WO2021238585A1 - 数据传输方法及相关装置 - Google Patents

数据传输方法及相关装置 Download PDF

Info

Publication number
WO2021238585A1
WO2021238585A1 PCT/CN2021/091501 CN2021091501W WO2021238585A1 WO 2021238585 A1 WO2021238585 A1 WO 2021238585A1 CN 2021091501 W CN2021091501 W CN 2021091501W WO 2021238585 A1 WO2021238585 A1 WO 2021238585A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
frequency domain
user
site
allocated
Prior art date
Application number
PCT/CN2021/091501
Other languages
English (en)
French (fr)
Inventor
狐梦实
于健
淦明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021238585A1 publication Critical patent/WO2021238585A1/zh
Priority to US17/994,045 priority Critical patent/US20230121851A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • This application relates to the field of communication technology, and in particular to a data transmission method and related devices.
  • RU resource units
  • a 20MHz channel may contain multiple RUs, in the form of 26-tone RU, 52-tone RU, or 106-tone RU.
  • tone represents the number of sub-carriers.
  • the RU may also be in the form of 242-tone RU, 484-tone RU, 996-tone RU, etc.
  • the channel bandwidth of a physical layer protocol data unit (PHY protocol data unit, PPDU) sent by an access point is allocated to multiple stations to transmit data.
  • the High Efficient Signal Field (HE-SIG-B) of the PPDU includes user-specific fields, and the user-specific fields include user fields of the multiple sites.
  • This application provides a data transmission method and related devices, which can simplify the user field in the signaling field of the PPDU.
  • this application provides a data transmission method, including: generating a signaling field of a physical layer protocol data unit PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two The frequency domain slicing includes the first frequency domain slicing, the channel bandwidth includes RUs used for multi-user-multiple-input multiple-output MU-MIMO transmission, the RUs are allocated to multiple sites, and the multiple sites include stops.
  • the signaling field includes a public field and a user-specific field, and the user-specific field includes the corresponding RU
  • the user field corresponding to the RU is a user field of a site that stops at the first frequency domain fragment among the multiple sites
  • the common field includes a resource unit allocation subfield corresponding to the RU , Used to indicate the RU and the number of user fields corresponding to the RU; and send the signaling field in the first frequency domain in fragments.
  • This method can be used in OFDMA scenarios, for example.
  • the user field in the signaling field of each frequency domain fragmentation transmission only includes the user field of the STA participating in MU-MIMO transmission, and the user field corresponding to the STA that is docked in the frequency domain fragmentation, and does not include the user field participating in MU-MIMO.
  • the user fields corresponding to the STAs that are not docked in the frequency domain fragments thereby simplifying the user fields in the signaling fields of each frequency domain fragment transmission.
  • the number of user fields corresponding to the RU indicated in the signaling field of the PPDU is the number of stations participating in MU-MIMO transmission and parked in the frequency domain fragment, rather than the total number of stations participating in MU-MIMO transmission. Points. In this way, it is ensured that the signaling fields of each frequency domain fragmented transmission can accurately indicate the user fields corresponding to the RU used for MU-MIMO transmission.
  • the user field includes an indication site identification field and a spatial stream allocation indication field
  • the site identification indication field is used to indicate the site identification corresponding to the user field
  • the spatial stream allocation indication field includes The initial spatial stream subfield and the spatial stream number subfield, the initial spatial stream subfield indicates the first spatial stream allocated to the site corresponding to the site identifier, and the spatial stream number subfield indicates the site corresponding to the site identifier The number of allocated spatial streams. This indicates the way in which the spatial stream is allocated, regardless of the number of user fields and the order in which they are arranged. It can accurately indicate the space flow allocated by the STA corresponding to each user field while reducing user fields.
  • the user field includes a site identification indication field and a spatial stream allocation indication field
  • the site identification indication field is used to indicate the site identification corresponding to the user field
  • the spatial stream allocation indication field is in accordance with the
  • the ranking of the stations corresponding to the spatial flow allocation indicates the spatial flow allocated to each of the plurality of stations, the ranking of the stations includes the sequence of the plurality of stations;
  • the signaling field also includes a special user field
  • the special user field is used to indicate the number of the multiple sites, and to indicate the ranking position of the sites parked in the first frequency domain fragment among the multiple sites in the site ranking.
  • the station can determine whether it is the sorted position among the multiple stations allocated to the RU for MU-MIMO transmission, that is, it can determine whether it is allocated to the RU for MU-MIMO transmission.
  • the number of stations of the transmitted RU can thus be combined with the index indicating the spatial flow contained in the user field to determine the allocated spatial flow.
  • the common field includes one or more resource unit allocation subfields, wherein at least one RU indicated by any resource unit allocation field is allocated to a site docked at the first frequency domain fragment.
  • the resource unit allocation subfield of the signaling field only contains the resource unit allocation subfield that indicates the RU allocation of the site that stops at the first frequency domain fragment, but does not contain the indicates that the station does not stop at the first frequency domain fragment.
  • the resource unit allocation subfields allocated by the RU can reduce the number of resource unit allocation subfields in the signaling field, thereby saving the overhead of the signaling field.
  • embodiments of the present application also provide a data transmission method, including: generating a signaling field of a physical layer protocol data unit PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments;
  • the at least two frequency domain fragments include a first frequency domain fragment, the channel bandwidth includes MU-MIMO frequency domain resources used for MU-MIMO transmission, and the MU-MIMO frequency domain resources are allocated to a plurality of stations.
  • the multiple sites include sites that are docked in the first frequency domain fragment and sites that are not docked in the first frequency domain fragment; the signaling field includes those of the multiple sites that are docked in the first frequency domain.
  • the user field of the fragmented station, and a field indicating the number of MU-MIMO users, where the field indicating the number of MU-MIMO users indicates the station that stops at the first frequency domain fragment among the plurality of stations The number of user fields; the signaling field is sent in fragments in the first frequency domain.
  • This method can be used in non-OFDMA scenarios, for example.
  • the user field in the signaling field of each frequency domain fragment transmission only includes the user field corresponding to the STA participating in MU-MIMO transmission and docked in the frequency domain fragment. Include the user fields corresponding to the STAs participating in MU-MIMO transmission that are not docked in the frequency domain fragment, thereby simplifying the user fields in the signaling field of each frequency domain fragment transmission.
  • the number of MU-MIMO users indicated in the signaling field of the PPDU is the number of stations participating in MU-MIMO transmission and docking in the frequency domain fragment, rather than the total number of stations participating in MU-MIMO transmission. In this way, it is ensured that the signaling fields of each frequency domain fragmented transmission can accurately indicate the user fields corresponding to the MU-MIMO frequency domain resources used for MU-MIMO transmission.
  • the user field includes a site identification indication field and a spatial stream allocation indication field, the site identification indication field is used to indicate the site identification corresponding to the user field;
  • the spatial stream allocation indication field includes a start The spatial stream subfield and the spatial stream number subfield, the starting spatial stream subfield indicates the first spatial stream allocated to the site corresponding to the site identifier, and the spatial stream number subfield indicates that the site corresponding to the site identifier is assigned The number of allocated spatial streams. This indicates the way in which the spatial stream is allocated, regardless of the number of user fields and the order in which they are arranged. It can accurately indicate the space flow allocated by the STA corresponding to each user field while reducing user fields.
  • the user field includes a field indicating the site identifier of the site corresponding to the user field and a spatial stream allocation indication field, and the spatial stream allocation indication field is sorted according to the sites corresponding to the spatial stream allocation, indicating For the spatial flow allocated to each of the multiple sites, the site ranking includes the sequence of the multiple sites; the signaling field further includes a special user field, and the special user field is used to indicate The number of the plurality of sites, and the ranking position in the ranking of the sites indicating the sites parked in the first frequency domain fragment among the plurality of sites.
  • a station can determine its own rank among multiple stations allocated to MU-MIMO frequency domain resources, that is, determine which station is allocated to MU-MIMO frequency domain resources.
  • Each site can be combined with the index indicating the spatial flow contained in the user field to determine the allocated spatial flow.
  • the signaling field includes a public field and a user-specific field
  • the user-specific field includes the user field
  • the user field includes a field and space indicating the site identification of the site corresponding to the user field.
  • a stream allocation indication field where the spatial stream allocation indication field is sorted according to the sites corresponding to the spatial stream allocation, indicating the spatial stream allocated to each of the multiple sites, and the site ranking includes the multiple The order of the sites;
  • the common field includes the field indicating the number of users of MU-MIMO, the indicating field of the total number of MU-MIMO users, and the field indicating the starting position, and the indicating field of the total number of MU-MIMO users indicates the number of stations.
  • the number, the field indicating the starting position indicates the starting position of the site parked in the first frequency domain fragment in the site ordering.
  • the user field only includes the user field of the station docked in the frequency domain fragment
  • the station receiving the PPDU can also refer to the MU-MIMO total user number indicator field in the common field, the field indicating the number of MU-MIMO users and the indication
  • the subfield of the starting position determines the site ranking position of the station corresponding to the user field containing its own site identifier, and determines its own ranking position among multiple sites allocated with MU-MIMO frequency domain resources, that is, determine It is the number of stations to which MU-MIMO frequency domain resources are allocated, so that the allocated spatial stream can be determined in combination with the index indicating the spatial stream contained in the user field.
  • indicating the position of the site corresponding to the user field in the site ranking in the common field can reduce the overhead of the signaling field compared to indicating the position of the site corresponding to the user field in the site ranking in each user field.
  • an embodiment of the present application also provides a data transmission method, including:
  • the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain fragment, and the channel bandwidth includes -MU-MIMO frequency domain resources for MIMO transmission.
  • the MU-MIMO frequency domain resources are allocated to multiple sites, and the multiple sites include sites docked at the first frequency domain fragment and non-parked at the first frequency Domain fragmented sites;
  • the signaling field includes a public field and a user-specific field.
  • the user-specific field includes a user field of a site parked at the first frequency domain fragment; the user field includes a field indicating the site identifier of the site corresponding to the user field.
  • a spatial flow allocation indication field the spatial flow allocation indication field is sorted according to the stations corresponding to the spatial flow allocation, indicating the spatial flow allocated to each of the plurality of stations, and the station sorting includes the Arrangement order of multiple sites;
  • the common field includes a MU-MIMO total user number indicator field and a bitmap, the MU-MIMO total user number indicator field indicates the number of the multiple stations, and the bitmap indicates that the stop at the first The starting position of the site of a frequency domain fragmentation in the site ranking of the multiple sites;
  • the signaling field is sent in fragments in the first frequency domain. This method can be used in non-OFDMA scenarios, for example.
  • the user field only includes the user field of the station docked in the frequency domain fragment, and the station receiving the PPDU can also determine that it contains its own station identifier according to the MU-MIMO total user number indicator field and bitmap in the common field.
  • the position of the station corresponding to the user field of the user field in the station ranking determine its own ranking position in the multiple stations allocated MU-MIMO frequency domain resources, that is, determine that it is the first allocated MU-MIMO frequency domain resource Several sites can thus determine the allocated spatial flow in combination with the index indicating the spatial flow contained in the user field.
  • indicating the position of the site corresponding to the user field in the site ranking in the common field can reduce the overhead of the signaling field compared to indicating the position of the site corresponding to the user field in the site ranking in each user field.
  • embodiments of the present application also provide a data transmission method, including: generating a signaling field of a PPDU, the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments, and the at least two frequency domain fragments Including a first frequency domain fragment, the at least two frequency domain fragments including the first frequency domain fragment, the channel bandwidth includes an RU used for multi-user-multiple-input multiple-output MU-MIMO transmission, and the RU is Allocate to multiple sites, the multiple sites including sites docked in the first frequency domain fragment and sites not docked in the first frequency domain fragment; the signaling field includes a public field and a user-specific Field, the common field includes a resource unit allocation subfield corresponding to the RU, and is used to indicate the RU and the number of user fields corresponding to the RU; the user-specific field includes the user field corresponding to the RU , The user field corresponding to the RU is the user field of the multiple sites; among the user fields corresponding to the
  • the user field in the signaling field of each frequency domain fragment transmission only includes the user field corresponding to the STA that is docked in the frequency domain fragment in the stations participating in the MU-MIMO transmission. Include the user fields corresponding to the STAs participating in MU-MIMO transmission that are not docked in the frequency domain fragment, thereby simplifying the user fields in the signaling field of each frequency domain fragment transmission. Moreover, at the position of the user field of the STA that is not docked in the frequency domain fragment, an empty user field is filled.
  • the user field of the STA participating in MU-MIMO transmission and docking in the frequency domain fragment does not change the ranking position in all the user fields corresponding to the station receiving the PPDU, so that the transmission of each frequency domain fragment
  • the signaling field can accurately indicate the user field corresponding to the RU used for MU-MIMO transmission.
  • embodiments of the present application also provide a data transmission method, including: generating a signaling field of a physical layer protocol data unit PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments;
  • the at least two frequency domain fragments include a first frequency domain fragment, the channel bandwidth includes MU-MIMO frequency domain resources used for MU-MIMO transmission, and the MU-MIMO frequency domain resources are allocated to a plurality of stations, the
  • the multiple sites include a site docked in the first frequency domain fragment and a site not docked in the first frequency domain fragment;
  • the signaling field includes the user fields of the multiple sites, and the MU-MIMO indicator
  • the field of the number of users, the field indicating the number of MU-MIMO users indicates the number of user fields of the multiple sites; in the user field corresponding to the multiple RUs, one of the multiple sites stops at the first
  • the user field of a frequency domain fragmented site includes the site identifier of the user field, and
  • the user field in the signaling field of each frequency domain fragment transmission only includes the user field corresponding to the STA that is docked in the frequency domain fragment in the stations participating in the MU-MIMO transmission. Include the user fields corresponding to the STAs participating in MU-MIMO transmission that are not docked in the frequency domain fragment, thereby simplifying the user fields in the signaling field of each frequency domain fragment transmission. Moreover, at the position of the user field of the STA that is not docked in the frequency domain fragment, an empty user field is filled.
  • the user field of the STA participating in MU-MIMO transmission and docking in the frequency domain fragment does not change the ranking position in all the user fields corresponding to the station receiving the PPDU, so that the transmission of each frequency domain fragment
  • the signaling field can accurately indicate the user field corresponding to the frequency domain resource used for MU-MIMO transmission.
  • embodiments of the present application also provide a data transmission method, including: a first station docked at a first frequency domain fragment receiving a signaling field of a physical layer protocol data unit PPDU at the first frequency domain fragment ,
  • the channel bandwidth for transmitting the PPDU includes at least two frequency domain slices;
  • the at least two frequency domain slices include the first frequency domain slice, and the channel bandwidth includes the RUs for MU-MIMO transmission, where the RUs are allocated to multiple sites, and the multiple sites include a site docked at the first frequency domain fragment and a site not docked at the first frequency domain fragment;
  • the signaling field includes a public field and a user-specific field, the user-specific field includes a user field corresponding to the RU, and the user field corresponding to the RU is one of the multiple sites that is parked in the first frequency domain.
  • the user field of the fragmented site includes a resource unit allocation subfield corresponding to the RU, and is used to indicate the RU and the number of user fields corresponding to the RU;
  • the command field obtain the user field carrying the identity of the site, and obtain the data transmitted on the RU corresponding to the user field carrying the identity of the site.
  • This method can be used in OFDMA scenarios, for example.
  • the user field in the signaling field of each frequency domain fragment transmission only includes the user field corresponding to the STA participating in MU-MIMO transmission and docked in the frequency domain fragment. Include the user fields corresponding to the STAs participating in MU-MIMO transmission that are not docked in the frequency domain fragment, thereby simplifying the user fields in the signaling field of each frequency domain fragment transmission. Moreover, the number of user fields corresponding to the RU indicated in the signaling field of the PPDU is the number of stations participating in MU-MIMO transmission and parked in the frequency domain fragment, rather than the total number of stations participating in MU-MIMO transmission. Points.
  • the site can determine the RU assigned to itself according to the sort position of the user field containing its own site identifier in the multiple user fields.
  • the user field includes an indication site identification field and a spatial stream allocation indication field
  • the site identification indication field is used to indicate the site identification corresponding to the user field
  • the spatial stream allocation indication field includes The initial spatial stream subfield and the spatial stream number subfield, the initial spatial stream subfield indicates the first spatial stream allocated to the site corresponding to the site identifier, and the spatial stream number subfield indicates the site corresponding to the site identifier The number of allocated spatial streams. This indicates the way in which the spatial stream is allocated, regardless of the number of user fields and the order in which they are arranged. It can accurately indicate the space flow allocated by the STA corresponding to each user field while reducing user fields.
  • the user field includes a site identification indication field and a spatial stream allocation indication field
  • the site identification indication field is used to indicate the site identification corresponding to the user field
  • the spatial stream allocation indication field is in accordance with the
  • the ranking of the stations corresponding to the spatial flow allocation indicates the spatial flow allocated to each of the plurality of stations, the ranking of the stations includes the sequence of the plurality of stations;
  • the signaling field also includes a special user field
  • the special user field is used to indicate the number of the multiple sites, and to indicate the ranking position of the sites parked in the first frequency domain fragment among the multiple sites in the site ranking.
  • the station can determine whether it is the sorted position among the multiple stations allocated to the RU for MU-MIMO transmission, that is, it can determine whether it is allocated to the RU for MU-MIMO transmission.
  • the number of stations of the transmitted RU can thus be combined with the index indicating the spatial flow contained in the user field to determine the allocated spatial flow.
  • the common field includes one or more resource unit allocation subfields, wherein at least one RU indicated by any resource unit allocation field is allocated to a site docked at the first frequency domain fragment.
  • the resource unit allocation subfield of the signaling field only contains the resource unit allocation subfield that indicates the RU allocation of the site that stops at the first frequency domain fragment, but does not contain the indicates that the station does not stop at the first frequency domain fragment.
  • the resource unit allocation subfields allocated by the RU can reduce the number of resource unit allocation subfields in the signaling field, thereby saving the overhead of the signaling field.
  • an implementation manner of the present application also provides a data transmission method, including: a first station parked at a first frequency domain fragment receiving a signaling field of a physical layer protocol data unit PPDU at the first frequency domain fragment
  • the channel bandwidth for transmitting the PPDU includes at least two frequency domain slices; the at least two frequency domain slices include a first frequency domain slice, and the channel bandwidth includes MU- for MU-MIMO transmission.
  • the signaling field includes a user field of a station docked at the first frequency domain fragment among the plurality of stations, and a field indicating the number of MU-MIMO users, and the field indicating the number of MU-MIMO users
  • the field indicates the number of user fields of the sites parked at the first frequency domain fragment among the multiple sites; the first site obtains the user field carrying the identity of the site from the signaling field, and Obtain the data transmitted on the RU corresponding to the user field carrying the identifier of the site.
  • the user field in the signaling field of each frequency domain fragment transmission only includes the user field corresponding to the STA participating in MU-MIMO transmission and docked in the frequency domain fragment. Include the user fields corresponding to the STAs participating in MU-MIMO transmission that are not docked in the frequency domain fragment, thereby simplifying the user fields in the signaling field of each frequency domain fragment transmission.
  • the number of MU-MIMO users indicated in the signaling field of the PPDU is the number of stations participating in MU-MIMO transmission and docking in the frequency domain fragment, rather than the total number of stations participating in MU-MIMO transmission. In this way, it is ensured that the signaling fields of each frequency domain fragmented transmission can accurately indicate the user fields corresponding to the MU-MIMO frequency domain resources used for MU-MIMO transmission.
  • the user field includes a site identification indication field and a spatial stream allocation indication field, the site identification indication field is used to indicate the site identification corresponding to the user field;
  • the spatial stream allocation indication field includes a start The spatial stream subfield and the spatial stream number subfield, the starting spatial stream subfield indicates the first spatial stream allocated to the site corresponding to the site identifier, and the spatial stream number subfield indicates that the site corresponding to the site identifier is assigned The number of allocated spatial streams. This indicates the way in which the spatial stream is allocated, regardless of the number of user fields and the order in which they are arranged. It can be achieved that while reducing user fields, it can accurately indicate the space flow allocated by the STA corresponding to each user field.
  • the user field includes a field indicating the site identifier of the site corresponding to the user field and a spatial stream allocation indication field, and the spatial stream allocation indication field is sorted according to the sites corresponding to the spatial stream allocation, indicating For the spatial flow allocated to each of the multiple sites, the site ranking includes the sequence of the multiple sites; the signaling field further includes a special user field, and the special user field is used to indicate The number of the plurality of sites, and the ranking position in the ranking of the sites indicating the sites parked in the first frequency domain fragment among the plurality of sites.
  • a station can determine its own rank among multiple stations allocated to MU-MIMO frequency domain resources, that is, determine which station is allocated to MU-MIMO frequency domain resources.
  • Each site can be combined with the index indicating the spatial flow contained in the user field to determine the allocated spatial flow.
  • the signaling field includes a public field and a user-specific field
  • the user-specific field includes the user field
  • the user field includes a field and space indicating the site identification of the site corresponding to the user field.
  • a stream allocation indication field where the spatial stream allocation indication field is sorted according to the sites corresponding to the spatial stream allocation, indicating the spatial stream allocated to each of the multiple sites, and the site ranking includes the multiple The order of the sites;
  • the common field includes the field indicating the number of users of MU-MIMO, the indicating field of the total number of MU-MIMO users, and the field indicating the starting position, and the indicating field of the total number of MU-MIMO users indicates the number of stations.
  • the number, the field indicating the starting position indicates the starting position of the site parked in the first frequency domain fragment in the site ordering.
  • the user field only includes the user field of the station docked in the frequency domain fragment
  • the station receiving the PPDU can also refer to the MU-MIMO total user number indicator field in the common field, the field indicating the number of MU-MIMO users and the indication
  • the subfield of the starting position determines the site ranking position of the station corresponding to the user field containing its own site identifier, and determines its own ranking position among multiple sites allocated with MU-MIMO frequency domain resources, that is, determine It is the number of stations to which MU-MIMO frequency domain resources are allocated, so that the allocated spatial stream can be determined in combination with the index indicating the spatial stream contained in the user field.
  • indicating the position of the site corresponding to the user field in the site ranking in the common field can reduce the overhead of the signaling field compared to indicating the position of the site corresponding to the user field in the site ranking in each user field.
  • an embodiment of the present application also provides a data transmission method, including:
  • the first station parked at the first frequency domain fragment receives the signaling field of the PPDU in the first frequency domain fragment; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments;
  • Each frequency domain slice includes a first frequency domain slice, the channel bandwidth includes MU-MIMO frequency domain resources used for MU-MIMO transmission, and the MU-MIMO frequency domain resources are allocated to a plurality of stations, and the plurality of The sites include sites parked in the first frequency domain fragment and sites not parked in the first frequency domain fragment;
  • the signaling field includes a public field and a user-specific field.
  • the user-specific field includes a user field of a site parked at the first frequency domain fragment; the user field includes a field indicating the site identifier of the site corresponding to the user field.
  • a spatial flow allocation indication field the spatial flow allocation indication field is sorted according to the stations corresponding to the spatial flow allocation, indicating the spatial flow allocated to each of the plurality of stations, and the station sorting includes the Arrangement order of multiple sites;
  • the common field includes a MU-MIMO total user number indicator field and a bitmap, the MU-MIMO total user number indicator field indicates the number of the multiple stations, and the bitmap indicates that the stop at the first The starting position of the site of a frequency domain fragmentation in the site ranking of the multiple sites;
  • the first station obtains the user field carrying the identity of the site from the signaling field, and obtains the data transmitted on the RU corresponding to the user field that carries the identity of the site.
  • This method can be used in non-OFDMA scenarios, for example.
  • the user field only includes the user field of the station docked in the frequency domain fragment, and the station receiving the PPDU can also determine that it contains its own station identifier according to the MU-MIMO total user number indicator field and bitmap in the common field.
  • the position of the station corresponding to the user field of the user field in the station ranking determine its own ranking position in the multiple stations allocated MU-MIMO frequency domain resources, that is, determine that it is the first allocated MU-MIMO frequency domain resource Several sites can thus determine the allocated spatial flow in combination with the index indicating the spatial flow contained in the user field.
  • indicating the position of the site corresponding to the user field in the site ranking in the common field can reduce the overhead of the signaling field compared to indicating the position of the site corresponding to the user field in the site ranking in each user field.
  • an implementation manner of the present application also provides a data transmission method, including: a first station parked at a first frequency domain fragment receiving a signaling field of a physical layer protocol data unit PPDU at the first frequency domain fragment ;
  • the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments, the at least two frequency domain fragments include a first frequency domain fragment, and the at least two frequency domain fragments include the first frequency domain fragment ,
  • the channel bandwidth includes RUs used for multi-user-multiple-input multiple-output MU-MIMO transmission, the RUs are allocated to multiple sites, and the multiple sites include sites that are parked at the first frequency domain slice And a site not docking at the first frequency domain fragment;
  • the signaling field includes a common field and a user-specific field, and the common field includes a resource unit allocation subfield corresponding to the RU, and is used to indicate the RU, and the number of user fields corresponding to the RU;
  • the user-specific field includes the user field corresponding to
  • the user field in the signaling field of each frequency domain fragment transmission only includes the user field corresponding to the STA that is docked in the frequency domain fragment in the stations participating in the MU-MIMO transmission. Include the user fields corresponding to the STAs participating in MU-MIMO transmission that are not docked in the frequency domain fragment, thereby simplifying the user fields in the signaling field of each frequency domain fragment transmission. Moreover, at the position of the user field of the STA that is not docked in the frequency domain fragment, an empty user field is filled.
  • the user field of the STA participating in MU-MIMO transmission and docking in the frequency domain fragment does not change the ranking position in all the user fields corresponding to the station receiving the PPDU, so that the transmission of each frequency domain fragment
  • the signaling field can accurately indicate the user field corresponding to the RU used for MU-MIMO transmission. This enables the site to determine the RU allocated to itself according to the sorted position of the user field containing its own site identifier in the multiple user fields.
  • an implementation manner of the present application also provides a data transmission method, including: a first station parked at a first frequency domain fragment receiving a signaling field of a physical layer protocol data unit PPDU at the first frequency domain fragment
  • the channel bandwidth for transmitting the PPDU includes at least two frequency domain slices; the at least two frequency domain slices include a first frequency domain slice, and the channel bandwidth includes MU- for MU-MIMO transmission.
  • the signaling field includes user fields of the multiple sites and a field indicating the number of users of MU-MIMO, and the field indicating the number of users of MU-MIMO indicates the number of user fields of the multiple sites;
  • the user field corresponding to the multiple RUs the user field of the site that stops at the first frequency domain fragment among the multiple sites includes the site identifier of the user field, and the non-stop at all of the multiple sites
  • the user field of the site of the first frequency domain fragmentation is an empty user field; the first site obtains the user field carrying the identity of the site from the signaling field, and obtains the user field that carries the identity of the site
  • the data transmitted on the RU corresponding to the user field. This method can be used in non-OFDMA scenarios, for example.
  • the user field in the signaling field of each frequency domain fragment transmission only includes the user field corresponding to the STA that is docked in the frequency domain fragment in the stations participating in the MU-MIMO transmission. Include the user fields corresponding to the STAs participating in MU-MIMO transmission that are not docked in the frequency domain fragment, thereby simplifying the user fields in the signaling field of each frequency domain fragment transmission.
  • an implementation manner of the present application also provides a data transmission device, including:
  • the processing unit is configured to generate the signaling field of the physical layer protocol data unit PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain fragment
  • the channel bandwidth includes RUs used for multi-user-multiple-input multiple-output MU-MIMO transmission, and the RUs are allocated to multiple sites, and the multiple sites include those that are docked in the first frequency-domain slicing. Sites and sites that are not docked at the first frequency domain fragment;
  • the signaling field includes a public field and a user-specific field, the user-specific field includes a user field corresponding to the RU, and the user field corresponding to the RU is one of the multiple sites that is parked in the first frequency domain.
  • the common field includes a resource unit allocation subfield corresponding to the RU, and is used to indicate the RU and the number of user fields corresponding to the RU;
  • the sending unit is configured to send the signaling field fragments in the first frequency domain.
  • the data transmission device may be, for example, a communication device or an access point. Or the data transmission device is deployed in a communication device or an access point.
  • the data transmission device can be used in an OFDMA scenario, for example.
  • the user field in the signaling field of each frequency domain fragmentation transmission only includes the user field of the STA participating in MU-MIMO transmission, and the user field corresponding to the STA that is docked in the frequency domain fragmentation, and does not include the user field participating in MU-MIMO.
  • the user fields corresponding to the STAs that are not docked in the frequency domain fragments thereby simplifying the user fields in the signaling fields of each frequency domain fragment transmission.
  • the number of user fields corresponding to the RU indicated in the signaling field of the PPDU is the number of stations participating in MU-MIMO transmission and parked in the frequency domain fragment, rather than the total number of stations participating in MU-MIMO transmission. Points. In this way, it is ensured that the signaling fields of each frequency domain fragmented transmission can accurately indicate the user fields corresponding to the RU used for MU-MIMO transmission.
  • the user field includes an indication site identification field and a spatial stream allocation indication field
  • the site identification indication field is used to indicate the site identification corresponding to the user field
  • the spatial stream allocation indication field includes The initial spatial stream subfield and the spatial stream number subfield, the initial spatial stream subfield indicates the first spatial stream allocated to the site corresponding to the site identifier, and the spatial stream number subfield indicates the site corresponding to the site identifier The number of allocated spatial streams. This indicates the way in which the spatial stream is allocated, regardless of the number of user fields and the order in which they are arranged. It can accurately indicate the space flow allocated by the STA corresponding to each user field while reducing user fields.
  • the user field includes a site identification indication field and a spatial stream allocation indication field
  • the site identification indication field is used to indicate the site identification corresponding to the user field
  • the spatial stream allocation indication field is in accordance with the
  • the ranking of the stations corresponding to the spatial flow allocation indicates the spatial flow allocated to each of the plurality of stations, the ranking of the stations includes the sequence of the plurality of stations;
  • the signaling field also includes a special user field
  • the special user field is used to indicate the number of the multiple sites, and to indicate the ranking position of the sites parked in the first frequency domain fragment among the multiple sites in the site ranking.
  • the station can determine whether it is the sorted position among the multiple stations allocated to the RU for MU-MIMO transmission, that is, it can determine whether it is allocated to the RU for MU-MIMO transmission.
  • the number of stations of the transmitted RU can thus be combined with the index indicating the spatial flow contained in the user field to determine the allocated spatial flow.
  • the common field includes one or more resource unit allocation subfields, wherein at least one RU indicated by any resource unit allocation field is allocated to a site docked at the first frequency domain fragment.
  • the resource unit allocation subfield of the signaling field only contains the resource unit allocation subfield that indicates the RU allocation of the site that stops at the first frequency domain fragment, but does not contain the indicates that the station does not stop at the first frequency domain fragment.
  • the resource unit allocation subfields allocated by the RU can reduce the number of resource unit allocation subfields in the signaling field, thereby saving the overhead of the signaling field.
  • the implementation mode of this application also provides a data transmission device, including:
  • the processing unit is configured to generate the signaling field of the physical layer protocol data unit PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain fragment.
  • the channel bandwidth includes MU-MIMO frequency domain resources used for MU-MIMO transmission, and the MU-MIMO frequency domain resources are allocated to a plurality of stations, and the plurality of stations include those that are parked in the first frequency domain fragment.
  • the signaling field includes user fields of the stations docked in the first frequency domain fragment among the plurality of stations, and indicates MU-MIMO
  • the field indicating the number of users of MU-MIMO indicates the number of user fields of the stations parked at the first frequency domain fragment among the plurality of stations;
  • the sending unit is configured to send the signaling field fragments in the first frequency domain.
  • the data transmission device may be, for example, a communication device or an access point. Or the data transmission device is deployed in a communication device or an access point.
  • the data transmission device can be used in non-OFDMA scenarios, for example.
  • the user field in the signaling field of each frequency domain fragmentation transmission only includes the user field of the STA participating in MU-MIMO transmission, and the user field corresponding to the STA that is docked in the frequency domain fragmentation, and does not include the user field participating in MU-MIMO.
  • the user fields corresponding to the STAs that are not docked in the frequency domain fragments thereby simplifying the user fields in the signaling fields of each frequency domain fragment transmission.
  • the number of MU-MIMO users indicated in the signaling field of the PPDU is the number of stations participating in MU-MIMO transmission and docking in the frequency domain fragment, rather than the total number of stations participating in MU-MIMO transmission. In this way, it is ensured that the signaling fields of each frequency domain fragmented transmission can accurately indicate the user fields corresponding to the MU-MIMO frequency domain resources used for MU-MIMO transmission.
  • the user field includes a site identification indication field and a spatial stream allocation indication field, the site identification indication field is used to indicate the site identification corresponding to the user field;
  • the spatial stream allocation indication field includes a start The spatial stream subfield and the spatial stream number subfield, the starting spatial stream subfield indicates the first spatial stream allocated to the site corresponding to the site identifier, and the spatial stream number subfield indicates that the site corresponding to the site identifier is assigned The number of allocated spatial streams. This indicates the way in which the spatial stream is allocated, regardless of the number of user fields and the order in which they are arranged. It can accurately indicate the space flow allocated by the STA corresponding to each user field while reducing user fields.
  • the user field includes a field indicating the site identifier of the site corresponding to the user field and a spatial stream allocation indication field, and the spatial stream allocation indication field is sorted according to the sites corresponding to the spatial stream allocation, indicating For the spatial flow allocated to each of the multiple sites, the site ranking includes the sequence of the multiple sites; the signaling field further includes a special user field, and the special user field is used to indicate The number of the plurality of sites, and the ranking position in the ranking of the sites indicating the sites parked in the first frequency domain fragment among the plurality of sites.
  • a station can determine its own rank among multiple stations allocated to MU-MIMO frequency domain resources, that is, determine which station is allocated to MU-MIMO frequency domain resources.
  • Each site can be combined with the index indicating the spatial flow contained in the user field to determine the allocated spatial flow.
  • the signaling field includes a public field and a user-specific field
  • the user-specific field includes the user field
  • the user field includes a field and space indicating the site identification of the site corresponding to the user field.
  • a stream allocation indication field where the spatial stream allocation indication field is sorted according to the sites corresponding to the spatial stream allocation, indicating the spatial stream allocated to each of the multiple sites, and the site ranking includes the multiple The order of the sites;
  • the common field includes the field indicating the number of users of MU-MIMO, the indicating field of the total number of MU-MIMO users, and the field indicating the starting position, and the indicating field of the total number of MU-MIMO users indicates the number of stations.
  • the number, the field indicating the starting position indicates the starting position of the site parked in the first frequency domain fragment in the site ordering.
  • the user field only includes the user field of the station docked in the frequency domain fragment
  • the station receiving the PPDU can also refer to the MU-MIMO total user number indicator field in the common field, the field indicating the number of MU-MIMO users and the indication
  • the subfield of the starting position determines the site ranking position of the station corresponding to the user field containing its own site identifier, and determines its own ranking position among multiple sites allocated with MU-MIMO frequency domain resources, that is, determine It is the number of stations to which MU-MIMO frequency domain resources are allocated, so that the allocated spatial stream can be determined in combination with the index indicating the spatial stream contained in the user field.
  • indicating the position of the site corresponding to the user field in the site ranking in the common field can reduce the overhead of the signaling field compared to indicating the position of the site corresponding to the user field in the site ranking in each user field.
  • an embodiment of the present application also provides a data transmission device, including:
  • the processing unit is configured to generate the signaling field of the PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain fragment, and the channel
  • the bandwidth includes MU-MIMO frequency domain resources used for MU-MIMO transmission.
  • the MU-MIMO frequency domain resources are allocated to multiple sites. The site of the first frequency domain fragmentation;
  • the signaling field includes a public field and a user-specific field.
  • the user-specific field includes a user field of a site parked at the first frequency domain fragment; the user field includes a field indicating the site identifier of the site corresponding to the user field.
  • a spatial flow allocation indication field the spatial flow allocation indication field is sorted according to the stations corresponding to the spatial flow allocation, indicating the spatial flow allocated to each of the plurality of stations, and the station sorting includes the Arrangement order of multiple sites;
  • the common field includes a MU-MIMO total user number indicator field and a bitmap, the MU-MIMO total user number indicator field indicates the number of the multiple stations, and the bitmap indicates that the stop at the first The starting position of the site of a frequency domain fragmentation in the site ranking of the multiple sites;
  • the sending unit is configured to send the signaling field fragments in the first frequency domain.
  • the data transmission device can be used in non-OFDMA scenarios, for example.
  • the user field only includes the user field of the station docked in the frequency domain fragment, and the station receiving the PPDU can also determine that it contains its own station identifier according to the MU-MIMO total user number indicator field and bitmap in the common field.
  • the position of the station corresponding to the user field of the user field in the station ranking determine its own ranking position in the multiple stations allocated MU-MIMO frequency domain resources, that is, determine that it is the first allocated MU-MIMO frequency domain resource Several sites can thus determine the allocated spatial flow in combination with the index indicating the spatial flow contained in the user field.
  • indicating the position of the site corresponding to the user field in the site ranking in the common field can reduce the overhead of the signaling field compared to indicating the position of the site corresponding to the user field in the site ranking in each user field.
  • the implementation mode of the present application also provides a data transmission device, including:
  • a processing unit configured to generate a signaling field of a PPDU, the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments, the at least two frequency domain fragments include the first frequency domain fragment, and the at least two frequency domain fragments
  • the frequency domain slicing includes the first frequency domain slicing
  • the channel bandwidth includes RUs used for multi-user-multiple-input multiple-output MU-MIMO transmission, the RUs are allocated to multiple sites, and the multiple sites include stops.
  • the signaling field includes a public field and a user-specific field, and the public field includes the corresponding RU
  • the resource unit allocation subfield is used to indicate the RU and the number of user fields corresponding to the RU;
  • the user-specific field includes the user field corresponding to the RU, and the user fields corresponding to the RU are the multiple The user field of the site; in the user field corresponding to the multiple RUs, the user field of the site docked in the first frequency domain fragment among the multiple sites includes the site identifier of the user field, and the multiple sites
  • the user field of a site not docking at the first frequency domain fragment in is an empty user field;
  • the sending unit is configured to send the signaling field fragments in the first frequency domain.
  • the data transmission device may be, for example, a communication device or an access point, or the data transmission device may be deployed at a communication device or an access point.
  • the data transmission device can be used in an OFDMA scenario, for example.
  • the user field in the signaling field of each frequency domain fragmented transmission only includes the user field corresponding to the station participating in MU-MIMO transmission and docked in the frequency domain fragment, but does not include the user field participating in MU-MIMO.
  • the user fields corresponding to the STAs that are not docked in the frequency domain fragments thereby simplifying the user fields in the signaling fields of each frequency domain fragment transmission.
  • an empty user field is filled at the position of the user field of the STA that is not docked in the frequency domain fragment.
  • the user field of the STA participating in MU-MIMO transmission and docking in the frequency domain fragment does not change the ranking position in all the user fields corresponding to the station receiving the PPDU, so that the transmission of each frequency domain fragment
  • the signaling field can accurately indicate the user field corresponding to the RU used for MU-MIMO transmission.
  • the implementation mode of this application also provides a data transmission device, including:
  • the processing unit is configured to generate the signaling field of the physical layer protocol data unit PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain fragment.
  • the channel bandwidth includes MU-MIMO frequency domain resources used for MU-MIMO transmission, and the MU-MIMO frequency domain resources are allocated to a plurality of stations, and the plurality of stations include those that are parked in the first frequency domain fragment.
  • the signaling field includes user fields of the multiple stations, and a field indicating the number of MU-MIMO users, the indicating MU-MIMO users
  • the number field indicates the number of user fields of the multiple sites; among the user fields corresponding to the multiple RUs, the user field of the site docked in the first frequency domain fragment among the multiple sites includes the user
  • the site identifier of the field, and the user field of the site that does not stop at the first frequency domain fragment among the plurality of sites is an empty user field;
  • the sending unit is configured to send the signaling field fragments in the first frequency domain.
  • the data transmission device may be, for example, a communication device or an access point. Or the data transmission device is deployed in a communication device or an access point.
  • the data transmission device can be used in an OFDMA scenario, for example. This method can be used in non-OFDMA scenarios, for example.
  • the user field in the signaling field of each frequency domain fragment transmission only includes the user field corresponding to the STA that is docked in the frequency domain fragment in the stations participating in the MU-MIMO transmission. Include the user fields corresponding to the STAs participating in MU-MIMO transmission that are not docked in the frequency domain fragment, thereby simplifying the user fields in the signaling field of each frequency domain fragment transmission. Moreover, at the position of the user field of the STA that is not docked in the frequency domain fragment, an empty user field is filled.
  • the user field of the STA participating in MU-MIMO transmission and docking in the frequency domain fragment does not change the ranking position in all the user fields corresponding to the station receiving the PPDU, so that the transmission of each frequency domain fragment
  • the signaling field can accurately indicate the user field corresponding to the frequency domain resource used for MU-MIMO transmission.
  • the implementation mode of this application also provides a data transmission device, including:
  • the receiving unit is configured to receive the signaling field of the physical layer protocol data unit PPDU in the first frequency domain fragment, wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments A slice includes the first frequency domain slice, the channel bandwidth includes an RU used for multi-user-multiple-input multiple-output MU-MIMO transmission, the RU is allocated to multiple sites, and the multiple sites include The site of the first frequency domain fragment and the site that does not stop at the first frequency domain fragment; the signaling field includes a public field and a user-specific field, and the user-specific field includes the user corresponding to the RU Field, the user field corresponding to the RU is a user field of a site parked at the first frequency domain fragment among the multiple sites; the common field includes a resource unit allocation subfield corresponding to the RU, Used to indicate the RU and the number of user fields corresponding to the RU;
  • the processing unit is configured to obtain the user field carrying the identity of the site from the signaling field, and obtain the data transmitted on the RU corresponding to the user field carrying the identity of the site.
  • the data transmission device may be, for example, a communication device or a site, or the data transmission device may be deployed in a communication device or a site.
  • the data transmission device can be used in an OFDMA scenario, for example.
  • the user field in the signaling field of each frequency domain fragmentation transmission only includes the user field of the STA participating in MU-MIMO transmission, and the user field corresponding to the STA that is docked in the frequency domain fragmentation, and does not include the user field participating in MU-MIMO.
  • the user fields corresponding to the STAs that are not docked in the frequency domain fragments thereby simplifying the user fields in the signaling fields of each frequency domain fragment transmission.
  • the number of user fields corresponding to the RU indicated in the signaling field of the PPDU is the number of stations participating in MU-MIMO transmission and parked in the frequency domain fragment, rather than the total number of stations participating in MU-MIMO transmission. Points.
  • the site can determine the RU assigned to itself according to the sort position of the user field containing its own site identifier in the multiple user fields.
  • the user field includes an indication site identification field and a spatial stream allocation indication field
  • the site identification indication field is used to indicate the site identification corresponding to the user field
  • the spatial stream allocation indication field includes The initial spatial stream subfield and the spatial stream number subfield, the initial spatial stream subfield indicates the first spatial stream allocated to the site corresponding to the site identifier, and the spatial stream number subfield indicates the site corresponding to the site identifier The number of allocated spatial streams. This indicates the way in which the spatial stream is allocated, regardless of the number of user fields and the order in which they are arranged. It can accurately indicate the space flow allocated by the STA corresponding to each user field while reducing user fields.
  • the user field includes a site identification indication field and a spatial stream allocation indication field
  • the site identification indication field is used to indicate the site identification corresponding to the user field
  • the spatial stream allocation indication field is in accordance with the
  • the ranking of the stations corresponding to the spatial flow allocation indicates the spatial flow allocated to each of the plurality of stations, the ranking of the stations includes the sequence of the plurality of stations;
  • the signaling field also includes a special user field
  • the special user field is used to indicate the number of the multiple sites, and to indicate the ranking position of the sites parked in the first frequency domain fragment among the multiple sites in the site ranking.
  • the station can determine whether it is the sorted position among the multiple stations allocated to the RU for MU-MIMO transmission, that is, it can determine whether it is allocated to the RU for MU-MIMO transmission.
  • the number of stations of the transmitted RU can thus be combined with the index indicating the spatial flow contained in the user field to determine the allocated spatial flow.
  • the common field includes one or more resource unit allocation subfields, wherein at least one RU indicated by any resource unit allocation field is allocated to a site docked at the first frequency domain fragment.
  • the resource unit allocation subfield of the signaling field only contains the resource unit allocation subfield that indicates the RU allocation of the site that stops at the first frequency domain fragment, but does not contain the indicates that the station does not stop at the first frequency domain fragment.
  • the resource unit allocation subfields allocated by the RU can reduce the number of resource unit allocation subfields in the signaling field, thereby saving the overhead of the signaling field.
  • an implementation manner of this application also provides a data transmission device, including:
  • the receiving unit is configured to receive the signaling field of the physical layer protocol data unit PPDU in the first frequency domain fragment; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments A slice includes the first frequency domain slice, the channel bandwidth includes MU-MIMO frequency domain resources used for MU-MIMO transmission, the MU-MIMO frequency domain resources are allocated to multiple sites, and the multiple sites include A site docked at the first frequency domain fragment and a site not docked at the first frequency domain fragment; the signaling field includes a site docked at the first frequency domain fragment among the plurality of sites And a field indicating the number of users of MU-MIMO, and the field indicating the number of users of MU-MIMO indicates the number of user fields of the stations parked at the first frequency domain fragment among the multiple stations number;
  • the processing unit is configured to obtain the user field carrying the identity of the site from the signaling field, and obtain the data transmitted on the RU corresponding to the user field carrying the identity of the site.
  • the data transmission device may be, for example, a communication device or a site, or the data transmission device may be deployed in a communication device or a site.
  • the data transmission device can be used in non-OFDMA scenarios, for example.
  • the user field in the signaling field of each frequency domain fragmentation transmission only includes the user field of the STA participating in MU-MIMO transmission, and the user field corresponding to the STA that is docked in the frequency domain fragmentation, and does not include the user field participating in MU-MIMO.
