WO2020073991A1 - 数据传输方法和通信装置 - Google Patents

数据传输方法和通信装置 Download PDF

Info

Publication number
WO2020073991A1
WO2020073991A1 PCT/CN2019/110635 CN2019110635W WO2020073991A1 WO 2020073991 A1 WO2020073991 A1 WO 2020073991A1 CN 2019110635 W CN2019110635 W CN 2019110635W WO 2020073991 A1 WO2020073991 A1 WO 2020073991A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource units
resource
dmrs
index
dmrs ports
Prior art date
Application number
PCT/CN2019/110635
Other languages
English (en)
French (fr)
Inventor
刘永
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020073991A1 publication Critical patent/WO2020073991A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application relates to the field of communication, and more specifically, to a data transmission method and communication device.
  • the demodulation reference signal (DMRS) is used to demodulate the physical downlink shared channel (PDSCH).
  • DMRS demodulation reference signal
  • DMRS supports up to 12 orthogonal ports.
  • the existing system can realize the transmission of up to 12 orthogonal data streams simultaneously.
  • the spectral efficiency of the 12-port data transmission is far from satisfying many scenarios of NR.
  • the new scenario of NR wireless broadband to the home (Wireless ToTo Thex, WTTx) that requires up to 32/48/64 streaming transmission, the rate requirements 300Mbps UAV real-time transmission scenarios, autonomous driving scenarios, etc.
  • WTTx Wireless ToTo Thex
  • SE spectrum efficiency
  • the DMRS design rules stipulated in the existing agreement may become a bottleneck for further improvement of spectrum efficiency.
  • the existing DMRS design rules when implementing 32/48/64 ports, the overhead will increase sharply, and even 32/48/64 ports cannot be realized.
  • DMRS pilot design needs to be reconsidered for a variety of scenarios where NR requires high spectral efficiency.
  • the present application provides a data transmission method and a communication device, by performing a complete mapping of the DMRS ports supported by the system on multiple resource units (for example, multiple time slots) instead of the physical resource blocks defined in each LTE (Physical resource block, PRB) maps each DMRS port, which can reduce the overhead of DMRS on a single PRB (PRB defined in LTE) and improve spectrum efficiency.
  • LTE Physical resource block
  • a data transmission method including: a sending end determining a correspondence between at least one demodulation reference signal DMRS port to be scheduled and at least one resource unit according to a mapping rule, where the mapping rule is used to indicate N Correspondence between DMRS ports and resource units, where N is the maximum number of DMRS ports supported by the system, there is a complete mapping of the N DMRS ports on M resource units, N ⁇ 1, M ⁇ 2, and N and M is an integer, and the at least one DMRS port belongs to the N DMRS ports;
  • the sending end sends the data to be transmitted and the DMRS on the data channel according to the correspondence between the at least one demodulation reference signal DMRS port and the at least one resource unit.
  • the at least one resource unit may be a resource unit for mapping a DMRS port, or may be a resource unit scheduled by a network device.
  • the resource unit for mapping the DMRS port is part or all of all resource units included in the system, specifically may be part or all of the resource units scheduled by the network device, or may include the system Among all the included resource units, other resource units than those scheduled by the network device.
  • the mapping rule may indicate the correspondence between the N DMRS ports and all resource units included in the system, or may indicate the correspondence between the N DMRS ports and the resource units used to map the DMRS ports.
  • the time-frequency resources formed by the M resource units are different from the PRB defined in LTE, that is, the mapping rule in this application indicates that each DMRS port is not mapped in each scheduling unit (that is, defined in LTE PRB).
  • the resource unit in this application may have the following two definitions:
  • the resource unit in this application consists of 12 * Y subcarriers in the frequency domain and X time slots in the time domain. Wherein X and Y can be any integer greater than or equal to 1.
  • the M resource units are composed of 12 * Y * M subcarriers in the frequency domain and X time slots in the time domain, or the M resource units are composed of 12 * Y subcarriers in the frequency domain It consists of M * X time slots in the time domain. Further, 12 * M * Y subcarriers constituting the M resource units are continuous in the frequency domain, or M * X time slots constituting the M resource units are continuous in the time domain.
  • the time slot may be a transmission time interval (transmission time interval, TTI) in LTE, or a short TTI at the symbol level, or a short TTI with a large subcarrier interval in a high-frequency system, or a slot or NR in NR. Mini-slots, etc., which are not limited in this application.
  • a slot in the NR may be composed of 12 or 14 orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the PRB defined in NR includes 12 consecutive subcarriers in the frequency domain. Therefore, it can be understood that the resource unit in this application may be composed of Y PRBs and X time slots. Accordingly, the M resource units are composed of M * Y PRBs and X time slots, or the M resource units are composed of Y PRBs and M * X time slots.
  • the M resource units are composed of M * Y PRBs and X time slots
  • the index of the PRB is used as the index of the resource unit corresponding to the PRB.
  • the M resource units are composed of Y PRBs and M * X time slots
  • the index of the time slot is used as the resource unit corresponding to the time slot index of.
  • the resource unit index includes two parts: an index in the time domain and an index in the frequency domain, where the index of the resource unit in the time domain is the time slot corresponding to the resource unit The index of the resource unit in the frequency domain is the index of the PRB corresponding to the resource unit.
  • the resource unit in this application is composed of 12 * W consecutive subcarriers in the frequency domain and N_s * Q symbols in the time domain.
  • N_s is the number of at least one scheduling symbol corresponding to the non-slot scheduling scenario.
  • W and Q can be any integer greater than or equal to 1.
  • the M resource units are composed of 12 * M * W subcarriers and N_s * Q symbols in the time domain, or the M resource units are composed of 12 * W subcarriers in the frequency domain and the time domain Composed of N_s * Q * M symbols. Further, the 12 * M * W subcarriers constituting the M resource units are continuous in the frequency domain, or the N_s * Q * M symbols constituting the M resource units are continuous in the time domain.
  • the number N_s of at least one scheduling symbol corresponding to the non-slot scheduling scenario may be determined according to non-slot scheduling time domain resource configuration information, which is not limited in this application.
  • one N_s in the NR may be composed of 2, 4 or 7 OFDM symbols.
  • the PRB index is used as the The index of the resource unit corresponding to the PRB.
  • the scheduling will consist of N_s symbols
  • the granularity index is used as the index of the resource unit corresponding to the scheduling granularity.
  • the resource unit index includes two parts: an index in the time domain and an index in the frequency domain, where the index of the resource unit in the time domain is the schedule corresponding to the resource unit The index of granularity, the index of the resource unit in the frequency domain is the index of the PRB corresponding to the resource unit.
  • N DMRS ports are completely mapped on M resource units instead of mapping all DMRS ports on each PRB (PRB defined in LTE), which can reduce a single PRB (defined in LTE) PRB) on the DMRS overhead, improve spectrum efficiency.
  • any one of the N DMRS ports uniquely corresponds to one of the M resource units. Therefore, the spectrum efficiency can be further improved.
  • At least two of the M resource units correspond to different numbers of DMRS ports, or any two of the M resource units correspond to Have the same number of DMRS ports; and / or,
  • At least two of the N DMRS ports occupy different number of resource particles (resources, elements, REs), or the number of REs occupied by any two of the N DMRS ports is the same; and / or
  • the total number of REs used for mapping DMRS ports in at least two resource units of the M resource units is different, or the total number of REs used for mapping DMRS ports in any two resource units of the M resource units is the same.
  • the M resource units are continuous in the frequency domain or the time domain.
  • mapping rule between the DMRS port and the resource unit is simpler, and the processing complexity of the sending end and the receiving end can be reduced.
  • each of the M resource units corresponds to at least one of the N DMRS ports.
  • the correspondence between the N DMRS ports and resource units is any one of the following:
  • the index of any DMRS port corresponding to the resource unit with a smaller index is smaller than the index of any DMRS port corresponding to the resource unit with a larger index
  • the index of any DMRS port corresponding to the resource unit with a smaller index is greater than the index of any DMRS port corresponding to the resource unit with a larger index.
  • the index of any DMRS port corresponding to the resource unit with a smaller index is less than the index of any DMRS port corresponding to the resource unit with a larger index, or , The index of any DMRS port corresponding to a resource unit with a smaller index is greater than the index of any DMRS port corresponding to a resource unit with a larger index;
  • i 0, 1, ..., N-1
  • k 0, 1, 2, ...
  • j is an integer and j ⁇ [0, 1, ..., M-1].
  • the maximum value of k may be: or, Or the maximum value of k is a preset value, which may be an empirical value.
  • the N DMRS ports are all mapped to some resource units of the M resource units.
  • resource units with an index of odd or even number map the N DMRS ports, or MP with a smaller or larger index
  • resource units with an odd or even index among the M resource units are mapped to the N DMRS ports, or an MP with a smaller or larger index Resource units map the N DMRS ports.
  • the method further includes:
  • the sending end sends first indication information to the receiving end
  • the sending end receives the first indication information sent by the receiving end;
  • the first indication information is used to indicate the mapping rule.
  • the sending end or the receiving end may determine the mapping rule.
  • mapping rule may be specified by a protocol or predefined.
  • the first indication information further includes time-frequency resource information of each DMRS port in the corresponding resource unit of the at least one DMRS port.
  • mapping rule is also used to indicate the RE information occupied by each DMRS port of the N DMRS ports in the corresponding resource unit.
  • the mapping rule may indicate which REs in its corresponding resource unit each DMRS port occupies.
  • time-frequency resource information of each DMRS port in the corresponding resource unit of the N DMRS ports may also be defined in advance, which is not limited in this application.
  • the first indication information may be sent by downlink control information (downlink control information, DCI), or by other signaling, such as radio resource control (radio resource control (RRC) or media access control control unit (media access control unit) control, control element, MAC, CE), etc., this application does not limit how to send the first indication information.
  • the first indication information may be sent through other signaling such as uplink control information (uplink control information, UCI).
  • the method further includes:
  • the sending end sends second indication information to the receiving end, or the sending end receives the second indication information sent by the receiving end; wherein the second indication information is used to indicate the at least one Resource unit, wherein the at least one resource unit is a resource unit for mapping the at least one DMRS port.
  • the second indication information may include any one of the following information:
  • the second indication information may be an index in the time domain and / or frequency domain of the resource unit used to map the DMRS port.
  • the resource unit for mapping the DMRS port is an odd or even resource unit.
  • the second indication information as an odd resource unit as an example, it can be determined according to the second indication information that the resource unit for mapping the DMRS port is an odd numbered index in the time and / or frequency domain in all resource units included in the system
  • the resource unit, or the resource unit for mapping the DMRS port is a resource unit with an odd index on the time domain and / or frequency domain among the resource units scheduled by the network device.
  • the resource unit index% M t
  • the resource unit belongs to the at least one resource unit.
  • the index of the resource unit may be an index in the time domain and / or the frequency domain. It should be understood that the value of M may be predefined or notified to the terminal device after being determined by the network device.
  • the second indication information may be sent through downlink control information (downlink control information, DCI), or through other signaling, such as radio resource control (radio resource control (RRC) or media access control control unit (media access control control, control element, MAC, CE), etc., this application does not limit how to send the second instruction information.
  • the second indication information may be sent through other signaling such as UCI.
  • the mapping rule is also used to indicate whether subcarriers used to map the same DMRS port are offset in two sets of resource units that are continuous in the time domain, and in The offset when there is an offset, where the two groups of resource units have the same position in the frequency domain, and each group of resource units includes M resource units, and each group of resource units has the N DMRS ports.
  • the mapping rule is also used to indicate whether two adjacent resource units are used to map whether the subcarriers of the same port have an offset and the offset in the presence of an offset.
  • the two adjacent resources The positions of the units in the frequency domain are the same, and M resource units are separated in the time domain;
  • the mapping rule is also used to indicate whether the symbols used to map the same DMRS port have offsets in two consecutive resource units in the frequency domain, and the offsets in the presence of offsets, where,
  • the two groups of resource units have the same position in the time domain, and each group of resource units includes M resource units, and each group of resource units has a complete mapping of the N DMRS ports; or,
  • the mapping rule is also used to indicate whether the symbols used to map the same port in the two adjacent resource units have an offset and the offset in the presence of the offset, the two adjacent resource units The positions in the time domain are the same, and M resource units are spaced in the frequency domain.
  • the symbol may be OFDM, but this embodiment of the present application does not limit this.
  • two resource units are separated by M resource units in the time domain means that the two resource units are separated by M resource units from the start position or the end position in the time domain.
  • two resource units are separated by M resource units in the frequency domain means that the two resource units are separated by M resource units from the start position or the end position in the frequency domain.
  • a data transmission method which includes: the receiving end determines a correspondence between at least one demodulation reference signal DMRS port to be scheduled and at least one resource unit according to a mapping rule, wherein the mapping rule Used to indicate the correspondence between N DMRS ports and resource units, where N is the maximum number of DMRS ports supported by the system, and there is a complete mapping of the N DMRS ports on M resource units, N ⁇ 1, M ⁇ 2 , And N and M are both integers, and the at least one DMRS port belongs to the N DMRS ports;
  • the receiving end receives a data channel, and the data channel carries data to be transmitted and DMRS;
  • the receiving end demodulates the data to be transmitted according to the correspondence between the at least one demodulation reference signal DMRS port and the at least one resource unit.
  • N DMRS ports are completely mapped on M resource units, instead of mapping all DMRS ports on each PRB (PRB defined in LTE), which can reduce a single PRB (defined in LTE) PRB) on the DMRS overhead, improve spectrum efficiency.
  • any one of the N DMRS ports uniquely corresponds to one of the M resource units. Therefore, the spectrum efficiency can be further improved.
  • the number of DMRS ports corresponding to at least two of the M resource units is different, or, any two of the M resource units correspond to Have the same number of DMRS ports; and / or,
  • At least two DMRS ports of the N DMRS ports occupy different numbers of resource particles REs, or any two DMRS ports of the N DMRS ports occupy the same RE number; and / or
  • the total number of REs used for mapping DMRS ports in at least two resource units of the M resource units is different, or the total number of REs used for mapping DMRS ports in any two resource units of the M resource units is the same.
  • the M resource units are continuous in the frequency domain or the time domain.
  • mapping rule between the DMRS port and the resource unit is simpler, and the processing complexity of the sending end and the receiving end can be reduced.
  • each of the M resource units corresponds to at least one DMRS port of the N DMRS ports.
  • the correspondence between the N DMRS ports and resource units is any one of the following:
  • the index of any DMRS port corresponding to the resource unit with a smaller index is smaller than the index of any DMRS port corresponding to the resource unit with a larger index
  • the index of any DMRS port corresponding to the resource unit with a smaller index is greater than the index of any DMRS port corresponding to the resource unit with a larger index.
  • the index of any DMRS port corresponding to the resource unit with a smaller index is less than the index of any DMRS port corresponding to the resource unit with a larger index, or , The index of any DMRS port corresponding to a resource unit with a smaller index is greater than the index of any DMRS port corresponding to a resource unit with a larger index;
  • i 0, 1, ..., N-1
  • k 0, 1, 2, ...
  • j is an integer and j ⁇ [0, 1, ..., M-1].
  • the maximum value of k may be: or, Or the maximum value of k is a preset value, which may be an empirical value.
  • the N DMRS ports are all mapped to some resource units of the M resource units.
  • resource units with an odd or even index among the M resource units are mapped to the N DMRS ports, or an MP with a smaller or larger index Resource units map the N DMRS ports.
  • the method further includes:
  • the receiving end sends first indication information to the sending end, or,
  • the receiving end receives the first indication information sent by the sending end
  • the first indication information is used to indicate the mapping rule.
  • mapping rule may be specified by a protocol or predefined.
  • the first indication information further includes time-frequency resource information of each DMRS port in the corresponding resource unit of the at least one DMRS port.
  • the mapping rule is also used to indicate the RE information occupied by each DMRS port of the N DMRS ports in the corresponding resource unit.
  • time-frequency resource information of each DMRS port in the corresponding resource unit of the N DMRS ports may also be defined in advance, which is not limited in this application.
  • the first indication information may be sent through DCI, or may be sent through other signaling, such as RRC or MAC CE.
  • the application does not limit how to send the first indication information.
  • the first indication information may be sent through other signaling such as UCI.
  • the method further includes:
  • the receiving end sends second indication information to the sending end, or,
  • the receiving end receives the second indication information sent by the sending end
  • the second indication information is used to indicate the at least one resource unit, wherein the at least one resource unit is a resource unit for mapping the at least one DMRS port.
  • the second indication information may include any one of the following information:
  • the resource unit index% M t
  • the resource unit belongs to the at least one resource unit.
  • the second indication information may be sent through DCI, or may be sent through other signaling, such as RRC or MAC CE.
  • the application does not limit how to send the second indication information.
  • the second indication information may be sent through other signaling such as UCI.
  • the mapping rule is also used to indicate whether the subcarriers used to map the same DMRS port have offsets in the two consecutive resource units in the time domain, and the offsets in the presence of offsets.
  • the two groups of resource units have the same position in the frequency domain, and each group of resource units includes M resource units, and each group of resource units has a complete mapping of the N DMRS ports; or,
  • the mapping rule is also used to indicate whether two adjacent resource units are used to map whether the subcarriers of the same port have an offset and the offset in the presence of an offset.
  • the two adjacent resources The positions of the units in the frequency domain are the same, and M resource units are separated in the time domain;
  • the mapping rule is also used to indicate whether the symbols used to map the same DMRS port have offsets in two consecutive resource units in the frequency domain, and the offsets in the presence of offsets, where,
  • the two groups of resource units have the same position in the time domain, and each group of resource units includes M resource units, and each group of resource units has a complete mapping of the N DMRS ports; or,
  • the mapping rule is also used to indicate whether the symbols used to map the same port in the two adjacent resource units have an offset and the offset in the presence of the offset, the two adjacent resource units The positions in the time domain are the same, and M resource units are spaced in the frequency domain.
  • the symbol may be OFDM, but this embodiment of the present application does not limit this.
  • two resource units are separated by M resource units in the time domain means that the two resource units are separated by M resource units from the start position or the end position in the time domain.
  • two resource units are separated by M resource units in the frequency domain means that the two resource units are separated by M resource units from the start position or the end position in the frequency domain.
  • the sending end may be a network device, and the receiving end may be a terminal device; or, the sending end may be a terminal device, and the receiving end may be a network device.
  • a communication device including various modules or units for performing the method in the first aspect or any possible implementation manner of the first aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory, and may be used to execute instructions in the memory to implement the first aspect or the method in any possible implementation manner of the first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled to the communication interface, and the communication interface is controlled to implement communication with other network elements.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver or an input / output interface.
  • the communication device is a chip configured in the terminal device.
  • the communication interface may be an input / output interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver or an input / output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input / output interface.
  • the transceiver may be a transceiver circuit.
  • the input / output interface may be an input / output circuit.
  • a communication device including various modules or units for performing the method in the second aspect or any possible implementation manner of the second aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory and can be used to execute the instructions in the memory to implement the method in the second aspect or any possible implementation manner of the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled to the communication interface, and the communication interface is controlled to implement communication with other network elements.
  • the communication device is a network device.
  • the communication interface may be a transceiver or an input / output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input / output interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver or an input / output interface.
  • the communication device is a chip configured in the terminal device.
  • the communication interface may be an input / output interface.
  • the transceiver may be a transceiver circuit.
  • the input / output interface may be an input / output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor performs any possible implementation manner of the first aspect to the second aspect and the first aspect to the second aspect The method.
  • the processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, the receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit at different times, respectively.
  • the embodiments of the present application do not limit the specific implementation manner of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through the receiver and transmit signals through the transmitter to perform any of the first aspect to the second aspect and any possible implementation manner of the first aspect to the second aspect Methods.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor are provided separately.
  • the memory may be non-transitory (non-transitory) memory, such as read-only memory (read only memory, ROM), which may be integrated with the processor on the same chip, or may be set in different On the chip, the embodiments of the present application do not limit the type of memory and the manner of setting the memory and the processor.
  • non-transitory memory such as read-only memory (read only memory, ROM)
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the processed output data may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the processing device in the eighth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc .; when implemented by software
  • the processor may be a general-purpose processor, implemented by reading software codes stored in a memory, the memory may be integrated in the processor, or may be located outside the processor and exist independently.
  • a computer program product includes: a computer program (may also be referred to as code or instructions) that, when the computer program is executed, causes a computer to perform the first aspect to the The method in the second aspect and any possible implementation manner of the first aspect to the second aspect.
  • a computer program may also be referred to as code or instructions
  • a computer-readable medium that stores a computer program (also may be referred to as code or instructions) that when executed on a computer, causes the computer to perform the first to the first aspects
