WO2011038645A1 - Lte-a系统及其中继链路的物理下行控制信道的资源分配方法 - Google Patents

Lte-a系统及其中继链路的物理下行控制信道的资源分配方法 Download PDF

Info

Publication number
WO2011038645A1
WO2011038645A1 PCT/CN2010/077081 CN2010077081W WO2011038645A1 WO 2011038645 A1 WO2011038645 A1 WO 2011038645A1 CN 2010077081 W CN2010077081 W CN 2010077081W WO 2011038645 A1 WO2011038645 A1 WO 2011038645A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
downlink control
relay link
physical downlink
resource
Prior art date
Application number
PCT/CN2010/077081
Other languages
English (en)
French (fr)
Inventor
毕峰
袁明
梁枫
杨瑾
吴栓栓
袁弋非
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011038645A1 publication Critical patent/WO2011038645A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path

Definitions

  • the present invention relates to communication or, in particular, to a LTE-A (Long Term Evolution Advanced) system and a resource allocation method of a physical downlink control channel of a relay link.
  • LTE-A Long Term Evolution Advanced
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-A
  • IMT-Advanced International Mobile Telecommunication Advanced
  • OFDM Orthogonal Frequency Division Multiplexing
  • N symb represents the number of OFDM symbols in one slot
  • N represents the number of consecutive subcarriers of the resource block in the frequency domain.
  • the control channel In order to enable the UE (User Equipment) end to save power, the control channel usually uses TDM (Time Division Multiplex), that is, the control channel and the traffic channel are separated in time, for example, in one There are 14 OFDM symbols in the subframe, the first 1 or 2 or 3 or 4 OFDM symbols are used as the control channel, and the last 13 or 12 or 11 or 10 OFDM symbols are used as the traffic channel.
  • TDM Time Division Multiplex
  • the downlink control signaling mainly includes the following contents: a PCFICH (Physical Control Format Indicator Channel), a DL grant (downlink grant downlink scheduling, and an ACL grant), and a UL grant (UpLink grant).
  • PCFICH Physical Control Format Indicator Channel
  • DL grant downlink grant downlink scheduling, and an ACL grant
  • UL grant UpLink grant
  • Scheduling authorization and PHICH (Physical Hybrid Automatic Repeat Request Indicator Channel)
  • CCE Control Channel Elements
  • CCE may include DL Grant (downlink grant, downlink scheduling grant) and UL grant; 3) all CCEs are QPSK (Quadrature Phase Shift Keying) modulation; 4)
  • Each control channel is composed of a CCE or CCE combination; 5)
  • Each The UE can monitor a series of candidate control channels; 6) the number of candidate control channels is the maximum number of blind detections; 7) the number of candidate control channels is greater than the number of CCEs; 8) For example, only 1, 2, 4, and 8 CCEs are combined together as candidate control channels; 9) 1, 2, 4, and 8 combinations respectively correspond to different coding rates.
  • the control information of each UE is separately channel coded, then QPSK modulation is performed, CCE to RE mapping is performed, and IFFT (Fast Fourier Transform) transform is performed, and then transmitted, assuming that The time control channel is composed of 32 CCEs, and after the FFT (Fast Fourier Transform) transform is performed on the receiving end, the UE performs blind detection from combining 1 CCEs (ie, separates 'J pairs CCE0, CCE1, ..., CCE31 Perform blind detection), if the UE_ID is not successfully monitored, perform blind detection from combining 2 CCEs (ie, separate 'J pairs [CCEO CCE1], [CCE2 CCE3]
  • B3G/4G The research goal of B3G/4G is to integrate access systems such as cellular, fixed wireless access, nomadic, and wireless regional networks. Combined with all-IP networks, it provides users with peak rates of up to 100Mbps and 1Gbps of wireless in high-speed and low-speed mobile environments. Transmitting capabilities, and seamless integration of cellular systems, regional wireless networks, broadcast, and television satellite communications, enabling humans to "anybody can communicate with anyone else at any time, anywhere, any way.”
  • Relay technology can be applied as an effective measure. Relay technology can increase the coverage of the cell and increase the cell capacity. As shown in Figure 3, the new link is added after the relay is introduced in the LTE-A system.
  • the term includes:
  • the link between eNode-B and relay is called backhaul link (backhaul link or relay link), the link between relay and UE is called access link, eNode-
  • the link between B and the UE is called direct link.
  • the inventor has found that at least the following problems exist in the prior art: since a relay node is introduced in the system, it is necessary to study the specific physical downlink control channel resource allocation of the eNode-B to RN (Relay Node) link. However, for the number of OFDM symbols mapped in the physical downlink control channel of a specific relay link, the research on the size of the REG (resource element group) is still blank, and this is the problem to be solved by the invention.
  • REG resource element group
  • the present invention is directed to a resource allocation method for a physical downlink control channel of an LTE-A system and a relay link thereof, to solve the problem that the prior art does not have a specific physical downlink control channel for the eNode-B to the RN link. Assign questions for research.
  • a resource allocation method for a physical downlink control channel of a relay link including: a base station allocates resources for a physical downlink control channel of a relay link, where the resource is within a physical resource block Part of the OFDM symbol or all OFDM symbols except the OFDM symbol occupied by the existing physical downlink control channel.
  • the physical resource block is one or more physical resource blocks in one time slot, or the physical resource block is one or more pairs of physical resource blocks in one subframe.
  • the partial OFDM symbol allocated for the physical downlink control channel of the relay link is within the first time slot of the subframe or exceeds the first time slot.
  • the number of partial OFDM symbols allocated for the physical downlink control channel of the relay link is greater than 1 or greater than or equal to 2.
  • the static downlink configuration or the semi-static configuration manner allocates resources for the physical downlink control channel of the relay link, and the static configuration refers to the physical condition of the system that specifies a fixed number of thousands of OFDM symbols for carrying the relay link.
  • the downlink control channel refers to a physical downlink control channel that the system displays or indicates that the variable thousands of OFDM symbols are used to carry the relay link.
  • the part of the OFDM symbol allocated for the physical downlink control channel of the relay link is any OFDM symbol except the OFDM symbol occupied by the existing physical downlink control channel in the subframe;
  • part of the OFDM symbol allocated for the physical downlink control channel of the relay link is signaled to the relay node through the physical broadcast channel or higher layer signaling of the relay link.
  • the resource unit group size of the physical downlink control channel of the relay link is: when the OFDM symbol allocated for the physical downlink control channel of the relay link includes a cell-specific reference symbol or a relay link pilot,
  • the resource unit group size of the physical downlink control channel of the link is: 1 resource element group for every 6 subcarriers in the OFDM symbol in the physical resource block; every 4 complex symbols of the physical downlink control channel of the relay link Mapping resource element groups for one unit; physical downlink control channel of the relay link when the OFDM symbol allocated for the physical downlink control channel of the relay link does not include cell-specific reference symbols and relay link pilots
  • the resource unit group size is: within the OFDM symbol in the physical resource block, each of the four subcarriers is one resource unit group; the physical downlink control channel of the relay link is
  • the resource unit group size of the physical downlink control channel of the relay link is: when the OFDM symbol allocated for the physical downlink control channel of the relay link includes cell-specific reference symbols and/or relay link pilots
  • the resource unit group size of the physical downlink control channel of the relay link is: one resource unit group for every three subcarriers in the OFDM symbol in the physical resource block; and two physical downlink control channels of the relay link
