WO2021213345A1 - 数据传输方法及相关装置 - Google Patents

数据传输方法及相关装置 Download PDF

Info

Publication number
WO2021213345A1
WO2021213345A1 PCT/CN2021/088222 CN2021088222W WO2021213345A1 WO 2021213345 A1 WO2021213345 A1 WO 2021213345A1 CN 2021088222 W CN2021088222 W CN 2021088222W WO 2021213345 A1 WO2021213345 A1 WO 2021213345A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
user
field
resource unit
tone
Prior art date
Application number
PCT/CN2021/088222
Other languages
English (en)
French (fr)
Inventor
狐梦实
于健
淦明
梁丹丹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022564412A priority Critical patent/JP2023523941A/ja
Priority to AU2021258892A priority patent/AU2021258892B2/en
Priority to BR112022021292A priority patent/BR112022021292A2/pt
Priority to EP21792432.3A priority patent/EP4132173A4/en
Priority to KR1020227040516A priority patent/KR20230006515A/ko
Publication of WO2021213345A1 publication Critical patent/WO2021213345A1/zh
Priority to US18/048,529 priority patent/US20230093344A1/en
Priority to AU2024202818A priority patent/AU2024202818A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This application relates to the field of communication technology, and in particular to a data transmission method and related devices.
  • RU resource units
  • OFDMA orthogonal frequency division multiple access
  • RU resource units
  • the allocation of user frequency band resources is not in units of channels, but in units of resources.
  • a 20MHz channel may contain multiple RUs, in the form of 26-tone RU, 52-tone RU, or 106-tone RU.
  • tone represents the number of sub-carriers.
  • the RU may also be in the form of 242-tone RU, 484-tone RU, 996-tone RU, etc.
  • the High Efficient Signal Field (HE-SIG-B) in the (PHY protocol data unit, PPDU) sent by the access point to multiple stations includes a common field (Common field).
  • the common field includes multiple resource unit allocation subfields (RU Allocation subfield), and the resource unit allocation subfield in the common field is used to indicate multiple resource units.
  • the user specific field in HE-SIG-B includes all user fields corresponding to each resource unit allocation subfield. In this way, the HE-SIG-B sent to each site includes all user fields corresponding to each resource unit allocation subfield.
  • the embodiments of the present application provide a data transmission method and related devices, which can reduce the overhead of the signaling field in the PPDU.
  • embodiments of the present application provide a data transmission method, including: generating a signaling field of a physical layer protocol data unit PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; The two frequency domain fragments include the first frequency domain fragment; the signaling field is transmitted in the first frequency domain fragment and includes a common field and a user-specific field; the common field includes a resource unit allocation subfield, The user-specific field includes a user field; the resource unit allocation subfield indicates the resource unit RU included in the channel bandwidth for transmitting the PPDU, and the RU is allocated to the docking on the first frequency domain slice
  • the number of user fields corresponding to the RU of the site of the The number of user fields contributed by a content channel, where the user field is a user field corresponding to a station parked on the first frequency domain fragment; and the signaling field is sent in the first frequency domain fragment.
  • the resource unit allocation subfield indicates the resource unit RU included in the channel bandwidth for transmitting the PPDU, and the RU is allocated to the first docking station.
  • the number of user fields corresponding to the RU of the station on the frequency domain fragment is not indicated according to the actual resource unit allocation situation, and the number of users not allocated to the station parked on the first frequency domain fragment is not indicated, This simplifies the user field.
  • the user field of the RU that is not docked in the first frequency domain fragment can be omitted or simplified, so that the overhead of the signaling field in the PPDU can be reduced by reducing the number of user fields.
  • the resource unit allocation subfield indicates a user field corresponding to an RU that is not allocated to a station parked at the first frequency domain fragment among resource units RU included in the channel bandwidth for transmitting the PPDU
  • the number of is 0, and the RU that is not allocated to the site that stops at the first frequency domain fragment is an RU that is greater than or equal to 242 subcarriers.
  • the user field of the RU greater than or equal to 242 subcarriers can be omitted, thereby effectively reducing the overhead of the signaling field.
  • the number of user fields corresponding to the RU that is not allocated to the site docked in the first frequency domain fragment indicated by the resource unit allocation subfield is smaller than the number of user fields that are not allocated to the site docked in the first frequency domain fragment.
  • the number of user fields actually corresponding to the RU of a frequency domain fragmented site is smaller. In this way, the number of user fields of the signaling field transmitted in the first frequency domain fragmentation can be reduced, thereby reducing the overhead of the signaling field.
  • the resource unit allocation subfield indicates that the RU that is not allocated to the site docked at the first frequency domain fragment is actually at least the RU that is not allocated to the site docked at the first frequency domain fragment. Two RUs. In this way, at least two RUs that are not allocated to the site docking in the first frequency domain fragment are indicated as one RU together, and the indication method of the resource unit allocation subfield is simplified, so that the user fields corresponding to the at least two RUs The number is smaller, which can reduce the overhead of the signaling field.
  • the at least two RUs are both RUs of less than 242 subcarriers.
  • the resource unit allocator is instructed according to the actual resource unit allocation, and each small RU needs to correspond to a user field.
  • the solution of this application will be allocated to the first frequency domain At least two small RUs of the site of the slice are indicated as one RU together, so that one RU only needs to correspond to one user field, so that one user field can be omitted, and the overhead of the signaling field can be reduced.
  • embodiments of the present application also provide a data transmission method, including: a station parked at a first frequency domain fragment receives a signaling field of a physical layer protocol data unit PPDU at the first frequency domain fragment, where , The channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain fragment; the signaling field includes a common field and a user-specific field; The common field includes a resource unit allocation subfield, the user-specific field includes a user field; the resource unit allocation subfield indicates the resource unit RU in the channel bandwidth for transmitting the PPDU, and the RU is allocated to the docking station.
  • the resource unit allocation subfield indicates the resource unit RU included in the channel bandwidth for transmitting the PPDU, and the RU is allocated to the docking station
  • the number of user fields corresponding to the RU of the site on the first frequency domain fragment is not calculated according to the actual resource unit allocation situation. Instructions, this simplifies the user field.
  • the user field of the RU that is not docked in the first frequency domain fragment can be omitted or simplified, so that the overhead of the signaling field in the PPDU can be reduced by reducing the number of user fields.
  • the resource unit allocation subfield indicates that of the resource unit RU included in the channel bandwidth for transmitting the PPDU, the resource unit RU that is not allocated to the RU that is parked at the first frequency domain fragment corresponds to The number of user fields is 0, and the RU that is not allocated to the site that stops at the first frequency domain fragment is an RU that is greater than or equal to 242 subcarriers. In this way, the user field of the RU greater than or equal to 242 subcarriers can be omitted, thereby effectively reducing the overhead of the signaling field.
  • the number of user fields corresponding to the RU that is not allocated to the site docked in the first frequency domain fragment indicated by the resource unit allocation subfield is smaller than the number of user fields that are not allocated to the site docked in the first frequency domain fragment.
  • the number of user fields actually corresponding to the RU of a frequency domain fragmented site is smaller. In this way, the number of user fields of the signaling field transmitted in the first frequency domain fragmentation can be reduced, thereby reducing the overhead of the signaling field.
  • the resource unit allocation subfield indicates that the RU that is not allocated to the site docked at the first frequency domain fragment is actually at least the RU that is not allocated to the site docked at the first frequency domain fragment.
  • Two RUs In this way, at least two RUs that are not allocated to a site parked in the first frequency domain fragment are indicated as one RU together, which can reduce the number of user fields corresponding to the at least two RUs, thereby reducing the number of signaling fields. Overhead.
  • the at least two RUs are both RUs of less than 242 subcarriers.
  • the resource unit allocator is instructed according to the actual resource unit allocation, and each small RU needs to correspond to a user field.
  • the solution of this application will be allocated to the first frequency domain At least two small RUs of the site of the slice are indicated as one RU together, so that one RU only needs to correspond to one user field, so that one user field can be omitted, and the overhead of the signaling field can be reduced.
  • embodiments of the present application also provide a data transmission method, including: generating a signaling field of a physical layer protocol data unit PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; At least two frequency domain fragments include a first frequency domain fragment; the signaling field is sent in the first frequency domain fragment; wherein, the signaling field includes a common field and a user-specific field, and the common field
  • the resource unit allocation subfield includes a resource unit allocation subfield; the user-specific field includes a user field; the resource unit allocation subfield indicates a resource unit RU in the channel bandwidth for transmitting the PPDU; the common field includes at least one resource unit allocation subfield.
  • the RU indicated by the field is a plurality of RUs less than 242 subcarriers; each RU of the plurality of RUs less than 242 subcarriers corresponds to at least one user field; the user field corresponding to at least one first RU carries that The identifier of the station in a frequency domain fragment, the user field corresponding to at least one second RU does not carry the identifier of the station parked in the first frequency domain fragment, and the resource unit allocation subfield indicates the second At least part of the subcarriers corresponding to the two RUs belong to at least two RUs.
  • the first signaling field of the solution of the present application is fragmented and transmitted in the first frequency domain.
  • the resource unit allocation subfield is one RU indicated by the combination of at least two RUs, and this RU corresponds to only one user field, which can effectively reduce multiple consecutive small RUs that are not allocated to STAs allocated in the frequency domain.
  • the number of corresponding user fields can save the overhead of signaling fields.
  • an implementation manner of the present application also provides a data transmission method, including: a station parked at a first frequency domain fragment receiving a signaling field of a physical layer protocol data unit PPDU at the first frequency domain fragment; where , The channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include a first frequency domain fragment; the signaling field includes a common field and a user-specific field, and the common The field includes a resource unit allocation subfield; the user-specific field includes a user field; the resource unit allocation subfield indicates a resource unit RU in the channel bandwidth for transmitting the PPDU; wherein, the common field includes at least one of the resources
  • the RU indicated by the unit allocation subfield is a plurality of RUs less than 242 subcarriers; each RU of the plurality of RUs less than 242 subcarriers corresponds to at least one user field; wherein, the user field corresponding to at least one first RU carries The identifier of
  • the resource unit allocation subfield is one RU indicated by the combination of at least two RUs, and this RU corresponds to only one user field, which can effectively reduce the number of consecutive small numbers that are not allocated to STAs allocated in the frequency domain.
  • the number of user fields corresponding to the RU can save the overhead of signaling fields.
  • the embodiments of the present application also provide a data transmission device, including a processing unit and a transceiver unit; the processing unit is used to generate the signaling field of the physical layer protocol data unit PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least Two frequency domain fragments; the at least two frequency domain fragments include a first frequency domain fragment; the signaling field is transmitted in the first frequency domain fragment and includes a common field and a user-specific field; so
  • the common field includes a resource unit allocation subfield, the user-specific field includes a user field; the resource unit allocation subfield indicates the resource unit RU included in the channel bandwidth for transmitting the PPDU, and the RU is allocated to the The number of user fields corresponding to the RU of the site parked on the first frequency domain fragment; wherein, the number of user fields corresponding to the RU allocated to the site parked on the first frequency domain fragment represents The number of user fields that the RU contributes to a content channel in the user-specific fields, where the user field is
  • the resource unit allocation subfield indicates the resource unit RU included in the channel bandwidth for transmitting the PPDU, and the RU is allocated to the first docking station.
  • the number of user fields corresponding to the RU of the station on the frequency domain fragment is not indicated according to the actual resource unit allocation situation, and the number of users not allocated to the station parked on the first frequency domain fragment is not indicated, This simplifies the user field.
  • the user field of the RU that is not docked in the first frequency domain fragment can be omitted or simplified, so that the overhead of the signaling field in the PPDU can be reduced by reducing the number of user fields.
  • the resource unit allocation subfield indicates a user field corresponding to an RU that is not allocated to a station parked at the first frequency domain fragment among resource units RU included in the channel bandwidth for transmitting the PPDU
  • the number of is 0, and the RU that is not allocated to the site that stops at the first frequency domain fragment is an RU that is greater than or equal to 242 subcarriers.
  • the user field of the RU greater than or equal to 242 subcarriers can be omitted, thereby effectively reducing the overhead of the signaling field.
  • the number of user fields corresponding to the RU that is not allocated to the site docked in the first frequency domain fragment indicated by the resource unit allocation subfield is smaller than the number of user fields that are not allocated to the site docked in the first frequency domain fragment.
  • the number of user fields actually corresponding to the RU of a frequency domain fragmented site is smaller. In this way, the number of user fields of the signaling field transmitted in the first frequency domain fragmentation can be reduced, thereby reducing the overhead of the signaling field.
  • the resource unit allocation subfield indicates that the RU that is not allocated to the site docked at the first frequency domain fragment is actually at least the RU that is not allocated to the site docked at the first frequency domain fragment. Two RUs. In this way, at least two RUs that are not allocated to the site docking in the first frequency domain fragment are indicated as one RU together, and the indication method of the resource unit allocation subfield is simplified, so that the user fields corresponding to the at least two RUs The number is smaller, which can reduce the overhead of the signaling field.
  • the at least two RUs are both RUs of less than 242 subcarriers.
  • the resource unit allocator is instructed according to the actual resource unit allocation, and each small RU needs to correspond to a user field.
  • the solution of this application will be allocated to the first frequency domain At least two small RUs of the site of the slice are indicated as one RU together, so that one RU only needs to correspond to one user field, so that one user field can be omitted, and the overhead of the signaling field can be reduced.
  • the embodiments of the present application also provide a data transmission device, including a processing unit and a transceiving unit; the transceiving unit is configured to stop at the first frequency domain fragment to receive the signaling field of the physical layer protocol data unit PPDU, where ,
  • the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain fragment;
  • the signaling field includes a common field and a user-specific field;
  • the common field includes a resource unit allocation subfield, the user-specific field includes a user field; the resource unit allocation subfield indicates the resource unit RU in the channel bandwidth for transmitting the PPDU, and the RU is allocated to the docking station.
  • the data transmission device may be a communication device or a site, or the data transmission device may be deployed on a communication device or a site.
  • the resource unit allocation subfield indicates the resource unit RU included in the channel bandwidth for transmitting the PPDU, and the RU is allocated to the docking station
  • the number of user fields corresponding to the RU of the site on the first frequency domain fragment is not calculated according to the actual resource unit allocation situation. Instructions, this simplifies the user field.
  • the user field of the RU that is not docked in the first frequency domain fragment can be omitted or simplified, so that the overhead of the signaling field in the PPDU can be reduced by reducing the number of user fields.
  • the resource unit allocation subfield indicates a user field corresponding to an RU that is not allocated to a station parked at the first frequency domain fragment among resource units RU included in the channel bandwidth for transmitting the PPDU
  • the number of is 0, and the RU that is not allocated to the site that stops at the first frequency domain fragment is an RU that is greater than or equal to 242 subcarriers.
  • the user field of the RU greater than or equal to 242 subcarriers can be omitted, thereby effectively reducing the overhead of the signaling field.
  • the number of user fields corresponding to the RU that is not allocated to the site docked in the first frequency domain fragment indicated by the resource unit allocation subfield is smaller than the number of user fields that are not allocated to the site docked in the first frequency domain fragment.
  • the number of user fields actually corresponding to the RU of a frequency domain fragmented site is smaller. In this way, the number of user fields of the signaling field transmitted in the first frequency domain fragmentation can be reduced, thereby reducing the overhead of the signaling field.
  • the resource unit allocation subfield indicates that the RU that is not allocated to the site docked at the first frequency domain fragment is actually at least the RU that is not allocated to the site docked at the first frequency domain fragment. Two RUs. In this way, at least two RUs that are not allocated to the site docking in the first frequency domain fragment are indicated as one RU together, and the indication method of the resource unit allocation subfield is simplified, so that the user fields corresponding to the at least two RUs The number is smaller, which can reduce the overhead of the signaling field.
  • the at least two RUs are both RUs of less than 242 subcarriers.
  • the resource unit allocator is instructed according to the actual resource unit allocation, and each small RU needs to correspond to a user field.
  • the solution of this application will be allocated to the first frequency domain At least two small RUs of the site of the slice are indicated as one RU together, so that one RU only needs to correspond to one user field, so that one user field can be omitted, and the overhead of the signaling field can be reduced.
  • the embodiments of the present application also provide a data transmission device, including a processing unit and a transceiver unit; the processing unit is used to generate the signaling field of the physical layer protocol data unit PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least Two frequency domain fragments; the at least two frequency domain fragments include a first frequency domain fragment; the transceiver unit is configured to send the signaling field in the first frequency domain fragment; the signaling field includes A common field and a user-specific field, the common field includes a resource unit allocation subfield; the user-specific field includes a user field; the resource unit allocation subfield indicates the resource unit RU in the channel bandwidth for transmitting the PPDU;
  • the common field includes that at least one RU indicated by the resource unit allocation subfield is a plurality of RUs smaller than 242 subcarriers; each RU of the plurality of RUs smaller than 242 subcarriers corresponds to at least one user field; among them, at least one The user field corresponding to the
  • the first signaling field of the solution of the present application is fragmented and transmitted in the first frequency domain.
  • the resource unit allocation subfield is one RU indicated by the combination of at least two RUs, and this RU corresponds to only one user field, which can effectively reduce multiple consecutive small RUs that are not allocated to STAs allocated in the frequency domain.
  • the number of corresponding user fields can save the overhead of signaling fields.
  • the embodiments of the present application also provide a data transmission device, including a processing unit and a transceiver unit, the processing unit is configured to receive the signaling field of the physical layer protocol data unit PPDU in the first frequency domain; wherein, The channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include a first frequency domain fragment; the signaling field includes a common field and a user-specific field, and the common field It includes a resource unit allocation subfield; the user-specific field includes a user field; the resource unit allocation subfield indicates a resource unit RU in the channel bandwidth for transmitting the PPDU; wherein, the common field includes at least one resource unit
  • the RU indicated by the allocation subfield is a plurality of RUs less than 242 subcarriers; each RU of the plurality of RUs less than 242 subcarriers corresponds to at least one user field; wherein, the user field corresponding to at least one first RU carries a docking station
  • the user field corresponding to at least one second RU does not carry the identification of the station docked in the first frequency domain fragment
  • the resource unit allocation subfield indicates At least part of the subcarriers corresponding to the second RU belongs to at least two RUs
  • the transceiver unit is configured to obtain the user field carrying the identity of the site from the user fields included in the user-specific field, and obtain all The data transmitted on the RU corresponding to the user field.
  • the data transmission device may be a communication device or a site, or the data transmission device may be deployed on a communication device or a site.
  • the resource unit allocation subfield indicates the resource unit RU included in the channel bandwidth for transmitting the PPDU, and the RU is allocated to the docking station
  • the number of user fields corresponding to the RU of the site on the first frequency domain fragment is not calculated according to the actual resource unit allocation situation. Instructions, this simplifies the user field.
  • the user field of the RU that is not docked in the first frequency domain fragment can be omitted or simplified, so that the overhead of the signaling field in the PPDU can be reduced by reducing the number of user fields.
  • the resource unit allocation subfield indicates a user field corresponding to an RU that is not allocated to a station parked at the first frequency domain fragment among resource units RU included in the channel bandwidth for transmitting the PPDU
  • the number of is 0, and the RU that is not allocated to the site that stops at the first frequency domain fragment is an RU that is greater than or equal to 242 subcarriers.
  • the user field of the RU greater than or equal to 242 subcarriers can be omitted, thereby effectively reducing the overhead of the signaling field.
  • the number of user fields corresponding to the RU that is not allocated to the site docked in the first frequency domain fragment indicated by the resource unit allocation subfield is smaller than the number of user fields that are not allocated to the site docked in the first frequency domain fragment.
  • the number of user fields actually corresponding to the RU of a frequency domain fragmented site is smaller. In this way, the number of user fields of the signaling field transmitted in the first frequency domain fragmentation can be reduced, thereby reducing the overhead of the signaling field.
  • the resource unit allocation subfield indicates that the RU that is not allocated to the site docked at the first frequency domain fragment is actually at least the RU that is not allocated to the site docked at the first frequency domain fragment. Two RUs. In this way, at least two RUs that are not allocated to the site docking in the first frequency domain fragment are indicated as one RU together, and the indication method of the resource unit allocation subfield is simplified, so that the user fields corresponding to the at least two RUs The number is smaller, which can reduce the overhead of the signaling field.
  • the at least two RUs are both RUs of less than 242 subcarriers.
  • the resource unit allocator is instructed according to the actual resource unit allocation, and each small RU needs to correspond to a user field.
  • the solution of this application will be allocated to the first frequency domain At least two small RUs of the site of the slice are indicated as one RU together, so that one RU only needs to correspond to one user field, so that one user field can be omitted, and the overhead of the signaling field can be reduced.
  • the embodiments of the present application further provide a communication device, which may include a processor, a transceiver, and optionally a memory, when the processor executes the computer program or instruction in the memory , Causing the method of any implementation of the foregoing first aspect to be executed, or causing the method of any implementation of the foregoing second aspect to be executed, or causing the foregoing method of the implementation of the third aspect to be executed, or causing the foregoing first aspect to be executed The method of the four aspects of the embodiment is executed.
  • embodiments of the present application also provide a computer-readable storage medium having computer instructions stored in the computer-readable storage medium, and the computer instructions instruct a communication device to execute the method of any one of the above-mentioned embodiments of the first aspect , Or the computer instruction instructs the communication device to perform the method of any one of the foregoing second aspect, or the computer instruction instructs the communication device to perform the method of the third aspect, or the computer instruction instructs the communication device to perform the fourth Aspect method.
  • the embodiments of the present application also provide a computer program product, the computer program product comprising a computer program, when the computer program runs on a computer, the computer executes any implementation of the first aspect above
  • the method of the method or causes the computer to execute the method of any one of the foregoing second aspect, or causes the computer to execute the method of the foregoing third aspect, or causes the computer to execute the method of the foregoing fourth aspect.
  • the present application also provides a processor configured to execute any one of the methods in the first aspect to the fourth aspect.
  • the processes of sending the above information and receiving the above information in the above methods can be understood as the process of outputting the above information by the processor and the process of receiving the input information of the processor.
  • the processor when outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver. Furthermore, after the above-mentioned information is output by the processor, other processing may be required before it reaches the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to undergo other processing before being input to the processor.
  • the processor outputs and receives, inputs and other operations, instead of transmitting, sending, and receiving directly by the radio frequency circuit and antenna.
  • the foregoing processor may be a processor dedicated to executing these methods, or a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory may be a non-transitory memory, such as a read only memory (ROM), which may be integrated with the processor on the same chip, or may be separately arranged on different chips.
  • ROM read only memory
  • the present invention The embodiment does not limit the type of the memory and the setting mode of the memory and the processor.
  • the present application provides a chip system, which includes a processor and an interface, and is used to support a communication transmission device to implement the functions involved in the method of any one of the first to fourth aspects, for example, Determine or process at least one of the data and information involved in the above methods.
  • the chip system further includes a memory, and the memory is used to store necessary information and data of the aforementioned communication device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • this application provides a functional entity that is used to implement the method described in any one of the first to fourth aspects.
  • FIG. 1A is a schematic diagram of a network structure provided by an embodiment of the present application.
  • FIG. 1B is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1C is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • Fig. 2A is a schematic diagram of an allocation method of resource units
  • Fig. 2B is a schematic diagram of another allocation method of resource units
  • Figure 3A is a schematic diagram of a possible structure of a signaling field
  • Figure 3B is a schematic diagram of another possible structure of the signaling field
  • Figure 4A is a schematic diagram of the structure of the PPDU involved in this application.
  • FIG. 4B is another schematic diagram of the structure of the PPDU involved in this application.
  • FIG. 5 is a schematic flowchart of a method for sending the preamble part of a PPDU provided in an embodiment of the present application
  • FIG. 6A is a schematic diagram of the structure of a PPDU provided by an embodiment of the present application.
  • FIG. 6B is another schematic diagram of the structure of a PPDU provided by an embodiment of the present application.
  • FIG. 6C is another schematic structural diagram of a PPDU provided by an embodiment of the present application.
  • FIG. 7A is a schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 7B is another schematic diagram of the structure of the PPDU provided by the embodiment of the present application.
  • FIG. 8A is a schematic diagram of a scenario of resource unit allocation according to an embodiment of the present application.
  • FIG. 8B is a schematic diagram of the structure of a content channel according to an embodiment of the present application.
  • FIG. 8C is a schematic diagram of the structure of a signaling field according to an embodiment of the present application.
  • FIG. 8D is a schematic structural diagram of a content channel according to another embodiment of the present application.
  • FIG. 8E is a schematic diagram of the structure of a signaling field according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of a resource unit allocation scenario according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a resource unit allocation scenario according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a resource unit allocation scenario according to still another embodiment of the present application.
  • FIG. 12 is a schematic diagram of a resource unit allocation scenario according to still another embodiment of this application.
  • FIG. 13 is a schematic diagram of modules of a data transmission device according to an embodiment of the application.
  • FIG. 14 is a schematic diagram of modules of a data transmission device according to another embodiment of the application.
  • 15 is a schematic diagram of modules of a data transmission device according to another embodiment of this application.
  • FIG. 16 is a schematic diagram of modules of a data transmission device according to still another embodiment of the application.
  • FIG. 1A is a schematic diagram of a network structure provided by an embodiment of the present application.
  • the network structure may include one or more access point (AP) type stations and one or more non-access point type stations (none access point). point station, non-AP STA).
  • AP access point
  • non-AP STA non-access point type stations
  • this article refers to the access point type of station as an access point (AP), and the non-access point type of station as a station (STA).
  • the APs are, for example, AP1 and AP2 in FIG. 1A
  • the STAs are, for example, STA1, STA2, and STA3 in FIG. 1A.
  • the access point can be the access point for terminal equipment (such as mobile phones) to enter the wired (or wireless) network. It is mainly deployed in homes, buildings and parks. The typical coverage radius is tens of meters to hundreds of meters. Can be deployed outdoors.
  • the access point is equivalent to a bridge connecting the wired network and the wireless network. The main function is to connect each wireless network client together, and then connect the wireless network to the Ethernet.
  • the access point may be a terminal device (such as a mobile phone) or a network device (such as a router) with a wireless fidelity (WiFi) chip.
  • WiFi wireless fidelity
  • the access point can be a device that supports the 802.11be standard.
  • the access point may also be a device supporting multiple wireless local area networks (WLAN) standards of the 802.11 family such as 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • WLAN wireless local area networks
  • the access point in this application can be a high-efficiency (HE) AP or an extremely high throughput (EHT) AP, or it can be an access point that is applicable to a future generation of WiFi standards.
  • HE high-efficiency
  • EHT extremely high throughput
  • the access point may include a processor and a transceiver, the processor is used to control and manage the actions of the access point, and the transceiver is used to receive or send information.
  • the site can be a wireless communication chip, a wireless sensor, or a wireless communication terminal, etc., and can also be referred to as a user.
  • the site can be a mobile phone that supports WiFi communication function, a tablet computer that supports WiFi communication function, a set-top box that supports WiFi communication function, a smart TV that supports WiFi communication function, a smart wearable device that supports WiFi communication function, and WiFi communication function is supported.
  • the station can support the 802.11be standard.
  • the site can also support multiple wireless local area networks (WLAN) standards of the 802.11 family such as 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • WLAN wireless local area networks
  • the station may include a processor and a transceiver.
  • the processor is used to control and manage the actions of the access point, and the transceiver is used to receive or send information.
  • the access point in this application may be a high-efficiency (HE) STA or an extremely high throughput (EHT) STA, or may be an STA applicable to a future generation of WiFi standards.
  • HE high-efficiency
  • EHT extremely high throughput
  • access points and sites can be devices used in the Internet of Vehicles, Internet of Things (IoT) nodes, sensors, etc., smart cameras, smart remote controls, smart water meters, and electricity meters in smart homes. And sensors in smart cities, etc.
  • IoT Internet of Things
  • the access points and stations involved in the embodiments of the present application can also be collectively referred to as communication devices, which can include hardware structures and software modules, and implement the above-mentioned functions in the form of hardware structures, software modules, or hardware structures plus software modules. .
  • communication devices can include hardware structures and software modules, and implement the above-mentioned functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • One of the above-mentioned functions can be implemented in a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 1B is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the communication device 200 may include a processor 201, a transceiver 205, and optionally a memory 202.
  • the transceiver 205 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing the transceiver function.
  • the transceiver 205 may include a receiver and a transmitter.
  • the receiver may be referred to as a receiver or a receiving circuit, etc., to implement a receiving function;
  • the transmitter may be referred to as a transmitter or a transmitting circuit, etc., to implement a transmitting function.
  • the memory 202 may store a computer program or software code or instruction 204, and the computer program or software code or instruction 204 may also be referred to as firmware.
  • the processor 201 can control the MAC layer and the PHY layer by running the computer program or software code or instruction 203 therein, or by calling the computer program or software code or instruction 204 stored in the memory 202, so as to realize the following aspects of this application.
  • the processor 201 may be a central processing unit (CPU), and the memory 202 may be, for example, a read-only memory (ROM) or a random access memory (RAM).
  • the processor 201 and the transceiver 205 described in this application can be implemented in an integrated circuit (IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (ASIC), printed circuit Printed circuit board (PCB), electronic equipment, etc.
  • IC integrated circuit
  • analog IC analog IC
  • radio frequency integrated circuit RFIC radio frequency integrated circuit
  • mixed signal IC mixed signal IC
  • ASIC application specific integrated circuit
  • PCB printed circuit Printed circuit board
  • electronic equipment etc.
  • the above-mentioned communication device 200 may further include an antenna 206, and each module included in the communication device 200 is only an example for illustration, and this application is not limited thereto.
  • the communication device 200 described in the above embodiment may be an access point or a station, but the scope of the communication device described in this application is not limited to this, and the structure of the communication device may not be limited by FIG. 1B.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the implementation form of the communication device may be:
  • Independent integrated circuit IC or chip, or, chip system or subsystem
  • the IC collection may also include storage for storing data and instructions Components; (3) Modules that can be embedded in other devices; (4) Receivers, smart terminals, wireless devices, handhelds, mobile units, vehicle-mounted devices, cloud devices, artificial intelligence devices, etc.; (5) Others, etc. .
  • the implementation form of the communication device is a chip or a chip system
  • the chip shown in FIG. 1C includes a processor 301 and an interface 302.
  • the number of processors 301 may be one or more, and the number of interfaces 302 may be more than one.
  • the chip or chip system may include a memory 303.
  • 802.11ax In terms of bandwidth configuration, 802.11ax currently supports bandwidth configurations including: 20MHz, 40MHz, 80MHz, 160MHz and 80+80MHz. Among them, the difference between 160MHz and 80+80MHz is that the former is a continuous frequency band, while the two 80MHz of the latter can be separated. In 802.11be, 320MHz bandwidth configuration will be supported.
  • the frequency band resource allocation of a user is not based on a channel, but a resource unit (RU).
  • the size of the RU can be 26-tone RU, 52-tone RU, 106-tone RU, and these RUs are usually called small RUs.
  • tone represents sub-carriers
  • 26-tone RU represents an RU composed of 26 sub-carriers
  • the 26-tone RU can be allocated to one user.
  • the size of the RU can also be 242-tone, 484-tone, 996-tone, etc. These are usually called large RUs.
  • an RU greater than or equal to 106-tone can be allocated to one or more users.
  • 802.11be the allocation of multiple RUs to one user will be supported, and the users in this application can be understood as STAs.
  • FIG. 2A is a schematic diagram of possible allocation of resource units when the channel bandwidth for transmitting the PPDU is 20 MHz.
  • the entire 20MHz channel bandwidth can be composed of a resource unit (242-tone RU) composed of 242 sub-carriers, or a resource unit composed of 26 sub-carriers (26-tone RU), and resource unit (52-tone RU) composed of 52 sub-carriers. It is composed of various combinations of tone RU) and resource units (106-tone RU) composed of 106 subcarriers.
  • it also includes some guard (Guard) subcarriers, null subcarriers, or direct current (DC) subcarriers.
  • Guard guard
  • DC direct current
  • FIG. 2B shows various allocation modes of resource units when the channel bandwidth for transmitting the PPDU is 40 MHz.
  • the entire channel bandwidth is roughly equivalent to a copy of the 20MHz sub-carrier distribution.
  • the entire 40MHz channel bandwidth can be composed of a resource unit (484-tone RU) composed of a whole 484 subcarriers, or it can be composed of various combinations of 26-tone RU, 52-tone RU, 106-tone RU, and 242-tone RU. .
  • the entire channel bandwidth for transmitting PPDU is 80MHz.
  • the entire channel bandwidth is roughly equivalent to a copy of the 20MHz sub-carrier distribution.
  • the entire 80MHz channel bandwidth can be composed of an entire resource unit (996-tone RU) composed of 996 sub-carriers, or it can be composed of 484-tone RU, 242-tone RU, 106-tone RU, 52-tone RU, 26-tone RU Composition of various combinations.
  • the entire channel bandwidth for transmitting PPDU when the channel bandwidth for transmitting PPDU is 160MHz, the entire channel bandwidth can be regarded as a copy of two 80Mhz sub-carrier distributions, and the entire channel bandwidth can be a whole 2 ⁇ 996-tone RU (resources consisting of 1992 sub-carriers).
  • the unit can also be composed of various combinations of 26-tone RU, 52-tone RU, 106-tone RU, 242-tone RU, 484-tone RU, and 996-tone RU. And, in the middle of the entire 80MHz channel bandwidth, there is also an intermediate 26-tone RU composed of two 13-tone subunits.
  • the AP uses a signaling field (signal field, SIG) to notify the user of the RU allocation.
  • SIG signaling field
  • FIG. 3A is a schematic diagram of the structure of the signaling field.
  • the HE-SIG includes a common field and a user specific field.
  • the common fields include 1 to N resource unit allocation subfields (RU allocation subfield), a cyclic redundancy code (CRC) used for checking, and a tail subfield used for cyclic decoding.
