WO2021219136A1 - 无线通信传输方法及相关装置 - Google Patents

无线通信传输方法及相关装置 Download PDF

Info

Publication number
WO2021219136A1
WO2021219136A1 PCT/CN2021/091564 CN2021091564W WO2021219136A1 WO 2021219136 A1 WO2021219136 A1 WO 2021219136A1 CN 2021091564 W CN2021091564 W CN 2021091564W WO 2021219136 A1 WO2021219136 A1 WO 2021219136A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
ppdu
station
uplink
trigger frame
Prior art date
Application number
PCT/CN2021/091564
Other languages
English (en)
French (fr)
Inventor
淦明
周逸凡
梁丹丹
于健
李云波
郭宇宸
狐梦实
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112022021936A priority Critical patent/BR112022021936A2/pt
Priority to JP2022565955A priority patent/JP2023523757A/ja
Priority to EP21796161.4A priority patent/EP4135399A4/en
Priority to KR1020227041395A priority patent/KR20230007437A/ko
Publication of WO2021219136A1 publication Critical patent/WO2021219136A1/zh
Priority to US17/975,135 priority patent/US20230066731A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This application relates to the field of communication technology, and in particular to a wireless communication method and related devices.
  • WLAN Wireless Local Area Network
  • 802.11a/g went through 802.11n, 802.11ac, and now is under discussion 802.11ax and 802.11be.
  • the allowable transmission bandwidth and the number of space-time streams are as follows:
  • Table 1 The maximum bandwidth and maximum transmission rate allowed for each version of IEEE
  • the name of the 802.11n standard is also called HT (High Throughput)
  • the 802.11ac standard is called VHT (Very High Throughput)
  • 802.11ax (Wi-Fi 6) is called HE (High Efficient).
  • 802.11be (Wi-Fi 7) is called EHT (Extremely High Throughput)
  • Non-HT non-high throughput
  • 802.11b adopts the non-OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) mode, so it is not listed in Table 1.
  • one aspect of the present application provides a method for sending trigger frames in a wireless local area network, wherein the AP generates a physical layer protocol data unit PPDU, and the PPDU contains one or more trigger frames , Each trigger frame corresponds to a frequency domain segment; each trigger frame is used at least to schedule one or more stations docked on the corresponding frequency domain segment; send one or more trigger frames in the PPDU, each of which is Each trigger frame is carried on the corresponding frequency domain segment.
  • each trigger frame is only used to schedule one or more stations docked on the corresponding frequency domain segment.
  • the content in different trigger frames may be different, but the length of different trigger frames is the same.
  • the station may only receive the trigger frame on the frequency domain segment where the 20 MHz is monitored; and determine whether the station is scheduled according to the trigger frame. If it is scheduled by itself, it can be only on each 20MHz channel in the frequency domain segment where the bandwidth of the uplink PPDU of the station indicated in the trigger frame is located, or only in the frequency domain segment where the allocated resource block is located On each of the 20MHz channels, the uplink common physical layer preamble is sent; of course, correspondingly, the data part of the uplink PPDU is sent on the resource block allocated to the station.
  • the AP receives the uplink multi-user PPDU sent by the station, and may reply to the confirmation information of the uplink multi-user PPDU based on frequency domain segmentation. For example, in different frequency domain segments, different confirmation frames are returned respectively. Preferably, in the frequency domain segment, only the confirmation frame for the uplink PPDU of the station stopped in the frequency domain segment may be sent. Specifically, the content of the confirmation frame on different frequency domain segments may be different, but the length is the same.
  • the station after the station sends the uplink PPDU, it can only receive the confirmation information of the uplink PPDU on the frequency domain segment where the 20 MHz monitored by the station is located.
  • Corresponding other aspects provide a communication device that can be used as an access point to perform the foregoing method, such as an access point or a chip in a wireless local area network.
  • a communication device that can be used as a station to perform the foregoing method, such as a non-AP station or chip in a wireless local area network.
  • FIG. 1A is a schematic diagram of a network structure provided by an embodiment of the present application.
  • FIG. 1B is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1C is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of an example of channel allocation in an 802.11 system
  • Fig. 3 is a simple schematic diagram of frequency domain segmentation and stopped stations in an embodiment
  • Fig. 4 is a schematic diagram of a process flow and a simple schematic diagram of a frame structure of an uplink transmission in an embodiment (the AP sends a trigger frame, the station sends an uplink multi-user PPDU based on the trigger frame, and the AP sends an acknowledgment frame of the uplink multi-user PPDU);
  • FIG. 5 is a simple schematic diagram of the structure of a trigger frame in an embodiment
  • FIG. 6 is a simple schematic diagram of the structure of a user information field in a trigger frame in an embodiment
  • Figures 7a-7b are simple schematic diagrams of the locations of resource blocks in an embodiment
  • FIG. 8 is a simple schematic diagram of a frame structure of an uplink multi-user PPDU in an embodiment
  • FIG. 9 is a simple schematic diagram of 6 puncturing modes under a bandwidth of 80 MHz in an embodiment
  • FIG. 10 is a simple schematic diagram of the structure of the confirmation frame in an embodiment.
  • FIG. 1A is a schematic diagram of a network structure provided by an embodiment of the present application.
  • the network structure may include one or more access point (AP) type stations and one or more non-access point type stations (none access point). point station, non-AP STA).
  • AP access point
  • non-AP STA non-access point type stations
  • this article refers to the access point type of station as an access point (AP), and the non-access point type of station as a station (STA).
  • the APs are, for example, AP1 and AP2 in FIG. 1A
  • the STAs are, for example, STA1, STA2, and STA3 in FIG. 1A.
  • the access point can be the access point for terminal equipment (such as mobile phones) to enter the wired (or wireless) network. It is mainly deployed in homes, buildings and parks. The typical coverage radius is tens of meters to hundreds of meters. Can be deployed outdoors.
  • the access point is equivalent to a bridge connecting the wired network and the wireless network. The main function is to connect each wireless network client together, and then connect the wireless network to the Ethernet.
  • the access point may be a terminal device (such as a mobile phone) or a network device (such as a router) with a wireless-fidelity (WiFi) chip.
  • WiFi wireless-fidelity
  • the access point can be a device that supports the 802.11be standard.
  • the access point may also be a device supporting multiple wireless local area networks (WLAN) standards of the 802.11 family such as 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • WLAN wireless local area networks
  • the access point in this application may be a high efficiency (HE) AP or an extremely high throughput (EHT) AP, or an access point that is applicable to a future generation of WiFi standards.
  • HE high efficiency
  • EHT extremely high throughput
  • the access point may include a processor and a transceiver, the processor is used to control and manage the actions of the access point, and the transceiver is used to receive or send information.
  • the site can be a wireless communication chip, a wireless sensor, or a wireless communication terminal, etc., and can also be referred to as a user.
  • the site can be a mobile phone that supports WiFi communication function, a tablet computer that supports WiFi communication function, a set-top box that supports WiFi communication function, a smart TV that supports WiFi communication function, a smart wearable device that supports WiFi communication function, and WiFi communication function is supported.
  • the station can support the 802.11be standard.
  • the site can also support multiple wireless local area networks (WLAN) standards of the 802.11 family such as 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • WLAN wireless local area networks
  • the station may include a processor and a transceiver.
  • the processor is used to control and manage the actions of the access point, and the transceiver is used to receive or send information.
  • the access point in this application may be a high-efficiency (HE) STA or an extremely high throughput (EHT) STA, or may be an STA applicable to a future generation of WiFi standards.
  • HE high-efficiency
  • EHT extremely high throughput
  • access points and sites can be devices used in the Internet of Vehicles, Internet of Things (IoT) nodes, sensors, etc., smart cameras, smart remote controls, smart water meters, and electricity meters in smart homes. And sensors in smart cities, etc.
  • IoT Internet of Things
  • the access points and stations involved in the embodiments of the present application can also be collectively referred to as communication devices, which can include hardware structures and software modules, and implement the above-mentioned functions in the form of hardware structures, software modules, or hardware structures plus software modules. .
  • communication devices can include hardware structures and software modules, and implement the above-mentioned functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • One of the above-mentioned functions can be implemented in a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 1B is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the communication device 200 may include a processor 201, a transceiver 205, and optionally a memory 202.
  • the transceiver 205 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing the transceiver function.
  • the transceiver 205 may include a receiver and a transmitter.
  • the receiver may be referred to as a receiver or a receiving circuit, etc., to implement a receiving function;
  • the transmitter may be referred to as a transmitter or a transmitting circuit, etc., to implement a transmitting function.
  • the memory 202 may store a computer program or software code or instruction 204, and the computer program or software code or instruction 204 may also be referred to as firmware.
  • the processor 201 can control the MAC layer and the PHY layer by running the computer program or software code or instruction 203 therein, or by calling the computer program or software code or instruction 204 stored in the memory 202, so as to realize the following aspects of this application.
  • the processor 201 may be a central processing unit (CPU), and the memory 302 may be, for example, a read-only memory (ROM) or a random access memory (RAM).
  • the processor 201 and the transceiver 205 described in this application can be implemented in an integrated circuit (IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (ASIC), printed circuit Printed circuit board (PCB), electronic equipment, etc.
  • IC integrated circuit
  • analog IC analog IC
  • radio frequency integrated circuit RFIC radio frequency integrated circuit
  • mixed signal IC mixed signal IC
  • ASIC application specific integrated circuit
  • PCB printed circuit Printed circuit board
  • electronic equipment etc.
  • the above-mentioned communication device 200 may further include an antenna 206, and each module included in the communication device 200 is only an example for illustration, and this application is not limited thereto.
  • the communication device 200 described in the above embodiment may be an access point or a station, but the scope of the communication device described in this application is not limited to this, and the structure of the communication device may not be limited by FIG. 1B.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the implementation form of the communication device may be:
  • Independent integrated circuit IC or chip, or, chip system or subsystem
  • the IC collection may also include storage for storing data and instructions Components; (3) Modules that can be embedded in other devices; (4) Receivers, smart terminals, wireless devices, handhelds, mobile units, vehicle-mounted devices, cloud devices, artificial intelligence devices, etc.; (5) Others, etc. .
  • the implementation form of the communication device is a chip or a chip system
  • the chip shown in FIG. 1C includes a processor 301 and an interface 302.
  • the number of processors 301 may be one or more, and the number of interfaces 302 may be more than one.
  • the chip or chip system may include a memory 303.
  • Figure 2 is the channel distribution when the bandwidth is 160MHz.
  • the channels of the entire wireless LAN are divided into primary 20MHz channels (or Primary 20MHz for short, P20 for short), secondary 20MHz channels (Secondary 20MHz, S20 for short), 40MHz channels (S40 for short), and 80MHz channels (S80 for short). .
  • primary 20MHz channels or Primary 20MHz for short, P20 for short
  • secondary 20MHz channels Secondary 20MHz channels
  • S40 for short 40MHz channels
  • S80 for short 80MHz channels
  • main 40MHz channel referred to as P40
  • main 80MHz channel referred to as P80
  • the bandwidth increases, the data rate of data transmission also increases (refer to Table 1). Therefore, in the next generation of standards, larger bandwidths greater than 160MHz (such as 240MHz, 320MHz) will be considered.
  • the scenarios targeted by the various embodiments of the present application are scenarios with larger bandwidths of IEEE 802.11be or other standards.
