frequency domain resource and the L RB,1 RB immediately before are the first downlink subband, and the remaining RBs in the first frequency domain resource except the first downlink subband are the first flexible subband.
  • the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to
  • the method of this example is used for configuration only when the downlink subband is configured on a flexible symbol.
  • the second signaling includes L RBS,2 and L RB,2 , wherein L RBS,2 and L RB,2 indicate that all RBs in the first L RBS,2 RBSs and the L RB,2 RBs immediately following the first frequency domain resource are the first uplink subband, and the remaining RBs in the first frequency domain resource except the first uplink subband are the first flexible subband.
  • the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to
  • the method of this example is used for configuration only when the uplink subband is configured on a flexible symbol.
  • the second signaling includes L RBS,1 and L RB,1 , wherein L RBS,1 and L RB,1 indicate that all RBs in the L RBS,1 RBS after the first frequency domain resource and the L RB,1 RB immediately before are the first flexible subband, and the remaining RBs in the first frequency domain resource except the first flexible subband are the first uplink subband.
  • the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to
  • the method of this example is used for configuration.
  • the second signaling includes L RBS,1 , L RB,1 , S RBS,2 , L RBS,2 , L RB,2 , L′ RB,2 , L RBS,3 , L RB,3 , wherein L RBS,1 , L RB,1 , S RBS,2 , L RBS,2 , L RB,2 , L′ RB,2 , L RBS,3 , L RBS,3 indicates that all RBs in the first L RBS,1 RBS and the L RB,1 RB immediately following it of the first frequency domain resource are the first downlink subband; all RBs in the second L RBS,3 RBS and the L RB,3 RB immediately preceding it of the first frequency domain resource are the second downlink subband; all RBs in the L RBS,2 RBS starting from the S RBS,2 +1th RBS of the first frequency domain resource and the L RB, 2 RB immediately preced
  • L RBS,1 indicates the number of downlink RBSs in the first downlink subband.
  • L RB,1 indicates the number of downlink RBs with less than 1 RBS in the first downlink subband.
  • S RB,2 indicates the starting position of the first uplink subband uplink RBS.
  • L RB,2 indicates the number of uplink RBs in the first uplink subband that are less than one RBS ahead.
  • L′ RB,2 indicates the number of uplink RBs in the first uplink subband that are less than one RBS behind.
  • LRBS,3 indicates the number of downlink RBSs in the second downlink subband.
  • L RB,3 indicates the number of downlink RBs with less than 1 RBS in the second downlink subband. in, Indicates the number of RBSs included in the first frequency resource.
  • one or more of the above parameters may be configured in the second signaling, as long as the position information of each subband of the first frequency domain resource can be determined based on the configured parameters.
  • the value of the parameter not configured is 0 by default.
  • S RBS,2 indicates the middle position of the first uplink subband. or in, is the number of RBSs included in the first frequency domain resource, and [] represents rounding up, rounding down, or rounding off.
  • pattern four when pattern four indicates that the first frequency domain resources include at most a first downlink subband, a first flexible subband, a first uplink subband, a second flexible subband and a second downlink subband, pattern four specifically indicates that the first frequency domain resources include only a first downlink subband, one flexible subband and a second downlink subband (hereinafter referred to as pattern #41), wherein the flexible subband is located between the first downlink subband and the second downlink subband, or, pattern four specifically indicates that the first frequency domain resources include only a first flexible subband, one uplink subband and a second flexible subband (hereinafter referred to as pattern #42), wherein the uplink subband is located between the first flexible subband and the second flexible subband.
  • the second signaling includes S RBS,2 , L RBS,2 , L RB,2 , L′ RB,2 , where S RBS,2 , L RBS,2 , L RB,2 , L′ RB,2 indicate that all RBs in the L RBS,2 RBS starting from the S RBS,2 +1th RBS in the first frequency domain resource and the L RB,2 RBs immediately before and the L′ RB,2 RBs immediately after are flexible subbands; all RBs in the first frequency domain resource located before the flexible subband are the first downlink subband; and all RBs in the first frequency domain resource located after the flexible subband are the second downlink subband.
  • the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to
  • the method of this example is used for configuration only when the flexible row subband is configured on the downlink symbol.
  • the second signaling includes L RBS,1 , L RB,1 , L RBS,3 , L RB,3 , wherein L RBS,1 , L RB,1 indicates that all RBs in the first L RBS,1 RBS and the immediately following L RB,1 RB in the first frequency domain resource are the first downlink subband; L RBS,3 , L RB,3 indicates that all RBs in the last L RBS,3 RBS and the immediately preceding L RB,3 RB in the first frequency domain resource are the second downlink subband; the remaining RBs in the first frequency domain resource except the first downlink subband and the second downlink subband are flexible subbands.
  • the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to
  • the method of this example is used for configuration only when the downlink subband is configured on a flexible symbol.
  • the second signaling includes S RBS,2 , L RBS,2 , L RB,2 , L′ RB,2 , where S RBS,2 , L RBS,2 , L RB,2 , L′ RB,2 indicate that all RBs in the L RBS,2 RBS starting from the S RBS,2 +1th RBS in the first frequency domain resource and the L RB,2 RBs immediately before and the L′ RB,2 RBs immediately after are uplink subbands; all RBs in the first frequency domain resource located before the uplink subband are the first flexible subband; and all RBs in the first frequency domain resource located after the flexible subband are the second flexible subband.
  • the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to
  • the method of this example is used for configuration only when the uplink subband is configured on a flexible symbol.
  • the second signaling includes L RBS,1 , L RB,1 , L RBS,3 , L RB,3 , wherein L RBS,1 , L RB,1 indicates that all RBs in the first L RBS,1 RBS and the immediately following L RB,1 RB in the first frequency domain resource are the first flexible subband; L RBS,3 , L RB,3 indicates that all RBs in the last L RBS,3 RBS and the immediately preceding L RB,3 RB in the first frequency domain resource are the second flexible subband; the remaining RBs in the first frequency domain resource except the first flexible subband and the second flexible subband are uplink subbands.
  • the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to
  • the method of this example is used for configuration.
  • L RB,1 , L RB,3 , L RB,2 , and L′ RB,2 in the above examples are all greater than 0 and less than K, where K is the number of RBs included in an RBS.
  • the network device sends a first signaling and a second signaling to the terminal device.
  • the terminal device receives the first signaling and the second signaling from the network device.
  • the first signaling and the second signaling are cell-level broadcast signaling.
  • the first signaling and the second signaling are carried in a system information block 1 (SIB1) message.
  • SIB1 system information block 1
  • the first signaling and the second signaling are carried in an RRC message.
  • the terminal device determines the transmission direction of the first time-frequency resource according to the first sub-band pattern.
  • the terminal device determines the transmission direction of the second time-frequency resource based on the transmission direction of the second time unit.
  • the second time-frequency resource is a time-frequency resource composed of a frequency unit and a second time unit in the first frequency domain resource.
  • the second time unit is any time unit outside the first time unit set.
  • the priority of the transmission direction of the frequency unit indicated by the first sub-band pattern on the first time unit is higher than the priority of the transmission direction of the first time unit, and the priority of the transmission direction of the frequency unit indicated by the first sub-band pattern on the second time unit is lower than the priority of the transmission direction of the first time unit.
  • the first time slot configuration cycle includes 5 time slots, and the cell-level uplink and downlink time slot configuration signaling configures these 5 time slots as DDDSU, wherein D is a downlink time slot, U is an uplink time slot (i.e., the transmission direction of the U time slot is uplink), S is a special time slot, and the S time slot includes flexible symbols.
  • D is a downlink time slot
  • U is an uplink time slot (i.e., the transmission direction of the U time slot is uplink)
  • S is a special time slot
  • the S time slot includes flexible symbols.
  • the symbols in the D time slot are all downlink symbols, and the transmission direction of the downlink symbols is downlink.
  • the symbols in the U time slot are all uplink symbols, and the transmission direction of the uplink symbols is uplink.
  • the transmission direction of the flexible symbols is flexible (can be used for both uplink and downlink transmission).
  • the first time unit set indicated by the first signaling includes the three time slots DDS corresponding to the time window in FIG7, and the first subband pattern indicated by the second signaling is pattern four, and the first downlink subband, the first flexible subband, the first uplink subband, the second flexible subband, and the second downlink subband in pattern four all exist.
  • the transmission direction of the time-frequency resources corresponding to any symbol in the time slot outside the time window (i.e., the first time slot and the last time slot) and the first frequency domain resource is the same as the transmission direction of the symbol, and the transmission direction of the time-frequency resources corresponding to any symbol in the time slot in the time window and the first frequency domain resource is determined according to the first subband pattern.
  • a flexible frequency unit that can be used for both uplink transmission and downlink transmission is introduced on the first frequency domain resource through the first sub-band pattern, so that the terminal device can adaptively use the flexible frequency unit for uplink and downlink transmission within the first time unit set according to the uplink and downlink service conditions, thereby improving the flexibility of the SBFD system and the efficiency of frequency resource utilization.
  • the transmission direction of the frequency unit in the flexible sub-band determined by the first frequency domain resource based on the first sub-band pattern may also be updated based on actual needs. Then, optionally, the method further includes:
  • the network device sends a third signaling to the terminal device.
  • the third signaling is used to indicate the second subband pattern
  • the second subband pattern is used to update the transmission direction of the frequency unit included in the first frequency unit set
  • the first frequency unit set includes the frequency unit corresponding to the flexible frequency unit determined by the first frequency domain resource based on the first subband pattern.
  • the terminal device receives the third signaling from the network device.
  • the second subband pattern may be used to update the transmission direction of one or more frequency units included in the first frequency unit set.
  • the network device configures a first time unit set and a second time unit set through a first signaling, and configures subband pattern #1 and subband pattern #2 through a second signaling, the time domain resource range for which subband pattern #1 is effective is the time units in the first time unit set, and the time domain resource range for which subband pattern #2 is effective is the time units in the second time unit set.
  • the network device can also configure two second subband patterns through a third signaling, which respectively act on one or more frequency units corresponding to the flexible frequency units determined by the first frequency domain resource based on subband pattern #1, and act on one or more frequency units corresponding to the flexible frequency units determined by the first frequency domain resource based on subband pattern #2.
  • the third signaling is UE-level unicast signaling or UE-level broadcast signaling.
  • the second subband pattern can also be configured at two granularities.
  • the second subband pattern is described in detail below.
  • the second subband pattern is configured in the same manner as the first subband pattern.
  • the transmission direction of the frequency unit (or subband) in the flexible subband is configured based on the second subband pattern.
  • the network device when configuring the second subband pattern with RB granularity, if there is only one flexible subband in the first frequency domain resources, the network device only needs to include one second subband pattern in the third signaling, as well as parameter information including the position of each subband determined based on the one second subband pattern.
  • the parameter information please refer to the description in the second signaling above.
  • the network device can configure a second subband pattern for each flexible subband in the third signaling, as well as parameter information for determining the position of each subband based on the second subband pattern.
  • the third signaling is carried in an RRC message, or the third signaling is carried in a DCI message.
  • the third signaling may also indicate the time unit index of one or more time units in the first time unit set, and then the second subband pattern only acts on the time units corresponding to these time unit indexes.
  • the third signaling is carried in a DCI message, or the third signaling is carried in an RRC message.
  • the third signaling includes multiple groups of information, each group of information includes an index of an RBS and a second subband pattern, and the second subband pattern is used to reconfigure the transmission direction of the flexible RB in the RBS corresponding to the RBS index.
  • the second subband pattern indicates that the frequency units in the first frequency domain resources are all uplink frequency units, or the second subband pattern indicates that the frequency units in the first frequency domain resources are all downlink frequency units, or the second subband pattern is pattern 2 or pattern 3 or pattern 4 in S410.
  • the second subband pattern it is only necessary to replace the first frequency domain resources in pattern 2 to pattern 4 of the RBS granularity configuration in the first subband pattern with an RBS, which is the RBS where the flexible RB in the first frequency unit set is located.
  • the third signaling is carried in an RRC message, or the third signaling is carried in a DCI message.
  • the second subband pattern in each group of information can be replaced by an RBS format.
  • the RBS format indicates the transmission direction of each RB included in an RBS.
  • the transmission direction of the flexible RB in the RBS corresponding to the RBS index can be determined based on the corresponding RBS format.
  • the third signaling is carried in the DCI message.
  • the following example illustrates a possible RBS format in which an RBS includes 8 RBs.
  • the possible RBS format is shown in Table 1.
  • the first column of Table 1 is the index of the RBS format, and each row of Table 1 indicates the transmission direction of the 8 RBs contained in an RBS.
  • U indicates that the RB at the corresponding position is an uplink RB
  • D indicates that the RB at the corresponding position is a downlink RB
  • F indicates that the RB at the corresponding position is a flexible RB.
  • the transmission direction of the flexible RB in the RBS index is determined by looking up Table 1 according to the RBS format index.
  • the terminal device can only modify the transmission direction of the flexible RBs in the RBS according to the RBS format corresponding to the RBS, and the remaining uplink or downlink RBs are not reconfigured.
  • Table 1 only provides several possible RBS formats by way of example, and Table 1 may also include other RBS formats, which are not limited in the present application.
  • each group of information included in the third signaling may also include a time unit index of one or more time units in the first time unit set, then the second subband pattern or RBS format only acts on the time units corresponding to these time unit indexes.
  • the third signaling is carried in a DCI message.
  • the terminal device updates the transmission direction of the third time-frequency resource according to the second subband pattern, wherein the third time-frequency resource is a time-frequency resource consisting of a frequency unit in the first frequency unit set and a first time unit, and the first time unit is a time unit in the first time unit set.
  • the third time-frequency resource is a time-frequency resource consisting of a frequency unit in the first frequency unit set and a first time unit
  • the first time unit is a time unit in the first time unit set.
  • the method further includes:
  • the network device sends a fourth signaling to the terminal device, where the fourth signaling is used to update the first time unit set to a third time unit set.
  • the terminal device receives the fourth signaling from the network device.
  • the terminal device considers that the first subband pattern is only effective within the updated third time unit set, and is not effective within the first time unit set.
  • the fourth signaling may also use the time window or bit map method mentioned above to indicate the third time unit set, which will not be described in detail here.
  • the fourth signaling is UE-level unicast signaling or UE-level broadcast signaling.
  • the third time unit set includes one or more time units.
  • the fourth signaling is carried in the RRC.
  • the third time unit set can be understood as a time unit set in which the time units in the first time unit set are still flexible time units after the fourth signaling configuration.
  • the fourth signaling is carried in the DCI.
  • the first signaling is a cell-level uplink and downlink time slot configuration signaling
  • the first time unit set is a flexible symbol in the time slot configuration period
  • the fourth signaling is DCI format 2_0, i.e., SFI.
  • the fourth signaling only modifies the flexible symbols in the first time unit set.
  • the third time unit set can be understood as a time unit set in which the time units in the first time unit set are still flexible time units after the fourth signaling configuration.
  • the fourth signaling is carried in the DCI or RRC.
  • the fourth signaling may update the first time unit set to the third time unit set by the time window method in S410.
  • the fourth signaling may update the first time unit set to the third time unit set by the bitmap indication method in S410.
  • the third time unit set is an empty set. It can be understood that when the third time unit is an empty set, the first subband pattern is not effective on the time domain resources, even if TDD is enabled, thereby realizing dynamic switching between SBFD and TDD, thereby improving the flexibility of the SBFD system.
  • the TDD mode can be dynamically switched to reduce interference and improve system reliability; when the interference is not serious, the SBFD mode can be dynamically switched to improve the utilization of uplink and downlink frequency resources, thereby improving system efficiency.
  • the following examples are given.
  • the fourth signaling is carried in the DCI.
  • the fourth signaling may update the first time unit set to an empty set by the time window method in S410.
  • the fourth signaling may update the first time unit set to an empty set by the bitmap indication method in S410.
  • the terminal device determines the transmission direction of the fourth time-frequency resource according to the transmission direction of the third time unit, and determines the transmission direction of the fifth time-frequency resource according to the first sub-band pattern.
  • the fourth time-frequency resource is a time-frequency resource composed of the third time unit and a frequency resource in the first time domain resource
  • the third time unit is a time unit outside the third time unit set
  • the fifth time-frequency resource is a time-frequency resource composed of a time unit in the third time unit set and a frequency resource in the first time domain resource.
  • the transmission direction of the time-frequency resources corresponding to the flexible frequency unit is determined by the scheduling direction. Specifically, when an uplink signal is scheduled on the time-frequency resource, the time-frequency resource is used for uplink transmission, and if a downlink signal is scheduled on the time-frequency resource, the time-frequency resource is used for downlink transmission.
  • the following example illustrates the use of time-frequency resources in the subsequent scheduling process after the first time unit set is configured based on the first subband pattern.
  • the method further includes S480 and/or S490:
  • the network device sends a fifth signaling to the terminal device, the fifth signaling is used to instruct the terminal device to send a first signal on the time-frequency resource #1 composed of the fifth time unit set and the fifth frequency unit set in the first frequency domain resource.
  • the terminal device receives the fifth signaling from the network device.
  • the time units in the fifth time unit set may all be located in the first time unit set, may all be located outside the first time unit set, or may partly be located in the first time unit set and partly be located outside the first time unit set.
  • the first signal is indicated to be sent on time-frequency resource #1, when the time unit in the fifth time unit set is outside the first time unit set, it is not expected that the fifth time unit set includes a downlink time unit; or, if the fifth time unit set includes a downlink time unit, the first signal will be completely lost; or, if the fifth time unit set includes a downlink time unit, the first signal overlapping with the downlink time unit is lost.
  • the fifth time unit set includes a flexible time unit, the time-frequency resources composed of the flexible time unit and the fifth frequency unit set are all used for uplink transmission.
  • the fifth frequency unit set includes a downlink frequency unit, or if the fifth frequency unit set includes a downlink frequency unit, the first signal will be completely lost; or if the fifth frequency unit set includes a downlink frequency unit, the first signal overlapping with the downlink frequency unit will be lost.
  • the fifth frequency unit set includes a flexible frequency unit, the time-frequency resources composed of the fifth time unit and the flexible frequency unit in the first frequency unit set are all used for uplink transmission.
  • the network device sends a sixth signaling to the terminal device, the sixth signaling is used to instruct the terminal device to receive a second signal on time-frequency resource #2 consisting of a sixth time unit set and a sixth frequency unit set in the first frequency domain resource.
  • the terminal device receives a fifth signaling from the network device.
  • the time units in the sixth time unit set may all be located in the first time unit set, may all be located outside the first time unit set, or may partly be located in the first time unit set and partly be located outside the first time unit set.
  • the sixth time unit set includes an uplink time unit; or, if the sixth time unit set includes an uplink time unit, the first signal will be completely lost; or, if the sixth time unit set includes an uplink time unit, the first signal overlapping with the uplink time unit is lost.
  • the sixth time unit set includes a flexible time unit, the time-frequency resources composed of the flexible time unit and the sixth frequency unit set are all used for downlink transmission.
  • the sixth frequency unit set includes an uplink frequency unit, or if the sixth frequency unit set includes an uplink frequency unit, the first signal will be completely lost; or if the sixth frequency unit set includes an uplink frequency unit, the first signal overlapping with the uplink frequency unit will be lost.
  • the sixth frequency unit set includes a flexible frequency unit, the time-frequency resources composed of the sixth time unit and the flexible frequency unit in the first frequency unit set are all used for downlink transmission.
  • the frequency unit set scheduled by the network device in S480 or 490 may be part of the resources on the flexible subband, the unscheduled flexible frequency units on the flexible subband may also be used for the guard band.