  • the user fields corresponding to the STAs that are not docked in the frequency domain fragments thereby simplifying the user fields in the signaling fields of each frequency domain fragment transmission.
  • the number of MU-MIMO users indicated in the signaling field of the PPDU is the number of stations participating in MU-MIMO transmission and docking in the frequency domain fragment, rather than the total number of stations participating in MU-MIMO transmission. In this way, it is ensured that the signaling fields of each frequency domain fragmented transmission can accurately indicate the user fields corresponding to the MU-MIMO frequency domain resources used for MU-MIMO transmission.
  • the user field includes a site identification indication field and a spatial stream allocation indication field, the site identification indication field is used to indicate the site identification corresponding to the user field;
  • the spatial stream allocation indication field includes a start The spatial stream subfield and the spatial stream number subfield, the starting spatial stream subfield indicates the first spatial stream allocated to the site corresponding to the site identifier, and the spatial stream number subfield indicates that the site corresponding to the site identifier is assigned The number of allocated spatial streams. This indicates the way in which the spatial stream is allocated, regardless of the number of user fields and the order in which they are arranged. It can accurately indicate the space flow allocated by the STA corresponding to each user field while reducing user fields.
  • the user field includes a field indicating the site identifier of the site corresponding to the user field and a spatial stream allocation indication field, and the spatial stream allocation indication field is sorted according to the sites corresponding to the spatial stream allocation, indicating For the spatial flow allocated to each of the multiple sites, the site ranking includes the sequence of the multiple sites; the signaling field further includes a special user field, and the special user field is used to indicate The number of the plurality of sites, and the ranking position in the ranking of the sites indicating the sites parked in the first frequency domain fragment among the plurality of sites.
  • a station can determine its own rank among multiple stations allocated to MU-MIMO frequency domain resources, that is, determine which station is allocated to MU-MIMO frequency domain resources.
  • Each site can be combined with the index indicating the spatial flow contained in the user field to determine the allocated spatial flow.
  • the signaling field includes a public field and a user-specific field
  • the user-specific field includes the user field
  • the user field includes a field and space indicating the site identification of the site corresponding to the user field.
  • a stream allocation indication field where the spatial stream allocation indication field is sorted according to the sites corresponding to the spatial stream allocation, indicating the spatial stream allocated to each of the multiple sites, and the site ranking includes the multiple The order of the sites;
  • the common field includes the field indicating the number of users of MU-MIMO, the indicating field of the total number of MU-MIMO users, and the field indicating the starting position, and the indicating field of the total number of MU-MIMO users indicates the number of stations.
  • the number, the field indicating the starting position indicates the starting position of the site parked in the first frequency domain fragment in the site ordering.
  • the user field only includes the user field of the station docked in the frequency domain fragment
  • the station receiving the PPDU can also refer to the MU-MIMO total user number indicator field in the common field, the field indicating the number of MU-MIMO users and the indication
  • the subfield of the starting position determines the site ranking position of the station corresponding to the user field containing its own site identifier, and determines its own ranking position among multiple sites allocated with MU-MIMO frequency domain resources, that is, determine It is the number of stations to which MU-MIMO frequency domain resources are allocated, so that the allocated spatial stream can be determined in combination with the index indicating the spatial stream contained in the user field.
  • indicating the position of the site corresponding to the user field in the site ranking in the common field can reduce the overhead of the signaling field compared to indicating the position of the site corresponding to the user field in the site ranking in each user field.
  • an embodiment of the present application also provides a data transmission device, including:
  • the receiving unit receives the signaling field of the PPDU in the first frequency domain fragment; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain fragment.
  • the channel bandwidth includes MU-MIMO frequency domain resources used for MU-MIMO transmission, and the MU-MIMO frequency domain resources are allocated to a plurality of stations, and the plurality of stations include those that are parked in the first frequency domain fragment. Sites and sites that are not docked at the first frequency domain fragment;
  • the signaling field includes a public field and a user-specific field.
  • the user-specific field includes a user field of a site parked at the first frequency domain fragment; the user field includes a field indicating the site identifier of the site corresponding to the user field.
  • a spatial flow allocation indication field the spatial flow allocation indication field is ordered according to the stations corresponding to the spatial flow allocation, and indicates the spatial flow allocated to each of the plurality of stations, and the station ordering includes the Arrangement order of multiple sites;
  • the common field includes a MU-MIMO total user number indicator field and a bitmap, the MU-MIMO total user number indicator field indicates the number of the multiple stations, and the bitmap indicates that the stop at the first The starting position of the site of a frequency domain fragmentation in the site ranking of the multiple sites;
  • the processing unit is configured to obtain the user field carrying the identity of the site from the signaling field, and obtain the data transmitted on the RU corresponding to the user field carrying the identity of the site.
  • the data transmission device can be used in non-OFDMA scenarios, for example.
  • the user field only includes the user field of the station docked in the frequency domain fragment, and the station receiving the PPDU can also determine that it contains its own station identifier according to the MU-MIMO total user number indicator field and bitmap in the common field.
  • the position of the station corresponding to the user field of the user field in the station ranking determine its own ranking position in the multiple stations allocated MU-MIMO frequency domain resources, that is, determine that it is the first allocated MU-MIMO frequency domain resource Several sites can thus determine the allocated spatial flow in combination with the index indicating the spatial flow contained in the user field.
  • indicating the position of the site corresponding to the user field in the site ranking in the common field can reduce the overhead of the signaling field compared to indicating the position of the site corresponding to the user field in the site ranking in each user field.
  • the implementation mode of this application also provides a data transmission device, including:
  • the receiving unit is configured to receive the signaling field of the physical layer protocol data unit PPDU in the first frequency domain fragment; the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments, and the at least two frequency domain fragments include The first frequency domain slice, the at least two frequency domain slices include a first frequency domain slice, the channel bandwidth includes an RU used for multi-user-multiple-input multiple-output MU-MIMO transmission, the RU Are allocated to multiple sites, the multiple sites including sites docked in the first frequency domain fragment and sites not docked in the first frequency domain fragment; the signaling field includes a public field and a user A specific field, the common field includes a resource unit allocation subfield corresponding to the RU, and is used to indicate the RU and the number of user fields corresponding to the RU; the user specific field includes the user corresponding to the RU Field, the user field corresponding to the RU is the user field of the multiple sites; in the user field corresponding to the multiple RUs, the users of the multiple sites parked at
  • the processing unit is configured to obtain the user field carrying the identity of the site from the signaling field, and obtain the data transmitted on the RU corresponding to the user field carrying the identity of the site.
  • the data transmission device may be, for example, a communication device or a site, or the data transmission device may be deployed in a communication device or a site.
  • the data transmission device can be used in an OFDMA scenario, for example.
  • the user field in the signaling field of each frequency domain fragmented transmission only includes the user field corresponding to the station participating in MU-MIMO transmission and docked in the frequency domain fragment, but does not include the user field participating in MU-MIMO.
  • the user fields corresponding to the STAs that are not docked in the frequency domain fragments thereby simplifying the user fields in the signaling fields of each frequency domain fragment transmission.
  • an empty user field is filled at the position of the user field of the STA that is not docked in the frequency domain fragment.
  • the user field of the STA participating in MU-MIMO transmission and docking in the frequency domain fragment does not change the ranking position in all the user fields corresponding to the station receiving the PPDU, so that the transmission of each frequency domain fragment
  • the signaling field can accurately indicate the user field corresponding to the RU used for MU-MIMO transmission. This enables the site to determine the RU allocated to itself according to the sorting position of the user field containing its own site identifier in the multiple user fields.
  • the implementation manners of this application also provide a data transmission device, including:
  • the receiving unit is configured to receive the signaling field of the physical layer protocol data unit PPDU in the first frequency domain fragment; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments A slice includes the first frequency domain slice, the channel bandwidth includes MU-MIMO frequency domain resources used for MU-MIMO transmission, the MU-MIMO frequency domain resources are allocated to multiple sites, and the multiple sites include Stations docked at the first frequency domain fragment and stations not docked at the first frequency domain fragment; the signaling field includes user fields of the multiple stations, and a field indicating the number of MU-MIMO users , The field indicating the number of users of MU-MIMO indicates the number of user fields of the multiple sites; among the user fields corresponding to the multiple RUs, one of the multiple sites stops at the first frequency domain division
  • the user field of the site of the fragment includes the site identifier of the user field, and the user field of the site that does not stop at the first frequency domain fragment among the plurality of
  • the processing unit is configured to obtain the user field carrying the identity of the site from the signaling field, and obtain the data transmitted on the RU corresponding to the user field carrying the identity of the site.
  • the data transmission device may be, for example, a communication device or a site, or the data transmission device may be deployed in a communication device or a site.
  • the data transmission device can be used in non-OFDMA scenarios, for example.
  • the user field in the signaling field of each frequency domain fragmented transmission only includes the user field corresponding to the station participating in MU-MIMO transmission and docked in the frequency domain fragment, but does not include the user field participating in MU-MIMO.
  • the user fields corresponding to the STAs that are not docked in the frequency domain fragments thereby simplifying the user fields in the signaling fields of each frequency domain fragment transmission.
  • the embodiments of the present application further provide a communication device.
  • the communication device may include a processor, a transceiver, and optionally a memory.
  • the processor executes the computer program in the memory or When instructing, the method of any one of the above-mentioned first aspect to the eighth aspect is executed.
  • the embodiments of the present application also provide a computer-readable storage medium having computer instructions stored in the computer-readable storage medium, and the computer instructions instruct the communication device to execute any of the first to eighth aspects described above.
  • the method of an embodiment is a computer-readable storage medium having computer instructions stored in the computer-readable storage medium, and the computer instructions instruct the communication device to execute any of the first to eighth aspects described above. The method of an embodiment.
  • the embodiments of the present application also provide a computer program product, the computer program product includes a computer program, when the computer program runs on a computer, the computer executes the first to eighth aspects.
  • the present application also provides a processor, configured to execute the method of any one of the foregoing aspects from the first aspect to the eighth aspect.
  • the processes of sending and receiving the above information in the above methods can be understood as the process of outputting the above information by the processor and the process of receiving the input of the above information by the processor.
  • the processor when outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver. Furthermore, after the above-mentioned information is output by the processor, other processing may be required before it reaches the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to undergo other processing before being input to the processor.
  • the processor outputs, receives, and inputs operations, instead of transmitting, sending, and receiving directly by radio frequency circuits and antennas.
  • the foregoing processor may be a processor dedicated to executing these methods, or a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory may be a non-transitory memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be arranged on different chips.
  • ROM read only memory
  • the present invention The embodiment does not limit the type of the memory and the setting mode of the memory and the processor.
  • the present application provides a chip system, which includes a processor and an interface, and is used to support a communication transmission device to implement the functions involved in any of the methods of the first to eighth aspects, such as , To determine or process at least one of the data and information involved in the above methods.
  • the chip system further includes a memory, and the memory is used to store the necessary information and data of the aforementioned communication device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a functional entity, which is used to implement the method described in any one of the first aspect to the eighth aspect.
  • FIG. 1 is a schematic diagram of a network structure provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the structure of a chip or a chip system provided by an embodiment of the present application
  • Fig. 4A is a schematic diagram of a possible allocation method of resource units
  • FIG. 4B is a schematic diagram of another possible allocation method of resource units
  • Figure 5A is a schematic diagram of the structure of a signaling field
  • FIG. 5B is a schematic diagram of another possible structure of the signaling field
  • Figure 6A is a schematic diagram of the structure of a PPDU
  • FIG. 6B is a schematic diagram of the structure of the PPDU involved in this application.
  • FIG. 6C is a schematic diagram of another structure of the PPDU involved in this application.
  • FIG. 6D is another schematic diagram of the structure of the PPDU involved in this application.
  • FIG. 7 is a schematic flowchart of a data transmission method provided by an embodiment of the application.
  • FIG. 8A is a schematic diagram of a scenario in which a signaling field in an embodiment of the application indicates RU allocation
  • FIG. 8B is a schematic diagram of another scenario in which the signaling field in an embodiment of the application indicates RU allocation
  • FIG. 9A is a schematic diagram of another scenario in which the signaling field in an embodiment of the application indicates RU allocation
  • FIG. 9B is a schematic diagram of another scenario in which the signaling field in an embodiment of the application indicates RU allocation
  • FIG. 10A is a schematic diagram of another scenario in which a signaling field indicates RU allocation according to an embodiment of the application.
  • FIG. 10B is a schematic diagram of another scenario in which the signaling field in an embodiment of the application indicates RU allocation
  • FIG. 11A is a schematic diagram of a scenario in which a signaling field in an embodiment of the application indicates frequency domain resource allocation
  • FIG. 11B is a schematic diagram of another scenario in which the signaling field in an embodiment of the application indicates frequency domain resource allocation
  • FIG. 12A is a schematic diagram of another scenario in which the signaling field in an embodiment of the application indicates RU allocation
  • FIG. 12B is a schematic diagram of another scenario in which the signaling field in an embodiment of the application indicates RU allocation
  • FIG. 13A is a schematic diagram of another scenario in which the signaling field in an embodiment of the application indicates RU allocation
  • FIG. 13B is a schematic diagram of another scenario in which the signaling field in an embodiment of the application indicates RU allocation
  • FIG. 14A is a schematic diagram of another scenario in which the signaling field in an embodiment of the application indicates RU allocation
  • 14B is a schematic diagram of another scenario in which the signaling field indicates RU allocation according to an embodiment of the application.
  • 15A is a schematic diagram of another scenario in which the signaling field indicates frequency domain resource allocation according to an embodiment of the application.
  • 15B is a schematic diagram of another scenario in which the signaling field in an embodiment of the application indicates frequency domain resource allocation
  • FIG. 16A is a schematic diagram of another scenario in which the signaling field in an embodiment of the application indicates RU allocation
  • 16B is a schematic diagram of another scenario in which the signaling field indicates RU allocation according to an embodiment of the application.
  • FIG. 17A is a schematic diagram of another scenario in which the signaling field in an embodiment of the application indicates RU allocation
  • FIG. 17B is a schematic diagram of another scenario in which the signaling field in an embodiment of the application indicates RU allocation
  • 18A is a schematic diagram of another scenario in which the signaling field indicates RU allocation according to an embodiment of the application;
  • 18B is a schematic diagram of another scenario in which the signaling field indicates RU allocation according to an embodiment of the application.
  • FIG. 19A is a schematic diagram of another scenario in which the signaling field in an embodiment of the application indicates frequency domain resource allocation
  • 19B is a schematic diagram of another scenario in which the signaling field indicates frequency domain resource allocation according to an embodiment of the application.
  • 20A is a schematic structural diagram of a resource unit allocation subfield indication field according to an embodiment of the application.
  • 20B is a schematic diagram of the structure of a signaling field according to an embodiment of the application.
  • FIG. 20C is a schematic diagram of another structure of a signaling field according to an embodiment of the application.
  • 20D is a schematic diagram of another structure of the signaling field according to an embodiment of the application.
  • FIG. 21 is a schematic diagram of another structure of a resource unit allocation subfield indication field according to an embodiment of the application.
  • FIG. 22 is a schematic diagram of another structure of a resource unit allocation subfield indication field according to an embodiment of the application.
  • FIG. 23 is a schematic diagram of a resource unit allocation scenario according to an embodiment of the application.
  • 24 is a schematic diagram of modules of a data transmission device according to an embodiment of the application.
  • 25 is a schematic diagram of modules of a data transmission device according to an embodiment of the application.
  • FIG. 26 is a schematic diagram of modules of a data transmission device according to an embodiment of the application.
  • FIG. 27 is a schematic diagram of modules of a data transmission device according to an embodiment of the application.
  • FIG. 28 is a schematic diagram of modules of a data transmission device according to an embodiment of the application.
  • FIG. 29 is a schematic diagram of modules of a data transmission device according to an embodiment of the application.
  • FIG. 30 is a schematic diagram of modules of a data transmission device according to an embodiment of the application.
  • FIG. 31 is a schematic diagram of modules of a data transmission device according to an embodiment of the application.
  • FIG. 32 is a schematic diagram of modules of a data transmission device according to an embodiment of the application.
  • FIG. 33 is a schematic diagram of modules of a data transmission device according to an embodiment of the application.
  • FIG. 1 is a schematic diagram of a network structure provided by an embodiment of the present application.
  • the network structure may include one or more access point (AP)-type sites and one or more non-access point (none access point) sites. point station, non-AP STA).
  • AP access point
  • non-AP STA point station
  • this article refers to the access point type of site as an access point (AP), and the non-access point type of site as a site (STA).
  • the APs are, for example, AP1 and AP2 in FIG. 1
  • the STAs are, for example, STA1, STA2, and STA3 in FIG.
  • the access point can be the access point for terminal equipment (such as mobile phones) to enter the wired (or wireless) network. It is mainly deployed in homes, buildings, and parks. The typical coverage radius is from tens of meters to hundreds of meters. Can be deployed outdoors.
  • the access point is equivalent to a bridge connecting the wired network and the wireless network. The main function is to connect each wireless network client together, and then connect the wireless network to the Ethernet.
  • the access point may be a terminal device (such as a mobile phone) or a network device (such as a router) with a wireless fidelity (WiFi) chip.
  • WiFi wireless fidelity
  • the access point can be a device that supports the 802.11be standard.
  • the access point may also be a device supporting multiple wireless local area networks (WLAN) standards of the 802.11 family such as 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • WLAN wireless local area networks
  • the access point in this application may be a high efficiency (HE) AP or an extremely high throughput (extramely high throughput, EHT) AP, or an access point applicable to a future generation of WiFi standards.
  • HE high efficiency
  • EHT extremely high throughput
  • the access point may include a processor and a transceiver.
  • the processor is used to control and manage the actions of the access point, and the transceiver is used to receive or send information.
  • a site can be a wireless communication chip, a wireless sensor, or a wireless communication terminal, etc., and can also be referred to as a user.
  • the site can be a mobile phone that supports WiFi communication function, a tablet computer that supports WiFi communication function, a set-top box that supports WiFi communication function, a smart TV that supports WiFi communication function, a smart wearable device that supports WiFi communication function, and WiFi communication function is supported.
  • the station can support the 802.11be standard.
  • the site can also support multiple wireless local area networks (WLAN) standards of the 802.11 family such as 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • WLAN wireless local area networks
  • the station may include a processor and a transceiver.
  • the processor is used to control and manage the actions of the access point, and the transceiver is used to receive or send information.
  • the access point in this application may be a high efficiency (HE) STA or an extremely high throughput (EHT) STA, or an STA applicable to a future generation of WiFi standards.
  • HE high efficiency
  • EHT extremely high throughput
  • access points and sites can be devices used in the Internet of Vehicles, Internet of Things (IoT) nodes, sensors, etc., smart cameras in smart homes, smart remote controls, smart water meters, and electricity meters. And sensors in smart cities, etc.
  • IoT Internet of Things
  • the access points and sites involved in the embodiments of the present application can also be collectively referred to as communication devices, which can include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module .
  • communication devices can include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module .
  • One of the above-mentioned functions can be implemented in a hardware structure, a software module, or a hardware structure plus a software module.
  • Fig. 2 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • the communication device 200 may include a processor 201, a transceiver 205, and optionally a memory 202.
  • the transceiver 205 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing the transceiver function.
  • the transceiver 205 may include a receiver and a transmitter.
  • the receiver may be referred to as a receiver or a receiving circuit, etc., to implement a receiving function;
  • the transmitter may be referred to as a transmitter or a transmitting circuit, etc., to implement a transmitting function.
  • the memory 202 may store a computer program or software code or instruction 204, and the computer program or software code or instruction 204 may also be referred to as firmware.
  • the processor 201 can control the MAC layer and the PHY layer by running the computer program or software code or instruction 203 therein, or by calling the computer program or software code or instruction 204 stored in the memory 202, so as to realize the following aspects of this application.
  • the processor 201 may be a central processing unit (CPU), and the memory 202 may be, for example, a read-only memory (ROM) or a random access memory (RAM).
  • the processor 201 and the transceiver 205 described in this application can be implemented in an integrated circuit (IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (ASIC), printed circuit Printed circuit board (PCB), electronic equipment, etc.
  • IC integrated circuit
  • analog IC analog IC
  • radio frequency integrated circuit RFIC radio frequency integrated circuit
  • mixed signal IC mixed signal IC
  • ASIC application specific integrated circuit
  • PCB printed circuit Printed circuit board
  • electronic equipment etc.
  • the above-mentioned communication device 200 may further include an antenna 206, and each module included in the communication device 200 is only an example for illustration, and this application is not limited thereto.
  • the communication device 200 described in the above embodiment may be an access point or a station, but the scope of the communication device described in this application is not limited to this, and the structure of the communication device may not be limited by FIG. 2.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the implementation form of the communication device may be:
  • Independent integrated circuit IC or chip, or, chip system or subsystem
  • the IC collection may also include storage for storing data and instructions Components; (3) Modules that can be embedded in other devices; (4) Receivers, smart terminals, wireless devices, handhelds, mobile units, vehicle-mounted devices, cloud devices, artificial intelligence devices, etc.; (5) Others, etc. .
  • the implementation form of the communication device is a chip or a chip system
  • the chip or chip system shown in FIG. 3 includes a processor 301 and an interface 302.
  • the number of processors 301 may be one or more, and the number of interfaces 302 may be more than one.
  • the chip or chip system may include a memory 303.
  • the bandwidth for the AP to transmit PPDUs is allocated to one or more STAs for data transmission.
  • the PPDU includes a signaling field, the signaling field includes a user-specific field, and the user-specific field includes one or more user fields.
  • the structure of the user field of the STA participating in multiple user multiple input multiple output (MU-MIMO) transmission is shown in Table 1 below.
  • the user field includes the station identifier (STA ID) of the corresponding STA, the spatial stream allocation indication field, and the coding and modulation strategy indication field.
  • the STA can determine the frequency domain resources allocated to the STA according to the user field containing its own site identification.
  • the user field carries a site identifier to indicate that its corresponding frequency domain resource is allocated to the STA corresponding to the site identifier.
  • the STA can determine the frequency domain resource allocated to itself according to the correspondence between the user field carrying its own site identifier and the frequency domain resource.
  • data transmission performed by multiple stations occupying the same frequency domain resource in the channel bandwidth is MU-MIMO transmission in a non-OFDMA scenario.
  • the same frequency domain resource may be the entire channel bandwidth, or may be frequency domain resources except for the punctured part of the channel bandwidth.
  • the AP uses a signaling field (signal field, SIG) to notify the user of the allocation of the channel bandwidth for transmitting the PPDU.
  • SIG signaling field
  • the channel bandwidth for transmitting the PPDU is 20 MHz, and the 20 MHz is allocated to 6 stations to transmit data.
  • the signaling field of the PPDU includes the user fields of the 6 stations. It can be seen that in a non-OFDMA scenario, when MU-MIMO transmission is performed, the signaling field of the PPDU includes the user fields of all stations that are allocated frequency domain resources of the channel bandwidth.
  • the frequency domain resource allocation of a user is not in units of channels, but in resource units (RU).
  • the size of the RU can be 26-tone RU, 52-tone RU, 106-tone RU, and these RUs are usually called small RUs.
  • tone represents subcarriers
  • 26-tone RU represents an RU composed of 26 subcarriers
  • the 26-tone RU can be allocated to one user.
  • the size of the RU can also be 242-tone, 484-tone, 996-tone, etc. These are usually called large RUs.
  • an RU greater than or equal to 106-tone can be allocated to one or more users.
  • 802.11be the allocation of multiple RUs to one user will be supported, and the users in this application can be understood as STAs.
  • FIG. 4A is a schematic diagram of possible allocation of resource units when the channel bandwidth for transmitting the PPDU is 20 MHz.
  • the entire 20MHz channel bandwidth can be composed of a resource unit (242-tone RU) composed of 242 sub-carriers, or a resource unit composed of 26 sub-carriers (26-tone RU), and resource unit (52-tone RU) composed of 52 sub-carriers. It is composed of various combinations of tone RU) and resource units (106-tone RU) composed of 106 subcarriers.
  • it also includes some guard (Guard) subcarriers, null subcarriers, or direct current (DC) subcarriers.
  • Guard guard
  • DC direct current
  • FIG. 4B is a schematic diagram of a possible allocation of resource units when the channel bandwidth for transmitting the PPDU is 40 MHz.
  • the entire channel bandwidth is roughly equivalent to a copy of the 20MHz sub-carrier distribution.
  • the entire 40MHz channel bandwidth can be composed of a resource unit (484-tone RU) composed of a whole 484 subcarriers, or it can be composed of various combinations of 26-tone RU, 52-tone RU, 106-tone RU, and 242-tone RU. .
  • the entire channel bandwidth for transmitting PPDU is 80MHz.
  • the entire channel bandwidth is roughly equivalent to a copy of the 20MHz sub-carrier distribution.
  • the entire 80MHz channel bandwidth can be composed of an entire resource unit (996-tone RU) composed of 996 subcarriers, or it can be composed of 484-tone RU, 242-tone RU, 106-tone RU, 52-tone RU, 26-tone RU Composition of various combinations.
  • the AP uses a signaling field (signal field, SIG) to notify the user of the RU allocation.
  • SIG signaling field
  • FIG. 5A is a schematic diagram of the structure of the signaling field.
  • the HE-SIG includes a common field (common field) and a user specific field (user specific field).
  • the common fields include 1 to N resource unit allocation subfields (RU allocation subfield), cyclic redundancy code (CRC) used for checking, and tail subfields used for cyclic decoding.
  • RU allocation subfield resource unit allocation subfield
  • CRC cyclic redundancy code
  • tail subfields used for cyclic decoding.
  • One resource unit allocation subfield corresponds to the allocation of a 20MHz resource unit, and one resource unit allocation subfield indicates the size and location of one or more resource units corresponding to 20MHz.
  • one resource unit allocation subfield is an index, and one index indicates the size and location of one or more resource units corresponding to 20 MHz.
  • the resource unit allocation subfield can be an index in the first column of Table 1, for example, 00000000, 00000001, 00000010, and the row of each index represents the size of the resource unit corresponding to 20 MHz And location.
  • the user-specific field of the signaling field includes 1 to M user fields (User Field) according to the order of resource unit allocation.
  • the M user fields are usually two as a group, and there is a CRC and tail field after every two user fields. If the number of user fields is an odd number, the last user field is a separate group, and there is a CRC and tail field after the last user field.
  • the index is also used to indicate the number of MU-MIMO users supported by the RU composed of greater than or equal to 106 subcarriers. For example, index 01000y2y1y0. When y2y1y0 is 010, it is used to indicate that 106-tone is allocated to 3 users.
  • FIG. 5B is a schematic diagram of another possible structure of the signaling field.
  • the resource unit allocation subfield 1 is 01000010.
  • 01000010 indicates that the resource unit indicated by the transmission resource unit allocation subfield 1 is 106-tone RU, 26-tone RU, 26-tone RU, 26 -tone RU and 52-tone RU, and 106-tone RU is allocated to 3 users.
  • user-specific field part there are n user fields, among which user field 1, for field 2, user field 3 corresponds to 106-tone RU, user field 4, user field 5, and user field 6 correspond to three 26-tone RU in turn , User field 7 corresponds to 52-tone RU.
  • the user field carries the site identifier to indicate that the corresponding RU is allocated to a certain STA.
  • the STA can determine the RU allocated to itself according to the RU corresponding to the user field carrying its own site identifier.
  • the allocation of RUs that indicate the channel bandwidth is based on the correspondence between the order of the RU indicated by the resource unit allocation subfield and the order of the user fields in the user-specific fields. Relationship to determine the resource unit corresponding to each user field.
  • the HE-SIG-B sent to each site contains all the user fields corresponding to each resource unit allocation subfield, so as to ensure that the STA can allocate the subfields according to the position where the user field appears in combination with the corresponding resource unit. Determine the resource unit allocated to itself.
  • FIG. 6A is a schematic diagram of the structure of the PPDU.
  • PPDU includes traditional short training field (Legacy Short Training Field, L-STF), traditional long training field (Legacy Long Training Field, L-LTF), traditional signaling field (Legacy Signal Field, L-SIG), and repeated traditional signaling Field (RL-SIG), universal signaling field U-SIG (universal SIG, U-SIG), ultra-high throughput signaling field or extremely high throughput signaling field (extremely high throughput, EHT-SIG), EHT short Training field (EHT-STF), EHT long training field (EHT-LTF) and data (data).
  • L-STF Long Training Field
  • L-LTF traditional signaling field
  • RL-SIG repeated traditional signaling Field
  • U-SIG universal signaling field U-SIG (universal SIG, U-SIG)
  • ultra-high throughput signaling field or extremely high throughput signaling field extreme high throughput
  • EHT-SIG EHT short Training field
  • L-STF, L-LTF, L-SIG, RL-SIG, U-SIG, EHT-SIG, EHT-STF, EHT-LTF are parts of the physical layer header (or preamble) of the PPDU structure.
  • L-STF, L-LTF, and L-SIG can be understood as traditional preamble fields, which are used to ensure the coexistence of new devices with traditional devices.
  • RL-SIG is used to enhance the reliability of traditional signaling fields.
  • U-SIG and EHT-SIG are signaling fields.
  • U-SIG is used to carry some common information, such as information indicating the PPDU version, information indicating the uplink/downlink, information indicating the frequency domain bandwidth of the PPDU, and puncturing indication information.
  • the EHT-SIG includes information indicating resource allocation and information indicating data demodulation.
  • the fields in the PPDU in the 802.11be scenario are used as an example for description.
  • the fields in the PPDU mentioned in the embodiments of this application are not limited to fields related to 802.11be, and the fields in the PPDU mentioned in the embodiments of this application may also be fields related to standard versions after 802.11be.
  • FIG. 6B is a schematic diagram of the structure of the PPDU involved in this application.
  • a structure of frequency domain segmentation (segment) as shown in FIG. 6B is provided.
  • the channel bandwidth for transmitting PPDUs is divided into multiple frequency domain segments, and each frequency domain segment is docked.
  • the AP sends PPDUs to STAs parked in multiple frequency domain fragments.
  • the aforementioned docking refers to a corresponding relationship determined or known by the system, which is semi-static, that is, the corresponding relationship between frequency domain fragments and one or more docked sites is configured, and within a certain period of time constant.
  • each frequency domain slice is 80 MHz.
  • bandwidth granularities such as 40 MHz, 160 MHz, etc.
  • the various embodiments do not involve the specific process of configuring the docking relationship, and thus will not be described in detail.
  • the site parking described in this application is in a certain frequency domain fragment, which can also be referred to as a station residing in a certain frequency domain fragment, or a station located in or belonging to a certain frequency domain fragment .
  • frequency domain segmentation may also be referred to as frequency domain segmentation.
  • the fields of the preamble part of the PPDU are respectively carried on each frequency domain fragment, that is, the preamble part of the PPDU includes one or more frequency domain fragment content, for example, the first frequency domain
  • the fragmented content includes the first traditional preamble field, the first U-SIG and the first EHT-SIG; the second frequency domain fragmented content includes the second traditional preamble field, the second U-SIG, and the second EHT- SIG.
  • the traditional preamble field of the PPDU can also be transmitted over the entire channel bandwidth.
  • the U-SIG transmitted by each frequency domain fragment may only contain the puncturing indication information of its own frequency domain fragment.
  • the puncturing indication field may be set to 1 bit. In this way, the overhead of U-SIG transmission for each frequency domain fragmentation can be saved.
  • the embodiments of this application provide some setting methods of signaling fields, which are used to set the signaling fields of PPDUs.
  • the user field in the signaling field of each frequency domain fragmented transmission is simplified.
  • the user field in the signaling field of each frequency-domain segmented transmission only includes the user fields of the STAs participating in MU-MIMO transmission, and the corresponding user fields of the STAs docking in the frequency-domain segmentation, but not those participating in MU-MIMO transmission.
  • the user field corresponding to the STA that is not docked in the frequency domain fragment is not docked in the frequency domain fragment.
  • the signaling field In the first possible way to set the signaling field, set the number of MU-MIMO users indicated in the signaling field to the number of stations participating in MU-MIMO transmission and parked in the frequency domain fragment instead of participating The total number of stations for MU-MIMO transmission. In this way, it is ensured that the signaling fields of each frequency domain fragmented transmission can accurately indicate the user fields corresponding to the MU-MIMO frequency domain resources used for MU-MIMO transmission.
  • an empty user field is filled in the position of the user field of the STA that is not docked in the frequency domain fragment.
  • the user field of the STA participating in MU-MIMO transmission and docking in the frequency domain fragment does not change the ranking position in all the user fields corresponding to the station receiving the PPDU, so that the transmission of each frequency domain fragment
  • the signaling field can accurately indicate the user field corresponding to the MU-MIMO frequency domain resource used for MU-MIMO transmission.
  • the signaling field of each frequency domain fragment transmission does not include the user field that participates in MU-MIMO transmission, and is the user field corresponding to the STA that is not docked in the frequency domain fragment.
  • the signaling field of each frequency domain fragmented transmission can accurately indicate the user field corresponding to the MU-MIMO frequency domain resource used for MU-MIMO transmission.
  • the STAs parked in each frequency domain fragment can accurately determine the allocated MU-MIMO frequency domain resources according to the sorting position of the user field containing its own site identifier in the multiple user fields, and then determine the allocated MU-MIMO frequency domain resources accurately. Its own MU-MIMO frequency domain resources receive data, so that STAs docked in at least two frequency domain slices can perform MU-MIMO transmission on the same MU-MIMO frequency domain resource.
  • an embodiment of the present application provides a data transmission method, which is used to transmit the signaling field of the PPDU, and by adopting the foregoing signaling field setting method, it is implemented in the MU-MIMO scenario Next, simplify the user field in the signaling field, and ensure that the signaling field of each frequency domain fragment transmission can accurately indicate the user field corresponding to the frequency domain resource used for MU-MIMO transmission, so as to achieve docking at at least two frequencies.
  • the STAs in the domain fragmentation perform MU-MIMO transmission on the same MU-MIMO frequency domain resource.
  • FIG. 7 is a schematic flowchart of a data transmission method provided by an embodiment of the application.
  • the embodiment of this application is described with the example of AP sending PPDU to STA.
  • the data transmission method of this application is also applicable to scenarios where AP sends PPDU to AP, STA sends PPDU to STA, and in different scenarios, the transmitted PPDU and
  • the names of the signaling fields are different, but their functions and functions are similar, which are not repeated in the embodiment of the present application.
  • the channel bandwidth for the AP to transmit PPDUs to the STA includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain fragment, and the first frequency domain fragment may be at least two Any frequency domain fragment in the frequency domain fragment; each frequency domain fragment has several STAs docked.
  • the number of stops at a frequency domain fragment can be any number greater than or equal to zero.
  • the AP generates the signaling field of the PPDU.
  • Step 701 can be implemented by the processor of the AP. That is, the processor of the AP generates the signaling field of the PPDU.
  • the signaling field is a signaling field that is fragmented and transmitted in the first frequency domain.
  • the signaling field is used to indicate the allocation of channel bandwidth for PPDU transmission.
  • the signaling field can be set using the above-mentioned setting method of the signaling field.
  • the signaling field can be EHT-SIG, U-SIG and EHT-SIG.
  • the signaling field in the embodiment of the present application is not limited to the SIG field in 802.11be, and the signaling field in the embodiment of the present application may also be a SIG field related to a standard version after 802.11be.
  • the AP sends the signaling field fragments in the first frequency domain.
  • Step 702 can be implemented by the AP's transceiver. That is, the AP's transceiver sends the signaling field in the first frequency domain in fragments.
  • the STA docking in the first frequency domain fragment receives the signaling field of the PPDU sent by the AP, and obtains the user field carrying the identity of the STA from the signaling field, and then obtains the frequency domain resource corresponding to the user field The transmitted data.
  • the transceiver of the STA receives the signaling field of the PPDU sent by the AP.
  • the processor of the STA obtains the user field carrying the identifier of the STA from the slave signaling field, and then obtains the data transmitted on the frequency domain resource corresponding to the user field.
  • the following specifically introduces the content structure of the signaling field when the above two signaling field setting methods are used.
  • the signaling field includes the user field of the STA that is parked in the first frequency domain fragment and is allocated MU-MIMO frequency domain resources, and indicates that the station is parked in the first frequency domain.
  • Each user field includes the site identifier of a STA corresponding to the user field.
  • MU-MIMO frequency domain resources are allocated to 5 STAs, of which 3 STAs are docked in the first frequency domain fragment, and 2 STAs are docked in frequency domain fragments other than the first frequency domain fragment, then the In the signaling field, the number of user fields corresponding to the MU-MIMO frequency domain resource indicated is 3.
  • the signaling field is a signaling field fragmented and transmitted in the first frequency domain.
  • a site parked in the first frequency domain fragment can be understood as a site parked in the frequency domain fragment.
  • the MU-MIMO frequency domain resource used for MU-MIMO transmission in the aforementioned channel bandwidth can be understood as an RU used for MU-MIMO transmission.
  • the signaling field includes a resource unit allocation subfield, and the resource unit allocation subfield indicates the RU used for MU-MIMO transmission and the number of user fields corresponding to the RU.
  • the number of user fields corresponding to the RU used for MU-MIMO transmission indicated by the resource unit allocation subfield is the number of STAs that are parked in the first frequency domain slice and are allocated the RU, not the RU allocated The total number of STAs.
  • the signaling field also includes several user fields corresponding to the RU. The several user fields are user fields corresponding to several STAs that are parked in the first frequency domain slice and are allocated the RU.
  • the number of STAs parked in the first frequency domain slice and allocated the RU is greater than or equal to 0, and less than or equal to the maximum number of users that can be supported by one RU for MU-MIMO transmission.
  • the maximum number of users that an RU can support for MU-MIMO transmission may be 8
  • the number of STAs that are parked in the first frequency domain fragment and assigned the RU may be greater than or equal to 0, and less than or equal to 8
  • the number of user fields corresponding to the RU can be greater than or equal to 0 and less than or equal to 8.
  • each resource unit allocation subfield has a granularity of 20 MHz, and an RU allocation corresponding to 20 MHz is indicated as an example. In other embodiments, the granularity of each resource unit allocation subfield is not limited to 20 MHz.
  • the following example illustrates a scenario where the channel bandwidth for transmitting PPDU is 320 MHz, and the channel bandwidth for transmitting PPDU is divided into 4 frequency domain fragments.
  • the first frequency domain slice is the first 80MHz
  • the second frequency domain slice is the second 80MHz
  • the third frequency domain slice is the third 80MHz
  • the fourth frequency domain slice is the third 80MHz. This is the fourth 80MHz.
  • a part of the frequency domain in 320 MHz is specifically taken as an example, and the remaining parts are not listed one by one in this application.
  • the examples of the various embodiments of the present application are based on the frequency domain fragmentation architecture, and details are not repeated in the following examples.
  • the signaling field indicates the schematic diagram of the RU allocation scenario.
  • the RU corresponding to the second 20MHz of the lowest frequency of 80MHz for transmitting PPDU includes 106- tone RU, 26-tone RU, 26-tone RU, 26-tone RU, 26-tone RU, and 26-tone RU.
  • the 106-tone RU is allocated to 3 STAs, which are STA a corresponding to user field a, STA b corresponding to user field b, and STA h corresponding to user field h, thus forming MU-MIMO in which 3 stations participate.
  • the first 26-tone RU is the RU that is allocated to the STA that is docked in the second frequency domain fragment, and the 2nd to 5th 26-tone RUs are allocated to the RU that is docked on the first frequency. 4 STAs in the domain fragmentation.
  • 3 STAs allocated to the 106-tone RU 2 STAs (STA a and STA b) are docked in the first frequency domain fragment, and one STA (STA h) is docked in the second frequency domain fragment.
  • the 106-tone RU is allocated to 3 STAs, then the 106-tone RU is an RU used for MU-MIMO transmission.
  • the resource unit allocation subfield corresponding to the 20MHz indicates that the RU corresponding to the 20MHz is 106-tone RU, 26-tone RU, 26-tone RU, 26-tone RU, 26-tone RU, and 26-tone RU, and indicate that the number of user fields corresponding to 106-tone RU is 2.
  • the signaling field transmitted by the first frequency domain fragmentation includes two user fields corresponding to the 106-tone RU, namely user field a and user field b.
  • the user fields that follow the user field b include an empty user field, user field d, user field e, user field f, and user field g, respectively, and five 26- Tone RU corresponds to one to one.
  • the empty user field indicates that the user field corresponding to the first 26-tone RU is empty.
  • a STA parked in the first frequency domain fragment when a STA parked in the first frequency domain fragment receives the signaling field, it can determine the order of the RU corresponding to the 20 MHz according to the resource unit allocation subfield corresponding to the 20 MHz in the signaling field transmitted by the first frequency domain fragment. They are 106-tone RU, 26-tone RU, 26-tone RU, 26-tone RU, 26-tone RU, and 26-tone RU, and the number of user fields corresponding to 106-tone RU is 2.
  • STA a can determine 106-tone RU as the RU allocated to itself according to the user field a containing the site identifier of STA a; STA b can determine 106-tone RU according to the user field b containing the site identifier of STA b.
  • the tone RU is the RU allocated to itself.
  • the STA d can determine the second 26-tone RU after the 106-tone RU as the RU allocated to it according to the user field d that contains the site identifier of the STA d.
  • the resource unit allocation subfield corresponding to the 20MHz indicates that the RU corresponding to the 20MHz is 106-tone RU, 26-tone RU, and 106-tone RU, and 106-tone RU.
  • tone RU indicates that the number of user fields corresponding to the first 106-tone RU is 1, and indicates that the number of user fields of the second 106-tone RU is 1.
  • the signaling field transmitted by the second frequency domain fragmentation includes a user field corresponding to the first 106-tone RU, which is the user field h.
  • the user field after the user field h includes the user field c and the empty user field in sequence, corresponding to the 26-tone RU and the second 106-tone RU, respectively.
  • the STA receiving the signaling field can determine the order of the RU corresponding to the 20 MHz as 106-tone RU, 26-tone RU, 26-tone RU, 26-tone RU according to the resource unit allocation subfield corresponding to the 20 MHz. , 26-tone RU and 26-tone RU, and the number of user fields corresponding to 106-tone RU is 1.
  • STA h can determine that 106-tone RU is the RU assigned to itself according to the user field h that contains the site identifier of STA h; then STA c can determine the user field c that contains the site identifier of STA c, and determines that it is ranked in 106-tone RU.
  • the first 26-tone RU after the tone RU is the RU allocated to itself.
  • the signaling field of the first frequency domain fragment transmission there is no user field of the STA h that does not stop at the first frequency domain fragment.
  • the signaling field is the same as the 106-tone
  • the number of users of the 106-tone RU indicated by the resource unit allocation subfield corresponding to the RU does not include the STA h that does not stop at the first frequency domain fragment.
  • the number of users of the 106-tone RU indicated by the resource unit allocation subfield corresponding to the 106-tone RU only counts the number of docked first frequency domain fragments and is allocated the 106-tone RU
  • the number of STAs (STA a and STA b) of the RU is the number of STAs (STA a and STA b) of the RU.
  • the number of users of the 106-tone RU indicated by the resource unit allocation subfield corresponding to the 106-tone RU is only included in the second frequency domain division.
  • the number of STAs (STA h) allocated to the 106-tone RU is only included in the second frequency domain division.
  • STA h The number of STAs allocated to the 106-tone RU.
  • the RU allocated to the STA that is not docked in the second frequency domain fragment is not instructed according to the actual RU allocation situation, but is not docked in the second frequency domain.
  • the RUs of the fragmented STAs are combined with a simplified indication of one RU (106-tone RU), and it is indicated that the one RU corresponds to one user field.
  • the signaling field only contains one user field corresponding to one RU (actually corresponding to multiple RUs) of the combined simplified indication, instead of indicating the STAs that are not docked in the first frequency domain fragment according to the actual RU allocation.
  • a user field corresponding to each RU of each STA that is not docked in the first frequency domain fragment is set separately, so that the number of user fields can be reduced.
  • 106-tone RU (actually corresponding to the 2-5th 26-tone RU) corresponds to the empty user field, which saves 3 user fields, thereby reducing the overhead of signaling fields.
  • the instructions for the 1-5th 26-tone RU and the setting of the user field are not limited to the above examples. In other embodiments, other methods may be used to indicate the 1-5th 26-tone RU. -tone RU instructions, or set the corresponding user fields in other ways.
  • the signaling field indicates the allocation of RUs.
  • the RU corresponding to the first 20MHz of the lowest frequency of 80MHz for transmitting PPDU includes A 242-tone RU.
  • the 242-tone RU is an RU used for MU-MIMO transmission.
  • the 242-tone RU is allocated to 4 STAs, namely STA a, STA b, STA c, and STA d. Among them, STA a and STA c are docked in the first frequency domain fragment, and STA b and STA d are docked in the second frequency domain fragment.
  • the resource unit allocation subfield 1 corresponding to the 20MHz indicates that the RU corresponding to the 20MHz is 242-tone RU, and indicates the 242-tone RU
  • the number of corresponding user fields is 2.
  • the signaling field transmitted by the first frequency domain fragmentation includes two user fields corresponding to the 242-tone RU, which are the user field a of STA a and the user field c of STA c.
  • the resource unit allocation subfield 17 corresponding to the 20MHz indicates that the RU corresponding to the 20MHz is 242-tone RU, and indicates the 242-tone RU
  • the number of corresponding user fields is 2.
  • the signaling field transmitted by the first frequency domain fragmentation includes two user fields corresponding to the 242-tone RU, which are the user field b of the STA b and the user field d of the STA d.
  • a STA parked at the first frequency domain fragment when a STA parked at the first frequency domain fragment receives the signaling field, it can determine the RU corresponding to the 20 MHz according to the resource unit allocation subfield 1 corresponding to the 20 MHz in the signaling field transmitted by the first frequency domain fragment 242-tone RU.
  • STA a can determine that user field a is the signaling field of the first frequency domain fragmented transmission based on the user field a containing the site identifier of STA a and the resource unit allocation subfield 1, and is allocated to the resource unit
  • the STA c can allocate sub-fields based on the user field c containing the site identifier of the STA c and the resource unit.
  • an STA parked in the second frequency domain fragment receives the signaling field, it can determine that the 20 MHz corresponds to the resource unit allocation subfield 17 corresponding to the 20 MHz in the signaling field transmitted by the second frequency domain fragment.
  • the RU is 242-tone RU.
  • STA b can determine that user field b is the signaling field of the second frequency domain fragmented transmission according to the user field b containing the site identifier of STA b and the resource unit allocation subfield 17, and the resource unit is allocated The first user field corresponding to the 242-tone RU indicated by the subfield, so as to determine that the 242-tone RU is the RU allocated to itself; the STA can allocate subfields based on the user field d containing the site identifier of the STA and the resource unit.
  • the user field d is the second user field corresponding to the 242-tone RU indicated by the resource unit allocation subfield in the signaling field of the second frequency domain fragmented transmission, so as to determine that the 242-tone RU is allocated to Own RU.
  • the signaling field indicates the allocation of RUs.
  • the RU corresponding to the first 40 MHz with the lowest frequency of 80 MHz is 484-tone RU.
  • the one 484-tone RU is allocated to 5 STAs, namely STA1, STA2, STA3, and STA4 STA5.
  • the three STAs, STA1, STA2, and STA3 are STAs docked in the first frequency domain fragment
  • the two STAs, STA4 and STA5 are STAs docked in the second frequency domain fragment.
  • the signaling field of the first frequency domain fragmented transmission includes the resource unit allocation subfield 1 and the resource unit allocation subfield corresponding to the 40 MHz. 2.
  • the 40 MHz is indicated by the resource unit allocation subfield 1 and the resource unit allocation subfield 2.
  • the resource unit allocation subfield 1 indicates the 484-tone RU, and the number of user fields corresponding to the 484-tone RU is two.
  • the resource unit allocation subfield 2 indicates the 484-tone RU, and the number of user fields corresponding to the 484-tone RU is one. It can be seen that the sum of the number of user fields indicated by the resource unit allocation subfield 1 and the resource unit allocation subfield 2 is three.
  • the signaling field transmitted in the first frequency domain fragmentation further includes: a user field of STA1, a user field of STA2, and a user field of STA3.
  • the user field of STA1 includes the site identifier of STA1
  • the user field of STA2 includes the site identifier of STA2
  • the user field of STA3 includes the user field 3 of the site identifier of STA3.
  • the signaling field of the second frequency domain fragmented transmission includes a resource unit allocation subfield 17 and a resource unit allocation subfield 18 corresponding to the 40 MHz.
  • the 40 MHz is indicated by the resource unit allocation subfield 17 and the resource unit allocation subfield 18.
  • the resource unit allocation subfield 17 indicates the 484-tone RU, and the number of user fields corresponding to the 484-tone RU is one.
  • the resource unit allocation subfield 18 indicates the 484-tone RU, and the number of user fields corresponding to the 484-tone RU is one. It can be seen that the sum of the number of user fields indicated by the resource unit allocation subfield 17 and the resource unit allocation subfield 18 is two.
  • the signaling field of the second frequency domain fragmented transmission also includes: the user field of STA4 and the user field of STA5.
  • the user field of STA4 contains the site identifier of STA4
  • the user field of STA5 contains the site identifier of STA5.
  • the STA docking at the first frequency domain fragment receives the signaling field, it can be based on the resource unit allocation subfield 1 and resource unit allocation subfield 2 corresponding to the 40 MHz in the signaling field transmitted by the first frequency domain fragment. It is determined that the RU corresponding to the 40 MHz is 484-tone RU.
  • STA 1 can determine, according to the user field of STA 1 and the resource unit allocation subfield 1 corresponding to the 40 MHz, that the user field of STA 1 is the signaling field of the first frequency domain fragmented transmission and is allocated to the resource unit The first user field corresponding to the 484-tone RU indicated by subfield 1 to determine that the 484-tone RU is the RU allocated to itself;
  • STA 2 can determine the STA based on the user field of STA 2 and the resource unit allocation subfield 1 The user field of 2 is the second user field corresponding to the 484-tone RU indicated by the resource unit allocation subfield 1 in the signaling field of the first frequency-domain fragmented transmission, so as to determine that the 484-tone RU is allocated to itself RU;
  • STA 3 can determine that the user field of STA 3 is the signaling field of the first frequency domain fragmented transmission according to the user field 3 of STA 3 and the resource unit allocation subfield 2 corresponding to the 40 MHz, and the resource unit Allocate the user field