  • PPDU Physical Layer protocol data unit
  • the condition for 20MHz transmission is that P20 is idle; the condition for 40Mhz transmission is that P20 and S20 are idle; the condition for 80MHz transmission is that P20, S20, and S40 are idle; the condition for 160Mhz transmission is P20, S20, and S40.
  • the condition for using larger bandwidth transmission is to detect channels in the order of P20, S20, S40, and S80, and all channels in the bandwidth are free and available. If there is interference or radar signals in some channels, a larger bandwidth cannot be used.
  • 802.11ax the transmission method of preamble puncturing is introduced, which allows the transmission of PPDUs even when the preamble (and subsequent data) is not transmitted in some 20MHz channels. This method increases the transmission of the channel in the presence of interference in some channels. Utilization rate. 802.11ax defines the following PPDU preamble non-punctured and punctured bandwidth modes:
  • the IEEE 802.11ax standard revision allows access point (Access Point, AP) and non-AP Station (non-AP STA, STA for short) to negotiate a target wakeup time (Target Wakeup Time, TWT) mechanism.
  • TWT target wakeup Time
  • the STA temporarily switches to another 20MHz or 80MHz channel to listen and obtain the service of the AP, which is called Subchannel Selective Transmission (SST).
  • SST Subchannel Selective Transmission
  • IEEE 802.11be may also introduce the SST mechanism, allowing one or more STAs to park on different channels.
  • 802.11be intends to introduce a multi-slice preamble transmission mechanism.
  • the EHT physical layer preamble (including U-SIG (universal signaling) is transmitted every 80 MHz).
  • the content of the field is different from the EHT (extremely high throughput) field.
  • large bandwidth such as 160Mhz, 240MHz and 320MHz
  • a STA residing in a certain 80MHz only needs to receive the U-SIG and EHT-SIG corresponding to the 80MHz to obtain resource allocation information, such as resource allocation for OFDMA transmission.
  • the physical layer preamble of each EHT PPDU also includes the traditional preamble (L-STF, legacy short training field), the traditional long training field (L-LTF, legacy long training field), and The traditional signaling field (L-SIG, legacy signaling field) and the repeated signaling field RL-SIG field are both located before the EHT preamble.
  • the traditional preamble field and the repeated signaling field are replicated and transmitted every 20 MHz within the PPDU bandwidth (without considering the rotation factor applied to every 20 MHz).
  • uplink multi-user transmission such as uplink OFDMA
  • whether to perform flexible frequency multi-slice transmission, and how to support small-bandwidth sites (such as 80MHz sites) for transmission in large-bandwidth PPDUs (such as 320MHz) have not been considered.
  • the channel bandwidth used for the transmission of uplink PPDUs in the wireless local area network is also divided into multiple frequency domain fragments, and each frequency domain fragment stops at several stations.
  • the aforementioned docking refers to a corresponding relationship determined or known by the system, which can be semi-static, that is to say, the corresponding relationship between frequency domain fragments and one or more docked sites is configured, and at a certain time The internal remains unchanged; it can also be dynamic, and the AP dynamically adjusts according to certain rules.
  • the frequency domain fragmentation may be composed of one or more frequency domain fragmentation basic units, where the frequency domain fragmentation may be specified by a protocol or specified by an AP.
  • the frequency domain slice is 80 MHz, but it can also be of other sizes, such as 160 MHz, 240 MHz, or 320 MHz.
  • frequency domain segmentation may also be referred to as frequency domain segmentation (frequency segment) and so on.
  • the site parking (parking) described in this application is in a certain frequency domain fragment, which may also be referred to as a station residing in a certain frequency domain fragment, or located in or belonging to a certain frequency domain fragment.
  • the PPDU sent by the station or AP is composed of sub-PPDUs on one or more frequency band segments, and the size of each frequency band segment can be the same or different.
  • the station can report to the AP the information of the channel it is listening to (for example, which 20MHz), and the station's working bandwidth (or the current working bandwidth range, which is the station's current ability to send and receive information Bandwidth), and the supported bandwidth of the site.
  • the frequency domain segment where the station stops is: the frequency domain segment including the 20 MHz channel monitored by the station.
  • the listening channel of the station can be any one or more channels in the working bandwidth, or one or more channels selected from the listening channel set designated by the AP.
  • the supported bandwidth of a site generally reflects the receiving capability of the site and is the maximum bandwidth of communication that the site can support. Among them, the working bandwidth of the site is generally less than or equal to the support bandwidth of the site, and the frequency domain segment where the site's listening channel is located is generally less than or equal to the working bandwidth of the site.
  • FIG. 3 is a simple schematic diagram of a frequency domain segmentation and docked stations.
  • frequency domain segmentation or frequency domain segmentation granularity/minimum frequency domain segmentation
  • the serial number of each 20MHz is counted from bottom to top (the serial number can increase from low frequency to high frequency, or from The increase from high frequency to low frequency, the following are examples from low frequency to high frequency, where 20MHz can be punched, so I won’t repeat it).
  • stations 1 to 5 listen to the first 20 MHz, and the working bandwidth is the main 80 MHz; stations 6 to 10 listen to the first 20 MHz, and the working bandwidth is the main 160 MHz; and stations 11 to 20 listen to the first 20 MHz.
  • the frequency domain segment where the station stops is the frequency domain segment where the 20MHz channel that the station listens to is located.
  • the size or range of the frequency domain segment may be determined by the frequency domain segment selected when the AP sends the PPDU.
  • the PPDU bandwidth sent by the transmitter AP is 320MHz, and there are 4 frequency domain segments, which are the main 80MHz, the first 80MHz, the second 80MHz, and the third 80MHz.
  • the frequency domain where stations 1 to 5 are docked.
  • the segment is mainly 80 MHz, the frequency domain segment where stations 6 to 10 stop is the main 80 MHz, and the frequency domain segment where stations 11 to 20 stop is the first 80 MHz.
  • the bandwidth of the PPDU sent by the sender is 320MHz, and there are 3 frequency domain segments, which are 160MHz, the second 80MHz, and the third 80MHz respectively.
  • the frequency domain segments of stations 1 to 5 are the main ones. 160 MHz
  • the frequency domain segment where stations 6 to 10 stop is mainly 160 MHz
  • the frequency domain segment where stations 11 to 20 stop is mainly 160 MHz.
  • the frequency domain segmentation is a method of dividing the PPDU bandwidth in the frequency domain.
  • One or more adjacent frequency domain segments form the complete PPDU bandwidth.
  • the frequency domain segmentation or bandwidth may have punctures. 20MHz.
  • the frequency domain segments determined by the AP may include multiple frequency domain segments of different sizes or multiple frequency domain segments of the same size, or are not limited.
  • the standard can specify the granularity of frequency domain segmentation, or the smallest frequency domain segmentation.
  • the default frequency domain segmentation method for the bandwidth of the PPDU is: the bandwidth of the PPDU is divided into the smallest The frequency domain segmentation, where the smallest frequency domain segment size is, for example, 80MHz. It is understandable that when the AP determines the frequency domain segmentation, it can consider the listening channel information of each associated station, and also consider the information of the station's working bandwidth, so that the determined frequency domain segmentation can meet service requirements as much as possible. . Correspondingly, the station can adjust the channel it listens to and adjust its working bandwidth flexibly according to the needs of the business, so as to save energy or improve transmission efficiency.
  • a method is provided to obtain/update the channel that the station listens to:
  • the AP may send a recommended listening channel set through a management frame or other frames, and the station feeds back the selected listening channel according to the received listening channel set.
  • the listening channel set is carried in management frames sent by the AP, such as a beacon frame.
  • the AP sends PPDUs, it needs to send information at least on the listening channel selected by the station, so the listening channel cannot be punctured.
  • a negotiation method can also be used.
  • the station sends a request frame, which carries the selected listening channel; the AP replies with a response frame, which carries a status, and the status includes rejection, reception, and so on. If it is rejected, one or more recommended listening channels can also be carried.
  • a method for notifying/updating the working bandwidth of a site including sending an indication of the working bandwidth of the site.
  • the possible working bandwidth of the site includes one or more of 20MHz, 80MHz, 160MHz, 240MHz, and 320MHz.
  • the working bandwidth of the site can be indicated by a bitmap or index, as follows:
  • Method 1 The size of the bitmap is fixed, and each bit in the bitmap corresponds to a 20MHz.
  • the maximum bandwidth includes the number of 20 MHz
  • the maximum BSS bandwidth is 320 MHz
  • the bitmap size is 16 bits at this time.
  • Each bit in the bitmap indicates whether the 20MHz is within the working bandwidth.
  • the first value (for example, 1) indicates that the corresponding 20MHz is within the working bandwidth
  • the second value (for example, 0) indicates that the corresponding 20MHz is not within the working bandwidth.
  • the bitmap 1111 0000 0000 0000 indicates that the working bandwidth of the station is the first 80 MHz; for another example, the bitmap 1000 0000 0000 0000 indicates that the working bandwidth is the first 20 MHz.
  • bitmap size can also vary with the BSS bandwidth. For example, if the BSS bandwidth is 80MHz, the number of bitmaps is 4 bits at this time; for another example, if the BSS bandwidth is 160MHz, the number of bitmaps is 8 bits at this time.
  • Method 2 The size of the bitmap is fixed, and each bit in the bitmap corresponds to an 80MHz.
  • the maximum bandwidth supported by EHTPPDU is 320MHz
  • the bitmap length is 4 bits at this time.
  • Each bit in the bitmap indicates whether the corresponding 80MHz is within the working bandwidth.
  • the first value (for example, 1) indicates that the corresponding 80MHz is within the working bandwidth
  • the second value (for example, 0) indicates that the corresponding 80MHz is not within the working bandwidth.
  • the bitmap 1000 indicates that the working bandwidth of the station is the first 80MHz; for another example, the bitmap 1100 indicates that the working bandwidth of the station is the first 160MHz; for another example, a special bitmap 0000 indicates that the working bandwidth of the station is Listening 20MHz.
  • the size of the bitmap can also vary with the BSS bandwidth. For example, if the BSS bandwidth is 80MHz, the number of bitmaps is 1 bit; for example, if the BSS bandwidth is 160MHz, the number of bitmaps is 2 bits. .
  • Method 3 Use the index to indicate the working bandwidth of the site.
  • 3 or 4 bits can be used to indicate the working bandwidth of the station.
  • the working bandwidth of the site shown includes:
  • Part or all of the 8-16 values in the 3 or 4 bits respectively indicate one or more of the above-mentioned working bandwidths, and the remaining values can be reserved.
  • Table 2 is an indication of the working bandwidth of the site
  • the 20MHz channel monitored by the STA can be located in any channel within the BSS bandwidth, which can improve the transmission efficiency of the trigger frame when the AP sends uplink scheduling, that is, the content carried by the transmission trigger frame on each frequency domain segment can be different.
  • STAs with different working bandwidths are placed on different frequency domain segments, such as a site with a working bandwidth of 80MHz.
  • uplink transmission resources can be more evenly allocated to different STAs, preventing all work STAs with a bandwidth of 80MHz are all stationed on the main 80MHz, causing insufficient frequency resources on the main 80MHz, and waste of frequency resources on other 80MHz.