  • resource unit allocation subfield corresponds to the allocation of a 20MHz resource unit, and one resource unit allocation subfield indicates the size and location of one or more resource units corresponding to 20MHz.
  • one resource unit allocation subfield is an index, and one index indicates the size and location of one or more resource units corresponding to 20 MHz.
  • the resource unit allocation subfield can be an index in the first column of Table 1, for example, 00000000, 00000001, 00000010, and the row of each index represents the size of the resource unit corresponding to 20 MHz And location.
  • the user-specific field of the signaling field includes 1 to M user fields (User Field) according to the order of resource unit allocation.
  • the M user fields are usually two as a group, and there is a CRC and tail fields after every two user fields. If the number of user fields is an odd number, the last user field is a separate group, and there is a CRC and tail fields after the last user field.
  • a user field carries site identification information to indicate that its corresponding RU is allocated to a certain STA.
  • the index is also used to indicate MU MIMO supported by resource units composed of greater than or equal to 106 subcarriers User number.
  • the number of MU MIMO users is less than or equal to 8.
  • the index 01000y 2 y 1 y 0 when y 2 y 1 y 0 is 010, it is used to indicate that 106-tone is allocated to 3 users.
  • the order of the user fields in the user-specific field is consistent with the order of the resource units indicated by the corresponding resource unit allocation subfield.
  • the STA can identify whether the resource unit corresponding to the user field belongs to itself by reading the user field. Then, the STA can determine the resource unit allocated to itself by combining the position where the user field appears and the corresponding resource unit allocation subfield.
  • FIG. 3B is a schematic diagram of another possible structure of the signaling field.
  • the resource unit allocation subfield 1 is 00001111.
  • the resource units indicated by the transmission resource unit allocation subfield 1 can be determined as 52-tone RU, 52-tone RU, 26-tone RU, 52-tone RU and 52-tone RU.
  • the user-specific field part there are n user fields, among which user field 1, for field 2, user field 3, user field 4, and user field 5. These 5 user fields correspond to 52-tone RU and 52-tone RU respectively. , 26-tone RU, 52-tone RU and 52-tone RU.
  • the 52-tone RU, 52-tone RU, 26-tone RU, 52-tone RU, and 52-tone RU indicated by the resource unit allocation subfield 1 are respectively allocated to the STA1 corresponding to the user field 1 and the corresponding STA1 to the user field 2.
  • the resource unit corresponding to each user field is determined based on the correspondence between the order of the resource units indicated by the resource unit allocation subfield and the order of the user fields in the user-specific field. Then the HE-SIG-B sent to each site contains all the user fields corresponding to each resource unit allocation subfield, so as to ensure that the STA can allocate the subfields according to the position where the user field appears in combination with the corresponding resource unit. Determine the resource unit allocated to itself.
  • FIG. 4A is a schematic diagram of the structure of the PPDU involved in the present application.
  • a structure of frequency domain segmentation (segment) as shown in FIG. 4A is provided.
  • the AP sends PPDUs to STAs parked in multiple frequency domain fragments.
  • the aforementioned docking refers to a corresponding relationship determined or known by the system, which is semi-static, that is, the corresponding relationship between frequency domain fragments and one or more docked sites is configured, and within a certain period of time constant.
  • each frequency domain slice is 80 MHz.
  • bandwidth granularities such as 40 MHz, 160 MHz, etc., can also be used.
  • the respective embodiments do not involve the specific process of configuring the docking relationship, and thus will not be described in detail.
  • the site parking described in this application is in a certain frequency domain fragment, which can also be referred to as a station residing in a certain frequency domain fragment, or a station located in or belonging to a certain frequency domain fragment .
  • frequency domain segmentation may also be referred to as frequency domain segmentation.
  • FIG 4B is a schematic diagram of the PPDU structure.
  • PPDU includes traditional short training field (Legacy Short Training Field, L-STF), traditional long training field (Legacy Long Training Field, L-LTF), traditional signaling field (Legacy Signal Field, L-SIG), and repeated traditional signaling Field (RL-SIG), universal signaling field U-SIG (universal SIG, U-SIG), ultra-high throughput signaling field or extremely high throughput signaling field (extremely high throughput, EHT-SIG), EHT short Training field (EHT-STF), EHT long training field (EHT-LTF) and data (data).
  • L-STF Long Training Field
  • L-LTF traditional signaling field
  • RL-SIG repeated traditional signaling Field
  • U-SIG universal signaling field U-SIG (universal SIG, U-SIG)
  • ultra-high throughput signaling field or extremely high throughput signaling field extreme
  • L-STF, L-LTF, L-SIG, RL-SIG, U-SIG, EHT-SIG, EHT-STF, EHT-LTF are parts of the physical layer header (or preamble) of the PPDU structure.
  • L-STF, L-LTF, and L-SIG can be understood as traditional preamble fields to ensure the coexistence of new equipment with traditional equipment.
  • RL-SIG is used to enhance the reliability of traditional signaling fields.
  • U-SIG and EHT-SIG are signaling fields.
  • U-SIG is used to carry some common information, such as information indicating the PPDU version, information indicating the uplink/downlink, information indicating the frequency domain bandwidth of the PPDU, and puncturing indication information.
  • the EHT-SIG includes information indicating resource allocation and information indicating data demodulation.
  • the field in the PPDU in the 802.11be scenario is used as an example for description.
  • the fields in the PPDU mentioned in the embodiments of this application are not limited to fields related to 802.11be, and the fields in the PPDU mentioned in the embodiments of this application may also be fields related to standard versions after 802.11be.
  • the fields of the preamble part of the PPDU are respectively carried on each frequency domain fragment, that is, the preamble part of the PPDU includes one or more frequency domain fragment content, for example, the first frequency domain
  • the fragmented content includes the first traditional preamble field, the first U-SIG, and the first EHT-SIG;
  • the second frequency domain fragmented content includes the second traditional preamble field, the second U-SIG, and the second EHT- SIG.
  • the U-SIG transmitted by each frequency domain fragment may only contain the puncturing indication information of its own frequency domain fragment.
  • the puncturing indication field may be set to 1 bit.
  • the overhead of U-SIG transmission for each frequency domain fragmentation can be saved.
  • most of the fields in the U-SIG part are general fields that each STA needs to receive, only a few fields related to each STA (for example, puncturing indication) can be used to save overhead, so the effect of saving overhead is not obvious.
  • FIG. 5 is a schematic flowchart of a method for sending the preamble part of a PPDU according to an embodiment of the application.
  • a method for sending the preamble part of the PPDU is provided.
  • the method for transmitting the preamble part of the PPDU includes:
  • the AP generates a preamble part of a PPDU, the preamble part in the PPDU includes one or more frequency domain fragmented content, and the frequency domain fragmented content includes at least the completeness of a site parked on the corresponding frequency domain fragment Scheduling information.
  • the completeness refers to a frequency domain slice. If the station that stops at this time is scheduled, the scheduling information of these stations is carried on the corresponding frequency domain slice, including resource allocation information and station related information ( For example, for the resource allocation field of the docked station and all the user fields of the scheduled docking station, the specific structure will be described in detail in other embodiments).
  • the resource units allocated to the site where it stops need not all be on the frequency domain slice where it stops, but may be allocated to any of the entire channel bandwidth according to resource and service requirements.
  • the location, that is, the resource unit allocation subfields of the stopped stations for indicating resource allocation are all transmitted on the frequency domain fragment, but the data fields of these stations may not be transmitted on the frequency domain fragment.
  • only the stopped stations may be allocated to the stopped frequency domain slices.
  • the stopped stations can be allocated to a part of the frequency band of the channel bandwidth.
  • the signaling field of the PPDU is transmitted on the frequency domain fragment where the station is docked, and the resource unit in the signaling field of the PPDU is allocated.
  • the resource unit indicated by the field may belong to the frequency domain segment where the site stops, or may not belong to the frequency domain segment where the site stops. In other words, the frequency domain fragmentation of the site stop referred to in this application may be different from the frequency band range of the site for data transmission.
  • the above-mentioned PPDU includes a traditional preamble field, a signaling field, and data.
  • the signaling field may include U-SIG and EHT-SIG, for example.
  • the traditional preamble field may be consistent with the traditional preamble field in FIG. 4A or FIG. 4B.
  • U-SIG is used to carry the public information that needs to be received by the stations parked in the frequency domain fragmentation.
  • U-SIG may include, for example, information indicating the PPDU version, information indicating uplink/downlink, information indicating the frequency domain bandwidth of the PPDU, puncturing indication information, and the like.
  • the EHT-SIG is used to carry at least the complete scheduling information of the stations parked in the frequency domain fragment.
  • the AP sends the corresponding frequency domain fragment content on the corresponding frequency domain fragment. That is, the content of the first frequency domain fragment is sent on the first frequency domain fragment, and the content of the second frequency domain fragment is sent on the second frequency domain fragment.
  • a station receives the frequency domain fragment content corresponding to the frequency domain fragment in the preamble part of the PPDU from the stopped frequency domain fragment, and the frequency domain fragment content includes the frequency domain fragment that is stopped by the frequency domain fragment.
  • Complete scheduling information of the scheduled station for example, the resource allocation field for the docked station and all user fields of the scheduled docked station).
  • the station obtains its own scheduling information according to the foregoing information.
  • a station docking at a certain frequency domain fragment only needs to obtain the signaling field part in the preamble part corresponding to the frequency domain fragment, and does not need to obtain the signaling field part under the full channel bandwidth.
  • a station docked at a frequency domain fragment can only transmit on a certain frequency band in the channel bandwidth.
  • the signaling field of each frequency domain fragment transmission only the transmission is related to the frequency domain.
  • the signaling fields related to the frequency band range corresponding to the fragments do not need to transmit the signaling fields under the full channel bandwidth in each frequency domain fragment.
  • each frequency domain fragment can correspond to a preset frequency band range, which can be understood as the frequency band range of the RU allocated by the STA that stops at the frequency domain fragment, or can be understood as the frequency domain fragment The frequency band range for the STA to transmit data. In this way, a frequency domain fragment can only transmit a part of the signaling fields related to the frequency band range, so as to reduce the signaling field overhead of a frequency domain fragment transmission.
  • the signaling field in the frequency domain fragmentation includes the resource unit allocation subfield corresponding to the above-mentioned frequency band range, and at least includes the stations in the frequency domain fragment that are allocated on the RU indicated by the resource unit allocation subfield.
  • the user field includes the resource unit allocation subfield corresponding to the above-mentioned frequency band range, and at least includes the stations in the frequency domain fragment that are allocated on the RU indicated by the resource unit allocation subfield.
  • the signaling field may include a field indicating the channel bandwidth for transmitting the PPDU.
  • the AP indicates to the STA that the total channel bandwidth is 320Mhz through the field indicating the bandwidth in the signaling field, and the 320Mhz is divided into 4 frequency domain fragments.
  • the first frequency domain fragment is the first 80MHz
  • the second frequency domain fragment is the second 80MHz
  • the third frequency domain fragment is the third 80MHz
  • the fourth frequency domain fragment is the fourth 80MHz.
  • the STA docked in the first frequency domain fragment is called the first STA
  • the STA docked in the second frequency domain fragment is called the second STA
  • the STA docked in the third frequency domain fragment is called The third STA
  • the STA parked in the fourth frequency domain fragment is called the fourth STA.
  • the stopped station can be allocated to an RU at any position on the entire channel bandwidth.
  • the frequency band corresponding to each frequency domain fragment is 320 MHz of the aforementioned complete channel bandwidth for transmitting PPDUs.
  • Each frequency domain fragment transmits the signaling field of the complete channel bandwidth.
  • Fig. 6A is a schematic structural diagram of a PPDU provided by an embodiment of the present application.
  • the signaling field of each frequency domain fragmented transmission for example, in EHT-SIG, contains a resource unit allocation subfield indicating a complete channel bandwidth of 320 MHz.
  • each resource unit allocation subfield has a granularity of 20 MHz, indicating an RU allocation corresponding to 20 MHz.
  • this application is not limited to the granularity of each resource unit allocation subfield with 20 MHz.
  • each resource unit allocation subfield has a granularity of 20MHz and indicates an RU allocation corresponding to 20MHz
  • the signaling field of each frequency domain fragment transmission contains 16 resource unit allocation subfields.
  • the stopped station in at least one frequency domain slice, is allocated to a part of the frequency band range of the channel bandwidth.
  • the frequency band range corresponding to at least one frequency domain slice is smaller than the complete channel bandwidth 320 MHz for transmitting the PPDU.
  • FIG. 6B is another schematic diagram of the structure of the PPDU provided by the embodiment of the present application.
  • the signaling field of the range may only include the resource unit allocation subfield that indicates the RU allocation of the frequency band range corresponding to the frequency domain fragment, and the user field corresponding to the resource unit allocation subfield , The resource allocation information of other frequency bands may not be included, thereby reducing overhead.
  • each frequency domain fragment does not refer to the "80 MHz" of each frequency domain fragment transmission signaling field mentioned in the above example. It can be understood with the following specific examples.
  • the frequency band range corresponding to the first frequency domain slice is the 320 MHz.
  • the frequency band range for the first STA to receive data is the 320 MHz.
  • the number of resource unit allocation subfields included in the signaling field transmitted by the AP in the first frequency domain slice (the first 80MHz) is 16, which respectively indicate the allocation of RUs for every 20MHz in the 320MHz.
  • the frequency band corresponding to the second frequency domain fragmentation is the second 80 MHz of the 320 MHz.
  • the frequency band range for the second STA to receive data is the 80 MHz.
  • the signaling field transmitted in the second frequency domain fragment is the signaling field corresponding to the 80 MHz. Only 4 resource unit allocation subfields included in the signaling field transmitted in the second frequency domain fragmentation are required, which respectively indicate RU allocation for every 20 MHz in the 80 MHz.
  • the frequency band range corresponding to the third frequency domain slice is 160 MHz of the highest frequency among the 320 MHz.
  • the frequency band range for the third STA to receive data is the 160 MHz.
  • the signaling field transmitted in the third frequency domain fragment is the signaling field corresponding to the 160 MHz. Only 8 resource unit allocation subfields included in the signaling field transmitted in the third frequency domain fragment are needed, which respectively indicate the RU allocation of every 20 MHz in the 160 MHz.
  • the frequency band corresponding to the fourth frequency domain slice is 80 MHz of the highest frequency among the 320 MHz.
  • the frequency band range for the fourth STA to receive data is the 80 MHz.
  • the signaling field transmitted in the fourth frequency domain fragment is the signaling field corresponding to the 80 MHz. Only 4 resource unit allocation subfields included in the signaling field transmitted in the fourth frequency domain fragment are needed, which respectively indicate the allocation of RUs for every 20 MHz in the 80 MHz.
  • the stops at each frequency domain fragment are only allocated to the stopped frequency domain fragment.
  • the frequency band range corresponding to each frequency domain fragment is the same as the frequency domain fragment to which it stops.
  • FIG. 6C is another schematic diagram of the structure of the PPDU provided by the embodiment of the present application. Two 80MHz, the third frequency domain slice corresponds to the third 80MHz frequency band, and the fourth frequency domain slice corresponds to the fourth 80MHz frequency band. Then, only 4 resource unit allocation subfields included in each frequency domain fragment are required.
  • the signaling field of each frequency domain fragment transmission needs to include 16 resource unit allocation subfields indicating the complete channel bandwidth.
  • the signaling field of the frequency domain fragmented transmission does not need to include 16 resource unit allocation subfields indicating the complete channel bandwidth.
  • the user field corresponds to the resource unit allocation subfield, and the resource unit allocation subfield in the signaling field is reduced, and the user field is also reduced accordingly.
  • each frequency domain fragment only transmits the signaling field of the frequency band range corresponding to the frequency domain fragment.
  • the scheduling information of the STA of the slice which can save the overhead of the signaling field.
  • the signaling field may include a field indicating the frequency band division corresponding to each frequency domain fragment. In this way, it is possible to flexibly configure the corresponding frequency band range for each fragment, thereby making RU allocation more flexible.
  • each frequency domain slice corresponds to a preset frequency band range.
  • the user field in the signaling field of each frequency domain fragment transmission corresponds to at least one RU in the preset frequency band range corresponding to the frequency domain fragment.
  • the preset frequency band corresponding to the first frequency domain fragmentation is 160 MHz.
  • any user field in the signaling field transmitted by the first frequency domain fragmentation at least corresponds to at least one RU in the 160 MHz carrier frequency range.
  • the frequency band range corresponding to each frequency domain fragment is preset. In the signaling field of the PPDU, it is not necessary to indicate the frequency band range corresponding to each frequency domain fragment, which can further save the overhead of the signaling field.
  • Each frequency domain fragment corresponding to a preset frequency band range refers to the frequency band range in which the RU allocated for the STA parked in the frequency domain fragment is located.
  • the STA of each frequency domain fragment receives data at the RU within the preset frequency band corresponding to the frequency domain fragment.
  • the preset frequency band range corresponding to each frequency domain fragment please refer to the explanation of the frequency band range corresponding to each frequency domain fragment in the foregoing embodiment, which will not be repeated here.
  • the 320MHz channel bandwidth is divided into 4 frequency domain slices, and the bandwidth of each frequency domain slice is 80 MHz.
  • the first frequency domain fragment is the first 80MHz
  • the second frequency domain fragment is the second 80MHz
  • the third frequency domain fragment is the third 80MHz
  • the fourth frequency domain fragment is the fourth 80MHz.
  • the preset frequency band range corresponding to the first frequency domain slice is the 320 MHz.
  • the preset frequency band ranges corresponding to the frequency domain fragments other than the first frequency domain fragment are all consistent with the frequency band range of the frequency domain fragment. That is, the preset frequency range corresponding to the second frequency domain fragment is the second 80MHz, the preset frequency range corresponding to the third frequency domain fragment is the third 80MHz, and the preset frequency band corresponding to the fourth frequency domain fragment The range is the fourth 80MHz.
  • the preset frequency band range corresponding to the first frequency domain slice is the 320 MHz.
  • the preset frequency range corresponding to the second frequency domain fragment is consistent with the frequency domain fragment of the frequency domain fragment, that is, the preset frequency range corresponding to the second frequency domain fragment is the second 80 MHz.
  • the preset frequency range corresponding to the third frequency domain fragment is 160 MHz, which is the highest frequency 160 MHz in the 320 MHz channel bandwidth for transmitting the PPDU.
  • the preset frequency range corresponding to the fourth frequency domain fragment is consistent with the frequency domain of the frequency domain fragment, that is, the preset frequency range corresponding to the fourth frequency domain fragment is 80 MHz of the highest frequency among the 320 MHz.
  • the preset frequency band range corresponding to the first frequency domain slice is the 320 MHz.
  • the preset frequency range corresponding to the second frequency domain slice is 240 MHz, that is, the preset frequency range corresponding to the second frequency domain slice is 240 MHz with the lowest frequency among 320 MHz.
  • the preset frequency range corresponding to the third frequency domain fragmentation is 160 MHz. That is, the preset frequency band range corresponding to the third frequency domain slice is 160 MHz of the highest frequency among the 320 MHz.
  • the preset frequency range corresponding to the fourth frequency domain fragment is consistent with the frequency domain fragment of the frequency domain fragment, that is, the preset frequency range corresponding to the fourth frequency domain fragment is 80 MHz of the highest frequency among the 320 MHz.
  • a method for setting resource unit allocation subfields and user fields in the signaling field of the PPDU is provided, which is similar to the foregoing steps 101-102, 201- Compared with the method corresponding to 202, each field of the content of each frequency domain fragment can be simplified separately, and it is only used to indicate the complete scheduling information of the station parked on the corresponding frequency domain fragment, so as to further reduce the signaling. Overhead. It should be understood that the solution in this embodiment can be implemented separately or in combination with the solution in the foregoing embodiment.
  • the common field and user-specific field in the signaling field of a frequency domain fragmented content can be simplified respectively:
  • Each resource unit allocation subfield of the common field only focuses on the allocation of the resource blocks of the scheduled stations among the stations parked on the current frequency domain slice.
  • the above-mentioned focus refers to the fact that a station may be allocated to any resource block of the channel bandwidth, and each resource unit allocation subfield needs to cover or indicate the result of the resource block division of the entire channel bandwidth. However, it can only be allocated to the station that is allocated to stop.
  • the allocated resource unit provides accurate information, and other unrelated resource units only provide simplified (or fuzzy) information.
  • the user-specific field may include the user field of the scheduled station in the station that is parked in the current frequency domain slice, and the user field of the station that is not parked in the frequency domain slice can be completely omitted, or a part of it can be omitted.
  • the station only receives the signaling field in the preamble part on the stopped frequency domain fragment.
  • the resource unit allocation subfield and user-specific field part of the signaling field in the PPDU will be set according to the situation of the docking station in a certain frequency domain fragment to solve the problem of reducing the signal. Make the field part of the instruction overhead problem.
  • the number of RUs and the number of users indicated by the resource unit allocation subfield included in the signaling field in the PPDU For at least one of the number of fields, a simplified indication of "spoofing" or “false” or “unreal” is adopted, that is to say, for a station parked in a certain frequency domain fragment, the number of PPDUs sent to it by the AP
  • the number of resource units that are not allocated to the stations in the frequency domain slice may not be the number of real resource units, and the number of resource units corresponding to the user field
  • the number may not be real, but the number of resource units allocated to the site docked in the frequency domain fragment and the number of user fields corresponding to the resource unit are real, which does not affect the acquisition of the site docked in the frequency domain fragment Its real allocated resource unit.
  • the first way to implement simplified instructions is to transmit PPDUs to stations parked in a certain frequency domain segment, and the signaling field of the PPDU is transmitted on the frequency domain segment.
  • the resource unit allocation subfield indicates that the number of user fields corresponding to the resource unit is 0.
  • the corresponding user field is not set in the user-specific field of the signaling field; that is, the number of user fields corresponding to the resource unit is 0; this saves the number of user fields in the user-specific field, thereby saving instructions Overhead.
  • the user-specific field part only includes the user field of the STA docking in the frequency domain fragment.
  • the resource unit allocation subfield of the signaling field of the frequency domain fragment transmission indicates that The number of user fields corresponding to the resource unit is 0.
  • the user field corresponding to the large RU is not set, and the resource unit allocation subfield indicates that the user field corresponding to the large RU is 0.
  • the simplified indication of the user field is not set according to the actual situation, and the user field corresponding to the large RU that is not allocated to the STA docking in the frequency domain fragment can be omitted.
  • the second way to achieve simplified indication is: when transmitting a PPDU to a station docked in a certain frequency domain fragment, the signaling field of the PPDU is transmitted on the frequency domain fragment.
  • Multiple resource units of the site of the slice on the one hand, treat them as larger resource units as much as possible and indicate them through the resource unit allocation subfield.
  • the number of RUs indicated by the resource unit allocation subfield is less than the actual number of RUs that are not allocated to stations docking in the current frequency domain fragment;
  • the user field corresponding to the RU of the site of the slice should be as small as possible.
  • the number of user fields can be as small as possible than the number of user fields corresponding to the actual resource unit, so as to save the number of user fields in the user-specific fields , Thereby saving instruction overhead.
  • Such a simplified indication method simplifies the resource unit allocation subfields, and saves at least a part of the user fields of the sites that are not in the frequency domain fragments.
  • an RU corresponding to 20 MHz includes at least one RU allocated to the STA docking in the current frequency domain fragment, and at least two second RUs that are not allocated to the STA docking in the current frequency domain fragment.
  • at least two second RUs may be regarded as a larger RU, and the corresponding resource unit allocation subfield is used to indicate.
  • the user-specific field part only the user field corresponding to the larger RU needs to be set, and the number of user fields is set as small as possible.
  • the at least two second RUs correspond to at least two user fields. Then such a simplified instruction method can reduce the number of user fields as much as possible.
  • the resource unit allocation subfield indicates the larger RU, the number of its corresponding user fields shall be as small as possible, for example, 1.
  • an embodiment of the present application provides a data transmission method.
  • This data transmission method is used to transmit PPDUs, and the overhead of the signaling field in the PPDU is saved by adopting the above-mentioned simplified indication manner.
  • FIG. 7A is a schematic flowchart of a data transmission method according to an embodiment of the application.
  • the embodiment of this application is described with the example of AP sending PPDU to STA.
  • the data transmission method of this application is also applicable to scenarios where AP sends PPDU to AP, STA sends PPDU to STA, and in different scenarios, the transmitted PPDU and
  • the names of the signaling fields are different, but their functions and functions are similar, which are not repeated in the embodiment of the present application.
  • the channel bandwidth for the AP to transmit PPDUs to the STA includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain fragment; each frequency domain fragment has several STAs docked .
  • the number of stops at a frequency domain fragment can be any number greater than or equal to zero.
  • the signaling fields of the PPDU include, but are not limited to, public fields and user-specific fields.
  • the common fields include resource unit allocation subfields.
  • User-specific fields include user fields.
  • S701 The AP generates the signaling field of the PPDU
  • Step S701 can be implemented by the processor of the AP. That is, the processor of the AP generates the signaling field of the PPDU.
  • the indication mode of the signaling field transmitted in the first frequency domain fragment is indicated by using at least one of the above-mentioned simplified indication modes.
  • the signaling field can refer to EHT-SIG, U-SIG and EHT-SIG.
  • the signaling field in the embodiment of the present application is not limited to the SIG field in 802.11be, and the signaling field in the embodiment of the present application may also be a SIG field related to the standard version after 802.11be.
  • the resource unit allocation subfield may be indicated by an entry in the resource unit allocation subfield (RU allocation subfield, RA subfield) table.
  • the resource unit allocation subfield can be indicated by the entry in Table 1, or by the entry in Table 2 or Table 3, or by the entry in Table 2 or Table 3, combined with Table 4 or Table 5.
  • the AP sends the signaling field of the PPDU.
  • Step S702 can be implemented by the transceiver of the AP. That is, the AP's transceiver transmits PPDUs.
  • the STA docking in the first frequency domain fragment receives the PPDU sent by the AP, and obtains the user field carrying the STA's identifier from the user field included in the user specific field, and then obtains the transmission on the RU corresponding to the user field The data.
  • the transceiver of the STA receives the PPDU sent by the AP.
  • the processor of the STA obtains the user field carrying the identifier of the STA from the user field included in the user specific field, and then obtains the RU corresponding to the user field, and receives data from the RU.
  • the following describes the resource unit indication subfield and the user field in the signaling field when two simplified indication methods are used.
  • the resource unit allocation subfield in the signaling field is indicated by the first simplified indication manner described above.
  • the number of user fields indicated by the resource unit allocation subfield corresponding to the large RU in the signaling field indicates the number of user fields that the RU contributes to a content channel in the user-specific field, and the user
  • the field is a user field corresponding to the STA docked on the first frequency domain fragment.
  • the user field includes the identification of the corresponding STA.
  • the signaling field transmitted by each frequency domain fragment can be transmitted by two or more than two content channels (Content Channel, CC). Each CC transmits part of the signaling field.
  • the channel bandwidth for transmitting PPDU is 320MHz.
  • the signaling field of the PPDU transmitted in the first frequency domain fragmentation is transmitted by CC1 and CC2.
  • the signaling field of the first frequency domain fragmented transmission contains 16 resource unit allocation subfields, then these 16 resource unit allocation subfields can be numbered in order, and the odd numbered resource unit allocation subfields can be transmitted in CC1,
  • the even-numbered resource unit allocation subfield is transmitted in CC2.
  • the user field corresponding to the resource unit allocation subfield of the CC is also transmitted.
  • the user field corresponding to the odd-numbered resource unit allocation subfield is transmitted on CC1
  • the user field corresponding to the even-numbered resource unit allocation subfield is transmitted on CC2.
  • the resource unit allocation subfield indicates the RU included in the channel bandwidth for transmitting the PPDU, and the number of user fields that the RU contributes to the user-specific field in the corresponding content channel.
  • the resource unit allocation subfield indicates that among the resource units RU included in the channel bandwidth for transmitting the PPDU, the number of user fields corresponding to the RU allocated to the STA that is not docked in the first frequency domain fragment is 0. .
  • the resource unit allocation subfield indicates that in the resource unit RU included in the channel bandwidth for transmitting the PPDU, the number of user fields corresponding to the RU is 0, indicating that the RU is not allocated to the STA docking on the first frequency domain slice.
  • the signaling field of the first frequency domain fragment transmission indicates one or more RUs, and indicates that the number of user fields corresponding to the large RU allocated to the STA that is not docked in the first frequency domain fragment is 0 .
  • a corresponding user field is set, and the user field carries the site identifier; and for non-docking in the first For the large RU of the STA that is fragmented in the frequency domain, the corresponding user field is not set. In this way, the number of user fields in the signaling field can be reduced, so that the overhead of the signaling field can be saved.
  • FIG. 7B is a schematic diagram of the structure of the PPDU transmitted by each frequency domain fragment of the PPDU.
  • the signaling field of the PPDU transmitted by each frequency domain fragment is different, and among the signaling fields in the PPDU transmitted by each frequency domain fragment, the PPDU transmitted by each frequency domain fragment is
  • the resource unit allocation subfield in the signaling field is divided into two parts, which are respectively transmitted in two CCs.
  • the user field in the signaling field in the PPDU transmitted in each frequency domain fragment is also divided into two parts, respectively. Two CC transmissions.
  • the allocation of resource units indicated by the resource unit allocation subfield in the signaling field of a frequency domain fragmented transmission is different.
  • the resource unit allocation subfield in the signaling field of the frequency domain fragment is indicated in accordance with the actual situation for the RU and corresponding user field allocated to the STA that is parked in the frequency domain fragment.
  • the RU and the corresponding user field of the STA of this frequency domain fragmentation are not necessarily indicated according to actual conditions.
  • the user field in the signaling field of a frequency domain fragmented transmission is also different.
  • the RU corresponding to the STA docking in the frequency domain fragment is allocated to the corresponding user field.
  • the user field It contains the identifier of the STA docked in the frequency domain fragment; the RU that is not allocated to the STA corresponding to the STA docked in the frequency domain fragment has no user field set or the number of user fields is 0.
  • the multiple RUs indicated by the resource unit allocation subfield in the signaling field of the first frequency domain fragment transmission include the first RU and the second RU.
  • RU of the STA; the second RU is a large RU that is not allocated to the STA of the first frequency domain fragment;
  • the user-specific field part of the signaling field transmitted by the first frequency domain fragment includes the user field corresponding to the first RU, and the user field carries the identifier of the STA docking in the first frequency domain fragment; the user-specific field part Does not include the user field corresponding to the second RU.
  • the second RU may actually be one or more RUs that are not allocated to STAs parked in the first frequency domain fragment.
  • the RUs that are not allocated to STAs docked in the first frequency domain fragment may be one or more RUs allocated to STAs that are docked in frequency domain fragments other than the first frequency domain fragment, or may be one or more RUs that are not allocated to any STA.
  • the following example illustrates a scenario where the channel bandwidth for transmitting PPDU is 320 MHz, and the channel bandwidth for transmitting PPDU is divided into 4 frequency domain fragments.
  • the first frequency domain slice is the first 80MHz
  • the second frequency domain slice is the second 80MHz
  • the third frequency domain slice is the third 80MHz
  • the fourth frequency domain slice is This is the fourth 80MHz.
  • the first signaling field of the first frequency domain fragment transmission corresponding to one 80 MHz and the second signaling field of the second frequency domain fragment transmission corresponding to the second 80 MHz are specifically used for illustration.
  • the signaling fields of the third frequency domain fragmented transmission corresponding to the third 80 MHz and the signaling fields of the fourth frequency domain fragmented transmission corresponding to the four 80 MHz are not listed in the embodiment of the present application.
  • FIG. 8A is a schematic diagram of a resource unit allocation scenario according to an embodiment of the present application.
  • the actual situation of the resource unit allocation corresponding to the 320MHz channel bandwidth is that the 40MHz of the lowest frequency in the first 80MHz corresponds to a 484-tone RU, and the 484-tone RU is allocated to stop in the first frequency domain.
  • the highest frequency 40MHz in the first 80MHz corresponds to a 484-tone RU, and the 484-tone RU is allocated to two STAs parked in the first frequency domain fragment.
  • the second lowest frequency of 80MHz, 20MHz corresponds to a 242-tone RU.
  • the 242-tone RU is allocated to the 4 STAs docking in the second frequency domain fragment; the next 20MHz frequency corresponds to 9 26-tone RUs. , These 9 26-tone RUs are respectively allocated to 9 STAs parked in the second frequency domain fragment.
  • the 40MHz with the highest frequency in the second 80MHz corresponds to 484-tone RU.
  • This 484-tone RU is allocated to an STA docking in the first frequency domain fragment; the allocation of RUs corresponding to the third 80Mhz and the fourth 80Mhz Not indicated.
  • Fig. 8B is a schematic structural diagram of a content channel according to an embodiment of the present application.
  • the first signaling field transmitted by the first frequency domain fragmentation is sent through two CCs, and the two CCs are CC1 and CC2 respectively.
  • the signaling field of the first frequency domain fragmented transmission includes a resource unit allocation subfield 1 to a resource unit allocation subfield 16.
  • the resource unit allocation subfield 1 to the resource unit allocation subfield 16 respectively correspond to one 20 MHz of 320 MHz.
  • the resource unit allocation subfield with an odd number is transmitted in CC1
  • the resource unit allocation subfield with an even number is transmitted in CC2.
  • the length of the common field uploaded and transmitted by each CC can be effectively shortened.
  • FIG. 8C is a schematic diagram of the structure of a signaling field in an embodiment of the present application.
  • the resource unit allocation subfield 1 indicates 484-tone RU, and indicates that the number of user fields corresponding to the 484-tone RU included in CC1 is 1.
  • the resource unit allocation subfield 2 indicates 484-tone RU, and indicates that the number of user fields corresponding to the 484-tone RU included in CC2 is one.
  • the resource unit allocation subfield 3 indicates 484-tone RU, and indicates that the number of user fields corresponding to the 484-tone RU included in CC1 is one.
  • the resource unit allocation subfield 4 indicates 484-tone RU, and indicates that the number of user fields corresponding to the 484-tone RU included in CC2 is one.
  • the resource unit allocation subfield 5 indicates 484-tone RU, and indicates that the number of user fields corresponding to the 484-tone RU included in CC1 is one.
  • the resource unit allocation subfield 6 indicates 484-tone RU, and indicates that the number of user fields corresponding to the 484-tone RU included in CC2 is one.
  • the resource unit allocation subfield 7 indicates 484-tone RU, and indicates that the number of user fields corresponding to the 484-tone RU included in CC1 is one.
  • the resource unit allocation subfield 8 indicates 484-tone RU, and indicates that the number of user fields corresponding to the 484-tone RU included in CC1 is 0.
  • the STA docking in the frequency domain slice can determine the RU corresponding to each user field according to the order of the RUs corresponding to the resource unit allocation subfields in each CC in the frequency domain slice and the order of the user fields in the CC.
  • STA1 parked in the first frequency domain slice can determine the first 484-tone RU corresponding to 40MHz, the lowest frequency of 80MHz, according to the order of the RU indicated by the resource unit allocation subfields in CC1 and CC2 and the order of the user field.
  • the corresponding user field is 1a
  • the identification information of the STA1 carried in the user field 1a the STA1 determines that the 484-tone RU is an RU allocated to itself.
  • the STA2 docking in the first frequency domain fragment determines that the 484-tone RU is the RU allocated to itself according to the user field 2a and the identification information of the STA2 carried in the user field 2a.
  • the STA3 parked in the first frequency domain segment can determine the 484-tone RU corresponding to the first 80MHz highest frequency 40MHz according to the identification information of the STA3 carried in the user field 3a as the RU allocated to it.