  • a STA parked in the second frequency domain fragment receives the signaling field, it can be based on the resource unit allocation subfield 17 and resource unit allocation subfield corresponding to the 40 MHz in the signaling field transmitted by the second frequency domain fragment. 18. Determine that the RU corresponding to the 40 MHz is 484-tone RU.
  • the STA 4 can determine, according to the user field of the STA 4 and the resource unit allocation subfield 17 corresponding to the 40 MHz, that the user field of the STA 4 is the signaling field of the second frequency domain fragmented transmission, and the resource unit Allocate the user field corresponding to the 484-tone RU indicated by the subfield 17, so as to determine that the 484-tone RU is the RU allocated to itself; the STA 5 can allocate the subfield 18 according to the user field of the STA 5 and the resource unit corresponding to the 40 MHz.
  • the number of user fields indicated by the one resource unit allocation subfield is The number of stations docked in the first frequency domain slice that participates in the RU's MU-MIMO transmission, not the total number of STAs participating in the RU's MU-MIMO transmission.
  • One 20 MHz in FIG. 8A corresponds to one resource unit allocation subfield, and the resource unit allocation subfield indicates one 106-tone RU and five 26-tone RUs. There is one resource unit allocation subfield corresponding to the 106-tone RU.
  • one RU used for MU-MIMO transmission is indicated by 2 or more resource unit allocation subfields in the signaling field of the first frequency domain fragmented transmission, then the 2 or more resource units are allocated
  • the sum of the number of user fields indicated by the subfields is the number of stations parked in the first frequency domain slice and participating in the MU-MIMO transmission of the RU.
  • the second 40MHz with the highest frequency of 80MHz corresponds to 2 resource unit allocation subfields.
  • the sum of the number of user fields indicated by the 2 resource unit allocation subfields is docked in the first frequency domain.
  • the slice the number of stations participating in the 484-tone RU MU-MIMO transmission.
  • the RU used for MU-MIMO transmission is allocated by 2 or more resource units in the signaling field Subfield indication.
  • the signaling field of each frequency domain fragment may be transmitted on two content channels (Content Channel, CC).
  • the resource unit allocation subfield in the signaling field is divided into a first part and a second part.
  • the resource unit allocation subfield of the first part is transmitted in CC1
  • the resource unit allocation subfield of the second part is transmitted in CC2.
  • the user field corresponding to the resource unit allocation subfield of the first part is transmitted in CC1
  • the user field corresponding to the resource unit allocation subfield of the second part is transmitted in CC2.
  • the odd-numbered resource unit allocation subfield in the signaling field is transmitted in CC1, and the user field corresponding to the odd-numbered resource unit allocation subfield is also transmitted in CC1; the even-numbered resource unit allocation subfield in the signaling field In CC1 transmission, the user field corresponding to the even-numbered resource unit allocation subfield is also transmitted in CC2.
  • the resource unit allocation subfield indicates the number of user fields corresponding to the RU used for MU-MIMO transmission. The number of user fields contributed by CC.
  • the resource unit allocation subfield 1 may be transmitted in CC1, and the resource unit allocation subfield 2 may be transmitted in CC2.
  • the resource unit allocation subfield 1 indicates a 484-tone RU, and the user fields corresponding to the 484-tone RU in the CC1 are the user field of STA1 and the user field of STA2.
  • the resource unit allocation subfield 2 indicates 484-tone RU, and the user field corresponding to the 484-tone RU in the CC2 is the user field of STA3.
  • the overhead in the signaling field can be allocated to two CC transmissions, so that the number of resource unit allocation subfields and user fields for each CC transmission will be reduced, thereby reducing the overhead of the signaling field.
  • the MU-MIMO frequency domain resources used for MU-MIMO transmission in the channel bandwidth for transmitting PPDUs are allocated to multiple STAs for MU-MIMO transmission.
  • the MU-MIMO frequency domain resource may be the channel bandwidth for transmitting the PPDU, that is, the channel bandwidth for transmitting the PPDU is allocated to multiple STAs for MU-MIMO transmission.
  • the frequency domain resources that are not punctured in the channel bandwidth of the transmission PPDU can be used as MU-MIMO frequency domain resources and allocated to multiple STAs for MU-MIMO transmission.
  • non-OFDMA a section of frequency domain resources is allocated to multiple STAs to transmit data, and multiple STAs share a section of frequency domain resources, and a section of frequency domain resources is not divided into multiple RUs and allocated to different STAs.
  • there is no resource unit allocation subfield in the PPDU and the resource unit allocation subfield cannot be used to indicate frequency domain resource allocation.
  • the signaling field includes a field indicating the number of MU-MIMO users (MU-MIMO users) and a user field.
  • the field indicating the number of MU-MIMO users indicates the number of user fields in the signaling field of the station that is docked at the first frequency domain slice and is allocated MU-MIMO frequency domain resources.
  • the field indicating the number of users of MU-MIMO may be similar to the field indicating the number of users of MU-MIMO or the number of symbols of EHT-SIG in 802.11ax, for example.
  • the field indicating the number of users of MU-MIMO or the number of symbols of EHT-SIG is set before EHT-SIG, for example, it may be a field in U-SIG. This field can be used to indicate the number of MU-MIMO users or the number of EHT-SIG symbols.
  • the user field related to the MU-MIMO frequency domain field in the signaling field of the first frequency domain fragment transmission includes only the user field of the STA docking in the first frequency domain fragment.
  • the number of users indicated by the field indicating the number of users of MU-MIMO is the number of STAs that are allocated the MU-MIMO frequency domain resource and parked in the first frequency domain fragment, rather than being allocated the MU-MIMO frequency domain. The total number of users of the resource.
  • the channel bandwidth for transmitting PPDU is 320 MHz, and the 320 MHz is not punctured, and the MU-MIMO frequency domain resource may be the channel bandwidth for transmitting PPDU.
  • the 320MHz channel bandwidth is allocated to 5 STAs, namely STA1, STA2, STA3, STA4, and STA5. Among them, STA1 and STA3 are docked in the first frequency domain fragment, and STA2, STA4 and STA5 are docked in the second frequency domain fragment.
  • FIG. 11A and 11B are schematic diagrams of scenarios in which the signaling field in an embodiment of the application indicates frequency domain resource allocation.
  • the number of users indicated by the field indicating the number of users for MU-MIMO transmission is 2.
  • the signaling field transmitted by the first frequency domain fragmentation further includes: a user field of STA1 and a user field of STA3.
  • the number of users indicated by the signaling field of the second frequency domain allocation transmission field indicating the number of users for MU-MIMO transmission is 3.
  • the signaling field of the second frequency domain fragmented transmission also includes: the user field of STA2, the user field of STA4, and the user field of STA5.
  • the spatial stream allocation indication field in the user field is indicated by the following Table 3-1.
  • the first column in Table 3-1 is the number of users (stations) participating in MU-MIMO transmission.
  • the number of users is the number of users corresponding to MU-MIMO frequency domain resources used for MU-MIMO transmission. It should be understood that the number of users does not refer to the number of users that are allocated the MU-MIMO frequency domain resource and parked in the frequency domain fragment, but the total number of users that are allocated the MU-MIMO frequency domain resource.
  • the second column in Table 3-1 is the index indicating the spatial stream.
  • the field indicating the spatial stream or the spatial stream allocation indication field can indicate the index of the spatial stream in the second column of Table 3-1 to indicate the assigned MU -The spatial stream to which each of the multiple stations of the MIMO frequency domain resources is allocated.
  • each row where the index of the spatial stream is located indicates the number of spatial streams allocated to the site corresponding to each user field in sequence according to the order of the user field.
  • Each user field of the multiple user fields corresponding to the MU-MIMO frequency domain resource corresponds to one of the 3-10th columns in the order of arrangement.
  • the number of stations (number of users) corresponding to an RU used for MU-MIMO transmission is 2, if the field indicating the spatial stream in the user field corresponding to the RU is 0000, then according to the table In 3-1, when the number of users is 2, the row where 0000 is located, it can be determined that 0000 indicates that the STA corresponding to the first user field corresponding to the RU is allocated 1 stream, and the STA corresponding to the second user field corresponding to the RU is allocated Assign 1 stream.
  • 0001 can be determined Indicates that the STA corresponding to the first user field corresponding to the RU is assigned 2 streams, the STA corresponding to the second user field corresponding to the RU is assigned 1 stream, and the STA corresponding to the third user field corresponding to the RU is assigned 1 flow.
  • the index indicating the spatial stream in Table 3-1 can also be used to indicate the allocated MU-MIMO frequency domain Spatial flow allocation of resources to multiple STAs.
  • the spatial stream allocation indication field in the user field is indicated by the index in the following Table 3-2.
  • the first column in Table 3-2 is the total number of users (sites) participating in MU-MIMO transmission.
  • the number of users is the total number of users corresponding to the MU-MIMO frequency domain resources used for MU-MIMO transmission. It should be understood that the number of users does not refer to the number of users that are allocated the MU-MIMO frequency domain resource and parked in the frequency domain fragment, but the total number of users that are allocated the MU-MIMO frequency domain resource.
  • the second column in Table 3-2 is an index indicating the spatial stream.
  • the field indicating the spatial stream or the spatial stream allocation indication field can use an index indicating the spatial stream in the second column of Table 3-2 to indicate that each of the multiple sites to which MU-MIMO has been allocated frequency domain resources is allocated.
  • each row where the index of the spatial stream is located indicates the number of spatial streams allocated to the site corresponding to each user field in sequence according to the order of the user field.
  • Each of the multiple user fields corresponding to the MU-MIMO frequency domain resource corresponds to one of the 3-10th columns.
  • each of the first N columns of columns 3-10 corresponds to a station to which the MU-MIMO frequency domain resource is allocated, and N is the number of the station to which the MU-MIMO frequency domain resource is allocated. The total number.
  • the value in the "[]" column 3-10 in the first row of Table 3-1 and Table 3-2 can be understood as the sequence number of the station corresponding to the number of spatial flows indicated by the column in the station ranking.
  • the user fields of the stations participating in the MU-MIMO transmission in the signaling field are arranged according to the index indicating the spatial stream allocation, and sequentially indicating the number of spatial streams allocated to each station.
  • MU-MIMO frequency domain resources are allocated to STA a, STA b, and STA c (the number of users is 3).
  • STA a is assigned the second stream
  • STA b is assigned the first stream
  • STA c is assigned 3 streams.
  • 0101 can be used to indicate that the three stations are assigned 3, 2, and 1 streams respectively.
  • the user field of STA c needs to be ranked first, the user field of STA a should be ranked second, and the user field of STA b The user field is ranked third.
  • the spatial stream allocation indication field is sorted according to the stations corresponding to the spatial stream allocation, and indicates the spatial stream allocated to each of the multiple stations to which the MU-MIMO frequency domain resource is allocated.
  • the site ranking includes the ranking sequence of multiple sites to which the MU-MIMO frequency domain resources are allocated.
  • the multiple sites include the sites that stop at the first frequency domain fragment and the sites that do not stop at the first frequency domain fragment.
  • the number of user fields and the arrangement order of such spatial stream allocation instructions need to correspond to the order of the sites, so as to accurately indicate the spatial streams allocated to each site. Then, if the above-mentioned first possible signaling field setting method is adopted, in the signaling field transmitted by the frequency domain fragment, the user field of the STA that is not docked in the frequency domain fragment is omitted, so that the user field is in the frequency domain.
  • the number of user fields corresponding to the MU-MIMO frequency domain resources will be less than the total number of users actually corresponding to the MU-MIMO RU. In this way, the number of user fields cannot match the spatial flow allocation indicated by the spatial flow allocation indication field according to the order of the stations.
  • the index indicating the spatial flow in Table 3-1 cannot accurately indicate the spatial flow corresponding to each STA. In the signaling field The allocation of the indicated spatial stream cannot be related to the user field.
  • this embodiment of the present application also provides a signaling corresponding to the first possible signaling field setting method mentioned above.
  • the content structure of the field and the solution of adding a special user field to the signaling field can solve the problem that the allocation of the spatial stream indicated by the spatial stream allocation indication field cannot correspond to the user field due to the reduction of the user field.
  • the signaling field includes a user field of a station that is parked at the first frequency domain fragment and allocated MU-MIMO frequency domain resources, a field indicating the number of the user field, and a special user field.
  • MU-MIMO frequency domain resources user fields, and fields indicating the number of user fields of the station to which the MU-MIMO frequency domain resources are allocated and docked at the first frequency domain fragment, please refer to the above related description.
  • the spatial stream allocation indication field in the user field is indicated by the indication method corresponding to Table 3-1 above.
  • the special user field indicates the total number of stations (number of users) to which MU-MIMO frequency domain resources are allocated, and indicates that the station that stops at the first frequency domain fragment and is allocated MU-MIMO frequency domain resources is allocated The ranking position in the site ranking of the multiple sites of the MU-MIMO frequency domain resource.
  • the STA can determine, according to the special user field, the sort position of the multiple stations allocated to the MU-MIMO frequency domain resource, that is, determine which position is allocated to the MU-MIMO frequency domain resource.
  • Each site can be combined with the index indicating the spatial flow contained in the user field and Table 3-1 to determine the allocated spatial flow.
  • Table 4 shows the content structure of the special user field.
  • the special user field includes the first subfield indicating the identification of the special user field, the second subfield indicating the total number of stations allocated MU-MIMO frequency domain resources, and the second subfield indicating the number of allocated MU-MIMO frequency domain resources.
  • the sites the third subfield of the sorted position of the site docked in the frequency domain fragment in the multiple sites.
  • the naming of the subfields included in the special field is not limited to the first subfield, the second subfield, and the third subfield. In other embodiments, the naming of these subfields may also be other name.
  • the first subfield is used to indicate that the field is a special user field, and the number of bits of the identifier may be, for example, but is not limited to 11 bits.
  • the second subfield can be a binary string.
  • the value of the binary string plus 1 is the total number of stations.
  • the number of bits in the second subfield may be the number of bits occupied by the binary string corresponding to the maximum number of stations that MU-MIMO can support.
  • the maximum number of stations that MU-MIMO can support may be 8
  • the number of bits in the second subfield may be 3.
  • the number of bits in the second subfield is not limited to 3. For example, it may be a positive integer such as 4, 5, and 6.
  • the maximum number of stations that MU-MIMO can support is other values, the number of bits in the second subfield can be adjusted accordingly. For example, if the maximum number of stations that MU-MIMO can support is N, the number of bits in the second subfield can be log 2 N.
  • the third subfield may be a bitmap.
  • the number of bits in the bitmap is the same as the number of multiple sites. Each of the multiple sites corresponds to the value of one bit of the bitmap in turn. In this way, it is possible to indicate, according to the bitmap, the station corresponding to each user field in the signaling field, and the sort position among multiple stations.
  • each bit of the bitmap can indicate whether the signaling field of this frequency domain fragment transmission includes the user field corresponding to this bit. For example, "1" in the bitmap indicates that the user field corresponding to this bit is included in the signaling field of this frequency domain fragment transmission, and "0" indicates that the signaling field of this frequency domain fragment transmission is not included This one corresponds to the user field.
  • the number of bits in the bitmap is the maximum number of stations that MU-MIMO can support. For example, in 802.11be, the maximum number of stations that MU-MIMO can support may be 8, and the number of bits in this field may be 8. When the maximum number of stations that MU-MIMO can support is other values, the number of bits in the third subfield can be adjusted accordingly. Specifically, if the maximum number of stations that MU-MIMO can support is N, then the number of bits in the third subfield is N.
  • the "0" in the bitmap may indicate that the user field corresponding to this bit is included in the signaling field of the frequency domain fragment transmission, and the "1" indicates that the frequency domain is divided.
  • the signaling field of the slice transmission does not include the user field corresponding to this bit.
  • the indication mode of the third subfield is not limited to indication through a bitmap. In other embodiments, other indication modes may also be used for indication.
  • the special user field is set before the first user field.
  • the STA receiving the signaling field can first read the special user field, determine the total number of MU-MIMO frequency domain resources (number of users), and the multiple stations allocated to the MU-MIMO frequency domain resource, and stop at The sorted positions of the stations in this frequency domain fragmentation among the multiple stations are convenient for the STA to read subsequent user fields.
  • the signaling field indicates RU allocation shown in FIG. 12A.
  • the signaling field of the first frequency domain fragment transmission include special user fields.
  • 802.11be the content structure of the special user field in the signaling field of the first frequency domain fragmented transmission is shown in Table 5.
  • the number of bits in the field indicating the total number of stations allocated MU-MIMO frequency domain resources is 010, indicating that the total number of users corresponding to the RU used for MU-MIMO transmission is 3; the bit indicating the sorting position
  • the figure is 11000000, indicating the user field corresponding to the RU transmitted by the first frequency domain fragmentation, the user field of the first STA corresponding to the RU, and the user field of the second STA, which are user field a and user, respectively Field b.
  • the signaling field of the second frequency domain fragmented transmission also includes a special user field.
  • the content structure of the special user field in the signaling field of the second frequency domain fragmented transmission is shown in Table 6.
  • the special user field the field indicating the total number of stations allocated MU-MIMO frequency domain resources is 010, indicating that the total number of users corresponding to the RU used for MU-MIMO transmission is 3; the bitmap indicating the sorting position is 00100000 , Indicating that the user field corresponding to the RU transmitted by the second frequency domain fragmentation is the user field of the third STA corresponding to the RU, and is the user field h.
  • the content structure of the special user field in the signaling field of the second frequency domain fragmented transmission is shown in Table 6.
  • the signaling field indicates RU allocation shown in FIG. 13A.
  • the signaling field of the first frequency domain fragmented transmission also includes special user fields.
  • 802.11be the content structure of the special user field in the signaling field of the first frequency domain fragmented transmission is shown in Table 7.
  • the field indicating the total number of stations allocated MU-MIMO frequency domain resources is 011, indicating that the total number of users corresponding to the RU used for MU-MIMO transmission is 4; the bitmap indicating the sorting position is 10100000 , Indicating that the user field corresponding to the RU transmitted by the second frequency domain fragmentation is the user field of the first STA and the user field of the third STA corresponding to the RU, specifically the user field a and the user field c.
  • the signaling field of the second frequency domain fragmented transmission also includes a special user field.
  • a special user field Taking 802.11be as an example, the content structure of the special user field in the signaling field of the second frequency domain fragmented transmission is shown in Table 8.
  • the field indicating the total number of stations allocated MU-MIMO frequency domain resources is 011, indicating that the total number of users corresponding to the RU used for MU-MIMO transmission is 4; the bitmap indicating the sorting position is 01010000 , Indicating that the user field corresponding to the RU transmitted by the second frequency domain fragmentation is the user field of the second STA and the user field of the fourth STA corresponding to the RU, specifically the user field b and the user field d.
  • the signaling field indicates RU allocation shown in FIG. 14A.
  • the signaling field of the first frequency domain fragmented transmission also includes special user fields.
  • 802.11be the content structure of the special user field in the signaling field of the first frequency domain fragmented transmission is shown in Table 9.
  • the field indicating the total number of stations allocated MU-MIMO frequency domain resources is 100, indicating that the total number of stations corresponding to the RU used for MU-MIMO transmission is 5;
  • the bitmap indicating the sorting position is 10101000, Indicates the user field corresponding to the RU transmitted by the first frequency domain fragmentation, which is the user field of the first STA, the user field of the third STA, and the fifth user field of the RU corresponding to the user of STA 1.
  • the signaling field of the second frequency domain fragmented transmission further includes a special user field.
  • a special user field the content structure of the special user field in the signaling field of the second frequency domain fragmented transmission is shown in Table 10.
  • the field indicating the total number of stations allocated MU-MIMO frequency domain resources is 100, indicating that the total number of stations corresponding to the RU used for MU-MIMO transmission is 5; the bitmap indicating the sorting position is 01010000, Indicates the user field corresponding to the RU transmitted by the first frequency domain fragmentation, which is the user field of the second STA and the user field of the fourth STA corresponding to the RU, which are the user field of STA 2 and the user field of STA4, respectively .
  • FIG. 15A is a schematic diagram of a scenario in which a signaling field in an embodiment of the application indicates frequency domain resource allocation.
  • the signaling field of the first frequency domain fragmented transmission further includes a special user field.
  • the content structure of the special user field in the signaling field indicating the first frequency domain fragmented transmission is shown in Table 11.
  • the field indicating the total number of stations allocated MU-MIMO frequency domain resources is 100, indicating that the total number of users corresponding to the complete frequency domain bandwidth for transmitting the PPDU is 5; the bit indicating the sorting position in the special user field
  • the bitmap is 10100000, indicating the user field corresponding to the RU transmitted by the first frequency domain fragmentation, the user field of the first STA (STA1) corresponding to the RU, and the user field of the third STA (STA3).
  • FIG. 15B is a schematic diagram of a scenario in which a signaling field in an embodiment of the application indicates frequency domain resource allocation.
  • the signaling field of the second frequency domain fragmented transmission also includes a special user field.
  • the content structure of the special user field in the signaling field indicating the first frequency domain fragmented transmission is shown in Table 12.
  • the number of bits in the field indicating the total number of stations allocated MU-MIMO frequency domain resources is 100, indicating that the total number of users corresponding to the complete frequency domain bandwidth for transmitting the PPDU is 5; the indication in the special user field
  • the bitmap of the sort position is 01011000, indicating the user field corresponding to the RU transmitted by the second frequency domain fragmentation, which is the user field of the second STA (STA2) corresponding to the RU, and the user field of the fourth STA (STA4).
  • STA5 The user field and the user field corresponding to the fifth STA (STA5).
  • the above-mentioned special user field is set in the public field before the user field.
  • the special user field may not include the STA ID.
  • This application also provides some solutions for indicating the position of the site corresponding to each user field in the site ranking in the public field, so that it is not necessary to indicate the position of the site corresponding to the user field in each user field in the site ranking, which can save signaling The overhead of the field.
  • These embodiments can be used in non-OFDMA transmission scenarios.
  • the signaling field of the PPDU transmitted in the first frequency domain fragmentation includes a common field and a user-specific field.
  • the bandwidth for transmitting PPDUs includes MU-MIMO frequency domain resources.
  • the MU-MIMO frequency domain resources are allocated to multiple sites.
  • the user-specific field includes a user field that stops at a station that is allocated MU-MIMO frequency domain resources and stops at the first frequency domain slice.
  • the user field includes a field indicating the site identifier of the site corresponding to the user field and a spatial stream allocation indication field.
  • the spatial stream allocation indication field is arranged according to the site order of the multiple sites, indicating the spatial stream allocated to each site of the multiple sites, and the site ranking includes the arrangement order of the multiple sites.
  • site ranking please refer to the foregoing embodiment, and the description will not be repeated here.
  • the common fields include a field indicating the total number of MU-MIMO users, a field indicating the number of MU-MIMO users, and a field indicating a starting position.
  • the MU-MIMO total user number indication field can be understood as a field indicating the total number of stations to which MU-MIMO frequency domain resources are allocated.
  • the MU-MIMO total user number indication field indicates the number of the multiple stations.
  • the MU-MIMO total user number indication field may be 3 bits.
  • the field indicating the number of MU-MIMO users indicates the number of user fields corresponding to the stations that are allocated MU-MIMO frequency domain resources and parked in the first frequency domain fragment in the signaling field of the first frequency domain fragment transmission . It can be understood that the number of user fields indicated by the field indicating the number of MU-MIMO users is the number of stations that are allocated the MU-MIMO frequency domain resource and parked in the first fragment, rather than being allocated the number of users. The total number of MU-MIMO frequency domain resources.
  • the field indicating the number of MU-MIMO users may be referred to as, but not limited to, a field indicating the number of MU-MIMO users, for example.
  • the field indicating the number of MU-MIMO users may be 3 bits.
  • the field indicating the number of users of MU-MIMO can be a value in 000-111, indicating that the MU-MIMO frequency domain resource is allocated, and the number of stations parked in the first fragment is the number 1-8. one.
  • the field indicating the starting position indicates the starting position of the station parked in the first frequency domain fragment among the plurality of stations in the sequence of the stations.
  • the field indicating the starting position indicates the position of the first station parked in the first frequency domain fragment in the station ordering in the station ordering.
  • the field indicating the starting position may be 3 bits.
  • the field indicating the starting position may be a value from 000 to 111, indicating that the position of the first station parked in the first frequency domain fragment in the station ranking is one of positions 1-8.
  • the field indicating the total number of MU-MIMO users, the field indicating the number of MU-MIMO users, and the field indicating the starting position can cooperate to indicate the position of the station parked in the first frequency domain fragment in the station ranking.
  • MU-MIMO frequency domain resources are allocated to 3 stations (denoted as station 1, station 2 and station 3), the number of spatial streams at station 1 is 4, the number of spatial streams at station 2 is 1 stream, and the number of spatial streams at station 3 The number of spatial streams is 1 stream.
  • station 1 and station 2 are parked in the first frequency domain fragment, and station 3 is parked in the second frequency domain fragment.
  • the field indicating the number of spatial streams in the signaling field (for example, may be referred to as the spatial stream allocation indication field) can be indicated by using the index 000011 in Table 3-2.
  • the third column of the row where the index 000011 corresponding to the number of sites is 3 indicates that the spatial stream number of the first site in the site sorting is 4 streams; the index 000011 corresponding to the number of sites 3 is located
  • the fourth column of the row indicates that the spatial flow number of the second site in the site sorting is 1 stream;
  • the fifth column of the row where the index 000011 corresponding to the site number is 3 indicates the spatial flow of the third site in the site sorting The number is 1 stream.
  • the site ranking can be site 1, site 2, and site 3, or the site ranking can be site 1, site 3, and site 2. It can be understood that the number of spatial streams allocated to site 2 and site 3 are the same, and the positions of site 2 and site 3 can be exchanged in site ranking. The exchange of the positions of station 2 and station 3 does not affect the number of allocated spatial streams indicating station 2 and station 3.
  • the ranking of sites may be site 1, site 2, and site 3 for example.
  • the third column of the row where the index 000011 corresponding to the number of sites is 3 corresponds to the first site (site 1) in the site sorting, and the number of spatial streams indicated in the third column is the number of spatial streams allocated by the site 1;
  • the 4th column and the 5th column correspond to the station 2 and the station 3 in the station sorting, indicating the spatial flow numbers of the station 2 and the station 3 respectively.
  • the starting position of the site 1 and the site 2 parked in the first frequency domain fragment in the site ranking is the first site.
  • the start position of the site 3 parked in the second frequency domain fragment in the site ranking is the third site.
  • the MU-MIMO total user number indication field in the common field part indicates that the MU-MIMO frequency domain resource is allocated to 3 stations; the number of MU-MIMO users is indicated
  • the field may be, for example, 001, indicating that the MU-MIMO frequency domain resource is allocated to two stations parked at the first frequency domain fragment (this frequency domain fragment), and the field indicating the starting position may be, for example, 000, indicating that The starting position of the station to which the MU-MIMO frequency domain resource is allocated is the first position in the station ranking.
  • the MU-MIMO total user number indication field in the common field indicates that the MU-MIMO frequency domain resource is allocated to 3 stations; the field indicating the number of MU-MIMO users is for example It can be 001, indicating that the MU-MIMO frequency domain resource is allocated to a station that stops at the second frequency domain fragment (this frequency domain fragment), and the field indicating the starting position can be, for example, 010, indicating that the MU-MIMO frequency domain resource is allocated.
  • the starting position of the MU-MIMO frequency domain resource station is the third position in the station ranking.
  • the user field only includes the user field of the station docked in the frequency domain fragment
  • the station receiving the PPDU can also refer to the MU-MIMO total user number indicator field in the common field, the field indicating the number of MU-MIMO users and the indication
  • the subfield of the starting position determines the site ranking position of the station corresponding to the user field containing its own site identifier, and determines its own ranking position among multiple sites allocated with MU-MIMO frequency domain resources, that is, determine It is the number of stations to which MU-MIMO frequency domain resources are allocated, so that the allocated spatial stream can be determined in combination with the index indicating the spatial stream contained in the user field.
  • the common field includes a MU-MIMO total user number indicator field and a bitmap
  • the MU-MIMO total user number indicator field indicates the multiple stations
  • the bitmap indicates the starting position of the site parked in the first frequency domain fragment in the site ranking of multiple sites.
  • the MU-MIMO total user number indication field can be understood as a field indicating the total number of stations to which MU-MIMO frequency domain resources are allocated.
  • the bitmap indicates the position of the station parked at the first frequency domain fragment in the sequence of the station.
  • the space stream allocation indication field uses an index indicating the allocation of the space stream to indicate.
  • the 1-Nth bits of the bitmap respectively correspond to the 1-Nth stations in the station ordering one-to-one. N is the total number of stations allocated MU-MIMO frequency domain resources.
  • the number of bits in the bitmap can be the maximum number of users that can be supported by MU-MIMO specified by the communication standard, or it can be the total number of MU-MIMO users.
  • MU-MIMO frequency domain resources are allocated to 3 stations (denoted as station 1, station 2 and station 3), the number of spatial streams at station 1 is 4, the number of spatial streams at station 2 is 1 stream, and the number of spatial streams at station 3 The number of spatial streams is 1 stream.
  • station 1 and station 2 are parked in the first frequency domain fragment, and station 3 is parked in the second frequency domain fragment.
  • the ranking of the sites may be site 1, site 2, and site 3.
  • the number of bits in the bitmap can be 8.
  • the MU-MIMO total user number indication field of the common field indicates that the MU-MIMO frequency domain resource is allocated to 3 stations; the bitmap may be 11000000, for example, indicating The MU-MIMO frequency domain resources are allocated to 2 stations that stop at the first frequency domain fragment (this frequency domain fragment), and the 2 stations are the spatial stream indicator field indicating the order of the stations on which the spatial stream is allocated The first site (site 1) and the second site (site 2).
  • the MU-MIMO total user number indication field in the common field indicates that the MU-MIMO frequency domain resource is allocated to 3 stations; the bitmap may be, for example, 00100000, indicating The MU-MIMO frequency domain resource is allocated to a station that stops at the first frequency domain fragment (this frequency domain fragment), and the 1 station is the spatial stream indicator field indicating the sequence of the stations on which the spatial stream is allocated The second site (site 3).
  • the user field only includes the user field of the station docked in the frequency domain fragment
  • the station receiving the PPDU can also determine that it contains itself according to the MU-MIMO total user number indicator field and the bit map in the common field.
  • the position of the station corresponding to the user field of the station identifier in the station is sorted, and the sorting position of the station in the multiple stations assigned MU-MIMO frequency domain resources is determined, that is, it is determined that the station is assigned MU-MIMO frequency domain resources.
  • the number of sites to be allocated can be combined with the index of the spatial stream contained in the user field to determine the assigned spatial stream.
  • the above embodiment in which the public field indicates the position of the site corresponding to the user field in the site ranking, compared to indicating the position of the site corresponding to the user field in each user field in the site ranking, can reduce the trustworthiness. Make the cost of the field.
  • the aforementioned public fields and user-specific fields may be located in EHT-SIG.
  • the EHT-SIG symbol number indicator field (or the EHT-SIG symbol number indicator subfield) is included, and the EHT-SIG symbol number indicator field indicates the number of EHT-SIG symbols.
  • the device receiving the PPDU can accurately obtain the number of EHT-SIG symbols, so that it can accurately receive and read the EHT-SIG.
  • the MU-MIMO total user number indication field in the embodiment corresponding to FIG. 6C, the field indicating the number of MU-MIMO users, and the field indicating the starting position may be located in U-SIG.
  • the MU-MIMO total user number indicator field and bitmap can also be located in U-SIG.
  • the U-SIG may also include a compression mode indication field to indicate the compression mode.
  • a compression mode to indicate that the resource allocation is the MU-MIMO mode in a non-OFDMA scenario
  • the compression mode indication field may indicate another compression mode to indicate that the common field includes the user field corresponding to the EHT-SIG
  • the site of is the field of which of the multiple sites to which MU-MIMO transmission resources are allocated (for example, a field or bitmap indicating the starting position).
  • the compression mode indication field can indicate the presence or absence of the MU-MIMO total user number indication field in the signaling field by indicating that EHT-SIG is a certain compression mode, indicating the users of MU-MIMO. The number of fields and the field indicating the starting position.
  • the compression mode indication field can indicate the presence or absence of the MU-MIMO total user number indication field and bitmap by indicating that EHT-SIG is a certain compression mode in the signaling field.
  • other fields can also be used to indicate the presence or absence of the MU-MIMO total user number indicator field in the signaling field, the field indicating the number of MU-MIMO users and the field indicating the starting position, or other fields.
  • the field indicates whether there is a MU-MIMO total user number indication field and a bitmap in the signaling field.
  • the ranking of sites in the embodiments of the present application is not limited to the ranking of sites corresponding to the indexes indicating the allocation of spatial streams in Table 3-1 or Table 3-2, and may also correspond to indexes allocated to other spatial streams. Sort of sites.
  • the index indicating the allocation of the spatial stream indicates the spatial stream allocated to each of the N sites according to the site order of the N sites.
  • the field indicating the station's ranking in the station for example, the field indicating the starting position, bitmap
  • the embodiments of the present application also provide some spatial flow indication methods that are not related to the sequence of the user fields.
  • a special user field may not be set in the signaling field, but the function of the field indicating the spatial stream in each user field is improved, so that the overhead of the signaling field can be further reduced.
  • the user field includes a field indicating the site identification, a spatial stream allocation indicating field, and a coding and modulation strategy indicating field.
  • the spatial stream allocation indication field includes a starting spatial stream subfield and a spatial stream number subfield. Please refer to Table 13. Table 13 shows the content structure of the user field in this embodiment.
  • the initial spatial stream subfield indicates the initial spatial stream of the spatial stream allocated to the STA corresponding to the user field, and the initial spatial stream subfield may be a binary string.
  • the initial spatial stream subfield indicates the first spatial stream to which the site corresponding to the site identifier is allocated.
  • the value of the binary string plus 1 is the sort number of the initial spatial stream.
  • the number of bits in the initial spatial stream subfield may be the maximum number of streams that MU-MIMO can support. For example, in 802.11be, the maximum number of streams that MU-MIMO can support is 16 streams, and the number of bits in the initial spatial stream subfield can be 4.
  • the number of bits of the initial spatial stream subfield is not limited to 4, for example, it may also be a positive integer such as 5, 6, or 7.
  • the number of bits in the initial spatial stream subfield can be adjusted accordingly. For example, if the maximum number of streams that MU-MIMO can support is N, the number of bits in the initial spatial stream subfield can be log 2 N.
  • the number of spatial streams subfield indicates the number of spatial streams allocated to the STA.
  • the spatial stream number subfield can be a binary string, and the value of the binary string plus 1 is the number of spatial streams allocated to the STA.
  • the number of bits in the spatial stream number subfield may be the number of bits occupied by the binary string corresponding to the maximum number of streams that a single user can be allocated in MU-MIMO.
  • the maximum number of streams that can be allocated to a single user in MU-MIMO may be 4, and the number of bits in the spatial stream number subfield may be 2.
  • the number of bits in the spatial stream number subfield is not limited to 2, and may be a positive integer such as 3, 4, and 5, for example.
  • the number of bits in the spatial stream number subfield can be adjusted accordingly. For example, if the maximum number of streams that a single user can be allocated in MU-MIMO is K, the number of bits in the spatial stream number subfield can be log 2 K.
  • the user field can use this indication method to indicate spatial stream allocation.
  • the spatial stream allocated to STA a is the 1-3 stream corresponding to the 106-tone RU
  • the user field a corresponding to STA a The content structure of can be shown in Table 14 below.
  • the starting spatial stream subfield in the user field a can be 0000, indicating that the starting position is the first stream corresponding to the 106-tone RU; the number of spatial streams subfield is 10, indicating the number of spatial streams allocated to the STA 3 streams .
  • the STA a can determine that the spatial stream allocated by the STA a is the 1-3 stream corresponding to the 106-tone RU according to the user field a.
  • the spatial stream allocated to STA b is the 4-5th stream corresponding to the 106-tone RU
  • the content structure of the user field b corresponding to STA b can be as shown in Table 15 below.
  • the start spatial stream subfield in the user field b is 0011, indicating that the start position is the fourth stream corresponding to the 106-tone RU; the number of spatial streams subfield can be 01, indicating the number of spatial streams allocated to the STA 2 streams .
  • STA b can determine that the spatial stream allocated by STA b is the 4-5th stream corresponding to the 106-tone RU according to the user field b.
  • the spatial stream allocated to STA a is the 1-3 stream corresponding to the 242-tone RU
  • the content of the user field a corresponding to STA a The structure can be shown in Table 16 below.
  • the start spatial stream subfield in the user field a can be 0000, indicating that the start position is the first stream corresponding to the 106-tone RU; the number of spatial streams subfield is 10, indicating the number of spatial streams allocated to the STA 3 flow.
  • the STA a can determine that the spatial stream allocated by the STA a is the 1-3 stream corresponding to the 242-tone RU according to the user field a.
  • the content structure of the user field c corresponding to the STA c can be as shown in Table 15 below.
  • the starting spatial stream subfield in the user field c is 0011, indicating that the starting position is the fourth stream corresponding to the 242-tone RU; the number of spatial streams subfield can be 01, indicating the number of spatial streams allocated to the STA 2 streams .
  • the STA c can determine that the spatial stream allocated by the STA c is the 4-5th stream corresponding to the 242-tone RU according to the user field c.
  • the content structure of the user field of STA 1 can be as shown in Table 18 Shown.
  • the start spatial stream subfield in the user field may be 0000, indicating that the start position is the first stream corresponding to the 320 MHz; the spatial stream number subfield is 01, indicating the number of spatial streams allocated to the STA3: 2 streams.
  • STA 1 can determine, according to the user field, that the spatial stream allocated by STA 1 is the 1-2 stream corresponding to the 320 MHz.
  • the content structure of the user field of STA 3 may be as shown in Table 19 below.
  • the start spatial stream subfield in the user field 3 may be 0010, indicating that the start position is the third stream corresponding to the 320 MHz; the spatial stream number subfield is 00, indicating the number of spatial streams allocated to the STA3: 1 stream. Then STA 3 can determine, according to the user field, that the spatial stream allocated by STA 3 is the third stream corresponding to the 320 MHz.
  • the number of LTFs depends on the maximum number of streams in multiple fragments, rather than the maximum number of streams in the user field of the own fragment.
  • the spatial stream allocation indication field includes a start spatial stream subfield and an end spatial stream subfield.
  • the start spatial stream subfield indicates the first spatial stream allocated by the site corresponding to the user field
  • the end spatial stream subfield indicates the last spatial stream allocated by the site corresponding to the user field.
  • Table 20 shows the content structure of the user field in this embodiment.
  • the method for determining the number of bits of the initial spatial stream subfield in this embodiment can refer to the method for determining the initial spatial stream subfield in the foregoing embodiment.
  • the number of bits in the subfields is the same.
  • the setting manner of the initial spatial stream subfield is consistent with the setting manner of the initial spatial stream subfield in the foregoing embodiment, and the setting manner of the initial spatial stream subfield is not repeated in this embodiment.
  • the field indicating the termination of the spatial stream is a binary string, and the value of the binary string is increased by 1, which is the sort number of the last spatial stream allocated to the site corresponding to the user field.
  • the number of bits in the subfield of the field indicating the terminating spatial stream is the same as the number of bits in the starting spatial stream subfield.
  • the way in which the spatial stream is assigned is also independent of the number of user fields and the order in which they are arranged. It can also be achieved that when reducing user fields, it can also accurately indicate the spatial stream allocated by the STA corresponding to each user field, and there is no need to add special user fields.
  • the user field can also use this method to indicate spatial stream allocation.
  • the spatial stream allocated to STA b is the 4-5th stream corresponding to the 106-tone RU
  • the content structure of the user field b corresponding to STA b It can be as shown in Table 21 below.
  • the spatial stream allocation indication field in the user field b is 0011, indicating that the starting position is the fourth stream corresponding to the 106-tone RU; the terminating spatial stream subfield can be 0100, indicating that the last spatial stream allocated to the STA is The fifth stream.
  • STA b can determine that the spatial stream allocated by STA b is the 4-5th stream corresponding to the 106-tone RU according to the user field b.
  • the content structure of the user field c corresponding to the STA c may be as shown in Table 22 below.
  • the spatial stream allocation indication field in the user field c is 0011, indicating that the starting position is the fourth stream corresponding to the 242-tone RU; the terminating spatial stream subfield can be 0100, indicating that the last spatial stream allocated to the STA is The fifth stream. Then the STA c can determine that the spatial stream allocated by the STA c is the 4-5th stream corresponding to the 242tone RU according to the user field c.
  • the content structure of the user field of STA 3 may be as shown in Table 23 below.
  • the spatial stream allocation indication field in user field 3 can be 0010, indicating that the starting position is the third stream corresponding to the 320MHz; the terminating spatial stream subfield is 0010, indicating that the last spatial stream allocated to the STA3 corresponds to the 320MHz The third stream. Then STA 3 can determine, according to the user field, that the spatial stream allocated by STA 3 is the third stream corresponding to the 320 MHz.
  • the number of MU-MIMO users indicated by the signaling field transmitted in the first signaling field is the total number of user fields corresponding to the MU-MIMO frequency domain resources used for MU-MIMO transmission.
  • the signaling field includes a null user field and a user field of an STA that is allocated the MU-MIMO frequency domain resource and parked in the first frequency domain fragment (this frequency domain fragment).
  • the empty user field is set in the corresponding position of the user field of the STA that is allocated the MU-MIMO frequency domain resource and is not docked in the first frequency domain fragment.
  • the empty user field indicates that the user field here is empty.
  • the empty user field may be "2046", for example.
  • a null user field is used to replace the user field of the STA that is allocated the MU-MIMO frequency domain resource and is not docked in the frequency domain fragment.
  • the number of user fields is not reduced relative to the number of users corresponding to the MU-MIMO frequency domain resource.
  • the user field of the STA that is docked in the frequency domain fragment and allocated MU-MIMO frequency domain resources is among the multiple user fields.
  • the arrangement position can accurately correspond to the corresponding frequency domain resource, and it can also enable the field indicating the number of spatial streams to accurately indicate the spatial stream allocated by the STA corresponding to each user field.
  • STAs that are parked in different frequency domains and are allocated MU-MIMO frequency domain resources can be based on the signaling field of the frequency domain fragment transmission.
  • the user field containing its own site identifier is in multiple users.
  • the sorting position in the field can accurately determine the allocated MU-MIMO frequency domain resources, and receive data from the MU-MIMO frequency domain resources allocated to itself, so that STAs docked in at least two frequency domain fragments can be MU-MIMO transmission is performed on the same MU-MIMO frequency domain resource.
  • the above-mentioned second possible signaling field setting method can be used.
  • the following is a combination of examples to introduce the above-mentioned second possible signaling field setting method in OFDMA and non-OFDMA scenarios.
  • the MU-MIMO frequency domain resource used for MU-MIMO transmission in the aforementioned channel bandwidth can be understood as an RU used for MU-MIMO transmission.
  • FIG. 16A is a schematic diagram of another scenario in which the signaling field in an embodiment of the application indicates RU allocation.
  • the resource unit allocation situation is the same as the example corresponding to Figures 8A and 8B, if the above-mentioned second possible signaling field setting method is used, then the first frequency domain fragmented transmission In the signaling s field, the resource unit allocation subfield corresponding to the 20MHz indicates that the RU corresponding to the 20MHz is 106-tone RU, 26-tone RU, 26-tone RU, 26-tone RU, 26-tone RU, and 26-tone RU. tone RU, and indicate that the number of user fields corresponding to 106-tone RU is 3.
  • the signaling field transmitted by the first frequency domain fragmentation includes three user fields corresponding to the 106-tone RU, which are user field a, user field b, and empty user field. If STA c is docked in the first frequency domain fragment, then STA c can determine the user field according to the user field c that contains the site identifier of STA c and the order among the multiple user fields corresponding to the resource unit allocation subfield The RU corresponding to c is one 26-tone RU lower, so it is determined that the RU allocated to itself is the 26-tone RU.
  • the resource unit allocation subfield corresponding to the 20MHz indicates that the RU corresponding to the 20MHz is 106-tone RU, 26-tone RU, 26-tone RU, 26-tone RU, 26-tone RU, and 26-tone RU, and indicate that the number of user fields corresponding to 106-tone RU is 3.
  • the signaling field of the second frequency domain fragmented transmission includes three user fields corresponding to the 106-tone RU, which are a null user field, a null user field, and a user field h.
  • the STA h parked in the second frequency domain fragment can determine that its assigned RU is 106-tone RU according to the user field h containing the site identifier of the STA h as the third user field corresponding to the 106-tone RU .
  • the signaling field of the second frequency domain fragmentation transmission does not include the first user field a and the second user field b corresponding to the 106-tone RU, since there are empty user fields set in the corresponding positions, It will not cause the ordering of the user fields and the allocation order of the RUs indicated by the resource unit allocation subfield to be disordered.
  • a STA parked in the first frequency domain fragment or the second frequency domain fragment can determine the RU to which it is allocated according to the position of the user field containing its own site identifier and the corresponding RU.
  • the signaling field of the first frequency domain fragment transmission is equal to 320MHz
  • the resource unit allocation subfield 1 corresponding to the first 20MHz with the lowest frequency of 80MHz indicates 242-tone RU, and indicates that the number of user fields corresponding to the 242-tone RU is 4.
  • the signaling field transmitted by the first frequency domain fragmentation includes a user field a, an empty user field, a user field c, and an empty user field in sequence.
  • the resource unit allocation subfield 17 corresponding to the first 20MHz of the first 80MHz of 320MHz and the lowest frequency 20MHz indicates 242-tone RU and indicates the user corresponding to the 242-tone RU
  • the number of fields is 4.
  • the signaling field of the second frequency domain fragmented transmission includes an empty user field, a user field b, an empty user field, and a user field d corresponding to the 242-tone RU and set in sequence. In this way, by setting an empty user field, the position of the user field is prevented from being confused. STAs parked in the first frequency domain fragment or the second frequency domain fragment can determine the corresponding RU according to the position of the user field containing its own site identifier. Determine which RU you are allocated.
  • the signaling field of the first frequency domain fragment transmission is equal to 320MHz
  • the number of resource element allocation subfield 1 and resource element allocation subfield 2 corresponding to the first 40MHz with the lowest frequency of 80MHz indicates 242-tone RU, and indicates that the number of user fields corresponding to the 242-tone RU is 5.
  • the signaling field transmitted by the first frequency domain fragmentation includes the user field of STA1, the user field of STA2, the user field of STA3, the empty user field, and the empty user field in sequence.
  • the resource unit allocation subfield 1 and resource unit allocation subfield 2 corresponding to the first 80MHz of 320MHz and the lowest frequency 40MHz indicate 242-tone RU, and indicate this
  • the number of user fields corresponding to 242-tone RU is 5.
  • the signaling field of the second frequency domain fragmented transmission includes the empty user field, the empty user field, the empty user field, the user field of STA4, and the user field of STA5 corresponding to the 484-tone RU and set in sequence.
  • STAs parked in the first frequency domain fragment or the second frequency domain fragment can determine the corresponding RU according to the position of the user field containing its own site identifier. Determine which RU you are allocated.
  • the signaling field of the first frequency domain fragmented transmission indicates that the 320 MHz is allocated to 5 sites.
  • the signaling field includes 5 user fields, which are a user field containing the site identifier of STA1, an empty user field, a user field containing the site identifier of STA3, an empty user field, and an empty user field.
  • the signaling field of the second frequency domain fragmented transmission indicates that the 320 MHz is allocated to 5 sites.
  • the signaling field includes 5 user fields, which are the empty user field, the user field of STA2, the empty user field, the user field of STA4, and the user field of STA5 in order.
  • the signaling field of the first frequency domain fragment transmission does not contain the user fields of STA2, 4, and 5, there are empty user fields in the corresponding positions
  • the signaling field of the second frequency domain fragment transmission does not include The user fields of STAs 1 and 3, but the corresponding positions are also set with empty user fields. Then such a way of setting the user field will not cause the sorting order of the user field to be disordered.
  • STAs docking at each frequency domain fragment can determine their own frequency domain resource allocation based on the user field containing its own site identifier , And receive data from the MU-MIMO frequency domain resources allocated to it, so that STAs docked in at least two frequency domain slices can perform MU-MIMO transmission on the same MU-MIMO frequency domain resource.
  • the embodiment of the present application also provides a solution for indicating the RU of the resource unit allocation subfield.
  • RUs smaller than 242 sub-carriers do not support MU-MIMO transmission, that is, RUs smaller than 242 sub-carriers correspond to only one user.
  • This can reduce the number of RUs in Table 2 used to indicate 106-tone Tone RU corresponds to entries with different numbers of users. For example, the number of entries corresponding to 00100y2y1y0 in Table 2 can be reduced from 8 to 1. Similarly, other related entries in Table 2 can be similarly deleted.
  • the remaining entries may include a part of entries for indicating the absolute positions of frequency domain resources corresponding to RUs of 242 or more subcarriers and multiple resource units (multiple RU, Multi-RU) in the channel bandwidth.
  • the resource unit allocation subfield may indicate the absolute position in the channel bandwidth of the frequency domain resources corresponding to the RUs greater than or equal to 242 subcarriers.
  • the absolute position of the frequency domain resource corresponding to the 242-tone RU has 16 possible situations, which are the 1st-16th 20MHz of 320MHz.
  • the resource unit allocation subfield can use 16 of the remaining entries to indicate the absolute position of the frequency domain resource corresponding to the 242-tone RU in the channel bandwidth.
  • the absolute position of the frequency domain resource corresponding to the 242+484-tone RU has 4 possible situations, which are the 1-4th 80MHz of 320MHz.
  • the resource unit allocation subfield can use 4 of the remaining entries to indicate the absolute position of the frequency domain resource corresponding to the 242+484-tone RU in the channel bandwidth.
  • the resource unit allocation subfield can use two of the remaining entries to indicate the absolute position of the frequency domain resource corresponding to the 484+996-tone RU in the channel bandwidth.
  • the resource unit allocation subfield may use the remaining entries to indicate the absolute position of the frequency domain resources in the channel bandwidth, and no examples are given here.
  • the remaining entries may include some entries for indicating RUs of 242 or more subcarriers, the absolute position of the frequency domain resources corresponding to the Multi-RU in the channel bandwidth, and the user field corresponding to the RU or MRU Number of.