  • all STAs reside on the P20 to listen to and receive scheduling information (such as trigger frames) for uplink transmission. Since the rule for sending data at the sender is: when the P20 can be transmitted, it will further analyze whether other channels can be transmitted. For example, if the trigger frame usually adopts the Non-HT format, the physical layer preamble needs to transmit the same content every 20MHz. The trigger frame itself also needs to transmit the same content every 20MHz. In this embodiment, based on channel conditions, power savings, or other factors, the station can change the listening channel and/or working bandwidth, and notify the AP of the change.
  • scheduling information such as trigger frames
  • different frequency domain segments can be transmitted differently. That is, the content of the total trigger frame is divided into different 80MHz, so that the overhead of the trigger frame is reduced.
  • the above-mentioned flexible camping method is not limited to being applied to uplink scheduling, but can also be applied to downlink transmission, and the downlink transmission scheme is not described in detail in this application.
  • a method for sending or receiving a trigger frame is provided.
  • the method is based on frequency domain segmentation, or is referred to as a method of performing uplink scheduling on frequency domain segmentation.
  • the AP generates a PPDU, the PPDU contains one or more trigger frames, each trigger frame corresponds to a frequency domain segment; each trigger frame is used at least to schedule one or more stations docked on the corresponding frequency domain segment , So that stations can send uplink PPDUs, or each trigger frame is used at least for one or more stations located in the frequency domain segment where the trigger frame is located to transmit uplink PPDUs (wherein one Or multiple stations can also be considered that the listening channels of these stations are located in the frequency domain segment where the trigger frame is located).
  • the frequency domain segment where the station stops is the frequency domain segment where the 20 MHz channel monitored by the station is located, and the size or range of the frequency domain segment may be determined by the frequency domain segment selected when the AP sends the PPDU.
  • the AP will determine one or more frequency domain segments and the size of the frequency domain segment included in the PPDU to be sent according to factors such as the listening channel of the station(s) to be scheduled.
  • the AP can also One or more frequency domain segments and the size of the frequency domain segments included in the PPDU to be sent are determined according to factors such as the working bandwidth of the station(s) to be scheduled. Refer to Embodiment 1, which will not be repeated here.
  • the AP obtains the information of the stations that stop on each frequency domain segment, and combines the frequency domain resources and the obtained uplink service requirements of the stations to generate one or more trigger frames, where the trigger frame contains the information of the scheduled stations and Frequency domain resources allocated to this site.
  • the AP sends one or more trigger frames in the PPDU, and each trigger frame is carried on a corresponding frequency domain segment.
  • the trigger frame is transmitted on each 20MHz of the corresponding frequency domain segment.
  • Another method is to transmit the trigger frame on the entire corresponding frequency domain segment or the resource block in the frequency domain segment, such as the largest resource block. To transmit the trigger frame.
  • the station sends an uplink PPDU according to the received trigger frame.
  • the uplink PPDU may be multiple uplink user PPDUs.
  • only one station is scheduled for uplink transmission using the above method.
  • the sending method of sending the uplink multi-user PPDU in 103 may adopt: MU-MIMO technology and/or OFMDA technology, and the uplink multi-user PPDU is referred to as trigger-based PPDU (trigger-based PPDU, TB PPDU) for short.
  • the content of different trigger frames can be different. In this way, the content of the entire trigger frame can be scattered on different frequency domain segments, thereby reducing the waste of trigger frame transmission resources. Further, in a preferred embodiment, the trigger frame may only be used to schedule the scheduling information of one or more stations docked on the corresponding frequency domain segment, that is, it does not include docking on other frequency domain segments. Scheduling information for any site of. In this way, the content of all trigger frames can be dispersed to the greatest extent, and the waste of trigger frame transmission resources can be minimized.
  • the trigger frame generated in 101 can be carried in OFDMA format PPDU (which can be called EHT MU PPDU or other names), or it can be carried in Non HT PPDU (that is, the preamble of the PPDU includes only the traditional preamble), or Use a single-user PPDU format that conforms to standards such as 11n, 11ac, 11ax, or 11be.
  • the aforementioned trigger frame can also be aggregated and transmitted with other MAC frames, such as data frames or control frames.
  • the structure of the trigger frame in an example is shown in Figure 5, which can include one or any combination of the following fields (not limited to the position of the fields shown in Figure 5): frame control field, duration field, receiving address field, sending address Field, common information field, multiple user information fields, bit stuffing field, or frame check sequence field.
  • the common information field is used to indicate common parameters for uplink multi-user transmission
  • the user information field is used to indicate parameters for a single station to transmit uplink PPDUs, for example, including resource blocks indicated by the resource allocation field.
  • the common information field includes one or any combination of the following fields (not limited to the position of the field shown in Figure 5): trigger frame type field (Trigger Type), uplink length field (UL Length), and more frame trigger fields (More TF), carrier sense field (CS Required), uplink bandwidth field (UL BW), GI (guard interval, guard interval) and EHT-LTF type fields, Pre-FEC filling factor, PE ambiguity and transmit power (AP TX Power) and other parameters.
  • Trigger Type Trigger Type
  • uplink length field UL Length
  • More TF carrier sense field
  • GI guard interval, guard interval
  • EHT-LTF type fields Pre-FEC filling factor
  • PE ambiguity and transmit power AP TX Power
  • the uplink length field (UL bandwidth): used to indicate the length in the L-SIG field in the traditional preamble of the uplink TB PPDU that triggers frame scheduling.
  • More frame trigger fields (More TF): used to indicate whether there are more trigger frames to be sent.
  • GI guard interval
  • EHT-LTF type fields used to indicate the length of GI and the type of EHT-LTF.
  • Pre-FEC padding factor field and PE ambiguity field used to jointly indicate the physical layer padding length of EHT PPDU, including post-FEC padding length and PE field length (FEC: Forward Error Correction, forward error correction code, PE: packet extension, package extension).
  • Transmission power field used to indicate the power sent by the station, in dBm, where the power value is generally normalized to a frequency of 20MHz.
  • the common field of the trigger frame may also include a common information field based on the trigger type.
  • the common information field based on the trigger type includes fields such as MPDU spacing factor, TID (traffic identifier) aggregation limit, and preferred AC (access category).
  • the common field of the trigger frame may also include information such as uplink space-time block coding or uplink spatial multiplexing.
  • different trigger frames in the PPDU bandwidth carrying the trigger frame may also carry: a puncturing information field used to indicate the PPDU bandwidth.
  • the punctured bitmap is used to indicate which 20MHz in the bandwidth is punctured. Being punctured means that the physical layer preamble and data fields (including MAC frames) are not transmitted on the corresponding 20 MHz in the PPDU.
  • the number of bits of the punctured bitmap may be fixed, such as the number of bits and the number of 20 MHz included in the maximum bandwidth of the PPDU, for example, 320 MHz includes 16 20 MHz.
  • the number of bits in the punctured bitmap varies with the PPDU bandwidth.
  • the station can transmit the U-SIG in the physical layer preamble in the frequency domain segment corresponding to the station according to the puncturing information field of the PPDU bandwidth when sending the uplink PPDU.
  • the U-SIG includes the puncturing information in the frequency domain segment.
  • the punching information field can also indicate possible punching modes.
  • the index value in Table 3 indicates a punching mode.
  • the possible punching modes are as follows:
  • the modes included in Table 3 above only need 6 bits to indicate. If more puncturing modes are included later, the length of the puncturing bandwidth mode field can also be 7 bits, 8 Bits, 9 bits or other number of bits. Further optionally, the multiple puncturing modes indicated by the puncturing bandwidth mode field change with the bandwidth, and the bandwidth is indicated by the bandwidth field in the trigger frame.
  • the puncturing bandwidth mode field can be 0 bits; when the bandwidth is 80MHz, the mode indicated by the puncturing bandwidth mode field includes mode numbers 1 to 4, which requires 2 bits; when the bandwidth is 160MHz, the mode indicated by the puncturing bandwidth mode field includes the mode Numbers 5-16, 4 bits are required; when the bandwidth is 240MHz, the mode indicated by the puncturing bandwidth mode field includes the mode number 17-25, which requires 4 bits; when the bandwidth is 320MHz, the mode indicated by the puncturing bandwidth mode field includes the mode Numbers 26 to 37, 4 bits are required; the preferred way is that the mode indicated by the punctured bandwidth mode field changes with the bandwidth, but the length does not change.
  • the length of the punctured bandwidth mode field at this time is all the above bandwidths.
  • the maximum number of bits required is 4.
  • the mode indicated by the puncturing bandwidth mode field includes mode numbers 1 to 4
  • the 4-bit length puncturing bandwidth mode field values 0 to 3 indicate mode numbers 1 to 3 respectively. 4.
  • Other values are reserved values.
  • the puncturing information field can also carry part of the puncturing information in the PPDU bandwidth.
  • the size of the bandwidth it includes 2, 3, or 4 bit bitmaps with a granularity of 80 MHz (or 80 MHz fixed to 4 bits). Bitmap), setting the first value (1) to indicate that the puncturing information corresponding to 80MHz is included, and setting the second value (0) to indicate that the puncturing information corresponding to 80MHz is not included.
  • the puncturing information of every 80 MHz is the same as the puncturing information indication method in the U-SIG field in the third embodiment, which will not be repeated here.
  • the part of the puncturing information carried in the puncturing information field needs to include the puncturing information of the frequency bandwidth occupied by the station that triggers the frame scheduling to transmit the uplink physical layer preamble.
  • the common field of the trigger frame may also carry: information/fields used to indicate the bandwidth of the frequency domain segment where the trigger frame is located.
  • the trigger frame does not include information/fields for indicating the frequency domain segment where the trigger frame is located, and the station only uses the frequency domain segment (for example, the minimum frequency domain specified by the standard) according to the (default) listening channel.
  • the trigger frame is received by segmentation or the frequency domain segmentation granularity specified by the standard, such as 80MHz.
  • the trigger frame may also include: information/fields used to indicate the bandwidth of the frequency domain segment.
  • the station may receive the trigger frame according to the indicated frequency domain segment, for example, merge each trigger frame in the frequency domain segment, so as to increase the robustness. At this time, the foregoing instructions regarding the UL bandwidth of the entire uplink multi-user PPDU can be omitted.
  • the trigger frame may also include UL bandwidth and the information/field used to indicate the bandwidth of the frequency domain segment where the uplink PPDU of the scheduled station in the trigger frame is located.
  • the station information field of the trigger frame may also carry: information/fields used to indicate the bandwidth of the frequency domain segment where the common physical layer preamble of the uplink PPDU of the scheduling station in the trigger frame is located.
  • the bandwidth of the frequency domain segment where the common physical layer preamble of the uplink PPDU is located needs to be within the working bandwidth of the station that sends the uplink PPDU.
  • the information about the bandwidth of the frequency domain segment where the common physical layer preamble of the uplink PPDU is located may not be carried.
  • the bandwidth of the frequency domain segmentation may be 80 MHz, 160 MHz, 320 MHz, etc., and optionally, the bandwidth of the frequency domain segmentation further includes 240 MHz.
  • the segmentation in the embodiment of the present invention takes 80MHz as an example.
  • the content of the U-SIG field of the trigger frame/confirmation frame/uplink common physical layer preamble transmitted on different 80MHz is different.
  • the content of the U-SIG field of the transmitted trigger frame/confirmation frame/uplink common physical layer preamble is the same.
  • Fig. 6 is a simple schematic diagram of the structure of the user information field.
  • the user information field may include one or any combination of the following fields (not limited to the position of the field shown in Fig. 6): association identification field, resource unit allocation field, Uplink coding type field, uplink coding modulation strategy field, uplink dual-carrier modulation field, spatial stream allocation or random access resource unit information field, uplink received signal strength indicator field, reserved field, and multiple user information fields based on trigger frame type One or more of.