  • the STA4 parked in the first frequency domain fragment can determine the 484-tone RU corresponding to the first 80MHz highest frequency 40MHz as the RU allocated to itself according to the identification information of the STA4 carried in the user field 4a.
  • the STA5 parked in the first frequency domain segment can determine, according to the identification information of the STA5 carried in the user field 5a, that the 484-tone RU corresponding to the highest frequency 40 MHz in the second 80 MHz is the RU allocated to itself.
  • the resource unit allocation subfield indicates that the 40MHz of the lowest frequency in the second 80MHz corresponds to 484-tone RU, and the user corresponding to this 484-tone RU
  • the number of fields is 0.
  • the RU corresponding to the 40MHz is actually a 242-tone RU and nine 26-tone RUs, both of which are not allocated to STAs docking in the frequency domain fragment.
  • the STA parked in the first frequency domain fragment does not need to care about which STA is allocated to this 242-tone RU and the nine 26-tone RUs.
  • the resource unit allocation subfield may not indicate the 242-tone RU and the nine 26-tone RUs according to the actual situation, and the user-specific field part does not need to set the user field according to the actual situation.
  • the user-specific field segment needs to set one user field corresponding to the 242-tone RU (assuming that the 242-tone is only allocated to one STA), which corresponds to 9 26-tone RUs.
  • the user-specific field part of the first signaling field does not set user fields corresponding to this 242-tone RU and 9 26-tone RUs, so at least 10 user fields can be saved , To reduce the overhead of the signaling field.
  • the one 242-tone RU and the nine 26-tone RUs are regarded as one 484-tone RU for indication.
  • the combined indication of the two 484-tone RUs corresponding to the lowest frequency of 80 MHz of the channel bandwidth for transmitting the PPDU is one 996-tone RU. This can make the resource unit allocation subfield indication simpler and clearer.
  • the first 484-tone RU corresponding to 40 MHz with the lowest frequency of 80 MHz is allocated to the two users docking in the first frequency domain fragment.
  • Resource unit allocation subfield 1 and resource unit allocation subfield 2 indicate the 484-tone RU.
  • the resource unit allocation subfield 1 indicates that there is one user field in CC1 corresponding to the 484-tone RU.
  • the user-specific field part of CC1 includes the user field 1a corresponding to the 484-tone RU.
  • the resource unit allocation subfield 3 indicates that there is one user field corresponding to the 484-tone RU in CC2.
  • the user-specific field part of CC1 includes the user field 3a corresponding to the 484-tone RU.
  • the multiple user fields corresponding to the 484-tone RU are equally distributed as far as possible to be transmitted in CC1 and CC2, so that the number of user fields transmitted by each CC can be more balanced.
  • the second signaling field of the PPDU is transmitted through the second frequency domain fragment.
  • the second signaling field is transmitted on two CCs, which are CC3 and CC4, respectively.
  • the second signaling field of the second frequency domain fragmented transmission includes a resource unit allocation subfield 17 to a resource unit allocation subfield 32. In the descending order of frequency, the resource unit allocation subfield 17 to the resource unit allocation subfield 32 respectively correspond to one 20 MHz of 320 MHz.
  • the resource unit allocation subfield with an odd number is transmitted in CC3
  • the resource unit allocation subfield with an even number is transmitted in CC4.
  • the length of the common field uploaded and transmitted by each CC can be effectively shortened.
  • FIG. 8D is a schematic structural diagram of a content channel according to another embodiment of the present application.
  • FIG. 8E is a schematic structural diagram of a signaling field according to another embodiment of the present application.
  • the resource unit allocation subfield 17 indicates 996- tone RU, and indicates that the number of user fields corresponding to the 996-tone RU included in CC3 is 0.
  • the resource unit allocation subfield 18 indicates 996-tone RU, and indicates that the number of user fields corresponding to the 996-tone RU included in CC4 is 0.
  • the resource unit allocation subfield 19 indicates 996-tone RU, and indicates that the number of user fields corresponding to the 996-tone RU included in CC3 is 0.
  • the resource unit allocation subfield 20 indicates 996-tone RU, and indicates that the number of user fields corresponding to the 996-tone RU included in CC4 is 0.
  • the resource unit allocation subfield 21 indicates 242-tone RU, and indicates that the number of user fields corresponding to the 242-tone RU included in CC3 is 4.
  • the resource unit allocation subfield 22 indicates nine 26-tone RUs, and indicates that the number of user fields corresponding to the nine 26-tone RUs included in CC4 is nine.
  • the resource unit allocation subfield 23 indicates 484-tone RU, and indicates that the number of user fields corresponding to the 484-tone RU included in CC3 is zero.
  • the resource unit allocation subfield 8 indicates 484-tone RU, and indicates that the number of user fields corresponding to the 484-tone RU included in CC4 is 0.
  • the STA docking in the frequency domain slice can determine the RU corresponding to each user field according to the order of the RUs corresponding to the resource unit allocation subfields in each CC in the frequency domain slice and the order of the user fields in the CC.
  • the STA6 docking in the second frequency domain slice can determine the 242-tone RU corresponding to the lowest frequency 20MHz in the second 80MHz as the RU allocated to itself according to the identification information of the STA6 in the user field 1b.
  • the STA7 parked in the second frequency domain slice can determine the 242-tone RU corresponding to the 20MHz of the lowest frequency in the second 80MHz according to the identification information of the STA7 in the user field 2b as the RU allocated to it.
  • the STA8 parked in the second frequency domain slice can determine the 242-tone RU corresponding to the lowest frequency 20MHz in the second 80MHz as the RU allocated to itself according to the identification information of the STA8 in the user field 3b.
  • the STA9 parked in the second frequency domain fragment can determine the 242-tone RU corresponding to the lowest frequency 20MHz in the second 80MHz as the RU allocated to itself according to the identification information of the STA9 in the user field 4b.
  • Other STAs parked in the second frequency domain fragment may also use the above method to determine that the RU corresponding to the user field containing the identification information of the own STA is the RU allocated to it.
  • the resource unit allocation subfield in the second signaling field indicates that the RU corresponding to 80MHz of the lowest frequency of the channel bandwidth for transmitting PPDUs is 996-tone RU, and indicates that the specific part of the user field corresponds to the 996-tone RU.
  • the number of corresponding user fields is 0.
  • the 80MHz RU corresponding to the lowest frequency of the channel bandwidth for transmitting the PPDU is actually two 484-tone RUs, both of which are not allocated to STAs docking in the frequency domain fragment. STAs parked in the second frequency domain fragment do not need to care which STA the two 484-tone RUs are allocated to.
  • the resource unit allocation subfield may not actually indicate the two 484-tone RUs according to the actual situation, or may not actually indicate the user fields corresponding to the two 484-tone RUs according to the actual situation.
  • the user-specific field segment needs to set the user fields corresponding to the two 484-tone RUs.
  • the user-specific field of the second signaling field In part, the user fields corresponding to the two 484-tone RUs are not set, so that the user fields corresponding to the two 484-tone RUs can be saved, and the overhead of the signaling field is reduced.
  • the resource unit allocation subfield in the second signaling field indicates that the RU corresponding to 80MHz of the lowest frequency of the channel bandwidth for transmitting the PPDU is 996-tone RU, and the number of corresponding user fields is 1. Then, the number of user fields corresponding to the 996-tone RU in the specific part of the user field is one. In this way, at least four user fields corresponding to two 484-tone RUs can be saved to one user field.
  • two 484-tone RUs can be regarded as one 996-tone RU for indication, which reduces the number of resource unit allocation subfields indicating RUs, so that the number of user fields corresponding to one 996-tone RU is less than two 484 -tone
  • the number of user fields corresponding to the RU; on the other hand, in the user-specific field, the number of user fields corresponding to the RU should also be set to the smallest possible, for example, 1 or 0. This can be greatly improved This saves the number of user fields, thereby saving indication overhead.
  • Fig. 9 is a schematic diagram of a resource unit allocation scenario according to an embodiment of the present application.
  • the actual situation of the 320MHz resource unit allocation is that in the order of frequency from low to high, the first 80MHz corresponds to a 996-tone RU, and the 996-tone RU is allocated to the docking station. 3 STAs in the first frequency domain fragment.
  • the 20MHz, the lowest frequency in the second 80MHz, corresponds to a 242-tone RU, which is allocated to 1 STA parked in the first frequency domain fragment.
  • the second 80Mhz second-low frequency 20MHz corresponds to 9 26-tone RUs, which are allocated to 9 STAs parked in the second frequency domain fragment.
  • the second 40MHz corresponds to 484-tone RU, which is allocated to 1 STA docking in the first frequency domain fragment; for brevity, the third 80Mhz and the fourth 80Mhz are not shown in Figure 9 .
  • the resource unit allocation indication subfield in the first signaling field contained in the PPDU transmitted by the first frequency domain fragmentation indicates: in the order of frequency from low to high, the first 80MHz corresponds to a 996-toneRU, and the user-specific field part and The 996-tone RU corresponds to three user fields; the second 20MHz of the lowest frequency of 80 MHz corresponds to a 242-tone RU, and the user field corresponding to the 242-tone RU in the user-specific field part is one; Two 80Mhz second-low frequency 20MHz corresponds to one 242-tone RU, and the number of user fields corresponding to the 242-tone RU in the user-specific field part is 0; the second highest frequency 40MHz in the second 80MHz corresponds to 484 -tone RU, there is one user field corresponding to this 484-tone RU in the user-specific field part.
  • the corresponding RUs of the second 20MHz in the second 80MHz are actually 9 26-tone RUs, all of which are not allocated to STAs docking in the frequency domain fragment. .
  • the STA parked in the first frequency domain fragment does not need to care about which STA these 9 26-tone RUs are allocated to.
  • the resource unit allocation subfield of the first frequency domain fragmented transmission may not indicate the 242-tone RU and the nine 26-tone RUs according to the actual situation.
  • the resource unit allocation subfield of the first frequency domain fragmented transmission indicates that the 20MHz corresponds to a 242-tone RU, and the number of user fields corresponding to the 242-tone RU is 0. The one 242-tone RU can understand the second RU.
  • the user-specific field segment needs to set the 9 user fields corresponding to the 9 26-tone RUs.
  • the user-specific field part of the first signaling field is not set with this Nine user fields corresponding to 26-tone RU, which can save at least nine user fields and reduce the overhead of signaling fields.
  • the resource unit allocation indication subfield in the second signaling field contained in the PPDU transmitted by the second frequency domain fragmentation indicates: in the order of frequency from low to high, the first 80MHz corresponds to a 996-toneRU, and the user-specific field part and The user field corresponding to the 996-tone RU is 0; the 20MHz of the lowest frequency in the second 80MHz corresponds to a 242-tone RU, and the user field corresponding to the 242-tone RU in the user-specific field part is 0; Two 80Mhz second-low frequency 20MHz corresponds to 9 26-tone RUs, the number of user fields corresponding to the 9 26-tone RUs in the user-specific field part is 9; the second highest frequency of 80MHz is 40MHz Corresponding to 484-tone RU, there are 0 user fields corresponding to the 484-tone RU in the user-specific field part.
  • the first 80MHz corresponds to 996-toneRU
  • the second 80MHz corresponds to 20MHz with the lowest frequency 242-tone RU
  • the second 80MHz corresponds to 40MHz with the highest frequency.
  • 484-tone RUs are all RUs that are not allocated to STAs docking in this frequency domain fragment.
  • the user-specific field segment needs to set the user field corresponding to the 996-toneRU, the user field corresponding to the 242-tone RU, and the user field corresponding to the 484-tone RU.
  • the user field corresponding to the 996-toneRU, the user field corresponding to the 242-tone RU, and the user field corresponding to the 484-tone RU are not set, thereby effectively saving user fields and reducing The overhead of the signaling field.
  • the resource unit allocation subfield in the signaling field can indicate these multiple RUs as one larger RU.
  • the resource unit allocation subfield can provide a simplified indication of multiple RUs that are not allocated to STAs docking in the current frequency domain fragment. It should be understood that such a simplified indication needs to satisfy that there is a corresponding index in the RA subfield table (for example, Table 1, Table 2, or Table 3), and can support the indication of these multiple RUs as one RU together.
  • one 242-tone RU and nine 26-tone RUs are all RUs allocated to STAs parked in the first frequency domain fragment.
  • Table 1 there is an index of 01110010, which can indicate a 484-tone RU, and the user field corresponding to the 484-tone RU is 0.
  • the 242-tone RU and 9 consecutive 26-tone RUs can be indicated as a 484-tone RU through the corresponding index (for example, 01110010), and Indicates that the number of user fields corresponding to the 484-tone RU is 0.
  • the resource unit allocation subfield of the first frequency domain fragmented transmission indicates that the 20MHz corresponds to a 242-tone RU, and the number of user fields corresponding to the 242-tone RU is one, and the user field The carried site identifier does not belong to any site parked in the first frequency domain fragment.
  • the user-specific field segment needs to set the 9 user fields corresponding to the 9 26-tone RUs.
  • the user-specific field part of the first signaling field is set to be the same as this 1.
  • a 242-tone RU corresponding user field which can save at least 8 user fields and reduce the overhead of signaling fields.
  • the resource unit allocation subfield of the first frequency domain fragmented transmission indicates that the 20 MHz corresponds to a combination of multiple 52-tone RUs and 26-tone RUs, for example, five 52-tone RUs corresponding to 00001111 in Table 1. , 52-tone RU, 26-tone RU, 52-toneRU, 52-tone RU, the number of user fields corresponding to each RU is 1, and the site identifier carried by the user field does not belong to the first frequency domain fragment Any of the sites.
  • the user-specific field segment needs to set the 9 user fields corresponding to the 9 26-tone RUs.
  • the user-specific field part of the first signaling field is set to the same value as these 5 There are 5 user fields corresponding to each RU, so at least 4 user fields can be saved and the overhead of signaling fields can be reduced.
  • the multiple RUs that are not allocated to the STAs docking in the frequency domain fragment may all be RUs with less than 242 subcarriers.
  • the above-mentioned multiple RUs may all be small RUs.
  • at least part of the subcarriers corresponding to the large RU that is not allocated to the STA docking in the first frequency domain fragment belongs to at least two small RUs.
  • the resource unit allocation subfield in the signaling field of the PPDU may indicate the consecutive multiple small RUs as one large RU, and indicate that the number of user fields corresponding to the one large RU is zero. It should be understood that such a simplified indication also needs to satisfy that there is a corresponding index in the RA subfield table (for example, Table 1, Table 2, or Table 3), which can indicate that multiple RUs are collectively indicated as one RU.
  • FIG. 10 is a schematic diagram of a resource unit allocation scenario in an embodiment of the present application, and there are 9 26-tone RUs corresponding to 20 MHz in the channel bandwidth for transmitting PPDUs.
  • the two 26-tone RUs with the lowest frequency are RUs allocated to STAs docking in the first frequency domain fragment, and the other 7 26-tone RUs are not allocated to docking in the first frequency domain fragment or the second frequency domain fragment.
  • the STA of the piece of RU It can be understood that the RUs corresponding to the 20 MHz are all RUs that are not allocated to STAs parked in the second frequency domain fragment.
  • the resource unit allocation indication subfield corresponding to the 20MHz in the signaling field contained in the PPDU transmitted by the first frequency domain fragmentation indicates: the RU frequency corresponding to the 20MHz includes two 26-tone RUs and one 52-tone in order from low to high. Tone RU, one 26-tone RU, one 106-tone RU, each RU corresponds to a user field.
  • the resource unit allocation subfield can be indicated by the corresponding index (for example) 0111001, indicating that the RU corresponding to the 20MHz is a 242-tone RU, and the 242 -The user field corresponding to tone RU is 0.
  • the nine 26-tone RUs in FIG. 8A are all RUs that are not allocated to the STA of the first frequency domain fragment. Then, in the resource unit allocation subfield of the first signaling field, the index 01110001 can be used to These 9 26-tone RUs are indicated together as a 242-tone RU, and indicate that the user field corresponding to this 242-tone RU is 0.
  • the resource unit allocation subfield in the signaling field indicates to multiple small RUs according to actual conditions
  • the user-specific field part of the signaling field needs to include information related to the multiple small RUs.
  • User field corresponding to each RU In the solution of the present application, in the resource allocation unit subfield of the signaling field, for the multiple small RUs of the STAs that are not docked in the current frequency domain fragment, the combined indication is a large RU, and the large RU is indicated. The number of user fields corresponding to the RU is 0. In this way, the user-specific field part of the signaling field does not include user fields corresponding to these multiple small RUs, which can effectively save user fields and save signaling field overhead.
  • the resource unit allocation subfield of the resource unit allocation subfield in the signaling field is used to indicate the RU in the above-mentioned second simplified indication manner.
  • the signaling field includes at least one resource unit allocation subfield indicating that the RU is multiple small RUs.
  • Each RU of the multiple small RUs corresponds to at least one user field.
  • the user field corresponding to at least one third RU among the multiple small RUs carries the identifier of the STA parked in the first frequency domain fragment.
  • the user field corresponding to at least one fourth RU does not carry the identifier of the STA parked in the first frequency domain fragment.
  • the fourth RU is actually at least two small RUs that are not allocated to STAs parked in the current frequency domain fragment. In other words, at least part of the subcarriers corresponding to the fourth RU belongs to at least two RUs.
  • the channel bandwidth for transmitting PPDUs includes multiple small RUs corresponding to one 20MHz RU
  • at least one RU among the multiple small RUs is an RU that is allocated to an STA docking in the frequency domain fragment.
  • the signaling field of the PPDU transmitted by the frequency domain fragmentation indicates the resource unit allocation subfield corresponding to the 20 MHz, which can indicate that the at least two RUs are regarded as one RU, and indicate that this RU corresponds to one user field.
  • the resource unit allocation subfield corresponding to the 20 MHz can indicate that the multiple RUs are regarded as larger RUs, and indicate that this RU corresponds to the same user field. It should be understood that the larger RU can find the corresponding index in the RA subfield table.
  • the number of user fields corresponding to the one RU is one.
  • these at least two RUs only correspond to one user field in total.
  • Fig. 11 is a schematic diagram of a resource unit allocation scenario in an embodiment of the present application.
  • one RU corresponding to 20 MHz in the channel bandwidth for PPDU transmission is nine 26-tone RUs.
  • the first 26-tone RU and the second 26-tone RU are RUs allocated to STAs docking in the first frequency domain fragment
  • the third 26-tone RU and the second 26-tone RU are The four 26-tone RUs are RUs allocated to STAs docked in the second frequency domain fragment.
  • the resource unit allocation subfield corresponding to the 20MHz can indicate two 26-tone RU, one 52-tone RU, one 26-tone RU, and one 106-tone RU. There are 5 RUs of tone RU.
  • the resource unit allocation subfield corresponding to the 20MHz can indicate one 52-tone RU, two 26-tone RU, one 26-tone RU, and one 106-tone RU. Tone RU, a total of 5 RUs.
  • the user-specific field in the signaling field includes a user field corresponding to each small RU. Then, if the resource unit allocation subfield is indicated according to the actual RU allocation situation, in the first frequency domain fragment and the second frequency domain fragment, the resource unit allocation subfield corresponding to the 20MHz will both indicate 9 26-tones RU. In this way, the user-specific field includes 9 user fields that correspond one-to-one to the 9 26-tone RUs indicated by the resource unit allocation subfield. If the resource unit allocation subfield is indicated in the above manner, and the resource unit allocation subfield indicates 5 RUs, then there are only 5 user fields corresponding to the RU indicated by the resource unit allocation subfield in the user-specific field part.
  • the solution of this application for at least two small RUs that are not allocated to STAs docking in the current frequency domain, is combined to indicate that it can be used in the user-specific field part of the signaling field, reducing non-allocation to those allocated to staying in the frequency domain.
  • the number of user fields corresponding to multiple consecutive small RUs of the STA can save the overhead of signaling fields.
  • the second simplified indication manner is not limited to indicating small RUs, and can also be used to indicate large RUs, or used to indicate large RUs and small RUs.
  • the resource unit allocation subfield It may indicate that the at least two RUs are one larger RU, and indicate that the user field corresponding to the one larger RU is 1.
  • the at least two RUs may both be large RUs or small RUs, and may also include at least one small RU and at least one large RU.
  • these at least two RUs are both large RUs can be based on the example of FIG. 8A described above.
  • the two 80MHz with the highest frequency are both 484-tone RUs (large RUs) allocated to STAs docking in the first frequency domain fragment, and each 484-tone RU is allocated to docking in the first frequency domain.
  • the resource unit allocation subfield can indicate the combination of the two 484-tone RUs as one 996-tone RU, and indicate that the user field corresponding to the 996-tone RU is 1.
  • the at least two RUs include at least one small RU and at least one large RU may be based on the example of FIG. 8A.
  • the second 40MHz with the lowest frequency of 80MHz corresponds to one 242-tone RU (large RU) and nine 26-tone RU (small RU).
  • the one 242-tone RU is allocated to the 4 STAs docked in the second frequency domain fragment
  • the 9 26-tone RU is allocated to the 9 STAs docked in the second frequency domain fragment.
  • the resource unit allocation subfield can indicate the combination of this 242-tone RU and 9 26-tone RUs as a 484-tone RU, and indicate the 484-tone RU.
  • the user field corresponding to the RU is 1.
  • 13 user fields corresponding to this 242-tone RU and 9 26-tone RUs need to be set in the user-specific field part.
  • Only one user field corresponding to the 484-tone RU needs to be set, thereby saving the number of user fields and reducing the overhead of signaling fields.
  • the at least two RUs are small RUs, please refer to the above-mentioned example corresponding to FIG. 11, which will not be repeated here.
  • the resource unit allocation subfield in the common field part indicates at least two RUs as a larger large RU, and indicates the user field corresponding to the larger large RU It is 1, in the user-specific field part, the user field corresponding to the larger RU may be a special user field, and the special user field is used to indicate that the corresponding RU is not fragmented to the site that stops at the frequency domain fragmentation.
  • the special user field may be, for example, but is not limited to "2046".
  • the user field includes a fragmentation indication subfield
  • the fragmentation indication subfield is used to indicate the STA corresponding to the user field, and the frequency domain fragmentation to which the PPDU will be docked next time.
  • the user field includes the identifier of the STA and the fragment indication subfield.
  • the number of bits in the fragment indication subfield may be 2 bits. It should be understood that this optional embodiment can be implemented in combination with any of the above-mentioned embodiments, or can be implemented separately.
  • the frequency domain fragment that is docked when receiving the PPDU next time may be the same as or different from the frequency domain fragment that is docked when the PPDU is received this time. For example, if the STA stops at the first frequency domain fragment to receive the PPDU this time. Then the fragmentation indication subfield in the user field corresponding to the STA can indicate that the STA will receive the PPDU in the first frequency domain fragment next time, or it may indicate that the STA will be in a frequency domain fragment other than the first frequency domain fragment next time. Receive PPDU.
  • the STA can be instructed to switch the frequency domain fragments that dock, so as to ensure the reliability of the frequency domain fragment that instructs the STA to switch docks.
  • the following specifically introduces the method for indicating the RU by the resource unit allocation subfield in the embodiment of the present application.
  • Table 2 can be understood as RA subfield table.
  • the resource unit allocation subfield includes two fields for indicating resource unit allocation and merging, which are referred to herein as a resource unit indication part and a merging indication part, where the merging indication part is also called an additional field of the resource unit allocation subfield.
  • the resource unit indication is used to indicate the resource unit corresponding to the resource unit allocation subfield
  • the merge indication is used to indicate the merge relationship between the resource unit and other resource units.
  • Table 2 includes an entry indicating that RUs greater than or equal to 106 subcarriers are allocated to 0-16 STAs.
  • the resource unit indication part in the resource unit allocation subfield can be an 8-bit binary string (B7 B6 B5 B4 B3 B2 B1 B0) corresponding to an entry sequence number in the first column of Table 2.
  • the resource unit corresponding to entry 0 is indicated as 00000000
  • the resource unit corresponding to entry 1 is indicated as 00000001
  • the resource unit corresponding to entry 2 is indicated as 00000010.
  • the resource unit indications corresponding to the remaining entries can be deduced by analogy, and no examples are given here.
  • the resource unit indication of each entry and the corresponding merge indication can be understood as an index.
  • the merge indication part in the resource unit allocation subfield is an entry in the second column corresponding to the resource unit indication part.
  • the row where the entry corresponding to the resource unit indication part and the entry corresponding to the merge indication part are located corresponds to indicating the size and location of one or more resource units corresponding to 20 MHz for transmitting the resource unit allocation subfield.
  • Resource units smaller than 106 sub-carriers can only be allocated to one STA, and resource units larger than or equal to 106 sub-carriers can be allocated to one or more STAs. In 802.11be, resource units greater than or equal to 106 subcarriers can be allocated to 16 STAs at most.
  • Each resource unit indicated by the resource unit allocation subfield corresponding to each of the 0-15 entries in the resource unit indication part is only used to be allocated to one STA.
  • each resource unit indicated by the resource unit allocation subfield corresponding to each of the 0-15 entries indicated by the resource unit is smaller than 106 subcarriers.
  • the resource unit allocation subfield corresponding to each of the 16-255 entries in the resource unit indication part at least one resource unit greater than or equal to 106 subcarriers is included.
  • the one or more resource units indicated by the resource unit allocation subfield corresponding to each of the 16-255 entries indicated by the resource unit it indicates that one resource unit can be used for allocation to multiple STAs.
  • the resource unit indication part of the resource unit allocation subfield is 8 bits (B7 B6 B5 B4 B3 B2 B1 B0), and the combination indication part is 2 bits (B1B0).
  • the resource unit indication part includes a total of 256 entries, and each resource unit indication part corresponds to 4 merge indication parts.
  • the merge indication is 00, indicating that the RU is not merged with other RUs. Then, in the entry 0-entry 115 in Table 2, if the merge indication is 00, the content indicated by the entry 0-entry 115 is the same as the entry 0-entry 115 in Table 1 provided by 802.11ax.
  • the combination indicator is 01, indicating that the RU merges with the adjacent low-frequency RU into a multi-RU in the order of frequency from low to high.
  • the merge indication is 01, indicating that the 26-tone RU of #8 and the 52-tone RU of the low frequency on the left are merged into a multi-RU.
  • the combination indication of 10 indicates that the RU merges with the adjacent high-frequency RU to form a multi-RU in the order of frequency from low to high.
  • the combination indication of 11 indicates that among the RUs corresponding to the resource unit allocation subfield, one RU merges with the adjacent high-frequency RU into a multi-RU in the order of frequency, and the other RU is combined with the adjacent low-frequency RU. RU is merged into multi-RU. For example, for entries 40-47 in Table 2, the combined indication 11 indicates that the 26-tone RU of 2# is combined with the 52-tone RU adjacent to the right of the high frequency to be multi-RU, and the 106-tone that indicates 6# The RU and the adjacent low-frequency 26-tone RU on the left are merged into a multi-RU.
  • the merging indication may be 01, indicating that among the RUs corresponding to the resource unit allocation subfield, one RU merges with the adjacent high-frequency RU into a multi-RU, and the other RU is combined with the corresponding RU.
  • Adjacent low-frequency RUs are merged into multi-RU.
  • the combination indicator is 10, indicating that the RU merges with the adjacent low-frequency RU into a multi-RU in the order of frequency from low to high.
  • the combination indication is 11, indicating that the RU merges with the adjacent high-frequency RU into a multi-RU in the order of frequency from low to high.
  • the combination indication is 01, which indicates that the RU merges with the adjacent high-frequency RU into a multi-RU in the order of frequency from low to high.
  • the combination indicator is 10, indicating that among the RUs corresponding to the resource unit allocation subfield, one RU merges with the adjacent high-frequency RU into a multi-RU in the order of frequency, and the other RU is combined with the adjacent low-frequency RU.
  • the RU is merged into multi-RU.
  • the combination indication is 11, indicating that the RU merges with adjacent low-frequency RUs to form a multi-RU in order of frequency from low to high.
  • the constraint conditions for merging multiple RUs include multiple types.
  • One type of constraint includes: 1. Small RU and large RU are not merged; 2. Small RU merges shall not cross 20MHz (a combination of small-size RUs shall not cross 20MHz channel boundary); 3. Combination of small RUs Should be continuous (or adjacent). Based on the above constraints, the combination of small RUs can be: one 52-tone RU and one 26-tone RU continuous in 20 MHz, or one 106-tone RU and one 26-tone RU continuous in 20 MHz.
  • the position of a consecutive 52-tone RU and a 26-tone RU within 20MHz can be: 52-tone RU is located on the left side of 26-tone RU, or 52-tone RU is located on the right side of 26-tone RU ;
  • the position of a 106-tone RU and a 26-tone RU that are continuous within 20 MHz can be: 106-tone RU is located on the left side of the 26-tone RU, or 106-tone RU is located on the right side of the 26-tone RU.
  • the restricted RU merging method For the RU merging method with constraints, it can be called the restricted RU merging method.
  • the restricted RU merging method takes into account the balance between the flexibility of merging and the gain brought by merging, making the merging of multiple RUs more reasonable and The complexity is lower.
  • the combination of RUs may not include any constraint conditions, that is, any RU can be combined with each other, and the combination can be called an unrestricted RU combination.
  • An entry indicating the merger between large RUs has been added to Table 2. For example, when the merging indication of entry 113 to entry 255 is 10, both can indicate the merging of large RUs.
  • the entry 113 indicated by the resource unit in Table 2 indicates a 242-tone RU, and the 242-tone RU is not allocated to an STA that stops at the frequency domain slice where the 20 MHz is located.
  • the merge indication 00 corresponding to the entry 113 indicated by the resource unit indicates that the 242-tone RU is not merged with other RUs into a multi-RU.
  • the merge indication 01 corresponding to the entry 113 indicated by the resource unit indicates 242+484 multi-RU, and is continuous within 80 MHz.
  • the 242+484 multi-RU is formed by merging 242-tone RU and 484-tone RU.
  • the entry 114 indicated by the resource unit in Table 2 indicates a 484-tone RU, and the 484-tone RU is not allocated to an STA that stops at the frequency domain slice where the 20 MHz is located.
  • the merge indication 00 corresponding to the entry 114 indicated by the resource unit indicates that the 484-tone RU is not merged with other RUs into a multi-RU.
  • the merge indication 01 corresponding to the entry 114 indicated by the resource unit indicates 484+242 multi-RU, and is continuous within 80 MHz.
  • the 484+242 multi-RU is a combination of 484-tone RU and 242-tone RU.
  • the merging instruction 10 corresponding to the entry 114 indicated by the resource unit indicates the 484+242 multi-RU, and it is not continuous within 80 MHz.
  • the 484+242 multi-RU is formed by merging 484-tone RU and 242-tone RU.
  • the merge indication 11 corresponding to the entry 114 indicated by the resource unit indicates 484+996 multi-RU, and is continuous within 160 MHz.
  • the 484+996 multi-RU is formed by merging 484-tone RU and 996-tone RU.
  • the entry 115 indicated by the resource unit in Table 2 indicates a 996-tone RU, and the 996-tone RU is not allocated to an STA that stops at the frequency domain slice where the 20 MHz is located.
  • the merge indication 01 corresponding to the entry 115 indicated by the resource unit indicates 996+484 multi-RU, and is continuous within 160 MHz.
  • the 996+484 multi-RU is formed by merging 996-tone RU and 484-tone RU.
  • the merging instruction 10 corresponding to the entry 115 indicated by the resource unit indicates 996+484 multi-RU and is not continuous within 160 MHz.
  • the 996+484 multi-RU is formed by merging 996-tone RU and 484-tone RU.
  • the merging instruction 11 corresponding to the entry 115 indicated by the resource unit indicates 996+2*996 multi-RU, and it is continuous in 320MHz.
  • the 996+2*996 multi-RU is merged by 996-tone RU and 2*996-tone RU Become.
  • the entry 116 indicated by the resource unit in Table 2 indicates a 2*996-tone RU, and the 2*996-tone RU is not allocated to an STA that stops at the frequency domain slice where the 20 MHz is located.
  • the merge indication 00 corresponding to the entry 116 indicated by the resource unit indicates that the 2*996-tone RU is not merged with other RUs into a multi-RU.
  • the merge indication 01 corresponding to the entry 116 indicated by the resource unit indicates 2*996+996-tone multi-RU, and it is continuous within 320MHz.
  • the 2*996+996-tone multi-RU consists of 2*996-tone RU and 996 -Tone RU merged.
  • the merging instruction 10 corresponding to the entry 116 indicated by the resource unit indicates 2*996+996-tone multi-RU, and it is not continuous in 320MHz.
  • the 2*996+996-tone multi-RU consists of 2*996-tone RU and 996-tone RU merged.
  • the entries 192-207 indicated by the resource unit in Table 2 indicate 242-tone RU, and the entries 192-207 indicate that the 242-tone RU is allocated to 1-16 STAs, respectively.
  • the merge indication 00 corresponding to any one of the entries 192-207 indicated by the resource unit indicates that the 242-tone RU is not merged with other RUs into a multi-RU.
  • the merge indication 01 corresponding to any one of the entries 192-207 indicated by the resource unit indicates 242+484 multi-RU and is continuous within 80 MHz.
  • the 242+484 multi-RU consists of 242-tone RU and 484-tone RU Merged.
  • the entries 208-223 indicated by the resource unit in Table 2 indicate 484-tone RU, and the entries 208-223 indicate that the 484-tone RU is allocated to 1-16 STAs, respectively.
  • the merge indication 00 corresponding to any one of the entries 208-223 indicated by the resource unit indicates that the 484-tone RU is not merged with other RUs into a multi-RU.
  • the merge indication 01 corresponding to any one of the entries 208-223 indicated by the resource unit indicates 484+242 multi-RU and is continuous within 80 MHz.
  • the 484+242 multi-RU is 484-tone RU and 242-tone RU Merged.
  • the merge indication 10 corresponding to any one of the entries 208-223 indicated by the resource unit indicates the 484+242 multi-RU and is not continuous within 80 MHz.
  • the 484+242 multi-RU is composed of 484-tone RU and 242- Tone RU merged.
  • the merge indication 11 corresponding to any one of the entries 208-223 indicated by the resource unit indicates 484+996 multi-RU and is continuous within 160 MHz.
  • the 484+996 multi-RU consists of 484-tone RU and 996-tone RU Merged.
  • the entries 224-239 indicated by the resource unit in Table 2 indicate 996-tone RU, and the entries 224-239 indicate that the 996-tone RU is allocated to 1-16 STAs, respectively.
  • the merge indication 00 corresponding to any one of the entries 224-239 indicated by the resource unit indicates that the 996-tone RU is not merged with other RUs into a multi-RU.
  • the merge indication 01 corresponding to any one of the entries 224-239 indicated by the resource unit indicates 996+484 multi-RU and is continuous within 160 MHz.
  • the 996+484 multi-RU consists of 996-tone RU and 484-tone RU Merged.
  • the merge indication 10 corresponding to any one of the entries 224-239 indicated by the resource unit indicates 996+484 multi-RU and is not continuous within 160 MHz.
  • the 996+484 multi-RU consists of 996-tone RU and 484-tone RU merged.
  • the merge indication 11 corresponding to any one of the entries 224-239 indicated by the resource unit indicates 996+2*996 multi-RU, and it is continuous within 320 MHz.
  • the 996+2*996 multi-RU consists of 996-tone RU and 2*996-tone RU merged.
  • the entries 240-255 indicated by the resource unit in Table 2 indicate 2*996-tone RU, and the entries 240-255 indicate that the 2*996-tone RU is allocated to 1-16 STAs, respectively.
  • the merge indication 00 corresponding to any one of the entries 240-255 indicated by the resource unit indicates that the 2*996-tone RU is not merged with other RUs into a multi-RU.
  • the merge indication 01 corresponding to any one of the entries 240-255 indicated by the resource unit indicates 2*996+996-tone multi-RU, and it is continuous within 320MHz.
  • the 2*996+996-tone multi-RU consists of 2 *996-tone RU and 996-tone RU merged.
  • the merge indication 10 corresponding to any one of the entries 240-255 indicated by the resource unit indicates 2*996+996-tone multi-RU, and is not continuous in 320MHz, the 2*996+996-tone multi-RU is determined by 2*996-tone RU and 996-tone RU merged.
  • the resource unit allocation subfield can support indicating 16 STAs by using each entry in Table 2 provided in the embodiment of the present application to indicate RU allocation. Moreover, in this way of indication, the structure of the resource unit allocation subfield is clearer and more concise.
  • the resource unit indication is used to indicate resource unit allocation and the number of corresponding STAs.
  • the combination instruction is only used to indicate the combination, and does not indicate the combination in some cases, and indicates the number of users in other cases.
  • FIG. 12 is a schematic diagram of a scenario for allocation of this resource unit.
  • the channel bandwidth for transmitting PPDU is 320 MHz
  • the channel bandwidth for transmitting PPDU is divided into 4 frequency domain fragments.
  • the first frequency domain slice is the first 80MHz
  • the second frequency domain slice is the second 80MHz
  • the third frequency domain slice is the third 80MHz
  • the fourth frequency domain slice is the third 80MHz.
  • the chip is the fourth 80MHz.
  • the first signaling field transmitted by the first frequency domain fragmentation and the second signaling field transmitted by the second frequency domain fragmentation are specifically described as examples.
  • the third frequency domain fragmentation and the fourth frequency domain fragmentation The transmitted signaling fields are not listed one by one in this embodiment.
  • the actual situation of the 320MHz resource unit allocation is that according to the order of frequency from low to high, the first 80MHz corresponds to a 484+242 multi-RU and a 242-tone RU.
  • the 484+242 multi-RU is allocated to 3 STAs parked in the first frequency domain fragment, and the 242-tone RU is allocated to 1 STA parked in the first frequency domain fragment.
  • the 20MHz, the lowest frequency in the second 80MHz corresponds to a 242-tone RU, which is allocated to 1 STA that is parked in the first frequency domain fragment.
  • the second 20MHz of the second 80MHz frequency corresponds to 9 26-tone RUs, which are allocated to the 9 STAs parked in the second frequency domain fragment.
  • the second 40MHz, the highest frequency of 80MHz corresponds to 484-tone RU, which is allocated to 1 STA parked in the second frequency domain fragment.
  • the third 80Mhz and the fourth 80Mhz are not shown.
  • the resource unit allocation indication subfield in the first signaling field of the first frequency domain fragmented transmission indicates: the first 80MHz corresponds to a 484+242 multi-RU and a 242-tone RU, and the user-specific field part corresponds to the 484 +242
  • the number of user fields corresponding to multi-RU is 3, and the number of user fields corresponding to this 242-tone RU is 1;
  • the second 20MHz of the lowest frequency of 80MHz corresponds to a 242-tone RU, There is one user field corresponding to the 242-tone RU in the specific field part;
  • the second 20MHz of 80Mhz corresponds to 1 242-tone RU and the second highest frequency 40MHz in the second 80MHz corresponds to 484-tone RU combined It is a multi-RU, and the number of user fields corresponding to the multi-RU in the user-specific field part is 0.