  • the complex symbol is a unit for mapping resource element groups; when the OFDM symbol allocated for the physical downlink control channel of the relay link does not include cell-specific reference symbols and relay link pilots, the physical downlink of the relay link
  • the resource unit group size of the control channel is: in the OFDM symbol in the physical resource block, every 2 subcarriers are 1 resource unit group; the physical downlink control channel of the relay link is a unit for 2 units of complex symbols.
  • the resource unit group size of the physical downlink control channel of the relay link is: when the OFDM symbol allocated for the physical downlink control channel of the relay link includes cell-specific reference symbols and/or relay link pilots
  • the resource unit group size of the physical downlink control channel of the relay link is: within the OFDM symbol in the physical resource block, each resource element is 12 resource units.
  • the physical downlink control channel of the relay link is a resource unit group mapping every 8 complex symbols; the OFDM symbol allocated for the physical downlink control channel of the relay link does not include the cell special reference symbol and
  • the resource unit group size of the physical downlink control channel of the relay link is: 1 resource element group for every 8 subcarriers in the OFDM symbol in the physical resource block;
  • the downlink control channel performs mapping of resource unit groups for every 8 complex symbols.
  • resources are allocated for the physical downlink control channel of the relay link according to the system bandwidth or according to the high layer signaling notified to the relay node.
  • the resource allocated to the physical downlink control channel of the relay link according to the system bandwidth includes: when the system bandwidth is large, the resource allocated for the physical downlink control channel of the relay link is a virtual resource block. A part of the OFDM symbol outside the OFDM symbol occupied by the physical downlink control channel; when the system bandwidth is small, the resource allocated for the physical downlink control channel of the relay link is the OFDM occupied by the existing physical downlink control channel in the physical resource block. All OFDM symbols outside the symbol.
  • the method further includes: the base station notifying the allocated node to the relay node by using signaling.
  • an LTE-A system is further provided: a base station, configured to allocate resources for a physical downlink control channel of a relay link, where the resource is a physical physics block other than the existing physics A partial OFDM symbol or all OFDM symbols outside the OFDM symbol occupied by the downlink control channel.
  • the resources allocated for the physical downlink control channel of the relay link are statically configured or semi-statically configured, and the static configuration refers to a system that specifies a fixed number of thousands of OFDM symbols for carrying the relay link.
  • the physical downlink control channel, the semi-static configuration refers to a physical downlink control channel in which the system displays an indication or implicit indication that the variable thousand OFDM symbols are used to carry the relay link.
  • the partial OFDM symbol allocated for the physical downlink control channel of the relay link is any OFDM symbol except the OFDM symbol occupied by the existing physical downlink control channel in the subframe;
  • part of the OFDM symbols allocated for the physical downlink control channel of the relay link are signaled to the relay node through the physical broadcast channel or higher layer signaling of the relay link.
  • the resource unit group size of the physical downlink control channel of the relay link is: when the OFDM symbol allocated for the physical downlink control channel of the relay link includes a cell-specific reference symbol or a relay link pilot,
  • the resource unit group size of the physical downlink control channel of the link is: 1 resource element group for every 6 subcarriers in the OFDM symbol in the physical resource block; every 4 complex symbols of the physical downlink control channel of the relay link Mapping resource element groups for one unit; physical downlink control channel of the relay link when the OFDM symbol allocated for the physical downlink control channel of the relay link does not include cell-specific reference symbols and relay link pilots
  • the resource unit group size is: within the OFDM symbol in the physical resource block, each of the four subcarriers is one resource unit group; the physical downlink control channel of the relay link is one unit for each of the four complex symbols for the resource unit group.
  • the resource unit group size of the physical downlink control channel of the relay link is: when the OFDM symbol allocated for the physical downlink control channel of the relay link includes cell-specific reference symbols and/or relay link pilots
  • the resource unit group size of the physical downlink control channel of the relay link is: one resource unit group for every three subcarriers in the OFDM symbol in the physical resource block; and two physical downlink control channels of the relay link
  • the complex symbol is a unit for mapping resource element groups; when the OFDM symbol allocated for the physical downlink control channel of the relay link does not include cell-specific reference symbols and relay link pilots, the physical downlink of the relay link
  • the resource unit group size of the control channel is: in the OFDM symbol in the physical resource block, every 2 subcarriers are 1 resource unit group; the physical downlink control channel of the relay link is a unit for 2 units of complex symbols.
  • the resource unit group size of the physical downlink control channel of the relay link is: when the OFDM symbol allocated for the physical downlink control channel of the relay link includes cell-specific reference symbols and/or relay link pilots
  • the resource unit group size of the physical downlink control channel of the relay link is: 1 resource element group for every 12 subcarriers in the OFDM symbol in the physical resource block; 8 physical downlink control channels of the relay link
  • the complex symbol is a unit for mapping resource element groups; when the OFDM symbol allocated for the physical downlink control channel of the relay link does not contain cell special
  • the resource unit group size of the physical downlink control channel of the relay link is: within the OFDM symbol in the physical resource block, each resource subgroup is one resource unit group;
  • the physical downlink control channel of the link is mapped to the resource unit group every 8 complex symbols.
  • the resource allocation scheme of the R-PDCCH is provided, which specifically relates to the selection of the multiplexing mode and the resource mapping, and solves the problem that the prior art has not studied the resource allocation of the specific physical downlink control channel of the eNode-B to the RN link. Therefore, it can be well applied to the base station to relay node link, improve the scheduling gain and link performance gain of the whole system, and the multiplexing mode is flexible and simple, which not only ensures backward compatibility (compatible with LTE system), but also solves the problem.
  • the successor node can correctly receive problems from the base station control information.
  • FIG. 1 shows a schematic diagram of resource blocks and subcarriers
  • FIG. 2 shows a schematic diagram of a frame structure
  • FIG. 3 shows a schematic structural diagram of the system
  • FIG. 4 shows an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing an R-PDCCH multiplexing mode according to a preferred embodiment 1 of the present invention
  • FIG. 6 is a schematic diagram showing an R-PDCCH multiplexing mode according to a preferred embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of a static configuration R-PDCCH according to a preferred embodiment 2 of the present invention
  • FIG. 8 is a schematic diagram of a static configuration R-PDCCH according to a preferred embodiment 2 of the present invention
  • Figure 9 is a diagram showing the REG size according to a preferred embodiment 3 of the present invention.
  • Step S10 A base station is a physical downlink control channel of a relay link (Relay link) - Physical Downlink Control Channel (R-PDCCH) allocates a resource, where the resource is a partial OFDM symbol or all OFDM symbols in the physical resource block except for the OFDM symbol occupied by the existing physical downlink control channel.
  • the OFDM symbol in the physical resource block occupied by the R-PDCCH is specifically allocated, and the resource allocation of the specific physical downlink control channel of the eNode-B to the RN link has not been solved in the prior art.