  • the bandwidth of the PPDU carrying the trigger frame is greater than the frequency domain segmentation granularity (for example, 80 MHz)
  • the physical layer preamble (including only the traditional preamble) of the PPDU is The transmission on the bandwidth of the PPDU generally takes 20 MHz as the unit, and the content of the physical layer preamble carried on each 20 MHz in the bandwidth of the PPDU is the same; however, the transmission of the trigger frame takes the frequency domain segmentation granularity as the unit.
  • the trigger frames carried on different frequency domain segments are independently transmitted in the frequency domain.
  • the content of the trigger frame transmitted on different frequency domain segments can be different. It is not excluded that the content of multiple trigger frames transmitted on 80MHz is the same.
  • One frequency domain segment can include one or more frequency domain segment granularities. .
  • the bandwidth of the PPDU at least partially falls within the working bandwidth range of the station.
  • the bandwidth of the PPDU includes the 20 MHz that the station listens to.
  • the trigger frame is sent in the Non-HT format.
  • the Non-HT format means that the physical layer preamble of the PPDU only includes the traditional preamble.
  • the traditional preamble is in the bandwidth of the PPDU.
  • the content of the physical layer preamble on each 20MHz is the same.
  • the content of the trigger frame transmitted on different 80MHz is different, but the content of the trigger frame transmitted on each 20MHz within 80MHz is the same.
  • the trigger frame sent every 20 MHz in the primary 80 MHz carries the site information fields of stations 1 and 6, while the trigger frame sent every 20 MHz in the secondary 80 MHz carries the site information fields of stations 11 to 14.
  • each 20MHz transmission trigger frame does not need to carry all the site information fields that need to be scheduled within the transmission bandwidth of the PPDU where the trigger frame is located at 160MHz, that is, the site information fields of site 1, site 6, site 11 to site 14, thereby saving overhead .
  • the site information fields carried in the trigger frame are different between different 80MHz, but because of the different trigger frames on different segments within the bandwidth, a complete uplink multi-user PPDU needs to be triggered, instead of multiple 80MHz subdivs.
  • Different uplink multi-user PPDUs of the segments so different trigger frames on different segments need to be aligned to facilitate the transmission of the complete uplink multi-user PPDU.
  • a complete uplink multi-user PPDU composed of uplink PPDUs sent by multiple scheduled stations needs to be aligned with the uplink PPDU transmission time, including start time alignment and end time alignment. Since different trigger frames on different segments need to be aligned, and the uplink PPDU is sent after a certain interval (fixed value, such as SIFS) of the trigger frame is received, the start time of the uplink PPDU is aligned.
  • a certain interval fixed value, such as SIFS
  • the site information field carried in the trigger frame can be different between different 80MHz (here 80MHz is the frequency domain segmentation example), which may cause the information part (not including the padding part) of the trigger frame transmitted on different 80MHz
  • the length is different.
  • the trigger frame transmitted on each 80 MHz is preferably the same length.
  • the method of padding can be used to align each trigger frame transmitted on 80 MHz.
  • Method 1 Include or set a dummy site information field at any position in a trigger frame with a short information part (part that substantially indicates scheduling information), so that the length of the trigger frame transmitted on every 80 MHz is the same.
  • the dummy site information field has the same length as the standard site information field, but special settings are used to avoid misreading by the receiving end as a site information field.
  • the value in the AID field in the dummy site information field is a special value
  • the value in the resource allocation indication field in the dummy site information field is a special value, such as 2047.
  • the value in the dummy site information field other than the above-mentioned special value can be any information, or it can be simplified to all 0 or all 1 bits.
  • Method 2 Add at the end of the trigger frame with a shorter information part: the first dummy site information field, and the following positions are filled with all 0s or all 1s or other padding information, so that the length of the trigger frame transmitted on every 80 MHz is the same.
  • Method 3 Add at the end of the trigger frame with the shorter information part (after the last scheduled station information field): a special AID identifier, such as 2047, and fill in all 0s or all 1s or other padding information in the subsequent positions, so that every The trigger frame length transmitted on 80MHz is the same.
  • a special AID identifier such as 2047
  • the frequency domain segmentation takes 80MHz as an example.
  • the value of the uplink PPDU length field contained in the trigger frame on different frequency domain segments is the same, which can make the uplink PPDU transmission time of each station the same.
  • the alignment of the trigger frame of the transmission results in the same start time of the uplink PPDU, so that the end time of the uplink PPDU transmission is aligned.
  • the value of the field of the number of uplink EHT-LTF symbols included in different trigger frames is the same, which can make the number of OFDM symbols of the EHT-LTF of the uplink PPDU of each station the same.
  • the value of the GI+EHT-LTF type field contained in different trigger frames is the same, so that the EHT-LTF single OFDM symbol length of the uplink PPDU transmitted by each station is the same (the OFDM symbol length here includes the GI length, and the following is the same. (I will not repeat it), the length of a single OFDM symbol contained in the data field of the uplink PPDU transmitted by each station can also be made the same.
  • the same pre-FEC filling factor field and the PE fuzzy field can make the physical layer filling length of the uplink PPDU of each site the same.
  • the GI length of the OFDM symbol in the data field can be the same.
  • the duration of the uplink PPDU, the EHT symbol field is aligned, and the end time of the uplink PPDU is aligned, which facilitates the AP to send an acknowledgement frame for the uplink PPDU.
  • the alignment here refers to the alignment of the start time and/or the end time.
  • End time alignment means that the end time is the same or the end time difference is within a specified interval range, and the specified interval range is stipulated by agreement or other means.
  • Start time alignment means that the start time is the same or the start time difference is within a specified interval. In the present invention, alignment is mentioned in other places, and its meaning is not repeated here.
  • the resource allocation indication field in the station information field of the trigger frame allows one resource block to be allocated to the station to transmit the uplink frame, and multiple resource blocks to be allocated to the station to transmit the uplink frame.
  • the 802.11ax protocol lists resource block indexes in 80MHz bandwidth, 40M bandwidth, and 20MHz bandwidth.
  • the resource block index forms a 7-bit table, where each resource block index corresponds to a resource block, including 26 sub-carrier resource blocks, 52 subcarrier resource blocks, 106 subcarrier resource blocks, 242 subcarrier resource blocks (the largest resource block in 20MHz bandwidth), 484 subcarrier resource blocks (the largest resource block in 40MHz bandwidth), 996 subcarrier resource blocks (the largest resource block in 80MHz bandwidth) Resource block).
  • the extra 1 bit indicates whether it is a resource block in the primary 80MHz or a resource block in the secondary 80MHz.
  • the 7-bit 80MHz resource allocation table is shown in the 802.11ax protocol, as shown in Table 4 below, where RU sequence numbers 0-36 are the 26 sub-carrier resource block indexes in 80 MHz, and 37-52 are the 52 sub-carrier resource block indexes in the 80 MHz bandwidth. No.
  • 53 ⁇ 60 are the 106 subcarrier resource block index numbers in the 80MHz bandwidth
  • 61 ⁇ 64 are the 242 subcarrier resource block index numbers in the 80MHz bandwidth
  • 65 ⁇ 66 are the 484 subcarrier resource block index numbers in the 80MHz bandwidth
  • 67 is the index number of the 996 sub-carrier resource block in the 80MHz bandwidth.
  • the description of the 26 subcarrier resource blocks RU1 ⁇ RU37, the description of the 52 subcarrier resource blocks RU1 ⁇ RU16, the description of the 106 subcarrier resource blocks RU1 ⁇ RU8, the description of the 242 subcarrier resource blocks RU1 ⁇ RU4, the description of the 484 subcarrier resources Block description RU1 ⁇ RU2, 996 subcarrier resource block description RU1 is recorded in the 802.11ax standard protocol, and will not be repeated here
  • this embodiment includes new resource blocks 2*996 subcarrier resource blocks, 3*996 subcarrier resource blocks, and 4*996 subcarrier resource blocks.
  • the 7-bit resource allocation table within 80 MHz can be added with the indexes of the above three resource blocks (referred to as the single resource block allocation table for short).
  • the following resource block indexes are specified, see Figure 7a, including 16 types of multiple small resource block allocations, including 52+26 resource blocks, 106+26 resource blocks, see the gray squares in the upper part of Figure 7a for specific locations, and 33 multiple large resource block allocations, a total of 49 multiple resource block allocations, including 484+242 resource blocks and 996+484 resource blocks , 2X996+484 resource blocks, 3X996+484 resource blocks and 3X996 resource blocks.
  • For specific locations refer to the gray squares in the lower part of Figure 7a.
  • the multiple resource block combinations shown in FIG. 7a and FIG. 7b may be indicated respectively.
  • 1 bit is used to indicate whether the resource block allocated by the station is a single resource block or multiple resource blocks, that is, a single resource block allocation table index or a multiple resource block allocation table index is used.
  • the same table may be used to include the contents in the above-mentioned single resource block allocation table and the above-mentioned multi-resource block allocation table.
  • the length of the bits required by the table depends on the number of resource block items that need to be indicated. ,
  • the index in the table can be based on 80MHz ( Figure 7a or Figure 7b), that is Including indexes of various resource blocks in the 80MHz range.
  • One resource block or multiple resource blocks allocated to the station by the resource allocation indication field in the station information field of the trigger frame needs to be within the working bandwidth of the station.
  • the station sends an uplink PPDU based on the received trigger frame.
  • the data part of the uplink PPDU is sent on the resource block allocated to the station.
  • the station can receive the trigger frame sent by the AP on the frequency domain segment where the listening channel is located. If a station information field in the trigger frame matches its own AID, the station will match its own AID according to the trigger frame.
  • the AID matches the resource block allocation information in the station information field and the common field to send uplink multi-user PPDUs.
  • the uplink information frame of the station such as a data frame, is transmitted on the resource block indicated by the resource allocation indication field in the station information field.
  • the uplink PPDU sent by the station includes a common physical layer preamble, a post physical layer preamble (including an EHT-STF field and an EHT-LTF field), and a data part field (including a MAC frame, such as a data frame).
  • the common physical layer preamble can be transmitted in units of 20 MHz within the bandwidth of the uplink PPDU, and the post physical layer preamble and data fields are transmitted on the resource block.
  • the AP receives the data part in the uplink PPDU sent by the station according to the allocated resources in the trigger frame.
  • the AP receives the uplink information frame sent by the station on the resource block indicated by the resource allocation indication field in the station information field in the trigger frame, and according to the MCS (modulation and coding scheme) in the station information field in the trigger frame Solution) and other parameters decode the uplink information frame sent by the station.
  • MCS modulation and coding scheme
  • Step 201 includes the uplink common physical layer preamble transmission method of the station, including the following specific examples:
  • Method 1 According to the information of the bandwidth of the frequency domain segment where the common physical layer preamble of the uplink PPDU carried in the trigger frame is located, the station can only transmit on each 20MHz channel in the frequency domain segment where the uplink PPDU scheduled for the station is located.
  • Uplink common physical layer preamble Specifically, if the uplink multi-user PPDU bandwidth is greater than the frequency domain segment where the station stops, the common physical layer preamble may not be sent on the 20MHz channel outside the frequency domain segment, which can reduce interference and increase frequency domain multiplexing opportunities, and improve Resource utilization efficiency. Among them, the frequency domain segment where the uplink PPDU scheduled for the site is located needs to be within the working bandwidth of the site.
