WO2022002206A1 - 一种ppdu的传输方法及相关装置 - Google Patents

一种ppdu的传输方法及相关装置 Download PDF

Info

Publication number
WO2022002206A1
WO2022002206A1 PCT/CN2021/104045 CN2021104045W WO2022002206A1 WO 2022002206 A1 WO2022002206 A1 WO 2022002206A1 CN 2021104045 W CN2021104045 W CN 2021104045W WO 2022002206 A1 WO2022002206 A1 WO 2022002206A1
Authority
WO
WIPO (PCT)
Prior art keywords
tone
resource unit
mru
unit allocation
ppdu
Prior art date
Application number
PCT/CN2021/104045
Other languages
English (en)
French (fr)
Inventor
于健
狐梦实
淦明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to AU2021302193A priority Critical patent/AU2021302193B2/en
Priority to EP21833515.6A priority patent/EP4171142A4/en
Priority to JP2023500073A priority patent/JP2023533942A/ja
Priority to KR1020237003058A priority patent/KR20230029916A/ko
Priority to MX2023000220A priority patent/MX2023000220A/es
Priority to CA3184861A priority patent/CA3184861A1/en
Priority to BR112022027077A priority patent/BR112022027077A2/pt
Publication of WO2022002206A1 publication Critical patent/WO2022002206A1/zh
Priority to US18/148,671 priority patent/US20230137534A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of mobile communication technologies, and in particular, to a PPDU transmission method and related apparatus.
  • OFDMA orthogonal frequency division multiple access
  • the channel bandwidth of the PHY protocol data unit (PPDU) sent by the access point is allocated to multiple stations to transmit data.
  • the High Efficient Signal Field (HE-SIG-B) of the PPDU includes one or more resource unit allocation subfields, and resource units are allocated to the RU to which the frequency domain resource corresponding to the resource unit allocation subfield belongs. , the number of user fields corresponding to the RU. It can be seen that the existing resource unit allocation subfield can only support the allocation of one RU to one or more users, but cannot support the slicing of multiple RUs to one or more users.
  • the present application provides a method for transmitting a PPDU, which can implement an instruction to allocate multiple RUs to one or more users.
  • a method for transmitting a PPDU comprising: generating a PPDU, the PPDU includes a plurality of resource unit allocation subfields, the plurality of resource unit allocation subfields include a resource unit allocation subfield corresponding to an MRU, and the MRU
  • the corresponding resource unit allocation subfield indicates that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the MRU, and in the multiple 80MHz in the bandwidth for transmitting the PPDU, the resource unit allocation subfield corresponding to each 80MHz is described in the subfield.
  • the number of resource unit allocation subfields corresponding to the MRU is used to determine or indicate which MRU the MRU is; send the PPDU.
  • the bandwidth for transmitting PPDU is greater than or equal to 80MHz.
  • This bandwidth includes 1 or more 80MHz. For example, when the bandwidth is 240MHz, three 80MHz channels are included, and when the bandwidth is 320MHz, four 80MHz channels are included.
  • the indication mode of the resource unit allocation subfield is simple, and the device receiving the PPDU can allocate the resource unit according to the resource unit allocation subfield corresponding to the MRU in the resource unit allocation subfield corresponding to each 80MHz in the bandwidth for transmitting the PPDU.
  • the bandwidth for transmitting PPDU is greater than or equal to 80MHz. It is possible to combine multiple RUs into one MRU and assign them to one or more users.
  • the present application further provides a method for transmitting a PPDU, including: generating a PPDU, where the PPDU includes multiple resource unit allocation subfields, and the multiple resource unit allocation subfields include resources indicating two first MRUs Unit allocation subfield, the 240MHz to which the two first MRUs belong is a continuous 240MHz in the bandwidth for transmitting the PPDU, and the 996-tone RU and 484-tone RU that make up each of the first RUs are in the 240MHz
  • the frequency location in is standard; the PPDU is sent.
  • One of the 2 first RUs is 996+484-tone RU, and the other first RU is 484-tone+996-tone RU.
  • a communication standard may specify that 240MHz includes 996-tone RU, 484-tone RU, 484-tone RU, and 996-tone RU in order of absolute frequency from low to high.
  • the low-frequency 996-tone RU and 484-tone RU are combined into a 996+484-tone RU, and the high-frequency 484-tone RU and 996-tone RU are combined into a 484+996-tone RU.
  • the communication standard specifies the frequency positions of the 996-tone RU and 484-tone RU constituting each first MRU in 240MHz, and the device receiving the PPDU can accurately determine the 996-tone RU and 484-tone RU constituting each first MRU.
  • the frequency location of the tone RU in 240MHz so that the MRU combined by the 996-tone RU and the 484-tone RU can be allocated to one or more users.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the number of indexes used for the resource unit allocation subfield to indicate 996+484-tone RU and 484+996-tone RU .
  • the present application further provides a method for transmitting a PPDU, including: generating a PPDU, the PPDU includes a plurality of resource unit allocation subfields, and the plurality of resource unit allocation subfields include a resource unit allocation indicating a first MRU The subfield and the resource unit allocation subfield indicating the second MRU, the 996-tone RU and 484-tone RU that make up the first RU and the 2*996-tone RU and 484-tone RU that make up the second MRU, The frequency location in the bandwidth in which the PPDU is transmitted is standard; the PPDU is sent.
  • the communication standard may stipulate that when 320MHz includes 2*996+484-tone RU and 996+484-tone RU, the absolute frequency in the 320MHz is 2*996-tone RU and 484-tone RU in ascending order of absolute frequency , 484-tone RU, 996-tone RU.
  • the 2*996-tone RUs corresponding to the first 80MHz and the second 80MHz of the 320MHz and the 484-tone RUs corresponding to the first 40MHz of the third 80MHz form 2* 996+484-tone RU, 484-tone RU corresponding to the second 40MHz of the third 80MHz and 996-tone RU corresponding to the fourth 80MHz form 996+484-tone RU.
  • the communication standard may stipulate that when 320MHz includes 2*996-tone+484 RU and 996+484-tone RU, the absolute frequency in the 320MHz is 996-tone RU, 484-tone RU, 484 in the order of absolute frequency from low to high. -tone RU, 2*996-tone RU.
  • the 996-tone RU corresponding to the first 80MHz of the 320MHz and the 484-tone RU corresponding to the first 40MHz of the second 80MHz form 996+484-tone RU; the second 40MHz of the second 80MHz corresponds to 484-tone RU, and the 2*996-tone RU corresponding to the third 80MHz and the fourth 80MHz form 996+484-tone RU.
  • the standard specifies the frequency positions of the 996-tone RU and 484-tone RU that make up the first RU and the 2*996-tone RU and 484-tone RU that make up the second MRU in 320MHz, so that the device receiving the PPDU can accurately
  • the frequency positions of the 996-tone RU and 484-tone RU that make up the first RU and the 2*996-tone RU and 484-tone RU that make up the second MRU in 320MHz are determined, so that the 2*996-tone RU can be
  • the combined MRU of RU and 484-tone RU is allocated to one or more users.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the use of resource unit allocation subfields to indicate 2*996+484-tone RU and 484+2*996-tone RU the number of indices.
  • the present application further provides a method for transmitting a PPDU, including: generating a PPDU, the PPDU includes a plurality of resource unit allocation subfields, and the plurality of resource unit allocation subfields include a resource unit allocation indicating a first MRU Subfield, the first MRU is composed of 996-tone RUs and 484-tone RUs, and the frequency position of the 160 MHz to which the first MRU belongs in the bandwidth for transmitting the PPDU is the frequency position set by the standard, or The frequency position indicated by the indication information sent by the AP; and the PPDU is sent.
  • the 996-tone RU and the 484-tone RU can be combined into an MRU only within the 160 MHz allowed by the standard or within the allowed 160 MHz indicated by the indication information sent by the AP.
  • the bandwidth is 240MHz
  • only the 996-tone RU and 484-tone RU can be combined into an MRU within the primary 160MHz, or the AP sends an instruction to indicate that only the primary 160MHz (including the primary 80MHz and the secondary 80MHz 160MHz) is allowed.
  • 996-tone RU and 484-tone RU were merged into MRU.
  • the bandwidth is 320MHz, of which 80MHz is punctured. If one 80MHz of the primary 160MHz is punctured, the secondary 160MHz can be allowed to contain 996+484-tone RU or 484+996-tone RU. If one 80MHz of the secondary 160MHz is punctured, the primary 160MHz can be allowed to contain 996+484-tone RU or 484+996-tone RU.
  • the device receiving the PPDU can accurately determine which 996-tone RU and 484-tone RU in which 160MHz the 996+484-tone RU or 484+996-tone RU is composed, so that the 996-tone RU and 484-tone RU can be divided into Tone RU merged MRUs are allocated to one or more users.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the number of indexes used for the resource unit allocation subfield to indicate 996+484-tone RU and 484+996-tone RU .
  • the present application further provides a method for transmitting a PPDU, including: generating a PPDU, where the PPDU includes a plurality of resource unit allocation subfields, and the plurality of resource unit allocation subfields include a resource unit allocation indicating a first MRU subfield, the bandwidth for transmitting the PPDU includes a continuous 240MHz, the first MRU is composed of 996-tone RUs and 484-tone RUs in the 240MHz, and the resource unit allocation subfield indicating the first MRU is also used In order to indicate the frequency positions of the 996-tone RU and the 484-tone RU in the 160 MHz where the first MRU is located, the resource element allocation subfield corresponding to 80 MHz of the lowest frequency of the 240 MHz and/or the highest frequency The resource unit allocation subfield indicating the first MRU in the resource unit allocation subfield corresponding to 80MHz is used to determine or indicate the frequency position of the 996-tone RU and the 484-tone RU at the
  • this solution can be used in a scenario where the 240 MHz includes one first MRU, and can also be used in a scenario where the 240 MHz includes two first MRUs.
  • the 240MHz includes the first 80MHz, the second 80MHz, and the third 80MHz.
  • the PPDU may further include a resource unit allocation subfield indication field, indicating that the PPDU does not include a resource unit allocation subfield corresponding to the second 80 MHz.
  • the resource unit allocation subfield indication field may be, for example, a bitmap, and each bit of the bitmap corresponds to a 20MHz of the 240MHz, indicating whether there is a resource unit allocation subfield corresponding to the 20MHz in the PPDU.
  • the bitmap may be 111100001111, indicating that the resource unit allocation subfield corresponding to the second 80 MHz is not included in the PPDU.
  • the device receiving the PPDU skips the 80MHz corresponding to the next-lowest frequency of the 240MHz.
  • the resource unit allocation subfield corresponding to the lowest frequency 80MHz and/or the resource unit allocation subfield corresponding to the highest frequency 80MHz it can be accurately determined to form 996+484-tone RU or 484+996-
  • the frequency position of tone's 996-tone RU and 484-tone RU in 240MHz so that the MRU combined by 996-tone RU and 484-tone RU can be allocated to one or more users.
  • an embodiment of the present application further provides a method for transmitting a PPDU, including: generating a PPDU, where the PPDU includes multiple resource unit allocation subfields, and the multiple resource unit allocation subfields include resources indicating the first MRU Unit allocation subfield, the bandwidth for transmitting the PPDU includes continuous 240MHz, the first MRU is composed of 996-tone RUs and 484-tone RUs in the 240MHz, and the resource unit allocation subfield indicating the first MRU It is also used to indicate the frequency position in the 160MHz where the 996-tone RU and the 484-tone RU are located, and the position of the 160MHz in the 240MHz, and the resource unit corresponding to 80MHz of the next-lowest frequency of the 240MHz
  • the resource unit allocation subfield indicating the first MRU in the allocation subfield is used to determine or indicate the frequency position of the 996-tone RU and the 484-tone RU in the 240MHz; send a PPDU.
  • the 240MHz includes the first 80MHz, the second 80MHz, and the third 80MHz.
  • the 80MHz of the second lower frequency refers to the second 80MHz of 240MHz.
  • the PPDU may include the resource unit allocation subfield corresponding to the first 80MHz and the resource unit allocation subfield corresponding to the third 80MHz, or may not include the resource unit allocation subfield corresponding to the first 80MHz and/or the third 80MHz.
  • the device receiving PPDUs can determine the frequency positions of the 996-tone RUs and 484-tone RUs that are composed of 996+484-tone RUs.
  • the allocation subfield and/or the resource unit allocation subfield corresponding to the highest frequency 80MHz can accurately determine the 996-tone RU and 484-tone RU that make up 996+484-tone RU or 484+996-tone RU in 240MHz. frequency location, enabling the MRU combined by 996-tone RU and 484-tone RU to be allocated to one or more users.
  • the present application further provides a method for transmitting a PPDU, including: receiving a PPDU, where the PPDU includes a plurality of resource unit allocation subfields; the plurality of resource unit allocation subfields include resource unit allocation subfields corresponding to an MRU , the resource unit allocation subfield corresponding to the MRU indicates that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the MRU, and in the multiple 80MHz in the bandwidth for transmitting the PPDU, the resource unit allocation subfield corresponding to each 80MHz
  • the number of resource unit allocation subfields corresponding to the MRU in the MRU is used to determine or indicate which MRU the MRU is; parse at least a part of the resource unit allocation subfields in the plurality of resource unit allocation subfields to determine The RUs that make up the MRU.
  • the MRU indicated by the resource unit allocation subfield is the MRU included in the bandwidth for transmitting the PPDU.
  • the station can determine the number of resource unit allocation subfields corresponding to the MRU in the resource unit allocation subfield corresponding to each 80MHz in the multiple 80MHz bandwidths for transmitting the PPDU to determine the bandwidth for transmitting the PPDU. Which MRU is included.
  • the indication manner of the resource unit allocation subfield is simple, and the apparatus for receiving the PPDU can also determine which MRU is the MRU included in the bandwidth for transmitting the PPDU according to the resource unit allocation subfield. It is possible to combine multiple RUs into one MRU and assign them to one or more users.
  • the present application further provides a method for transmitting a PPDU, including: receiving a PPDU, where the PPDU includes a plurality of resource unit allocation subfields; the plurality of resource unit allocation subfields include resources indicating two first MRUs Unit allocation subfield, the 240MHz to which the two first MRUs belong is a continuous 240MHz in the bandwidth for transmitting the PPDU, and the 996-tone RU and 484-tone RU that make up each of the first RUs are in the 240MHz
  • the frequency position in is set by standard; at least a part of the resource unit allocation subfields in the plurality of resource unit allocation subfields are parsed to determine the RUs constituting the MRU.
  • the communication standard specifies the frequency positions of the 996-tone RU and 484-tone RU that make up each first MRU in 240MHz, and the device receiving the PPDU can determine the bandwidth for transmitting the PPDU according to the resource unit allocation subfield, including 2
  • the first MRU can also accurately determine the frequency position in 240MHz of the 996-tone RU and 484-tone RU that make up each first MRU, so that the MRU combined by the 996-tone RU and the 484-tone RU can be allocated to one or multiple users.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the number of indexes used for the resource unit allocation subfield to indicate 996+484-tone RU and 484+996-tone RU .
  • the present application further provides a method for transmitting a PPDU, comprising: receiving a PPDU, where the PPDU includes a plurality of resource unit allocation subfields, and the plurality of resource unit allocation subfields include a resource unit allocation indicating a first MRU The subfield and the resource unit allocation subfield indicating the second MRU, the 996-tone RU and 484-tone RU that make up the first RU and the 2*996-tone RU and 484-tone RU that make up the second MRU,
  • the frequency position in the bandwidth for transmitting the PPDU is set by standard; at least a part of the resource unit allocation subfields in the plurality of resource unit allocation subfields are parsed to determine the RUs constituting the MRU.
  • the standard specifies the frequency positions of the 996-tone RU and 484-tone RU that make up the first RU and the 2*996-tone RU and 484-tone RU that make up the second MRU in 320MHz, and the frequency of receiving PPDU
  • the device can determine, according to the resource unit allocation subfield, that the bandwidth for transmitting the PPDU includes the first MRU and the second MRU, and can also accurately determine the 996-tone RU and 484-tone RU that make up the first RU and the 2 MRU that make up the second MRU.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the use of resource unit allocation subfields to indicate 2*996+484-tone RU and 484+2*996-tone RU the number of indices.
  • the present application further provides a method for transmitting a PPDU, comprising: receiving a PPDU, where the PPDU includes a plurality of resource unit allocation subfields, and the plurality of resource unit allocation subfields include a resource unit allocation indicating a first MRU Subfield, the first MRU is composed of 996-tone RUs and 484-tone RUs, and the frequency position of the 160 MHz to which the first MRU belongs in the bandwidth for transmitting the PPDU is the frequency position set by the standard, or The frequency location indicated by the indication information sent by the AP; and analyzing at least a part of the resource unit allocation subfields in the plurality of resource unit allocation subfields to determine the RUs that constitute the MRU.
  • the device receiving the PPDU can determine, according to the resource unit allocation subfield, that the bandwidth for transmitting the PPDU includes an MRU composed of 996-tone RU and 484-tone RU, and can also accurately determine 996+484-tone RU or 484+996-tone RU RU is composed of 996-tone RU and 484-tone RU within 160MHz, so that the combined MRU of 996-tone RU and 484-tone RU can be allocated to one or more users.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the number of indexes used for the resource unit allocation subfield to indicate 996+484-tone RU and 484+996-tone RU .
  • the present application further provides a method for transmitting a PPDU, including: receiving a PPDU, where the PPDU includes a plurality of resource unit allocation subfields, and the plurality of resource unit allocation subfields include a resource unit indicating a first MRU
  • the allocation subfield, the bandwidth for transmitting the PPDU includes a continuous 240MHz
  • the first MRU is composed of 996-tone RUs and 484-tone RUs in the 240MHz
  • the resource unit allocation subfield indicating the first MRU is also Used to indicate the frequency position of the 996-tone RU and the 484-tone RU in the 160MHz where the first MRU is located, the resource unit allocation subfield and/or the highest frequency corresponding to the 80MHz of the lowest frequency of the 240MHz
  • the resource unit allocation subfield indicating the first MRU in the resource unit allocation subfield corresponding to the 80MHz is used to determine or indicate the frequency position of the 996-tone RU and the 484-tone RU at the 240MHz;
  • the device that receives the PPDU can determine the 996-tone RU and the 484-tone RU that form the first MRU according to the resource unit allocation subfield corresponding to the lowest frequency 80MHz and the resource unit allocation field corresponding to the highest frequency 80MHz at the 240MHz frequency location. That is, it is determined that the RU constituting the first MRU is the RU at which frequency position of 240 MHz.
  • this solution can be used in a scenario where the 240 MHz includes one first MRU, and can also be used in a scenario where the 240 MHz includes two first MRUs.
  • the device receiving the PPDU skips the 80MHz corresponding to the next-lowest frequency of the 240MHz.
  • the resource unit allocation subfield corresponding to the lowest frequency 80MHz and/or the resource unit allocation subfield corresponding to the highest frequency 80MHz it can be accurately determined to form 996+484-tone RU or 484+996-
  • the frequency position of tone's 996-tone RU and 484-tone RU in 240MHz so that the MRU combined by 996-tone RU and 484-tone RU can be allocated to one or more users.
  • the present application further provides a method for transmitting a PPDU, including: receiving a PPDU, where the PPDU includes a plurality of resource unit allocation subfields, and the plurality of resource unit allocation subfields include a resource unit indicating a first MRU
  • the allocation subfield, the bandwidth for transmitting the PPDU includes a continuous 240MHz
  • the first MRU is composed of 996-tone RUs and 484-tone RUs in the 240MHz
  • the resource unit allocation subfield indicating the first MRU is also Used to indicate the frequency position in the 160MHz where the 996-tone RU and the 484-tone RU are located, and the position of the 160MHz in the 240MHz, and the resource unit allocation corresponding to 80MHz of the second-lowest frequency of the 240MHz
  • the resource unit allocation subfield indicating the first MRU in the subfield is used to determine or indicate the frequency position of the 996-tone RU and 484-tone RU in the 240MHz; parse
  • the device that receives the PPDU can determine the 996-tone RU and the 484-tone RU that constitute the first MRU according to the resource unit allocation subfield corresponding to 80 MHz with the second lowest frequency and the resource unit allocation field corresponding to 80 MHz with the highest frequency.
  • the RU is at the 240MHz frequency location. That is, it is determined that the RU constituting the first MRU is the RU at which frequency position of 240 MHz.
  • this solution can be used in a scenario where the 240 MHz includes one first MRU, and can also be used in a scenario where the 240 MHz includes two first MRUs.
  • the device receiving PPDUs can determine the frequency positions of the 996-tone RUs and 484-tone RUs that are composed of 996+484-tone RUs.
  • the allocation subfield and/or the resource unit allocation subfield corresponding to the highest frequency 80MHz can accurately determine the 996-tone RU and 484-tone RU that make up 996+484-tone RU or 484+996-tone RU in 240MHz. frequency location, enabling the MRU combined by 996-tone RU and 484-tone RU to be allocated to one or more users.
  • the methods of the above-mentioned first to sixth aspects may be performed by a device for sending PPDUs, and the methods of the above-mentioned seventh to twelfth aspects may be performed by a device for receiving PPDUs.
  • the device that sends the PPDU may be an access point or a station.
  • the device that receives the PPDU may be a station or an access point.
  • a thirteenth aspect provides a device for transmitting PPDU, including:
  • a processing unit configured to generate a PPDU, the PPDU includes multiple resource unit assignment subfields, the multiple resource unit assignment subfields include resource unit assignment subfields corresponding to the MRU, and the resource unit assignment subfields corresponding to the MRU indicate
  • the 242-tone RU corresponding to the resource unit allocation subfield belongs to the MRU, and in the multiple 80MHz in the bandwidth for transmitting the PPDU, the resource unit allocation subfield corresponding to the MRU in the resource unit allocation subfield corresponding to each 80MHz
  • a sending unit configured to send the PPDU.
  • the bandwidth for transmitting PPDU is greater than or equal to 80MHz.
  • This bandwidth includes 1 or more 80MHz. For example, when the bandwidth is 240MHz, three 80MHz channels are included, and when the bandwidth is 320MHz, four 80MHz channels are included.
  • the indication method of the resource unit allocation subfield is simple, and the device (such as a station) receiving the PPDU can allocate the resource unit corresponding to the MRU in the subfield according to the resource unit allocation subfield corresponding to each 80MHz in the bandwidth for transmitting the PPDU.
  • the number of resource unit allocation subfields is used to determine which MRU the MRU is.
  • the bandwidth for transmitting PPDU is greater than or equal to 80MHz. It is possible to combine multiple RUs into one MRU and assign them to one or more users.
  • the present application further provides a device for transmitting PPDU, including:
  • a processing unit configured to generate a PPDU, the PPDU includes a plurality of resource unit allocation subfields, the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating two first MRUs, the two first MRUs
  • the 240MHz to which it belongs is a continuous 240MHz in the bandwidth for transmitting the PPDU, and the frequency positions of the 996-tone RU and 484-tone RU constituting each of the first RUs in the 240MHz are set by standard;
  • a sending unit configured to send the PPDU.
  • the communication standard specifies the frequency positions of the 996-tone RU and 484-tone RU constituting each first MRU in 240MHz, and the transmission device can accurately determine the 996-tone RU and 484-tone RU constituting each first MRU The frequency location of the RU in 240MHz, thereby enabling the MRU combined by 996-tone RU and 484-tone RU to be allocated to one or more users.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the number of indexes used for the resource unit allocation subfield to indicate 996+484-tone RU and 484+996-tone RU .
  • the present application further provides a device for transmitting PPDU, including:
  • a processing unit configured to generate a PPDU
  • the PPDU includes a plurality of resource unit allocation subfields
  • the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating the first MRU and a resource unit allocation subfield indicating the second MRU field, the 996-tone RU and 484-tone RU that make up the first RU and the 2*996-tone RU and 484-tone RU that make up the second MRU, the frequency position in the bandwidth for transmitting the PPDU is standard set;
  • a sending unit configured to send the PPDU.
  • the standard specifies the frequency positions of the 996-tone RU and 484-tone RU constituting the first RU and the 2*996-tone RU and 484-tone RU constituting the second MRU in 320MHz
  • the transmission device can accurately
  • the frequency positions of the 996-tone RU and 484-tone RU that make up the first RU and the 2*996-tone RU and 484-tone RU that make up the second MRU are determined in 320MHz, so that the 2*996-tone RU can be divided into
  • the MRU combined with the 484-tone RU is allocated to one or more users.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the use of resource unit allocation subfields to indicate 2*996+484-tone RU and 484+2*996-tone RU the number of indices.
  • the present application also provides a device for transmitting PPDU, including:
  • a processing unit configured to generate a PPDU, the PPDU includes a plurality of resource unit allocation subfields, and the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating a first MRU, the first MRU is composed of 996-tone
  • the RU is composed of a 484-tone RU, and the frequency position of the 160 MHz in the bandwidth for transmitting the PPDU to which the first MRU belongs is the frequency position set by the standard, or the frequency position indicated by the indication information sent by the AP;
  • a sending unit configured to send the PPDU.
  • the 996-tone RU and the 484-tone RU can be combined into an MRU only within the 160 MHz allowed by the standard or within the allowed 160 MHz indicated by the indication information sent by the AP.
  • the transmission device can accurately determine which 996-tone RU and 484-tone RU within 160MHz the 996+484-tone RU or 484+996-tone RU is composed of, so that the 996-tone RU and 484-tone RU can be divided into RU-merged MRUs are allocated to one or more users.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the number of indexes used for the resource unit allocation subfield to indicate 996+484-tone RU and 484+996-tone RU .
  • the present application further provides a device for transmitting PPDU, including:
  • a processing unit configured to generate a PPDU, the PPDU includes a plurality of resource unit allocation subfields, the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating the first MRU, and the bandwidth for transmitting the PPDU includes a continuous 240MHz, the first MRU is composed of 996-tone RU and 484-tone RU in the 240MHz, the resource unit allocation subfield indicating the first MRU is also used to indicate the 996-tone RU and the The frequency position of the 484-tone RU in the 160MHz where the first MRU is located, the resource unit allocation subfield corresponding to 80MHz of the lowest frequency of the 240MHz and/or the resource unit allocation subfield corresponding to the highest frequency 80MHz.
  • the resource unit allocation subfield indicating the first MRU is used to determine or indicate the frequency position of the 996-tone RU and the 484-tone RU at the 240MHz;
  • the sending unit is used to send the PPDU.
  • this solution can be used in a scenario where the 240 MHz includes one first MRU, and can also be used in a scenario where the 240 MHz includes two first MRUs.
  • the transmission device when determining the frequency positions of the 996-tone RU and 484-tone RU that constitute the 996+484-tone RU or 484+996-tone, the transmission device skips the 80MHz corresponding to the next-lowest frequency of the 240MHz.
  • the resource unit allocation subfield according to the resource unit allocation subfield corresponding to the lowest frequency 80MHz and/or the resource unit allocation subfield corresponding to the highest frequency 80MHz, can accurately determine the composition of 996+484-tone RU or 484+996-tone
  • the PPDU may further include a resource unit allocation subfield indication field, indicating that the PPDU does not include a resource unit allocation subfield corresponding to the second 80 MHz.
  • the resource unit allocation subfield indication field may be, for example, a bitmap, and each bit of the bitmap corresponds to a 20MHz of the 240MHz, indicating whether there is a resource unit allocation subfield corresponding to the 20MHz in the PPDU.
  • the bitmap may be 111100001111, indicating that the resource unit allocation subfield corresponding to the second 80 MHz is not included in the PPDU.
  • an embodiment of the present application further provides a device for transmitting a PPDU, including:
  • a processing unit configured to generate a PPDU, the PPDU includes a plurality of resource unit allocation subfields, the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating the first MRU, and the bandwidth for transmitting the PPDU includes a continuous 240MHz, the first MRU is composed of 996-tone RU and 484-tone RU in the 240MHz, and the resource unit allocation subfield indicating the first MRU is also used to indicate the 996-tone RU and the 484-tone RU - The frequency position in the 160MHz where the tone RU is located, and the position of the 160MHz in the 240MHz, the resource unit indicating the first MRU in the resource unit allocation subfield corresponding to the 80MHz of the next-lowest frequency of the 240MHz an allocation subfield for determining or indicating the frequency positions of the 996-tone RU and 484-tone RU in the 240MHz;
  • the sending unit is used to send the PPDU.
  • the transmission device when determining the frequency positions of the 996-tone RU and 484-tone RU that constitute the 996+484-tone RU or 484+996-tone, can allocate the resource unit according to the 80MHz corresponding to the next lowest frequency.
  • the subfield and/or the resource unit allocation subfield corresponding to the highest frequency 80MHz can accurately determine the frequency in 240MHz of the 996-tone RU and 484-tone RU that make up 996+484-tone RU or 484+996-tone RU location, enabling the MRU combined by 996-tone RU and 484-tone RU to be allocated to one or more users.
  • the present application also provides a device for transmitting PPDU, including:
  • a receiving unit configured to receive a PPDU, where the PPDU includes a plurality of resource unit allocation subfields; the plurality of resource unit allocation subfields include a resource unit allocation subfield corresponding to an MRU, and the resource unit allocation subfield corresponding to the MRU indicates The 242-tone RU corresponding to the resource unit allocation subfield belongs to the MRU, and in the multiple 80MHz in the bandwidth for transmitting the PPDU, the resource unit allocation subfield corresponding to the MRU in the resource unit allocation subfield corresponding to each 80MHz The number of , used to determine which MRU the MRU is;
  • a processing unit configured to parse at least a part of the resource unit allocation subfields in the plurality of resource unit allocation subfields, and determine the RUs forming the MRU.
  • the MRU indicated by the resource unit allocation subfield is the MRU included in the bandwidth for transmitting the PPDU.
  • the transmission apparatus may determine the number of resource unit allocation subfields corresponding to the MRU in the resource unit allocation subfield corresponding to each 80MHz in the multiple 80MHz bandwidths for transmitting the PPDU, and determine the number of the resource unit allocation subfields for transmitting the PPDU. Which MRU is the MRU included in the bandwidth.
  • the indication manner of the resource unit allocation subfield is simple, and the transmission apparatus can also determine which MRU is included in the bandwidth for transmitting the PPDU according to the resource unit allocation subfield. It is possible to combine multiple RUs into one MRU and assign them to one or more users.
  • the present application further provides a device for transmitting PPDU, including:
  • a receiving unit configured to receive a PPDU, the PPDU includes a plurality of resource unit allocation subfields; the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating two first MRUs, the two first MRUs
  • the 240MHz to which it belongs is a continuous 240MHz in the bandwidth for transmitting the PPDU, and the frequency positions of the 996-tone RU and 484-tone RU constituting each of the first RUs in the 240MHz are set by standard;
  • a processing unit configured to parse at least a part of the resource unit allocation subfields in the plurality of resource unit allocation subfields, and determine the RUs forming the MRU.
  • the communication standard specifies the frequency positions of the 996-tone RU and 484-tone RU constituting each first MRU in 240MHz, and the transmission device can determine the bandwidth for transmitting PPDUs according to the resource unit allocation subfield, including 2 an MRU, and can also accurately determine the frequency position in 240MHz of the 996-tone RU and 484-tone RU that make up each first MRU, so that the MRU combined by the 996-tone RU and the 484-tone RU can be allocated to one or multiple users.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the number of indexes used for the resource unit allocation subfield to indicate 996+484-tone RU and 484+996-tone RU .
  • the present application further provides a device for transmitting PPDU, including:
  • a receiving unit configured to receive a PPDU
  • the PPDU includes a plurality of resource unit allocation subfields
  • the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating the first MRU and a resource unit allocation subfield indicating the second MRU field, the 996-tone RU and 484-tone RU that make up the first RU and the 2*996-tone RU and 484-tone RU that make up the second MRU, the frequency position in the bandwidth for transmitting the PPDU is standard set;
  • a processing unit configured to parse at least a part of the resource unit allocation subfields in the plurality of resource unit allocation subfields, and determine the RUs forming the MRU.
  • the standard specifies the frequency positions in 320MHz of the 996-tone RU and 484-tone RU that make up the first RU and the 2*996-tone RU and 484-tone RU that make up the second MRU. It can be determined according to the resource unit allocation subfield that the bandwidth for transmitting PPDU includes the first MRU and the second MRU, and it can also accurately determine the 996-tone RU and 484-tone RU that make up the first RU and the 2* that make up the second MRU. The frequency location of 996-tone RU and 484-tone RU in 320MHz, so that MRU combined by 2*996-tone RU and 484-tone RU can be allocated to one or more users.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the use of resource unit allocation subfields to indicate 2*996+484-tone RU and 484+2*996-tone RU the number of indices.
  • the present application also provides a device for transmitting PPDU, including:
  • a receiving unit configured to receive a PPDU, the PPDU includes a plurality of resource unit allocation subfields, and the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating a first MRU, the first MRU is composed of 996-tone
  • the RU is composed of a 484-tone RU, and the frequency position of the 160 MHz in the bandwidth for transmitting the PPDU to which the first MRU belongs is the frequency position set by the standard, or the frequency position indicated by the indication information sent by the AP;
  • a processing unit configured to parse at least a part of the resource unit allocation subfields in the plurality of resource unit allocation subfields, and determine the RUs forming the MRU.
  • the transmission device can determine, according to the resource unit allocation subfield, that the bandwidth for transmitting the PPDU includes an MRU composed of 996-tone RU and 484-tone RU, and can also accurately determine 996+484-tone RU or 484+996-tone RU It is composed of 996-tone RU and 484-tone RU within which 160MHz, so that the combined MRU of 996-tone RU and 484-tone RU can be allocated to one or more users.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the number of indexes used for the resource unit allocation subfield to indicate 996+484-tone RU and 484+996-tone RU .
  • the present application further provides a device for transmitting PPDU, including:
  • a receiving unit configured to receive a PPDU, the PPDU includes a plurality of resource unit allocation subfields, the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating the first MRU, and the bandwidth for transmitting the PPDU includes a continuous 240MHz, the first MRU is composed of 996-tone RU and 484-tone RU in the 240MHz, and the resource unit allocation subfield indicating the first MRU is also used to indicate the 996-tone RU and the 484-tone RU - the frequency position of the tone RU in the 160MHz where the first MRU is located, the resource unit allocation subfield corresponding to 80MHz of the lowest frequency of the 240MHz and/or the resource unit allocation subfield corresponding to 80MHz of the highest frequency.
  • the resource unit allocation subfield indicating the first MRU is used to determine or indicate the frequency position of the 996-tone RU and the 484-tone RU at the 240MHz;
  • a processing unit configured to parse at least a part of the resource unit allocation subfields in the plurality of resource unit allocation subfields, and determine the RUs forming the MRU.
  • the processing unit of the transmission device may determine the 996-tone RU and the 484-tone RU that form the first MRU according to the resource unit allocation subfield corresponding to the lowest frequency 80MHz and the resource unit allocation field corresponding to the highest frequency 80MHz.
  • the tone RU is at the frequency position of 240MHz. That is, it is determined that the RU constituting the first MRU is the RU at which frequency position of 240 MHz.
  • this solution can be used in a scenario where the 240 MHz includes one first MRU, and can also be used in a scenario where the 240 MHz includes two first MRUs.
  • the transmission device when determining the frequency positions of the 996-tone RU and 484-tone RU that constitute the 996+484-tone RU or 484+996-tone, the transmission device skips the 80MHz corresponding to the next-lowest frequency of the 240MHz.
  • the resource unit allocation subfield according to the resource unit allocation subfield corresponding to the lowest frequency 80MHz and/or the resource unit allocation subfield corresponding to the highest frequency 80MHz, can accurately determine the composition of 996+484-tone RU or 484+996-tone
  • the present application further provides a device for transmitting PPDU, including:
  • a receiving unit configured to receive a PPDU, the PPDU includes a plurality of resource unit allocation subfields, the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating the first MRU, and the bandwidth for transmitting the PPDU includes a continuous 240MHz, the first MRU is composed of 996-tone RU and 484-tone RU in the 240MHz, and the resource unit allocation subfield indicating the first MRU is also used to indicate the 996-tone RU and the 484-tone RU - The frequency position in the 160MHz where the tone RU is located, and the position of the 160MHz in the 240MHz, the resource unit indicating the first MRU in the resource unit allocation subfield corresponding to the 80MHz of the next-lowest frequency of the 240MHz an allocation subfield for determining or indicating the frequency positions of the 996-tone RU and 484-tone RU in the 240MHz;
  • a processing unit configured to parse at least a part of the resource unit allocation subfields in the plurality of resource unit allocation subfields, and determine the RUs forming the MRU.
  • the transmission device determines that the 996-tone RU and the 484-tone RU constituting the first MRU are in the 240MHz frequency location. That is, it is determined that the RU constituting the first MRU is the RU at which frequency position of 240 MHz.
  • this solution can be used in a scenario where the 240 MHz includes one first MRU, and can also be used in a scenario where the 240 MHz includes two first MRUs.
  • the transmission device when determining the frequency positions of the 996-tone RU and 484-tone RU that constitute the 996+484-tone RU or 484+996-tone, can allocate the resource unit according to the 80MHz corresponding to the next lowest frequency.
  • the subfield and/or the resource unit allocation subfield corresponding to the highest frequency 80MHz can accurately determine the frequency in 240MHz of the 996-tone RU and 484-tone RU that make up 996+484-tone RU or 484+996-tone RU location, enabling the MRU combined by 996-tone RU and 484-tone RU to be allocated to one or more users.
  • the transmission apparatuses of the thirteenth to eighteenth aspects are apparatuses for sending PPDUs
  • the transmission apparatuses of the nineteenth to twenty-fourth aspects are apparatuses for receiving PPDUs.
  • the sender of the PPDU can be an access point or a station.
  • the receiver of the PPDU can be an access point or a station.
  • an embodiment of the present application further provides a communication apparatus for transmitting a PPDU.
  • the communication device may include: a processor, a transceiver, and optionally a memory.
  • the processor executes the computer program or instructions in the memory, any implementation manner of the above-mentioned first aspect to the twelfth aspect is made. method is executed.
  • embodiments of the present application further provide a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and the computer instructions instruct the communication apparatus to perform the above-mentioned first to twelfth aspects The method of any embodiment.
  • embodiments of the present application further provide a computer program product, where the computer program product includes a computer program that, when the computer program runs on a computer, causes the computer to execute the above-mentioned first to tenth aspects The method of any one of the embodiments of the second aspect.
  • the present application further provides a processor, configured to execute the method in any one of the implementation manners of the first aspect to the twelfth aspect.
  • the process of sending the above-mentioned information and receiving the above-mentioned information in the above-mentioned methods can be understood as the process of outputting the above-mentioned information by the processor, and the process of receiving the above-mentioned information input by the processor.
  • the processor when outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver.
  • other processing may be required before reaching the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to perform other processing before being input to the processor.
  • the operations of transmitting, sending and receiving involved in the processor can be understood more generally as
  • the processor outputs and receives, inputs, etc. operations, rather than the transmit, transmit, and receive operations directly performed by the radio frequency circuit and antenna.
  • the above-mentioned processor may be a processor specially used to execute these methods, or may be a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory (non-transitory) memory, such as a read-only memory (read only memory, ROM), which can be integrated with the processor on the same chip, or can be respectively arranged on different chips, the present invention
  • ROM read-only memory
  • the embodiment does not limit the type of the memory and the setting manner of the memory and the processor.
  • the present application provides a chip system
  • the chip system includes a processor and an interface for supporting a communication transmission device to implement the functions involved in the methods of any one of the first to eighth aspects, for example , determining or processing at least one of the data and information involved in the above method.
  • the chip system further includes a memory for storing necessary information and data of the aforementioned communication device.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • the present application provides a functional entity, where the functional entity is used to implement the method described in any one of the first to eighth aspects.
  • FIG. 1 is a schematic diagram of a network structure provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a chip or a chip system provided by an embodiment of the present application.
  • 4A is a schematic diagram of a possible allocation manner of resource units
  • 4B is a schematic diagram of another possible allocation manner of resource units
  • 5A is a schematic structural diagram of a signaling field
  • 5B is another schematic structural diagram of a signaling field
  • 5C is a schematic structural diagram of a PPDU
  • 6A is a schematic flowchart of a method for transmitting a PPDU according to an embodiment of the present application
  • 6B is a schematic diagram of a scenario of a combination of MRUs included in 80MHz;
  • 6C is a schematic diagram of a scenario of a combination of MRUs included in 160 MHz;
  • FIG. 6D is a schematic diagram of a scenario of a combination of MRUs included in 240MHz;
  • FIG. 6E is a schematic diagram of another scenario of a combination of MRUs included in 160 MHz.
  • 6F is a schematic diagram of a scenario of a combination of MRUs included in 320MHz;
  • 6G is a schematic diagram of another scenario of a combination of MRUs included in 320MHz.
  • 7A is a schematic diagram of another scenario of a combination of MRUs included in 240MHz;
  • 7B is a schematic diagram of another scenario of a combination of MRUs included in 240MHz;
  • 8A is a schematic diagram of the labeling of resource units according to an embodiment of the present application.
  • 8B is a schematic flowchart of a transmission method according to an embodiment of the present application.
  • 8C is a schematic diagram of another scenario of a combination of MRUs included in 240MHz;
  • 9A is a schematic diagram of a scenario of resource unit allocation
  • FIG. 9B is a schematic structural diagram of a signaling field according to an embodiment of the present application.
  • 9C is a schematic structural diagram of another signaling field according to an embodiment of the present application.
  • 9D is a schematic structural diagram of another signaling field according to an embodiment of the present application.
  • FIG. 10 is another schematic flowchart of a transmission method according to an embodiment of the present application.
  • 11A is a schematic structural diagram of yet another signaling field according to an embodiment of the present application.
  • 11B is a schematic structural diagram of yet another signaling field according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a transmission device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a transmission device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a transmission device according to an embodiment of the present application.
  • 15 is a schematic structural diagram of a transmission device according to an embodiment of the present application.
  • 16 is a schematic structural diagram of a transmission device according to an embodiment of the present application.
  • 17 is a schematic structural diagram of a transmission device according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a transmission device according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a transmission device according to an embodiment of the application.
  • 20 is a schematic structural diagram of a transmission device according to an embodiment of the present application.
  • 21 is a schematic structural diagram of a transmission device according to an embodiment of the application.
  • 22 is a schematic structural diagram of a transmission device according to an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a transmission device according to an embodiment of the present application.
  • the embodiments of the present application may be applicable to a wireless local area network (wireless local area network, WLAN) scenario, and may be applicable to an IEEE 802.11 system standard, such as the IEEE 802.11be standard, or the next-generation or next-generation standards.
  • the embodiments of the present application may also be applied to a wireless local area network system such as an internet of things (Internet of things, IoT) network or a vehicle to X (Vehicle to X, V2X) network.
  • IoT internet of things
  • V2X vehicle to X
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple address
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • FIG. 1 is a schematic diagram of a network structure provided by an embodiment of the present application, and the network structure may include one or more access point (access point, AP) type sites and one or more non-access point type sites (none access point station, non-AP STA).
  • access point access point
  • non-AP STA one access point station
  • the access point type station is referred to as an access point (AP) herein
  • the non-access point type station is referred to as a station (STA).
  • the APs are, for example, AP1 and AP2 in FIG. 1
  • the STAs are, for example, STA1 , STA2 , and STA3 in FIG. 1 .
  • the access point can be the access point for terminal equipment (such as mobile phone) to enter the wired (or wireless) network. It is mainly deployed in homes, buildings and campuses, with a typical coverage radius ranging from tens of meters to hundreds of meters. Can be deployed outdoors.
  • the access point is equivalent to a bridge connecting the wired network and the wireless network.
  • the main function is to connect the various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the access point may be a terminal device (such as a mobile phone) or a network device (such as a router) with a wireless fidelity (wreless-fidelity, WiFi) chip.
  • the access point can be a device supporting the 802.11be standard.
  • the access point may also be a device that supports multiple wireless local area networks (WLAN) standards of the 802.11 family, such as 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • WLAN wireless local area networks
  • the access point in this application may be a high efficient (HE) AP or an extremely high throughput (extramely high throughput, EHT) AP, and may also be an access point applicable to a future generation WiFi standard.
  • HE high efficient
  • EHT extremely high throughput
  • the access point may include a processor and a transceiver, where the processor is used to control and manage actions of the access point, and the transceiver is used to receive or send information.
  • the station may be a wireless communication chip, a wireless sensor or a wireless communication terminal, etc., and may also be called a user.
  • a site can be a mobile phone that supports WiFi communication, a tablet that supports WiFi communication, a set-top box that supports WiFi communication, a smart TV that supports WiFi communication, a smart wearable device that supports WiFi communication, or a smart wearable that supports WiFi communication. Vehicle communication equipment and computers that support WiFi communication functions, etc.
  • the site can support the 802.11be standard.
  • the station can also support multiple wireless local area networks (WLAN) systems of the 802.11 family, such as 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • WLAN wireless local area networks
  • the station may include a processor and a transceiver, the processor is used to control and manage the actions of the access point, and the transceiver is used to receive or transmit information.
  • the access point in this application may be a high efficient (HE) STA or an extremely high throughput (extramely high throughput, EHT) STA, and may also be a STA applicable to a future generation WiFi standard.
  • HE high efficient
  • EHT extremely high throughput
  • access points and sites can be devices used in the Internet of Vehicles, IoT nodes, sensors, etc. in the Internet of Things (IoT), smart cameras in smart homes, smart remote controls, smart water meters, and electricity meters. And sensors in smart cities, etc.
  • IoT Internet of Things
  • the access points and sites involved in the embodiments of the present application may also be collectively referred to as communication devices, which may include hardware structures and software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules .
  • a certain function of the above functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 2 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication apparatus 200 may include: a processor 201 , a transceiver 205 , and optionally a memory 202 .
  • the transceiver 205 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 205 may include a receiver and a transmitter, the receiver may be called a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be called a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the processor 201 can control the MAC layer and the PHY layer by running the computer program or software code or instruction 203 therein, or by calling the computer program or software code or instruction 204 stored in the memory 202, so as to realize the following aspects of the present application.
  • the PPDU transmission method provided by the embodiment.
  • the processor 201 can be a central processing unit (central processing unit, CPU), and the memory 202 can be, for example, a read-only memory (read-only memory, ROM), or a random access memory (random access memory, RAM).
  • the processor 201 and transceiver 205 described in this application may be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuits board (printed circuit board, PCB), electronic equipment, etc.
  • ICs integrated circuits
  • RFICs radio frequency integrated circuits
  • ASICs application specific integrated circuits
  • PCB printed circuits board
  • electronic equipment etc.
  • the above-mentioned communication apparatus 200 may further include an antenna 206, and each module included in the communication apparatus 200 is only for illustration, which is not limited in this application.
  • the communication apparatus 200 described in the above embodiments may be an access point or a station, but the scope of the communication apparatus described in this application is not limited thereto, and the structure of the communication apparatus may not be limited by FIG. 2 .
  • the communication apparatus may be a stand-alone device or may be part of a larger device.
  • the implementation form of the communication device may be:
  • Independent integrated circuit IC or chip, or, chip system or subsystem
  • a set of one or more ICs, optionally, the IC set may also include storage for storing data and instructions components; (3) modules that can be embedded in other devices; (4) receivers, smart terminals, wireless devices, handsets, mobile units, in-vehicle devices, cloud devices, artificial intelligence devices, etc.; (5) others, etc. .
  • the chip or chip system shown in FIG. 3 includes a processor 301 and an interface 302 .
  • the number of processors 301 may be one or more, and the number of interfaces 302 may be multiple.
  • the chip or chip system may include memory 303 .
  • the AP communicates with the STA, the AP can allocate resources to the STA, and the STA performs data transmission on the allocated resources.
  • OFDMA orthogonal frequency division multiple access
  • MU-MIMO multi-users multiple-input multiple-output
  • the WLAN protocol divides the spectrum bandwidth into several resource units (RUs).
  • the bandwidth configurations supported by the 802.11ax protocol include 20MHz, 40MHz, 80MHz, 160MHz, and 80+80MHz. Among them, the difference between 160MHz and 80+80MHz is that the former is a continuous frequency band, while the latter two 80MHz can be separated, that is, the 160MHz composed of 80+80MHz is discontinuous.
  • the 802.11ax standard supports a maximum bandwidth of 160MHz.
  • the 802.11ax standard specifies that for 20MHz, 40MHz, 80MHz and 160MHz, the spectrum bandwidth can be divided into multiple types of RUs, and the size of RUs can be 26-tone RU, 52-tone RU, 106-tone RU, these RUs are usually called small RUs .
  • tone represents a subcarrier
  • a 26-tone RU represents an RU composed of 26 subcarriers
  • the 26-tone RU can be allocated to one user.
  • the size of RU can also be 242-tone, 484-tone, 996-tone, etc., which are usually called large RU.
  • an RU greater than or equal to 106-tone can be allocated to one or more users.
  • 802.11be it is supported to allocate multiple RUs to one user, and the user in this application can be understood as a STA.
  • FIG. 4A is a schematic diagram of possible allocation modes of resource units when the bandwidth for transmitting PPDU is 20MHz.
  • the entire 20MHz bandwidth can be composed of a resource unit (242-tone RU) composed of an entire 242 subcarriers, or a resource unit composed of 26 subcarriers (26-tone RU) and a resource unit composed of 52 subcarriers (52-tone RU).
  • RU resource unit composed of 26 subcarriers
  • 52-tone RU resource unit composed of 52 subcarriers
  • RU resource unit composed of resource units (106-tone RU) composed of 106 subcarriers.
  • it also includes some guard (Guard) subcarriers, null subcarriers, or direct current (DC) subcarriers.
  • Guard guard
  • DC direct current
  • FIG. 4B is a schematic diagram of possible allocation modes of resource units when the channel bandwidth for transmitting PPDU is 40 MHz.
  • the entire bandwidth is roughly equivalent to a replica of the sub-carrier distribution of 20 MHz.
  • the entire 40MHz bandwidth can be composed of a resource unit (484-tone RU) composed of an entire 484 subcarriers, or it can be composed of various combinations of 26-tone RU, 52-tone RU, 106-tone RU, and 242-tone RU.
  • the entire channel bandwidth for transmitting PPDU is 80MHz.
  • the entire channel bandwidth is roughly equivalent to a replica of two 40MHz subcarrier distributions.
  • the entire 80MHz bandwidth can be composed of a resource unit (996-tone RU) composed of an entire 996 subcarriers, or it can be composed of 484-tone RU, 242-tone RU, 106-tone RU, 52-tone RU, 26-tone RU various combinations.
  • a middle 26-tone RU Center 26-Tone RU
  • the entire bandwidth can be regarded as a copy of the distribution of two 80MHz sub-carriers.
  • the entire bandwidth can be composed of a whole 2*996-tone RU, or 26-tone RU, 52-tone RU RU, 106-tone RU, 242-tone RU, 484-tone RU, 996-tone RU of various combinations.
  • the AP allocates resources to the STA in units of RUs, and can notify the STA of the allocated resources through a physical protocol data unit (PPDU).
  • PPDU physical protocol data unit
  • the AP may indicate the allocated RU to the STA by carrying the resource allocation information in a signaling field (Signal Field, SIG) included in the PPDU.
  • SIG Signaling Field
  • the signaling field may be High Efficient Signal Field-B (HE-SIG-B), or may also be Extremely High Throughput Signal Field (EHT-SIG) .
  • the AP uses a signaling field (SIG) to notify the user of RU allocation.
  • SIG signaling field
  • FIG. 5A is a schematic diagram of the structure of the signaling field.
  • the HE-SIG includes a common field and a user specific field.
  • the common fields include 1 to N resource unit allocation subfields (RU allocation subfields), a cyclic redundancy code (CRC) for checking, and a tail (Tail) subfield for cyclic decoding.
  • the user specific field includes a user field corresponding to the RU indicated by the resource unit allocation subfield.
  • a resource unit allocation subfield is a resource unit allocation index, and a resource unit allocation index indicates the size and location of one or more resource units corresponding to a 242-tone RU. It should be understood that one resource unit allocation subfield corresponds to one 242-tone RU, and one 20MHz corresponds to one 242-tone RU. Then, it can also be understood that one resource unit allocation subfield corresponds to one 20MHz.
  • the resource unit allocation indices are indicated by one or more indices, where each index corresponds to a 20MHz of bandwidth.
  • an index table of a resource unit allocation subfield is shown in Table 1. Since the index table is used to indicate allocated resources, it can also be called a resource allocation information table.
  • the first column in Table 1 is an index
  • the middle column is the composition of the RU indicated by the index of the first column.
  • the resource unit allocation subfield may be an index in the first column of Table 1, indicating the resource unit allocation situation corresponding to 20 MHz corresponding to the resource unit allocation subfield.
  • the resource unit allocation subfield is "00111y 2 y 1 y 0 ", indicating that the 242-tone RU corresponding to the resource unit allocation subfield is divided into 52-tone RU, 52-tone RU, 26-tone RU, 106-tone RU The 4 RUs of tone RU.
  • the first 3 of the index are the allocations of RUs corresponding to 20 MHz corresponding to the resource unit allocation subfield.
  • the last three bits of the index are used to indicate the number of MU-MIMO users supported by the RU consisting of 106 or more subcarriers. For example, index 01000y2y1y0. "01000" indicates that the 20MHz corresponding to the resource element allocation subfield includes one 106-tone RU and five 26-tone RUs. y2y1y0 is 010 to indicate that 106-tone is assigned to 3 users.
  • the specific field part includes a corresponding user field.
  • the specific field part includes one or more than one user fields corresponding to it.
  • the 802.11ax protocol also introduces the concept of Content Channel (CC).
  • CC Content Channel
  • the signaling field can be transmitted on two content channels (Content Channel, CC).
  • the resource unit allocation subfield in the signaling field is divided into a first part and a second part, the resource unit allocation subfield of the first part is transmitted on CC1, and the resource unit allocation subfield of the second part is transmitted on CC2.
  • the user field corresponding to the resource element allocation subfield of the first part is transmitted in CC1
  • the user field corresponding to the resource element allocation subfield of the second part is transmitted in CC2.
  • the odd-numbered resource unit allocation subfield in the signaling field is transmitted on CC1, and the user field corresponding to the odd-numbered resource unit allocation subfield is also transmitted on CC1;
  • the even-numbered resource element allocation subfields in the signaling field are transmitted in CC1, and the user fields corresponding to the even-numbered resource element allocation subfields are also transmitted in CC2.
  • resource unit allocation subfields 1, 3, and 5 are transmitted on CC1
  • resource unit allocation subfields 2, 4, and 6 are transmitted on CC2.
  • User field 1 to user field 3 corresponding to resource unit allocation subfield 1 are transmitted on CC1
  • user field 4 and user field 5 corresponding to resource unit allocation subfield 2 are transmitted on CC2, and user field 3 corresponding to resource unit allocation subfield 3 is transmitted.
  • Field 6 is transmitted in CC1
  • user field 7 corresponding to user field 4 is transmitted in CC2
  • user field 8 corresponding to resource element allocation subfield 5 is transmitted in CC1.
  • the number of user fields corresponding to the resource unit allocation subfield 6 is 0, that is, the resource unit allocation subfield 6 does not correspond to any user field.
  • the user field includes an association identifier (AID).
  • AID association identifier
  • the STA receiving the PPDU obtains its own user field according to the AID, and obtains the RU indicated by the resource unit allocation subfield corresponding to the user field, so as to determine its own allocated RU.
  • the resource unit allocation subfield shown in Table 1 sets various RU allocation modes, it only supports the allocation of one RU to one or more sites, and does not support the allocation of multiple consecutive or discontinuous RUs to a certain one or multiple sites. For example, there are 3 RUs, these 3 RUs are RU1, RU2 and RU3 respectively. The channel conditions of RU1 and RU3 are better than those of RU2. Ideally, RU1 and RU3 can be allocated to the same user, but The indication manner of the resource unit allocation subfield shown in Table 1 only supports the allocation of RU1 or RU3 to the same user, and does not support the allocation of RU1 and RU3 to the same user. It can be seen that the flexibility of RU allocation is low, and the spectrum utilization rate is also low.
  • FIG. 5C is a schematic structural diagram of a PPDU according to an embodiment of the present application.
  • PPDU includes Legacy Short Training Field (L-STF), Legacy Long Training Field (L-LTF), Legacy Signal Field (L-SIG), and repeated legacy signaling field (RL-SIG), universal signaling field U-SIG (universal SIG, U-SIG), ultra-high throughput signaling field or extremely high throughput signaling field (extremely high throughput, EHT-SIG), EHT short Training field (EHT-STF), EHT long training field (EHT-LTF) and data (data).
  • L-STF Legacy Short Training Field
  • L-LTF Legacy Long Training Field
  • L-SIG Legacy Signal Field
  • RL-SIG repeated legacy signaling field
  • U-SIG universal signaling field U-SIG (universal SIG, U-SIG)
  • ultra-high throughput signaling field or extremely high throughput signaling field extreme high throughput
  • EHT-SIG EHT short Training field
  • L-STF, L-LTF, L-SIG, RL-SIG, U-SIG, EHT-SIG, EHT-STF, EHT-LTF are parts of the physical layer header (or preamble) of the PPDU structure.
  • L-STF, L-LTF, and L-SIG can be understood as traditional preamble fields, which are used to ensure the coexistence of new equipment and traditional equipment.