  • the resource unit allocation subfield may indicate the absolute position in the channel bandwidth of the frequency domain resource corresponding to the RU with 242 or more subcarriers and the corresponding number of MU-MIMO users.
  • the absolute position of the frequency domain resource corresponding to the 242-tone RU has 16 possible situations, which are the 1st-16th 20MHz of 320MHz.
  • the corresponding number of users can be any value from 1 to 8. That is to say, when the absolute position of the frequency domain resource corresponding to the 42-tone RU is 20 MHz in each of the 1-16th 20 MHz in 320 MHz, there are 8 cases of the corresponding number of users.
  • the absolute position of the frequency domain resource corresponding to the 242+484-tone RU has 4 possible situations, which are the 1-4th 80MHz of 320MHz.
  • the corresponding number of users can be any value from 1 to 8. That is to say, when the absolute position of the frequency domain resource corresponding to the 242+484-tone RU is 80 MHz in each of the first 1-4 80 MHz in 320 MHz, there are 8 cases of the corresponding number of users.
  • the resource unit allocation subfield may use the remaining entries to indicate the absolute position of the frequency domain resources in the channel bandwidth, and no examples are given here.
  • the embodiment of the present application also provides a solution for simplifying the resource unit allocation subfield in the signaling field, so as to reduce the number of resource unit allocation subfields in the signaling field, thereby saving the overhead of the signaling field.
  • the resource unit allocation subfield of the signaling field only contains the resource unit allocation subfield indicating the RU allocation of STAs docked in the current frequency domain fragment, but not STAs that indicate not docked at the current frequency domain fragment.
  • the signaling field also includes a resource unit allocation subfield indication field.
  • the resource unit allocation subfield indication field is used to indicate whether there is a corresponding resource unit in the signaling field for each granular frequency domain resource of the channel bandwidth of the transmission PPDU Assign subfields. It can also be said that the resource unit allocation subfield indication field is used to indicate the frequency domain resource corresponding to each resource unit allocation subfield in the signaling field.
  • the frequency domain resources of each granularity refer to the frequency domain resources corresponding to the subfields allocated by one resource unit.
  • the resource unit allocation subfield indication field in this embodiment is indicated by a bitmap.
  • the length of the bitmap is a multiple of the channel bandwidth for transmitting the PPDU with respect to a granular frequency domain resource.
  • Each bitmap corresponds to a granular frequency domain resource.
  • the value of each bit indicates whether the signaling field includes a resource unit allocation subfield indicating the frequency domain resource corresponding to this bit.
  • the channel bandwidth for transmitting PPDU is 320 MHz, and the granularity of each resource unit allocation subfield is 20 MHz.
  • the resource allocation of the channel bandwidth can be indicated by 16 resource unit allocation subfields (resource unit allocation subfields 1-16) in order of frequency from low to high.
  • the frequency domain resources indicated by the resource unit allocation subfields 1, 3, 4, 7, and 9 are allocated to STAs parked in the first frequency domain fragment.
  • the frequency domain resources indicated in the resource unit allocation sub-word 1 are allocated to STA1 corresponding to user field 1, STA2 corresponding to user field 2 and STA3 corresponding to user field 3, and the frequency domain resources indicated in resource unit allocation sub-word 3 are allocated to the user field STA4 corresponding to 4 and STA5 corresponding to user field 5, the frequency domain resources indicated by the resource unit allocation subword 4 are allocated to STA6 corresponding to user field 6, and the frequency domain resources indicated by resource unit allocation subword 7 are allocated to the user field 7 STA7, the frequency domain resource indicated by the resource unit allocation subword 9 is allocated to the STA9 corresponding to the user field 8.
  • FIG. 20A is a schematic diagram of the structure of a resource unit allocation subfield indication field according to an embodiment of the application. As shown in FIG. 20A, if "1" is used to indicate a granular frequency domain resource and there is a corresponding resource unit allocation subfield, then the bitmap may be "1011001010000000". As shown in FIG. 20B, FIG. 20B is a schematic diagram of the structure of the signaling field of an embodiment of the application.
  • the resource unit allocation subfield in the signaling field of the first frequency domain fragmented transmission also includes only the first, third, fourth, and fourth field.
  • the user field in the signaling field transmitted by the first frequency domain fragmentation also only includes the user fields 1-8 corresponding to the first, third, fourth, seventh, and ninth 20 MHz frequency domain resources.
  • the resource unit allocation subfield in the signaling field can be divided into two parts, which are respectively transmitted on two CCs (CC1 and CC2).
  • the resource unit allocation subfield in the signaling field of the first frequency domain fragmented transmission only includes multiple resource unit allocation subfields indicating the allocation of STAs parked in the frequency domain.
  • the multiple resource unit allocation subfields can be sorted in the order of frequency from lowest to highest, and every two adjacent resource unit allocation subfields of the multiple resource unit allocation subfields can be set to CC1 and CC2, or
  • the resource unit allocation subfield with an odd number is transmitted in CC1
  • the resource unit allocation subfield with an even number is transmitted in CC2.
  • the user field transmitted by each CC only includes the user field corresponding to the resource unit allocation subfield transmitted by the CC.
  • FIG. 20C is a schematic diagram of another structure of a signaling field in an embodiment of this application.
  • the 5 resource unit allocation subfields in the signaling field are 1, 3, 4, 7, and 9 resource unit allocation subfields 1, 3, 4, 7, and 9 corresponding to 20 MHz, respectively.
  • the resource unit allocation subfield of CC1 transmission indicates that the field is 1001000010000000, and the 1, 3, and 5 resource unit allocation subfields of the 5 resource unit allocation subfields (the 1, 4, and 9 resource unit allocation subfields corresponding to 20MHz) 1, 4, 9) Transmitted in CC1.
  • the user fields 1-3 corresponding to the resource unit allocation subfield 1, the user field 6 corresponding to the resource unit allocation subfield 4, and the user field 8 corresponding to the resource unit allocation subfield 9 are transmitted in CC1.
  • the resource unit allocation subfield of CC2 transmission indicates that the field is 0010001000000000.
  • the 2nd and 4th resource unit allocation subfields of the 5 resource unit allocation subfields (the 3rd and 7th 20MHz resource unit allocation subfields 3 and 7) Transmission in CC2.
  • the user fields 4 and 5 corresponding to the resource unit allocation subfield 2 and the user field 7 corresponding to the resource unit allocation subfield 4 are transmitted in CC2.
  • the resource unit allocation subfield allocated on each CC can be adjusted so that the absolute value of the difference between the number of resource unit allocation subfields on the two CCs is the smallest; or according to the adjustments allocated to each CC
  • the resource unit allocates subfields so that the absolute value of the difference between the number of user fields on the two CCs is the smallest.
  • FIG. 20D is another schematic diagram of the structure of the signaling field according to an embodiment of this application.
  • the resource unit allocation subfield 9 can be adjusted to be transmitted in CC2.
  • User field 8 is also transmitted in CC2.
  • the resource unit allocation subfield indication field of CC1 is 1001000000000000
  • the resource unit allocation subfield of CC2 is 0010001010000000.
  • the absolute value of the difference between the number of resource unit allocation subfields of the two CCs is 1, and the difference between the number of user fields of the two CCs is 0.
  • the number of resource allocation subfields and the number of user fields transmitted by the two CCs can be more balanced.
  • the embodiment of the present application also provides a solution for simplifying the user field in the signaling field by simplifying the allocation of the indicated RU.
  • the frequency domain resources corresponding to Multi-RU or RU belong to multiple frequency domain fragments (cross-sliced Multi-RU or RU).
  • the resource unit allocation subfield indicating the RU allocation of the frequency domain resource corresponding to the Multi-RU may not indicate the RU of the frequency domain resource according to the actual situation.
  • the 242+484-tone RU is only allocated to stop in the second frequency domain. Fragmented sites, but not allocated to sites that stop at the first frequency domain fragment. Then the resource unit allocation subfield corresponding to the highest frequency 20MHz of the first frequency domain fragment transmitted in the first frequency domain fragment may not indicate the 242+484-tone RU and the 242+484- according to the actual situation. Tone The number of user fields corresponding to the RU, but a simplified indication can be given.
  • the resource unit allocation subfield corresponding to the highest frequency 20MHz of the first frequency domain fragment may simply indicate that the 20MHz corresponds to 242-tone RU, and indicate that the number of user fields corresponding to the 242-tone RU is 0. In this way, user fields that are not allocated to the Multi-RU corresponding to the local frequency domain fragment can be omitted.
  • the 2*996-tone RU is only allocated to sites that stop at the second frequency domain fragment. And it is not allocated to the site docked in the first frequency domain fragment. Then the resource unit allocation subfield corresponding to 80MHz of the first frequency domain fragment transmitted in the first frequency domain fragment may not be instructed according to the actual situation to the 2*996-tone RU and the 2*996-tone RU corresponding
  • the number of user fields can be simplified instead.
  • the resource unit allocation subfield corresponding to 80MHz of the first frequency domain fragment may indicate that the 80MHz corresponds to 996-tone RU, and indicate the number of user fields corresponding to the 996-tone RU Is 0. In this way, the user field that is not allocated to the RU corresponding to the local frequency domain fragment can be omitted.
  • FIG. 21 is a schematic diagram of another structure of a resource unit allocation subfield indication field according to an embodiment of the application.
  • the resource unit allocation subfield indication field can also be divided into two parts, which are respectively transmitted on CC1 and CC2. This can shorten the length of the resource unit allocation subfield indication field transmitted on each CC, thereby saving the overhead of the signaling field.
  • the resource unit allocation subfield indication field of each CC transmission is only used to indicate the frequency domain resources corresponding to the resource unit allocation subfield of this CC transmission.
  • a part of the resource unit allocation subfield indication field transmitted by CC1 indicates whether the resource unit allocation subfield corresponding to each frequency domain resource with an odd sequence number in the channel bandwidth of the transmission PPDU contains
  • the other part of the resource unit allocation subfield indication field transmitted by CC2 indicates whether the resource unit allocation subfield corresponding to each frequency domain resource with an even number of unit granularity is included in the signaling field.
  • a granular frequency domain resource means that a resource unit allocation subfield indicates an RU to which a granular frequency domain resource belongs.
  • the transmission resource unit allocation subfield in CC1 indicates part of the field, indicating the first 1, 3, 5, 7, 9, 11, Whether the 15 resource unit allocation subfields corresponding to 20MHz are included in the signaling field.
  • a part of the CC2 transmission resource unit allocation subfield indication field indicates whether the resource unit allocation subfields corresponding to the second, fourth, sixth, eighth, tenth, 12th, 14th, and 16th 20 MHz are included in the signaling field.
  • the CC1 transmission resource unit allocation subfield indicates a part of the field
  • the CC2 transmission resource unit allocation subfield indicates another part of the field.
  • a part of the transmission resource unit allocation subfield indication field in CC1 is 11011000, indicating that the resource unit allocation subfields corresponding to the first, third, seventh, and ninth 20 MHz are included in the signaling field.
  • a part of the indication field of the CC2 transmission resource unit allocation subfield is 01000000, indicating that the resource unit allocation subfield corresponding to the fourth 20MHz is included in the signaling field.
  • a part of the indication field of the resource unit allocation subfield transmitted by CC1 indicates that, in the channel bandwidth of the transmission PPDU, in the order of frequency from low to high, the first 1/2 frequency domain resources correspond to each resource Whether the unit allocation subfield is included in the signaling field; a part of the resource unit allocation subfield indication field transmitted by CC2 indicates whether each resource unit allocation subfield corresponding to the last 1/2 frequency domain resources is included in the signaling field.
  • the transmission resource unit allocation subfield in CC1 indicates part of the field, indicating the 1-8th resource unit allocation subfields corresponding to 20MHz Whether the field is included in the signaling field; a part of the CC2 transmission resource unit allocation subfield indication field indicates whether the resource unit allocation subfield corresponding to the 9th-16th 20MHz is included in the signaling field.
  • a part of the transmission resource unit allocation subfield indication field in CC1 is 10110010, indicating that the resource unit allocation subfields corresponding to the first, third, fourth, and seventh 20MHz are included in the signaling field; transmitted in CC2
  • the resource unit allocation subfield indicates a part of the field, which is 10000000, indicating that the resource unit allocation subfield corresponding to the ninth 20MHz is included in the signaling field.
  • the solution of this application can reduce the overhead of the resource unit allocation subfield indication field used for transmission by each CC by half. Save the overhead of the signaling field.
  • the resource unit allocation subfield indication field may not indicate the resource unit allocation subfield corresponding to the punctured frequency domain resource. This shortens the length of the resource unit allocation subfield indication field.
  • the signaling field indicates the field of preamble puncturing.
  • FIG. 22 is a schematic diagram of another structure of a resource unit allocation subfield indication field according to an embodiment of the application. As shown in FIG. 22, the third 80MHz of the 320MHz channel bandwidth for transmitting the PPDU is punctured, then the resource unit allocation subfield indication field does not indicate the resource unit allocation subfield corresponding to this 80MHz. In this way, the resource unit allocation subfield indication field may be only 12 bits, indicating the resource unit allocation subfields corresponding to the 1-8th 20MHz in 320MHz and the resource unit allocation subfields corresponding to the 13th-16th 20MHz.
  • only one resource unit allocation subfield is used for indication, which can save the number of resource unit allocation subfields.
  • FIG. 23 is a schematic diagram of a resource unit allocation scenario according to an embodiment of the application.
  • the RU corresponding to the lowest frequency 40MHz of the first 80MHz and the second 80MHz is 484+996-tone RU. None of the other frequency domain resources in the 320 MHz for transmitting the PPDU are allocated to the STAs parked in the first frequency domain fragment. Then, in the signaling field of the first frequency domain fragmented transmission, the resource unit allocation subfield indication field may be 1000000000000000.
  • two resource unit allocation subfields may also indicate a multi-RU, and the two resource unit allocation subfields are respectively transmitted on two CCs. This can make the load of the two CCs more balanced.
  • the resource unit allocation subfield indication field can be 1100000000000000, where the resource unit allocation subfield indicates that the odd-numbered bits of the field are transmitted in CC1, and the even-numbered bits are in CC1. CC2 transmission.
  • the resource unit allocation subfield indicates the resource unit allocation subfield corresponding to the odd bits of the field, and the user field corresponding to the resource unit allocation subfield is transmitted in CC1, and the resource unit allocation subfield indicates the resource unit corresponding to the even bits of the field.
  • the allocation subfield and the user field corresponding to the resource unit allocation subfield are transmitted in CC2. In this way, multiple user fields corresponding to a multi-RU can be divided into two parts and transmitted on CC1 and CC2, making the load of the two CCs more balanced.
  • the signaling field of each frequency domain fragment transmission includes the resource unit allocation subfield indication field, which only indicates the resource unit allocation subfield corresponding to the frequency domain fragment. For example, if each frequency domain slice is 80MHz, the resource unit allocation subfield indication field only includes 4 bits, which only indicates the 4 resource unit allocation subfields corresponding to the 80MHz. This can save the length of the resource unit allocation subfield indication field, thereby saving the overhead of the signaling field.
  • the resource unit allocation subfield may indicate cross-shard resource allocation by instructing multi-RU.
  • the first 20MHz with the lowest frequency of 80MHz is allocated to STA1 docking at the first frequency domain slice, and the first 80MHz with the highest frequency of 40MHz and the second 80MHz are allocated to docking at STA2 of the first frequency domain fragment.
  • the resource unit allocation subfield indication field of the frequency domain fragmented transmission may be 1010, where the 1 in the first bit corresponds to the first 20MHz of the lowest frequency of 80MHz, and the resource unit allocation subfield corresponding to the 20MHz indicates the 20MHz
  • the corresponding RU is allocated to stop at STA1; the 1 in the third digit corresponds to one 80MHz lower 3 20MHz in order of frequency.
  • the resource unit allocation subfield corresponding to this 20MHz indicates that the 20MHz belongs to 484+996 -tone RU, the 484+996-tone RU is allocated to ST2. In this way, it is realized that the frequency domain resources of other frequency domain fragments are allocated to the STAs parked in the current frequency domain fragment.
  • the signaling field does not include the resource unit allocation subfield, so the signaling field may not be provided with the resource unit allocation subfield indication field.
  • the signaling field includes a resource unit allocation subfield indication field, and the resource unit allocation subfield indication field indicates that the channel bandwidth for transmitting the PPDU is punctured.
  • the resource unit allocation subfield indication field is a bitmap
  • each bit of the available bitmap indicates that frequency domain resources of one granularity unit are punctured.
  • the access point and the station may include a hardware structure and a software module, and the above functions are realized in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • One of the above-mentioned functions can be executed in a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 24 is a schematic structural diagram of a data transmission device according to an embodiment of the application.
  • An embodiment of the present application also provides a data transmission device 2400, including:
  • the processing unit 2401 is configured to generate the signaling field of the physical layer protocol data unit PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain Fragmentation, the channel bandwidth includes RUs used for multi-user-multiple-input-multiple-output MU-MIMO transmission, the RUs are allocated to multiple sites, and the multiple sites include the first frequency domain fragmentation Sites and sites that are not docked at the first frequency domain fragment;
  • the signaling field includes a public field and a user-specific field, the user-specific field includes a user field corresponding to the RU, and the user field corresponding to the RU is one of the multiple sites that is parked in the first frequency domain.
  • the common field includes a resource unit allocation subfield corresponding to the RU, which is used to indicate the RU and the number of user fields corresponding to the RU;
  • the sending unit 2402 is configured to send the signaling field fragments in the first frequency domain.
  • the data transmission device 2400 may be, for example, a communication device or an access point. Or the data transmission device is deployed in a communication device or an access point.
  • the processing unit 2401 of the data transmission device 2400 may be a processor, and the sending unit 2402 of the data transmission device 2400 may be a transceiver.
  • the data transmission device can be used in an OFDMA scenario, for example.
  • the user field in the signaling field of each frequency domain fragmentation transmission only includes the user field of the STA participating in MU-MIMO transmission, and the user field corresponding to the STA that is docked in the frequency domain fragmentation, and does not include the user field participating in MU-MIMO.
  • the user fields corresponding to the STAs that are not docked in the frequency domain fragments thereby simplifying the user fields in the signaling fields of each frequency domain fragment transmission.
  • the number of user fields corresponding to the RU indicated in the signaling field of the PPDU is the number of stations participating in MU-MIMO transmission and parked in the frequency domain fragment, rather than the total number of stations participating in MU-MIMO transmission. Points. In this way, it is ensured that the signaling fields of each frequency domain fragmented transmission can accurately indicate the user fields corresponding to the RU used for MU-MIMO transmission.
  • the user field includes an indication site identification field and a spatial stream allocation indication field
  • the site identification indication field is used to indicate the site identification corresponding to the user field
  • the spatial stream allocation indication field includes The initial spatial stream subfield and the spatial stream number subfield, the initial spatial stream subfield indicates the first spatial stream allocated to the site corresponding to the site identifier, and the spatial stream number subfield indicates the site corresponding to the site identifier The number of allocated spatial streams. This indicates the way in which the spatial stream is allocated, regardless of the number of user fields and the order in which they are arranged. It can accurately indicate the space flow allocated by the STA corresponding to each user field while reducing user fields.
  • the user field includes a site identification indication field and a spatial stream allocation indication field
  • the site identification indication field is used to indicate the site identification corresponding to the user field
  • the spatial stream allocation indication field is in accordance with the
  • the ranking of the stations corresponding to the spatial flow allocation indicates the spatial flow allocated to each of the plurality of stations, the ranking of the stations includes the sequence of the plurality of stations;
  • the signaling field also includes a special user field
  • the special user field is used to indicate the number of the multiple sites, and to indicate the ranking position of the sites parked in the first frequency domain fragment among the multiple sites in the site ranking.
  • the station can determine whether it is the sorted position among the multiple stations allocated to the RU for MU-MIMO transmission, that is, it can determine whether it is allocated to the RU for MU-MIMO transmission.
  • the number of stations of the transmitted RU can thus be combined with the index indicating the spatial flow contained in the user field to determine the allocated spatial flow.
  • the common field includes one or more resource unit allocation subfields, wherein at least one RU indicated by any one resource unit allocation field is allocated to a site that stops at the first frequency domain fragment.
  • the resource unit allocation subfield of the signaling field only contains the resource unit allocation subfield that indicates the RU allocation of the site that stops at the first frequency domain fragment, but does not contain the indicates that the station does not stop at the first frequency domain fragment.
  • the resource unit allocation subfields allocated by the RU can reduce the number of resource unit allocation subfields in the signaling field, thereby saving the overhead of the signaling field.
  • FIG. 25 is a schematic structural diagram of a data transmission device according to an embodiment of the application.
  • the data transmission device 2500 in the embodiment of the present application includes:
  • the processing unit 2501 is configured to generate the signaling field of the physical layer protocol data unit PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain Fragmentation, the channel bandwidth includes MU-MIMO frequency domain resources used for MU-MIMO transmission, the MU-MIMO frequency domain resources are allocated to a plurality of stations, and the plurality of stations includes a first frequency domain fragmentation And the stations that are not docked at the first frequency domain fragment; the signaling field includes the user fields of the stations docked at the first frequency domain fragment among the plurality of stations, and an indication MU- A field of the number of MIMO users, where the field indicating the number of MU-MIMO users indicates the number of user fields of the stations parked at the first frequency domain fragment among the plurality of stations;
  • the sending unit 2502 is configured to send the signaling field fragments in the first frequency domain.
  • the data transmission device 2500 may be, for example, a communication device or an access point. Or, the data transmission device 2500 is deployed in a communication device or an access point.
  • the processing unit 2501 of the data transmission device 2500 may be a processor, and the sending unit 2502 of the data transmission device 2500 may be a transceiver.
  • the data transmission device can be used in non-OFDMA scenarios, for example.
  • the user field in the signaling field of each frequency domain fragmentation transmission only includes the user field of the STA participating in MU-MIMO transmission, and the user field corresponding to the STA that is docked in the frequency domain fragmentation, and does not include the user field participating in MU-MIMO.
  • the user fields corresponding to the STAs that are not docked in the frequency domain fragments thereby simplifying the user fields in the signaling fields of each frequency domain fragment transmission.
  • the number of MU-MIMO users indicated in the signaling field of the PPDU is the number of stations participating in MU-MIMO transmission and docking in the frequency domain fragment, rather than the total number of stations participating in MU-MIMO transmission. In this way, it is ensured that the signaling fields of each frequency domain fragmented transmission can accurately indicate the user fields corresponding to the MU-MIMO frequency domain resources used for MU-MIMO transmission.
  • the user field includes a site identification indication field and a spatial stream allocation indication field, the site identification indication field is used to indicate the site identification corresponding to the user field;
  • the spatial stream allocation indication field includes a start The spatial stream subfield and the spatial stream number subfield, the starting spatial stream subfield indicates the first spatial stream allocated to the site corresponding to the site identifier, and the spatial stream number subfield indicates that the site corresponding to the site identifier is assigned The number of allocated spatial streams. This indicates the way in which the spatial stream is allocated, regardless of the number of user fields and the order in which they are arranged. It can accurately indicate the space flow allocated by the STA corresponding to each user field while reducing user fields.
  • the user field includes a field indicating the site identification of the site corresponding to the user field and a spatial stream allocation indication field, and the spatial stream allocation indication field is sorted according to the stations corresponding to the spatial stream allocation, indicating For the spatial flow allocated to each of the multiple sites, the site ranking includes the sequence of the multiple sites; the signaling field further includes a special user field, and the special user field is used to indicate The number of the plurality of sites, and the ranking position in the ranking of the sites indicating the sites parked in the first frequency domain fragment among the plurality of sites.
  • a station can determine its own rank among multiple stations allocated to MU-MIMO frequency domain resources, that is, determine which station is allocated to MU-MIMO frequency domain resources.
  • Each site can be combined with the index indicating the spatial flow contained in the user field to determine the allocated spatial flow.
  • the signaling field includes a public field and a user-specific field
  • the user-specific field includes the user field
  • the user field includes a field and space indicating the site identification of the site corresponding to the user field.
  • a stream allocation indication field where the spatial stream allocation indication field is sorted according to the sites corresponding to the spatial stream allocation, indicating the spatial stream allocated to each of the multiple sites, and the site ranking includes the multiple The order of the sites;
  • the common field includes the field indicating the number of users of MU-MIMO, the indicating field of the total number of MU-MIMO users, and the field indicating the starting position, and the indicating field of the total number of MU-MIMO users indicates the number of stations.
  • the number, the field indicating the starting position indicates the starting position of the site parked in the first frequency domain fragment in the site ordering.
  • the user field only includes the user field of the station docked in the frequency domain fragment
  • the station receiving the PPDU can also refer to the MU-MIMO total user number indicator field in the common field, the field indicating the number of MU-MIMO users and the indication
  • the subfield of the starting position determines the site ranking position of the station corresponding to the user field containing its own site identifier, and determines its own ranking position among multiple sites allocated with MU-MIMO frequency domain resources, that is, determine It is the number of stations to which MU-MIMO frequency domain resources are allocated, so that the allocated spatial stream can be determined in combination with the index indicating the spatial stream contained in the user field.
  • indicating the position of the site corresponding to the user field in the site ranking in the common field can reduce the overhead of the signaling field compared to indicating the position of the site corresponding to the user field in the site ranking in each user field.
  • FIG. 26 is a schematic structural diagram of a data transmission device according to an embodiment of the application.
  • the data transmission device 2600 of the embodiment of the present application includes:
  • the processing unit 2601 is configured to generate a signaling field of a PPDU, the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments, the at least two frequency domain fragments include the first frequency domain fragment, and the at least two frequency domain fragments include the first frequency domain fragment.
  • the frequency domain slices include the first frequency domain slice, the channel bandwidth includes RUs used for multi-user-multiple-input multiple-output MU-MIMO transmission, the RUs are allocated to multiple sites, and the multiple sites include A site parked at the first frequency domain fragment and a site not docked at the first frequency domain fragment;
  • the signaling field includes a public field and a user-specific field, and the public field includes the corresponding RU
  • the resource unit allocation subfield of the RU is used to indicate the RU and the number of user fields corresponding to the RU;
  • the user-specific field includes the user field corresponding to the RU, and the user field corresponding to the RU is the multiple User fields of a site; among the user fields corresponding to the multiple RUs, the user fields of the sites parked in the first frequency domain fragment among the plurality of sites include the site identifier of the user field, and the multiple
  • the user field of the site that does not stop at the first frequency domain fragment in the site is an empty user field;
  • the sending unit 2602 is configured to send the signaling field fragments in the first frequency domain.
  • the data transmission device 2600 may be, for example, a communication device or an access point, or the data transmission device 2600 may be deployed at a communication device or an access point.
  • the processing unit 2601 of the data transmission device 2600 may be a processor, and the sending unit 2602 of the data transmission device 2600 may be a transceiver.
  • the data transmission device can be used in an OFDMA scenario, for example.
  • the user field in the signaling field of each frequency domain fragmented transmission only includes the user field corresponding to the station participating in MU-MIMO transmission and docked in the frequency domain fragment, but does not include the user field participating in MU-MIMO.
  • the user fields corresponding to the STAs that are not docked in the frequency domain fragments thereby simplifying the user fields in the signaling fields of each frequency domain fragment transmission.
  • an empty user field is filled at the position of the user field of the STA that is not docked in the frequency domain fragment.
  • the user field of the STA participating in MU-MIMO transmission and docking in the frequency domain fragment does not change the ranking position in all the user fields corresponding to the station receiving the PPDU, so that the transmission of each frequency domain fragment
  • the signaling field can accurately indicate the user field corresponding to the RU used for MU-MIMO transmission.
  • FIG. 27 is a schematic structural diagram of a data transmission device according to an embodiment of the application.
  • the data transmission device 2700 of the embodiment of the present application includes:
  • the processing unit 2701 is configured to generate the signaling field of the physical layer protocol data unit PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain Fragmentation, the channel bandwidth includes MU-MIMO frequency domain resources used for MU-MIMO transmission, the MU-MIMO frequency domain resources are allocated to a plurality of stations, and the plurality of stations includes a first frequency domain fragmentation And the stations not docking at the first frequency domain fragmentation; the signaling field includes the user fields of the multiple stations, and a field indicating the number of users of MU-MIMO, the indicating MU-MIMO The field of the number of users indicates the number of user fields of the multiple sites; among the user fields corresponding to the multiple RUs, the user fields of the sites docked in the first frequency domain fragment among the multiple sites include the The site identifier of the user field, and the user field of the site that does not stop at the first frequency domain fragment among the plurality of sites
  • the sending unit 2702 is configured to send the signaling field fragments in the first frequency domain.
  • the data transmission device 2700 may be, for example, a communication device or an access point. Or, the data transmission device 2700 is deployed in a communication device or an access point.
  • the data transmission device can be used in an OFDMA scenario, for example.
  • the processing unit 2702 of the data transmission device 2700 may be a processor, and the receiving unit 2701 of the data transmission device 2700 may be a transceiver. This method can be used in non-OFDMA scenarios, for example.
  • the user field in the signaling field of each frequency domain fragment transmission only includes the user field corresponding to the STA that is docked in the frequency domain fragment in the stations participating in the MU-MIMO transmission. Include the user fields corresponding to the STAs participating in MU-MIMO transmission that are not docked in the frequency domain fragment, thereby simplifying the user fields in the signaling field of each frequency domain fragment transmission. Moreover, at the position of the user field of the STA that is not docked in the frequency domain fragment, an empty user field is filled.
  • the user field of the STA participating in MU-MIMO transmission and docking in the frequency domain fragment does not change the ranking position in all the user fields corresponding to the station receiving the PPDU, so that the transmission of each frequency domain fragment
  • the signaling field can accurately indicate the user field corresponding to the frequency domain resource used for MU-MIMO transmission.
  • FIG. 28 is a schematic structural diagram of a data transmission device according to an embodiment of the application.
  • the data transmission device 2800 of the embodiment of the present application includes:
  • the receiving unit 2801 is configured to receive the signaling field of the physical layer protocol data unit PPDU in the first frequency domain fragment, wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments
  • the fragmentation includes the first frequency domain fragmentation, the channel bandwidth includes an RU used for multi-user-multiple-input multiple-output MU-MIMO transmission, and the RU is allocated to a plurality of stations, and the plurality of stations include docking stations.
  • the signaling field includes a public field and a user-specific field, and the user-specific field includes the corresponding RU
  • the user field corresponding to the RU is a user field of a site that stops at the first frequency domain fragment among the multiple sites
  • the common field includes a resource unit allocation subfield corresponding to the RU , Used to indicate the RU and the number of user fields corresponding to the RU;
  • the processing unit 2802 is configured to obtain the user field carrying the identity of the site from the signaling field, and obtain the data transmitted on the RU corresponding to the user field carrying the identity of the site.
  • the data transmission device 2800 may be, for example, a communication device or site, or the data transmission device 2800 is deployed in a communication device or site.
  • the processing unit 2802 of the data transmission device 2800 may be a processor, and the receiving unit 2801 of the data transmission device 2800 may be a transceiver.
  • the data transmission device can be used in an OFDMA scenario, for example.
  • the user field in the signaling field of each frequency domain fragmentation transmission only includes the user field of the STA participating in MU-MIMO transmission, and the user field corresponding to the STA that is docked in the frequency domain fragmentation, and does not include the user field participating in MU-MIMO.
  • the user fields corresponding to the STAs that are not docked in the frequency domain fragments thereby simplifying the user fields in the signaling fields of each frequency domain fragment transmission.
  • the number of user fields corresponding to the RU indicated in the signaling field of the PPDU is the number of stations participating in MU-MIMO transmission and parked in the frequency domain fragment, rather than the total number of stations participating in MU-MIMO transmission. Points.
  • a site can determine the RU allocated to itself based on the sorting position of the user field containing its own site identifier in the multiple user fields.
  • the user field includes an indication site identification field and a spatial stream allocation indication field
  • the site identification indication field is used to indicate the site identification corresponding to the user field
  • the spatial stream allocation indication field includes The initial spatial stream subfield and the spatial stream number subfield, the initial spatial stream subfield indicates the first spatial stream allocated to the site corresponding to the site identifier, and the spatial stream number subfield indicates the site corresponding to the site identifier The number of allocated spatial streams. This indicates the way in which the spatial stream is allocated, regardless of the number of user fields and the order in which they are arranged. It can accurately indicate the space flow allocated by the STA corresponding to each user field while reducing user fields.
  • the user field includes a site identification indication field and a spatial stream allocation indication field
  • the site identification indication field is used to indicate the site identification corresponding to the user field
  • the spatial stream allocation indication field is in accordance with the
  • the ranking of the stations corresponding to the spatial flow allocation indicates the spatial flow allocated to each of the plurality of stations, the ranking of the stations includes the sequence of the plurality of stations;
  • the signaling field also includes a special user field
  • the special user field is used to indicate the number of the multiple sites, and to indicate the ranking position of the sites parked in the first frequency domain fragment among the multiple sites in the site ranking.
  • the station can determine whether it is the sorted position among the multiple stations allocated to the RU for MU-MIMO transmission, that is, it can determine whether it is allocated to the RU for MU-MIMO transmission.
  • the number of stations of the transmitted RU can thus be combined with the index indicating the spatial flow contained in the user field to determine the allocated spatial flow.
  • the common field includes one or more resource unit allocation subfields, wherein at least one RU indicated by any one resource unit allocation field is allocated to a site that stops at the first frequency domain fragment.
  • the resource unit allocation subfield of the signaling field only contains the resource unit allocation subfield that indicates the RU allocation of the site that stops at the first frequency domain fragment, but does not contain the indicates that the station does not stop at the first frequency domain fragment.
  • the resource unit allocation subfields allocated by the RU can reduce the number of resource unit allocation subfields in the signaling field, thereby saving the overhead of the signaling field.
  • FIG. 29 is a schematic structural diagram of a data transmission device according to an embodiment of the application.
  • the data transmission device 2900 in this embodiment of the application includes:
  • the receiving unit 2901 is configured to receive the signaling field of the physical layer protocol data unit PPDU in the first frequency domain fragment; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments The fragmentation includes the first frequency domain fragmentation, the channel bandwidth includes MU-MIMO frequency domain resources used for MU-MIMO transmission, the MU-MIMO frequency domain resources are allocated to multiple sites, and the multiple sites Including a site docked at the first frequency domain fragment and a site not docked at the first frequency domain fragment; the signaling field includes the sites docked at the first frequency domain fragment A user field of a station, and a field indicating the number of users of MU-MIMO, where the field indicating the number of users of MU-MIMO indicates a user field of a station parked at the first frequency domain fragment among the plurality of stations Number of;
  • the processing unit 2902 is configured to obtain the user field carrying the identity of the site from the signaling field, and obtain the data transmitted on the RU corresponding to the user field carrying the identity of the site.
  • the data transmission device 2900 may be, for example, a communication device or a site, or the data transmission device 2900 may be deployed in a communication device or a site.
  • the processing unit 2902 of the data transmission device 2900 may be a processor, and the receiving unit 2901 of the data transmission device 2900 may be a transceiver.
  • the data transmission device can be used in non-OFDMA scenarios, for example.
  • the user field in the signaling field of each frequency domain fragmentation transmission only includes the user field of the STA participating in MU-MIMO transmission, and the user field corresponding to the STA that is docked in the frequency domain fragmentation, and does not include the user field participating in MU-MIMO.
  • the user fields corresponding to the STAs that are not docked in the frequency domain fragments thereby simplifying the user fields in the signaling fields of each frequency domain fragment transmission.
  • the number of MU-MIMO users indicated in the signaling field of the PPDU is the number of stations participating in MU-MIMO transmission and docking in the frequency domain fragment, rather than the total number of stations participating in MU-MIMO transmission. In this way, it is ensured that the signaling fields of each frequency domain fragmented transmission can accurately indicate the user fields corresponding to the MU-MIMO frequency domain resources used for MU-MIMO transmission.
  • the user field includes a site identification indication field and a spatial stream allocation indication field, the site identification indication field is used to indicate the site identification corresponding to the user field;
  • the spatial stream allocation indication field includes a start The spatial stream subfield and the spatial stream number subfield, the starting spatial stream subfield indicates the first spatial stream allocated to the site corresponding to the site identifier, and the spatial stream number subfield indicates that the site corresponding to the site identifier is assigned The number of allocated spatial streams. This indicates the way in which the spatial stream is allocated, regardless of the number of user fields and the order in which they are arranged. It can accurately indicate the space flow allocated by the STA corresponding to each user field while reducing user fields.
  • the user field includes a field indicating the site identification of the site corresponding to the user field and a spatial stream allocation indication field, and the spatial stream allocation indication field is sorted according to the stations corresponding to the spatial stream allocation, indicating For the spatial flow allocated to each of the multiple sites, the site ranking includes the sequence of the multiple sites; the signaling field further includes a special user field, and the special user field is used to indicate The number of the plurality of sites, and the ranking position in the ranking of the sites indicating the sites parked in the first frequency domain fragment among the plurality of sites.
  • a station can determine its own rank among multiple stations allocated to MU-MIMO frequency domain resources, that is, determine which station is allocated to MU-MIMO frequency domain resources.
  • Each site can be combined with the index indicating the spatial flow contained in the user field to determine the allocated spatial flow.
  • the signaling field includes a public field and a user-specific field
  • the user-specific field includes the user field
  • the user field includes a field and space indicating the site identification of the site corresponding to the user field.
  • a stream allocation indication field where the spatial stream allocation indication field is sorted according to the sites corresponding to the spatial stream allocation, indicating the spatial stream allocated to each of the multiple sites, and the site ranking includes the multiple The order of the sites;
  • the common field includes the field indicating the number of users of MU-MIMO, the indicating field of the total number of MU-MIMO users, and the field indicating the starting position, and the indicating field of the total number of MU-MIMO users indicates the number of stations.
  • the number, the field indicating the starting position indicates the starting position of the site parked in the first frequency domain fragment in the site ordering.
  • the user field only includes the user field of the station docked in the frequency domain fragment
  • the station receiving the PPDU can also refer to the MU-MIMO total user number indicator field in the common field, the field indicating the number of MU-MIMO users and the indication
  • the subfield of the starting position determines the site ranking position of the station corresponding to the user field containing its own site identifier, and determines its own ranking position among multiple sites allocated with MU-MIMO frequency domain resources, that is, determine It is the number of stations to which MU-MIMO frequency domain resources are allocated, so that the allocated spatial stream can be determined in combination with the index indicating the spatial stream contained in the user field.
  • indicating the position of the site corresponding to the user field in the site ranking in the common field can reduce the overhead of the signaling field compared to indicating the position of the site corresponding to the user field in the site ranking in each user field.
  • FIG. 30, is a schematic structural diagram of a data transmission device according to an embodiment of the application.
  • the data transmission device 3000 of the embodiment of the present application includes:
  • the receiving unit 3001 is configured to receive the signaling field of the physical layer protocol data unit PPDU in the first frequency domain fragment; the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments, and the at least two frequency domain fragments Including the first frequency domain fragment, the at least two frequency domain fragments including the first frequency domain fragment, the channel bandwidth includes an RU for multi-user-multiple-input multiple-output MU-MIMO transmission, the RUs are allocated to multiple sites, the multiple sites including sites that stop at the first frequency domain fragment and those that do not stop at the first frequency domain fragment; the signaling field includes a common field and A user-specific field, the common field includes a resource unit allocation subfield corresponding to the RU, and is used to indicate the RU and the number of user fields corresponding to the RU; the user-specific field includes the number of user fields corresponding to the RU User field, the user field corresponding to the RU is the user field of the multiple sites; in the user field corresponding to the multiple RUs, the user field
  • the processing unit 3002 is configured to obtain the user field carrying the identity of the site from the signaling field, and obtain the data transmitted on the RU corresponding to the user field carrying the identity of the site.
  • the data transmission device 3000 may be, for example, a communication device or a site, or the data transmission device 3000 may be deployed in a communication device or a site.
  • the data transmission device can be used in an OFDMA scenario, for example.
  • the processing unit 3002 of the data transmission device 3000 may be a processor, and the receiving unit 3001 of the data transmission device 3000 may be a transceiver.
  • the user field in the signaling field of each frequency domain fragmented transmission only includes the user field corresponding to the station participating in MU-MIMO transmission and docked in the frequency domain fragment, but does not include the user field participating in MU-MIMO.
  • the user fields corresponding to the STAs that are not docked in the frequency domain fragments thereby simplifying the user fields in the signaling fields of each frequency domain fragment transmission.
  • an empty user field is filled at the position of the user field of the STA that is not docked in the frequency domain fragment.
  • the user field of the STA participating in MU-MIMO transmission and docking in the frequency domain fragment does not change the ranking position in all the user fields corresponding to the station receiving the PPDU, so that the transmission of each frequency domain fragment
  • the signaling field can accurately indicate the user field corresponding to the RU used for MU-MIMO transmission. This enables the site to determine the RU allocated to itself according to the sorted position of the user field containing its own site identifier in the multiple user fields.
  • FIG. 31 is a schematic structural diagram of a data transmission device according to an embodiment of the application.
  • the data transmission device 3100 of the embodiment of the present application includes:
  • the receiving unit 3101 is configured to receive the signaling field of the physical layer protocol data unit PPDU in the first frequency domain fragment; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments
  • the fragmentation includes the first frequency domain fragmentation, the channel bandwidth includes MU-MIMO frequency domain resources used for MU-MIMO transmission, the MU-MIMO frequency domain resources are allocated to multiple sites, and the multiple sites Including stations parked at the first frequency domain fragment and stations not parked at the first frequency domain fragment;
  • the signaling field includes the user fields of the multiple stations, and the number of users indicating the number of MU-MIMO Field, the field indicating the number of MU-MIMO users indicates the number of user fields of the multiple sites; among the user fields corresponding to the multiple RUs, one of the multiple sites is docked in the first frequency domain
  • the user field of the fragmented site includes the site identifier of the user field, and the user field of the site that does not stop at the first
  • the processing unit 3102 is configured to obtain the user field carrying the identity of the site from the signaling field, and obtain the data transmitted on the RU corresponding to the user field carrying the identity of the site.
  • the data transmission device 3100 may be, for example, a communication device or a site, or the data transmission device 3100 is deployed in a communication device or a site.
  • the data transmission device can be used in non-OFDMA scenarios, for example.
  • the user field in the signaling field of each frequency domain fragmented transmission only includes the user field corresponding to the station participating in MU-MIMO transmission and docked in the frequency domain fragment, but does not include the user field participating in MU-MIMO.
  • the user fields corresponding to the STAs that are not docked in the frequency domain fragments thereby simplifying the user fields in the signaling fields of each frequency domain fragment transmission.
  • FIG. 32 is a schematic structural diagram of a data transmission device according to an embodiment of the application.
  • the data transmission device 3200 in the embodiment of the present application includes:
  • the processing unit 3201 is configured to generate a signaling field of a PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain fragment, and
  • the channel bandwidth includes MU-MIMO frequency domain resources used for MU-MIMO transmission.
  • the MU-MIMO frequency domain resources are allocated to a plurality of stations, and the plurality of stations include stations docked in the first frequency domain fragment and non-docking stations. Sites fragmented in the first frequency domain;
  • the signaling field includes a public field and a user-specific field.
  • the user-specific field includes a user field of a site parked at the first frequency domain fragment; the user field includes a field indicating the site identifier of the site corresponding to the user field.
  • a spatial flow allocation indication field the spatial flow allocation indication field is sorted according to the stations corresponding to the spatial flow allocation, indicating the spatial flow allocated to each of the plurality of stations, and the station sorting includes the Arrangement order of multiple sites;
  • the common field includes a MU-MIMO total user number indicator field and a bitmap, the MU-MIMO total user number indicator field indicates the number of the multiple stations, and the bitmap indicates that the stop at the first The starting position of the site of a frequency domain fragmentation in the site ranking of the multiple sites;
  • the sending unit 3202 is configured to send the signaling field in the first frequency domain in fragments.
  • the data transmission device 3200 may be, for example, a communication device or a site, or the data transmission device 3100 is deployed in a communication device or a site.
  • the data transmission device 3200 can be used in non-OFDMA scenarios, for example.
  • the user field only includes the user field of the station docked in the frequency domain fragment, and the station receiving the PPDU can also determine that it contains its own station identifier according to the MU-MIMO total user number indicator field and bitmap in the common field.
  • the position of the station corresponding to the user field of the user field in the station ranking determine its own ranking position in the multiple stations allocated MU-MIMO frequency domain resources, that is, determine that it is the first allocated MU-MIMO frequency domain resource Several sites can thus determine the allocated spatial flow in combination with the index indicating the spatial flow contained in the user field.
  • indicating the position of the site corresponding to the user field in the site ranking in the common field can reduce the overhead of the signaling field compared to indicating the position of the site corresponding to the user field in the site ranking in each user field.
  • FIG. 33 is a schematic structural diagram of a data transmission device according to an embodiment of the application.
  • the data transmission device 3300 of the embodiment of the present application includes:
  • the receiving unit 3301 receives the signaling field of the PPDU in the first frequency domain fragment; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain Fragmentation, the channel bandwidth includes MU-MIMO frequency domain resources used for MU-MIMO transmission, the MU-MIMO frequency domain resources are allocated to a plurality of stations, and the plurality of stations includes a first frequency domain fragmentation Sites and sites that are not docked at the first frequency domain fragment;
  • the signaling field includes a public field and a user-specific field.
  • the user-specific field includes a user field of a site parked at the first frequency domain fragment; the user field includes a field indicating the site identifier of the site corresponding to the user field.
  • a spatial flow allocation indication field the spatial flow allocation indication field is ordered according to the stations corresponding to the spatial flow allocation, and indicates the spatial flow allocated to each of the plurality of stations, and the station ordering includes the Arrangement order of multiple sites;
  • the common field includes a MU-MIMO total user number indicator field and a bitmap, the MU-MIMO total user number indicator field indicates the number of the multiple stations, and the bitmap indicates that the stop at the first The starting position of the site of a frequency domain fragmentation in the site ranking of the multiple sites;
  • the processing unit 3302 is configured to obtain the user field carrying the identity of the site from the signaling field, and obtain the data transmitted on the RU corresponding to the user field carrying the identity of the site.
  • the data transmission device 3300 may be, for example, a communication device or site, or the data transmission device 3100 is deployed in a communication device or site.
  • the data transmission device 3300 can be used in non-OFDMA scenarios, for example.
  • the user field only includes the user field of the station docked in the frequency domain fragment, and the station receiving the PPDU can also determine that it contains its own station identifier according to the MU-MIMO total user number indicator field and bitmap in the common field.
  • the position of the station corresponding to the user field of the user field in the station ranking determine its own ranking position in the multiple stations allocated MU-MIMO frequency domain resources, that is, determine that it is the first allocated MU-MIMO frequency domain resource Several sites can thus determine the allocated spatial flow in combination with the index indicating the spatial flow contained in the user field.
  • indicating the position of the site corresponding to the user field in the site ranking in the common field can reduce the overhead of the signaling field compared to indicating the position of the site corresponding to the user field in the site ranking in each user field.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer-readable storage medium is executed by a computer, the function of any of the foregoing method embodiments is realized.
  • This application also provides a computer program product, which, when executed by a computer, realizes the functions of any of the foregoing method embodiments.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • the corresponding relationships shown in the tables in this application can be configured or pre-defined.
  • the value of the information in each table is only an example, and can be configured to other values, which is not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, and so on.
  • the names of the parameters shown in the titles in the above tables may also adopt other names that can be understood by the communication device, and the values or expressions of the parameters may also be other values or expressions that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • the pre-definition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, curing, or pre-fired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种数据传输方法及相关装置。方法包括:生成PPDU的信令字段;传输PPDU的信道带宽包括至少两个频域分片;至少两个频域分片包括第一频域分片,信道带宽包括用于MU-MIMO传输的RU;信令字段包括公共字段和用户特定字段,用户特定字段包括RU对应的用户字段,RU对应的用户字段为被分配该RU且停靠在第一频域分片的站点的用户字段;公共字段包括与RU对应的资源单元分配子字段,指示RU及RU对应的用户字段的数目;在第一频域分片发送信令字段。这样能够简化信令字段中的用户字段。本申请可以应用于支持IEEE 802.11下一代WiFi EHT协议,如802.11be等802.11协议的无线局域网系统。