  • the frequency domain segment where the uplink PPDU is indicated here and the frequency domain segment where the trigger frame is located can be different.
  • the frequency domain segment where the trigger frame is located may be larger than the working bandwidth of the station, but it needs to include station detection.
  • Listen to 20MHz The station receives the trigger frame in the frequency domain segment where the listening 20 MHz within its working bandwidth is located, and sends the uplink common physical layer preamble on each 20 MHz channel in the frequency domain segment where the uplink bandwidth indicated by the trigger frame is located.
  • the common physical layer preamble may include a traditional preamble (L-STF, L-LTF, L-SIG), a repetitive signaling field (RL-SIG), and a U-SIG field.
  • L-STF traditional preamble
  • L-LTF L-LTF
  • L-SIG repetitive signaling field
  • U-SIG U-SIG field
  • DATA#1 is transmitted by the station 11 on the corresponding resource block according to the instructions in the received trigger frame.
  • the layer preamble is transmitted according to the frequency domain transmission preamble indicated by the frequency domain segment bandwidth information/field of the common physical layer preamble of the uplink PPDU of the scheduling station in the station information field in the trigger frame, for example, the first 80MHz .
  • a copy transmission can be performed on each 20 MHz of the first 80 MHz (here, the copy transmission may include multiplying the rotation factor on the other 20 MHz that is not the first 20 MHz, which will not be repeated here).
  • the common physical layer preamble of station 6 is based on the uplink PPDU of the scheduling station in the station information field in the trigger frame.
  • the frequency domain transmission preamble indicated by the information/field of the bandwidth of the frequency domain segment where the common physical layer preamble is located for example, the main 160MHz.
  • the common physical layer preamble of each 20MHz transmission within 80MHz is a copy transmission.
  • the U-SIG in the common physical layer preamble transmitted in different 80 MHz may be different, for example, it carries different puncturing information, and the puncturing information indicates whether each 20 MHz in the 80 MHz is punctured.
  • the traditional preamble and repeated signaling fields are still copied and transmitted at 20 MHz.
  • the station can only use the frequency domain segment (80MHz as the resource block) where the allocated resource block (the resource block where the data part of the uplink PPDU is located) is located.
  • the uplink common physical layer preamble is sent in.
  • the station can only send the uplink public in multiple frequency domain segments (for example, 80MHz) where the allocated resource block is located (or interleaved overlap).
  • Physical layer preamble includes traditional preamble, repeated signaling field, or U-SIG field.
  • the transmitted uplink physical layer preamble includes multiple corresponding 80 MHz.
  • the station in Figure 3 the method for sending uplink multi-user PPDUs is shown in Figure 8.
  • the method includes: the station 11 transmits DATA#1 on the corresponding resource block according to the received trigger frame, and the station 11 transmits the common physical layer preamble on the first 80 MHz. Specifically, the copy transmission is performed on each 20 MHz of the first 80 MHz (the necessary rotation and other steps may be included, which will not be repeated here).
  • station 6 transmits DATA#2 on the resource block indicated in the received trigger frame, and station 6 transmits the common physical layer preamble on the main 80 MHz. Specifically, copy transmission is performed on each 20MHz of the main 80MHz.
  • the station may only send the uplink common physical layer preamble within one or more 20 MHz bandwidths where the allocated resource block is located. For example, it includes traditional preamble (L-STF, L-LTF, L-SIG), repetitive signaling field (RL-SIG), and U-SIG field. If the allocated resource block is greater than 20 MHz, the transmitted uplink physical layer preamble includes corresponding multiple 20 MHz. Optionally, the uplink physical layer preamble can also be sent on 20 MHz monitored by the station.
  • traditional preamble L-STF, L-LTF, L-SIG
  • RL-SIG repetitive signaling field
  • U-SIG field U-SIG field
  • the uplink physical layer preamble mentioned in the above manner is transmitted in units of 20 MHz.
  • the uplink public physical layer preamble transmitted by the station is copied and transmitted every 20 MHz within 80 MHz.
  • the uplink common physical layer preamble transmitted on different 80MHz can be different.
  • the puncturing information fields that can be carried in the U-SIG field of different uplink PPDUs may be different, and the puncturing information field may only indicate the four 20MHz channel puncturing modes within the 80 MHz where it is located.
  • the puncturing information field may only indicate the four 20MHz channel puncturing modes within the 80 MHz where it is located.
  • it can be indicated by a 3 or 4 bit bitmap.
  • 1110 indicates that the fourth 20 MHz from low frequency to high frequency within the 80 MHz is punched (or high frequency to low frequency), and there is no limitation in each embodiment.
  • the puncturing bitmap only needs to indicate whether the other three 20MHz within 80MHz are punctured. At this time, 3 bits are required. Further, if the site is listening The 20MHz channel is busy, and the station cannot send uplink PPDUs at this time.
  • the U-SIG field in the uplink common physical layer preamble sent by the station on multiple 80 MHz may be different. It is worth noting that in the uplink multi-user PPDU, the traditional preamble field in the uplink common physical layer preamble sent by each station is the same as the repeated signaling field RL-SIG.
  • the uplink physical layer preamble sent by the site can also include the EHT-STF (extremely high throughput-short training field) field and the EHT-LTF (extremely high throughput) field.
  • EHT-STF extreme high throughput-short training field
  • EHT-LTF extreme high throughput
  • the number of OFDM symbols contained in the EHT-LTF field is related to the number of transmitted streams.
  • the EHT-STF field, the EHT-LTF field, and the data field can be sent only on the resource block allocated to the station, and the resource block is indicated by the trigger frame.
  • This embodiment provides a method for the AP to send an acknowledgement frame.
  • the AP receives the uplink multi-user PPDU.
  • the 302. Generate and reply the confirmation information of the uplink multi-user PPDU based on the frequency domain segmentation. Specifically, in different frequency domain segments, different confirmation frames are returned respectively. For example, in the frequency domain segment, only an acknowledgment frame for the uplink PPDU of the station that stops in the frequency domain segment may be sent.
  • the confirmation frame includes Ack and Block Ack, and Block Ack includes compressed Block Ack and Multi-STA Block Ack.
  • the AP sends a Multi-STA Block Ack after receiving a TBPPDU (uplink PPDU).
  • the multi-user confirmation frame returned by the AP can be sent in the form of OFDMA (for example, EHT's MU PPDU), or in the form of Non-HT (the preamble is only the traditional preamble), and it can also use single-user PPDUs such as 11n, 11ac, 11ax, and 11be. Format to send.
  • OFDMA for example, EHT's MU PPDU
  • Non-HT the preamble is only the traditional preamble
  • single-user PPDUs such as 11n, 11ac, 11ax, and 11be. Format to send.
  • Example 1 The multi-user confirmation frame returned by the AP is in the form of OFDMA.
  • the bandwidth of the OFDMA confirmation frame PPDU is greater than 80MHz, the U-SIG field and EHT-SIG field in the downlink physical layer preamble of every 80MHz are different, 80MHz
  • the U-SIG field in the downlink physical layer preamble of each 20MHz downlink is the same, and the EHT-SIG field may be the same or different.
  • the [1 2 1 2] structure of the HE-SIG B of 802.11ax is used.
  • the traditional preamble of the OFDMA confirmation frame PPDU and the repeated signaling field RL-SIG are replicated and transmitted every 20 MHz within the PPDU bandwidth.
  • the AP may send an acknowledgement frame to the station on one or more resource blocks within 20 MHz where the uplink common physical layer preamble sent by the station is located. There may be multiple 20 MHz, depending on the number of 20 MHz transmitted by the common physical layer preamble of the uplink PPDU sent by the site.
  • the AP can also listen to the station at 20MHz or the station sends the uplink PPDU data field at the 80MHz frequency. Send an acknowledgement frame to the station on one or more resource blocks in the domain segment.
  • the MU PPDU of the EHT carries the information of the RU allocated to the confirmation frame, as shown in Figure 4.
  • the sub PPDUs sent by the station every 80 MHz need to be aligned, such as end time alignment.
  • Example 2 The multi-user confirmation frame returned by the AP is sent in the Non-HT format.
  • This implementation proposes that the multi-user confirmation information carried in each 80 MHz can be different, and the multi-user confirmation information transmitted every 20 MHz within 80 MHz is the same.
  • the first Non-HT confirmation frame such as Multi-STA Block Ack
  • the second Non-HT confirmation frame such as Multi-STA Block Ack
  • this embodiment further reduces the overhead of the downlink multi-user acknowledgement frame.
  • Non-HT format to send the confirmation frame includes one of the following two methods
  • Method 1 The AP sends an acknowledgment frame to the station on the frequency domain segmented channel where the 20MHz channel monitored by the station is located.
  • Frequency domain segmentation such as 80MHz, 160MHz, 240MHz or 320MHz
  • Method 2 The AP sends an acknowledgment frame to the station on the frequency domain segment where the station transmits the uplink data field or one or more channels in the 80MHz frequency.
  • Method 3 The AP sends an acknowledgment frame to the station on one or more 20MHz frequency channels where the station transmits the uplink data field.
  • Multi-STA Block Ack frame sent by the AP every 20MHz includes one or more block confirmation/confirmation messages, and each block confirmation/confirmation message is sent to one station
  • Multi-STA Block Ack frame includes: Frame control (Control frame), duration/ID (duration/ID), Receive Address (RA), Transmit Address (TA), Block Acknowledgement Control (BA Control) ), Block Acknowledgement/Acknowledgement Information (BA/ACK Info for short) and Frame Check Sequence (FCS for short).
  • BA/ACK Info includes: each association or service identification information (Per association identifier Traffic Identifier Information, referred to as Per AID TID Info), when BA/ACK Info is BA, BA/ACK Info also includes block confirmation start Sequence Control (Block Acknowledgement Starting Sequence Control) and Block Acknowledgement bitmap (Block Acknowledgement bitmap), in which the middle segment field of the Block Acknowledgement Start Sequence Control can be used to indicate the length of the Block Acknowledgement Bitmap. Furthermore, the first 11 bits of Per AID TID Info are set with the association identifier AID (association identifer) of the STA, which is used to indicate to which station the AP will send the confirmation frame. The 12th bit is a block acknowledgement/acknowledgement indication (BA/ACK Indication), and the 13th to 16th bits are the service identifier TID (traffic identifer), as shown in the following figure *.
  • Per association identifier Traffic Identifier Information referred to as Per AID TID Info
  • BA/ACK Info
  • the station confirmation information carried in the Non-HT Multi-STA confirmation frame sent by the AP in different frequency domain segments is different.
  • the length of the confirmation frame may be different on different frequency domain segments.
  • the confirmation frames on different frequency domain segments may only carry the confirmation information of the stations docked on the frequency domain segment.
  • Non-HT Multi-STA confirmation frame transmitted on each 20 MHz on the frequency domain segment generally needs to be aligned.
  • the AP can make the Non-HT Multi-STA confirmation frame alignment for each 20MHz transmission through the padding method, which can specifically include one of the following methods:
  • the Non-HT Multi-STA confirmation frame includes a dummy block confirmation/confirmation information field, which is used to fill the Non-HT Multi-STA confirmation frame to facilitate alignment.
  • the length of the dummy block confirmation/confirmation information field is the same as the length of the block confirmation/confirmation information field specified by the standard, but the AID field in the dummy block confirmation/confirmation information field is set to a special value, such as 2046.