  • a computer program also may be referred to as code or instructions
  • a communication system including the foregoing network device and terminal device.
  • FIG. 1 is a schematic block diagram of a communication system applicable to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a data transmission method provided by the present application.
  • FIG. 3 is a schematic diagram of an exemplary correspondence between DMRS ports and resource units.
  • FIG. 4 is a schematic diagram of yet another exemplary correspondence between DMRS ports and resource units.
  • FIG. 5 is a schematic diagram of another exemplary correspondence between DMRS ports and resource units.
  • FIG. 6 is a schematic diagram of an exemplary correspondence between DMRS ports and resource units.
  • FIG. 7 is a schematic diagram of yet another exemplary correspondence between DMRS ports and resource units.
  • FIG. 8 is a schematic diagram of an exemplary correspondence between DMRS ports and resource units.
  • FIG. 9 is a schematic diagram of an exemplary correspondence between DMRS ports and resource units.
  • FIG. 10 is a schematic diagram of an exemplary correspondence between DMRS ports and resource units.
  • FIG. 11 is a schematic flowchart of another data transmission method provided by the present application.
  • FIG. 12 is a schematic flowchart of another data transmission method provided by the present application.
  • FIG. 13 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • 15 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD time division duplex
  • UMTS universal mobile communication system
  • global interconnected microwave access worldwide interoperability for microwave access, WiMAX
  • the terminal device in the embodiment of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or User device.
  • Terminal devices can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs), and wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or public land mobile communications networks (PLMN) in the future evolution
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • the terminal device and the like are not limited in this embodiment of the present application.
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a global system for mobile (GSM) system or code division multiple access (CDMA)
  • the base station (base transceiver) (BTS) in the system may also be a base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, or an evolved base station (evolved) in an LTE system NodeB, eNB or eNodeB), it can also be a wireless controller in the cloud radio access network (CRAN) scenario, or the network device can be a relay station, access point, in-vehicle device, wearable device and future Network devices in a 5G network or network devices in a PLMN network that will evolve in the future are not limited in the embodiments of the present application.
  • CRAN cloud radio access network
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes central processing unit (CPU), memory management unit (memory management unit, MMU), and memory (also called main memory) and other hardware.
  • the operating system may be any one or more computer operating systems that implement business processes through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes browser, address book, word processing software, instant messaging software and other applications.
  • the embodiment of the present application does not specifically limit the specific structure of the execution body of the method provided in the embodiment of the present application, as long as it can run the program that records the code of the method provided by the embodiment of the present application to provide according to the embodiment of the present application
  • the method may be used for communication.
  • the execution body of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • the computer-readable medium may include, but is not limited to: magnetic storage devices (for example, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (for example, compact discs (CD), digital universal discs (digital discs, digital discs, DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and / or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and / or carrying instructions and / or data.
  • FIG. 1 shows a schematic diagram of a communication system suitable for a data transmission method and device according to an embodiment of the present application.
  • the communication system 100 may include at least one network device 110 and at least one terminal device 120.
  • the network device 110 and the terminal device 120 can communicate through multi-input and multi-output (MIMO) technology, that is to say, the communication system 100 can be a MIMO system.
  • MIMO multi-input and multi-output
  • each transmit antenna virtual antenna or physical antenna
  • RS predictive reference signal
  • the receiver Based on a predictive reference signal (RS) signal, the receiver performs channel estimation for each transmit antenna and restores it based on this send data.
  • RS predictive reference signal
  • DMRS is used for PDSCH demodulation.
  • the NR version (release, R) 15 can support up to 12 ports of DMRS, in other words, the existing system can realize the simultaneous transmission of up to 12 orthogonal data streams.
  • the spectral efficiency of the 12-port data transmission is far from satisfying many scenarios of NR. For example, the new scenario of NR WTTx requiring up to 32/48/64 streaming transmission, the real-time transmission scenario of unmanned aerial vehicles with rate requirements greater than 300Mbps, and autonomous driving Scenes, etc.
  • increasing the number of DMRS orthogonal ports is the most direct solution to improve spectrum efficiency.
  • the existing protocol stipulates that one scheduling unit (for example, 12 subcarriers * 14 symbols, or 12 subcarriers * 12 symbols) maps the DMRS of all ports corresponding to the scheduled data. Mapped in all scheduling units mapped by all the port data. Through this mapping method, DMRS can have a higher time-frequency density to ensure demodulation performance. However, this DMRS design rule may become a bottleneck for further improvement of spectrum efficiency. For example, according to the existing DMRS design rules, when implementing 32/48/64 ports, the overhead will increase sharply, and even 32/48/64 ports cannot be realized.
  • this application has redesigned a DMRS mapping rule for various scenarios where NR needs high spectral efficiency, so that the transmitting end can improve the spectral efficiency when transmitting data through the mapping rule.
  • the data transmission method provided by the present application can be applied to downlink communication or uplink communication.
  • the sending end When applied to downlink communication, the sending end may be a network device, and accordingly, the receiving end may be a terminal device.
  • the sending end When applied to uplink communication, the sending end may be a terminal device, and accordingly, the receiving end may be a network device.
  • the method provided in this application will be described in detail mainly by taking the downlink communication scenario shown in FIG. 2 as an example.
  • the terminal device and / or the network device may perform some or all of the steps in the embodiments of the present application. These steps or operations are merely examples, and the embodiments of the present application may also perform other operations or various operations. Deformed. In addition, various steps may be performed in different orders presented in the embodiments of the present application, and it may not be necessary to perform all operations in the embodiments of the present application.
  • the terminal device when describing the methods shown in FIG. 2, FIG. 11 and FIG. 12, some steps are described with the terminal device as the execution subject, and other steps are described with the network device as the execution subject, but this Just to facilitate the description of the illustrated method.
  • the steps performed by the terminal device may also be implemented by components of the terminal device (such as chips or circuits), and similarly, the steps performed by the network device may also be implemented by components of the network devices (such as chips or circuits).
  • DMRS port mapped to resource unit referred to in this article can be understood as: DMRS corresponding to the DMRS port is mapped to the resource unit.
  • the ports in this application refer to DMRS ports unless otherwise specified.
  • FIG. 2 is a schematic diagram of a data transmission method 200 provided by the present application. This method can be applied to downlink communication, and each step in the method 200 will be described in detail below.
  • the network device determines the correspondence between at least one DMRS port to be scheduled and at least one resource unit according to the mapping rule.
  • the at least one resource unit is recorded as: resource unit set #A.
  • the resource unit set #A may be a resource unit for mapping the DMRS port, or a resource unit scheduled by the network device.
  • the resource unit for mapping the DMRS port is part or all of all resource units included in the system, specifically may be part or all of the resource units scheduled by the network device, or may include the system Among all the included resource units, other resource units than those scheduled by the network device.
  • the mapping rule is used to indicate the correspondence between N DMRS ports and resource units, where N is the maximum number of DMRS ports supported by the system, N ⁇ 1, and N is an integer.
  • the mapping rule may indicate the correspondence between N DMRS ports and all resource units included in the system, or may indicate the correspondence between N DMRS ports and resource units used to map the DMRS ports. That is to say, according to the mapping rule, it can be determined which of the N DMRS ports each DMRS port is mapped to which resource unit of all the resource units included in the system, or each DMRS port of the N DMRS ports can be determined Which resource unit is mapped on the resource unit used for mapping the DMRS port.
  • N DMRS ports are completely mapped on M resource units, for example, each of the M resource units can be mapped to a part of the N DMRS ports; or, the M resource units All N DMRS ports can be mapped on some resource units, and no DMRS ports are mapped on another part of resource units.
  • the time-frequency resources formed by the M resource units are different from the physical resource blocks (PRB) defined in LTE, that is, the mapping rules in this application indicate that each DMRS port is not mapped in each Within the scheduling unit (ie, PRB defined in LTE).
  • PRB physical resource blocks
  • the at least one DMRS port to be scheduled belongs to the N DMRS ports, that is, the at least one DMRS port to be scheduled is a part or all of the N DMRS ports.
  • the at least one DMRS port to be scheduled is for the terminal device described herein, and the terminal device may be any terminal device in a cell served by the network device.
  • the resource unit in this application consists of 12 * Y subcarriers in the frequency domain and X time slots in the time domain. Wherein X and Y can be any integer greater than or equal to 1.
  • the M resource units are composed of 12 * Y * M subcarriers in the frequency domain and X time slots in the time domain, or the M resource units are composed of 12 * Y subcarriers in the frequency domain It consists of M * X time slots in the time domain. Further, 12 * M * Y subcarriers constituting the M resource units are continuous in the frequency domain, or M * X time slots constituting the M resource units are continuous in the time domain.
  • the time slot may be a transmission time interval (transmission time interval, TTI) in LTE, or a short TTI at the symbol level, or a short TTI with a large subcarrier interval in a high-frequency system, or a slot or NR in NR. Mini-slots, etc., which are not limited in this application.
  • a slot in the NR may be composed of 12 or 14 orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the PRB defined in NR is different from the PRB defined in LTE.
  • the PRB defined in LTE includes the concepts of time domain and frequency domain.
  • the PRB defined in LTE consists of 12 consecutive subcarriers and time domain in the frequency domain It is composed of one time slot on the Internet, and the NR is only a concept in the frequency domain.
  • the PRB defined in the NR includes 12 consecutive subcarriers in the frequency domain.
  • the definition of PRB in NR will be used to describe the embodiments. Unless otherwise specified, the PRB in this application refers to the PRB defined in NR.
  • the resource unit in this application may be composed of Y PRBs and X time slots. Accordingly, the M resource units are composed of M * Y PRBs and X time slots, or the M resource units are composed of Y PRBs and M * X time slots.
  • the index of the corresponding resource unit for example, referring to FIG. 3, in the case where the M resource units are composed of PRB # 0 and PRB # 1 and time slot # 0, the resource unit corresponding to PRB # 0 is called a resource Unit # 0, the resource unit corresponding to PRB # 1 is called resource unit # 1.
  • the M resource units are composed of Y PRBs and M * X time slots
  • the index of the time slot is used as the resource unit corresponding to the time slot .
  • the resource unit corresponding to time slot # 0 is called resource unit # 0
  • the resource unit corresponding to slot # 1 is called resource unit # 1.
  • the resource unit index includes two parts: an index in the time domain and an index in the frequency domain, where the index of the resource unit in the time domain is the time slot corresponding to the resource unit The index of the resource unit in the frequency domain is the index of the PRB corresponding to the resource unit.
  • one small square represents one RE.
  • the resource unit in this application is composed of 12 * W consecutive subcarriers in the frequency domain and N_s * Q symbols in the time domain.
  • N_s is the number of at least one scheduling symbol corresponding to the non-slot scheduling scenario.
  • W and Q can be any integer greater than or equal to 1.
  • the M resource units are composed of 12 * M * W subcarriers and N_s * Q symbols in the time domain, or the M resource units are composed of 12 * W subcarriers in the frequency domain and the time domain Composed of N_s * Q * M symbols. Further, the 12 * M * W subcarriers constituting the M resource units are continuous in the frequency domain, or the N_s * Q * M symbols constituting the M resource units are continuous in the time domain.
  • the number N_s of at least one scheduling symbol corresponding to the non-slot scheduling scenario may be determined according to non-slot scheduling time domain resource configuration information, which is not limited in this application.
  • one N_s in the NR may be composed of 2, 4 or 7 OFDM symbols.
  • the M resource units are composed of 12 * M * W subcarriers and N_s * Q symbols in the time domain
  • the index of the PRB is used as the index of the resource unit corresponding to the PRB.
  • the scheduling will consist of N_s symbols
  • the granularity index is used as the index of the resource unit corresponding to the scheduling granularity.
  • the resource unit index includes two parts: an index in the time domain and an index in the frequency domain, where the index of the resource unit in the time domain is the schedule corresponding to the resource unit The index of granularity, the index of the resource unit in the frequency domain is the index of the PRB corresponding to the resource unit.
  • At least one of the N DMRS ports corresponds to multiple resource units of the M resource units. That is to say, the DMRS corresponding to one DMRS port can be mapped in two or more resource units.
  • any one of the N DMRS ports corresponds to only one of the M resource units.
  • the same DMRS port only corresponds to one resource unit of the M resource units, and does not correspond to multiple resource units of the M resource units. For example, assuming that port # 1 of the N DMRS ports corresponds to resource unit # 0 of M resource units, then none of the M resource units except resource unit # 0 will map port # 1. .
  • N DMRS ports and resource units satisfy one or more of the following:
  • the number of DMRS ports corresponding to at least two resource units of the M resource units is different, or the number of DMRS ports corresponding to any two resource units of the M resource units is the same.
  • the M resource units are resource unit # 0 and resource unit # 1, and the N DMRS ports are port # 0 to port # 23.
  • the number of DMRS ports corresponding to resource unit # 0 and resource unit # 1 may be different, for example, resource unit # 0 may correspond to port # 0 ⁇ port # 9, and resource unit # 1 may correspond to port # 12 ⁇ port # 23, or , Resource unit # 0 can correspond to port # 0 ⁇ port # 23, and resource unit # 1 does not correspond to any DMRS port.
  • resource unit # 0 and resource unit # 1 may correspond to 12 DMRS ports, for example, resource unit # 0 may correspond to port # 0 ⁇ port # 11, and resource unit # 1 may correspond to port # 12 ⁇ port # 23.
  • At least two DMRS ports of the N DMRS ports occupy different numbers of resource particles REs, or any two of the N DMRS ports occupy the same RE number.
  • port # 0 occupies 2 REs in their corresponding resource units # 1
  • Port # 1 occupies 3 REs in its corresponding resource unit # 1
  • port # 2 occupies 3 REs in its corresponding resource unit # 2.
  • the number of REs occupied by each port in the corresponding resource unit in port # 0 to port # 23 may be the same, for example, each port occupies 2 REs.
  • the total number of REs used for mapping DMRS ports in at least two resource units of the M resource units is different, or the total number of REs used for mapping DMRS ports in any two resource units of the M resource units is the same.
  • the total number of REs used to map DMRS ports in resource unit # 1 may be different from the total number of REs used to map DMRS ports in resource unit # 2.
  • the total number of REs used to map DMRS ports in resource unit # 1 is 12 RE
  • the total number of REs used to map DMRS ports in resource unit # 2 is 10 REs.
  • the total number of REs used for mapping DMRS ports in resource unit # 1 may be the same as the total number of REs used for mapping DMRS ports in resource unit # 2, for example, all 12 REs. It should be understood that, in this implementation, the number of DMRS ports corresponding to resource unit # 1 and the number of DMRS ports corresponding to resource unit # 2 may be the same or different, which is not limited in the embodiments of the present application.
  • Each of the M resource units corresponds to at least one DMRS port among the N DMRS ports. That is to say, each of the M resource units has a corresponding DMRS port.
  • the correspondence relationship between the N DMRS ports and the resource unit may specifically be one of the following correspondence relationship one to correspondence relationship three.
  • i 0, 1, ..., N-1
  • the maximum value of k may be: or, Or the maximum value of k is a preset value, which may be an empirical value.
  • an even-numbered DMRS port corresponds to an even-numbered resource unit
  • an odd-numbered DMRS port corresponds to an odd-numbered resource unit.
  • the N DMRS ports are port # 0 ⁇ port # 23, then, referring to FIG. 3 and FIG. 4, for resource unit # 0 and resource unit # 1, port # 0 ⁇ port
  • the port with an even index in # 23 corresponds to resource unit # 0, and the port with an odd index corresponds to resource unit # 1.
  • the index of the resource unit is the index of the PRB, and the resource units corresponding to different time slots of the same PRB correspond to the same DMRS port.
  • the index of the resource unit is the index of the time slot, and the resource units corresponding to different PRBs in the same time slot correspond to the same DMRS port.
  • port # 23 corresponds to resource unit # 2.
  • the index of any DMRS port corresponding to the resource unit with a smaller index is smaller than the index of any DMRS port corresponding to the resource unit with a larger index.
  • the index of any DMRS port corresponding to the resource unit with a smaller index is smaller than the index of any DMRS port corresponding to the resource unit with a larger index.
  • resource unit # 0 corresponds to port # 0 to port # 10
  • resource unit # 1 corresponds to port # 11 to port # 23
  • resource unit # 2 corresponds to port # 0 to port # 10
  • resource unit # 3 corresponds to port # 11 to port # 23.
  • the number of DMRS ports corresponding to the M resource units may be the same or different, which is not limited in this application.
  • the index of any DMRS port corresponding to the resource unit with a smaller index is greater than the index of any DMRS port corresponding to the resource unit with a larger index.
  • the index of any DMRS port corresponding to the resource unit with a smaller index is greater than the index of any DMRS port corresponding to the resource unit with a larger index.
  • resource unit # 0 corresponds to port # 11 to port # 23
  • resource unit # 1 corresponds to port # 0 to port # 10.
  • Resource unit # 2 corresponds to port # 11 to port # 23
  • resource unit # 3 corresponds to port # 0 to port # 10.
  • the number of DMRS ports corresponding to the M resource units may be the same or different, which is not limited in this application.
  • the N DMRS ports are all mapped to some resource units of the M resource units. That is to say, any resource unit other than the part of the M resource units does not map any DMRS port of the N DMRS ports.
  • the corresponding relationship between the N DMRS ports and the resource unit may specifically be the corresponding relationship four:
  • resource units with odd or even indexes are mapped to the N DMRS ports, or MP resource units with smaller or larger indexes are mapped.
  • port # 0 to port # 23 can all be mapped in resource unit # 0 and resource unit # 1. Does not map any port. Or, port # 0 to port # 23 may all be mapped in resource unit # 1, and no port is mapped in resource unit # 0.
  • the index of the resource unit is the index of the PRB, and the resource units corresponding to different time slots of the same PRB correspond to the same DMRS port.
  • the index of the resource unit is the index of the time slot, and the resource units corresponding to different PRBs in the same time slot correspond to the same DMRS port.
  • the N DMRS ports are port # 0 to port # 23, and port # 0 to port # 23 can all be mapped in resource unit # 0, but not in resource unit # 1 and resource unit # 2. Map any port. Alternatively, part of the ports in port # 0 to port # 23 may be mapped in resource unit # 0, the remaining ports may be mapped in resource unit # 1, and no port is mapped in resource unit # 2.
  • the mapping rule is also used to indicate the time-frequency resource information of each of the N DMRS ports in the corresponding resource unit, or the mapping rule is also used to indicate the RE information occupied by each DMRS port in the corresponding resource unit among the N DMRS ports.
  • the mapping rule may indicate which REs in its corresponding resource unit each DMRS port occupies.
  • time-frequency resource information of each DMRS port in the corresponding resource unit of the N DMRS ports may also be defined in advance, which is not limited in this application.
  • port # 0 and port # 1 may be mapped to subcarriers 0, 2, 4, 6, 8, and 10 in the corresponding resource unit, and port # 2 and port # 3 may be mapped to the corresponding Frequency domain subcarriers 1,3,5,7,9,11 in the resource unit; alternatively, port # 0 and port # 1 can be mapped to frequency domain subcarriers 0,1,6,7 in the corresponding resource unit
  • port # 2 and port # 3 can be mapped on the frequency domain subcarriers 2, 3, 8, 9 in the corresponding resource unit.
  • Port # 4 and port # 5 can be mapped on the frequency domain subcarriers 4, 5, 10, 11 in the corresponding resource unit.
  • the mapping rule is also used to indicate whether the subcarriers used to map the same DMRS port have offsets in the two consecutive resource units in the time domain, and the offsets in the presence of offsets.
  • the two groups of resource units have the same position in the frequency domain, and each group of resource units includes M resource units, and each group of resource units has a complete mapping of the N DMRS ports; or,
  • the mapping rule is also used to indicate whether two adjacent resource units are used to map whether the subcarriers of the same port have an offset and the offset in the presence of an offset.
  • the two adjacent resources The positions of the units in the frequency domain are the same, and M resource units are separated in the time domain;
  • the mapping rule is also used to indicate whether the symbols used to map the same DMRS port have offsets in two consecutive resource units in the frequency domain, and the offsets in the presence of offsets, where,
  • the two groups of resource units have the same position in the time domain, and each group of resource units includes M resource units, and each group of resource units has a complete mapping of the N DMRS ports; or,
  • the mapping rule is also used to indicate whether the symbols used to map the same port in the two adjacent resource units have an offset and the offset in the presence of the offset, the two adjacent resource units The positions in the time domain are the same, and M resource units are spaced in the frequency domain.
  • the symbol may be OFDM, but this embodiment of the present application does not limit this.
  • two resource units are separated by M resource units in the time domain means that the two resource units are separated by M resource units from the start position or the end position in the time domain.
  • two resource units are separated by M resource units in the frequency domain it means that the two resource units are separated by M resource units from the start position or the end position in the frequency domain.
  • resource unit # 0 and resource unit # 2 map the same port, resource unit # 0 and resource unit # 2 are adjacent, but are not continuous in the frequency domain.
  • the offset of the time-frequency resources in resource unit # 0 and resource unit # 2 for mapping the same DMRS port is 2 OFDM symbols.
  • resource unit # 1 and resource unit # 3 map the same port, resource unit # 1 and resource unit # 3 are adjacent, but are not continuous in the frequency domain.
  • the offset of the time-frequency resource used to map the same DMRS port in resource unit # 1 and resource unit # 3 is 2 OFDM symbols.
  • resource unit # 0 and resource unit # 1 corresponding to time slot # 0 constitute a group of resource units
  • resource unit # 0 and resource unit # 1 corresponding to time slot # 1 constitute a group of resource units.
  • the two sets of resource units map to the same port, while the two sets of resource units are continuous in the time domain.
  • the offset for mapping the time-frequency resources of the same port in the two sets of resource units is 12 subcarriers.
  • resource unit # 0 and resource unit # 1 corresponding to PRB # 0 constitute a group of resource units
  • resource unit # 0 and resource unit # 1 corresponding to PRB # 1 constitute a group of resource units.
  • the two sets of resource units map to the same port, while the two sets of resource units are continuous in the frequency domain.
  • the offset of the time-frequency resource for mapping the same port in the two sets of resource units is 2 OFDM symbols.
  • resource unit # 0 and resource unit # 2 map the same port, resource unit # 0 and resource unit # 2 are adjacent, but are not continuous in the time domain.
  • the resource unit # 0 and the resource unit # 2 are used to map the time-frequency resources of the same DMRS port with an offset of 7 subcarriers.