Description

数据传输方法及相关装置
本申请要求于2020年05月28日提交中国国家知识产权局、申请号为202010470338.9、发明名称为“数据传输方法及相关装置”的中国专利申请的优先权,以及要求于2020年07月22日提交中国国家知识产权局、申请号为202010710446.9、发明名称为“数据传输方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及相关装置。
背景技术
无线局域网(wireless local area network,WLAN)发展至今,新引入了正交频分多址(orthogonal frequency division multiple access,OFDMA)技术,整个带宽被分为多个资源单元(resource unit,RU),也就是说,用户频域资源的分配并不是以信道为单位,而是以资源单元为单位。例如,一个20MHz信道内,可以包含多个RU,形式可以是26-tone RU、52-tone RU、106-tone RU。其中,tone表示子载波个数。此外,RU也可以是242-tone RU、484-tone RU、996-tone RU等形式。
在802.11ax中,接入点发送的物理层协议数据单元(PHY protocol data unit,PPDU)的信道带宽被分配给多个站点传输数据。PPDU的高效信令字段(High Efficient Signal Field,HE-SIG-B)中包括用户特定字段,用户特定字段中包括该多个站点的用户字段。
随着WLAN技术的发展,为了使接入点传输的PPDU支持更多的站点用户,PPDU中的信令字段需要传输的用户字段会越来越多。
发明内容
本申请提供了一种数据传输方法及相关装置,能够简化PPDU的信令字段中的用户字段。
第一方面,本申请提供一种数据传输方法,包括:生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点中的停靠在所述第一频域分片的站点的用户字段;所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;在所述第一频域分片发送所述信令字段。该方法例如可用于OFDMA场景。
这样,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的STA中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段 中的用户字段。而且,PPDU的信令字段中所指示的该RU对应的用户字段的数目,为参与MU-MIMO传输且停靠在本频域分片的站点的数目,而不是参与MU-MIMO传输的总的站点数。这样保证各个频域分片传输的信令字段都能够准确地指示用于MU-MIMO传输的RU对应的用户字段。
在某些实施方式中,所述用户字段包括指示站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。这样指示空间流分配的方式,与用户字段的数量及排列顺序无关。能够实现在减少用户字段的同时时,准确指示每个用户字段对应的STA所分配的空间流。
在某些实施方式中,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。这样,站点能够根据该特殊用户字段,确定自身是在被分配给该用于MU-MIMO传输的RU的多个站点中的排序位置,也即确定自身是在被分配给该用于MU-MIMO传输的RU的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
在某些实施方式中,所述公共字段包括一个或多个资源单元分配子字段,其中任意一个资源单元分配字段指示的至少一个RU被分配给停靠在所述第一频域分片的站点。如此,信令字段的资源单元分配子字段,仅包含指示停靠在第一频域分片的站点的RU分配的资源单元分配子字段,而不包含指示非停靠在第一频域分片的站点的RU分配的资源单元分配子字段,这样能够减少信令字段中的资源单元分配子字段的数量,从而节省信令字段的开销。
第二方面,本申请实施方式还提供一种数据传输方法,包括:生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括所述多个站点中的停靠在所述第一频域分片的站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点中的停靠在所述第一频域分片的站点的用户字段的数目;在所述第一频域分片发送所述信令字段。该方法例如可用于非OFDMA场景。
本申请的技术方案中,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的STA中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,PPDU的信令字段中所指示的MU-MIMO用户数,为参与MU-MIMO传输且停靠在本频域分片的站点的数目,而不是参与MU-MIMO 传输的总的站点数。这样保证各个频域分片传输的信令字段都能够准确地指示用于MU-MIMO传输的MU-MIMO频域资源对应的用户字段。
在某些实施方式中,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。这样指示空间流分配的方式,与用户字段的数量及排列顺序无关。能够实现在减少用户字段的同时时,准确指示每个用户字段对应的STA所分配的空间流。
在某些实施方式中,所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。这样,站点能够根据该特殊用户字段,确定自身是在被分配给MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是在被分配给MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
在某些实施方式中,所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括所述用户字段,所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
所述公共字段包括所述指示MU-MIMO的用户数的字段、MU-MIMO总用户数指示字段以及指示起始位置的字段,所述MU-MIMO总用户数指示字段指示所述多个站点的数目,所述指示起始位置的字段指示所述停靠在上述第一频域分片的站点在所述站点排序中的起始位置。
这样,用户字段仅包括停靠在本频域分片的站点的用户字段,接收PPDU的站点也能够根据公共字段中的MU-MIMO总用户数指示字段、指示MU-MIMO的用户数的字段和指示起始位置的子字段,确定包含有自身的站点标识的用户字段对应的站点在站点排序的位置,确定自身在被分配了MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是被分配了MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。而且,在公共字段指示用户字段对应的站点在站点排序中的位置,相比于在每个用户字段中指示该用户字段对应的站点在站点排序中的位置,能够减少信令字段的开销。
第三方面,本申请实施例还提供一种数据传输方法,包括:
生成PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;
所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括停靠在第一频域分片的站点的用户字段;所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
所述公共字段包括MU-MIMO总用户数指示字段和比特位图,所述MU-MIMO总用户数指示字段指示所述多个站点的数目,所述比特位图指示所述停靠在所述第一频域分片的站点在所述多个站点的所述站点排序中的起始位置;
在所述第一频域分片发送所述信令字段。该方法例如可用于非OFDMA场景。
这样,用户字段仅包括停靠在本频域分片的站点的用户字段,接收PPDU的站点也能够根据公共字段中的MU-MIMO总用户数指示字段和比特位图,确定包含有自身的站点标识的用户字段对应的站点在站点排序中的位置,确定自身在被分配了MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是被分配了MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
而且,在公共字段指示用户字段对应的站点在站点排序中的位置,相比于在每个用户字段中指示该用户字段对应的站点在站点排序中的位置,能够减少信令字段的开销。
第四方面,本申请实施方式还提供一种数据传输方法,包括:生成PPDU的信令字段,传输所述PPDU的信道带宽包括至少两个频域分片,所述至少两个频域分片包括第一频域分片,所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括公共字段和用户特定字段,所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点的用户字段;所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;在所述第一频域分片发送所述信令字段。该方法例如可用于OFDMA场景。
本申请的技术方案中,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的站点中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,在非停靠在本频域分片的STA的用户字段的位置,填充空用户字段。这样参与MU-MIMO传输且停靠在本频域分片的STA的用户字段,在接收该PPDU的站点对应的所有的用户字段中的排序位置并没有改变,从而能够使得各个频域分片传输的信令字段,都能够准确地指示用于MU-MIMO传输的RU对应的用户字段。
第五方面,本申请实施方式还提供一种数据传输方法,包括:生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO 频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括所述多个站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点的用户字段的数目;所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;在所述第一频域分片发送所述信令字段。该方法例如可用于非OFDMA场景。
本申请的技术方案中,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的站点中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,在非停靠在本频域分片的STA的用户字段的位置,填充空用户字段。这样参与MU-MIMO传输且停靠在本频域分片的STA的用户字段,在接收该PPDU的站点对应的所有的用户字段中的排序位置并没有改变,从而能够使得各个频域分片传输的信令字段,都能够准确地指示用于MU-MIMO传输的频域资源对应的用户字段。
第六方面,本申请实施方式还提供一种数据传输方法,包括:停靠在第一频域分片的第一站点在所述第一频域分片接收物理层协议数据单元PPDU的信令字段,其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点中的停靠在所述第一频域分片的站点的用户字段;所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;所述第一站点从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。该方法例如可用于OFDMA场景。
本申请的技术方案中,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的STA中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,PPDU的信令字段中所指示的该RU对应的用户字段的数目,为参与MU-MIMO传输且停靠在本频域分片的站点的数目,而不是参与MU-MIMO传输的总的站点数。这样保证各个频域分片传输的信令字段都能够准确地指示用于MU-MIMO传输的RU对应的用户字段。站点能够根据包含有自己的站点标识的用户字段在多个用户字段中的排序位置,确定分配给自己的RU。
在某些实施方式中,所述用户字段包括指示站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的 空间流的数目。这样指示空间流分配的方式,与用户字段的数量及排列顺序无关。能够实现在减少用户字段的同时时,准确指示每个用户字段对应的STA所分配的空间流。
在某些实施方式中,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。这样,站点能够根据该特殊用户字段,确定自身是在被分配给该用于MU-MIMO传输的RU的多个站点中的排序位置,也即确定自身是在被分配给该用于MU-MIMO传输的RU的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
在某些实施方式中,所述公共字段包括一个或多个资源单元分配子字段,其中任意一个资源单元分配字段指示的至少一个RU被分配给停靠在所述第一频域分片的站点。如此,信令字段的资源单元分配子字段,仅包含指示停靠在第一频域分片的站点的RU分配的资源单元分配子字段,而不包含指示非停靠在第一频域分片的站点的RU分配的资源单元分配子字段,这样能够减少信令字段中的资源单元分配子字段的数量,从而节省信令字段的开销。
第七方面,本申请实施方式还提供一种数据传输方法,包括:停靠在第一频域分片的第一站点在所述第一频域分片接收物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括所述多个站点中的停靠在所述第一频域分片的站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点中的停靠在所述第一频域分片的站点的用户字段的数目;所述第一站点从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。该方法例如可用于非OFDMA场景。
本申请的技术方案中,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的STA中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,PPDU的信令字段中所指示的MU-MIMO用户数,为参与MU-MIMO传输且停靠在本频域分片的站点的数目,而不是参与MU-MIMO传输的总的站点数。这样保证各个频域分片传输的信令字段都能够准确地指示用于MU-MIMO传输的MU-MIMO频域资源对应的用户字段。
在某些实施方式中,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空 间流的数目。这样指示空间流分配的方式,与用户字段的数量及排列顺序无关。能够实现在减少用户字段的同时,准确指示每个用户字段对应的STA所分配的空间流。
在某些实施方式中,所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。这样,站点能够根据该特殊用户字段,确定自身是在被分配给MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是在被分配给MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
在某些实施方式中,所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括所述用户字段,所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
所述公共字段包括所述指示MU-MIMO的用户数的字段、MU-MIMO总用户数指示字段以及指示起始位置的字段,所述MU-MIMO总用户数指示字段指示所述多个站点的数目,所述指示起始位置的字段指示所述停靠在上述第一频域分片的站点在所述站点排序中的起始位置。
这样,用户字段仅包括停靠在本频域分片的站点的用户字段,接收PPDU的站点也能够根据公共字段中的MU-MIMO总用户数指示字段、指示MU-MIMO的用户数的字段和指示起始位置的子字段,确定包含有自身的站点标识的用户字段对应的站点在站点排序的位置,确定自身在被分配了MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是被分配了MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。而且,在公共字段指示用户字段对应的站点在站点排序中的位置,相比于在每个用户字段中指示该用户字段对应的站点在站点排序中的位置,能够减少信令字段的开销。
第八方面,本申请实施例还提供一种数据传输方法,包括:
停靠在第一频域分片的第一站点在所述第一频域分片接收PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;
所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括停靠在第一频域分片的站点的用户字段;所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
所述公共字段包括MU-MIMO总用户数指示字段和比特位图,所述MU-MIMO总用户数指示字段指示所述多个站点的数目,所述比特位图指示所述停靠在所述第一频域分片的站点在所述多个站点的所述站点排序中的起始位置;
所述第一站点从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。该方法例如可用于非OFDMA场景。
这样,用户字段仅包括停靠在本频域分片的站点的用户字段,接收PPDU的站点也能够根据公共字段中的MU-MIMO总用户数指示字段和比特位图,确定包含有自身的站点标识的用户字段对应的站点在站点排序中的位置,确定自身在被分配了MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是被分配了MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
而且,在公共字段指示用户字段对应的站点在站点排序中的位置,相比于在每个用户字段中指示该用户字段对应的站点在站点排序中的位置,能够减少信令字段的开销。
第九方面,本申请实施方式还提供一种数据传输方法,包括:停靠在第一频域分片的第一站点在所述第一频域分片接收物理层协议数据单元PPDU的信令字段;传输所述PPDU的信道带宽包括至少两个频域分片,所述至少两个频域分片包括第一频域分片,所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括公共字段和用户特定字段,所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点的用户字段;所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;所述第一站点从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。
该方法例如可用于OFDMA场景。本申请的技术方案中,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的站点中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,在非停靠在本频域分片的STA的用户字段的位置,填充空用户字段。这样参与MU-MIMO传输且停靠在本频域分片的STA的用户字段,在接收该PPDU的站点对应的所有的用户字段中的排序位置并没有改变,从而能够使得各个频域分片传输的信令字段,都能够准确地指示用于MU-MIMO传输的RU对应的用户字段。从而使得站点能够根据包含有自己的站点标识的用户字段在多个用户字段中的排序位置,确定分配给自己的RU。
第十方面,本申请实施方式还提供一种数据传输方法,包括:停靠在第一频域分片的第一站点在所述第一频域分片接收物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资 源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括所述多个站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点的用户字段的数目;所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;所述第一站点从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。该方法例如可用于非OFDMA场景。
本申请的技术方案中,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的站点中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。
第十一方面,本申请实施方式还提供一种数据传输装置,包括:
处理单元,用于生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;
所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点中的停靠在所述第一频域分片的站点的用户字段;
所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;
发送单元,用于在所述第一频域分片发送所述信令字段。
该数据传输装置例如可以是通信装置或接入点。或者该数据传输装置部署在通信装置或接入点。该数据传输装置例如可用于OFDMA场景。
这样,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的STA中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,PPDU的信令字段中所指示的该RU对应的用户字段的数目,为参与MU-MIMO传输且停靠在本频域分片的站点的数目,而不是参与MU-MIMO传输的总的站点数。这样保证各个频域分片传输的信令字段都能够准确地指示用于MU-MIMO传输的RU对应的用户字段。
在某些实施方式中,所述用户字段包括指示站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。这样指示空间流分配的方式,与用户字段的数量及排列顺序无关。能够实现在减少用户字段的同时时,准确指示每个用户字段对应的STA所分配的空间流。
在某些实施方式中,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。这样,站点能够根据该特殊用户字段,确定自身是在被分配给该用于MU-MIMO传输的RU的多个站点中的排序位置,也即确定自身是在被分配给该用于MU-MIMO传输的RU的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
在某些实施方式中,所述公共字段包括一个或多个资源单元分配子字段,其中任意一个资源单元分配字段指示的至少一个RU被分配给停靠在所述第一频域分片的站点。如此,信令字段的资源单元分配子字段,仅包含指示停靠在第一频域分片的站点的RU分配的资源单元分配子字段,而不包含指示非停靠在第一频域分片的站点的RU分配的资源单元分配子字段,这样能够减少信令字段中的资源单元分配子字段的数量,从而节省信令字段的开销。
第十二方面,本申请实施方式还提供一种数据传输装置,包括:
处理单元,用于生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括所述多个站点中的停靠在所述第一频域分片的站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点中的停靠在所述第一频域分片的站点的用户字段的数目;
发送单元,用于在所述第一频域分片发送所述信令字段。
该数据传输装置例如可以是通信装置或接入点。或者该数据传输装置部署在通信装置或接入点。该数据传输装置例如可用于非OFDMA场景。
这样,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的STA中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,PPDU的信令字段中所指示的MU-MIMO用户数,为参与MU-MIMO传输且停靠在本频域分片的站点的数目,而不是参与MU-MIMO传输的总的站点数。这样保证各个频域分片传输的信令字段都能够准确地指示用于MU-MIMO传输的MU-MIMO频域资源对应的用户字段。
在某些实施方式中,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。这样指示空间流分配的方式,与用户字段的数量及排列顺序无关。能够实现 在减少用户字段的同时时,准确指示每个用户字段对应的STA所分配的空间流。
在某些实施方式中,所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。这样,站点能够根据该特殊用户字段,确定自身是在被分配给MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是在被分配给MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
在某些实施方式中,所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括所述用户字段,所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
所述公共字段包括所述指示MU-MIMO的用户数的字段、MU-MIMO总用户数指示字段以及指示起始位置的字段,所述MU-MIMO总用户数指示字段指示所述多个站点的数目,所述指示起始位置的字段指示所述停靠在上述第一频域分片的站点在所述站点排序中的起始位置。
这样,用户字段仅包括停靠在本频域分片的站点的用户字段,接收PPDU的站点也能够根据公共字段中的MU-MIMO总用户数指示字段、指示MU-MIMO的用户数的字段和指示起始位置的子字段,确定包含有自身的站点标识的用户字段对应的站点在站点排序的位置,确定自身在被分配了MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是被分配了MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。而且,在公共字段指示用户字段对应的站点在站点排序中的位置,相比于在每个用户字段中指示该用户字段对应的站点在站点排序中的位置,能够减少信令字段的开销。
第十三方面,本申请实施例还提供一种数据传输装置,包括:
处理单元,用于生成PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;
所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括停靠在第一频域分片的站点的用户字段;所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
所述公共字段包括MU-MIMO总用户数指示字段和比特位图,所述MU-MIMO总用户数指示字段指示所述多个站点的数目,所述比特位图指示所述停靠在所述第一频域分片的 站点在所述多个站点的所述站点排序中的起始位置;
发送单元,用于在所述第一频域分片发送所述信令字段。该数据传输装置例如可用于非OFDMA场景。
这样,用户字段仅包括停靠在本频域分片的站点的用户字段,接收PPDU的站点也能够根据公共字段中的MU-MIMO总用户数指示字段和比特位图,确定包含有自身的站点标识的用户字段对应的站点在站点排序中的位置,确定自身在被分配了MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是被分配了MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
而且,在公共字段指示用户字段对应的站点在站点排序中的位置,相比于在每个用户字段中指示该用户字段对应的站点在站点排序中的位置,能够减少信令字段的开销。
第十四方面,本申请实施方式还提供一种数据传输装置,包括:
处理单元,用于生成PPDU的信令字段,传输所述PPDU的信道带宽包括至少两个频域分片,所述至少两个频域分片包括第一频域分片,所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括公共字段和用户特定字段,所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点的用户字段;所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;
发送单元,用于在所述第一频域分片发送所述信令字段。
该数据传输装置例如可以是通信装置或接入点,或者该数据传输装置部署在通信装置或接入点。该数据传输装置例如可用于OFDMA场景。
这样,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的站点中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,在非停靠在本频域分片的STA的用户字段的位置,填充空用户字段。这样参与MU-MIMO传输且停靠在本频域分片的STA的用户字段,在接收该PPDU的站点对应的所有的用户字段中的排序位置并没有改变,从而能够使得各个频域分片传输的信令字段,都能够准确地指示用于MU-MIMO传输的RU对应的用户字段。
第十五方面,本申请实施方式还提供一种数据传输装置,包括:
处理单元,用于生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括所述多个站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点的用户字段的数目;所述多RU对 应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;
发送单元,用于在所述第一频域分片发送所述信令字段。
该数据传输装置例如可以是通信装置或接入点。或者该数据传输装置部署在通信装置或接入点。该数据传输装置例如可用于OFDMA场景。该方法例如可用于非OFDMA场景。
本申请的技术方案中,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的站点中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,在非停靠在本频域分片的STA的用户字段的位置,填充空用户字段。这样参与MU-MIMO传输且停靠在本频域分片的STA的用户字段,在接收该PPDU的站点对应的所有的用户字段中的排序位置并没有改变,从而能够使得各个频域分片传输的信令字段,都能够准确地指示用于MU-MIMO传输的频域资源对应的用户字段。
第十六方面,本申请实施方式还提供一种数据传输装置,包括:
接收单元,用于在第一频域分片接收物理层协议数据单元PPDU的信令字段,其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括所述第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点中的停靠在所述第一频域分片的站点的用户字段;所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;
处理单元,用于从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。
该数据传输装置例如可以为通信装置或站点,或者该数据传输装置部署在通信装置或站点。该数据传输装置例如可用于OFDMA场景。
这样,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的STA中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,PPDU的信令字段中所指示的该RU对应的用户字段的数目,为参与MU-MIMO传输且停靠在本频域分片的站点的数目,而不是参与MU-MIMO传输的总的站点数。这样保证各个频域分片传输的信令字段都能够准确地指示用于MU-MIMO传输的RU对应的用户字段。站点能够根据包含有自己的站点标识的用户字段在多个用户字段中的排序位置,确定分配给自己的RU。
在某些实施方式中,所述用户字段包括指示站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的 站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。这样指示空间流分配的方式,与用户字段的数量及排列顺序无关。能够实现在减少用户字段的同时时,准确指示每个用户字段对应的STA所分配的空间流。
在某些实施方式中,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。这样,站点能够根据该特殊用户字段,确定自身是在被分配给该用于MU-MIMO传输的RU的多个站点中的排序位置,也即确定自身是在被分配给该用于MU-MIMO传输的RU的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
在某些实施方式中,所述公共字段包括一个或多个资源单元分配子字段,其中任意一个资源单元分配字段指示的至少一个RU被分配给停靠在所述第一频域分片的站点。如此,信令字段的资源单元分配子字段,仅包含指示停靠在第一频域分片的站点的RU分配的资源单元分配子字段,而不包含指示非停靠在第一频域分片的站点的RU分配的资源单元分配子字段,这样能够减少信令字段中的资源单元分配子字段的数量,从而节省信令字段的开销。
第十七方面,本申请实施方式还提供一种数据传输装置,包括:
接收单元,用于在第一频域分片接收物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括所述第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括所述多个站点中的停靠在所述第一频域分片的站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点中的停靠在所述第一频域分片的站点的用户字段的数目;
处理单元,用于从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。
该数据传输装置例如可以为通信装置或站点,或者该数据传输装置部署在通信装置或站点。该数据传输装置例如可用于非OFDMA场景。
这样,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的STA中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,PPDU的信令字段中所指示的MU-MIMO用户数,为参与MU-MIMO传输且停靠在本频域分片的站点的数目,而不是参与MU-MIMO传输的总的站点数。这样保证各个频域分片传输的信令字段都能够准确地指示用于MU-MIMO传输的MU-MIMO频域资源对应的用户字段。
在某些实施方式中,所述用户字段包括站点标识指示字段和空间流分配指示字段,所 述站点标识指示字段用于指示该用户字段对应的站点标识;所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。这样指示空间流分配的方式,与用户字段的数量及排列顺序无关。能够实现在减少用户字段的同时时,准确指示每个用户字段对应的STA所分配的空间流。
在某些实施方式中,所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。这样,站点能够根据该特殊用户字段,确定自身是在被分配给MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是在被分配给MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
在某些实施方式中,所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括所述用户字段,所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
所述公共字段包括所述指示MU-MIMO的用户数的字段、MU-MIMO总用户数指示字段以及指示起始位置的字段,所述MU-MIMO总用户数指示字段指示所述多个站点的数目,所述指示起始位置的字段指示所述停靠在上述第一频域分片的站点在所述站点排序中的起始位置。
这样,用户字段仅包括停靠在本频域分片的站点的用户字段,接收PPDU的站点也能够根据公共字段中的MU-MIMO总用户数指示字段、指示MU-MIMO的用户数的字段和指示起始位置的子字段,确定包含有自身的站点标识的用户字段对应的站点在站点排序的位置,确定自身在被分配了MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是被分配了MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。而且,在公共字段指示用户字段对应的站点在站点排序中的位置,相比于在每个用户字段中指示该用户字段对应的站点在站点排序中的位置,能够减少信令字段的开销。
第十八方面,本申请实施例还提供一种数据传输装置,包括:
接收单元,在第一频域分片接收PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;
所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括停靠在第一频域分片的站点的用户字段;所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序, 指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
所述公共字段包括MU-MIMO总用户数指示字段和比特位图,所述MU-MIMO总用户数指示字段指示所述多个站点的数目,所述比特位图指示所述停靠在所述第一频域分片的站点在所述多个站点的所述站点排序中的起始位置;
处理单元,用于从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。该数据传输装置例如可用于非OFDMA场景。
这样,用户字段仅包括停靠在本频域分片的站点的用户字段,接收PPDU的站点也能够根据公共字段中的MU-MIMO总用户数指示字段和比特位图,确定包含有自身的站点标识的用户字段对应的站点在站点排序中的位置,确定自身在被分配了MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是被分配了MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
而且,在公共字段指示用户字段对应的站点在站点排序中的位置,相比于在每个用户字段中指示该用户字段对应的站点在站点排序中的位置,能够减少信令字段的开销。
第十九方面,本申请实施方式还提供一种数据传输装置,包括:
接收单元,用于在第一频域分片接收物理层协议数据单元PPDU的信令字段;传输所述PPDU的信道带宽包括至少两个频域分片,所述至少两个频域分片包括所述第一频域分片,所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括公共字段和用户特定字段,所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点的用户字段;所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;
处理单元,用于从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。
该数据传输装置例如可以为通信装置或站点,或者该数据传输装置部署在通信装置或站点。该数据传输装置例如可用于OFDMA场景。
这样,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的站点中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,在非停靠在本频域分片的STA的用户字段的位置,填充空用户字段。这样参与MU-MIMO传输且停靠在本频域分片的STA的用户字段,在接收该PPDU的站点对应的所有的用户字段中的排序位置并没有改变,从而能够使得各个频域分片传输的信令字段,都能够准确地指示用于MU-MIMO传输的RU对应的用户字段。从而使得站点能够根据包含有自己的站点标识的用户字段在多个用户字段中的排序位置,确定分配给 自己的RU。
第二十方面,本申请实施方式还提供一种数据传输装置,包括:
接收单元,用于在第一频域分片接收物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括所述第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括所述多个站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点的用户字段的数目;所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;
处理单元,用于从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。
该数据传输装置例如可以为通信装置或站点,或者该数据传输装置部署在通信装置或站点。该数据传输装置例如可用于非OFDMA场景。
这样,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的站点中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。
第二十一方面,本申请实施方式还提供一种通信装置,该通信装置可包括:处理器、收发器,可选的还包括存储器,当所述处理器执行所述存储器中的计算机程序或指令时,使得上述第一方面至第八方面任一实施方式的方法被执行。
第二十二方面,本申请实施方式还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,所述计算机指令指示通信装置执行上述第一方面至第八方面任一实施方式的方法。
第二十三方面,本申请实施方式还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面至第八方面任一实施方式的方法。
第二十四方面,本申请还提供一种处理器,用于执行上述第一方面至第八方面任一实施方式的方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息过程。具体来说,在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。更进一步的,该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
如此一来,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为 处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本发明实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第二十五方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持通信传输设备实现第一方面至第八方面任一方面的方法中所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存前述通信装置的必要的信息和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第二十六方面,本申请提供了一种功能实体,该功能实体用于实现上述第一方面至第八方面任一方面所述的方法。
附图说明
图1是本申请实施例提供的一种网络结构的示意图;
图2是本申请实施例提供的一种通信装置的结构示意图;
图3是本申请实施例提供的芯片或芯片系统的结构示意图;
图4A为资源单元一种可能的分配方式的示意图;
图4B为资源单元另一种可能的分配方式的示意图;
图5A为信令字段的结构示意图;
图5B为信令字段的另一种可能的结构示意图;
图6A为PPDU的结构示意图;
图6B为本申请涉及的PPDU的结构示意图;
图6C为本申请涉及的PPDU的另一结构示意图;
图6D为本申请涉及的PPDU的又一结构示意图;
图7为本申请实施例提供的数据传输方法的流程示意图;
图8A为本申请实施例的信令字段指示RU分配的场景示意图;
图8B为本申请实施例的信令字段指示RU分配的另一场景示意图;
图9A为本申请实施例的信令字段指示RU分配的另一场景示意图;
图9B为本申请实施例的信令字段指示RU分配的另一场景示意图;
图10A为本申请实施例的信令字段指示RU分配的另一场景示意图;
图10B为本申请实施例的信令字段指示RU分配的另一场景示意图;
图11A为本申请实施例的信令字段指示频域资源分配的场景示意图;
图11B为本申请实施例的信令字段指示频域资源分配的另一场景示意图;
图12A为本申请实施例的信令字段指示RU分配的另一场景示意图;
图12B为本申请实施例的信令字段指示RU分配的另一场景示意图;
图13A为本申请实施例的信令字段指示RU分配的另一场景示意图;
图13B为本申请实施例的信令字段指示RU分配的另一场景示意图;
图14A为本申请实施例的信令字段指示RU分配的另一场景示意图;
图14B为本申请实施例的信令字段指示RU分配的另一场景示意图;
图15A为本申请实施例的信令字段指示频域资源分配的另一场景示意图;
图15B为本申请实施例的信令字段指示频域资源分配的另一场景示意图;
图16A为本申请实施例的信令字段指示RU分配的另一场景示意图;
图16B为本申请实施例的信令字段指示RU分配的另一场景示意图;
图17A为本申请实施例的信令字段指示RU分配的另一场景示意图;
图17B为本申请实施例的信令字段指示RU分配的另一场景示意图;
图18A为本申请实施例的信令字段指示RU分配的另一场景示意图;
图18B为本申请实施例的信令字段指示RU分配的另一场景示意图;
图19A为本申请实施例的信令字段指示频域资源分配的另一场景示意图;
图19B为本申请实施例的信令字段指示频域资源分配的另一场景示意图;
图20A为本申请实施例的资源单元分配子字段指示字段的结构示意图;
图20B为本申请实施例的信令字段的结构示意图;
图20C为本申请实施例的信令字段的另一结构示意图;
图20D为本申请实施例的信令字段的又一结构示意图;
图21为本申请实施例的资源单元分配子字段指示字段的另一结构示意图;
图22为本申请实施例的资源单元分配子字段指示字段的又一结构示意图;
图23为本申请实施例的资源单元分配的场景示意图;
图24为本申请实施例的数据传输装置的模块示意图;
图25为本申请实施例的数据传输装置的模块示意图;
图26为本申请实施例的数据传输装置的模块示意图;
图27为本申请实施例的数据传输装置的模块示意图;
图28为本申请实施例的数据传输装置的模块示意图;
图29为本申请实施例的数据传输装置的模块示意图;
图30为本申请实施例的数据传输装置的模块示意图;
图31为本申请实施例的数据传输装置的模块示意图;
图32为本申请实施例的数据传输装置的模块示意图;
图33为本申请实施例的数据传输装置的模块示意图。
具体实施方式
下面结合附图对本申请具体实施例作进一步的详细描述。
以图1为例本申请所述的数据传输方法可适用的网络结构。图1是本申请实施例提供的网络结构的示意图,该网络结构可包括一个或多个接入点(access point,AP)类的站点和一个或多个非接入点类的站点(none access point station,non-AP STA)。为便于描述,本文将接入点类型的站点称为接入点(AP),非接入点类的站点称为站点(STA)。AP例如为 图1中的AP1和AP2,STA例如为图1中的STA1、STA2和STA3。
其中,接入点可以为终端设备(如手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。接入点相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体的,接入点可以是带有无线保真(wreless-fidelity,WiFi)芯片的终端设备(如手机)或者网络设备(如路由器)。接入点可以为支持802.11be制式的设备。接入点也可以为支持802.11be、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等802.11家族的多种无线局域网(wireless local area networks,WLAN)制式的设备。本申请中的接入点可以是高效(high efficient,HE)AP或极高吞吐量(extramely high throughput,EHT)AP,还可以是适用未来某代WiFi标准的接入点。
接入点可包括处理器和收发器,处理器用于对接入点的动作进行控制管理,收发器用于接收或发送信息。
站点可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户。例如,站点可以为支持WiFi通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持WiFi通讯功能的机顶盒、支持WiFi通讯功能的智能电视、支持WiFi通讯功能的智能可穿戴设备、支持WiFi通讯功能的车载通信设备和支持WiFi通讯功能的计算机等等。可选地,站点可以支持802.11be制式。站点也可以支持802.11be、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等802.11家族的多种无线局域网(wireless local area networks,WLAN)制式。
站点可包括处理器和收发器,处理器用于对接入点的动作进行控制管理,收发器用于接收或发送信息。
本申请中的接入点可以是高效(high efficient,HE)STA或极高吞吐量(extramely high throughput,EHT)STA,还可以是适用未来某代WiFi标准的STA。
例如,接入点和站点可以是应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。
本申请实施例中的所涉及的接入点和站点又可以统称为通信装置,其可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来实现。
图2为本申请实施例提供的一种通信装置的结构示意图。如图2所示,该通信装置200可包括:处理器201、收发器205,可选的还包括存储器202。
所述收发器205可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器205可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
存储器202中可存储计算机程序或软件代码或指令204,该计算机程序或软件代码或指令204还可称为固件。处理器201可通过运行其中的计算机程序或软件代码或指令203, 或通过调用存储器202中存储的计算机程序或软件代码或指令204,对MAC层和PHY层进行控制,以实现本申请下述各实施例提供的数据传输方法。其中,处理器201可以为中央处理器(central processing unit,CPU),存储器202例如可以为只读存储器(read-only memory,ROM),或为随机存取存储器(random access memory,RAM)。
本申请中描述的处理器201和收发器205可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。
上述通信装置200还可以包括天线206,该通信装置200所包括的各模块仅为示例说明,本申请不对此进行限制。
如前所述,以上实施例描述中的通信装置200可以是接入点或者站点,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图2的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置的实现形式可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;(3)可嵌入在其他设备内的模块;(4)接收机、智能终端、无线设备、手持机、移动单元、车载设备、云设备、人工智能设备等等;(5)其他等等。
对于通信装置的实现形式是芯片或芯片系统的情况,可参见图3所示的芯片或芯片系统的结构示意图。图3所示的芯片或芯片系统包括处理器301和接口302。其中,处理器301的数量可以是一个或多个,接口302的数量可以是多个。可选的,该芯片或芯片系统可以包括存储器303。
本申请实施例并且不限制权利要求书的保护范围和适用性。本领域技术人员可以在不脱离本申请实施例范围的情况下对本申请涉及的元件的功能和部署进行适应性更改,或酌情省略、替代或添加各种过程或组件。
AP传输PPDU的带宽被分配给一个或多个STA进行数据传输。PPDU中包括信令字段,信令字段包括用户特定字段,用户特定字段包括一个或多个用户字段。
参与多用户-多输入多输出(multiple user multiple input multiple output,MU-MIMO)传输的STA的用户字段的结构如下表1所示。用户字段中,包括对应的STA的站点标识(STA ID)、空间流分配指示字段、编码与调制策略指示字段。STA能够根据包含自身的站点标识的用户字段,确定自身被分配的频域资源。
表1
Figure PCTCN2021091501-appb-000001
Figure PCTCN2021091501-appb-000002
可以看出,用户字段携带站点标识,以指示与其对应频域资源被分配至该站点标识对应的STA。STA能够根据携带有自己的站点标识的用户字段与频域资源的对应关系,确定分配给自己的频域资源。
在非OFDMA场景下,传输PPDU的信道带宽中,多个站点占用该信道带宽中的同一频域资源进行的数据传输,为非OFDMA场景下的MU-MIMO传输。该同一频域资源可以为整个信道带宽,也可以为信道带宽中,除被打孔的部分之外的频域资源。
具体的,在非OFDMA场景下,AP利用信令字段(signal field,SIG)向用户通知的传输PPDU的信道带宽的分配情况。例如,传输PPDU的信道带宽为20MHz,该20MHz被分配给6个站点传输数据,那么,在该PPDU的信令字段中,包含该6个站点的用户字段。可以看出,在非OFDMA场景下,进行MU-MIMO传输时,PPDU的信令字段中,包括被分配该信道带宽的频域资源的所有的站点的用户字段。
在OFDMA场景下,在频域资源分配上,一个用户的频域资源的分配并不是以信道为单位,而是以资源单元(Resource Unit,RU)为单位。RU的大小可以是26-tone RU、52-tone RU、106-tone RU,这些RU通常称为小RU。其中,tone表示子载波,例如,26-tone RU表示由26个子载波组成的RU,该26-tone RU可以被分配给一个用户使用。此外,RU的大小也可以是242-tone、484-tone、996-tone等等,这些通常称为大RU。通常来讲,一个大于等于106-tone的RU可以分配给一个或者多个用户使用。在802.11be中,将支持给一个用户分配多个RU,本申请中的用户可理解为STA。
当传输PPDU的信道带宽为20MHz时,如图4A所示的,图4A所示为传输PPDU的信道带宽为20MHz时的资源单元可能的分配方式的示意图。整个20MHz信道带宽可以由一整个242个子载波组成的资源单元(242-tone RU)组成,也可以由26个子载波组成的资源单元(26-tone RU)、52个子载波组成的资源单元(52-tone RU)、106个子载波组成的资源单元(106-tone RU)的各种组合组成。除了用于传输数据的RU,此外,还包括一些保护(Guard)子载波,空子载波,或者直流(direct current,DC)子载波。
当传输PPDU的信道带宽为40MHz时,如图4B所示的,图4B所示为传输PPDU的信道带宽为40MHz时的资源单元可能的分配方式的示意图。整个信道带宽大致相当于20MHz的子载波分布的复制。整个40MHz信道带宽可以由一整个484个子载波组成的资源单元(484-tone RU)组成,也可以由26-tone RU,52-tone RU,106-tone RU,242-tone RU的各种组合组成。
当传输PPDU的信道带宽为80MHz时。整个信道带宽大致相当于20MHz的子载波分布的复制。整个80MHz信道带宽可以由一整个996个子载波组成的资源单元(996-tone RU)组成,也可以由484-tone RU、242-tone RU,106-tone RU,52-tone RU,26-tone RU的各种组合组成。并且,在整个80MHz信道带宽的中间,还存在一个由两个13-tone子单元组成的中间26-tone RU(Center 26-Tone RU)。
具体的,在OFDMA场景下,802.11ax中,AP利用信令字段(signal field,SIG)向用户通知RU的分配。请参阅图5A,图5A为信令字段的结构示意图。如图5A中所示的, HE-SIG包括公共字段(common field)和用户特定字段(user specific field)。
公共字段包括1~N个资源单元分配子字段(RU allocation subfield)、用于校验的循环冗余码(cyclic redundancy code,CRC)以及用于循环解码的尾部(Tail)子字段。一个资源单元分配子字段对应一个20MHz的资源单元的分配,一个资源单元分配子字段指示20MHz对应的一个或者多个资源单元的大小和位置。
其中,一个资源单元分配子字段为一个索引,一个索引指示了20MHz对应的一个或者多个资源单元的大小和位置。
如表2所示,根据802.11ax,资源单元分配子字段可为表1中第一列中的一个索引,例如,00000000,00000001,00000010,每个索引所在的行表示20MHz对应的资源单元的大小和位置。
表2
Figure PCTCN2021091501-appb-000003
Figure PCTCN2021091501-appb-000004
在信令字段(HE-SIG)的用户特定字段中,按照资源单元分配的顺序,包括1~M个用户字段(User Field)。M个用户字段通常是两个为一组,每两个用户字段后有一个CRC和tail字段。若用户字段的数量为奇数,则最后一个用户字段单独为一组,该最后一个用户字 段后有一个CRC和tail字段。
当一个资源单元分配子字段指示的RU中包括由大于或者等于106个子载波组成的RU时,该索引还用于指示由大于或者等于106个子载波组成的RU支持的MU-MIMO的用户数。例如,索引01000y2y1y0。当y2y1y0为010时,用于指示106-tone被分配给了3个用户。具体的,如图5B所示,图5B是信令字段的另一种可能的结构示意图。资源单元分配子字段1为01000010,结合表2中01000y2y1y0所在的行,可以确定01000010指示传输资源单元分配子字段1指示的资源单元为106-tone RU、26-tone RU、26-tone RU、26-tone RU和52-tone RU,且106-tone RU被分配给了3个用户。在用户特定字段部分,包括n个用户字段,其中用户字段1、用于字段2、用户字段3对应106-tone RU,用户字段4、用户字段5、用户字段6依次对应三个26-tone RU,用户字段7对应该52-tone RU。
用户字段携带站点标识,以指示与其对应RU被分配至某个STA。STA能够根据携带有自己的站点标识的用户字段对应的RU,确定分配给自己的RU。根据上述表1可以看出,上述OFDMA场景下,指示信道带宽对应的RU的分配的方式,由于是根据资源单元分配子字段指示的RU的顺序和用户特定字段中的用户字段排列的顺序的对应关系来确定每个用户字段对应的资源单元。那么发送给每个站点的HE-SIG-B都包含每个资源单元分配子字段对应的所有的用户字段,这样才能保证,STA能够根据结合用户字段出现的位置与对应的资源单元分配子字段,确定分配给自身的资源单元。
随着WLAN技术的发展,为了使PPDU支持更多的STA,在和非OFDMA场景和OFDMA场景下,MU-MIMO传输支持的用户会越来越多,这样PPDU的信令字段需要传输的用户字段都会越来越多,信令开销也会越来越大。
参考图6A,图6A为PPDU的结构示意图。PPDU包括传统短训练字段(Legacy Short Training Field,L-STF)、传统长训练字段(Legacy Long Training Field,L-LTF)、传统信令字段(Legacy Signal Field,L-SIG)、重复传统信令字段(RL-SIG)、通用信令字段U-SIG(universal SIG,U-SIG)、超高吞吐率信令字段或极高吞吐率信令字段(extremely high throughput,EHT-SIG)、EHT短训练字段(EHT-STF)、EHT长训练字段(EHT-LTF)和数据(data)。其中,L-STF、L-LTF、L-SIG、RL-SIG、U-SIG、EHT-SIG、EHT-STF、EHT-LTF为PPDU的物理层头部(或称前序部分)中的部分结构。
L-STF,L-LTF,L-SIG可理解为传统前导码字段,用于保证新设备同传统设备的共存。RL-SIG用于增强传统信令字段的可靠性。
U-SIG和EHT-SIG为信令字段。U-SIG用于携带一些公共信息,例如指示PPDU版本的信息、指示上行/下行的信息、指示PPDU的频域带宽的信息,打孔指示信息等。EHT-SIG中包括指示资源分配的信息以及指示数据解调的信息等。
需要说明的是,本申请实施例中,以802.11be场景下的PPDU中的字段进行举例说明。本申请实施例中提到的PPDU中各个字段不限于与802.11be相关的字段,本申请实施例中的提到的PPDU中各个字段还可以为802.11be之后的标准版本相关的字段。
请参阅图6B,图6B是本申请涉及的PPDU的结构示意图。为了降低开销,在一个具 体实施例中,提供了如图6B所示的频域分片(segment)的结构传输PPDU的信道带宽分为多个频域分片,每个频域分片停靠有若干个站点,AP向停靠在多个频域分片的STA发送PPDU。具体的,上述停靠是指系统确定或者已知的一种对应关系,是半静态的,也就是说频域分片与停靠的一个或者多个站点的对应关系是配置好的,在一定时间内保持不变。更具体的例子中,每个频域分片为80MHz,当然,也可以是其他带宽粒度,例如40MHz,160MHz等。各个实施例不涉及配置停靠关系的具体过程,因而不再赘述。
应理解,本申请所述的站点停靠(parking)在某个频域分片,也可以称为站点驻留在某个频域分片,或者说位于或属于某个频域分片中的站点。
本申请实施例中,频域分片还可以称为频域分段等。
基于频域分片的结构,该PPDU的前序部分的字段分别在各个频域分片上承载,即所述PPDU的前序部分包括一个或者多个频域分片内容,例如,第一频域分片内容中包括第一传统前导码字段、第一U-SIG和第一EHT-SIG;第二频域分片内容中包括第二传统前导码字段、第二U-SIG和第二EHT-SIG。另一种实现中,PPDU的传统前导码字段也可以在整个信道带宽上传输。
这样每个频域分片传输的U-SIG可仅包含自身频域分片的打孔指示信息,例如打孔指示字段,可以设置为1比特。这样能够节省每个频域分片传输U-SIG的开销。
然而,相关技术中,并没有关于分片传输信令字段时,用于MU-MIMO传输的MU-MIMO频域资源对应的用户字段如何设置,来实现停靠在至少两个频域分片中的STA在同一MU-MIMO频域资源上进行MU-MIMO传输的解决方案。
本申请提实施例提供一些信令字段的设置方式,用于设置PPDU的信令字段。在本申请实施例中,对每个频域分片传输的信令字段中的用户字段进行简化。每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的STA中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段。
第一种可能的信令字段的设置方式中,将信令字段中,指示的MU-MIMO用户数,设置为参与MU-MIMO传输且停靠在本频域分片的站点的数目,而不是参与MU-MIMO传输的总的站点数。这样保证各个频域分片传输的信令字段都能够准确地指示用于MU-MIMO传输的MU-MIMO频域资源对应的用户字段。
第二种可能的信令字段的设置方式中,在非停靠在本频域分片的STA的用户字段的位置,填充空用户字段。这样参与MU-MIMO传输且停靠在本频域分片的STA的用户字段,在接收该PPDU的站点对应的所有的用户字段中的排序位置并没有改变,从而能够使得各个频域分片传输的信令字段,都能够准确地指示用于MU-MIMO传输的MU-MIMO频域资源对应的用户字段。