  • the resource unit allocation indication subfield corresponding to the third 20MHz in the first 80MHz can be indicated by entry 192-207 (1100y3y2y1y0) in Table 2 to indicate 242-tone RU and the entry with the number of users being 0, and
  • the combination indication 01 indicates 242-tone RU, which is combined with the continuous 484-tone RU within 80MHz (that is, the 484-tone RU corresponding to the first 20MHz and the second 20MHz in the first 80MHz) It is 242+484 multi-RU, and the number of user fields corresponding to this 242+484 multi-RU is 0.
  • the resource unit allocation indicator subfield corresponding to the first 20MHz, the resource unit allocation indicator subfield corresponding to the second 20MHz, and the resource unit allocation indicator subfield corresponding to the third 20MHz indicate the total of 484+242 multi -The number of RU is 3.
  • the resource unit allocation indication subfield corresponding to the second 80Mhz and the second 20MHz included in the signaling field of the PPDU transmitted in the first frequency domain fragmentation can be indicated by the resource unit of entry 113 in Table 2, and is related to this entry.
  • the merge indication 10 corresponding to 113 indicates that the RU corresponding to the 20MHz is 242-tone RU, and the 242-tone RU and the continuous 484-tone RU within 80MHz (that is, the highest frequency 40MHz in the second 80MHz corresponds to 484- tone RU) is combined into a multi-RU, and the number of user fields corresponding to the multi-RU is zero.
  • the resource unit allocation indication subfields corresponding to the third 20 MHz and the fourth 20 MHz in the second 80 MHz can be indicated by the resource unit corresponding to entry 114 in Table 2, and the merge indication 01 corresponding to entry 114, indicating the 20 MHz
  • the corresponding RU is 484-tone RU, and this 484-tone RU is combined with the continuous 242-tone RU within 80 MHz (that is, the 242-tone RU corresponding to the second 20 MHz in the second 80 MHz) into a multi-RU. And the number of user fields corresponding to the multi-RU is zero.
  • the resource unit allocation subfield in the embodiment corresponding to FIG. 7A is not limited to be indicated by the above-mentioned example entry in Table 2. In other embodiments, the other items in Table 2 may be used according to the actual situation of RU allocation. Entry for instructions. This application does not limit which entry is used to indicate the specific resource unit allocation subfield.
  • the resource unit allocation subfield in the embodiment corresponding to FIG. 7A is not limited to being indicated by the multi-RU indication mode shown in Table 2.
  • the multi-RU indication mode other implementation forms are also possible.
  • the entries 192-225 indicated by the resource unit in Table 2 may also be replaced with the entries 192-225 indicated by the resource unit in Table 3.
  • Table 3 includes an entry indicating that RUs greater than or equal to 106 subcarriers are allocated to 0-16 STAs.
  • the entries 192-199 indicated by the resource unit in Table 3 indicate 242-tone RU, and the entries 192-199 indicate that the 242-tone RU is allocated to 1-8 STAs, respectively.
  • the merge indication 00 corresponding to any one of the entries 192-199 indicated by the resource unit indicates that the 242-tone RU is not merged with other RUs into a multi-RU.
  • the merge indication 01 corresponding to any one of the entries 192-199 indicated by the resource unit indicates that the 242-tone RU and the 484-tone RU are merged into a multi-RU and are continuous within 80 MHz.
  • the entries 200-207 indicated by the resource unit in Table 3 indicate 484-tone RU, and the entries 200-207 respectively indicate that the 484-tone RU is allocated to 1-8 STAs.
  • the merge indication 00 corresponding to any one of the entries 200-207 indicated by the resource unit indicates that the 484-tone RU is not merged with other RUs into a multi-RU.
  • the merge indication 01 corresponding to any one of the entries 200-207 indicated by the resource unit indicates that the 484-tone RU and the 242-tone RU are merged into a multi-RU and are continuous within 80 MHz.
  • the merge indication 10 corresponding to any one of the entries 200-207 indicated by the resource unit indicates that the 484-tone RU and the 242-tone RU are merged into a multi-RU and are not continuous within 80 MHz.
  • the merge indication 11 corresponding to any one of the entries 200-207 indicated by the resource unit indicates that the 484-tone RU and the 996-tone RU are merged into a multi-RU and are continuous within 160 MHz.
  • the entries 208-215 indicated by the resource unit in Table 3 indicate 996-tone RU, and the entries 208-215 respectively indicate that the 996-tone RU is allocated to 1-8 STAs.
  • the merge indication 00 corresponding to any one of the entries 208-215 indicated by the resource unit indicates that the 996-tone RU is not merged with other RUs into a multi-RU.
  • the merge indication 01 corresponding to any one of the entries 208-215 indicated by the resource unit indicates that the 996-tone RU and the 484-tone RU are merged into a multi-RU and are continuous within 160 MHz.
  • the merge indication 10 corresponding to any one of the entries 208-215 indicated by the resource unit indicates that the 996-tone RU and the 484-tone RU are merged into a multi-RU and are not continuous within 160 MHz.
  • the merge indication 11 corresponding to any one of the entries 208-215 indicated by the resource unit indicates that the 996-tone RU and the 2*996-tone RU are merged into a multi-RU and continuous within 320 MHz.
  • the entries 216-223 indicated by the resource unit in Table 3 indicate 2*996-tone RU, and the entries 216-223 respectively indicate that the 2*996-tone RU is allocated to 1-8 STAs.
  • the merge indication 00 corresponding to any one of the entries 216-223 indicated by the resource unit indicates that the 2*996-tone RU is not merged with other RUs into a multi-RU.
  • the combination indication 01 corresponding to any one of the entries 216-223 indicated by the resource unit indicates that the 2*996-tone RU and the 996-tone RU are combined into a multi-RU and continuous within 160 MHz.
  • the merge indication 10 corresponding to any one of the entries 216-223 indicated by the resource unit indicates that the 2*996-tone RU and the 996-tone RU are merged into a multi-RU and are not continuous within 160 MHz.
  • the merge indication 11 corresponding to any one of the entries 216-223 indicated by the resource unit indicates that the 996-tone RU and the 2*996-tone RU are merged into a multi-RU and continuous within 320 MHz.
  • the entries 224-231 indicated by the resource unit in Table 3 indicate 242-tone RU, and the entries 224-231 indicate that the 242-tone RU is allocated to 9-16 STAs, respectively.
  • the merge indication 00 corresponding to any one of the entries 224-231 indicated by the resource unit indicates that the 242-tone RU is not merged with other RUs into a multi-RU.
  • the merge indication 01 corresponding to any one of the entries 224-231 indicated by the resource unit indicates that the 242-tone RU and the 484-tone RU are merged into a multi-RU and are continuous within 80 MHz.
  • the entries 232-239 indicated by the resource unit in Table 3 indicate 484-tone RU, and the entries 232-239 respectively indicate that the 484-tone RU is allocated to 9-16 STAs.
  • the merge indication 00 corresponding to any one of the entries 232-239 indicated by the resource unit indicates that the 484-tone RU is not merged with other RUs into a multi-RU.
  • the merge indication 01 corresponding to any one of the entries 232-239 indicated by the resource unit indicates that the 484-tone RU and the 242-tone RU are merged into a multi-RU and are continuous within 80 MHz.
  • the merge indication 10 corresponding to any one of the entries 232-239 indicated by the resource unit indicates that the 484-tone RU and the 242-tone RU are merged into a multi-RU and are not continuous within 80 MHz.
  • the merge indication 11 corresponding to any one of the entries 232-239 indicated by the resource unit indicates that the 484-tone RU and the 996-tone RU are merged into a multi-RU and are continuous within 160 MHz.
  • the entries 240-237 indicated by the resource unit in Table 3 indicate 996-tone RU, and the entries 240-237 indicate that the 996-tone RU is allocated to 9-16 STAs, respectively.
  • the merge indication 00 corresponding to any one of the entries 240-237 indicated by the resource unit indicates that the 996-tone RU is not merged with other RUs into a multi-RU.
  • the merge indication 01 corresponding to any one of the entries 240-237 indicated by the resource unit indicates that the 996-tone RU and the 484-tone RU are merged into a multi-RU and are continuous within 160 MHz.
  • the merge indication 10 corresponding to any one of the entries 240-237 indicated by the resource unit indicates that the 996-tone RU and the 484-tone RU are merged into a multi-RU and are not continuous within 160 MHz.
  • the merge indication 11 corresponding to any one of the entries 240-237 indicated by the resource unit indicates that the 996-tone RU and the 2*996-tone RU are merged into a multi-RU and continuous within 320 MHz.
  • the entries 248-255 indicated by the resource unit in Table 3 indicate 2*996-tone RU, and the entries 248-255 respectively indicate that the 2*996-tone RU is allocated to 9-16 STAs.
  • the merge indication 00 corresponding to any one of the entries 248-255 indicated by the resource unit indicates that the 2*996-tone RU is not merged with other RUs into a multi-RU.
  • the combination indication 01 corresponding to any one of the entries 248-255 indicated by the resource unit indicates that the 2*996-tone RU and the 996-tone RU are combined into a multi-RU and continuous within 320 MHz.
  • the merge indication 10 corresponding to any one of the entries 248-255 indicated by the resource unit indicates that the 2*996-tone RU and the 996-tone RU are merged into a multi-RU and are not continuous in 320 MHz.
  • the merge indication 11 corresponding to any one of the entries 248-255 indicated by the resource unit indicates that the 996-tone RU and the 2*996-tone RU are merged into a multi-RU and continuous within 320 MHz.
  • the resource unit allocation subfield in the embodiment corresponding to FIG. 5 or FIG. 7A can also be indicated by entries in Table 3.
  • the specific selected item can be determined according to the RU allocation.
  • the embodiment of the present application also provides a solution for RU merge indication.
  • the resource unit allocation subfield includes a resource unit indication and a 2-bit combination indication part.
  • the merging instructions in all the resource unit allocation subfields corresponding to the large RU cooperate to indicate the merging situation of the large RU.
  • the STA determines the merging situation of the large RU according to the merging indication in all the resource unit allocation subfields corresponding to a large RU, and learns the specific location of the multi-RU merging.
  • the resource unit indication part may use the entry of the resource unit indication part in any of the above Table 1, Table 2 or Table 3.
  • the RU merge indication solution can be used in the data transmission method of an embodiment of the present application, and the data transmission method includes:
  • the AP generates a signaling field of the PPDU, the signaling field includes at least two resource unit allocation subfields corresponding to a multi-RU, and the multi-RU is a combination of at least two RUs included in the channel bandwidth for transmitting the PPDU ,
  • Each resource unit allocation subfield in the at least two resource unit allocation subfields includes an indication part and a combination indication part, and the combination indication part in the at least two resource unit allocation subfields indicates that the at least two resource unit allocation subfields RU merge and merge into the multi-RU;
  • the corresponding STA receives the signaling field, and obtains the at least two resource unit allocation subfields in the signaling field.
  • 242-tone RU corresponds to 1 resource unit allocation subfield, that is, 242-tone RU corresponds to 1 2-bit combination indication.
  • the merge indication is 00, indicating no merge.
  • the combination instruction of 01 indicates that 242-tone RU and 484-tone RU are combined into one multi-RU within 80 MHz.
  • the remaining merging instructions (for example, 11) can be used as reserved entries to indicate other RU merging conditions, or to indicate other information.
  • the 484-tone RU corresponds to two resource unit allocation subfields, that is, the 484-tone RU corresponds to two 2-bit merge indications.
  • the two merge indications are 00 and 00, indicating no merge.
  • the two merge indications 00 and 01 indicate that the 484-tone RU and the 242-tone RU are merged into one multi-RU within 80 MHz and continuous within 80 MHz.
  • the two merge indications 00 and 10 indicate that the 484-tone RU and the 242-tone RU are merged into one multi-RU within 80 MHz and are not continuous within 80 MHz.
  • the remaining combination indications (for example, 10 and 10, 10 and 11, etc.) can be used as reserved entries to indicate other RU combinations or to indicate other information.
  • the 996-tone RU corresponds to 4 resource unit allocation subfields, that is, the 996-tone RU corresponds to 4 2-bit combination instructions.
  • the 4 combination instructions are 00, 00, 00 and 00, indicating no combination.
  • the 4 combination indications of 00, 00, 00, and 01 indicate that 996-tone RU and 484-tone RU are combined into one multi-RU within 160 MHz and continuous within 80 MHz.
  • the 4 combination indications of 00, 00, 00, and 10 indicate that 996-tone RU and 484-tone RU are combined into one multi-RU within 160 MHz and are not continuous within 80 MHz.
  • the remaining combination indications (for example, 4 10s, 4 11s, etc.) can be used as reserved entries to indicate other RU combinations or to indicate other information.
  • the resource unit allocation subfield in the embodiment corresponding to FIG. 7A can be indicated by entries in Table 4.
  • the first 80MHz corresponds to one 484+242 multi-RU and one 242-tone RU.
  • the 484+242 multi-RU is allocated to 3 STAs parked in the first frequency domain fragment, and the 242-tone RU is allocated to 1 STA parked in the first frequency domain fragment.
  • the 20MHz, the lowest frequency in the second 80MHz, corresponds to a 242-tone RU, which is allocated to 1 STA that is parked in the first frequency domain fragment.
  • the second 20MHz of the second 80MHz frequency corresponds to 9 26-tone RUs, which are allocated to the 9 STAs parked in the second frequency domain fragment.
  • the second 40MHz, the highest frequency of 80MHz, corresponds to 484-tone RU, which is allocated to 1 STA parked in the second frequency domain fragment.
  • the resource unit indications in the first 20MHz resource unit allocation indication subfield of the first 80MHz and the second 20MHz resource unit allocation indication subfield both indicate 484-tone RU
  • the first 20MHz resource unit allocation indication subfield is
  • the combination indicator and the combination indicator in the second 20MHz resource unit allocation indicator subfield can be 00 and 01 respectively, so that the two combination indicators cooperate with a common indicator of 484+242 multi-RU.
  • the resource unit indicator in the third 20MHz resource unit allocation indicator subfield in the first 80MHz indicates 242-tone RU, and the combination indicator is 01, then the resource unit allocation indicator subfield indicates that the three 20MHz correspond to 242+484 multi RU.
  • the embodiment of the present application also provides a solution for RU merge indication.
  • the present application provides a method and a communication device for indicating a resource unit combination.
  • the method includes: determining a physical layer protocol data unit PPDU, the PPDU includes a signaling field, and the signaling field includes a resource unit allocation subfield and a resource unit allocation A merge indication corresponding to the subfield, the resource unit allocation subfield indicates multiple resource units, and the merge indication is used to indicate the merge information of the multiple resource units; the PPDU is sent.
  • the method provided in this application can support one or more users to use multiple continuous or discontinuous RUs for data transmission, and indicate the combination of multiple RUs to the user, which improves the flexibility of RU allocation in the system and improves System spectrum utilization.
  • the resource unit allocation subfield includes a resource unit indicator and a 2-bit combination indicator.
  • the combination indication in the allocation subfield of all resource units corresponding to a large RU transmitted on a content channel cooperates to indicate the combination of the large RU.
  • the combined indications in the multiple resource unit allocation subfields used to indicate a large RU transmitted on the two channels correspond to the same. In this way, the STA can determine the merging situation of the large RU according to the merging indication in the allocation subfields of all resource units corresponding to a large RU transmitted on a content channel.
  • a 996-tone RU corresponds to 4 resource unit allocation subfields, which are resource unit allocation subfield 1-resource unit allocation subfield 4 respectively.
  • the combination indication of the resource unit allocation subfield 1 transmitted by CC1 is the same as the combination indication of the first unit allocation subfield 2 transmitted by CC2.
  • the combination indication of the resource unit allocation subfield 3 transmitted by CC1 is the same as the combination indication of the first unit allocation subfield 4 transmitted by CC2.
  • 242-tone RU corresponds to 1 resource unit allocation subfield, that is, 242-tone RU corresponds to a 2-bit combination indication.
  • the merge indication is 00, indicating no merge.
  • the combination instruction of 01 indicates that 242-tone RU and 484-tone RU are combined into one multi-RU within 80 MHz.
  • the remaining merging instructions (for example, 11) can be used as reserved entries to indicate other RU merging conditions, or to indicate other information.
  • the 484-tone RU corresponds to two resource unit allocation subfields, that is, the 484-tone RU corresponds to two 2-bit merge indications. These two combined instructions are transmitted on CC1 and CC2 respectively.
  • the two merge instructions are the same.
  • Table 4 when the two resource unit indications in the two resource unit allocation subfields corresponding to the RU both indicate 484-tone RU, the two combined indications in the two resource unit allocation subfields are 00 and 00. They are transmitted on CC1 and CC2 respectively.
  • the combination indicator 00 on any CC indicates no combination; the two combination indicators in the two resource unit allocation subfields are 01 and 01, which are transmitted on CC1 and CC2, respectively.
  • Combination indication 01 both indicate that 484-tone RU and 242-tone RU are combined into one multi-RU within 80 MHz and are continuous within 80 MHz; similarly, the two combination indications in the two resource unit allocation subfields are 10 and 10. They are transmitted on CC1 and CC2 respectively, and the combination indication 10 on any CC indicates that the 484-tone RU and the 242-tone RU are combined into one multi-RU within 80 MHz and are not continuous within 80 MHz.
  • the two merge instructions 11 and 11 indicate 484-tone RU and 996-tone RU are merged into one multi-RU.
  • the 996-tone RU corresponds to 4 resource unit allocation subfields, that is, the 996-tone RU corresponds to 4 2-bit combination instructions. These 4 combined instructions are transmitted on CC1 and CC2 respectively.
  • the first combination instruction is transmitted in CC1
  • the second combination instruction is transmitted in CC2
  • the third combination instruction is transmitted in CC1
  • the fourth combination instruction is transmitted in CC2.
  • the first merge instruction is the same as the second merge instruction.
  • the third merge instruction is the same as the fourth merge instruction.
  • the combination indication may be, but not limited to, the following situations.
  • the 4 combination indications in the 4 resource unit allocation subfields are 00, 00, 00, and 00.
  • the first 00 and the third 00 transmitted on CC1 indicate no combination
  • the second transmitted on CC2 00 and the fourth 00 also indicate not to merge. Then, in fact, if the STA can receive two merging indications of 00 and 00 on a CC, it can determine not to merge.
  • the 4 combined indications in the 4 resource unit allocation subfields are 00, 00, 01, and 01.
  • the first 00 and the first 01 are transmitted on CC1, indicating that 996-tone RU and 484-tone RU are at 160 MHz
  • the internal combination is a multi-RU and continuous in 80MHz.
  • the second 00 and the second 01 are transmitted on CC2, which also indicates that 996-tone RU and 484-tone RU are combined into one multi-RU within 160 MHz and continuous within 80 MHz.
  • the STA can determine that the 996-tone RU and the 484-tone RU are combined into a multi-RU within 160 MHz and continuous within 80 MHz according to the combination instructions 00 and 01 on one of the CCs.
  • the 4 combined indications in the 4 resource unit allocation subfields are 00, 00, 10, and 10, where the first 00 and the first 10 are transmitted on CC1, indicating that 996-tone RU and 484-tone RU are within 160MHz Combined into a multi-RU and discontinuous within 80MHz.
  • the second 00 and the second 10 are transmitted on CC2, indicating that 996-tone RU and 484-tone RU are merged into one multi-RU within 160 MHz and are not continuous within 80 MHz.
  • the remaining combination indications (for example, 4 10s, 4 11s, etc.) can be used as reserved entries to indicate other RU combinations or to indicate other information.
  • the resource unit allocation subfield in the embodiment corresponding to FIG. 7A can be indicated by entries in Table 5.
  • the actual situation of 320MHz resource unit allocation is that the first 80MHz corresponds to one 484+242 multi-RU and one 242-tone RU.
  • the 484+242 multi-RU is allocated to 3 STAs parked in the first frequency domain fragment, and the 242-tone RU is allocated to 1 STA parked in the first frequency domain fragment.
  • the 20MHz, the lowest frequency in the second 80MHz, corresponds to a 242-tone RU, which is allocated to 1 STA that is parked in the first frequency domain fragment.
  • the second 20MHz of the second 80MHz frequency corresponds to 9 26-tone RUs, which are allocated to the 9 STAs parked in the second frequency domain fragment.
  • the second 40MHz, the highest frequency of 80MHz, corresponds to 484-tone RU, which is allocated to 1 STA parked in the second frequency domain fragment.
  • the resource unit indications in the first 20MHz resource unit allocation indication subfield of the first 80MHz and the second 20MHz resource unit allocation indication subfield both indicate 484-tone RU
  • the first 20MHz resource unit allocation indication subfield is
  • the combination indicator and the combination indicator in the second 20MHz resource unit allocation indicator subfield are both 01, and any one of the two combination indicators 01 can individually indicate 242+484 multi-RU and be continuous within 80 MHz.
  • the first 20MHz resource unit allocation indication subfield and the second 20MHz resource unit allocation indication subfield are respectively used for two CC transmissions because the combination indication is the same.
  • the STA only needs to read the 484-toneRU resource unit indication and the combination indication 01 in the resource unit allocation indication subfield on one of the CCs, and then it can determine that the RU indicated by the resource unit allocation subfield is 242+484 multi-RU. And continuous within 80MHz.
  • the methods provided in the embodiments of this application are introduced from the perspectives of access points and stations.
  • the access points and sites may include hardware structures and software modules, and the above functions are realized in the form of hardware structures, software modules, or hardware structures plus software modules.
  • One of the above-mentioned functions can be executed in a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 13 is a schematic structural diagram of a data transmission device according to an embodiment of the application.
  • the data transmission device 13 includes a processing unit 1301 and a transceiver unit 1302;
  • the processing unit 1301 is configured to generate the signaling field of the physical layer protocol data unit PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain fragment Slice; the signaling field is transmitted in the first frequency domain slice, and includes a common field and a user-specific field; the common field includes a resource unit allocation subfield, the user-specific field includes a user field; the resource The unit allocation subfield indicates the resource unit RU included in the channel bandwidth for transmitting the PPDU, and the number of user fields corresponding to the RU allocated to the station docked on the first frequency domain fragment in the RU; Wherein, the number of user fields corresponding to the RU allocated to the station docked on the first frequency domain fragment represents the number of user fields that the RU contributes to a content channel in the user-specific field, and The user field is the user field corresponding to the site parked on the first frequency domain fragment;
  • the transceiver unit 1302 is configured to send the signaling field in the first frequency domain in fragments.
  • the resource unit allocation subfield indicates the resource unit RU included in the channel bandwidth for transmitting the PPDU, and the RU is allocated to the first docking station.
  • the number of user fields corresponding to the RU of the station on the frequency domain fragment is not indicated according to the actual resource unit allocation situation, and the number of users not allocated to the station parked on the first frequency domain fragment is not indicated, This simplifies the user field.
  • the user field of the RU that is not docked in the first frequency domain fragment can be omitted or simplified, so that the overhead of the signaling field in the PPDU can be reduced by reducing the number of user fields.
  • the data transmission device 1300 may be a communication device or an access point, or the data transmission device may be deployed on a communication device or an access point.
  • the processing unit 1301 of the data transmission device 1300 may be a processor, and the transceiving unit 1302 of the data transmission device 1300 may be a transceiver.
  • the resource unit allocation subfield indicates that among the resource units RU included in the channel bandwidth for transmitting the PPDU, a user field corresponding to an RU that is not allocated to a site parked at the first frequency domain fragment is indicated.
  • the number of is 0, and the RU that is not allocated to the site that stops at the first frequency domain fragment is an RU that is greater than or equal to 242 subcarriers. In this way, the user field of the RU greater than or equal to 242 subcarriers can be omitted, thereby effectively reducing the overhead of the signaling field.
  • the number of user fields corresponding to the RU that is not allocated to the site docked in the first frequency domain fragment indicated by the resource unit allocation subfield is less than the number of user fields that are not allocated to the site docked in the first frequency domain fragment.
  • the number of user fields actually corresponding to the RU of a frequency domain fragmented site is less than the number of user fields of the signaling field transmitted in the first frequency domain fragmentation.
  • the resource unit allocation subfield indicates that the RU that is not allocated to the site docked at the first frequency domain fragment is actually at least the RU that is not allocated to the site docked at the first frequency domain fragment. Two RUs. In this way, at least two RUs that are not allocated to the site docking in the first frequency domain fragment are indicated as one RU together, and the indication method of the resource unit allocation subfield is simplified, so that the user fields corresponding to the at least two RUs The number is smaller, which can reduce the overhead of the signaling field.
  • the at least two RUs are both RUs with less than 242 subcarriers.
  • the resource unit allocator is instructed according to the actual resource unit allocation, and each small RU needs to correspond to a user field.
  • the solution of this application will be allocated to the first frequency domain At least two small RUs of the site of the slice are indicated as one RU together, so that one RU only needs to correspond to one user field, so that one user field can be omitted, and the overhead of the signaling field can be reduced.
  • FIG. 14 is a schematic structural diagram of a data transmission device according to an embodiment of the application.
  • An embodiment of the present application also provides a data transmission device 1400, including a processing unit 1401 and a transceiver unit 1402;
  • the transceiver unit 1402 is configured to stop at the first frequency domain fragment to receive the signaling field of the physical layer protocol data unit PPDU, where the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments;
  • the frequency domain fragmentation includes the first frequency domain fragmentation;
  • the signaling field includes a common field and a user-specific field;
  • the common field includes a resource unit allocation subfield;
  • the user-specific field includes a user field;
  • the resource The unit allocation subfield indicates the resource unit RU in the channel bandwidth for transmitting the PPDU, and the number of user fields corresponding to the RU allocated to the station docked on the first frequency domain fragment in the RU; where ,
  • the number of user fields corresponding to the RU allocated to the station docked on the first frequency domain fragment represents the number of user fields that the RU contributes to a content channel in the user-specific field, and the user The field is the user field corresponding to the site parked on the first frequency domain fragment;
  • the processing unit 1401 is configured to receive the user field included in the user-specific field of the signaling field, obtain the user field carrying the identifier of the site, and obtain the data transmitted on the RU corresponding to the user field.
  • the data transmission device may be a communication device or a site, or the data transmission device may be deployed on a communication device or a site.
  • the processing unit 1401 of the data transmission device 1400 may be a processor, and the transceiving unit 1402 of the data transmission device 1400 may be a transceiver.
  • the resource unit allocation subfield indicates the resource unit RU included in the channel bandwidth for transmitting the PPDU, and the RU is allocated to the docking station
  • the number of user fields corresponding to the RU of the site on the first frequency domain fragment is not calculated according to the actual resource unit allocation situation. Instructions, this simplifies the user field.
  • the user field of the RU that is not docked in the first frequency domain fragment can be omitted or simplified, so that the overhead of the signaling field in the PPDU can be reduced by reducing the number of user fields.
  • the resource unit allocation subfield indicates that among the resource units RU included in the channel bandwidth for transmitting the PPDU, a user field corresponding to an RU that is not allocated to a site parked at the first frequency domain fragment is indicated.
  • the number of is 0, and the RU that is not allocated to the site that stops at the first frequency domain fragment is an RU that is greater than or equal to 242 subcarriers. In this way, the user field of the RU greater than or equal to 242 subcarriers can be omitted, thereby effectively reducing the overhead of the signaling field.
  • the number of user fields corresponding to the RU that is not allocated to the site docked in the first frequency domain fragment indicated by the resource unit allocation subfield is less than the number of user fields that are not allocated to the site docked in the first frequency domain fragment.
  • the number of user fields actually corresponding to the RU of a frequency domain fragmented site is less than the number of user fields of the signaling field transmitted in the first frequency domain fragmentation.
  • the resource unit allocation subfield indicates that the RU that is not allocated to the site docked at the first frequency domain fragment is actually at least the RU that is not allocated to the site docked at the first frequency domain fragment. Two RUs. In this way, at least two RUs that are not allocated to the site docking in the first frequency domain fragment are indicated as one RU together, and the indication method of the resource unit allocation subfield is simplified, so that the user fields corresponding to the at least two RUs The number is smaller, which can reduce the overhead of the signaling field.
  • the at least two RUs are both RUs with less than 242 subcarriers.
  • the resource unit allocator is instructed according to the actual resource unit allocation, and each small RU needs to correspond to a user field.
  • the solution of this application will be allocated to the first frequency domain At least two small RUs of the site of the slice are indicated as one RU together, so that one RU only needs to correspond to one user field, so that one user field can be omitted, and the overhead of the signaling field can be reduced.
  • FIG. 15 is a schematic structural diagram of a data transmission device according to an embodiment of the application.
  • An embodiment of the present application also provides a data transmission device 1500, including a processing unit 1501 and a transceiver unit 1502;
  • the processing unit 1501 is configured to generate the signaling field of the physical layer protocol data unit PPDU; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments include the first frequency domain fragment piece;
  • the transceiver unit 1502 is configured to send the signaling field in the first frequency domain in fragments.
  • the signaling field includes a common field and a user-specific field, the common field includes a resource unit allocation subfield; the user-specific field includes a user field; the resource unit allocation subfield indicates that the PPDU is transmitted in the channel bandwidth Resource unit RU; the common field includes at least one RU indicated by the resource unit allocation subfield is a plurality of RUs smaller than 242 subcarriers; each RU of the plurality of RUs smaller than 242 subcarriers corresponds to at least one user Field; wherein, the user field corresponding to at least one first RU carries the identification of the station docked in the first frequency domain fragment, and the user field corresponding to at least one second RU does not carry the station docked in the first frequency domain fragment The identification of the station in the slice, and at least part of the subcarrier corresponding to the second RU indicated by the resource unit allocation subfield belongs to at least two RUs.
  • the data transmission device may be a communication device or a site, or the data transmission device may be deployed on a communication device or a site.
  • the processing unit 1501 of the data transmission device 1500 may be a processor, and the transceiving unit 1502 of the data transmission device 1500 may be a transceiver.
  • the first signaling field of the solution of the present application is fragmented and transmitted in the first frequency domain.
  • the resource unit allocation subfield is one RU indicated by the combination of at least two RUs, and this RU corresponds to only one user field, which can effectively reduce multiple consecutive small RUs that are not allocated to STAs allocated in the frequency domain.
  • the number of corresponding user fields can save the overhead of signaling fields.
  • the resource unit allocation subfield indicates that among the resource units RU included in the channel bandwidth for transmitting the PPDU, a user field corresponding to an RU that is not allocated to a site parked at the first frequency domain fragment is indicated.
  • the number of is 0, and the RU that is not allocated to the site that stops at the first frequency domain fragment is an RU that is greater than or equal to 242 subcarriers. In this way, the user field of the RU greater than or equal to 242 subcarriers can be omitted, thereby effectively reducing the overhead of the signaling field.
  • the number of user fields corresponding to the RU that is not allocated to the site docked in the first frequency domain fragment indicated by the resource unit allocation subfield is less than the number of user fields that are not allocated to the site docked in the first frequency domain fragment.
  • the number of user fields actually corresponding to the RU of a frequency domain fragmented site is less than the number of user fields of the signaling field transmitted in the first frequency domain fragmentation.
  • the resource unit allocation subfield indicates that the RU that is not allocated to the site docked at the first frequency domain fragment is actually at least the RU that is not allocated to the site docked at the first frequency domain fragment. Two RUs. In this way, at least two RUs that are not allocated to the site docking in the first frequency domain fragment are indicated as one RU together, and the indication method of the resource unit allocation subfield is simplified, so that the user fields corresponding to the at least two RUs The number is smaller, which can reduce the overhead of the signaling field.
  • the at least two RUs are both RUs with less than 242 subcarriers.
  • the resource unit allocator is instructed according to the actual resource unit allocation, and each small RU needs to correspond to a user field.
  • the solution of this application will be allocated to the first frequency domain At least two small RUs of the site of the slice are indicated as one RU together, so that one RU only needs to correspond to one user field, so that one user field can be omitted, and the overhead of the signaling field can be reduced.
  • FIG. 16 is a schematic structural diagram of a data transmission device according to an embodiment of the application.
  • An embodiment of the present application also provides a data transmission device 1600, including a processing unit 1601 and a transceiver unit 1602,
  • the processing unit 1601 is configured to receive the signaling field of the physical layer protocol data unit PPDU in the first frequency domain fragment; wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain fragments; the at least two frequency domain fragments; The domain fragmentation includes the first frequency domain fragmentation; the signaling field includes a common field and a user-specific field, the common field includes a resource unit allocation subfield; the user-specific field includes a user field; the resource unit allocation subfield The field indicates the resource unit RU in the channel bandwidth for transmitting the PPDU; the common field includes at least one RU indicated by the resource unit allocation subfield is multiple RUs smaller than 242 subcarriers; the multiple RUs smaller than 242 subcarriers Each RU in the RU corresponds to at least one user field; wherein, the user field corresponding to at least one first RU carries the identifier of the station parked in the first frequency domain fragment, and the user field corresponding to at least one second RU Does not carry the identifier of the station
  • the transceiving unit 1602 is configured to obtain the user field carrying the identifier of the site from the user fields included in the user specific field, and obtain the data transmitted on the RU corresponding to the user field.
  • the data transmission device may be a communication device or a site, or the data transmission device may be deployed on a communication device or a site.
  • the data transmission device may be a communication device or a site, or the data transmission device may be deployed on a communication device or a site.
  • the processing unit 1601 of the data transmission device 1600 may be a processor, and the transceiving unit 1602 of the data transmission device 1600 may be a transceiver.
  • the resource unit allocation subfield indicates the resource unit RU included in the channel bandwidth for transmitting the PPDU, and the RU is allocated to the docking station
  • the number of user fields corresponding to the RU of the site on the first frequency domain fragment is not calculated according to the actual resource unit allocation situation. Instructions, this simplifies the user field.
  • the user field of the RU that is not docked in the first frequency domain fragment can be omitted or simplified, so that the overhead of the signaling field in the PPDU can be reduced by reducing the number of user fields.
  • the resource unit allocation subfield indicates that among the resource units RU included in the channel bandwidth for transmitting the PPDU, a user field corresponding to an RU that is not allocated to a site parked at the first frequency domain fragment is indicated.
  • the number of is 0, and the RU that is not allocated to the site that stops at the first frequency domain fragment is an RU that is greater than or equal to 242 subcarriers. In this way, the user field of the RU greater than or equal to 242 subcarriers can be omitted, thereby effectively reducing the overhead of the signaling field.
  • the number of user fields corresponding to the RU that is not allocated to the site docked in the first frequency domain fragment indicated by the resource unit allocation subfield is less than the number of user fields that are not allocated to the site docked in the first frequency domain fragment.
  • the number of user fields actually corresponding to the RU of a frequency domain fragmented site is less than the number of user fields of the signaling field transmitted in the first frequency domain fragmentation.
  • the resource unit allocation subfield indicates that the RU that is not allocated to the site docked at the first frequency domain fragment is actually at least the RU that is not allocated to the site docked at the first frequency domain fragment. Two RUs. In this way, at least two RUs that are not allocated to the site docking in the first frequency domain fragment are indicated as one RU together, and the indication method of the resource unit allocation subfield is simplified, so that the user fields corresponding to the at least two RUs The number is smaller, which can reduce the overhead of the signaling field.
  • the at least two RUs are both RUs with less than 242 subcarriers.
  • the resource unit allocator is instructed according to the actual resource unit allocation, and each small RU needs to correspond to a user field.
  • the solution of this application will be allocated to the first frequency domain At least two small RUs of the site of the slice are indicated as one RU together, so that one RU only needs to correspond to one user field, so that one user field can be omitted, and the overhead of the signaling field can be reduced.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer-readable storage medium is executed by a computer, the function of any of the foregoing method embodiments is realized.
  • This application also provides a computer program product, which, when executed by a computer, realizes the functions of any of the foregoing method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • the corresponding relationships shown in the tables in this application can be configured or pre-defined.
  • the value of the information in each table is only an example, and can be configured to other values, which is not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, and so on.
  • the names of the parameters shown in the titles in the above tables may also be other names that can be understood by the communication device, and the values or expressions of the parameters may also be other values or expressions that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • the pre-definition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, curing, or pre-fired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输方法及相关装置。其中,该方法包括:生成PPDU的信令字段,和在第一频域分片发送信令字段;其中传输PPDU的信道带宽包括至少两个频域分片;至少两个频域分片包括第一频域分片;信令字段中的资源单元分配子字段指示传输PPDU的信道带宽所包括的资源单元RU,以及RU中分配给停靠在第一频域分片上的站点的RU所对应的用户字段的数目。这样能够通过省去非分配给本频域分片的用户字段,来节省信令字段的开销。本申请可应用于802.11be或极高吞吐量EHT等WiFi系统中。