  • This embodiment gives a specific scheme of resource allocation of the R-PDCCH. After the allocation is completed, the base station needs to notify the relay node of the resources allocated in step S10 for the physical downlink control channel of the relay link by signaling.
  • the physical downlink control channel multiplexing mode selection and resource mapping of the relay link proposed by the present invention are as follows:
  • the physical downlink control channel multiplexing mode selection and resource mapping of the base station to the relay node link include: The physical downlink control channel multiplexing mode of the relay link is divided into: occupying one or several thousand in one time slot a physical resource block, or a partial OFDM symbol other than a physical downlink control channel in a pair or a pair of physical resource blocks in one subframe; occupying one or thousands of physical resource blocks in one slot, or Is a pair of intra-frame or all OFDM symbols except a physical downlink control channel within a thousand pairs of physical resource blocks. 2. Part of the OFDM symbol occupied by the physical downlink control channel of the relay link according to 1,
  • the OFDM symbol may be in only the first slot (slot) within the subframe or exceed the first slot (slot).
  • the number of OFDM symbols is greater than 1 OFDM symbol, or greater than or equal to 2 OFDM symbols.
  • the part of the OFDM symbol occupied by the physical downlink control channel of the relay link according to 2 may be a static or semi-static configuration, and the static configuration refers to a system that specifies a fixed number of thousands of OFDM symbols for carrying the relay.
  • the physical downlink control channel of the link; semi-static configuration means that the system displays a physical downlink control channel indicating or indicating a variable number of thousands of OFDM symbols for the 7-carrier relay link.
  • the thousands of OFDM symbols fixed according to 4 may occupy any OFDM symbol except the physical downlink control channel in the subframe; the variable thousand OFDM symbols may pass through the relay link.
  • the physical broadcast channel, or higher layer signaling, is sent to the relay node. 6. All OFDM symbols occupied by the physical downlink control channel of the relay link according to 1, if an OFDM symbol is used for transceiving and converting at this time, the OFDM symbol is not used for the physical of the relay link at this time. Downlink control channel.
  • the REG size of the physical downlink control channel of the relay link based on 1 is the same as the REG size of the physical downlink control channel in the LTE system, or a different manner.
  • the REG size when the REG size is the same: when the occupied OFDM symbol includes Cell-specific Reference Signals (CRS) or a relay link pilot, the relay chain used in the symbol
  • the physical downlink control channel REG size of the path is: within the OFDM symbol within the physical resource block, every 6 subcarriers are 1 REG, a total of 2 REGs; when the occupied OFDM symbol does not contain the cell special reference symbol and
  • the downlink physical control channel REG size of the relay link used in the symbol is: 1 REG for every 4 subcarriers in the OFDM symbol in the physical resource block, a total of 3 REGs, at this time, the physical downlink control channel of the relay link performs REG mapping every 4 complex symbols, and the complex symbol may be a constellation-modulated symbol or a pre-coded symbol.
  • the REG size of the physical downlink control channel of the relay link is: Within the OFDM symbol, there are 1 REG for every 3 subcarriers, for a total of 4 REGs; physical downlink control of the relay link when the occupied OFDM symbol does not include cell specific reference symbols and relay link pilots
  • the REG size of the channel is: within the OFDM symbol in the physical resource block, there are 1 REG for every 2 subcarriers, and a total of 6 REGs.
  • the physical downlink control channel of the relay link has 1 symbol for every 2 complex symbols.
  • the unit performs REG mapping, where the complex symbol can It is a constellation-modulated symbol or a pre-coded symbol. Or, in the case that the REG sizes are different:
  • the REG size of the physical downlink control channel of the relay link is: Within the OFDM symbol within the block, there are 1 REG for every 12 subcarriers, a total of 1 REG; when the occupied OFDM symbol does not include cell specific reference symbols and relay link pilots, the physical of the relay link
  • the REG size of the downlink control channel is: within the OFDM symbol in the physical resource block, every 8 subcarriers is 1 REG, and a total of 1.5 REGs.
  • the physical downlink control channel of the relay link is every 8 complex symbols.
  • One unit performs REG mapping, and the complex symbol may be a constellation-modulated symbol or a pre-coded symbol. 8.
  • the two methods described above may exist at the same time, or only one type exists, and the specific ones include: when the data exists at the same time, the decision can be made according to the system bandwidth; Let the relay node be notified of the specific way.
  • the method of the present invention provides a physical downlink control channel mapping of a relay link, which can be well applied to a base station to relay node link, improving scheduling gain and link performance gain of the entire system.
  • the multiplexing mode is flexible and simple, which not only ensures backward compatibility (compatible with LTE system), but also solves the problem that the relay node can correctly receive control information from the base station.
  • the R-PDCCH occupies the 4th, 6th, 7th, 10th, 12th, 13th, and 14th PRBs (physical resource blocks)
  • the 5th OFDM symbol, jt ⁇ indicates that the multiplexing mode of the R-PDCCH and the R-PDSCH is TDM combined with FDM (Frequency Division Multiplexing), that is, part of the OFDM symbol is occupied; as shown in FIG. 6, R
  • the PDCCH occupies all OFDM symbols except the PDCCH of the sixth, seventh, and tenth PRBs, and indicates that the multiplexing mode of the R-PDCCH and the R-PDSCH is FDM.
  • the system bandwidth supports 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz.
  • a preferred example is to use TDM combined with FDM when the system bandwidth is greater than 1.4MHz, and FDM mode when the system bandwidth is less than or equal to 1.4MHz.
  • the system can flexibly configure the R-PDCCH multiplexing mode, which is suitable for small bandwidth and large bandwidth application scenarios, and utilizes time-frequency resources reasonably to improve scheduling gain.
  • Embodiment 2 As shown in FIG. 7 , when the TDM is combined with the FDM mode, if the system is a statically fixed OFDM symbol for carrying the R-PDCCH, a preferred example is the first in the subframe. The last OFDM symbol of the time slot may of course also be cut off in other OFDM symbols. As shown in FIG.
  • Embodiment 3 As shown in FIG. 9, two OFDM symbols represent the fourth and fifth OFDM symbols in the subframe, and the left figure indicates that the fourth OFDM symbol does not include any reference symbols in the physical resource block.
  • Each of the 4 subcarriers in the 4th OFDM symbol is 1 REG
  • the 5th OFDM symbol includes a CRS (such as R 0 , Ri )
  • each of the 6 subcarriers in the 5th OFDM symbol in the physical resource block is 1
  • the right picture shows that the fourth OFDM symbol does not contain any reference symbols, and there are 1 REG for every 2 subcarriers in the 4th OFDM symbol in the physical resource block, and the CRS is included in the 5th OFDM symbol.
  • the number of RNs in the 5th OFDM symbol in the physical resource block is 1 REG.
  • the number of RNs in the system is much smaller than the number of UEs. Therefore, the REG size of the R-PDCCH can be smaller.
  • the resource allocation method of the physical downlink control channel of the relay link proposed by the present invention can be applied to the LTE-A system.
  • an LTE-A system is also provided, in which the system The base station allocates resources for the R-PDCCH by using the method of the preferred embodiment as shown in FIG. 4 to FIG. 9.
  • the base station also notifies the relay node of the allocated resources by signaling. From the above description, it can be seen that the present invention achieves the following technical effects:
  • the present invention can be well applied to a base station to relay node link, and can improve scheduling gain and link performance gain of the entire system, and multiplexing mode.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