  • resource unit # 1 and resource unit # 3 map the same port, resource unit # 1 and resource unit # 3 are adjacent, but are not continuous in the time domain.
  • the offset of the time-frequency resource in resource unit # 1 and resource unit # 3 for mapping the same DMRS port is 7 subcarriers.
  • the network device sends first indication information to the terminal device.
  • the terminal device receives the first indication information sent by the network device.
  • the first indication information is used to indicate the mapping rule.
  • S220 is an optional step, which may or may not be executable.
  • the mapping rule may be determined by the network device itself.
  • S220 may be executed, that is, the network device may send indication information indicating the mapping rule to the terminal device, that is, first indication information, and the terminal device may determine the mapping rule according to the first indication information.
  • mapping rule may be predefined. In this way, S220 may not be executed.
  • the first indication information may be sent through DCI, or may be sent through other signaling, such as RRC or MAC CE.
  • the application does not limit how to send the first indication information.
  • the first indication information may further include time-frequency resource information of each DMRS port of the at least one DMRS port in the corresponding resource unit, that is, each DMRS port of the at least one DMRS port is occupied in the corresponding resource unit RE information.
  • the network device sends second indication information to the terminal device.
  • the terminal device receives the second indication information sent by the network device.
  • the second indication information is used to indicate resource unit set #A.
  • S230 is an optional step, which may or may not be executable.
  • the network device may send second indication information to the terminal device, and the terminal device may determine according to the second indication information Resource unit for mapping DMRS ports.
  • the resource unit set #A is a resource unit scheduled by the network device
  • S230 may not be executed. It should be understood that the resource unit information scheduled by the network device may be notified by the network device through DCI or other signaling, such as RRC or MAC CE sent to the terminal equipment.
  • the second indication information may be an index in the time domain and / or frequency domain of the resource unit used to map the DMRS port.
  • the second indication information may be odd or even resource units.
  • the meaning here is that the resource unit for mapping the DMRS port is an odd or even resource unit.
  • the second indication information is an odd numbered index in the time and / or frequency domain in all resource units included in the system
  • the resource unit, or the resource unit for mapping the DMRS port is a resource unit with an odd index on the time domain and / or frequency domain among the resource units scheduled by the network device.
  • the second indication information may be the value of one or more remainders t and / or the value of M.
  • the resource unit is regarded as a resource unit for mapping the DMRS port.
  • the index of the resource unit may be an index in the time domain and / or the frequency domain. It should be understood that the value of M may be predefined or notified to the terminal device after being determined by the network device.
  • the second indication information may be sent through DCI, or may be sent through other signaling, such as RRC or MAC CE.
  • the application does not limit how to send the second indication information.
  • the second indication information may be sent through the same signaling as the first indication information, or may be sent through different signaling from the first indication information, which is not limited in this application.
  • the terminal device determines the correspondence between the at least one DMRS port to be scheduled and the resource unit set #A according to the mapping rule.
  • the terminal device may first determine the mapping rule according to the first indication information, and determine the resource unit set #A according to the second indication information, so that the terminal device may determine the correspondence between the at least one DMRS port to be scheduled and the resource unit set #A .
  • the terminal device may store the mapping rule in advance, and after determining the resource unit set #A according to the second indication information, the corresponding relationship between the at least one DMRS port to be scheduled and the resource unit set #A may be determined.
  • the terminal device may determine the at least one DMRS port information to be scheduled through the prior art. For example, the terminal device may determine the at least one DMRS port information to be scheduled through the DCI sent by the network device, which will not be repeated in this application.
  • the network device sends the data to be transmitted and the DMRS on the data channel according to the correspondence between the at least one DMRS port to be scheduled and the resource unit set #A. Accordingly, the terminal device receives the data channel.
  • the network device maps the at least one DMRS port to be scheduled to the corresponding resource unit, respectively, and maps the data to be transmitted It is mapped on the resource unit scheduled by the network device, and then the network device sends the data to be transmitted and the DMRS on the data channel, and accordingly, the terminal device receives the data channel.
  • the terminal device demodulates the data to be transmitted according to the correspondence between the at least one DMRS port to be scheduled and the resource unit set #A.
  • the terminal device may perform channel estimation according to the DMRS on the resource units respectively corresponding to the at least one DMRS port to be scheduled, and then demodulate The data to be transmitted.
  • the terminal device may perform channel estimation according to the DMRS on the resource units respectively corresponding to the at least one DMRS port to be scheduled, and then demodulate The data to be transmitted.
  • N DMRS ports are completely mapped on M resource units, instead of mapping all DMRS ports on each PRB (PRB defined in LTE), which can reduce a single PRB ( The overhead of DMRS on PRB defined in LTE improves spectrum efficiency.
  • FIG. 11 is a schematic diagram of a data transmission method 300 provided by the present application. This method can be applied to a scenario in which a terminal device maps DMRS according to an instruction of a network device in uplink communication, and each step in the method 300 will be described in detail below.
  • the network device determines a correspondence between at least one DMRS port to be scheduled and at least one resource unit according to the mapping rule.
  • the network device sends first indication information to the terminal device.
  • the terminal device receives the first indication information sent by the network device.
  • the first indication information is used to indicate the mapping rule.
  • the network device sends second indication information to the terminal device.
  • the terminal device receives the second indication information sent by the network device.
  • the second indication information is used to indicate resource unit set #A.
  • the terminal device determines the correspondence between the at least one DMRS port to be scheduled and the resource unit set #A according to the mapping rule.
  • the terminal device sends the data to be transmitted and the DMRS on the data channel according to the correspondence between the at least one DMRS port to be scheduled and the resource unit set #A. Accordingly, the network device receives the data channel.
  • the terminal device maps the at least one DMRS port to be scheduled to the corresponding resource unit respectively, and maps the data to be transmitted It is mapped on the resource unit scheduled by the network device, and then the terminal device sends the data to be transmitted and the DMRS on the data channel, and accordingly, the network device receives the data channel.
  • the network device demodulates the data to be transmitted according to the correspondence between the at least one DMRS port to be scheduled and the resource unit set #A.
  • the network device may perform channel estimation according to the DMRS on the resource units respectively corresponding to the at least one DMRS port to be scheduled, and then demodulate The data to be transmitted.
  • the network device may perform channel estimation according to the DMRS on the resource units respectively corresponding to the at least one DMRS port to be scheduled, and then demodulate The data to be transmitted.
  • the existing technology which will not be repeated here.
  • N DMRS ports are completely mapped on M resource units, instead of mapping all DMRS ports on each PRB (PRB defined in LTE), which can reduce a single PRB (LTE).
  • PRB defined in LTE PRB defined in LTE
  • LTE LTE
  • the overhead of the DMRS defined in PRB improves spectrum efficiency.
  • FIG. 12 is a schematic diagram of a data transmission method 400 provided by the present application. This method can be applied to a scenario in which a network device demodulates a DMRS according to an instruction of a terminal device in uplink communication. Each step in the method 400 will be described in detail below.
  • the terminal device determines the correspondence between the at least one DMRS port to be scheduled and the resource unit set #A according to the mapping rule.
  • S410 is similar to S210, only the execution subject is different.
  • S410 reference may be made to the description of S210 above, and details are not described here.
  • the terminal device may determine the at least one DMRS port information to be scheduled through the existing technology, which is not described in detail in this application.
  • the terminal device sends first indication information to the network device.
  • the network device receives the first indication information sent by the terminal device.
  • the first indication information is used to indicate the mapping rule.
  • the mapping rule may be determined by the terminal device itself.
  • S420 may be performed, that is, the terminal device may send indication information indicating the mapping rule to the network device, that is, first indication information, and the network device may determine the mapping rule according to the first indication information.
  • the first indication information may be sent through uplink control information (uplink control inforamtion, UCI) or other signaling, and the present application does not limit how to send the first indication information.
  • uplink control inforamtion uplink control inforamtion, UCI
  • UCI uplink control inforamtion
  • the first indication information may further include time-frequency resource information of each DMRS port of the at least one DMRS port in the corresponding resource unit, that is, each DMRS port of the at least one DMRS port is occupied in the corresponding resource unit RE information.
  • the terminal device sends second indication information to the network device.
  • the network device receives the second indication information sent by the terminal device.
  • the second indication information is used to indicate resource unit set #A.
  • S430 is an optional step, which may or may not be executable.
  • the terminal device may send second indication information to the network device, and the network device may determine according to the second indication information Resource unit for mapping DMRS ports.
  • the resource unit set #A is a resource unit scheduled by the network device
  • S430 may not be executed. It should be understood that the resource unit information scheduled by the network device may be notified by the network device to the terminal device through DCI or other signaling.
  • the second indication information may be an index in the time domain and / or frequency domain of the resource unit used to map the DMRS port.
  • the second indication information may be odd or even resource units.
  • the meaning here is that the resource unit for mapping the DMRS port is an odd or even resource unit.
  • the second indication information is an odd numbered index in the time and / or frequency domain in all resource units included in the system
  • the resource unit, or the resource unit for mapping the DMRS port is a resource unit with an odd index on the time domain and / or frequency domain among the resource units scheduled by the network device.
  • the second indication information may be the value of one or more remainders t and / or the value of M.
  • the resource unit is regarded as a resource unit for mapping the DMRS port.
  • the index of the resource unit may be an index in the time domain and / or the frequency domain. It should be understood that the value of M may be predefined or notified to the network device after being determined by the terminal device.
  • the second indication information may be sent through UCI, or may be sent through other signaling, such as RRC or MAC CE.
  • the application does not limit how to send the second indication information.
  • the present application does not limit the execution order of the two.
  • the second indication information may be sent through the same signaling as the first indication information, or may be sent through different signaling and the first indication information, which is not limited in this application.
  • the network device determines the correspondence between the at least one DMRS port to be scheduled and the resource unit set #A according to the mapping rule.
  • the network device may first determine the mapping rule according to the first indication information, and determine the resource unit set #A according to the second indication information, so that the network device may determine the correspondence between the at least one DMRS port to be scheduled and the resource unit set #A .
  • the terminal device sends the data to be transmitted and the DMRS on the data channel according to the correspondence between the at least one DMRS port to be scheduled and the resource unit set #A. Accordingly, the network device receives the data channel.
  • the terminal device maps the at least one DMRS port to be scheduled to the corresponding resource unit respectively, and maps the data to be transmitted It is mapped on the resource unit scheduled by the network device, and then the terminal device sends the data to be transmitted and the DMRS on the data channel, and accordingly, the network device receives the data channel.
  • the network device demodulates the data to be transmitted according to the correspondence between the at least one DMRS port to be scheduled and the resource unit set #A.
  • the network device may perform channel estimation according to the DMRS on the resource units respectively corresponding to the at least one DMRS port to be scheduled, and then demodulate The data to be transmitted.
  • the network device may perform channel estimation according to the DMRS on the resource units respectively corresponding to the at least one DMRS port to be scheduled, and then demodulate The data to be transmitted.
  • the existing technology which will not be repeated here.
  • N DMRS ports are completely mapped on M resource units, instead of mapping all DMRS ports on each PRB (PRB defined in LTE), which can reduce a single PRB (LTE).
  • PRB defined in LTE PRB defined in LTE
  • LTE LTE
  • the overhead of the DMRS defined in PRB improves spectrum efficiency.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application .
  • the communication device 500 may include a processing unit 510 and a transceiver unit 520.
  • the communication device 500 may correspond to the network device in the foregoing method embodiment, for example, it may be a network device, or a chip configured in the network device.
  • the communication device 500 may correspond to the network devices in the method 200, the method 300, and the method 400 according to the embodiments of the present application.
  • the communication device 500 may include the methods shown in FIG. 2 and FIG.
  • each unit in the communication device 500 and the other operations and / or functions described above are to implement the corresponding processes of the method 200 in FIG. 2, the method 300 shown in FIG. 11, and the method 400 shown in FIG. 12, respectively.
  • the processing unit 510 can be used to execute step S210 in the method 200
  • the transceiver unit 520 can be used to execute step S220, step S240 and step S250 in the method 200.
  • the processing unit 510 can be used to perform steps S310 and S360 in the method 300, and the transceiver unit 520 can be used to perform steps S320, S330, and S350 in the method 300. .
  • the processing unit 510 may be used to perform steps S440 and S460 in the method 400, and the transceiver unit 520 may be used to perform steps S420, S430, and S450 in the method 400. .
  • processing unit 510 in the communication apparatus 500 may correspond to the processor 710 in the network device 700 shown in FIG. 15, and the transceiving unit 520 may correspond to the transceiver in the network device 700 shown in FIG. 15 720.
  • the communication device 500 may correspond to the terminal device in the foregoing method embodiment, for example, it may be a terminal device, or a chip configured in the terminal device.
  • the communication device 500 may correspond to the terminal device in the method 200, 300, or 400 according to an embodiment of the present application.
  • the communication device 500 may include the method 200 for performing the method 200 in FIG. 2 or the method 300 in FIG. 11 or The unit of the method performed by the terminal device in the method 400 in FIG. 12.
  • the units in the communication device 500 and the other operations and / or functions described above are for implementing the corresponding processes of the method 200 in FIG. 2, the method 300 in FIG. 11, or the method 400 in FIG. 12, respectively.
  • the transceiver unit 520 can be used to perform step S220, step S230, and step S250 in the method 200, and the processing unit 510 can be used to perform step S240 and Step S260.
  • the transceiver unit 520 may be used to perform step S320, step S330, and step S350 in the method 300, and the processing unit 510 may be used to perform step S340 in the method 300.
  • the transceiver unit 520 may be used to perform step S420, step S430, and step S450 in the method 400, and the processing unit 510 may be used to perform step 410 in the method 400.
  • the processing unit 510 may correspond to the processor 601 in the terminal device 600 shown in FIG. 14, and the transceiving unit 520 may correspond to the transceiver in the terminal device 600 shown in FIG. 602.
  • the terminal device 600 includes a processor 601 and a transceiver 602.
  • the terminal device 600 further includes a memory 603.
  • the processor 601, the transceiver 602 and the memory 603 can communicate with each other through an internal connection path to transfer control and / or data signals.
  • the memory 603 is used to store a computer program, and the processor 601 is used from the memory 603 Call and run the computer program to control the transceiver 602 to send and receive signals.
  • the terminal device 600 may further include an antenna 504 for sending uplink data or uplink control signaling output by the transceiver 602 through a wireless signal.
  • the above processor 601 and the memory 603 may be combined into one processing device.
  • the processor 601 is used to execute the program code stored in the memory 603 to realize the above function. It should be understood that the processing devices shown in the figures are only examples. In a specific implementation, the memory 603 may also be integrated in the processor 601 or independent of the processor 601. This application does not limit this.
  • the above terminal device 600 further includes an antenna 610, configured to send uplink data or uplink control signaling output by the transceiver 602 through a wireless signal.
  • the processor 601 When the program instructions stored in the memory 603 are executed by the processor 601, the processor 601 is used to determine the correspondence between at least one demodulation reference signal DMRS port to be scheduled and at least one resource unit according to a mapping rule, wherein the mapping The rule is used to indicate the correspondence between N DMRS ports and resource units, where N is the maximum number of DMRS ports supported by the system, and there is a complete mapping of the N DMRS ports on M resource units, N ⁇ 1, M ⁇ 2. Both N and M are integers, and the at least one DMRS port belongs to the N DMRS ports.
  • the processor may be further configured to demodulate the data to be transmitted according to the correspondence between the at least one demodulation reference signal DMRS port and the at least one resource unit.
  • the terminal device 600 may correspond to the terminal device in the method 200, 300, or 400 according to an embodiment of the present application, and the terminal device 600 may include a method 300 for performing the method 200 in FIG. 2 or the method 300 in FIG. 11 or The unit of the method performed by the terminal device in the method 400 in FIG. 12.
  • each unit in the terminal device 600 and the other operations and / or functions described above are for implementing the corresponding processes of the method 200 in FIG. 2, the method 300 in FIG. 11, or the method 400 in FIG. 12, respectively.
  • the foregoing processor 601 may be used to perform the actions described in the foregoing method embodiments that are internally implemented by the terminal device, and the transceiver 602 may be used to perform the operations described in the foregoing method embodiments by the terminal device to or from the network device. action.
  • the transceiver 602 may be used to perform the operations described in the foregoing method embodiments by the terminal device to or from the network device. action.
  • the transceiver 602 may be used to perform the operations described in the foregoing method embodiments by the terminal device to or from the network device. action.
  • the above-mentioned terminal device 600 may further include a power supply 605 for providing power to various devices or circuits in the terminal device.
  • the terminal device 600 may further include one or more of an input unit 606, a display unit 607, an audio circuit 608, a camera 609, a sensor 622, etc.
  • the audio circuit A speaker 6082, a microphone 6084, etc. may also be included.
  • the network device 700 includes a processor 710 and a transceiver 720.
  • the network device 700 further includes a memory 730.
  • the processor 710, the transceiver 720 and the memory 730 communicate with each other through an internal connection channel to transfer control and / or data signals.
  • the memory 730 is used to store a computer program, and the processor 710 is used to call from the memory 730 And run the computer program to control the transceiver 720 to send and receive signals.
  • the processor 710 and the memory 730 may be combined into one processing device.
  • the processor 710 is used to execute the program code stored in the memory 730 to implement the above functions.
  • the memory 730 may also be integrated in the processor 710 or independent of the processor 710.
  • the above-mentioned network device 700 may further include an antenna 740 for sending downlink data or downlink control signaling output by the transceiver 720 through a wireless signal.
  • the processor 710 When the program instructions stored in the memory 730 are executed by the processor 710, the processor 710 is used to determine a correspondence between at least one demodulation reference signal DMRS port to be scheduled and at least one resource unit according to a mapping rule, wherein the mapping The rule is used to indicate the correspondence between N DMRS ports and resource units, where N is the maximum number of DMRS ports supported by the system, and there is a complete mapping of the N DMRS ports on M resource units, N ⁇ 1, M ⁇ 2. Both N and M are integers, and the at least one DMRS port belongs to the N DMRS ports.
  • the processor may be further configured to demodulate the data to be transmitted according to the correspondence between the at least one demodulation reference signal DMRS port and the at least one resource unit.
  • the network device 700 may correspond to the network device in the method 200, 300, or 400 according to an embodiment of the present application, and the network device 700 may include the method 200 for performing the method 200 in FIG. 2 or the method 300 in FIG. 11 or The units of the method performed by the network device in the method 400 in FIG. 12.
  • each unit in the network device 700 and the above-mentioned other operations and / or functions respectively implement the corresponding processes in order to implement the corresponding processes of the method 200 in FIG. 2, the method 300 in FIG. 11, or the method 400 in FIG. 12.
  • the specific procedures of the steps have been described in detail in the above method embodiments, and for the sake of brevity, they will not be repeated here.
  • the foregoing processor 710 may be used to perform the actions described in the foregoing method embodiments that are internally implemented by the network device, and the transceiver 720 may be used to perform the operations described in the previous method embodiments that the network device sends to or receives from the terminal device action.
  • the transceiver 720 may be used to perform the operations described in the previous method embodiments that the network device sends to or receives from the terminal device action.
  • processors in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and special integrated circuits.
  • DSPs digital signal processors
  • special integrated circuits application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read only memory (ROM), programmable read only memory (programmableROM, PROM), erasable programmable read only memory (erasablePROM, EPROM), electrically erasable programmable only Read memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (random access memory, RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access Access memory
  • SDRAM synchronous dynamic random access Access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on the computer, causes the computer to execute FIG. 2, FIG. 11 or The method in the embodiment shown in FIG.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, causes the computer to execute FIG. 2, FIG. 11 or The method in the embodiment shown in FIG.
  • the present application further provides a system, which includes the foregoing one or more terminal devices and one or more network devices.
  • the above embodiments can be implemented in whole or in part by software, hardware, firmware, or any other combination.
  • the above-described embodiments may be fully or partially implemented in the form of computer program products.
  • the computer program product includes one or more computer instructions.
  • the processes or functions according to the embodiments of the present invention are generated in whole or in part.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmit to another website, computer, server or data center by wire (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that contains a collection of one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital universal disc (DVD)), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units are integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据传输方法和通信装置,能够降低DMRS的开销,提高频谱效率。该方法包括:发送端和接收端根据映射规则确定待调度的至少一个解调参考信号DMRS端口与至少一个资源单元的对应关系,其中,映射规则用于指示系统最大支持的N个DMRS端口与资源单元的对应关系,M个资源单元上存在N个DMRS端口的一次完整映射;发送端根据至少一个解调参考信号DMRS端口与至少一个资源单元的对应关系,在数据信道上发送待传输数据和DMRS,接收端接收该数据信道,并且根据至少一个解调参考信号DMRS端口与至少一个资源单元的对应关系,解调该待传输数据。