Description

数据传输方法及相关装置
本申请要求于2020年04月22日提交中国国家知识产权局、申请号为202010324346.2、发明名称为“数据传输方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及相关装置。
背景技术
无线局域网(wireless local area network,WLAN)发展至今,新引入了正交频分多址(orthogonal frequency division multiple access,OFDMA)技术,整个带宽被分为多个资源单元(resource unit,RU),也就是说,用户频带资源的分配并不是以信道为单位,而是以资源单元为单位。例如,一个20MHz信道内,可以包含多个RU,形式可以是26-tone RU、52-tone RU、106-tone RU。其中,tone表示子载波个数。此外,RU也可以是242-tone RU、484-tone RU、996-tone RU等形式。
在802.11ax中,接入点向多个站点发送的(PHY protocol data unit,PPDU)中的高效信令字段(High Efficient Signal Field,HE-SIG-B)包括公共字段(Common field)。该公共字段包括多个资源单元分配子字段(RU Allocation subfield),公共字段中的资源单元分配子字段用于指示多个资源单元。HE-SIG-B中的用户特定字段中包括与每个资源单元分配子字段对应的所有的用户字段。这样发送给每个站点的HE-SIG-B都包含每个资源单元分配子字段对应的所有的用户字段。
随着WLAN技术的发展,为了使接入点传输的PPDU支持更多的站点用户,PPDU中的信令字段需要传输的用户字段会越来越多,这样会导致信令开销越来越大。
发明内容
本申请实施例提供了一种数据传输方法及相关装置,能够降低PPDU中的信令字段的开销。
第一方面,本申请实施方式提供一种数据传输方法,包括:生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片;所述信令字段在所述第一频域分片中传输,包括公共字段和用户特定字段;所述公共字段包括资源单元分配子字段,所述用户特定字段包括用户字段;所述资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU,以及所述RU中分配给所述停靠在所述第一频域分片上的站点的RU所对应的用户字段的数目;其中,分配给所述停靠在所述第一频域分片上的站点的RU对应的用户字段的数目,表示该RU向所述用户特定字段中的一个内容信道贡献的用户字段的数目,所述用户字段为停靠在所述第一频域分片上的站点对应的用户字段;在所述第一频域分片发送所述信令字段。
这样,第一频域分片传输的信令字段中,资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU,以及所述RU中分配给所述停靠在所述第一频域分片上的站点的RU所对应的用户字段的数目,而并没有按照实际的资源单元分配情况对非分配给所述停靠在所述第一频域分片上的站点的用户数进行指示,这样简化能够用户字段。在用户特定字段部分,可省去或简化非停靠在第一频域分片的RU的用户字段,从而能够实现通过减少用户字段的数目来降低PPDU中的信令字段的开销。
在一些实施方式中,所述资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU中,非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目为0,所述非分配给停靠在所述第一频域分片的站点的RU为大于或等于242子载波的RU。这样能够省去该大于或等于242子载波的RU的用户字段,从而能够有效地降低信令字段的开销。
在一些实施方式中,所述资源单元分配子字段指示的所述非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目,小于所述非分配给停靠在第一频域分片的站点的RU实际对应的用户字段的数目。这样能够减少第一频域分片传输的信令字段的用户字段的数目,从而能够降低信令字段的开销。
在一些实施方式中,所述资源单元分配子字段指示的非分配给停靠在所述第一频域分片的站点的RU,实际为非分配给停靠在第一频域分片的站点的至少两个RU。这样,非分配给停靠在第一频域分片的站点的至少两个RU一并指示为一个RU,对资源单元分配子字段的指示方式进行简化,可使得这至少两个RU对应的用户字段的数目更少,从而能够降低信令字段的开销。
在一些实施方式中,所述至少两个RU均为小于242子载波的RU。这样,相比较于现有技术中,资源单元分配子按照实际的资源单元分配情况进行指示,每个小RU需要分别对应一个用户字段,本申请的方案,将分配给停靠在第一频域分片的站点的至少两个小RU一并指示为一个RU,这样该一个RU只需要对应一个用户字段,从而能够省去指示一个用户字段,实现降低信令字段的开销。
第二方面,本申请实施方式还提供一种数据传输方法,包括:停靠在第一频域分片的站点在所述第一频域分片接收物理层协议数据单元PPDU的信令字段,其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括所述第一频域分片;所述信令字段包括公共字段和用户特定字段;所述公共字段包括资源单元分配子字段,所述用户特定字段包括用户字段;所述资源单元分配子字段指示传输所述PPDU的信道带宽中的资源单元RU,以及所述RU中分配给所述停靠在所述第一频域分片上的站点的RU所对应的用户字段的数目;其中,分配给所述停靠在所述第一频域分片上的站点的RU对应的用户字段的数目,表示该RU向所述用户特定字段中的一个内容信道贡献的用户字段的数目,所述用户字段为停靠在所述第一频域分片上的站点对应的用户字段;所述站点接收所述信令字段的用户特定字段所包括的用户字段中,获取携带本站点的标识的用户字段,并获取所述用户字段对应的RU上传输的数据。
这样,站点从第一频域分片接收的信令字段中,资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU,以及所述RU中分配给所述停靠在所述第一频域 分片上的站点的RU所对应的用户字段的数目,而并没有按照实际的资源单元分配情况对非分配给所述停靠在所述第一频域分片上的站点的用户数进行指示,这样简化能够用户字段。在用户特定字段部分,可省去或简化非停靠在第一频域分片的RU的用户字段,从而能够实现通过减少用户字段的数目来降低PPDU中的信令字段的开销。
在一些实施方式中,所述资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU中,非分配给停靠在所述第一频域分片的站点的所述RU对应的用户字段的数目为0,所述非分配给停靠在所述第一频域分片的站点的RU为大于或等于242子载波的RU。这样能够省去该大于或等于242子载波的RU的用户字段,从而能够有效地降低信令字段的开销。
在一些实施方式中,所述资源单元分配子字段指示的所述非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目,小于所述非分配给停靠在第一频域分片的站点的RU实际对应的用户字段的数目。这样能够减少第一频域分片传输的信令字段的用户字段的数目,从而能够降低信令字段的开销。
在一些实施方式中,所述资源单元分配子字段指示的非分配给停靠在所述第一频域分片的站点的RU,实际为非分配给停靠在第一频域分片的站点的至少两个RU。这样,非分配给停靠在第一频域分片的站点的至少两个RU一并指示为一个RU,可使得这至少两个RU对应的用户字段的数目更少,从而能够降低信令字段的开销。
在一些实施方式中,所述至少两个RU均为小于242子载波的RU。这样,相比较于现有技术中,资源单元分配子按照实际的资源单元分配情况进行指示,每个小RU需要分别对应一个用户字段,本申请的方案,将分配给停靠在第一频域分片的站点的至少两个小RU一并指示为一个RU,这样该一个RU只需要对应一个用户字段,从而能够省去指示一个用户字段,实现降低信令字段的开销。
第三方面,本申请实施方式还提供一种数据传输方法,包括:生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片;在所述第一频域分片发送所述信令字段;其中,所述信令字段包括公共字段和用户特定字段,所述公共字段包括资源单元分配子字段;所述用户特定字段包括用户字段;所述资源单元分配子字段指示传输所述PPDU的信道带宽中的资源单元RU;所述公共字段包括至少一个所述资源单元分配子字段指示的RU为多个小于242子载波的RU;所述多个小于242子载波的RU中的每个RU对应至少一个用户字段;至少一个第一RU对应的用户字段携带停靠在所述第一频域分片中的站点的标识,至少一个第二RU对应的用户字段未携带停靠在所述第一频域分片中的站点的标识,所述资源单元分配子字段指示的所述第二RU对应的子载波的至少部分属于至少两个RU。
这样,相比较于按照实际情况指示这两个RU,并指示这至少两个RU中的每个RU对应至少一个用户字段,本申请的方案在第一频域分片传输的第一信令字段中,资源单元分配子字段这对至少两个RU合并指示的一个RU,并且这一个RU只对应一个用户字段,能够有效减少非分配给停留在本频域分配的STA的多个连续的小RU对应的用户字段的数量,从而能够节省信令字段的开销。
第四方面,本申请实施方式还提供一种数据传输方法,包括:停靠在第一频域分片的 站点在所述第一频域分片接收物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片;所述信令字段包括公共字段和用户特定字段,所述公共字段包括资源单元分配子字段;所述用户特定字段包括用户字段;所述资源单元分配子字段指示传输所述PPDU的信道带宽中的资源单元RU;其中,所述公共字段包括至少一个所述资源单元分配子字段指示的RU为多个小于242子载波的RU;所述多个小于242子载波的RU中的每个RU对应至少一个用户字段;其中,至少一个第一RU对应的用户字段携带停靠在所述第一频域分片中的站点的标识,至少一个第二RU对应的用户字段未携带停靠在所述第一频域分片中的站点的标识,所述资源单元分配子字段指示的所述第二RU对应的子载波的至少部分属于至少两个RU;所述站点从所述用户特定字段所包括的用户字段中,获取携带本站点的标识的用户字段,并获取所述用户字段对应的RU上传输的数据。
这样,相比较于按照实际情况指示这两个RU,并指示这至少两个RU中的每个RU对应至少一个用户字段,本申请的方案站点从第一频域分片接收的第一信令字段中,资源单元分配子字段这对至少两个RU合并指示的一个RU,并且这一个RU只对应一个用户字段,能够有效减少非分配给停留在本频域分配的STA的多个连续的小RU对应的用户字段的数量,从而能够节省信令字段的开销。
第五方面,本申请实施方式还提供一种数据传输装置,包括处理单元和收发单元;处理单元用于生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片;所述信令字段在所述第一频域分片中传输,包括公共字段和用户特定字段;所述公共字段包括资源单元分配子字段,所述用户特定字段包括用户字段;所述资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU,以及所述RU中分配给所述停靠在所述第一频域分片上的站点的RU所对应的用户字段的数目;其中,分配给所述停靠在所述第一频域分片上的站点的RU对应的用户字段的数目,表示该RU向所述用户特定字段中的一个内容信道贡献的用户字段的数目,所述用户字段为停靠在所述第一频域分片上的站点对应的用户字段;收发单元用于在所述第一频域分片发送所述信令字段。该数据传输装置可以为通信装置或接入点,或者该数据传输装置可部署在通信装置或部署在接入点。
这样,第一频域分片传输的信令字段中,资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU,以及所述RU中分配给所述停靠在所述第一频域分片上的站点的RU所对应的用户字段的数目,而并没有按照实际的资源单元分配情况对非分配给所述停靠在所述第一频域分片上的站点的用户数进行指示,这样简化能够用户字段。在用户特定字段部分,可省去或简化非停靠在第一频域分片的RU的用户字段,从而能够实现通过减少用户字段的数目来降低PPDU中的信令字段的开销。
在一些实施方式中,所述资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU中,非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目为0,所述非分配给停靠在所述第一频域分片的站点的RU为大于或等于242子载波的RU。这样能够省去该大于或等于242子载波的RU的用户字段,从而能够有效地降低信令字段的开销。
在一些实施方式中,所述资源单元分配子字段指示的所述非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目,小于所述非分配给停靠在第一频域分片的站点的RU实际对应的用户字段的数目。这样能够减少第一频域分片传输的信令字段的用户字段的数目,从而能够降低信令字段的开销。
在一些实施方式中,所述资源单元分配子字段指示的非分配给停靠在所述第一频域分片的站点的RU,实际为非分配给停靠在第一频域分片的站点的至少两个RU。这样,非分配给停靠在第一频域分片的站点的至少两个RU一并指示为一个RU,对资源单元分配子字段的指示方式进行简化,可使得这至少两个RU对应的用户字段的数目更少,从而能够降低信令字段的开销。
在一些实施方式中,所述至少两个RU均为小于242子载波的RU。这样,相比较于现有技术中,资源单元分配子按照实际的资源单元分配情况进行指示,每个小RU需要分别对应一个用户字段,本申请的方案,将分配给停靠在第一频域分片的站点的至少两个小RU一并指示为一个RU,这样该一个RU只需要对应一个用户字段,从而能够省去指示一个用户字段,实现降低信令字段的开销。
第六方面,本申请实施方式还提供一种数据传输装置,包括处理单元和收发单元;收发单元用于停靠在所述第一频域分片接收物理层协议数据单元PPDU的信令字段,其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括所述第一频域分片;所述信令字段包括公共字段和用户特定字段;所述公共字段包括资源单元分配子字段,所述用户特定字段包括用户字段;所述资源单元分配子字段指示传输所述PPDU的信道带宽中的资源单元RU,以及所述RU中分配给所述停靠在所述第一频域分片上的站点的RU所对应的用户字段的数目;其中,分配给所述停靠在所述第一频域分片上的站点的RU对应的用户字段的数目,表示该RU向所述用户特定字段中的一个内容信道贡献的用户字段的数目,所述用户字段为停靠在所述第一频域分片上的站点对应的用户字段;处理单元用于接收所述信令字段的用户特定字段所包括的用户字段中,获取携带本站点的标识的用户字段,并获取所述用户字段对应的RU上传输的数据。该数据传输装置可以为通信装置或站点,或者该数据传输装置可部署在通信装置或部署在站点。
这样,站点从第一频域分片接收的信令字段中,资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU,以及所述RU中分配给所述停靠在所述第一频域分片上的站点的RU所对应的用户字段的数目,而并没有按照实际的资源单元分配情况对非分配给所述停靠在所述第一频域分片上的站点的用户数进行指示,这样简化能够用户字段。在用户特定字段部分,可省去或简化非停靠在第一频域分片的RU的用户字段,从而能够实现通过减少用户字段的数目来降低PPDU中的信令字段的开销。
在一些实施方式中,所述资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU中,非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目为0,所述非分配给停靠在所述第一频域分片的站点的RU为大于或等于242子载波的RU。这样能够省去该大于或等于242子载波的RU的用户字段,从而能够有效地降低信令字段的开销。
在一些实施方式中,所述资源单元分配子字段指示的所述非分配给停靠在所述第一频 域分片的站点的RU对应的用户字段的数目,小于所述非分配给停靠在第一频域分片的站点的RU实际对应的用户字段的数目。这样能够减少第一频域分片传输的信令字段的用户字段的数目,从而能够降低信令字段的开销。
在一些实施方式中,所述资源单元分配子字段指示的非分配给停靠在所述第一频域分片的站点的RU,实际为非分配给停靠在第一频域分片的站点的至少两个RU。这样,非分配给停靠在第一频域分片的站点的至少两个RU一并指示为一个RU,对资源单元分配子字段的指示方式进行简化,可使得这至少两个RU对应的用户字段的数目更少,从而能够降低信令字段的开销。
在一些实施方式中,所述至少两个RU均为小于242子载波的RU。这样,相比较于现有技术中,资源单元分配子按照实际的资源单元分配情况进行指示,每个小RU需要分别对应一个用户字段,本申请的方案,将分配给停靠在第一频域分片的站点的至少两个小RU一并指示为一个RU,这样该一个RU只需要对应一个用户字段,从而能够省去指示一个用户字段,实现降低信令字段的开销。
第七方面,本申请实施方式还提供一种数据传输装置,包括处理单元和收发单元;处理单元用于生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片;收发单元用于在所述第一频域分片发送所述信令字段;所述信令字段包括公共字段和用户特定字段,所述公共字段包括资源单元分配子字段;所述用户特定字段包括用户字段;所述资源单元分配子字段指示传输所述PPDU的信道带宽中的资源单元RU;所述公共字段包括至少一个所述资源单元分配子字段指示的RU为多个小于242子载波的RU;所述多个小于242子载波的RU中的每个RU对应至少一个用户字段;其中,至少一个第一RU对应的用户字段携带停靠在所述第一频域分片中的站点的标识,至少一个第二RU对应的用户字段未携带停靠在所述第一频域分片中的站点的标识,所述资源单元分配子字段指示的所述第二RU对应的子载波的至少部分属于至少两个RU。该数据传输装置可以为通信装置或接入点,或者该数据传输装置可部署在通信装置或部署在接入点。
这样,相比较于按照实际情况指示这两个RU,并指示这至少两个RU中的每个RU对应至少一个用户字段,本申请的方案在第一频域分片传输的第一信令字段中,资源单元分配子字段这对至少两个RU合并指示的一个RU,并且这一个RU只对应一个用户字段,能够有效减少非分配给停留在本频域分配的STA的多个连续的小RU对应的用户字段的数量,从而能够节省信令字段的开销。
第八方面,本申请实施方式还提供一种数据传输装置,包括处理单元和收发单元,处理单元用于在所述第一频域分片接收物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片;所述信令字段包括公共字段和用户特定字段,所述公共字段包括资源单元分配子字段;所述用户特定字段包括用户字段;所述资源单元分配子字段指示传输所述PPDU的信道带宽中的资源单元RU;其中,所述公共字段包括至少一个所述资源单元分配子字段指示的RU为多个小于242子载波的RU;所述多个小于242子载波的RU中的每个RU对应至少一个用户字段;其中,至少一个第一RU对应的用户字段携带停靠在所述第一频域分片中的站 点的标识,至少一个第二RU对应的用户字段未携带停靠在所述第一频域分片中的站点的标识,所述资源单元分配子字段指示的所述第二RU对应的子载波的至少部分属于至少两个RU;收发单元用于从所述用户特定字段所包括的用户字段中,获取携带本站点的标识的用户字段,并获取所述用户字段对应的RU上传输的数据。该数据传输装置可以为通信装置或站点,或者该数据传输装置可部署在通信装置或部署在站点。
这样,站点从第一频域分片接收的信令字段中,资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU,以及所述RU中分配给所述停靠在所述第一频域分片上的站点的RU所对应的用户字段的数目,而并没有按照实际的资源单元分配情况对非分配给所述停靠在所述第一频域分片上的站点的用户数进行指示,这样简化能够用户字段。在用户特定字段部分,可省去或简化非停靠在第一频域分片的RU的用户字段,从而能够实现通过减少用户字段的数目来降低PPDU中的信令字段的开销。
在一些实施方式中,所述资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU中,非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目为0,所述非分配给停靠在所述第一频域分片的站点的RU为大于或等于242子载波的RU。这样能够省去该大于或等于242子载波的RU的用户字段,从而能够有效地降低信令字段的开销。
在一些实施方式中,所述资源单元分配子字段指示的所述非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目,小于所述非分配给停靠在第一频域分片的站点的RU实际对应的用户字段的数目。这样能够减少第一频域分片传输的信令字段的用户字段的数目,从而能够降低信令字段的开销。
在一些实施方式中,所述资源单元分配子字段指示的非分配给停靠在所述第一频域分片的站点的RU,实际为非分配给停靠在第一频域分片的站点的至少两个RU。这样,非分配给停靠在第一频域分片的站点的至少两个RU一并指示为一个RU,对资源单元分配子字段的指示方式进行简化,可使得这至少两个RU对应的用户字段的数目更少,从而能够降低信令字段的开销。
在一些实施方式中,所述至少两个RU均为小于242子载波的RU。这样,相比较于现有技术中,资源单元分配子按照实际的资源单元分配情况进行指示,每个小RU需要分别对应一个用户字段,本申请的方案,将分配给停靠在第一频域分片的站点的至少两个小RU一并指示为一个RU,这样该一个RU只需要对应一个用户字段,从而能够省去指示一个用户字段,实现降低信令字段的开销。
第九方面,本申请实施方式还提供一种通信装置,该通信装置可包括:处理器、收发器,可选的还包括存储器,当所述处理器执行所述存储器中的计算机程序或指令时,使得上述第一方面的任一实施方式的方法被执行,或使得上述第二方面的任一实施方式的方法被执行,或使得上述第三方面的实施方式的方法被执行,或使得上述第四方面的实施方式的方法被执行。
第十方面,本申请实施方式还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,所述计算机指令指示通信设备执行上述第一方面的任一实施方式的方法,或所述计算机指令指示通信设备执行上述第二方面的任一实施方式的方法,或所 述计算机指令指示通信设备执行上述第三方面的方法,或所述计算机指令指示通信设备执行上述第四方面的方法。
第十一方面,本申请实施方式还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面的任一实施方式的方法,或使得所述计算机执行上述第二方面的任一实施方式的方法,或使得所述计算机执行上述第三方面的方法,或使得所述计算机执行上述第四方面的方法。
第十二方面,本申请还提供一种处理器,用于执行上述第一方面~第四方面的任一种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息过程。具体来说,在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。更进一步的,该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
如此一来,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本发明实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第十三方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持通信传输设备实现第一方面~第四方面任一方面的方法中所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存前述通信装置的必要的信息和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十四方面,本申请提供了一种功能实体,该功能实体用于实现上述第一方面~第四方面任一方面所述的方法。
附图说明
图1A是本申请实施例提供的一种网络结构的示意图;
图1B是本申请实施例提供的一种通信装置的结构示意图;
图1C是本申请实施例提供的一种芯片的结构示意图;
图2A是资源单元的一种分配方式的示意图;
图2B是资源单元的另一种分配方式的示意图;
图3A是信令字段的一种可能的结构示意图;
图3B是信令字段的另一种可能的结构示意图;
图4A是本申请涉及的PPDU的结构示意图;
图4B是本申请涉及的PPDU的另一结构示意图;
图5是本申请实施例提供的PPDU的前序部分的发送方法的流程示意图;
图6A是本申请实施例提供的PPDU的结构示意图;
图6B是本申请实施例提供的PPDU的另一结构示意图;
图6C是本申请实施例提供的PPDU的又一结构示意图;
图7A是本申请实施例的数据传输方法的流程示意图;
图7B是本申请实施例提供的PPDU的再一结构示意图;
图8A是本申请实施例的资源单元分配的场景示意图;
图8B是本申请实施例的内容信道的结构示意图;
图8C是本申请实施例的信令字段的结构示意图;
图8D是本申请另一实施例的内容信道的结构示意图;
图8E是本申请另一实施例的信令字段的结构示意图;
图9是本申请另一实施例的资源单元分配的场景示意图;
图10是本申请又一实施例的资源单元分配的场景示意图;
图11是本申请再一实施例的资源单元分配的场景示意图;
图12为本申请再又一实施例的资源单元分配的场景示意图;
图13为本申请实施例的数据传输装置的模块示意图;
图14为本申请另一实施例的数据传输装置的模块示意图;
图15为本申请又一实施例的数据传输装置的模块示意图;
图16为本申请再一实施例的数据传输装置的模块示意图。
具体实施方式
下面结合附图对本申请具体实施例作进一步的详细描述。
以图1A为例阐述本申请所述的数据传输方法可适用的网络结构。图1A是本申请实施例提供的网络结构的示意图,该网络结构可包括一个或多个接入点(access point,AP)类的站点和一个或多个非接入点类的站点(none access point station,non-AP STA)。为便于描述,本文将接入点类型的站点称为接入点(AP),非接入点类的站点称为站点(STA)。AP例如为图1A中的AP1和AP2,STA例如为图1A中的STA1、STA2和STA3。
其中,接入点可以为终端设备(如手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。接入点相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体的,接入点可以是带有无线保真(wreless-fidelity,WiFi)芯片的终端设备(如手机)或者网络设备(如路由器)。接入点可以为支持802.11be制式的设备。接入点也可以为支持802.11be、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等802.11家族的多种无线局域网(wireless local area networks,WLAN)制式的设备。本申请中的接入点可以是高效(high efficient,HE)AP或极高吞吐 量(extramely high throughput,EHT)AP,还可以是适用未来某代WiFi标准的接入点。
接入点可包括处理器和收发器,处理器用于对接入点的动作进行控制管理,收发器用于接收或发送信息。
站点可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户。例如,站点可以为支持WiFi通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持WiFi通讯功能的机顶盒、支持WiFi通讯功能的智能电视、支持WiFi通讯功能的智能可穿戴设备、支持WiFi通讯功能的车载通信设备和支持WiFi通讯功能的计算机等等。可选地,站点可以支持802.11be制式。站点也可以支持802.11be、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等802.11家族的多种无线局域网(wireless local area networks,WLAN)制式。
站点可包括处理器和收发器,处理器用于对接入点的动作进行控制管理,收发器用于接收或发送信息。
本申请中的接入点可以是高效(high efficient,HE)STA或极高吞吐量(extramely high throughput,EHT)STA,还可以是适用未来某代WiFi标准的STA。
例如,接入点和站点可以是应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。
本申请实施例中的所涉及的接入点和站点又可以统称为通信装置,其可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来实现。
图1B为本申请实施例提供的一种通信装置的结构示意图。如图1B所示,该通信装置200可包括:处理器201、收发器205,可选的还包括存储器202。
所述收发器205可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器205可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
存储器202中可存储计算机程序或软件代码或指令204,该计算机程序或软件代码或指令204还可称为固件。处理器201可通过运行其中的计算机程序或软件代码或指令203,或通过调用存储器202中存储的计算机程序或软件代码或指令204,对MAC层和PHY层进行控制,以实现本申请下述各实施例提供的数据传输方法。其中,处理器201可以为中央处理器(central processing unit,CPU),存储器202例如可以为只读存储器(read-only memory,ROM),或为随机存取存储器(random access memory,RAM)。
本申请中描述的处理器201和收发器205可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。
上述通信装置200还可以包括天线206,该通信装置200所包括的各模块仅为示例说明,本申请不对此进行限制。
如前所述,以上实施例描述中的通信装置200可以是接入点或者站点,但本申请中描 述的通信装置的范围并不限于此,而且通信装置的结构可以不受图1B的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置的实现形式可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;(3)可嵌入在其他设备内的模块;(4)接收机、智能终端、无线设备、手持机、移动单元、车载设备、云设备、人工智能设备等等;(5)其他等等。
对于通信装置的实现形式是芯片或芯片系统的情况,可参见图1C所示的芯片的结构示意图。图1C所示的芯片包括处理器301和接口302。其中,处理器301的数量可以是一个或多个,接口302的数量可以是多个。可选的,该芯片或芯片系统可以包括存储器303。
本申请实施例并且不限制权利要求书的保护范围和适用性。本领域技术人员可以在不脱离本申请实施例范围的情况下对本申请涉及的元件的功能和部署进行适应性更改,或酌情省略、替代或添加各种过程或组件。
在带宽配置方面,802.11ax目前支持的带宽配置包括:20MHz、40MHz、80MHz、160MHz及80+80MHz。其中,160MHz与80+80MHz的区别在于前者为连续频带,而后者的两个80MHz间可以分离。在802.11be中,将支持320MHz的带宽配置。
在频带资源分配上,一个用户的频带资源的分配并不是以信道为单位,而是以资源单元(Resource Unit,RU)为单位。RU的大小可以是26-tone RU、52-tone RU、106-tone RU,这些RU通常称为小RU。其中,tone表示子载波,例如,26-tone RU表示由26个子载波组成的RU,该26-tone RU可以被分配给一个用户使用。此外,RU的大小也可以是242-tone、484-tone、996-tone等等,这些通常称为大RU。通常来讲,一个大于等于106-tone的RU可以分配给一个或者多个用户使用。在802.11be中,将支持给一个用户分配多个RU,本申请中的用户可理解为STA。
当传输PPDU的信道带宽为20MHz时,如图2A所示的,图2A所示为传输PPDU的信道带宽为20MHz时的资源单元可能的分配方式的示意图。整个20MHz信道带宽可以由一整个242个子载波组成的资源单元(242-tone RU)组成,也可以由26个子载波组成的资源单元(26-tone RU)、52个子载波组成的资源单元(52-tone RU)、106个子载波组成的资源单元(106-tone RU)的各种组合组成。除了用于传输数据的RU,此外,还包括一些保护(Guard)子载波,空子载波,或者直流(direct current,DC)子载波。
当传输PPDU的信道带宽为40MHz时,如图2B所示的,图2B所示为传输PPDU的信道带宽为40MHz时资源单元的各种分配方式。整个信道带宽大致相当于20MHz的子载波分布的复制。整个40MHz信道带宽可以由一整个484个子载波组成的资源单元(484-tone RU)组成,也可以由26-tone RU,52-tone RU,106-tone RU,242-tone RU的各种组合组成。
当传输PPDU的信道带宽为80MHz时。整个信道带宽大致相当于20MHz的子载波分布的复制。整个80MHz信道带宽可以由一整个996个子载波组成的资源单元(996-tone RU)组成,也可以由484-tone RU、242-tone RU,106-tone RU,52-tone RU,26-tone RU的各种组合组成。并且,在整个80MHz信道带宽的中间,还存在一个由两个13-tone子单元组成的中间26-tone RU(Center 26-Tone RU)。
类似的,当传输PPDU的信道带宽为160MHz时,整个信道带宽可以看成两个80Mhz 的子载波分布的复制,整个信道带宽可以由一整个2×996-tone RU(由1992个子载波组成的资源单元)组成,也可以由26-tone RU,52-tone RU,106-tone RU,242-tone RU,484-tone RU,996-tone RU的各种组合组成。并且,在整个80MHz信道带宽的中间,还存在一个由两个13-tone子单元组成的中间26-tone RU。
802.11ax中,AP利用信令字段(signal field,SIG)向用户通知RU的分配。请参阅图3A,图3A为信令字段的结构示意图。如图3A中所示的,HE-SIG包括公共字段(common field)和用户特定字段(user specific field)。
公共字段包括1~N个资源单元分配子字段(RU allocation subfield)、用于校验的循环冗余码(cyclic redundancy code,CRC)以及用于循环解码的尾部(Tail)子字段。一个资源单元分配子字段对应一个20MHz的资源单元的分配,一个资源单元分配子字段指示20MHz对应的一个或者多个资源单元的大小和位置。
其中,一个资源单元分配子字段为一个索引,一个索引指示了20MHz对应的一个或者多个资源单元的大小和位置。
如表1所示,根据802.11ax,资源单元分配子字段可为表1中第一列中的一个索引,例如,00000000,00000001,00000010,每个索引所在的行表示20MHz对应的资源单元的大小和位置。
表1
Figure PCTCN2021088222-appb-000001
Figure PCTCN2021088222-appb-000002
在信令字段(HE-SIG)的用户特定字段中,按照资源单元分配的顺序,包括1~M个用户字段(User Field)。M个用户字段通常是两个为一组,每两个用户字段后有一个CRC和tail字段。若用户字段的数量为奇数,则最后一个用户字段单独为一组,该最后一个用户字段后有一个CRC和tail字段。其中,一个用户字段携带站点标识信息,以指示与其对应RU被分配至某个STA。
当一个资源单元分配子字段指示的资源单元的排列组合中包括由大于或者等于106个子载波组成的资源单元时,该索引还用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。在802.11ax标准中,MU MIMO用户数小于或者等于8。例如,索引01000y 2y 1y 0,当y 2y 1y 0为010时,用于指示106-tone被分配给了3个用户。
用户特定字段中的用户字段排列的顺序与对应的资源单元分配子字段所指示的资源单元的顺序一致。STA可以通过读取用户字段来识别与该用户字段对应的资源单元是否属于自己。那么,STA可以结合用户字段出现的位置与对应的资源单元分配子字段,确定分配给自身的资源单元。
例如,如图3B所示,图3B是信令字段的另一种可能的结构示意图。资源单元分配子字段1为00001111,根据表1中00001110所在的行,可以确定传输资源单元分配子字段1指示的资源单元为52-tone RU、52-tone RU、26-tone RU、52-tone RU和52-tone RU。在用户特定字段部分,包括n个用户字段,其中用户字段1、用于字段2、用户字段3、用户字段4和用户字段5,这5个用户字段分别对应52-tone RU、52-tone RU、26-tone RU、52-tone RU和52-tone RU。这样,资源单元分配子字段1指示的52-tone RU、52-tone RU、26-tone RU、52-tone RU和52-tone RU,分别分配给用户字段1对应的STA1、用户字段2对应的STA2、用户字段3对应的STA3、用户字段4对应的STA4,用户字段5对应的STA5。
可以看出,在802.11ax中,由于是根据资源单元分配子字段指示的资源单元的顺序和用户特定字段中的用户字段排列的顺序的对应关系来确定每个用户字段对应的资源单元。那么发送给每个站点的HE-SIG-B都包含每个资源单元分配子字段对应的所有的用户字段,这样才能保证,STA能够根据结合用户字段出现的位置与对应的资源单元分配子字段,确定分配给自身的资源单元。
然而,随着WLAN技术的发展,为了使PPDU支持更多的STA,PPDU中的信令字段需要传输的用户字段会越来越多,那么信令开销也会越来越大。
请参阅图4A,图4A是本申请涉及的PPDU的结构示意图。为了降低开销,在一个具体实施例中,提供了如图4A所示的频域分片(segment)的结构传输PPDU的信道带宽分为多个频域分片,每个频域分片停靠有若干个站点,AP向停靠在多个频域分片的STA发送PPDU。具体的,上述停靠是指系统确定或者已知的一种对应关系,是半静态的,也就是说频域分片与停靠的一个或者多个站点的对应关系是配置好的,在一定时间内保持不变。更具体的例子中,每个频域分片为80MHz,当然,也可以是其他带宽粒度,例如40MHz,160MHz等。各个实施例不涉及配置停靠关系的具体过程,因而不再赘述。
应理解,本申请所述的站点停靠(parking)在某个频域分片,也可以称为站点驻留在某个频域分片,或者说位于或属于某个频域分片中的站点。
本申请实施例中,频域分片还可以称为频域分段等。参考图4B,图4B为PPDU的结 构示意图。PPDU包括传统短训练字段(Legacy Short Training Field,L-STF)、传统长训练字段(Legacy Long Training Field,L-LTF)、传统信令字段(Legacy Signal Field,L-SIG)、重复传统信令字段(RL-SIG)、通用信令字段U-SIG(universal SIG,U-SIG)、超高吞吐率信令字段或极高吞吐率信令字段(extremely high throughput,EHT-SIG)、EHT短训练字段(EHT-STF)、EHT长训练字段(EHT-LTF)和数据(data)。其中,L-STF、L-LTF、L-SIG、RL-SIG、U-SIG、EHT-SIG、EHT-STF、EHT-LTF为PPDU的物理层头部(或称前序部分)中的部分结构。
L-STF,L-LTF,L-SIG可理解为传统前导码字段,用于保证新设备同传统设备的共存。RL-SIG用于增强传统信令字段的可靠性。
U-SIG和EHT-SIG为信令字段。U-SIG用于携带一些公共信息,例如指示PPDU版本的信息、指示上行/下行的信息、指示PPDU的频域带宽的信息,打孔指示信息等。EHT-SIG中包括指示资源分配的信息以及指示数据解调的信息等。
需要说明的是,本申请实施例中,以802.11be场景下的PPDU中的字段进行举例说明。本申请实施例中提到的PPDU中各个字段不限于与802.11be相关的字段,本申请实施例中的提到的PPDU中各个字段还可以为802.11be之后的标准版本相关的字段。
基于频域分片的结构,该PPDU的前序部分的字段分别在各个频域分片上承载,即所述PPDU的前序部分包括一个或者多个频域分片内容,例如,第一频域分片内容中包括第一传统前导码字段、第一U-SIG和第一EHT-SIG;第二频域分片内容中包括第二传统前导码字段、第二U-SIG和第二EHT-SIG。
这样每个频域分片传输的U-SIG可仅包含自身频域分片的打孔指示信息,例如打孔指示字段,可以设置为1比特。这样能够节省每个频域分片传输U-SIG的开销。但是由于U-SIG部分的字段大部分是每个STA都需要接收的通用字段,只能通过少数与每个STA相关的字段(例如打孔指示)节省开销,这样节省开销的效果并不明显。
基于上述结构,提供一些用于节省信令字段的开销的实施例。
请参阅图5,图5为本申请实施例的PPDU的前序部分的发送方法的流程示意图。本申请的一个实施例中,提供了PPDU的前序部分的发送方法。如图5所示,PPDU的前序部分的发送方法包括:
101、AP生成PPDU的前序部分,该PPDU中的前序部分包括一个或者多个频域分片内容,所述该频域分片内容至少包括停靠在对应的频域分片上的站点的完整的调度信息。此处的完整是指针对一个频域分片,其停靠的站点如果在本次调度中,则这些站点的调度信息都承载在相应的频域分片上,包括资源分配信息和站点的相关信息(例如针对停靠的站点的资源分配字段和被调度的停靠的站点的全部用户字段,具体结构将在其他实施例中详细说明)。
需要说明的是,对于一个频域分片,其停靠的站点被分配的资源单元不需要都在其停靠的频域分片上,而是可能根据资源和业务的需求分配在整个信道带宽上的任意位置,即:停靠的站点的用于指示资源分配的资源单元分配子字段都在该频域分片上传输,但是这些站点的数据字段可能不在该频域分片传输。当然,在简化的实施例中,可以仅将停靠的站点都被分配在停靠的频域分片上。或者,可以将停靠的站点分配在该信道带宽的其中一部 分频带范围上。
可以理解,AP向停靠在某个频域分片中的站点传输PPDU时,该PPDU的信令字段在该站点停靠的频域分片上传输,而该PPDU的信令字段中的资源单元分配子字段所指示的资源单元,可以属于该站点停靠的频域分片,也可以不属于该站点停靠的频域分片。换句话说,本申请所称的站点停靠的频域分片,与站点进行数据传输的频带范围可以是不同的。
上述PPDU包括传统前导码字段、信令字段和数据(data),信令字段例如可包括U-SIG和EHT-SIG。其中,传统前序字段可以和上述图4A或图4B中的传统前导码字段一致。U-SIG用于承载停靠在本频域分片的站点的需要接收的公共信息。U-SIG例如可包括指示PPDU版本的信息、指示上行/下行的信息、指示PPDU的频域带宽的信息,打孔指示信息等。EHT-SIG用于至少承载停靠在本频域分片的站点的完整的调度信息。
102、AP在相应的频域分片上发送相应的频域分片内容。即,在第一频域分片上发送第一频域分片内容,在第二频域分片上发送第二频域分片内容。
相应的,提供了站点接收PPDU的前序部分的方法:
201、站点从停靠的频域分片接收PPDU的前序部分中与所述频域分片对应的频域分片内容,该频域分片内容中包括该频域分片停靠的站点中被调度的站点的完整的调度信息(例如针对停靠的站点的资源分配字段和被调度的停靠的站点的全部用户字段)。
202、站点根据上述信息获得所述站点自己的调度信息。
通过上述的方式,停靠在某一个频域分片的站点仅需要获取该频域分片对应的前序部分中的信令字段部分,不需要获取全部信道带宽下的信令字段部分。
在另一个实施例中,停靠在一个频域分片的站点可以只在信道带宽中的某个频带范围上进行传输,每个频域分片传输的信令字段中,仅传输与该频域分片对应的频带范围有关的信令字段,而不需要在每个频域分片都传输全部信道带宽下的信令字段。具体的,每个频域分片可以对应一个预设的频带范围,可理解为停靠在该频域分片的STA被分配的RU的频带范围,或者可理解为停靠在该频域分片的STA传输数据的频带范围。这样,一个频域分片能够只传输一部分频带范围相关的信令字段,以便于减少一个频域分片传输的信令字段开销。
具体的,该频域分片中的信令字段包括上述频带范围对应的资源单元分配子字段,以及至少包括与资源单元分配子字段指示的RU上分配的所述频域分片中停靠的站点的用户字段。
请参阅图6A-图6C,下面结合具体举例来阐述一个频域分片传输完整的信道带宽的信令字段的方案,和上述一个频域分片传输该频域分片对应的频带范围的部分信令字段的方案。
举例来讲,信令字段中,可包括指示传输PPDU的信道带宽的字段。AP通过信令字段中的指示带宽的字段向STA指示总的信道带宽为320Mhz,该320Mhz分为4个频域分片。第一频域分片为第1个80MHz,第二频域分片为第2个80MHz,第三频域分片为第3个80MHz,第四频域分片为第4个80MHz。为便于描述将停靠在第一频域分片的STA称为第一STA,将停靠在第二频域分片的STA称为第二STA,将停靠在第三频域分片的STA称 为第三STA,将停靠在第四频域分片的STA称为第四STA。
在第一种可能的情况中,每个频域分片,停靠的站点可以被分配在整个信道带宽上的任意位置上的RU。也即是说,每个频域分片对应的频带范围为传输PPDU的上述完整的信道带宽320MHz。每个频域分片传输完整的信道带宽的信令字段。图6A是本申请实施例提供的PPDU的结构示意图。如图6A所示,每个频域分片传输的信令字段,例如EHT-SIG中,包含指示完整的信道带宽320MHz的资源单元分配子字段。
为便于说明,本申请实施例中,每个资源单元分配子字段以20MHz为粒度,指示一个20MHz对应的RU分配。但是本申请并不限于每个资源单元分配子字段以20MHz为粒度。
例如,若每个资源单元分配子字段以20MHz为粒度,指示一个20MHz对应的RU分配,那么图6A中的举例中,每个频域分片传输的信令字段中包含16个资源单元分配子字段,以及这16个资源单元分配子字段指示的RU对应的用户字段。
在第二种可能的情况中,至少一个频域分片中,将停靠的站点分配在该信道带宽的其中一部分频带范围上。也即是说,至少一个频域分片对应的频带范围小于传输PPDU的完整的信道带宽320MHz。
例如,图6B是本申请实施例提供的PPDU的另一结构示意图,如图6B所示,每个频域分片传输的信令字段中,包含用于指示每个频域分片对应的频带范围的信令字段,相应的例子中,该信令字段可以仅包括指示该频域分片对应的频带范围的RU分配的资源单元分配子字段,以及与该资源单元分配子字段对应的用户字段,可以不包括其他频带范围的资源分配信息,从而减少开销。
应注意,每个频域分片对应的频带范围并不是指,上述举例提到的每个频域分片传输信令字段的“80MHz”。可结合下面具体举例来理解。
具体举例来说,第一频域分片对应的频带范围为该320MHz。第一STA接收数据的频带范围为该320MHz。那么,AP在第一频域分片(第1个80MHz)中传输的信令字段包含的资源单元分配子字段的数量为16个,分别指示该320MHz中的每20MHz的RU分配。
按照频率由低至高的顺序,第二频域分片对应的频带范围为,该320MHz中的第2个80MHz。第二STA接收数据的频带范围为该80MHz。那么这样,第二频域分片中传输的信令字段为该80MHz对应的信令字段。第二频域分片中传输的信令字段包含的资源单元分配子字段只需要4个,分别指示该80MHz中的每20MHz的RU分配。
第三频域分片对应的频带范围为该320MHz中的最高频率的160MHz。第三STA接收数据的频带范围为该160MHz。那么,第三频域分片中传输的信令字段为该160MHz对应的信令字段。第三频域分片中传输的信令字段包含的资源单元分配子字段只需要8个,分别指示该160MHz中的每20MHz的RU分配。
第四频域分片对应的频带范围为该320MHz中的最高频率的80MHz。第四STA接收数据的频带范围为该80MHz。第四频域分片中传输的信令字段为该80MHz对应的信令字段。第四频域分片中传输的信令字段包含的资源单元分配子字段只需要4个,分别指示该80MHz中的每20MHz的RU分配。
又例如,每个频域分片停靠的站点都仅被分配在停靠的频域分片。也即是说,每个频域分片对应的频带范围与所停靠的频域分片是相同的。如图6C所示,图6C是本申请实施 例提供的PPDU的又一结构示意图,第一频域分片对应的频带范围为第1个80MHz,第二频域分片对应的频带范围为第2个80MHz,第三频域分片对应的频带范围为第3个80MHz,第四频域分片对应的频带范围为第4个80MHz。那么,每个频域分片包含的资源单元分配子字段均只需要4个。
由此可见,相比较于第一种可能的情况的举例中,每个频域分片传输的信令字段,都需要包含指示完整的信道带宽的16个资源单元分配子字段,上述第二种可能的情况的举例中,频域分片传输的信令字段,并不需要包含指示完整的信道带宽的16个资源单元分配子字段。可以理解,用户字段是与资源单元分配子字段对应的,信令字段中的资源单元分配子字段减少了,用户字段也会相应减少。
这样,每个频域分片只传输本频域分片对应的频带范围的信令字段,也即是说,每个频域分片传输的信令字段中仅包含调度停靠在本频域分片的STA的调度信息,这样可以节省信令字段的开销。
可选的,信令字段中,可包括指示每个频域分片对应的频带分为的字段。这样能够实现灵活的为每个分片配置对应的频带范围,从而使得RU分配更灵活。
在一些可选的实施例中,每个频域分片对应一个预设频带范围。每个频域分片的传输的信令字段中的用户字段与该频域分片对应的预设频带范围的至少一个RU对应。例如,第一频域分片对应的预设频带范围为160MHz。那么第一频域分片传输的信令字段中的任意一个用户字段至少与该160MHz载频范围的至少一个RU对应。这样,每个频域分片对应的频带范围是预设的,在PPDU的信令字段中,可以不必指示每个频域分片对应的频带范围,从而能够进一步的节省信令字段的开销。
每个频域分片对应一个预设频带范围是指,为停靠在该频域分片的STA分配的RU所在的频带范围。每个频域分片的STA在该频域分片对应的预设频带范围内的RU,接收数据。关于每个频域分片对应的预设频带范围的定义解释,请参考上述实施例中,关于每个频域分片对应的频带范围的解释,此处不再赘述。