LTE-A系统及其中继链路的物理下 4亍控制信道的
资源分配方法 技术领域 本发明涉及通信领 i或, 具体而言, 涉及一种 LTE-A ( Long Term Evolution Advanced, 高级的长期演进) 系统及其中继链路的物理下行控制信道的资源 分配方法。 背景技术
LTE ( Long Term Evolution , 长期演进) 系统、 LTE-A 系统、 以及 IMT- Advanced ( International Mobile Telecommunication Advanced, 高级的国 际移动通信 )系统啫是以 OFDM( Orthogonal Frequency Division Multiplexing, 正交频分复用)技术为基础。 在 OFDM系统中主要是时频两维的数据形式, 在 LTE、 LTE-A中 RB ( Resource Block, 资源块; 资源块映射在物理资源上 则称为物理资源块 ( Physical Resource Block, PRB ) )定义为在时间 i或上连续 1个 slot (时隙) 内的 OFDM符号, 在频率 i或上连续 12或 24个子载波, 所 以 1个 RB有 Nsymb xN^个 RE ( Resource Element, 资源单元), 其中 Nsymb表 示 1个 slot内的 OFDM符号的个数, N 表示资源块在频率域上连续子载波 的个数。 资源块和子载波的示意图如图 1所示。 为了能使 UE ( User Equipment, 用户设备 )端省电, 控制信道通常釆用 TDM ( Time Division Multiplex, 时分复用)方式, 也就是说控制信道和业务 信道在时间上是分开的, 例如在一个子帧内有 14个 OFDM符号, 前 1或 2 或 3或 4个 OFDM符号作为控制信道, 后 13或 12或 11或 10个 OFDM符 号作为业务信道。 帧结构的示意图如图 2所示。 首先以目前 LTE系统的控制信道为例进行说明。例如在 LTE系统中, 下 行控制信令主要包括以下内容: PCFICH ( Physical Control Format Indicator Channel,物理控制格式指示信道;)、 DL grant( DownLink grant下行调度 ·ί受权 ), UL grant ( UpLink grant,上行调度授权 )和 PHICH( Physical Hybrid Automatic Repeat Request Indicator Channel, 物理 HARQ指示信道 )„ 可以看出控制信 道的设计是由不同的组成部分构成的, 每个部分都有其特定的功能。 为了方 便描述, 下面定义几个术语及约定:
1 )指示几个 OFDM符号用于控制信道即 PCFICH,与 CCE独立; PHICH 也与 CCE 独立; 2 ) 在频域连续 L 个子载波叫故 CCE ( Control channels elements, 控制信道单元 ), CCE可以包括 DL grant ( DownLink grant, 下行 调度授权)和 UL grant; 3 )所有的 CCE都是 QPSK (正交相移键控 )调制; 4 ) 每个控制信道是由一个 CCE或是 CCE组合构成; 5 )每个 UE能够监测 一系列侯选控制信道; 6 ) 侯选控制信道的数目是盲检测的最大次数; 7 ) 侯 选控制信道的数目大于 CCE的数目; 8 ) 收发两端规定好几种组合, 例如只 有 1、 2、 4、 8个 CCE组合在一起作为侯选控制信道; 9 ) 1、 2、 4、 8组合 分别对应不同编码速率。 在 eNode-B (基站) 端, 把每个 UE的控制信息分别进行信道编码, 然 后进行 QPSK调制, 进行 CCE到 RE的映射, 进行 IFFT (快速傅里叶逆变 换)变换后发射出去,假设此时控制信道由 32个 CCE构成,接收端进行 FFT (快速傅里叶变换) 变换后, UE从组合为 1个 CCE开始进行盲检测 (即分 另' J对 CCE0、 CCE1、 ...、 CCE31进行盲检测), 如果 UE_ID没有监听成功, 则从组合为 2个 CCE进行盲检测(即分另 'J对 [CCEO CCE1]、 [CCE2 CCE3]
[CCE30 CCE31] ), 依次类推。 如果在整个盲检测过程中都没有监听到和自己 相匹配的 UE_ID, 说明此时没有属于自己的控制信令下达, 则 UE切换到睡 眠模式; 如果监听到和自己相匹配的 UE_ID, 则按照控制信令解调相对应的 业务信息。
B3G/4G 的研究目标是汇集蜂窝、 固定无线接入、 游牧、 和无线区域网 络等接入系统, 结合全 IP网络, 在高速和低速移动环境下分别为用户提供峰 值速率达 100Mbps以及 lGbps的无线传输能力, 并且实现蜂窝系统、 区域性 无线网络、 广播、 和电视卫星通信的无缝衔接, 使得人类实现 "任何人在任 何时间、 任何地点与其他任何人实现任何方式的通信,,。 Relay (中继) 技术 可以作为一项有效的措施应用起来, Relay 技术既可以增加小区的覆盖也可 以增加小区容量。 如图 3所示, LTE-A系统中引入 relay之后增加了新的链路, 相应的术 语包括: eNode-B与 relay之间的链路称为 backhaul link (回程链路或中继链 路)、 relay与 UE之间的链路称为 access link (接入链路)、 eNode-B与 UE 之间的链路称为 direct link (直传链路)。 发明人发现现有技术至少存在以下问题:由于在系统中引入了中继节点, 因此需要对 eNode-B到 RN ( Relay Node, 中继节点) 链路具体的物理下行 控制信道资源分配进行研究, 但对于具体中继链路的物理下行控制信道中所 映射的 OFDM符号数, REG ( resource element group, 资源单元组) 的大小 的研究仍然是空白, 而这正是该发明要解决的问题。 发明内容 本发明旨在提供一种 LTE-A 系统及其中继链路的物理下行控制信道的 资源分配方法, 以解决现有技术尚未对 eNode-B到 RN链路具体的物理下行 控制信道的资源分配进行研究的问题。 根据本发明的一个方面, 提供了一种中继链路的物理下行控制信道的资 源分配方法, 包括: 基站为中继链路的物理下行控制信道分配资源, 其中, 该资源为物理资源块内的除已有物理下行控制信道所占用 OFDM 符号外的 部分 OFDM符号或全部 OFDM符号。 优选地, 物理资源块为一个时隙内的一个或多个物理资源块, 或者物理 资源块为一个子帧内的一对或多对物理资源块。 优选地,为中继链路的物理下行控制信道分配的部分 OFDM符号在子帧 的第 1个时隙内, 或者超过第 1个时隙。 优选地,为中继链路的物理下行控制信道分配的部分 OFDM符号的数量 大于 1或者大于等于 2。 优选地, 釆用静态配置或者半静态配置的方式为中继链路的物理下行控 制信道分配资源,静态配置是指系统规定固定不变的若千个 OFDM符号用于 承载中继链路的物理下行控制信道, 半静态配置是指系统显示指示或隐示指 示可变的若千个 OFDM符号用于承载中继链路的物理下行控制信道。 优选地, 当釆用静态配置的方式时, 为中继链路的物理下行控制信道分 配的部分 OFDM符号为子帧内除已有物理下行控制信道所占用 OFDM符号 外的任意 OFDM符号; 当釆用半静态配置的方式时, 为中继链路的物理下行 控制信道分配的部分 OFDM 符号通过中继链路的物理广播信道或者高层信 令下发信令通知给中继节点。 优选地, 为中继链路的物理下行控制信道分配的全部 OFDM符号中, 当 一个 OFDM符号用于收发转换时, OFDM符号不再用于 载中继链路的物 理下行控制信道。 优选地, 中继链路的物理下行控制信道的资源单元组大小为: 当为中继链路的物理下行控制信道分配的 OFDM 符号包含小区特殊的 参考符号或中继链路导频时, 中继链路的物理下行控制信道的资源单元组大 小为: 在物理资源块内的 OFDM符号内, 每 6个子载波为 1个资源单元组; 中继链路的物理下行控制信道每 4个复数符号为一个单元进行资源单元组的 映射; 当为中继链路的物理下行控制信道分配的 OFDM 符号不包含小区特殊 的参考符号和中继链路导频时, 中继链路的物理下行控制信道的资源单元组 大小为:在物理资源块内的 OFDM符号内,每 4个子载波为 1个资源单元组; 中继链路的物理下行控制信道每 4个复数符号为一个单元进行资源单元组的 映射。 