Description

数据传输方法和通信装置
本申请要求于2018年10月12日提交中国专利局、申请号为201811191666.4、申请名称为“数据传输方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种数据传输方法和通信装置。
背景技术
在新无线(new radio,NR)中,解调参考信号(demodulation reference signal,DMRS)用于物理下行共享信道(physical downlink share channel,PDSCH)的解调。
现有协议中,DMRS最多支持12个正交端口,换句话说,现有系统可以实现最多正交12个数据流同时传输。然而,12端口数据传输的频谱效率远远不能满足NR多种场景,比如,需要多达32/48/64流传输的NR无线宽带到户(Wireless To The x,WTTx)新场景,速率需求大于300Mbps的无人机实时传输场景,自动驾驶场景等。显然,提高DMRS正交端口数目是提高频谱效率(spectrum efficiency,SE)最直接的解决方案。然而,现有协议规定的DMRS设计规则可能会成为频谱效率进一步提升的瓶颈。比如,按照现有DMRS设计规则在实现32/48/64端口时会致使开销急剧增大,甚至无法实现32/48/64端口。
因此,针对NR多种高频谱效率需求的场景,需要重新考虑DMRS导频设计。
发明内容
本申请提供一种数据传输方法和通信装置,通过在多个资源单元(例如,多个时隙)上进行系统最多支持的DMRS端口的完整映射,而不是在每个LTE中定义的物理资源块(physical resource block,PRB)上都映射各DMRS端口,从而能够降低单个PRB(LTE中定义的PRB)上的DMRS的开销,提高频谱效率。
第一方面,提供了一种数据传输方法,包括:发送端根据映射规则确定待调度的至少一个解调参考信号DMRS端口与至少一个资源单元的对应关系,其中,所述映射规则用于指示N个DMRS端口与资源单元的对应关系,其中,N为系统最大支持的DMRS端口数,M个资源单元上存在所述N个DMRS端口的一次完整映射,N≥1,M≥2,且N和M均为整数,所述至少一个DMRS端口属于所述N个DMRS端口;
所述发送端根据所述至少一个解调参考信号DMRS端口与所述至少一个资源单元的对应关系,在数据信道上发送待传输数据和DMRS。
可选地,所述至少一个资源单元可以是用于映射DMRS端口的资源单元,也可以是网络设备所调度的资源单元。
其中,用于映射DMRS端口的资源单元为系统所包括的所有资源单元中的部分或全 部资源单元,具体地可以是网络设备所调度的资源单元中的部分或全部资源单元,也可以包括系统所包括的所有资源单元中除网络设备所调度的资源单元外的其他资源单元。
相应地,该映射规则可以指示N个DMRS端口与系统所包括的所有资源单元的对应关系,也可以指示N个DMRS端口与用于映射DMRS端口的资源单元的对应关系。
所述M个资源单元所构成的时频资源不同于LTE中定义的PRB,也就是说,本申请中的映射规则指示,每个DMRS端口并非映射在每个调度单元(即,LTE中定义的PRB)内。
可选地,本申请中的资源单元可以有下述两种定义:
定义一
本申请中的资源单元由频域上连续的12*Y个子载波和时域上的X个时隙组成。其中X和Y可以为大于或者等于1的任意整数。
相应地,所述M个资源单元由频域上的12*Y*M个子载波和时域上的X个时隙组成,或者,所述M个资源单元由频域上的12*Y个子载波和时域上的M*X个时隙组成。进一步地,组成所述M个资源单元的12*M*Y个子载波在频域上连续,或者组成所述M个资源单元的M*X个时隙在时域上连续。
所述时隙可以是LTE中的传输时间间隔(transmission time interval,TTI),也可以是符号级短TTI,或高频系统中的大子载波间隔的短TTI,也可以是NR中的slot或微型时隙(mini-slot)等,本申请对此不做限定。可选地,NR中的一个slot可以由12或14个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号组成。
NR中定义的PRB包括频域上连续的12个子载波。因此,可以理解,本申请中的资源单元可以由Y个PRB和X个时隙组成。相应地,所述M个资源单元由M*Y个PRB和X个时隙组成,或者,所述M个资源单元由Y个PRB和M*X个时隙组成。
在所述M个资源单元由M*Y个PRB和X个时隙组成的情况下,若X=1,Y=1,则将PRB的索引作为该PRB所对应的资源单元的索引。类似地,在所述M个资源单元由Y个PRB和M*X个时隙组成的情况下,若X=1,Y=1,则将时隙的索引作为该时隙所对应的资源单元的索引。若X和Y二者中至少一者不为1,资源单元索引包含时域上的索引和频域上的索引两部分,其中资源单元在时域上的索引为该资源单元所对应的时隙的索引,资源单元在频域上的索引为该资源单元所对应的PRB的索引。
定义二
本申请中的资源单元由频域上连续的12*W个子载波和时域上的N_s*Q个符号组成。其中N_s为非时隙调度场景对应的至少一个调度符号数。其中W和Q可以为大于或者等于1的任意整数。
相应地,所述M个资源单元由12*M*W个子载波和时域上的N_s*Q个符号组成,或者,所述M个资源单元由频域上的12*W个子载波和时域上的N_s*Q*M个符号组成。进一步地,组成所述M个资源单元的12*M*W个子载波在频域上连续,或者组成所述M个资源单元的N_s*Q*M个符号在时域上连续。
所述非时隙调度场景对应的至少一个调度符号数N_s可以根据非时隙调度时域资源配置信息确定,本申请对此不做限定。可选地,NR中的一个N_s可以由2,4或7个OFDM符号组成。
本申请中,在所述M个资源单元由12*M*W个子载波和时域上的N_s*Q个符号组成的情况下,若W=1,Q=1,则将PRB的索引作为该PRB所对应的资源单元的索引。类似地,在所述M个资源单元由12*W个子载波和时域上的N_s*Q*M个符号组成的情况下,若W=1,Q=1,则将由N_s个符号组成的调度粒度的索引作为该调度粒度所对应的资源单元的索引。若W和Q二者中至少一者不为1,资源单元索引包含时域上的索引和频域上的索引两部分,其中资源单元在时域上的索引为该资源单元所对应的该调度粒度的索引,资源单元在频域上的索引为该资源单元所对应的PRB的索引。
本申请实施例的数据传输方法,N个DMRS端口完整映射在M个资源单元上,而不是在每个PRB(LTE中定义的PRB)上都映射所有DMRS端口,能够降低单个PRB(LTE中定义的PRB)上的DMRS的开销,提高频谱效率。
结合第一方面,在一种可能的实现方式中,所述N个DMRS端口中任一DMRS端口唯一对应所述M个资源单元中的一个资源单元。从而能够进一步地提高频谱效率。
结合第一方面,在一种可能的实现方式中,所述M个资源单元中至少两个资源单元所对应的DMRS端口数不同,或者,所述M个资源单元中任意两个资源单元所对应的DMRS端口数相同;和/或,
所述N个DMRS端口中至少两个DMRS端口占用的资源粒子(resource element,RE)数不同,或者,所述N个DMRS端口中任意两个DMRS端口占用的RE数相同;和/或
所述M个资源单元中至少两个资源单元中用于映射DMRS端口的RE总数不同,或者所述M个资源单元中任意两个资源单元中用于映射DMRS端口的RE总数相同。
结合第一方面,在一种可能的实现方式中,所述M个资源单元在频域上或时域上连续。
从而,使得DMRS端口与资源单元的映射规则更简单,能够降低发送端和接收端的处理复杂度。
结合第一方面,在一种可能的实现方式中,所述M个资源单元中每个资源单元至少对应所述N个DMRS端口中的一个DMRS端口。
可选地,所述N个DMRS端口与资源单元的对应关系为下述中的任一种:
所述N个DMRS端口中索引为i的DMRS端口对应于索引为j+k*M的资源单元,i和j满足i%M=j,%表示求余运算符;或者,
索引为k*M至k*M+M-1的M个资源单元中,索引较小的资源单元对应的任一DMRS端口的索引小于索引较大的资源单元对应的任一DMRS端口的索引,或者,索引较小的资源单元对应的任一DMRS端口的索引大于索引较大的资源单元对应的任一DMRS端口的索引。换句话说,对于存在N个DMRS端口完整映射的任意M个资源单元,索引较小的资源单元对应的任一DMRS端口的索引小于索引较大的资源单元对应的任一DMRS端口的索引,或者,索引较小的资源单元对应的任一DMRS端口的索引大于索引较大的资源单元对应的任一DMRS端口的索引;
其中,i=0,1,……,N-1,k=0,1,2,……,j为整数且j∈[0,1,……,M-1]。
可选地,本申请中,k的最大取值可以是:
Figure PCTCN2019110635-appb-000001
或者,
Figure PCTCN2019110635-appb-000002
或者k的最大取值为预设值,预设值可以是经验值等。
结合第一方面,在一种可能的实现方式中,所述N个DMRS端口全部映射于所述M个资源单元中的部分资源单元。
可选地,索引为k*M至k*M+M-1的M个资源单元中,索引为奇数或者偶数的资源单元映射所述N个DMRS端口,或者索引较小或者较大的M-P个资源单元映射所述N个DMRS端口,1≤P≤M-1,且P为整数,k=0,1,2,……。
换句话说,对于存在N个DMRS端口完整映射的任意M个资源单元,该M个资源单元中索引为奇数或者偶数的资源单元映射所述N个DMRS端口,或者索引较小或者较大的M-P个资源单元映射所述N个DMRS端口。
结合第一方面,在一种可能的实现方式中,在所述发送端根据所述至少一个解调参考信号DMRS端口与所述至少一个资源单元的对应关系,在所述至少一个资源单元上数据信道上发送待传输数据和DMRS之前,所述方法还包括:
所述发送端向所述接收端发送第一指示信息,
或者,所述发送端接收所述接收端发送的所述第一指示信息;
其中,所述第一指示信息用于指示所述映射规则。
从而,根据第一指示信息,发送端或者接收端可以确定该映射规则。
此外,该映射规则可以由协议规定或者预定义。
进一步地,所述第一指示信息还包括所述至少一个DMRS端口中每个DMRS端口在对应的资源单元中的时频资源信息。
或者说该映射规则还用于指示该N个DMRS端口中每个DMRS端口在对应的资源单元中占用的RE信息。
换句话说,该映射规则可以指示每个DMRS端口占用其对应的资源单元中的哪些RE。
应理解,该N个DMRS端口中每个DMRS端口在对应的资源单元中的时频资源信息也可以预先定义,本申请对此不作限定。
可选地,第一指示信息可以通过下行控制信息(downlink control information,DCI)发送,也可以通过其他信令,比如无线资源控制(radio resource control,RRC)或媒体接入控制控制单元(media access control control element,MAC CE)等发送,本申请并不限定如何发送第一指示信息。或者,第一指示信息可以通过上行控制信息(uplink control information,UCI)等其他信令发送。
结合第一方面,在一种可能的实现方式中,所述方法还包括:
所述发送端向所述接收端发送第二指示信息,或者,所述发送端接收所述接收端发送的所述第二指示信息;其中,所述第二指示信息用于指示所述至少一个资源单元,其中所述至少一个资源单元为用于映射所述至少一个DMRS端口的资源单元。
进一步地,所述第二指示信息可以包括下列信息中的任意一种:
(1)所述至少一个资源单元在时域和/或频域上的索引。
即,第二指示信息可以是用于映射DMRS端口的资源单元在时域和/或频域上的索引。
(2)奇数或者偶数资源单元。
这里的意思是,用于映射DMRS端口的资源单元为奇数或者偶数资源单元。以第二指示信息为奇数资源单元为例,根据第二指示信息可以确定,用于映射DMRS端口的资源单元为系统所包括的所有资源单元中时域和/或频域上的索引为奇数的资源单元,或者, 用于映射DMRS端口的资源单元为网络设备所调度的资源单元中时域和/或频域上的索引为奇数的资源单元。
(3)一个或者多个余数t和/或M的值,其中资源单元的索引满足:资源单元的索引%M=t的资源单元属于所述至少一个资源单元。
这里资源单元的索引可以是时域和/或频域上的索引。应理解,M的值可以预定义,或者由网络设备确定后通知给终端设备。
可选地,第二指示信息可以通过下行控制信息(downlink control information,DCI)发送,也可以通过其他信令,比如无线资源控制(radio resource control,RRC)或媒体接入控制控制单元(media access control control element,MAC CE)等发送,本申请并不限定如何发送第二指示信息。或者,第二指示信息可以通过UCI等其他信令发送。
结合第一方面,在一种可能的实现方式中,所述映射规则还用于指示在时域上连续的两组资源单元中,用于映射同一DMRS端口的子载波是否存在偏移,以及在存在偏移的情况下的偏移量,其中,所述两组资源单元在频域上的位置相同,并且每组资源单元包括M个资源单元,每组资源单元存在所述N个DMRS端口的一次完整映射;或者,
所述映射规则还用于指示相邻的两个资源单元中,用于映射同一端口的子载波是否存在偏移以及在存在偏移的情况下的偏移量,所述相邻的两个资源单元在频域上的位置相同,且在时域上间隔M个资源单元;
或者,所述映射规则还用于指示在频域上连续的两组资源单元中,用于映射同一DMRS端口的符号是否存在偏移,以及在存在偏移的情况下的偏移量,其中,所述两组资源单元在时域上的位置相同,并且每组资源单元包括M个资源单元,每组资源单元存在所述N个DMRS端口的一次完整映射;或者,
所述映射规则还用于指示相邻的两个资源单元中,用于映射同一端口的符号是否存在偏移以及在存在偏移的情况下的偏移量,所述相邻的两个资源单元在时域上的位置相同,且在频域上间隔M个资源单元。
可选地,所述符号可以是OFDM,但本申请实施例对此不作限定。
应理解,本申请中,两个资源单元在时域上间隔M个资源单元是指,两个资源单元在时域上的起始位置或结束位置之间相距M个资源单元。类似地,两个资源单元在频域上间隔M个资源单元是指,两个资源单元在频域上的起始位置或结束位置之间相距M个资源单元。
第二方面,提供了一种数据传输方法,其特征在于,包括:接收端根据映射规则确定待调度的至少一个解调参考信号DMRS端口与至少一个资源单元的对应关系,其中,所述映射规则用于指示N个DMRS端口与资源单元的对应关系,其中,N为系统最大支持的DMRS端口数,M个资源单元上存在所述N个DMRS端口的一次完整映射,N≥1,M≥2,且N和M均为整数,所述至少一个DMRS端口属于所述N个DMRS端口;
所述接收端接收数据信道,所述数据信道承载待传输数据和DMRS;
所述接收端根据所述至少一个解调参考信号DMRS端口与所述至少一个资源单元的对应关系,解调所述待传输数据。
本申请实施例的数据传输方法,N个DMRS端口完整映射在M个资源单元上,而不是在每个PRB(LTE中定义的PRB)上都映射所有DMRS端口,能够降低单个PRB(LTE 中定义的PRB)上的DMRS的开销,提高频谱效率。
结合第二方面,在一种可能的实现方式中,所述N个DMRS端口中任一DMRS端口唯一对应所述M个资源单元中的一个资源单元。从而能够进一步地提高频谱效率。
结合第二方面,在一种可能的实现方式中,所述M个资源单元中至少两个资源单元所对应的DMRS端口数不同,或者,所述M个资源单元中任意两个资源单元所对应的DMRS端口数相同;和/或,
所述N个DMRS端口中至少两个DMRS端口占用的资源粒子RE数不同,或者,所述N个DMRS端口中任意两个DMRS端口占用的RE数相同;和/或
所述M个资源单元中至少两个资源单元中用于映射DMRS端口的RE总数不同,或者所述M个资源单元中任意两个资源单元中用于映射DMRS端口的RE总数相同。
结合第二方面,在一种可能的实现方式中,所述M个资源单元在频域上或时域上连续。
从而,使得DMRS端口与资源单元的映射规则更简单,能够降低发送端和接收端的处理复杂度。
结合第二方面,在一种可能的实现方式中,所述M个资源单元中每个资源单元至少对应所述N个DMRS端口中的一个DMRS端口。
结合第二方面,在一种可能的实现方式中,所述N个DMRS端口与资源单元的对应关系为下述中的任一种:
所述N个DMRS端口中索引为i的DMRS端口对应于索引为j+k*M的资源单元,i和j满足i%M=j,%表示求余运算符;或者,
索引为k*M至k*M+M-1的M个资源单元中,索引较小的资源单元对应的任一DMRS端口的索引小于索引较大的资源单元对应的任一DMRS端口的索引,或者,索引较小的资源单元对应的任一DMRS端口的索引大于索引较大的资源单元对应的任一DMRS端口的索引。换句话说,对于存在N个DMRS端口完整映射的任意M个资源单元,索引较小的资源单元对应的任一DMRS端口的索引小于索引较大的资源单元对应的任一DMRS端口的索引,或者,索引较小的资源单元对应的任一DMRS端口的索引大于索引较大的资源单元对应的任一DMRS端口的索引;
其中,i=0,1,……,N-1,k=0,1,2,……,j为整数且j∈[0,1,……,M-1]。
可选地,本申请中,k的最大取值可以是:
Figure PCTCN2019110635-appb-000003
或者,
Figure PCTCN2019110635-appb-000004
或者k的最大取值为预设值,预设值可以是经验值等。
结合第二方面,在一种可能的实现方式中,所述N个DMRS端口全部映射于所述M个资源单元中的部分资源单元。
结合第二方面,在一种可能的实现方式中,索引为k*M至k*M+M-1的M个资源单元中,索引为奇数或者偶数的资源单元映射所述N个DMRS端口,或者索引较小或者较大的M-P个资源单元映射所述N个DMRS端口,1≤P≤M-1,且P为整数,k=0,1,2,……。
换句话说,对于存在N个DMRS端口完整映射的任意M个资源单元,该M个资源单元中索引为奇数或者偶数的资源单元映射所述N个DMRS端口,或者索引较小或者较大的M-P个资源单元映射所述N个DMRS端口。
结合第二方面,在一种可能的实现方式中,所述方法还包括:
所述接收端向所述发送端发送第一指示信息,或者,
所述接收端接收所述发送端发送的所述第一指示信息;
其中,所述第一指示信息用于指示所述映射规则。
此外,该映射规则可以由协议规定或者预定义。
结合第二方面,在一种可能的实现方式中,所述第一指示信息还包括所述至少一个DMRS端口中每个DMRS端口在对应的资源单元中的时频资源信息。或者说该映射规则还用于指示该N个DMRS端口中每个DMRS端口在对应的资源单元中占用的RE信息。
应理解,该N个DMRS端口中每个DMRS端口在对应的资源单元中的时频资源信息也可以预先定义,本申请对此不作限定。
可选地,第一指示信息可以通过DCI发送,也可以通过其他信令,比如RRC或MAC CE等发送,本申请并不限定如何发送第一指示信息。或者,第一指示信息可以通过UCI等其他信令发送。
结合第二方面,在一种可能的实现方式中,所述方法还包括:
所述接收端向所述发送端发送第二指示信息,或者,
所述接收端接收所述发送端发送的所述第二指示信息;
其中,所述第二指示信息用于指示所述至少一个资源单元,其中所述至少一个资源单元为用于映射所述至少一个DMRS端口的资源单元。
结合第二方面,在一种可能的实现方式中,所述第二指示信息可以包括下列信息中的任意一种:
所述至少一个资源单元在时域和/或频域上的索引;
奇数或者偶数资源单元;
一个或者多个余数t和/或M的值,其中资源单元的索引满足:资源单元的索引%M=t的资源单元属于所述至少一个资源单元。
可选地,第二指示信息可以通过DCI发送,也可以通过其他信令,比如RRC或MAC CE等发送,本申请并不限定如何发送第二指示信息。或者,第二指示信息可以通过UCI等其他信令发送。
结合第二方面,在一种可能的实现方式中,
所述映射规则还用于指示在时域上连续的两组资源单元中,用于映射同一DMRS端口的子载波是否存在偏移,以及在存在偏移的情况下的偏移量,其中,所述两组资源单元在频域上的位置相同,并且每组资源单元包括M个资源单元,每组资源单元存在所述N个DMRS端口的一次完整映射;或者,
所述映射规则还用于指示相邻的两个资源单元中,用于映射同一端口的子载波是否存在偏移以及在存在偏移的情况下的偏移量,所述相邻的两个资源单元在频域上的位置相同,且在时域上间隔M个资源单元;
或者,所述映射规则还用于指示在频域上连续的两组资源单元中,用于映射同一DMRS端口的符号是否存在偏移,以及在存在偏移的情况下的偏移量,其中,所述两组资源单元在时域上的位置相同,并且每组资源单元包括M个资源单元,每组资源单元存在所述N个DMRS端口的一次完整映射;或者,
所述映射规则还用于指示相邻的两个资源单元中,用于映射同一端口的符号是否存在偏移以及在存在偏移的情况下的偏移量,所述相邻的两个资源单元在时域上的位置相同,且在频域上间隔M个资源单元。
可选地,所述符号可以是OFDM,但本申请实施例对此不作限定。
应理解,本申请中,两个资源单元在时域上间隔M个资源单元是指,两个资源单元在时域上的起始位置或结束位置之间相距M个资源单元。类似地,两个资源单元在频域上间隔M个资源单元是指,两个资源单元在频域上的起始位置或结束位置之间相距M个资源单元。
关于对第二方面中与第一方面相同或者类似的实现方式的理解,或者对第二方面中与第一方面相同或者类似的术语或词语的理解,具体可以参见对第一方面所作的说明,这里不再赘述。
在一种可能的实现方式中,本申请中,发送端可以是网络设备,接收端可以是终端设备;或者,发送端可以是终端设备,接收端可以是网络设备。
第三方面,提供了一种通信装置,包括用于执行第一方面或第一方面中任一种可能实现方式中的方法的各个模块或单元。
第四方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,控制通信接口实现与其他网元的通信。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第五方面,提供了一种通信装置,包括用于执行第二方面或第二方面任一种可能实现方式中的方法的各个模块或单元。
第六方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面或第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,控制通信接口实现与其他网元的通信。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面至第二方面以及第一方面至第二方面任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第二方面以及第一方面至第二方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第八方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