  • RL-SIG is used to enhance the reliability of legacy signaling fields.
  • U-SIG and EHT-SIG are signaling fields.
  • the U-SIG is used to carry some common information, such as information indicating the version of the PPDU, information indicating the uplink/downlink, information indicating the frequency domain bandwidth of the PPDU, and puncturing indication information.
  • the EHT-SIG includes information indicating resource allocation, information indicating data demodulation, and the like.
  • the structure of the EHT-SIG is similar to that of the HE-SIG in 802.11ax shown in FIG. 5A .
  • the common field of EHT-SIG does not include the middle 26-subcarrier unit indication subfield.
  • fields in the PPDU in the 802.11be scenario are used as examples for illustration.
  • the fields in the PPDU mentioned in the embodiments of this application are not limited to fields related to 802.11be, and the fields in the PPDU mentioned in the embodiments of this application may also be fields related to standard versions after 802.11be.
  • the 802.11be standard under discussion supports a maximum bandwidth of 320MHz.
  • the 802.11be standard when the bandwidths are 20MHz and 40MHz, the possible allocation methods of resource units are the same as those in the above-mentioned 802.11ax standard when the bandwidths are 20MHz and 40MHz.
  • the bandwidth in this embodiment of the present application refers to the bandwidth for transmitting PPDUs.
  • the bandwidth When the bandwidth is 160MHz, it can be regarded as a copy of the distribution of four 40MHz subcarriers, and there is no intermediate 26-tone RU.
  • the entire bandwidth can be composed of a whole 2*996-tone RU, or it can be composed of various combinations of 26-tone RU, 52-tone RU, 106-tone RU, 242-tone RU, 484-tone RU, 996-tone RU composition.
  • the entire bandwidth can be regarded as a copy of the distribution of two 160MHz sub-carriers.
  • the entire bandwidth can be composed of a whole 4*996-tone RU, or it can be composed of various combinations of 26-tone RU, 52-tone RU, 106-tone RU, 242-tone RU, 484-tone RU, 996-tone RU composition.
  • 242-tone RUs can be numbered: the first 242-tone RU, the second 242-tone RU, the third 242-tone RU,.... 484-tone RUs can also be labeled: the first 484-tone RU, the second 484-tone RU,....
  • the bandwidth is 80MHz
  • the 80MHz is considered to be composed of two 484-tone RUs
  • the first 40MHz of the 80MHz corresponds to the first 484-tone RU
  • the 80MHz The second 40MHz corresponds to the second 484-tone RU.
  • the 1st to 4th 20MHz of the 80MHz correspond to the 1st to 4th 242-tone RUs respectively.
  • a RU composed of multiple merged units may be called a multiple resource unit (multiple RU, MRU).
  • a solution of combining some RUs into an MRU is provided, and two or more RUs can be combined into one MRU and allocated to one or more sites.
  • the merger of RUs may include: 484-tone RU and 242-tone RU combined into 484+242-tone RU, 996-tone RU and 484tone RU combined into 994+484-tone RU, two 996-tone RUs
  • the combination of tone RU and 484tone RU is 2*994+484-tone RU
  • the combination of 3 996-tone RU and 484tone RU is 3*994+484-tone RU.
  • the frequency domain resource corresponding to 484+242-tone RU is 60MHz; the frequency domain resource corresponding to 994+484-tone RU is 120MHz; the frequency domain resource corresponding to 2*994+484-tone RU is 200MHz; 3*994+ The frequency domain resource corresponding to the 484-tone RU is 280MHz. It can be understood that the above 484+242-tone RU, 994+484-tone RU, 2*994+484-tone RU and 3*994+484-tone RU are all MRUs.
  • MRUs are classified according to the two RUs that make up the MRU.
  • an MRU formed by combining 484-tone RU and 242-tone RU is one type of MRU or one type of MRU combination.
  • An MRU composed of 484-tone RU and 996-tone RU is another combination type.
  • the RUs that form the same MRU have different frequency positions, and each MRU may include multiple combinations.
  • 484+242-tone RU is composed of 484-tone RU and 242-tone RU, and 484-tone RU and 242-tone RU can be located in different frequency positions, so,
  • the 484+242-tone RU includes various combinations.
  • the supported MRU combination types are shown in Table 2, and the supported MRU combination types may include, the combination of 484-tone RU and 242-tone RU is 484+242-tone RU.
  • the bandwidth is 80MHz, it corresponds to four 242-tone RUs.
  • Three of the 242-tone RUs belong to 484+242-tone RUs, and the other 242-tone RUs belong to non-MRUs.
  • the position of the non-MRU can be any one of the first 242-tone RU, the second 242-tone RU, the third 242-tone RU, and the fourth 242-tone RU . Therefore, there are 4 possible combinations of the 484+242-tone RU.
  • the supported MRU combination types include 484-tone RU and 242-tone RU combination as 484+242-tone RU, and 996-tone RU and 484tone RU combination as 994 +484-tone RU.
  • the equivalent bandwidth of this 994+484-tone RU is 120MHz.
  • the large RU combination is only allowed to exist in 160MHz composed of two consecutive 80MHz.
  • the supported RU combination is the same as that in OFDMA transmission with a bandwidth of 160MHz.
  • the supported combinations include: the combination of 3 996-tone RUs is 3*996-tone RU, and the combination of 3 996-tone RUs and 1 484-tone RU is 3*996+ 484-tone RU, and the supported RU combinations in the above OFDMA transmission with a bandwidth of 160MHz.
  • the equivalent bandwidth of the 3*996-tone RU is 240MHz, and the equivalent bandwidth of the 3*996+484-tone RU is 280MHz.
  • the combination of RUs supported by 160MHz can be performed in the primary 160MHz or the secondary 160MHz in the 320MHz or 160+160MHz bandwidth.
  • the embodiments of the present application show possible combination types for MRUs within 80 MHz-320 MHz, for example, Table 2 shows some possible MRU combination types.
  • the first column represents the MRU combination type, and the numbers in the table represent the size of each RU included in the MRU. For example, "484+996" indicates that the MRU is composed of two RUs, 484-tone RU and 996-tone RU.
  • the middle column represents the equivalent bandwidth of the MRU, and the third column represents the transmission bandwidth to which the MRU belongs. For example, within a transmission bandwidth of 160 MHz, the MRU combination type may be "242+242+996" or "484+996".
  • the embodiments of the present application provide some MRU indication solutions.
  • the resource unit allocation subfield in the signaling field of the PPDU may indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to one MRU.
  • the resource unit allocation subfield may use an index shown in Table 5 to indicate the resource unit allocation situation.
  • the indexes in Table 5 may be reserved indexes in Table 1.
  • Table 5 can also be combined into one row and presented in the table, or the entries with the number of contributing user fields ranging from 1 to 8 can be combined into one row and presented in the table.
  • the present application does not limit the presentation form of the form.
  • the serial numbers of index 1, index 2, index 3, ..., index 9 are only used to identify the above nine indexes as different indexes. This application does not limit the specific expression of the index.
  • the resource unit allocation subfield can indicate the resource unit allocation situation through any of the 9 entries, it indicates that the 242-tone RU corresponding to the frequency domain resource corresponding to the resource unit allocation subfield belongs to one MRU, and the MRU is in this resource.
  • the number of contributed user fields refers to, in the EHT-SIG content channel where the resource unit allocation subfield is located, and The number of user fields corresponding to the resource unit allocation subfield.
  • the user field corresponding to the resource unit allocation subfield is the user field of the user to which the resource unit indicated by the resource unit allocation subfield is allocated.
  • each index in index 2 to index 9 includes a part indicating RU allocation and a part indicating user field.
  • the parts of index 2 to index 9 indicating RU allocation are the same, and both indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to one MRU.
  • the part indicating the user field is different.
  • the respective user indicates that 1-8 user fields are contributed in the same user-specific field of the EHT-SIG content channel where the resource element allocation subfield is located.
  • the part indicating the user field may be, for example, 3 bits.
  • the portion of index 1 indicating 0 user fields indicating RU allocation is different from the portion indicating RU allocation of indices 2-9 indicating 1-8 user fields.
  • index 2 to index 9 may be k n k n-1 ... k 2 k 1 y 2 y 1 y 0 , wherein k n k n-1 ... k 2 k 1 is the part indicating RU allocation , n is the number of bits indicating the part of the user field, y 2 y 1 y 0 is the part indicating the user field, which is 3 bits, respectively indicating 1-8 user fields.
  • the station receiving the PPDU can determine that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the MRU according to the resource unit allocation subfield, and indicate the corresponding 242-tone RU according to the resource unit allocation subfield corresponding to each 80MHz RUs belong to the number of resource unit allocation subfields of the MRU, and determine the RUs that make up the MRU.
  • the above solution can be implemented through the following steps of the PPDU transmission method:
  • the AP generates a PPDU
  • the PPDU includes a plurality of resource unit allocation subfields, the plurality of resource unit allocation subfields include a resource unit allocation subfield corresponding to the MRU, and the resource unit allocation subfield corresponding to the MRU indicates the resource unit allocation subfield corresponding to the resource unit allocation subfield.
  • the 242-tone RU belongs to the MRU, and in the multiple 80MHz in the bandwidth for transmitting the PPDU, the number of resource unit allocation subfields corresponding to the MRU in the resource unit allocation subfield corresponding to each 80MHz is used to determine or indicate. Which MRU is the MRU;
  • the AP sends a PPDU
  • the STA receives the PPDU
  • the STA determines, according to the number of resource unit allocation subfields in the resource unit allocation subfield corresponding to each 80MHz, that the corresponding 242-tone RU belongs to the MRU, which RU is the MRU that transmits the PPDU.
  • the above-mentioned PPDU transmission method is described in the embodiment in which the AP sends the PPDU to the STA, and the method is also applicable to the scenario where the AP sends the PPDU to the AP and the STA sends the PPDU to the STA.
  • the STA determines which RU the MRU that transmits the PPDU is, and also determines the RUs that make up the MRU.
  • the STA indicates that the corresponding 242-tone RU belongs to the resource unit allocation subfield of the MRU in the resource unit allocation subfield corresponding to each 80MHz, and determines the number of resource unit allocation subfields that make up the MRU. RU's scheme.
  • 80MHz can include 242+484-tone RU which is formed by combining 242-tone RU and 484-tone RU.
  • 4 242-tone RUs within 80MHz, including 3 242-tone RUs, are MRUs, and the other 242-tone RUs are non-MRUs.
  • the non-MRU 242-tone RU is any one of the first 242-tone RU, the second 242-tone RU, the third 242-tone RU and the fourth 242-tone RU, forming 242+484-tone
  • FIG. 6B is a schematic diagram of a scenario of a combination of MRUs included in 80 MHz.
  • the 242+484-tone RU may be formed by combining the first 484-tone RU and the third 242-tone RU (the first-third 242-tone RU) within the 80MHz, It may also be formed by the combination of the first 484-tone RU and the fourth 242-tone RU (1st, 2nd, and 4th 242-tone RU) within the 80MHz, or it may be composed of the second 242-tone RU within the 80MHz.
  • the 484-tone RU and the first 242-tone RU (the 1st, 3rd, and the 4th 242-tone RU) are combined, and it may be the second 484-tone RU and the second RU within the 80MHz.
  • 242-tone RU (the 2nd, 3rd, and 4th 242-tone RU) are merged.
  • the STA can determine that the 3 242-tone RUs corresponding to the 3 resource unit allocation subfields form a 242 +484-tone RU. Therefore, it is possible to allocate an MRU composed of multiple RUs to one or more sites when the bandwidth is 80 MHz.
  • non-MRU in this embodiment of the present application may be a single 242-tone RU, may also be multiple small RUs, or may be empty.
  • FIG. 6C is a schematic diagram of a scenario of a combination of MRUs included in 160 MHz.
  • the included MRUs have three modes.
  • Mode 1 includes a 242+484-tone RU in 160MHz.
  • the 160MHz includes two 80MHz, and the 242+484-tone RU can be located in one of the 80MHz.
  • Mode 2 contains two 242+484-tone RUs within 160MHz.
  • the 160MHz includes two 80MHz, each 80MHz includes a 242+484-tone RU, and the combination of 242+484-tone RU in each 80MHz includes the four possible combinations shown in FIG. 6B .
  • Mode 3 includes one 996+484-tone RU in 160MHz. Since the positions of the 996-tone RU and 484-tone RU that make up the 996+484-tone RU are different in the 160MHz bandwidth, there are 4 possible 996-tone RUs and 484-tone RUs that make up the 996+484-tone RU. Combination cases (4cases).
  • the STA can identify the combination type of MRUs within 160 MHz according to the method table for identifying MRU combinations shown in Table 6, so that an MRU composed of multiple RUs can be allocated to one or more sites when the bandwidth is 160 MHz .
  • the STA receiving the PPDU can determine the combination type that constitutes the MRU according to the number of 242-tone RUs belonging to the MRU in each 80MHz within 160MHz indicated by the resource unit allocation subfield.
  • the STA determines
  • the 160MHz includes one 484+242-tone RU, and the 484+242-tone RU consists of the three 242-tone RUs belonging to the MRU.
  • the STA determines The 160MHz includes 2 484+242-tone RUs, and 3 242-tone RUs belonging to the MRU within each 80MHz form 484+242-tone RUs within the 80MHz.
  • the STA determines The 160MHz includes 1 996+484-tone RU.
  • the 996+484-tone RU consists of four 242-tone RUs in the first 80MHz, and two 242-tone RUs belonging to the MRU in the second 80MHz.
  • the STA determines that the 160MHz includes 1 996+484-tone RU.
  • the 996+484-tone RU consists of 2 242-tone RUs belonging to the MRU in the first 80MHz, and 4 242-tone RUs in the second 80MHz.
  • FIG. 6D a schematic diagram of a combination of MRUs included in 240MHz is shown.
  • the bandwidth is 240MHz
  • the included MRUs have 7 modes.
  • Mode 1 to Mode 4 can be understood according to FIG. 6D and in conjunction with the above-mentioned related descriptions according to FIG. 6B and FIG. 6C .
  • 240MHz can include 996+484-tone RUs combined by 996-tone RU and 484-tone RU.
  • the 996+484-tone RU can be within 160MHz consisting of the first 80MHz and the second 80MHz (4 possible combinations), or within 160MHz consisting of the second 80MHz and the third 80MHz ( 4 possible combinations).
  • 240MHz can include 996+484-tone RU composed of 996-tone RU and 484-tone RU, and 484-tone RU and 242-tone RU. 484+242-tone RU.
  • the 996+484-tone RU can be within 160MHz consisting of the first 80MHz and the second 80MHz (4 possible combinations), or within 160MHz consisting of the second 80MHz and the third 80MHz ( 4 possible combinations).
  • the 240MHz includes two 996+484-tone RUs.
  • Each 996+484-tone RU consists of 484-tone RU and 996-tone RU.
  • the bandwidth is 240MHz
  • the 240MHz can include 2*996+484-tone RUs
  • the 2*996-tone RUs forming the 2*996+484-tone RUs are located in a continuous 160MHz.
  • the 484-tone RUs that make up the 2*996+484-tone RU can be located at 4 different 80MHz, and there are 4 possible combinations (4cases) in this mode seven.
  • the STA can identify the combination type of MRUs within 240MHz and the combination of RUs composing the MRU according to the method table for identifying MRU combinations shown in Table 7, so that an MRU composed of multiple RUs can be implemented when the bandwidth is 240MHz. Assigned to one or more sites. It should be understood that the number of MRUs of 80 MHz in each row in Table 7 can be exchanged. The number of MRUs of each 80MHz in the same row is exchanged, and the corresponding MRU combination type remains unchanged.
  • the STA allocates subfields according to the resource unit corresponding to the 240MHz, it identifies that the first 80MHz of the 240MHz includes three 242-tone RUs belonging to the MRU, the second 80MHz includes three 242-tone RUs belonging to the MRU, and the third When 80MHz includes 0 242-tone RUs and belongs to the MRU, it is determined that the 240MHz includes 2 (484+242)-tone RUs.
  • One of the 484+242-tone RUs is located at 60MHz of the lowest frequency of the 1st 80MHz of 240MHz, and the other 484+242-tone RU is located at 20MHz of the highest frequency of the 1st 80MHz of 240MHz and the lowest frequency of the 2nd 80MHz 40MHz.
  • the STA identifies that the first 80MHz of the 240MHz includes 0 242-tone RUs belonging to the MRU, the second 80MHz includes 3 242-tone RUs belonging to the MRU, and the third 80MHz belongs to the MRU
  • 3 242-tone RUs are included in the MRU, it is determined that the 240MHz includes 2 (484+242)-tone RUs.
  • One of the 484+242-tone RUs is located at 60MHz of the lowest frequency of the 2nd 80MHz of 240MHz, and the other 484+242-tone RU is located at 20MHz of the highest frequency of the 2nd 80MHz of 240MHz and the lowest frequency of the 3rd 80MHz. 40MHz.
  • the STA when the STA allocates subfields according to the resource unit corresponding to the 240MHz, it identifies that the first 80MHz of the 240MHz includes four 242-tone RUs belonging to the MRU, the second 80MHz includes four 242-tone RUs belonging to the MRU, and the third 80MHz includes four 242-tone RUs belonging to the MRU.
  • each 80MHz includes 4 242-tone RUs and belongs to the MRU, it is determined that the 240MHz includes 2 996+484-tone RUs.
  • the STA cannot identify the 484-tone RUs and 996-tone RU. Because, when the 12 242-tone RUs of 240MHz are all MRUs, the possible RU combinations are not single.
  • FIG. 6E is a schematic diagram of another scenario of the combination of MRUs included in 160 MHz. As shown in Figure 6E, it may be the 1st-4th 242-tone RU of the first 80MHz and the 3rd-4th 242-tone RU of the second 80MHz to form a 996+484-tone RU, and the second 80MHz
  • the 1st-2nd 242-tone RU of the 3rd 80MHz and the 1st-4th 242-tone RU of the 3rd 80MHz form a 996+484-tone RU; it may also be the 1st-4th 242-tone of the 1st 80MHz
  • the RU and the 1st-2nd 242-tone RU of the 2nd 80MHz form a 996+484-tone RU
  • the 3rd-4th 242-tone RU of the 2nd 80MHz and the 1st-4th of the 3rd 80MHz 242-tone RU form a 996+484-tone RU.
  • the index of Table 5 cannot indicate which 996-tone RU and which 484-tone RU form a 240MHz bandwidth including 2 (996+484)-tone RUs in the transmission bandwidth of PPDU. 996+484-tone RU.
  • the STA receiving the PPDU cannot determine which 996-tone RU and which 484-tone RU the allocated 996+484-tone RU is composed of according to the resource unit allocation subfield.
  • the AP cannot allocate the 2*996+484-tone RU or 996+484-tone RU to one or more sites.
  • FIG. 6F is a schematic diagram of a scenario of a combination of MRUs included in 320 MHz. As shown in Fig. 6F, when the bandwidth is 320MHz, the included MRUs have 13 modes. Modes 1 to 10 can be understood according to FIG. 6F and in conjunction with the above-mentioned related descriptions according to FIG. 6B to FIG. 6D .
  • the next-generation communication standard (eg 802.11be) allows a bandwidth of 320MHz, it includes 2*996+484-tone RUs. If the 2*996-tone RUs that make up the 2*996+484-tone RU need to be located at a continuous 160MHz, the 484-tone RUs that make up the 2*996+484-tone RU can be located at 8 different 40MHz. Eleven has a total of 8 possible combinations (8cases).
  • the 484-tone RU that makes up the 2*996+484-tone RU can be located in four If the 40MHz is different, there are 4 possible combinations (4cases) in this mode eleven.
  • mode 13 if the next generation communication standard (such as 802.11be) allows a bandwidth of 320MHz, it can include 2*996+484-tone RU and 996+484-tone RU, and the RUs in the MRU group must be consecutive, this mode 13 There are 2 possible combinations (2cases). A possible combination is that 2*996+484-tone RU is composed of 2*996-tone RU corresponding to 160MHz at the lowest frequency of 320MHz and 484-toneRU corresponding to 40MHz at the third lowest frequency of 80MHz.
  • the 996+484-tone RU is formed by combining the 40MH with the highest frequency of the third 80MHz of the 320MHz at the corresponding 484-tone RU and the corresponding 996-tone RU of the fourth 80MHz.
  • Another possible combination is that the 996+484-tone RU is composed of the 996-tone RU corresponding to the first 80MHz of the 320MHz and the 484-tone RU corresponding to the lowest frequency 40MHz of the second 80MHz, 2* 996+484-tone RU is composed of 2 484-tone RUs corresponding to 40MHz with the highest frequency lower than 80MHz, and 996-tone RUs corresponding to the third 80MHz and the fourth 80MHz.
  • the STA can identify the MRU combination type within 320MHz and the combination of RUs that make up the MRU according to the method table for identifying MRU combinations shown in Table 8, so that multiple RUs can be allocated to one or more RUs when the bandwidth is 320MHz. multiple sites. It should be understood that the number of MRUs of 80 MHz in each row in Table 8 can be exchanged. The number of MRUs of each 80MHz in the same row is exchanged, and the corresponding MRU combination type remains unchanged.
  • the STA allocates subfields according to the resource unit corresponding to the 320MHz, it identifies that the first 80MHz of the 320MHz includes four 242-tone RUs belonging to the MRU, the second 80MHz includes two 242-tone RUs belonging to the MRU, and the third When the 80MHz includes 0 242-tone RUs and belongs to the MRU, and the fourth 80MHz includes 0 242-tone RUs and belongs to the MRU, it is determined that the 320MHz includes 1 996+484-tone RU.
  • the 996+484-tone RU is located at 40MHz of the lowest frequency of the 1st 80MHz of 320MHz and the 2nd 80MHz.
  • the STA identifies that the first 80MHz of the 240MHz includes 0 242-tone RUs belonging to the MRU, the second 80MHz includes 0 242-tone RUs belonging to the MRU, and the third 80MHz belongs to the MRU If it includes 4 242-tone RUs and belongs to the MRU, and the fourth 80MHz includes 2 242-tone RUs and belongs to the MRU, it is determined that the 240MHz includes 1 996+484-tone RU.
  • the 996+484-tone RU is located at 320MHz at the 3rd 80MHz and the 4th 80MHz at 40MHz of the lowest frequency.
  • Next-generation communication standards (eg, 802.11be) can specify that only one combination is supported when a bandwidth of 320MHz can include 2*996+484-tone RUs and 996+484-tone RUs.
  • a schematic diagram of the combination of MRUs included in 320MHz when the bandwidth for transmitting PPDU is 320MHz, the 2*996+484-tone RU is located at 200MHz of the lowest frequency of the 320MHz , the 996+484-tone RU is located at 160MHz of the highest frequency of the 320MHz.
  • the resource unit allocation subfield corresponding to the 1-16th 242-tone RU of the 320MHz can be indicated by an index in Table 5, indicating that the corresponding 242-tone RU belongs to the MRU.
  • the STA receiving the PPDU can allocate subfields 1-16 according to the resource unit in the signaling field, combined with Table 8, to determine 1-16 20MHz in the 320MHz, all corresponding to the MRU, and the 320MHz includes a 2*996+484 -tone RU and a 996+484-tone RU.
  • the STA cannot determine which 10 242-tone RUs belong to 2*996+484-tone RUs and which 6 242-tone RUs belong to 996+484-tone RUs in the 320MHz according to the resource unit allocation subfield.
  • the resource unit allocation subfields 1-16 indicate 1-16 242-tone RUs in 320MHz, when they all correspond to MRUs, it may be that the 1-10th 242-tone RUs belong to a 2*996+484-tone RU, The 11th-16th 242-tone RUs belong to a 996+484-tone RU; it may also be that the 1st-6th 242-tone RUs belong to a 996+484-tone RU, and the 7th-16th 242-tone RUs belong to a 2*996+484-tone RU. In this way, the STA receiving the PPDU cannot accurately determine the combination of RUs.
  • the resource unit allocation subfield indicates which MRU the 242-tone RU corresponding to the resource unit allocation subfield belongs to, and the same EHT-tone RU where the resource unit allocation subfield is located.
  • the resource unit allocation subfield may be indicated by the index in Table 9.
  • any index in Table 9 is used to indicate which MRU the 242-tone RU corresponding to the resource unit allocation subfield belongs to, and to indicate the user-specific field of the same EHT-SIG content channel where the resource unit allocation subfield is located , the number of contributed user fields.
  • the number of contributed user fields refers to, in the EHT-SIG content channel where the resource unit allocation subfield is located, and The number of user fields corresponding to the resource unit allocation subfield.
  • the user field corresponding to the resource unit allocation subfield is the user field of the user to which the resource unit indicated by the resource unit allocation subfield is allocated.
  • the number of indicated user fields in Table 9 is any index from 1 to 8, and may include a portion indicating RU allocation and a portion indicating user fields.
  • the part indicating RU allocation indicates which MRU the 242-tone RU corresponding to the resource unit allocation subfield belongs to.
  • the part indicating the user field indicates the number of contributed user fields in the user specific field of the same EHT-SIG content channel in which this resource element allocation subfield is located.
  • the part indicating the user field may be, for example, 3 bits, indicating that in the user-specific field of the same EHT-SIG content channel where the resource unit allocation subfield is located, the number of contributed user fields is one of 1-8.
  • the structure of any index indicating that the number of user fields is 1-8 in Table 9 may be k n k n-1 ... k 2 k 1 y 2 y 1 y 0 , where k n k n-1 ...k 2 k 1 is the part indicating the RU allocation, n is the number of bits indicating the part allocated by the RU, and y 2 y 1 y 0 is the part indicating the user field, which is 3 bits, indicating 1-8 user fields respectively.
  • the resource unit allocation subfield corresponding to the 1st-10th 242-tone RU of the 320MHz can use the index in the index 19-index 27 in Table 9, indicating that the corresponding 242-tone RU belongs to 2 *996+484-tone RU.
  • the resource unit allocation subfields corresponding to the 11th to 16th 242-tone RUs of the 320MHz may use indexes 1-9 in Table 9, indicating that the corresponding 242-tone RUs belong to 996+484-tone RUs.
  • the STA that receives the PPDU in this way can determine that the 1-10th 242-tone RU in the 320MHz belongs to a 2*996+484-tone RU according to the resource unit allocation subfields 1-16 in the signaling field, and the 11-16th A 242-tone RU belongs to a 996+484-tone RU. It can be seen that such a scheme can accurately indicate that when the bandwidth for transmitting PPDU is 320MHz, the 1st-10th 242-tone RUs belong to a 2*996+484-tone RU, and the 11th-16th 242-tone RUs belong to one 996+484-tone RU case.
  • such a scheme can accurately indicate that when the 320MHz bandwidth of the transmission PPDU includes 2*996-tone RU and 996+484-tone RU, the resource unit allocation subfield using the index in Table 9 can accurately indicate the composition.
  • the STAs that are allocated 2*996+484-tone RUs can determine which 2*996+484-tone RUs they are allocated from according to the resource unit allocation subfield. And which 484-tone RU is composed.
  • the first to sixth 242-tone RUs belong to a 484+996tone RU in order of frequency from low to high.
  • the 7th-12th 242-tone RUs belong to a 996+484-tone RU.
  • the 1st-4th 242-tone RU can be understood as the 1st-4th 242-tone RU in the first 80MHz
  • the 5th-8th 20MHz can be understood as the 1st-4th 242-tone in the second 80MHz.
  • Tone RU the 9th-12th 20MHz can be understood as the 1st-4th 242-tone RU in the third 80MHz.
  • the signaling field of the PPDU includes resource unit allocation subfield 1 to resource unit allocation subfield 12 corresponding to the 1-12th 1-4th 242-tone RU of the 240MHz respectively, resource unit allocation subfield 1-12 It can be indicated by one of the indexes in Table 8 above.
  • the STA receiving the PPDU in this way can determine the 1-12th 1-4th 242-tone RUs in 240MHz according to the resource unit allocation subfields 1-12 in the signaling field, all of which belong to 996+484-tone RUs. According to the description corresponding to FIG. 6E above, it can be known that the situation of 242-tone RU included in each 996+484-tone RU is not unique.
  • the 1st-4th 242-tone RU and the 7th-8th 242-tone RU belong to a 996+484-tone RU
  • the 5th-6th 242-tone RU and the 9th-12th 242-tone RU RU belongs to a 996+484-tone RU
  • the 1st to 6th 242-tone RUs belong to a 996+484-tone RU
  • the 7th to 12th 242-tone RUs belong to a 996+484-tone RU.
  • the resource unit allocation subfield is indicated by the index in Table 9.
  • the resource unit allocation subfield cannot be formed by the index indication in Table 9.
  • 996-tone RU and 484-tone RU per 996+484-tone RU.
  • the STA receiving the PPDU cannot determine which 996-tone RU and which 484-tone RU form a 996+484-tone RU in the 240MHz, so it is impossible to determine which 996+484-tone RU or 2 (996+484)-tone RUs are allocated to one or more sites.
  • the embodiments of the present application provide some solutions that can solve the problem that the resource unit allocation subfield cannot accurately indicate 2*996+484-tone RU and 996+484-tone RU included in 320 MHz.
  • the 2*996+484-tone RU in this scheme refers to an MRU composed of a relatively low-frequency 2*996-tone RU and a relatively high-frequency 484-tone RU, and a relatively low-frequency 484-tone RU and MRU composed of relatively high frequency 2*996-tone RU.
  • the 996+484-tone RU in this scheme refers to an MRU composed of a relatively low-frequency 996-tone RU and a relatively high-frequency 484-tone RU, and a relatively low-frequency 484-tone RU and a relatively high-frequency 484-tone RU. MRU composed of high 996-tone RU.
  • communication standards eg, 802.11be and later standards
  • 2*996+484-tone RUs and 996+484-tone RUs are not allowed within a contiguous 320MHz.
  • the resource unit allocation subword does not need to indicate 2*996+484-tone RU and 996+484-tone RU within 320MHz, which can solve the problem of inaccurate indication.
  • the communication standard stipulates that when 320MHz includes 2*996+484-tone RU and 996+484-tone RU, it constitutes 2*996+484-tone RU There is only one combination of 2*996-tone RU and 484-tone RU, and 996-tone RU and 484-tone RU that make up 996+484-tone RU.
  • the communication standard may specify that when 320MHz includes 2*996+484-tone RUs and 996+484-tone RUs, the absolute frequency in the 320MHz ranges from The order from low to high is 2*996-tone RU, 484-tone RU, 484-tone RU, 996-tone RU. That is, the 2*996-tone RU corresponding to the first 80MHz and the second 80MHz of the 320MHz and the 484-tone RU corresponding to the first 40MHz of the third 80MHz form 2*996+484-tone RU. Three 80MHz 484-tone RUs corresponding to the second 40MHz and 996-tone RUs corresponding to the fourth 80MHz form 996+484-tone RUs.
  • the communication standard may stipulate that when 320MHz includes 2*996-tone+484 RU and 996+484-tone RU, the absolute frequency in the 320MHz is The order from low to high is 996-tone RU, 484-tone RU, 484-tone RU, 2*996-tone RU.
  • the 996-tone RU corresponding to the first 80MHz of the 320MHz and the 484-tone RU corresponding to the first 40MHz of the second 80MHz form 996+484-tone RU; the second 40MHz of the second 80MHz corresponds to 484-tone RU, and the 2*996-tone RU corresponding to the third 80MHz and the fourth 80MHz form 996+484-tone RU.
  • the 320MHz specified by the communication standard includes 2*996+484-tone RU and 996+484-tone RU
  • 2*996-tone RU and 484-tone RU form 2*996+484-tone RU
  • form 996 The 996-tone RU and 484-tone RU of the +484-tone RU may also be other combinations, and this application does not limit which combination is allowed by the specific provisions of the communication standard.
  • the STA that receives the PPDU only needs to allocate subfields according to the resource unit, identify that 320MHz includes 2*996+484-tone RU and 996+484-tone RU, and then determine the 2* of 2*996-tone+484 RU. 996-tone RU and 484-tone RU, and 996-tone RU and 484-tone RU that make up 996+484-tone RU.
  • the resource unit allocation subfield can use the index in Table 5 or the index in Table 9 to indicate that when 320MHz includes 2*996+484-tone RU and 996+484-tone RU, the STA can identify the resource unit allocation subfield according to the resource unit allocation subfield.
  • the output of 320MHz includes 2*996+484-tone RU and 996+484-tone RU, and then determines 2*996-tone RU and 484-tone RU that form 2*996-tone+484 RU, and 996+484- 996-tone RU and 484-tone RU of tone RU.
  • the first 80MHz, the second 80MHz, the third 80MHz, and the fourth 80MHz are obtained in order of frequency from low to high.
  • the X-th 20MHz, the Y-th 40MHz, and the Z-th 160MHz are also sorted in order of frequency from low to high.
  • X, Y, Z are sorting numbers.
  • the embodiments of the present application also provide some indication schemes for indicating the frequency position of a single RU in the MRU.
  • the STA receiving the PPDU can determine the Determine exactly which 484-tone RU and which 996-tone RU make up an MRU.
  • 484-tone RU and 996-tone RU in 160 MHz are labeled.
  • FIG. 8A as shown in the schematic diagram of the labeling of the resource unit in this embodiment of the present application, four 484-tone RUs within 160 MHz are the first 484-tone RU (1 st 484-tone RU), 2nd 484-tone RU (2 st 484-tone RU), 3rd 484-tone RU (3 st 484-tone RU) and 4th 484-tone RU (4 st 484- tone RU).
  • the RU numbers of the first to fourth 484-tone RUs in the 160MHz are 1, 2, 3, and 4 in sequence.
  • Two 996-tone RUs within 160MHz, in order of absolute frequency from low to high, are the first 996-tone RU (1 st 484-tone RU) and the second 996-tone RU (2 st 484-tone RU) RU).
  • the RU numbers of the 1-2 996-tone RUs in the 160 MHz are 1 and 2 in sequence.
  • 242-tone RU and 484-tone RU within 80MHz can also be labeled.
  • two 484-tone RUs within 80MHz, in the order of absolute frequency from low to high, are the first 484-tone RU (1st 484-tone RU), and the second 484-tone RU.
  • the RU labels of the first and second 484-tone RUs in the 80MHz are 1 and 2.
  • the four 242-tone RUs within 80MHz, in the order of absolute frequency from low to high, are the first 242 -tone RU(1st 242-tone RU), 2nd 242-tone RU(2st 242-tone RU), 3rd 242-tone RU(3st 242-tone RU) and 4th 242-tone RU(4st 242-tone RU).
  • the RU numbers of the first to fourth 242-tone RUs in the 80MHz are 1, 2, 3, and 4 in sequence.
  • the resource unit allocation subfield of the MRU consisting of 484-tone RU and 996-tone RU is indicated.
  • the RU labels of the 484-tone RU and 996-tone RU that make up the MRU in the 160MHz where the MRU is located it is indicated that the 484-tone RU and 996-tone RU that make up the MRU are located where the 996+484-tone RU is located. Frequency position in 160MHz.
  • an embodiment of the present application also provides a scheme for determining the frequency positions of the 484-tone RUs and 996-tone RUs that make up the MRU according to a signaling field.
  • the STA receiving the PPDU obtains the 484 MHz composing the MRU according to the resource unit allocation subfield in the signaling field.
  • the frequency location of -tone RU and 996-tone RU is used, skip the resource unit allocation indication subfield corresponding to the second 80MHz in the 240MHz.
  • the RU label of the 484-tone RU and 996-tone RU constituting the MRU in the 160MHz where the MRU is located as indicated by the STA according to the resource unit allocation indication subfield corresponding to the first 80MHz and/or the third 80MHz in the 240MHz , determine the frequency positions of the 484-tone RU and 996-tone RU that make up the MRU in the 160MHz where the MRU is located.
  • the STA determines that the 160MHz where the MRU is located is the lowest of the 240MHz according to whether the resource unit allocation subfield indicating the MRU is the resource unit allocation subfield corresponding to the first 80MHz or the resource unit allocation subfield corresponding to the third 80MHz.
  • the frequency is 160MHz, or the highest frequency is 160MHz, so as to determine which 484-tone RU and which 996-tone RU form an MRU.
  • the embodiment of the present application is described with the embodiment in which the AP sends the PPDU to the STA.
  • the method of the present application is also applicable to the scenario where the AP sends the PPDU to the AP, and the STA sends the PPDU to the STA.
  • the 996+484-tone RU in this embodiment is an MRU composed of a relatively low-frequency 996-tone RU and a relatively high-frequency 484-tone RU.
  • the 484+996-tone RU in the PPDU transmission method embodiment of the present application is an MRU composed of a 484-tone RU with a relatively low frequency and a 996-tone RU with a relatively high frequency.
  • FIG. 8B is a schematic flowchart of a method for transmitting a PPDU.
  • the transmission methods of PPDU include:
  • the AP generates a PPDU
  • the bandwidth for transmitting PPDU includes a continuous 240MHz.
  • the 240MHz includes an MRU composed of 996-tone RU and 484-tone RU, and the MRU is 996+484-tone RU or 484+996-tone RU.
  • the MRUs in this embodiment can be understood as 996+484-tone RUs or 484+996-tone RUs.
  • the bandwidth for transmitting the PPDU is a continuous 240MHz.
  • the PPDU includes a plurality of resource unit allocation subfields corresponding to the 240MHz, including at least one resource unit allocation subfield corresponding to the MRU, and the resource unit allocation subfield corresponding to the MRU indicates the 484-tone RU and The RU label of a 996-tone RU in the 160MHz where the MRU is located.
  • the resource unit allocation subfield corresponding to the MRU is used to determine or indicate the 484
  • the frequencies of -tone RU and 996-tone RU in this 240MHz are positions.
  • the PPDU includes a signaling field
  • the signaling field includes a common field and a user-specific field.
  • the common field includes multiple resource unit allocation subfields corresponding to the 240MHz.
  • User-specific fields include user fields.
  • the resource unit allocation subfield corresponding to the MRU is also used to indicate the user field corresponding to the MRU, or in other words, the resource unit allocation subfield corresponding to the MRU is also used to indicate where the resource unit allocation subfield is located.
  • the structure of the PPDU may be, but not limited to, the structure shown in FIG. 5C .
  • the signaling field may be, for example, but not limited to, the EHT-SIG in the PPDU shown in FIG. 5C .
  • the AP sends a PPDU
  • the corresponding STA receives the PPDU.
  • the STA identifies, according to the resource unit allocation subfield, that the 240 MHz includes an MRU composed of 484-tone RUs and 996-tone RUs.
  • the STA may identify that the 240MHz includes an MRU composed of 484-tone RUs and 996-tone RUs according to multiple resource unit allocation subfields corresponding to the 240MHz in the signaling field.
  • the solutions of the embodiments of the present application are applicable to the scenario where the lowest frequency of 240MHz, 160MHz, includes one MRU composed of 996-tone RU and 484-tone RU;
  • 240MHz includes 2 MRUs, each MRU is composed of 996-tone RU and 484-tone RU, the 484-tone RU and 996-tone RU that make up one of the MRUs are at 160MHz of the lowest frequency of the 240MHz, form another MRU.
  • an MRU composed of 484-tone RUs and 996-tone RUs in 160 MHz with the lowest frequency of 240 MHz is called a low-frequency MRU
  • the MRU composed of 484 in 160 MHz with the highest frequency of 240 MHz is referred to as a low-frequency MRU
  • the MRU composed of -tone RU and 996-tone RU is called high frequency MRU.
  • 240MHz includes a low-frequency MRU
  • the STA may identify that the 240MHz includes the resource unit allocation subfield corresponding to the first 80MHz and/or the resource unit allocation subfield corresponding to the second 80MHz.
  • MRU consisting of 484-tone RU and 996-tone RU.
  • 240MHz includes a high-frequency MRU
  • the STA can identify the 240MHz according to the resource unit allocation subfield corresponding to the second 80MHz and/or the resource unit allocation subfield corresponding to the third 80MHz Includes MRU consisting of 484-tone RU and 996-tone RU.
  • 240MHz includes low-frequency MRUs and high-frequency MRUs
  • the STA may identify that the 240MHz includes a subfield of resource unit allocation corresponding to any one or more 80MHz in the 240MHz MRU composed of tone RU and 996-tone RU.
  • the STA obtains the 484-tone RU and the 996-tone RU that make up the MRU according to the resource unit allocation subfield corresponding to the MRU in the resource unit allocation subfield corresponding to the first 80MHz and/or the third 80MHz in the 240MHz.
  • the resource unit allocation subfield corresponding to the MRU indicates that the 160MHz where the MRU is located is 160MHz of the lowest frequency of the 240MHz; the resource unit allocation corresponding to the third 80MHz is The subfield, the resource unit allocation subfield corresponding to the MRU, indicates that the 160MHz where the MRU is located is 160MHz of the highest frequency of the 240MHz.
  • the STA obtains the 484 components that make up the MRU according to the resource unit allocation subfield corresponding to the MRU in the resource unit allocation subfield corresponding to the first 80MHz and/or the resource unit allocation subfield corresponding to the third 80MHz.
  • the RU labels of -tone RU and 996-tone RU in the 160MHz where the MRU is located can determine the frequency position of the 484-tone RU and 996-tone RU that make up the MRU in the 160MHz where the MRU is located.
  • the STA can also determine whether the 160MHz where the MRU is located is in the 160MHz according to whether the resource unit allocation subfield corresponding to the MRU is the resource unit allocation subfield corresponding to the first 80MHz or the resource unit allocation subfield corresponding to the third 80MHz. Therefore, the frequency position of the MRU in 240MHz can be obtained by combining the frequency positions of the 484-tone RU and the 996-tone RU constituting the MRU in the 160MHz where the MRU is located.
  • the STA skips the second 80MHz resource unit allocation subfield when determining the frequency positions of the 996-tone RU and 484-tone RU that constitute the 484+996-tone RU or 996+484-tone RU in 240MHz.
  • the STA can accurately determine which 484-tone RU and which 996-tone RU form a 240MHz. 484+996-tone RU or 996+484-tone RU.
  • the AP can realize the allocation of 484+996-tone RU and/or 996+484-tone RU consisting of 996-tone RU and 484-tone RU in 240MHz to one or more sites.
  • the STA determines the frequency positions of other RUs other than the MRU in 240MHz, it is not necessary to skip the second 80MHz resource unit allocation subfield.
  • the STA may determine the frequency positions of other RUs in 240MHz except the MRU according to the second 80MHz resource unit allocation subfield.
  • the present application lists the following possible embodiments. It should be understood that the solution for the STA to determine the frequency positions of the 484-tone RU and the 996-tone RU constituting the MRU in 240 MHz is not limited to the following embodiments.
  • 240MHz includes 2 MRUs, each MRU is composed of 484-tone RU and 996-tone RU, the 996-tone RU corresponding to the first 80MHz and one 484-tone RU in the second 80MHz
  • the combination of tone RU is MRU
  • the combination of 996-tone RU corresponding to the third 80MHz and another 484-tone RU in the second 80MHz is MRU.
  • the STA determines the 484-tone RU and 996-tone RU that make up each MRU in the 240MHz according to the resource unit allocation subfield, it skips the resource unit allocation subfield corresponding to the second 80MHz, and according to the first 80MHz and the second The resource unit allocation subfield corresponding to each 80MHz determines the 484-tone RU and 996-tone RU that make up each MRU.
  • the two MRUs include a low-frequency MRU and a high-frequency MRU.
  • the MRU indicated by the resource unit allocation subfield corresponding to the first 80MHz is a low frequency MRU
  • the MRU indicated by the resource unit allocation subfield corresponding to the second 80MHz is a high frequency MRU.
  • the STA can determine the frequency position of the 484-tone RU and 996-tone RU constituting the low-frequency MRU in the 160 MHz where the low-frequency MRU is located according to the resource unit allocation subfield corresponding to the first 80 MHz, and determine the low-frequency MRU.
  • the 160MHz where the MRU is located is 160MHz of the lowest frequency in the 240MHz.
  • the STA can determine the frequency position of the 484-tone RU and 996-tone RU constituting the low-frequency MRU in the 160MHz of the lowest frequency of the 240MHz according to the resource unit allocation subfield corresponding to the first 80MHz, so as to determine the The frequency position of the 484-tone RU and 996-tone RU of the low frequency MRU in this 240MHz.
  • the STA can determine the frequency position of the 484-tone RU and 996-tone RU constituting the high-frequency MRU in the 160 MHz where the high-frequency MRU is located according to the resource unit allocation subfield corresponding to the third 80MHz, and determine the high-frequency The 160MHz where the MRU is located is 160MHz of the highest frequency in the 240MHz. In this way, the STA can determine the frequency position of the 484-tone RU and 996-tone RU constituting the high-frequency MRU in 160MHz of the highest frequency of the 240MHz according to the resource unit allocation subfield corresponding to the third 80MHz, so as to determine the The frequency position of the 484-tone RU and 996-tone RU of the high-frequency MRU in this 240MHz.
  • the STA allocates subfields and The three 80MHz corresponding resource unit allocation subfields can accurately determine the frequency position of the 484-tone RU and 996-tone RU that make up each MRU in the 240MHz.
  • the resource unit allocation subfield corresponding to the MRU indicates the The RU number of the 484-tone RU in the 160MHz where the MRU is located is 3, and the RU number indicating that the 996-tone RU that constitutes the MRU is 1 in the 160MHz where the MRU is located.
  • the resource unit allocation subfield corresponding to the third 80MHz indicates that the RU number of the 484-tone RU that constitutes the MRU is 2 in the 160MHz where the MRU is located, and indicates that the MRU constitutes the MRU.
  • the RU number of the 996-tone RU in the 160MHz where the MRU is located is 2.
  • the MRU indicated by the resource unit allocation subfield corresponding to the first 80MHz is a low-frequency MRU, and the 160MHz where the MRU is located is 160MHz of the lowest frequency among the 240MHz.
  • the MRU indicated by the resource unit allocation subfield corresponding to the third 80MHz is a high-frequency MRU, and the 160MHz where the MRU is located is 160MHz of the highest frequency among the 240MHz.
  • the STA can determine, according to the resource unit allocation subfield corresponding to the first 80MHz and the resource unit allocation subfield corresponding to the MRU, that the 996-tone RU that constitutes the MRU is the first 996-tone RU in the 160MHz with the lowest frequency of 240MHz.
  • Tone RU the 484-tone RU that constitutes the MRU is the third 484-tone RU in 160MHz of the lowest frequency of 240MHz, so it is determined that the 484-tone RU and 996-tone RU that constitute the MRU are in the 240MHz s position.
  • the STA can determine, according to the resource unit allocation subfield corresponding to the MRU in the resource unit allocation subfield corresponding to the third 80MHz, that the 996-tone RU that constitutes the MRU is the second 996-tone in the 160MHz with the highest frequency of 240MHz.
  • the 484-tone RU that constitutes the MRU is the second 484-tone RU in 160MHz of the highest frequency of 240MHz, so it is also determined that the 484-tone RU and 996-tone RU that constitute the MRU are in the 240MHz. Location.
  • 240MHz includes an MRU composed of 484-tone RUs and 996-tone RUs
  • the STA can also allocate subfields of resource units corresponding to the first 80MHz or resource unit allocation subfields corresponding to the third 80MHz.
  • the field identifies the location of the 160MHz where the MRU is located in the 160MHz, and determines the 484-tone RU and 996-tone RU that make up the MRU according to the resource unit allocation subfield corresponding to the MRU in the 160MHz where the MRU is located.
  • the implementation determines the location in the 240MHz of the 484-tone RU and 996-tone RU that make up the MRU.
  • the STA determines the location of the 484-tone RU and 996-tone RU that make up the MRU in the 240MHz.
  • the STA determines the location of the 484-tone RU and 996-tone RU that make up the MRU in the 240MHz.
  • 240MHz includes 2 MRUs, and each MRU is composed of 484-tone RU and 996-tone RU. The description is repeated.
  • the resources of 484+242-tone RUs or 242+484-tone RUs are indicated.
  • the unit allocation subfield can indicate the RU label of the 484-tone RU and 242-tone RU that make up the 484+242-tone RU or 242+484-tone RU in the 80MHz where the 484+242-tone RU is located.
  • the resource unit allocation subfield indicating 2*996+484-tone RU or 484+2*996-tone RU can indicate the 2*996+484-tone RU or 484+2*996 -The RU label of the 2*996-tone RU and 484-tone RU of the -tone RU in the 240MHz where the 484+242-tone RU is located.
  • the STA when it determines the number of user fields corresponding to the MRU composed of 484-tone RUs and 996-tone RUs, it can allocate one or more resource units corresponding to the second 80 MHz subfields , the resource unit allocation subfield corresponding to the MRU is used as the basis for determining the number of user fields corresponding to the MRU, and one or more resource units corresponding to the second 80MHz may not be allocated in the subfield, the resource corresponding to the MRU The unit allocation subfield is used as the basis for determining the number of user fields corresponding to the MRU.
  • the resource unit allocation subfield corresponding to the MRU may be used to determine the number of user fields corresponding to the MRU, or may not be used to determine the number of user fields corresponding to the MRU.
  • the number of user fields In the resource unit allocation subfield corresponding to the second 80MHz, when the resource unit allocation subfield corresponding to the MRU is used to determine the number of user fields corresponding to the MRU, the indicated number of user fields corresponding to the MRU may be 0 , or not indicating the number of user fields.
  • the following describes a solution for the STA to determine the 996-tone RU and 484-tone RU that constitute the MRU, and to determine the number of user fields corresponding to the MRU with specific examples.
  • the resource unit allocation subfield may be indicated by an index in Table 10.
  • the resource unit allocation subfield indicating the MRU indicates which MRU the 242-tone RU corresponding to the resource unit allocation subfield belongs to, the RU label of the RU corresponding to the MRU in a continuous frequency domain, and the RU label indicating the The number of contributed user fields in the user specific fields of the same EHT-SIG content channel where the resource element allocation subfield is located.
  • the relevant description corresponding to FIG. 8A For the rules of the RU table number, reference may be made to the relevant description corresponding to FIG. 8A .
  • any index in Table 10 is used to indicate which MRU the 242-tone RU corresponding to the resource unit allocation subfield belongs to, the RU label of the RU constituting the MRU in a continuous frequency where the MRU is located, and the RU label indicating the The number of contributed user fields in the user specific fields of the same EHT-SIG content channel where the resource element allocation subfield is located.
  • the number of contributed user fields refers to, in the EHT-SIG content channel where the resource unit allocation subfield is located, and The number of user fields corresponding to the resource unit allocation subfield.
  • the user field corresponding to the resource unit allocation subfield is the user field of the user to which the resource unit indicated by the resource unit allocation subfield is allocated.
  • any index in Table 10 indicating that the number of user fields is 1-8 may include a part indicating RU allocation and a part indicating user fields.
  • the part indicating the RU allocation indicates which MRU the 242-tone RU corresponding to the resource unit allocation subfield belongs to, the RU label of the RU constituting the MRU in a continuous frequency where the MRU is located, indicating the part of the user field, indicating the The number of contributed user fields in the user specific fields of the same EHT-SIG content channel where the resource element allocation subfield is located.
  • the structure of any index indicating that the number of user fields is 1-8 in Table 10 may be k n k n-1 ... k 2 k 1 y 2 y 1 y 0 , where k n k n-1 ...k 2 k 1 is the part indicating the RU allocation, n is the number of bits indicating the part allocated by the RU, and y 2 y 1 y 0 is the part indicating the user field, which is 3 bits, indicating 1-8 user fields respectively.
  • the numerical values in parentheses in Table 10 can be understood as the RU labels corresponding to the RUs indicated by the numerical values before the parentheses.
  • Indexes 1-9 in Table 10 indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the 242+484-tone RU, and the 242-tone RU that constitutes the 242+484-tone RU is where the 242+484-tone RU is located
  • the RU label of the 242+484-tone RU is 1, and the RU label of the 242+484-tone RU where the 484-tone RU is located is 2.
  • the STA can determine that the 242+484-tone RU is formed by combining the first 242-tone RU within 80MHz and the second 484-tone RU within 80MHz according to indexes 1-9 in Table 10.
  • Indexes 10-18 in Table 10 indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the 242+484-tone RU, and the 242-tone RU that constitutes the 242+484-tone RU is where the 242+484-tone RU is located
  • the RU label of the 242+484-tone RU is 2, and the RU label of the 242+484-tone RU where the 484-tone RU is located is 2.
  • the STA can determine that the 242+484-tone RU is the second 242-tone RU within the 80MHz where the 242+484-tone RU is located and the second 484-tone RU within the 80MHz according to the index 10-18 in Table 10. Tone RU merged.
  • Indexes 19-27 in Table 10 indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the 484+242-tone RU, and the 484-tone RU that constitutes the 484+242-tone RU is where the 484+242-tone RU is located
  • the RU label of the 484+242-tone RU is 1, and the RU label of the 484+242-tone RU where the 484+242-tone RU is located is 4.
  • the STA can determine according to the index 19-27 in Table 10 that the 484+242-tone RU is the first 484-tone RU within the 80MHz where the 484+242-tone RU is located and the fourth 242-tone RU within the 80MHz. Tone RU merged.
  • Indexes 28-36 in Table 10 indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the 484+242-tone RU, and the 484-tone RU that constitutes the 484+242-tone RU is where the 484+242-tone RU is located
  • the RU label of the 484+242-tone RU is 1, and the RU label of the 484+242-tone RU where the 242-tone RU is located is 3.
  • the STA can determine according to the index 28-36 in Table 10 that the 484+242-tone RU is the first 484-tone RU within the 80MHz where the 484+242-tone RU is located and the third 242-tone RU within the 80MHz. Tone RU merged.
  • Indexes 37-45 in Table 10 indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the 484+996-tone RU, and the 484-tone RU that constitutes the 484+996-tone RU is where the 484+996-tone RU is located
  • the RU label of the 484+996-tone RU is 1, and the RU label of the 996-tone RU where the 484+996-tone RU is located is 2.
  • the STA can determine according to indexes 37-45 in Table 10 that the 484+996-tone RU is the first 484-tone RU within the 160MHz where the 484+996-tone RU is located and the second 996-tone RU within the 160MHz Tone RU merged.
  • Indexes 46-54 in Table 10 indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the 484+996-tone RU, and the 484-tone RU that constitutes the 484+996-tone RU is where the 484+996-tone RU is located
  • the RU label of the 484+996-tone RU is 2, and the RU label of the 484+996-tone RU where the 996-tone RU is located is 2.
  • the STA can determine according to the index 46-54 in Table 10 that the 484+996-tone RU is the second 484-tone RU within the 160MHz where the 484+996-tone RU is located and the second 996-tone RU within the 160MHz Tone RU merged.
  • Indexes 55-63 in Table 10 indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the 996+484-tone RU, and the 996-tone RU that constitutes the 996+484-tone RU is where the 996+484-tone RU is located
  • the RU number of the 996+484-tone RU is 1, and the RU number of the 996+484-tone RU where the 996+484-tone RU is located is 4.
  • the STA can determine according to indexes 55-63 in Table 10 that the 996+484-tone RU is the first 996-tone RU within the 160MHz where the 996+484-tone RU is located and the fourth 484-tone RU within the 160MHz Tone RU merged.
  • Indexes 64-72 in Table 10 indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the 996+484-tone RU, and the 996-tone RU that constitutes the 996+484-tone RU is where the 996+484-tone RU is located
  • the RU label of the 996+484-tone RU is 1, and the RU label of the 996+484-tone RU where the 996+484-tone RU is located is 3.
  • the STA can determine according to the index 64-72 in Table 10 that the 996+484-tone RU is the first 996-tone RU within the 160MHz where the 996+484-tone RU is located and the third 484-tone RU within the 160MHz Tone RU merged.
  • the resource unit allocation subfield indicating 484+242-tone RU or 242+484-tone RU is indicated by the index in the above Table 10, it can accurately indicate that the 484+242-tone RU or 242+
  • the RU identifier of the 484-tone RU and 242-tone RU of the 484-tone RU in the 80MHz where the 484+242-tone RU or 242+484-tone RU is located the implementation indicates that the 484+242-tone RU or 242+
  • the resource unit allocation subfield indicating 996+484-tone RU or 484+996-tone RU is indicated by the index in the above Table 10, it can accurately indicate the composition of the 996+484-tone RU or 484+996-tone RU.
  • the RU identifier of the 996-tone RU and 484-tone RU in the 160MHz where the 996+484-tone RU or 484+996-tone RU is located indicates that the 996+484-tone RU or 484+996-tone RU is composed
  • the resource unit allocation subfield corresponding to the 240MHz includes resource unit allocation subfields corresponding to the first 80MHz, the second 80MHz, and the third 80MHz of the 240MHz .
  • the STA receiving the PPDU determines that the 240MHz contains a combination of 996-tone RU and 484-tone RU according to the resource unit allocation subfield of the 1st 80MHz and/or the 3rd 80MHz of the 240MHz MRU, and the frequency location of the 996-tone RU and 484-tone RU that make up the MRU in this 240MHz.
  • Possible implementations for the STA to determine the number of user fields corresponding to the MRU include at least the following two.
  • the STA may also determine the number of user fields corresponding to the MRU according to the resource unit allocation subfields of the 1st 80MHz, the 2nd 80MHz and the 3rd 80MHz of the 240MHz. It can be understood that, in such an implementation manner, the resource unit allocation subfield corresponding to the second 80MHz corresponding to the 240MHz participates in indicating the number of user fields corresponding to the MRU.
  • the 996-tone RU corresponding to the first 80MHz of the 240MHz and the second 80MHz forms a 996+484-tone RU.
  • the 996+484-tone RU is allocated to 4 users.
  • the 484-tone RU corresponding to the second 40MHz of the second 80MHz of the 240MHz and the 996-tone RU corresponding to the third 80MHz form another 996+484-tone RU.
  • the 484+996 RUs are allocated to 3 users.
  • the first 80MHz can be understood as the 1st-4th 20MHz
  • the second 80MHz can be understood as the 5th-8th 20MHz
  • the third 80MHz can be understood as the 9th-12th 20MHz.
  • Figure 9B is a schematic structural diagram of the signaling field.
  • the signaling field indicates a schematic diagram of the resource unit allocation situation of 240MHz.
  • the signaling field of the PPDU includes the resource unit allocation subfield 1 corresponding to the first 80MHz of the 240MHz. - Resource unit allocation subfield 6, and resource unit allocation subfield 7 corresponding to the third 80MHz of the 240MHz - Resource unit allocation subfield 12.
  • the PPDU is transmitted on 2 content channels.
  • the two content channels may be content channel 1 and content channel 2.
  • Resource unit allocation subfields 1, 3, 5, 7, 9 and 11 may be transmitted on content channel 1 and resource unit allocation subfields 2, 4, 6, 8, 10 and 12 may be transmitted on content channel 2.
  • the resource unit allocation subfield 1 can be indicated by index 66 in Table 10, indicating that the first 242-tone RU of the 240MHz belongs to the 996+484-tone RU composed of 996-tone RU and 484-tone RU.
  • the 996 The +484-tone RU is formed by combining the first 996-tone RU in the 160MHz where the 996+484--tone RU is located and the third 484-tone RU in the 160MHz, and the resource unit allocation subfield In the user-specific fields of the same EHT-SIG content channel (content channel 1) where it is located, 2 user fields are contributed.
  • the resource unit allocation subfield 2 can be indicated by index 66 in Table 10, indicating that the second 242-tone RU of the 240MHz corresponds to 996+484-tone RU, and the 996+484-tone RU is determined by the 996+484-tone RU.
  • the first 996-tone RU in the 160MHz where the tone RU is located is merged with the third 484-tone RU of the 160MHz, and the resource unit allocation subfield is located in the same EHT-SIG content channel (content channel 2) Among the user-specific fields, 2 user fields are contributed.
  • the resource unit allocation subfields 3-6 can be indicated by index 64 in Table 10, indicating that the corresponding 242-tone RU belongs to the 996+484-tone RU, and the 996+484-tone RU is defined by the 996+484-tone RU
  • the first 996-tone RU in the 160MHz where it is located and the third 484-tone RU in the 160MHz are combined, and in the user-specific field of the same EHT-SIG content channel where the resource unit allocation subfield is located, Contributed 0 user fields.
  • the resource unit allocation subfield 7 can be indicated by index 48 in Table 10, indicating that the third 242-tone RU of the second 80MHz in the 240MHz belongs to the 996+484-tone RU, and the 484+996-tone RU is composed of The second 484-tone RU and the second 996-tone RU in the 160MHz where the 484+996tone RU is located are composed of the user of the same EHT-SIG content channel (content channel 1) where the resource unit allocation subfield is located. In specific fields, contribute 2 user fields.
  • the resource unit allocation subfield 8 can be indicated by index 47 in Table 10, indicating that the fourth 242-tone RU of the second 80MHz in the 240MHz belongs to the 996+484-tone RU, and the 484+996-tone RU consists of The second 484-tone RU and the second 996-tone RU in the 160MHz where the 484+996tone RU is located are composed of the user of the same EHT-SIG content channel (content channel 2) where the resource unit allocation subfield is located In a specific field, contribute 1 user field.
  • the resource unit allocation subfield 9-12 can be indicated by index 46 in Table 10, indicating that the 4 242-tone RUs of the third 80MHz in the 240MHz belong to the 996+484-tone RU, and the 484+996-tone RU It consists of the second 484-tone RU and the second 996-tone RU in the 160MHz where the 484+996tone RU is located, and in the user-specific field of the same EHT-SIG content channel where the resource unit allocation subfield is located, Contributed 0 user fields.
  • the arrows indicated by the resource unit allocation subfield 5 and the resource unit allocation subfield 6 are dotted arrows, indicating that the resource unit allocation subfield 5 and the resource unit allocation subfield 6 cannot accurately indicate the resource unit allocation subfield 5 and the resource Do the fifth 242-tone RU and the sixth 242-tone RU of the 240MHz corresponding to the unit allocation subfield 6 belong to the same MRU as the four 242-tone RUs of the first 80MHz on the left side of the 240MHz? It belongs to the same MRU as the four 242-tone RUs of the third 80MHz on the right side of the 240MHz.
  • the arrows indicated by the resource unit allocation subfield 7 and the resource unit allocation subfield 8 are dotted arrows, indicating that the resource unit allocation subfield 7 and the resource unit allocation subfield 8 cannot accurately indicate the resource unit allocation subfield 7 and the resource unit allocation subfield.
  • the seventh 242-tone RU and the eighth 242-tone RU corresponding to 8 belong to the same MRU as the four 242-tone RUs of the first 80MHz on the left side of the 240MHz, or are they on the right side of the 240MHz
  • the four 242-tone RUs of the third 80MHz belong to the same MRU.
  • the STA determines that the four 242-tone RUs of the first 80MHz of the 240MHz belong to the 996+484-tone RU, and the 996+484 -tone RU consists of the 1st 996-tone RU and the 3rd 484-tone RU in the 160MHz where the 996+484-tone RU is located.
  • the 160MHz where the 996+484-tone RU is located is 160MHz of the lowest frequency of the 240MHz.
  • the STA can determine that the 996+484-tone RU is composed of the 996-tone RU corresponding to the first 80MHz in the 240MHz and the 484-tone RU corresponding to the 40MHz of the lowest frequency of the second 80MHz.
  • the STA determines that the number of user fields corresponding to the 996+484-tone RU is 4 according to the sum of the number of user fields indicated by the resource unit allocation subfields 1-6.
  • the STA also determines, according to the resource unit allocation subfields 9-12 corresponding to the third 80MHz of the 240MHz, that the four 242-tone RUs of the third 80MHz of the 240MHz belong to the 484+996-tone RU, and the 484+996-tone RU
  • the RU consists of the second 484-tone RU and the second 996-tone RU in the 160MHz where the 484+996-tone RU is located.
  • the 160MHz where the 484+996-tone RU is located is 160MHz of the high frequency of the 240MHz.
  • the STA can determine that the 484+996-tone RU is composed of the 484-tone RU corresponding to the 40MHz of the second highest frequency of 80MHz in the 240MHz and the 996-tone RU corresponding to the third 80MHz.
  • the STA determines that the number of user fields corresponding to the 484+996-tone RU is 3 according to the sum of the number of user fields indicated by the resource unit allocation subfields 7-12.
  • the STA may determine the corresponding MRU composed of the 996-tone RU and the 484-tone RU according to the resource unit allocation subfields of the 1st 80MHz and the 3rd 80MHz of the 240MHz The number of user fields. It can be understood that, in such an implementation manner, the resource unit allocation subfield corresponding to the second 80MHz corresponding to the 240MHz does not participate in indicating the number of user fields.
  • the signaling field of the PPDU includes resources corresponding to four 242-tone RUs of the first 80 MHz of the 240 MHz Unit allocation subfield 1-resource unit allocation subfield 4, resource unit allocation subfield 5-resource unit allocation subfield 8 corresponding to the four 242-tone RUs of the second 80MHz of the 240MHz, and resource unit allocation subfield 8 of the 240MHz
  • the PPDU is transmitted on 2 content channels.
  • the two content channels may be content channel 1 and content channel 2.
  • Resource unit allocation subfields 1, 3, 5, 7, 9 and 11 may be transmitted on content channel 1 and resource unit allocation subfields 2, 4, 6, 8, 10 and 12 may be transmitted on content channel 2.