  • the following example illustrates possible configuration of the band.
  • the unscheduled frequency unit in the flexible sub-band is the guard band
  • the network device does not need to instruct the terminal device on the position and length of the guard band.
  • the terminal device determines the position of the guard band according to the flexible sub-band position and scheduling conditions.
  • the network device notifies the terminal device of the length of the guard band through message #1 (for example, message #1 is SIB1 or RRC or DCI), and the guard band is located on both sides of the flexible subband.
  • message #1 for example, message #1 is SIB1 or RRC or DCI
  • the guard band is located on both sides of the flexible subband.
  • the guard band is located on the side of the flexible subband close to the downlink subband.
  • the guard band is located on the side of the flexible subband close to the uplink subband.
  • the guard band is located in the middle of the flexible subband, or the guard band is the entire flexible subband (in this case, the length of the guard band is not the length indicated by the network device).
  • the terminal device does not expect to send and receive signals on the guard band during scheduling, that is, the network device needs to avoid scheduling uplink and downlink transmissions on the guard band during scheduling.
  • the network device notifies the terminal device of the position and length of the guard band on the flexible subband through message #2 (for example, message #2 is SIB1 or RRC or DCI). Then the flexible subband between the guard band and the downlink subband can only be used for downlink transmission, and the flexible subband between the guard band and the uplink subband can only be used for uplink transmission.
  • message #2 for example, message #2 is SIB1 or RRC or DCI.
  • the guard band can be independent of the flexible subband, and the network device can configure the guard band on the first frequency domain resource, and the terminal device can perform subband configuration in accordance with the first subband pattern indicated by the network device on the remaining frequency domain resource portion of the first frequency domain resource except the guard band, wherein the guard band is located at the junction of different types of subbands.
  • the subband types in the embodiment of the present application include uplink subbands, downlink subbands and flexible subbands.
  • the second signaling in the present application can also indicate the length of the guard band, or the second signaling can also indicate the starting position and length of the guard band.
  • the following specifically describes how to indicate the guard band in the first frequency domain resource through the second information in combination with pattern #41 and pattern #31.
  • the second indication information indicates the length of the guard band.
  • the second signaling includes S RB,2 , L RB,2 , L1 and L2, wherein S RB,2 and L RB,2 indicate that from the S RB,2 +1th RB of the first frequency domain resource to the S RB,2 +L RB,2th RB of the first frequency domain resource, a total of L RB,2 RBs are flexible subbands;
  • L1 indicates that the L1 RBs immediately before the flexible subband are the guard band #1 between the first downlink subband and the flexible subband, that is, from the S RB,2 -L1+1th RB of the first frequency domain resource to the S RB,2th RB of the first frequency domain resource is the guard band #1;
  • L2 indicates that the L2 RBs immediately following the flexible subband are the guard band #2 between the flexible subband and the second downlink subband, that is, from the S RB,2 +L RB,2 +1
  • +L2 RBs are guard band #2; from the starting RB of the first frequency domain resource to the last RB in the first frequency domain resource before guard band #1 is the first downlink subband, that is, from the starting RB of the first frequency domain resource to the S RB,2 -L1 RB of the first frequency domain resource is the first downlink subband, and from the first RB after guard band #2 in the first frequency domain resource to the last RB of the first frequency domain resource is the second downlink subband, that is, the S RB,2 +L RB,2 +L2+1 RB of the first frequency domain resource to the last RB of the first frequency domain resource is the second downlink subband, wherein the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to is the number of RBs included in the first frequency domain resource.
  • the second indication information indicates the length and starting position of the guard band.
  • the second signaling includes S RB,2 , L RB,2 , S1, S2, L1 and L2, wherein S RB,2 and L RB,2 indicate the RB from the S RB,2 +1th RB of the first frequency domain resource to the S RB,2 +L RB,2th RB of the first frequency domain resource, a total of L RB, 2 RBs are flexible subbands; S1 and L1 indicate the position information of the guard band #1 between the first downlink subband and the flexible subband, that is, from the S1+1th RB to the S1+L1th RB of the first frequency domain resource is the guard band #1; S2 and L2 indicate the position information of the guard band #2 between the flexible subband and the second downlink subband, that is, from the S2+1th RB to the S2+L2th RB of the first frequency domain resource is the guard band #2; from the starting
  • the first RB of protection band #1 and the last RB of the first downlink subband are adjacent RBs
  • the last RB of protection band #1 and the first RB of the flexible subband are adjacent RBs
  • the first RB of protection band #2 and the last RB of the flexible subband are adjacent RBs
  • the last RB of protection band #2 and the first RB of the second downlink subband are adjacent RBs.
  • the second indication information indicates the length of the guard band.
  • the second signaling includes L RB,1 , L RB,3 , L1 and L2, wherein L RB,1 indicates that the first L RB,1 RB of the first frequency domain resource is the first downlink subband; L1 indicates that the L1 RBs immediately following the first downlink subband are the guard band #1 between the first downlink subband and the flexible subband, that is, from the L RB,1 +1 RB of the first frequency domain resource to the L RB,1 +L1 RB of the first frequency domain resource is the guard band #1; L RB,3 indicates that the last L RB,3 RBs of the first frequency domain resource are the second downlink subband, that is, from the L RB,1 +1 RB of the first frequency domain resource to the L RB,1 +L1 RB of the first frequency domain resource.
  • the first RB to the last RB of the first frequency domain resource is the second downlink subband;
  • L2 indicates that the L2 RBs immediately before the second downlink subband are the guard band #2 between the flexible subband and the second downlink subband, that is, from the first frequency domain resource RB to RBs are guard band #2;
  • all remaining RBs in the first frequency domain resource are flexible subbands, that is, from the Lth RB, 1 +L1+1th RB of the first frequency domain resource to the Lth RB of the first frequency domain resource.
  • RBs are flexible subbands, where the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to is the number of RBs included in the first frequency domain resource.
  • the second indication information indicates the length and starting position of the guard band
  • the second signaling includes L RB,1 , L RB,3 , S1, S2, L1 and L2, wherein L RB,1 indicates that the first L RB,1 RB of the first frequency domain resource is the first downlink subband; S1, L1 indicate the position information of the guard band #1 between the first downlink subband and the flexible subband, that is, from the S1+1th RB to the S1+L1th RB of the first frequency domain resource is the guard band #1; L RB,3 indicates that the last L RB,3 RB of the first frequency domain resource is the second downlink subband, that is, from the S1+1th RB to the S1+L1th RB of the first frequency domain resource.
  • RBs to the last RB of the first frequency domain resource are the second downlink subband;
  • S2 and L2 indicate the position information of the guard band #2 between the flexible subband and the second downlink subband, that is, the S2+1th RB to the S2+L2th RB of the first frequency domain resource is the guard band #2;
  • all the remaining RBs in the first frequency domain resource are flexible subbands, that is, the S1+L1+1th RB of the first frequency domain resource to the S2th RB of the first frequency domain resource is a flexible subband, wherein the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to is the number of RBs included in the first frequency domain resource.
  • the first RB of protection band #1 and the last RB of the first downlink subband are adjacent RBs
  • the last RB of protection band #1 and the first RB of the flexible subband are adjacent RBs
  • the first RB of protection band #2 and the last RB of the flexible subband are adjacent RBs
  • the last RB of protection band #2 and the first RB of the second downlink subband are adjacent RBs.
  • the lengths of L1 and L2 in the above example may be the same or different.
  • the lengths of L1 and L2 are the same, only L1 or L2 may be configured.
  • L2 is considered equal to L1; if only L2 is configured, L1 is considered equal to L2.
  • the second indication information indicates the length of the guard band.
  • the second signaling includes L RB,1 and L1, wherein L RB,1 indicates that the first L RB,1 RBs of the first frequency domain resource are the first flexible subband; L1 indicates that the L1 RBs immediately following the first flexible subband are the guard band #1 between the first downlink subband and the first flexible subband, that is, from the L RB, 1 +1 RB of the first frequency domain resource to the L RB,1 +L1 RB of the first frequency domain resource, a total of L1 RBs are the guard band #1 between the first downlink subband and the first flexible subband; the remaining RBs in the first frequency domain resource are the first downlink subband, that is, from the L RB,1 +L1+1 RB of the first frequency domain resource to the last RB of the first frequency domain resource is the first downlink subband, wherein the number of RBs contained in each subband in the pattern is greater than or equal to
  • the second indication information indicates the length and starting position of the guard band.
  • the second signaling includes L RB,1 , S1, and L1, wherein L RB,1 indicates that the first L RB,1 RBs of the first frequency domain resource are the first flexible subband; S1 and L1 indicate the position information of the guard band #1 between the first downlink subband and the first flexible subband, that is, the RB from the S1+1th RB of the first frequency domain resource to the S1+L1th RB of the first frequency domain resource is the guard band #1; the remaining RBs in the first frequency domain resource are the first downlink subband, that is, the RB from the S1+L1+1th RB of the first frequency domain resource to the last RB of the first frequency domain resource is the first downlink subband, wherein the number of RBs contained in each subband in the pattern is greater than or equal to 0 and less than or equal to is the number of RBs included in the first frequency domain resource.
  • the first RB of the guard band #1 and the last RB of the first flexible subband are adjacent RBs
  • the last RB of the guard band #1 and the first RB of the first downlink subband are adjacent RBs.
  • the second indication information indicates the length of the guard band.
  • the second signaling includes L RB,1 and L1, wherein L RB,1 indicates that the last L RB,1 RB of the first frequency domain resource is the first downlink subband, that is, from the first frequency domain resource
  • the first RB to the last RB of the first frequency domain resource is the first downlink subband;
  • L1 indicates that the L1 RBs immediately before the first downlink subband are the protection band #1 between the first downlink subband and the first flexible subband, that is, from the first frequency domain resource RB to RBs are guard band #1; all remaining RBs in the first frequency domain resource are the first flexible subbands, i.e. RBs to the last RB of the first frequency domain resource is the first downlink subband, where: is the number of RBs included in the first frequency domain resource.
  • the second indication information indicates the length and starting position of the guard band.
  • the second signaling includes L RB,1 , S1 and L1, wherein L RB,1 indicates that the last L RB,1 RB of the first frequency domain resource is the first downlink subband, i.e., the first frequency domain resource is the first downlink subband.
  • the first downlink subband is from the first RB to the last RB of the first frequency domain resource;
  • S1 and L1 indicate the position information of the guard band #1 between the first downlink subband and the first flexible subband, that is, the guard band #1 is from the S1+1th RB to the S1+L1th RB of the first frequency domain resource; all the remaining RBs in the first frequency domain resource are the first flexible subband, that is, the first RB of the first frequency domain resource is the first flexible subband.
  • RBs are flexible for the first downlink, among which, is the number of RBs included in the first frequency domain resource.
  • the first RB of the guard band #1 and the last RB of the first flexible subband are adjacent RBs
  • the last RB of the guard band #1 and the first RB of the first downlink subband are adjacent RBs.
  • SBFD subband overlapping full-duplex
  • the first frequency domain resource in this application is not limited to a portion of the bandwidth (BWP). It can also be replaced by NRB, where NRB represents the number of RBs included in the first frequency domain resource.
  • the first frequency domain resource can also be an operating band, a channel bandwidth, a transmission band, a transmission bandwidth configuration, etc., as specifically defined in the protocol 3GPP TS 38.101.
  • the devices in the existing network architecture are mainly used as examples for exemplary description, and it should be understood that the embodiments of the present application do not limit the specific form of the devices. For example, devices that can achieve the same function in the future are applicable to the embodiments of the present application.
  • the methods and operations implemented by devices can also be implemented by components of the devices (such as chips or circuits).
  • the method provided by the embodiment of the present application is described in detail above in conjunction with Figures 1 to 7.
  • the above method is mainly introduced from the perspective of interaction between the terminal device and the network device. It can be understood that the terminal device and the network device, in order to implement the above functions, include hardware structures and/or software modules corresponding to the execution of each function.
  • the embodiment of the present application can divide the functional modules of the terminal device or network device according to the above method example.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated module can be implemented in the form of hardware or in the form of software functional modules.
  • the division of modules in the embodiment of the present application is schematic, which is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each functional module corresponding to each function.
  • the data transmission method provided by the present application is described in detail above.
  • the communication device provided by the present application is described below.
  • the device is used to implement the steps or processes corresponding to the receiving device in the above method embodiment.
  • the device is used to implement the steps or processes corresponding to the sending device in the above method embodiment.
  • FIG8 is a schematic block diagram of a communication device 200 provided in an embodiment of the present application.
  • the device 200 may include a communication unit 210 and a processing unit 220.
  • the communication unit 210 may communicate with the outside, and the processing unit 220 is used for data processing.
  • the communication unit 210 may also be referred to as a communication interface or a transceiver unit.
  • the device 200 can implement steps or processes corresponding to those performed by the sending end device in the above method embodiment, wherein the processing unit 220 is used to perform processing-related operations of the sending end device in the above method embodiment, and the communication unit 210 is used to perform sending-related operations of the sending end device in the above method embodiment.
  • the device 200 can implement steps or processes corresponding to those executed by the receiving device in the above method embodiment, wherein the communication unit 210 is used to execute reception-related operations of the receiving device in the above method embodiment, and the processing unit 220 is used to execute processing-related operations of the receiving device in the above method embodiment.
  • the device 200 here is embodied in the form of a functional unit.
  • the term "unit” here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a dedicated processor or a group processor, etc.) and a memory for executing one or more software or firmware programs, a merged logic circuit and/or other suitable components that support the described functions.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a dedicated processor or a group processor, etc.
  • memory for executing one or more software or firmware programs, a merged logic circuit and/or other suitable components that support the described functions.
  • the device 200 can be specifically the sending end device in the above-mentioned embodiment, and can be used to execute the various processes and/or steps corresponding to the sending end device in the above-mentioned method embodiment, or the device 200 can be specifically the receiving end device in the above-mentioned embodiment, and can be used to execute the various processes and/or steps corresponding to the receiving end device in the above-mentioned method embodiment. To avoid repetition, it will not be repeated here.
  • the apparatus 200 of each of the above-mentioned schemes has the function of implementing the corresponding steps executed by the sending end device in the above-mentioned method, or the apparatus 200 of each of the above-mentioned schemes has the function of implementing the corresponding steps executed by the receiving end device in the above-mentioned method.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions; for example, the communication unit can be replaced by a transceiver (for example, the sending unit in the communication unit can be replaced by a transmitter, and the receiving unit in the communication unit can be replaced by a receiver), and other units, such as the processing unit, can be replaced by a processor, respectively performing the sending and receiving operations and related processing operations in each method embodiment.
  • a transceiver for example, the sending unit in the communication unit can be replaced by a transmitter, and the receiving unit in the communication unit can be replaced by a receiver
  • other units such as the processing unit
  • the communication unit may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in FIG. 8 may be an AP or STA in the aforementioned embodiment, or may be a chip or a chip system, for example, a system on chip (SoC).
  • the communication unit may be an input and output circuit or a communication interface; the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip. This is not limited here.
  • the device 300 includes a processor 310 and a transceiver 320.
  • the processor 310 and the transceiver 320 communicate with each other through an internal connection path, and the processor 310 is used to execute instructions to control the transceiver 320 to send signals and/or receive signals.
  • the device 300 may further include a memory 330, and the memory 330 communicates with the processor 310 and the transceiver 320 through an internal connection path.
  • the memory 330 is used to store instructions, and the processor 310 can execute the instructions stored in the memory 330.
  • the device 300 is used to implement the various processes and steps corresponding to the sending end device in the above method embodiment. In another possible implementation, the device 300 is used to implement the various processes and steps corresponding to the receiving end device in the above method embodiment.
  • the device 300 can be specifically the transmitting device or the receiving device in the above-mentioned embodiment, or it can be a chip or a chip system.
  • the transceiver 320 can be the transceiver circuit of the chip, which is not limited here.
  • the device 300 can be used to execute the various steps and/or processes corresponding to the transmitting device or the receiving device in the above-mentioned method embodiment.
  • the memory 330 may include a read-only memory and a random access memory, and provide instructions and data to the processor. A part of the memory may also include a non-volatile random access memory.
  • the memory may also store information about the device type.
  • the processor 310 can be used to execute instructions stored in the memory, and when the processor 310 executes instructions stored in the memory, the processor 310 is used to execute the various steps and/or processes of the above-mentioned method embodiment corresponding to the transmitting device or the receiving device.
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the method disclosed in conjunction with the embodiment of the present application can be directly embodied as a hardware processor for execution, or a combination of hardware and software modules in a processor for execution.
  • the software module can be located in a storage medium mature in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in conjunction with its hardware. To avoid repetition, it is not described in detail here.
  • the processor in the embodiment of the present application can be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by an integrated logic circuit of hardware in the processor or an instruction in the form of software.
  • the above processor can be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the processor in the embodiment of the present application can implement or execute the various methods, steps and logic block diagrams disclosed in the embodiment of the present application.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to perform, or the hardware and software modules in the decoding processor can be combined and performed.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchlink DRAM
  • DR RAM direct rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, the memory (storage module) can be integrated into the processor.
  • the present application also provides a computer-readable storage medium, in which computer instructions are stored.
  • computer instructions When the computer instructions are executed on a computer, the operations and/or processes performed by a terminal device or a network device in each method embodiment of the present application are executed.
  • the present application also provides a computer program product, which includes computer program code or instructions.
  • a computer program product which includes computer program code or instructions.
  • the operations and/or processes performed by a terminal device or a network device in each method embodiment of the present application are executed.
  • the present application also provides a chip, the chip including a processor.
  • a memory for storing a computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory, so that the operation and/or processing performed by the terminal device or the network device in any method embodiment is executed.
  • the chip may further include a communication interface.
  • the communication interface may be an input/output interface, or an interface circuit, etc.
  • the chip may further include a memory.
  • the present application also provides a communication system, including the terminal device and network device in the embodiments of the present application.
  • memory described herein is intended to include, but is not limited to, these and any other suitable types of memory.
  • the device embodiment described above is only schematic, for example, the division of the unit is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the scheme of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into a processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application or the part that contributes to the prior art or the part of the technical solution, can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage medium includes: various media that can store program codes, such as USB flash drives, mobile hard drives, ROM, RAM, magnetic disks, or optical disks.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, priority or importance of multiple objects.
  • the first information and the second information do not represent the difference in information volume, content, priority or importance.
  • At least one means one or more, and “plurality” means two or more.
  • At least one item or similar expressions means one or more items, that is, any combination of these items, including any combination of single items or plural items.
  • at least one item of a, b, or c means: a, b, c, a and b, a and c, b and c, or a, b and c.
  • the above is an example of three elements, A, B and C, to illustrate the optional items of the project.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character "/" generally indicates that the associated objects before and after are in an "or” relationship.
  • A/B means: A or B.