优选地, 中继链路的物理下行控制信道的资源单元组大小为: 当为中继链路的物理下行控制信道分配的 OFDM 符号包含小区特殊的 参考符号和 /或中继链路导频时, 中继链路的物理下行控制信道的资源单元组 大小为:在物理资源块内的 OFDM符号内,每 3个子载波为 1个资源单元组; 中继链路的物理下行控制信道每 2个复数符号为一个单元进行资源单元组的 映射; 当为中继链路的物理下行控制信道分配的 OFDM符号不包含小区特殊 的参考符号和中继链路导频时, 中继链路的物理下行控制信道的资源单元组 大小为:在物理资源块内的 OFDM符号内,每 2个子载波为 1个资源单元组; 中继链路的物理下行控制信道每 2个复数符号为一个单元进行资源单元组的 映射。 优选地, 中继链路的物理下行控制信道的资源单元组大小为: 当为中继链路的物理下行控制信道分配的 OFDM 符号包含小区特殊的 参考符号和 /或中继链路导频时, 中继链路的物理下行控制信道的资源单元组 大小为: 在物理资源块内的 OFDM符号内, 每 12个子载波为 1个资源单元 组; 中继链路的物理下行控制信道每 8个复数符号为一个单元进行资源单元 组的映射; 当为中继链路的物理下行控制信道分配的 OFDM 符号不包含小区特殊 的参考符号和中继链路导频时, 中继链路的物理下行控制信道的资源单元组 大小为:在物理资源块内的 OFDM符号内,每 8个子载波为 1个资源单元组; 中继链路的物理下行控制信道每 8个复数符号为一个单元进行资源单元组的 映射。 优选地, 根据系统带宽或者根据通知到中继节点的高层信令为中继链路 的物理下行控制信道分配资源。 优选地, 才艮据系统带宽为中继链路的物理下行控制信道分配资源包括: 当系统带宽较大时, 为中继链路的物理下行控制信道分配的资源为物理资源 块内的除已有物理下行控制信道所占用 OFDM符号外的部分 OFDM符号; 当系统带宽较小时, 为中继链路的物理下行控制信道分配的资源为物理资源 块内的除已有物理下行控制信道所占用 OFDM符号外的全部 OFDM符号。 优选地,在基站为中继链路的物理下行控制信道分配资源之后,还包括: 基站通过信令将分配的资源通知给中继节点。 根据本发明的另一个方面, 还提供了一种 LTE-A系统包括: 基站, 用于 为中继链路的物理下行控制信道分配资源, 其中, 该资源为物理资源块内的 除已有物理下行控制信道所占用 OFDM 符号外的部分 OFDM 符号或全部 OFDM符号。 优选地, 为中继链路的物理下行控制信道分配的资源釆用静态配置或者 半静态配置的方式,静态配置是指系统规定固定不变的若千个 OFDM符号用 于承载中继链路的物理下行控制信道, 半静态配置是指系统显示指示或隐示 指示可变的若千个 OFDM符号用于承载中继链路的物理下行控制信道。 优选地, 当釆用半静态配置的方式时, 为中继链路的物理下行控制信道 分配的部分 OFDM符号为子帧内除已有物理下行控制信道所占用 OFDM符 号外的任意 OFDM符号; 当釆用半静态配置的方式时, 为中继链路的物理下 行控制信道分配的部分 OFDM 符号通过中继链路的物理广播信道或者高层 信令下发信令通知给中继节点。 优选地, 中继链路的物理下行控制信道的资源单元组大小为: 当为中继链路的物理下行控制信道分配的 OFDM 符号包含小区特殊的 参考符号或中继链路导频时, 中继链路的物理下行控制信道的资源单元组大 小为: 在物理资源块内的 OFDM符号内, 每 6个子载波为 1个资源单元组; 中继链路的物理下行控制信道每 4个复数符号为一个单元进行资源单元组的 映射; 当为中继链路的物理下行控制信道分配的 OFDM 符号不包含小区特殊 的参考符号和中继链路导频时, 中继链路的物理下行控制信道的资源单元组 大小为:在物理资源块内的 OFDM符号内,每 4个子载波为 1个资源单元组; 中继链路的物理下行控制信道每 4个复数符号为一个单元进行资源单元组的 映射。 优选地, 中继链路的物理下行控制信道的资源单元组大小为: 当为中继链路的物理下行控制信道分配的 OFDM 符号包含小区特殊的 参考符号和 /或中继链路导频时, 中继链路的物理下行控制信道的资源单元组 大小为:在物理资源块内的 OFDM符号内,每 3个子载波为 1个资源单元组; 中继链路的物理下行控制信道每 2个复数符号为一个单元进行资源单元组的 映射; 当为中继链路的物理下行控制信道分配的 OFDM 符号不包含小区特殊 的参考符号和中继链路导频时, 中继链路的物理下行控制信道的资源单元组 大小为:在物理资源块内的 OFDM符号内,每 2个子载波为 1个资源单元组; 中继链路的物理下行控制信道每 2个复数符号为一个单元进行资源单元组的 映射。 优选地, 中继链路的物理下行控制信道的资源单元组大小为: 当为中继链路的物理下行控制信道分配的 OFDM 符号包含小区特殊的 参考符号和 /或中继链路导频时, 中继链路的物理下行控制信道的资源单元组 大小为: 在物理资源块内的 OFDM符号内, 每 12个子载波为 1个资源单元 组; 中继链路的物理下行控制信道每 8个复数符号为一个单元进行资源单元 组的映射; 当为中继链路的物理下行控制信道分配的 OFDM 符号不包含小区特殊 的参考符号和中继链路导频时, 中继链路的物理下行控制信道的资源单元组 大小为:在物理资源块内的 OFDM符号内,每 8个子载波为 1个资源单元组; 中继链路的物理下行控制信道每 8个复数符号为一个单元进行资源单元组的 映射。 因为提供了 R-PDCCH的资源分配方案, 具体涉及复用方式的选择及资 源映射, 解决了现有技术尚未对 eNode-B到 RN链路具体的物理下行控制信 道的资源分配进行研究的问题,从而可以很好地适用于基站到中继节点链路, 提高整个系统的调度增益及链路性能增益, 复用方式灵活简单, 既保证了后 向兼容性 (兼容 LTE 系统), 也解决了中继节点能够正确接收来自基站控制 信息的问题。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1示出了资源块、 子载波的示意图; 图 2示出了帧结构的示意图; 图 3示出了系统的结构示意图; 图 4示出了才艮据本发明实施例的中继链路的物理下行控制信道的资源分 配方法的流程图; 图 5示出了才艮据本发明优选实施例一的 R-PDCCH复用方式的示意图之
图 6示出了才艮据本发明优选实施例一的 R-PDCCH复用方式的示意图之
图 7示出了根据本发明优选实施例二的静态配置 R-PDCCH的示意图之 一; 图 8示出了根据本发明优选实施例二的静态配置 R-PDCCH的示意图之 图 9示出了才艮据本发明优选实施例三的 REG大小的示意图。 具体实施方式 下面将参考附图并结合实施例, 来详细说明本发明。 图 4示出了才艮据本发明实施例的中继链路的物理下行控制信道的资源分 配方法的流程图, 包括: 步骤 S 10 , 基站为中继链路的物理下行控制信道 (Relay link-Physical Downlink Control Channel , R-PDCCH )分配资源, 其中, 该资源为物理资源 块内的除已有物理下行控制信道所占用 OFDM符号外的部分 OFDM符号或 全部 OFDM符号。 该实施例通过为 R-PDCCH分配资源, 具体给出了其占用的物理资源块 内的 OFDM符号,解决了现有技术尚未对 eNode-B到 RN链路具体的物理下 行控制信道的资源分配进行研究的问题。 该实施例给出了 R-PDCCH的资源 分配的具体方案。 在分配完成后, 基站需要通过信令将步骤 S 10中为中继链路的物理下行 控制信道分配的资源通知给中继节点。 本发明提出的中继链路的物理下行控制信道复用方式选择及资源映射如 下:
1、 基站到中继节点链路的物理下行控制信道复用方式选择及资源映射 具体包括: 中继链路的物理下行控制信道复用方式分为: 占用一个时隙内的一个或 若千个物理资源块, 或是一个子帧内的一对或若千对物理资源块内的除了物 理下行控制信道之外的部分 OFDM符号; 占用一个时隙内的一个或若千个物 理资源块, 或是一个子帧内的一对或若千对物理资源块内的除了物理下行控 制信道之外的所有 OFDM符号。 2、基于 1中所述中继链路的物理下行控制信道占用的部分 OFDM符号,
OFDM符号可仅在子帧内的第 1个时隙( slot )内,或是超过第 1个时隙( slot )。
3、基于 2中所述中继链路的物理下行控制信道占用的部分 OFDM符号, 其 OFDM符号数大于 1个 OFDM符号, 或是大于等于 2个 OFDM符号。