  • the indication mode of the resource unit allocation subfields 1-6 and the indication mode of the resource unit allocation subfields 9-12 please refer to the example corresponding to FIG. 9B above, the indication mode of the resource unit allocation subfields 1-6 and the resource unit allocation subfield.
  • the way fields 9-12 indicate.
  • the resource unit allocation subfields 7-8 can be indicated by index 46 in Table 10, indicating that the 7th 242-tone RU and the 8th 242-tone RU of the 240MHz belong to the 484+996tone RU, and the 484+996tone RU consists of The second 484-tone RU and the second 996-tone RU in the 160MHz where the 484+996tone RU is located are composed, and in the user-specific field of the same EHT-SIG content channel where the resource unit allocation subfield is located, the contribution 0 user fields.
  • the arrows indicated by the resource unit allocation subfields 5-8 are dashed arrows.
  • dashed arrows please refer to the above related description about FIG. 9B , and the description will not be repeated here.
  • the STA when determining the 996-tone RU and 484-tone RU that constitute the MRU, the STA skips the resource unit allocation subfield 5-8 corresponding to the second 80MHz of the 240MHz, according to the first 80MHz and the first 80MHz of the 240MHz 3 resource unit allocation subfields corresponding to 80MHz (resource unit allocation subfields 1-4, 9-12), determine the frequency position of the 996-tone RU and 484-tone RU that make up the MRU in the 240MHz, and each MRU The number of corresponding user fields.
  • the STA determines that the four 242-tone RUs of the first 80MHz of the 240MHz belong to the 996+484-tone RU, and the 996+484 -tone RU consists of 996-tone RU corresponding to the first 80MHz in the 240MHz and 484-tone RU corresponding to 40MHz of the lowest frequency of the second 80MHz, and the number of user fields corresponding to the 996+484-tone RU is 4.
  • the STA also determines, according to the resource unit allocation subfields 9-12 corresponding to the third 80MHz of the 240MHz, that the four 242-tone RUs of the third 80MHz of the 240MHz belong to the 484+996-tone RU, and the 484+996-tone RU
  • the RU consists of a 484-tone RU corresponding to 40MHz of the second highest frequency of 80MHz in the 240MHz and a 996-tone RU corresponding to the third 80MHz, and the number of user fields corresponding to the 484+996-tone RU is 3.
  • STA determines the way of 996-tone RU and 484-tone RU that make up 996+484-tone RU and the way of determining 996-tone RU and 484-tone RU that make up 484+996-tone RU, please refer to the above-mentioned section on FIG. 9B The relevant descriptions in the examples are not repeated here.
  • the resource unit allocation subfield corresponding to the 240MHz includes resource unit allocation subfields corresponding to the first 80MHz and the third 80MHz of the 240MHz, and not Contains the resource element allocation subfield corresponding to the second 80MHz of the 240MHz.
  • the STA receiving the PPDU determines that the 240MHz includes 2 MRUs, 996-tone RUs and 484-tone RUs that make up each MRU according to the resource unit allocation subfields of the 1st 80MHz and the 3rd 80MHz of the 240MHz The frequency position of the RU in the 240MHz, and the number of user fields corresponding to each MRU.
  • the 1st to 6th 242-tone RUs belong to a 996+484-tone RU.
  • 996+484-tone RU is allocated to 4 users;
  • the 7-12th 20MHz corresponds to a 484+996-tone RU, and
  • the 484+996 RU is allocated to 3 users.
  • the 1-4th 20MHz can be understood as the first 80MHz, the 5-8th 20MHz can be understood as the second 80MHz, and the 9-12th 20MHz can be understood as the third 80MHz.
  • the signaling field of the PPDU includes the resource element allocation subfield 1-resource element allocation subfield 4 corresponding to the first 80MHz of the 240MHz, and the resource element allocation subfield 4 corresponding to the first 80MHz of the 240MHz.
  • the PPDU is transmitted on 2 content channels.
  • the two content channels may be content channel 1 and content channel 2.
  • Resource unit allocation subfields 1, 3, 9 and 11 may be transmitted on content channel 1 and resource unit allocation subfields 2, 4, 10 and 12 may be transmitted on content channel 2.
  • the resource unit allocation subfields 1-4 and the resource unit allocation subfields 9-12 may be indicated by indices in the indices 46-54 of Table 10 above.
  • indices 46-54 of Table 10 For the specific indication scheme of the resource unit allocation subfields 1-4 and the resource unit allocation subfields 9-12, please refer to the relevant description in the example corresponding to FIG. 9C above, and the description will not be repeated here.
  • the STA may determine that the 996-tone RU corresponding to the first 80MHz of the 160MHz of the lowest frequency of the 240MHz belongs to a 996+484-tone RU according to any one of the resource unit allocation subfield 1-resource unit allocation subfield 4, And the first 996-tone RU and the third 484-tone RU of the 160MHz lowest frequency of the 240MHz constitute the 996+484-tone RU.
  • the STA may also determine, according to the sum of the number of user fields indicated by the source unit allocation subfield 1 and the number of user fields indicated by the resource unit allocation subfield 3, the corresponding 996+484-tone RU transmitted on the content channel 1.
  • the number of user fields is 2.
  • the STA may also determine, according to the sum of the number of user fields indicated by the source unit allocation subfield 2 and the number of user fields indicated by the resource unit allocation subfield 4, the corresponding 996+484-tone RU transmitted on the content channel 2.
  • the number of user fields is 2. That is, the number of user fields corresponding to the 996+484-tone RU is 4.
  • the STA can determine according to the resource unit allocation subfield 9-resource unit allocation subfield 12 that the 996-tone RU corresponding to the third 80MHz of the 240MHz belongs to a 484+996-tone RU, and the 484+996-tone RU It is composed of the second 484-tone RU of 160MHz at the lowest frequency of 240MHz and the second 996-tone RU of 160MHz at the lowest frequency.
  • the STA may also determine that the number of user fields corresponding to the 484+996-tone RU is 3 according to the source unit allocation subfield 9-resource unit allocation subfield 12.
  • the signaling field may include a resource element allocation subfield indication field, indicating that there is no resource element allocation subfield corresponding to the second 80MHz of the 240MHz in the signaling field.
  • the station Before performing step 804, the station first determines, according to the resource unit allocation subfield indication field, that there is no resource unit allocation subfield corresponding to the second 80MHz of the 240MHz in the signaling field.
  • the STA can determine, according to the resource unit allocation subfield indication field, that only the resource unit allocation subfield corresponding to the 240MHz includes the resource unit allocation corresponding to the first 80MHz of the 240MHz.
  • the subfield and the resource element allocation subfield corresponding to the third 80MHz corresponding to the 240MHz, and the resource element allocation subfield corresponding to the 240MHz without the resource element allocation subfield includes the resource element allocation subfield corresponding to the second 80MHz of the 240MHz.
  • the STA determines the 996-tone RU and 484-tone RU that constitute the MRU according to the resource unit allocation subfield corresponding to the first 80MHz of the 240MHz and/or the resource unit allocation subfield corresponding to the third 80MHz corresponding to the 240MHz The frequency position in the 240MHz, and the user field corresponding to the MRU is determined.
  • performing step 803 may be omitted.
  • the resource unit allocation subfield indication field may be a bitmap, each bit of the bitmap is used to indicate each 242-tone-RU of the channel bandwidth for transmitting PPDU, whether there is a corresponding resource unit allocation subfield in the common field field.
  • the bitmap indicates that there is no resource unit allocation subfield corresponding to the four 242-tone-RUs of the second 80MHz in the 240MHz in the signaling field.
  • the bitmap may be 12 bits. Each bit corresponds to a 242-tone-RU. Each bit indicates whether there is a resource unit allocation subfield corresponding to the 242-tone-RU corresponding to the bit in the signaling field. If “1" is used to indicate a granularity of frequency domain resources, there is a corresponding resource element allocation subfield, and "0" is used to indicate a granularity of frequency domain resources, and there is no corresponding resource element allocation subfield, the bitmap can be specifically: 111100001111.
  • "0" can also be used to indicate a granularity of frequency domain resources, there is a corresponding resource element allocation subfield, and "1" can be used to indicate a granularity of frequency domain resources, and there is no corresponding resource element allocation. subfield.
  • the 484-tone RU and the 996-tone RU in the 160 MHz where the 996+484-tone RU is located are used as shown in FIG. 8A .
  • Plans are labeled.
  • the second 80MHz resource unit allocation subfield in 240MHz is used to indicate the RU labels of the 484-tone RU and 996-tone RU that make up the 996+484-tone RU in 160MHz, and to indicate the 160MHz
  • the implementation indicates the frequency location in 240MHz of the 484-tone RU and 996-tone RU that make up the 996+484-tone RU.
  • the embodiment of the present application also provides another scheme for determining the frequency position of the 484-tone RU and 996-tone RU that make up the MRU according to the signaling field .
  • the continuous 240MHz in the bandwidth for transmitting PPDUs includes MRUs composed of 484-tone RUs and 996-tone RUs
  • the STA receiving the PPDUs according to the signaling field the resource unit corresponding to the second 80MHz of the 240MHz
  • the allocation subfield obtains the frequency positions of the 484-tone RU and 996-tone RU that make up this MRU.
  • the 996+484-tone RU in this embodiment is an MRU composed of a relatively low-frequency 996-tone RU and a relatively high-frequency 484-tone RU.
  • the 484+996-tone RU in the PPDU transmission method embodiment of the present application is an MRU composed of a 484-tone RU with a relatively low frequency and a 996-tone RU with a relatively high frequency.
  • the method for transmitting PPDU may include the following steps:
  • the AP generates a PPDU
  • the bandwidth for transmitting the PPDU is 240MHz, and the 240MHz includes an MRU composed of 996-tone RU and 484-tone RU, and the MRU is 996+484-tone RU or 484+996-tone RU.
  • the MRUs in this embodiment can be understood as 996+484-tone RUs or 484+996-tone RUs.
  • the PPDU includes a plurality of resource unit allocation subfields corresponding to the 240MHz.
  • the multiple resource unit allocation subfields corresponding to the second 80MHz of the 240MHz include at least one resource unit allocation subfield corresponding to the MRU, indicating that the MRU (996+484-tone RU or 484+996-tone RU ), and indicates the frequency position in the 240MHz of the 996-tone RU and 484-tone RU that make up the MRU.
  • the resource unit allocation subfield corresponding to the MRU indicates 996+484-tone RU, indicating that the 996+484-tone RU is formed
  • the RU identifier of the 996-tone RU and 484-tone RU in the 160MHz where the 996+484-tone RU is located indicates that the 160MHz is 160MHz of the low frequency of the 240MHz or 160MHz of the high frequency.
  • the low frequency 160MHz can be understood as the 160MHz on the left side of the 240MHz
  • the high frequency 160MHz can be understood as the 160MHz on the right side of the 240MHz.
  • the resource unit allocation subfield corresponding to the MRU can indirectly indicate the frequency positions of the 996-tone RUs and 484-tone RUs constituting the MRU in the 240MHz.
  • 240MHz can include one MRU composed of 996-tone RU and 484-tone RU.
  • 240MHz can also include 2 MRUs.
  • Each MRU consists of 996-tone RU and 484-tone RU.
  • the 484-tone RU corresponding to 40MHz with the lowest frequency of the second 80MHz of the 240MHz and the 484-tone RU corresponding to the 40MHz of the second highest frequency of 80MHz belong to different MRUs.
  • One of the 484-tone RUs belongs to 996+484-tone RU, and the other 484-tone RU belongs to 484+996-tone RU.
  • a signaling field the signaling field includes a common field and a user-specific field.
  • the common field includes a plurality of resource element allocation subfields corresponding to the 240MHz.
  • User-specific fields include user fields.
  • the resource unit allocation subfield corresponding to the MRU is also used to indicate the user field corresponding to the MRU, or in other words, the resource unit allocation subfield corresponding to the MRU is also used to indicate where the resource unit allocation subfield is located.
  • the AP sends a PPDU
  • the corresponding STA receives the PPDU.
  • the STA determines, according to the resource unit allocation subfield corresponding to the second 80MHz of the 240MHz, the frequency positions of the 996-tone RU and the 484-tone RU constituting the MRU in the 240MHz.
  • the 240MHz bandwidth for transmitting the PPDU includes an MRU composed of 996-tone RUs and 484-tone RUs
  • the multiple resource unit allocation subfields corresponding to the second 80MHz of the 240MHz at least one resource unit allocation subfield corresponding to the MRU is included.
  • the corresponding resource unit allocation subfield indicates the frequency position of the 996-tone RU and 484-tone RU that make up the MRU in the 240MHz.
  • the STA receiving the PPDU can determine the frequency positions of the 996-tone RU and 484-tone RU in the 240MHz that make up each MRU included in the 240MHz according to the multiple resource unit allocation subfields corresponding to the second 80MHz , so that it can be determined which 484-tone-RU and which 996-tone RU form an MRU in the 240MHz.
  • the AP can realize the allocation of 484+996-tone RU and/or 996+484-tone RU composed of 996-tone RU and 484-tone RU in 240MHz to one or more sites.
  • the signaling field may include the resource unit allocation subfield corresponding to the first 80MHz of the 240MHz and the resource unit allocation subfield corresponding to the third 80MHz of the 240MHz, or may not include the first 240MHz The resource unit allocation subfield corresponding to 80MHz and/or the resource unit allocation subfield corresponding to the third 80MHz of the 240MHz.
  • the signaling field includes a resource unit allocation subfield corresponding to at least one 80MHz of the first 80MHz and the third 80MHz, and the STA may first allocate the subfield according to the resource unit in the signaling field, After it is determined that the 240MHz includes an MRU composed of 996-tone RU and 484-tone RU, step 1003 is performed.
  • the signaling field does not include the resource unit allocation subfield corresponding to the first 80MHz of the 240MHz and the resource unit allocation subfield corresponding to the third 80MHz of the 240MHz, and the STA does not need to determine the resource unit allocation subfield.
  • 240MHz includes an MRU consisting of 996-tone RU and 484-tone RU. The STA can directly determine the frequency of the 996-tone RU and 484-tone RU in the 240MHz that make up each 996-484-tone RU included in the 240MHz according to the resource unit allocation subfield corresponding to the second 80MHz of the 240MHz Location.
  • the MRU corresponding to the The resource unit allocation subfield may be indicated by an index in Table 11.
  • the resource unit allocation subfields corresponding to the first 80MHz and the third 80MHz of the 240MHz can be indicated by the indexes in Table 11 or other indexes, for example, the indexes in Table 9 or Table 10 can be used to indicate .
  • This embodiment does not limit the indication manner of the resource element allocation subfields corresponding to the first 80 MHz and the third 80 MHz of the 240 MHz.
  • any index in Table 11 is used to indicate which MRU the 242-tone RU corresponding to the resource unit allocation subfield belongs to, the RU label of the RU constituting the MRU in a continuous frequency where the MRU is located, the continuous The frequency location of the frequency in 240MHz, and indicates the number of contributed user fields in the user specific field of the same EHT-SIG content channel in which this resource element allocation subfield is located.
  • the number of contributed user fields refers to, in the EHT-SIG content channel where the resource unit allocation subfield is located, and The number of user fields corresponding to the resource unit allocation subfield.
  • the user field corresponding to the resource unit allocation subfield is the user field of the user to which the resource unit indicated by the resource unit allocation subfield is allocated.
  • any index in Table 11 indicating that the number of user fields is 1-8 may include a part indicating RU allocation and a part indicating user fields.
  • the part indicating RU allocation indicates which MRU the 242-tone RU corresponding to the resource unit allocation subfield belongs to, the RU labels of the RUs that make up the MRU in a continuous frequency where the MRU is located, and the RU label indicating that the continuous frequency is in Frequency location in 240MHz.
  • the part indicating the user field indicates the number of contributed user fields in the user specific field of the same EHT-SIG content channel in which this resource element allocation subfield is located.
  • the structure of any index indicating that the number of user fields is 1-8 in Table 11 may be k n k n-1 ... k 2 k 1 y 2 y 1 y 0 , where k n k n-1 ...k 2 k 1 is the part indicating the RU allocation, n is the number of bits indicating the part allocated by the RU, and y 2 y 1 y 0 is the part indicating the user field, which is 3 bits, indicating 1-8 user fields respectively.
  • indexes 1-9 indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the 484+996-tone RU, and the 484-tone RU that constitutes the 484+996-tone RU is where the 484+996-tone RU is located
  • the RU label is 1, the RU label of the 996-tone RU that makes up the 484+996-tone RU is 2, and the 160MHz indicating the 160MHz is the low frequency of the 240MHz, that is, the left 160MHz on the side.
  • the STA can determine according to the indexes 1-9 in Table 11 that the 484+996-tone RU is combined by the first 484-tone RU within 160MHz of the low frequency of 240MHz and the second 996-tone RU within the 160MHz made of.
  • indexes 10-18 indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the 484+996-tone RU, and the 484-tone RU that constitutes the 484+996-tone RU is where the 484+996-tone RU is located
  • the RU label is 2, the RU label of the 996-tone RU that constitutes the 484+996-tone RU is 2 at the RU where the 484+996-tone RU is located, and the 160MHz indicating that the 160MHz is the low frequency of the 240MHz, that is, the left 160MHz on the side.
  • the STA can determine according to the index 10-18 in Table 11 that the 484+996-tone RU is combined by the second 484-tone RU within 160MHz of the 240MHz low frequency and the second 996-tone RU within the 160MHz made of.
  • indexes 19-27 indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the 996+484-tone RU, and the 996-tone RU that constitutes the 996+484-tone RU is located in the 996+484-tone RU
  • the RU label is 1, the RU label of the 484-tone RU that makes up the 996+484-tone RU is 4, and the 160MHz indicating the 160MHz is the low frequency of the 240MHz, that is, the left 160MHz on the side.
  • the STA can determine according to the indexes 19-27 in Table 11 that the 996+484-tone RU is combined by the 1st 996-tone RU within 160MHz of the 240MHz low frequency and the 4th 484-tone RU within the 160MHz made of.
  • indexes 28-36 indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the 996+484-tone RU, and the 996-tone RU that constitutes the 996+484-tone RU is located in the 996+484-tone RU
  • the RU label is 1, the RU label of the 484-tone RU that constitutes the 996+484-tone RU is 3 at the RU where the 996+484-tone RU is located, and the 160MHz indicating that the 160MHz is the low frequency of the 240MHz, that is, the left 160MHz on the side.
  • the STA can determine according to indexes 28-36 in Table 11 that the 996+484-tone RU is combined by the first 996-tone RU within 160MHz of the 240MHz low frequency and the third 484-tone RU within the 160MHz made of.
  • indexes 37-45 indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the 484+996-tone RU, and the 484-tone RU that constitutes the 484+996-tone RU is located in the 484+996-tone RU
  • the RU label is 1, the RU label of the 996-tone RU that constitutes the 484+996-tone RU is 2, and the 160MHz indicating that the 160MHz is the high frequency of the 240MHz, that is, the right 160MHz on the side.
  • the STA can determine according to indexes 37-45 in Table 11 that the 484+996-tone RU is combined by the first 484-tone RU within 160MHz of the high frequency of 240MHz and the second 996-tone RU within the 160MHz made of.
  • indexes 46-54 indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the 484+996-tone RU, and the 484-tone RU that constitutes the 484+996-tone RU is where the 484+996-tone RU is located
  • the RU label is 2, the RU label of the 996-tone RU that constitutes the 484+996-tone RU is 2, and the RU label of the 484+996-tone RU is 2, and the 160MHz indicating that the 160MHz is the high frequency of the 240MHz, that is, the right 160MHz on the side.
  • the STA can determine according to indexes 46-54 that the 484+996-tone RU is formed by combining the second 484-tone RU within 160MHz of the high frequency of 240MHz and the second 996-tone RU within the 160MHz.
  • indexes 55-63 indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the 996+484-tone RU, and the 996-tone RU that constitutes the 996+484-tone RU is located in the 996+484-tone RU
  • the RU label is 1
  • the RU label of the 484-tone RU that constitutes the 996+484-tone RU is 4
  • the 160MHz indicating the 160MHz is the high frequency of the 240MHz, that is, the right 160MHz on the side.
  • the STA can determine according to the indexes 55-63 in Table 11 that the 996+484-tone RU is combined by the 1st 996-tone RU within 160MHz of the high frequency of 240MHz and the 4th 484-tone RU within the 160MHz made of.
  • indexes 64-72 indicate that the 242-tone RU corresponding to the resource unit allocation subfield belongs to the 996+484-tone RU, and the 996-tone RU that constitutes the 996+484-tone RU is located in the 996+484-tone RU
  • the RU label is 1, the RU label of the 484-tone RU that constitutes the 996+484-tone RU is 3 at the RU where the 996+484-tone RU is located, and the 160MHz indicating the 160MHz is the high frequency of the 240MHz, that is, the right 160MHz on the side.
  • the STA can determine according to the indexes 64-72 in Table 11 that the 996+484-tone RU is combined by the first 996-tone RU within 160MHz of the high frequency of 240MHz and the third 484-tone RU within the 160MHz made of.
  • Any index in Table 11 is used to indicate which MRU the 242-tone RU corresponding to the resource unit allocation subfield belongs to, and the RU label of the RU constituting the MRU in a continuous frequency segment where the MRU is located, indicating the segment The frequency of consecutive frequencies in the bandwidth and indicates the number of user fields contributed in the user specific field of the same EHT-SIG content channel in which this resource element allocation subfield is located.
  • the number of user fields in Table 11 is any index from 1 to 8, and may include a part indicating RU allocation and a part indicating user fields.
  • the part indicating RU allocation indicates which MRU the 242-tone RU corresponding to the resource unit allocation subfield belongs to, and the RU label of the RU that composes the MRU in the continuous frequency of the MRU, indicating that the continuous frequency is in the bandwidth
  • the frequency in indicating the part of the user field, indicates the number of contributed user fields in the user specific field of the same EHT-SIG content channel in which this resource element allocation subfield is located.
  • the signaling field of the PPDU may include the resource unit allocation subfield 1 corresponding to the first 80MHz of the 240MHz - Resource element allocation subfield 4, resource element allocation subfield 5 corresponding to the 2nd 80MHz of this 240MHz - Resource element allocation subfield 8, and resource element allocation subfield 9 corresponding to the 3rd 80MHz of this 240MHz- Resource unit allocation subfield 12.
  • the PPDU is transmitted on 2 content channels.
  • the two content channels may be content channel 1 and content channel 2.
  • Resource unit allocation subfields 1, 3, 5, 7, 9 and 11 may be transmitted on content channel 1 and resource unit allocation subfields 2, 4, 6, 8, 10 and 12 may be transmitted on content channel 2.
  • the resource unit allocation subfields 5-6 may be indicated by the indexes in the index 28-index 36 of the above Table 11.
  • the resource unit allocation subfields 7-8 may be indicated by the indexes in the indexes 46-54 of Table 6 above.
  • the STA determines that the 5th 242-tone RU and the 6th 242-tone RU of the 240MHz belong to the 996+484-tone RU according to the resource unit allocation subfields 5-6, and the 996+484-tone RU consists of 996+484-tone RU It consists of the first 996-tone RU and the third 484-tone RU in the 160MHz where the RU is located.
  • the STA may also determine that the 160MHz where the 996+484-tone RU is located is 160MHz of the lowest frequency of the 240MHz according to the resource unit allocation subfields 5-6.
  • the STA can determine that the 996+484-tone RU is composed of the 996-tone RU corresponding to the first 80MHz in the 240MHz and the 484-tone RU corresponding to the 40MHz of the lowest frequency of the second 80MHz.
  • the STA determines that the 7th 242-tone RU and the 8th 242-tone RU of the 240MHz belong to the 484+996-tone RU according to the resource unit allocation subfields 7-8, and the 484+996-tone RU consists of the 484+996- It consists of the second 484-tone RU and the second 996-tone RU in the 160MHz where the tone RU is located.
  • the STA may also determine, according to the resource unit allocation subfields 7-8, that the 160MHz where the 484+996-tone RU is located is 160MHz of the high frequency of the 240MHz. Then the STA can determine that the 484+996-tone RU is composed of the 484-tone RU corresponding to the 40MHz of the second highest frequency of 80MHz in the 240MHz and the 996-tone RU corresponding to the third 80MHz.
  • the resource unit allocation subfields 1-12 are all resource unit allocation subfields corresponding to the MRU.
  • the resource unit allocation subfields 1-4 and 9-12 may be indicated by the indexes in Table 11, or may be indicated by other indexes, for example, the indexes in Table 9 or Table 10 may be used for indication.
  • the resource unit allocation subfields 1-4 and 9-12 are used to indicate the number of user fields corresponding to the MRU in the user specific fields, and may not be used to determine the number of user fields corresponding to the MRU in the user specific fields.
  • the STA determines the number of user fields in the 240MHz according to the sum of the number of user fields indicated by the resource unit allocation subfields 1-6.
  • the number of user fields corresponding to 996+484-tone RU composed of the 996-tone RU corresponding to the first 80MHz and the 484-tone RU corresponding to the 40MHz lowest frequency of the second 80MHz.
  • the STA determines the number of user fields in the 240MHz according to the sum of the number of user fields indicated by the resource unit allocation subfields 5-6.
  • the number of user fields corresponding to 996+484-tone RU composed of the 996-tone RU corresponding to the first 80MHz and the 484-tone RU corresponding to the 40MHz lowest frequency of the second 80MHz.
  • the STA determines the number of user fields in the 240MHz according to the sum of the number of user fields indicated by the resource unit allocation subfields 7-12.
  • the number of user fields corresponding to 484+996-tone RU composed of 484-tone RU corresponding to 40MHz of the second highest frequency of 80MHz and 996-tone RU corresponding to the third 80MHz.
  • the STA determines the number of user fields in the 240MHz according to the sum of the number of user fields indicated by the resource unit allocation subfields 7-8.
  • the number of user fields corresponding to 484+996-tone RU composed of 484-tone RU corresponding to 40MHz of the second highest frequency of 80MHz and 996-tone RU corresponding to the third 80MHz.
  • the resource unit allocation subfields 1-4 and 9-12 can be indicated by the indexes in Table 11.
  • the resource unit allocation subfields 1-4 are used to indicate the number of user fields corresponding to the MRU in the user specific fields.
  • the resource unit allocation subfield 1 can be indicated by index 30 in Table 11, the first 242-tone RU belongs to 996+484-tone RU, and the 996+484-tone RU is determined by the 996+484--
  • the first 996-tone RU in the 160MHz where the tone RU is located is combined with the third 484-tone RU of the 160MHz, the 160MHz is the 160MHz on the left side of the 240MHz, and the resource unit allocation subfield indicating the location is located.
  • the resource unit allocation subfield 2 can be indicated by index 30 in Table 11, indicating that the second 242-
  • the tone RU corresponds to 996+484-tone RU
  • the 996+484-tone RU is composed of the first 996-tone RU in the 160MHz where the 996+484--tone RU is located and the third 484-tone RU of the 160MHz Combined
  • the 160MHz is 160MHz on the left side of the 240MHz
  • 2 user fields are contributed in the user-specific field of the same EHT-SIG content channel (content channel 2) indicating the resource unit allocation subfield.
  • Resource unit allocation subfield 3-resource unit allocation subfield 6 can be indicated by index 28 in Table 11, indicating that the corresponding 20MHz belongs to 996+484-tone RU, and the 996+484-tone RU is determined by the 996+484-
  • the first 996-tone RU in the 160MHz where the tone RU is located is combined with the third 484-tone RU of the 160MHz, the 160MHz is the 160MHz on the left side of the 240MHz, and the resource unit allocation subfield indicating the location is located.
  • the user-specific fields of the same EHT-SIG content channel 0 user fields are contributed.
  • the resource unit allocation subfield 7 can be indicated by index 48 in the above Table 11, indicating that the seventh 242-tone RU of the 240MHz belongs to the 484+996tone RU, and the 484+996tone RU is the 160MHz where the 484+996tone RU is located The second 484-tone RU and the second 996-tone RU are merged.
  • the 160MHz is the 160MHz to the left of the 240MHz, and 2 user fields are contributed to the user-specific field of the same EHT-SIG content channel (content channel 1) that indicates that the resource unit allocation subfield is located.
  • the resource unit allocation subfield 8 can be indicated by index 47 in the above Table 11, indicating that the seventh 242-tone RU of the 240MHz belongs to the 484+996tone RU, and the 484+996tone RU is the 160MHz where the 484+996tone RU is located. It consists of the second 484-tone RU and the second 996-tone RU, the 160MHz is the 160MHz on the left side of the 240MHz, and the same EHT-SIG content channel (content channel) where the resource unit allocation subfield is indicated is located. 2) Among the user-specific fields, 1 user field is contributed.
  • any resource unit allocation subfield in the resource unit allocation subfields 1-12 can indicate that the corresponding 242-tone RU belongs to the MRU composed of 484-tone RU and 996-tone RU, and indicates that The frequency position of the 484-tone RU and 996-tone RU that make up the 484+996tone RU in the 160MHz where the MRU is located, and the frequency position of the 160MHz in the 240MHz, so as to indicate the 484-tone RU and 996-tone RU that make up the MRU. The frequency position of the 996-tone RU in the 240MHz of the MRU. In this way, any resource unit allocation subfield in the resource unit allocation subfields 1-12 can accurately indicate which 80MHz, which 484-tone RU and which 996 MRU is indicated by the resource unit allocation subfield. -tone RU composition.
  • the signaling field does not include resource unit allocation subfields corresponding to the first 80MHz and the third 80MHz of the 240MHz, then the fifth 20MHz of the 240MHz
  • the corresponding resource unit allocation subfield 5 can be indicated by index 30 in Table 11, indicating that the first 996-tone RU and the third 484-tone RU of the lowest frequency 160MHz in 240MHz form a 996+484- tone RU, and the 996+484-tone RU contributes 2 user fields in the user-specific field of the same EHT-SIG content channel where the resource unit allocation subfield is located.
  • the resource unit allocation subfield 6 corresponding to the sixth 20MHz of the 240MHz can be indicated by index 30 in Table 11, indicating the first 996-tone RU and the third 484-tone of the lowest frequency 160MHz in the 240MHz RUs form a 996+484-tone RU, and the 996+484-tone RU contributes 2 user fields in the user-specific field of the same EHT-SIG content channel where the resource unit allocation subfield is located.
  • the resource unit allocation subfield 7 corresponding to the seventh 20MHz of the 240MHz can be indicated by index 48 in Table 11, indicating the second 484-tone RU and the second 996-tone of the highest frequency 160MHz in the 240MHz RUs form a 484+996-tone RU, and the 484+996-tone RU contributes 2 user fields in the user-specific field of the same EHT-SIG content channel where the resource unit allocation subfield is located.
  • the resource unit allocation subfield 8 corresponding to the 8th 20MHz of the 240MHz can be indicated by index 47 in Table 11, indicating the second 484-tone RU and the second 996-tone of the highest frequency 160MHz in the 240MHz RUs form a 484+996-tone RU, and the 484+996-tone RU contributes 1 user field in the user-specific field of the same EHT-SIG content channel where the resource unit allocation subfield is located.
  • the STA can determine the first 996-tone RU and the third 484-tone RU of the lowest frequency 160MHz in 240MHz to form a 996 according to the resource unit allocation subfield 5 and resource unit allocation subfield 6 corresponding to the second 80MHz. +484-tone RU.
  • the STA determines that the number of user fields corresponding to the 996+484-tone RU is 4 according to the sum of the number of users indicated by the resource unit allocation subfield 5 and the resource unit allocation subfield 6.
  • the STA can also determine the second 484-tone RU and the second 996-tone RU of the highest frequency 160MHz in 240MHz according to the resource unit allocation subfield 7 and resource unit allocation subfield 8 corresponding to the second 80MHz. 484+996-tone RU. The STA determines that the number of user fields corresponding to the 484+996-tone RU is 3 according to the sum of the number of users indicated by the resource unit allocation subfield 7 and the resource unit allocation subfield 8.
  • 240MHz includes 2 MRUs, and each MRU consists of 996-tone RU and 484-tone RU.
  • the 996-tone RU and 484-tone RU of each MRU are located at this 240MHz frequency. That is to say, when a continuous 240MHz includes 2 MRUs, and each RU consists of 996-tone RU and 484-tone RU, the 996-tone RU and 484-tone RU that make up each MRU are at the frequency position of the 240MHz. It is fixed.
  • the MRU is 996+484-tone RU or 484+996-tone RU.
  • the 996+484-tone RU in this embodiment is an MRU composed of a relatively low-frequency 996-tone RU and a relatively high-frequency 484-tone RU.
  • the 484+996-tone RU in the PPDU transmission method embodiment of the present application is an MRU composed of a 484-tone RU with a relatively low frequency and a 996-tone RU with a relatively high frequency.
  • the 240MHz includes 996-tone RU, 484-tone RU, 484-tone RU and 996-tone RU in order of absolute frequency from low to high.
  • the low-frequency 996-tone RU and 484-tone RU are combined into a 996+484-tone RU, and the high-frequency 484-tone RU and 996-tone RU are combined into a 484+996-tone RU.
  • any resource element allocation subfield corresponding to the MRU may indicate the frequency position of the MRU in 240MHz.
  • the AP generates a PPDU
  • the bandwidth for transmitting the PPDU is greater than or equal to 240MHz, and the continuous 240MHz of the bandwidth includes 996+484-tone RU and 484+996-tone RU.
  • the PPDU includes a resource unit allocation subfield corresponding to the 996+484-tone RU and a resource unit allocation subfield corresponding to the 484+996-tone RU.
  • the resource unit allocation subfield corresponding to the 996+484-tone RU indicates the frequency position of the 996-tone RU and the 484-tone RU constituting the 996+484-tone RU at the 240MHz.
  • the resource unit allocation subfield corresponding to the 484+996-tone RU indicates the frequency position of the 996-tone RU and the 484-tone RU constituting the 484+996-tone RU at the 240MHz.
  • User specific fields include a user field corresponding to 996+484-tone RU and a user field corresponding to 484+996-tone RU.
  • the resource element allocation subfield may be a subfield in a signaling field (eg, EHT-SIG) of the PPDU.
  • the AP sends a PPDU.
  • the STA receives the PPDU.
  • the STA determines, according to the PPDU, the resource unit allocation subfield corresponding to the 996+484-tone RU and the resource unit allocation subfield corresponding to the 484+996-tone RU, the 996-tone RU that constitutes the 996+484-tone RU and 484-tone RU at the frequency position of 240MHz, and the 996-tone RU and 484-tone RU constituting the 484+996-tone RU at the frequency position of 240MHz.
  • the STA can accurately determine the frequency position of the 996-tone RU and 484-tone RU that make up the MRU in the 240MHz according to the resource unit allocation subfield in the signaling field.
  • the resource unit allocation subfield corresponding to the MRU may be indicated by the index shown in Table 12.
  • Indexes 1-9 in Table 12 indicate 996+484-tone RUs, the 996-tone RUs corresponding to the first 80MHz of the 240MHz and the 484-tone RUs corresponding to the first 40MHz of the second 80MHz form one of the 996+ 484-tone RU, the 484-tone RU corresponding to the second 40MHz of the second 80MHz of the 240MHz and the 996-tone RU corresponding to the third 80MHz of the 240MHz form 484+996-tone RU.
  • the communication standard can specify that 240MHz includes 2 MRUs, and each RU consists of 996-tone RU and 484-tone RU, and the 996-tone RU and 484-tone RU that make up each MRU are at the frequency of 240MHz. position, so that the 996-tone RU and 484-tone RU that make up each MRU are fixed and single at the 240MHz frequency position, which can save the 996-tone RU and 484-tone RU that make up each MRU.
  • the number of indexes of the RU at the frequency position of 240 MHz enables the resource unit allocation subfield to use the saved indexes to indicate more abundant information.
  • indexes 2-9 indicating 1-8 user fields in Table 12 may include a part indicating RU allocation and a part indicating user fields.
  • the part indicating the RU allocation is used to indicate the frequency position of the 996-tone RU and the 484-tone RU that make up the 996+484-tone RU in the 240MHz, and the 996-tone RU and the 996-tone RU that make up the 484+996-tone RU.
  • the 484-tone RU is located at this 240MHz frequency.
  • the part indicating the number of user fields indicates the number of contributed user fields in the user specific fields of the same EHT-SIG content channel in which this resource element allocation subfield is located.
  • the portion indicating the number of user fields may be, for example, 3 bits.
  • the structure of the index 2-index 9 may be k n k n-1 ... k 2 k 1 y 2 y 1 y 0 , wherein k n k n-1 ... k 2 k 1 indicates the frequency position of the MRU , n is the number of bits indicating the part allocated by the RU, y 2 y 1 y 0 is the part indicating the user field, which is 3 bits, indicating 1-8 user fields respectively.
  • the structures of indexes 2-9 may be as shown in Table 13.
  • the communication standard (such as 802.11be and the standard after 802.11be) is specified in the bandwidth of 240MHz, and only one of the 996-tone RU and 484-tone RU within 160MHz can be combined into 996+484 -tone RU or 484+996-tone RU.
  • the 996+484-tone RU in this embodiment is an MRU composed of a relatively low-frequency 996-tone RU and a relatively high-frequency 484-tone RU.
  • the 484+996-tone RU in the PPDU transmission method embodiment of the present application is an MRU composed of a 484-tone RU with a relatively low frequency and a 996-tone RU with a relatively high frequency.
  • the 160MHz that is allowed to contain 996+484-tone RUs or 484+996-tone RUs is fixed.
  • the communication standard may stipulate that in a continuous 240MHz, only the 996-tone RU and 484-tone RU within the primary 160MHz (including the 160MHz of the primary 80MHz and the secondary 80MHz) can be combined into 996+484-tone RU or 484 +996-tone RU.
  • the 160MHz that is allowed to include 996+484-tone RU or 484+996-tone RU is variable, which can be understood as dynamic or semi-static.
  • the AP may send indication information indicating that the 996-tone RU and 484-tone RU in the first 80MHz and the second 80MHz in the 240MHz are allowed to be combined into 996+484-tone RU or 484+996-tone RU, Or instruct to allow 996-tone RUs and 484-tone RUs within the 2nd 80MHz and 3rd 80MHz to be combined into 996+484-tone RUs.
  • the STA can determine that 160MHz containing 996+484-tone RU or 484+996-tone RU is allowed, so that it can determine the 996-tone RU and 484-tone composing 996+484-tone RU or 484+996-tone RU
  • the STA may send the indication information to the STA through one of a beacon frame, a probe response frame or an association response frame.
  • the 240MHz may be the complete bandwidth for transmitting PPDUs.
  • the 240 MHz may also be 240 MHz other than the punctured 80 MHz among the 320 MHz for transmitting the PPDU.
  • the 320MHz is composed of the main 160MHz and the auxiliary 160MHz. If an 80MHz of the main 160MHz is punched, the auxiliary 160MHz is allowed to contain 996+484-tone RU or 484+996-tone RU. If an 80MHz of the secondary 160MHz is punctured, the primary 160MHz is allowed to contain 996+484-tone RU or 484+996-tone RU.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspectives of access points and sites.
  • the access point and the site may include hardware structures and software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 12 is a schematic structural diagram of a PPDU transmission apparatus provided by an embodiment of the present application.
  • the transmission apparatus 1200 includes a processing unit 1201 and a sending unit 1202 .
  • the transmission device 1200 is a device for sending PPDUs.
  • the transmission apparatus 1200 may be a station or an access point.
  • the processing unit 1201 can be understood as a processor of a communication device, and the sending unit 1202 can be understood as a transmitter of a transceiver of the communication device.
  • the processing unit 1201 is configured to generate a PPDU, the PPDU includes a plurality of resource unit allocation subfields, the plurality of resource unit allocation subfields include a resource unit allocation subfield corresponding to the MRU, and the resource unit allocation subfield corresponding to the MRU indicates The 242-tone RU corresponding to the resource unit allocation subfield belongs to the MRU, and in the multiple 80MHz in the bandwidth for transmitting the PPDU, the resource unit allocation subfield corresponding to the MRU in the resource unit allocation subfield corresponding to each 80MHz The number of , used to determine or indicate which MRU the MRU is;
  • the sending unit 1202 is configured to send the PPDU.
  • the bandwidth for transmitting PPDU is greater than or equal to 80MHz.
  • This bandwidth includes 1 or more 80MHz. For example, when the bandwidth is 240MHz, three 80MHz channels are included, and when the bandwidth is 320MHz, four 80MHz channels are included.
  • the indication manner of the resource unit allocation subfield is simple, and the transmission apparatus 1200 can allocate the resource unit according to the resource unit allocation subfield corresponding to the MRU in the resource unit allocation subfield corresponding to each 80MHz in the bandwidth for transmitting the PPDU.
  • the number of fields is used to determine which MRU the MRU is and the RUs that make up the MRU.
  • the bandwidth for transmitting PPDU is greater than or equal to 80MHz. It is possible to combine multiple RUs into one MRU and assign them to one or more users.
  • FIG. 13 is a schematic structural diagram of a PPDU transmission apparatus provided by an embodiment of the present application.
  • the transmission apparatus 1300 includes a processing unit 1301 and a sending unit 1302 .
  • the transmission device 1300 is a device for sending PPDUs.
  • the transmission apparatus 1300 may be a station or an access point.
  • the processing unit 1301 can be understood as a processor of a communication device, and the sending unit 1302 can be understood as a transmitter of a transceiver of the communication device.
  • the processing unit 1301 is configured to generate a PPDU, the PPDU includes a plurality of resource unit allocation subfields, and the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating two first MRUs, the two first MRUs
  • the 240MHz to which it belongs is a continuous 240MHz in the bandwidth for transmitting the PPDU, and the frequency positions of the 996-tone RU and 484-tone RU constituting each of the first RUs in the 240MHz are set by standard;
  • the sending unit 1302 is configured to send the PPDU.
  • the communication standard specifies the frequency positions of the 996-tone RU and 484-tone RU constituting each first MRU in 240 MHz, and the transmission device 1300 can accurately determine the 996-tone RU and 484-tone RU constituting each first MRU.
  • the frequency location of the tone RU in 240MHz so that the MRU combined by the 996-tone RU and the 484-tone RU can be allocated to one or more users.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the number of indexes used for the resource unit allocation subfield to indicate 996+484-tone RU and 484+996-tone RU .
  • FIG. 14 is a schematic structural diagram of a PPDU transmission apparatus provided by an embodiment of the present application.
  • the transmission apparatus 1400 includes a processing unit 1401 and a sending unit 1402 .
  • the transmission device 1400 is a device for sending PPDUs.
  • the transmission apparatus 1400 may be a station or an access point.
  • the processing unit 1401 can be understood as a processor of a communication device, and the sending unit 1402 can be understood as a transmitter of a transceiver of the communication device.
  • the processing unit 1401 is configured to generate a PPDU, where the PPDU includes a plurality of resource unit allocation subfields, and the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating a first MRU and a resource unit allocation indicating a second MRU Subfield, the 996-tone RU and 484-tone RU that make up the first RU and the 2*996-tone RU and 484-tone RU that make up the second MRU, the frequency position in the bandwidth in which the PPDU is transmitted is standard;
  • a sending unit 1402 configured to send the PPDU.
  • the transmission device 1400 can accurately The frequency positions of the 996-tone RU and 484-tone RU that make up the first RU and the 2*996-tone RU and 484-tone RU that make up the second MRU in 320MHz are determined, so that the 2*996-tone RU can be The combined MRU of RU and 484-tone RU is allocated to one or more users.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the use of resource unit allocation subfields to indicate 2*996+484-tone RU and 484+2*996-tone RU the number of indices.
  • FIG. 15 is a schematic structural diagram of a PPDU transmission apparatus provided by an embodiment of the present application.
  • the transmission apparatus 1500 includes a processing unit 1501 and a sending unit 1502 .
  • the transmission device 1500 is a device for sending PPDUs.
  • the transmission apparatus 1500 may be a station or an access point.
  • the processing unit 1501 can be understood as a processor of a communication device, and the sending unit 1502 can be understood as a transmitter of a transceiver of the communication device.
  • the processing unit 1501 is configured to generate a PPDU, where the PPDU includes a plurality of resource unit allocation subfields, and the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating a first MRU, the first MRU is composed of 996-
  • the tone RU is composed of a 484-tone RU.
  • the frequency position of the 160MHz to which the first MRU belongs in the bandwidth for transmitting the PPDU is the frequency position set by the standard, or the frequency position indicated by the indication information sent by the AP. ;
  • a sending unit 1502 configured to send the PPDU.
  • the 996-tone RU and the 484-tone RU can be combined into an MRU only within the 160 MHz allowed by the standard or within the allowed 160 MHz indicated by the indication information sent by the AP.
  • the transmission device 1500 can accurately determine which 996-tone RU and 484-tone RU within 160MHz the 996+484-tone RU or 484+996-tone RU is composed of, so that the 996-tone RU and the 484-tone RU can be divided into Tone RU merged MRUs are allocated to one or more users.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the number of indexes used for the resource unit allocation subfield to indicate 996+484-tone RU and 484+996-tone RU .
  • FIG. 16 is a schematic structural diagram of a PPDU transmission apparatus provided by an embodiment of the present application.
  • the transmission apparatus 1600 includes a processing unit 1601 and a sending unit 1602 .
  • the transmission device 1600 is a device for sending PPDUs.
  • the transmission apparatus 1600 may be a station or an access point.
  • the processing unit 1601 can be understood as a processor of a communication device, and the sending unit 1602 can be understood as a transmitter of a transceiver of the communication device.
  • the processing unit 1601 is configured to generate a PPDU, the PPDU includes a plurality of resource unit allocation subfields, the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating the first MRU, and the bandwidth for transmitting the PPDU includes Continuous 240MHz, the first MRU is composed of 996-tone RU and 484-tone RU in the 240MHz, and the resource unit allocation subfield indicating the first MRU is also used to indicate the 996-tone RU and all The frequency position of the 484-tone RU in the 160MHz where the first MRU is located, the resource unit allocation subfield corresponding to the lowest frequency 80MHz of the 240MHz and/or the resource unit allocation subfield corresponding to the highest frequency 80MHz.
  • the resource unit allocation subfield indicating the first MRU is used to determine or indicate the frequency position of the 996-tone RU and the 484-tone RU at the 240MHz;
  • the sending unit 1602 is configured to send the PPDU.
  • this solution can be used in a scenario where the 240 MHz includes one first MRU, and can also be used in a scenario where the 240 MHz includes two first MRUs.
  • the transmission device 1600 when determining the frequency positions of the 996-tone RU and 484-tone RU that constitute the 996+484-tone RU or 484+996-tone RU, the transmission device 1600 skips the 80MHz corresponding to the next-lowest frequency of the 240MHz.
  • the resource unit allocation subfield can accurately determine the composition of 996+484-tone RU or 484+996-tone
  • FIG. 17 is a schematic structural diagram of a PPDU transmission apparatus provided by an embodiment of the present application.
  • the transmission apparatus 1700 includes a processing unit 1701 and a sending unit 1702 .
  • the transmission device 1700 is a device for sending PPDUs.
  • the transmission apparatus 1700 may be a station or an access point.
  • the processing unit 1701 may be understood as a processor of a communication device, and the sending unit 1702 may be understood as a transmitter of a transceiver of the communication device.
  • the processing unit 1701 is configured to generate a PPDU, the PPDU includes a plurality of resource unit allocation subfields, the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating the first MRU, and the bandwidth for transmitting the PPDU includes a continuous 240MHz, the first MRU is composed of 996-tone RU and 484-tone RU in the 240MHz, and the resource unit allocation subfield indicating the first MRU is also used to indicate the 996-tone RU and the 484-tone RU - The frequency position in the 160MHz where the tone RU is located, and the position of the 160MHz in the 240MHz, the resource unit indicating the first MRU in the resource unit allocation subfield corresponding to the 80MHz of the next-lowest frequency of the 240MHz an allocation subfield for determining or indicating the frequency positions of the 996-tone RU and 484-tone RU in the 240MHz;
  • the sending unit 1702 is used for sending PPDUs.
  • the transmission device 1700 can allocate resource units corresponding to 80 MHz with the next lowest frequency.
  • the subfield and/or the resource unit allocation subfield corresponding to the highest frequency 80MHz can accurately determine the frequency in 240MHz of the 996-tone RU and 484-tone RU that make up 996+484-tone RU or 484+996-tone RU location, enabling the MRU combined by 996-tone RU and 484-tone RU to be allocated to one or more users.
  • FIG. 18 is a schematic structural diagram of a device for transmitting a PPDU according to an embodiment of the present application.
  • the transmission apparatus 1800 includes a receiving unit 1801 and a processing unit 1802 .
  • the transmission device 1800 is a device for receiving PPDUs.
  • the transmission device may be a station or an access point.
  • the receiving unit 1801 may be understood as a receiver of a transceiver of the communication device, and the processing unit 1802 may be understood as a processor of the communication device.
  • the receiving unit 1801 is configured to receive a PPDU, the PPDU includes a plurality of resource unit allocation subfields; the plurality of resource unit allocation subfields include a resource unit allocation subfield corresponding to an MRU, and the resource unit allocation subfield corresponding to the MRU indicates The 242-tone RU corresponding to the resource unit allocation subfield belongs to the MRU, and in the multiple 80MHz in the bandwidth for transmitting the PPDU, the resource unit allocation subfield corresponding to the MRU in the resource unit allocation subfield corresponding to each 80MHz The number of , used to determine which MRU the MRU is;
  • the processing unit 1802 is configured to parse at least a part of the resource unit allocation subfields in the plurality of resource unit allocation subfields, and determine the RUs constituting the MRU.
  • the MRU indicated by the resource unit allocation subfield is the MRU included in the bandwidth for transmitting the PPDU.
  • the transmission apparatus may determine the number of resource unit allocation subfields corresponding to the MRU in the resource unit allocation subfield corresponding to each 80MHz in the multiple 80MHz bandwidths for transmitting the PPDU, and determine the number of the resource unit allocation subfields for transmitting the PPDU. Which MRU is the MRU included in the bandwidth.
  • the indication manner of the resource unit allocation subfield is simple, and the transmission apparatus 1900 can also determine which MRU is included in the bandwidth for transmitting the PPDU according to the resource unit allocation subfield. It is possible to combine multiple RUs into one MRU and assign them to one or more users.
  • FIG. 19 is a schematic structural diagram of a PPDU transmission apparatus provided by an embodiment of the present application.
  • the transmission apparatus 1900 includes a receiving unit 1901 and a processing unit 1902 .
  • the transmission device 1900 is a device for receiving PPDUs.
  • the transmission device may be a station or an access point.
  • the receiving unit 1901 may be understood as a receiver of a transceiver of the communication device, and the processing unit 1902 may be understood as a processor of the communication device.
  • the receiving unit 1901 is configured to receive a PPDU, the PPDU includes a plurality of resource unit allocation subfields; the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating two first MRUs, the two first MRUs
  • the 240MHz to which it belongs is a continuous 240MHz in the bandwidth for transmitting the PPDU, and the frequency positions of the 996-tone RU and 484-tone RU constituting each of the first RUs in the 240MHz are set by standard;
  • the processing unit 1902 is configured to parse at least a part of the resource unit allocation subfields in the plurality of resource unit allocation subfields, and determine the RUs constituting the MRU.
  • the communication standard specifies the frequency positions of the 996-tone RU and 484-tone RU constituting each first MRU in 240MHz, and the transmission device can determine the bandwidth for transmitting PPDUs according to the resource unit allocation subfield, including 2 an MRU, and can also accurately determine the frequency position in 240MHz of the 996-tone RU and 484-tone RU that make up each first MRU, so that the MRU combined by the 996-tone RU and the 484-tone RU can be allocated to one or multiple users.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the number of indexes used for the resource unit allocation subfield to indicate 996+484-tone RU and 484+996-tone RU .
  • FIG. 20 is a schematic structural diagram of a PPDU transmission apparatus provided by an embodiment of the present application.
  • the transmission apparatus 2000 includes a receiving unit 2001 and a processing unit 2002 .
  • the transmission device 2000 is a device for receiving PPDUs.
  • the transmission device may be a station or an access point.
  • the receiving unit 2001 can be understood as a receiver of a transceiver of the communication device, and the processing unit 2002 can be understood as a processor of the communication device.
  • the receiving unit 2001 is configured to receive a PPDU, the PPDU includes a plurality of resource unit allocation subfields, and the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating the first MRU and a resource unit allocation subfield indicating the second MRU field, the 996-tone RU and 484-tone RU that make up the first RU and the 2*996-tone RU and 484-tone RU that make up the second MRU, the frequency position in the bandwidth for transmitting the PPDU is standard set;
  • the processing unit 2002 is configured to parse at least a part of the resource unit allocation subfields in the plurality of resource unit allocation subfields, and determine the RUs constituting the MRU.
  • the standard specifies the frequency positions in 320MHz of the 996-tone RU and 484-tone RU that make up the first RU and the 2*996-tone RU and 484-tone RU that make up the second MRU.
  • 2000 can determine that the bandwidth for transmitting PPDU includes the first MRU and the second MRU according to the resource unit allocation subfield, and can also accurately determine the 996-tone RU and 484-tone RU that make up the first RU and the 2 MRU that make up the second MRU.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the use of resource unit allocation subfields to indicate 2*996+484-tone RU and 484+2*996-tone RU the number of indices.
  • FIG. 21 is a schematic structural diagram of a PPDU transmission apparatus provided by an embodiment of the present application.
  • the transmission apparatus 2100 includes a receiving unit 2101 and a processing unit 2102 .
  • the transmission device 2100 is a device for receiving PPDUs.
  • the transmission device may be a station or an access point.
  • the receiving unit 2201 may be understood as a receiver of a transceiver of the communication device, and the processing unit 2202 may be understood as a processor of the communication device.
  • the receiving unit 2101 is configured to receive a PPDU, the PPDU includes a plurality of resource unit allocation subfields, and the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating a first MRU, the first MRU is composed of 996-tone
  • the RU is composed of a 484-tone RU, and the frequency position of the 160 MHz in the bandwidth for transmitting the PPDU to which the first MRU belongs is the frequency position set by the standard, or the frequency position indicated by the indication information sent by the AP;
  • the processing unit 2102 is configured to parse at least a part of the resource unit allocation subfields in the plurality of resource unit allocation subfields, and determine the RUs constituting the MRU.
  • the transmission apparatus 2100 can determine, according to the resource unit allocation subfield, that the bandwidth for transmitting the PPDU includes an MRU composed of 996-tone RU and 484-tone RU, and can also accurately determine 996+484-tone RU or 484+996-tone RU RU is composed of 996-tone RU and 484-tone RU within 160MHz, so that the combined MRU of 996-tone RU and 484-tone RU can be allocated to one or more users.
  • the resource unit allocation subfield does not need to use different indexes to indicate different combinations, which can save the number of indexes used for the resource unit allocation subfield to indicate 996+484-tone RU and 484+996-tone RU .
  • the transmission apparatus 2200 includes a receiving unit 2201 and a processing unit 2202 .
  • the transmission device 2200 is a device for receiving PPDUs.
  • the transmission device may be a station or an access point.
  • the receiving unit 2201 may be understood as a receiver of a transceiver of the communication device, and the processing unit 2202 may be understood as a processor of the communication device.
  • the receiving unit 2201 is configured to receive a PPDU, the PPDU includes a plurality of resource unit allocation subfields, the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating the first MRU, and the bandwidth for transmitting the PPDU includes a continuous 240MHz, the first MRU is composed of 996-tone RU and 484-tone RU in the 240MHz, and the resource unit allocation subfield indicating the first MRU is also used to indicate the 996-tone RU and the 484-tone RU - the frequency position of the tone RU in the 160MHz where the first MRU is located, the resource unit allocation subfield corresponding to 80MHz of the lowest frequency of the 240MHz and/or the resource unit allocation subfield corresponding to 80MHz of the highest frequency.
  • the resource unit allocation subfield indicating the first MRU is used to determine or indicate the frequency position of the 996-tone RU and the 484-tone RU at the 240MHz;
  • the processing unit 2202 is configured to parse at least a part of the resource unit allocation subfields in the plurality of resource unit allocation subfields, and determine the RUs constituting the MRU.
  • the processing unit 2202 of the transmission device can determine the 996-tone RU that constitutes the first MRU and the 484-tone RU that constitutes the first MRU according to the resource unit allocation subfield corresponding to the lowest frequency 80MHz and the resource unit allocation field corresponding to the highest frequency 80MHz. -tone RU at the 240MHz frequency location. That is, it is determined that the RU constituting the first MRU is the RU at which frequency position of 240 MHz.
  • the transmission device 2200 when determining the frequency positions of the 996-tone RU and 484-tone RU that constitute 996+484-tone RU or 484+996-tone, the transmission device 2200 skips the 80MHz corresponding to the next-lowest frequency of the 240MHz According to the resource unit allocation subfield corresponding to the lowest frequency 80MHz and/or the resource unit allocation subfield corresponding to the highest frequency 80MHz, it can be accurately determined to form 996+484-tone RU or 484+996- The frequency position of tone's 996-tone RU and 484-tone RU in 240MHz, so that the MRU combined by 996-tone RU and 484-tone RU can be allocated to one or more users.
  • FIG. 23 is a schematic structural diagram of a PPDU transmission apparatus provided by an embodiment of the present application.
  • the transmission apparatus 2300 includes a receiving unit 2301 and a processing unit 2302 .
  • the transmission device 2300 is a device for receiving PPDUs.
  • the transmission device may be a station or an access point.
  • the receiving unit 2301 can be understood as a receiver of a transceiver of the communication device, and the processing unit 2302 can be understood as a processor of the communication device.
  • the receiving unit 2301 is configured to receive a PPDU, the PPDU includes a plurality of resource unit allocation subfields, the plurality of resource unit allocation subfields include a resource unit allocation subfield indicating the first MRU, and the bandwidth for transmitting the PPDU includes a continuous 240MHz, the first MRU is composed of 996-tone RU and 484-tone RU in the 240MHz, and the resource unit allocation subfield indicating the first MRU is also used to indicate the 996-tone RU and the 484-tone RU - The frequency position in the 160MHz where the tone RU is located, and the position of the 160MHz in the 240MHz, the resource unit indicating the first MRU in the resource unit allocation subfield corresponding to the 80MHz of the next-lowest frequency of the 240MHz an allocation subfield for determining or indicating the frequency positions of the 996-tone RU and 484-tone RU in the 240MHz;
  • the processing unit 2302 is configured to parse at least a part of the resource unit allocation subfields in the plurality of resource unit allocation subfields, and determine the RUs constituting the MRU.
  • the transmission device determines that the 996-tone RU and the 484-tone RU constituting the first MRU are in the 240MHz frequency location. That is, it is determined that the RU constituting the first MRU is the RU at which frequency position of 240 MHz.
  • this solution can be used in a scenario where the 240 MHz includes one first MRU, and can also be used in a scenario where the 240 MHz includes two first MRUs.
  • the transmission device when determining the frequency positions of the 996-tone RU and 484-tone RU that constitute the 996+484-tone RU or 484+996-tone, can allocate the resource unit according to the 80MHz corresponding to the next lowest frequency.
  • the subfield and/or the resource unit allocation subfield corresponding to the highest frequency 80MHz can accurately determine the frequency in 240MHz of the 996-tone RU and 484-tone RU that make up 996+484-tone RU or 484+996-tone RU location, enabling the MRU combined by 996-tone RU and 484-tone RU to be allocated to one or more users.
  • the present application further provides a computer-readable storage medium on which a computer program is stored, and when the computer-readable storage medium is executed by a computer, implements the functions of any of the foregoing method embodiments.
  • the present application also provides a computer program product containing instructions, and when the computer program product is executed by a computer, implements the functions of any of the foregoing method embodiments.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state disks, SSD)) etc.
  • the corresponding relationships shown in each table in this application may be configured or predefined.
  • the values of the information in each table are only examples, and can be configured with other values, which are not limited in this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the headings in the above tables may also adopt other names that can be understood by the communication device, and the values or representations of the parameters may also be other values or representations that the communication device can understand.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • Predefined in this application may be understood as defining, predefining, storing, pre-storing, pre-negotiating, pre-configuring, curing, or pre-firing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本申请公开一种传输方法及通信装置。方法包括:生成PPDU,PPDU包括多个资源单元分配子字段,多个资源单元分配子字段包括MRU对应的资源单元分配子字段,指示该资源单元分配子字段对应的242-tone RU属于MRU,传输PPDU的带宽中的每个80MHz对应的资源单元分配子字段中,MRU对应的资源单元分配子字段的数目,用于确定或指示MRU为哪一种MRU;发送PPDU。站点能根据每个80MHz对应的资源单元分配子字段中的MRU对应的资源单元分配子字段的数目,确定传输PPDU的带宽包括的MRU为哪一种MRU。本申请可用于支持802.11be协议及802.11be之后的WiFi协议的无线局域网系统。