下面提供几种每个频域分片对应的预设频带范围的举例。
320MHz的信道带宽分为4个频域分片,每个频域分片的带宽为80MHz。第一频域分片为第1个80MHz,第二频域分片为第2个80MHz,第三频域分片为第3个80MHz,第四频域分片为第4个80MHz。
在一个例子中,第一频域分片对应的预设频带范围为该320MHz。除第一频域分片之外的频域分片对应的预设频带范围均与该频域分片的频带范围一致。也即,第二频域分片对应的预设频带范围为第2个80MHz,第三频域分片对应的预设频带范围为第3个80MHz,第四频域分片对应的预设频带范围为第4个80MHz。
在另一个例子中,第一频域分片对应的预设频带范围为该320MHz。第二频域分片对应的预设频带范围与该频域分片的频带范围一致,也即,第二频域分片对应的预设频带范围为第2个80MHz。第三频域分片对应的预设频带范围为160MHz,也即为传输PPDU的信道带宽320MHz中的最高频率的160MHz。第四频域分片对应的预设频带范围为与该频域分片的频带范围一致,也即,第四频域分片对应的预设频带范围为该320MHz中的最高频率的80MHz。
在又一个例子中,第一频域分片对应的预设频带范围为该320MHz。第二频域分片对应的预设频带范围为240MHz,也即,第二频域分片对应的预设频带范围为320MHz中的频率最低的240MHz。第三频域分片对应的预设频带范围为160MHz。也即,第三频域分片对应的预设频带范围为该320MHz中的最高频率的160MHz。第四频域分片对应的预设频带范围与该频域分片的频带范围一致,也即,第四频域分片对应的预设频带范围为该320MHz中的最高频率的80MHz。
在又一个实施例中,为了进一步降低频域分片场景中,提供一种用于PPDU的信令字段中的资源单元分配子字段和用户字段的设置方式,与前述步骤101-102,201-202对应的方法相比较,可以通过对各个频域分片内容的各个字段分别进行简化,仅用于指示停靠在对应的频域分片上的站点的完整的调度信息,以便于进一步的减少信令开销。应理解,本实施例的方案,可单独实施,也与上述实施例中的方案结合实施。
例如,一个频域分片内容的信令字段中的公共字段和用户特定字段可以分别进行简化:
1、对公共字段的资源单元分配子字段进行简化。
公共字段的各个资源单元分配子字段仅聚焦于本频域分片上停靠的站点中被调度的站点的资源块的分配情况。上述聚焦是指:由于站点可能被分配在信道带宽的任何一个资源块上,各个资源单元分配子字段需要覆盖或者指示整个信道带宽的资源块划分的结果,但是,可以仅对分配了停靠的站点分配的资源单元提供准确信息,其他不相关的资源单元仅提供简化后(或称模糊化)的信息。
2、对用户特定字段部分的用户字段进行简化。
用户特定字段中可以包括本频域分片上停靠的站点中被调度的站点的用户字段,而对于非本频域分片停靠的站点的用户字段,可完全省去,或者省去一部分。
相应的,本实施例中,站点仅在停靠的频域分片上接收前序部分中的信令字段。
针对停靠在不同频域分片的站点,针对PPDU中的信令字段的资源单元分配子字段和用户特定字段部分,将根据某个频域分片内停靠站点的情况进行设置,以解决降低信令字段部分的指示开销的问题。
具体的例子中,对于停靠在某个频域分片中的站点,AP在向其发送PPDU时,该PPDU中的信令字段所包括的资源单元分配子字段所指示的RU的数目和的用户字段数目中的至少一种,采用“欺骗”或者“虚假”或者“非真实”的方式进行简化指示,也就是说对于停靠在某个频域分片中的站点,AP向其发送的PPDU的信令字段中,资源单元分配子字段所指示的资源单元中,非分配给停靠该频域分片中的站点的资源单元的数目可以不是真实的资源单元的数目,资源单元对应的用户字段的数目可以不是真实的,而分配给停靠该频域分片中的站点的资源单元,以及资源单元对应的用户字段的数目是真实的,这并不影响停靠在本频域分片中的站点获取其真实被分配的资源单元。
第一种实现简化指示的方式是,向停靠在某一频域分片中的站点传输PPDU时,该PPDU的信令字段在该频域分片上传输,针对非分配给停靠在本频域分片的站点的资源单元,资源单元分配子字段指示该资源单元对应的用户字段的数目为0。相应的,在该信令字段的用户特定字段中不设置对应的用户字段;即该资源单元对应的用户字段的数目为0; 以此省掉用户特定字段中的用户字段的数目,从而节约指示开销。通过对用户字段进行简化,在一个频域分片传输的信令字段中,用户特定字段部分仅包含停靠在本频域分片的STA的用户字段。
例如,传输PPDU的信道带宽对应的RU中,包括一个RU为非分配给停靠在本频域分片的STA的RU,那么本频域分片传输的信令字段的资源单元分配子字段指示该资源单元对应的用户字段的数目为0。相应的,用户特定字段中,没有设置与该大RU对应的用户字段,资源单元分配子字段指示该大RU对应的用户字段为0。这种在信令字段中,不按照实际情况设置用户字段的简化指示的方式,可以省去非分配给停靠在本频域分片的STA的大RU对应的用户字段。
第二种实现简化指示的方式是:向停靠在某一频域分片中的站点传输PPDU时,该PPDU的信令字段在该频域分片上传输,针对非分配给停靠在本频域分片的站点的多个资源单元,一方面,尽可能的将其视作更大的资源单元通过资源单元分配子字段进行指示。这样,资源单元分配子字段指示的RU数目小于非分配给停靠在本频域分片的站点的实际的RU数目;另一方面,在资源单元分配子字段指示非分配给停靠在本频域分片的站点的RU对应的用户字段,尽可能小。
另一方面,在用户特定字段中设置与RU对应的用户字段时,用户字段的数目可以尽可能的小于实际的资源单元对应的用户字段的数目,以此节约用户特定字段中的用户字段的数目,从而节约指示开销。这样的简化指示方式,通过对资源单元分配子字段进行简化,并省去至少一部分非本频域分片停靠的站点的用户字段。
例如,一个20MHz对应的RU中,包括分配给停靠在本频域分片的STA的至少一个RU,和非分配给停靠在本频域分片的STA的至少两个第二RU,那么,本频域分片传输的信令字段中,可以将至少两个第二RU视作一个更大的RU,通过对应的资源单元分配子字段进行指示。那么,在用户特定字段部分,仅需要设置与该更大的RU对应的用户字段,并且将用户字段数目设置为尽可能小的数目。而按照现有技术,这至少两个第二RU对应至少两个用户字段。那么这样的简化指示方式可以尽可能的减少用户字段的数量。同时,在资源单元分配子字段指示该更大的RU时,其对应的用户字段的数目尽可能取最小值,例如为1。
基于上述简化指示的方式,本申请实施例提供一种数据传输方法。该数据传输方法用于传输PPDU,并通过采用上述简化指示的方式,来节省PPDU中的信令字段的开销。
请参阅图7A,图7A为本申请实施例的数据传输方法的流程示意图。本申请实施例以AP向STA发送PPDU的实施例进行说明,本申请的数据传输方法也适用于AP向AP发送PPDU的场景,STA向STA发送PPDU的场景,不同的场景中,传输的PPDU以及其中的信令字段的名称有所不同,但其功能和作用相类似,本申请实施例不一一赘述。
本实施例场景中,AP向STA传输PPDU的信道带宽包括至少两个频域分片;该至少两个频域分片包括第一频域分片;每个频域分片停靠有若干个STA。例如,一个频域分片停靠的站点的数量可以为大于或等于0的任意数量。其中,PPDU的信令字段包括但不限于公共字段和用户特定字段。公共字段包括资源单元分配子字段。用户特定字段包括用户 字段。
本申请实施例的数据传输方法可包括以下步骤:
S701、AP生成PPDU的信令字段;
步骤S701可由AP的处理器实现。也即,AP的处理器生成PPDU的信令字段。
本申请数据传输方法中,AP向STA传输的PPDU时,在第一频域分片中传输的信令字段的指示方式采用上述至少一种简化指示的方式进行指示。
在802.11be中,该信令字段可以指EHT-SIG,也可以指U-SIG和EHT-SIG。本申请实施例的信令字段不限于为802.11be中的SIG字段,本申请实施例中的信令字段还可以为802.11be之后的标准版本相关的SIG字段。
本申请实施例中,资源单元分配子字段可利用资源单元分配子字段(RUallocation subfield,RA subfield)表中的条目进行指示。例如,资源单元分配子字段可利用表1中的条目进行指示,也可以利用表2或表3中的条目进行指示,还可以利用表2或表3中的条目,并结合表4或表5进行指示。
S702、AP发送PPDU的信令字段。
步骤S702可由AP的收发器实现。也即,AP的收发器发送PPDU。
对应的,停靠在第一频域分片的STA接收AP发送的PPDU,从用户特定字段所包括的用户字段中,获取携带本STA的标识的用户字段,进而获取该用户字段对应的RU上传输的数据。具体的,STA的收发器接收AP发送的PPDU。STA的处理器从用户特定字段所包括的用户字段中,获取携带本STA的标识的用户字段,进而获取该用户字段对应的RU,从该RU上接收数据。
基于上述数据传输方法,下面分别介绍采用两种简化指示的方式时,该信令字段中的资源单元指示子字段和用户字段。
在一些可能的实现方式中,信令字段中的资源单元分配子字段,采用上述第一种简化指示的方式进行指示。
在该实施例中,该信令字段中的与大RU对应的资源单元分配子字段指示的用户字段的数目,表示该RU向用户特定字段中的一个内容信道贡献的用户字段的数目,该用户字段为停靠在所述第一频域分片上的STA对应的用户字段。用户字段包括对应的STA的标识。
每个频域分片传输的信令字段可由2个或大于2个的内容信道(Content Channel,CC)传输。每个CC传输一部分信令字段。
例如,传输PPDU的信道带宽为320MHz。第一频域分片传输的PPDU的信令字段由CC1和CC2传输。第一频域分片传输的信令字段中包含16个资源单元分配子字段,那么可将这16个资源单元分配子字段按照顺序进行编号,奇数号的资源单元分配子字段可以在CC1传输,偶数号的资源单元分配子字段在CC2传输。每个CC上,还传输该CC的资源单元分配子字段对应的用户字段。例如,CC1上传输奇数号的资源单元分配子字段对应的用户字段,CC2上传输偶数号的资源单元分配子字段对应的用户字段。资源单元分配子字段指示传输PPDU的信道带宽所包括的RU,和RU向用户特定字段在对应的内容信道贡献的用户字段的数目。
一种实现方式中,资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU中,分配给非停靠在第一频域分片的STA的RU对应的用户字段的数目为0。
资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU中,RU对应的用户字段的数目为0,表示RU未分配给停靠在第一频域分片上的STA。
本实施例中,第一频域分片传输的信令字段指示的一个或多个RU,且指示分配给非停靠在第一频域分片的STA的大RU对应的用户字段的数目为0。这样在信令字段的用户特定字段部分,对于停靠在第一频域分片的STA的大RU,设置有对应用户字段,其中用户字段中携带所述站点的标识;而对于非停靠在第一频域分片的STA的大RU,未设置对应的用户字段。这样能够减少信令字段中的用户字段的数量,从而能够节省信令字段的开销。
请参阅图7B,图7B为PPDU的各个频域分片传输的PPDU的结构示意图。本申请实施例中,每个频域分片传输的PPDU的信令字段是不同的,且每个频域分片传输的PPDU中的信令字段中的且每个频域分片传输的PPDU中的信令字段中的资源单元分配子字段分为了两部分,分别在两个CC传输,每个频域分片传输的PPDU中的信令字段中的用户字段也分为了两部分,分别在两个CC传输。
具体的,一个频域分片传输的信令字段中的资源单元分配子字段指示的资源单元的分配情况是不同的。该频域分片的信令字段中的资源单元分配子字段,对于分配给停靠在本频域分片的STA的RU及对应的用户字段是按照实际情况指示的,而对于分配给非停靠在本频域分片的STA的RU及对应的用户字段不一定是按照实际情况指示的。
一个频域分片传输的信令字段中的用户字段也是不同的。一个频域分片的信令子段中的资源单元分配子字段指示的多个资源单元RU中,分配给停靠在本频域分片的STA对应的RU,设置有对应用户字段,该用户字段中包含停靠在本频域分片的STA的标识;非分配给停靠在本频域分片的STA对应RU,该RU未设置用户字段或者用户字段的数目为0。
例如,第一频域分片传输的信令字段中的资源单元分配子字段指示的多个RU中包括第一RU和第二RU,第一RU为分配给停靠在第一频域分片的STA的RU;第二RU为非分配给第一频域分片的STA的大RU;
其中,第一频域分片传输的信令字段的用户特定字段部分,包括第一RU对应的用户字段,该用户字段携带停靠在第一频域分片的STA的标识;该用户特定字段部分不包括第二RU对应的用户字段。
而且,该第二RU实际上可为一个或多个非分配给停靠在第一频域分片的STA的RU。非分配给停靠在第一频域分片的STA的RU可以为分配给停靠在除第一频域分片之外的频域分片的STA的一个或多个RU,或者为未分配给任一STA的RU。
下面以传输PPDU的信道带宽为320MHz,传输PPDU的信道带宽分为4个频域分片的场景进行举例说明。
按照频率从低至高的顺序,第一频域分片为第1个80MHz,第二频域分片为第2个80MHz,第三频域分片为第3个80MHz,第四频域分片为第4个80MHz。本实施例中具体以1个80MHz对应的第一频域分片传输的第一信令字段和第2个80MHz对应的第二频域分片传输的第二信令字段进行举例说明。第3个80MHz对应的第三频域分片传输的信令字段和4个80MHz对应的第四频域分片传输的信令字段,本申请实施例中不一一列举。
请参阅图8A,图8A是本申请实施例的资源单元分配的场景示意图。在一个例子中,这320MHz的信道带宽对应的资源单元分配的实际情况是,第1个80MHz中的最低频率的40MHz对应一个484-tone RU,该484-tone RU分配给停靠在第一频域分片的两个STA。第1个80MHz中的最高频率的40MHz对应一个484-tone RU,该484-tone RU分配给停靠在第一频域分片的两个STA。第2个80MHz的最低频率20MHz对应一个242-tone RU,该242-tone RU分配给停靠在第二频域分片的4个STA;接下来的次低频率的20MHz对应9个26-tone RU,这9个26-tone RU分别分配给9个停靠在第二频域分片的STA。第2个80MHz中的最高频率的40MHz对应484-tone RU,这个484-tone RU分配给停靠在第一频域分片的一个STA;第3个80Mhz和第4个80Mhz对应的RU的分配情况未示意。
如图8B,图8B是本申请实施例的内容信道的结构示意图。第一频域分片传输的第一信令字段通过两个CC发送,两个CC分别为CC1和CC2。第一频域分片传输的信令字段包括资源单元分配子字段1~资源单元分配子字段16。按照频率由低至高的顺序,资源单元分配子字段1~资源单元分配子字段16分别依次对应320MHz中的一个20MHz。
其中,序号为奇数的资源单元分配子字段在CC1传输,序号为偶数的资源单元分配子字段在CC2传输。这样,能够有效地缩短每个CC上传传输的公共字段的长度。
图8C是本申请实施例的信令字段的结构示意图。请参阅图8B和图8C,资源单元分配子字段1指示484-tone RU,以及指示CC1中包含的与该484-tone RU对应的用户字段的数目为1。资源单元分配子字段2指示484-tone RU,以及指示CC2中包含的与该484-tone RU对应的用户字段的数目为1。资源单元分配子字段3指示484-tone RU,以及指示CC1中包含的与该484-tone RU对应的用户字段的数目为1。资源单元分配子字段4指示484-tone RU,以及指示CC2中包含的与该484-tone RU对应的用户字段的数目为1。资源单元分配子字段5指示484-tone RU,以及指示CC1中包含的与该484-tone RU对应的用户字段的数目为1。资源单元分配子字段6指示484-tone RU,以及指示CC2中包含的与该484-tone RU对应的用户字段的数目为1。资源单元分配子字段7指示484-tone RU,以及指示CC1中包含的与该484-tone RU对应的用户字段的数目为1。资源单元分配子字段8指示484-tone RU,以及指示CC1中包含的与该484-tone RU对应的用户字段的数目为0。
停靠在频域分片的STA可根据该频域分片中的各个CC中的资源单元分配子字段对应的RU的顺序和该CC中的用户字段的顺序,确定每个用户字段对应的RU。
例如,停靠在第一频域分片的STA1可根据CC1和CC2中资源单元分配子字段指示的RU的顺序和用户字段的顺序,确定第1个80MHz的最低频率的40MHz对应的484-tone RU对应的用户字段为1a,用户字段1a中携带的STA1的标识信息,则STA1确定该484-tone RU是分配给自己的RU。同理,停靠在第一频域分片的STA2根据用户字段2a和其中携带的STA2的标识信息,确定该484-tone RU是分配给自己的RU。停靠在第一频域分片的STA3可根据用户字段3a中携带的STA3的标识信息,确定第1个80MHz的最高频率的40MHz对应的484-tone RU为分配给自己的RU。停靠在第一频域分片的STA4可根据用户字段4a中携带的STA4的标识信息,确定第1个80MHz的最高频率的40MHz对应的484-tone RU为分配给自己的RU。停靠在第一频域分片的STA5可根据用户字段5a携带的STA5的标识信息,确定第2个80MHz中的最高频率的40MHz对应的484-tone RU为分配给自己的RU。
由此可见,第一频域分片传输的第一信令字段中,资源单元分配子字段指示第2个80MHz中的最低频率的40MHz对应484-tone RU,且该484-tone RU对应的用户字段的数量为0个。然而,该40MHz对应的RU实际上为一个242-tone RU和9个26-tone RU,均为非分配给停靠在本频域分片的STA的RU。那么,停靠在第一频域分片的STA,不需要关心这一个242-tone RU和9个26-tone RU分配给哪个STA。第一信令字段中,资源单元分配子字段可以不按照真实情况指示该242-tone RU和9个26-tone RU,用户特定字段部分也不需要按照真实情况设置用户字段。
这样,相比于现有技术,用户特定字段这段需要设置该242-tone RU对应的1个用户字段(假设该242-tone只分配给了一个STA),和9个26-tone RU对应的9个用户字段,本实施例中,第一信令字段的用户特定字段部分,未设置与这一个242-tone RU和9个26-tone RU对应的用户字段,从而至少能够节省10个用户字段,减少信令字段的开销。
而且,第一信令字段中的资源单元分配子字段中,将这一个242-tone RU和9个26-tone RU视为一个484-tone RU进行指示。而在第二频域分片传输的第二信令字段中对传输PPDU的信道带宽的最低频率的80MHz对应的两个484-tone RU合并指示为一个996-tone RU。这样能够使得资源单元分配子字段的指示更简单明确。
再有,如图8C,按照频率由低至高的顺序,第1个80MHz的最低频率的40MHz对应的484-tone RU分配给停靠在第一频域分片的2个用户。资源单元分配子字段1和资源单元分配子字段2指示该484-tone RU。资源单元分配子字段1指示CC1中与该484-tone RU对应的用户字段为1个。那么,CC1的用户特定字段部分包括与该484-tone RU对应的用户字段1a。资源单元分配子字段3指示CC2中与该484-tone RU对应的用户字段为1个。那么,CC1的用户特定字段部分包括与该484-tone RU对应的用户字段3a。这样将该484-tone RU对应的多个用户字段尽量平均地分配分别在CC1和CC2传输,可以使得每个CC传输的用户字段数更均衡。
请参阅图8D,对于停靠在第二频域分片中的STA,AP向其传输的PPDU,PPDU的第二信令字段通过第二频域分片传输。具体的,第二信令字段在两个CC上传输,两个CC分别为CC3和CC4。第二频域分片传输的第二信令字段包括资源单元分配子字段17~资源单元分配子字段32。按照频率由低至高的顺序,资源单元分配子字段17~资源单元分配子字段32分别依次对应320MHz中的一个20MHz。
其中,序号为奇数的资源单元分配子字段在CC3传输,序号为偶数的资源单元分配子字段在CC4传输。这样,能够有效地缩短每个CC上传传输的公共字段的长度。
请参阅图8D和图8E,图8D是本申请另一实施例的内容信道的结构示意图,图8E是本申请另一实施例的信令字段的结构示意图,资源单元分配子字段17指示996-tone RU,以及指示CC3中包含的与该996-tone RU对应的用户字段的数目为0。资源单元分配子字段18指示996-tone RU,以及指示CC4中包含的与该996-tone RU对应的用户字段的数目为0。资源单元分配子字段19指示996-tone RU,以及指示CC3中包含的与该996-tone RU对应的用户字段的数目为0。资源单元分配子字段20指示996-tone RU,以及指示CC4中包含的与该996-tone RU该所对应的用户字段的数目为0。资源单元分配子字段21指示242-tone RU,以及指示CC3中包含的与该242-tone RU对应的用户字段的数目为4。资源 单元分配子字段22指示9个26-tone RU,以及指示CC4中包含的与该9个26-tone RU对应的用户字段的数目为9。资源单元分配子字段23指示484-tone RU,以及指示CC3中包含的与该484-tone RU对应的用户字段的数目为0。资源单元分配子字段8指示484-tone RU,以及指示CC4中包含的与该484-tone RU对应的用户字段的数目为0。
停靠在频域分片的STA可根据该频域分片中的各个CC中的资源单元分配子字段对应的RU的顺序和该CC中的用户字段的顺序,确定每个用户字段对应的RU。
例如,停靠在第二频域分片的STA6,可根据用户字段1b中的STA6的标识信息,确定第2个80MHz中的最低频率的20MHz对应的242-tone RU为分配给自己的RU。停靠在第二频域分片的STA7,可根据用户字段2b中的STA7的标识信息,确定第2个80MHz中的最低频率的20MHz对应的242-tone RU为分配给自己的RU。停靠在第二频域分片的STA8,可根据用户字段3b中的STA8的标识信息,确定第2个80MHz中的最低频率的20MHz对应的242-tone RU为分配给自己的RU。停靠在第二频域分片的STA9,可根据用户字段4b中的STA9的标识信息,确定第2个80MHz中的最低频率的20MHz对应的242-tone RU为分配给自己的RU。停靠在第二频域分片的其他STA也可以采用上述方式,确定包含有自身STA的标识信息的用户字段对应的RU为分配给自己的RU。
由此可见,第二信令字段中的资源单元分配子字段,指示传输PPDU的信道带宽的最低频率的80MHz对应的RU为996-tone RU,且指示在用户字段特定部分与该996-tone RU对应的用户字段的数量为0个。而实际上,传输该PPDU的信道带宽的最低频率的80MHz对应RU实际上为两个484-tone RU,均为非分配给停靠在本频域分片的STA的RU。停靠在第二频域分片的STA,不需要关心这两个484-tone RU分配给哪个STA。在第二信令字段中,资源单元分配子字段并可不按照实际情况真实指示两个484-tone RU,也可不按照实际情况真实指示这两个484-tone RU对应的用户字段。
这样,相比于现有技术,按照实际RU分配情况进行指示,用户特定字段这段需要设置这两个484-tone RU对应的用户字段,在实施例中,第二信令字段的用户特定字段部分,未设置与这两个484-tone RU对应的用户字段,从而能够节省这两个484-tone RU对应的用户字段,减少信令字段的开销。
另一种实施方式中,第二信令字段中的资源单元分配子字段,指示传输PPDU的信道带宽的最低频率的80MHz对应的RU为996-tone RU,且其对应的用户字段数目为1,则在用户字段特定部分与该996-tone RU对应的用户字段的数目为1个。这样,也至少可以从两个484-tone RU对应的4个用户字段节约为1个用户字段。
这样,一方面可以将两个484-tone RU视作一个996-tone RU进行指示,减少了资源单元分配子字段指示RU的数量,这样一个996-tone RU对应的用户字段的数目小于两个484-tone RU对应的用户字段的数目;另一方面,在用户特定字段,与该RU对应的用户字段的数目也尽可能的设置为最小,例如为1或者为0个,如此,可以极大程度的节约用户字段的数目,从而节约指示开销。
图9是本申请一实施例的资源单元分配的场景示意图。如图9所示,在另一个例子中,这320MHz的资源单元分配的实际情况是,按照频率由低至高的顺序,第1个80MHz对应一个996-toneRU,该996-tone RU分配给停靠在第一频域分片的3个STA。第2个80MHz 中的最低频率的20MHz对应一个242-tone RU,分配给停靠在第一频域分片的1个STA。第2个80Mhz的次低频率的20MHz对应9个26-tone RU,分配给停靠在第二频域分片的9个STA。第2个80MHz的最高频率的40MHz对应484-tone RU,分配给停靠在第一频域分片的1个STA;为简要起见,第3个80Mhz和第4个80Mhz在图9中未示意出。
第一频域分片传输的PPDU包含的第一信令字段中的资源单元分配指示子字段指示:按照频率由低至高的顺序,第1个80MHz对应一个996-toneRU,在用户特定字段部分与该996-tone RU对应的用户字段为3个;第2个80MHz中的最低频率的20MHz对应一个242-tone RU,在用户特定字段部分与该242-tone RU对应的用户字段为1个;第2个80Mhz的次低频率的20MHz对应1个242-tone RU,在用户特定字段部分与该242-tone RU对应的用户字段的数量为0个;第2个80MHz中的最高频率的40MHz对应484-tone RU,在用户特定字段部分与该484-tone RU对应的用户字段为1个。
可见,按照频率从低至高的顺序,第2个80MHz中的第2个20MHz的对应的RU实际上为9个26-tone RU,均为非分配给停靠在本频域分片的STA的RU。那么,停靠在第一频域分片的STA,不需要关心这9个26-tone RU分配给哪个STA。第一频域分片传输的资源单元分配子字段可以不按照真实情况指示该242-tone RU和9个26-tone RU。例如,第一频域分片传输的资源单元分配子字段指示该20MHz对应一个242-tone RU,且与该242-tone RU对应的用户字段的数量为0个。该一个242-tone RU可理解第二RU。
这样,相比较于现有技术,用户特定字段这段需要设置该9个26-tone RU对应的9个用户字段,本实施例中,第一信令字段的用户特定字段部分,未设置与这9个26-tone RU对应的用户字段,从而至少能够节省9个用户字段,减少信令字段的开销。
第二频域分片传输的PPDU包含的第二信令字段中的资源单元分配指示子字段指示:按照频率由低至高的顺序,第1个80MHz对应一个996-toneRU,在用户特定字段部分与该996-tone RU对应的用户字段为0个;第2个80MHz中的最低频率的20MHz对应一个242-tone RU,在用户特定字段部分与该242-tone RU对应的用户字段为0个;第2个80Mhz的次低频率的20MHz对应9个26-tone RU,在用户特定字段部分与该9个26-tone RU对应的用户字段的数量为9个;第2个80MHz中的最高频率的40MHz对应484-tone RU,在用户特定字段部分与该484-tone RU对应的用户字段为0个。
可以看出,按照频率由低至高的顺序,第1个80MHz对应的996-toneRU,第2个80MHz中的最低频率的20MHz对应的242-tone RU,第2个80MHz中的最高频率的40MHz对应484-tone RU,均为非分配给停靠在本频域分片的STA的RU。
这样,相比较于现有技术,用户特定字段这段需要设置该996-toneRU对应的用户字段、该242-tone RU对应的用户字段和该484-tone RU对应的用户字段,本实施例中,第一信令字段的用户特定字段部分,未设置该996-toneRU对应的用户字段、该242-tone RU对应的用户字段和该484-tone RU对应的用户字段,从而能够有效节省用户字段,减少信令字段的开销。
根据上述举例可以看出,若传输PPDU的信道带宽对应的RU中,包括多个RU均为非分配给停靠在本频域分片的STA的RU。信令字段中的资源单元分配子字段可将这多个RU视为一个更大的RU进行指示。这样资源单元分配子字段可对非分配给停靠在本频域分 片的STA的多个RU进行简化指示。应理解,这样的简化指示,需满足RA subfield表(例如表1、表2或表3)中存在相应的索引,能够支持将这多个RU一并指示为一个RU。
例如,上述图8A的举例中,一个242-tone RU和9个的26-tone RU均为分配给停靠在第一频域分片的STA的RU。在表1中,存在索引01110010,能够指示484-tone RU,且该484-tone RU对应的用户字段为0。那么在第一信令字段的资源单元分配子字段,可通过相应的索引(例如01110010)对这一个242-tone RU和9个连续的26-tone RU一并指示为一个484-tone RU,且指示该484-tone RU对应的用户字段的数量为0个。
另一种实施方式中,第一频域分片传输的资源单元分配子字段指示该20MHz对应一个242-tone RU,且与该242-tone RU对应的用户字段的数量为1个,该用户字段携带的站点标识不属于停靠在第一频域分片中的任一个站点。这样,相比较于现有技术,用户特定字段这段需要设置该9个26-tone RU对应的9个用户字段,本实施例中,第一信令字段的用户特定字段部分,设置与这1个242-tone RU对应的用户字段,从而至少能够节省8个用户字段,减少信令字段的开销。
又一种实施方式中,第一频域分片传输的资源单元分配子字段指示该20MHz对应多个52-tone RU和26-tone RU的组合,例如表1中00001111对应的5个52-toneRU,52-tone RU,26-tone RU,52-toneRU,52-tone RU,每个RU对应的用户字段的数量为1个,该用户字段携带的站点标识不属于停靠在第一频域分片中的任一个站点。这样,相比较于现有技术,用户特定字段这段需要设置该9个26-tone RU对应的9个用户字段,本实施例中,第一信令字段的用户特定字段部分,设置与这5个RU对应的5个用户字段,从而至少能够节省4个用户字段,减少信令字段的开销。
进一步地,上述非分配给停靠在本频域分片的STA的多个RU可均为小于242子载波的RU。或者说,上述多个RU可均为小RU。或者说,非分配给停靠在第一频域分片的STA的大RU对应的子载波的至少部分属于至少两个小RU。本申请实施例中,若传输PPDU的信道带宽中的至少20MHz对应的RU为多个小RU,且均为非分配给停靠在本频域分片的STA的RU,该频域分片传输的PPDU的信令字段中的资源单元分配子字段可将这连续的多个小RU一并指示为一个大RU,并指示该一个大RU对应的用户字段的数量为0。应理解,这样的简化指示,也需满足存在RA subfield表(例如表1、表2或表3)中存在相应的索引,能够指示将多个RU一并指示为一个RU。
例如,如图10所示,图10是本申请实施例的资源单元分配的场景示意图,传输PPDU的信道带宽中的20MHz对应的RU为9个26-tone RU。其中最低频率的2个26-tone RU为分配给停靠在第一频域分片的STA的RU,另外7个26-tone RU未分配给停靠在第一频域分片或第二频域分片的STA的RU。可以理解,该20MHz对应的RU均为非分配给停靠在第二频域分片的STA的RU。
第一频域分片传输的PPDU包含的信令字段中的与该20MHz对应的资源单元分配指示子字段指示:该20MHz对应的RU频率从低至高依次包括两个26-tone RU、一个52-tone RU、一个26-tone RU、一个106-tone RU,每个RU对应一个用户字段。
表1中,存在索引01110001,能够指示242-tone RU,且能够指示该242-tone RU对应的用户字段为0。那么,第二频域分片传输的信令字段中,资源单元分配子字段可通过相 应的索引(例如)01110001,指示子字段指示:该20MHz对应的RU为一个242-tone RU,且该242-tone RU对应的用户字段为0。
又例如,图8A中的9个26-tone RU均为非分配给第一频域分片的STA的RU,那么在第一信令字段的资源单元分配子字段中,可通过索引01110001,对这9个26-tone RU一并指示为一个242-tone RU,并指示该一个242-tone RU对应的用户字段为0。
这样,若按照现有技术,信令字段中的资源单元分配子字段对多个小RU按照实际情况进行指示,则在信令字段的用户特定字段部分,需要包括与这多个小RU中的每个RU对应的用户字段。而如果按照本申请的方案,在信令字段的资源分配单元子字段中,对非停靠在本频域分片的STA的这多个小RU,合并指示为一个大RU,且指示该一个大RU对应的用户字段数目为0。这样在信令字段的用户特定字段部分,不包含与这多个小RU对应的用户字段,从而可以有效地节省用户字段,节省信令字段的开销。
在另一些可能的实现方式中,信令字段中的资源单元分配子字段的资源单元分配子字段,采用上述第二种简化指示的方式对RU进行指示。
在该实施例中,信令字段至少包括一个资源单元分配子字段指示的RU为多个小RU。多个小RU中的每个RU对应至少一个用户字段。多个小RU中至少包括一个第三RU对应的用户字段携带停靠在所述第一频域分片中的STA的标识。至少一个第四RU对应的用户字段未携带停靠在所述第一频域分片中的STA的标识。第四RU实际上为非分配给停靠在本频域分片的STA的至少两个小RU。或者说,第四RU对应的子载波的至少部分属于至少两个RU。
可以理解,若传输PPDU的信道带宽中,包括一个20MHz所对应的RU为多个小RU,这多个小RU中,包括至少一个RU是分配给停靠在本频域分片的STA的RU,包括至少两个RU为非分配给停靠在本频域分片的STA的RU。那么该频域分片传输的PPDU的信令字段中,指示这20MHz对应的资源单元分配子字段,可对这至少两个RU视为一个RU进行指示,并指示这一个RU对应一个用户字段。或者可以说,这20MHz对应的资源单元分配子字段可将该多个RU视作更大的RU进行指示,并指示这一个RU对应同一个用户字段。应理解,该更大的RU能够在RA subfield表中找到对应的索引。
那么,在用户特定字段部分,与该一个RU对应的用户字段的数量为1个。也即是说,这至少两个RU,一共只对应一个1个用户字段。由此可见,通过上述的信令字段的内容设置方式,相对于按照实际情况进行指示,至少能减少信令字段中的一个用户字段,从而能够节省信令字段的开销。
例如,如图11,图11是本申请实施例的资源单元分配的场景示意图,若传输PPDU的信道带宽内的一个20MHz对应的RU为9个26-tone RU。其中,按照频率由低至高的顺序,第1个26-tone RU和第2个26-tone RU为分配给停靠在第一频域分片的STA的RU,第3个26-tone RU和第4个26-tone RU为分配给停靠在第二频域分片的STA的RU。
在第一频域分片传输的PPDU的信令字段中,与该20MHz对应的资源单元分配子字段可指示2个26-tone RU、一个52-tone RU、一个26-tone RU、一个106-tone RU共5个RU。
在第二频域分片传输的PPDU的信令字段中,与该20MHz对应的资源单元分配子字段可指示一个52-tone RU、2个26-tone RU、一个26-tone RU、一个106-tone RU,共5个RU。
当信令字段中的资源单元分配子字段指示的RU为多个小RU时,信令字段中的用户特定字段中包括与每个小RU对应的一个用户字段。那么,若资源单元分配子字段按照实际RU的分配情况进行指示,第一频域分片和第二频域分片中,与该20MHz对应的资源单元分配子字段均会指示9个26-tone RU,这样用户特定字段中,包括与该资源单元分配子字段所指示的9个26-tone RU一一对应的9个用户字段。而如果资源单元分配子字段按照上述方式进行指示,资源单元分配子字段指示的RU为5个,则用户特定字段部分,与该资源单元分配子字段指示的RU对应的用户字段也只有5个。
可见,本申请的方案,对于非分配给停靠在本频域的STA的至少两个小RU进行合并指示,能够在信令字段的用户特定字段部分,减少非分配给停留在本频域分配的STA的多个连续的小RU对应的用户字段的数量,从而能够节省信令字段的开销。
应理解,第二种简化指示的方式,并不限于指示小RU,也能够用于指示大RU,或用于指示大RU和小RU。这样,若传输PPDU的信道带宽对应的RU包括至少两个RU为分配给停靠在本频域分片的STA的RU,那么在本频域分片传输的信令字段中,资源单元分配子字段可指示这至少两个RU为一个更大的RU,并指示该一个更大的RU对应的用户字段为1。这至少两个RU,可以均为大RU,也可均为小RU,还可以包括至少一个小RU和至少一个大RU。
下面分别针对这三种情况进行举例说明。
关于这至少两个RU均为大RU的举例说明,可基于上述图8A的举例。传输PPDU的320MHz信道带宽中,最高频率的两个80MHz均为分配给停靠在第一频域分片的STA的484-tone RU(大RU),且每个484-tone RU分配给停靠在第一频域分片的2个STA。那么,第二频域分片传输的信令字段中,资源单元分配子字段可对这两个484-tone RU合并指示为一个996-tone RU,并指示该996-tone RU对应的用户字段为1。这样,相比较于现有技术中按照实际分配情况进行指示,需要在用户特定字段部分设置与这两个484-tone RU对应的4个用户字段,本实施例的方案,仅需要设置与该996-tone RU对应的1个用户字段,从而能够节省用户字段的数量,降低信令字段的开销。
关于这至少两个RU包括至少一个小RU和至少一个大RU的举例说明,可基于上述图8A的举例。传输PPDU的320MHz信道带宽中,按照频率由低至高的顺序,第2个80MHz的最低频率的40MHz对应一个242-tone RU(大RU)和9个26-tone RU(小RU)。该一个242-tone RU分配给停靠在第二频域分片的4个STA,该9个26-tone RU分配给停靠在第二频域分片的9个STA。那么,第一频域分片传输的信令字段中,资源单元分配子字段可对这一个242-tone RU和9个26-tone RU合并指示为一个484-tone RU,并指示该484-tone RU对应的用户字段为1。这样,相比较于现有技术中按照实际分配情况进行指示,需要在用户特定字段部分设置与这一个242-tone RU和9个26-tone RU对应的13个用户字段,本实施例的方案,仅需要设置与该484-tone RU对应的1个用户字段,从而能够节省用户字段的数量,降低信令字段的开销。
关于这至少两个RU均为小RU的举例说明,请参考上述与图11对应的举例,此处不再赘述。
上述第二种简化指示方式,在信令字段中,公共字段部分的资源单元分配子字段将至少两个RU指示为一个更大的大RU,并指示该一个更大的大RU对应的用户字段为1,在用户特定字段部分,该更大的RU对应的用户字段可以为特殊用户字段,该特殊用户字段用于指示对应的RU不分片给停靠在本频域分片的站点。该特殊用户字段例如可以是但不限于“2046”。
在一些可选的实施例中,在用户字段中,包括分片指示子字段,分片指示子字段用于指示该用户字段对应的STA,下次接收PPDU时停靠的频域分片。也即是说,用户字段包括STA的标识和分片指示子字段。可选的,该分片指示子字段的比特数可为2比特。应理解,该可选的实施例可与上述任一实施例结合实施,也可以单独实施。
下次接收PPDU时停靠的频域分片,可以为与本次接收PPDU时停靠的频域分片相同,也可以不同。例如,若STA本次停靠在第一频域分片接收PPDU。那么该STA对应的用户字段中的分片指示子字段可指示STA下次在第一频域分片接收PPDU,也可以指示STA下次在除第一频域分片之外的频域分片接收PPDU。
这样能够在信令字段部分,指示STA切换停靠的频域分片,从而能够保证指示STA切换停靠的频域分片的可靠性。
下面具体介绍本申请实施例的资源单元分配子字段指示RU的方法。
需要说明的是,本申请实施例接下来结合表2~表5,介绍的资源单元分配子字段指示RU的方法中,关于多RU合并指示方法,或者给一个STA分配多个RU的指示方法,可以独立实施。
请参阅表2,表2可理解为RA subfield表。资源单元分配子字段包括用于指示资源单元分配和合并的两部分字段,在此称为资源单元指示部分和合并指示部分,其中,合并指示部分又称为资源单元分配子字段的附加字段。资源单元指示用于指示该资源单元分配子字段对应的资源单元,合并指示用于指示该资源单元与其他资源单元的合并关系。在表2中,包括指示将大于或等于106子载波的RU分配给0-16个STA的条目。
具体请参阅表2,资源单元分配子字段中的资源单元指示部分可为表2中第一列中的一个条目序号对应的8位二进制字符串(B7 B6 B5 B4 B3 B2 B1 B0)。例如,条目0对应的资源单元指示为00000000,条目1对应的资源单元指示为00000001,条目2对应的资源单元指示为00000010。其余的条目对应的资源单元指示可依次类推,此处不再一一举例。每个条目的资源单元指示和对应的合并指示可理解为一个索引。
表2
Figure PCTCN2021088222-appb-000003
Figure PCTCN2021088222-appb-000004
Figure PCTCN2021088222-appb-000005
Figure PCTCN2021088222-appb-000006
Figure PCTCN2021088222-appb-000007
Figure PCTCN2021088222-appb-000008
资源单元分配子字段中的合并指示部分为第二列中与资源单元指示部分对应的一个条目。资源单元指示部分对应的条目和合并指示部分对应的条目所在的行,对应指示传输该资源单元分配子字段的20MHz对应的一个或者多个资源单元的大小和位置。
小于106子载波的资源单元,仅用于分配给一个STA,大于或等于106子载波的资源单元,可用于分配给一个或多个STA。在802.11be中,支持将大于或等于106子载波的资源单元,最多可分配给16个STA。
资源单元指示部分的0-15个条目中的每个条目对应的资源单元分配子字段指示的每个资源单元仅用于分配给一个STA。也即是说,资源单元指示的0-15个条目中的每个条目对应的资源单元分配子字段指示的每个资源单元均小于106子载波。
资源单元指示部分的16-255个条目中的每个条目对应的资源单元分配子字段指示的一个或多个资源单元中,包括至少一个大于或等于106子载波的资源单元。资源单元指示的16-255个条目中的每个条目对应的资源单元分配子字段指示的一个或多个资源单元中,指示一个资源单元可用于分配给多个STA。
如表2所示,资源单元分配子字段的资源单元指示部分为8比特(B7 B6 B5 B4 B3 B2 B1 B0),合并指示部分为2比特(B1B0)。资源单元指示部分共包括256个条目,每个资源单元指示部分的条目对应4个合并指示部分的条目。
合并指示为00,指示RU未与其他RU进行合并。那么,在表2中的条目0-条目115,若合并指示为00,则条目0-条目115指示的内容与802.11ax提供的表1中的条目0-条目115是相同的。
对于小RU,合并指示为01,指示RU按照频率由低至高的顺序,与相邻的低频率的RU合并为multi-RU。例如表2中的条目2,合并指示为01,指示#8的26-tone RU与左侧低频率的52-tone RU合并为multi-RU。
合并指示为10指示RU按照频率由低至高的顺序,与相邻的高频率的RU合并为multi-RU。
合并指示为11指示该资源单元分配子字段对应的RU中,一个RU按照频率由低至高的顺序,与相邻的高频率的RU合并为multi-RU,另一个RU与相邻的低频率的RU合并为multi-RU。例如,表2中的条目40-47,合并指示为11指示2#的26-tone RU与右侧相邻的高频率的52-tone RU合并为multi-RU,和指示6#的106-tone RU与左侧相邻的低频率的26-tone RU合并为multi-RU。
当然,在其他实施例中,合并指示中01、10和11的含义可以交换。
例如,可以是合并指示为01,指示该资源单元分配子字段对应的RU中,一个RU按照频率由低至高的顺序,与相邻的高频率的RU合并为multi-RU,另一个RU与相邻的低频率的RU合并为multi-RU。合并指示为10,指示RU按照频率由低至高的顺序,与相邻的低频率的RU合并为multi-RU。合并指示为11,指示RU按照频率由低至高的顺序,与相邻的高频率的RU合并为multi-RU。
又例如,合并指示为01,指示RU按照频率由低至高的顺序,与相邻的高频率的RU合并为multi-RU。合并指示为10,指示该资源单元分配子字段对应的RU中,一个RU按照频率由低至高的顺序,与相邻的高频率的RU合并为multi-RU,另一个RU与相邻的低频率的RU合并为multi-RU。合并指示为11,指示RU按照频率由低至高的顺序,与相邻的低频率的RU合并为multi-RU。
本申请实施例中,多个RU合并的约束条件包括多种。一种约束条件包括:1.小RU与大RU之间不合并;2.小RU合并不跨20MHz(a combination of small-size RUs shall not cross 20MHz channel boundary);3.小RU之间的合并应该是连续的(或相邻)。基于上述约束条件,小RU的合并可以为:20MHz内连续的一个52-tone RU和一个26-tone RU,或,20MHz内连续的一个106-tone RU和一个26-tone RU。其中,20MHz内连续的一个52-tone RU和一个26-tone RU的位置可以是:52-tone RU位于26-tone RU的左侧,也可以是52-tone RU位于26-tone RU的右侧;20MHz内连续的一个106-tone RU和一个26-tone RU的位置可以是:106-tone RU位于26-tone RU的左侧,也可以是106-tone RU位于26-tone RU的右侧。对于具有约束条件的RU合并方式,可以称为受限的RU合并方式,受限的RU合并方式考虑到了合并灵活度与合并带来的增益之间的平衡,使得多个RU合并更为合理且复杂度更低。当然,RU的合并也可以不包括任何约束条件,即任意的RU可以相互合并,则该合并方式可以称为非受限的RU合并方式。
表2中增加了指示大RU之间的合并的条目。例如条目113-条目255的合并指示为10时,均能够指示大RU的合并。
为便于理解,下面具体介绍表2中的部分条目指示的内容。
表2中的资源单元指示的条目113指示242-tone RU,且该242-tone RU没有分配给停靠在该20MHz所在的频域分片的STA。该资源单元指示的条目113对应的合并指示00指 示该242-tone RU没有和其他RU合并为multi-RU。该资源单元指示的条目113对应的合并指示01指示242+484 multi-RU,且在80MHz内连续,该242+484 multi-RU由242-tone RU与484-tone RU合并而成。
表2中的资源单元指示的条目114指示484-tone RU,且该484-tone RU没有分配给停靠在该20MHz所在的频域分片的STA。该资源单元指示的条目114对应的合并指示00指示该484-tone RU没有和其他RU合并为multi-RU。该资源单元指示的条目114对应的合并指示01指示484+242 multi-RU,且在80MHz内连续,该484+242 multi-RU为484-tone RU与242-tone RU合并而成。该资源单元指示的条目114对应的合并指示10指示该484+242 multi-RU,且在80MHz内不连续,该484+242 multi-RU由484-tone RU与242-tone RU合并而成。该资源单元指示的条目114对应的合并指示11指示484+996 multi-RU,且在160MHz内连续,该484+996 multi-RU由484-tone RU与996-tone RU合并而成。
表2中的资源单元指示的条目115指示996-tone RU,且该996-tone RU没有分配给停靠在该20MHz所在的频域分片的STA。该资源单元指示的条目115对应的合并指示01指示996+484 multi-RU,且在160MHz内连续,该996+484 multi-RU由996-tone RU与484-tone RU合并而成。该资源单元指示的条目115对应的合并指示10指示996+484 multi-RU,且在160MHz内不连续,该996+484 multi-RU由996-tone RU与484-tone RU合并而成。该资源单元指示的条目115对应的合并指示11指示996+2*996 multi-RU,且在320MHz内连续,该996+2*996 multi-RU由996-tone RU与2*996-tone RU合并而成。
表2中的资源单元指示的条目116指示2*996-tone RU,且该2*996-tone RU没有分配给停靠在该20MHz所在的频域分片的STA。该资源单元指示的条目116对应的合并指示00指示该2*996-tone RU没有和其他RU合并为multi-RU。该资源单元指示的条目116对应的合并指示01指示2*996+996-tone multi-RU,且在320MHz内连续,该2*996+996-tone multi-RU由2*996-tone RU与996-tone RU合并而成。该资源单元指示的条目116对应的合并指示10指示2*996+996-tone multi-RU,且在320MHz内不连续,该2*996+996-tone multi-RU由2*996-tone RU与996-tone RU合并而成。
表2中的资源单元指示的条目192-207指示242-tone RU,且条目192-207分别指示该242-tone RU分配给1-16个STA。该资源单元指示的条目192-207中的任一个条目对应的合并指示00指示该242-tone RU没有和其他RU合并为multi-RU。该资源单元指示的条目192-207中的任一个条目对应的合并指示01指示242+484 multi-RU,且在80MHz内连续,该242+484 multi-RU由242-tone RU与484-tone RU合并而成。
表2中的资源单元指示的条目208-223指示484-tone RU,且条目208-223分别指示该484-tone RU分配给1-16个STA。该资源单元指示的条目208-223中的任一个条目对应的合并指示00指示该484-tone RU没有和其他RU合并为multi-RU。该资源单元指示的条目208-223中的任一个条目对应的合并指示01指示484+242 multi-RU,且在80MHz内连续,该484+242 multi-RU为484-tone RU与242-tone RU合并而成。该资源单元指示的条目208-223中的任一个条目对应的合并指示10指示该484+242 multi-RU,且在80MHz内不连续,该484+242 multi-RU由484-tone RU与242-tone RU合并而成。该资源单元指示的条目208-223中的任一个条目对应的合并指示11指示484+996 multi-RU,且在160MHz内 连续,该484+996 multi-RU由484-tone RU与996-tone RU合并而成。