  • the Non-HT Multi-STA confirmation frame provides a longer block confirmation/confirmation information field.
  • the middle segment field of the block confirmation start sequence control field indicates a longer block confirmation bitmap length.
  • the Non-HT Multi-STA confirmation frame includes repeated block confirmation/confirmation information of one or more stations. Among them, repeat the block confirmation/confirmation information of the last station one or more times to facilitate alignment of the Non-HT Multi-STA confirmation frame.
  • each frequency domain segment is fixed to a size, such as 80MHz, which can reduce the frequency domain. Indication of segmented information.
  • the uplink multi-user PPDU is composed of the uplink PPDU sent by one or more stations.
  • One or more stations send the physical information on the corresponding resource block indicated by the trigger frame sent by the AP.
  • Layer preamble and data fields, the uplink PPDU sent by the station can be understood as the sub-PPDU of the uplink multi-user PPDU. It can also be understood that the above various embodiments can be combined arbitrarily without technical conflicts.
  • the trigger frame is sent according to the second embodiment, and then the uplink PPDU is sent based on the trigger frame according to the third embodiment, and then the target is fed back according to the fourth embodiment.
  • Acknowledgement frame of the upstream PPDU may be replaced with other solutions, which will not be repeated here.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer-readable storage medium is executed by a computer, the function of any of the foregoing method embodiments is realized.
  • This application also provides a computer program product, which, when executed by a computer, realizes the functions of any of the foregoing method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • the corresponding relationships shown in the tables in this application can be configured or pre-defined.
  • the value of the information in each table is only an example, and can be configured to other values, which is not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, and so on.
  • the names of the parameters shown in the titles in the above tables may also be other names that can be understood by the communication device, and the values or expressions of the parameters may also be other values or expressions that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • the pre-definition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, curing, or pre-fired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线局域网中发送触发帧的方法,其中,AP生成物理层协议数据单元PPDU,所述PPDU包含一个或者多个触发帧,每个触发帧对应一个频域分段;每个触发帧至少用于调度停靠在对应的频域分段上的一个或多个站点;发送该PPDU中的一个或者多个触发帧,其中每个触发帧承载在对应的频域分段上

Description

无线通信传输方法及相关装置 技术领域
本申请涉及通信技术领域,尤其涉及一种无线通信方法及相关装置。
背景技术
WLAN(Wireless Local Area Network,无线局域网)从802.11a/g开始,历经802.11n、802.11ac,到现在正在讨论中的802.11ax和802.11be,其允许传输的带宽和空时流数分别如下:
表1 IEEE各个版本允许传输最大带宽和最大传输速率
Figure PCTCN2021091564-appb-000001
其中802.11n标准的名称又叫做HT(High Throughput,高吞吐率),802.11ac标准叫做VHT(Very High Throughput,非常高吞吐率),802.11ax(Wi-Fi 6)叫做HE(High Efficient,高效),802.11be(Wi-Fi 7)叫做EHT(Extremely High Throughput,极高吞吐率),而对于HT之前的标准,如802.11a/b/g等统称叫做Non-HT(非高吞吐率)。其中802.11b采用非OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)模式,因此没有列在表1里。
进一步的提高资源的利用的灵活性或者效率一直是本领域关注的问题。
发明内容
为了提高资源的利用的灵活性或者效率,本申请的一方面提供了一种无线局域网中发送触发帧的方法,其中,AP生成物理层协议数据单元PPDU,所述PPDU包含一个或者多个触发帧,每个触发帧对应一个频域分段;每个触发帧至少用于调度停靠在对应的频域分段上的一个或多个站点;发送该PPDU中的一个或者多个触发帧,其中每个触发帧承载在对应的频域分段上。较优的,每个触发帧仅用于调度停靠在对应的频域分段上的一个或多个站点。具体的,不同的触发帧中的内容可以不同,但是不同的触发帧的长度相同。
相应的另一方面,站点可以仅在侦听的20MHz所在的频域分段上接收触发帧;根据所述触发帧确定所述站点是否被调度。如果自己被调度,可以仅在触发帧中指示的所述站点的上行PPDU的带宽所在的频域分段内的各个20MHz信道上,或者,仅在 被分配的资源块所在的频域分段内的各个20MHz信道上,发送上行公共物理层前导码;当然,相应的,在分配给所述站点的资源块上发送上行PPDU的数据部分。
相应的又一方面,AP接收站点发送的上行多用户PPDU,可以基于频域分段回复所述上行多用户PPDU的确认信息。例如,在不同的频域分段,分别回复不同的确认帧。较优的,在频域分段内可以仅发送针对该频域分段内停靠的站点的上行PPDU的确认帧。具体的,不同的频域分段上的确认帧内容可以不同,但是长度相同。
相应的另一方面,站点发送上行PPDU后,可以仅在所述站点侦听的20MHz所在的频域分段上接收该上行PPDU的确认信息。
相应的其他方面,提供了可以作为接入点执行前述方法的通信装置,例如无线局域网中的接入点或者芯片等。
相应的其他方面,提供了可以作为站点执行前述方法的通信装置,例如无线局域网中的非AP站点或者芯片等。
前述各个方面通过采用频域分段的方式实现,可以提高资源的利用的灵活性或者效率。
附图说明
图1A是本申请实施例提供的一种网络结构的示意图;
图1B是本申请实施例提供的一种通信装置的结构示意图;
图1C是本申请实施例提供的一种芯片的结构示意图;
图2是802.11系统中信道分配的一个例子的示意图;
图3是一个实施方式中频域分段和停靠的站点的简单示意图;
图4是一个实施方式中上行传输的一个流程示意图和帧结构简单示意图(AP发送触发帧,站点基于触发帧发送上行多用户PPDU,AP发送该上行多用户PPDU的确认帧);
图5是一个实施方式中触发帧的结构的简单示意图;
图6是一个实施方式中触发帧中用户信息字段的结构的简单示意图;
图7a-图7b是一个实施方式中资源块的位置的简单示意图;
图8是一个实施方式中上行多用户PPDU的帧结构的简单示意图;
图9是一个实施方式中80MHz带宽下的6种打孔模式的简单示意图;
图10是一个实施方式中确认帧的结构的简单示意图。
具体实施方式
下面结合附图对本申请具体实施例作进一步的详细描述。
以图1A为例阐述本申请所述的数据传输方法可适用的网络结构。图1A是本申请实施例提供的网络结构的示意图,该网络结构可包括一个或多个接入点(access point,AP)类的站点和一个或多个非接入点类的站点(none access point station,non-AP STA)。为便于描述,本文将接入点类型的站点称为接入点(AP),非接入点类的站点称为站点(STA)。AP例如为图1A中的AP1和AP2,STA例如为图1A中的STA1、STA2和STA3。
其中,接入点可以为终端设备(如手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。接入点相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体的,接入点可以是带有无线保真(wireless-fidelity,WiFi)芯片的终端设备(如手机)或者网络设备(如路由器)。接入点可以为支持802.11be制式的设备。接入点也可以为支持802.11be、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等802.11家族的多种无线局域网(wireless local area networks,WLAN)制式的设备。本申请中的接入点可以是高效(high efficient,HE)AP或极高吞吐量(extremely high throughput,EHT)AP,还可以是适用未来某代WiFi标准的接入点。
接入点可包括处理器和收发器,处理器用于对接入点的动作进行控制管理,收发器用于接收或发送信息。
站点可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户。例如,站点可以为支持WiFi通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持WiFi通讯功能的机顶盒、支持WiFi通讯功能的智能电视、支持WiFi通讯功能的智能可穿戴设备、支持WiFi通讯功能的车载通信设备和支持WiFi通讯功能的计算机等等。可选地,站点可以支持802.11be制式。站点也可以支持802.11be、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等802.11家族的多种无线局域网(wireless local area networks,WLAN)制式。
站点可包括处理器和收发器,处理器用于对接入点的动作进行控制管理,收发器用于接收或发送信息。
本申请中的接入点可以是高效(high efficient,HE)STA或极高吞吐量(extramely high throughput,EHT)STA,还可以是适用未来某代WiFi标准的STA。