Description

一种PPDU的传输方法及相关装置
本申请要求于2020年07月01日提交中国国家知识产权局、申请号为202010625292.3、发明名称为“一种PPDU的传输方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种PPDU的传输方法及相关装置。
背景技术
无线局域网(wireless local area network,WLAN)发展至今,新引入了正交频分多址(orthogonal frequency division multiple access,OFDMA)技术,整个带宽被分为多个资源单元(resource unit,RU),也就是说,用户频域资源的分配并不是以信道为单位,而是以资源单元为单位。例如,一个20MHz信道内,可以包含多个RU,形式可以是26-tone RU、52-tone RU、106-tone RU。其中,tone表示子载波个数。此外,RU也可以是242-tone RU、484-tone RU、996-tone RU等形式。
在802.11ax中,接入点发送的物理层协议数据单元(PHY protocol data unit,PPDU)的信道带宽被分配给多个站点传输数据。PPDU的高效信令字段(High Efficient Signal Field,HE-SIG-B)中包括一个或多个资源单元分配子字段,资源单元分配至用于该资源单元分配子字段对应的频域资源所属的RU,该RU对应的用户字段的数目。可以看出,现有的资源单元分配子字段仅能够支持将一个RU分配给一个或多个用户,而无法支持将多个RU分片给一个或多个用户。
发明内容
本申请提供一种PPDU的传输方法,能够实现指示将多个RU分配给一个或多个用户。
第一方面,提供一种PPDU的传输方法包括:生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括MRU对应的资源单元分配子字段,所述MRU对应的资源单元分配子字段指示该资源单元分配子字段对应的242-tone RU属于MRU,传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的所述MRU对应的资源单元分配子字段的数目,用于确定或指示所述MRU为哪一种MRU;发送所述PPDU。
传输PPDU的带宽大于或等于80MHz。该带宽包括1个或多个80MHz。例如带宽为240MHz时,包括3个80MHz,带宽为320MHz时,包括4个80MHz。如此,资源单元分配子字段的指示方式简单,接收PPDU的装置能够根据传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的MRU对应的资源单元分配子字段的数目,用于确定或指示MRU为哪一种MRU。传输PPDU的带宽大于或等于80MHz。能够实现将多个RU合并为一个MRU分配给一个或多个用户。
第二方面,本申请还提供一种PPDU的传输方法,包括:生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示2个第一MRU的资源单元分配子字段,所述2个第一MRU所属的240MHz为传输所述PPDU的带宽中的连续的240MHz,组成每个所述第一RU的996-tone RU和484-tone RU在所述240MHz中的频率位置是标准设定的;发送所述PPDU。该2个第一RU中的一个第一RU为996+484-tone RU,另一个第一RU为484-tone+996-tone RU。
例如,通信标准可规定240MHz按照绝对频率由低至搞的顺序包括996-tone RU、484-tone RU、484-tone RU和996-tone RU。低频率的996-tone RU和484-tone RU合并为一个996+484-tone RU,高频率的484-tone RU和996-tone RU合并为一个484+996-tone RU。
如此,通信标准规定组成每个第一MRU的996-tone RU和484-tone RU在240MHz中的频率位置,接收PPDU的装置能够准确地确定组成每个第一MRU的996-tone RU和484-tone RU在240MHz中的频率位置,从而能够将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示996+484-tone RU和484+996-tone RU的索引的数量。
第三方面,本申请还提供一种PPDU的传输方法,包括:生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段和指示第二MRU的资源单元分配子字段,组成所述第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU,在传输所述PPDU的带宽中的频率位置是标准设定的;发送所述PPDU。
例如,通信标准可以规定,320MHz包括2*996+484-tone RU和996+484-tone RU时,该320MHz中按照绝对频率从低到高的顺序为2*996-tone RU,484-tone RU,484-tone RU,996-tone RU。也即,按照频率由低至高的顺序,该320MHz的第1个80MHz和第2个80MHz对应的2*996-tone RU和第3个80MHz的第1个40MHz对应的484-tone RU组成2*996+484-tone RU,第3个80MHz的第2个40MHz对应的484-tone RU和第4个80MHz对应的996-tone RU组成996+484-tone RU。
又例如,通信标准可以规定320MHz包括2*996-tone+484 RU和996+484-tone RU时,该320MHz中按照绝对频率从低到高的顺序为996-tone RU,484-tone RU,484-tone RU,2*996-tone RU。也即,该320MHz的第1个80MHz对应的996-tone RU和第2个80MHz的第1个40MHz对应的484-tone RU组成996+484-tone RU;第2个80MHz的第2个40MHz对应的484-tone RU,与第3个80MHz和第4个80MHz对应的2*996-tone RU组成996+484-tone RU。
这样,标准规定组成第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU在320MHz中的频率位置,接收PPDU的装置能够准确地确定组成第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU在320MHz中的频率位置,从而能够将由2*996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分 配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示2*996+484-tone RU和484+2*996-tone RU的索引的数量。
第四方面,本申请还提供一种PPDU的传输方法,包括:生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,所述第一MRU由996-tone RU和484-tone RU组成,所述第一MRU所属的160MHz在传输所述PPDU的带宽中的频率位置,是标准设定的频率位置,或者是所述AP发送的指示信息指示的频率位置;发送所述PPDU。
也即是说,仅在标准规定所允许的160MHz内或AP发送的指示信息指示的所允许的160MHz内,996-tone RU和484-tone RU才能合并为MRU。
例如,带宽为240MHz时,可仅允许在主160MHz内将996-tone RU和484-tone RU合并为MRU,或者由AP发送指示信息指示仅允许在主160MHz(包括主80MHz和辅80MHz的160MHz)内将996-tone RU和484-tone RU合并为MRU。
又例如,带宽为320MHz,其中80MHz被打孔。若主160MHz的一个80MHz被打孔,则可允许辅160MHz包含996+484-tone RU或484+996-tone RU。若辅160MHz的一个80MHz被打孔,则可允许主160MHz包含996+484-tone RU或484+996-tone RU。
这样接收PPDU的装置可以准确地确定996+484-tone RU或484+996-tone RU是由哪个160MHz内的996-tone RU和484-tone RU组成的,从而能够将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示996+484-tone RU和484+996-tone RU的索引的数量。
第五方面,本申请还提供一种PPDU的传输方法,包括:生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,传输所述PPDU的带宽包括连续的240MHz,所述第一MRU由所述240MHz中的996-tone RU和484-tone RU组成,所述指示第一MRU的资源单元分配子字段还用于指示所述996-tone RU和所述484-tone RU在所述第一MRU所在的160MHz中的频率位置,所述240MHz的最低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段中的所述指示第一MRU的资源单元分配子字段,用于确定或指示所述996-tone RU和所述484-tone RU在所述240MHz的频率位置;发送PPDU。
应理解,该方案可用于240MHz包括1个第一MRU的场景,也可以用于240MHz包括2个第一MRU的场景。
按照频率由低至高的顺序,该240MHz包括第1个80MHz、第2个80MHz和第3个80MHz。
可选的,PPDU中还可以包括资源单元分配子字段指示字段,指示PPDU中不包括与第2个80MHz对应的资源单元分配子字段。该资源单元分配子字段指示字段例如可以为比特位图,比特位图的每一位对应该240MHz中的一个20MHz,指示PPDU中是否存在与该20MHz对应的资源单元分配子字段。例如,比特位图可以为111100001111,指示PPDU中不包括与第2个80MHz对应的资源单元分配子字段。
这样的方案中,接收PPDU的装置在确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的频率位置时,跳过该240MHz的次低频率的80MHz对应的资源单元分配子字段,根据最低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段,能够准确地确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的在240MHz中的频率位置,从而能够实现将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。
第六方面,本申请实施例还提供一种PPDU的传输方法,包括:生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,传输所述PPDU的带宽包括连续的240MHz,所述第一MRU由所述240MHz中的996-tone RU和484-tone RU组成,所述指示第一MRU的资源单元分配子字段还用于指示所述996-tone RU和所述484-tone RU所在的160MHz中的频率位置,以及所述160MHz在所述240MHz中的位置,所述240MHz的次低频率的80MHz对应的资源单元分配子字段中的所述指示第一MRU的资源单元分配子字段,用于确定或指示所述996-tone RU和484-tone RU在所述240MHz的频率位置;发送PPDU。
按照频率由低至高的顺序,该240MHz包括第1个80MHz、第2个80MHz和第3个80MHz。该次低频率的80MHz是指,240MHz的第2个80MHz。
PPDU可以包括第1个80MHz对应的资源单元分配子字段和第3个80MHz对应的资源单元分配子字段,也可以不包括第1个80MHz对应的资源单元分配子字段和/或第3个80MHz对应的资源单元分配子字段。
这样的方案中,接收PPDU的装置在确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的频率位置时,能够根据次低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段,能够准确地确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的在240MHz中的频率位置,从而能够实现将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。
第七方面,本申请还提供一种PPDU的传输方法,包括:接收PPDU,所述PPDU包括多个资源单元分配子字段;所述多个资源单元分配子字段包括MRU对应的资源单元分配子字段,所述MRU对应的资源单元分配子字段指示该资源单元分配子字段对应的242-tone RU属于MRU,传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的所述MRU对应的资源单元分配子字段的数目,用于确定或指示所述MRU为哪一种MRU;解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
可以理解,资源单元分配子字段指示的MRU,为传输PPDU的带宽所包括的MRU。具体的,站点可根据传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的所述MRU对应的资源单元分配子字段的数目,确定传输PPDU的带宽所包括的MRU为哪一种MRU。
这样,资源单元分配子字段的指示方式简单,而且接收PPDU的装置也能够根据 资源单元分配子字段确定传输PPDU的带宽所包括的MRU为哪一种MRU。能够实现将多个RU合并为一个MRU分配给一个或多个用户。
第八方面,本申请还提供一种PPDU的传输方法,包括:接收PPDU,所述PPDU包括多个资源单元分配子字段;所述多个资源单元分配子字段包括指示2个第一MRU的资源单元分配子字段,所述2个第一MRU所属的240MHz为传输所述PPDU的带宽中的连续的240MHz,组成每个所述第一RU的996-tone RU和484-tone RU在所述240MHz中的频率位置是标准设定的;解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
这样的方案中,通信标准规定组成每个第一MRU的996-tone RU和484-tone RU在240MHz中的频率位置,接收PPDU的装置能够根据资源单元分配子字段确定传输PPDU的带宽包括2个第一MRU,也能够准确地确定组成每个第一MRU的996-tone RU和484-tone RU在240MHz中的频率位置,从而能够将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示996+484-tone RU和484+996-tone RU的索引的数量。
第九方面,本申请还提供一种PPDU的传输方法,包括:接收PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段和指示第二MRU的资源单元分配子字段,组成所述第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU,在传输所述PPDU的带宽中的频率位置是标准设定的;解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
这样的方案中,标准规定组成第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU在320MHz中的频率位置,接收PPDU的装置能够根据资源单元分配子字段确定传输PPDU的带宽包括第一MRU和第二MRU,也能够准确地确定组成第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU在320MHz中的频率位置,从而能够将由2*996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示2*996+484-tone RU和484+2*996-tone RU的索引的数量。
第十方面,本申请还提供一种PPDU的传输方法,包括:接收PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,所述第一MRU由996-tone RU和484-tone RU组成,所述第一MRU所属的160MHz在传输所述PPDU的带宽中的频率位置,是标准设定的频率位置,或者是所述AP发送的指示信息指示的频率位置;解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
这样,接收PPDU的装置可以根据资源单元分配子字段确定传输PPDU的带宽包括由996-tone RU和484-tone RU组成的MRU,也能够准确地确定996+484-tone RU或484+996-tone RU是由哪个160MHz内的996-tone RU和484-tone RU组成的,从而 能够将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示996+484-tone RU和484+996-tone RU的索引的数量。
第十一方面,本申请还提供一种PPDU的传输方法,包括:接收PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,传输所述PPDU的带宽包括连续的240MHz,所述第一MRU由所述240MHz中的996-tone RU和484-tone RU组成,所述指示第一MRU的资源单元分配子字段还用于指示所述996-tone RU和所述484-tone RU在所述第一MRU所在的160MHz中的频率位置,所述240MHz的最低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段中的所述指示第一MRU的资源单元分配子字段,用于确定或指示所述996-tone RU和所述484-tone RU在所述240MHz的频率位置;解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
具体的,接收PPDU的装置可根据最低频率的80MHz对应的资源单元分配子字段和最高频率的80MHz对应的资源单元分配字段中,确定组成第一MRU的996-tone RU和所述484-tone RU在所述240MHz的频率位置。也即,确定组成第一MRU的RU为240MHz的哪个频率位置的RU。
应理解,该方案可用于240MHz包括1个第一MRU的场景,也可以用于240MHz包括2个第一MRU的场景。
这样的方案中,接收PPDU的装置在确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的频率位置时,跳过该240MHz的次低频率的80MHz对应的资源单元分配子字段,根据最低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段,能够准确地确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的在240MHz中的频率位置,从而能够实现将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。
第十二方面,本申请还提供一种PPDU的传输方法,包括:接收PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,传输所述PPDU的带宽包括连续的240MHz,所述第一MRU由所述240MHz中的996-tone RU和484-tone RU组成,所述指示第一MRU的资源单元分配子字段还用于指示所述996-tone RU和所述484-tone RU所在的160MHz中的频率位置,以及所述160MHz在所述240MHz中的位置,所述240MHz的次低频率的80MHz对应的资源单元分配子字段中的所述指示第一MRU的资源单元分配子字段,用于确定或指示所述996-tone RU和484-tone RU在所述240MHz的频率位置;解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
具体的,接收PPDU的装置可根据次低频率的80MHz对应的资源单元分配子字段和最高频率的80MHz对应的资源单元分配字段中,确定组成第一MRU的996-tone RU和所述484-tone RU在所述240MHz的频率位置。也即,确定组成第一MRU的RU为240MHz的哪个频率位置的RU。
应理解,该方案可用于240MHz包括1个第一MRU的场景,也可以用于240MHz包括2个第一MRU的场景。
这样的方案中,接收PPDU的装置在确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的频率位置时,能够根据次低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段,能够准确地确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的在240MHz中的频率位置,从而能够实现将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。
应理解,上述第一方面至第六方面的方法的相关补充说明,也适用于上述第七方面至第十二方面的方法。
上述第一方面至第六方面的方法可由PPDU的发送装置执行,上述第七方面至第十二方面的方法可由接收PPDU的装置执行。
发送PPDU的装置可以为接入点,也可以为站点。接收PPDU的装置可以为站点,也可以为接入点。
第十三方面,提供一种PPDU的传输装置,包括:
处理单元,用于生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括MRU对应的资源单元分配子字段,所述MRU对应的资源单元分配子字段指示该资源单元分配子字段对应的242-tone RU属于MRU,传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的所述MRU对应的资源单元分配子字段的数目,用于确定或指示所述MRU为哪一种MRU;
发送单元,用于发送所述PPDU。
传输PPDU的带宽大于或等于80MHz。该带宽包括1个或多个80MHz。例如带宽为240MHz时,包括3个80MHz,带宽为320MHz时,包括4个80MHz。如此,资源单元分配子字段的指示方式简单,接收PPDU的设备(例如站点)能够根据传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的MRU对应的资源单元分配子字段的数目,用于确定MRU为哪一种MRU。传输PPDU的带宽大于或等于80MHz。能够实现将多个RU合并为一个MRU分配给一个或多个用户。
第十四方面,本申请还提供一种PPDU的传输装置,包括:
处理单元,用于生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示2个第一MRU的资源单元分配子字段,所述2个第一MRU所属的240MHz为传输所述PPDU的带宽中的连续的240MHz,组成每个所述第一RU的996-tone RU和484-tone RU在所述240MHz中的频率位置是标准设定的;
发送单元,用于发送所述PPDU。
如此,通信标准规定组成每个第一MRU的996-tone RU和484-tone RU在240MHz中的频率位置,该传输装置能够准确地确定组成每个第一MRU的996-tone RU和484-tone RU在240MHz中的频率位置,从而能够将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示 996+484-tone RU和484+996-tone RU的索引的数量。
第十五方面,本申请还提供一种PPDU的传输装置,包括:
处理单元,用于生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段和指示第二MRU的资源单元分配子字段,组成所述第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU,在传输所述PPDU的带宽中的频率位置是标准设定的;
发送单元,用于发送所述PPDU。
这样,标准规定组成第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU在320MHz中的频率位置,该传输装置能够准确地确定组成第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU在320MHz中的频率位置,从而能够将由2*996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示2*996+484-tone RU和484+2*996-tone RU的索引的数量。
第十六方面,本申请还提供一种PPDU的传输装置,包括:
处理单元,用于生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,所述第一MRU由996-tone RU和484-tone RU组成,所述第一MRU所属的160MHz在传输所述PPDU的带宽中的频率位置,是标准设定的频率位置,或者是所述AP发送的指示信息指示的频率位置;
发送单元,用于发送所述PPDU。
也即是说,仅在标准规定所允许的160MHz内或AP发送的指示信息指示的所允许的160MHz内,996-tone RU和484-tone RU才能合并为MRU。
这样该传输装置可以准确地确定996+484-tone RU或484+996-tone RU是由哪个160MHz内的996-tone RU和484-tone RU组成的,从而能够将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示996+484-tone RU和484+996-tone RU的索引的数量。
第十七方面,本申请还提供一种PPDU的传输装置,包括:
处理单元,用于点生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,传输所述PPDU的带宽包括连续的240MHz,所述第一MRU由所述240MHz中的996-tone RU和484-tone RU组成,所述指示第一MRU的资源单元分配子字段还用于指示所述996-tone RU和所述484-tone RU在所述第一MRU所在的160MHz中的频率位置,所述240MHz的最低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段中的所述指示第一MRU的资源单元分配子字段,用于确定或指示所述996-tone RU和所述484-tone RU在所述240MHz的频率位置;
发送单元,用于发送PPDU。
应理解,该方案可用于240MHz包括1个第一MRU的场景,也可以用于240MHz包括2个第一MRU的场景。
这样的方案中,该传输装置在确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的频率位置时,跳过该240MHz的次低频率的80MHz对应的资源单元分配子字段,根据最低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段,能够准确地确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的在240MHz中的频率位置,从而能够实现将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。
可选的,PPDU中还可以包括资源单元分配子字段指示字段,指示PPDU中不包括与第2个80MHz对应的资源单元分配子字段。该资源单元分配子字段指示字段例如可以为比特位图,比特位图的每一位对应该240MHz中的一个20MHz,指示PPDU中是否存在与该20MHz对应的资源单元分配子字段。例如,比特位图可以为111100001111,指示PPDU中不包括与第2个80MHz对应的资源单元分配子字段。
第十八方面,本申请实施例还提供一种PPDU的传输装置,包括:
处理单元,用于生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,传输所述PPDU的带宽包括连续的240MHz,所述第一MRU由所述240MHz中的996-tone RU和484-tone RU组成,所述指示第一MRU的资源单元分配子字段还用于指示所述996-tone RU和所述484-tone RU所在的160MHz中的频率位置,以及所述160MHz在所述240MHz中的位置,所述240MHz的次低频率的80MHz对应的资源单元分配子字段中的所述指示第一MRU的资源单元分配子字段,用于确定或指示所述996-tone RU和484-tone RU在所述240MHz的频率位置;
发送单元,用于发送PPDU。
这样的方案中,该传输装置在确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的频率位置时,能够根据次低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段,能够准确地确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的在240MHz中的频率位置,从而能够实现将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。
第十九方面,本申请还提供一种PPDU的传输装置,包括:
接收单元,用于接收PPDU,所述PPDU包括多个资源单元分配子字段;所述多个资源单元分配子字段包括MRU对应的资源单元分配子字段,所述MRU对应的资源单元分配子字段指示该资源单元分配子字段对应的242-tone RU属于MRU,传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的所述MRU对应的资源单元分配子字段的数目,用于确定所述MRU为哪一种MRU;
处理单元,用于解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
可以理解,资源单元分配子字段指示的MRU,为传输PPDU的带宽所包括的MRU。具体的,该传输装置可根据传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的所述MRU对应的资源单元分配子字段的数目,确定传输PPDU的带宽所包括的MRU为哪一种MRU。
这样,资源单元分配子字段的指示方式简单,而且该传输装置也能够根据资源单元分配子字段确定传输PPDU的带宽所包括的MRU为哪一种MRU。能够实现将多个RU合并为一个MRU分配给一个或多个用户。
第二十方面,本申请还提供一种PPDU的传输装置,包括:
接收单元,用于接收PPDU,所述PPDU包括多个资源单元分配子字段;所述多个资源单元分配子字段包括指示2个第一MRU的资源单元分配子字段,所述2个第一MRU所属的240MHz为传输所述PPDU的带宽中的连续的240MHz,组成每个所述第一RU的996-tone RU和484-tone RU在所述240MHz中的频率位置是标准设定的;
处理单元,用于解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
这样的方案中,通信标准规定组成每个第一MRU的996-tone RU和484-tone RU在240MHz中的频率位置,该传输装置能够根据资源单元分配子字段确定传输PPDU的带宽包括2个第一MRU,也能够准确地确定组成每个第一MRU的996-tone RU和484-tone RU在240MHz中的频率位置,从而能够将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示996+484-tone RU和484+996-tone RU的索引的数量。
第二十一方面,本申请还提供一种PPDU的传输装置,包括:
接收单元,用于接收PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段和指示第二MRU的资源单元分配子字段,组成所述第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU,在传输所述PPDU的带宽中的频率位置是标准设定的;
处理单元,用于解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
这样的方案中,标准规定组成第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU在320MHz中的频率位置,该传输装置能够根据资源单元分配子字段确定传输PPDU的带宽包括第一MRU和第二MRU,也能够准确地确定组成第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU在320MHz中的频率位置,从而能够将由2*996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示2*996+484-tone RU和484+2*996-tone RU的索引的数量。
第二十二方面,本申请还提供一种PPDU的传输装置,包括:
接收单元,用于接收PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,所述第一MRU由996-tone RU和484-tone RU组成,所述第一MRU所属的160MHz在传输所述PPDU的带宽中的频率位置,是标准设定的频率位置,或者是所述AP发送的指示信息指示的频率位置;
处理单元,用于解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
这样,该传输装置可以根据资源单元分配子字段确定传输PPDU的带宽包括由996-tone RU和484-tone RU组成的MRU,也能够准确地确定996+484-tone RU或484+996-tone RU是由哪个160MHz内的996-tone RU和484-tone RU组成的,从而能够将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示996+484-tone RU和484+996-tone RU的索引的数量。
第二十三方面,本申请还提供一种PPDU的传输装置,包括:
接收单元,用于接收PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,传输所述PPDU的带宽包括连续的240MHz,所述第一MRU由所述240MHz中的996-tone RU和484-tone RU组成,所述指示第一MRU的资源单元分配子字段还用于指示所述996-tone RU和所述484-tone RU在所述第一MRU所在的160MHz中的频率位置,所述240MHz的最低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段中的所述指示第一MRU的资源单元分配子字段,用于确定或指示所述996-tone RU和所述484-tone RU在所述240MHz的频率位置;
处理单元,用于解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
具体的,该传输装置的处理单元可根据最低频率的80MHz对应的资源单元分配子字段和最高频率的80MHz对应的资源单元分配字段中,确定组成第一MRU的996-tone RU和所述484-tone RU在所述240MHz的频率位置。也即,确定组成第一MRU的RU为240MHz的哪个频率位置的RU。
应理解,该方案可用于240MHz包括1个第一MRU的场景,也可以用于240MHz包括2个第一MRU的场景。
这样的方案中,该传输装置在确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的频率位置时,跳过该240MHz的次低频率的80MHz对应的资源单元分配子字段,根据最低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段,能够准确地确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的在240MHz中的频率位置,从而能够实现将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。
第二十四方面,本申请还提供一种PPDU的传输装置,包括:
接收单元,用于接收PPDU,所述PPDU包括多个资源单元分配子字段,所述多 个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,传输所述PPDU的带宽包括连续的240MHz,所述第一MRU由所述240MHz中的996-tone RU和484-tone RU组成,所述指示第一MRU的资源单元分配子字段还用于指示所述996-tone RU和所述484-tone RU所在的160MHz中的频率位置,以及所述160MHz在所述240MHz中的位置,所述240MHz的次低频率的80MHz对应的资源单元分配子字段中的所述指示第一MRU的资源单元分配子字段,用于确定或指示所述996-tone RU和484-tone RU在所述240MHz的频率位置;
处理单元,用于解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
具体的,该传输装置根据次低频率的80MHz对应的资源单元分配子字段和最高频率的80MHz对应的资源单元分配字段中,确定组成第一MRU的996-tone RU和所述484-tone RU在所述240MHz的频率位置。也即,确定组成第一MRU的RU为240MHz的哪个频率位置的RU。
应理解,该方案可用于240MHz包括1个第一MRU的场景,也可以用于240MHz包括2个第一MRU的场景。
这样的方案中,该传输装置在确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的频率位置时,能够根据次低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段,能够准确地确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的在240MHz中的频率位置,从而能够实现将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。
应理解,上述第十三方面至第十八方面的传输装置为发送PPDU的装置,第十九方面至第二十四方面的传输装置为接收PPDU的装置。PPDU的发送端可以是接入点,也可以是站点。PPDU的接收端可以是接入点,也可以是站点。
上述第一方面至第十二方面的传输方法的相关补充说明,也适用于上述第十三方面至第二十四方面的传输装置。
第二十五方面,本申请实施方式还提供一种通信装置,用于传输PPDU。该通信装置可包括:处理器、收发器,可选的还包括存储器,当所述处理器执行所述存储器中的计算机程序或指令时,使得上述第一方面至第十二方面任一实施方式的方法被执行。
第二十六方面,本申请实施方式还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,所述计算机指令指示通信装置执行上述第一方面至第十二方面任一实施方式的方法。
第二十七方面,本申请实施方式还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面至第十二方面任一实施方式的方法。
第二十八方面,本申请还提供一种处理器,用于执行上述第一方面至第十二方面任一实施方式的方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入 的上述信息过程。具体来说,在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。更进一步的,该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
如此一来,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本发明实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第二十九方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持通信传输设备实现第一方面至第八方面任一方面的方法中所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存前述通信装置的必要的信息和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第三十方面,本申请提供了一种功能实体,该功能实体用于实现上述第一方面至第八方面任一方面所述的方法。
附图说明
图1是本申请实施例提供的一种网络结构的示意图;
图2是本申请实施例提供的一种通信装置的结构示意图;
图3是本申请实施例提供的芯片或芯片系统的结构示意图;
图4A为资源单元一种可能的分配方式的示意图;
图4B为资源单元另一种可能的分配方式的示意图;
图5A为信令字段的结构示意图;
图5B为信令字段的另一结构示意图;
图5C为PPDU的结构示意图;
图6A为本申请实施例的PPDU的传输方法的流程示意图;
图6B为80MHz所包含的MRU的组合情况的场景示意图;
图6C为160MHz所包含的MRU的组合情况的场景示意图;
图6D为240MHz所包含的MRU的组合情况的场景示意图;
图6E为160MHz所包含的MRU的组合情况的另一场景示意图;
图6F为320MHz所包含的MRU的组合情况的场景示意图;
图6G为320MHz所包含的MRU的组合情况的另一场景示意图;
图7A为240MHz所包含的MRU的组合情况的另一场景示意图;
图7B为240MHz所包含的MRU的组合情况的另一场景示意图;
图8A为本申请实施例的资源单元的标号示意图;
图8B为本申请实施例的传输方法的流程示意图;
图8C为240MHz所包含的MRU的组合情况的另一场景示意图;
图9A为资源单元分配的场景示意图;
图9B为本申请实施例的信令字段的结构示意图;
图9C为本申请实施例的另一信令字段的结构示意图;
图9D为本申请实施例的又一信令字段的结构示意图;
图10为本申请实施例的传输方法的另一流程示意图;
图11A为本申请实施例的再另一信令字段的结构示意图;
图11B为本申请实施例的再另一信令字段的结构示意图;
图12为本申请实施例的传输装置的结构示意图;
图13为本申请实施例的传输装置的结构示意图;
图14为本申请实施例的传输装置的结构示意图;
图15为本申请实施例的传输装置的结构示意图;
图16为本申请实施例的传输装置的结构示意图;
图17为本申请实施例的传输装置的结构示意图;
图18为本申请实施例的传输装置的结构示意图;
图19为本申请实施例的传输装置的结构示意图;
图20为本申请实施例的传输装置的结构示意图;
图21为本申请实施例的传输装置的结构示意图;
图22为本申请实施例的传输装置的结构示意图;
图23为本申请实施例的传输装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例可以适用于无线局域网(wireless local area network,WLAN)的场景,可以适用于IEEE 802.11系统标准,例如IEEE802.11be标准,或其下一代或更下一代的标准中。或者本申请实施例也可以适用于物联网(internet of things,IoT)网络或车联网(Vehicle to X,V2X)网络等无线局域网系统中。当然,本申请实施例还可以适用于其他可能的通信系统,例如,全球移动通信(global system of mobile communication,GSM)系统、码分多址(code division multiple 10access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、 全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、以及未来的5G通信系统等。
以图1为例本申请所述的PPDU的传输方法可适用的网络结构。图1是本申请实施例提供的网络结构的示意图,该网络结构可包括一个或多个接入点(access point,AP)类的站点和一个或多个非接入点类的站点(none access point station,non-AP STA)。为便于描述,本文将接入点类型的站点称为接入点(AP),非接入点类的站点称为站点(STA)。AP例如为图1中的AP1和AP2,STA例如为图1中的STA1、STA2和STA3。
其中,接入点可以为终端设备(如手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。接入点相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体的,接入点可以是带有无线保真(wreless-fidelity,WiFi)芯片的终端设备(如手机)或者网络设备(如路由器)。接入点可以为支持802.11be制式的设备。接入点也可以为支持802.11be、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等802.11家族的多种无线局域网(wireless local area networks,WLAN)制式的设备。本申请中的接入点可以是高效(high efficient,HE)AP或极高吞吐量(extramely high throughput,EHT)AP,还可以是适用未来某代WiFi标准的接入点。
接入点可包括处理器和收发器,处理器用于对接入点的动作进行控制管理,收发器用于接收或发送信息。
站点可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户。例如,站点可以为支持WiFi通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持WiFi通讯功能的机顶盒、支持WiFi通讯功能的智能电视、支持WiFi通讯功能的智能可穿戴设备、支持WiFi通讯功能的车载通信设备和支持WiFi通讯功能的计算机等等。可选地,站点可以支持802.11be制式。站点也可以支持802.11be、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等802.11家族的多种无线局域网(wireless local area networks,WLAN)制式。
站点可包括处理器和收发器,处理器用于对接入点的动作进行控制管理,收发器用于接收或发送信息。
本申请中的接入点可以是高效(high efficient,HE)STA或极高吞吐量(extramely high throughput,EHT)STA,还可以是适用未来某代WiFi标准的STA。
例如,接入点和站点可以是应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。
本申请实施例中的所涉及的接入点和站点又可以统称为通信装置,其可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来实现。
图2为本申请实施例提供的一种通信装置的结构示意图。如图2所示,该通信装置200可包括:处理器201、收发器205,可选的还包括存储器202。
所述收发器205可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器205可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
存储器202中可存储计算机程序或软件代码或指令204,该计算机程序或软件代码或指令204还可称为固件。处理器201可通过运行其中的计算机程序或软件代码或指令203,或通过调用存储器202中存储的计算机程序或软件代码或指令204,对MAC层和PHY层进行控制,以实现本申请下述各实施例提供的PPDU的传输方法。其中,处理器201可以为中央处理器(central processing unit,CPU),存储器202例如可以为只读存储器(read-only memory,ROM),或为随机存取存储器(random access memory,RAM)。
本申请中描述的处理器201和收发器205可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。
上述通信装置200还可以包括天线206,该通信装置200所包括的各模块仅为示例说明,本申请不对此进行限制。
如前所述,以上实施例描述中的通信装置200可以是接入点或者站点,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图2的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置的实现形式可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;(3)可嵌入在其他设备内的模块;(4)接收机、智能终端、无线设备、手持机、移动单元、车载设备、云设备、人工智能设备等等;(5)其他等等。
对于通信装置的实现形式是芯片或芯片系统的情况,可参见图3所示的芯片或芯片系统的结构示意图。图3所示的芯片或芯片系统包括处理器301和接口302。其中,处理器301的数量可以是一个或多个,接口302的数量可以是多个。可选的,该芯片或芯片系统可以包括存储器303。
本申请实施例并且不限制权利要求书的保护范围和适用性。本领域技术人员可以在不脱离本申请实施例范围的情况下对本申请涉及的元件的功能和部署进行适应性更改,或酌情省略、替代或添加各种过程或组件。
AP与STA进行通信,AP可以为STA分配资源,STA在被分配的资源上进行数据传输。例如AP和STA之间可以采用应用正交频分多址(orthogonal frequency division multiple access,OFDMA),也可以采用多用户多入多出(multi-users multiple-input multiple-output,MU-MIMO)技术进行无线通信。在OFDMA传输场景下,WLAN协议会将频谱带宽划分为若干个资源单元(resource unit,RU)。例如802.11ax协议支持 的带宽配置包括20MHz、40MHz、80MHz、160MHz及80+80MHz。其中,160MHz与80+80MHz的区别在于前者为连续频带,而后者的两个80MHz间可以分离,即80+80MHz组成的160MHz是不连续的。
802.11ax标准,所支持的最大带宽为160MHz。802.11ax标准规定对于20MHz、40MHz、80MHz和160MHz,可将频谱带宽划分成多类RU,RU的大小可以是26-tone RU、52-tone RU、106-tone RU,这些RU通常称为小RU。其中,tone表示子载波,例如,26-tone RU表示由26个子载波组成的RU,该26-tone RU可以被分配给一个用户使用。此外,RU的大小也可以是242-tone、484-tone、996-tone等等,这些通常称为大RU。通常来讲,一个大于等于106-tone的RU可以分配给一个或者多个用户使用。在802.11be中,将支持给一个用户分配多个RU,本申请中的用户可理解为STA。
当传输PPDU的信道带宽为20MHz时,如图4A所示的,图4A所示为传输PPDU的带宽为20MHz时的资源单元可能的分配方式的示意图。整个20MHz带宽可以由一整个242个子载波组成的资源单元(242-tone RU)组成,也可以由26个子载波组成的资源单元(26-tone RU)、52个子载波组成的资源单元(52-tone RU)、106个子载波组成的资源单元(106-tone RU)的各种组合组成。除了用于传输数据的RU,此外,还包括一些保护(Guard)子载波,空子载波,或者直流(direct current,DC)子载波。
当传输PPDU的带宽为40MHz时,如图4B所示的,图4B所示为传输PPDU的信道带宽为40MHz时的资源单元可能的分配方式的示意图。整个带宽大致相当于20MHz的子载波分布的复制。整个40MHz带宽可以由一整个484个子载波组成的资源单元(484-tone RU)组成,也可以由26-tone RU,52-tone RU,106-tone RU,242-tone RU的各种组合组成。
当传输PPDU的信道带宽为80MHz时。整个信道带宽大致相当于2个40MHz的子载波分布的复制。整个80MHz带宽可以由一整个996个子载波组成的资源单元(996-tone RU)组成,也可以由484-tone RU、242-tone RU,106-tone RU,52-tone RU,26-tone RU的各种组合组成。并且,在整个80MHz信道带宽的中间,还存在一个由两个13-tone子单元组成的中间26-tone RU(Center 26-Tone RU)。
当带宽为160MHz或者80+80MHz时,整个带宽可以看成两个80MHz的子载波分布的复制,整个带宽可以由一整个2*996-tone RU组成,也可以由26-tone RU,52-tone RU,106-tone RU,242-tone RU,484-tone RU,996-tone RU的各种组合组成。
AP以RU为单位为STA分配资源,可通过物理层协议数据单元(physical protocol data unit,PPDU)告知STA为其分配的资源。具体的,AP可通过将资源分配信息承载在PPDU包括的信令字段(Signal Field,SIG),向STA指示被分配的RU。例如,该信令字段可以是高效信令字段B(High Efficient Signal Field-B,HE-SIG-B),或者也可以为超高吞吐率信令字段(Extremely High Throughput Signal Field,EHT-SIG)。
802.11ax中,AP利用信令字段(signal field,SIG)向用户通知RU的分配。请参阅图5A,图5A为信令字段的结构示意图。如图5A中所示,HE-SIG包括公共字段(common field)和用户特定字段(user specific field)。
公共字段包括1~N个资源单元分配子字段(RU allocation subfield)、用于校验的循环冗余码(cyclic redundancy code,CRC)以及用于循环解码的尾部(Tail)子字段。用户特定字段包括与资源单元分配子字段指示的RU对应的用户字段。
其中,一个资源单元分配子字段为一个资源单元分配索引,一个资源单元分配索引指示一个242-tone RU对应的一个或者多个资源单元的大小和位置。应理解,一个资源单元分配子字段对应一个242-tone RU,一个20MHz对应一个242-tone RU。那么,也可以理解为一个资源单元分配子字段对应一个20MHz。
资源单元分配索引是通过一个或多个索引指示的,其中每个索引对应带宽的一个20MHz。例如在802.11ax协议中,一个资源单元分配子字段的索引表如表1,由于该索引表用于指示分配的资源,所以也可以称为资源分配信息表。
表1
Figure PCTCN2021104045-appb-000001
Figure PCTCN2021104045-appb-000002
表1中的第1列为索引,中间列为与第1列的索引指示的RU的组成情况。资源单元分配子字段可为表1中第1列中的一个索引,指示该资源单元分配子字段对应的20MHz对应的资源单元分配情况。例如,资源单元分配子字段为“00111y 2y 1y 0”,指示该资源单元分配子字段对应的242-tone RU被分为52-tone RU、52-tone RU、26-tone RU、106-tone RU这4个RU。
当一个索引对应的RU中包括大于或等于106个子载波组成的RU时,该索引的前3为用于资源单元分配子字段对应的20MHz对应的RU的分配情况。该索引的后三位用于指示由大于或者等于106个子载波组成的RU支持的MU-MIMO的用户数。例如,索引01000y2y1y0。“01000”指示资源单元分配子字段对应的20MHz包括一个106-tone RU和5个26-tone RU。y2y1y0为010,用于指示106-tone被分配给了3个用户。
在信令字段(HE-SIG)的用户特定字段中,按照资源单元分配的顺序,包括1~M个用户字段(User Field)。M个用户字段通常是两个为一组,每两个用户字段后有一个CRC和tail字段。若用户字段的数量为奇数,则最后一个用户字段单独为一组,该最后一个用户字段后有一个CRC和tail字段。对于小于106个子载波组成的RU,特 定字段部分包括一个与之对应的用户字段。对于大于或等于106个子载波组成的RU,特定字段部分包括一个或1一个以上与之对应的用户字段。
802.11ax协议还引入了内容信道(Content Channel,CC)的概念。带宽大于或等于40MHz时,信令字段可在两个内容信道(Content Channel,CC)上传输。信令字段中的资源单元分配子字段分为第一部分和第二部分,第一部分的资源单元分配子字段在CC1传输,第二部分的资源单元分配子字段在CC2传输。相应的,与第一部分的资源单元分配子字段对应的用户字段在CC1传输,与第二部分的资源单元分配子字段对应的用户字段在CC2传输。
例如,如图5B所示的信令字段的结构示意图,信令字段中的奇数号的资源单元分配子字段在CC1传输,与奇数号的资源单元分配子字段对应的用户字段也在CC1传输;信令字段中的偶数号的资源单元分配子字段在CC1传输,与偶数号的资源单元分配子字段对应的用户字段也在CC2传输。
具体的,如图5B所示,资源单元分配子字段1、3、5在CC1传输,资源单元分配子字段2、4、6在CC2传输。与资源单元分配子字段1对应的用户字段1-用户字段3在CC1传输,与资源单元分配子字段2对应的用户字段4和用户字段5在CC2传输,与资源单元分配子字段3对应的用户字段6在CC1传输,与用户字段4对应的用户字段7在CC2传输,与资源单元分配子字段5对应的用户字段8在CC1传输。资源单元分配子字段6对应的用户字段的数目为0,也即资源单元分配子字段6不对应任何用户字段。
用户字段包括关联标识(association identifier,AID)。接收PPDU的STA,根据AID,获取自己的用户字段,并获取与该用户字段对应的资源单元分配子字段指示的RU,从而确定自己被分配的RU。
尽管如表1所示的资源单元分配子字段设置了多种RU分配模式,但是仅支持将一个RU分配给一个或多个站点,并不支持将多个连续或者不连续的RU分配给某一个或多个站点。举例来说,存在3个RU,这3个RU分别为RU1、RU2和RU3,RU1和RU3的信道条件优于RU2的信道条件,理想情况下,可以将RU1和RU3分配给同一个用户,但是表1所示的资源单元分配子字段的指示方式,只支持将RU1或RU3分配给同一个用户,不支持RU1和RU3分配给同一个用户。可见RU分配的灵活性较低,同时频谱利用率也较低。
请参阅图5C,图5C为本申请实施例的PPDU的结构示意图。PPDU包括传统短训练字段(Legacy Short Training Field,L-STF)、传统长训练字段(Legacy Long Training Field,L-LTF)、传统信令字段(Legacy Signal Field,L-SIG)、重复传统信令字段(RL-SIG)、通用信令字段U-SIG(universal SIG,U-SIG)、超高吞吐率信令字段或极高吞吐率信令字段(extremely high throughput,EHT-SIG)、EHT短训练字段(EHT-STF)、EHT长训练字段(EHT-LTF)和数据(data)。其中,L-STF、L-LTF、L-SIG、RL-SIG、U-SIG、EHT-SIG、EHT-STF、EHT-LTF为PPDU的物理层头部(或称前序部分)中的部分结 构。
L-STF,L-LTF,L-SIG可理解为传统前导码字段,用于保证新设备同传统设备的共存。RL-SIG用于增强传统信令字段的可靠性。
U-SIG和EHT-SIG为信令字段。U-SIG用于携带一些公共信息,例如指示PPDU版本的信息、指示上行/下行的信息、指示PPDU的频域带宽的信息,打孔指示信息等。EHT-SIG中包括指示资源分配的信息以及指示数据解调的信息等。EHT-SIG的结构与图5A所示的802.11ax中的HE-SIG的结构类似。EHT-SIG的公共字段不包括中间26-子载波单元指示子字段。
需要说明的是,本申请实施例中,以802.11be场景下的PPDU中的字段进行举例说明。本申请实施例中提到的PPDU中各个字段不限于与802.11be相关的字段,本申请实施例中的提到的PPDU中各个字段还可以为802.11be之后的标准版本相关的字段。
正在讨论中的802.11be标准,所支持的最大带宽为320MHz。802.11be标准中,带宽为20MHz、40MHz时,资源单元可能的分配方式与上述802.11ax标准中,带宽为20MHz、40MHz时,资源单元可能的分配方式是相同的。本申请实施例中的带宽指传输PPDU的带宽。
带宽为160MHz时,可看做是4个40MHz的子载波分布的复制,不存在中间26-tone RU。整个带宽可以由一整个2*996-tone RU组成,也可以由26-tone RU,52-tone RU,106-tone RU,242-tone RU,484-tone RU,996-tone RU的各种组合组成。
类似的,当带宽为320MHz时,整个带宽可以看成两个160MHz的子载波分布的复制。整个带宽可以由一整个4*996-tone RU组成,也可以由26-tone RU,52-tone RU,106-tone RU,242-tone RU,484-tone RU,996-tone RU的各种组合组成。
以上的各种子载波分布,以242-tone RU为单位,图的左边可以看做最低频率,图的右边可以看做最高频率。从左到右,可以对242-tone RU进行标号:第1个242-tone RU,第2个242-tone RU,第3个242-tone RU,…。也可以对484-tone RU进行标号:第1个484-tone RU,第2个484-tone RU,…。
例如,带宽为80MHz时,若将该80MHz看做由2个484-tone RU组成,则按照频率有低至高的顺序,该80MHz的第1个40MHz对应第1个484-tone RU,该80MHz的第2个40MHz对应第2个484-tone RU。若将该80MHz看做由4个242-tone RU组成,则按照频率有低至高的顺序,该80MHz的第1-4个20MHz分别对应第1-4个242-tone RU。
为了提升RU分配的灵活性,以及提高频频利用效率,相关技术中,提供了能够支持将多个RU合并分配一个或多个站点的方案。由多个合并而成的RU可称为多资源单元(multiple RU,MRU)。
在一种相关技术中,提供了一些RU合并为MRU的方案,可将两个或两个以上的RU合并为一个MRU,分配给一个或多个站点。
为了避免过于灵活的合并而导致指示RU合并的方式过于复杂,关于RU合并具体 遵守以下规则:(1)小RU与大RU之间不合并;(2)小RU之间不进行跨20MHz的合并;(3)小RU之间的合并应是连续的。
关于大RU的合并,RU合并情况可包括,484-tone RU和242-tone RU组合为484+242-tone RU,996-tone RU和484tone RU合并为994+484-tone RU,2个996-tone RU和484tone RU合并为2*994+484-tone RU,3个996-tone RU和484tone RU合并为3*994+484-tone RU。其中,484+242-tone RU对应的频域资源为60MHz;994+484-tone RU对应的频域资源为120MHz;2*994+484-tone RU对应的频域资源为200MHz;3*994+484-tone RU对应的频域资源为280MHz。可以理解,上述484+242-tone RU、994+484-tone RU、2*994+484-tone RU和3*994+484-tone RU均为MRU。
本申请中,根据组成MRU的两个RU对MRU进行分类。例如由484-tone RU和242-tone RU组合而成的MRU(例如484+242-tone RU)为一种MRU或一种MRU组合类型。由484-tone RU和996-tone RU组合而成的MRU(例如484+996-tone RU)为另一种组合类型。组成同一种MRU的RU在频率位置不同,每种MRU可包括多种组合情况。例如,在带宽为80MHz时,组成由484-tone RU和242-tone RU组合而成的484+242-tone RU,其中的484-tone RU和242-tone RU可位于不同的频率位置,这样,该484+242-tone RU包括多种组合情况。
具体地,在带宽为80MHz的OFDMA传输中,支持的MRU组合类型如表2所示,支持的MRU组合类型可包括,484-tone RU和242-tone RU组合为484+242-tone RU。带宽为80MHz时,对应4个242-tone RU。其中的3个242-tone RU属于484+242-tone RU,另一个242-tone RU属于非MRU。按照频率由低至高的顺序,该非MRU的位置可以为第1个242-tone RU、第2个242-tone RU、第3个242-tone RU和第4个242-tone RU中的任一个。因此,该484+242-tone RU的可能的组合情况有4种。
表2
RU尺寸 等效带宽 可能的组合情况数
484+242 60MHz 4
如表3所示,在带宽为160MHz的OFDMA传输中,支持的MRU组合类型包括484-tone RU和242-tone RU组合为484+242-tone RU,以及996-tone RU和484tone RU组合为994+484-tone RU。该994+484-tone RU的等效带宽为120MHz。
表3
RU尺寸 等效带宽 可能的组合情况数
484+996 120MHz 4
在带宽为240MHz的OFDMA传输中,若240MHz为频谱上连续的240MHz,大RU合并只允许存在于两个连续80MHz组成的160MHz中。在带宽为240MHz OFDMA传输中,支持的RU组合情况,与RU组合情况与带宽为160MHz的OFDMA传输中,支持的RU合并情况相同。
在带宽为320MHz的OFDMA传输中,支持的组合情况可包括:3个996-tone RU 组合为3*996-tone RU,3个996-tone RU和1个484-tone RU组合为3*996+484-tone RU,以及上述带宽为160MHz的OFDMA传输中,支持的RU组合情况。该3*996-tone RU的等效带宽为240MHz,该3*996+484-tone RU的等效带宽为280MHz。160MHz支持的RU组合情况,可以在320MHz或者160+160MHz带宽中的主160MHz或者辅160MHz中进行。