表2中的资源单元指示的条目224-239指示996-tone RU,且条目224-239分别指示该996-tone RU分配给1-16个STA。该资源单元指示的条目224-239中的任一个条目对应的合并指示00指示该996-tone RU没有和其他RU合并为multi-RU。该资源单元指示的条目224-239中的任一个条目对应的合并指示01指示996+484 multi-RU,且在160MHz内连续,该996+484 multi-RU由996-tone RU与484-tone RU合并而成。该资源单元指示的条目224-239中的任一个条目对应的合并指示10指示996+484 multi-RU,且在160MHz内不连续,该996+484 multi-RU由996-tone RU与484-tone RU合并而成。该资源单元指示的条目224-239中的任一个条目对应的合并指示11指示996+2*996 multi-RU,且在320MHz内连续,该996+2*996 multi-RU由996-tone RU与2*996-tone RU合并而成。
表2中的资源单元指示的条目240-255指示2*996-tone RU,且条目240-255分别指示该2*996-tone RU分配给1-16个STA。该资源单元指示的条目240-255中的任一个条目对应的合并指示00指示该2*996-tone RU没有和其他RU合并为multi-RU。该资源单元指示的条目240-255中的任一个条目对应的合并指示01指示2*996+996-tone multi-RU,且在320MHz内连续,该2*996+996-tone multi-RU由2*996-tone RU与996-tone RU合并而成。该资源单元指示的条目240-255中的任一个条目对应的合并指示10指示2*996+996-tone multi-RU,且在320MHz内不连续,该2*996+996-tone multi-RU由2*996-tone RU与996-tone RU合并而成。
如此,资源单元分配子字段通过采用本申请实施例提供的表2的各个条目指示RU分配,能够支持指示16个STA。而且,这样的指示方式,资源单元分配子字段的结构更清晰简洁。资源单元指示用于指示资源单元分配和对应的STA的数量。合并指示仅用于指示合并,而不会在一些情况下指示合并,在另一些情况下指示用户数。
上述图7A对应的实施例还可以应用于为一个STA分配多个RU的场景。在这种场景下,上述图7A对应的实施例中的资源单元分配子字段可采用表2中的条目进行指示。例如,图12为本资源单元分配的场景示意图,如图12所示,传输PPDU的信道带宽为320MHz,传输PPDU的信道带宽分为4个频域分片。按照频率由低至高的顺序,第一频域分片为第1个80MHz,第二个频域分片为第2个80MHz,第三频域分片为第3个80MHz,第四频域分片为第4个80MHz。本实施例中具体以第一频域分片传输的第一信令字段和第二频域分片传输的第二信令字段进行举例说明,第三频域分片和第四频域分片传输的信令字段,本实施例中不一一列举。
这320MHz的资源单元分配的实际情况是,按照频率由低至高的顺序,第1个80MHz对应一个484+242 multi-RU和一个242-tone RU。该484+242 multi-RU分配给停靠在第一频域分片的3个STA,该242-tone RU分配给停靠在第一频域分片的1个STA。第2个80MHz中的最低频率的20MHz对应一个242-tone RU,分配给停靠在第一频域分片的1个STA。第2个80MHz的次低频率的20MHz对应9个26-tone RU,分配给停靠在第二频域分片的9个STA。第2个80MHz的最高频率的40MHz对应484-tone RU,分配给停靠在第二频域分片的1个STA。为简要起见,第3个80Mhz和第4个80Mhz未示意。
第一频域分片传输的第一信令字段中的资源单元分配指示子字段指示:第1个80MHz 对应一个484+242 multi-RU和一个242-tone RU,在用户特定字段部分与该484+242 multi-RU对应的用户字段的数量为3个,与该242-tone RU对应的用户字段的数量为1个;第2个80MHz中的最低频率的20MHz对应一个242-tone RU,在用户特定字段部分与该242-tone RU对应的用户字段为1个;第2个80Mhz的第2个20MHz对应1个242-tone RU和第2个80MHz中的最高频率的40MHz对应484-tone RU合并为multi-RU,在用户特定字段部分与该multi-RU对应的用户字段的数量为0个。
那么,第1个80MHz中的第1个20MHz对应的资源单元分配指示子字段可通过表2中的条目208-223(1100y3y2y1y)中,指示484-tone RU和用户数为2的条目(即1100y3y2y1y=11010001),和合并指示01指示该484-tone RU与在80MHz内连续的242-tone RU(也即第1个80MHz中的第2个40MHz中的最低频率的20MHz对应的242-tone RU)合并为484+242 multi-RU,且该484+242 multi-RU对应的用户字段的数量为2个。第1个80MHz中的第2个20MHz对应的资源单元分配指示子字段可通过表2中的条目208-223(1100y3y2y1y)中,指示484-tone RU和用户数为1的条目(即1100y3y2y1y=11010000),和合并指示01指示该484-tone RU与在80MHz内连续的242-tone RU(也即第1个80MHz中的第2个40MHz中的最低频率的20MHz对应的242-tone RU)合并为484+242 multi-RU,且该484+242 multi-RU对应的用户字段的数量为1个。同理,第1个80MHz中的第3个20MHz对应的资源单元分配指示子字段可通过表2中的条目192-207(1100y3y2y1y0)中,指示242-tone RU和用户数为0的条目,和合并指示01指示242-tone RU,该242-tone RU与在80MHz内连续的484-tone RU(也即第1个80MHz中的第1个20MHz和第2个20MHz对应的484-tone RU)合并为242+484 multi-RU,且该242+484 multi-RU对应的用户字段的数量为0个。可以看出,第1个20MHz对应的资源单元分配指示子字段、第2个20MHz对应的资源单元分配指示子字段和第3个20MHz对应的资源单元分配指示子字段,共指示该484+242 multi-RU为3个。
第一频域分片传输的PPDU的信令字段中包括的第2个80Mhz的第2个20MHz对应的资源单元分配指示子字段可通过表2中的条目113的资源单元指示,以及与该条目113对应的合并指示10,指示该20MHz对应的RU为242-tone RU,该242-tone RU和在80MHz内连续的484-tone RU(也即第2个80MHz中的最高频率的40MHz对应484-tone RU)合并为multi-RU,且该multi-RU对应的用户字段的数量为0。第2个80MHz中的第3个20MHz和第4个20MHz对应的资源单元分配指示子字段可通过表2中的条目114对应的资源单元指示,以及该条目114对应的合并指示01,指示该20MHz对应的RU为484-tone RU,该484-tone RU与在80MHz内连续的242-tone RU(也即第2个80MHz中的第2个20MHz对应的242-tone RU)合并为multi-RU,且该multi-RU对应的用户字段的数量为0。
上述图7A对应的实施例中的资源单元分配子字段并不限于仅通过表2中的上述举例的条目进行指示,在其他实施例中,可根据RU分配的实际情况,利用表2中的其他条目进行指示。本申请对具体资源单元分配子字段具体采用哪个条目进行指示不作限定。
另外,上述图7A对应的实施例中的资源单元分配子字段也不限于通过表2中所示意的multi-RU的指示方式进行指示。关于multi-RU的指示方式,还可以有其他的实现形式。
例如,在另一种可能的实现方式中,表2中的资源单元指示的条目192-225还可以替 换为表3中的资源单元指示的条目192-225。在表3中,包括指示将大于或等于106子载波的RU分配给0-16个STA的条目。
表3
Figure PCTCN2021088222-appb-000009
Figure PCTCN2021088222-appb-000010
表3中的资源单元指示的条目192-199指示242-tone RU,且条目192-199分别指示该242-tone RU分配给1-8个STA。该资源单元指示的条目192-199中的任一个条目对应的合并指示00指示该242-tone RU没有和其他RU合并为multi-RU。该资源单元指示的条目192-199中的任一个条目对应的合并指示01指示该242-tone RU与484-tone RU合并为multi-RU且在80MHz内连续。
表3中的资源单元指示的条目200-207指示484-tone RU,且条目200-207分别指示该484-tone RU分配给1-8个STA。该资源单元指示的条目200-207中的任一个条目对应的合并指示00指示该484-tone RU没有和其他RU合并为multi-RU。该资源单元指示的条目200-207中的任一个条目对应的合并指示01指示该484-tone RU与242-tone RU合并为multi-RU且在80MHz内连续。该资源单元指示的条目200-207中的任一个条目对应的合并指示10指示该484-tone RU与242-tone RU合并为multi-RU且在80MHz内不连续。该资源单元指示的条目200-207中的任一个条目对应的合并指示11指示该484-tone RU与996-tone RU合并为multi-RU且在160MHz内连续。
表3中的资源单元指示的条目208-215指示996-tone RU,且条目208-215分别指示该996-tone RU分配给1-8个STA。该资源单元指示的条目208-215中的任一个条目对应的合并指示00指示该996-tone RU没有和其他RU合并为multi-RU。该资源单元指示的条目208-215中的任一个条目对应的合并指示01指示该996-tone RU与484-tone RU合并为multi-RU且在160MHz内连续。该资源单元指示的条目208-215中的任一个条目对应的合并指示10指示该996-tone RU与484-tone RU合并为multi-RU且在160MHz内不连续。该资源单元指示的条目208-215中的任一个条目对应的合并指示11指示该996-tone RU与2*996-tone RU合并为multi-RU且在320MHz内连续。
表3中的资源单元指示的条目216-223指示2*996-tone RU,且条目216-223分别指示 该2*996-tone RU分配给1-8个STA。该资源单元指示的条目216-223中的任一个条目对应的合并指示00指示该2*996-tone RU没有和其他RU合并为multi-RU。该资源单元指示的条目216-223中的任一个条目对应的合并指示01指示该2*996-tone RU与996-tone RU合并为multi-RU且在160MHz内连续。该资源单元指示的条目216-223中的任一个条目对应的合并指示10指示该2*996-tone RU与996-tone RU合并为multi-RU且在160MHz内不连续。该资源单元指示的条目216-223中的任一个条目对应的合并指示11指示该996-tone RU与2*996-tone RU合并为multi-RU且在320MHz内连续。
表3中的资源单元指示的条目224-231指示242-tone RU,且条目224-231分别指示该242-tone RU分配给9-16个STA。该资源单元指示的条目224-231中的任一个条目对应的合并指示00指示该242-tone RU没有和其他RU合并为multi-RU。该资源单元指示的条目224-231中的任一个条目对应的合并指示01指示该242-tone RU与484-tone RU合并为multi-RU且在80MHz内连续。
表3中的资源单元指示的条目232-239指示484-tone RU,且条目232-239分别指示该484-tone RU分配给9-16个STA。该资源单元指示的条目232-239中的任一个条目对应的合并指示00指示该484-tone RU没有和其他RU合并为multi-RU。该资源单元指示的条目232-239中的任一个条目对应的合并指示01指示该484-tone RU与242-tone RU合并为multi-RU且在80MHz内连续。该资源单元指示的条目232-239中的任一个条目对应的合并指示10指示该484-tone RU与242-tone RU合并为multi-RU且在80MHz内不连续。该资源单元指示的条目232-239中的任一个条目对应的合并指示11指示该484-tone RU与996-tone RU合并为multi-RU且在160MHz内连续。
表3中的资源单元指示的条目240-237指示996-tone RU,且条目240-237分别指示该996-tone RU分配给9-16个STA。该资源单元指示的条目240-237中的任一个条目对应的合并指示00指示该996-tone RU没有和其他RU合并为multi-RU。该资源单元指示的条目240-237中的任一个条目对应的合并指示01指示该996-tone RU与484-tone RU合并为multi-RU且在160MHz内连续。该资源单元指示的条目240-237中的任一个条目对应的合并指示10指示该996-tone RU与484-tone RU合并为multi-RU且在160MHz内不连续。该资源单元指示的条目240-237中的任一个条目对应的合并指示11指示该996-tone RU与2*996-tone RU合并为multi-RU且在320MHz内连续。
表3中的资源单元指示的条目248-255指示2*996-tone RU,且条目248-255分别指示该2*996-tone RU分配给9-16个STA。该资源单元指示的条目248-255中的任一个条目对应的合并指示00指示该2*996-tone RU没有和其他RU合并为multi-RU。该资源单元指示的条目248-255中的任一个条目对应的合并指示01指示该2*996-tone RU与996-tone RU合并为multi-RU且在320MHz内连续。该资源单元指示的条目248-255中的任一个条目对应的合并指示10指示该2*996-tone RU与996-tone RU合并为multi-RU且在320MHz内不连续。该资源单元指示的条目248-255中的任一个条目对应的合并指示11指示该996-tone RU与2*996-tone RU合并为multi-RU且在320MHz内连续。
上述图5或图7A对应的实施例中的资源单元分配子字段也可采用表3中的条目进行指示。具体选择的条目可根据RU的分配情况进行确定。
本申请实施例还提供一种RU的合并指示的方案。资源单元分配子字段包括资源单元指示和2比特的合并指示部分。大RU对应的所有资源单元分配子字段中的合并指示,配合指示该大RU的合并情况。STA根据一个大RU对应的所有资源单元分配子字段中的合并指示,确定大RU的合并情况,获知multi-RU合并具体位置。资源单元指示部分,可采用参上述表1、表2或表3中的任一表中的资源单元指示部分的条目。
该RU的合并指示的方案可用于本申请一实施例的数据传输方法,数据传输方法包括:
AP生成PPDU的信令字段,所述信令字段包括一个multi-RU对应的至少两个资源单元分配子字段,所述multi-RU是传输所述PPDU的信道带宽所包括的至少两个RU合并的,所述至少两个资源单元分配子字段中的每个资源单元分配子字段包括指示部分和合并指示部分,所述至少两个资源单元分配子字段中的合并指示部分指示所述至少两个RU合并合并为所述multi-RU;
AP发送所述信令字段;
对应的STA接收所述信令字段,获得所述信令字段中的所述至少两个资源单元分配子字段。
下面结合表4具体阐述上述合并指示的方案。
请参阅表4,242-tone RU对应1个资源单元分配子字段,也即242-tone RU对应1个2比特的合并指示。如表4所示,合并指示为00,指示不合并。合并指示为01指示242-tone RU和484-tone RU在80MHz内合并为一个multi-RU。其余的合并指示(例如,11)可作为保留条目,用于指示其他的RU合并情况,或用于指示其他信息信息。
484-tone RU对应2个资源单元分配子字段,也即484-tone RU对应2个2比特的合并指示。如表4所示,2个合并指示为00和00,指示不合并。两个合并指示为00和01指示484-tone RU和242-tone RU在80MHz内合并为一个multi-RU且在80MHz内连续。两个合并指示为00和10指示484-tone RU和242-tone RU在80MHz内合并为一个multi-RU且在80MHz内不连续。其余的合并指示组合情况(例如,10和10、10和11等)可作为保留条目,用于指示其他的RU合并情况,或用于指示其他信息信息。
996-tone RU对应4个资源单元分配子字段,也即996-tone RU对应4个2比特的合并指示。如表4所示,4个合并指示为00、00、00和00,指示不合并。4个合并指示为00、00、00和01指示996-tone RU和484-tone RU在160MHz内合并为一个multi-RU且在80MHz内连续。4个合并指示为00、00、00和10指示996-tone RU和484-tone RU在160MHz内合并为一个multi-RU且在80MHz内不连续。其余的合并指示组合情况(例如,4个10、4个11等)可作为保留条目,用于指示其他的RU合并情况,或用于指示其他信息信息。
表4
Figure PCTCN2021088222-appb-000011
Figure PCTCN2021088222-appb-000012
上述图7A对应的实施例中的资源单元分配子字段可采用表4中的条目进行指示。例如,基于图12对应的例子。320MHz的资源单元分配的实际情况是,按照频率由低至高的顺序,第1个80MHz对应一个484+242 multi-RU和一个242-tone RU。该484+242 multi-RU分配给停靠在第一频域分片的3个STA,该242-tone RU分配给停靠在第一频域分片的1个STA。第2个80MHz中的最低频率的20MHz对应一个242-tone RU,分配给停靠在第一频域分片的1个STA。第2个80MHz的次低频率的20MHz对应9个26-tone RU,分配给停靠在第二频域分片的9个STA。第2个80MHz的最高频率的40MHz对应484-tone RU,分配给停靠在第二频域分片的1个STA。
那么,第1个80MHz中的第1个20MHz和第2个20MHz的资源单元分配指示子字段中的资源单元指示均指示484-tone RU,该第1个20MHz的资源单元分配指示子字段中的合并指示和第2个20MHz的资源单元分配指示子字段中的合并指示可分别为00和01,这样两个合并指示配合共同指示484+242 multi-RU。第1个80MHz中的第3个20MHz的资源单元分配指示子字段中的资源单元指示242-tone RU,合并指示为01,则该资源单元分配指示子字段指示该3个20MHz对应该242+484 multi RU。
本申请实施例还提供一种RU的合并指示的方案。
本申请提供了一种资源单元合并指示的方法和通信装置,该方法包括:确定物理层协议数据单元PPDU,该PPDU包括信令字段,该信令字段包括资源单元分配子字段和与资源单元分配子字段对应的合并指示,该资源单元分配子字段指示多个资源单元,该合并指示用于指示该多个资源单元的合并信息;发送该PPDU。本申请提供的方法,可以支持一个或多个用户使用多个连续或者不连续的RU进行数据传输,并将多个RU的合并情况指示给该用户,提高了系统RU的分配灵活性,提高了系统频谱利用率。
资源单元分配子字段包括资源单元指示和2比特的合并指示。一个内容信道上传输的与一个大RU对应的所有资源单元分配子字段中的合并指示,配合指示该大RU的合并情况。在两个信道传输的用于指示一个大RU的多个资源单元分配子字段中的合并指示,是对应相同的。这样,STA能够根据一个内容信道上传输的一个大RU对应的所有资源单元 分配子字段中的合并指示,确定该大RU的合并情况。
例如,一个996-tone RU对应4个资源单元分配子字段,分别为资源单元分配子字段1-资源单元分配子字段4。CC1传输的资源单元分配子字段1的合并指示与CC2传输的第一单元分配子字段2的合并指示相同。CC1传输的资源单元分配子字段3的合并指示与CC2传输的第一单元分配子字段4的合并指示相同。
具体的,请参阅表5。242-tone RU对应1个资源单元分配子字段,也即242-tone RU对应1个2比特的合并指示。如表4所示,合并指示为00,指示不合并。合并指示为01指示242-tone RU和484-tone RU在80MHz内合并为一个multi-RU。其余的合并指示(例如,11)可作为保留条目,用于指示其他的RU合并情况,或用于指示其他信息信息。
484-tone RU对应2个资源单元分配子字段,也即484-tone RU对应2个2比特的合并指示。这两个合并指示分别在CC1和CC2传输。这两个合并指示相同。如表4所示,RU对应的两个资源单元分配子字段中2个资源单元指示均指示484-tone RU的情况下,两个资源单元分配子字段中的2个合并指示为00和00,分别在CC1和CC2传输,任一个CC上的合并指示00都指示不合并;两个资源单元分配子字段中的两个合并指示为01和01,分别在CC1和CC2传输,任一个CC上的合并指示01都指示484-tone RU和242-tone RU在80MHz内合并为一个multi-RU且在80MHz内连续;类似的,两个资源单元分配子字段中的两个合并指示为10和10,分别在CC1和CC2传输,任一个CC上的合并指示10都指示484-tone RU和242-tone RU在80MHz内合并为一个multi-RU且在80MHz内不连续。两个合并指示为11和11指示484-tone RU和996-tone RU合并为一个multi-RU。
996-tone RU对应4个资源单元分配子字段,也即996-tone RU对应4个2比特的合并指示。这4个合并指示分别在CC1和CC2传输。其中第1个合并指示在CC1传输,第2个合并指示在CC2传输,第3个合并指示在CC1传输,第4个合并指示在CC2传输。第1个合并指示与第2个合并指示相同。第3个合并指示与第4个合并指示相同。
在一个RU对应的4个资源单元指示子字段中的资源单元指示的RU为996-tone RU的情况,合并指示可以为但不限于以下几种情况。
4个资源单元分配子字段中的4个合并指示为00、00、00和00,其中,在CC1上传输的第1个00和第3个00指示不合并,在CC2上传输的第2个00和第4个00也指示不合并。那么实际上,STA可接收到一个CC上的两个合并指示为00和00则可以确定不合并。
4个资源单元分配子字段中的4个合并指示为00、00、01和01,其中,第1个00和第1个01在CC1上传输,指示996-tone RU和484-tone RU在160MHz内合并为一个multi-RU且在80MHz内连续。第2个00和第2个01在CC2上传输,也指示996-tone RU和484-tone RU在160MHz内合并为一个multi-RU且在80MHz内连续。这样STA能够根据其中一个CC上的合并指示00和01确定996-tone RU和484-tone RU在160MHz内合并为一个multi-RU且在80MHz内连续。
4个资源单元分配子字段中的4个合并指示为00、00、10和10,其中第1个00和第1个10在CC1上传输,指示996-tone RU和484-tone RU在160MHz内合并为一个multi-RU且在80MHz内不连续。第2个00和第2个10在CC2上传输,指示996-tone RU和484-tone  RU在160MHz内合并为一个multi-RU且在80MHz内不连续。
其余的合并指示组合情况(例如,4个10、4个11等)可作为保留条目,用于指示其他的RU合并情况,或用于指示其他信息信息。
表5
Figure PCTCN2021088222-appb-000013
上述图7A对应的实施例中的资源单元分配子字段可采用表5中的条目进行指示。例如,基于图12对应的例子。按照频率由低至高的顺序,320MHz的资源单元分配的实际情况是,第1个80MHz对应一个484+242 multi-RU和一个242-tone RU。该484+242 multi-RU分配给停靠在第一频域分片的3个STA,该242-tone RU分配给停靠在第一频域分片的1个STA。第2个80MHz中的最低频率的20MHz对应一个242-tone RU,分配给停靠在第一频域分片的1个STA。第2个80MHz的次低频率的20MHz对应9个26-tone RU,分配给停靠在第二频域分片的9个STA。第2个80MHz的最高频率的40MHz对应484-tone RU,分配给停靠在第二频域分片的1个STA。
那么,第1个80MHz中的第1个20MHz和第2个20MHz的资源单元分配指示子字段中的资源单元指示均指示484-tone RU,该第1个20MHz的资源单元分配指示子字段中的合并指示和第2个20MHz的资源单元分配指示子字段中的合并指示均为01,2个合并指示01中的任一个合并指示01都能单独指示242+484 multi-RU且在80MHz内连续。这样第1个20MHz的资源单元分配指示子字段和第2个20MHz的资源单元分配指示子字段分别在两个CC传输时,由于合并指示是相同的。这样STA只需要读取其中一个CC上的资源单元分配指示子字段中的指示484-toneRU的资源单元指示和合并指示01,就可以确定资源单元分配子字段指示的RU为242+484 multi-RU且在80MHz内连续。
上述本申请提供的实施例中,分别从接入点、站点的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,接入点、站点可以包括 硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参阅图13,图13为本申请实施例提供的一种数据传输装置的结构示意图。数据传输装置13包括处理单元1301和收发单元1302;
处理单元1301用于生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片;所述信令字段在所述第一频域分片中传输,包括公共字段和用户特定字段;所述公共字段包括资源单元分配子字段,所述用户特定字段包括用户字段;所述资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU,以及所述RU中分配给所述停靠在所述第一频域分片上的站点的RU所对应的用户字段的数目;其中,分配给所述停靠在所述第一频域分片上的站点的RU对应的用户字段的数目,表示该RU向所述用户特定字段中的一个内容信道贡献的用户字段的数目,所述用户字段为停靠在所述第一频域分片上的站点对应的用户字段;
收发单元1302用于在所述第一频域分片发送所述信令字段。
这样,第一频域分片传输的信令字段中,资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU,以及所述RU中分配给所述停靠在所述第一频域分片上的站点的RU所对应的用户字段的数目,而并没有按照实际的资源单元分配情况对非分配给所述停靠在所述第一频域分片上的站点的用户数进行指示,这样简化能够用户字段。在用户特定字段部分,可省去或简化非停靠在第一频域分片的RU的用户字段,从而能够实现通过减少用户字段的数目来降低PPDU中的信令字段的开销。
该数据传输装置1300可以为通信装置或接入点,或者该数据传输装置可部署在通信装置或部署在接入点。该数据传输装置1300的处理单元1301可为处理器,该数据传输装置1300的收发单元1302可以为收发器。
本实施例提供的数据传输装置1300的各功能单元的功能实现细节和技术效果,可参考上述方法实施例所提供方法的相关细节描述,此处不再赘述。
在一些实施例中,所述资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU中,非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目为0,所述非分配给停靠在所述第一频域分片的站点的RU为大于或等于242子载波的RU。这样能够省去该大于或等于242子载波的RU的用户字段,从而能够有效地降低信令字段的开销。
在一些实施例中,所述资源单元分配子字段指示的所述非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目,小于所述非分配给停靠在第一频域分片的站点的RU实际对应的用户字段的数目。这样能够减少第一频域分片传输的信令字段的用户字段的数目,从而能够降低信令字段的开销。
在一些实施例中,所述资源单元分配子字段指示的非分配给停靠在所述第一频域分片的站点的RU,实际为非分配给停靠在第一频域分片的站点的至少两个RU。这样,非分配给停靠在第一频域分片的站点的至少两个RU一并指示为一个RU,对资源单元分配子字段 的指示方式进行简化,可使得这至少两个RU对应的用户字段的数目更少,从而能够降低信令字段的开销。
在一些实施例中,所述至少两个RU均为小于242子载波的RU。这样,相比较于现有技术中,资源单元分配子按照实际的资源单元分配情况进行指示,每个小RU需要分别对应一个用户字段,本申请的方案,将分配给停靠在第一频域分片的站点的至少两个小RU一并指示为一个RU,这样该一个RU只需要对应一个用户字段,从而能够省去指示一个用户字段,实现降低信令字段的开销。
请参阅图14,图14为本申请实施例提供的一种数据传输装置的结构示意图。本申请实施例还提供一种数据传输装置1400,包括处理单元1401和收发单元1402;
收发单元1402用于停靠在所述第一频域分片接收物理层协议数据单元PPDU的信令字段,其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括所述第一频域分片;所述信令字段包括公共字段和用户特定字段;所述公共字段包括资源单元分配子字段,所述用户特定字段包括用户字段;所述资源单元分配子字段指示传输所述PPDU的信道带宽中的资源单元RU,以及所述RU中分配给所述停靠在所述第一频域分片上的站点的RU所对应的用户字段的数目;其中,分配给所述停靠在所述第一频域分片上的站点的RU对应的用户字段的数目,表示该RU向所述用户特定字段中的一个内容信道贡献的用户字段的数目,所述用户字段为停靠在所述第一频域分片上的站点对应的用户字段;
处理单元1401用于接收所述信令字段的用户特定字段所包括的用户字段中,获取携带本站点的标识的用户字段,并获取所述用户字段对应的RU上传输的数据。
该数据传输装置可以为通信装置或站点,或者该数据传输装置可部署在通信装置或部署在站点。该数据传输装置1400的处理单元1401可为处理器,该数据传输装置1400的收发单元1402可以为收发器。
这样,站点从第一频域分片接收的信令字段中,资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU,以及所述RU中分配给所述停靠在所述第一频域分片上的站点的RU所对应的用户字段的数目,而并没有按照实际的资源单元分配情况对非分配给所述停靠在所述第一频域分片上的站点的用户数进行指示,这样简化能够用户字段。在用户特定字段部分,可省去或简化非停靠在第一频域分片的RU的用户字段,从而能够实现通过减少用户字段的数目来降低PPDU中的信令字段的开销。
本实施例提供的数据传输装置1400的各功能单元的功能实现细节和技术效果,可参考上述方法实施例所提供方法的相关细节描述,此处不再赘述。
在一些实施例中,所述资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU中,非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目为0,所述非分配给停靠在所述第一频域分片的站点的RU为大于或等于242子载波的RU。这样能够省去该大于或等于242子载波的RU的用户字段,从而能够有效地降低信令字段的开销。
在一些实施例中,所述资源单元分配子字段指示的所述非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目,小于所述非分配给停靠在第一频域分片的站点 的RU实际对应的用户字段的数目。这样能够减少第一频域分片传输的信令字段的用户字段的数目,从而能够降低信令字段的开销。
在一些实施例中,所述资源单元分配子字段指示的非分配给停靠在所述第一频域分片的站点的RU,实际为非分配给停靠在第一频域分片的站点的至少两个RU。这样,非分配给停靠在第一频域分片的站点的至少两个RU一并指示为一个RU,对资源单元分配子字段的指示方式进行简化,可使得这至少两个RU对应的用户字段的数目更少,从而能够降低信令字段的开销。
在一些实施例中,所述至少两个RU均为小于242子载波的RU。这样,相比较于现有技术中,资源单元分配子按照实际的资源单元分配情况进行指示,每个小RU需要分别对应一个用户字段,本申请的方案,将分配给停靠在第一频域分片的站点的至少两个小RU一并指示为一个RU,这样该一个RU只需要对应一个用户字段,从而能够省去指示一个用户字段,实现降低信令字段的开销。
请参阅图15,图15为本申请实施例提供的一种数据传输装置的结构示意图。本申请实施例还提供一种数据传输装置1500,包括处理单元1501和收发单元1502;
处理单元1501用于生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片;
收发单元1502用于在所述第一频域分片发送所述信令字段。
所述信令字段包括公共字段和用户特定字段,所述公共字段包括资源单元分配子字段;所述用户特定字段包括用户字段;所述资源单元分配子字段指示传输所述PPDU的信道带宽中的资源单元RU;所述公共字段包括至少一个所述资源单元分配子字段指示的RU为多个小于242子载波的RU;所述多个小于242子载波的RU中的每个RU对应至少一个用户字段;其中,至少一个第一RU对应的用户字段携带停靠在所述第一频域分片中的站点的标识,至少一个第二RU对应的用户字段未携带停靠在所述第一频域分片中的站点的标识,所述资源单元分配子字段指示的所述第二RU对应的子载波的至少部分属于至少两个RU。
该数据传输装置可以为通信装置或站点,或者该数据传输装置可部署在通信装置或部署在站点。该数据传输装置1500的处理单元1501可为处理器,该数据传输装置1500的收发单元1502可以为收发器。
这样,相比较于按照实际情况指示这两个RU,并指示这至少两个RU中的每个RU对应至少一个用户字段,本申请的方案在第一频域分片传输的第一信令字段中,资源单元分配子字段这对至少两个RU合并指示的一个RU,并且这一个RU只对应一个用户字段,能够有效减少非分配给停留在本频域分配的STA的多个连续的小RU对应的用户字段的数量,从而能够节省信令字段的开销。
在一些实施例中,所述资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU中,非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目为0,所述非分配给停靠在所述第一频域分片的站点的RU为大于或等于242子载波的RU。这样能够省去该大于或等于242子载波的RU的用户字段,从而能够有效地降低信令字段的开销。
在一些实施例中,所述资源单元分配子字段指示的所述非分配给停靠在所述第一频域 分片的站点的RU对应的用户字段的数目,小于所述非分配给停靠在第一频域分片的站点的RU实际对应的用户字段的数目。这样能够减少第一频域分片传输的信令字段的用户字段的数目,从而能够降低信令字段的开销。
在一些实施例中,所述资源单元分配子字段指示的非分配给停靠在所述第一频域分片的站点的RU,实际为非分配给停靠在第一频域分片的站点的至少两个RU。这样,非分配给停靠在第一频域分片的站点的至少两个RU一并指示为一个RU,对资源单元分配子字段的指示方式进行简化,可使得这至少两个RU对应的用户字段的数目更少,从而能够降低信令字段的开销。
在一些实施例中,所述至少两个RU均为小于242子载波的RU。这样,相比较于现有技术中,资源单元分配子按照实际的资源单元分配情况进行指示,每个小RU需要分别对应一个用户字段,本申请的方案,将分配给停靠在第一频域分片的站点的至少两个小RU一并指示为一个RU,这样该一个RU只需要对应一个用户字段,从而能够省去指示一个用户字段,实现降低信令字段的开销。
本实施例提供的数据传输装置1500的各功能单元的功能实现细节和技术效果,可参考上述方法实施例所提供方法的相关细节描述,此处不再赘述。
请参阅图16,图16为本申请实施例提供的一种数据传输装置的结构示意图。本申请实施例还提供一种数据传输装置1600,包括处理单元1601和收发单元1602,
处理单元1601用于在所述第一频域分片接收物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片;所述信令字段包括公共字段和用户特定字段,所述公共字段包括资源单元分配子字段;所述用户特定字段包括用户字段;所述资源单元分配子字段指示传输所述PPDU的信道带宽中的资源单元RU;所述公共字段包括至少一个所述资源单元分配子字段指示的RU为多个小于242子载波的RU;所述多个小于242子载波的RU中的每个RU对应至少一个用户字段;其中,至少一个第一RU对应的用户字段携带停靠在所述第一频域分片中的站点的标识,至少一个第二RU对应的用户字段未携带停靠在所述第一频域分片中的站点的标识,所述资源单元分配子字段指示的所述第二RU对应的子载波的至少部分属于至少两个RU;
收发单元1602用于从所述用户特定字段所包括的用户字段中,获取携带本站点的标识的用户字段,并获取所述用户字段对应的RU上传输的数据。该数据传输装置可以为通信装置或站点,或者该数据传输装置可部署在通信装置或部署在站点。
该数据传输装置可以为通信装置或站点,或者该数据传输装置可部署在通信装置或部署在站点。该数据传输装置1600的处理单元1601可为处理器,该数据传输装置1600的收发单元1602可以为收发器。
这样,站点从第一频域分片接收的信令字段中,资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU,以及所述RU中分配给所述停靠在所述第一频域分片上的站点的RU所对应的用户字段的数目,而并没有按照实际的资源单元分配情况对非分配给所述停靠在所述第一频域分片上的站点的用户数进行指示,这样简化能够用户字段。在用户特定字段部分,可省去或简化非停靠在第一频域分片的RU的用户字段,从而 能够实现通过减少用户字段的数目来降低PPDU中的信令字段的开销。
在一些实施例中,所述资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU中,非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目为0,所述非分配给停靠在所述第一频域分片的站点的RU为大于或等于242子载波的RU。这样能够省去该大于或等于242子载波的RU的用户字段,从而能够有效地降低信令字段的开销。
在一些实施例中,所述资源单元分配子字段指示的所述非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目,小于所述非分配给停靠在第一频域分片的站点的RU实际对应的用户字段的数目。这样能够减少第一频域分片传输的信令字段的用户字段的数目,从而能够降低信令字段的开销。
在一些实施例中,所述资源单元分配子字段指示的非分配给停靠在所述第一频域分片的站点的RU,实际为非分配给停靠在第一频域分片的站点的至少两个RU。这样,非分配给停靠在第一频域分片的站点的至少两个RU一并指示为一个RU,对资源单元分配子字段的指示方式进行简化,可使得这至少两个RU对应的用户字段的数目更少,从而能够降低信令字段的开销。
在一些实施例中,所述至少两个RU均为小于242子载波的RU。这样,相比较于现有技术中,资源单元分配子按照实际的资源单元分配情况进行指示,每个小RU需要分别对应一个用户字段,本申请的方案,将分配给停靠在第一频域分片的站点的至少两个小RU一并指示为一个RU,这样该一个RU只需要对应一个用户字段,从而能够省去指示一个用户字段,实现降低信令字段的开销。
本实施例提供的数据传输装置1600的各功能单元的功能实现细节和技术效果,可参考上述方法实施例所提供方法的相关细节描述,此处不再赘述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机可读存储介质被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指 令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种数据传输方法,其特征在于,包括:
    生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片;
    所述信令字段在所述第一频域分片中传输,包括公共字段和用户特定字段;所述公共字段包括资源单元分配子字段,所述用户特定字段包括用户字段;
    所述资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU,以及所述RU中分配给所述停靠在所述第一频域分片上的站点的RU所对应的用户字段的数目;
    其中,分配给所述停靠在所述第一频域分片上的站点的RU对应的用户字段的数目,表示该RU向所述用户特定字段中的一个内容信道贡献的用户字段的数目,所述用户字段为停靠在所述第一频域分片上的站点对应的用户字段;
    在所述第一频域分片发送所述信令字段。
  2. 根据权利要求1所述的方法,其特征在于,所述资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU中,非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目为0,所述非分配给停靠在所述第一频域分片的站点的RU为大于或等于242子载波的RU。
  3. 根据权利要求1所述的方法,其特征在于,所述资源单元分配子字段指示的所述非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目,小于所述非分配给停靠在第一频域分片的站点的RU实际对应的用户字段的数目。
  4. 根据权利要求3所述的方法,其特征在于,所述资源单元分配子字段指示的非分配给停靠在所述第一频域分片的站点的RU,实际为非分配给停靠在第一频域分片的站点的至少两个RU。
  5. 根据权利要求4所述的方法,其特征在于,所述至少两个RU均为小于242子载波的RU。
  6. 一种数据传输方法,其特征在于,包括:
    停靠在第一频域分片的站点在所述第一频域分片接收物理层协议数据单元PPDU的信令字段,其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括所述第一频域分片;
    所述信令字段包括公共字段和用户特定字段;所述公共字段包括资源单元分配子字段,所述用户特定字段包括用户字段;
    所述资源单元分配子字段指示传输所述PPDU的信道带宽中的资源单元RU,以及所述 RU中分配给所述停靠在所述第一频域分片上的站点的RU所对应的用户字段的数目;
    其中,分配给所述停靠在所述第一频域分片上的站点的RU对应的用户字段的数目,表示该RU向所述用户特定字段中的一个内容信道贡献的用户字段的数目,所述用户字段为停靠在所述第一频域分片上的站点对应的用户字段;
    所述站点接收所述信令字段的用户特定字段所包括的用户字段中,获取携带本站点的标识的用户字段,并获取所述用户字段对应的RU上传输的数据。
  7. 根据权利要求6所述的方法,其特征在于,所述资源单元分配子字段指示传输所述PPDU的信道带宽所包括的资源单元RU中,非分配给停靠在所述第一频域分片的站点的所述RU对应的用户字段的数目为0,所述非分配给停靠在所述第一频域分片的站点的RU为大于或等于242子载波的RU。
  8. 根据权利要求6所述的方法,其特征在于,所述资源单元分配子字段指示的所述非分配给停靠在所述第一频域分片的站点的RU对应的用户字段的数目,小于所述非分配给停靠在第一频域分片的站点的RU实际对应的用户字段的数目。
  9. 根据权利要求8所述的方法,其特征在于,所述资源单元分配子字段指示的非分配给停靠在所述第一频域分片的站点的RU,实际为非分配给停靠在第一频域分片的站点的至少两个RU。
  10. 根据权利要求9所述的方法,其特征在于,所述至少两个RU均为小于242子载波的RU。
  11. 一种数据传输方法,其特征在于,包括:
    生成物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片;
    在所述第一频域分片发送所述信令字段;
    其中,所述信令字段包括公共字段和用户特定字段,所述公共字段包括资源单元分配子字段;所述用户特定字段包括用户字段;
    所述资源单元分配子字段指示传输所述PPDU的信道带宽中的资源单元RU;
    其中,所述公共字段包括至少一个所述资源单元分配子字段指示的RU为多个小于242子载波的RU;
    所述多个小于242子载波的RU中的每个RU对应至少一个用户字段;其中,至少一个第一RU对应的用户字段携带停靠在所述第一频域分片中的站点的标识,至少一个第二RU对应的用户字段未携带停靠在所述第一频域分片中的站点的标识,所述资源单元分配子字段指示的所述第二RU对应的子载波的至少部分属于至少两个RU。
  12. 一种数据传输方法,其特征在于,包括:
    停靠在第一频域分片的站点在所述第一频域分片接收物理层协议数据单元PPDU的信令字段;其中,传输所述PPDU的信道带宽包括至少两个频域分片;所述至少两个频域分片包括第一频域分片;
    所述信令字段包括公共字段和用户特定字段,所述公共字段包括资源单元分配子字段;所述用户特定字段包括用户字段;
    所述资源单元分配子字段指示传输所述PPDU的信道带宽中的资源单元RU;
    所述公共字段包括至少一个所述资源单元分配子字段指示的RU为多个小于242子载波的RU;
    所述多个小于242子载波的RU中的每个RU对应至少一个用户字段;其中,至少一个第一RU对应的用户字段携带停靠在所述第一频域分片中的站点的标识,至少一个第二RU对应的用户字段未携带停靠在所述第一频域分片中的站点的标识,所述资源单元分配子字段指示的所述第二RU对应的子载波的至少部分属于至少两个RU;
    所述站点从所述用户特定字段所包括的用户字段中,获取携带本站点的标识的用户字段,并获取所述用户字段对应的RU上传输的数据。
  13. 一种通信装置,其特征在于,包括:处理器和收发器,当所述处理器执行所述存储器中的计算机程序或指令时,使得权利要求1-5任一项的所述方法被执行,或使得权利要求6-10任一项的所述方法被执行,或使得权利要求11的所述方法被执行,或使得权利要求12所述的方法被执行。
  14. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,用于读取所述存储器中的指令,并根据所述指令实现如权利要求1-5任一项的所述方法,或如权利要求6-10任一项的所述方法,或如权利要求11的所述方法,或如权利要求12所述的方法。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,所述计算机指令指示通信装置执行权利要求1-5任一项所述的方法,或所述计算机指令指示通信装置执行权利要求权利要求6-10任一项所述的方法,或所述计算机指令指示通信装置执行权利要求11所述的方法,或所述计算机指令指示通信装置执行权利要求12所述的方法。
  16. 一种计算机程序产品,其特征在于,所述计算机程序产品在计算机上被执行时,实现如权利要求1-5任一项的所述方法,或如权利要求6-10任一项的所述方法,或如权利要求11的所述方法,或如权利要求12所述的方法。
PCT/CN2021/088222 2020-04-20 2021-04-19 数据传输方法及相关装置 WO2021213345A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2022564412A JP2023523941A (ja) 2020-04-22 2021-04-19 データ伝送方法及び関連する装置
AU2021258892A AU2021258892B2 (en) 2020-04-22 2021-04-19 Data transmission method and related apparatus
BR112022021292A BR112022021292A2 (pt) 2020-04-22 2021-04-19 Método de transmissão de dados e aparelho relacionado
EP21792432.3A EP4132173A4 (en) 2020-04-22 2021-04-19 DATA TRANSMISSION METHOD AND ASSOCIATED DEVICE
KR1020227040516A KR20230006515A (ko) 2020-04-22 2021-04-19 데이터 전송 방법 및 관련 장치
US18/048,529 US20230093344A1 (en) 2020-04-20 2022-10-21 Data Transmission Method and Related Apparatus
AU2024202818A AU2024202818A1 (en) 2020-04-22 2024-04-30 Data transmission method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010324346.2 2020-04-20
CN202010324346.2A CN113543331A (zh) 2020-04-22 2020-04-22 数据传输方法及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/048,529 Continuation US20230093344A1 (en) 2020-04-20 2022-10-21 Data Transmission Method and Related Apparatus