第十一方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1是适用于本申请实施例的通信系统的示意性框图。
图2是本申请提供的一种数据传输方法的示意性流程图。
图3是一个示例性的DMRS端口与资源单元的对应关系的示意图。
图4是又一个示例性的DMRS端口与资源单元的对应关系的示意图。
图5是另一个示例性的DMRS端口与资源单元的对应关系的示意图。
图6是一个示例性的DMRS端口与资源单元的对应关系的示意图。
图7是再一个示例性的DMRS端口与资源单元的对应关系的示意图。
图8是一个示例性的DMRS端口与资源单元的对应关系的示意图。
图9是一个示例性的DMRS端口与资源单元的对应关系的示意图。
图10是一个示例性的DMRS端口与资源单元的对应关系的示意图。
图11是本申请提供的另一数据传输方法的示意性流程图。
图12是本申请提供的另一数据传输方法的示意性流程图。
图13是本申请实施例提供的通信装置的示意性框图。
图14是本申请实施例提供的终端设备的结构示意图。
图15是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division  multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
应理解,在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。
图1示出了适用于本申请实施例的数据传输方法和装置的通信系统的示意图。如图1所示,该通信系统100可以包括至少一个网络设备110和至少一个终端设备120。网络设备110与终端设备120可通过多输入多输出(multi-input multi-output,MIMO)技术进行通信,也就是说该通信系统100可以是MIMO系统。在MIMO系统中,各根发送天线(虚拟天线或物理天线)具有独立的数据信道,基于预知的参考信号(reference signal,RS)信号,接收机针对每根发送天线进行信道估计,并基于此还原发送数据。其中,DMRS用于PDSCH的解调。
NR版本(release,R)15可以支持多达12端口的DMRS,换句话说,现有系统可以实现最多正交12个数据流同时传输。然而,12端口数据传输的频谱效率远远不能满足NR多种场景,比如,需要多达32/48/64流传输的NR WTTx新场景,速率需求大于300Mbps的无人机实时传输场景,自动驾驶场景等。显然,提高DMRS正交端口数目是提高频谱效率最直接的解决方案。
现有协议规定,一个调度单元(比如,12个子载波*14个符号,或者12个子载波*12个符号)内映射被调度的数据对应的所有端口的DMRS,更详细地,每一个DMRS端口 都会映射于所有该端口数据所映射的所有调度单元内。通过这种映射方式,可以使DMRS有较高的时频密度来保证解调性能。然而,这种DMRS设计规则可能会成为频谱效率进一步提升的瓶颈。比如,按照现有DMRS设计规则在实现32/48/64端口时会致使开销急剧增大,甚至无法实现32/48/64端口。
有鉴于此,本申请针对NR多种高频谱效率需求的场景,重新设计了一种DMRS映射规则,使得发送端通过该映射规则进行传输数据时,能够提高频谱效率。
本申请提供的数据传输方法可以用于可以应用于下行通信中,也可以应用于上行通信中。在应用于下行通信中时,发送端可以是网络设备,相应地,接收端可以是终端设备。在应用于上行通信中时,发送端可以是终端设备,相应地,接收端可以是网络设备。以下,主要以图2所示的下行通信场景为例,对本申请提供的方法进行详细说明。
应理解,在本申请中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
还应理解,在下文示出的实施例中,第一、第二仅为便于区分不同的对象,而不应对本申请构成任何限定。例如,区分不同的指示信息等。
另外,在描述图2、图11以及图12所示的方法时,对于一些步骤的描述是以终端设备作为执行主体进行描述的,另一些步骤是以网络设备作为执行主体进行描述的,但这只是为了便于对图示方法的描述。由终端设备执行的步骤还可以由终端设备的部件(例如芯片或者电路)实现,类似地,由网络设备执行的步骤还可以由网络设备的部件(例如芯片或者电路)实现。
需要说明的是,本文中涉及的“DMRS端口映射到资源单元”等类似的描述可以理解为:DMRS端口对应的DMRS映射到资源单元。另外本申请中的端口若无特殊说明,均指的是DMRS端口。
图2是本申请提供的一种数据传输方法200的示意图。该方法可以应用于下行通信中,下面对方法200中的各步骤进行详细说明。
S210,网络设备根据映射规则确定待调度的至少一个DMRS端口与至少一个资源单元的对应关系。
本文中为了便于理解和描述,将该至少一个资源单元记作:资源单元集#A。
资源单元集#A可以是用于映射DMRS端口的资源单元,也可以是网络设备所调度的资源单元。其中,用于映射DMRS端口的资源单元为系统所包括的所有资源单元中的部分或全部资源单元,具体地可以是网络设备所调度的资源单元中的部分或全部资源单元,也可以包括系统所包括的所有资源单元中除网络设备所调度的资源单元外的其他资源单元。
该映射规则用于指示N个DMRS端口与资源单元的对应关系,N为系统最大支持的DMRS端口数,N≥1,且N为整数。具体地,该映射规则可以指示N个DMRS端口与系统所包括的所有资源单元的对应关系,也可以指示N个DMRS端口与用于映射DMRS端口的资源单元的对应关系。也就是说,根据该映射规则,能够确定出N个DMRS端口中各DMRS端口分别映射在系统所包括的所有资源单元中的哪些资源单元上,或者能够确 定出N个DMRS端口中各DMRS端口分别映射在用于映射DMRS端口的资源单元中的哪些资源单元上。
其中,M个资源单元上存在所述N个DMRS端口的某一次完整映射,M≥2,且M为整数。也就是说,N个DMRS端口完整映射于M个资源单元上,比如,M个资源单元中的每个资源单元上可以分别映射N个DMRS端口中的一部分端口;或者,M个资源单元中的部分资源单元上可以映射全部的N个DMRS端口,而另一部分资源单元上不映射任何DMRS端口。所述M个资源单元所构成的时频资源不同于LTE中定义的物理资源块(physical resource block,PRB),也就是说,本申请中的映射规则指示,每个DMRS端口并非映射在每个调度单元(即,LTE中定义的PRB)内。
应理解,所述待调度的至少一个DMRS端口属于该N个DMRS端口,即,所述待调度的至少一个DMRS端口为该N个DMRS端口中的部分或全部端口。该待调度的至少一个DMRS端口为针对本文中描述的终端设备的,该终端设备可以是由该网络设备提供服务的小区内的任一终端设备。
下面对本申请中的资源单元的几种可能的定义进行说明。
定义一
本申请中的资源单元由频域上连续的12*Y个子载波和时域上的X个时隙组成。其中X和Y可以为大于或者等于1的任意整数。
相应地,所述M个资源单元由频域上的12*Y*M个子载波和时域上的X个时隙组成,或者,所述M个资源单元由频域上的12*Y个子载波和时域上的M*X个时隙组成。进一步地,组成所述M个资源单元的12*M*Y个子载波在频域上连续,或者组成所述M个资源单元的M*X个时隙在时域上连续。
所述时隙可以是LTE中的传输时间间隔(transmission time interval,TTI),也可以是符号级短TTI,或高频系统中的大子载波间隔的短TTI,也可以是NR中的slot或微型时隙(mini-slot)等,本申请对此不做限定。可选地,NR中的一个slot可以由12或14个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号组成。
本领域技术人员公知,NR中定义的PRB不同于LTE中定义的PRB,LTE中定义的PRB包含时域和频域的概念,LTE中定义的PRB由频域上连续的12个子载波和时域上的一个时隙组成,而NR中仅是频域上的概念,NR中定义的PRB包括频域上连续的12个子载波。为使本领域技术人员更好地理解本申请,本文将采用NR中对PRB的定义来对各实施例进行描述,若无特别说明,本申请中的PRB是指NR中定义的PRB。
因此,可以理解,本申请中的资源单元可以由Y个PRB和X个时隙组成。相应地,所述M个资源单元由M*Y个PRB和X个时隙组成,或者,所述M个资源单元由Y个PRB和M*X个时隙组成。
需要说明的是,本申请中,在所述M个资源单元由M*Y个PRB和X个时隙组成的情况下,若X=1,Y=1,则将PRB的索引作为该PRB所对应的资源单元的索引,例如,参见图3,在所述M个资源单元由PRB#0和PRB#1以及时隙#0组成的情况下,将PRB#0所对应的资源单元称为资源单元#0,将PRB#1所对应的资源单元称为资源单元#1。类似地,在所述M个资源单元由Y个PRB和M*X个时隙组成的情况下,若X=1,Y=1,则将时隙的索引作为该时隙所对应的资源单元的索引,例如,参见图4,在所述M个资源单 元由PRB#0以及时隙#0和时隙#1组成的情况下,将时隙#0所对应的资源单元称为资源单元#0,将时隙#1所对应的资源单元称为资源单元#1。若X和Y二者中至少一者不为1,资源单元索引包含时域上的索引和频域上的索引两部分,其中资源单元在时域上的索引为该资源单元所对应的时隙的索引,资源单元在频域上的索引为该资源单元所对应的PRB的索引。
应理解,本文中图3至图10所示的资源单元中,一个小方格表示一个RE。
定义二
本申请中的资源单元由频域上连续的12*W个子载波和时域上的N_s*Q个符号组成。其中N_s为非时隙调度场景对应的至少一个调度符号数。其中W和Q可以为大于或者等于1的任意整数。
相应地,所述M个资源单元由12*M*W个子载波和时域上的N_s*Q个符号组成,或者,所述M个资源单元由频域上的12*W个子载波和时域上的N_s*Q*M个符号组成。进一步地,组成所述M个资源单元的12*M*W个子载波在频域上连续,或者组成所述M个资源单元的N_s*Q*M个符号在时域上连续。
所述非时隙调度场景对应的至少一个调度符号数N_s可以根据非时隙调度时域资源配置信息确定,本申请对此不做限定。可选地,NR中的一个N_s可以由2,4或7个OFDM符号组成。
需要说明的是,本申请中,在所述M个资源单元由12*M*W个子载波和时域上的N_s*Q个符号组成的情况下,若W=1,Q=1,则将PRB的索引作为该PRB所对应的资源单元的索引。类似地,在所述M个资源单元由12*W个子载波和时域上的N_s*Q*M个符号组成的情况下,若W=1,Q=1,则将由N_s个符号组成的调度粒度的索引作为该调度粒度所对应的资源单元的索引。若W和Q二者中至少一者不为1,资源单元索引包含时域上的索引和频域上的索引两部分,其中资源单元在时域上的索引为该资源单元所对应的该调度粒度的索引,资源单元在频域上的索引为该资源单元所对应的PRB的索引。
下面,对该N个DMRS端口与资源单元的对应关系进行说明。
在一种可能的实现方式中,该N个DMRS端口中至少一个DMRS端口对应该M个资源单元中的多个资源单元。也就是说,一个DMRS端口所对应的DMRS可以映射于两个或者两个以上的资源单元中。
在另一种可能的实现方式中,该N个DMRS端口中任一DMRS端口唯一对应该M个资源单元中的一个资源单元。
也就是说,同一DMRS端口仅对应该M个资源单元中的一个资源单元,而不会对应该M个资源单元中的多个资源单元。例如,假设该N个DMRS端口中的port#1对应该M个资源单元中的资源单元#0,那么该M个资源单元中除资源单元#0以外的其他资源单元均不会映射port#1。
进一步地,该N个DMRS端口与资源单元满足下述中的一种或多种:
A、该M个资源单元中至少两个资源单元所对应的DMRS端口数不同,或者,该M个资源单元中任意两个资源单元所对应的DMRS端口数相同。
假设M=2,N=24,该M个资源单元为资源单元#0和资源单元#1,该N个DMRS端口为port#0~port#23。那么,资源单元#0和资源单元#1对应的DMRS端口数可以不同, 比如,资源单元#0可以对应port#0~port#9,资源单元#1可以对应port#12~port#23,或者,资源单元#0可以对应port#0~port#23,而资源单元#1不对应任何DMRS端口。或者,资源单元#0和资源单元#1可以分别对应12个DMRS端口,比如,资源单元#0可以对应port#0~port#11,资源单元#1可以对应port#12~port#23。
B、该N个DMRS端口中至少两个DMRS端口占用的资源粒子RE数不同,或者,所述N个DMRS端口中任意两个DMRS端口占用的RE数相同。
同样基于A中的假设。那么,port#0~port#23中有两个或者两个以上的port在其对应的资源单元中占用的RE数不同,比如,port#0在其对应的资源单元#1中占用2个RE,port#1在其对应的资源单元#1中占用3个RE,port#2在其对应的资源单元#2中占用3个RE。或者,port#0~port#23中各port在其对应的资源单元中占用的RE数可以相同,比如,各port均占用2个RE。
C、该M个资源单元中至少两个资源单元中用于映射DMRS端口的RE总数不同,或者该M个资源单元中任意两个资源单元中用于映射DMRS端口的RE总数相同。
同样基于A中的假设。那么,资源单元#1中用于映射DMRS端口的RE总数可以和资源单元#2中用于映射DMRS端口的RE总数不同,比如,资源单元#1中用于映射DMRS端口的RE总数为12个RE,资源单元#2中用于映射DMRS端口的RE总数为10个RE。或者,资源单元#1中用于映射DMRS端口的RE总数可以和资源单元#2中用于映射DMRS端口的RE总数相同,比如都为12个RE。应理解,在此实现方式中,资源单元#1对应的DMRS端口数和资源单元#2对应的DMRS端口数可以相同也可以不同,本申请实施例对此不作限定。
以下,结合M个资源单元中每个资源单元是否都存在对应的DMRS端口,分情况对该N个DMRS端口与资源单元的具体对应关系进行说明。
情况一
该M个资源单元中每个资源单元至少对应该N个DMRS端口中的一个DMRS端口。也就是说,该M个资源单元中每个资源单元都存在对应的DMRS端口。
在此情况下,该N个DMRS端口与资源单元的对应关系具体可以是下述对应关系一至对应关系三中的其中一种。其中,下述中i=0,1,……,N-1,k=0,1,2,……,j为整数且j=∈[0,1,……,M-1]。
可选地,本申请中,k的最大取值可以是:
Figure PCTCN2019110635-appb-000005
或者,
Figure PCTCN2019110635-appb-000006
或者k的最大取值为预设值,预设值可以是经验值等。
对应关系一
该N个DMRS端口中索引为i的DMRS端口对应于索引为j+k*M的资源单元,其中,i%M=j,%表示求余。
例如,当M=2时,N个DMRS端口中索引为偶数的DMRS端口对应索引为偶数的资源单元,索引为奇数的DMRS端口对应索引为奇数的资源单元。比如,假设M=2,N=24,该N个DMRS端口为port#0~port#23,那么,参见图3和图4,对于资源单元#0和资源单元#1,port#0~port#23中索引为偶数的port对应于资源单元#0,索引为奇数的port对应于资源单元#1。
应理解,在图3所示的示例中,资源单元的索引为PRB的索引,并且,相同PRB不同时隙所对应的资源单元对应相同的DMRS端口。在图4所示的示例中,资源单元的索引为时隙的索引,并且,相同时隙不同PRB所对应的资源单元对应相同的DMRS端口。
还应理解,图3和图4所示的DMRS在资源单元中占用的RE位置仅是示例性说明,并不应对本申请构成任何限定。还应理解,当M=2时,N个DMRS端口中索引为偶数的DMRS端口也可以对应索引为奇数的资源单元,索引为奇数的DMRS端口可以对应索引为偶数的资源单元,本申请对此不作限定。
又如,假设M=3,N=24,该N个DMRS端口为port#0~port#23,那么对于资源单元#0至资源单元#2,port#0、port#3、port#6、port#9、port#12、port#15、port#18、port#21对应于资源单元#0,port#1、port#4、port#7、port#10、port#13、port#16、port#19、port#22对应于资源单元#1,port#2、port#5、port#8、port#11、port#14、port#17、port#20、port#23对应于资源单元#2。
对应关系二
索引为k*M至k*M+M-1的M个资源单元中,索引较小的资源单元对应的任一DMRS端口的索引小于索引较大的资源单元对应的任一DMRS端口的索引。换句话说,对于存在N个DMRS端口完整映射的任意M个资源单元,索引较小的资源单元对应的任一DMRS端口的索引小于索引较大的资源单元对应的任一DMRS端口的索引。
例如,当M=2,N=24时,对于资源单元#0至资源单元#3,资源单元#0对应port#0~port#10,资源单元#1对应port#11~port#23。资源单元#2对应port#0~port#10,资源单元#3对应port#11~port#23。
应理解,在对应关系二中,M个资源单元分别对应的DMRS端口数可以相同,也可以不同,本申请对此不作限定。
对应关系三
索引为k*M至k*M+M-1的M个资源单元中,索引较小的资源单元对应的任一DMRS端口的索引大于索引较大的资源单元对应的任一DMRS端口的索引。换句话说,对于存在N个DMRS端口完整映射的任意M个资源单元,索引较小的资源单元对应的任一DMRS端口的索引大于索引较大的资源单元对应的任一DMRS端口的索引。
例如,当M=2,N=24时,对于资源单元#0至资源单元#3,资源单元#0对应port#11~port#23,资源单元#1对应port#0~port#10。资源单元#2对应port#11~port#23,资源单元#3对应port#0~port#10。
应理解,在对应关系三中,M个资源单元分别对应的DMRS端口数可以相同,也可以不同,本申请对此不作限定。
情况二
该N个DMRS端口全部映射于该M个资源单元中的部分资源单元。也就是说,所述M个资源单元中除该部分资源单元以外的其他资源单元未映射所述N个DMRS端口中任一DMRS端口。
在此情况下,该N个DMRS端口与资源单元的对应关系具体可以是对应关系四:
索引为k*M至k*M+M-1的M个资源单元中,索引为奇数或者偶数的资源单元映射所述N个DMRS端口,或者索引较小或者较大的M-P个资源单元映射所述N个DMRS 端口中的任一DMRS端口,1≤P≤M-1,且P为整数,k=0,1,2,……。
例如,假设M=2,该N个DMRS端口为port#0~port#23,参见图5和图6,port#0~port#23可以全部映射于资源单元#0中,资源单元#1中不映射任一port。或者,port#0~port#23可以全部映射于资源单元#1中,资源单元#0中不映射任一port。
应理解,在图5所示的示例中,资源单元的索引为PRB的索引,并且,相同PRB不同时隙所对应的资源单元对应相同的DMRS端口。在图6所示的示例中,资源单元的索引为时隙的索引,并且,相同时隙不同PRB所对应的资源单元对应相同的DMRS端口。
再如,假设M=3,该N个DMRS端口为port#0~port#23,port#0~port#23可以全部映射于资源单元#0中,资源单元#1和资源单元#2中不映射任一port。或者,port#0~port#23中的一部分port可以映射于资源单元#0中,其余port可以映射于资源单元#1中,资源单元#2中不映射任一port。
可选地,作为本申请一个实施例,该映射规则还用于指示该N个DMRS端口中每个DMRS端口在对应的资源单元中的时频资源信息,或者说该映射规则还用于指示该N个DMRS端口中每个DMRS端口在对应的资源单元中占用的RE信息。
换句话说,该映射规则可以指示每个DMRS端口占用其对应的资源单元中的哪些RE。
应理解,该N个DMRS端口中每个DMRS端口在对应的资源单元中的时频资源信息也可以预先定义,本申请对此不作限定。
作为示例,本申请中,port#0和port#1可以映射于对应的资源单元内的子载波0,2,4,6,8,10上,port#2和port#3可以映射于对应的资源单元内的频域子载波1,3,5,7,9,11上;或者,port#0和port#1可以映射于对应的资源单元内的频域子载波0,1,6,7上,port#2和port#3可以映射于对应的资源单元内的频域子载波2,3,8,9上。port#4和port#5可以映射于对应的资源单元内的频域子载波4,5,10,11上。
所述映射规则还用于指示在时域上连续的两组资源单元中,用于映射同一DMRS端口的子载波是否存在偏移,以及在存在偏移的情况下的偏移量,其中,所述两组资源单元在频域上的位置相同,并且每组资源单元包括M个资源单元,每组资源单元存在所述N个DMRS端口的一次完整映射;或者,
所述映射规则还用于指示相邻的两个资源单元中,用于映射同一端口的子载波是否存在偏移以及在存在偏移的情况下的偏移量,所述相邻的两个资源单元在频域上的位置相同,且在时域上间隔M个资源单元;
或者,所述映射规则还用于指示在频域上连续的两组资源单元中,用于映射同一DMRS端口的符号是否存在偏移,以及在存在偏移的情况下的偏移量,其中,所述两组资源单元在时域上的位置相同,并且每组资源单元包括M个资源单元,每组资源单元存在所述N个DMRS端口的一次完整映射;或者,
所述映射规则还用于指示相邻的两个资源单元中,用于映射同一端口的符号是否存在偏移以及在存在偏移的情况下的偏移量,所述相邻的两个资源单元在时域上的位置相同,且在频域上间隔M个资源单元。
可选地,所述符号可以是OFDM,但本申请实施例对此不作限定。
应理解,本申请中,两个资源单元在时域上间隔M个资源单元是指,两个资源单元在时域上的起始位置或结束位置之间相距M个资源单元。类似地,两个资源单元在频域 上间隔M个资源单元是指,两个资源单元在频域上的起始位置或结束位置之间相距M个资源单元。
以图7至图10所示的资源单元与DMRS端口的对应关系为例进行说明。图7至图10中,假设N=48,偶数资源单元用于映射port#0~port#23,奇数资源单元用于映射port#24~port#47。