  • a corresponds to B means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B can also be determined according to A and/or other information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种子带配置的方法和通信装置,该方法中,第一子带图样仅作用于第一时间单元集合上的第一频域资源,通过第一子带图样在第一频域资源上引入既可用于上行传输,也可用于下行传输的灵活频率单元,以使得终端设备在第一时间单元集合内,可以根据上下行业务的情况自适应使用灵活频率单元用于上下行传输,从而提高SBFD系统的灵活性和频域资源的使用率。

Description

子带配置的方法和通信装置
本申请要求在2022年11月04日提交中国国家知识产权局、申请号为202211377097.9的中国专利申请的优先权,发明名称为“子带配置的方法和通信装置”的中国专利申请的优先权,在2023年02月17日提交中国国家知识产权局、申请号为202310189176.5的中国专利申请的优先权,发明名称为“子带配置的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,更具体地,涉及一种子带配置的方法和通信装置。
背景技术
随着第五代移动通信技术新无线(new radio,NR)的快速发展,出现了多种多样的通信需求,为满足新兴业务的需求,提出了子带全双工(subband non-overlapping full duplex,SBFD)的方案来提升时分双工(time division duplex,TDD)系统的上行覆盖。子带全双工是指在TDD系统中,网络设备通过上行传输和下行传输采用不同子带实现在一个时隙或一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号上既能接收又能发送。
目前,SBFD的子带是半静态配置的,一个时隙或一个符号上用于上行传输和用于下行传输的时频资源的位置是固定的,导致SBFD系统的灵活性较差,例如,当下行业务较多且上行业务较少时,上行子带资源浪费严重,且下行资源难以支撑繁重的下行业务;反之,当上行业务较多且下行业务较少时,下行子带资源浪费严重,且上行资源难以支撑繁重的上行业务。
发明内容
本申请实施例提供一种子带配置的方法和通信装置,可以提高SBFD系统的灵活性,进而提高频域资源的使用率。
第一方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由终端设备执行为例进行说明。
该方法可以包括:终端设备接收来自网络设备的第一信令和第二信令,第一信令指示第一时间单元集合,第二信令指示第一子带图样,第一子带图样指示第一频域资源中包括的频率单元的传输方向,且第一频域资源中包括一个或多个灵活频率单元,其中,灵活频率单元既能用于上行传输,也能用于下行传输,第一频域资源为网络设备为终端设备配置的频率单元集合;终端设备根据第一子带图样确定第一时频资源的传输方向,第一时频资源为第一频域资源中的一个频率单元和第一时间单元组成的时频资源,第一时间单元为第一时间单元集合中的任一时间单元。
上述技术方案中,第一子带图样仅作用于第一时间单元集合上的第一频域资源,通过第一子带图样在第一频域资源上引入既可用于上行传输,也可用于下行传输的灵活频率单元,以使得终端设备在第一时间单元集合内,可以根据上下行业务的情况自适应使用灵活频率单元用于上下行传输,从而提高SBFD系统的灵活性和频域资源的使用率。
在第一方面的某些实现方式中,该方法还包括:终端设备根据第二时间单元的传输方向确定第二时频资源的传输方向,第二时频资源为第一频域资源中的一个频率单元和第二时间单元组成的时频资源,第二时间单元为第一时间单元集合外的任一时间单元。
上述技术方案中,第一子带图样不作用于第一时间单元集合外的时间单元,第一时间单元集合外的时间单元基于每个时间单元的传输方向确定其对应的时频资源的传输方向。
在第一方面的某些实现方式中,第一子带图样表示第一频域资源中的频率单元均为灵活频率单元;或,第一子带图样表示第一频域资源中最多包括一个下行子带、一个灵活子带和一个上行子带,其中,一个下行子带位于第一频域资源的起始位置,一个上行子带位于第一频域资源的结束位置,一个灵活子带位于一个下行子带和一个上行子带之间;或,第一子带图样表示第一频域资源中最多包括一个上行子带、一个灵活子带和一个下行子带,其中,一个上行子带位于第一频域资源的起始位置,一个下行子带位于第一频域资源的结束位置,一个灵活子带位于一个下行子带和一个上行子带之间;或,第一子带图样表示第一频域资源中最多包括第一下行子带、第一灵活子带、第一上行子带、第二灵活子带和第二下行子带,其中,第一下行子带位于第一频域资源的起始位置,第二下行子带位于第一频域资源的结束位置,第一灵活子带位于第一下行子带和第一上行子带之间,第二灵活子带位于第一上行子带和第二下行子带之间;其中,上行子带中的频率单元均为上行频率单元,下行子带中的频率单元均为下行频率单元,灵活子带中的频率单元均为灵活频率单元。
应理解,上述仅示例性的给出了几种可能的第一子带图样的具体图样,第一子带图样还可以是包括灵活子带的其他图样,本申请对此不作限定。
在第一方面的某些实现方式中,当第一子带图样表示第一频域资源中最多包括一个下行子带、一个灵活子带和一个上行子带时,第一子带图样具体表示第一频域资源中只包括一个下行子带和一个灵活子带,或,第一子带图样具体表示第一频域资源中只包括一个灵活子带和一个上行子带。
在第一方面的某些实现方式中,当第一子带图样表示第一频域资源中最多包括一个上行子带、一个灵活子带和一个下行子带时,第一子带图样具体表示第一频域资源中只包括一个灵活子带和一个下行子带,或,第一子带图样具体表示第一频域资源中只包括一个上行子带和一个灵活子带。
在第一方面的某些实现方式中,当第一子带图样表示第一频域资源中最多包括第一下行子带、第一灵活子带、第一上行子带、第二灵活子带和第二下行子带时,第一子带图样具体表示第一频域资源中只包括第一下行子带、灵活子带和第二下行子带,其中,灵活子带位于第一下行子带和第二下行子带之间,或,第一子带图样具体表示第一频域资源中只包括第一灵活子带、上行子带和第二灵活子带,其中,上行子带位于第一灵活子带和第二灵活子带之间。
在第一方面的某些实现方式中,第一频域资源中一个灵活子带中的所有频率单元的传输方向均相同。
在第一方面的某些实现方式中,所述第二信令还包括至少一个保护带的位置信息,保护带位于第一频域资源中不同类型的子带之间。
在第一方面的某些实现方式中,第二信令还包括第一频域资源基于第一子带图样确定的一个或多个子带中每个子带的位置信息。
在第一方面的某些实现方式中,该方法还包括:终端设备接收来自网络设备的第三信令,第三信令指示第二子带图样,第二子带图样用于更新第一频率单元集合包含的频率单元的传输方向,第一频率单元集合包括第一频域资源基于第一子带图样确定的灵活频率单元对应的频率单元;终端设备根据第二子带图样更新第三时频资源的传输方向,第三时频资源为第一频率单元集合中的一个频率单元和第一时间单元组成的时频资源。
上述技术方案中,通过第三信令可以将第一频域资源基于第一子带图样确定的灵活子带中的频率单元的传输方向基于实际需求再次进行更新,提供了SBFD系统的灵活性。
在第一方面的某些实现方式中,第一时间单元集合包含于第一时间段中,第一时间段以第一时间段的长度为周期重复。
在第一方面的某些实现方式中,第一时间单元集合为第一时间段内的所有灵活时间单元。
在第一方面的某些实现方式中,第一信令包括第一时间单元集合在第一时间段内的起始时间单元的位置和第一时间单元集合包含的时间单元的个数。
上述技术方案中,可以根据实际需求通过第一信令动态调整第一子带图样在时域资源上的作用范围,进而提高SBFD系统的灵活性。
在第一方面的某些实现方式中,第一信令包含第一比特图,第一比特图包含的比特与第一时间段中的时间单元一一对应,第一时间单元集合包括第一比特图中比特值为第一值的比特对应的时间单元。
上述技术方案中,可以根据实际需求通过第一信令动态调整第一子带图样在时域资源上的作用范围,进而提高SBFD系统的灵活性。
在第一方面的某些实现方式中,第一时间段为第一时隙配置周期对应的时间段,第一时隙配置周期为终端设备使用的小区级上下行时隙配置信令中包含的一个时隙配置周期。
应理解,这里的小区级上下行时隙配置信令为tdd-UL-DL-ConfigurationCommon。该信令承载在SIB1消息中。
在第一方面的某些实现方式中,周期性重复的第一时间段中的每个第一时间段中分别包括一个第一时间单元集合。
在第一方面的某些实现方式中,周期性重复的第一时间段中每N个第一时间段中的M个第一时间段中分别包括一个第一时间单元集合,1≤M<N。
在第一方面的某些实现方式中,该方法还包括:终端设备接收来自网络设备的第四信令,第四信令用于将第一时间单元集合更新为第三时间单元集合,第三时间单元集合为空集,第一子带图样在第三时间单元集合内生效,且在第一时间单元集合内不再生效;终端设备根据第三时间单元的传输方向确定第四时频资源的传输方向,其中,第四时频资源为第三时间单元和第一时域资源中的一个频率资源组成的时频资源,第三时间单元为第三时间单元集合外的任一时间单元。
上述技术方案中,根据第三信令将第三时间单元设置为空集,使得第一子带图样在时域资源上不生效,即使能TDD,从而实现SBFD和TDD的动态切换,进而提高SBFD系统的灵活性。例如,在干扰较为严重时,可以动态切换TDD模式,降低干扰,提升系统可靠性;在干扰不严重时,可以动态切换SBFD模式,提升上行/下行资源利用率,从而提升系统谱效率。
第二方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由网络设备执行为例进行说明。
该方法可以包括:网络设备确定第一信令和第二信令,第一信令指示第一时间单元集合,第二信令指示第一子带图样,第一子带图样指示第一频域资源集合中包括的频率单元的传输方向,且第一频域资源中包括一个或多个灵活频率单元,其中,灵活频率单元既能用于上行传输,也能用于下行传输,第一频域资源为网络设备为终端设备配置的频率单元集合,第一子带图样用于确定第一时频资源的传输方向,第一时频资源为第一频域资源中的一个频率单元和第一时间单元组成的时频资源,第一时间单元为第一时间单元集合中的任一时间单元;网络设备向终端设备发送第一信令和第二信令。
关于第二方面的有益效果参见第一方面的描述,这里不再赘述。
在第二方面的某些实现方式中,第一子带图样表示第一频域资源中的频率单元均为灵活频率单元;或,第一子带图样表示第一频域资源中最多包括一个下行子带、一个灵活子带和一个上行子带,其中,一个下行子带位于第一频域资源的起始位置,一个上行子带位于第一频域资源的结束位置,一个灵活子带位于一个下行子带和一个上行子带之间;或,第一子带图样表示第一频域资源中最多包括一个上行子带、一个灵活子带和一个下行子带,其中,一个上行子带位于第一频域资源的起始位置,一个下行子带位于第一频域资源的结束位置,一个灵活子带位于一个下行子带和一个上行子带之间;或,第一子带图样表示第一频域资源中最多包括第一下行子带、第一灵活子带、第一上行子带、第二灵活子带和第二下行子带,其中,第一下行子带位于第一频域资源的起始位置,第二下行子带位于第一频域资源的结束位置,第一灵活子带位于第一下行子带和第一上行子带之间,第二灵活子带位于第一上行子带和第二下行子带之间;其中,上行子带中的频率单元均为上行频率单元,下行子带中的频率单元均为下行频率单元,灵活子带中的频率单元均为灵活频率单元。
在第二方面的某些实现方式中,当第一子带图样表示第一频域资源中最多包括一个下行子带、一个灵活子带和一个上行子带时,第一子带图样具体表示第一频域资源中只包括一个下行子带和一个灵活子带,或,第一子带图样具体表示第一频域资源中只包括一个灵活子带和一个上行子带。
在第二方面的某些实现方式中,当第一子带图样表示第一频域资源中最多包括一个上行子带、一个灵活子带和一个下行子带时,第一子带图样具体表示第一频域资源中只包括一个灵活子带和一个下行子带,或,第一子带图样具体表示第一频域资源中只包括一个上行子带和一个灵活子带。
在第二方面的某些实现方式中,当第一子带图样表示第一频域资源中最多包括第一下行子带、第一灵活子带、第一上行子带、第二灵活子带和第二下行子带时,第一子带图样具体表示第一频域资源中只包括第一下行子带、灵活子带和第二下行子带,其中,灵活子带位于第一下行子带和第二下行子带之间,或,第一子带图样具体表示第一频域资源中只包括第一灵活子带、上行子带和第二灵活子带,其中,上行子带位于第一灵活子带和第二灵活子带之间。
在第二方面的某些实现方式中,第一频域资源中一个灵活子带中的所有频率单元的传输方向均相同。
在第二方面的某些实现方式中,第二信令还包括至少一个保护带的位置信息,保护带位于第一频域资源中不同类型的子带之间。
在第二方面的某些实现方式中,第二信令还包括第一频域资源基于第一子带图样确定的一个或多个子带中每个子带的位置信息。
在第二方面的某些实现方式中,该方法还包括:网络设备向终端设备发送第三信令,第三信令指示第二子带图样,第二子带图样用于指示第一频率单元集合包含的频率单元的传输方向,第一频率单元集合包括第一频域资源基于第一子带图样确定的灵活频率单元对应的频率单元,第二子带图样用于更新第三时频资源的传输方向,第三时频资源为第一频率单元集合中的一个频率单元和第一时间单元组成的时频资源。
在第二方面的某些实现方式中,第一时间单元集合包含于第一时间段中,第一时间段以第一时间段的长度为周期重复。
在第二方面的某些实现方式中,第一时间单元集合为第一时间段内的所有灵活时间单元。
在第二方面的某些实现方式中,第一信令包括第一时间单元集合在第一时间段内的起始时间单元的位置和第一时间单元集合包含的时间单元的个数。
在第二方面的某些实现方式中,第一信令包含第一比特图,第一比特图包含的比特与第一时间段中的时间单元一一对应,第一时间单元集合包括第一比特图中比特值为第一值的比特对应的时间单元。
在第二方面的某些实现方式中,第一时间段为第一时隙配置周期对应的时间段,第一时隙配置周期为终端设备使用的小区级上下行时隙配置信令中包含的一个时隙配置周期。
在第二方面的某些实现方式中,周期性重复的第一时间段中的每个第一时间段中分别包括一个第一时间单元集合。
在第二方面的某些实现方式中,周期性重复的第一时间段中每N个第一时间段中的M个第一时间段中分别包括一个第一时间单元集合,1≤M<N。
在第二方面的某些实现方式中,该方法还包括:网络设备向终端设备发送第四信令,第四信令用于将第一时间单元集合更新为第三时间单元集合,第三时间单元集合为空集,第一子带图样在第三时间单元集合内生效,且在第一时间单元集合内不再生效。
第三方面,提供一种通信装置,该装置用于执行上述第一方面提供的方法。具体地,该装置可以包括用于执行第一方面以及第一方面中任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为终端设备。当该装置为终端设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于终端设备中的芯片、芯片系统或电路。当该装置为用于终端设备中的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第四方面,提供一种通信装置,该装置用于执行上述第二方面提供的方法。具体地,该装置可以包括用于执行第二方面以及第二方面中任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为网络设备。当该装置为网络设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于网络设备中的芯片、芯片系统或电路。当该装置为用于终端设备中的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第五方面,提供一种通信装置,该装置包括:包括至少一个处理器,至少一个处理器与至少一个存储器耦合,至少一个存储器用于存储计算机程序或指令,至少一个处理器用于从至少一个存储器中调用并运行该计算机程序或指令,使得通信装置执行第一方面以及第一方面中任一种可能实现方式中的方法。
在一种实现方式中,该装置为终端设备。
在另一种实现方式中,该装置为用于终端设备中的芯片、芯片系统或电路。
第六方面,提供一种通信装置,该装置包括:包括至少一个处理器,至少一个处理器与至少一个存储器耦合,至少一个存储器用于存储计算机程序或指令,至少一个处理器用于从至少一个存储器中调用并运行该计算机程序或指令,使得通信装置执行第二方面以及第二方面中任一种可能实现方式中的方法。
在一种实现方式中,该装置为网络设备。
在另一种实现方式中,该装置为用于网络设备中的芯片、芯片系统或电路。
第七方面,提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第八方面,提供一种计算机可读存储介质,该计算机可读存储介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第九方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十方面,提供一种芯片,芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十一方面,提供一种通信系统,该通信系统包括第五方面以及第六方面所示的通信装置。
附图说明
图1是本申请实施例提供的一种通信系统的示意图。
图2是子带全双工的时频示意图。
图3是SBFD专用上下行时隙配置以及SBFD子带配置的示意性框图。
图4是本申请提出的一种子带配置的方法的示意性流程图。
图5是周期性重复的第一时间段中包含第一时间单元集合的一种可能的示例。
图6是周期性重复的第一时间段中包含第一时间单元集合的另一种可能的示例。
图7是根据本申请提出的子带配置的方法确定第一时隙配置周期内的时频资源的传输方向的示意图。
图8是本申请提供的通信装置200的示意性框图。
图9为本申请提供的通信装置300的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如,第五代(5th generation,5G),新无线(new radio,NR),长期演进(long term evolution,LTE),物联网(internet of things,IoT),无线保真(wireless-fidelity,WiFi),第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的无线通信,或未来可能出现的其他无线通信等。
图1是本申请实施例提供的一种通信系统示意图。该通信系统100中包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120和/或终端设备130。该网络设备110与终端设备120/130可通过无线链路通信,进而交互信息。可以理解的是,网络设备和终端设备也可以被称为通信设备。
网络设备是一种具有无线收发功能的网络侧设备。网络设备可以是无线接入网(radio access network,RAN)中为终端设备提供无线通信功能的装置,称为RAN设备。例如,该网络设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、3GPP后续演进的基站、发送接收点(transmission reception point,TRP)、WiFi系统中的接入节点、无线中继节点、无线回传节点等。在采用不同的无线接入技术(radio access technology,RAT)的通信系统中,具备基站功能的设备的名称可能会有所不同。例如,LTE系统中可以称为eNB或eNodeB,5G系统或NR系统中可以称为gNB,本申请对基站的具体名称不作限定。网络设备可以包含一个或多个共站址或非共站址的发送接收点。再如,网络设备可以包括一个或多个集中式单元(central unit,CU)、一个或多个分布式单元(distributed unit,DU)、或一个或多个CU和一个或多个DU。示例性地,CU的功能可以由一个实体或者不同的实体来实现。例如,CU的功能进行进一步切分,即将控制面和用户面分离并通过不同实体来实现,分别为控制面CU实体(即CU-CP实体)和用户面CU实体(即CU-UP实体),CU-CP实体和CU-UP实体可以与DU相耦合,共同完成接入网设备的功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。这样可以通过多个网络功能实体来实现无线接入网设备的部分功能。这些网路功能实体可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。网络设备还可以包括有源天线单元(active antenna unit,简称AAU)。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。又如,车到一切(vehicle to everything,V2X)技术中,接入网设备可以为路侧单元(road side unit,RSU)。通信系统中的多个接入网设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。本申请实施例中,用于实现网络设备功能的装置可以是网络设备本身,也可以是能够支持网络设备实现该功能的装置,例如芯片系统或可实现接入网设备功能的组合器件、部件,该装置可以被安装在网络设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