4、 基于 2中所述中继链路的物理下行控制信道占用的部分 OFDM符号 可以是静态或是半静态配置, 静态配置是指系统规定固定不变的若千个 OFDM符号用于承载中继链路的物理下行控制信道; 半静态配置是指系统显 示指示或隐示指示可变的若千个 OFDM 符号用于 7 载中继链路的物理下行 控制信道。
5、 基于 4中所述固定不变的若千个 OFDM符号可以占用子帧内除了物 理下行控制信道之外的任何 OFDM符号; 所述可变的若千个 OFDM符号可 以通过中继链路的物理广播信道, 或是高层信令下发信令通知中继节点。 6、基于 1中所述中继链路的物理下行控制信道占用的所有 OFDM符号, 如果此时某个 OFDM符号用于收发转换, 则此时该 OFDM符号不用于^载 中继链路的物理下行控制信道。
7、 基于 1中所述中继链路的物理下行控制信道的 REG大小釆用和 LTE 系统中物理下行控制信道的 REG大小相同, 或是不同的方式。 其中, 在 REG大小相同的情况下: 当被占用的 OFDM符号包含小区特 殊的参考符号 (Cell-specific Reference Signals, CRS ) 或中继链路导频时, 在该符号内釆用的中继链路的物理下行控制信道 REG 大小为: 在物理资源 块内的该 OFDM符号内, 每 6个子载波为 1个 REG, 共 2个 REGs; 当被占 用的 OFDM符号不包含小区特殊的参考符号和中继链路导频时,在该符号内 釆用的中继链路的物理下行控制信道 REG 大小为: 在物理资源块内的该 OFDM符号内, 每 4个子载波为 1个 REG, 共 3个 REGs, 此时中继链路的 物理下行控制信道每 4个复数符号为 1个单元进行 REG的映射, 其中的复 数符号可以是星座调制后的符号或者是预编码后的符号。 在 REG大小不同的情况下: 当被占用的 OFDM符号包含小区特殊的参 考符号和 /或中继链路导频时, 中继链路的物理下行控制信道的 REG大小为: 在物理资源块内的该 OFDM符号内,每 3个子载波为 1个 REG,共 4个 REGs; 当被占用的 OFDM符号不包含小区特殊的参考符号和中继链路导频时,中继 链路的物理下行控制信道的 REG大小为: 在物理资源块内的该 OFDM符号 内, 每 2个子载波为 1个 REG, 共 6个 REGs, 此时中继链路的物理下行控 制信道每 2个复数符号为 1个单元进行 REG的映射, 其中的复数符号可以 是星座调制后的符号或者是预编码后的符号。 或者, 在 REG大小不同的情况下: 当被占用的 OFDM符号包含小区特 殊的参考符号和 /或中继链路导频时, 中继链路的物理下行控制信道的 REG 大小为: 在物理资源块内的该 OFDM符号内, 每 12个子载波为 1个 REG, 共 1个 REG; 当被占用的 OFDM符号不包含小区特殊的参考符号和中继链 路导频时, 中继链路的物理下行控制信道的 REG 大小为: 在物理资源块内 的该 OFDM符号内, 每 8个子载波为 1个 REG, 共 1.5个 REGs, 此时中继 链路的物理下行控制信道每 8个复数符号为 1个单元进行 REG的映射, 其 中的复数符号可以是星座调制后的符号或者是预编码后的符号。 8、 在系统中, 基于 1中所述两种方式可以同时存在, 或是仅存在一种, 具体的还包括: 当同时存在时可以才艮据系统带宽进行决定; 或是才艮据高层信 令通知中继节点具体的方式。
9、 基于 8 中所述根据系统带宽进行决定是指当系统带宽较大时, 选择 部分 OFDM符号; 当系统带宽较小时, 选择全部 OFDM符号。 综上, 釆用本发明所述方法, 提供一种中继链路的物理下行控制信道映 射, 可以很好地适用于基站到中继节点链路, 提高整个系统的调度增益及链 路性能增益, 复用方式灵活简单, 既保证了后向兼容性 (兼容 LTE 系统), 也解决了中继节点能够正确接收来自基站控制信息的问题。 下面结合附图和具体的实施例来进一步说明本发明的技术方案。 实施例一: 如图 5所示, R-PDCCH占用第 4个、 第 6个、 第 7个、 第 10个、 第 12 个、 第 13个、 第 14个 PRB (物理资源块) 的第 4个、 第 5个 OFDM符号, jt匕时表示 R-PDCCH和 R-PDSCH的复用方式为 TDM结合 FDM (频分复用) 的方式, 即占用了部分 OFDM符号; 如图 6所示, R-PDCCH占用第 6个、 第 7个、 第 10个 PRB的除了 PDCCH之外的所有 OFDM符号, 此时表示 R-PDCCH和 R-PDSCH的复用方式为 FDM的方式。 目前系统带宽支持 1.4MHz、 3MHz、 5MHz、 10MHz、 15MHz、 20MHz, 一个优选的实例是当系统带宽大于 1.4MHz时釆用 TDM结合 FDM的方式, 而小于或等于 1.4MHz时釆用 FDM方式。 通过该种方式, 能够使得系统灵活配置 R-PDCCH的复用方式, 适合小 带宽和大带宽的应用场景, 合理利用时频资源, 提高调度增益。 实施例二: 如图 7所示, 釆用 TDM结合 FDM方式时, 如果系统是静态配置固定不 变的 OFDM符号用于承载 R-PDCCH, 则一个优选的实例是截止在子帧内的 第 1个时隙的最后 1个 OFDM符号, 当然也可以截止在其它 OFDM符号; 如图 8所示, 釆用 FDM方式时, 存在收发转换 OFDM符号, 如该子帧的最 后 1个 OFDM符号, 则此时除了 PDCCH和所述收发转换 OFDM符号之外 的所有 OFDM符号; *用于 载 R-PDCCH。 系统是静态配置固定不变的 OFDM符号用于承载 R-PDCCH, 该方式没 有增加信令开销, 也没有增加 eNode-B和 RN侧的设计复杂度。 实施例三: 如图 9所示, 2个 OFDM符号表示子帧内第 4个、 第 5个 OFDM符号, 左图表示第 4个 OFDM符号内不包含任何参考符号,在该物理资源块内的第 4个 OFDM符号内每 4个子载波为 1个 REG,第 5个 OFDM符号内包含 CRS (如 R0、 Ri ), 在该物理资源块内的第 5个 OFDM符号内每 6个子载波为 1 个 REG; 右图表示第 4个 OFDM符号内不包含任何参考符号, 在该物理资 源块内的第 4个 OFDM符号内每 2个子载波为 1个 REG, 第 5个 OFDM符 号内包含 CRS ,在该物理资源块内的第 5个 OFDM符号内每 3个子载波为 1 个 REG„ 系统中 RN的个数远远小于 UEs的个数, 所以对于 R-PDCCH的 REG 大小可以取得较小, 这样在资源映射时可以获得更多的交织增益, 并且可以 降低小区间的千扰。 本发明提出的中继链路的物理下行控制信道的资源分配方法可以应用于 LTE-A系统中。 根据本发明的另一个方面, 还提供了一种 LTE-A系统, 在该系统中, 基 站釆用如图 4至图 9所示的优选实施例的方法为 R-PDCCH分配资源。另夕卜, 在分配完成后, 基站还会通过信令将分配的资源通知给中继节点。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 本发明可以 很好地适用于基站到中继节点链路, 能够提高整个系统的调度增益及链路性 能增益, 复用方式灵活简单, 既保证了后向兼容性 (兼容 LTE 系统), 也解 决了中继节点能够正确接收来自基站控制信息的问题。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种中继链路的物理下行控制信道的资源分配方法, 其特征在于, 包括: 基站为中继链路的物理下行控制信道分配资源, 其中, 所述资源为 物理资源块内的除已有物理下行控制信道所占用 OFDM 符号外的部分 OFDM符号或全部 OFDM符号。
2. 居权利要求 1所述的资源分配方法, 其特征在于, 所述物理资源块为 一个时隙内的一个或多个物理资源块, 或者所述物理资源块为一个子帧 内的一对或多对物理资源块。
3. 根据权利要求 1所述的资源分配方法, 其特征在于, 为所述中继链路的 物理下行控制信道分配的所述部分 OFDM符号在子帧的第 1个时隙内, 或者超过第 1个时隙。
4. 根据权利要求 1所述的资源分配方法, 其特征在于, 为所述中继链路的 物理下行控制信道分配的所述部分 OFDM符号的数量大于 1或者大于等 于 2。