通过采用上述任一种信令字段的设置方式,在各个频域分片传输的信令字段中,不包含参与MU-MIMO传输,且为非停靠在本频域分片的STA对应的用户字段的情况下,各个频域分片传输的信令字段都能够准确地指示用于MU-MIMO传输的MU-MIMO频域资源对应的用户字段。那么停靠在各个频域分片的STA,都能够根据包含有自身的站点标识的用 户字段在多个用户字段中的排序位置,准确地确定被分配的MU-MIMO频域资源,并从分配给自己的MU-MIMO频域资源接收数据,从而能够实现停靠在至少两个频域分片中的STA在同一MU-MIMO频域资源上进行MU-MIMO传输。
基于上述信令字段的设置方式,本申请实施例提供一种数据传输方法,该数据传输方法用于传输PPDU的信令字段,并通过采用上述信令字段的设置方式,实现在MU-MIMO场景下,简化信令字段中的用户字段,且保证每个频域分片传输的信令字段能够准确地指示用于MU-MIMO传输的频域资源对应的用户字段,实现停靠在至少两个频域分片中的STA在同一MU-MIMO频域资源上进行MU-MIMO传输。
请参阅图7,图7为本申请实施例提供的数据传输方法的流程示意图。本申请实施例以AP向STA发送PPDU的实施例进行说明,本申请的数据传输方法也适用于AP向AP发送PPDU的场景,STA向STA发送PPDU的场景,不同的场景中,传输的PPDU以及其中的信令字段的名称有所不同,但其功能和作用相类似,本申请实施例不一一赘述。
本实施例场景中,AP向STA传输PPDU的信道带宽包括至少两个频域分片;该至少两个频域分片包括第一频域分片,第一频域分片可为至少两个频域分片中的任一频域分片;每个频域分片停靠有若干个STA。例如,一个频域分片停靠的站点的数量可以为大于或等于0的任意数量。
本申请实施例的数据传输方法可包括以下步骤:
701、AP生成PPDU的信令字段;
步骤701可由AP的处理器实现。也即,AP的处理器生成PPDU的信令字段。
该信令字段为在第一频域分片传输的信令字段。该信令字段用于指示传输PPDU的信道带宽的分配。该信令字段可采用上述信令字段的设置方式进行设置。
在802.11be中,该信令字段可以为EHT-SIG,也可以为U-SIG和EHT-SIG。本申请实施例的信令字段不限于为802.11be中的SIG字段,本申请实施例中的信令字段还可以为802.11be之后的标准版本相关的SIG字段。
702、AP在第一频域分片发送信令字段。
步骤702可由AP的收发器实现。也即,AP的收发器在第一频域分片发送信令字段。
对应的,停靠在第一频域分片的STA接收AP发送的PPDU的信令字段,从信令字段中,获取携带本STA的标识的用户字段,进而获取该用户字段对应的频域资源上传输的数据。具体的,STA的收发器接收AP发送的PPDU的信令字段。STA的处理器从从信令字段中,获取携带本STA的标识的用户字段,进而获取该用户字段对应的频域资源上传输的数据。
基于上述数据传输方法,下面分别具体介绍采用上述两种信令字段的设置方式时,信令字段的内容结构。
上述第一种可能的信令字段的设置方式中,信令字段包括停靠在第一频域分片且被分配MU-MIMO频域资源的STA的用户字段,和指示该停靠在第一频域分片且被分配MU-MIMO频域资源的STA的用户字段的数目的字段,MU-MIMO频域资源为所述信道带 宽中用于进行MU-MIMO传输的频域资源。每个用户字段包括与该用户字段对应的一个STA的站点标识。
若MU-MIMO频域资源被分配给5个STA,其中3个STA停靠在第一频域分片,2个STA停靠在除第一频域分片之外的频域分片,那么,该信令字段中,指示的该MU-MIMO频域资源对应的用户字段的数目为3。
本实施例中,信令字段为在第一频域分片传输的信令字段。停靠在第一频域分片的站点,可理解为停靠在本频域分片的站点。
下面分别介绍OFDMA和非OFDMA场景下,信令字段的设置方式。
在OFDMA场景下,上述信道带宽中用于MU-MIMO传输的MU-MIMO频域资源,可理解为一个用于MU-MIMO传输的RU。
信令字段中包括资源单元分配子字段,资源单元分配子字段指示该用于MU-MIMO传输的RU以及该RU对应的用户字段的数目。其中,资源单元分配子字段指示的用于MU-MIMO传输的RU对应的用户字段的数目,为停靠在第一频域分片且被分配该RU的STA的数目,而不是被分配该RU的STA的总数目。信令字段中还包括与该RU对应的若干个用户字段。该若干个用户字段为停靠在第一频域分片且被分配该RU的若干个STA对应的用户字段。可以理解,停靠在第一频域分片且被分配该RU的STA的数量大于或等于0,小于或等于一个RU进行MU-MIMO传输所能支持的最大用户数。例如,在802.11be标准中,一个RU进行MU-MIMO传输所能支持的最大用户数可能为8,那么该停靠在第一频域分片且被分配该RU的STA的数量可以为大于或等于0,且小于或等于8的数值,那么与该RU对应的用户字段的数目可为大于或等于0,且小于或等于8的数目。
下面结合具体举例来进行解释说明。本申请实施例中,以每个资源单元分配子字段以20MHz为粒度,指示一个20MHz对应的RU分配进行举例说明,在其他实施例中,每个资源单元分配子字段的粒度不限于20MHz。
下面以传输PPDU的信道带宽为320MHz,传输PPDU的信道带宽分为4个频域分片的场景进行举例说明。
按照频率从低至高的顺序,第一频域分片为第1个80MHz,第二频域分片为第2个80MHz,第三频域分片为第3个80MHz,第四频域分片为第4个80MHz。本实施例中具体以320MHz中的部分频域作为举例,其余的部分在本申请中不一一列举。本申请各个实施例的举例都以该频域分片架构为基础,在下述的举例中,不再赘述。
在一个例子中,如图8A和图8B所示的信令字段指示RU分配的场景示意图,按照频率由低至高的顺序,传输PPDU的第2个80MHz的最低频率的20MHz对应的RU包括106-tone RU、26-tone RU、26-tone RU、26-tone RU、26-tone RU和26-tone RU。其中106-tone RU被分配给3个STA,分别为用户字段a对应的STA a,用户字段b对应的STA b,用户字段h对应的STA h,这样形成3个站点参与的MU-MIMO。这5个26-tone RU中,第1个26-tone RU为分配给停靠在第二频域分片的STA的RU,第2-5个26-tone RU分别被分配给停靠在第一频域分片的4个STA。这被分配该106-tone RU的3个STA中,2个STA(STA a和STA b)停靠在第一频域分片,一个STA(STA h)停靠在第二频域分片。该106-tone  RU被分配给3个STA,那么该106-tone RU为用于MU-MIMO传输的RU。
如图8A所示,在第一频域分片传输的信令字段中,与该20MHz对应的资源单元分配子字段指示该20MHz对应的RU为106-tone RU、26-tone RU、26-tone RU、26-tone RU、26-tone RU和26-tone RU,且指示106-tone RU对应的用户字段数为2。第一频域分片传输的信令字段中,包括与该106-tone RU对应的2个用户字段,分别为用户字段a和用户字段b。第一频域分片传输的信令字段中,排在用户字段b之后的用户字段依次包括空用户字段、用户字段d、用户字段e、用户字段f、用户字段g,分别与5个26-tone RU一一对应。该空用户字段指示第1个26-tone RU对应的用户字段为空。
这样停靠在第一频域分片的STA接收信令字段时,能够根据第一频域分片传输的信令字段中与该20MHz对应的资源单元分配子字段,确定该20MHz对应的RU的排序为106-tone RU、26-tone RU、26-tone RU、26-tone RU、26-tone RU和26-tone RU,且106-tone RU对应的用户字段数为2。具体的,STA a能够根据包含有STA a的站点标识的用户字段a,确定106-tone RU为分配给自己的RU;STA b能够根据包含有STA b的站点标识的用户字段b,确定106-tone RU为分配给自己的RU。STA d能够根据包含有STA d的站点标识的用户字段d,确定排在106-tone RU之后的第2个26-tone RU为分配给自己的RU。
如图8B所示,在第二频域分片传输的信令字段中,与该20MHz对应的资源单元分配子字段指示该20MHz对应的RU为106-tone RU、26-tone RU、和106-tone RU,且指示第1个106-tone RU对应的用户字段数为1,指示第2个106-tone RU的用户字段的数目为1。第二频域分片传输的信令字段中,包括与该第1个106-tone RU对应的1个用户字段,为用户字段h。第一频域分片传输的信令字段中,排在用户字段h之后的用户字段依次包括用户字段c和空用户字段,分别对应26-tone RU和第2个106-tone RU。
这样接收该信令字段的STA,能够根据与该20MHz对应的资源单元分配子字段,确定该20MHz对应的RU的排序为106-tone RU、26-tone RU、26-tone RU、26-tone RU、26-tone RU和26-tone RU,且106-tone RU对应的用户字段数为1。STA h能够根据包含有STA h的站点标识的用户字段h,确定106-tone RU为分配给自己的RU;那么STA c能够确定包含有STA c的站点标识的用户字段c,确定排在106-tone RU之后的第1个26-tone RU为分配给自己的RU。
由此可见,这样的方案,在第一频域分片传输的信令字段中,没有传输非停靠第一频域分片的STA h的用户字段,该信令字段中,与该106-tone RU对应的资源单元分配子字段指示的该106-tone RU的用户数,没有将非停靠第一频域分片的STA h计入在内。第一信令字段中,与该106-tone RU对应的资源单元分配子字段指示的该106-tone RU的用户数,只计入了停靠第一频域分片,且被分配该106-tone RU的STA(STA a和STA b)的数量。同样的,第二频域分片传输的信令字段中,与该106-tone RU对应的资源单元分配子字段指示的该106-tone RU的用户数,只计入了停靠第二频域分片,且被分配该106-tone RU的STA(STA h)的数量。这样本申请实施例的技术方案,每个频域分片传输信令字段的用户字段的顺序能够保持与该信令字段中的资源单元分配子字段指示的RU以及RU对应的用户数匹配,从而能正确指示用户字段对应的RU,避免省去用户字段而导致用户字段的排序与RU的排序错位。
而且,在第一频域分片传输的信令字段中,对于非停靠在第一频域分片的STA(STA c)的RU(第1个26-tone RU)对应的用户字段,并没有按照实际情况指示STA c的用户字段c,而是简化为空用户字段。在第二频域分片传输的信令字段中,对于分配给非停靠在第二频域分片的STA的RU,没有按照实际RU分配情况进行指示,而是将非停靠在第二频域分片的STA的RU(第2-5个26-tone RU)合并简化指示为一个RU(106-tone RU),并指示该一个RU对应一个用户字段。这样信令字段中仅包含与一个用户字段与该合并简化指示的一个RU(实际对应多个RU)对应,而不是按照实际的RU分配情况分别指示非停靠在第一频域分片的STA的每个RU,并分别设置每个非停靠在第一频域分片的STA的每个RU对应的用户字段,这样能够减少用户字段的数目。例如,若按照实际情况指示,需分别设置与第2-5个26-tone RU对应的4个用户字段,而图8B所示的示例中,仅设置了一个与该合并简化指示的第2个106-tone RU(实际对应第2-5个26-tone RU)对应的空用户字段,节省了3个用户字段,从而降低了信令字段的开销。
当然,对于上述第1-5个26-tone RU的指示方式以及用户字段的设置方式,并不限于上述举例的方式,在其他实施例中,也可以采用其他方式指示述第1-5个26-tone RU的指示方式,或按照其他方式设置对应的用户字段。
在另一个例子中,如图9A和图9B所示的信令字段指示RU的分配的场景示意图,按照频率由低至高的顺序,传输PPDU的第1个80MHz的最低频率的20MHz对应的RU包括一个242-tone RU。该242-tone RU为用于MU-MIMO传输的RU。该242-tone RU被分配给4个STA,分别为STA a、STA b、STA c、STA d。其中,STA a和STA c停靠在第一频域分片,STA b和STA d停靠在第二频域分片。
如图9A所示,在第一频域分片传输的信令字段中,与该20MHz对应的资源单元分配子字段1指示该20MHz对应的RU为242-tone RU,且指示该242-tone RU对应的用户字段数为2。第一频域分片传输的信令字段中,包括与该242-tone RU对应的2个用户字段,分别为STA a的用户字段a和STA c的用户字段c。
如图9B所示,在第二频域分片传输的信令字段中,与该20MHz对应的资源单元分配子字段17指示该20MHz对应的RU为242-tone RU,且指示该242-tone RU对应的用户字段数为2。第一频域分片传输的信令字段中,包括与该242-tone RU对应的2个用户字段,分别为STA b的用户字段b和STA d的用户字段d。
这样停靠在第一频域分片的STA接收信令字段时,能够根据第一频域分片传输的信令字段中与该20MHz对应的资源单元分配子字段1,确定该20MHz对应的RU为242-tone RU。具体的,STA a能够根据包含有STA a的站点标识的用户字段a和该资源单元分配子字段1,确定用户字段a为第一频域分片传输的信令字段中,与该资源单元分配子字段指示的242-tone RU对应的第1个用户字段,从而确定242-tone RU为分配给自己的RU;STA c能够根据包含有STA c的站点标识的用户字段c和该资源单元分配子字段,确定用户字段c为第一频域分片传输的信令字段中,与该资源单元分配子字段指示的242-tone RU对应的第2个用户字段,从而确定242-tone RU为分配给自己的RU。
类似的,停靠在第二频域分片的STA,接收信令字段时,能够根据第二频域分片传输 的信令字段中与该20MHz对应的资源单元分配子字段17,确定该20MHz对应的RU为242-tone RU。具体的,STA b能够根据包含有STA b的站点标识的用户字段b和该资源单元分配子字段17,确定用户字段b为第二频域分片传输的信令字段中,与该资源单元分配子字段指示的242-tone RU对应的第1个用户字段,从而确定242-tone RU为分配给自己的RU;STA d能够根据包含有STA d的站点标识的用户字段d和该资源单元分配子字段,确定用户字段d为第二频域分片传输的信令字段中,与该资源单元分配子字段指示的242-tone RU对应的第2个用户字段,从而确定242-tone RU为分配给自己的RU。
在又一个例子中,如图10A和图10B所示的信令字段指示RU的分配的场景示意图,第1个80MHz的最低频率的40MHz对应的RU为484-tone RU。该一个484-tone RU被分配给5个STA,分别为STA1、STA2、STA3、STA4个STA5。这4个STA中,STA1、STA2和STA3这3个STA为停靠在第一频域分片的STA,STA4和STA5这2个STA为停靠在第二频域分片的STA。
请参阅图10A,在资源单元分配子字段以20MHz为粒度的情况下,在第一频域分片传输的信令字段中,包括该40MHz对应的资源单元分配子字段1和资源单元分配子字段2。也即是说,该40MHz被资源单元分配子字段1和资源单元分配子字段2指示。
资源单元分配子字段1指示该484-tone RU,且该484-tone RU对应的用户字段的数目为2个。资源单元分配子字段2指示该484-tone RU,且该484-tone RU对应的用户字段的数目为1个。可以看出,资源单元分配子字段1和资源单元分配子字段2指示的用户字段的数目之和为3个。
在第一频域分片传输的信令字段中还包括:STA1的用户字段、STA2的用户字段和STA3的用户字段。其中,STA1的用户字段包含有STA1的站点标识,STA2的用户字段包含有STA2的站点标识,STA3的用户字段包含有STA3的站点标识的用户字段3。
请参阅图10B,在第二频域分片传输的信令字段中,包括该40MHz对应的资源单元分配子字段17和资源单元分配子字段18。也即是说,该40MHz被资源单元分配子字段17和资源单元分配子字段18指示。
资源单元分配子字段17指示该484-tone RU,且该484-tone RU对应的用户字段的数目为1个。资源单元分配子字段18指示该484-tone RU,且该484-tone RU对应的用户字段的数目为1个。可以看出,资源单元分配子字段17和资源单元分配子字段18指示的用户字段的数目之和为2个。
在第二频域分片传输的信令字段中还包括:STA4的用户字段和STA5的用户字段。其中,STA4的用户字段包含有STA4的站点标识,STA5的用户字段包含有STA5的站点标识。
这样停靠在第一频域分片的STA接收信令字段时,能够根据第一频域分片传输的信令字段中与该40MHz对应的资源单元分配子字段1和资源单元分配子字段2,确定该40MHz对应的RU为484-tone RU。具体的,STA 1能够根据STA 1的用户字段和与该40MHz对应的资源单元分配子字段1,确定STA 1的用户字段为第一频域分片传输的信令字段中,与 该资源单元分配子字段1指示的484-tone RU对应的第1个用户字段,从而确定484-tone RU为分配给自己的RU;STA 2能够根据STA 2的用户字段和该资源单元分配子字段1,确定STA 2的用户字段为第一频域分片传输的信令字段中,与该资源单元分配子字段1指示的484-tone RU对应的第2个用户字段,从而确定484-tone RU为分配给自己的RU;STA 3能够根据STA 3的用户字段3和与该40MHz对应的资源单元分配子字段2,确定STA 3的用户字段为第一频域分片传输的信令字段中,与该资源单元分配子字段2指示的484-tone RU对应的用户字段,从而确定484-tone RU为分配给自己的RU。
类似的,停靠在第二频域分片的STA接收信令字段时,能够根据第二频域分片传输的信令字段中与该40MHz对应的资源单元分配子字段17和资源单元分配子字段18,确定该40MHz对应的RU为484-tone RU。具体的,STA 4能够根据STA 4的用户字段和与该40MHz对应的资源单元分配子字段17,确定该STA 4的用户字段为第二频域分片传输的信令字段中,与该资源单元分配子字段17指示的484-tone RU对应的用户字段,从而确定484-tone RU为分配给自己的RU;STA 5能够根据STA 5的用户字段和与该40MHz对应的资源单元分配子字段18,确定该STA 5的用户字段为第二频域分片传输的信令字段中,与该资源单元分配子字段18指示的484-tone RU对应的用户字段,从而确定484-tone RU为分配给自己的RU。
若第一频域分片传输的信令字段中,一个用于MU-MIMO传输的RU仅被1个资源单元分配子字段指示,则该1个资源单元分配子字段指示的用户字段的数目为停靠在第一频域分片中,参与该RU的MU-MIMO传输的站点的数目,而不是参与该RU的MU-MIMO传输的STA的总数目。可参阅图8A对应的举例,图8A中的一个20MHz对应一个资源单元分配子字段,该资源单元分配子字段指示一个106-tone RU和5个26-tone RU。该106-tone RU对应的资源单元分配子字段为1个。
若第一频域分片传输的信令字段中,一个用于MU-MIMO传输的RU被2个或2个以上的资源单元分配子字段指示,则该2个或2个以上的资源单元分配子字段指示的用户字段的数目之和为停靠在第一频域分片中,参与该RU的MU-MIMO传输的站点的数目。可参阅图10A对对应的举例,第2个80MHz的频率最高的40MHz对应2个资源单元分配子字段,该2个资源单元分配子字段指示的用户字段的数目之和为停靠在第一频域分片中,参与该484-tone RU的MU-MIMO传输的站点的数目。可以理解,当MU-MIMO RU对应的频域资源,大于一个资源单元分配子字段的粒度时,该用于MU-MIMO传输的RU被该信令字段中的2个或2个以上资源单元分配子字段指示。
进一步的,每个频域分片的信令字段可在两个内容信道(Content Channel,CC)上传输。信令字段中的资源单元分配子字段分为第一部分和第二部分,第一部分的资源单元分配子字段在CC1传输,第二部分的资源单元分配子字段在CC2传输。相应的,与第一部分的资源单元分配子字段对应的用户字段在CC1传输,与第二部分的资源单元分配子字段对应的用户字段在CC2传输。
例如,信令字段中的奇数号的资源单元分配子字段在CC1传输,与奇数号的资源单元 分配子字段对应的用户字段也在CC1传输;信令字段中的偶数号的资源单元分配子字段在CC1传输,与偶数号的资源单元分配子字段对应的用户字段也在CC2传输。
这种情况下,每个CC传输的信令字段中,资源单元分配子字段指示的用于MU-MIMO传输的RU对应的用户字段的数目,为该RU向对应的资源单元分配子字段所在的CC贡献的用户字段的数目。
结合图10A对应的举例,资源单元分配子字段1可在CC1传输,资源单元分配子字段2在CC2传输。资源单元分配子字段1指示484-tone RU,且该CC1中与该484-tone RU对应的用户字段为STA1的用户字段和STA2的用户字段。资源单元分配子字段2指示484-tone RU,且该CC2中与该484-tone RU对应的用户字段为STA3的用户字段。
这样可以将信令字段中的开销分摊到两个CC传输,这样每个CC传输的资源单元分配子字段和用户字段的数目会减少,从而能够降低信令字段的开销。
在非OFDMA场景下,传输PPDU的信道带宽中用于MU-MIMO传输的MU-MIMO频域资源,被分配给多个STA进行MU-MIMO传输。
该MU-MIMO频域资源可以为传输PPDU的信道带宽,也即将该传输PPDU的信道带宽分配给多个STA进行MU-MIMO传输。当该信道带宽有部分频域资源被打孔时,该传输PPDU的信道带宽中,没有被打孔的频域资源则可作为MU-MIMO频域资源,被分配给多个STA进行MU-MIMO传输。
应理解,非OFDMA中,是将一段频域资源分配给多个STA传输数据,多个STA共用一段频域资源,没有将一段频域资源分为多个RU并分别分配给不同的STA。非OFDMA场景下,PPDU中没有资源单元分配子字段,不能通过资源单元分配子字段指示频域资源的分配。
在非OFDMA场景下,信令字段包括指示MU-MIMO的用户数(MU-MIMO users)的字段和用户字段。该指示MU-MIMO的用户数的字段指示信令字段中的停靠在第一频域分片且被分配MU-MIMO频域资源的站点的用户字段的数目。该指示MU-MIMO的用户数的字段例如可以类似于802.11ax中的指示MU-MIMO的用户数或EHT-SIG的符号数的字段。该指示MU-MIMO的用户数或EHT-SIG的符号数的字段设置在EHT-SIG之前,例如,可以为U-SIG中的字段。该字段可用于指示MU-MIMO的用户数,或者用于指示EHT-SIG的符号数。
第一频域分片传输的信令字段中的涉及该MU-MIMO频域字段的用户字段,仅包括停靠在第一频域分片的STA的用户字段。其中,指示MU-MIMO的用户数的字段指示的用户数为被分配该MU-MIMO频域资源,且停靠在第一频域分片的STA的数目,而不是被分配该MU-MIMO频域资源的总用户数。
例如,传输PPDU的信道带宽为320MHz,该320MHz没有被打孔,MU-MIMO频域资源可以为传输PPDU的信道带宽。该信道带宽320MHz被分配给5个STA,分别为STA1、STA2、STA3、STA4和STA5。其中STA1和STA3停靠在第一频域分片,STA2、STA4和STA5停靠在第二频域分片。
图11A和图11B为本申请实施例的信令字段指示频域资源分配的场景示意图。如图11A 和图11B所示,在第一频域分片传输的信令字段中,指示MU-MIMO传输的用户数的字段指示的用户数为2。第一频域分片传输的信令字段中还包括:STA1的用户字段,和STA3的用户字段。
第二频域分配传输的信令字段指示MU-MIMO传输的用户数的字段指示的用户数为3。第二频域分片传输的信令字段中还包括:STA2的用户字段,STA4的用户字段,和STA5的用户字段。
相关技术中,用户字段中的空间流分配指示字段是通过下述表3-1进行指示的。如表3-1所示,表3-1中的第1列,为参与MU-MIMO传输的用户(站点)数。例如,在OFDMA场景或非OFDMA场景下,该用户数,为用于MU-MIMO传输的MU-MIMO频域资源对应的用户数。应理解,这个用户数并不是指被分该MU-MIMO频域资源、且停靠在本频域分片的用户数,而是被分该MU-MIMO频域资源的总用户数。
表3-1
Figure PCTCN2021091501-appb-000005
Figure PCTCN2021091501-appb-000006
表3-1中的第2列为指示空间流的索引,指示空间流的字段或空间流分配指示字段可通过表3-1中的第2列的一个指示空间流的索引,指示被分配MU-MIMO频域资源的多个站点中的每个站点被分配的空间流。表3-1中的第2列的每个指示空间流的索引所在的行,按用户字段的排列顺序依次指示每个用户字段对应的站点被分配的空间流数。与该MU-MIMO频域资源对应的多个用户字段中的每一个用户字段,按照排列顺序,对应第3-10列中的其中一列。
例如,在OFDMA场景下,当一个用于MU-MIMO传输的RU对应的站点数(用户数)为2个时,若该RU对应的用户字段中的指示空间流的字段为0000,那么根据表3-1中,用户数为2时,0000所在的行,可以确定0000指示该RU对应的第1个用户字段对应的STA被分配1流,该RU对应的第2个用户字段对应的STA被分配1流。当用于MU-MIMO传输对应的站点数(用户数)为2个时,若指示空间流的字段为0001,那么根据表3-1中用户数为3时,0001所在的行,可以确定0001指示该RU对应的第1个用户字段对应的STA被分配2流,该RU对应的第2个用户字段对应的STA被分配1流,该RU对应的第3个用户字段对应的STA被分配1流。
类似的,非OFDMA场景下,用于MU-MIMO传输的MU-MIMO频域资源对应的用户字段中,也可以采用表3-1中的指示空间流的索引来指示被分配MU-MIMO频域资源的多个STA的空间流分配。
或者,用户字段中的空间流分配指示字段是通过下述表3-2中的索引进行指示的。如表3-2所示,表3-2中的第1列,为参与MU-MIMO传输的总用户(站点)数。例如,在OFDMA场景或非OFDMA场景下,该用户数,为用于MU-MIMO传输的MU-MIMO频域 资源对应的总用户数。应理解,这个用户数并不是指被分该MU-MIMO频域资源、且停靠在本频域分片的用户数,而是被分该MU-MIMO频域资源的总用户数。
表3-2
Figure PCTCN2021091501-appb-000007
Figure PCTCN2021091501-appb-000008
Figure PCTCN2021091501-appb-000009
Figure PCTCN2021091501-appb-000010
表3-2中的第2列为指示空间流的索引。指示空间流的字段或空间流分配指示字段可通过表3-2中的第2列的一个指示空间流的索引,指示被分配MU-MIMO了频域资源的多个站点中的每个站点被分配的空间流。表3-1中的第2列的每个指示空间流的索引所在的行,按用户字段的排列顺序依次指示每个用户字段对应的站点被分配的空间流数。与该MU-MIMO频域资源对应的多个用户字段中的每一个用户字段,对应第3-10列中的其中一列。
按照站点排序的顺序,第3-10列的前N列中的每一列对应一个被分配了该MU-MIMO频域资源的一个站点,N为被分配了该MU-MIMO频域资源的站点的总数目。
表3-1和表3-2中地第一行的第3-10列的“[]”内的数值,可理解为该列指示的空间流数对应的站点在站点排序中的序号。
这样的方案中,信令字段中的参与MU-MIMO传输的站点的用户字段是按照指示空间流分配的索引,依次指示各个站点被分配的空间流数进行排列的。例如,MU-MIMO频域资源被分配给STA a、STA b和STA c(用户数为3)。STA a被分配第2流,STA b被分配第1流,STA c被分配3流,根据表3-1可知,可用0101指示三个站点分别被分配3、2、1流的情况。那么在信令字段中,与该MU-MIMO频域资源对应的用户字段中,需要将STA c的用户字段排在第1位,将STA a的用户字段排在第2位,将STA b的用户字段排在第3位。
也即是说,空间流分配指示字段按照所述空间流分配对应的站点排序,指示被分配该MU-MIMO频域资源的多个站点中的每个站点所被分配的空间流。站点排序包括被分配该MU-MIMO频域资源的多个站点的排列顺序。该多个站点包括所述停靠在第一频域分片的站点和非停靠在第一频域分片的站点。
可以看出,这样的空间流分配的指示方式,用户字段的个数以及排列顺序需要与站点排序对应,这样才能准确地指示每个站点被分配的空间流。那么若采用上述第一可能的信令字段的设置方式,在本频域分片传输的信令字段中,省去了非停靠在本频域分片的STA的用户字段,这样在本频域分配传输的信令字段中,MU-MIMO频域资源对应的用户字段的数量会少于该MU-MIMO RU实际对应的总用户数。这样用户字段的数量无法与空间流分配指示字段按照站点排序指示的空间流分配情况匹配,表3-1中的指示空间流的索引无法准确地指示每个STA对应的空间流,信令字段中指示的空间流的分配情况无法与用户字段。
基于该信令字段中空间流分配指示字段指示的空间流的分配情况无法与用户字段的问题,本申请实施例还提供一种基于上述第一种可能的信令字段的设置方式对应的信令字段的内容结构,在信令字段中增加特殊用户字段的方案,能够解决因减少用户字段而导致空间流分配指示字段指示的空间流的分配情况无法与用户字段对应的问题。
信令字段包括停靠在所述第一频域分片且被分配MU-MIMO频域资源的站点的用户字段,指示该用户字段的数目的字段,和特殊用户字段。关于MU-MIMO频域资源、用户字段、以及指示该停靠在所述第一频域分片且被分配MU-MIMO频域资源的站点的用户字段的数目的字段可参上述相关描述。其中,用户字段中的空间流分配指示字段,采用上述表 3-1对应的指示方式进行指示。
该特殊用户字段指示被分配MU-MIMO频域资源的总站点数(用户数),和,指示该停靠在所述第一频域分片且被分配MU-MIMO频域资源的站点,在被分配给该MU-MIMO频域资源的多个站点的站点排序中的排序位置。
这样,STA能够根据该特殊用户字段,确定自身是在被分配给MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是在被分配给MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引以及表3-1,确定被分配的空间流。
请参阅表4,表4中示出了特殊用户字段的内容结构。该特殊用户字段包括该指示该特殊用户字段的标识的第一子字段、指示被分配MU-MIMO频域资源的总站点数的第二子字段、用于指示被分配MU-MIMO频域资源的多个站点中,停靠在本频域分片的站点,在多个站点中的排序位置的第三子字段。应理解,本申请中,对特殊字段所包含的子字段的命名并不限于第一子字段、第二子字段和第三子字段,在其他实施例中,这些子字段的命名也可以为其他命名。
表4
Figure PCTCN2021091501-appb-000011
第一子字段用于指示该字段为特殊用户字段,该标识的比特数例如可以为但不限于11比特。
第二子字段可为二进制字符串。二进制字符串的数值加1,为该总站点数。第二子字段的比特数可为MU-MIMO所能支持的最大站点数对应的二进制字符串的所占比特数。例如,802.11be中,MU-MIMO所能支持的最大站点数可能为8,则第二子字段的比特数可为3。第二子字段的比特数不限于3,例如也可以为4、5、6等正整数。当MU-MIMO所能支持的最大站点数为其他数值时,第二子字段的比特数可随之调整。例如,若MU-MIMO所能支持的最大站点数为N,则第二子字段的比特数可为log 2N。
第三子字段可为比特位图。比特位图的比特数与多个站点的数量相同。该多个站点中的每个站点依次与比特位图的一比特的数值对应。这样能够根据比特位图指示信令字段中的每个用户字段对应的站点,在多个站点中的排序位置。
该比特位图的每一位的数值,可指示本频域分片传输的信令字段中是否包含这一位对应的用户字段。例如,比特位图中的“1”指示在本频域分片传输的信令字段中包含这一位对应的用户字段,“0”指示在本频域分片传输的信令字段中不包含这一位对应的用户字段。该比特位图的比特数为MU-MIMO所能支持的最大站点数。例如,802.11be中,MU-MIMO所能支持的最大站点数可能为8,则该字段的比特数可为8。当MU-MIMO所能支持的最大站点数为其他数值时,第三子字段的比特数可随之调整。具体的,若MU-MIMO所能支 持的最大站点数为N,则第三子字段的比特数N。
当然,在其他实施例中,也可以是比特位图中的“0”指示在本频域分片传输的信令字段中包含这一位对应的用户字段,“1”指示在本频域分片传输的信令字段中不包含这一位对应的用户字段。
第三子字段的指示方式不限于通过比特位图进行指示,在其他实施例中,也可以采用其他指示方式进行指示。
在一种可选的实施例中,特殊用户字段设置在第一个用户字段之前。这样接收信令字段的STA能够先读取该特殊用户字段,确定MU-MIMO频域资源的总站点数(用户数),和被分配给该MU-MIMO频域资源的多个站点中,停靠在本频域分片的站点,在该多个站点中的排序位置,便于STA读取后续的用户字段。
基于上述特殊用户字段的内容结构,分别结合具体举例阐述OFDMA场景下特殊用户字段的设置方式,和非OFDMA场景下特殊用户字段的设置方式。
在OFDMA场景下,在一个例子中,请参阅图12A所示的信令字段指示RU分配的另一场景示意图,基于上述图8A的举例,第一频域分片传输的信令字段中,还包括特殊用户字段。以802.11be为例,该第一频域分片传输的信令字段中的特殊用户字段的内容结构如表5所示。该特殊用户字段中,指示被分配MU-MIMO频域资源的总站点数的字段的比特数为010,指示该用于MU-MIMO传输的RU对应的总用户数为3;指示排序位置的比特位图为11000000,指示第一频域分片传输的与该RU对应的用户字段,为该RU对应的第1个STA的用户字段,和第2个STA的用户字段,分别为用户字段a和用户字段b。
表5
Figure PCTCN2021091501-appb-000012
请参阅图12B,基于上述图8B的举例,第二频域分片传输的信令字段中,还包括特殊用户字段。以802.11be为例,该第二频域分片传输的信令字段中的特殊用户字段的内容结构如表6所示。该特殊用户字段中,指示被分配MU-MIMO频域资源的总站点数的字段为010,指示该用于MU-MIMO传输的RU对应的总用户数为3;指示排序位置的比特位图为00100000,指示第二频域分片传输的与该RU对应的用户字段,为该RU对应的第3个STA的用户字段,为用户字段h。该第二频域分片传输的信令字段中的特殊用户字段的内容结构表6所示。
表6
比特数(number of bits) 字段(subfield)
11 STA ID(特殊STA ID表示特殊用户字段)
3 010
16 00100000
在OFDMA场景下,在另一个例子中,请参阅图13A所示的信令字段指示RU分配的另一场景示意图,基于上述图9A的举例,第一频域分片传输的信令字段中,还包括特殊用户字段。以802.11be为例,该第一频域分片传输的信令字段中的特殊用户字段的内容结构如表7所示。该特殊用户字段中,指示被分配MU-MIMO频域资源的总站点数的字段为011,指示该用于MU-MIMO传输的RU对应的总用户数为4;指示排序位置的比特位图为10100000,指示第二频域分片传输的与该RU对应的用户字段,为该RU对应的第1个STA的用户字段和第3个STA的用户字段,具体为用户字段a和用户字段c。
表7
Figure PCTCN2021091501-appb-000013
请参阅图13B,基于上述图9B的举例,第二频域分片传输的信令字段中,还包括特殊用户字段。以802.11be为例,该第二频域分片传输的信令字段中的特殊用户字段的内容结构如表8所示。该特殊用户字段中,指示被分配MU-MIMO频域资源的总站点数的字段为011,指示该用于MU-MIMO传输的RU对应的总用户数为4;指示排序位置的比特位图为01010000,指示第二频域分片传输的与该RU对应的用户字段,为该RU对应的第2个STA的用户字段和第4个STA的用户字段,具体为用户字段b和用户字段d。
表8
比特数(number of bits) 字段(subfield)
11 STA ID(特殊STA ID表示特殊用户字段)
3 011
8 01010000
在OFDMA场景下,在又一个例子中,请参阅图14A所示的信令字段指示RU分配的另一场景示意图,基于上述图10A的举例,第一频域分片传输的信令字段中,还包括特殊用户字段。以802.11be为例,该第一频域分片传输的信令字段中的特殊用户字段的内容结构如表9所示。该特殊用户字段中,指示被分配MU-MIMO频域资源的总站点数的字段为100,指示该用于MU-MIMO传输的RU对应的总站点数为5;指示排序位置的比特位图为 10101000,指示第一频域分片传输的与该RU对应的用户字段,为该RU对应的第1个STA的用户字段、第3个STA的用户字段和第5个用户字段,分别为STA 1的用户字段、STA 3的用户字段和STA 5的用户字段。
表9
Figure PCTCN2021091501-appb-000014
请参阅图14B,基于上述图10B的举例,第二频域分片传输的信令字段中,还包括特殊用户字段。以802.11be为例,该第二频域分片传输的信令字段中的特殊用户字段的内容结构如表10所示。该特殊用户字段中,指示被分配MU-MIMO频域资源的总站点数的字段为100,指示该用于MU-MIMO传输的RU对应的总站点数为5;指示排序位置的比特位图为01010000,指示第一频域分片传输的与该RU对应的用户字段,为该RU对应的第2个STA的用户字段和第4个STA的用户字段,分别为STA 2的用户字段和STA4的用户字段。
表10
比特数(number of bits) 字段(subfield)
11 STA ID(特殊STA ID表示特殊用户字段)
3 100
8 01010000
图15A为本申请实施例的信令字段指示频域资源分配的场景示意图。在非OFDMA场景下,基于上述图11A的举例,如图15A所示,第一频域分片传输的信令字段中,还包括特殊用户字段。以802.11be为例,指示该第一频域分片传输的信令字段中的特殊用户字段的内容结构如表11所示。特殊用户字段中,指示被分配MU-MIMO频域资源的总站点数的字段为100,指示传输该PPDU的完整的频域带宽对应的总用户数为5;特殊用户字段中的指示排序位置的比特位图为10100000,指示第一频域分片传输的与该RU对应的用户字段,为该RU对应的第1个STA(STA1)的用户字段,和第3个STA(STA3)的用户字段。
表11
比特数(number of bits) 字段(subfield)
11 STA ID(特殊STA ID表示特殊用户字段)
3 100
8 10100000
图15B为本申请实施例的信令字段指示频域资源分配的场景示意图。基于上述图11B的举例,如图15B所示,第二频域分片传输的信令字段中,还包括特殊用户字段。以802.11be为例,指示该第一频域分片传输的信令字段中的特殊用户字段的内容结构如表12所示。该特殊用户字段中,指示被分配MU-MIMO频域资源的总站点数的字段的比特数为100,指示传输该PPDU的完整的频域带宽对应的总用户数为5;特殊用户字段中的指示排序位置的比特位图为01011000,指示第二频域分片传输的与该RU对应的用户字段,为该RU对应的第2个STA(STA2)的用户字段,第4个STA(STA4)的用户字段和第5个STA(STA5)对应的用户字段。
表12
比特数(number of bits) 字段(subfield)
11 STA ID(特殊STA ID表示特殊用户字段)
3 100
8 01011000
在一些实施例中,上述的特殊用户字段设置在用户字段之前的公共字段。可选的,特殊用户字段设置在用户字段之前的公共字段时,特殊用户字段可不包括STA ID。
本申请还提供一些在公共字段指示每个用户字段对应的站点在站点排序中的位置的方案,这样不必在每个用户字段指示该用户字段对应的站点在站点排序中的位置,能够节省信令字段的开销。这些实施例可用于非OFDMA传输的场景。
具体地,在非OFDMA场景下,第一频域分片传输的PPDU的信令字段包括公共字段和用户特定字段。传输PPDU的带宽包括MU-MIMO频域资源。该MU-MIMO频域资源被分配给多个站点。用户特定字段包括停靠被分配MU-MIMO频域资源,且停靠在第一频域分片的站点的用户字段。用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段。所述空间流分配指示字段按照多个站点的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序。关于站点排序的相关解释,请参考上述实施例,在此处不再重复描述。
如图6C所示的PPDU的结构示意图,在一些实施例中,公共字段包括MU-MIMO总用户数指示字段,指示MU-MIMO的用户数的字段以及指示起始位置的字段。
该MU-MIMO总用户数指示字段可理解为指示被分配了MU-MIMO频域资源的总站点数的字段。该MU-MIMO总用户数指示字段指示所述多个站点的数目。可选的,该MU-MIMO总用户数指示字段可以为3比特。
该指示MU-MIMO的用户数的字段指示第一频域分片传输的信令字段中,被分配MU-MIMO频域资源,且停靠在第一频域分片的站点对应的用户字段的数目。可以理解,该指示MU-MIMO的用户数的字段指示的用户字段的数目,为被分配了该MU-MIMO频域资源,且停靠在第一分片的站点的数目,而不是被分配了该MU-MIMO频域资源的总站点数。
该指示MU-MIMO的用户数的字段例如可以称作但不限于MU-MIMO用户数指示字段。该指示MU-MIMO的用户数的字段可以为3比特。例如指示MU-MIMO的用户数的字段可以为000-111中的一个数值,指示被分配了该MU-MIMO频域资源,且停靠在第一分片的站点的数目为第1-8中的一个。
该指示起始位置的字段指示多个站点中的停靠在第一频域分片的站点在该站点排序中的起始位置。或者说,指示起始位置的字段指示站点排序中,停靠在第一频域分片的第一个站点在该站点排序中的位置。该指示起始位置的字段可以为3比特。例如指示起始位置的字段可以为000-111中的一个数值,指示停靠在上述第一频域分片的第一个站点在该站点排序中的位置为第1-8中的一个位置。
这样,该MU-MIMO总用户数指示字段、指示MU-MIMO的用户数的字段和指示起始位置的字段,能够配合指示停靠在第一频域分片的站点在该站点排序中的位置。
例如,MU-MIMO频域资源被分配给3个站点(记为站点1,站点2和站点3),站点1的空间流数为4流,站点2的空间流数为1流,站点3的空间流数为1流。其中,站点1和站点2停靠在第一频域分片,站点3停靠在第二频域分片。
信令字段中的指示空间流数的字段(例如可称作空间流分配指示字段)可采用表3-2中的索引000011进行指示。表3-2中,与站点数为3对应的索引000011所在的行的第3列指示站点排序中的第1个站点的空间流数为4流;与站点数为3对应的索引000011所在的行的第4列指示站点排序中的第2个站点的空间流数为1流;与站点数为3对应的索引000011所在的行的第5列指示站点排序中的第3个站点的空间流数为1流。可以看出这样的指示方案中,站点排序可为站点1,站点2和站点3,或者站点排序可为站点1,站点3和站点2。可以理解,站点2和站点3所被分配的空间流数是相同的,站点排序中,站点2和站点3的位置是可以调换的。站点2和站点3的位置相互调换不影响指示站点2和站点3所被分配的空间流的数目。本实施例中,以站点排序可为站点1,站点2和站点3进行举例说明。这样,与站点数为3对应的索引000011所在的行的第3列对应站点排序中第1个站点(站点1),第3列指示的空间流数为该站点1分配的空间流数;第4列和第5列对应站点排序中的站点2和站点3,分别指示站点2和站点3的空间流数。停靠在第一频域分片的站点1和站点2在该站点排序中的起始位置为第1个站点。停靠在第二频域分片的站点3在该站点排序中的起始位置为第3个站点。
第一频域分片传输的PPDU的信令字段中,公共字段部分的MU-MIMO总用户数指示字段指示该MU-MIMO频域资源被分配给3个站点;指示MU-MIMO的用户数的字段例如可以为001,指示该MU-MIMO频域资源被分配给停靠在第一频域分片(本频域分片)的2个站点,指示起始位置的字段例如可以为000,指示被分配该MU-MIMO频域资源的站点的起始位置为站点排序中的第1个位置。
第二频域分配传输的PPDU的信令字段中,公共字段的MU-MIMO总用户数指示字段指示该MU-MIMO频域资源被分配给3个站点;指示MU-MIMO的用户数的字段例如可以为001,指示该MU-MIMO频域资源被分配给停靠在第二频域分片(本频域分片)的1个站点,指示起始位置的字段例如可以为010,指示被分配该MU-MIMO频域资源的站点的起始位置为站点排序中的第3个位置。
这样,用户字段仅包括停靠在本频域分片的站点的用户字段,接收PPDU的站点也能够根据公共字段中的MU-MIMO总用户数指示字段、指示MU-MIMO的用户数的字段和指示起始位置的子字段,确定包含有自身的站点标识的用户字段对应的站点在站点排序的位置,确定自身在被分配了MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是被分配了MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
如图6D所示的PPDU的结构示意图,在另一些实施例中,公共字段包括MU-MIMO总用户数指示字段和比特位图,所述MU-MIMO总用户数指示字段指示所述多个站点的数目,所述比特位图指示所述停靠在第一频域分片的站点在多个站点的站点排序中的起始位置。
该MU-MIMO总用户数指示字段可理解为指示被分配了MU-MIMO频域资源的总站点数的字段。
该比特位图指示停靠在所述第一频域分片的站点在该站点排序中的位置。空间流分配指示字段采用指示空间流分配的索引进行指示。该比特位图的第1-N位分别与站点排序中第1-N个站点一一对应。N为被分配了MU-MIMO频域资源的总站点数。该比特位图的比特数可以为通信标准规定的MU-MIMO所能支持的最大用户数,也可以为MU-MIMO总用户数。
例如,MU-MIMO频域资源被分配给3个站点(记为站点1,站点2和站点3),站点1的空间流数为4流,站点2的空间流数为1流,站点3的空间流数为1流。其中,站点1和站点2停靠在第一频域分片,站点3停靠在第二频域分片。根据图6C对应的实施例的相关描述,站点排序可为站点1、站点2和站点3。
若通信标准规定的MU-MIMO所能支持的最大用户数为8,比特位图的比特数可以为8。第一频域分片传输的PPDU的信令字段中,公共字段的MU-MIMO总用户数指示字段指示该MU-MIMO频域资源被分配给3个站点;比特位图例如可以为11000000,指示该MU-MIMO频域资源被分配给停靠在第一频域分片(本频域分片)的2个站点,且该2个站点为空间流指示字段指示空间流分配所依据的站点排序中的第1个站点(站点1)和第2个站点(站点2)。
第二频域分片传输的PPDU的信令字段中,公共字段的MU-MIMO总用户数指示字段指示该MU-MIMO频域资源被分配给3个站点;比特位图例如可以为00100000,指示该MU-MIMO频域资源被分配给停靠在第一频域分片(本频域分片)的1个站点,且该1个站点为空间流指示字段指示空间流分配所依据的站点排序中的第2个站点(站点3)。
这样的实施例中,用户字段仅包括停靠在本频域分片的站点的用户字段,接收PPDU的站点也能够根据公共字段中的MU-MIMO总用户数指示字段和比特地图,确定包含有自身的站点标识的用户字段对应的站点在站点排序的位置,确定自身在被分配了MU-MIMO频域资源的多个站点中的排序位置,也即确定自身在被分配了MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
可以看出,上述在公共字段指示用户字段对应的站点在站点排序中的位置的实施例, 相比于在每个用户字段中指示该用户字段对应的站点在站点排序中的位置,能够减少信令字段的开销。
可选的,上述的公共字段和用户特定字段可位于EHT-SIG。而在U-SIG中,包括EHT-SIG符号数指示字段(或EHT-SIG符号数指示子字段),该EHT-SIG符号数指示字段指示EHT-SIG的符号数。这样,接收PPDU的装置能够准确地获取EHT-SIG符号数,从而能够准确地接收并读取EHT-SIG。
可选的,图6C对应的实施例中的MU-MIMO总用户数指示字段,指示MU-MIMO的用户数的字段以及指示起始位置的字段可位于U-SIG,图6D对应的实施例中的MU-MIMO总用户数指示字段和比特位图也可以位于U-SIG。
可选的,U-SIG还可包括压缩模式指示字段,指示压缩模式。例如,可以通过指示一种压缩模式,指示资源分配为非OFDMA场景下的MU-MIMO模式;或者压缩模式指示字段可通过指示另一种压缩模式,指示公共字段包括指示EHT-SIG的用户字段对应的站点为被分配了MU-MIMO传输资源的多个站点中的哪一个站点的字段(例如指示起始位置的字段或比特位图)。
例如,基于图6C对应的实施例,压缩模式指示字段可通过指示EHT-SIG为某种压缩模式,指示信令字段中存在或不存在MU-MIMO总用户数指示字段,指示MU-MIMO的用户数的字段以及指示起始位置的字段中。又例如,基于图6D对应的实施例,压缩模式指示字段可通过指示EHT-SIG为某种压缩模式,指示信令字段中存在或不存在MU-MIMO总用户数指示字段和比特位图。
当然在其他实施例中,也可以通过其他字段指示信令字段中存在或不存在MU-MIMO总用户数指示字段,指示MU-MIMO的用户数的字段以及指示起始位置的字段,或者通过其他字段指示信令字段中是否存在MU-MIMO总用户数指示字段和比特位图。
应理解,本申请实施例中的站点排序,并不局限于表3-1或表3-2中的指示空间流分配的索引对应的站点排序,也可以为其他的示空间流分配的索引对应的站点排序。
本申请实施例中,指示空间流分配的索引,按照N个站点的站点排序指示N个站点中的每个站点被分配的空间流。信令字段的公共字段中,指示站点在站点排序中的字段(例如指示起始位置的字段、比特位图),指示停靠在本频域分配的每个站点为该指示空间流分配的索引所指示N个站点中的哪个站点,使得停靠在本频域分配的每个站点与指示空间流分配的索引指示N个站点中的一个站点对应,这样实现准确指示停靠在本频域分配的每个站点所被分配的空间流。
为了进一步的降低信令字段的开销。本申请实施例还提供一些与用户字段的排列顺序无关的空间流的指示方式。这样的方案中,信令字段中可不设置特殊用户字段,而是针对每个用户字段中,指示空间流的字段的功能进行改进,从而可以进一步的降低信令字段的开销。
用户字段包括指示站点标识的字段,空间流分配指示字段和编码与调制策略指示字段。在一些实施例中,空间流分配指示字段包括起始空间流子字段和空间流数子字段。请参阅 表13,表13中示出了本实施例中的用户字段的内容结构。
表13
Figure PCTCN2021091501-appb-000015
起始空间流子字段指示分配给该用户字段对应的STA的空间流的起始空间流,该起始空间流子字段可为二进制字符串。或者说,该起始空间流子字段指示该站点标识对应的站点被分配的第1个空间流。该二进制字符串的数值加1,为该起始空间流的排序号。该起始空间流子字段的比特数可为MU-MIMO所能支持的最大流数。例如,802.11be中,MU-MIMO所能支持的最大流数为16流,则该起始空间流子字段的比特数可为4。起始空间流子字段的比特数不限于4,例如也可以为5、6、7等正整数。当MU-MIMO所能支持的最大流数为其他数值时,起始空间流子字段的比特数可随之调整。例如,若MU-MIMO所能支持的最大流数为N,则起始空间流子字段的比特数可为log 2N。
空间流数子字段指示分配给该STA的空间流的数量。该空间流数子字段可为2进制字符串,二进制字符串的数值加1,为分配给该STA的空间流的数量。该空间流数子字段的比特数可为MU-MIMO中的单个用户所能被分配的最大流数对应的二进制字符串的所占比特数。例如,802.11be中,MU-MIMO中的单个用户所能被分配的最大流数可能为4,则该空间流数子字段的比特数可为2。该空间流数子字段的比特数不限于2,例如也可以为3、4、5等正整数。当MU-MIMO中的单个用户所能被分配的最大流数为其他数值时,空间流数子字段的比特数可随之调整。例如,若MU-MIMO中的单个用户所能被分配的最大流数为K,则空间流数子字段的比特数可为log 2K。
这样指示空间流分配的方式,与用户字段的数量及排列顺序无关。如此,结合上述第一种可能的信令字段的设置方式,能够实现在减少用户字段时,也能准确指示每个用户字段对应的STA所分配的空间流,也不需要增加特殊用户字段。非OFDMA场景下,和OFDMA场景下,用户字段都可以采用该指示方式指示空间流分配。
例如,在基于802.11be的情况下,在图8A和图8B的举例中,若分配给STA a的空间流为该106-tone RU对应的第1-3流,那么STA a对应的用户字段a的内容结构可如下表14所示。用户字段a中的起始空间流子字段可为0000,指示起始位置为该106-tone RU对应的第1流;空间流数子字段为10,指示分配给该STA的空间流的数量3流。那么STA a则可根据该用户字段a,确定STA a分得的空间流为该106-tone RU对应的第1-3流。
表14
Figure PCTCN2021091501-appb-000016
Figure PCTCN2021091501-appb-000017
类似地,若分配给STA b的空间流为该106-tone RU对应的第4-5流,那么STA b对应的用户字段b的内容结构可如下表15所示。用户字段b中的起始空间流子字段为0011,指示起始位置为该106-tone RU对应的第4流;空间流数子字段可为01,指示分配给该STA的空间流的数量2流。那么STA b则可根据该用户字段b,确定STA b分得的空间流为该106-tone RU对应的第4-5流。
表15
Figure PCTCN2021091501-appb-000018
又例如,在基于802.11be的情况下,在图9A的举例中,若分配给STA a的空间流为该242-tone RU对应的第1-3流,那么STA a对应的用户字段a的内容结构可如下表16所示。用户字段a中的起始空间流子字段可为0000,指示起始位置为该106-tone RU对应的第1流;空间流数子字段为10,指示分配给该STA a的空间流的数量3流。那么STA a则可根据该用户字段a,确定STA a分得的空间流为该242-tone RU对应的第1-3流。
表16
Figure PCTCN2021091501-appb-000019
类似地,若分配给STA c的空间流为该242-tone RU对应的第4-5流,那么STA c对应的用户字段c的内容结构可如下表15所示。用户字段c中的起始空间流子字段为0011,指示起始位置为该242-tone RU对应的第4流;空间流数子字段可为01,指示分配给该STA 的空间流的数量2流。那么STA c则可根据该用户字段c,确定STA c分得的空间流为该242-tone RU对应的第4-5流。
表17
Figure PCTCN2021091501-appb-000020
又例如,在基于802.11be的情况下,在图11A的举例中,若分配给STA 1的空间流为该320MHz对应的第1-2流,那么STA 1的用户字段的内容结构可如下表18所示。该用户字段中的起始空间流子字段可为0000,指示起始位置为该320MHz对应的第1流;空间流数子字段为01,指示分配给该STA3的空间流的数量2流。那么STA 1则可根据该用户字段,确定STA 1分得的空间流为该320MHz对应的第1-2流。
表18
Figure PCTCN2021091501-appb-000021
类似的,若分配给STA 3的空间流为该320MHz对应的第3流,那么STA 3的用户字段的内容结构可如下表19所示。用户字段3中的起始空间流子字段可为0010,指示起始位置为该320MHz对应的第3流;空间流数子字段为00,指示分配给该STA3的空间流的数量1流。那么STA 3则可根据该用户字段,确定STA 3分得的空间流为该320MHz对应的第3流。
表19
Figure PCTCN2021091501-appb-000022
Figure PCTCN2021091501-appb-000023
本实施例中,LTF的数目,取决于多个分片中的最大流数,而不是自身分片的用户字段中的最大流数。
在另一些实施例中,用户字段中,空间流分配指示字段包括起始空间流子字段和终止空间流子字段。起始空间流子字段指示该用户字段对应的站点被分配的第1个空间流,终止空间流子字段指示该用户字段对应的站点被分配的最后一个空间流。请参阅表20,表20中示出了本实施例中的用户字段的内容结构。本实施例中起始空间流子字段的比特数的确定方式可参考上述实施例中起始空间流子字段的确定方式,本实施例中终止空间流子字段的比特数,与起始空间流子字段的比特数相同。
表20
Figure PCTCN2021091501-appb-000024
该起始空间流子字段的设置方式与上述实施例中的起始空间流的子字段的设置方式一致,该实施例中不再赘述示起始空间流的子字段的设置方式。
指示终止空间流的字段为可为二进制字符串,该二进制字符串的数值加1,为该用户字段对应的站点被分配的最后一个空间流的排序号。该指示终止空间流的字段的子字段的比特数与起始空间流子字段的比特数相同。
这样指示空间流分配的方式,也与用户字段的数量及排列顺序无关。同样也能够实现在减少用户字段时,也能准确指示每个用户字段对应的STA所分配的空间流,也不需要增加特殊用户字段。非OFDMA场景下,和OFDMA场景下,用户字段也都可以采用这样的方式指示空间流分配。
例如,在基于802.11be的情况下,在图8A的举例中,若分配给STA b的空间流为该106-tone RU对应的第4-5流,那么STA b对应的用户字段b的内容结构可如下表21所示。用户字段b中的空间流分配指示字段为0011,指示起始位置为该106-tone RU对应的第4流;终止空间流子字段可为0100,指示分配给该STA的最后一个空间流的为第5流。那么STA b则可根据该用户字段b,确定STA b分得的空间流为该106-tone RU对应的第4-5流。
表21
Figure PCTCN2021091501-appb-000025
Figure PCTCN2021091501-appb-000026
又例如,在图9A的举例中,若分配给STA c的空间流为该242-tone RU对应的第4-5流,那么STA c对应的用户字段c的内容结构可如下表22所示。用户字段c中的空间流分配指示字段为0011,指示起始位置为该242-tone RU对应的第4流;终止空间流子字段可为0100,指示分配给该STA的最后一个空间流的为第5流。那么STA c则可根据该用户字段c,确定STA c分得的空间流为该242tone RU对应的第4-5流。
表22
Figure PCTCN2021091501-appb-000027
又例如,在图11A的举例中,若分配给STA 3的空间流为该320MHz对应的第3流,那么STA 3的用户字段的内容结构可如下表23所示。用户字段3中的空间流分配指示字段可为0010,指示起始位置为该320MHz对应的第3流;终止空间流子字段为0010,指示分配给该STA3的最后一个空间流的为该320MHz对应的第3流。那么STA 3则可根据该用户字段,确定STA 3分得的空间流为该320MHz对应的第3流。
表23
Figure PCTCN2021091501-appb-000028
下面介绍上述第二种可能的信令字段的设置方式。第一信令字段传输的信令字段指示的MU-MIMO的用户数,为用于MU-MIMO传输的MU-MIMO频域资源对应的用户字段的总数目。该信令字段中,包括空用户字段和被分配该MU-MIMO频域资源,且停靠在第一频域分片(本频域分片)的STA的用户字段。该空用户字段设置在被分配该MU-MIMO频域资源,且非停靠在第一频域分片的STA的用户字段对应位置。该空用户字段指示此处 的用户字段为空。该空用户字段例如可以为“2046”。
也即是说,本实施例中,用空用户字段,替换被分配该MU-MIMO频域资源,且非停靠在本频域分片的STA的用户字段。实际上在信令字段中,用户字段的数量,相对于该MU-MIMO频域资源对应的用户数,并没有减少。这样能使得在进行分片传输时,一个频域分片传输的信令字段中,停靠在本频域分片且被分配MU-MIMO频域资源的STA的用户字段在多个用户字段中的排列位置,能够与对应的频域资源准确地对应,而且也能够使得指示空间流数的字段能够准确地指示每个用户字段对应的STA所被分配的空间流。停靠在不同的频域分片、且被分配MU-MIMO频域资源的STA,能够根据所停靠在频域分片传输的信令字段中,包含有自身的站点标识的用户字段在多个用户字段中的排序位置,准确地确定被分配的MU-MIMO频域资源,并从分配给自己的MU-MIMO频域资源接收数据,从而能够实现停靠在至少两个频域分片中的STA在同一MU-MIMO频域资源上进行MU-MIMO传输。
OFDMA和非OFDMA场景下都可以采用上述第二种可能的信令字段的设置方式。下面分别结合举例,介绍OFDMA和非OFDMA场景下,上述第二种可能的信令字段的设置方式。
在OFDMA场景下,上述信道带宽中用于MU-MIMO传输的MU-MIMO频域资源,可理解为一个用于MU-MIMO传输的RU。
图16A为本申请实施例的信令字段指示RU分配的另一场景示意图。例如,请参阅图16A,在资源单元分配情况与图8A和图8B对应的举例相同的情况下,若采用上述第二种可能的信令字段的设置方式,那么第一频域分片传输的信令s字段中,与该20MHz对应的资源单元分配子字段指示该20MHz对应的RU为106-tone RU、26-tone RU、26-tone RU、26-tone RU、26-tone RU和26-tone RU,且指示106-tone RU对应的用户字段数为3。第一频域分片传输的信令字段中,包括与该106-tone RU对应的3个用户字段,分别为用户字段a、用户字段b和空用户字段。若STA c停靠在第一频域分片,那么STA c能够根据包含有STA c的站点标识的用户字段c,在该资源单元分配子字段对应的多个用户字段中的排序,确定该用户字段c对应的RU为低1个26-tone RU,从而确定分配给自己的RU为该26-tone RU。
请参阅图16B所示的信令字段指示RU分配的场景示意图,第二频域分片传输的信令字段中,与该20MHz对应的资源单元分配子字段指示该20MHz对应的RU为106-tone RU、26-tone RU、26-tone RU、26-tone RU、26-tone RU和26-tone RU,且指示106-tone RU对应的用户字段数为3。第二频域分片传输的信令字段中,包括与该106-tone RU对应的3个用户字段,分别为空用户字段、空用户字段和用户字段h。停靠在第二频域分片的STA h能够根据包含有STA h的站点标识的用户字段h为与该106-tone RU对应的第3个用户字段,确定自己被分配的RU为106-tone RU。
这样,虽然第二频域分片传输的信令字段中不包含与该106-tone RU对应的第1个用户字段a和第2个用户字段b,由于在相应的位置设置有空用户字段,并不会造成用户字段的排序与资源单元分配子字段指示的RU的分配顺序错乱。停靠在第一频域分片或第二频域分片的STA能够根据包含自身的站点标识的用户字段的位置,所对应的RU,确定自己被 分配的RU。
请参阅图17A和图17B所示的信令字段指示RU分配的场景示意图。在资源单元分配情况与图9A和图9B对应的举例相同的情况下,若采用上述第二种可能的信令字段的设置方式,那么第一频域分片传输的信令字段中,与320MHz的第1个80MHz的频率最低的20MHz对应的资源单元分配子字段1,指示242-tone RU,以及指示该242-tone RU对应的用户字段的数目为4。第一频域分片传输的信令字段中,依次包括用户字段a、空用户字段、用户字段c和空用户字段。第二频域分片传输的信令字段中,与320MHz的第1个80MHz的频率最低的20MHz对应的资源单元分配子字段17,指示242-tone RU,以及指示该242-tone RU对应的用户字段的数目为4。第二频域分片传输的信令字段中,包括与该242-tone RU对应的且依次设置的空用户字段、用户字段b、空用户字段和用户字段d。这样,通过设置空用户字段,避免用户字段的位置错乱,停靠在第一频域分片或第二频域分片的STA能够根据包含自身的站点标识的用户字段的位置,所对应的RU,确定自己被分配的RU。
请参阅图18A和图18B所示的信令字段指示RU分配的场景示意图。在资源单元分配情况与图10A和图10B对应的举例相同的情况下,若采用上述第二种可能的信令字段的设置方式,那么第一频域分片传输的信令字段中,与320MHz的第1个80MHz的频率最低的40MHz对应的资源单元分配子字段1和资源单元分配子字段2,指示242-tone RU,以及指示该242-tone RU对应的用户字段的数目为5。第一频域分片传输的信令字段中,依次包括STA1的用户字段、STA2的用户字段、STA3的用户字段、空用户字段和空用户字段。第二频域分片传输的信令字段中,与320MHz的第1个80MHz的频率最低的40MHz对应的资源单元分配子字段1和资源单元分配子字段2,指示242-tone RU,以及指示该242-tone RU对应的用户字段的数目为5。第二频域分片传输的信令字段中,包括与该484-tone RU对应的且依次设置的空用户字段、空用户字段、空用户字段、STA4的用户字段和STA5的用户字段。这样,通过设置空用户字段,避免用户字段的位置错乱,停靠在第一频域分片或第二频域分片的STA能够根据包含自身的站点标识的用户字段的位置,所对应的RU,确定自己被分配的RU。