终端设备是一种具有无线收发功能的用户侧设备,可以是固定设备,移动设备、手持设备(例如手机)、可穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。终端设备用于连接人,物,机器等,可广泛用于各种场景,例如:蜂窝通信、设备到设备(device-to-device,D2D)通信、V2X通信中的、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)通信、物联网、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景。示例性的,终端设备可以是蜂窝通信中的手持终端,D2D中的通信设备,MTC中的物联设备,智能交通和智慧城市中的监控摄像头,或,无人机上的通信设备等。终端设备有时可称为用户设备(user equipment,UE)、用户终端、用户装置、用户单元、用户站、终端、接入终端、接入站、UE站、远方站、移动设备或无线通信设备等等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或可实现终端设备功能的组合器件、部件,该装置可以被安装在终端设备中。
为便于理解本申请实施例,首先对本申请中涉及的概念及相关流程进行介绍。
1、符号(symbol):时域符号的简称,也可以称为OFDM符号。需要说明的是,时域符号还可以与其他多址方式结合命名,本申请实施例不做限定。针对不同的子载波间隔,时域符号长度可以不同。
应理解,一个时隙(slot)内的符号可能包括3种类型,下行符号,上行符号和灵活符号。上行符号只能用于上行传输,下行符号只能用于下行传输。灵活符号没用确定的传输方向,可以根据控制信令的指示用于进行上行传输或者下行传输。一个时隙的符号可以全是下行符号,或者全是上行符号,或者全是灵活符号,也可以是几种符号的混合。
2、时间单元:时间单元可以为时隙,或者符号,或者子帧,或者半帧,或者帧,或者迷你子帧,或者迷你时隙,本申请对此不做限定。
3、子带:子带为一个载波中的部分频带,即,频域上的一个或多个连续的物理资源块(physical resource block,PRB)。本申请中,子带也可以理解为频域资源。
4、SBFD:在SBFD方案中,一个载波被分为多个不重叠的子带,不同子带的传输方向可以不同,即一个载波上包括不重叠的第一子带和第二子带,第一子带和第二子带的传输方向不同。需要说明的是,第一子带和第二子带是指传输方向不同的两种类型子带,并不表示一个载波中只包含两个子带。举例来说,一个载波包括子带#1和子带#2,其中,子带#1和子带#2的传输方向不相同。或者,一个载波包括子带#1、子带#2和子带#3,其中,子带#1和子带#3的传输方向相同,子带#1与子带#2的传输方向不相同。
5、SBFD时隙:SBFD时隙上的频率资源包括2个及2个以上不同传输方向的子带。示例的,一种典型的SBFD方案的时频划分如图2所示,其中横轴代表时域,纵轴代表频域,图2中用左斜杠填充的两个长方块分别代表一组用于下行传输的时频资源,用竖杠填充的长方块代表一组用于上行传输的时频资源,这三块时频资源所占时域范围中的时隙称为SBFD时隙。
6、非SBFD时隙:非SBFD时隙上的所有频率资源的传输方向一致。示例的,图2中右斜杠填充的长方块代表一组用于上行传输的时频资源,其所占时域范围内的时隙称为上行时隙,这些时隙上的所有频率资源的传输方向都为上行,这些时隙可以称为非SBFD时隙。
7、TDD灵活配置以及配置参数:NR中的上下行时隙配置取决于tdd-UL-DL-ConfigurationCommon和tdd-UL-DL-ConfigurationDedicated,其中,tdd-UL-DL-ConfigurationCommon为小区级上下行时隙配置信令,tdd-UL-DL-ConfigurationDedicated为UE级上下行时隙配置信令。
对于每一个小区内的终端设备,根据以下步骤完成时隙配置。
如果UE被指示tdd-UL-DL-ConfigurationCommon(小区级上下行时隙配置信令),UE对tdd-UL-DL-ConfigurationCommon指示的一个时隙集合的每个时隙设置时隙格式。tdd-UL-DL-ConfigurationCommon包括以下信息:
1)一个参考子载波间隔(subcarrier spacing,SCS)μref,由信令referenceSubcarrierSpacing指示。
2)一个上下行配置图案,由信令pattern1指示。其中,pattern1包括:
a)一个时隙配置周期P msec,由信令dl-UL-TransmissionPeriodicity指示。Msec表示毫秒,本申请中也可以写为ms。
b)一个下行时隙个数dslot,每个下行时隙的符号都是下行符号,由信令nrofDownlinkSlots指示。
c)一个下行符号个数dsym,由信令nrofDownlinkSymbols指示。
d)一个上行时隙个数μslot,由信令nrofUplinkSlots指示。
e)一个上行符号个数μsym,由信令nrofUplinkSymbols指示。
其中,定义的时隙配置周期P msec中包括时隙,其中P的定义参见TS 38.213 11.1节。在这S个时隙中,前dslot个时隙仅包括下行符号,后μslot时隙仅包括上行符号。前dslot个时隙之后紧随的dsym个符号为下行符号,后μslot个时隙之前紧接的μsym个符号为上行符号。剩余个符号为灵活符号,其中,为一个时隙中符号的个数。
如果tdd-UL-DL-ConfigurationCommon同时提供了pattern1和pattern2,UE对pattern1指示的一个时隙集合的每个时隙设置时隙格式,并对pattern2指示的一个时隙集合的每个时隙设置时隙格式。其中,pattern2包括:
a)一个时隙配置周期P2msec,由信令dl-UL-TransmissionPeriodicity指示。
b)一个下行时隙个数dslot,2,每个下行时隙的符号都是下行符号,由信令nrofDownlinkSlots指示。
c)一个下行符号个数dsym,2,由信令nrofDownlinkSymbols指示。
d)一个上行时隙个数μslot,2,由信令nrofUplinkSlots指示。
e)一个上行符号个数μsym,2,由信令nrofUplinkSymbols指示。
时隙配置周期(P+P2)msec,共包括个时隙和个时隙。在S2个时隙中,前dslot,2个时隙仅包括下行符号,后μslot,2时隙仅包括上行符号。前dslot,2个时隙之后紧随的dsym,2个符号为下行符号,后μslot,2个时隙之前紧接的μsym,2个符号为上行符号。剩余个符号为灵活符号,其中,*表示相乘。
如果UE还被指示tdd-UL-DL-ConfigurationDedicated(UE级上下行时隙配置信令),信令tdd-UL-DL-ConfigurationDedicated仅会对tdd-UL-DL-ConfigurationCommon指示的一个时隙配置周期中tdd-UL-DL-ConfigurationCommon配置的灵活符号进行进一步的上下行配置。其中,tdd-UL-DL-ConfigurationDedicated包括以下信息:
1)一个符号配置集合,由slotSpecificConfigurationsToAddModList指示。slotSpecificConfigurationsToAddModList提供了一系列灵活符号的配置方式。
2)对于一个符号配置集合的每个符号配置。
a)一个时隙索引由slotIndex指示。slot Index标识在tdd-UL-DL-configurationCommon中给定的slot配置时段内的时隙。
b)一个时隙中的符号的方向由symbols指示。
具体的,如果symbols=allDownlink,这个时隙中的所有符号为下行符号。如果symbols=allUplink,这个时隙中的所有符号为上行符号。如果symbols=explicit,nrofDownlinkSymbols指示这个时隙中下行符号的数量,且这些下行符号位于这个时隙的前面,nrofUplinkSymbols指示这个时隙中的上行符号的数量,且这些上行符号位于这个时隙的后面;如果nrofDownlinkSymbols没有配置,这个时隙没有下行符号;如果nrofUplinkSymbols没有配置,这个时隙没有上行符号;这个时隙的剩余符号为灵活符号。
应理解,一个时隙中被tdd-UL-DL-ConfigurationCommon或tdd-UL-DL-ConfigurationDedicated指示为下行的符号,UE可以在此符号上执行信号接收;一个时隙中被tdd-UL-DL-ConfigurationCommon或tdd-UL-DL-ConfigurationDedicated指示为上行的的符号,UE可以在此符号上执行信号发送。
还应理解,灵活符号的调度比较灵活,下行控制信息(downlink control information,DCI)调度决定了在该符号是用于下行接收还是上行发送。例如,如果UE接收到DCI格式的相应指示,则UE在这个时隙的灵活符号集合中接收物理下行共享信道(physical downlink shared channel,PDSCH)或信道状态信息参考信号(channel state information-reference signal,CSI-RS)。又例如,如果UE接收到DCI格式、随机接入响应(random access response,RAR)上行链路(uplink,UL)授权、fallbackRAR UL授权或successRAR的相应指示,则UE在这个时隙的灵活符号集合中传输物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical uplink control channel,PUCCH)、物理随机接入信道(physical random access channel,PRACH)或信道探测参考信号(sounding reference signal,SRS)。
8、SBFD专用上下行时隙配置:根据一个时隙上,上行子带和下行子带的不同配置,示例性的,SBFD专用上下行时隙配置可能包括以下三种:XXXXX,XXXXU和DXXXU,其中,D表示下行时间单元,下行时间单元中的所有符号为下行符号,下行符号上不可以配置上行子带,U表示上行时间单元,上行时间单元中的所有符号为上行符号,上行符号上不可以配置下行子带,X表示SBFD时间单元,SBFD时间单元上的每个符号可以同时配置至少一个上行子带和至少一个下行子带。该配置方法中,UE对灵活符号上配置的上下行子带不可见,即UE不知道上下行子带的频率资源位置,那么,如果UE确定在灵活符号上执行下行传输,gNB应确保UE被指示仅在灵活符号配置的下行子带中执行下行接收,如果UE确定在灵活符号上执行上行传输,gNB应确保UE被指示仅在灵活符号配置的上行子带中执行上行传输。
应理解,X表示的SBFD时间单元为灵活时间单元,该灵活时间单元中每个符号都为灵活符号。
还应理解,XXXXX,XXXXU和DXXXU中的X的个数只是示例性描述,X的个数网络设备可以根据实际情况进行配置。另外,XXXXX,XXXXU和DXXXU可以通过概念解释中的小区级上下行时隙配置信令和UE级上下行时隙配置信令进行配置。
9、SBFD子带配置:SBFD的子带类型包括上行子带、下行子带和保护带,上行子带只能用于上行传输,下行子带只能用于下行传输,保护带既不能用于上行传输,也不能用于下行传输。示例的,图3的(a)为XXXXX的一种可能的示例,图3的(b)为XXXXU的一种可能的示例,图3的(c)为DXXXU的一种可能的示例。
目前,如图3所示,SBFD的子带是半静态配置的,一个时隙或一个符号上用于上行传输和用于下行传输的时频资源的位置是固定的,导致SBFD的子带配置灵活性较差。例如,当下行业务较多且上行业务较少时,上行子带资源浪费严重,且下行资源难以支撑繁重的下行业务;反之,当上行业务较多且下行业务较少时,下行子带资源浪费严重,且上行资源难以支撑繁重的上行业务。
有鉴于此,本申请提出一种子带配置的方法,能够有效的解决上述技术问题。下面对本申请提出的方法进行详细描述。
如图4所示,图4是本申请提出的一种子带配置的方法的示意性流程图。该方法包括以下步骤。
S410,网络设备确定第一信令和第二信令。
第一信令指示第一时间单元集合,第一时间单元集合包括一个或多个时间单元。
第二信令指示第一子带图样,第一子带图样用于指示第一频域资源包含的每个频率单元的传输方向,且第一频域资源中包括一个或多个灵活频率单元,其中,这些灵活频率单元既能用于上行传输,也能用于下行传输,第一频域资源为网络设备为终端设备配置的频率单元集合。
应理解,第一子带图样用于确定第一时频资源的传输方向,第一时频资源为第一频域资源中的一个频率单元和第一时间单元组成的时频资源,第一时间单元为第一时间单元集合中的任一时间单元。也就是说,第一子带图样生效的时域资源范围为第一时间单元集合内的时间单元。
可选地,第一时间单元集合包含于第一时间段中,且第一时间段以第一时间段的长度为周期重复。
可选地,周期性重复的第一时间段中的每个第一时间段中均包括一个第一时间单元集合。
可选地,周期性重复的第一时间段中从第一个第一时间段开始,每N个第一时间段中的M个第一时间段中分别包括一个第一时间单元集合,1≤M<N。其中,N个第一时间段中的M个第一时间段的位置可以是预定义的,也可以是第一信令指示的,本申请对此不作限定。例如,如图5所示,N=10,M=9,且M(M=9)个第一时间段是N(N=10)个第一时间段中的前9个第一时间段,则表示每10个周期中,前9个周期配置为SBFD,最后一个周期配置为TDD。又例如,如图6所示,N=2,M=1,则表示2个周期中一个周期配置为SBFD,另一个周期配置为TDD,SBFD和TDD交替配置。
可选地,第一时间段可以是预定义的或第一信令指示的一个时间段。示例的,第一信令可以指示周期性重复的第一时间段的位置信息,该位置信息包括一个起始位置和第一时长,或者,该位置信息包括一个起始位置和一个结束。可以理解,当位置信息包括一个起始位置信息和第一时长时,终端设备认为该起始位置为周期性重复的第一时间段中的第一个第一时间段的起始位置,第一时长为第一时间段的长度。可以理解,当位置信息包括一个起始位置信息和一个结束位置,终端设备认为该起始位置为周期性重复的第一时间段中的第一个第一时间段的起始位置,该结束位置为周期性重复的第一时间段中的第一个第一时间段的结束位置,根据起始位置和结束位置可以确定第一时间段的长度。
可选地,第一时间段可以为第一时隙配置周期对应的时间段,第一时隙配置周期为小区级时隙配置信令(即tdd-UL-DL-ConfigurationCommon)中包含的一个时隙配置周期。作为示例,下面以第一时间段为第一时隙配置周期为例给出第一信令指示第一时间单元集合的几种可能实现方式。
实现方式一
第一信令指示的第一时间单元集合为第一时隙配置周期(即第一时间段的一例)内的所有灵活符号。
实现方式二
第一信令包括第一时间窗的起始时间单元Swindow,1的位置和窗长度Lwindow,1(即第一时间窗包含的时间单元的个数),第一时间单元集合为第一时隙配置周期上第一时间窗内的所有时间单元。
示例的,Swindow,1为第一时隙配置周期内的时隙索引,则0≤Swindow,1<S,S为第一时隙配置周期中包含的时隙个数。
可选地,当Swindow,1指示一个时隙索引时,起始时间单元的位置为该时隙的第一个符号的位置。
示例的,Swindow,1可以为第一时隙配置周期内的符号索引,则表示一个时隙内包括的符号数。
示例的,若Lwindow,1的单位为ms,则0≤Lwindow,1≤P,P为第一时隙配置周期的长度,单位为ms;若Lwindow,1的单位为时隙,0≤Lwindow,1≤S,S为第一时隙周期中包含的时隙个数;Lwindow,1的单位为符号,则
实现方式三
第一信令包含第一比特图,第一比特图包含的比特与第一时隙配置周期中的时间单元一一对应,第一时间单元集合包括第一比特图中比特值为第一值的比特对应的时间单元。
示例的,第一值为1,即表示比特值为1的比特对应的时间单元纳入第一时间单元集合,否则,不纳入第一时间单元集合。
示例的,第一比特图中一个比特对应第一时隙配置周期中的一个时隙,则第一比特图共包括S个比特,S是第一时隙配置周期包括的时隙个数。
示例的,第一比特图中一个比特对应第一时隙配置周期中的一个符号,则第一比特图共包括 个比特,表示一个时隙内包括的符号数。
可选地,每一个第一时隙配置周期中均包括一个第一时间单元集合。
可选地,每M个第一时隙配置周期中的N个第一时隙配置周期中包括第一时间单元集合。
应理解,上述实现方式以小区级上下行时隙配置信令中仅包括一个时隙配置周期为例进行说明。当小区级上下行时隙配置信令中包括2个时隙配置周期时(例如第一时隙配置周期和第二时隙配置周期),第一信令可以指示第一时间单元集合和第二时间单元集合,那么,对于实现方式一,第一时间单元集合包括第一时隙配置周期内的灵活符号,第二时间单元集合包括第二时隙配置周期内的灵活符号;对于实现方式二,第一信令包含第一时隙配置周期内的第一时间窗的信息和第二时隙配置周期内的第二时间窗的信息,第一时间单元集合为第一时间窗内的时间单元,第二时间单元集合为第二时间窗内的时间单元;对于实现方式三,第一信令包含第一比特图和第二比特图,第一比特图包含的比特与第一时隙配置周期中的时间单元一一对应,第二比特图包含的比特与第二时隙配置周期中的时间单元一一对应,第一时间单元集合包括第一比特图中比特值为第一值的比特对应的时间单元,第二时间单元集合包括第二比特图中比特值为第一值的比特对应的时间单元。
可选地,当存在第二时间单元集合时,网络设备可以只配置一个子带图样,即只配置第一子带图样,那么,该第一子带图样生效的时域资源范围可以为第一时间单元集合和第二时间单元集合中的时间单元。或者,网络设备也可以为第一时间单元集合和第二时间单元集合分别配置一个子带图样。示例的,网络设备配置了子带图样#1和子带图样#2,子带图样#1生效的时域资源范围为第一时间单元集合中的时间单元,子带图样#2生效的时域资源范围为第二时间单元集合中的时间单元。
以上对第一信令的可能实现方式进行了详细介绍,下面对第二信令的相关信息进行具体说明。
其中,第二信令指示第一子带图样,第一子带图样用于指示第一频域资源包含的每个频率单元的类型。
可选地,频率单元的类型包括上行频率单元,下行频率单元和灵活频率单元。其中,上行频率单元只能用于上行传输,下行频率单元只能用于下行传输,灵活频率单元既能用于上行传输,也能用于下行传输。本申请中频率单元的类型也可以描述为频率单元的传输方向。
作为示例,第一子带图样可能为以下四个图样中的一个图样。
图样一:图样一表示第一频域资源中的频率单元均为灵活频率单元。
图样二:图样二表示第一频域资源中最多包括一个下行子带、一个灵活子带和一个上行子带,其中,一个下行子带位于第一频域资源的起始位置,一个上行子带位于第一频域资源的结束位置,一个灵活子带位于一个下行子带和一个上行子带之间。
图样三:图样三表示第一频域资源中最多包括一个上行子带、一个灵活子带和一个下行子带,其中,一个上行子带位于第一频域资源的起始位置,一个下行子带位于第一频域资源的结束位置,一个灵活子带位于一个下行子带和一个上行子带之间;或,
图样四:图样四表示第一频域资源中最多包括第一下行子带、第一灵活子带、第一上行子带、第二灵活子带和第二下行子带,其中,第一下行子带位于第一频域资源的起始位置,第二下行子带位于第一频域资源的结束位置,第一灵活子带位于第一下行子带和第一上行子带之间,第二灵活子带位于第一上行子带和第二下行子带之间。
应理解,一个子带包含至少一个频率单元,一个上行子带中的频率单元均为上行频率单元,一个下行子带中的频率单元均为下行频率单元,一个灵活子带的子带中的频率单元均为灵活频率单元。
可选地,本申请中灵活子带的所有频率单元的传输方向均相同。也就是说,一个灵活子带中的部分频率单元被指示(例如被网络设备指示)进行上行传输,则该灵活子带除这部分频率单元之外的其它频率单元也只能进行上行传输,不能被指示进行下行传输,反之同理。
下面举例进行说明。假设一个灵活子带包括100个资源块(resource block,RB),如果网络设备指示终端设备在灵活子带#1的RB#0-RB#49上执行上行传输,则网络设备就不能再指示终端设备在灵活子带#1的RB#50-RB#99上执行下行传输,终端设备只能在灵活子带#1的RB#50-RB#99执行上行传输。进一 步可选的,网络设备也不能指示网络设备服务的所有终端设备在灵活子带(RB#0-RB#99)上执行下行传输,只能上行传输。
还应理解,上述仅示例性的给出了几种可能的第一子带图样的具体图样,第一子带图样还可以是包括灵活子带的其他图样,本申请对此不作限定。
还应理解,当第一子带图样为图样二或图样三或图样四时,网络设备还需要通过第二信令向终端设备指示第一频域资源基于第一子带图样确定的一个或多个子带中每个子带的具体位置信息。
下面举例说明当第一子带图样为图样二或图样三或图样四时,第二信令如何指示第一频域资源中各子带的具体的位置信息。
(1)当第一子带图样为图样二时,第二信令包括LRB,1和LRB,2,其中,LRB,1和LRB,2指示第一频域资源的前LRB,1个RB为第一下行子带,第一频域资源的后LRB,2个RB为第一上行子带,第一频域资源中剩余个RB为第一灵活子带,其中,为第一频域资源的中包含的RB的个数,其中,
应理解,这里的前LRB,1个RB是指按照RB索引从小到大的方向,包括第一频域资源中索引最小的RB在内的连续LRB,1个RB。这里的后LRB,2个RB是指按照RB索引从大到小的方向,包括第一频域资源中索引最大的RB在内的连续LRB,2个RB。后文涉及相同描述不再赘述。