应理解,对于带宽为80MHz,160MHz,240MHz或320MHz的OFDMA传输,在每个80MHz内,都允许进行80MHz带宽时允许的MRU组合类型。
上述的目前支持的MRU组合类型,显然并不是所有可能的RU组合方式。应理解,如果给出RU所有可能的排列组合方式,虽然RU的组合更为灵活,但是复杂度相应也增加。
本申请实施例示出了对于80MHz-320MHz内的MRU可能的组合类型,例如表2,为一些可能的MRU组合类型。
表4
Figure PCTCN2021104045-appb-000003
表4中,第一列表示MRU组合类型,表格中的数字表示MRU包括的每个RU的大小。例如“484+996”表示该MRU由484-tone RU和996-tone RU这2个RU合并组成。中间列表示MRU的等效带宽,第三列表示MRU属于的传输带宽。例如,160MHz的传输带宽内,MRU组合类型可能是“242+242+996”,也可能是“484+996”。
在上述的MRU的一些组合类型的基础上,本申请实施例提供了一些MRU的指示方案。
在本申请实施例的一种指示MRU的方案中,PPDU的信令字段中的资源单元分配子字段可指示资源单元分配子字段对应的242-tone RU属于一个MRU。资源单元分配子字段可采用表5所示的一个索引指示资源单元的分配情况。表5中的索引可以为表1中的预留的索引。
表5
Figure PCTCN2021104045-appb-000004
上述表5也可以合并为1行在表格中呈现,或者将贡献用户字段的数目为1-8的条目合并为1行在表格中呈现。本申请对表格的呈现形式不做限定。
应理解,上述索引1,索引2,索引3,……,索引9的序号1,2,3,……,9,并不表示索引为1,2,3……9。索引1,索引2,索引3,……,索引9的序号1,2,3,……,9仅用于标识上述9个索引为不同的索引。本申请不限定索引具体的表达方式。
资源单元分配子字段可通过该9个条目的任一条目指示资源单元分配情况时,指示该资源单元分配子字段对应的频域资源对应的242-tone RU属于一个MRU,以及该MRU在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡 献的用户字段的数目。其中,在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目是指,在该资源单元分配子字段所在的EHT-SIG内容信道中,与该资源单元分配子字段对应的用户字段的数目。与该资源单元分配子字段对应的用户字段为,被分配该资源单元分配子字段指示的资源单元的用户的用户字段。
可选的,索引2-索引9中的每个索引,包括指示RU分配的部分和指示用户字段的部分。本实施例中,索引2-索引9中指示RU分配的部分是相同的,均指示资源单元分配子字段对应的242-tone RU属于一个MRU。索引2-索引9中,指示用户字段的部分是不同的。分别用户指示在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献1-8个用户字段。指示用户字段的部分例如可以为3比特。指示0个用户字段的索引1的指示RU分配的部分,与指示1-8个用户字段的索引2-9的指示RU分配的部分不同。
具体的,该索引2-索引9的结构可以为k nk n-1…k 2k 1y 2y 1y 0,其中,k nk n-1…k 2k 1为指示RU分配的部分,n为指示用户字段的部分的比特数,y 2y 1y 0为指示用户字段的部分,为3比特,分别指示1-8个用户字段。
接收PPDU的站点,能够根据该资源单元分配子字段,确定该资源单元分配子字段对应的242-tone RU属于MRU,并根据每个80MHz对应的资源单元分配子字段中,指示对应的242-tone RU属于MRU的资源单元分配子字段的数目,确定组成MRU的RU。
具体的,如图6A所示的PPDU的传输方法的流程示意图,上述方案可通过以下PPDU的传输方法的步骤实现:
601、AP生成PPDU;
所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括MRU对应的资源单元分配子字段,所述MRU对应的资源单元分配子字段指示该资源单元分配子字段对应的242-tone RU属于MRU,传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的所述MRU对应的资源单元分配子字段的数目,用于确定或指示所述MRU为哪一种MRU;
602、AP发送PPDU;
对应的,STA接收PPDU;
603、STA根据每个80MHz对应的资源单元分配子字段中,指示对应的242-tone RU属于MRU的资源单元分配子字段的数目,确定传输PPDU的MRU为哪一种RU。
应理解,上述的PPDU的传输方法以AP向STA发送PPDU的实施例进行说明,该方法也适用于AP向AP发送PPDU的场景,STA向STA发送PPDU的场景。
STA确定传输PPDU的MRU为哪一种RU,也就确定了组成MRU的RU。
下面提供带宽分别为80MHz、160MHz、240MHz和320MHz时,STA根据每个80MHz对应的资源单元分配子字段中,指示对应的242-tone RU属于MRU的资源单元分配子字段的数目,确定组成MRU的RU的方案。
带宽为80MHz时,所包含的MRU仅有一种模式。80MHz内可包括由242-tone RU 和484-tone RU合并而成的242+484-tone RU。这种情况下,80MHz内的4个242-tone RU包括3个242-tone RU属于MRU,另1个242-tone RU为非MRU。非MRU的242-tone RU为第1个242-tone RU、第2个242-tone RU、第3个242-tone RU和第4个242-tone RU中的任一个,组成242+484-tone RU的242-tone RU和484-tone RU有4种可能的情况。图6B为80MHz所包含的MRU的组合情况的场景示意图。如图6B所示,该242+484-tone RU可能是由该80MHz内的第1个484-tone RU和第3个242-tone RU(第1-3个242-tone RU)合并而成,也可能是由该80MHz内的第1个484-tone RU和第4个242-tone RU(第1、2、4个242-tone RU)合并而成,也可能是由该80MHz内的第2个484-tone RU和第1个242-tone RU(第1、3、4个242-tone RU)合并而成,还有可能是由该80MHz内的第2个484-tone RU和第2个242-tone RU(第2、3、4个242-tone RU)合并而成。
这样,若STA读取到80MHz内,有3个资源单元分配子字段指示对应的242-tone RU属于MRU,则STA可以确定该3个资源单元分配子字段对应的3个242-tone RU组成242+484-tone RU。从而可以实现在带宽为80MHz的情况下将由多个RU组成的MRU分配给一个或多个站点。
应理解,本申请实施例中的非MRU,可以是单个242-tone RU,也可以是多个小RU,也可以为空。
图6C为160MHz所包含的MRU的组合情况的场景示意图。如图6C所示,带宽为160MHz时,所包含的MRU,有3种模式。模式一为,160MHz内包含一个242+484-tone RU。该160MHz包括2个80MHz,该242+484-tone RU可以位于其中一个80MHz。每个80MHz内的242+484-tone RU的组合情况,包括图6B所示的4种可能的组合情况。组成242+484-tone RU的242-tone RU和484-tone RU有4+4=8种可能的组合情况(8cases)。
模式二为160MHz内包含2个242+484-tone RU。该160MHz包括2个80MHz,每个80MHz包括一个242+484-tone RU,每个80MHz内的242+484-tone RU的组合情况,包括图6B所示的4种可能的组合情况。组成该2个242+484-tone RU的242-tone RU和484-tone RU有4*4=16种可能的组合情况(16cases)。
模式三为160MHz内包含1个996+484-tone RU。由于组成该996+484-tone RU的996-tone RU和484-tone RU在160MHz带宽内的位置不同,组成该996+484-tone RU的996-tone RU和484-tone RU有4种可能的组合情况(4cases)。
这样,STA可按照表6所示的识别MRU组合的方法表,识别160MHz内的MRU的组合类型,从而可以实现在带宽为160MHz的情况下将由多个RU组成的MRU分配给一个或多个站点。
具体的,接收PPDU的STA,能够根据资源单元分配子字段指示的160MHz内的每个80MHz内的属于MRU的242-tone RU的个数,确定组成MRU的组合类型。
表6
Figure PCTCN2021104045-appb-000005
Figure PCTCN2021104045-appb-000006
若STA根据该160MHz对应的资源单元分配子字段识别出,第1个80MHz中,包括3个242-tone RU属于MRU,第2个80MHz中,包括0个242-tone RU属于MRU,则STA确定该160MHz包括一个484+242-tone RU,且该484+242-tone RU由该3个属于MRU的242-tone RU组成。
若STA根据该160MHz对应的资源单元分配子字段识别出,第1个80MHz中,包括3个242-tone RU属于MRU,第2个80MHz中,包括3个242-tone RU属于MRU,则STA确定该160MHz包括2个484+242-tone RU,每个80MHz内的3个属于MRU的242-tone RU组成该80MHz内的484+242-tone RU。
若STA根据该160MHz对应的资源单元分配子字段识别出,第1个80MHz中,包括4个242-tone RU属于MRU,第2个80MHz中,包括2个242-tone RU属于MRU,则STA确定该160MHz包括1个996+484-tone RU。该996+484-tone RU由第1个80MHz中的4个242-tone RU,和第2个80MHz中2个属于MRU的242-tone RU组成。或者,若STA根据该160MHz对应的资源单元分配子字段识别出,第1个80MHz中,包括2个242-tone RU属于MRU,第2个80MHz中,包括4个242-tone RU属于MRU,则STA确定该160MHz包括1个996+484-tone RU。该996+484-tone RU由第1个80MHz中的2个属于MRU的242-tone RU,和第2个80MHz中4个242-tone RU组成。
类似的,如图6D所示的240MHz所包含的MRU的组合情况的场景示意图,带宽为240MHz时,所包含的MRU,有7种模式。模式一至模式四可根据图6D,并结合上述根据图6B和图6C的相关描述进行理解。
模式四中,当带宽为连续的240MHz时,240MHz可包括由996-tone RU和484-tone RU合并而成的996+484-tone RU。该996+484-tone RU可以在由第1个80MHz和第2个80MHz组成的160MHz内(4种可能的组合情况),也可能在由第2个80MHz和第3个80MHz组成的160MHz内(4种可能的组合情况)。组成该996+484-tone RU的484-tone RU和996-tone RU有8种可能的组合情况(8cases)。
模式五中,当带宽为连续的240MHz时,240MHz可包括由996-tone RU和484-tone RU合并而成的996+484-tone RU,和由484-tone RU和242-tone RU合并而成的484+242-tone RU。该996+484-tone RU可以在由第1个80MHz和第2个80MHz组成的160MHz内(4种可能的组合情况),也可能在由第2个80MHz和第3个80MHz组 成的160MHz内(4种可能的组合情况)。该484+242-tone RU可位于未覆盖996+484-tone RU的80MHz中(4种可能的组合情况)。这样240MHz包括996+484-tone RU和484+242-tone RU时,共有2*4*4=32种情况(32cases)。
模式六中,当带宽为连续的240MHz时,该240MHz时包括2个996+484-tone RU。每个996+484-tone RU均由484-tone RU和996-tone RU组成。该模式六共有2种可能的组合情况(2cases)。
模式七中,带宽为240MHz,该240MHz可包括2*996+484-tone RU,组成该2*996+484-tone RU的2*996-tone RU位于连续的160MHz。组成该2*996+484-tone RU的484-tone RU可位于4个不同的80MHz,该模式七共有4中可能的组合情况(4cases)。
STA可按照表7所示的识别MRU组合的方法表,识别240MHz内的MRU的组合类型以及组成该MRU的RU的组合情况,从而可以实现在带宽为240MHz的情况下将由多个RU组成的MRU分配给一个或多个站点。应理解,表7中每一行的各个80MHz的MRU个数是可以交换的。同一行的各个80MHz的MRU个数交换,所对应的MRU组合类型不变。
表7
Figure PCTCN2021104045-appb-000007
例如,当STA根据该240MHz对应的资源单元分配子字段,识别该240MHz的第1个80MHz包括3个242-tone RU属于MRU,第2个80MHz包括3个242-tone RU属 于MRU,第3个80MHz包括0个242-tone RU属于MRU时,确定该240MHz包括2个(484+242)-tone RU。其中一个484+242-tone RU位于240MHz的第1个80MHz的最低频率的60MHz,另一个484+242-tone RU位于240MHz的第1个80MHz的最高频率的20MHz和第2个80MHz的最低频率的40MHz。
或者,STA根据该240MHz对应的资源单元分配子字段,识别该240MHz的第1个80MHz包括0个242-tone RU属于MRU,第2个80MHz包括3个242-tone RU属于MRU,第3个80MHz包括3个242-tone RU属于MRU时,确定该240MHz包括2个(484+242)-tone RU。其中一个484+242-tone RU位于240MHz的第2个80MHz的最低频率的60MHz,另一个484+242-tone RU位于240MHz的第2个80MHz的最高频率的20MHz和第3个80MHz的最低频率的40MHz。
又例如,当STA根据该240MHz对应的资源单元分配子字段,识别该240MHz的第1个80MHz包括4个242-tone RU属于MRU,第2个80MHz包括4个242-tone RU属于MRU,第3个80MHz包括4个242-tone RU属于MRU时,确定该240MHz包括2个996+484-tone RU,但是,STA根据表7无法识别出组成每个996+484-tone RU的484-tone RU和996-tone RU。因为,240MHz的12个242-tone RU均属于MRU时,可能的RU组合情况并不是单一的。
图6E为160MHz所包含的MRU的组合情况的另一场景示意图。如图6E所示,可能是第1个80MHz的第1-4个242-tone RU和第2个80MHz的第3-4个242-tone RU组成一个996+484-tone RU,第2个80MHz的第1-2个242-tone RU和第3个80MHz的第1-4个242-tone RU组成一个996+484-tone RU;也可能是第1个80MHz的第1-4个242-tone RU和第2个80MHz的第1-2个242-tone RU组成一个996+484-tone RU,第2个80MHz的第3-4个242-tone RU和第3个80MHz的第1-4个242-tone RU组成一个996+484-tone RU。
由此可见,表5的索引,对于传输PPDU的带宽中的240MHz包括2个(996+484)-tone RU的情况下,无法指示哪一个996-tone RU和哪一个484-tone RU组成了一个996+484-tone RU。这样接收PPDU的STA无法根据资源单元分配子字段确定自己被分配的996+484-tone RU是由哪一个996-tone RU和哪一个484-tone RU组成的。这种情况下,AP也就无法实现将该2*996+484-tone RU或996+484-tone RU分配给一个或多个站点。
图6F为320MHz所包含的MRU的组合情况的场景示意图。如图6F所示,带宽为320MHz时,所包含的MRU,有13种模式。模式一至模式十可根据图6F,并结合上述根据图6B至图6D的相关描述进行理解。
模式十一中,若下一代通信标准(例如802.11be)允许320MHz的带宽包括2*996+484-tone RU。若需要满足组成该2*996+484-tone RU的2*996-tone RU位于连续的160MHz,组成该2*996+484-tone RU的484-tone RU可位于8个不同的40MHz,该模式十一共有8种可能的组合情况(8cases)。若需要满足组成该2*996+484-tone RU 的2*996-tone RU和484-tone RU位于连续的240MHz内,组成该2*996+484-tone RU的484-tone RU可位于4个不同的40MHz,则该模式十一共有4种可能的组合情况(4cases)。
模式十二中,若下一代通信标准(例如802.11be)允许320MHz的带宽包括2*996+484-tone RU和484+242-tone RU。若需要满足组成该2*996+484-tone RU的2*996-tone RU位于连续的160MHz,则组成该2*996+484-tone RU的2*996-tone RU和484-tone RU共用8种可能的组合情况;484+242-tone RU可位于未覆盖2*996+484-tone RU的80MHz内,484+242-tone RU在一个80MHz内有4种可能的组合情况。这样该模式十二共有8*4=32种看的组合情况(32cases)。
模式十三中,若下一代通信标准(例如802.11be)允许320MHz的带宽可包括2*996+484-tone RU和996+484-tone RU,且MRU组内的RU必须连续,该模式十三共2种可能的组合情况(2cases)。一种可能的组合情况是,2*996+484-tone RU由位于该320MHz的最低频率的160MHz对应的2*996-tone RU和第3个80MHz的最低频率的40MHz对应的484-toneRU组合而成,996+484-tone RU由该320MHz第3个80MHz的最高频率的40MH在对应的484-tone RU和第4个80MHz对应的996-tone RU组合而成。另一种可能的组合情况是996+484-tone RU由该320MHz的第1个80MHz对应的996-tone RU和第2个80MHz的最低频率的40MHz对应的484-tone RU组合而成,2*996+484-tone RU由低2个80MHz的最高频率的40MHz对应的484-tone RU,以及第3个80MHz和第4个80MHz对应的996-tone RU组合而成。
STA可按照表8所示的识别MRU组合的方法表,识别320MHz内的MRU组合类型以及组成该MRU的RU的组合情况,从而可以实现在带宽为320MHz的情况下将多个RU分配给一个或多个站点。应理解,表8中每一行的各个80MHz的MRU个数是可以交换的。同一行的各个80MHz的MRU个数交换,所对应的MRU组合类型不变。
表8
Figure PCTCN2021104045-appb-000008
Figure PCTCN2021104045-appb-000009
例如,当STA根据该320MHz对应的资源单元分配子字段,识别该320MHz的第1个80MHz包括4个242-tone RU属于MRU,第2个80MHz包括2个242-tone RU属于MRU,第3个80MHz包括0个242-tone RU属于MRU,第4个80MHz包括0个242-tone RU属于MRU时,确定该320MHz包括1个996+484-tone RU。该996+484-tone RU位于320MHz的第1个80MHz和第2个80MHz的最低频率的40MHz。
或者,STA根据该320MHz对应的资源单元分配子字段,识别该240MHz的第1个80MHz包括0个242-tone RU属于MRU,第2个80MHz包括0个242-tone RU属于MRU,第3个80MHz包括4个242-tone RU属于MRU,第4个80MHz包括2个242-tone RU属于MRU时,确定该240MHz包括1个996+484-tone RU。该996+484-tone RU位于320MHz的第3个80MHz和第4个80MHz的最低频率的40MHz。
下一代通信标准(例如802.11be)可规定320MHz的带宽可包括2*996+484-tone RU和996+484-tone RU时,仅支持一种组合情况。
在模式十三的场景下,如图6G所示的320MHz所包含的MRU的组合情况的场景示意图,传输PPDU的带宽为320MHz时,2*996+484-tone RU位于该320MHz的最低频率的200MHz,996+484-tone RU位于该320MHz的最高频率的160MHz。PPDU的信令字段中,该320MHz的第1-16个242-tone RU对应的资源单元分配子字段可以采用表5中的一个索引进行指示,指示对应的242-tone RU属于MRU。这样接收PPDU的STA,可根据信令字段中的资源单元分配子字段1-16,结合表8,确定320MHz中的1-16个20MHz,均对应MRU,且该320MHz包括一个2*996+484-tone RU和一个 996+484-tone RU。然而,STA无法根据该资源单元分配子字段确定该320MHz中,哪10个242-tone RU属于2*996+484-tone RU,哪6个242-tone RU属于996+484-tone RU。
例如,资源单元分配子字段1-16指示320MHz中的1-16个242-tone RU,均对应MRU时,可能是第1-10个242-tone RU属于一个2*996+484-tone RU,第11-16个242-tone RU属于一个996+484-tone RU;也可能是第1-6个242-tone RU属于一个996+484-tone RU,第7-16个242-tone RU属于一个2*996+484-tone RU。这样接收PPDU的STA无法准确地确定RU的组合情况。
由此可见,表5的索引方式,传输PPDU的带宽的320MHz包括2*996+484-tone RU和996+484-tone RU的情况下,无法准确的指示组成2*996+484-tone RU的2*996-tone RU和484-tone RU,以及组成996+484-tone RU的996-tone RU和484-tone RU。这样接收PPDU的STA中,被分配2*996+484-tone RU的STA,无法根据资源单元分配子字段确定自己被分配的2*996+484-tone RU是由哪一个2*996-tone RU和哪一个484-tone RU组成的。这种情况下。AP也就无法实现将该2*996+484-tone RU或996+484-tone RU分配给一个或多个站点。
在另一种指示MRU的方案中,资源单元分配子字段指示该资源单元分配子字段对应的242-tone RU具体属于哪一种MRU,以及指示在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目。具体的,资源单元分配子字段可采用表9中的索引进行指示。
表9
Figure PCTCN2021104045-appb-000010
Figure PCTCN2021104045-appb-000011
表9中的任一索引,用于指示资源单元分配子字段对应的242-tone RU属于哪一种MRU,且指示在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目。其中,在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目是指,在该资源单元分配子字段所在的EHT-SIG内容信道中,与该资源单元分配子字段对应的用户字段的数目。与该资源单元分配子字段对应的用户字段为,被分配该资源单元分配子字段指示的资源单元的用户的用户字段。
可选的,表9中的指示的用户字段的数目为1-8的任一索引,可包括指示RU分配的部分和指示用户字段的部分。指示RU分配的部分指示资源单元分配子字段对应的242-tone RU属于哪一种MRU。指示用户字段的部分,指示在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目。
指示用户字段的部分例如可以为3比特,指示在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段数为1-8中的一个。
具体的,表9中的指示用户字段的数目为1-8的任一索引的结构可以为k nk n-1…k 2k 1y 2y 1y 0,其中,k nk n-1…k 2k 1为指示RU分配的部分,n为指示RU分配的部分的比特数,y 2y 1y 0为指示用户字段的部分,为3比特,分别指示1-8个用户字段。
在一个具体的例子中,传输PPDU的带宽为320MHz时,第1-10个242-tone RU属于一个2*996+484-tone RU,第11-16个242-tone RU属于一个996+484-tone RU。PPDU的信令字段中,该320MHz的第1-10个242-tone RU对应的资源单元分配子字段可以采用表9中的索引19-索引27中的索引,指示对应的242-tone RU属于2*996+484-tone RU。该320MHz的第11-16个242-tone RU对应的资源单元分配子字段可采用表9中的索引1-9中,指示对应的242-tone RU属于996+484-tone RU。
这样接收PPDU的STA,可根据信令字段中的资源单元分配子字段1-16,确定320MHz中的第1-10个242-tone RU属于一个2*996+484-tone RU,第11-16个242-tone RU属于一个996+484-tone RU。由此可见,这样的方案可以准确的指示传输PPDU的 带宽为320MHz时,第1-10个242-tone RU属于一个2*996+484-tone RU,第11-16个242-tone RU属于一个996+484-tone RU的情况。
也即是说,这样的方案可以准确地指示传输PPDU的带宽的320MHz包括2*996-tone RU和996+484-tone RU时,资源单元分配子字段采用表9中的索引可以准确地指示组成2*996+484-tone RU的2*996-tone RU和484-tone RU,以及组成996+484-tone RU的996-tone RU和484-tone RU。这样接收PPDU的STA中,被分配2*996+484-tone RU的STA,能够根据资源单元分配子字段确定自己被分配的2*996+484-tone RU是由哪一个2*996-tone RU和哪一个484-tone RU组成的。
又例如,传输PPDU的带宽为240MHz时,照频率由低至高的顺序,第1-6个242-tone RU属于一个484+996tone RU。第7-12个242-tone RU属于一个996+484-tone RU。第1-4个242-tone RU可理解为第1个80MHz中的第1-4个242-tone RU,第5-8个20MHz可理解为第2个80MHz中的第1-4个242-tone RU,第9-12个20MHz可理解为第3个80MHz中的第1-4个242-tone RU。
PPDU的信令字段中包括与该240MHz的第1-12个第1-4个242-tone RU分别对应的资源单元分配子字段1~资源单元分配子字段12,资源单元分配子字段1-12可以采用上述表8中的一个索引进行指示。这样接收PPDU的STA,可根据信令字段中的资源单元分配子字段1-12,确定240MHz中的1-12个第1-4个242-tone RU,均属于996+484-tone RU。根据上述图6E对应的描述可知,每个996+484-tone RU包含的242-tone RU的情况并不是单一的。例如,可能是第1-4个242-tone RU和第7-8个242-tone RU属于一个996+484-tone RU,第5-6个242-tone RU和第9-12个242-tone RU属于一个996+484-tone RU;也可能是第1-6个242-tone RU属于一个996+484-tone RU,第7-12个242-tone RU属于一个996+484-tone RU。
由此可见,资源单元分配子字段采用表9中的索引进行指示的方案,在240MHz包括2个(996+484)-tone RU的情况下,资源单元分配子字段无法通过表9的索引指示组成每个996+484-tone RU的996-tone RU和484-tone RU。接收PPDU的STA无法确定该240MHz中,确定哪一个996-tone RU和哪一个484-tone RU组成了一个996+484-tone RU,也就无法实现将该其中一个996+484-tone RU或2个(996+484)-tone RU分配给一个或多个站点。
本申请实施例提供一些能够解决资源单元分配子字段无法准确指示320MHz包括的2*996+484-tone RU和996+484-tone RU的方案。
该方案中的2*996+484-tone RU指由相对较低频率的2*996-tone RU和频率相对较高的484-tone RU组成的MRU,和由频率相对较低的484-tone RU和相对较高频率的2*996-tone RU组成的MRU。该方案中的996+484-tone RU指由频率相对较低的996-tone RU和频率相对较高的484-tone RU组成的MRU,和由频率相对较低的484-tone RU和频率相对较高的996-tone RU组成的MRU。
在一些实施例中,通信标准(例如802.11be以及802.11be之后的标准)规定,不允许在连续的320MHz内包括2*996+484-tone RU和996+484-tone RU。这样资源单元 分配子字也就不需要指示320MHz内的2*996+484-tone RU和996+484-tone RU,从而可以解决无法准确指示的问题。
在另一些实施例中,通信标准(例如802.11be以及802.11be之后的标准)规定,320MHz包括2*996+484-tone RU和996+484-tone RU时,组成2*996+484-tone RU的2*996-tone RU和484-tone RU,以及组成996+484-tone RU的996-tone RU和484-tone RU仅有一种组合情况。
例如,如图7A所示的240MHz所包含的MRU的组合情况的场景示意图,通信标准可以规定320MHz包括2*996+484-tone RU和996+484-tone RU时,该320MHz中按照绝对频率从低到高的顺序为2*996-tone RU,484-tone RU,484-tone RU,996-tone RU。也即,该320MHz的第1个80MHz和第2个80MHz对应的2*996-tone RU和第3个80MHz的第1个40MHz对应的484-tone RU组成2*996+484-tone RU,第3个80MHz的第2个40MHz对应的484-tone RU和第4个80MHz对应的996-tone RU组成996+484-tone RU。
又例如,如图7B所示的240MHz所包含的MRU的组合情况的场景示意图,通信标准可以规定320MHz包括2*996-tone+484 RU和996+484-tone RU时,该320MHz中按照绝对频率从低到高的顺序为996-tone RU,484-tone RU,484-tone RU,2*996-tone RU。也即,该320MHz的第1个80MHz对应的996-tone RU和第2个80MHz的第1个40MHz对应的484-tone RU组成996+484-tone RU;第2个80MHz的第2个40MHz对应的484-tone RU,与第3个80MHz和第4个80MHz对应的2*996-tone RU组成996+484-tone RU。
当然,通信标准规定的320MHz包括2*996+484-tone RU和996+484-tone RU时,组成2*996+484-tone RU的2*996-tone RU和484-tone RU,以及组成996+484-tone RU的996-tone RU和484-tone RU也可以是其他组合情况,本申请不限定通信标准具体规定允许哪一种组合情况。
这样,接收PPDU的STA只需要根据资源单元分配子字段,识别出320MHz包括2*996+484-tone RU和996+484-tone RU,就可以确定组成2*996-tone+484 RU的2*996-tone RU和484-tone RU,以及组成996+484-tone RU的996-tone RU和484-tone RU。
例如,资源单元分配子字段可采用表5中的索引或表9中的索引指示320MHz包括2*996+484-tone RU和996+484-tone RU时,STA能够根据资源单元分配子字段,识别出320MHz包括2*996+484-tone RU和996+484-tone RU,并进而确定组成2*996-tone+484 RU的2*996-tone RU和484-tone RU,以及组成996+484-tone RU的996-tone RU和484-tone RU。
本申请中,第1个80MHz、第2个80MHz、第3个80MHz、第4个80MHz是按照频率由低至高的顺序排序得到的。类似的,第X个20MHz、第Y个40MHz、第Z个160MHz,也是按照频率由低至高的顺序排序得到的。其中,X、Y、Z为排序号。
本申请实施例还提供一些指示MRU中的单个RU的频率位置的指示方案,在传输 PPDU的240MHz的带宽包括由484-tone RU和996-tone RU组成的MRU时,接收该PPDU的STA能够确定准确地确定哪个484-tone RU和哪个996-tone RU组成了一个MRU。
具体的,本申请实施例中,对160MHz中的484-tone RU和996-tone RU进行标号。例如,如图8A所示的本申请实施例的资源单元的标号示意图,160MHz内的4个484-tone RU,按照绝对频率由低至高的顺序,依次为第1个484-tone RU(1 st 484-tone RU)、第2个484-tone RU(2 st 484-tone RU)、第3个484-tone RU(3 st 484-tone RU)和第4个484-tone RU(4 st 484-tone RU)。这第1-4个484-tone RU在该160MHz中的RU标号依次为1、2、3、4。
160MHz内的2个996-tone RU,按照绝对频率由低至高的顺序,依次为第1个996-tone RU(1 st 484-tone RU)、第2个996-tone RU(2 st 484-tone RU)。这第1-2个996-tone RU在该160MHz中的RU标号依次为1、2。
可选的,也可以对80MHz内的242-tone RU和484-tone RU进行标号。例如,如图8A所示,80MHz内的2个484-tone RU,按照绝对频率由低至高的顺序,依次为第1个484-tone RU(1st 484-tone RU)、第2个484-tone RU(2st 484-tone RU)。这第1个和第2个484-tone RU在该80MHz中的RU标号依次为1、2。80MHz内的4个242-tone RU,按照绝对频率由低至高的顺序,依次为第1个242-tone RU(1st 242-tone RU)、第2个242-tone RU(2st 242-tone RU)、第3个242-tone RU(3st 242-tone RU)和第4个242-tone RU(4st 242-tone RU)。这第1-4个242-tone RU在该80MHz中的RU标号依次为1、2、3、4。
本申请实施例提供的第1种指示MRU中的单个RU的频率位置的指示方案中,PPDU的信令字段中,指示由484-tone RU和996-tone RU组成的MRU的资源单元分配子字段通过指示组成该MRU的484-tone RU和996-tone RU在该MRU所在的160MHz中的RU标号,指示组成该MRU的484-tone RU和996-tone RU在该996+484-tone RU所在的160MHz中的频率位置。
基于上述第1种指示MRU中的单个RU的频率位置的指示方案,本申请实施例还提供的一种根据信令字段确定组成MRU的484-tone RU和996-tone RU的频率位置的方案。该方案中,传输PPDU的带宽中的连续的240MHz包括由484-tone RU和996-tone RU组成的MRU时,接收PPDU的STA根据信令字段中的资源单元分配子字段获取组成该MRU的484-tone RU和996-tone RU的频率位置时,跳过该240MHz中的第2个80MHz对应的资源单元分配指示子字段。STA根据该240MHz中的第1个80MHz和/或第3个80MHz对应的资源单元分配指示子字段指示的,组成MRU的484-tone RU和996-tone RU在该MRU所在的160MHz中的RU标号,确定组成MRU的484-tone RU和996-tone RU在该MRU所在的160MHz中的频率位置。STA根据指示该MRU的资源单元分配子字段是与第1个80MHz对应的资源单元分配子字段还是与第3个80MHz对应的资源单元分配子字段,确定该MRU所在的160MHz是该240MHz中的最低频率的160MHz,还是最高频率的160MHz,从而确定哪个484-tone RU和哪个996-tone RU组成了一个MRU。
当然,在其他实施例中,也可以采用其他的标号方案,本申请实施例中,以图8A中的标号方案为例进行阐述。
下面结合本申请实施例提供的PPDU的传输方法详细阐述本申请实施例提供的技术方案。
本申请实施例以AP向STA发送PPDU的实施例进行说明,本申请的方法也适用于AP向AP发送PPDU的场景,STA向STA发送PPDU的场景。
本实施例中的996+484-tone RU是由频率相对较低的996-tone RU和频率相对较高的484-tone RU组成的MRU。本申请的PPDU的传输方法实施例中的484+996-tone RU是由频率相对较低的484-tone RU和频率相对较高的996-tone RU组成的MRU。
如图8B所示的PPDU的传输方法的流程示意图。PPDU的传输方法包括:
801、AP生成PPDU;
传输PPDU的带宽包括连续的240MHz。该240MHz包括由996-tone RU和484-tone RU组成的MRU,该MRU为996+484-tone RU或484+996-tone RU。为便于描述,本实施例中的MRU均可以理解为996+484-tone RU或484+996-tone RU。可选的,传输PPDU的带宽为连续的240MHz。
该PPDU包括该240MHz对应的多个资源单元分配子字段,其中包括至少一个与该MRU对应的资源单元分配子字段,与该MRU对应的资源单元分配子字段指示组成该MRU的484-tone RU和996-tone RU在该MRU所在的160MHz中的RU标号。
240MHz中的第1个80MHz对应的资源单元分配子字段和/或第3个80MHz对应的资源单元分配子字段中,与MRU对应的资源单元分配子字段,用于确定或指示组成该MRU的484-tone RU和996-tone RU在该240MHz中的频率为位置。
可选的,PPDU包括信令字段,该信令字段包括公共字段和用户特定字段。公共字段包括该240MHz对应的多个资源单元分配子字段。用户特定字段包括用户字段。
可选的,与该MRU对应的资源单元分配子字段还用于指示该MRU对应的用户字段,或者说,与该MRU对应的资源单元分配子字段还用于指示在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目。
该PPDU的结构可以是但不限于是图5C所示的结构。该信令字段例如可以是但不限于是图5C所示的PPDU中的EHT-SIG。
802、AP发送PPDU;
对应的STA接收PPDU。
803、STA根据资源单元分配子字段识别出该240MHz包括由484-tone RU和996-tone RU组成的MRU。
具体的,STA可根据信令字段中,该240MHz对应的多个资源单元分配子字段识别出该240MHz包括由484-tone RU和996-tone RU组成的MRU。
本申请实施例的方案,适用于240MHz的最低频率的160MHz包括1个由996-tone RU和484-tone RU组成的MRU的场景;也适用于240MHz的最高频率的160MHz包括1个由996-tone RU和484-tone RU组成的MRU的场景;还适用于240MHz包括2个MRU,每个MRU均由996-tone RU和484-tone RU组成的场景。240MHz包括2个 MRU,每个MRU均由996-tone RU和484-tone RU组成的场景下,组成其中一个MRU的484-tone RU和996-tone RU在该240MHz的最低频率的160MHz,组成另一个MRU的484-tone RU和996-tone RU在该240MHz的最高频率的160MHz。
为便于描述,本申请实施例中,将由该240MHz的最低频率的160MHz中的484-tone RU和996-tone RU组成的MRU称为低频率的MRU,将由该240MHz的最高频率的160MHz中的484-tone RU和996-tone RU组成的MRU称为高频率的MRU。
在一种可能的实现方式中,240MHz包括低频率的MRU,STA可以根据第1个80MHz对应的资源单元分配子字段和/或第2个80MHz对应的资源单元分配子字段,识别出该240MHz包括由484-tone RU和996-tone RU组成的MRU。
在另一种可能的实现方式中,240MHz包括高频率的MRU,STA可以根据第2个80MHz对应的资源单元分配子字段和/或第3个80MHz对应的资源单元分配子字段,识别出该240MHz包括由484-tone RU和996-tone RU组成的MRU。
在又一种可能的实现方式中,240MHz包括低频率的MRU和高频率的MRU,STA可以根据240MHz中的任一个或多个80MHz对应的资源单元分配子字段,识别出该240MHz包括由484-tone RU和996-tone RU组成的MRU。
804、STA根据240MHz中的第1个80MHz和/或第3个80MHz对应的资源单元分配子字段中,与该MRU对应的资源单元分配子字段,获取组成该MRU的484-tone RU和996-tone RU在该MRU所在的160MHz中的RU标号。
应理解,第1个80MHz对应的资源单元分配子字段中,与MRU对应的资源单元分配子字段,指示的MRU所在的160MHz为该240MHz的最低频率的160MHz;第3个80MHz对应的资源单元分配子字段,与MRU对应的资源单元分配子字段,指示的MRU所在的160MHz为该240MHz的最高频率的160MHz。
本申请中,STA根据第1个80MHz对应的资源单元分配子字段和/或第3个80MHz对应的资源单元分配子字段中的与该MRU对应的资源单元分配子字段,获取组成该MRU的484-tone RU和996-tone RU在该MRU所在的160MHz中的RU标号,能够确定组成该MRU的484-tone RU和996-tone RU在该MRU所在的160MHz中的频率位置。STA也能够根据与该MRU对应的资源单元分配子字段是与第1个80MHz对应的资源单元分配子字段,还是与第3个80MHz对应的资源单元分配子字段,确定该MRU所在的160MHz在该240MHz中的位置,从而能够结合组成该MRU的484-tone RU和996-tone RU在该MRU所在的160MHz中的频率位置,得到该MRU在240MHz中的频率位置。
这样,STA在确定组成484+996-tone RU或996+484-tone RU的996-tone RU和484-tone RU在240MHz中的频率位置时,跳过第2个80MHz的资源单元分配子字段。STA根据第1个80MHz对应的资源单元分配子字段和/或第3个80MHz对应的资源单元分配子字段,能够准确地确定该240MHz中,哪个484-tone RU和哪个996-tone RU组成了一个484+996-tone RU或996+484-tone RU。AP可以实现将240MHz中的由996-tone RU和484-tone RU组成的484+996-tone RU和/或996+484-tone RU分配给一 个或多个站点。
应理解,STA在确定除该MRU之外的其他RU在240MHz中的频率位置时,并不一定要跳过第2个80MHz的资源单元分配子字段。STA可以根据第2个80MHz的资源单元分配子字段确定除该MRU之外的其他RU在240MHz中的频率位置。
关于STA确定组成MRU的484-tone RU和996-tone RU在240MHz中的频率位置的方案,本申请列举以下几种可能的实施例。应理解,STA确定组成MRU的484-tone RU和996-tone RU在240MHz中的频率位置的方案,并不限于以下的几种实施例。
在一些实施例中,在240MHz包括2个MRU,每个MRU均由484-tone RU和996-tone RU组成的,第1个80MHz对应的996-tone RU与第2个80MHz中的一个484-tone RU组合为MRU,第3个80MHz对应的996-tone RU与第2个80MHz中的另一个484-tone RU组合为MRU。
STA根据资源单元分配子字段确定该240MHz中的组成每个MRU的484-tone RU和996-tone RU时,跳过第2个80MHz对应的资源单元分配子字段,根据第1个80MHz和第2个80MHz对应的资源单元分配子字段确定组成每个MRU的484-tone RU和996-tone RU。
具体的,该2个MRU包括一个低频率的MRU和一个高频率的MRU。第1个80MHz对应的资源单元分配子字段指示的MRU为低频率的MRU,第2个80MHz对应的资源单元分配子字段指示的MRU为高频率的MRU。
STA可根据第1个80MHz对应的资源单元分配子字段,确定组成低频率的MRU的484-tone RU和996-tone RU在该低频率的MRU所在的160MHz中的频率位置,以及确定该低频率的MRU所在的160MHz为该240MHz中的最低频率的160MHz。这样STA能够根据第1个80MHz对应的资源单元分配子字段,确定组成低频率的MRU的484-tone RU和996-tone RU在该240MHz的最低频率的160MHz中的频率位置,从而能够确定组成该低频率的MRU的484-tone RU和996-tone RU在该240MHz中的频率位置。
STA可根据第3个80MHz对应的资源单元分配子字段,确定组成高频率的MRU的484-tone RU和996-tone RU在该高频率的MRU所在的160MHz中的频率位置,以及确定该高频率的MRU所在的160MHz为该240MHz中的最高频率的160MHz。这样STA能够根据第3个80MHz对应的资源单元分配子字段,确定组成高频率的MRU的484-tone RU和996-tone RU在该240MHz的最高频率的160MHz中的频率位置,从而能够确定组成该高频率的MRU的484-tone RU和996-tone RU在该240MHz中的频率位置。
由此可见,本实施例的技术方案,在240MHz包括2个MRU,每个MRU均由484-tone RU和996-tone RU组成时,STA根据第1个80MHz对应的资源单元分配子字段和第3个80MHz对应的资源单元分配子字段,可以准确地确定组成每个MRU的484-tone RU和996-tone RU在该240MHz中的频率位置。
例如,如图8C所示的240MHz所包含的MRU的组合情况的场景示意图,第1个 80MHz对应的4个资源单元分配子字段中,与MRU对应的资源单元分配子字段,指示组成该MRU的484-tone RU在该MRU所在的160MHz中的RU标号为3,以及指示组成该MRU的996-tone RU在该MRU所在的160MHz中的RU标号为1。第3个80MHz对应的资源单元分配子字段中,与MRU对应的资源单元分配子字段,指示组成该MRU的484-tone RU在该MRU所在的160MHz中的RU标号为2,以及指示组成该MRU的996-tone RU在该MRU所在的160MHz中的RU标号为2。
第1个80MHz对应的资源单元分配子字段所指示的MRU,为低频率的MRU,该MRU所在的160MHz为该240MHz中的最低频率的160MHz。第3个80MHz对应的资源单元分配子字段所指示的MRU,为高频率的MRU,该MRU所在的160MHz为该240MHz中的最高频率的160MHz。
这样STA能够根据第1个80MHz对应的资源单元分配子字段中,与MRU对应的资源单元分配子字段,确定组成该MRU的996-tone RU为240MHz的最低频率的160MHz中的第1个996-tone RU,组成该MRU的484-tone RU为240MHz的最低频率的160MHz中的第3个484-tone RU,从而也就确定了组成该MRU的484-tone RU和996-tone RU在该240MHz中的位置。STA可根据第3个80MHz对应的资源单元分配子字段中,与MRU对应的资源单元分配子字段,确定组成该MRU的996-tone RU为240MHz的最高频率的160MHz中的第2个996-tone RU,组成该MRU的484-tone RU为240MHz的最高频率的160MHz中的第2个484-tone RU,从而也就确定了组成该MRU的484-tone RU和996-tone RU在该240MHz中的位置。
在另一些实施例中,240MHz包括一个由484-tone RU和996-tone RU组成的MRU,STA也能够根据第1个80MHz对应的资源单元分配子字段或第3个80MHz对应的资源单元分配子字段识别出该MRU所在的160MHz在该160MHz中的位置,并根据与该MRU对应的资源单元分配子字段确定组成该MRU的484-tone RU和996-tone RU在该MRU所在的160MHz,从而能够实现确定组成该MRU的484-tone RU和996-tone RU在该240MHz中的位置。
STA根据第1个80MHz对应的资源单元分配子字段或第3个80MHz对应的资源单元分配子字段,确定组成MRU的484-tone RU和996-tone RU在该240MHz中的位置具体实现逻辑请参上述240MHz包括2个MRU,每个MRU均由484-tone RU和996-tone RU组成的实施例中,STA确定组成其中任一个MRU的484-tone RU和996-tone RU的方案,此处不再重复描述。
可选的,本申请实施例提供的第1种指示MRU中的单个RU的频率位置的指示方案中,PPDU的信令字段中,指示484+242-tone RU或242+484-tone RU的资源单元分配子字段,可指示组成该484+242-tone RU或242+484-tone RU的484-tone RU和242-tone RU在该484+242-tone RU所在的80MHz中的RU标号。PPDU的信令字段中,指示2*996+484-tone RU或484+2*996-tone RU的资源单元分配子字段,可指示组成该2*996+484-tone RU或484+2*996-tone RU的2*996-tone RU和484-tone RU在该484+242-tone RU所在的240MHz中的RU标号。
应理解,本申请实施例中,STA确定该由484-tone RU和996-tone RU组成的MRU对应的用户字段的数量时,可将第2个80MHz对应的一个或多个资源单元分配子字段中,与MRU对应的资源单元分配子字段作为确定该MRU对应的用户字段的数量依据,也可以不将第2个80MHz对应的一个或多个资源单元分配子字段中,与该MRU对应的资源单元分配子字段作为确定该MRU对应的用户字段的数量依据。也即是说,第2个80MHz对应的资源单元分配子字段中,与该MRU对应的资源单元分配子字段,可用于确定该MRU对应的用户字段的数量,也可以不用于确定该MRU对应的用户字段的数量。第2个80MHz对应的资源单元分配子字段中,与该MRU对应的资源单元分配子字段用于确定该MRU对应的用户字段的数量时,所指示的该MRU对应的用户字段的数量可以为0,也可以不指示用户字段的数量。
下面结合具体的举例阐述STA确定组成MRU的996-tone RU和484-tone RU,以及确定该MRU对应的用户字段的数量的方案。
具体地,资源单元分配子字段可采用表10中的一个索引进行指示。指示MRU的资源单元分配子字段指示该资源单元分配子字段对应的242-tone RU具体属于哪一种MRU,指示组成该MRU对应的RU在一段连续的频域范围中的RU标号,以及指示该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目。RU表号的规则可参考图8A对应的相关描述。
表10
Figure PCTCN2021104045-appb-000012
Figure PCTCN2021104045-appb-000013
表10中的任一索引,用于指示资源单元分配子字段对应的242-tone RU属于哪一种MRU,组成该MRU的RU在该MRU所在的一段连续的频率中的RU标号,以及指示在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目。其中,在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目是指,在该资源单元分配子字段所在的EHT-SIG内容信道中,与该资源单元分配子字段对应的用户字段的数目。与该资源单元分配子字段对应的用户字段为,被分配该资源单元分配子字段指示的资源单元的用户的用户字段。
可选的,表10中的指示用户字段的数目为1-8的任一索引,可包括指示RU分配的部分和指示用户字段的部分。指示RU分配的部分指示资源单元分配子字段对应的242-tone RU属于哪一种MRU,组成该MRU的RU在该MRU所在的一段连续的频率中的RU标号,指示用户字段的部分,指示在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目。
具体的,表10中的指示用户字段的数目为1-8的任一索引的结构可以为k nk n-1…k 2k 1y 2y 1y 0,其中,k nk n-1…k 2k 1为指示RU分配的部分,n为指示RU分配的部分的比特数,y 2y 1y 0为指示用户字段的部分,为3比特,分别指示1-8个用户字段。
关于表10中的各个索引指示的用户字段的数目,请参阅表10中每个索引对应的指示的内容部分。下面具体解释表10中的各个索引指示的MRU的组合情况的含义。
表10中括号内的数值可理解为括号前的数值指示的RU对应的RU标号。
表10中的索引1-9指示资源单元分配子字段对应的242-tone RU属于242+484-tone RU,组成该242+484-tone RU的242-tone RU在该242+484-tone RU所在的RU标号为1,组成该242+484-tone RU的484-tone RU在该242+484-tone RU所在的RU标号为2。STA能够根据表10中的索引1-9确定该242+484-tone RU是由80MHz内的第1个242-tone RU和80MHz内的第2个484-tone RU合并而成的。
表10中的索引10-18指示资源单元分配子字段对应的242-tone RU属于242+484-tone RU,组成该242+484-tone RU的242-tone RU在该242+484-tone RU所在的RU标号为2,组成该242+484-tone RU的484-tone RU在该242+484-tone RU所在的RU标号为2。STA能够根据表10中的索引10-18确定该242+484-tone RU是由该242+484-tone RU所在的80MHz内的第2个242-tone RU和该80MHz内的第2个484-tone RU合并而成的。
表10中的索引19-27指示资源单元分配子字段对应的242-tone RU属于484+242-tone RU,组成该484+242-tone RU的484-tone RU在该484+242-tone RU所在的RU标号为1,组成该484+242-tone RU的242-tone RU在该484+242-tone RU所在的RU标号为4。STA能够根据表10中的索引19-27确定该484+242-tone RU是由该484+242-tone RU所在的80MHz内的第1个484-tone RU和该80MHz内的第4个242-tone RU合并而成的。
表10中的索引28-36指示资源单元分配子字段对应的242-tone RU属于484+242-tone RU,组成该484+242-tone RU的484-tone RU在该484+242-tone RU所在的RU标号为1,组成该484+242-tone RU的242-tone RU在该484+242-tone RU所在的RU标号为3。STA能够根据表10中的索引28-36确定该484+242-tone RU是由该484+242-tone RU所在的80MHz内的第1个484-tone RU和该80MHz内的第3个242-tone RU合并而成的。
表10中的索引37-45指示资源单元分配子字段对应的242-tone RU属于484+996-tone RU,组成该484+996-tone RU的484-tone RU在该484+996-tone RU所在的RU标号为1,组成该484+996-tone RU的996-tone RU在该484+996-tone RU所在的RU标号为2。STA能够根据表10中的索引37-45确定该484+996-tone RU是由该 484+996-tone RU所在的160MHz内的第1个484-tone RU和该160MHz内的第2个996-tone RU合并而成的。
表10中的索引46-54指示资源单元分配子字段对应的242-tone RU属于484+996-tone RU,组成该484+996-tone RU的484-tone RU在该484+996-tone RU所在的RU标号为2,组成该484+996-tone RU的996-tone RU在该484+996-tone RU所在的RU标号为2。STA能够根据表10中的索引46-54确定该484+996-tone RU是由该484+996-tone RU所在的160MHz内的第2个484-tone RU和该160MHz内的第2个996-tone RU合并而成的。
表10中的索引55-63指示资源单元分配子字段对应的242-tone RU属于996+484-tone RU,组成该996+484-tone RU的996-tone RU在该996+484-tone RU所在的RU标号为1,组成该996+484-tone RU的484-tone RU在该996+484-tone RU所在的RU标号为4。STA能够根据表10中的索引55-63确定该996+484-tone RU是由该996+484-tone RU所在的160MHz内的第1个996-tone RU和该160MHz内的第4个484-tone RU合并而成的。
表10中的索引64-72指示资源单元分配子字段对应的242-tone RU属于996+484-tone RU,组成该996+484-tone RU的996-tone RU在该996+484-tone RU所在的RU标号为1,组成该996+484-tone RU的484-tone RU在该996+484-tone RU所在的RU标号为3。STA能够根据表10中的索引64-72确定该996+484-tone RU是由该996+484-tone RU所在的160MHz内的第1个996-tone RU和该160MHz内的第3个484-tone RU合并而成的。
可以看出,指示484+242-tone RU或242+484-tone RU的资源单元分配子字段采用上述表10中的索引进行指示时,能够准确地指示组成该484+242-tone RU或242+484-tone RU的484-tone RU和242-tone RU在该484+242-tone RU或242+484-tone RU所在的80MHz中的RU标识,实现指示组成该484+242-tone RU或242+484-tone RU的484-tone RU和242-tone RU在该484+242-tone RU或242+484-tone RU所在的80MHz中的绝对位置。指示996+484-tone RU或484+996-tone RU的资源单元分配子字段采用上述表10中的索引进行指示时,能够准确地指示组成该996+484-tone RU或484+996-tone RU的996-tone RU和484-tone RU在该996+484-tone RU或484+996-tone RU所在的160MHz中的RU标识,实现指示组成该996+484-tone RU或484+996-tone RU的996-tone RU和484-tone RU在该996+484-tone RU或484+996-tone RU所在的160MHz中的绝对位置。
在一些实施例中,PPDU的信令字段中,与该240MHz对应的资源单元分配子字段,包含与该240MHz的第1个80MHz、第2个80MHz和第3个80MHz对应的资源单元分配子字段。
在这样的实施例中,接收PPDU的STA根据该240MHz的第1个80MHz和/或第3个80MHz的资源单元分配子字段确定该240MHz包含由996-tone RU和484-tone RU组合而成的MRU,以及组成该MRU的996-tone RU和484-tone RU在该240MHz中的 频率位置。
STA确定MRU对应的用户字段的数目的可能的实现方式至少包括以下两种。
一种可能的实现方式是该STA也可以根据与该240MHz的第1个80MHz、第2个80MHz和第3个80MHz的资源单元分配子字段确定该MRU对应的用户字段的数目。可以理解,这样的实现方式中,与该240MHz对应的第2个80MHz对应的资源单元分配子字段参与指示MRU对应的用户字段的数量。
例如,如图9A所示的资源单元分配的场景示意图,传输PPDU的带宽为240MHz时,照频率由低至高的顺序,该240MHz的第1个80MHz对应的996-tone RU与第2个80MHz的第1个40MHz对应的484-tone RU组成一个996+484-tone RU。该996+484-tone RU分配给4个用户。
该240MHz的第2个80MHz的第2个40MHz对应的484-tone RU与第3个80MHz对应的996-tone RU组成另一个996+484-tone RU。该484+996 RU分配给3个用户。
第1个80MHz可理解为第1-4个20MHz,第2个80MHz可理解为第5-8个20MHz,第3个80MHz可理解为第9-12个20MHz。
如图9B所示的信令字段的结构示意图,信令字段指示240MHz的资源单元分配情况的场景示意图,PPDU的信令字段中包括与该240MHz的第1个80MHz对应的资源单元分配子字段1-资源单元分配子字段6,以及与该240MHz的第3个80MHz对应的资源单元分配子字段7-资源单元分配子字段12。
该PPDU在2个内容信道传输。该2个内容信道可为内容信道1和内容信道2。资源单元分配子字段1、3、5、7、9和11可在内容信道1传输,资源单元分配子字段2、4、6、8、10和12可在内容信道2传输。
资源单元分配子字段1可采用表10中的索引66进行指示,指示该240MHz的第1个242-tone RU属于由996-tone RU和484-tone RU组成的996+484-tone RU,该996+484-tone RU是由该996+484--tone RU所在的160MHz中的第1个996-tone RU和该160MHz的第3个484-tone RU合并而成的,且该资源单元分配子字段所在的相同的EHT-SIG内容信道(内容信道1)的用户特定字段中,贡献2个用户字段。
资源单元分配子字段2可采用表10中的索引66进行指示,指示该240MHz的第2个242-tone RU对应996+484-tone RU,该996+484-tone RU是由该996+484--tone RU所在的160MHz中的第1个996-tone RU和该160MHz的第3个484-tone RU合并而成的,且该资源单元分配子字段所在的相同的EHT-SIG内容信道(内容信道2)的用户特定字段中,贡献2个用户字段。
资源单元分配子字段3-6可采用表10中的索引64进行指示,指示对应的242-tone RU属于996+484-tone RU,该996+484-tone RU是由该996+484-tone RU所在的160MHz中的第1个996-tone RU和该160MHz的第3个484-tone RU合并而成的,且该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献0个用户字段。
资源单元分配子字段7可采用表10中的索引48进行指示,指示该240MHz中的第2个80MHz的第3个242-tone RU属于996+484-tone RU,该484+996-tone RU由该 484+996tone RU所在的160MHz中的第2个484-tone RU和第2个996-tone RU组成,且该资源单元分配子字段所在的相同的EHT-SIG内容信道(内容信道1)的用户特定字段中,贡献2个用户字段。
资源单元分配子字段8可采用表10中的索引47进行指示,指示该240MHz中的第2个80MHz的第4个242-tone RU属于996+484-tone RU,该484+996-tone RU由该484+996tone RU所在的160MHz中的第2个484-tone RU和第2个996-tone RU组成,且该资源单元分配子字段所在的相同的EHT-SIG内容信道(内容信道2)的用户特定字段中,贡献1个用户字段。
资源单元分配子字段9-12可采用表10中的索引46进行指示,指示该240MHz中的第3个80MHz的4个242-tone RU属于996+484-tone RU,该484+996-tone RU由该484+996tone RU所在的160MHz中的第2个484-tone RU和第2个996-tone RU组成,且该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献0个用户字段。
图9B中,资源单元分配子字段5和资源单元分配子字段6指示的箭头为虚线箭头,表示资源单元分配子字段5和资源单元分配子字段6无法准确地指示资源单元分配子字段5和资源单元分配子字段6对应的该240MHz的第5个242-tone RU和第6个242-tone RU是与该240MHz的左侧的第1个80MHz的4个242-tone RU属于同一个MRU,还是与该240MHz的右侧的第3个80MHz的4个242-tone RU属于同一个MRU。资源单元分配子字段7和资源单元分配子字段8指示的箭头为虚线箭头,表示资源单元分配子字段7和资源单元分配子字段8无法准确地指示资源单元分配子字段7和资源单元分配子字段8对应的第7个242-tone RU和第8个242-tone RU是与该240MHz的左侧的第1个80MHz的4个242-tone RU属于同一个MRU,还是与该240MHz的右侧的第3个80MHz的4个242-tone RU属于同一个MRU。