例如,接入点和站点可以是应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。
本申请实施例中的所涉及的接入点和站点又可以统称为通信装置,其可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来实现。
图1B为本申请实施例提供的一种通信装置的结构示意图。如图1B所示,该通信装置200可包括:处理器201、收发器205,可选的还包括存储器202。
所述收发器205可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器205可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
存储器202中可存储计算机程序或软件代码或指令204,该计算机程序或软件代码或指令204还可称为固件。处理器201可通过运行其中的计算机程序或软件代码 或指令203,或通过调用存储器202中存储的计算机程序或软件代码或指令204,对MAC层和PHY层进行控制,以实现本申请下述各实施例提供的数据传输方法。其中,处理器201可以为中央处理器(central processing unit,CPU),存储器302例如可以为只读存储器(read-only memory,ROM),或为随机存取存储器(random access memory,RAM)。
本申请中描述的处理器201和收发器205可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。
上述通信装置200还可以包括天线206,该通信装置200所包括的各模块仅为示例说明,本申请不对此进行限制。
如前所述,以上实施例描述中的通信装置200可以是接入点或者站点,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图1B的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置的实现形式可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;(3)可嵌入在其他设备内的模块;(4)接收机、智能终端、无线设备、手持机、移动单元、车载设备、云设备、人工智能设备等等;(5)其他等等。
对于通信装置的实现形式是芯片或芯片系统的情况,可参见图1C所示的芯片的结构示意图。图1C所示的芯片包括处理器301和接口302。其中,处理器301的数量可以是一个或多个,接口302的数量可以是多个。可选的,该芯片或芯片系统可以包括存储器303。
本申请实施例并且不限制权利要求书的保护范围和适用性。本领域技术人员可以在不脱离本申请实施例范围的情况下对本申请涉及的元件的功能和部署进行适应性更改,或酌情省略、替代或添加各种过程或组件。
实施例一
对于无线局域网中的信道分配,802.11的信道分配的一个例子如图2所示,为带宽为160MHz时的信道分布情况。
整个无线局域网的信道被分为主20MHz信道(或简称主信道,Primary 20MHz,简称P20),从20MHz信道(Secondary 20MHz,简称S20),从40MHz信道(简称S40),从80MHz(简称S80)信道。另外相对应的存在主40MHz信道(简称P40)和主80MHz信道(简称P80)。随着带宽增大,数据传输的数据速率也随之增加(参考表1)。因此在下一代标准,会考虑大于160MHz的更大带宽(如240MHz,320MHz)。本申请各个实施方式方案所针对的场景就是IEEE 802.11be或者其他标准的更大带宽场景。
在802.11ax之前,只支持非打孔模式的PPDU(PHY Protocol Data Unit,物理层协议数据单元)传输。换言之,可以进行20MHz传输的条件是P20空闲;可以进 行40Mhz传输的条件是P20和S20空闲;可以进行80MHz传输的条件是P20、S20和S40空闲;可以进行160Mhz传输的条件是P20、S20、S40和S80空闲。采用更大带宽传输的条件是按照P20,S20,S40,S80的顺序去检测信道,该带宽内的所有信道都空闲可用。若某些信道存在干扰或者雷达信号等,则无法采用更大的带宽。
在802.11ax中,引入了前导码打孔的传输方法,允许在部分20MHz信道不传输前导码(以及后续数据)的情况下,依然传输PPDU,该方法增加了部分信道存在干扰情况下的信道的利用率。802.11ax定义了以下PPDU的前导码非打孔和打孔的带宽模式:
表1a带宽指示字段
Figure PCTCN2021091564-appb-000002
IEEE 802.11ax标准修订允许接入点(Access Point,AP)和非接入点站点(non-AP Station,non-AP STA,简称STA)通过目标唤醒时间(Target Wakeup Time,TWT)协商的机制来使得STA在某一个服务阶段(Service Period)临时切换到另一个20MHz或者80MHz信道上进行侦听并得到AP的服务,称为子信道选择传输(Subchannel Selective Transmission,SST)。IEEE 802.11be也可能会引入SST机制,让一个或多个STA驻留(park)在不同的信道上。更进一步的,在下行多用户传输中,802.11be拟引入多分片前导码传输机制,在下行多用户传输中,比如OFDMA,每80MHz传输的EHT物理层前导码(包括U-SIG(universal signaling)字段和EHT(extremely high throughput)字段)内容不一样。在采用大带宽(如160Mhz,240MHz和320MHz)传输时,以每80MHz为单位使用不同的物理层前导码U-SIG和EHT-SIG,从而把总的物理层信令字段分散到每80MHz上传输,从而节省前导码传输时间,也可以理解为减少开销。另外,驻留在某一个80MHz的STA只需接收该80MHz对应的U-SIG和EHT-SIG便可以获取资源分配信息,比如用于OFDMA传输的资源分配。
值得注意的是,每个EHT PPDU的物理层前导码还包括传统前导码(传统短训练字段(L-STF,legacy short training field),传统长训练字段(L-LTF,legacy long training field)以及传统信令字段(L-SIG,legacy signaling field)) 以及重复的信令字段RL-SIG字段,都位于EHT前导码之前。传统前导码字段和重复的信令字段都是在PPDU带宽内的每20MHz进行复制传输(不考虑应用在每20MHz上的旋转因子)。
针对上行多用户传输,比如上行OFDMA,是否进行灵活的频率多分片传输,以及在大带宽PPDU(比如320MHz)内如何支持小带宽站点(比如80MHz站点)进行传输等等问题都未被考虑。
实施例一
在本申请实施例一中,无线局域网中用于传输上行PPDU的信道带宽也分为多个频域分片,每个频域分片停靠有若干个站点。具体的,上述停靠是指系统确定或者已知的一种对应关系,可以是半静态的,也就是说频域分片与停靠的一个或者多个站点的对应关系是配置好的,在一定时间内保持不变;也可以是动态的,AP根据一定的规则进行动态调整。更具体的例子中,频域分片可以由于一个或多个频域分片基本单位组成,其中频域分片可以由协议规定,或者AP指定。例如,频域分片为80MHz,还可以是其他大小,例如160MHz,240MHz或320MHz等。后续各个实施例不涉及配置停靠关系的具体过程,因而不再赘述。本申请实施例中,频域分片还可以称为频域分段(frequency segment)等。应理解,本申请所述的站点停靠(parking)在某个频域分片,也可以称为站点驻留在某个频域分片,或者说位于或属于某个频域分片中。站点或AP发送的PPDU由于一个或多个频段分段上子PPDU组成,其中各个频段分段大小可以相同,也可以不同。
在关联阶段或者关联后的某个阶段,站点可以向AP汇报其侦听的信道的信息(例如哪一个20MHz),以及站点的工作带宽(或者说当前的工作带宽范围,是站点当前能收发信息的带宽),以及站点的支持带宽。站点停靠的频域分段为:包括该站点侦听的20MHz信道的所在的频域分段。站点的侦听的信道可以是工作带宽中的任意一个或者多个信道,也可以是从AP指定的侦听信道集合中选择的一个或多个信道。站点的支持带宽一般体现该站点的接收能力,是站点能支持的通信的最大带宽。其中,该站点的工作带宽一般小于或者等于该站点的支持带宽,站点侦听信道所在的频域分段一般小于或者等于该站点的工作带宽。
参考图3,为一个频域分段和停靠的站点的简单示意图。其中以频域分段(或者频域分段粒度/最小频域分段)为80MHz为例,每个20MHz的序号从下往上数(序号可以依照从低频往高频增加,也可以是从高频到低频增加,以下都以从低频往高频为例,其中20MHz可以被打孔,不再赘述)。图3的例子中,站点1~站点5侦听第一个20MHz,工作带宽是主80MHz;站点6~站点10侦听第一个20MHz,工作带宽是主160MHz;站点11~站点20侦听第五个20MHz,工作带宽为第一次80MHz。站点停靠的频域分段为该站点侦听的20MHz信道的所在的频域分段,该频域分段大小或者范围可以是由AP发送PPDU时选择的频域分段决定的。比如发送端AP发送的PPDU带宽是320MHz,有4个频域分段,分别为主80MHz,第一次80MHz,第二次80MHz和第三次80MHz,此时站点1~站点5停靠的频域分段为主80MHz,站点6~站点10停靠 的频域分段为主80MHz,站点11~站点20停靠的频域分段为第一次80MHz。再比如,发送端发送的PPDU带宽是320MHz,有3个频域分段,分别为主160MHz,第二次80MHz和第三次80MHz,此时站点1~站点5停靠的频域分段为主160MHz,站点6~站点10停靠的频域分段为主160MHz,站点11~站点20停靠的频域分段为主160MHz。可见频域分段是PPDU带宽上的在频域的一个划分方法,一个或者多个相邻的频域分段组成完整的PPDU的带宽,当然该频域分段或者带宽中可以有打孔的20MHz。
AP确定的频域分段可以包括不同大小的多个频域分段或者相同大小的多个频域分段,或者不做限定。当然,在一种简化的方法中,标准可以规定频域分段的粒度,或者说最小的频域分段,默认为PPDU的带宽的频域分段的方式是:PPDU的带宽划分为各个最小的频域分段,其中最小的频域分段大小比如为80MHz。可以理解的是,AP在确定频域分段时,可以考虑各个关联的站点的侦听信道的信息,还可以考虑站点的工作带宽的信息,以便于让确定的频域分段尽量满足业务需求。相应的,站点可以根据业务的需要尽量灵活的调整自己侦听的信道,以及灵活的调整自己的工作带宽,以便于节省能源或者提高传输效率。
一个例子中,提供一种获得/更新站点侦听的信道的方法:
具体的,可以是由AP通过管理帧或者其他帧发送推荐的侦听信道集合,站点根据接收到的侦听信道集合反馈选择的侦听信道。其中,侦听信道集合携带于AP发送的管理帧,比如信标帧,由于AP在发送PPDU时,需要至少在站点选择的侦听信道上发送信息,因而侦听信道不能被打孔。当然,也可以采用协商的方式,例如:站点发送请求帧,所述请求帧携带选择的侦听的信道;AP回复响应帧,该响应帧携带状态,该状态包括拒绝,接收等。如果是拒绝,还可以携带一个或多个推荐的侦听信道。另一个例子中,提供一种通知/更新站点的工作带宽的方法,包括发送站点的工作带宽指示。具体的,站点的可能的工作带宽包括20MHz,80MHz,160MHz,240MHz和320MHz中的一个或多个,站点的工作带宽可以采用比特位图或者索引指示,具体如下:
方式一:比特位图大小固定,比特位图中的每比特对应一个20MHz。比如最大带宽包含的20MHz的个数,BSS最大带宽为320MHz,此时比特位图大小16比特。比特位图中的每个比特指示该20MHz是否在工作带宽范围内,比如第一值(例如1)指示对应20MHz在工作带宽范围内,第二值(例如0)指示对应20MHz不在工作带宽范围内。比如比特位图1111 0000 0000 0000指示站点的工作带宽为第一个80MHz;再比如比特位图1000 0000 0000 0000指示工作带宽为第一个20MHz。另外,比特位图大小也可以随BSS带宽变化,比如BSS带宽为80MHz,此时比特位图的个数为4比特;再比如BSS带宽为160MHz,此时比特位图的个数为8比特。
方式二:比特位图大小固定,比特位图中的每比特对应一个80MHz。比如EHTPPDU最大支持的带宽为320MHz,此时比特位图长度为4比特。比特位图中的每个比特指示对应的80MHz是否在工作带宽范围内。比如第一值(例如1)指示对应80MHz在工作带宽范围内,第二值(例如0)指示对应80MHz不在工作带宽范围内,。比如,比特位图1000指示站点的工作带宽为第一个80MHz;又例如比特位图1100指示站点的工作带宽为第一个160MHz;又例如一种特殊的比特位图0000指示站点的工作 带宽为侦听的20MHz。另外,比特位图大小也可以随BSS带宽变化,比如BSS带宽为80MHz,此时,比特位图的个数为1比特;再比如BSS带宽为160MHz,此时比特位图的个数为2比特。
方式三:采用索引指示站点的工作带宽。