参见图7,资源单元#0和资源单元#2映射相同的端口,资源单元#0和资源单元#2相邻,但在频域上不连续。资源单元#0和资源单元#2中用于映射同一DMRS端口的时频资源的偏移量为2个OFDM符号。类似地,资源单元#1和资源单元#3映射相同的端口,资源单元#1和资源单元#3相邻,但在频域上不连续。资源单元#1和资源单元#3中用于映射同一DMRS端口的时频资源的偏移量为2个OFDM符号。
参见图8,由时隙#0对应的资源单元#0和资源单元#1构成一组资源单元,由时隙#1对应的资源单元#0和资源单元#1构成一组资源单元。两组资源单元映射相同的端口,同时两组资源单元在时域上连续。并且,两组资源单元中用于映射同一端口的时频资源的偏移量为12个子载波。
参见图9,由PRB#0对应的资源单元#0和资源单元#1构成一组资源单元,由PRB#1对应的资源单元#0和资源单元#1构成一组资源单元。两组资源单元映射相同的端口,同时两组资源单元在频域上连续。并且,两组资源单元中用于映射同一端口的时频资源的偏移量为2个OFDM符号。
参见图10,资源单元#0和资源单元#2映射相同的端口,资源单元#0和资源单元#2相邻,但在时域上不连续。资源单元#0和资源单元#2中用于映射同一DMRS端口的时频资源的偏移量为7个子载波。类似地,资源单元#1和资源单元#3映射相同的端口,资源单元#1和资源单元#3相邻,但在时域上不连续。资源单元#1和资源单元#3中用于映射同一DMRS端口的时频资源的偏移量为7个子载波。
S220,网络设备向终端设备发送第一指示信息。相应地,终端设备接收网络设备发送的第一指示信息。其中,第一指示信息用于指示该映射规则。
需要说明的是,S220为可选步骤,可执行也可不执行。
具体来讲,在一种实现方式中,该映射规则可以由网络设备自行确定。在此方式下,可以执行S220,即网络设备可以向终端设备发送用于指示该映射规则的指示信息,即第一指示信息,终端设备可以根据该第一指示信息,确定该映射规则。
在另一种实现方式中,该映射规则可以预定义。在此方式下,可以不执行S220。
可选地,第一指示信息可以通过DCI发送,也可以通过其他信令,比如RRC或MAC CE等发送,本申请并不限定如何发送第一指示信息。
进一步地,第一指示信息还可以包括该至少一个DMRS端口中每个DMRS端口在对应的资源单元中的时频资源信息,即该至少一个DMRS端口中每个DMRS端口在对应的资源单元中占用的RE信息。
S230,网络设备向终端设备发送第二指示信息。相应地,终端设备接收网络设备发送的第二指示信息。其中,第二指示信息用于指示资源单元集#A。
需要说明的是,S230为可选步骤,可执行也可不执行。
具体来讲,在资源单元集#A为用于映射DMRS端口的资源单元的情况下,可以执行 S230,即网络设备可以向终端设备发送第二指示信息,终端设备根据第二指示信息,可以确定用于映射DMRS端口的资源单元。在资源单元集#A为网络设备所调度的资源单元的情况下,S230可以不执行,应理解,网络设备所调度的资源单元信息可以是网络设备通过DCI通知,也可以通过其他信令,比如RRC或MAC CE等发送给终端设备的。
可选地,第二指示信息可以是用于映射DMRS端口的资源单元在时域和/或频域上的索引。
或者,第二指示信息可以是奇数或者偶数资源单元。这里的意思是,用于映射DMRS端口的资源单元为奇数或者偶数资源单元。以第二指示信息为奇数资源单元为例,根据第二指示信息可以确定,用于映射DMRS端口的资源单元为系统所包括的所有资源单元中时域和/或频域上的索引为奇数的资源单元,或者,用于映射DMRS端口的资源单元为网络设备所调度的资源单元中时域和/或频域上的索引为奇数的资源单元。
或者,第二指示信息可以是一个或者多个余数t的值和/或M的值。具体来讲,系统所包括的所有资源单元中,若资源单元的索引%M=t,则认为该资源单元为用于映射DMRS端口的资源单元。这里资源单元的索引可以是时域和/或频域上的索引。应理解,M的值可以预定义,或者由网络设备确定后通知给终端设备。
可选地,第二指示信息可以通过DCI发送,也可以通过其他信令,比如RRC或MAC CE等发送,本申请并不限定如何发送第二指示信息。
应理解,在S220和S230均执行的情况下,本申请不限定二者的执行顺序。
还应理解,第二指示信息可以和第一指示信息通过同一条信令发送,也可以和第一指示信息分别通过不同的信令发送,本申请对此不作限定。
S240,终端设备根据映射规则确定该待调度的至少一个DMRS端口与资源单元集#A的对应关系。
比如,终端设备可以首先根据第一指示信息确定该映射规则,根据第二指示信息确定资源单元集#A,从而终端设备可以确定该待调度的至少一个DMRS端口与资源单元集#A的对应关系。
又如,终端设备可以预先存储该映射规则,在根据第二指示信息确定资源单元集#A后,便可以确定该待调度的至少一个DMRS端口与资源单元集#A的对应关系。
应理解,终端设备可以通过现有技术确定该待调度的至少一个DMRS端口信息,比如,终端设备可以通过网络设备发送的DCI确定该待调度的至少一个DMRS端口信息,本申请不再赘述。
S250,网络设备根据该待调度的至少一个DMRS端口与资源单元集#A的对应关系,在数据信道上发送待传输数据和DMRS。相应地,终端设备接收该数据信道。
具体而言,网络设备在确定该待调度的至少一个DMRS端口与资源单元集#A的对应关系后,将该待调度的至少一个DMRS端口分别映射于对应的资源单元上,以及将待传输数据映射在网络设备所调度的资源单元上,然后网络设备在数据信道上发送待传输数据和DMRS,相应地,终端设备接收该数据信道。
S260,终端设备根据该待调度的至少一个DMRS端口与资源单元集#A的对应关系,解调所述待传输数据。
具体地,终端设备确定所述待调度的至少一个DMRS端口与资源单元集#A的对应关 系后,可以根据待调度的至少一个DMRS端口分别对应的资源单元上的DMRS进行信道估计,然后解调所述待传输数据。具体终端设备如何根据DMRS进行信道估计以及解调数据可以参照现有技术,这里不再赘述。
综上,本申请实施例的数据传输方法,N个DMRS端口完整映射在M个资源单元上,而不是在每个PRB(LTE中定义的PRB)上都映射所有DMRS端口,能够降低单个PRB(LTE中定义的PRB)上的DMRS的开销,提高频谱效率。
上文中主要介绍了本申请的方法应用于下行通信中的场景,下面简略说明本申请的方法应用于上行通信中的场景。应理解,下文中出现的与上文中相同的概念或者术语,比如,资源单元等,其含义如上文所述,下文中将不再赘述。
图11是本申请提供的一种数据传输方法300的示意图。该方法可以应用于上行通信中终端设备根据网络设备的指示映射DMRS的场景中,下面对方法300中的各步骤进行详细说明。
S310,网络设备根据映射规则确定待调度的至少一个DMRS端口与至少一个资源单元的对应关系。
S320,网络设备向终端设备发送第一指示信息。相应地,终端设备接收网络设备发送的第一指示信息。其中,第一指示信息用于指示映射规则。
S330,网络设备向终端设备发送第二指示信息。相应地,终端设备接收网络设备发送的第二指示信息。其中,第二指示信息用于指示资源单元集#A。
S340,终端设备根据映射规则确定该待调度的至少一个DMRS端口与资源单元集#A的对应关系。
关于S310至S340可以参照上述中对S210至S240所作的说明,这里不再赘述。
S350,终端设备根据该待调度的至少一个DMRS端口与资源单元集#A的对应关系,在数据信道上发送待传输数据和DMRS。相应地,网络设备接收该数据信道。
具体而言,终端设备在确定该待调度的至少一个DMRS端口与资源单元集#A的对应关系后,将该待调度的至少一个DMRS端口分别映射于对应的资源单元上,以及将待传输数据映射在网络设备所调度的资源单元上,然后终端设备在数据信道上发送待传输数据和DMRS,相应地,网络设备接收该数据信道。
S360,网络设备根据该待调度的至少一个DMRS端口与资源单元集#A的对应关系,解调所述待传输数据。
具体地,网络设备确定所述待调度的至少一个DMRS端口与资源单元集#A的对应关系后,可以根据待调度的至少一个DMRS端口分别对应的资源单元上的DMRS进行信道估计,然后解调所述待传输数据。具体网络设备如何根据DMRS进行信道估计以及解调数据可以参照现有技术,这里不再赘述。
因此,本申请实施例的数据传输方法,N个DMRS端口完整映射在M个资源单元上,而不是在每个PRB(LTE中定义的PRB)上都映射所有DMRS端口,能够降低单个PRB(LTE中定义的PRB)上的DMRS的开销,提高频谱效率。
图12是本申请提供的一种数据传输方法400的示意图。该方法可以应用于上行通信中网络设备根据终端设备的指示解调DMRS的场景中,下面对方法400中的各步骤进行详细说明。
S410,终端设备根据映射规则确定该待调度的至少一个DMRS端口与资源单元集#A的对应关系。
S410与S210类似,仅是执行主体不同,S410可以参照上文中对S210所作的说明,这里不在赘述。
应理解,终端设备可以通过现有技术确定该待调度的至少一个DMRS端口信息,本申请不再赘述。
S420,终端设备向网络设备发送第一指示信息。相应地,网络设备接收终端设备发送的第一指示信息。其中,第一指示信息用于指示该映射规则。
具体来讲,该映射规则可以由终端设备自行确定。在此方式下,可以执行S420,即终端设备可以向网络设备发送用于指示该映射规则的指示信息,即第一指示信息,网络设备可以根据该第一指示信息,确定该映射规则。
可选地,第一指示信息可以通过上行控制信息(uplink control inforamtion,UCI)发送,也可以通过其他信令,本申请并不限定如何发送第一指示信息。
进一步地,第一指示信息还可以包括该至少一个DMRS端口中每个DMRS端口在对应的资源单元中的时频资源信息,即该至少一个DMRS端口中每个DMRS端口在对应的资源单元中占用的RE信息。
S430,终端设备向网络设备发送第二指示信息。相应地,网络设备接收终端设备发送的第二指示信息。其中,第二指示信息用于指示资源单元集#A。
需要说明的是,S430为可选步骤,可执行也可不执行。
具体来讲,在资源单元集#A为用于映射DMRS端口的资源单元的情况下,可以执行S430,即终端设备可以向网络设备发送第二指示信息,网络设备根据第二指示信息,可以确定用于映射DMRS端口的资源单元。在资源单元集#A为网络设备所调度的资源单元的情况下,S430可以不执行,应理解,网络设备所调度的资源单元信息可以是网络设备通过DCI或者其他信令通知终端设备的。
可选地,第二指示信息可以是用于映射DMRS端口的资源单元在时域和/或频域上的索引。
或者,第二指示信息可以是奇数或者偶数资源单元。这里的意思是,用于映射DMRS端口的资源单元为奇数或者偶数资源单元。以第二指示信息为奇数资源单元为例,根据第二指示信息可以确定,用于映射DMRS端口的资源单元为系统所包括的所有资源单元中时域和/或频域上的索引为奇数的资源单元,或者,用于映射DMRS端口的资源单元为网络设备所调度的资源单元中时域和/或频域上的索引为奇数的资源单元。
或者,第二指示信息可以是一个或者多个余数t的值和/或M的值。具体来讲,系统所包括的所有资源单元中,若资源单元的索引%M=t,则认为该资源单元为用于映射DMRS端口的资源单元。这里资源单元的索引可以是时域和/或频域上的索引。应理解,M的值可以预定义,或者由终端设备确定后通知给网络设备。
可选地,第二指示信息可以通过UCI发送,也可以通过其他信令,比如RRC或MAC CE等发送,本申请并不限定如何发送第二指示信息。
应理解,在S420和S430均执行的情况下,本申请不限定二者的执行顺序。此外,第二指示信息可以和第一指示信息通过同一条信令发送,也可以和第一指示信息分别通过不 同的信令发送,本申请对此不作限定。
S440,网络设备根据映射规则确定该待调度的至少一个DMRS端口与资源单元集#A的对应关系。
比如,网络设备可以首先根据第一指示信息确定该映射规则,根据第二指示信息确定资源单元集#A,从而网络设备可以确定该待调度的至少一个DMRS端口与资源单元集#A的对应关系。
S450,终端设备根据该待调度的至少一个DMRS端口与资源单元集#A的对应关系,在数据信道上发送待传输数据和DMRS。相应地,网络设备接收该数据信道。
具体而言,终端设备在确定该待调度的至少一个DMRS端口与资源单元集#A的对应关系后,将该待调度的至少一个DMRS端口分别映射于对应的资源单元上,以及将待传输数据映射在网络设备所调度的资源单元上,然后终端设备在数据信道上发送待传输数据和DMRS,相应地,网络设备接收该数据信道。
S460,网络设备根据该待调度的至少一个DMRS端口与资源单元集#A的对应关系,解调所述待传输数据。
具体地,网络设备确定所述待调度的至少一个DMRS端口与资源单元集#A的对应关系后,可以根据待调度的至少一个DMRS端口分别对应的资源单元上的DMRS进行信道估计,然后解调所述待传输数据。具体网络设备如何根据DMRS进行信道估计以及解调数据可以参照现有技术,这里不再赘述。
因此,本申请实施例的数据传输方法,N个DMRS端口完整映射在M个资源单元上,而不是在每个PRB(LTE中定义的PRB)上都映射所有DMRS端口,能够降低单个PRB(LTE中定义的PRB)上的DMRS的开销,提高频谱效率。
应理解,上述实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图2至图12详细说明了本申请实施例提供的方法。以下,结合图13至图15详细说明本申请实施例提供的装置。
图13是本申请实施例提供的通信装置的示意性框图。如图13所示,该通信装置500可以包括处理单元510和收发单元520。
在一种可能的设计中,该通信装置500可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的芯片。
具体地,该通信装置500可对应于根据本申请实施例的方法200、方法300和方法400中的网络设备,该通信装置500可以包括用于执行图2中的方法200、图11所示的方法300和图12所示的方法400中的网络设备执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200、图11所示的方法300和图12所示的方法400的相应流程。
其中,当该通信装置500用于执行图2中的方法200时,处理单元510可用于执行方法200中的步骤S210,收发单元520可用于执行方法200中的步骤S220、步骤S240和步骤S250。
当该通信装置500用于执行图11中的方法300时,处理单元510可用于执行方法300中的步骤S310和步骤S360,收发单元520可用于执行方法300中的步骤S320、步骤S330 和步骤S350。
当该通信装置500用于执行图12中的方法400时,处理单元510可用于执行方法400中的步骤S440和步骤S460,收发单元520可用于执行方法400中的步骤S420、步骤S430和步骤S450。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置500中的处理单元510可对应于图15中示出的网络设备700中的处理器710,收发单元520可对应于图15中示出的网络设备700中的收发器720。
在另一种可能的设计中,该通信装置500可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
具体地,该通信装置500可对应于根据本申请实施例的方法200、300或400中的终端设备,该通信装置500可以包括用于执行图2中的方法200、图11中的方法300或图12中的方法400中的终端设备执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200、图11中的方法300或图12中的方法400的相应流程。
其中,当该通信装置500用于执行图2中的方法200时,收发单元520可用于执行方法200中的步骤S220、步骤S230和步骤S250,处理单元510可用于执行方法200中的步骤S240和步骤S260。
当该通信装置500用于执行图11中的方法300时,收发单元520可用于执行方法300中的步骤S320、步骤S330和步骤S350,处理单元510可用于执行方法300中的步骤S340。
当该通信装置500用于执行图12中的方法400时,收发单元520可用于执行方法400中的步骤S420、步骤S430和步骤S450,处理单元510可用于执行方法400中的步骤410。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
应理解,该通信装置500中的,处理单元510可对应于图14中示出的终端设备600中的处理器601,收发单元520可对应于图14中示出的终端设备600中的收发器602。
图14是本申请实施例提供的终端设备600的结构示意图。如图所示,该终端设备600包括处理器601和收发器602。可选地,该终端设备600还包括存储器603。其中,处理器601、收发器602和存储器603之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器603用于存储计算机程序,该处理器601用于从该存储器603中调用并运行该计算机程序,以控制该收发器602收发信号。可选地,终端设备600还可以包括天线504,用于将收发器602输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器601和存储器603可以合成一个处理装置,处理器601用于执行存储器603中存储的程序代码来实现上述功能。应理解,图中所示的处理装置仅为示例。在具体实现时,该存储器603也可以集成在处理器601中,或者独立于处理器601。本申请对此不做限定。
上述终端设备600还包括天线610,用于将收发器602输出的上行数据或上行控制信令通过无线信号发送出去。
当存储器603中存储的程序指令被处理器601执行时,该处理器601用于根据映射规 则确定待调度的至少一个解调参考信号DMRS端口与至少一个资源单元的对应关系,其中,所述映射规则用于指示N个DMRS端口与资源单元的对应关系,其中,N为系统最大支持的DMRS端口数,M个资源单元上存在所述N个DMRS端口的一次完整映射,N≥1,M≥2,且N和M均为整数,所述至少一个DMRS端口属于所述N个DMRS端口。或者,该处理器还可以用于根据所述至少一个解调参考信号DMRS端口与所述至少一个资源单元的对应关系,解调所述待传输数据。
具体地,该终端设备600可对应于根据本申请实施例的方法200、300或400中的终端设备,该终端设备600可以包括用于执行图2中的方法200、图11中的方法300或图12中的方法400中的终端设备执行的方法的单元。并且,该终端设备600中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200、图11中的方法300或图12中的方法400的相应流程。上述处理器601可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器602可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备600还可以包括电源605,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备600还可以包括输入单元606、显示单元607、音频电路608、摄像头609和传感器622等中的一个或多个,所述音频电路还可以包括扬声器6082、麦克风6084等。
图15是本申请实施例提供的网络设备700的结构示意图。如图所示,该网络设备700包括处理器710和收发器720。可选地,该网络设备700还包括存储器730。其中,处理器710、收发器720和存储器730之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器730用于存储计算机程序,该处理器710用于从该存储器730中调用并运行该计算机程序,以控制该收发器720收发信号。
上述处理器710和存储器730可以合成一个处理装置,处理器710用于执行存储器730中存储的程序代码来实现上述功能。具体实现时,该存储器730也可以集成在处理器710中,或者独立于处理器710。
上述网络设备700还可以包括天线740,用于将收发器720输出的下行数据或下行控制信令通过无线信号发送出去。
当存储器730中存储的程序指令被处理器710执行时,该处理器710用于根据映射规则确定待调度的至少一个解调参考信号DMRS端口与至少一个资源单元的对应关系,其中,所述映射规则用于指示N个DMRS端口与资源单元的对应关系,其中,N为系统最大支持的DMRS端口数,M个资源单元上存在所述N个DMRS端口的一次完整映射,N≥1,M≥2,且N和M均为整数,所述至少一个DMRS端口属于所述N个DMRS端口。或者,该处理器还可以用于根据所述至少一个解调参考信号DMRS端口与所述至少一个资源单元的对应关系,解调所述待传输数据。
具体地,该网络设备700可对应于根据本申请实施例的方法200、300或400中的网络设备,该网络设备700可以包括用于执行图2中的方法200、图11中的方法300或图12中的方法400中的网络设备执行的方法的单元。并且,该网络设备700中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200、图11中的方法300或图12中的 方法400的相应流程,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
上述处理器710可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而收发器720可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2、图11或图12所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2、图11或图12所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集 合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质。半导体介质可以是固态硬盘。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
应理解,本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或一个以上;“A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (50)