具体地,STA根据该240MHz的第1个80MHz对应的资源单元分配子字段1-4,确定该240MHz的第1个80MHz的4个242-tone RU属于996+484-tone RU,该996+484-tone RU由996+484-tone RU所在的160MHz中的第1个996-tone RU和第3个484-tone RU组成。该996+484-tone RU所在的160MHz为该240MHz的最低频率的160MHz。那么STA可以确定该996+484-tone RU由在该240MHz中的第1个80MHz对应的996-tone RU和第2个80MHz的最低频率的40MHz对应的484-tone RU组成。
STA根据该资源单元分配子字段1-6所指示的用户字段的数目之和,确定该996+484-tone RU对应的用户字段的数目为4。
STA还根据该240MHz的第3个80MHz对应的资源单元分配子字段9-12,确定该240MHz的第3个80MHz的4个242-tone RU属于484+996-tone RU,该484+996-tone RU由该484+996-tone RU所在的160MHz中的第2个484-tone RU和第2个996-tone RU组成。该484+996-tone RU所在的160MHz为该240MHz的高频率的160MHz。那么STA可以确定该484+996-tone RU由在该240MHz中的第2个80MHz的最高频率的40MHz对应的484-tone RU和第3个80MHz对应的996-tone RU组成。
STA根据资源单元分配子字段7-12所指示的用户字段的数目之和,确定该 484+996-tone RU对应的用户字段的数目为3。
另一种可能的实现方式是该STA可根据与该240MHz的第1个80MHz和第3个80MHz的资源单元分配子字段确定该由996-tone RU和484-tone RU组合而成的MRU对应的用户字段的数目。可以理解,这样的实现方式中,与该240MHz对应的第2个80MHz对应的资源单元分配子字段不参与指示用户字段的数量。
例如,如图9C所示的信令字段的结构示意图,基于图9A的资源单元分配的举例,PPDU的信令字段中包括与该240MHz的第1个80MHz的4个242-tone RU对应的资源单元分配子字段1-资源单元分配子字段4,与该240MHz的第2个80MHz的4个242-tone RU对应的资源单元分配子字段5-资源单元分配子字段8,以及与该240MHz的第3个80MHz的4个242-tone RU对应的资源单元分配子字段9-资源单元分配子字段12。
该PPDU在2个内容信道传输。该2个内容信道可为内容信道1和内容信道2。资源单元分配子字段1、3、5、7、9和11可在内容信道1传输,资源单元分配子字段2、4、6、8、10和12可在内容信道2传输。
资源单元分配子字段1-6的指示方式以及资源单元分配子字段9-12的指示方式,可参考上述图9B对应的举例中,资源单元分配子字段1-6的指示方式以及资源单元分配子字段9-12的指示方式。
资源单元分配子字段7-8可采用表10中的索引46进行指示,指示该240MHz的第7个242-tone RU和第8个242-tone RU属于484+996tone RU,该484+996tone RU由该484+996tone RU所在的160MHz中的第2个484-tone RU和第2个996-tone RU组成,且该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献0个用户字段。
资源单元分配子字段5-8指示的箭头为虚线箭头,该虚线箭头的含义请参上述关于图9B的相关描述,此处不再重复说明。
这样,该STA在确定组成MRU的996-tone RU和484-tone RU时,跳过该240MHz的第2个80MHz对应的资源单元分配子字段5-8,根据该240MHz的第1个80MHz和第3个80MHz对应的资源单元分配子字段(资源单元分配子字段1-4、9-12),确定组成MRU的996-tone RU和484-tone RU在该240MHz中的频率位置,以及每个MRU对应的用户字段的数目。
具体地,STA根据该240MHz的第1个80MHz对应的资源单元分配子字段1-4,确定该240MHz的第1个80MHz的4个242-tone RU属于996+484-tone RU,该996+484-tone RU由该240MHz中的第1个80MHz对应的996-tone RU和第2个80MHz的最低频率的40MHz对应的484-tone RU组成,以及该996+484-tone RU对应的用户字段的数目为4。
STA还根据该240MHz的第3个80MHz对应的资源单元分配子字段9-12,确定该240MHz的第3个80MHz的4个242-tone RU属于484+996-tone RU,该484+996-tone RU由在该240MHz中的第2个80MHz的最高频率的40MHz对应的484-tone RU和第 3个80MHz对应的996-tone RU组成,以及该484+996-tone RU对应的用户字段的数目为3。
STA确定组成996+484-tone RU的996-tone RU和484-tone RU的方式以及确定组成484+996-tone RU的996-tone RU和484-tone RU的方式,请参考上述关于图9B的举例中的相关描述,此处不再重复说明。
在一些可能的实施例中,PPDU的信令字段中,与该240MHz对应的资源单元分配子字段,包含与该240MHz的第1个80MHz和第3个80MHz对应的资源单元分配子字段,而不包含与该240MHz的第2个80MHz对应的资源单元分配子字段。
这样的实施例中,接收PPDU的STA根据该240MHz的第1个80MHz和第3个80MHz的资源单元分配子字段确定该240MHz包含2个MRU、组成每个MRU的996-tone RU和484-tone RU在该240MHz中的频率位置,以及每个MRU对应的用户字段的数量。
例如,如图9A所示的资源单元分配的场景示意图,传输PPDU的带宽为240MHz时,照频率由低至高的顺序,第1-6个242-tone RU属于一个996+484-tone RU,该996+484-tone RU分配给4个用户;第7-12个20MHz对应一个484+996-tone RU,该484+996 RU分配给3个用户。第1-4个20MHz可理解为第1个80MHz,第5-8个20MHz可理解为第2个80MHz,第9-12个20MHz可理解为第3个80MHz。
如图9D所示的信令字段的结构示意图,PPDU的信令字段中包括与该240MHz的第1个80MHz对应的资源单元分配子字段1-资源单元分配子字段4,以及与该240MHz的第3个80MHz对应的资源单元分配子字段9-资源单元分配子字段12。
该PPDU在2个内容信道传输。该2个内容信道可为内容信道1和内容信道2。资源单元分配子字段1、3、9和11可在内容信道1传输,资源单元分配子字段2、4、10和12可在内容信道2传输。
资源单元分配子字段1-4和资源单元分配子字段9-12可采用上述表10的索引46-54中的索引进行指示。资源单元分配子字段1-4和资源单元分配子字段9-12的具体指示方案,请参上述图9C对应的举例中的相关描述,此处不再重复说明。
这样,STA可根据资源单元分配子字段1-资源单元分配子字段4中的任一个确定该240MHz的最低频率的160MHz的第1个80MHz对应的996-tone RU属于一个996+484-tone RU,且该240MHz的最低频率的160MHz的第1个996-tone RU和第3个484-tone RU组成该996+484-tone RU。STA还可根据源单元分配子字段1指示的用户字段的数目与资源单元分配子字段3指示的用户字段的数目之和,确定在内容信道1上传输的与该996+484-tone RU对应的用户字段的数目为2。STA也可根据源单元分配子字段2指示的用户字段的数目与资源单元分配子字段4指示的用户字段的数目之和,确定在内容信道2上传输的与该996+484-tone RU对应的用户字段的数目为2。也即,该996+484-tone RU对应的用户字段的数目为4。
类似地,STA可以根据资源单元分配子字段9-资源单元分配子字段12确定该240MHz的第3个80MHz对应的996-tone RU属于一个484+996-tone RU,且该 484+996-tone RU是由该240MHz的最低频率的160MHz的第2个484-tone RU和该最低频率的160MHz的第2个996-tone RU组合而成的。STA还可以根据源单元分配子字段9-资源单元分配子字段12,确定与该484+996-tone RU对应的用户字段的数目为3。
可选的,信令字段可包括资源单元分配子字段指示字段,指示信令字段中不存在与该240MHz的第2个80MHz对应的资源单元分配子字段。
在执行步骤804之前,站点先根据所述资源单元分配子字段指示字段,确定所述信令字段中不存在与所述240MHz的第2个80MHz对应的资源单元分配子字段。
这样,STA能够根据该资源单元分配子字段指示字段,确定与该240MHz对应的资源单元分配子字段只有与该240MHz对应的资源单元分配子字段包括与该240MHz的第1个80MHz对应的资源单元分配子字段和与该240MHz对应的第3个80MHz对应的资源单元分配子字段,而没有与该240MHz对应的资源单元分配子字段包括与该240MHz的第2个80MHz对应的资源单元分配子字段。STA根据与该240MHz的第1个80MHz对应的资源单元分配子字段和/或与该240MHz对应的第3个80MHz对应的资源单元分配子字段,确定组成MRU的996-tone RU和484-tone RU在该240MHz中的频率位置,以及确定MRU对应的用户字段。
这样的方案中,可省去执行步骤803。
该资源单元分配子字段指示字段可以为比特位图,该比特地图的每一位用于指示传输PPDU的信道带宽的每个242-tone-RU,在公共字段中是否存在对应的资源单元分配子字段。该比特位图指示信令字段中不存在与该240MHz中的第2个80MHz的4个242-tone-RU对应的资源单元分配子字段。
例如,基于图9A所示的举例,该比特位图可为12比特。每一比特对应一个242-tone-RU。每一比特指示信令字段中是否存在与该比特对应的242-tone-RU所对应的资源单元分配子字段。若用“1”指示一个粒度的频域资源,存在对应的资源单元分配子字段,用“0”指示一个粒度的频域资源,不存在对应的资源单元分配子字段,该比特地图具体可以为111100001111。当然,在其他实施例中,也可以用“0”指示一个粒度的频域资源,存在对应的资源单元分配子字段,用“1”指示一个粒度的频域资源,不存在对应的资源单元分配子字段。
在本申请实施例提供的第2种指示MRU中的单个RU的频率位置的指示方案中,对996+484-tone RU所在160MHz中的484-tone RU和996-tone RU采用图8A所示的方案进行标号。在该方案中,240MHz中的第2个80MHz的资源单元分配子字段,通过指示组成该996+484-tone RU的484-tone RU和996-tone RU在160MHz中的RU标号,以及指示该160MHz在该240MHz中的频率位置,实现指示组成该996+484-tone RU的484-tone RU和996-tone RU在240MHz中的频率位置。
基于上述第2种指示MRU中的单个RU的频率位置的指示方案,本申请实施例还提供另一种根据信令字段中确定组成MRU的484-tone RU和996-tone RU的频率位置的方案。该方案中,传输PPDU的带宽中的连续的240MHz包括由484-tone RU和 996-tone RU组成的MRU时,接收PPDU的STA根据信令字段中,该240MHz的第2个80MHz对应的资源单元分配子字段获取组成该MRU的484-tone RU和996-tone RU的频率位置。
下面结合本申请另一实施例提供的PPDU的传输方法详细阐述上述方案。
本实施例中的996+484-tone RU是由频率相对较低的996-tone RU和频率相对较高的484-tone RU组成的MRU。本申请的PPDU的传输方法实施例中的484+996-tone RU是由频率相对较低的484-tone RU和频率相对较高的996-tone RU组成的MRU。
如图10所示的流程示意图,申请另一实施例提供的PPDU的传输方法可包括以下步骤:
1001、AP生成PPDU;
传输该PPDU的带宽为240MHz,该240MHz包括由996-tone RU和484-tone RU组成的MRU,该MRU为996+484-tone RU或484+996-tone RU。为便于描述,本实施例中的MRU均可以理解为996+484-tone RU或484+996-tone RU。
该PPDU包括与该240MHz对应的多个资源单元分配子字段。该240MHz的第2个80MHz对应的多个资源单元分配子字段中,包括至少1个与该MRU对应的资源单元分配子字段,指示该MRU(996+484-tone RU或484+996-tone RU),以及指示组成该MRU的996-tone RU和484-tone RU在该240MHz中的频率位置。
例如,与该240MHz的第2个80MHz对应的一个或多个资源单元分配子字段中,与该MRU对应的资源单元分配子字段指示996+484-tone RU,指示组成该996+484-tone RU的996-tone RU和484-tone RU在该996+484-tone RU所在的160MHz中的RU标识,并指示该160MHz为该240MHz的低频率的160MHz,还是高频率的160MHz。其中,低频率的160MHz可理解为该240MHz的左侧的160MHz,高频率的160MHz可理解为该240MHz的右侧的160MHz。这样,与该MRU对应的资源单元分配子字段能够实现间接指示组成该MRU的996-tone RU和484-tone RU在该240MHz中的频率位置。
可以理解,240MHz可包括1个由996-tone RU和484-tone RU组成的MRU。
240MHz也可以包括2个MRU。每个MRU均由996-tone RU和484-tone RU组成。这种情况下,该240MHz的第2个80MHz的最低频率的40MHz对应的484-tone RU和第2个80MHz的最高频率的40MHz对应的484-tone RU,属于不同的MRU。其中一个484-tone RU属于996+484-tone RU,另一个484-tone RU属于484+996-tone RU。
可选的,信令字段,该信令字段包括公共字段和用户特定字段。公共字段包括与该240MHz对应的多个资源单元分配子字段。用户特定字段包括用户字段。
可选的,与该MRU对应的资源单元分配子字段还用于指示该MRU对应的用户字段,或者说,与该MRU对应的资源单元分配子字段还用于指示在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目。
1002、AP发送PPDU;
对应的STA接收该PPDU。
1003、STA根据与该240MHz的第2个80MHz对应的资源单元分配子字段,确定组成该MRU的996-tone RU和484-tone RU在该240MHz中的频率位置。
如此,传输PPDU的240MHz的带宽中包括由996-tone RU和484-tone RU组成的MRU时,该240MHz的第2个80MHz对应的多个资源单元分配子字段中,包括至少1个与该MRU对应的资源单元分配子字段,指示组成该MRU的996-tone RU和484-tone RU在该240MHz中的频率位置。这样,接收该PPDU的STA能够根据该第2个80MHz对应的多个资源单元分配子字段,确定组成该240MHz包含的每个MRU的996-tone RU和484-tone RU在该240MHz中的频率位置,从而可以确定该240MHz中,哪个484-tone-RU和哪个996-tone RU组成一个MRU。AP可以实现将240MHz中的由996-tone RU和484-tone RU组成的484+996-tone RU和/或996+484-tone RU分配给一个或多个站点。
本实施例中,信令字段可以包括该240MHz的第1个80MHz对应的资源单元分配子字段和该240MHz的第3个80MHz对应的资源单元分配子字段,也可以不包括该240MHz的第1个80MHz对应的资源单元分配子字段和/或该240MHz的第3个80MHz对应的资源单元分配子字段。
一种可选的实现例中,信令字段包括第1个80MHz和第3个80MHz中的至少一个80MHz对应的资源单元分配子字段,STA可先根据信令字段中的资源单元分配子字段,确定该240MHz包括由996-tone RU和484-tone RU组成的MRU之后,再执行步骤1003。
一种另可选的实现例中,信令字段不包括该240MHz的第1个80MHz对应的资源单元分配子字段和该240MHz的第3个80MHz对应的资源单元分配子字段,STA不需要确定该240MHz包括由996-tone RU和484-tone RU组成的MRU。STA可直接根据与该240MHz的第2个80MHz对应的资源单元分配子字段,确定组成该240MHz包含的每个996-484-tone RU的996-tone RU和484-tone RU在该240MHz中的频率位置。
具体地,传输PPDU的连续的240MHz包括由996-tone RU和484-tone RU组成的MRU时,该240MHz的第2个80MHz对应的一个或多个资源单元分配子字段中,与该MRU对应的资源单元分配子字段可采用表11中的索引进行指示。该240MHz的第1个80MHz和第3个80MHz对应的资源单元分配子字段可采用表11中的索引进行指示,也可以采用其他索引进行指示,例如可以采用表9或表10中的索引进行指示。本实施例不限定该240MHz的第1个80MHz和第3个80MHz对应的资源单元分配子字段的指示方式。
表11
Figure PCTCN2021104045-appb-000014
Figure PCTCN2021104045-appb-000015
Figure PCTCN2021104045-appb-000016
表11中的任一索引,用于指示资源单元分配子字段对应的242-tone RU属于哪一种MRU,组成该MRU的RU在该MRU所在的一段连续的频率中的RU标号,该一段连续的频率在240MHz中的频率位置,以及指示在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目。其中,在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目是指,在该资源单元分配子字段所在的EHT-SIG内容信道中,与该资源单元分配子字段对应的用户字段的数目。与该资源单元分配子字段对应的用户字段为,被分配该资源单元分配子字段指示的资源单元的用户的用户字段。
可选的,表11中的指示用户字段的数目为1-8的任一索引,可包括指示RU分配的部分和指示用户字段的部分。指示RU分配的部分指示资源单元分配子字段对应的242-tone RU属于哪一种MRU,组成该MRU的RU在该MRU所在的一段连续的频率中的RU标号,以及指示该一段连续的频率在240MHz中的频率位置。指示用户字段的部分,指示在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目。
具体的,表11中的指示用户字段的数目为1-8的任一索引的结构可以为k nk n-1…k 2k 1y 2y 1y 0,其中,k nk n-1…k 2k 1为指示RU分配的部分,n为指示RU分配的部分的比特数,y 2y 1y 0为指示用户字段的部分,为3比特,分别指示1-8个用户字段。
关于表11中的各个索引指示的用户字段的数目,请参阅表11中每个索引对应的指示的内容部分。下面具体解释表11中的各个索引指示的RU的含义。
表11中,索引1-9指示资源单元分配子字段对应的242-tone RU属于484+996-tone RU,组成该484+996-tone RU的484-tone RU在该484+996-tone RU所在的RU标号为1,组成该484+996-tone RU的996-tone RU在该484+996-tone RU所在的RU标号为2,以及指示该160MHz为该240MHz的低频率的160MHz,也即左侧的160MHz。STA能够根据表11中的索引1-9确定该484+996-tone RU是由该240MHz的低频率的160MHz内的第1个484-tone RU和该160MHz内的第2个996-tone RU合并而成的。
表11中,索引10-18指示资源单元分配子字段对应的242-tone RU属于484+996-tone RU,组成该484+996-tone RU的484-tone RU在该484+996-tone RU所在的RU标号为2,组成该484+996-tone RU的996-tone RU在该484+996-tone RU所在的RU标号为2,以及指示该160MHz为该240MHz的低频率的160MHz,也即左侧的160MHz。STA能够根据表11中的索引10-18确定该484+996-tone RU是由该240MHz的低频率的160MHz内的第2个484-tone RU和该160MHz内的第2个996-tone RU合并而成的。
表11中,索引19-27指示资源单元分配子字段对应的242-tone RU属于 996+484-tone RU,组成该996+484-tone RU的996-tone RU在该996+484-tone RU所在的RU标号为1,组成该996+484-tone RU的484-tone RU在该996+484-tone RU所在的RU标号为4,以及指示该160MHz为该240MHz的低频率的160MHz,也即左侧的160MHz。STA能够根据表11中的索引19-27确定该996+484-tone RU是由该240MHz的低频率的160MHz内的第1个996-tone RU和该160MHz内的第4个484-tone RU合并而成的。
表11中,索引28-36指示资源单元分配子字段对应的242-tone RU属于996+484-tone RU,组成该996+484-tone RU的996-tone RU在该996+484-tone RU所在的RU标号为1,组成该996+484-tone RU的484-tone RU在该996+484-tone RU所在的RU标号为3,以及指示该160MHz为该240MHz的低频率的160MHz,也即左侧的160MHz。STA能够根据表11中的索引28-36确定该996+484-tone RU是由该240MHz的低频率的160MHz内的第1个996-tone RU和该160MHz内的第3个484-tone RU合并而成的。
表11中,索引37-45指示资源单元分配子字段对应的242-tone RU属于484+996-tone RU,组成该484+996-tone RU的484-tone RU在该484+996-tone RU所在的RU标号为1,组成该484+996-tone RU的996-tone RU在该484+996-tone RU所在的RU标号为2,以及指示该160MHz为该240MHz的高频率的160MHz,也即右侧的160MHz。STA能够根据表11中的索引37-45确定该484+996-tone RU是由该240MHz的高频率的160MHz内的第1个484-tone RU和该160MHz内的第2个996-tone RU合并而成的。
表11中,索引46-54指示资源单元分配子字段对应的242-tone RU属于484+996-tone RU,组成该484+996-tone RU的484-tone RU在该484+996-tone RU所在的RU标号为2,组成该484+996-tone RU的996-tone RU在该484+996-tone RU所在的RU标号为2,以及指示该160MHz为该240MHz的高频率的160MHz,也即右侧的160MHz。STA能够根据索引46-54确定该484+996-tone RU是由该240MHz的高频率的160MHz内的第2个484-tone RU和该160MHz内的第2个996-tone RU合并而成的。
表11中,索引55-63指示资源单元分配子字段对应的242-tone RU属于996+484-tone RU,组成该996+484-tone RU的996-tone RU在该996+484-tone RU所在的RU标号为1,组成该996+484-tone RU的484-tone RU在该996+484-tone RU所在的RU标号为4,以及指示该160MHz为该240MHz的高频率的160MHz,也即右侧的160MHz。STA能够根据表11中的索引55-63确定该996+484-tone RU是由该240MHz的高频率的160MHz内的第1个996-tone RU和该160MHz内的第4个484-tone RU合并而成的。
表11中,索引64-72指示资源单元分配子字段对应的242-tone RU属于996+484-tone RU,组成该996+484-tone RU的996-tone RU在该996+484-tone RU所在的RU标号为1,组成该996+484-tone RU的484-tone RU在该996+484-tone RU所在的RU标号为3,以及指示该160MHz为该240MHz的高频率的160MHz,也即右侧的160MHz。STA能够根据表11中的索引64-72确定该996+484-tone RU是由该240MHz 的高频率的160MHz内的第1个996-tone RU和该160MHz内的第3个484-tone RU合并而成的。
表11中的任一索引,用于指示资源单元分配子字段对应的242-tone RU属于哪一种MRU,组成该MRU的RU在该MRU所在的一段连续的频率中的RU标号,指示该一段连续的频率在带宽中的频率,以及指示在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目。
可选的,表11中的用户字段的数目为1-8的任一索引,可包括指示RU分配的部分和指示用户字段的部分。指示RU分配的部分指示资源单元分配子字段对应的242-tone RU属于哪一种MRU,组成该MRU的RU在该MRU所在的一段连续的频率中的RU标号,指示该一段连续的频率在带宽中的频率,指示用户字段的部分,指示在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目。
下面提供一种PPDU的信令字段中,资源单元分配子字段采用表11中的索引进行指示的具体举例。
基于图9A所示的资源单元分配的举例,采用本申请图10对应的实施例的技术方案时,PPDU的信令字段中可包括与该240MHz的第1个80MHz对应的资源单元分配子字段1-资源单元分配子字段4,与该240MHz的第2个80MHz对应的资源单元分配子字段5-资源单元分配子字段8,以及与该240MHz的第3个80MHz对应的资源单元分配子字段9-资源单元分配子字段12。
该PPDU在2个内容信道传输。该2个内容信道可为内容信道1和内容信道2。资源单元分配子字段1、3、5、7、9和11可在内容信道1传输,资源单元分配子字段2、4、6、8、10和12可在内容信道2传输。
资源单元分配子字段5-6可以采用上述表11的索引28-索引36中的索引进行指示。资源单元分配子字段7-8可采用上述表6的索引46-54中的索引进行指示。
STA根据资源单元分配子字段5-6确定该240MHz的第5个242-tone RU和第6个242-tone RU属于996+484-tone RU,该996+484-tone RU由996+484-tone RU所在的160MHz中的第1个996-tone RU和第3个484-tone RU组成。STA还可以根据资源单元分配子字段5-6确定该996+484-tone RU所在的160MHz为该240MHz的最低频率的160MHz。那么STA可以确定该996+484-tone RU由在该240MHz中的第1个80MHz对应的996-tone RU和第2个80MHz的最低频率的40MHz对应的484-tone RU组成。
STA根据资源单元分配子字段7-8确定该240MHz的第7个242-tone RU和第8个242-tone RU属于484+996-tone RU,该484+996-tone RU由该484+996-tone RU所在的160MHz中的第2个484-tone RU和第2个996-tone RU组成。STA还可以根据资源单元分配子字段7-8确定该484+996-tone RU所在的160MHz为该240MHz的高频率的160MHz。那么STA可以确定该484+996-tone RU由在该240MHz中的第2个80MHz的最高频率的40MHz对应的484-tone RU和第3个80MHz对应的996-tone RU组成。
资源单元分配子字段1-12均为与MRU对应的资源单元分配子字段。资源单元分配子字段1-4、9-12可采用表11中的索引进行指示,也可以采用其他索引进行指示, 例如可以采用表9或表10中的索引进行指示。
资源单元分配子字段1-4、9-12用于指示用户特定字段中与MRU对应的用户字段的数量,也可以不用于确定用户特定字段中与该MRU对应的用户字段的数目。
资源单元分配子字段1-4用于指示用户特定字段中与MRU对应的用户字段的数量时,STA根据资源单元分配子字段1-6指示的用户字段的数目之和,确定由在该240MHz中的第1个80MHz对应的996-tone RU和第2个80MHz的最低频率的40MHz对应的484-tone RU组成的996+484-tone RU对应的用户字段的数目。
资源单元分配子字段1-4不用于指示用户特定字段中与MRU对应的用户字段的数量时,STA根据资源单元分配子字段5-6指示的用户字段的数目之和,确定由在该240MHz中的第1个80MHz对应的996-tone RU和第2个80MHz的最低频率的40MHz对应的484-tone RU组成的996+484-tone RU对应的用户字段的数目。
资源单元分配子字段9-12用于指示用户特定字段中与MRU对应的用户字段的数量时,STA根据资源单元分配子字段7-12指示的用户字段的数目之和,确定由在该240MHz中的第2个80MHz的最高频率的40MHz对应的484-tone RU和第3个80MHz对应的996-tone RU组成的484+996-tone RU对应的用户字段的数目。
资源单元分配子字段9-12不用于指示用户特定字段中与MRU对应的用户字段的数量时,STA根据资源单元分配子字段7-8指示的用户字段的数目之和,确定由在该240MHz中的第2个80MHz的最高频率的40MHz对应的484-tone RU和第3个80MHz对应的996-tone RU组成的484+996-tone RU对应的用户字段的数目。
如图11A所示的信令字段的结构示意图,资源单元分配子字段1-4、9-12可采用表11中的索引进行指示。资源单元分配子字段1-4用于指示用户特定字段中与MRU对应的用户字段的数量。
具体地,资源单元分配子字段1可采用表11中的索引30进行指示,第1个242-tone RU属于996+484-tone RU,该996+484-tone RU是由该996+484--tone RU所在的160MHz中的第1个996-tone RU和该160MHz的第3个484-tone RU合并而成的,该160MHz为该240MHz左侧的160MHz,以及指示该资源单元分配子字段所在的相同的EHT-SIG内容信道(内容信道1)的用户特定字段中,贡献2个用户字段;资源单元分配子字段2可采用表11中的索引30进行指示,指示该240MHz的第2个242-tone RU对应996+484-tone RU,该996+484-tone RU是由该996+484--tone RU所在的160MHz中的第1个996-tone RU和该160MHz的第3个484-tone RU合并而成的,该160MHz为该240MHz左侧的160MHz,以及指示该资源单元分配子字段所在的相同的EHT-SIG内容信道(内容信道2)的用户特定字段中,贡献2个用户字段。
资源单元分配子字段3-资源单元分配子字段6可采用表11中的索引28进行指示,指示对应的20MHz属于996+484-tone RU,该996+484-tone RU是由该996+484-tone RU所在的160MHz中的第1个996-tone RU和该160MHz的第3个484-tone RU合并而成的,该160MHz为该240MHz左侧的160MHz,以及指示该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献0个用户字段。
资源单元分配子字段7可采用上述表11中的索引48进行指示,指示该240MHz的第7个242-tone RU属于484+996tone RU,该484+996tone RU是由该484+996tone RU所在的160MHz中的第2个484-tone RU和第2个996-tone RU合并而成的。该160MHz为该240MHz左侧的160MHz,以及指示该资源单元分配子字段所在的相同的EHT-SIG内容信道(内容信道1)的用户特定字段中,贡献2个用户字段。
资源单元分配子字段8可采用上述表11中的索引47进行指示,指示该240MHz的第7个242-tone RU属于484+996tone RU,该484+996tone RU是由该484+996tone RU所在的160MHz中的第2个484-tone RU和第2个996-tone RU组成的,该160MHz为该240MHz左侧的160MHz,以及指示该资源单元分配子字段所在的相同的EHT-SIG内容信道(内容信道2)的用户特定字段中,贡献1个用户字段。
可以看出,资源单元分配子字段1-12中的任一个资源单元分配子字段,均可以指示对应的242-tone RU属于由484-tone RU和996-tone RU组合而成的MRU,以及指示组成该484+996tone RU的484-tone RU和996-tone RU在该MRU所在的160MHz中的频率位置,以及该160MHz在该240MHz中的频率位置,从而实现指示组成该MRU的484-tone RU和996-tone RU在该MRU在该240MHz中的频率位置。这样资源单元分配子字段1-12中的任一个资源单元分配子字段,都可以准确地指示该资源单元分配子字段所指示的MRU是由哪一个80MHz和哪一484-tone RU和哪一个996-tone RU组成的。
请参阅图11B所示的信令字段的结构示意图,若信令字段中不包括与该240MHz的第1个80MHz和第3个80MHz对应的资源单元分配子字段,则该240MHz的第5个20MHz对应的资源单元分配子字段5,可采用表11中的索引30进行指示,指示240MHz中的最低频率的160MHz的第1个996-tone RU和第3个484-tone RU组成一个996+484-tone RU,且该996+484-tone RU在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献2个用户字段。该240MHz的第6个20MHz对应的资源单元分配子字段6,可采用表11中的索引30进行指示,指示240MHz中的最低频率的160MHz的第1个996-tone RU和第3个484-tone RU组成一个996+484-tone RU,且该996+484-tone RU在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献2个用户字段。
该240MHz的第7个20MHz对应的资源单元分配子字段7,可采用表11中的索引48进行指示,指示240MHz中的最高频率的160MHz的第2个484-tone RU和第2个996-tone RU组成一个484+996-tone RU,且该484+996-tone RU在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献2个用户字段。该240MHz的第8个20MHz对应的资源单元分配子字段8,可采用表11中的索引47进行指示,指示240MHz中的最高频率的160MHz的第2个484-tone RU和第2个996-tone RU组成一个484+996-tone RU,且该484+996-tone RU在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献1个用户字段。
STA能够根据第2个80MHz对应的资源单元分配子字段5和资源单元分配子字段 6,确定240MHz中的最低频率的160MHz的第1个996-tone RU和第3个484-tone RU组成一个996+484-tone RU。STA根据资源单元分配子字段5和资源单元分配子字段6指示的用户数之和确定该996+484-tone RU对应的用户字段的数目为4。
STA还能够根据第2个80MHz对应的资源单元分配子字段7和资源单元分配子字段8,确定240MHz中的最高频率的160MHz的第2个484-tone RU和第2个996-tone RU组成一个484+996-tone RU。STA根据资源单元分配子字段7和资源单元分配子字段8指示的用户数之和确定该484+996-tone RU对应的用户字段的数目为3。
在本申请的另一些实施例中,可由通信标准(例如802.11be以及802.11be之后的标准)规定,240MHz包括2个MRU,每个MRU均由996-tone RU和484-tone RU组成时,组成每个MRU的996-tone RU和484-tone RU在该240MHz的频率位置。也即是说,连续的240MHz包括2个MRU,每个RU均由996-tone RU和484-tone RU组成时,组成每个MRU的996-tone RU和484-tone RU在该240MHz的频率位置是固定的。该MRU为996+484-tone RU或484+996-tone RU。本实施例中的996+484-tone RU是由频率相对较低的996-tone RU和频率相对较高的484-tone RU组成的MRU。本申请的PPDU的传输方法实施例中的484+996-tone RU是由频率相对较低的484-tone RU和频率相对较高的996-tone RU组成的MRU。
例如,该240MHz按照绝对频率由低至搞的顺序包括996-tone RU、484-tone RU、484-tone RU和996-tone RU。低频率的996-tone RU和484-tone RU合并为一个996+484-tone RU,高频率的484-tone RU和996-tone RU合并为一个484+996-tone RU。
这样的实施例中,信令字段中,与该MRU对应的任一资源单元分配子字段可指示该MRU在240MHz中的频率位置。
该实施例的方案可采用以下步骤执行:
1201、AP生成PPDU;
传输该PPDU的带宽大于或等于240MHz,该带宽的连续的240MHz包括996+484-tone RU和484+996-tone RU。
该PPDU包括该996+484-tone RU对应的资源单元分配子字段和该484+996-tone RU对应的资源单元分配子字段。
该996+484-tone RU对应的资源单元分配子字段指示组成该996+484-tone RU的996-tone RU和484-tone RU在该240MHz的频率位置。该484+996-tone RU对应的资源单元分配子字段指示组成该484+996-tone RU的996-tone RU和484-tone RU在该240MHz的频率位置。用户特定字段包括与996+484-tone RU对应的用户字段和与484+996-tone RU对应的用户字段。该资源单元分配子字段可为PPDU的信令字段(例如EHT-SIG)中的子字段。
1202、AP发送PPDU。
对应的,STA接收PPDU。
1203、STA根据PPDU,该996+484-tone RU对应的资源单元分配子字段和该484+996-tone RU对应的资源单元分配子字段,确定组成该996+484-tone RU的996-tone  RU和484-tone RU在该240MHz的频率位置,以及组成该484+996-tone RU的996-tone RU和484-tone RU在该240MHz的频率位置。
这样STA能够根据信令字段中的资源单元分配子字段准确地确定组成MRU的996-tone RU和484-tone RU在该240MHz的频率位置。
具体地,与该MRU对应的资源单元分配子字段可采用表12所示的索引进行指示。
表12
Figure PCTCN2021104045-appb-000017
关于表12中的各个索引指示的用户字段的数目,请参阅表12中每个索引对应的指示的内容部分。
表12中的索引1-9指示996+484-tone RU,该240MHz的第1个80MHz对应的996-tone RU与第2个80MHz的第1个40MHz对应的484-tone RU组成其中一个996+484-tone RU,该240MHz的第2个80MHz的第2个40MHz对应的484-tone RU与该240MHz的第3个80MHz对应的996-tone RU组成484+996-tone RU。这样的方案,通信标准可规定240MHz包括2个MRU,每个RU均由996-tone RU和484-tone RU组成时,组成每个MRU的996-tone RU和484-tone RU在该240MHz的频率位置,使得组成每个MRU的996-tone RU和484-tone RU在该240MHz的频率位置是固定的,且单一的,这样能够节省用于指示组成每个MRU的996-tone RU和484-tone RU在该240MHz的频率位置的索引的数量,使得资源单元分配子字段可采用节省出来的索引指示更丰富的信息。
可选的,表12中的指示1-8个用户字段的索引2-9可包括指示RU分配的部分,和指示用户字段的部分。指示RU分配的部分,用于指示240MHz内,组成996+484-tone RU的996-tone RU和484-tone RU在该240MHz的频率位置,以及组成484+996-tone RU的996-tone RU和484-tone RU在该240MHz的频率位置。指示用户字段的数目的部分,指示在该资源单元分配子字段所在的相同的EHT-SIG内容信道的用户特定字段中,贡献的用户字段的数目。指示用户字段的数目的部分例如可以为3比特。
具体的,该索引2-索引9的结构可以为k nk n-1…k 2k 1y 2y 1y 0,其中,k nk n-1…k 2k 1为指示MRU的频率位置的部分,n为指示RU分配的部分的比特数,y 2y 1y 0为指示用户字段的部分,为3比特,分别指示1-8个用户字段。在一种可选的实施例中,索引2-9的结构可以为如表13中所示的结构。
表13
Figure PCTCN2021104045-appb-000018
Figure PCTCN2021104045-appb-000019
本申请的又一些实施例中,通信标准(例如802.11be以及802.11be之后的标准)规定在240MHz的带宽中,只有其中一个160MHz内的996-tone RU和484-tone RU能够合并为996+484-tone RU或484+996-tone RU。本实施例中的996+484-tone RU是由 频率相对较低的996-tone RU和频率相对较高的484-tone RU组成的MRU。本申请的PPDU的传输方法实施例中的484+996-tone RU是由频率相对较低的484-tone RU和频率相对较高的996-tone RU组成的MRU。
在一种可能的实现方式中,在连续的240MHz中,允许包含996+484-tone RU或484+996-tone RU的160MHz是固定的。例如,通信标准可规定,在连续的240MHz中,只有其中的主160MHz(包括主80MHz和辅80MHz的160MHz)内的996-tone RU和484-tone RU能够合并为996+484-tone RU或484+996-tone RU。
在另一种可能的实现方式中,在连续的240MHz中,允许包含996+484-tone RU或484+996-tone RU的160MHz是可变的,可理解为是动态的或半静态的。例如,AP可发送指示信息,指示允许该240MHz中的第1个80MHz和第2个80MHz内的996-tone RU和484-tone RU合并为996+484-tone RU或484+996-tone RU,或者指示允许第2个80MHz和第3个80MHz内的996-tone RU和484-tone RU合并为996+484-tone RU。这样STA能够根据,确定允许包含996+484-tone RU或484+996-tone RU的160MHz,从而可以确定组成996+484-tone RU或484+996-tone RU的996-tone RU和484-tone RU在240MHz中的频率位置。STA可通过信标帧、探测响应帧或关联响应帧中的一种向STA发送该指示信息。
这样可以避免连续的240MHz包括2个996+484-tone RU的问题,也就能够避免资源单元分配子字段指示不明确,使得STA无法准确获知RU的分配情况而导致STA从不是分配给自己的RU接收数据而导致STA误读数据。
可选的,该240MHz可以为传输PPDU的完整的带宽。该240MHz也可以为传输PPDU的320MHz中,除被打孔的80MHz之外的240MHz。这种情况下,320MHz是由主160MHz和辅160MHz组成,若主160MHz的一个80MHz被打孔,则允许辅160MHz包含996+484-tone RU或484+996-tone RU。若辅160MHz的一个80MHz被打孔,则允许主160MHz包含996+484-tone RU或484+996-tone RU。
应理解,本申请实施例中用于实现准确指示组成MRU的996-tone RU和484-tone RU的方案,与申请实施例中能够解决资源单元分配子字段无法准确指示320MHz包括2*996-tone RU和996+484-tone RU的方案可以分别单独实现,也可以结合实现。
上述本申请提供的实施例中,分别从接入点、站点的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,接入点、站点可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参阅图12,图12为本申请实施例提供的一种PPDU的传输装置的结构示意图。该传输装置1200包括处理单元1201和发送单元1202。该传输装置1200为发送PPDU的装置。该传输装置1200可以为站点也可以为接入点。该处理单元1201可理解为通信装置的处理器,该发送单元1202可理解为通信装置的收发器的发送器。
处理单元1201用于生成PPDU,所述PPDU包括多个资源单元分配子字段,所述 多个资源单元分配子字段包括MRU对应的资源单元分配子字段,所述MRU对应的资源单元分配子字段指示该资源单元分配子字段对应的242-tone RU属于MRU,传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的所述MRU对应的资源单元分配子字段的数目,用于确定或指示所述MRU为哪一种MRU;
发送单元1202用于发送所述PPDU。
传输PPDU的带宽大于或等于80MHz。该带宽包括1个或多个80MHz。例如带宽为240MHz时,包括3个80MHz,带宽为320MHz时,包括4个80MHz。如此,资源单元分配子字段的指示方式简单,该传输装置1200能够根据传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的MRU对应的资源单元分配子字段的数目,用于确定MRU为哪一种MRU,确定组成MRU的RU。传输PPDU的带宽大于或等于80MHz。能够实现将多个RU合并为一个MRU分配给一个或多个用户。
请参阅图13,图13为本申请实施例提供的一种PPDU的传输装置的结构示意图。该传输装置1300包括处理单元1301和发送单元1302。该传输装置1300为发送PPDU的装置。该传输装置1300可以为站点也可以为接入点。该处理单元1301可理解为通信装置的处理器,该发送单元1302可理解为通信装置的收发器的发送器。
处理单元1301用于生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示2个第一MRU的资源单元分配子字段,所述2个第一MRU所属的240MHz为传输所述PPDU的带宽中的连续的240MHz,组成每个所述第一RU的996-tone RU和484-tone RU在所述240MHz中的频率位置是标准设定的;
发送单元1302用于发送所述PPDU。
如此,通信标准规定组成每个第一MRU的996-tone RU和484-tone RU在240MHz中的频率位置,该传输装置1300能够准确地确定组成每个第一MRU的996-tone RU和484-tone RU在240MHz中的频率位置,从而能够将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示996+484-tone RU和484+996-tone RU的索引的数量。
请参阅图14,图14为本申请实施例提供的一种PPDU的传输装置的结构示意图。该传输装置1400包括处理单元1401和发送单元1402。该传输装置1400为发送PPDU的装置。该传输装置1400可以为站点也可以为接入点。该处理单元1401可理解为通信装置的处理器,该发送单元1402可理解为通信装置的收发器的发送器。
处理单元1401,用于生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段和指示第二MRU的资源单元分配子字段,组成所述第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU,在传输所述PPDU的带宽中的频率位置是标准设定的;
发送单元1402,用于发送所述PPDU。
这样,标准规定组成第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU在320MHz中的频率位置,该传输装置1400能够准确地确定组成第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU在320MHz中的频率位置,从而能够将由2*996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示2*996+484-tone RU和484+2*996-tone RU的索引的数量。
请参阅图15,图15为本申请实施例提供的一种PPDU的传输装置的结构示意图。该传输装置1500包括处理单元1501和发送单元1502。该传输装置1500为发送PPDU的装置。该传输装置1500可以为站点也可以为接入点。该处理单元1501可理解为通信装置的处理器,该发送单元1502可理解为通信装置的收发器的发送器。
处理单元1501,用于生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,所述第一MRU由996-tone RU和484-tone RU组成,所述第一MRU所属的160MHz在传输所述PPDU的带宽中的频率位置,是标准设定的频率位置,或者是所述AP发送的指示信息指示的频率位置;
发送单元1502,用于发送所述PPDU。
也即是说,仅在标准规定所允许的160MHz内或AP发送的指示信息指示的所允许的160MHz内,996-tone RU和484-tone RU才能合并为MRU。
这样该传输装置1500可以准确地确定996+484-tone RU或484+996-tone RU是由哪个160MHz内的996-tone RU和484-tone RU组成的,从而能够将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示996+484-tone RU和484+996-tone RU的索引的数量。
请参阅图16,图16为本申请实施例提供的一种PPDU的传输装置的结构示意图。该传输装置1600包括处理单元1601和发送单元1602。该传输装置1600为发送PPDU的装置。该传输装置1600可以为站点也可以为接入点。该处理单元1601可理解为通信装置的处理器,该发送单元1602可理解为通信装置的收发器的发送器。
处理单元1601,用于点生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,传输所述PPDU的带宽包括连续的240MHz,所述第一MRU由所述240MHz中的996-tone RU和484-tone RU组成,所述指示第一MRU的资源单元分配子字段还用于指示所述996-tone RU和所述484-tone RU在所述第一MRU所在的160MHz中的频率位置,所述240MHz的最低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段中的所述指示第一MRU的资源单元分配子字段,用于确定或指示所述996-tone RU和所述484-tone RU在所述240MHz的频率位置;
发送单元1602,用于发送PPDU。
应理解,该方案可用于240MHz包括1个第一MRU的场景,也可以用于240MHz 包括2个第一MRU的场景。
这样的方案中,传输装置1600在确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的频率位置时,跳过该240MHz的次低频率的80MHz对应的资源单元分配子字段,根据最低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段,能够准确地确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的在240MHz中的频率位置,从而能够实现将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。
请参阅图17,图17为本申请实施例提供的一种PPDU的传输装置的结构示意图。该传输装置1700包括处理单元1701和发送单元1702。该传输装置1700为发送PPDU的装置。该传输装置1700可以为站点也可以为接入点。该处理单元1701可理解为通信装置的处理器,该发送单元1702可理解为通信装置的收发器的发送器。
处理单元1701用于生成PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,传输所述PPDU的带宽包括连续的240MHz,所述第一MRU由所述240MHz中的996-tone RU和484-tone RU组成,所述指示第一MRU的资源单元分配子字段还用于指示所述996-tone RU和所述484-tone RU所在的160MHz中的频率位置,以及所述160MHz在所述240MHz中的位置,所述240MHz的次低频率的80MHz对应的资源单元分配子字段中的所述指示第一MRU的资源单元分配子字段,用于确定或指示所述996-tone RU和484-tone RU在所述240MHz的频率位置;
发送单元1702用于发送PPDU。
这样的方案中,传输装置1700在确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的频率位置时,能够根据次低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段,能够准确地确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的在240MHz中的频率位置,从而能够实现将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。
请参阅图18,图18为本申请实施例提供的一种PPDU的传输装置的结构示意图。该传输装置1800包括接收单元1801和处理单元1802。该传输装置1800为接收PPDU的装置。该传输装置可以为站点也可以为接入点。该接收单元1801可理解为通信装置的收发器的接收器,该处理单元1802可理解为通信装置的处理器。
接收单元1801用于接收PPDU,所述PPDU包括多个资源单元分配子字段;所述多个资源单元分配子字段包括MRU对应的资源单元分配子字段,所述MRU对应的资源单元分配子字段指示该资源单元分配子字段对应的242-tone RU属于MRU,传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的所述MRU对应的资源单元分配子字段的数目,用于确定所述MRU为哪一种MRU;
处理单元1802用于解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
可以理解,资源单元分配子字段指示的MRU,为传输PPDU的带宽所包括的MRU。 具体的,该传输装置可根据传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的所述MRU对应的资源单元分配子字段的数目,确定传输PPDU的带宽所包括的MRU为哪一种MRU。
这样,资源单元分配子字段的指示方式简单,而且传输装置1900也能够根据资源单元分配子字段确定传输PPDU的带宽所包括的MRU为哪一种MRU。能够实现将多个RU合并为一个MRU分配给一个或多个用户。
请参阅图19,图19为本申请实施例提供的一种PPDU的传输装置的结构示意图。该传输装置1900包括接收单元1901和处理单元1902。该传输装置1900为接收PPDU的装置。该传输装置可以为站点也可以为接入点。该接收单元1901可理解为通信装置的收发器的接收器,该处理单元1902可理解为通信装置的处理器。
接收单元1901用于接收PPDU,所述PPDU包括多个资源单元分配子字段;所述多个资源单元分配子字段包括指示2个第一MRU的资源单元分配子字段,所述2个第一MRU所属的240MHz为传输所述PPDU的带宽中的连续的240MHz,组成每个所述第一RU的996-tone RU和484-tone RU在所述240MHz中的频率位置是标准设定的;
处理单元1902用于解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
这样的方案中,通信标准规定组成每个第一MRU的996-tone RU和484-tone RU在240MHz中的频率位置,该传输装置能够根据资源单元分配子字段确定传输PPDU的带宽包括2个第一MRU,也能够准确地确定组成每个第一MRU的996-tone RU和484-tone RU在240MHz中的频率位置,从而能够将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示996+484-tone RU和484+996-tone RU的索引的数量。
请参阅图20,图20为本申请实施例提供的一种PPDU的传输装置的结构示意图。该传输装置2000包括接收单元2001和处理单元2002。该传输装置2000为接收PPDU的装置。该传输装置可以为站点也可以为接入点。该接收单元2001可理解为通信装置的收发器的接收器,该处理单元2002可理解为通信装置的处理器。
接收单元2001用于接收PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段和指示第二MRU的资源单元分配子字段,组成所述第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU,在传输所述PPDU的带宽中的频率位置是标准设定的;
处理单元2002用于解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
这样的方案中,标准规定组成第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU在320MHz中的频率位置,该传输装置2000能够根据资源单元分配子字段确定传输PPDU的带宽包括第一MRU和第二MRU,也能够准确地确定组成第一RU的996-tone RU和484-tone RU和组成所述第二MRU的 2*996-tone RU和484-tone RU在320MHz中的频率位置,从而能够将由2*996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示2*996+484-tone RU和484+2*996-tone RU的索引的数量。
请参阅图21,图21为本申请实施例提供的一种PPDU的传输装置的结构示意图。该传输装置2100包括接收单元2101和处理单元2102。该传输装置2100为接收PPDU的装置。该传输装置可以为站点也可以为接入点。该接收单元2201可理解为通信装置的收发器的接收器,该处理单元2202可理解为通信装置的处理器。
接收单元2101用于接收PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,所述第一MRU由996-tone RU和484-tone RU组成,所述第一MRU所属的160MHz在传输所述PPDU的带宽中的频率位置,是标准设定的频率位置,或者是所述AP发送的指示信息指示的频率位置;
处理单元2102用于解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
这样,该传输装置2100可以根据资源单元分配子字段确定传输PPDU的带宽包括由996-tone RU和484-tone RU组成的MRU,也能够准确地确定996+484-tone RU或484+996-tone RU是由哪个160MHz内的996-tone RU和484-tone RU组成的,从而能够将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。而且,这样的方案,资源单元分配子字段不需要采用不同的索引指示不同的组合情况,可以节省用于资源单元分配子字段指示996+484-tone RU和484+996-tone RU的索引的数量。
请参阅图22,图22为本申请实施例提供的一种PPDU的传输装置的结构示意图。该传输装置2200包括接收单元2201和处理单元2202。该传输装置2200为接收PPDU的装置。该传输装置可以为站点也可以为接入点。该接收单元2201可理解为通信装置的收发器的接收器,该处理单元2202可理解为通信装置的处理器。
接收单元2201用于接收PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,传输所述PPDU的带宽包括连续的240MHz,所述第一MRU由所述240MHz中的996-tone RU和484-tone RU组成,所述指示第一MRU的资源单元分配子字段还用于指示所述996-tone RU和所述484-tone RU在所述第一MRU所在的160MHz中的频率位置,所述240MHz的最低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段中的所述指示第一MRU的资源单元分配子字段,用于确定或指示所述996-tone RU和所述484-tone RU在所述240MHz的频率位置;
处理单元2202用于解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
具体的,该传输装置的处理单元2202可根据最低频率的80MHz对应的资源单元分配子字段和最高频率的80MHz对应的资源单元分配字段中,确定组成第一MRU的996-tone RU和所述484-tone RU在所述240MHz的频率位置。也即,确定组成第一 MRU的RU为240MHz的哪个频率位置的RU。
这样的方案中,该传输装置2200在确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的频率位置时,跳过该240MHz的次低频率的80MHz对应的资源单元分配子字段,根据最低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段,能够准确地确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的在240MHz中的频率位置,从而能够实现将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。
请参阅图23,图23为本申请实施例提供的一种PPDU的传输装置的结构示意图。该传输装置2300包括接收单元2301和处理单元2302。该传输装置2300为接收PPDU的装置。该传输装置可以为站点也可以为接入点。该接收单元2301可理解为通信装置的收发器的接收器,该处理单元2302可理解为通信装置的处理器。
接收单元2301用于接收PPDU,所述PPDU包括多个资源单元分配子字段,所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,传输所述PPDU的带宽包括连续的240MHz,所述第一MRU由所述240MHz中的996-tone RU和484-tone RU组成,所述指示第一MRU的资源单元分配子字段还用于指示所述996-tone RU和所述484-tone RU所在的160MHz中的频率位置,以及所述160MHz在所述240MHz中的位置,所述240MHz的次低频率的80MHz对应的资源单元分配子字段中的所述指示第一MRU的资源单元分配子字段,用于确定或指示所述996-tone RU和484-tone RU在所述240MHz的频率位置;
处理单元2302用于解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU。
具体的,该传输装置根据次低频率的80MHz对应的资源单元分配子字段和最高频率的80MHz对应的资源单元分配字段中,确定组成第一MRU的996-tone RU和所述484-tone RU在所述240MHz的频率位置。也即,确定组成第一MRU的RU为240MHz的哪个频率位置的RU。
应理解,该方案可用于240MHz包括1个第一MRU的场景,也可以用于240MHz包括2个第一MRU的场景。
这样的方案中,该传输装置在确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的频率位置时,能够根据次低频率的80MHz对应的资源单元分配子字段和/或最高频率的80MHz对应的资源单元分配子字段,能够准确地确定组成996+484-tone RU或484+996-tone的996-tone RU和484-tone RU的在240MHz中的频率位置,从而能够实现将由996-tone RU和484-tone RU合并的MRU分配给一个或多个用户。
其中,上述各传输装置实施例的相关内容可参见上述方法实施例的相关内容。此处不再详述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。 这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机可读存储介质被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种包含指令的计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、 装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (7)