5. 根据权利要求 1所述的资源分配方法, 其特征在于, 釆用静态配置或者 半静态配置的方式为所述中继链路的物理下行控制信道分配资源, 所述 静态配置是指系统规定固定不变的若千个 OFDM 符号用于承载中继链 路的物理下行控制信道, 所述半静态配置是指系统显示指示或隐示指示 可变的若千个 OFDM符号用于承载中继链路的物理下行控制信道。
6. 根据权利要求 5所述的资源分配方法, 其特征在于, 当釆用所述静态配 置的方式时,所述部分 OFDM符号为子帧内除所述已有物理下行控制信 道所占用 OFDM符号外的任意 OFDM符号; 当釆用所述半静态配置的 方式时,所述部分 OFDM符号通过中继链路的物理广播信道或者高层信 令下发信令通知给中继节点。
7. 根据权利要求 1所述的资源分配方法, 其特征在于, 为所述中继链路的 物理下行控制信道分配的所述全部 OFDM符号中, 当一个 OFDM符号 用于收发转换时,所述 OFDM符号不再用于 载所述中继链路的物理下 行控制信道。
8. 根据权利要求 1所述的资源分配方法, 其特征在于, 所述中继链路的物 理下行控制信道的资源单元组大小为:
当为所述中继链路的物理下行控制信道分配的 OFDM 符号包含小 区特殊的参考符号或中继链路导频时, 所述中继链路的物理下行控制信 道的资源单元组大小为: 在所述物理资源块内的所述 OFDM符号内, 每 6个子载波为 1 个资源单元组; 所述中继链路的物理下行控制信道每 4 个复数符号为一个单元进行资源单元组的映射;
当为所述中继链路的物理下行控制信道分配的 OFDM 符号不包含 小区特殊的参考符号和中继链路导频时, 所述中继链路的物理下行控制 信道的资源单元组大小为: 在所述物理资源块内的所述 OFDM符号内, 每 4个子载波为 1个资源单元组; 所述中继链路的物理下行控制信道每 4个复数符号为一个单元进行资源单元组的映射。
9. 根据权利要求 1所述的资源分配方法, 其特征在于, 所述中继链路的物 理下行控制信道的资源单元组大小为:
当为所述中继链路的物理下行控制信道分配的 OFDM 符号包含小 区特殊的参考符号和 /或中继链路导频时, 所述中继链路的物理下行控制 信道的资源单元组大小为: 在所述物理资源块内的所述 OFDM符号内, 每 3个子载波为 1个资源单元组; 所述中继链路的物理下行控制信道每 2个复数符号为一个单元进行资源单元组的映射;
当为所述中继链路的物理下行控制信道分配的 OFDM 符号不包含 小区特殊的参考符号和中继链路导频时, 所述中继链路的物理下行控制 信道的资源单元组大小为: 在所述物理资源块内的所述 OFDM符号内, 每 2个子载波为 1个资源单元组; 所述中继链路的物理下行控制信道每 2个复数符号为一个单元进行资源单元组的映射。
10. 根据权利要求 1所述的资源分配方法, 其特征在于, 所述中继链路的物 理下行控制信道的资源单元组大小为:
当为所述中继链路的物理下行控制信道分配的 OFDM 符号包含小 区特殊的参考符号和 /或中继链路导频时, 所述中继链路的物理下行控制 信道的资源单元组大小为: 在所述物理资源块内的所述 OFDM符号内, 每 12个子载波为 1个资源单元组;所述中继链路的物理下行控制信道每 8个复数符号为一个单元进行资源单元组的映射; 当为所述中继链路的物理下行控制信道分配的 OFDM 符号不包含 小区特殊的参考符号和中继链路导频时, 所述中继链路的物理下行控制 信道的资源单元组大小为: 在所述物理资源块内的所述 OFDM符号内, 每 8个子载波为 1个资源单元组; 所述中继链路的物理下行控制信道每 8个复数符号为一个单元进行资源单元组的映射。
11. 根据权利要求 1所述的资源分配方法, 其特征在于, 根据系统带宽或者 根据通知到中继节点的高层信令为所述中继链路的物理下行控制信道分 配资源。
12. 根据权利要求 11所述的资源分配方法, 其特征在于, 根据系统带宽为所 述中继链路的物理下行控制信道分配资源包括:
当系统带宽较大时, 为所述中继链路的物理下行控制信道分配的资 源为所述部分 OFDM符号;
当系统带宽较小时, 为所述中继链路的物理下行控制信道分配的资 源为所述全部 OFDM符号。
13. 根据权利要求 1至 12中任一项所述的资源分配方法, 其特征在于, 在所 述基站为中继链路的物理下行控制信道分配资源之后, 还包括: 所述基站通过信令将分配的资源通知给中继节点。
14. 一种 LTE-A系统, 其特征在于, 包括: 基站, 用于为中继链路的物理下行控制信道分配资源, 其中, 所述 资源为物理资源块内的除已有物理下行控制信道所占用 OFDM 符号外 的部分 OFDM符号或全部 OFDM符号。
15. 根据权利要求 14所述的系统, 其特征在于, 为所述中继链路的物理下行 控制信道分配的资源釆用静态配置或者半静态配置的方式, 所述静态配 置是指系统规定固定不变的若千个 OFDM 符号用于承载中继链路的物 理下行控制信道, 所述半静态配置是指系统显示指示或隐示指示可变的 若千个 OFDM符号用于承载中继链路的物理下行控制信道。
16. 根据权利要求 15所述的系统,其特征在于,当釆用半静态配置的方式时, 所述部分 OFDM 符号为子帧内除所述已有物理下行控制信道所占用 OFDM符号外的任意 OFDM符号; 当釆用所述半静态配置的方式时, 所 述部分 OFDM 符号通过中继链路的物理广播信道或者高层信令下发信 令通知给中继节点。
17. 根据权利要求 14所述的系统, 其特征在于, 所述中继链路的物理下行控 制信道的资源单元组大小为:
当为所述中继链路的物理下行控制信道分配的 OFDM 符号包含小 区特殊的参考符号或中继链路导频时, 所述中继链路的物理下行控制信 道的资源单元组大小为: 在所述物理资源块内的所述 OFDM符号内, 每 6个子载波为 1 个资源单元组; 所述中继链路的物理下行控制信道每 4 个复数符号为一个单元进行资源单元组的映射;
当为所述中继链路的物理下行控制信道分配的 OFDM 符号不包含 小区特殊的参考符号和中继链路导频时, 所述中继链路的物理下行控制 信道的资源单元组大小为: 在所述物理资源块内的所述 OFDM符号内, 每 4个子载波为 1个资源单元组; 所述中继链路的物理下行控制信道每 4个复数符号为一个单元进行资源单元组的映射。
18. 根据权利要求 14所述的系统, 其特征在于, 所述中继链路的物理下行控 制信道的资源单元组大小为:
当为所述中继链路的物理下行控制信道分配的 OFDM 符号包含小 区特殊的参考符号和 /或中继链路导频时, 所述中继链路的物理下行控制 信道的资源单元组大小为: 在所述物理资源块内的所述 OFDM符号内, 每 3个子载波为 1个资源单元组; 所述中继链路的物理下行控制信道每 2个复数符号为一个单元进行资源单元组的映射;
当为所述中继链路的物理下行控制信道分配的 OFDM 符号不包含 小区特殊的参考符号和中继链路导频时, 所述中继链路的物理下行控制 信道的资源单元组大小为: 在所述物理资源块内的所述 OFDM符号内, 每 2个子载波为 1个资源单元组; 所述中继链路的物理下行控制信道每 2个复数符号为一个单元进行资源单元组的映射。
19. 根据权利要求 14所述的系统, 其特征在于, 所述中继链路的物理下行控 制信道的资源单元组大小为:
当为所述中继链路的物理下行控制信道分配的 OFDM 符号包含小 区特殊的参考符号和 /或中继链路导频时, 所述中继链路的物理下行控制 信道的资源单元组大小为: 在所述物理资源块内的所述 OFDM符号内, 每 12个子载波为 1个资源单元组;所述中继链路的物理下行控制信道每 8个复数符号为一个单元进行资源单元组的映射;
当为所述中继链路的物理下行控制信道分配的 OFDM 符号不包含 小区特殊的参考符号和中继链路导频时, 所述中继链路的物理下行控制 信道的资源单元组大小为: 在所述物理资源块内的所述 OFDM符号内, 每 8个子载波为 1个资源单元组; 所述中继链路的物理下行控制信道每 8个复数符号为一个单元进行资源单元组的映射。
PCT/CN2010/077081 2009-09-29 2010-09-17 Lte-a系统及其中继链路的物理下行控制信道的资源分配方法 WO2011038645A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910178868.XA CN102036386B (zh) 2009-09-29 2009-09-29 Lte-a系统及其中继链路的物理下行控制信道的资源分配方法
CN200910178868.X 2009-09-29