可以理解,如果LRB,1=0,则不存在第一下行子带,即第一灵活子带从第一频域资源的起始RB(即RB索引最小的RB)开始。如果LRB,2=0,则不存在第一上行子带,即第一灵活子带到第一频域资源的结束RB(即RB索引最大的RB)为止。如果LRB,2=0且LRB,1=0,则图样二等价于图样一。
可选地,当图样二表示第一频域资源中最多包括一个下行子带、一个灵活子带和一个上行子带时,图样二具体表示第一频域资源中只包括一个下行子带和一个灵活子带(下文称为图样#21),或,图样二具体表示第一频域资源中只包括一个灵活子带和一个上行子带(下文称为图样#22)。
示例的,当第一子带图样为图样#21时,第二信令包括LRB,1,其中,LRB,1指示第一频域资源的前LRB,1个RB为第一下行子带,第一频域资源中剩余个RB为第一灵活子带,其中,为第一频域资源中包含的RB的个数,其中,
可选地,仅在下行子带配置在灵活符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#21时,第二信令包括LRB,1,其中,LRB,1指示第一频域资源的后LRB,1个RB为第一灵活子带,第一频域资源中剩余个RB为第一下行子带,其中,为第一频域资源中包含的RB的个数,其中,
可选地,仅在灵活子带配置在下行符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#22时,第二信令包括LRB,2,其中,LRB,2指示第一频域资源的前LRB,2个RB为第一灵活子带,第一频域资源中剩余个RB为第一上行子带,其中,为第一频域资源中包含的RB的个数,其中,
可选地,仅在灵活子带配置在上行符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#22时,第二信令包括LRB,2,其中,LRB,2指示第一频域资源的后LRB,2个RB为第一上行子带,第一频域资源中剩余个RB为第一灵活子带,其中,为第一频域资源中包含的RB的个数,其中,
示例的,仅在上行子带配置在灵活符号上时,使用该示例的方法进行配置。
(2)当第一子带图样为图样三时,第二信令包括LRB,1和LRB,2,其中,LRB,1和LRB,2指示第一频域资源的前LRB,2个RB为第一上行子带,第一频域资源的后LRB,1个RB为第一下行子带,第一频域资源中剩余个RB为第一灵活子带,其中,
可以理解,如果LRB,1=0,则不存在第一下行子带,即第一灵活子带到第一频域资源的结束RB(即RB索引最大的RB)为止。如果LRB,2=0,则不存在第一上行子带,即第一灵活子带从第一频域资源的起始RB(即RB索引最小的RB)开始。如果LRB,2=0且LRB,1=0,则图样三等价于图样一。
可选地,当图样三表示第一频域资源中最多包括一个上行子带、一个灵活子带和一个下行子带时,图样三具体表示第一频域资源中只包括一个灵活子带和一个下行子带(下文称为图样#31),或,图样三具体表示第一频域资源中只包括一个上行子带和一个灵活子带(下文称为图样#32)。
示例的,当第一子带图样为图样#31时,第二信令包括LRB,1,其中,LRB,1指示第一频域资源的前LRB,1个RB为第一灵活子带,第一频域资源中剩余个RB为第一下行子带,其中,为第一频域资源中包含的RB的个数,其中,
可选地,仅在灵活子带配置在下行符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#31时,第二信令包括LRB,1,其中,LRB,1指示第一频域资源的后LRB,1个RB为第一下行子带,第一频域资源中剩余个RB为第一灵活子带,其中,为第一频域资源中包含的RB的个数,其中,
可选地,仅在下行子带配置在灵活符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#32时,第二信令包括LRB,2,其中,LRB,2指示第一频域资源的前LRB,2个RB为第一上行子带,第一频域资源中剩余个RB为第一灵活子带,其中,为第一频域资源中包含的RB的个数,其中,
可选地,仅在上行子带配置在灵活符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#32时,第二信令包括LRB,2,其中,LRB,2指示第一频域资源的后LRB,2个RB为第一灵活子带,第一频域资源中剩余个RB为第一上行子带,其中,为第一频域资源中包含的RB的个数,其中,
可选地,仅在灵活子带配置在上行符号上时,使用该示例的方法进行配置。
(3)当第一子带图样为图样四时,第二信令包括LRB,1,LRB,2,SRB,2和LRB,3,其中,LRB,1,LRB,2,SRB,2和LRB,3指示,第一频域资源的前LRB,1个RB为第一下行子带,第一频域资源的后LRB,3个RB为第二下行子带,从第一频域资源的第LRB,1+1个RB开始,到第一频域资源的第SRB,2个RB为止,共SRB,2-LRB,1个RB为第一灵活子带,从第一频域资源的第SRB,2+1个RB开始的LRB,2个RB为第一上行子带,从第一频域资源的第SRB,2+LRB,2+1个RB开始,到第一频域资源的第个RB为止,共个RB为第二灵活子带。其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于
可以理解,如果LRB,1=0,则不存在第一下行子带,即第一灵活子带从第一频域资源的起始RB(即RB索引最小的RB)开始。如果LRB,3=0,则不存在第二下行子带,即第二灵活子带到第一频域资源的结束RB(即RB索引最大的RB)为止。如果LRB,2=0,则不存在第一上行子带和第二灵活子带,第一灵活子带是从第一频域资源的第LRB,1+1个RB开始到第一频域资源的第个RB为止。如果LRB,1=0,LRB,3=0,且LRB,2=0,则图样四等价于图样一。
可选地,第二信令中可以配置上述参数中的一个或多个,只要基于配置的参数可以确定出第一频域资源的各子带的位置信息即可。
可选地,当LRB,1,LRB,2和LRB,3中任一参数没有配置时,默认没有配置的参数的取值为0。
可选地,如果SRB,2没有配置,则SRB,2指示第一上行子带的中间位置。示例性的, 其中,表示向上取整运算,或向下取整运算,或四舍五入取整运算。
可选地,当图样四表示第一频域资源中最多包括第一下行子带、第一灵活子带、第一上行子带、第二灵活子带和第二下行子带时,图样四具体表示第一频域资源中只包括第一下行子带、灵活子带和第二下行子带(下文称为图样#41),其中,灵活子带位于第一下行子带和第二下行子带之间,或,图样四具体表示第一频域资源中只包括第一灵活子带、一个上行子带和第二灵活子带(下文称为图样#42),其中,上行子带位于第一灵活子带和第二灵活子带之间。
示例的,当第一子带图样为图样#41时,第二信令包括SRB,2和LRB,2,其中,SRB,2和LRB,2指示从第一频域资源的第SRB,2+1个RB开始,到第一频域资源的第SRB,2+LRB,2个RB为止,共LRB,2个RB为灵活子带,从第一频域资源起始RB开始到第SRB,2个RB为第一下行子带,从第一频域资源的第SRB,2+LRB,2+1个RB开始,到第一频域资源的最后一个RB为止为第二下行子带,其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于为第一频域资源中包含的RB的个数。
可选地,仅在灵活行子带配置在下行符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#41时,第二信令包括LRB,1和LRB,3,其中,LRB,1指示第一频域资源的前LRB,1个RB为第一下行子带,LRB,3指示第一频域资源的后LRB,3个RB为第二下行子带,第一频域资源中剩余个RB为灵活子带,其中,为第一频域资源中包含的RB的个数,0≤
可选地,仅在下行子带配置在灵活符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#42时,第二信令包括SRB,2和LRB,2,其中,SRB,2和LRB,2指示从第一频域资源的第SRB,2+1个RB开始,到第一频域资源的第SRB,2+LRB,2个RB为止,共LRB,2个RB为上行子带,从第一频域资源起始RB开始到的第SRB,2个RB为第一灵活子带,从第一频域资源的第SRB,2+LRB,2+1个RB开始,到第一频域资源的最后一个RB为止为第二灵活子带,其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于为第一频域资源中包含的RB的个数。
可选地,仅在上行子带配置在灵活符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#42时,第二信令包括LRB,1和LRB,3,其中,LRB,1指示第一频域资源的前LRB,1个RB为第一灵活子带,LRB,3指示第一频域资源的后LRB,3个RB为第二灵活子带,第一频域资源中剩余个RB为上行子带,其中,为第一频域资源中包含的RB的个数,0≤
可选地,仅在灵活子带配置在上行符号上时,使用该示例的方法进行配置。
可以看出,上述(1)至(3)中子带的位置是根据第二信令指示的参数以RB为粒度确定的,本申请还提出另一种子带的位置以RB集合(RBS)为粒度进行确定的方法。
应理解,一个RBS包括多个RB。作为示例,一个RBS包括的RB个数有下几种可能的配置方法。
示例一,是预定义的。
示例二,是由第二信令指示的。例如
示例三,预定义的候选集。示例性的,的候选集为{2,4,8,16},其中,2,4,8,16对应的索引分别为0、1、2、3,第二信令指示预定义的候选集中的索引。
示例四,复用资源块组(resouce block group,RBG)的确定方法。下面简单介绍RBG的确定方法。RBG是一个连续的虚拟资源块(Virtual resouce block,VRB)的集合,对于一个BWPi包含的RBG的总数NRBG由下式计算得到:
其中,P为网络设备配置的一个RBG中包含的RB的个数,为BWPi包含的RB的总数,为BWPi的起始RB的索引,表示向上取整。
具体的,NRBG个中第一个RBG的大小为如果最后一个RBG的大小为否则,最后一个RBG的大小为P;所有其它RBG的大小为P。
同理,第一频域资源中包含的RBS的总数以及每个RBS中包含的RB的个数也可以通过复用RBG的确定方法获取。具体地,将RBG的确定方法中的P替换成
下面结合具体图样进行说明如何根据第二信令指示的参数以RBS为粒度确定第一频域资源的子带的位置。
(1)当第一子带图样为图样二时,第二信令包括LRBS,1、LRBS,2、LRB,1和LRB,2,其中,LRBS,1、LRBS,2、LRB,1和LRB,2指示第一频域资源的前LRBS,1个RBS中的所有RB以及之后紧随的LRB,1个RB为第一下行子带,第一频域资源的后LRBS,2个RBS中的所有RB以及之前紧接的LRB,2个RB为第一上行子带,第一频域资源中除第一下行子带和第一上行子带外剩余的RB为第一灵活子带。其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于
可以理解,如果LRBS,1=0且LRB,1=0,则不存在第一下行子带,即第一灵活子带从第一频域资源的起始RB(即RB索引最小的RB)开始。如果LRBS,2=0且LRB,2=0,则不存在第一上行子带,即第一灵活子带到第一频域资源的结束RB(即RB索引最大的RB)为止。如果LRBS,1=0、LRB,1=0且LRBS,2=0、LRB,2=0,则图样二等价于图样一。
可选地,当图样二表示第一频域资源中最多包括一个下行子带、一个灵活子带和一个上行子带时,图样二具体表示第一频域资源中只包括一个下行子带和一个灵活子带(下文称为图样#21),或,图样二具体表示第一频域资源中只包括一个灵活子带和一个上行子带(下文称为图样#22)。
示例的,当第一子带图样为图样#21时,第二信令包括LRBS,1和LRB,1,其中,LRBS,1和LRB,1指示第一频域资源的前LRBS,1个RBS中的所有RB以及之后紧随的LRB,1个RB为第一下行子带,第一频域资源中除第一下行子带外剩余的RB为第一灵活子带。其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于
可选地,仅在下行子带配置在灵活符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#21时,第二信令包括LRBS,2和LRB,2,其中,LRBS,2和LRB,2指示第一频域资源的后LRBS,2个RBS中的所有RB以及之前紧接的LRB,2个RB为第一灵活子带,第一频域资源中除第一灵活子带外剩余的RB为第一下行子带。其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于
可选地,仅在灵活子带配置在下行符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#22时,第二信令包括LRBS,1和LRB,1,其中,LRBS,1和LRB,1指示第一频域资源的前LRBS,1个RBS中的所有RB以及之后紧随的LRB,1个RB为第一灵活子带,第一频域资源中除第一灵活子带外剩余的RB为第一上行子带。其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于
可选地,仅在灵活子带配置在上行符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#22时,第二信令包括LRBS,2和LRB,2,其中,LRBS,2和LRB,2指示第一频域资源的后LRBS,2个RBS中的所有RB以及之前紧接的LRB,2个RB为第一上行子带,第一频域资源中除第一上行子带外剩余的RB为第一灵活子带。其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于
可选地,仅在上行子带配置在灵活符号上时,使用该示例的方法进行配置。
(2)当第一子带图样为图样三时,第二信令包括LRBS,1、LRBS,2、LRB,1和LRB,2,其中,LRBS,1、LRBS,2、LRB,1和LRB,2指示第一频域资源的前LRBS,2个RBS中的所有RB以及之后紧随的LRB,2个RB为第一上行子带,第一频域资源的后LRBS,1个RBS中的所有RB以及之前紧接的LRB,1个RB为第一下行子带,第一频域资源中除第一下行子带和第一上行子带外剩余的RB为第一灵活子带。其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于
可以理解,如果LRBS,1=0且LRB,1=0,则不存在第一下行子带,即第一灵活子带到第一频域资源的结束RB(即RB索引最大的RB)为止。如果LRBS,2=0且LRB,2=0,则不存在第一上行子带,即第一灵活子带从第一频域资源的起始RB(即RB索引最小的RB)开始。如果LRBS,1=0、LRB,1=0且LRBS,2=0、LRB,2=0,则图样三等价于图样一。
可选地,当图样三表示第一频域资源中最多包括一个上行子带、一个灵活子带和一个下行子带时,图样三具体表示第一频域资源中只包括一个灵活子带和一个下行子带(下文称为图样#31),或,图样三具体表示第一频域资源中只包括一个上行子带和一个灵活子带(下文称为图样#32)。
示例的,当第一子带图样为图样#31时,第二信令包括LRBS,2和LRB,2,其中,LRBS,2和LRB,2指示第一频域资源的前LRBS,2个RBS中的所有RB以及之后紧随的LRB,2个RB为第一灵活子带,第一频域资源中除第一灵活子带外剩余的RB为第一下行子带。其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于
可选地,仅在灵活子带配置在下行符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#31时,第二信令包括LRBS,1和LRB,1,其中,LRBS,1和LRB,1指示第一频域资源的后LRBS,1个RBS中的所有RB以及之前紧接的LRB,1个RB为第一下行子带,第一频域资源中除第一下行子带外剩余的RB为第一灵活子带。其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于
可选地,仅在下行子带配置在灵活符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#32时,第二信令包括LRBS,2和LRB,2,其中,LRBS,2和LRB,2指示第一频域资源的前LRBS,2个RBS中的所有RB以及之后紧随的LRB,2个RB为第一上行子带,第一频域资源中除第一上行子带外剩余的RB为第一灵活子带。其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于
可选地,仅在上行子带配置在灵活符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#32时,第二信令包括LRBS,1和LRB,1,其中,LRBS,1和LRB,1指示第一频域资源的后LRBS,1个RBS中的所有RB以及之前紧接的LRB,1个RB为第一灵活子带,第一频域资源中除第一灵活子带外剩余的RB为第一上行子带。其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于
可选地,仅在灵活子带配置在上行符号上时,使用该示例的方法进行配置。
(3)当第一子带图样为图样四时,第二信令包括LRBS,1,LRB,1,SRBS,2,LRBS,2,LRB,2,L′RB,2,LRBS,3,LRB,3,其中,LRBS,1,LRB,1,SRBS,2,LRBS,2,LRB,2,L′RB,2,LRBS,3,LRBS,3指示第一频域资源的前LRBS,1个RBS中的所有RB以及之后紧随的LRB,1个RB为第一下行子带;第一频域资源的后LRBS,3个RBS中的所有RB以及之前紧接的LRB,3个RB为第二下行子带;从第一频域资源的第SRBS,2+1个RBS开始的LRBS,2个RBS中的所有RB以及之前紧接的LRB,2个RB和之后紧随的L′RB,2个RB为第一上行子带;从第一下行子带的最后一个RB之后的第一个RB开始,到第一上行子带的第一个RB之前的最后一个RB为止为第一灵活子带;从第一上行子带的最后一个RB之后的第一个RB开始,到第二下行子带的第一个RB之前的最后一个RB为止为第二灵活子带。其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于
可以理解,如果LRBS,1=0且LRB,1=0,则不存在第一下行子带,即第一灵活子带从第一频域资源的起始RB(即RB索引最小的RB)开始。如果LRBS,3=0且LRB,3=0,则不存在第二下行子带,即第二灵活子带到第一频域资源的结束RB(即RB索引最大的RB)为止。如果LRBS,2=0,LRB,2=0且L′RB,2=0,则不存在第一上行子带和第二灵活子带,第一灵活子带是从第一下行子带最后一个RB之后得第一个RB开始到第二下行子带的第一个RB之前的最后一个RB为止。如果LRBS,1=0,LRB,1=0,LRB,3=0,LRB,3=0,LRBS,2=0,LRB,2=0且L′RB,2=0,则图样四等价于图样一。
由上可以看出,LRBS,1指示第一下行子带的下行RBS的数量,LRB,1指示第一下行子带中不足1个RBS的下行RB的数量,SRB,2指示第一上行子带上行RBS的起始位置,LRB,2指示第一上行子带中前面不足1个RBS的上行RB数量, L′RB,2指示第一上行子带中后面不足1个RBS的上行RB数量,LRBS,3指示第二下行子带的下行RBS的数量,LRB,3指示第二下行子带中不足1个RBS的下行RB的数量,其中,表示第一频率资源中包括的RBS的数量。
可选地,第二信令中可以配置上述参数中的一个或多个,只要基于配置的参数可以确定出第一频域资源的各子带的位置信息即可。
可选地,当LRBS,1,LRB,1,LRBS,2,LRB,2,L′RB,2,LRBS,3,LRBS,3中任一参数没有配置时,默认没有配置的参数的取值为0。
可选地,如果SRBS,2没有配置,则SRBS,2指示第一上行子带的中间位置。示例性的, 其中,为第一频域资源中包括的RBS的个数,[]表示向上取整运算,或向下取整运算,或四舍五入取整运算。
可选地,当图样四表示第一频域资源中最多包括第一下行子带、第一灵活子带、第一上行子带、第二灵活子带和第二下行子带时,图样四具体表示第一频域资源中只包括第一下行子带、一个灵活子带和第二下行子带(下文称为图样#41),其中,灵活子带位于第一下行子带和第二下行子带之间,或,图样四具体表示第一频域资源中只包括第一灵活子带、一个上行子带和第二灵活子带(下文称为图样#42)其中,上行子带位于第一灵活子带和第二灵活子带之间。
示例的,当第一子带图样为图样#41时,第二信令包括SRBS,2,LRBS,2,LRB,2,L′RB,2,其中,SRBS,2,LRBS,2,LRB,2,L′RB,2指示从第一频域资源的第SRBS,2+1个RBS开始的LRBS,2个RBS中的所有RB以及之前紧接的LRB,2个RB和之后紧随的L′RB,2个RB为灵活子带;第一频域资源中位于该灵活子带之前的所有RB为第一下行子带;第一频域资源中位于该灵活子带之后的所有RB为第二下行子带。其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于