  1. 一种物理层协议数据单元PPDU的传输方法,其特征在于,包括:
    生成PPDU,
    发送所述PPDU;
    其中,所述PPDU包括多个资源单元分配子字段;所述多个资源单元分配子字段符合以下至少一种:
    所述多个资源单元分配子字段包括多资源单元MRU对应的资源单元分配子字段,所述MRU对应的资源单元分配子字段指示该资源单元分配子字段对应的242-tone RU属于MRU,传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的所述MRU对应的资源单元分配子字段的数目,用于确定所述MRU为哪一种MRU;或
    所述多个资源单元分配子字段包括指示2个第一MRU的资源单元分配子字段,所述2个第一MRU所属的240MHz为传输所述PPDU的带宽中的连续的240MHz,组成每个所述第一RU的996-tone RU和484-tone RU在所述240MHz中的频率位置是标准设定的;或
    所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段和指示第二MRU的资源单元分配子字段,组成所述第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU,在传输所述PPDU的带宽中的频率位置是标准设定的;或
    所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,所述第一MRU由996-tone RU和484-tone RU组成,所述第一MRU所属的160MHz在传输所述PPDU的带宽中的频率位置,是标准设定的频率位置,或者是所述AP发送的指示信息指示的频率位置。
  2. 一种PPDU的传输方法,其特征在于,包括:
    接收PPDU,所述PPDU包括多个资源单元分配子字段;
    解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU;
    所述多个资源单元分配子字段符合以下至少一种:
    所述多个资源单元分配子字段包括MRU对应的资源单元分配子字段,所述MRU对应的资源单元分配子字段指示该资源单元分配子字段对应的242-tone RU属于MRU,传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的所述MRU对应的资源单元分配子字段的数目,用于确定所述MRU为哪一种MRU;
    所述多个资源单元分配子字段包括指示2个第一MRU的资源单元分配子字段,所述2个第一MRU所属的240MHz为传输所述PPDU的带宽中的连续的240MHz,组成 每个所述第一RU的996-tone RU和484-tone RU在所述240MHz中的频率位置是标准设定的;
    所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段和指示第二MRU的资源单元分配子字段,组成所述第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU,在传输所述PPDU的带宽中的频率位置是标准设定的;
    所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,所述第一MRU由996-tone RU和484-tone RU组成,所述第一MRU所属的160MHz在传输所述PPDU的带宽中的频率位置,是标准设定的频率位置,或者是所述AP发送的指示信息指示的频率位置。
  3. 一种PPDU的传输装置,其特征在于,包括:
    处理单元,用于生成PPDU,
    发送单元,用于发送所述PPDU;
    其中,所述PPDU包括多个资源单元分配子字段;所述多个资源单元分配子字段符合以下至少一种:
    所述多个资源单元分配子字段包括MRU对应的资源单元分配子字段,所述MRU对应的资源单元分配子字段指示该资源单元分配子字段对应的242-tone RU属于MRU,传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的所述MRU对应的资源单元分配子字段的数目,用于确定所述MRU为哪一种MRU;或
    所述多个资源单元分配子字段包括指示2个第一MRU的资源单元分配子字段,所述2个第一MRU所属的240MHz为传输所述PPDU的带宽中的连续的240MHz,组成每个所述第一RU的996-tone RU和484-tone RU在所述240MHz中的频率位置是标准设定的;或
    所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段和指示第二MRU的资源单元分配子字段,组成所述第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU,在传输所述PPDU的带宽中的频率位置是标准设定的;或
    所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,所述第一MRU由996-tone RU和484-tone RU组成,所述第一MRU所属的160MHz在传输所述PPDU的带宽中的频率位置,是标准设定的频率位置,或者是所述AP发送的指示信息指示的频率位置。
  4. 一种PPDU的传输装置,其特征在于,包括:
    接收单元,用于接收PPDU,所述PPDU包括多个资源单元分配子字段;
    处理单元,用于解析所述多个资源单元分配子字段中的至少一部分资源单元分配子字段,确定组成MRU的RU;
    所述多个资源单元分配子字段符合以下至少一种:
    所述多个资源单元分配子字段包括MRU对应的资源单元分配子字段,所述MRU对应的资源单元分配子字段指示该资源单元分配子字段对应的242-tone RU属于MRU,传输所述PPDU的带宽中的多个80MHz中,每个80MHz对应的资源单元分配子字段中的所述MRU对应的资源单元分配子字段的数目,用于确定所述MRU为哪一种MRU;
    所述多个资源单元分配子字段包括指示2个第一MRU的资源单元分配子字段,所述2个第一MRU所属的240MHz为传输所述PPDU的带宽中的连续的240MHz,组成每个所述第一RU的996-tone RU和484-tone RU在所述240MHz中的频率位置是标准设定的;
    所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段和指示第二MRU的资源单元分配子字段,组成所述第一RU的996-tone RU和484-tone RU和组成所述第二MRU的2*996-tone RU和484-tone RU,在传输所述PPDU的带宽中的频率位置是标准设定的;
    所述多个资源单元分配子字段包括指示第一MRU的资源单元分配子字段,所述第一MRU由996-tone RU和484-tone RU组成,所述第一MRU所属的160MHz在传输所述PPDU的带宽中的频率位置,是标准设定的频率位置,或者是所述AP发送的指示信息指示的频率位置。
  5. 一种通信装置,用于传输PPDU,其特征在于,所述通信装置包括:处理器和收发器,当所述处理器执行所述存储器中的计算机程序或指令时,使得权利要求1或2所述方法被执行。
  6. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,所述计算机指令指示通信装置执行权利要求1或2所述的方法。
  7. 一种包含指令的计算机程序产品,当所述指令在计算机上运行时,使得所述计算机执行权利要求1或2所述的方法。
PCT/CN2021/104045 2020-07-01 2021-07-01 一种ppdu的传输方法及相关装置 WO2022002206A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2021302193A AU2021302193B2 (en) 2020-07-01 2021-07-01 Ppdu transmission method and related apparatus
EP21833515.6A EP4171142A4 (en) 2020-07-01 2021-07-01 PPDU TRANSMISSION METHOD AND RELATED DEVICE
JP2023500073A JP2023533942A (ja) 2020-07-01 2021-07-01 Ppdu送信方法および関連する装置
KR1020237003058A KR20230029916A (ko) 2020-07-01 2021-07-01 Ppdu 전송 방법 및 관련 장치
MX2023000220A MX2023000220A (es) 2020-07-01 2021-07-01 Metodo de transmision de ppdu y aparato relacionado.
CA3184861A CA3184861A1 (en) 2020-07-01 2021-07-01 Ppdu transmission method and related apparatus
BR112022027077A BR112022027077A2 (pt) 2020-07-01 2021-07-01 Método de transmissão de ppdu e aparelho relacionado
US18/148,671 US20230137534A1 (en) 2020-07-01 2022-12-30 Ppdu communication method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010625292.3 2020-07-01
CN202010625292.3A CN113891460A (zh) 2020-07-01 2020-07-01 一种ppdu的传输方法及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/148,671 Continuation US20230137534A1 (en) 2020-07-01 2022-12-30 Ppdu communication method and related apparatus