Publications (1)

Publication Number Publication Date
WO2011038645A1 true WO2011038645A1 (zh) 2011-04-07

Family

ID=43825551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077081 WO2011038645A1 (zh) 2009-09-29 2010-09-17 Lte-a系统及其中继链路的物理下行控制信道的资源分配方法

Country Status (2)

Country Link
CN (1) CN102036386B (zh)
WO (1) WO2011038645A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595607A (zh) * 2012-02-03 2012-07-18 大唐移动通信设备有限公司 一种资源分配方法及装置
WO2012162787A1 (en) * 2011-05-31 2012-12-06 Research In Motion Limited Device-assisted interference management in heterogeneous wireless cellular systems
CN103237309A (zh) * 2013-05-07 2013-08-07 北京工业大学 用于lte-a中继系统干扰协调的准动态频率资源划分方法
US9232526B2 (en) 2011-05-31 2016-01-05 Blackberry Limited Access point for device-assisted interference management in heterogeneous wireless cellular systems
WO2019028770A1 (zh) * 2017-08-10 2019-02-14 华为技术有限公司 通信方法、终端设备和网络设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264136B (zh) * 2011-08-08 2017-02-15 中兴通讯股份有限公司 一种控制信道资源配置方法及配置装置
CN102946640B (zh) * 2011-08-15 2016-12-21 华为技术有限公司 控制信道资源的分配方法及装置
US9325474B2 (en) * 2011-08-19 2016-04-26 Lg Electronics Inc. Method for base station transmitting downlink control channel in wireless communication system and apparatus for same
CN102316535B (zh) * 2011-09-30 2014-04-02 电信科学技术研究院 下行控制信息的传输方法和设备
CN103096477B (zh) * 2011-10-31 2015-08-19 中国移动通信集团公司 增强型pdcch实现方法及相关设备
CN103428860B (zh) * 2012-05-18 2019-07-09 索尼公司 无线通信系统中的通信方法和设备
CN103582098A (zh) * 2012-07-18 2014-02-12 中国移动通信集团公司 下行控制信道的发送方法及接收方法、相应设备
CN107046456B (zh) * 2016-02-05 2021-01-26 中兴通讯股份有限公司 信息的发送、接收方法及装置
WO2018080268A1 (ko) * 2016-10-31 2018-05-03 주식회사 케이티 차세대 무선 액세스망을 위한 데이터 채널 자원 할당 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1941666A (zh) * 2005-09-30 2007-04-04 华为技术有限公司 基于中转站实现带宽分配和调度管理的方法和系统
CN101132564A (zh) * 2006-08-25 2008-02-27 华为技术有限公司 基站、中继站、无线中继通信系统和方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1941666A (zh) * 2005-09-30 2007-04-04 华为技术有限公司 基于中转站实现带宽分配和调度管理的方法和系统
CN101132564A (zh) * 2006-08-25 2008-02-27 华为技术有限公司 基站、中继站、无线中继通信系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Consideration on Resource Allocation for Relay Backhaul Link", 3GPP TSG RAN WG1 MEETING #56, RL-090790, 13 February 2009 (2009-02-13), pages 2 - 4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012162787A1 (en) * 2011-05-31 2012-12-06 Research In Motion Limited Device-assisted interference management in heterogeneous wireless cellular systems
US9184892B2 (en) 2011-05-31 2015-11-10 Blackberry Limited Device-assisted interference management in heterogeneous wireless cellular systems
US9232526B2 (en) 2011-05-31 2016-01-05 Blackberry Limited Access point for device-assisted interference management in heterogeneous wireless cellular systems
CN102595607A (zh) * 2012-02-03 2012-07-18 大唐移动通信设备有限公司 一种资源分配方法及装置
CN103237309A (zh) * 2013-05-07 2013-08-07 北京工业大学 用于lte-a中继系统干扰协调的准动态频率资源划分方法
CN103237309B (zh) * 2013-05-07 2015-11-04 北京工业大学 用于lte-a中继系统干扰协调的准动态频率资源划分方法
WO2019028770A1 (zh) * 2017-08-10 2019-02-14 华为技术有限公司 通信方法、终端设备和网络设备
US11356992B2 (en) 2017-08-10 2022-06-07 Huawei Technologies Co., Ltd. Communication method, terminal device, and network device
US11871428B2 (en) 2017-08-10 2024-01-09 Huawei Technologies Co., Ltd. Communication method, terminal device, and network device

Also Published As

Publication number Publication date
CN102036386A (zh) 2011-04-27
CN102036386B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
US11611956B2 (en) Mapping of control information to control channel elements
US11711821B2 (en) Search space for ePDCCH control information in an OFDM-based mobile communication system
WO2011038645A1 (zh) Lte-a系统及其中继链路的物理下行控制信道的资源分配方法
US9918308B2 (en) Enhanced PDCCH overlapping with the PDCCH region
KR101673906B1 (ko) Ofdm 시스템에서 공간 다중화 제어 채널 지원을 위한 상향 링크 ack/nack 채널의 맵핑 방법 및 장치
US9935754B2 (en) Search space for non-interleaved R-PDCCH
EP2926491B1 (en) Transmission of control information to reduced bandwidth terminals
US20120207082A1 (en) System and Method for Control Channel Search Space Location Indication for a Backhaul Link
US9179325B2 (en) Transmission method and system for relay physical downlink control channel
US20130044673A1 (en) Method for indicating and determing relay link boundary and base sation thereof
WO2010083714A1 (zh) 基站向中继站下发控制信息及传输控制信息的方法及系统
WO2009152741A1 (zh) 大带宽下控制信道前后向兼容的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10819874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10819874

Country of ref document: EP

Kind code of ref document: A1