可选地,仅在灵活行子带配置在下行符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#41时,第二信令包括LRBS,1,LRB,1,LRBS,3,LRB,3,其中,LRBS,1,LRB,1指示第一频域资源的前LRBS,1个RBS中的所有RB以及之后紧随的LRB,1个RB为第一下行子带;LRBS,3,LRB,3指示第一频域资源的后LRBS,3个RBS中的所有RB以及之前紧接的LRB,3个RB为第二下行子带;第一频域资源中除第一下行子带和第二下行子带外剩余的RB为灵活子带。其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于
可选地,仅在下行子带配置在灵活符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#42时,二信令包括SRBS,2,LRBS,2,LRB,2,L′RB,2,其中,SRBS,2,LRBS,2,LRB,2,L′RB,2指示从第一频域资源的第SRBS,2+1个RBS开始的LRBS,2个RBS中的所有RB以及之前紧接的LRB,2个RB和之后紧随的L′RB,2个RB为上行子带;第一频域资源中位于该上行子带之前的所有RB为第一灵活子带;第一频域资源中位于该灵活子带之后的所有RB为第二灵活子带。其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于
可选地,仅在上行子带配置在灵活符号上时,使用该示例的方法进行配置。
示例的,当第一子带图样为图样#42时,第二信令包括LRBS,1,LRB,1,LRBS,3,LRB,3,其中,LRBS,1,LRB,1指示第一频域资源的前LRBS,1个RBS中的所有RB以及之后紧随的LRB,1个RB为第一灵活子带;LRBS,3,LRB,3指示第一频域资源的后LRBS,3个RBS中的所有RB以及之前紧接的LRB,3个RB为第二灵活子带;第一频域资源中除第一灵活子带和第二灵活子带外剩余的RB为上行子带。其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于
可选地,仅在灵活子带配置在上行符号上时,使用该示例的方法进行配置。
应理解,上述示例中的LRB,1,LRB,3,LRB,2,L′RB,2均大于0且小于K,K为一个RBS中包含的RB的个数。
S420,网络设备向终端设备发送第一信令和第二信令。对应的,终端设备接收来自网络设备的第一信令和第二信令。
可选地,第一信令和第二信令为小区级广播信令。示例的,第一信令和第二信令承载于系统消息块1(system information block 1,SIB1)消息中。示例的,第一信令和第二信令承载在RRC消息中。
S430,终端设备根据第一子带图样确定第一时频资源的传输方向。
可以理解,终端设备根据第二时间单元的传输方向确定第二时频资源的传输方向,第二时频资源为第一频域资源中的一个频率单元和第二时间单元组成的时频资源,第二时间单元为第一时间单元集合外的任一时间单元。
也可以理解为,第一时间单元上第一子带图样的指示的频率单元的传输方向的优先级高于第一时间单元的传输方向的优先级,第二时间单元上第一子带图样的指示的频率单元的传输方向的优先级低于第一时间单元的传输方向的优先级。
示例的,如图7所示,第一时隙配置周期中包括的5个时隙,小区级上下行时隙配置信令配置这5个时隙为DDDSU,其中,D为下行时隙,U为上行时隙(即U时隙的传输方向为上行),S为特殊时隙,S时隙中包括灵活符号,D时隙中的符号均为下行符号,下行符号的传输方向为下行,U时隙中的符号均为上行符号,上行符号的传输方向为上行,灵活符号的传输方向是灵活的(既可用于上行传输,又可用于下行传输)。第一信令指示的第一时间单元集合包括图7中的时间窗对应的DDS这三个时隙,第二信令指示的第一子带图样为图样四,且图样四中的第一下行子带、第一灵活子带、第一上行子带、第二灵活子带和第二下行子带均存在。那么,如图7所示,时间窗外的时隙中任一符号(即第一个时隙和最后一个时隙)和第一频域资源对应的时频资源的传输方向与该符号的传输方向相同,时间窗中的时隙中任一符号和第一频域资源对应的时频资源的传输方向根据第一子带图样确定。
可以看出,该技术方案中通过第一子带图样在第一频域资源上引入既可用于上行传输,也可用于下行传输的灵活频率单元,以使得终端设备在第一时间单元集合内,可以根据上下行业务的情况自适应使用灵活频率单元用于上下行传输,从而提高SBFD系统的灵活性和频率资源的使用效率。
应理解,实际中第一频域资源基于第一子带图样确定的灵活子带中的频率单元的传输方向也可以基于实际需求进行更新,那么,可选地,该方法还包括:
S440,网络设备向终端设备发送第三信令。
第三信令用于指示第二子带图样,第二子带图样用于更新第一频率单元集合包含的频率单元的传输方向,第一频率单元集合包括第一频域资源基于第一子带图样确定的灵活频率单元对应的频率单元。对应的,终端设备接收来自网络设备的第三信令。
可选地,第二子带图样可以用于更新第一频率单元集合包含的一个或多个频率单元的传输方向。
可选地,网络设备配置通过第一信令配置了第一时间单元集合和第二时间单元集合,通过第二信令配置了子带图样#1和子带图样#2,子带图样#1生效的时域资源范围为第一时间单元集合中的时间单元,子带图样#2生效的时域资源范围为第二时间单元集合中的时间单元,那么,该步骤中网络设备还可以通过第三信令配置两个第二子带图样,分别作用于第一频域资源基于子带图样#1确定的灵活频率单元对应的一个或多个频率单元,以及,作用于第一频域资源基于子带图样#2确定的灵活频率单元对应的一个或多个频率单元。
可选地,第三信令为UE级单播信令或UE级广播信令。
由于第一子带图样可以以RB粒度进行配置,也可以以RBS粒度进行配置,那么,第二子带图样也可以以两种粒度进行配置,下面具体描述第二子带图样。
(1)以RB粒度配置第二子带图样
第二子带图样和第一子带图样的配置方式相同,对于第二子带图样来说,只需将第一子带图样中以RB粒度配置的图样一至图样四中的第一频域资源替换为第一频率单元集合(即灵活子带)即可。也就说,基于第二子带图样配置灵活子带中的频率单元(或子带)的传输方向。
需要说明是,当以RB粒度配置第二子带图样时,如果第一频域资源中只存在一个灵活子带,则网络设备仅需要在第三信令中包括一个第二子带图样,以及包括基于该一个第二子带图样确定的各子带的位置的参数信息,参数信息的具体配置方式参见上文中第二信令中的描述。如果第一频域资源中存在两个第一频率单元集合(即两个灵活子带)时,则网络设备可以在第三信令中分别为每个灵活子带配置一个第二子带图样,以及配置基于该第二子带图样确定各子带的位置的参数信息。示例的,该实现方式中,第三信令承载在RRC消息中,或第三信令承载在DCI消息中。
可选地,第三信令还可以指示第一时间单元集合中的一个或多个时间单元的时间单元索引,那么,第二子带图样仅作用于这些时间单元索引对应的时间单元。这样,即可支持多个时间单元上的子带配置不同。示例的,该实现方式中,第三信令为承载在DCI消息中,或第三信令承载在RRC消息中。
(2)以RBS粒度配置第二子带图样
第三信令包括多组信息,每组信息包括一个RBS的索引和一个第二子带图样,第二子带图样用于重配置该RBS索引对应的RBS中的灵活RB的传输方向。其中,第二子带图样表示第一频域资源中的频率单元均为上行频率单元,或者,第二子带图样表示第一频域资源中的频率单元均为下行频率单元,或者,第二子带图样为S410中的图样二或图样三或图样四,对于第二子带图样来说,只需将第一子带图样中RBS粒度配置的图样二至图样四中的第一频域资源替换为一个RBS,该RBS为包括第一频率单元集合中的灵活RB所在的RBS。
示例的,该场景下,第三信令承载在RRC消息中,或第三信令承载在DCI消息中。
示例的,每组信息中的第二子带图样可以替换为RBS格式(format)。应理解,RBS格式指示一个RBS中包括的每个RB的传输方向。RBS索引对应的RBS中的灵活RB的传输方向可以基于对应的RBS格式进行确定。示例的,该实现方式中,第三信令为承载在DCI消息中。
下面以一个RBS中包括8个RB举例说明可能的RBS格式。示例的,可能的RBS格式如表1所示。
表1

其中,表1的第一列为RBS格式的索引,表1的每一行指示一个RBS中包含的8个RB的传输方向,U表示对应位置的RB为上行RB,D表示对应位置的RB为下行RB,F表示对应位置的RB为灵活RB。RBS索引中的灵活RB的传输方向根据RBS format索引查表1确定。
需要说明的是,如果一个RBS经第一子带图样配置后,只有部分RB为灵活RB,那么,终端设备只能根据该RBS对应的RBS格式修改该RBS中的灵活RB的传输方向,剩余的上行或下行RB不做重新配置。
可以理解,表1只是示例的给出几种可能的RBS格式,表1中还可以包括其他RBS格式,本申请对此不做限定。
可选地,第三信令包括的每组信息中还可以包括第一时间单元集合中的一个或多个时间单元的时间单元索引,那么,第二子带图样或RBS格式仅作用于这些时间单元索引对应的时间单元。这样,即可支持多个时间单元上的子带配置不同。示例的,该实现方式中,第三信令为承载在DCI消息中。
S450,终端设备根据第二子带图样更新第三时频资源的传输方向。其中,第三时频资源为第一频率单元集合中的一个频率单元和第一时间单元组成的时频资源,第一时间单元为第一时间单元集合中的一个时间单元。
应理解,实际中第一时间单元集合是可以基于实际需求进行更新,那么,可选地,该方法还包括:
S460,网络设备向终端设备发送第四信令,第四信令用于更新第一时间单元集合为第三时间单元集合。对应的,终端设备接收来自网络设备的第四信令。
应理解,在后续子带配置中,终端设备认为第一子带图样仅在更新后的第三时间单元集合内生效,且不在第一时间单元集合内生效。
可选地,第四信令也可以使用上文中的时间窗或比特图方式指示第三时间单元集合,这里不再赘述。
可选地,第四信令为UE级单播信令或UE级广播信令。
可选地,第三时间单元集合中包括一个或多个时间单元。下面举例说明。
示例的,第四信令承载在RRC中。在一种可能的实现方式中,当第一信令指示第一时间单元集合为时隙配置周期中的灵活符号,第四信令为终端设备的UE级上下行时隙配置信令,即tdd-UL-DL-ConfigurationDedicated,则第三时间单元集合可以理解为第一时间单元集合中的时间单元在第四信令配置后仍为灵活时间单元的时间单元集合。
示例的,第四信令承载在DCI中。在一种可能的实现方式中,当第一信令为小区级上下行时隙配置信令时,第一时间单元集合为时隙配置周期中的灵活符号,第四信令为DCI format 2_0,即SFI,第四信令仅修改第一时间单元集合中的灵活符号,则第三时间单元集合可以理解为第一时间单元集合中的时间单元在第四信令配置后仍为灵活时间单元的时间单元集合。
示例的,第四信令承载在DCI或RRC中。在一种可能的实现方式中,第四信令可以通过S410中的时间窗方式将第一时间单元集合更新为第三时间单元集合。在另一种可能的实现方式中,第四信令可以通过S410中的比特图指示方式将第一时间单元集合更新为第三时间单元集合。
可选地,第三时间单元集合为空集。可以理解,当第三时间单元为空集时,使得第一子带图样在时域资源上不生效,即使能TDD,从而实现SBFD和TDD的动态切换,进而提高SBFD系统的灵活性。例如,在干扰较为严重时,可以动态切换TDD模式,降低干扰,提升系统可靠性;在干扰不严重时,可以动态切换SBFD模式,提升上下行频率资源利用率,从而提升系统效率。下面举例说明。
示例的,第四信令承载在DCI中。在一种可能的实现方式中,第四信令可以通过S410中的时间窗方式将第一时间单元集合更新为空集。在另一种可能的实现方式中,第四信令可以通过S410中的比特图指示方式将第一时间单元集合更新为空集。
S470,终端设备根据第三时间单元的传输方向确定第四时频资源的传输方向,以及根据第一子带图样确定第五时频资源的传输方向。
其中,第四时频资源为第三时间单元和第一时域资源中的一个频率资源组成的时频资源,第三时间单元为第三时间单元集合外的一个时间单元,第五时频资源为第三时间单元集合内的一个时间单元和第一时域资源中的一个频率资源组成的时频资源。
应理解,第一时间单元集合内,灵活频率单元对应的时频资源的传输方向由调度方向决定。具体地,当在该时频资源上调度的是上行信号,则该时频资源用于上行传输,如果在时频资源上调度的是下行信号,则该时频资源用于下行传输。下面举例说明以第一时间单元集合基于第一子带图样配置后,后续调度过程中时频资源的使用情况。
可选地,该方法还包括S480和/或S490:
S480,网络设备向终端设备发送第五信令,第五信令用于指示终端设备在第五时间单元集合和第一频域资源中的第五频率单元集合组成的时频资源#1上发送第一信号。对应的,终端设备接收来自网络设备的第五信令。
可选的,第五时间单元集合中的时间单元可能都位于第一时间单元集合中,也可能都位于第一时间单元集合外,也可能部分位于第一时间单元集合中,部分位于第一时间单元集合外。
应理解,由于指示在时频资源#1上发送第一信号,因此,当第五时间单元集合中的时间单元位于第一时间单元集合外,不期望所述第五时间单元集合包括下行时间单元;或者,如果第五时间单元集合包括下行时间单元,第一信号将完整丢掉;或者,如果第五时间单元集合包括下行时间单元,丢掉与下行时间单元重叠部分的第一信号。且当第五时间单元集合包括灵活时间单元时,灵活时间单元与第五频率单元集合组成的时频资源均用于上行传输。
应理解,由于指示在时频资源#1上发送第一信号,因此,当第五时间单元集合中的时间单元位于第一时间单元集合中,不期望所述第五频率单元集合包括下行频率单元,或者如果第五频率单元集合包括下行频率单元,第一信号将完整丢掉;或者如果第五频率单元集合包括下行频率单元,丢掉与下行频率单元重叠部分的第一信号。且当第五频率单元集合包括灵活频率单元时,第五时间单元与第一频率单元集合中的灵活频率单元组成的时频资源均用于上行传输。
S490,网络设备向终端设备发送第六信令,第六信令用于指示终端设备在第六时间单元集合和第一频域资源中第六频率单元集合组成的时频资源#2上接收第二信号。对应的,终端设备接收来自网络设备的第五信令。
可选的,第六时间单元集合中的时间单元可能都位于第一时间单元集合中,也可能都位于第一时间单元集合外,也可能部分位于第一时间单元集合中,部分位于第一时间单元集合外。
应理解,由于指示在时频资源#2上接收第二信号,因此,当第六时间单元集合中的时间单元位于第一时间单元集合外,不期望所述第六时间单元集合包括上行时间单元;或者,如果第六时间单元集合包括上行时间单元,第一信号将完整丢掉;或者,如果第六时间单元集合包括上行时间单元,丢掉与上行时间单元重叠部分的第一信号。且当第六时间单元集合包括灵活时间单元时,灵活时间单元与第六频率单元集合组成的时频资源均用于下行传输。
应理解,由于指示在时频资源#2上接收第二信号,因此,当第六时间单元集合中的时间单元位于第一时间单元集合中,不期望所述第六频率单元集合包括上行频率单元,或者如果第六频率单元集合包括上行频率单元,第一信号将完整丢掉;或者如果第六频率单元集合包括上行频率单元,丢掉与上行频率单元重叠部分的第一信号。且当第六频率单元集合包括灵活频率单元时,第六时间单元与第一频率单元集合中的灵活频率单元组成的时频资源均用于下行传输。
应理解,由于S480或490中网络设备调度的频率单元集合可能为灵活子带上的部分资源,因此,可选地,灵活子带上未调度的灵活频率单元还可以用于保护带。下面举例说明带可能的配置方式。
示例的,位于灵活子带内未调度的频率单元为保护带,网络设备不需要指示终端设备保护带的位置和长度,终端设备根据灵活子带位置和调度情况确定保护带的位置。
示例的,网络设备通过消息#1(示例的,消息#1为SIB1或RRC或DCI)通知终端设备保护带的长度,保护带的位置位于灵活子带的两侧,如果上行传输被调度在灵活子带上,则保护带位于灵活子带靠近下行子带的一侧,如果下行传输被调度在灵活子带上,则保护带位于灵活子带靠近上行子带的一侧,如果没有任何传输调度在灵活子带,则保护带位于灵活子带的中间,或者保护带为整个灵活子带(此时保护带长度不是网络设备指示的长度)。这种情况下,终端设备调度时不期望在保护带上发送和接收信号,即网络设备调度时需要避免在保护带上调度上行和下行传输。
示例的,网络设备通过消息#2(示例的,消息#2为SIB1或RRC或DCI)通知终端设备保护带在灵活子带上的位置和长度。则保护带和下行子带之间的灵活子带只能用于下行传输,保护带和上行子带之间的灵活子带只能用于上行传输。
可选地,保护带可以独立于灵活子带之外,则网络设备可以在第一频域资源上配置保护带,终端设备可以在第一频域资源除保护带之外剩余的频域资源部分按照网络设备指示的第一子带图样进行子带配置,其中,保护带位于不同类型的子带的交界处。可以理解,本申请实施例中子带类型包括上行子带、下行子带和灵活子带。可选地,本申请中第二信令还可以指示保护带的长度,或,第二信令还可以指示保护带的起始位置和长度。
需要说明的是,不同子带类型交界处的保护带的长度可以相同,也可以不相同,本申请不做限定。
下面结合图样#41和图样#31具体说明如何通过第二信息指示第一频域资源中的保护带。
示例的,第二指示信息指示保护带长度,则当第一子带图样为图样#41时,第二信令包括SRB,2、LRB,2、L1和L2,其中,SRB,2和LRB,2指示从第一频域资源的第SRB,2+1个RB到第一频域资源的第SRB,2+LRB,2个RB,共LRB,2个RB为灵活子带;L1指示灵活子带之前紧接的L1个RB为第一下行子带与灵活子带之间的保护带#1,即从第一频域资源的第SRB,2-L1+1个RB到第一频域资源的第SRB,2个RB为保护带#1;L2指示灵活子带之后紧随的L2个RB为灵活子带与第二下行子带之间的保护带#2,即从第一频域资源的第SRB,2+LRB,2+1个RB到第一频域资源的第SRB,2+LRB,2+L2个RB为保护带#2;从第一频域资源起始RB到第一频域资源中位于保护带#1之前的最后一个RB为第一下行子带,即从第一频域资源起始RB到第一频域资源的第SRB,2-L1个RB为第一下行子带,从第一频域资源中位于保护带#2之后的第一个RB到第一频域资源的最后一个RB为第二下行子带,即第一频域资源的第SRB,2+LRB,2+L2+1个RB到第一频域资源的最后一个RB为第二下行子带,其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于为第一频域资源中包含的RB的个数。
示例的,第二指示信息指示保护带长度和起始位置,则当第一子带图样为图样#41时,第二信令包括SRB,2、LRB,2、S1、S2、L1和L2,其中,SRB,2和LRB,2指示从第一频域资源的第SRB,2+1个RB到第一频域资源的第SRB,2+LRB,2个RB,共LRB,2个RB为灵活子带;S1、L1指示第一下行子带与灵活子带之间的保护带#1的位置信息,即从第一频域资源的第S1+1个RB到第S1+L1个RB为保护带#1;S2、L2指示灵活子带与第二下行子带之间的保护带#2的位置信息,即从第一频域资源的第S2+1个RB到第S2+L2个RB为保护带#2;从第一频域资源起始RB到第一频域资源中位于保护带#1之前的最后一个RB为第一下行子带,即从第一频域资源起始RB到第S1个RB为第一下行子带;从第一频域资源中位于保护带#2之后的第一个RB到第一频域资源的最后一个RB为第二下行子带,即从第一频域资源的第S2+L2+1个RB到第一频域资源的最后一个RB为止为第二下行子带,其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于为第一频域资源中包含的RB的个数。
需要说明的是,该示例中保护带#1的第一个RB与第一下行子带的最后一个RB为相邻的RB,保护带#1的最后一个RB与灵活子带的第一个RB与为相邻的RB,保护带#2的第一个RB与灵活子带的最后一个RB为相邻的RB,保护带#2的最后一个RB与第二下行子带的第一个RB与为相邻的RB。
示例的,第二指示信息指示保护带长度,当第一子带图样为图样#41时,第二信令包括LRB,1、LRB,3、L1和L2,其中,LRB,1指示第一频域资源的前LRB,1个RB为第一下行子带;L1指示第一下行子带之后紧随的L1个RB为第一下行子带与灵活子带之间的保护带#1,即从第一频域资源的第LRB,1+1个RB到第一频域资源的第LRB,1+L1个RB为保护带#1;LRB,3指示第一频域资源的后LRB,3个RB为第二下行子带,即从第一频域资源的个RB到第一频域资源的最后一个RB为第二下行子带;L2指示第二下行子带之前紧接的L2个RB为灵活子带与第二下行子带之间的保护带#2,即从第一频域资源的第个RB到个RB为保护带#2;第一频域资源中剩余的所有RB为灵活子带,即从第一频域资源的第LRB,1+L1+1个RB到第一频域资源的第个RB为灵活子带,其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于为第一频域资源中包含的RB的个数。
示例的,第二指示信息指示保护带长度和起始位置,第二信令包括LRB,1、LRB,3、S1、S2、L1和L2,其中,LRB,1指示第一频域资源的前LRB,1个RB为第一下行子带;S1、L1指示第一下行子带与灵活子带之间的保护带#1的位置信息,即从第一频域资源的第S1+1个RB到第S1+L1个RB为保护带#1;LRB,3指示第一频域资源的后LRB,3个RB为第二下行子带,即从第一频域资源的个RB到第一频域资源的最后一个RB为第二下行子带;S2、L2指示灵活子带与第二下行子带之间的保护带#2的位置信息,即从第一频域资源的第S2+1个RB到S2+L2个RB为保护带#2;第一频域资源中剩余的所有RB为灵活子带,即从第一频域资源的第S1+L1+1个RB到第一频域资源的第S2个RB为灵活子带,其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于为第一频域资源中包含的RB的个数。