  1. 一种数据传输方法,其特征在于,包括:
    发送端根据映射规则确定待调度的至少一个解调参考信号DMRS端口与至少一个资源单元的对应关系,其中,所述映射规则用于指示N个DMRS端口与资源单元的对应关系,其中,N为系统最大支持的DMRS端口数,M个资源单元上存在所述N个DMRS端口的一次完整映射,N≥1,M≥2,且N和M均为整数,所述至少一个DMRS端口属于所述N个DMRS端口;
    所述发送端根据所述至少一个解调参考信号DMRS端口与所述至少一个资源单元的对应关系,在数据信道上发送待传输数据和DMRS。
  2. 如权利要求1所述的方法,其特征在于,所述N个DMRS端口中任一DMRS端口唯一对应所述M个资源单元中的一个资源单元。
  3. 根据权利要求1或2所述的方法,其特征在于,所述M个资源单元中至少两个资源单元所对应的DMRS端口数不同,或者,所述M个资源单元中任意两个资源单元所对应的DMRS端口数相同;和/或,
    所述N个DMRS端口中至少两个DMRS端口占用的资源粒子RE数不同,或者,所述N个DMRS端口中任意两个DMRS端口占用的RE数相同;和/或
    所述M个资源单元中至少两个资源单元中用于映射DMRS端口的RE总数不同,或者所述M个资源单元中任意两个资源单元中用于映射DMRS端口的RE总数相同。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述M个资源单元在频域上或时域上连续。
  5. 如权利要求4所述的方法,其特征在于,所述M个资源单元中每个资源单元至少对应所述N个DMRS端口中的一个DMRS端口。
  6. 如权利要求5所述的方法,其特征在于,所述N个DMRS端口与资源单元的对应关系为下述中的任一种:
    所述N个DMRS端口中索引为i的DMRS端口对应于索引为j+k*M的资源单元,i和j满足i%M=j,%表示求余运算符;或者,
    索引为k*M至k*M+M-1的M个资源单元中,索引较小的资源单元对应的任一DMRS端口的索引小于索引较大的资源单元对应的任一DMRS端口的索引,或者,索引较小的资源单元对应的任一DMRS端口的索引大于索引较大的资源单元对应的任一DMRS端口的索引;
    其中,i=0,1,……,N-1,k=0,1,2,……,j为整数且j∈[0,1,……,M-1]。
  7. 如权利要求4所述的方法,其特征在于,所述N个DMRS端口全部映射于所述M个资源单元中的部分资源单元。
  8. 如权利要求7所述的方法,其特征在于,索引为k*M至k*M+M-1的M个资源单元中,索引为奇数或者偶数的资源单元映射所述N个DMRS端口,或者索引较小或者较大的M-P个资源单元映射所述N个DMRS端口,1≤P≤M-1,且P为整数,k=0,1,2,……。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,在所述发送端根据所述至 少一个解调参考信号DMRS端口与所述至少一个资源单元的对应关系,在所述至少一个资源单元上数据信道上发送待传输数据和DMRS之前,所述方法还包括:
    所述发送端向所述接收端发送第一指示信息,或者,
    所述发送端接收所述接收端发送的所述第一指示信息;
    其中,所述第一指示信息用于指示所述映射规则。
  10. 如权利要求9所述的方法,其特征在于,所述第一指示信息还包括所述至少一个DMRS端口中每个DMRS端口在对应的资源单元中的时频资源信息。
  11. 如权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述发送端向所述接收端发送第二指示信息,或者,
    所述发送端接收所述接收端发送的所述第二指示信息;
    其中,所述第二指示信息用于指示所述至少一个资源单元,其中所述至少一个资源单元为用于映射所述至少一个DMRS端口的资源单元。
  12. 如权利要求11所述的方法,其特征在于,所述第二指示信息可以包括下列信息中的任意一种:
    所述至少一个资源单元在时域和/或频域上的索引;
    奇数或者偶数资源单元;
    一个或者多个余数t和/或M的值,其中资源单元的索引满足:资源单元的索引%M=t的资源单元属于所述至少一个资源单元。
  13. 如权利要求1至12中任一项所述的方法,其特征在于,所述映射规则还用于指示在时域上连续的两组资源单元中,用于映射同一DMRS端口的子载波是否存在偏移,以及在存在偏移的情况下的偏移量,其中,所述两组资源单元在频域上的位置相同,并且每组资源单元包括M个资源单元,每组资源单元存在所述N个DMRS端口的一次完整映射;或者,
    所述映射规则还用于指示相邻的两个资源单元中,用于映射同一端口的子载波是否存在偏移以及在存在偏移的情况下的偏移量,所述相邻的两个资源单元在频域上的位置相同,且在时域上间隔M个资源单元;
    或者,所述映射规则还用于指示在频域上连续的两组资源单元中,用于映射同一DMRS端口的符号是否存在偏移,以及在存在偏移的情况下的偏移量,其中,所述两组资源单元在时域上的位置相同,并且每组资源单元包括M个资源单元,每组资源单元存在所述N个DMRS端口的一次完整映射;或者,
    所述映射规则还用于指示相邻的两个资源单元中,用于映射同一端口的符号是否存在偏移以及在存在偏移的情况下的偏移量,所述相邻的两个资源单元在时域上的位置相同,且在频域上间隔M个资源单元。
  14. 一种数据传输方法,其特征在于,包括:
    接收端根据映射规则确定待调度的至少一个解调参考信号DMRS端口与至少一个资源单元的对应关系,其中,所述映射规则用于指示N个DMRS端口与资源单元的对应关系,其中,N为系统最大支持的DMRS端口数,M个资源单元上存在所述N个DMRS端口的一次完整映射,N≥1,M≥2,且N和M均为整数,所述至少一个DMRS端口属于所述N个DMRS端口;
    所述接收端接收数据信道,所述数据信道承载待传输数据和DMRS;
    所述接收端根据所述至少一个解调参考信号DMRS端口与所述至少一个资源单元的对应关系,解调所述待传输数据。
  15. 根据权利要求14所述的方法,其特征在于,所述M个资源单元中至少两个资源单元所对应的DMRS端口数不同,或者,所述M个资源单元中任意两个资源单元所对应的DMRS端口数相同;和/或,
    所述N个DMRS端口中至少两个DMRS端口占用的资源粒子RE数不同,或者,所述N个DMRS端口中任意两个DMRS端口占用的RE数相同;和/或
    所述M个资源单元中至少两个资源单元中用于映射DMRS端口的RE总数不同,或者所述M个资源单元中任意两个资源单元中用于映射DMRS端口的RE总数相同。
  16. 如权利要求14或15所述的方法,其特征在于,所述M个资源单元在频域上或时域上连续。
  17. 如权利要求16所述的方法,其特征在于,所述M个资源单元中每个资源单元至少对应所述N个DMRS端口中的一个DMRS端口。
  18. 如权利要求17所述的方法,其特征在于,所述N个DMRS端口与资源单元的对应关系为下述中的任一种:
    所述N个DMRS端口中索引为i的DMRS端口对应于索引为j+k*M的资源单元,i和j满足i%M=j,%表示求余运算符;或者,
    索引为k*M至k*M+M-1的M个资源单元中,索引较小的资源单元对应的任一DMRS端口的索引小于索引较大的资源单元对应的任一DMRS端口的索引,或者,索引较小的资源单元对应的任一DMRS端口的索引大于索引较大的资源单元对应的任一DMRS端口的索引;
    其中,i=0,1,……,N-1,k=0,1,2,……,j为整数且j∈[0,1,……,M-1]。
  19. 如权利要求16所述的方法,其特征在于,所述N个DMRS端口全部映射于所述M个资源单元中的部分资源单元。
  20. 如权利要求19所述的方法,其特征在于,索引为k*M至k*M+M-1的M个资源单元中,索引为奇数或者偶数的资源单元映射所述N个DMRS端口,或者索引较小或者较大的M-P个资源单元映射所述N个DMRS端口,1≤P≤M-1,且P为整数,k=0,1,2,……。
  21. 如权利要求14至20中任一项所述的方法,其特征在于,所述方法还包括:
    所述接收端向所述发送端发送第一指示信息,或者,
    所述接收端接收所述发送端发送的所述第一指示信息;
    其中,所述第一指示信息用于指示所述映射规则。
  22. 如权利要求21所述的方法,其特征在于,所述第一指示信息还包括所述至少一个DMRS端口中每个DMRS端口在对应的资源单元中的时频资源信息。
  23. 如权利要求14至22中任一项所述的方法,其特征在于,所述方法还包括:
    所述接收端向所述发送端发送第二指示信息,或者,
    所述接收端接收所述发送端发送的所述第二指示信息;
    其中,所述第二指示信息用于指示所述至少一个资源单元,其中所述至少一个资源单元为用于映射所述至少一个DMRS端口的资源单元。
  24. 如权利要求23所述的方法,其特征在于,所述第二指示信息可以包括下列信息中的任意一种:
    所述至少一个资源单元在时域和/或频域上的索引;
    奇数或者偶数资源单元;
    一个或者多个余数t和/或M的值,其中资源单元的索引满足:资源单元的索引%M=t的资源单元属于所述至少一个资源单元。
  25. 如权利要求14至24中任一项所述的方法,其特征在于,所述映射规则还用于指示在时域上连续的两组资源单元中,用于映射同一DMRS端口的子载波是否存在偏移,以及在存在偏移的情况下的偏移量,其中,所述两组资源单元在频域上的位置相同,并且每组资源单元包括M个资源单元,每组资源单元存在所述N个DMRS端口的一次完整映射;或者,
    所述映射规则还用于指示相邻的两个资源单元中,用于映射同一端口的子载波是否存在偏移以及在存在偏移的情况下的偏移量,所述相邻的两个资源单元在频域上的位置相同,且在时域上间隔M个资源单元;
    或者,所述映射规则还用于指示在频域上连续的两组资源单元中,用于映射同一DMRS端口的符号是否存在偏移,以及在存在偏移的情况下的偏移量,其中,所述两组资源单元在时域上的位置相同,并且每组资源单元包括M个资源单元,每组资源单元存在所述N个DMRS端口的一次完整映射;或者,
    所述映射规则还用于指示相邻的两个资源单元中,用于映射同一端口的符号是否存在偏移以及在存在偏移的情况下的偏移量,所述相邻的两个资源单元在时域上的位置相同,且在频域上间隔M个资源单元。
  26. 一种通信装置,其特征在于,包括:
    处理单元,用于根据映射规则确定待调度的至少一个解调参考信号DMRS端口与至少一个资源单元的对应关系,其中,所述映射规则用于指示N个DMRS端口与资源单元的对应关系,其中,N为系统最大支持的DMRS端口数,M个资源单元上存在所述N个DMRS端口的一次完整映射,N≥1,M≥2,且N和M均为整数,所述至少一个DMRS端口属于所述N个DMRS端口;
    收发单元,用于根据所述至少一个解调参考信号DMRS端口与所述至少一个资源单元的对应关系,在数据信道上发送待传输数据和DMRS。
  27. 如权利要求26所述的装置,其特征在于,所述N个DMRS端口中任一DMRS端口唯一对应所述M个资源单元中的一个资源单元。
  28. 根据权利要求26或27所述的装置,其特征在于,所述M个资源单元中至少两个资源单元所对应的DMRS端口数不同,或者,所述M个资源单元中任意两个资源单元所对应的DMRS端口数相同;和/或,
    所述N个DMRS端口中至少两个DMRS端口占用的资源粒子RE数不同,或者,所述N个DMRS端口中任意两个DMRS端口占用的RE数相同;和/或
    所述M个资源单元中至少两个资源单元中用于映射DMRS端口的RE总数不同,或者所述M个资源单元中任意两个资源单元中用于映射DMRS端口的RE总数相同。
  29. 如权利要求26至28中任一项所述的装置,其特征在于,所述M个资源单元在 频域上或时域上连续。
  30. 如权利要求29所述的装置,其特征在于,所述M个资源单元中每个资源单元至少对应所述N个DMRS端口中的一个DMRS端口。
  31. 如权利要求30所述的装置,其特征在于,所述N个DMRS端口与资源单元的对应关系为下述中的任一种:
    所述N个DMRS端口中索引为i的DMRS端口对应于索引为j+k*M的资源单元,i和j满足i%M=j,%表示求余运算符;或者,
    索引为k*M至k*M+M-1的M个资源单元中,索引较小的资源单元对应的任一DMRS端口的索引小于索引较大的资源单元对应的任一DMRS端口的索引,或者,索引较小的资源单元对应的任一DMRS端口的索引大于索引较大的资源单元对应的任一DMRS端口的索引;
    其中,i=0,1,……,N-1,k=0,1,2,……,j为整数且j∈[0,1,……,M-1]。
  32. 如权利要求29所述的装置,其特征在于,所述N个DMRS端口全部映射于所述M个资源单元中的部分资源单元。
  33. 如权利要求32所述的装置,其特征在于,索引为k*M至k*M+M-1的M个资源单元中,索引为奇数或者偶数的资源单元映射所述N个DMRS端口,或者索引较小或者较大的M-P个资源单元映射所述N个DMRS端口,1≤P≤M-1,且P为整数,k=0,1,2,……。
  34. 如权利要求26至33中任一项所述的装置,其特征在于,所述收发单元还用于:
    向所述接收端发送第一指示信息,或者,
    接收所述接收端发送的所述第一指示信息;
    其中,所述第一指示信息用于指示所述映射规则。
  35. 如权利要求34所述的装置,其特征在于,所述第一指示信息还包括所述至少一个DMRS端口中每个DMRS端口在对应的资源单元中的时频资源信息。
  36. 如权利要求26至35中任一项所述的装置,其特征在于,所述收发单元还用于:
    向所述接收端发送第二指示信息,或者,
    接收所述接收端发送的所述第二指示信息;
    其中,所述第二指示信息用于指示所述至少一个资源单元,其中所述至少一个资源单元为用于映射所述至少一个DMRS端口的资源单元。
  37. 如权利要求36所述的装置,其特征在于,所述第二指示信息可以包括下列信息中的任意一种:
    所述至少一个资源单元在时域和/或频域上的索引;
    奇数或者偶数资源单元;
    一个或者多个余数t和/或M的值,其中资源单元的索引满足:资源单元的索引%M=t的资源单元属于所述至少一个资源单元。
  38. 如权利要求26至37中任一项所述的装置,其特征在于,所述映射规则还用于指示在时域上连续的两组资源单元中,用于映射同一DMRS端口的子载波是否存在偏移,以及在存在偏移的情况下的偏移量,其中,所述两组资源单元在频域上的位置相同,并且每组资源单元包括M个资源单元,每组资源单元存在所述N个DMRS端口的一次完整映射;或者,
    所述映射规则还用于指示相邻的两个资源单元中,用于映射同一端口的子载波是否存在偏移以及在存在偏移的情况下的偏移量,所述相邻的两个资源单元在频域上的位置相同,且在时域上间隔M个资源单元;
    或者,所述映射规则还用于指示在频域上连续的两组资源单元中,用于映射同一DMRS端口的符号是否存在偏移,以及在存在偏移的情况下的偏移量,其中,所述两组资源单元在时域上的位置相同,并且每组资源单元包括M个资源单元,每组资源单元存在所述N个DMRS端口的一次完整映射;或者,
    所述映射规则还用于指示相邻的两个资源单元中,用于映射同一端口的符号是否存在偏移以及在存在偏移的情况下的偏移量,所述相邻的两个资源单元在时域上的位置相同,且在频域上间隔M个资源单元。
  39. 一种通信装置,其特征在于,包括:
    处理单元,用于根据映射规则确定待调度的至少一个解调参考信号DMRS端口与至少一个资源单元的对应关系,其中,所述映射规则用于指示N个DMRS端口与资源单元的对应关系,其中,N为系统最大支持的DMRS端口数,M个资源单元上存在所述N个DMRS端口的一次完整映射,N≥1,M≥2,且N和M均为整数,所述至少一个DMRS端口属于所述N个DMRS端口;
    收发单元,用于接收数据信道,所述数据信道承载待传输数据和DMRS;
    所述处理单元还用于,根据所述至少一个解调参考信号DMRS端口与所述至少一个资源单元的对应关系,解调所述待传输数据。
  40. 根据权利要求39所述的装置,其特征在于,所述M个资源单元中至少两个资源单元所对应的DMRS端口数不同,或者,所述M个资源单元中任意两个资源单元所对应的DMRS端口数相同;和/或,
    所述N个DMRS端口中至少两个DMRS端口占用的资源粒子RE数不同,或者,所述N个DMRS端口中任意两个DMRS端口占用的RE数相同;和/或
    所述M个资源单元中至少两个资源单元中用于映射DMRS端口的RE总数不同,或者所述M个资源单元中任意两个资源单元中用于映射DMRS端口的RE总数相同。
  41. 如权利要求39或40所述的装置,其特征在于,所述M个资源单元在频域上或时域上连续。
  42. 如权利要求41所述的装置,其特征在于,所述M个资源单元中每个资源单元至少对应所述N个DMRS端口中的一个DMRS端口。
  43. 如权利要求42所述的装置,其特征在于,所述N个DMRS端口与资源单元的对应关系为下述中的任一种:
    所述N个DMRS端口中索引为i的DMRS端口对应于索引为j+k*M的资源单元,i和j满足i%M=j,%表示求余运算符;或者,
    索引为k*M至k*M+M-1的M个资源单元中,索引较小的资源单元对应的任一DMRS端口的索引小于索引较大的资源单元对应的任一DMRS端口的索引,或者,索引较小的资源单元对应的任一DMRS端口的索引大于索引较大的资源单元对应的任一DMRS端口的索引;
    其中,i=0,1,……,N-1,k=0,1,2,……,j为整数且j∈[0,1,……,M-1]。
  44. 如权利要求41所述的装置,其特征在于所述N个DMRS端口全部映射于所述M个资源单元中的部分资源单元。
  45. 如权利要求43所述的装置,其特征在于,索引为k*M至k*M+M-1的M个资源单元中,索引为奇数或者偶数的资源单元映射所述N个DMRS端口,或者索引较小或者较大的M-P个资源单元映射所述N个DMRS端口,1≤P≤M-1,且P为整数,k=0,1,2,……。
  46. 如权利要求39至45中任一项所述的装置,其特征在于,所述收发单元还用于:
    向所述发送端发送第一指示信息,或者,
    接收所述发送端发送的所述第一指示信息;
    其中,所述第一指示信息用于指示所述映射规则。
  47. 如权利要求46所述的装置,其特征在于,所述第一指示信息还包括所述至少一个DMRS端口中每个DMRS端口在对应的资源单元中的时频资源信息。
  48. 如权利要求39至47中任一项所述的装置,其特征在于,所述收发单元还用于:
    向所述发送端发送第二指示信息,或者,
    接收所述发送端发送的所述第二指示信息;
    其中,所述第二指示信息用于指示所述至少一个资源单元,其中所述至少一个资源单元为用于映射所述至少一个DMRS端口的资源单元。
  49. 如权利要求48所述的装置,其特征在于,所述第二指示信息可以包括下列信息中的任意一种:
    所述至少一个资源单元在时域和/或频域上的索引;
    奇数或者偶数资源单元;
    一个或者多个余数t和/或M的值,其中资源单元的索引满足:资源单元的索引%M=t的资源单元属于所述至少一个资源单元。
  50. 如权利要求39至49中任一项所述的装置,其特征在于,所述映射规则还用于指示在时域上连续的两组资源单元中,用于映射同一DMRS端口的子载波是否存在偏移,以及在存在偏移的情况下的偏移量,其中,所述两组资源单元在频域上的位置相同,并且每组资源单元包括M个资源单元,每组资源单元存在所述N个DMRS端口的一次完整映射;或者,
    所述映射规则还用于指示相邻的两个资源单元中,用于映射同一端口的子载波是否存在偏移以及在存在偏移的情况下的偏移量,所述相邻的两个资源单元在频域上的位置相同,且在时域上间隔M个资源单元;
    或者,所述映射规则还用于指示在频域上连续的两组资源单元中,用于映射同一DMRS端口的符号是否存在偏移,以及在存在偏移的情况下的偏移量,其中,所述两组资源单元在时域上的位置相同,并且每组资源单元包括M个资源单元,每组资源单元存在所述N个DMRS端口的一次完整映射;或者,
    所述映射规则还用于指示相邻的两个资源单元中,用于映射同一端口的符号是否存在偏移以及在存在偏移的情况下的偏移量,所述相邻的两个资源单元在时域上的位置相同,且在频域上间隔M个资源单元。51、一种计算机可读介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至25中任一项所述的方法。
PCT/CN2019/110635 2018-10-12 2019-10-11 数据传输方法和通信装置 WO2020073991A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811191666.4 2018-10-12
CN201811191666.4A CN111049628B (zh) 2018-10-12 2018-10-12 数据传输方法和通信装置