又例如,请参阅图19A和图19B所示的信令字段指示RU分配的场景示意图。在资源单元分配情况与图11A和图11B对应的举例相同的情况下,采用上述第二种可能的信令字段的设置方式。如图19A所示,第一频域分片传输的信令字段,指示该320MHz被分配给5个站点。该信令字段中包括5个用户字段,依次为包含有STA1的站点标识的用户字段、空用户字段、包含有STA3的站点标识的用户字段、空用户字段和空用户字段。
如图19B所示,第二频域分片传输的信令字段,指示该320MHz被分配给5个站点。该信令字段中包括5个用户字段,依次为空用户字段、STA2的用户字段、空用户字段、STA4的用户字段和STA5的用户字段。
这样,虽然第一频域分片传输的信令字段中不包含STA2、4、5的用户字段,但是相 应的位置有空用户字段,虽然第二频域分片传输的信令字段中不包含STA 1、3的用户字段,但是相应的位置也设置有空用户字段。那么这样的用户字段的设置方式,并不会造成用户字段的排序顺序错乱,停靠在每个频域分片的STA能够根据包含有自己的站点标识的用户字段,确定自己的频域资源分配情况,并从分配给自己的MU-MIMO频域资源接收数据,从而能够实现停靠在至少两个频域分片中的STA在同一MU-MIMO频域资源上进行MU-MIMO传输。
本申请实施例还提供一种资源单元分配子字段的指示RU的方案。该方案中,小于242子载波的RU(例如106-tone RU)不支持MU-MIMO传输,也即小于242子载波的RU,仅对应一个用户,这样可以减少表2中,用于指示106-tone RU对应不同的用户数的条目。例如,表2中的00100y2y1y0对应的条目,可以由8个,减少至1个。类似的,表2中的其他相关条目也可以进行类似的删减。
本申请的资源单元分配子字段的指示RU的方案可按照下表24进行指示。
表24
Figure PCTCN2021091501-appb-000029
Figure PCTCN2021091501-appb-000030
可以看出,这样的指示方式,相比于表2会多出较多的剩余条目。这样资源单元分配子字段可利用剩余条目指示更多的资源单元分配情况。下面提供一些剩余条目指示RU分配的情况。
在一些实施例中,剩余条目中,可包括一部分条目用于指示大于等于242子载波的RU、多资源单元(multiple RU,Multi-RU)对应的频域资源在信道带宽中的绝对位置。这样,资源单元分配子字段可指示大于等于242子载波的RU对应的频域资源在信道带宽中的绝对位置。
例如,在信道带宽为320MHz的情况下,242-tone RU对应的频域资源的绝对位置有16种可能的情况,分别为320MHz中的第1-16个20MHz。资源单元分配子字段可利用剩余条目中的16个条目,指示242-tone RU对应的频域资源在信道带宽中的绝对位置。
242+484-tone RU对应的频域资源的绝对位置有4种可能的情况,分别为320MHz中的第1-4个80MHz。资源单元分配子字段可利用剩余条目中的4个条目,指示242+484-tone RU对应的频域资源在信道带宽中的绝对位置。
484+996-tone RU对应的频域资源在信道带宽中的绝对位置有8种可能的情况,分别为320MHz中的第1个160MHz和第2个160MHz。资源单元分配子字段可利用剩余条目中的2个条目,指示484+996-tone RU对应的频域资源在信道带宽中的绝对位置。
应理解,其他的大于242子载波的RU或Multi-RU,资源单元分配子字段可利用剩余条目指示频域资源在信道带宽中的绝对位置,此处不再一一举例。
在另一些实施例中,剩余条目中,可包括一部分条目用于指示大于等于242子载波的RU、Multi-RU对应的频域资源在信道带宽中的绝对位置以及该RU或MRU对应的用户字段的数目。这样,资源单元分配子字段可指示大于等于242子载波的RU对应的频域资源在信道带宽中的绝对位置和对应的MU-MIMO用户数目。
例如,在信道带宽为320MHz的情况下,242-tone RU对应的频域资源的绝对位置有16种可能的情况,分别为320MHz中的第1-16个20MHz。242-tone RU对应的频域资源的绝对位置为320MHz中的第1-16个20MHz中的任一个20MHz时,对应的用户数可为1-8中的任一个数值。也即是说,42-tone RU对应的频域资源的绝对位置为320MHz中的第1-16个20MHz中的每一个20MHz时,对应的用户数目的情况有8中情况。资源单元分配子字段可利用剩余条目中的16*8=128个条目,指示242-tone RU对应的频域资源在信道带宽中的绝对位置以及242-tone RU对应的MU-MIMO用户数目。
242+484-tone RU对应的频域资源的绝对位置有4种可能的情况,分别为320MHz中的第1-4个80MHz。242+484-tone RU对应的频域资源的绝对位置为320MHz中的第1-4个80MHz中的任一个80MHz时,对应的用户数目可为1-8中的任一个数值。也即是说,242+484-tone RU对应的频域资源的绝对位置为320MHz中的第1-4个80MHz中的每一个80MHz时,对应的用户数的情况有8中情况。资源单元分配子字段可利用剩余条目中的4*8=32个条目,指示242+484-tone RU对应的频域资源在信道带宽中的绝对位置以及242+484-tone RU对应的MU-MIMO用户数目。
484+996-tone RU对应的频域资源在信道带宽中的绝对位置有8种可能的情况,分别为 320MHz中的第1个160MHz和第2个160MHz。484+996-tone RU对应的频域资源在信道带宽中的绝对位置为320MHz中的第1个160MHz或第2个160MHz时,对应的用户数目有8中情况。资源单元分配子字段可利用剩余条目中的2*8=16个条目,指示484+996-tone RU对应的频域资源在信道带宽中的绝对位置以及484+996-tone RU对应的MU-MIMO用户数目。
应理解,其他的大于242子载波的RU或Multi-RU,资源单元分配子字段可利用剩余条目指示频域资源在信道带宽中的绝对位置,此处不再一一举例。
为了进一步的节省OFDMA场景下,PPDU的信令字段的开销。本申请实施例还提供一种对信令字段中的资源单元分配子字段进行简化的方案,以减少信令字段中的资源单元分配子字段的数量,从而节省信令字段的开销。该方案中,信令字段的资源单元分配子字段,仅包含指示停靠在本频域分片的STA的RU分配的资源单元分配子字段,而不包含指示非停靠在本频域分片的STA的RU分配的资源单元分配子字段。信令字段还包括资源单元分配子字段指示字段,该资源单元分配子字段指示字段用于指示,针对传输PPDU的信道带宽的每个粒度的频域资源,信令字段中是否存在对应的资源单元分配子字段。也可以说,该资源单元分配子字段指示字段用于指示,信令字段中的每个资源单元分配子字段对应的频域资源。每个粒度的频域资源是指,一个资源单元分配子字段对应的频域资源。
应理解,本实施例中,对信令字段中的资源单元分配子字段进行简化的方案,可以单独实施,也可以与上述任一信令字段的设置方式结合实施。
具体的,本实施例中的资源单元分配子字段指示字段通过比特位图进行指示。该比特位图的长度为传输PPDU的信道带宽相对于一个粒度的频域资源之间的倍数。每个比特位图对应一个粒度的频域资源。该比特位图中,每一位的值指示,在信令字段中,是否包含指示这一位对应的频域资源的资源单元分配子字段。
例如,传输PPDU的信道带宽为320MHz,每个资源单元分配子字段的粒度为20MHz。那么该信道带宽的资源分配情况,按照频率由低至高的顺序,可依次由16个资源单元分配子字段(资源单元分配子字段1-16)指示。其中,资源单元分配子字段1、3、4、7、9指示的频域资源分配给停靠在第一频域分片的STA。资源单元分配子字1段指示的频域资源分配给用户字段1对应的STA1、用户字段2对应的STA2和用户字段3对应的STA3,资源单元分配子字3指示的频域资源分配给用户字段4对应的STA4和用户字段5对应的STA5,资源单元分配子字4指示的频域资源分配给用户字段6对应的STA6,资源单元分配子字7指示的频域资源分配给用户字段7对应的STA7,资源单元分配子字9指示的频域资源分配给用户字段8对应的STA9。
那么第一频域分片传输的信令字段中,包含的资源单元分配子字段指示字段为16位的比特位图。图20A为本申请实施例的资源单元分配子字段指示字段的结构示意图。如图20A所示,若用“1”指示一个粒度的频域资源,存在对应的资源单元分配子字段,那么该比特位图可为“1011001010000000”。如图20B所示,图20B为本申请实施例的信令字段的结构示意图,第一频域分片传输的信令字段中的资源单元分配子字段,也只包含第1、3、4、7、9个20MHz对应的资源单元分配子字段1、3、4、7、9,而不包含第2、5、6、8、10、 11、12、13、14、15、16个20MHz对应的资源单元分配子字段。而且,第一频域分片传输的信令字段中的用户字段,也只包含第1、3、4、7、9个20MHz的频域资源对应的用户字段1-8。
进一步的,信令字段中的资源单元分配子字段,可分为两部分,分别在两个CC(CC1和CC2)进行传输。在一种可能的实现方式中,第一频域分片传输的信令字段中的资源单元分配子字段,仅包含指示停靠在本频域分配的STA的分配的多个资源单元分配子字段,可对这多个资源单元分配子字段按照频率由低至高的顺序进行排序,将这多个资源单元分配子字段中的每两个相邻的资源单元分配子字段分别设置在CC1和CC2,或者序号为奇数的资源单元分配子字段在CC1传输,序号为偶数的资源单元分配子字段在CC2传输。同样的,每个CC传输的用户字段,也只包含与该CC传输的资源单元分配子字段对应的用户字段。
例如,如图20C所示,图20C为本申请实施例的信令字段的另一结构示意图。基于上述图20A的举例,信令字段中的5个资源单元分配子字段,分别为1、3、4、7、9个20MHz对应的资源单元分配子字段1、3、4、7、9。
CC1传输的资源单元分配子字段指示字段为1001000010000000,5个资源单元分配子字段中的第1、3、5个资源单元分配子字段(第1、4、9个20MHz对应的资源单元分配子字段1、4、9)在CC1中传输。资源单元分配子字段1对应的用户字段1-3,资源单元分配子字段4对应的用户字段6、资源单元分配子字段9对应的用户字段8在CC1传输。
CC2传输的资源单元分配子字段指示字段为0010001000000000。5个资源单元分配子字段中的第2和4个资源单元分配子字段(第3和7个20MHz对应的资源单元分配子字段3和7)在CC2中传输。资源单元分配子字段2对应的用户字段4和5、资源单元分配子字段4对应的用户字段7在CC2传输。
这样减少每个CC上的资源单元分配子字段的数目和用户字段的数目,从而能够节省信令字段的开销。
进一步的,可调整分配在每个CC上的资源单元分配子字段,使得两个CC上的资源单元分配子字段的数目的差值的绝对值最小;或根据通过调整分配在每个CC上的资源单元分配子字段,使得两个CC上的用户字段的数目的差值的绝对值最小。
例如,请参阅图20D,图20D为本申请实施例的信令字段的又一结构示意图。基于图20C的举例,可将资源单元分配子字段9调整为在CC2传输。用户字段8也在CC2传输。这种情况下,CC1的资源单元分配子字段指示字段为1001000000000000,CC2的资源单元分配子字段为0010001010000000。这样,两个CC的资源单元分配子字段的数目的差值的绝对值为1,两个CC的用户字段的数目的差值为0。从而能够使得两个CC传输的资源分配子字段的数目和用户字段的数目更均衡。
本申请实施例还提供一种通过简化指示RU的分配情况,实现简化信令字段中的用户字段的方案。该方案中,Multi-RU或RU对应的频域资源属于多个频域分片(跨分片的Multi-RU或RU),若未分配给停靠在其中一个频域分片的STA,那么该频域分片传输的信令字段中,指示该Multi-RU对应的频域资源的RU分配的资源单元分配子字段,可不按照 实际情况指示该频域资源的RU。
例如,若第一频域分片的最高频率的20MHz和第二频域分片的最低频率的40MHz对应242+484-tone RU,该242+484-tone RU仅分配给停靠在第二频域分片的站点,而没有分配给停靠在第一频域分片的站点。那么第一频域分片中传输的,与第一频域分片的最高频率的20MHz对应的资源单元分配子字段,可不按照实际情况指示该242+484-tone RU,以及该242+484-tone RU对应的用户字段的数目,而是可以进行简化指示。例如第一频域分片的最高频率的20MHz对应的资源单元分配子字段可以简化指示该20MHz对应242-tone RU,并指示该242--tone RU对应的用户字段的数目为0。这样可以省去非分配给停靠在本频域分片的Multi-RU对应的用户字段。
又例如,若第一频域分片的80MHz和第二频域分片的80MHz对应2*996-tone RU,该2*996-tone RU仅分配给停靠在第二频域分片的站点,而没有分配给停靠在第一频域分片的站点。那么第一频域分片中传输的,与第一频域分片的80MHz对应的资源单元分配子字段,可不按照实际情况指示该2*996-tone RU,以及该2*996-tone RU对应的用户字段的数目,而是可以简化指示。例如第一频域分片中传输的,与第一频域分片的80MHz对应的资源单元分配子字段可指示该80MHz对应996-tone RU,并指示该996-tone RU对应的用户字段的数目为0。这样可以省去非分配给停靠在本频域分片的RU对应的用户字段。
图21为本申请实施例的资源单元分配子字段指示字段的另一结构示意图。如图21所示,该资源单元分配子字段指示字段,也可分为两部分,分别在CC1和CC2上传输。这样能够缩短每个CC上传输的资源单元分配子字段指示字段的长度,从而能够节省信令字段的开销。每个CC传输的资源单元分配子字段指示字段仅用于指示本CC传输的资源单元分配子字段对应的频域资源。
在一种可能的实现方式中,CC1传输的资源单元分配子字段指示字段的一部分指示,传输PPDU的信道带宽中,各个序号为奇数的一个粒度的频域资源对应的资源单元分配子字段是否包含在信令字段中,CC2传输的资源单元分配子字段指示字段的另一部分指示,各个序号为偶数的单位粒度的频域资源对应的资源单元分配子字段是否包含在信令字段中。一个粒度的频域资源是指,一个资源单元分配子字段指示一个粒度的频域资源所属的RU。
以传输PPDU的信道带宽为320MHz,每个资源单元分配子字段的粒度为20MHz为例,在CC1传输资源单元分配子字段指示字段的一部分,指示第1、3、5、7、9、11、15个20MHz对应的资源单元分配子字段是否包含在信令字段中。在CC2传输资源单元分配子字段指示字段的一部分,指示第2、4、6、8、10、12、14、16个20MHz对应的资源单元分配子字段是否包含在信令字段中。结合上述图20A的举例,CC1传输资源单元分配子字段指示字段的一部分,CC2传输资源单元分配子字段指示字段的另一部分。那么在CC1传输资源单元分配子字段指示字段的一部分,为11011000,指示第1、3、7、9个20MHz对应的资源单元分配子字段包含在信令字段中。在CC2传输资源单元分配子字段指示字段的一部分,为01000000,指示第4个20MHz对应的资源单元分配子字段包含在信令字段中。
在另一个可能的实现方式中,CC1传输的资源单元分配子字段指示字段的一部分指示, 传输PPDU的信道带宽中,按照频率由低至高的顺序,前1/2的频域资源对应的各个资源单元分配子字段是否包含在信令字段中;CC2传输的资源单元分配子字段指示字段的一部分指示,后1/2的频域资源对应的各个资源单元分配子字段是否包含在信令字段中。
以传输PPDU的信道带宽为320MHz,每个资源单元分配子字段的单位粒度为20MHz为例,在CC1传输资源单元分配子字段指示字段的一部分,指示第1-8个20MHz对应的资源单元分配子字段是否包含在信令字段中;在CC2传输资源单元分配子字段指示字段的一部分,指示第9-16个20MHz对应的资源单元分配子字段是否包含在信令字段中。结合上述15A的举例,在CC1传输资源单元分配子字段指示字段的一部分,为10110010,指示第1、3、4、7个20MHz对应的资源单元分配子字段包含在信令字段中;在CC2传输资源单元分配子字段指示字段的一部分,为10000000,指示第9个20MHz对应的资源单元分配子字段包含在信令字段中。
可以看出,这样相比较于在一个CC传输完整的资源单元分配子字段指示字段,本申请的方案,能够使得每个CC用于传输的资源单元分配子字段指示字段的开销减半,从而能够节省信令字段的开销。
下面提供几种关于资源单元分配子字段指示字段的可选实施例,以下几种可选实施例可独立实施,也可以在合理的情况下内,与上述的实施例结合实施。
在一个可选的实施例中,资源单元分配子字段指示字段,可不指示被打孔的频域资源对应的资源单元分配子字段。这样缩短资源单元分配子字段指示字段的长度。信令字段中指示前导码打孔的字段。图22为本申请实施例的资源单元分配子字段指示字段的又一结构示意图。如图22所示,传输PPDU的信道带宽320MHz中的第3个80MHz被打孔,那么资源单元分配子字段指示字段不指示这80MHz对应的资源单元分配子字段。这样资源单元分配子字段指示字段可仅为12比特,指示320MHz中的第1-8个20MHz对应的资源单元分配子字段,和第13-16个20MHz对应的资源单元分配子字段。
在另一个可选的实施例中,对于大于242子载波的multi-RU,仅用一个资源单元分配子字段进行指示,这样能够节省资源单元分配子字段的数量。
图23为本申请实施例的资源单元分配的场景示意图。例如,如图23所示,第1个80MHz中,第一个80MHz和第2个80MHz的最低频率的40MHz对应的RU为484+996-tone RU。传输PPDU的320MHz中的其他的频域资源均未分配给停靠在第一频域分片的STA。那么第一频域分片传输的信令字段中,资源单元分配子字段指示字段,可为1000000000000000。
进一步的,当资源单元分配子字段指示字段在两个CC上传输时,也可以由两个资源单元分配子字段指示一个multi-RU,这两个资源单元分配子字段分别在两个CC传输。这样可以使得两个CC的负载更均衡。基于上述举例,在第一频域分片传输的信令字段中,资源单元分配子字段指示字段,可为1100000000000000,其中,该资源单元分配子字段指示字段的奇数位在CC1传输,偶数位在CC2传输。该资源单元分配子字段指示字段的奇数位对应的资源单元分配子字段,以及与该资源单元分配子字段对应的用户字段在CC1传输,该资源单元分配子字段指示字段的偶数位对应的资源单元分配子字段,以及与该资源单元分配子字段对应的用户字段在CC2传输。这样能够将一个multi-RU对应的多个用户字段分 为两部分在CC1和CC2上传输,使得两个CC的负载更均衡。
在又一个可选的实施例中,每个频域分片传输的信令字段,包含的资源单元分配子字段指示字段,仅指示本频域分片对应的资源单元分配子字段。例如,若每个频域分片为80MHz,则资源单元分配子字段指示字段仅包括4位,仅指示这80MHz对应的4个资源单元分配子字段。这样能够节省资源单元分配子字段指示字段的长度,从而能够节省信令字段的开销。
应理解,这样的方案中,并不限于仅将本频域分片的频域资源分配给停靠在本频域分片的STA。资源单元分配子字段可通过指示multi-RU进行跨分片的资源分配指示。
例如,基于图23所示的举例,第1个80MHz的最低频率的20MHz分配给停靠在第一频域分片的STA1,第1个80MHz的最高频率的40MHz和第2个80MHz分配给停靠在第一频域分片的STA2。那么该频域分片传输的资源单元分配子字段指示字段可为1010,其中第1位的1,对应第1个80MHz的最低频率的20MHz,该20MHz对应的资源单元分配子字段,指示该20MHz对应的RU分配给停靠在STA1;第3位的1,按照频率由低至高的顺序,对应1个80MHz的低3个20MHz,该20MHz对应的资源单元分配子字段,指示该20MHz属于484+996-tone RU,该484+996-tone RU分配给ST2。这样就实现了将其他频域分片的频域资源分配给停靠在本频域分片的STA。
在非OFDMA场景下,信令字段中不包含资源单元分配子字段,那么信令字段可以不设置资源单元分配子字段指示字段。或者,信令字段中包含资源单元分配子字段指示字段,资源单元分配子字段指示字段指示传输PPDU的信道带宽被打孔。例如,当该资源单元分配子字段指示字段为比特位图时,可用比特位图的每一位指示一个粒度单位的频域资源的被打孔。
上述本申请提供的实施例中,分别从接入点、站点的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,接入点、站点可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参阅图24,图24为本申请实施例提供的一种数据传输装置的结构示意图。本申请实施例还提供一种数据传输装置2400,包括:
处理单元2401,用于生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;
所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点中的停靠在所述第一频域分片的站点的用户字段;
所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所 述RU对应的用户字段的数目;
发送单元2402,用于在所述第一频域分片发送所述信令字段。
该数据传输装置2400例如可以是通信装置或接入点。或者该数据传输装置部署在通信装置或接入点。该数据传输装置2400的处理单元2401可为处理器,该数据传输装置2400的发送单元2402可以为收发器。该数据传输装置例如可用于OFDMA场景。
这样,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的STA中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,PPDU的信令字段中所指示的该RU对应的用户字段的数目,为参与MU-MIMO传输且停靠在本频域分片的站点的数目,而不是参与MU-MIMO传输的总的站点数。这样保证各个频域分片传输的信令字段都能够准确地指示用于MU-MIMO传输的RU对应的用户字段。
在某些实施例中,所述用户字段包括指示站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。这样指示空间流分配的方式,与用户字段的数量及排列顺序无关。能够实现在减少用户字段的同时时,准确指示每个用户字段对应的STA所分配的空间流。
在某些实施例中,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。这样,站点能够根据该特殊用户字段,确定自身是在被分配给该用于MU-MIMO传输的RU的多个站点中的排序位置,也即确定自身是在被分配给该用于MU-MIMO传输的RU的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
在某些实施例中,所述公共字段包括一个或多个资源单元分配子字段,其中任意一个资源单元分配字段指示的至少一个RU被分配给停靠在所述第一频域分片的站点。如此,信令字段的资源单元分配子字段,仅包含指示停靠在第一频域分片的站点的RU分配的资源单元分配子字段,而不包含指示非停靠在第一频域分片的站点的RU分配的资源单元分配子字段,这样能够减少信令字段中的资源单元分配子字段的数量,从而节省信令字段的开销。
请参阅图25,图25为本申请实施例提供的一种数据传输装置的结构示意图。本申请实施例的数据传输装置2500包括:
处理单元2501,用于生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配 多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括所述多个站点中的停靠在所述第一频域分片的站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点中的停靠在所述第一频域分片的站点的用户字段的数目;
发送单元2502,用于在所述第一频域分片发送所述信令字段。
该数据传输装置2500例如可以是通信装置或接入点。或者该数据传输装置2500部署在通信装置或接入点。该数据传输装置2500的处理单元2501可为处理器,该数据传输装置2500的发送单元2502可以为收发器。该数据传输装置例如可用于非OFDMA场景。
这样,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的STA中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,PPDU的信令字段中所指示的MU-MIMO用户数,为参与MU-MIMO传输且停靠在本频域分片的站点的数目,而不是参与MU-MIMO传输的总的站点数。这样保证各个频域分片传输的信令字段都能够准确地指示用于MU-MIMO传输的MU-MIMO频域资源对应的用户字段。
在某些实施例中,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。这样指示空间流分配的方式,与用户字段的数量及排列顺序无关。能够实现在减少用户字段的同时时,准确指示每个用户字段对应的STA所分配的空间流。
在某些实施例中,所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。这样,站点能够根据该特殊用户字段,确定自身是在被分配给MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是在被分配给MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
在某些实施例中,所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括所述用户字段,所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
所述公共字段包括所述指示MU-MIMO的用户数的字段、MU-MIMO总用户数指示字段以及指示起始位置的字段,所述MU-MIMO总用户数指示字段指示所述多个站点的数目,所述指示起始位置的字段指示所述停靠在上述第一频域分片的站点在所述站点排序中的起始位置。
这样,用户字段仅包括停靠在本频域分片的站点的用户字段,接收PPDU的站点也能 够根据公共字段中的MU-MIMO总用户数指示字段、指示MU-MIMO的用户数的字段和指示起始位置的子字段,确定包含有自身的站点标识的用户字段对应的站点在站点排序的位置,确定自身在被分配了MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是被分配了MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。而且,在公共字段指示用户字段对应的站点在站点排序中的位置,相比于在每个用户字段中指示该用户字段对应的站点在站点排序中的位置,能够减少信令字段的开销。
请参阅图26,图26为本申请实施例提供的一种数据传输装置的结构示意图。本申请实施例的数据传输装置2600包括:
处理单元2601,用于生成PPDU的信令字段,传输所述PPDU的信道带宽包括至少两个频域分片,所述至少两个频域分片包括第一频域分片,所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括公共字段和用户特定字段,所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点的用户字段;所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;
发送单元2602,用于在所述第一频域分片发送所述信令字段。
该数据传输装置2600例如可以是通信装置或接入点,或者该数据传输装置2600部署在通信装置或接入点。该数据传输装置2600的处理单元2601可为处理器,该数据传输装置2600的发送单元2602可以为收发器。该数据传输装置例如可用于OFDMA场景。
这样,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的站点中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,在非停靠在本频域分片的STA的用户字段的位置,填充空用户字段。这样参与MU-MIMO传输且停靠在本频域分片的STA的用户字段,在接收该PPDU的站点对应的所有的用户字段中的排序位置并没有改变,从而能够使得各个频域分片传输的信令字段,都能够准确地指示用于MU-MIMO传输的RU对应的用户字段。
请参阅图27,图27为本申请实施例提供的一种数据传输装置的结构示意图。本申请实施例的数据传输装置2700包括:
处理单元2701,用于生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括所述多个站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点的用户字段的数目;所述多RU对 应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;
发送单元2702,用于在所述第一频域分片发送所述信令字段。
该数据传输装置2700例如可以是通信装置或接入点。或者该数据传输装置2700部署在通信装置或接入点。该数据传输装置例如可用于OFDMA场景。该数据传输装置2700的处理单元2702可为处理器,该数据传输装置2700的接收单元2701可以为收发器。该方法例如可用于非OFDMA场景。
本申请的技术方案中,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的站点中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,在非停靠在本频域分片的STA的用户字段的位置,填充空用户字段。这样参与MU-MIMO传输且停靠在本频域分片的STA的用户字段,在接收该PPDU的站点对应的所有的用户字段中的排序位置并没有改变,从而能够使得各个频域分片传输的信令字段,都能够准确地指示用于MU-MIMO传输的频域资源对应的用户字段。
请参阅图28,图28为本申请实施例提供的一种数据传输装置的结构示意图。本申请实施例的数据传输装置2800包括:
接收单元2801,用于在第一频域分片接收物理层协议数据单元PPDU的信令字段,其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括所述第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点中的停靠在所述第一频域分片的站点的用户字段;所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;
处理单元2802,用于从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。
该数据传输装置2800例如可以为通信装置或站点,或者该数据传输装置2800部署在通信装置或站点。该数据传输装置2800的处理单元2802可为处理器,该数据传输装置2800的接收单元2801可以为收发器。该数据传输装置例如可用于OFDMA场景。
这样,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的STA中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,PPDU的信令字段中所指示的该RU对应的用户字段的数目,为参与MU-MIMO传输且停靠在本频域分片的站点的数目,而不是参与MU-MIMO传输的总的站点数。这样保证各个频域分片传输的信令字段都能够准确地指示用于MU-MIMO传输的RU对应的用户字段。站点能够根据包含有自己的站点标识的用户字段在多个用户字段中的排 序位置,确定分配给自己的RU。
在某些实施例中,所述用户字段包括指示站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。这样指示空间流分配的方式,与用户字段的数量及排列顺序无关。能够实现在减少用户字段的同时时,准确指示每个用户字段对应的STA所分配的空间流。
在某些实施例中,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。这样,站点能够根据该特殊用户字段,确定自身是在被分配给该用于MU-MIMO传输的RU的多个站点中的排序位置,也即确定自身是在被分配给该用于MU-MIMO传输的RU的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
在某些实施例中,所述公共字段包括一个或多个资源单元分配子字段,其中任意一个资源单元分配字段指示的至少一个RU被分配给停靠在所述第一频域分片的站点。如此,信令字段的资源单元分配子字段,仅包含指示停靠在第一频域分片的站点的RU分配的资源单元分配子字段,而不包含指示非停靠在第一频域分片的站点的RU分配的资源单元分配子字段,这样能够减少信令字段中的资源单元分配子字段的数量,从而节省信令字段的开销。
请参阅图29,图29为本申请实施例提供的一种数据传输装置的结构示意图。本申请实施例的数据传输装置2900包括:
接收单元2901,用于在第一频域分片接收物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括所述第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括所述多个站点中的停靠在所述第一频域分片的站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点中的停靠在所述第一频域分片的站点的用户字段的数目;
处理单元2902,用于从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。
该数据传输装置2900例如可以为通信装置或站点,或者该数据传输装置2900部署在通信装置或站点。该数据传输装置2900的处理单元2902可为处理器,该数据传输装置2900的接收单元2901可以为收发器。该数据传输装置例如可用于非OFDMA场景。
这样,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的STA中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中, 非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,PPDU的信令字段中所指示的MU-MIMO用户数,为参与MU-MIMO传输且停靠在本频域分片的站点的数目,而不是参与MU-MIMO传输的总的站点数。这样保证各个频域分片传输的信令字段都能够准确地指示用于MU-MIMO传输的MU-MIMO频域资源对应的用户字段。
在某些实施例中,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。这样指示空间流分配的方式,与用户字段的数量及排列顺序无关。能够实现在减少用户字段的同时时,准确指示每个用户字段对应的STA所分配的空间流。
在某些实施例中,所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。这样,站点能够根据该特殊用户字段,确定自身是在被分配给MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是在被分配给MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
在某些实施例中,所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括所述用户字段,所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
所述公共字段包括所述指示MU-MIMO的用户数的字段、MU-MIMO总用户数指示字段以及指示起始位置的字段,所述MU-MIMO总用户数指示字段指示所述多个站点的数目,所述指示起始位置的字段指示所述停靠在上述第一频域分片的站点在所述站点排序中的起始位置。
这样,用户字段仅包括停靠在本频域分片的站点的用户字段,接收PPDU的站点也能够根据公共字段中的MU-MIMO总用户数指示字段、指示MU-MIMO的用户数的字段和指示起始位置的子字段,确定包含有自身的站点标识的用户字段对应的站点在站点排序的位置,确定自身在被分配了MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是被分配了MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。而且,在公共字段指示用户字段对应的站点在站点排序中的位置,相比于在每个用户字段中指示该用户字段对应的站点在站点排序中的位置,能够减少信令字段的开销。
请参阅图30,图30为本申请实施例提供的一种数据传输装置的结构示意图。本申请实施例的数据传输装置3000包括:
接收单元3001,用于在第一频域分片接收物理层协议数据单元PPDU的信令字段;传 输所述PPDU的信道带宽包括至少两个频域分片,所述至少两个频域分片包括所述第一频域分片,所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括公共字段和用户特定字段,所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点的用户字段;所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;
处理单元3002,用于从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。
该数据传输装置3000例如可以为通信装置或站点,或者该数据传输装置3000部署在通信装置或站点。该数据传输装置例如可用于OFDMA场景。该数据传输装置3000的处理单元3002可为处理器,该数据传输装置3000的接收单元3001可以为收发器。
这样,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的站点中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。而且,在非停靠在本频域分片的STA的用户字段的位置,填充空用户字段。这样参与MU-MIMO传输且停靠在本频域分片的STA的用户字段,在接收该PPDU的站点对应的所有的用户字段中的排序位置并没有改变,从而能够使得各个频域分片传输的信令字段,都能够准确地指示用于MU-MIMO传输的RU对应的用户字段。从而使得站点能够根据包含有自己的站点标识的用户字段在多个用户字段中的排序位置,确定分配给自己的RU。
请参阅图31,图31为本申请实施例提供的一种数据传输装置的结构示意图。本申请实施例的数据传输装置3100包括:
接收单元3101,用于在第一频域分片接收物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括所述第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;所述信令字段包括所述多个站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点的用户字段的数目;所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;
处理单元3102,用于从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。
该数据传输装置3100例如可以为通信装置或站点,或者该数据传输装置3100部署在通信装置或站点。该数据传输装置例如可用于非OFDMA场景。
这样,每个频域分片传输的信令字段中的用户字段,仅包含参与MU-MIMO传输的站点中,停靠在本频域分片的STA对应的用户字段,而不包含参与MU-MIMO传输的STA中,非停靠在本频域分片的STA对应的用户字段,从而实现简化每个频域分片传输的信令字段中的用户字段。
请参阅图32,图32为本申请实施例提供的一种数据传输装置的结构示意图。本申请实施例的数据传输装置3200包括:
处理单元3201,用于生成PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;
所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括停靠在第一频域分片的站点的用户字段;所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
所述公共字段包括MU-MIMO总用户数指示字段和比特位图,所述MU-MIMO总用户数指示字段指示所述多个站点的数目,所述比特位图指示所述停靠在所述第一频域分片的站点在所述多个站点的所述站点排序中的起始位置;
发送单元3202,用于在所述第一频域分片发送所述信令字段。
该数据传输装置3200例如可以为通信装置或站点,或者该数据传输装置3100部署在通信装置或站点。该数据传输装置3200例如可用于非OFDMA场景。
这样,用户字段仅包括停靠在本频域分片的站点的用户字段,接收PPDU的站点也能够根据公共字段中的MU-MIMO总用户数指示字段和比特位图,确定包含有自身的站点标识的用户字段对应的站点在站点排序中的位置,确定自身在被分配了MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是被分配了MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
而且,在公共字段指示用户字段对应的站点在站点排序中的位置,相比于在每个用户字段中指示该用户字段对应的站点在站点排序中的位置,能够减少信令字段的开销。
请参阅图33,图33为本申请实施例提供的一种数据传输装置的结构示意图。本申请实施例的数据传输装置3300包括:
接收单元3301,在第一频域分片接收PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;
所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括停靠在第一频域分片的站点的用户字段;所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序, 指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
所述公共字段包括MU-MIMO总用户数指示字段和比特位图,所述MU-MIMO总用户数指示字段指示所述多个站点的数目,所述比特位图指示所述停靠在所述第一频域分片的站点在所述多个站点的所述站点排序中的起始位置;
处理单元3302,用于从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。
该数据传输装置3300例如可以为通信装置或站点,或者该数据传输装置3100部署在通信装置或站点。该数据传输装置3300例如可用于非OFDMA场景。
这样,用户字段仅包括停靠在本频域分片的站点的用户字段,接收PPDU的站点也能够根据公共字段中的MU-MIMO总用户数指示字段和比特位图,确定包含有自身的站点标识的用户字段对应的站点在站点排序中的位置,确定自身在被分配了MU-MIMO频域资源的多个站点中的排序位置,也即确定自身是被分配了MU-MIMO频域资源的第几个站点,从而能够结合用户字段中包含的指示空间流的索引,确定被分配的空间流。
而且,在公共字段指示用户字段对应的站点在站点排序中的位置,相比于在每个用户字段中指示该用户字段对应的站点在站点排序中的位置,能够减少信令字段的开销。
其中,上述各数据传输装置实施例的相关内容可参见上述方法实施例的相关内容。此处不再详述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机可读存储介质被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如, 高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种数据传输方法,其特征在于,包括:
    生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的资源单元RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;
    所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点中的停靠在所述第一频域分片的站点的用户字段;
    所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;
    在所述第一频域分片发送所述信令字段。
  2. 根据权利要求1所述的方法,其特征在于,所述用户字段包括指示站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;
    所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。
  3. 根据权利要求1所述的方法,其特征在于,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
    所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述公共字段包括一个或多个资源单元分配子字段中,其中任意一个资源单元分配字段指示的至少一个RU被分配给停靠在所述第一频域分片的站点。
  5. 一种数据传输方法,其特征在于,包括:
    生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;
    所述信令字段包括所述多个站点中的停靠在所述第一频域分片的站点的用户字段,和 指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点中的停靠在所述第一频域分片的站点的用户字段的数目;
    在所述第一频域分片发送所述信令字段。
  6. 根据权利要求5所述的方法,其特征在于,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;
    所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。
  7. 根据权利要求5所述的方法,其特征在于,所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
    所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。
  8. 一种数据传输方法,其特征在于,包括:
    生成PPDU的信令字段,传输所述PPDU的信道带宽包括至少两个频域分片,所述至少两个频域分片包括第一频域分片,所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;
    所述信令字段包括公共字段和用户特定字段,所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;
    所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点的用户字段;
    所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;
    在所述第一频域分片发送所述信令字段。
  9. 一种数据传输方法,其特征在于,包括:
    生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;
    所述信令字段包括所述多个站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点的用户字段的数目;
    所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;
    在所述第一频域分片发送所述信令字段。
  10. 一种数据传输方法,其特征在于,包括:
    停靠在第一频域分片的第一站点在所述第一频域分片接收物理层协议数据单元PPDU的信令字段,其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;
    所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点中的停靠在所述第一频域分片的站点的用户字段;
    所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;
    所述第一站点从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。
  11. 根据权利要求10所述的方法,其特征在于,所述用户字段包括指示站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;
    所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。
  12. 根据权利要求10所述的方法,其特征在于,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
    所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述公共字段包括一个或多个资源单元分配子字段,其中任意一个资源单元分配字段指示的至少一个RU被分配给停靠在所述第一频域分片的站点。
  14. 一种数据传输方法,其特征在于,包括:
    停靠在第一频域分片的第一站点在所述第一频域分片接收物理层协议数据单元PPDU 的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;
    所述信令字段包括所述多个站点中的停靠在所述第一频域分片的站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点中的停靠在所述第一频域分片的站点的用户字段的数目;
    所述第一站点从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。
  15. 根据权利要求14所述的方法,其特征在于,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;
    所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。
  16. 根据权利要求14所述的方法,其特征在于,所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
    所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。
  17. 一种数据传输方法,其特征在于,包括:
    停靠在第一频域分片的第一站点在所述第一频域分片接收物理层协议数据单元PPDU的信令字段;传输所述PPDU的信道带宽包括至少两个频域分片,所述至少两个频域分片包括第一频域分片,所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;
    所述信令字段包括公共字段和用户特定字段,所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;
    所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点的用户字段;
    所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;
    所述第一站点从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。
  18. 一种数据传输方法,其特征在于,包括:
    停靠在第一频域分片的第一站点在所述第一频域分片接收物理层协议数据单元PPDU的信令字段;
    其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;
    所述信令字段包括所述多个站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点的用户字段的数目;
    所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;
    所述第一站点从信令字段中,获取携带本站点的标识的用户字段,并获取所述携带本站点的标识的用户字段对应的RU上传输的数据。
  19. 一种通信装置,其特征在于,包括:
    处理单元,用于生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的资源单元RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;
    所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点中的停靠在所述第一频域分片的站点的用户字段;
    所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;
    收发单元,用于在所述第一频域分片发送所述信令字段。
  20. 根据权利要求19所述的装置,其特征在于,所述用户字段包括指示站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;
    所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。
  21. 根据权利要求19所述的装置,其特征在于,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个 站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
    所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。
  22. 根据权利要求19-21任一项所述的装置,其特征在于,所述公共字段包括一个或多个资源单元分配子字段中,其中任意一个资源单元分配字段指示的至少一个RU被分配给停靠在所述第一频域分片的站点。
  23. 一种通信装置,其特征在于,包括:
    处理单元,用于生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;
    所述信令字段包括所述多个站点中的停靠在所述第一频域分片的站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点中的停靠在所述第一频域分片的站点的用户字段的数目;
    收发单元,用于在所述第一频域分片发送所述信令字段。
  24. 根据权利要求23所述的装置,其特征在于,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;
    所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。
  25. 根据权利要求23所述的装置,其特征在于,所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
    所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。
  26. 一种通信装置,其特征在于,包括:
    处理单元,用于生成PPDU的信令字段,传输所述PPDU的信道带宽包括至少两个频域分片,所述至少两个频域分片包括第一频域分片,所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;
    所述信令字段包括公共字段和用户特定字段,所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;
    所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点的用户字段;
    所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;
    收发单元,用于在所述第一频域分片发送所述信令字段。
  27. 一种通信装置,其特征在于,包括:
    处理单元,用于生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;
    所述信令字段包括所述多个站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点的用户字段的数目;
    所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;
    收发单元,用于在所述第一频域分片发送所述信令字段。
  28. 一种通信装置,其特征在于,包括:
    收发单元,用于停靠在第一频域分片的第一站点在所述第一频域分片接收物理层协议数据单元PPDU的信令字段,其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;
    所述信令字段包括公共字段和用户特定字段,所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点中的停靠在所述第一频域分片的站点的用户字段;
    所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;
    处理单元,用于从信令字段中,获取携带所述第一站点的标识的用户字段,并获取所述携带所述第一站点的标识的用户字段对应的RU上传输的数据。
  29. 根据权利要求28所述的装置,其特征在于,所述用户字段包括指示站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;
    所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。
  30. 根据权利要求28所述的装置,其特征在于,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
    所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目,和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。
  31. 根据权利要求28-30任一项所述的装置,其特征在于,所述公共字段包括一个或多个资源单元分配子字段,其中任意一个资源单元分配字段指示的至少一个RU被分配给停靠在所述第一频域分片的站点。
  32. 一种通信装置,其特征在于,包括:
    收发单元,用于停靠在第一频域分片的第一站点在所述第一频域分片接收物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;
    所述信令字段包括所述多个站点中的停靠在所述第一频域分片的站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点中的停靠在所述第一频域分片的站点的用户字段的数目;
    处理单元,用于从信令字段中,获取携带所述第一站点的标识的用户字段,并获取所述携带所述第一站点的标识的用户字段对应的RU上传输的数据。
  33. 根据权利要求32所述的装置,其特征在于,所述用户字段包括站点标识指示字段和空间流分配指示字段,所述站点标识指示字段用于指示该用户字段对应的站点标识;
    所述空间流分配指示字段包括起始空间流子字段和空间流数子字段,所述起始空间流子字段指示所述站点标识对应的站点被分配的第1个空间流,所述空间流数子字段指示所述站点标识对应的站点被分配的空间流的数目。
  34. 根据权利要求32所述的装置,其特征在于,所述用户字段包括指示该用户字段对应的站点的站点标识的字段和空间流分配指示字段,所述空间流分配指示字段按照所述空间流分配对应的站点排序,指示所述多个站点中的每个站点所被分配的空间流,所述站点排序包括所述多个站点的排列顺序;
    所述信令字段还包括特殊用户字段,所述特殊用户字段用于指示所述多个站点的数目, 和指示所述多个站点中的停靠在所述第一频域分片的站点在所述站点排序中的排序位置。
  35. 一种通信装置,其特征在于,包括:
    收发单元,用于停靠在第一频域分片的第一站点在所述第一频域分片接收物理层协议数据单元PPDU的信令字段;传输所述PPDU的信道带宽包括至少两个频域分片,所述至少两个频域分片包括第一频域分片,所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于多用户-多输入多输出MU-MIMO传输的RU,所述RU被分配给多个站点,所述多个站点包括停靠在所述第一频域分片的站点和非停靠在所述第一频域分片的站点;
    所述信令字段包括公共字段和用户特定字段,所述公共字段包括与所述RU对应的资源单元分配子字段,用于指示所述RU,以及所述RU对应的用户字段的数目;
    所述用户特定字段包括所述RU对应的用户字段,所述RU对应的用户字段为所述多个站点的用户字段;
    所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;
    处理单元,用于从信令字段中,获取携带所述第一站点的标识的用户字段,并获取所述携带所述第一站点的标识的用户字段对应的RU上传输的数据。
  36. 一种通信装置,其特征在于,包括:
    收发单元,用于停靠在第一频域分片的第一站点在所述第一频域分片接收物理层协议数据单元PPDU的信令字段;
    其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片,所述信道带宽包括用于MU-MIMO传输的MU-MIMO频域资源,所述MU-MIMO频域资源被分配多个站点,所述多个站点包括停靠在第一频域分片的站点和非停靠在所述第一频域分片的站点;
    所述信令字段包括所述多个站点的用户字段,和指示MU-MIMO的用户数的字段,所述指示MU-MIMO的用户数的字段指示所述多个站点的用户字段的数目;
    所述多RU对应的用户字段中,所述多个站点中的停靠在所述第一频域分片的站点的用户字段包括该用户字段的站点标识,所述多个站点中的非停靠在所述第一频域分片的站点的用户字段为空用户字段;
    处理单元,用于从信令字段中,获取携带所述第一站点的标识的用户字段,并获取所述携带所述第一站点的标识的用户字段对应的RU上传输的数据。
  37. 一种通信装置,其特征在于,包括:处理器和收发器,当所述处理器执行所述存储器中的计算机程序或指令时,使得权利要求1-9任一项的所述方法被执行,或使得权利要求10-18任一项的所述方法被执行。
  38. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,用于读取所 述存储器中的指令,并根据所述指令实现如权利要求1-9任一项所述的方法。
  39. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,用于读取所述存储器中的指令,并根据所述指令实现如权利要求10-18任一项所述的方法。
  40. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,所述计算机指令指示通信装置执行权利要求1-9任一项所述的方法,或所述计算机指令指示通信装置执行权利要求10-18任一项所述的方法。
  41. 一种计算机程序产品,其特征在于,所述计算机程序产品在计算机上被执行时,实现权利要求1~18中任一项所述的方法。
PCT/CN2021/091501 2020-05-28 2021-04-30 数据传输方法及相关装置 WO2021238585A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/994,045 US20230121851A1 (en) 2020-05-28 2022-11-25 Data transmission method and related apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010470338.9 2020-05-28
CN202010470338 2020-05-28
CN202010710446.9A CN113746595B (zh) 2020-05-28 2020-07-22 数据传输方法及相关装置
CN202010710446.9 2020-07-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/994,045 Continuation US20230121851A1 (en) 2020-05-28 2022-11-25 Data transmission method and related apparatus