需要说明的是,该示例中保护带#1的第一个RB与第一下行子带的最后一个RB为相邻的RB,保护带#1的最后一个RB与灵活子带的第一个RB与为相邻的RB,保护带#2的第一个RB与灵活子带的最后一个RB为相邻的RB,保护带#2的最后一个RB与第二下行子带的第一个RB与为相邻的RB。
可选地,上述示例的L1和L2长度可以相同,也可以不相同,当L1和L2长度相同时,可以只配置L1或L2即可。或者,如果只配置了L1,则认为L2等于L1;如果只配置了L2,则认为L1等于L2。
示例的,第二指示信息指示保护带长度,则当第一子带图样为图样#31时,第二信令包括LRB,1和L1,其中,LRB,1指示第一频域资源的前LRB,1个RB为第一灵活子带;L1指示第一灵活子带之后紧接的L1个RB为第一下行子带与第一灵活子带之间的保护带#1,即从第一频域资源的第LRB,1+1个RB到第一频域资源的第LRB,1+L1个RB,共L1个RB为第一下行子带与第一灵活子带之间的保护带#1;第一频域资源中剩余的RB为第一下行子带,即从第一频域资源的第LRB,1+L1+1个RB到第一频域资源的最后一个RB为第一下行子带,其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于为第一频域资源中包含的RB的个数。
示例的,第二指示信息指示保护带长度和起始位置,则当第一子带图样为图样#31时,第二信令包括LRB,1、S1、L1,其中,LRB,1指示第一频域资源的前LRB,1个RB为第一灵活子带;S1、L1指示第一下行子带与第一灵活子带之间的保护带#1的位置信息,即从第一频域资源的第S1+1个RB到第一频域资源的第S1+L1个RB为保护带#1;第一频域资源中剩余的RB为第一下行子带,即从第一频域资源的第S1+L1+1个RB到第一频域资源的最后一个RB为第一下行子带,其中,该图样中每个子带包含的RB个数大于或等于0且小于或等于为第一频域资源中包含的RB的个数。
需要说明的是,该示例中保护带#1的第一个RB与第一灵活子带的最后一个RB为相邻的RB,保护带#1的最后一个RB与第一下行子带的第一个RB与为相邻的RB。
示例的,第二指示信息指示保护带长度,当第一子带图样为图样#31时,第二信令包括LRB,1和L1,其中,LRB,1指示第一频域资源的后LRB,1个RB为第一下行子带,即从第一频域资源的个RB到第一频域资源的最后一个RB为第一下行子带;L1指示第一下行子带之前紧接的L1个RB为第一下行子带与第一灵活子带之间的保护带#1,即从第一频域资源的第个RB到个RB为保护带#1;第一频域资源中剩余的所有RB为第一灵活子带,即从第一频域资源的第个RB到第一频域资源的最后一个RB为第一下行子带,其中,为第一频域资源中包含的RB的个数。
示例的,第二指示信息指示保护带长度和起始位置,当第一子带图样为图样#31时,第二信令包括LRB,1、S1和L1,其中,LRB,1指示第一频域资源的后LRB,1个RB为第一下行子带,即从第一频域资源的个RB到第一频域资源的最后一个RB为第一下行子带;S1和L1指示第一下行子带与第一灵活子带之间的保护带#1的位置信息,即从第一频域资源的第S1+1个RB到第S1+L1个RB为保护带#1;第一频域资源中剩余的所有RB为第一灵活子带,即第一频域资源的前个RB为第一下行灵活,其中,为第一频域资源中包含的RB的个数。
需要说明的是,该示例中保护带#1的第一个RB与第一灵活子带的最后一个RB为相邻的RB,保护带#1的最后一个RB与第一下行子带的第一个RB与为相邻的RB。
应理解,关于在其他图样下配置保护带的方法可参考上述描述,这里不再一一赘述。
还应理解,本申请中提出的方法同样也适用于于子带重叠全双工(subband overlapping full duplex,SBFD)系统中。
需要说明的是,本申请中第一频域资源不限于部分带宽(bandwidth part,BWP),因此本申请中也可以替换为NRB,NRB表示第一频域资源中包含的RB的个数。示例的,第一频域资源也可以为工作频带(operating band),信道带宽(channel bandwidth),传输频带(transmission bandwidth),传输带宽配置(transmission bandwidth configuration)等,具体定义见协议3GPP TS 38.101。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
还应理解,在上述一些实施例中,主要以现有的网络架构中的设备为例进行了示例性说明,应理解,对于设备的具体形式本申请实施例不作限定。例如,在未来可以实现同样功能的设备都适用于本申请实施例。
可以理解的是,上述各个方法实施例中,由设备(如上述如终端设备、网络设备等)实现的方法和操作,也可以由设备的部件(例如芯片或者电路)实现。
以上,结合图1至图7详细说明了本申请实施例提供的方法。上述方法主要从终端设备和网络设备之间交互的角度进行了介绍。可以理解的是,终端设备和网络设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。
本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以下,结合图8和图9详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。本申请实施例可以根据上述方法示例对终端设备或网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
以上对本申请提供的数据传输的方法进行了详细说明,下面介绍本申请提供的通信装置。在一种可能的实现方式中,该装置用于实现上述方法实施例中的接收端设备对应的步骤或流程。在另一种可能的实现方式中,该装置用于实现上述方法实施例中的发送端设备对应的步骤或流程。
图8是本申请实施例提供的通信装置200的示意性框图。如图8所示,该装置200可以包括通信单元210和处理单元220。通信单元210可以与外部进行通信,处理单元220用于进行数据处理。通信单元210还可以称为通信接口或收发单元。
在一种可能的设计中,该装置200可实现对应于上文方法实施例中的发送端设备执行的步骤或者流程,其中,处理单元220用于执行上文方法实施例中发送端设备的处理相关的操作,通信单元210用于执行上文方法实施例中发送端设备的发送相关的操作。
在又一种可能的设计中,该装置200可实现对应于上文方法实施例中的接收端设备执行的步骤或者流程,其中,通信单元210用于执行上文方法实施例中接收端设备的接收相关的操作,处理单元220用于执行上文方法实施例中接收端设备的处理相关的操作。
应理解,这里的装置200以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置200可以具体为上述实施例中的发送端设备,可以用于执行上述方法实施例中与发送端设备对应的各个流程和/或步骤,或者,装置200可以具体为上述实施例中的接收端设备,可以用于执行上述方法实施例中与接收端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置200具有实现上述方法中发送端设备所执行的相应步骤的功能,或者,上述各个方案的装置200具有实现上述方法中接收端设备所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如通信单元可以由收发机替代(例如,通信单元中的发送单元可以由发送机替代,通信单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述通信单元还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。在本申请的实施例,图8中的装置可以是前述实施例中的AP或STA,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,通信单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图9为本申请实施例提供的通信装置300的示意性框图。该装置300包括处理器310和收发器320。其中,处理器310和收发器320通过内部连接通路互相通信,该处理器310用于执行指令,以控制该收发器320发送信号和/或接收信号。
可选地,该装置300还可以包括存储器330,该存储器330与处理器310、收发器320通过内部连接通路互相通信。该存储器330用于存储指令,该处理器310可以执行该存储器330中存储的指令。在一种可能的实现方式中,装置300用于实现上述方法实施例中的发送端设备对应的各个流程和步骤。在另一种可能的实现方式中,装置300用于实现上述方法实施例中的接收端设备对应的各个流程和步骤。
应理解,装置300可以具体为上述实施例中的发送端设备或接收端设备,也可以是芯片或者芯片系统。对应的,该收发器320可以是该芯片的收发电路,在此不做限定。具体地,该装置300可以用于执行上述方法实施例中与发送端设备或接收端设备对应的各个步骤和/或流程。可选地,该存储器330可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器310可以用于执行存储器中存储的指令,并且当该处理器310执行存储器中存储的指令时,该处理器310用于执行上述与发送端设备或接收端设备对应的方法实施例的各个步骤和/或流程。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。本申请实施例中的处理器可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
此外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由终端设备或网络设备执行的操作和/或流程被执行。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由终端设备或网络设备执行的操作和/或流程被执行。
此外,本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以使得任意一个方法实施例中由终端设备或网络设备执行的操作和/或处理被执行。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括存储器。
此外,本申请还提供一种通信系统,包括本申请实施例中的终端设备和网络设备。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
还应理解,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一信息和第二信息并不表示信息量大小、内容、优先级或者重要程度等的不同。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下网元会做出相应的处理,并非是限定时间,且也不要求网元实现时一定要有判断的动作,也不意味着存在其它限定。
还应理解,在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“至少一项(个)”或其类似表达,是指一项(个)或多项(个),即这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c。
还应理解,本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。
还应理解,在本申请各实施例中,“A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (73)

  1. 一种子带配置的方法,应用于终端设备,其特征在于,包括:
    接收来自网络设备的第一信令和第二信令,所述第一信令指示第一时间单元集合,所述第二信令指示第一子带图样,所述第一子带图样指示第一频域资源中包括的频率单元的传输方向,且所述第一频域资源中包括一个或多个灵活频率单元,其中,所述灵活频率单元既能用于上行传输,也能用于下行传输,所述第一频域资源为所述网络设备为所述终端设备配置的频率单元集合;
    根据所述第一子带图样确定第一时频资源的传输方向,所述第一时频资源为所述第一频域资源中的一个频率单元和第一时间单元组成的时频资源,所述第一时间单元为所述第一时间单元集合中的任一时间单元。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据第二时间单元的传输方向确定第二时频资源的传输方向,所述第二时频资源为所述第一频域资源中的一个频率单元和所述第二时间单元组成的时频资源,所述第二时间单元为所述第一时间单元集合外的任一时间单元。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一子带图样表示所述第一频域资源中的频率单元均为灵活频率单元;或,
    所述第一子带图样表示所述第一频域资源中最多包括一个下行子带、一个灵活子带和一个上行子带,其中,所述一个下行子带位于所述第一频域资源的起始位置,所述一个上行子带位于所述第一频域资源的结束位置,所述一个灵活子带位于所述一个下行子带和一个上行子带之间;或,
    所述第一子带图样表示所述第一频域资源中最多包括一个上行子带、一个灵活子带和一个下行子带,其中,所述一个上行子带位于所述第一频域资源的起始位置,所述一个下行子带位于所述第一频域资源的结束位置,所述一个灵活子带位于所述一个下行子带和一个上行子带之间;或,
    所述第一子带图样表示所述第一频域资源中最多包括第一下行子带、第一灵活子带、第一上行子带、第二灵活子带和第二下行子带,其中,所述第一下行子带位于所述第一频域资源的起始位置,所述第二下行子带位于所述第一频域资源的结束位置,所述第一灵活子带位于所述第一下行子带和所述第一上行子带之间,所述第二灵活子带位于所述第一上行子带和所述第二下行子带之间;
    其中,上行子带中的频率单元均为上行频率单元,下行子带中的频率单元均为下行频率单元,灵活子带中的频率单元均为灵活频率单元。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述第一子带图样表示所述第一频域资源中只包括一个下行子带和一个灵活子带,或,
    所述第一子带图样表示所述第一频域资源中只包括一个灵活子带和一个上行子带。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述第一子带图样表示所述第一频域资源中只包括一个灵活子带和一个下行子带,或,
    所述第一子带图样表示所述第一频域资源中只包括一个上行子带和一个灵活子带。
  6. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述第一子带图样表示所述第一频域资源中只包括第一下行子带、灵活子带和第二下行子带,其中,所述灵活子带位于所述第一下行子带和所述第二下行子带之间,或,
    所述第一子带图样表示所述第一频域资源中只包括第一灵活子带、上行子带和第二灵活子带,其中,所述上行子带位于所述第一灵活子带和所述第二灵活子带之间。
  7. 根据权利要求3至6中任一项所述的方法,其特征在于,所述第一频域资源中一个灵活子带中的所有频率单元的传输方向相同。
  8. 根据权利要求3至7中任一项所述的方法,其特征在于,所述第二信令还包括所述第一频域资源基于所述第一子带图样确定的一个或多个子带中每个子带的位置信息。
  9. 根据权利要求8所述的方法,其特征在于,所述第二信令还包括至少一个保护带的位置信息,所述保护带位于所述第一频域资源的不同类型的子带之间。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第三信令,所述第三信令指示第二子带图样,所述第二子带图样用于更新第一频率单元集合包含的频率单元的传输方向,所述第一频率单元集合包括所述第一频域资源基于所述第一子带图样确定的灵活频率单元对应的频率单元;
    根据所述第二子带图样更新第三时频资源的传输方向,所述第三时频资源为所述第一频率单元集合中的一个频率单元和所述第一时间单元组成的时频资源。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一时间单元集合包含于第一时间段中,第一时间段以所述第一时间段的长度为周期重复。
  12. 根据权利要求11所述的方法,其特征在于,所述第一时间单元集合为所述第一时间段内的所有灵活时间单元。
  13. 根据权利要求11所述的方法,其特征在于,所述第一信令包括所述第一时间单元集合在所述第一时间段内的起始时间单元的位置和所述第一时间单元集合包含的时间单元的个数。
  14. 根据权利要求11所述的方法,其特征在于,所述第一信令包含第一比特图,所述第一比特图包含的比特与所述第一时间段中的时间单元一一对应,所述第一时间单元集合包括所述第一比特图中比特值为第一值的比特对应的时间单元。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述第一时间段为第一时隙配置周期对应的时间段,所述第一时隙配置周期为所述终端设备使用的小区级上下行时隙配置信令中包含的一个时隙配置周期。
  16. 根据权利要求11至14中任一项所述的方法,其特征在于,周期性重复的所述第一时间段中的每个第一时间段中分别包括一个所述第一时间单元集合。
  17. 根据权利要求11至14中任一项所述的方法,其特征在于,周期性重复的所述第一时间段中每N个第一时间段中的M个第一时间段中分别包括一个所述第一时间单元集合,1≤M<N。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第四信令,所述第四信令用于将所述第一时间单元集合更新为第三时间单元集合,所述第三时间单元集合为空集,所述第一子带图样在所述第三时间单元集合内生效,且在所述第一时间单元集合内不再生效;
    根据第三时间单元的传输方向确定第四时频资源的传输方向,其中,所述第四时频资源为所述第三时间单元和所述第一时域资源中的一个频率资源组成的时频资源,所述第三时间单元为所述第三时间单元集合外的任一时间单元。
  19. 一种子带配置的方法,应用于网络设备,其特征在于,包括:
    确定第一信令和第二信令,所述第一信令指示第一时间单元集合,所述第二信令指示第一子带图样,所述第一子带图样指示第一频域资源集合中包括的频率单元的传输方向,且所述第一频域资源中包括一个或多个灵活频率单元,其中,所述灵活频率单元既能用于上行传输,也能用于下行传输,所述第一频域资源为所述网络设备为终端设备配置的频率单元集合,所述第一子带图样用于确定第一时频资源的传输方向,所述第一时频资源为所述第一频域资源中的一个频率单元和第一时间单元组成的时频资源,所述第一时间单元为所述第一时间单元集合中的任一时间单元;
    向所述终端设备发送第一信令和第二信令。
  20. 根据权利要求19所述的方法,其特征在于,
    所述第一子带图样表示所述第一频域资源中的频率单元均为灵活频率单元;或,
    所述第一子带图样表示所述第一频域资源中最多包括一个下行子带、一个灵活子带和一个上行子带,其中,所述一个下行子带位于所述第一频域资源的起始位置,所述一个上行子带位于所述第一频域资源的结束位置,所述一个灵活子带位于所述一个下行子带和一个上行子带之间;或,
    所述第一子带图样表示所述第一频域资源中最多包括一个上行子带、一个灵活子带和一个下行子带,其中,所述一个上行子带位于所述第一频域资源的起始位置,所述一个下行子带位于所述第一频域资源的结束位置,所述一个灵活子带位于所述一个下行子带和一个上行子带之间;或,
    所述第一子带图样表示所述第一频域资源中最多包括第一下行子带、第一灵活子带、第一上行子带、第二灵活子带和第二下行子带,其中,所述第一下行子带位于所述第一频域资源的起始位置,所述第二下行子带位于所述第一频域资源的结束位置,所述第一灵活子带位于所述第一下行子带和所述第一上行子带之间,所述第二灵活子带位于所述第一上行子带和所述第二下行子带之间;
    其中,上行子带中的频率单元均为上行频率单元,下行子带中的频率单元均为下行频率单元,灵活子带中的频率单元均为灵活频率单元。
  21. 根据权利要求19或20所述的方法,其特征在于,
    所述第一子带图样表示所述第一频域资源中只包括一个下行子带和一个灵活子带,或,
    所述第一子带图样表示所述第一频域资源中只包括一个灵活子带和一个上行子带。
  22. 根据权利要求19或20所述的方法,其特征在于,
    所述第一子带图样表示所述第一频域资源中只包括一个灵活子带和一个下行子带,或,
    所述第一子带图样表示所述第一频域资源中只包括一个上行子带和一个灵活子带。
  23. 根据权利要求19或20所述的方法,其特征在于,
    所述第一子带图样表示所述第一频域资源中只包括第一下行子带、灵活子带和第二下行子带,其中,所述灵活子带位于所述第一下行子带和所述第二下行子带之间,或,
    所述第一子带图样表示所述第一频域资源中只包括第一灵活子带、上行子带和第二灵活子带。
  24. 根据权利要求20至23中任一项所述的方法,其特征在于,所述第一频域资源中一个灵活子带中的所有频率单元的传输方向相同。
  25. 根据权利要求20至24中任一项所述的方法,其特征在于,所述第二信令还包括所述第一频域资源基于所述第一子带图样确定的一个或多个子带中每个子带的位置信息。