Publications (1)

Publication Number Publication Date
WO2021213345A1 true WO2021213345A1 (zh) 2021-10-28

Family

ID=78124075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088222 WO2021213345A1 (zh) 2020-04-20 2021-04-19 数据传输方法及相关装置

Country Status (8)

Country Link
US (1) US20230093344A1 (zh)
EP (1) EP4132173A4 (zh)
JP (1) JP2023523941A (zh)
KR (1) KR20230006515A (zh)
CN (3) CN113543331A (zh)
AU (2) AU2021258892B2 (zh)
BR (1) BR112022021292A2 (zh)
WO (1) WO2021213345A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115699695A (zh) * 2020-04-29 2023-02-03 Lg 电子株式会社 用于80mhz的导频信号
CN116390250B (zh) * 2020-07-01 2024-01-09 华为技术有限公司 一种ppdu的传输方法及相关装置
CN114143862B (zh) * 2021-12-13 2023-09-15 楚雄高新领创科技有限公司 一种数据园区管理后台与移动终端通信的方法及系统
CN118102397A (zh) * 2022-11-17 2024-05-28 华为技术有限公司 通信方法和通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170048862A1 (en) * 2015-08-11 2017-02-16 Lg Electronics Inc. Method and apparatus for configuring a signal field including allocation information for a resource unit in wireless local area network system
US20190069298A1 (en) * 2017-10-31 2019-02-28 Intel IP Corporation Enhanced high efficiency frames for wireless communications
CN110460415A (zh) * 2018-05-07 2019-11-15 华为技术有限公司 数据传输方法、装置及存储介质
US20190373586A1 (en) * 2018-06-01 2019-12-05 Qualcomm Incorporated Techniques for control signaling in extreme high throughput environments
CN110768757A (zh) * 2018-07-25 2020-02-07 华为技术有限公司 资源单元指示方法、装置及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10582025B2 (en) * 2015-05-05 2020-03-03 Samsung Electronics Co., Ltd. Efficient signaling and addressing in wireless local area network systems
WO2016201739A1 (zh) * 2015-06-16 2016-12-22 华为技术有限公司 资源调度的方法、装置和设备
US10123330B2 (en) * 2015-07-01 2018-11-06 Samsung Electronics Co., Ltd. Methods to enable efficient wideband operations in local area networks using OFDMA
CN108200000B (zh) * 2015-09-01 2019-04-12 华为技术有限公司 传输信息的方法、无线局域网装置
CN116405161B (zh) * 2018-07-17 2024-01-16 华为技术有限公司 一种通信方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170048862A1 (en) * 2015-08-11 2017-02-16 Lg Electronics Inc. Method and apparatus for configuring a signal field including allocation information for a resource unit in wireless local area network system
US20190069298A1 (en) * 2017-10-31 2019-02-28 Intel IP Corporation Enhanced high efficiency frames for wireless communications
CN110460415A (zh) * 2018-05-07 2019-11-15 华为技术有限公司 数据传输方法、装置及存储介质
US20190373586A1 (en) * 2018-06-01 2019-12-05 Qualcomm Incorporated Techniques for control signaling in extreme high throughput environments
CN110768757A (zh) * 2018-07-25 2020-02-07 华为技术有限公司 资源单元指示方法、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4132173A4

Also Published As

Publication number Publication date
CN113543331A (zh) 2021-10-22
BR112022021292A2 (pt) 2022-12-06
AU2024202818A1 (en) 2024-05-16
JP2023523941A (ja) 2023-06-08
EP4132173A1 (en) 2023-02-08
KR20230006515A (ko) 2023-01-10
EP4132173A4 (en) 2023-10-18
CN116347617A (zh) 2023-06-27
AU2021258892A1 (en) 2022-12-08
CN116347617B (zh) 2023-09-29
AU2021258892B2 (en) 2024-02-01
CN116347616A (zh) 2023-06-27
US20230093344A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
WO2021213345A1 (zh) 数据传输方法及相关装置
KR102040747B1 (ko) 자원 스케줄링 방법, 장치 및 디바이스
WO2022002206A1 (zh) 一种ppdu的传输方法及相关装置
WO2022022249A1 (zh) 资源调度方法及相关装置
WO2021219136A1 (zh) 无线通信传输方法及相关装置
WO2021180203A1 (zh) 数据传输方法及设备、芯片系统、计算机可读存储介质
WO2021139773A1 (zh) 资源分配方法、通信装置及相关设备
CN107534957A (zh) Wlan系统的资源指示方法及装置
US20230121851A1 (en) Data transmission method and related apparatus
JP2023523813A (ja) 無線ローカルエリアネットワークにおいて適用される帯域幅指示方法及び通信装置
WO2021204209A1 (zh) 一种多资源单元对应的调制方式的指示方法及相关设备
CN110662292B (zh) 传输多播帧
CN115280880A (zh) 终端以及通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792432

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022564412

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022021292

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227040516

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2021792432

Country of ref document: EP

Effective date: 20221104

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022021292

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221020

ENP Entry into the national phase

Ref document number: 2021258892

Country of ref document: AU

Date of ref document: 20210419

Kind code of ref document: A