Publications (1)

Publication Number Publication Date
WO2022002206A1 true WO2022002206A1 (zh) 2022-01-06

Family

ID=79012226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104045 WO2022002206A1 (zh) 2020-07-01 2021-07-01 一种ppdu的传输方法及相关装置

Country Status (10)

Country Link
US (1) US20230137534A1 (zh)
EP (1) EP4171142A4 (zh)
JP (1) JP2023533942A (zh)
KR (1) KR20230029916A (zh)
CN (2) CN113891460A (zh)
AU (1) AU2021302193B2 (zh)
BR (1) BR112022027077A2 (zh)
CA (1) CA3184861A1 (zh)
MX (1) MX2023000220A (zh)
WO (1) WO2022002206A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230318764A1 (en) * 2020-01-10 2023-10-05 Huawei Technologies Co., Ltd. Resource Unit Combination Indication Method and Communications Apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114946250A (zh) * 2019-11-21 2022-08-26 Lg 电子株式会社 无线lan系统中通过多个ru接收ppdu的方法及装置
US11870735B2 (en) * 2020-07-28 2024-01-09 Mediatek Singapore Pte. Ltd. Simplification for distributed-tone resource units in 6GHz low-power indoor systems
CN114710412B (zh) * 2022-03-08 2024-04-12 中电科思仪科技股份有限公司 一种网络协议信号模拟系统及方法
WO2023168709A1 (en) * 2022-03-11 2023-09-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Access point, station, and wireless communication method
WO2023191475A1 (ko) * 2022-04-01 2023-10-05 엘지전자 주식회사 무선랜 시스템에서 자원 유닛 할당 방법 및 장치
WO2023237111A1 (en) * 2022-06-10 2023-12-14 Mediatek Inc. Designs of multi-ru in wider bandwidth ppdu for next-generation wlan
CN117676783A (zh) * 2022-09-07 2024-03-08 华为技术有限公司 通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160066338A1 (en) * 2014-09-03 2016-03-03 Newracom, Inc. Operation method of station in wireless local area network
CN106797295A (zh) * 2014-10-05 2017-05-31 Lg 电子株式会社 在wlan中基于单个资源单元分配无线资源的方法和装置
CN110768757A (zh) * 2018-07-25 2020-02-07 华为技术有限公司 资源单元指示方法、装置及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3742638A1 (en) * 2015-09-11 2020-11-25 Interdigital Patent Holdings, Inc. Multiple resource unit allocation for ofdma wlan
US10602510B2 (en) * 2015-09-11 2020-03-24 Lg Electronics Inc. Operation method in wireless LAN system and apparatus therefor
US10594450B2 (en) * 2016-02-15 2020-03-17 Apple Inc. Asymmetric OFDMA tone mapping and dynamic channel access using non-primary channels
ES2922316T3 (es) * 2016-03-04 2022-09-13 Panasonic Ip Man Co Ltd Punto de acceso para generar una trama de activación para asignar unidades de recursos para UORA
US11343035B2 (en) * 2019-03-11 2022-05-24 Intel Corporation Coding over multiple resource units (RU) in extremely high throughput (EHT) systems
CN113543331A (zh) * 2020-04-22 2021-10-22 华为技术有限公司 数据传输方法及相关装置
CN113873645A (zh) * 2020-06-30 2021-12-31 华为技术有限公司 一种多资源单元传输的指示方法及相关设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160066338A1 (en) * 2014-09-03 2016-03-03 Newracom, Inc. Operation method of station in wireless local area network
CN106797295A (zh) * 2014-10-05 2017-05-31 Lg 电子株式会社 在wlan中基于单个资源单元分配无线资源的方法和装置
CN110768757A (zh) * 2018-07-25 2020-02-07 华为技术有限公司 资源单元指示方法、装置及存储介质

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HU MENGSHI; JIAN ROSS YU; GAN MING: "Multi-RU Indication in Trigger Frame", IEEE 802.11-20/0416R0, 15 March 2020 (2020-03-15), pages 1 - 14, XP055869663 *
MENGSHI HU (HUAWEI): "Multi-RU Indication in RU Allocation Subfield Follow up", IEEE DRAFT; 11-20-1623-01-00BE-MULTI-RU-INDICATION-IN-RU-ALLOCATION-SUBFIELD-FOLLOW-UP, vol. 802.11 EHT, no. 1, 14 October 2020 (2020-10-14), pages 1 - 16, XP068173786 *
See also references of EP4171142A4
TIANYU WU (APPLE): "Discussions on Multi RU Aggregation", IEEE DRAFT; 11-20-0495-01-00BE-DISCUSSIONS-ON-MULTI-RU-AGGREGATION, vol. 802.11 EHT, no. 1, 26 March 2020 (2020-03-26), pages 1 - 14, XP068172704 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230318764A1 (en) * 2020-01-10 2023-10-05 Huawei Technologies Co., Ltd. Resource Unit Combination Indication Method and Communications Apparatus

Also Published As

Publication number Publication date
JP2023533942A (ja) 2023-08-07
BR112022027077A2 (pt) 2023-05-09
EP4171142A4 (en) 2023-12-27
US20230137534A1 (en) 2023-05-04
CN116390250A (zh) 2023-07-04
CA3184861A1 (en) 2022-01-06
EP4171142A1 (en) 2023-04-26
CN113891460A (zh) 2022-01-04
MX2023000220A (es) 2023-02-09
AU2021302193B2 (en) 2024-06-13
AU2021302193A1 (en) 2023-02-09
CN116390250B (zh) 2024-01-09
KR20230029916A (ko) 2023-03-03

Similar Documents

Publication Publication Date Title
WO2022002206A1 (zh) 一种ppdu的传输方法及相关装置
CN116388943B (zh) 资源单元指示方法、装置及存储介质
JP2020074538A (ja) リソーススケジューリング方法、装置、およびデバイス
WO2021180203A1 (zh) 数据传输方法及设备、芯片系统、计算机可读存储介质
WO2021213345A1 (zh) 数据传输方法及相关装置
WO2021008376A1 (zh) 多用户多输入多输出的用户数指示方法和通信装置
AU2021294097B2 (en) Resource indication method, access point, and station
WO2022022249A1 (zh) 资源调度方法及相关装置
WO2021139773A1 (zh) 资源分配方法、通信装置及相关设备
WO2021017995A1 (zh) 控制信息传输方法及装置
WO2016201627A1 (zh) 资源分配的方法、发送端设备和接收端设备
WO2021238585A1 (zh) 数据传输方法及相关装置
WO2021204209A1 (zh) 一种多资源单元对应的调制方式的指示方法及相关设备
CN113890704A (zh) 无线局域网系统中基于多资源单元进行通信的装置和方法
JP2023523813A (ja) 無線ローカルエリアネットワークにおいて適用される帯域幅指示方法及び通信装置
US20230016355A1 (en) Resource unit combination indication method and communication apparatus
EP4336898A1 (en) Data transmission method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3184861

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2023500073

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022027077

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021833515

Country of ref document: EP

Effective date: 20230123

ENP Entry into the national phase

Ref document number: 2021302193

Country of ref document: AU

Date of ref document: 20210701

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112022027077

Country of ref document: BR

Free format text: APRESENTAR, EM ATE 60 (SESSENTA) DIAS, TRADUCAO COMPLETA DO PEDIDO, ADAPTADA A NORMA VIGENTE, CONFORME CONSTA NO DEPOSITO INTERNACIONAL INICIAL, POIS A MESMA NAO FOI APRESENTADA ATE O MOMENTO.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01Y

Ref document number: 112022027077

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.5 NA RPI NO 2722 DE 07/03/2023 POR TER SIDO INDEVIDA.

ENP Entry into the national phase

Ref document number: 112022027077

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221230