  26. 根据权利要求25所述的方法,其特征在于,所述第二信令还包括至少一个保护带的位置信息,所述保护带位于所述第一频域资源的不同类型的子带之间。
  27. 根据权利要求19至26中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第三信令,所述第三信令指示第二子带图样,所述第二子带图样用于指示第一频率单元集合包含的频率单元的传输方向,所述第一频率单元集合包括所述第一频域资源基于所述第一子带图样确定的灵活频率单元对应的频率单元,所述第二子带图样用于更新第三时频资源的传输方向,所述第三时频资源为所述第一频率单元集合中的一个频率单元和所述第一时间单元组成的时频资源。
  28. 根据权利要求19至27中任一项所述的方法,其特征在于,所述第一时间单元集合包含于第一时间段中,第一时间段以所述第一时间段的长度为周期重复。
  29. 根据权利要求28所述的方法,其特征在于,所述第一时间单元集合为所述第一时间段内的所有灵活时间单元。
  30. 根据权利要求28所述的方法,其特征在于,所述第一信令包括所述第一时间单元集合在所述第一时间段内的起始时间单元的位置和所述第一时间单元集合包含的时间单元的个数。
  31. 根据权利要求28所述的方法,其特征在于,所述第一信令包含第一比特图,所述第一比特图包含的比特与所述第一时间段中的时间单元一一对应,所述第一时间单元集合包括所述第一比特图中比特值为第一值的比特对应的时间单元。
  32. 根据权利要求28至31中任一项所述的方法,其特征在于,所述第一时间段为第一时隙配置周期对应的时间段,所述第一时隙配置周期为所述终端设备使用的小区级上下行时隙配置信令中包含的一个时隙配置周期。
  33. 根据权利要求28至32中任一项所述的方法,其特征在于,周期性重复的所述第一时间段中的每个第一时间段中分别包括一个所述第一时间单元集合。
  34. 根据权利要求28至32中任一项所述的方法,其特征在于,周期性重复的所述第一时间段中每N个第一时间段中的M个第一时间段中分别包括一个所述第一时间单元集合,1≤M<N。
  35. 根据权利要求19至34中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第四信令,所述第四信令用于将所述第一时间单元集合更新为第三时间单元集合,所述第三时间单元集合为空集,所述第一子带图样在所述第三时间单元集合内生效,且在所述第一时间单元集合内不再生效。
  36. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自网络设备的第一信令和第二信令,所述第一信令指示第一时间单元集合,所述第二信令指示第一子带图样,所述第一子带图样指示第一频域资源中包括的频率单元的传输方向,且所述第一频域资源中包括一个或多个灵活频率单元,其中,所述灵活频率单元既能用于上行传输,也能用于下行传输,所述第一频域资源为所述网络设备为终端设备配置的频率单元集合;
    处理单元,用于根据所述第一子带图样确定第一时频资源的传输方向,所述第一时频资源为所述第一频域资源中的一个频率单元和所述第一时间单元组成的时频资源,所述第一时间单元为所述第一时间单元集合中的任一时间单元。
  37. 根据权利要求36所述的通信装置,其特征在于,所述处理单元,还用于根据第二时间单元的传输方向确定第二时频资源的传输方向,所述第二时频资源为所述第一频域资源中的一个频率单元和所述第二时间单元组成的时频资源,所述第二时间单元为所述第一时间单元集合外的任一时间单元。
  38. 根据权利要求36或37所述的通信装置,其特征在于,
    所述第一子带图样表示所述第一频域资源中的频率单元均为灵活频率单元;或,
    所述第一子带图样表示所述第一频域资源中最多包括一个下行子带、一个灵活子带和一个上行子带,其中,所述一个下行子带位于所述第一频域资源的起始位置,所述一个上行子带位于所述第一频域资源的结束位置,所述一个灵活子带位于所述一个下行子带和一个上行子带之间;或,
    所述第一子带图样表示所述第一频域资源中最多包括一个上行子带、一个灵活子带和一个下行子带,其中,所述一个上行子带位于所述第一频域资源的起始位置,所述一个下行子带位于所述第一频域资源的结束位置,所述一个灵活子带位于所述一个下行子带和一个上行子带之间;或,
    所述第一子带图样表示所述第一频域资源中最多包括第一下行子带、第一灵活子带、第一上行子带、第二灵活子带和第二下行子带,其中,所述第一下行子带位于所述第一频域资源的起始位置,所述第二下行子带位于所述第一频域资源的结束位置,所述第一灵活子带位于所述第一下行子带和所述第一上行子带之间,所述第二灵活子带位于所述第一上行子带和所述第二下行子带之间;
    其中,上行子带中的频率单元均为上行频率单元,下行子带中的频率单元均为下行频率单元,灵活子带中的频率单元均为灵活频率单元。
  39. 根据权利要求36至38中任一项所述的通信装置,其特征在于,
    所述第一子带图样表示所述第一频域资源中只包括一个下行子带和一个灵活子带,或,
    所述第一子带图样表示所述第一频域资源中只包括一个灵活子带和一个上行子带。
  40. 根据权利要求36至38中任一项所述的通信装置,其特征在于,
    所述第一子带图样表示所述第一频域资源中只包括一个灵活子带和一个下行子带,或,
    所述第一子带图样表示所述第一频域资源中只包括一个上行子带和一个灵活子带。
  41. 根据权利要求36至38中任一项所述的通信装置,其特征在于,
    所述第一子带图样表示所述第一频域资源中只包括第一下行子带、灵活子带和第二下行子带,其中,所述灵活子带位于所述第一下行子带和所述第二下行子带之间,或,
    所述第一子带图样表示所述第一频域资源中只包括第一灵活子带、上行子带和第二灵活子带。
  42. 根据权利要求38至41中任一项所述的通信装置,其特征在于,所述第一频域资源中一个灵活子带中的所有频率单元的传输方向相同。
  43. 根据权利要求38至42中任一项所述的通信装置,其特征在于,所述第二信令还包括所述第一频域资源基于所述第一子带图样确定的一个或多个子带中每个子带的位置信息。
  44. 根据权利要求43所述的通信装置,其特征在于,所述第二信令还包括至少一个保护带的位置信息,所述保护带位于所述第一频域资源的不同类型的子带之间。
  45. 根据权利要求36至44中任一项所述的通信装置,其特征在于,
    所述通信单元,还用于接收来自所述网络设备的第三信令,所述第三信令指示第二子带图样,所述第二子带图样用于更新第一频率单元集合包含的频率单元的传输方向,所述第一频率单元集合包括所述第一频域资源基于所述第一子带图样确定的灵活频率单元对应的频率单元;
    所述处理单元,还用于根据所述第二子带图样更新第三时频资源的传输方向,所述第三时频资源为所述第一频率单元集合中的一个频率单元和所述第一时间单元组成的时频资源。
  46. 根据权利要求36至45中任一项所述的通信装置,其特征在于,所述第一时间单元集合包含于第一时间段中,第一时间段以所述第一时间段的长度为周期重复。
  47. 根据权利要求46所述的通信装置,其特征在于,所述第一时间单元集合为所述第一时间段内的所有灵活时间单元。
  48. 根据权利要求46所述的通信装置,其特征在于,所述第一信令包括所述第一时间单元集合在所述第一时间段内的起始时间单元的位置和所述第一时间单元集合包含的时间单元的个数。
  49. 根据权利要求46所述的通信装置,其特征在于,所述第一信令包含第一比特图,所述第一比特图包含的比特与所述第一时间段中的时间单元一一对应,所述第一时间单元集合包括所述第一比特图中比特值为第一值的比特对应的时间单元。
  50. 根据权利要求46至49中任一项所述的通信装置,其特征在于,所述第一时间段为第一时隙配置周期对应的时间段,所述第一时隙配置周期为所述终端设备使用的小区级上下行时隙配置信令中包含的一个时隙配置周期。
  51. 根据权利要求46至50中任一项所述的通信装置,其特征在于,周期性重复的所述第一时间段中的每个第一时间段中分别包括一个所述第一时间单元集合。
  52. 根据权利要求46至50中任一项所述的通信装置,其特征在于,周期性重复的所述第一时间段中每N个第一时间段中的M个第一时间段中分别包括一个所述第一时间单元集合,1≤M<N。
  53. 根据权利要求36至52中任一项所述的通信装置,其特征在于,
    所述通信单元,还用于接收来自所述网络设备的第四信令,所述第四信令用于将所述第一时间单元集合更新为第三时间单元集合,所述第三时间单元集合为空集,所述第一子带图样在所述第三时间单元集合内生效,且在所述第一时间单元集合内不再生效;
    所述处理单元,还用于根据第三时间单元的传输方向确定第四时频资源的传输方向,其中,所述第四时频资源为所述第三时间单元和所述第一时域资源中的一个频率资源组成的时频资源,所述第三时间单元为所述第三时间单元集合外的任一时间单元。
  54. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一信令和第二信令,所述第一信令指示第一时间单元集合,所述第二信令指示第一子带图样,所述第一子带图样指示第一频域资源集合中包括的频率单元的传输方向,且所述第一频域资源中包括一个或多个灵活频率单元,其中,所述灵活频率单元既能用于上行传输,也能用于下行传输,所述第一频域资源为网络设备为终端设备配置的频率单元集合,所述第一子带图样用于确定第一时频资源的传输方向,所述第一时频资源为所述第一频域资源中的一个频率单元和第一时间单元组成的时频资源,所述第一时间单元为所述第一时间单元集合中的任一时间单元;
    通信单元,用于向所述终端设备发送第一信令和第二信令。
  55. 根据权利要求54所述的通信装置,其特征在于,
    所述第一子带图样表示所述第一频域资源中的频率单元均为灵活频率单元;或,
    所述第一子带图样表示所述第一频域资源中最多包括一个下行子带、一个灵活子带和一个上行子带,其中,所述一个下行子带位于所述第一频域资源的起始位置,所述一个上行子带位于所述第一频域资源的结束位置,所述一个灵活子带位于所述一个下行子带和一个上行子带之间;或,
    所述第一子带图样表示所述第一频域资源中最多包括一个上行子带、一个灵活子带和一个下行子带,其中,所述一个上行子带位于所述第一频域资源的起始位置,所述一个下行子带位于所述第一频域资源的结束位置,所述一个灵活子带位于所述一个下行子带和一个上行子带之间;或,
    所述第一子带图样表示所述第一频域资源中最多包括第一下行子带、第一灵活子带、第一上行子带、第二灵活子带和第二下行子带,其中,所述第一下行子带位于所述第一频域资源的起始位置,所述第二下行子带位于所述第一频域资源的结束位置,所述第一灵活子带位于所述第一下行子带和所述第一上行子带之间,所述第二灵活子带位于所述第一上行子带和所述第二下行子带之间;
    其中,上行子带中的频率单元均为上行频率单元,下行子带中的频率单元均为下行频率单元,灵活子带中的频率单元均为灵活频率单元。
  56. 根据权利要求54或55所述的通信装置,其特征在于,
    所述第一子带图样表示所述第一频域资源中只包括一个下行子带和一个灵活子带,或,
    所述第一子带图样表示所述第一频域资源中只包括一个灵活子带和一个上行子带。
  57. 根据权利要求54或55所述的通信装置,其特征在于,
    所述第一子带图样表示所述第一频域资源中只包括一个灵活子带和一个下行子带,或,
    所述第一子带图样表示所述第一频域资源中只包括一个上行子带和一个灵活子带。
  58. 根据权利要求54或55所述的通信装置,其特征在于,
    所述第一子带图样表示所述第一频域资源中只包括第一下行子带、灵活子带和第二下行子带,其中,所述灵活子带位于所述第一下行子带和所述第二下行子带之间,或,
    所述第一子带图样表示所述第一频域资源中只包括第一灵活子带、上行子带和第二灵活子带。
  59. 根据权利要求55至58中任一项所述的通信装置,其特征在于,所述第一频域资源中一个灵活子带中的所有频率单元的传输方向相同。
  60. 根据权利要求55至59中任一项所述的通信装置,其特征在于,所述第二信令还包括所述第一频域资源基于所述第一子带图样确定的一个或多个子带中每个子带的位置信息。
  61. 根据权利要求60所述的通信装置,其特征在于,所述第二信令还包括至少一个保护带的位置信息,所述保护带位于所述第一频域资源的不同类型的子带之间。
  62. 根据权利要求54至61中任一项所述的通信装置,其特征在于,
    所述通信单元,还用于向所述终端设备发送第三信令,所述第三信令指示第二子带图样,所述第二子带图样用于指示第一频率单元集合包含的频率单元的传输方向,所述第一频率单元集合包括所述第一频域资源基于所述第一子带图样确定的灵活频率单元对应的频率单元,所述第二子带图样用于更新第三时频资源的传输方向,所述第三时频资源为所述第一频率单元集合中的一个频率单元和所述第一时间单元组成的时频资源。
  63. 根据权利要求54至62中任一项所述的通信装置,其特征在于,所述第一时间单元集合包含于第一时间段中,第一时间段以所述第一时间段的长度为周期重复。
  64. 根据权利要求63所述的通信装置,其特征在于,所述第一时间单元集合为所述第一时间段内的所有灵活时间单元。
  65. 根据权利要求63所述的通信装置,其特征在于,所述第一信令包括所述第一时间单元集合在所述第一时间段内的起始时间单元的位置和所述第一时间单元集合包含的时间单元的个数。
  66. 根据权利要求63所述的通信装置,其特征在于,所述第一信令包含第一比特图,所述第一比特图包含的比特与所述第一时间段中的时间单元一一对应,所述第一时间单元集合包括所述第一比特图中比特值为第一值的比特对应的时间单元。
  67. 根据权利要求63至66中任一项所述的通信装置,其特征在于,所述第一时间段为第一时隙配置周期对应的时间段,所述第一时隙配置周期为所述终端设备使用的小区级上下行时隙配置信令中包含的一个时隙配置周期。
  68. 根据权利要求63至67中任一项所述的通信装置,其特征在于,周期性重复的所述第一时间段中的每个第一时间段中分别包括一个所述第一时间单元集合。
  69. 根据权利要求63至67中任一项所述的通信装置,其特征在于,周期性重复的所述第一时间段中每N个第一时间段中的M个第一时间段中分别包括一个所述第一时间单元集合,1≤M<N。
  70. 根据权利要求54至69中任一项所述的通信装置,其特征在于,
    所述通信单元,还用于向所述终端设备发送第四信令,所述第四信令用于将所述第一时间单元集合更新为第三时间单元集合,所述第三时间单元集合为空集,所述第一子带图样在所述第三时间单元集合内生效,且在所述第一时间单元集合内不再生效。
  71. 一种通信装置,其特征在于,所述通信装置包括至少一个处理器和至少一个存储器,所述至少一个存储器用于存储计算机程序或指令,所述至少一个处理器用于执行存储器中的所述计算机程序或指令,使得权利要求1至18中任一项所述的方法被执行,或者,使得权利要求19至35中任一项所述的方法被执行。
  72. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,如权利要求1至18中任一项所述的方法被执行,如权利要求19至35中任一项所述的方法被执行。
  73. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,如权利要求1至18中任一项所述的方法被执行,如权利要求19至35中任一项所述的方法被执行。
PCT/CN2023/129189 2022-11-04 2023-11-02 子带配置的方法和通信装置 WO2024094091A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211377097.9 2022-11-04
CN202211377097 2022-11-04
CN202310189176.5A CN117998620A (zh) 2022-11-04 2023-02-17 子带配置的方法和通信装置
CN202310189176.5 2023-02-17

Publications (1)

Publication Number Publication Date
WO2024094091A1 true WO2024094091A1 (zh) 2024-05-10

Family

ID=90894283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129189 WO2024094091A1 (zh) 2022-11-04 2023-11-02 子带配置的方法和通信装置

Country Status (2)

Country Link
CN (1) CN117998620A (zh)
WO (1) WO2024094091A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210377938A1 (en) * 2020-05-28 2021-12-02 Qualcomm Incorporated Frequency domain allocation techniques
CN114846886A (zh) * 2022-03-29 2022-08-02 北京小米移动软件有限公司 确定传输方向的方法、装置、通信设备及存储介质
CN114846885A (zh) * 2022-03-29 2022-08-02 北京小米移动软件有限公司 确定传输方向的方法、装置、通信设备及存储介质
CN115175336A (zh) * 2021-04-07 2022-10-11 维沃移动通信有限公司 资源确定方法、装置、终端、网络侧设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210377938A1 (en) * 2020-05-28 2021-12-02 Qualcomm Incorporated Frequency domain allocation techniques
CN115175336A (zh) * 2021-04-07 2022-10-11 维沃移动通信有限公司 资源确定方法、装置、终端、网络侧设备及存储介质
CN114846886A (zh) * 2022-03-29 2022-08-02 北京小米移动软件有限公司 确定传输方向的方法、装置、通信设备及存储介质
CN114846885A (zh) * 2022-03-29 2022-08-02 北京小米移动软件有限公司 确定传输方向的方法、装置、通信设备及存储介质

Also Published As

Publication number Publication date
CN117998620A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
US11324020B2 (en) Data scheduling and transmission for different logical channels
EP4002945A1 (en) Method for configuring sidelink resource in communication system
EP3723434B1 (en) Method and apparatus for reconfiguring bandwidth part in sidelink communication
WO2020047922A1 (zh) 配置信息的传输方法和终端设备
US20210160852A1 (en) Resource configuration method and terminal device
CN108464048A (zh) 数据传输的方法、终端及基站
WO2020025042A1 (zh) 资源配置的方法和终端设备
JP2019502278A (ja) 無線通信の方法、ネットワーク装置及び端末機器
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
JP7503656B2 (ja) リソース決定方法及び装置
WO2022061544A1 (zh) 无线通信方法、终端设备和网络设备
US20230403687A1 (en) Communication Method and Apparatus
US10461822B2 (en) Communication method, network device, and terminal device
CN113766575A (zh) 通信方法及通信设备
WO2024094091A1 (zh) 子带配置的方法和通信装置
US20240063972A1 (en) Radio base station and terminal
CN116783861A (zh) 网络设备、终端设备及其方法
JP2024512823A (ja) 通信方法および通信装置
WO2024032727A1 (zh) 资源配置的方法和通信装置
WO2024067656A1 (zh) 上行传输的方法和通信装置
WO2024067617A1 (zh) 资源配置的方法及装置
WO2024174665A1 (zh) 通信方法和通信装置
WO2023134678A1 (zh) 通信方法和通信装置
WO2024067499A1 (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885017

Country of ref document: EP

Kind code of ref document: A1