Publications (1)

Publication Number Publication Date
WO2020073991A1 true WO2020073991A1 (zh) 2020-04-16

Family

ID=70164456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110635 WO2020073991A1 (zh) 2018-10-12 2019-10-11 数据传输方法和通信装置

Country Status (2)

Country Link
CN (2) CN114866211A (zh)
WO (1) WO2020073991A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114338322A (zh) * 2020-09-30 2022-04-12 华为技术有限公司 参考信号的映射方法及装置
EP4262122A4 (en) * 2020-12-31 2024-02-28 Huawei Tech Co Ltd METHOD FOR SENDING A MODULATION REFERENCE SIGNAL AND METHOD FOR RECEIVING A MODULATION REFERENCE SIGNAL, AND COMMUNICATION DEVICE
CN114765505B (zh) * 2021-01-15 2023-08-15 大唐移动通信设备有限公司 解调参考信号dmrs的发送方法、接收方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165170A1 (en) * 2012-04-30 2013-11-07 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving control channel in wireless communication system
CN108631998A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种参考信号映射方法及网络设备、终端设备
CN108631986A (zh) * 2017-03-24 2018-10-09 电信科学技术研究院 一种确定下行控制信道dmrs资源的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148659B (zh) * 2010-02-10 2018-01-30 中兴通讯股份有限公司 解调参考信号的发送功率配置方法及装置
CN108259401B (zh) * 2016-12-28 2020-09-15 电信科学技术研究院 参考信号发送方法和相位噪声确定方法及相关装置
KR102327640B1 (ko) * 2017-03-31 2021-11-17 엘지전자 주식회사 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165170A1 (en) * 2012-04-30 2013-11-07 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving control channel in wireless communication system
CN108631998A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种参考信号映射方法及网络设备、终端设备
CN108631986A (zh) * 2017-03-24 2018-10-09 电信科学技术研究院 一种确定下行控制信道dmrs资源的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION: "Discussion on PDCCH/PDSCH/DMRS/PTRS configuration for NR test model", 3GPP TSG-RAN WG4 MEETING#88 R4-1810465, 24 August 2018 (2018-08-24), XP051579408 *

Also Published As

Publication number Publication date
CN111049628B (zh) 2022-05-13
CN114866211A (zh) 2022-08-05
CN111049628A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2018082544A1 (zh) 无线通信的方法和装置
US10952207B2 (en) Method for transmitting data, terminal device and network device
WO2020052514A1 (zh) 一种信息发送方法,信息接收的方法和装置
JP7010971B2 (ja) システム情報の送信方法、ネットワークデバイス及び端末デバイス
WO2018202059A1 (zh) 传输控制信道的方法、网络设备、网络控制器和终端设备
TWI733934B (zh) 通訊方法、終端和網路設備
WO2020221021A1 (zh) 通信方法和通信装置
JP7092187B2 (ja) リソース構成方法、決定方法及びその装置、並びに通信システム
WO2020073991A1 (zh) 数据传输方法和通信装置
WO2020200035A1 (zh) 传输上行控制信息的方法及装置
JP2021510021A (ja) 無線通信方法、端末デバイス及びネットワークデバイス
US11184892B2 (en) Enhancement of new radio PUSCH for URLLC in mobile communications
WO2019029014A1 (zh) 通信方法、终端设备和网络设备
JP2021516892A (ja) 物理上り共有チャネルの伝送方法及び端末デバイス
US20220123903A1 (en) Communication method and apparatus
WO2018137700A1 (zh) 一种通信方法,装置及系统
WO2020063728A1 (zh) 一种资源配置的方法、装置及系统
JP2020513174A (ja) リソースを判定する方法および装置ならびに記憶媒体
WO2020029403A1 (zh) 侧行信道配置方法、终端设备和网络设备
US11770833B2 (en) Communication method, terminal device, and network device
TW201919429A (zh) 用於配置資源的方法、終端設備和網路設備
US11432273B2 (en) Control information sending method, control information receiving method, access network device, and terminal device
WO2020020315A1 (zh) 一种上下行时间资源配置的方法和装置
CN111277376B (zh) 混合自动重传请求应答传输方法及设备
WO2019096276A1 (zh) 数据传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872065

Country of ref document: EP

Kind code of ref document: A1