Publications (1)

Publication Number Publication Date
WO2021238585A1 true WO2021238585A1 (zh) 2021-12-02

Family

ID=78728002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091501 WO2021238585A1 (zh) 2020-05-28 2021-04-30 数据传输方法及相关装置

Country Status (3)

Country Link
US (1) US20230121851A1 (zh)
CN (1) CN113746595B (zh)
WO (1) WO2021238585A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023174065A1 (zh) * 2022-03-14 2023-09-21 华为技术有限公司 一种通信方法及相关装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113133116A (zh) * 2020-01-10 2021-07-16 华为技术有限公司 资源单元合并指示的方法和通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150256309A1 (en) * 2014-03-06 2015-09-10 Samsung Electronics Co., Ltd. Methods and apparatuses for wirelessly communicating in a multiple user-multiple-in-multiple-out network
US20180027556A1 (en) * 2016-07-21 2018-01-25 Lg Electronics Inc. Method of transmitting and receving signal to a plurality of stations in wireless communication system and apparatus therefor
US20200007265A1 (en) * 2018-06-28 2020-01-02 Intel IP Corporation Apparatus, system and method of an orthogonal frequency-division multiplexing (ofdm) transmission over a wide bandwidth
WO2020069380A1 (en) * 2018-09-28 2020-04-02 Marvell World Trade Ltd. Wlan operation using multiple component channels
CN111148243A (zh) * 2018-11-06 2020-05-12 华为技术有限公司 数据传输的方法和通信装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2783548T3 (es) * 2014-12-02 2020-09-17 Lg Electronics Inc Método para la asignación de recursos de trama de banda ancha en un sistema inalámbrico y aparato para el mismo
US10327246B2 (en) * 2014-12-30 2019-06-18 Newracom, Inc. Method and apparatus for wide bandwidth PPDU transmission in a high efficiency wireless LAN
US20170064718A1 (en) * 2015-08-25 2017-03-02 Qualcomm Incorporated Resource allocation signaling in a wireless local area network preamble
CN115021876A (zh) * 2015-09-01 2022-09-06 华为技术有限公司 传输信息的方法、无线局域网装置
EP3829078A1 (en) * 2015-09-29 2021-06-02 Newracom, Inc. Resource allocation indication for multi-user multiple-input-multiple-output (mu-mimo) orthogonal frequency division multiple acces (ofdma) communication
WO2017112818A1 (en) * 2015-12-21 2017-06-29 Qualcomm Incorporated Preamble design aspects for high efficiency wireless local area networks
US11083021B2 (en) * 2016-04-14 2021-08-03 Qualcomm Incorporated Random access resource unit allocation for a multiple BSSID network
KR102259024B1 (ko) * 2017-01-09 2021-06-01 주식회사 윌러스표준기술연구소 다중 사용자 패킷의 시그널링을 위한 무선 통신 방법 및 무선 통신 단말
CN116388943B (zh) * 2018-07-25 2024-03-15 华为技术有限公司 资源单元指示方法、装置及存储介质
US11395359B2 (en) * 2019-04-11 2022-07-19 Marvell Asia Pte Ltd Simultaneous transmission of data units in multiple frequency segments
SG10202001391SA (en) * 2020-02-14 2021-09-29 Panasonic Ip Corp America Communication apparatus and communication method for control signaling
CN113596927A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 无线通信传输方法及相关装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150256309A1 (en) * 2014-03-06 2015-09-10 Samsung Electronics Co., Ltd. Methods and apparatuses for wirelessly communicating in a multiple user-multiple-in-multiple-out network
US20180027556A1 (en) * 2016-07-21 2018-01-25 Lg Electronics Inc. Method of transmitting and receving signal to a plurality of stations in wireless communication system and apparatus therefor
US20200007265A1 (en) * 2018-06-28 2020-01-02 Intel IP Corporation Apparatus, system and method of an orthogonal frequency-division multiplexing (ofdm) transmission over a wide bandwidth
WO2020069380A1 (en) * 2018-09-28 2020-04-02 Marvell World Trade Ltd. Wlan operation using multiple component channels
CN111148243A (zh) * 2018-11-06 2020-05-12 华为技术有限公司 数据传输的方法和通信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023174065A1 (zh) * 2022-03-14 2023-09-21 华为技术有限公司 一种通信方法及相关装置

Also Published As

Publication number Publication date
CN113746595B (zh) 2023-06-20
CN113746595A (zh) 2021-12-03
US20230121851A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
WO2022002206A1 (zh) 一种ppdu的传输方法及相关装置
WO2021213345A1 (zh) 数据传输方法及相关装置
WO2021180203A1 (zh) 数据传输方法及设备、芯片系统、计算机可读存储介质
WO2021139773A1 (zh) 资源分配方法、通信装置及相关设备
WO2021238585A1 (zh) 数据传输方法及相关装置
WO2021204209A1 (zh) 一种多资源单元对应的调制方式的指示方法及相关设备
WO2022022249A1 (zh) 资源调度方法及相关装置
AU2021294097B2 (en) Resource indication method, access point, and station
WO2016173239A1 (zh) Wlan系统的资源指示方法及装置
JP2023523813A (ja) 無線ローカルエリアネットワークにおいて適用される帯域幅指示方法及び通信装置
WO2021180231A1 (zh) 一种资源单元合并指示方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812433

Country of ref document: EP

Kind code of ref document: A1