参考表2,可以通过3或4比特指示站点的工作带宽。所示站点的工作带宽包括:
20MHz,主80MHz,第一次80MHz,第二次80MHz,第三次80MHz,主160MHz,次160MHz,主240MHz,或者次240MHz,320MHz等中的一个或多个。其中3或4比特中的8~16个值中的部分或全部分别指示上述工作带宽的一个或多个,其余的值可以预留。
表2为站点的的工作带宽的指示
带宽字段 含义
0 20MHz
1 主80MHz
2 第一次80MHz
3 第二次80MHz
4 第三次80MHz
5 主160MHz
6 次160MHz
7 主240MHz
8 次240MHz
9 320MHz
STA侦听的20MHz信道可以位于BSS带宽内的任何一个信道,可以提高AP端发送上行调度时的触发帧的传输效率,即各个频域分段上的传输触发帧携带的内容可以不同。另外,把不同工作带宽的STA放在不同的频域分段上,比如工作带宽为80MHz的站点,在整个带宽的频率资源上,可以更平均的分配上行传输资源给不同的STA,防止所有工作带宽为80MHz的STA都驻扎在主80MHz上,造成主80MHz上的频率资源不够,而其他80MHz上的频率资源浪费。
通常情况下的上行传输,所有的STA都驻留在P20上去侦听并接收用于上行传输的调度信息(例如触发帧)。由于发送端发送数据的规则是:P20可以传输的时候,再进一步分析其他信道是否可以传输,举例,若触发帧通常采用Non-HT格式,其物理层前导码需要在每20MHz传输相同的内容,触发帧本身也需要在每20MHz传输相同的内容。在本实施例中,根据信道情况,功率节省或者其他因素,站点可以变更侦听信道和/或工作带宽,并把该变更告知AP。和站点只驻留在P20上去侦听并接收调度信息的方案相比,基于上述灵活的调整侦听信道的方案或者称驻留方案,可以使得在不同频域分段(比如80MHz)能发送不同的触发帧,也就是把总的触发帧的内容分到不同的80MHz上,从而使得触发帧开销减少。
当然上述灵活的驻留方法不限于应用在上行调度中,也可以应用在下行传输中,该下行传输的方案在本申请中不赘述。
实施例二
参考图4,提供了一种触发帧的发送或者接收方法,该方法基于频域分段,或者称为在频域分段上进行上行调度的方法。
101.AP生成PPDU,该PPDU包含一个或者多个触发帧,每个触发帧对应一个频域分段;每个触发帧至少用于调度停靠在对应的频域分段上的一个或多个站点,以便于站点发送上行PPDU,或者说每个触发帧至少用于位于该触发帧所在的频域分段的一个或多个站点传输上行PPDU(其中位于该触发帧所在的频域分段的一个或多个站点还可以理为这些站点的侦听信道位于该触发帧所在的频域分段内)。其中,站点停靠的频域分段为该站点侦听的20MHz信道的所在的频域分段,该频域分段大小或者范围可以是由AP发送的PPDU时选择的频域分段决定的。其中AP会根据要调度的站点(一个或多个)的侦听的信道等因素决定发送的PPDU包括的一个或多个频域分段以及频域分段的大小,可选的,AP还可以根据要调度的站点(一个或多个)的工作带宽等因素决定发送的PPDU包括的一个或多个频域分段以及频域分段的大小,参见实施例一,此处不赘述。
具体而言,AP获得各个频域分段上停靠的站点的信息,结合频域资源以及获得的站点的上行业务需求,生成一个或者多个触发帧,其中触发帧中包含调度的站点的信息以及该站点被分配的频域资源。
102.AP发送该PPDU中的一个或者多个触发帧,每个触发帧承载在对应的频域分段上。具体方式:对应频域分段上的每个20MHz上分别传输该触发帧,另一种方式是整个对应的频域分段上或者说该频域分段内的资源块上,比如最大资源块,传输该触发帧。
103.站点根据接收到的触发帧,发送上行PPDU。一般的,该上行PPDU可以是上行多个用户PPDU,当然,不排除特殊场景下,采用上述方法仅调度了一个站点进行上行传输。
其中,上述103中发送上行多用户PPDU的发送方法可以采用:MU-MIMO技术和/或OFMDA技术,该上行多用户PPDU简称为基于触发的PPDU(trigger based PPDU,TB PPDU)。
在101-103的实施方式中不同的触发帧的内容可以不同,这样,全体触发帧的内容可以分散在不同的频域分段上,从而能减少触发帧发送资源的浪费。进一步的,较优的实施方式中,触发帧可以仅用于调度停靠在对应的频域分段上的一个或多个站点的调度信息,也就是说,不包括停靠在其他频域分段上的任意一个站点的调度信息。这样,能最大程度的分散全体触发帧的内容,最大程度的减少触发帧发送资源的浪费。
其中,前述101中生成的触发帧可以承载于采用OFDMA格式的PPDU(可以称为EHT MU PPDU或者其他名称),也可以承载于Non HT PPDU(即PPDU的前导码仅包括传统前导码),或者使用符合11n,11ac,11ax或者11be等标准的单用户PPDU格式。前述触发帧还可以和其他MAC帧,比如数据帧或者控制帧聚合在一起传输。
一个例子中的触发帧的结构如图5所示,可以包括下述字段之一或者任意组合(不限于图5所示的字段的位置):帧控制字段、时长字段、接收地址字段、发送 地址字段、公共信息字段、多个用户信息字段、比特填充字段或者帧校验序列字段。
其中,公共信息字段用于指示上行多用户传输的公共参数,用户信息字段用于指示单个站点传输上行PPDU的参数,比如包括资源分配字段指示的资源块。例如,公共信息字段包括下述字段之一或者任意组合(不限于图5所示的字段的位置):触发帧类型字段(Trigger Type),上行长度字段(UL Length)、更多的帧触发字段(More TF)、需要载波侦听字段(CS Required),上行带宽字段(UL BW),GI(guard interval,保护间隔)和EHT-LTF类型字段,Pre-FEC填充因子,PE模糊度和发送功率(AP TX Power)等等参数。
其中,上行长度字段(UL bandwidth):用于指示触发帧调度的上行TB PPDU的传统前导码中的L-SIG字段中的长度。
更多的帧触发字段(More TF):用于指示是否还有触发帧会发送。
GI(guard interval,保护间隔)和EHT-LTF类型字段:用于指示GI的长度和EHT-LTF的类型。
Pre-FEC填充因子字段和PE模糊度字段:用于联合指示EHT PPDU的物理层填充长度,包括post-FEC padding长度和PE字段长度(FEC:Forward Error Correction,前向纠错码,PE:packet extension,包拓展)。
发送功率字段:用于指示站点发送的功率,以dBm为单位,其中功率的值一般归一化到20MHz频率。
可选的,触发帧的公共字段还可以包括基于触发类型的公共信息字段。比如在基本的触发帧类型中,该基于触发类型的公共信息字段包括MPDU间距因子,TID(traffic identifier)聚合限制,喜好的AC(access category)等字段。
可选地,触发帧的公共字段还可以包括:上行空时块编码或者上行空间复用等信息。
较优的,承载触发帧的PPDU带宽中不同的触发帧还可以携带:用于指示该PPDU带宽的打孔信息字段。比如,打孔比特位图,用于指示带宽内哪些20MHz被打孔。被打孔是指在该PPDU中相应的20MHz上没传输物理层前导码以及数据字段(包括MAC帧)等内容。打孔比特位图的比特数可以固定,比如比特数等与PPDU最大带宽包括的20MHz的个数,例如320MHz包括16个20MHz。打孔比特位图的比特数随PPDU带宽变化,比如PPDU带宽为80MHz时,打孔比特位图的比特数为4个;比如PPDU带宽为160MHz时,打孔比特位图的比特数为8个。相应的,站点接收到该触发帧后,在发送上行PPDU时,可以按照该PPDU带宽的打孔信息字段对在该站点对应的频域分段内传输物理层前导码里的U-SIG,该U-SIG中包括该频域分段内的打孔信息。
另一种方式中,打孔信息字段还可以指示可能打孔的模式,通过表格3中索引值指示一种打孔模式,可能的打孔模式如下表格
表3打孔模式
Figure PCTCN2021091564-appb-000003
Figure PCTCN2021091564-appb-000004
Figure PCTCN2021091564-appb-000005
由于打孔带宽模式字段指示的打孔模式有限,上述表格3包括的模式只需要6比特指示,如果后续包括更多的打孔模式,打孔带宽模式字段的长度也还可以是7比特,8比特,9比特或者其他比特数。进一步可选的,打孔带宽模式字段指示的多个打孔模式随着带宽变化,该带宽由触发帧中的带宽字段指示,具体来讲,当带宽为20MHz或者40MHz,没有打孔模式,此时打孔带宽模式字段可以为0比特;当带宽为80MHz,打孔带宽模式字段指示的模式包括模式编号1~4,需要2比特;当带宽为160MHz,打孔带宽模式字段指示的模式包括模式编号5~16,需要4比特;当带宽为240MHz时,打孔带宽模式字段指示的模式包括模式编号17~25,需要4比特;当带宽为320MHz时,打孔带宽模式字段指示的模式包括模式编号26~37,需要4比特;优选的方式是,打孔带宽模式字段指示的模式随着带宽变化,但长度不变,在上述例子中,此时打孔带宽模式字段的长度为上述所有带宽需要比特数最大值,即4,比如当带宽为80MHz时,打孔带宽模式字段指示的模式包括模式编号1~4,4比特长度的打孔带宽模式字段值0~3分别指示模式编号1~4,其他值为保留值。
另一种方式中:打孔信息字段还可以携带该PPDU带宽内的部分打孔信息,根据带宽的大小包括2,3或者4比特以80MHz为粒度的比特位图(或者固定为4比特的80MHz比特位图),置第一值(1)表示包括对应80MHz的打孔信息,置第二值(0)表示不包括对应80MHz的打孔信息。每80MHz的打孔信息如实施例三中的U-SIG字段中的打孔信息指示方法,这里不再赘述。打孔信息字段携带的部分打孔信息需包括该触发帧调度的站点的发送上行物理层前导码所占用的频率带宽的打孔信息。
可选的,触发帧的公共字段还可以携带:用于指示该触发帧所在的频域分段的带宽的信息/字段。
一个例子中,触发帧不包括用于指示该触发帧所在的频域分段的信息/字段,站点仅根据(默认的)侦听信道所在的频域分段(例如标准规定的最小的频域分段或者标准规定的频域分段粒度,比如80MHz)接收触发帧。较优的,在触发帧还可以包括:用于指示所在的频域分段的带宽的信息/字段。站点可以根据指示的频域分段接收触发帧,例如,合并频域分段内的各个触发帧,以便于增加鲁棒性。此时,可以省略前述关于整个上行多用户PPDU的UL bandwidth的指示。当然,触发帧也可以包括UL bandwidth和所述用于指示该触发帧中调度站点的上行PPDU所在的频域分段的带宽的信息/字段。
较优的,触发帧的站点信息字段还可以携带:用于指示该触发帧中调度站点的上行PPDU的公共物理层前导码所在的频域分段的带宽的信息/字段。当然,该上行PPDU的公共物理层前导码所在的频域分段的带宽需要在发送该上行PPDU的站点的工作带宽内。可以替换的,可以不携带上行PPDU的公共物理层前导码所在的频域分段的带宽的信息。
其中,频域分段的带宽可以为80MHz,160MHz,320MHz等,可选地,频域分段的带宽还包括240MHz。本发明的实施例中的分段是以80MHz为例,比如提到不同的 80MHz上传输的触发帧/确认帧/上行公共物理层前导码的U-SIG字段的内容不同,80MHz内每20MHz上传输的触发帧/确认帧/上行公共物理层前导码的U-SIG字段的内容相同。同一个PPDU中还可以存在不同大小的频域分段。比如对于320MHz的PPDU,包括一个160MHz的分段,以及2个80MHz的分段。
如图6所示为用户信息字段的结构的简单示意图,用户信息字段可包括下述字段之一或者任意组合(不限于图6所示的字段的位置):关联标识字段、资源单元分配字段、上行编码类型字段、上行编码调制策略字段、上行双载波调制字段,空间流分配或随机接入资源单元信息字段、上行接收信号强度指示字段、保留字段,以及基于触发帧类型的多个用户信息字段中的一个或多个。
具体的,在承载触发帧的PPDU的带宽大于频域分段粒度(例如80MHz)的情况下,以Non-HT格式的PPDU为例,该PPDU的物理层前导码(仅包括传统前导码)在PPDU的带宽上传输,一般的以20MHz为单位,该PPDU的带宽中的每个20MHz上承载的物理层前导码的内容相同;然而,该触发帧的传输以频域分段粒度为单位。也就是说,不同的频域分段上承载的触发帧是相互独立的在频域上分别传输的。也就是说,不同的频域分段上传输的触发帧内容可以不同,这里不排除多个80MHz上传输的触发帧内容一样,其中一个频域分段可以包括一个或多个频域分段粒度。
PPDU的带宽至少部分落入站点的工作带宽范围,例如PPDU的带宽包含站点侦听的20MHz。参考图5或者图6所示,一个具体的例子中,触发帧以Non-HT格式发送,Non-HT格式是指PPDU的物理层前导码仅包括传统前导码,该传统前导码在PPDU的带宽上每20MHz的传输,各个20MHz上的物理层前导码的内容相同。其中,不同的80MHz上传输的触发帧的内容不一样,但80MHz内的每个20MHz上传输的触发帧内容相同。
比如说,在主80MHz内每20MHz发送的触发帧携带的站点字段都是站点1和站点6的站点信息字段,而次80MHz内每20MHz发送的触发帧携带站点11至站点14的站点信息字段。如此,每个20MHz传输的触发帧不需要携带触发帧所在的PPDU的传输带宽160MHz内所有需要调度的站点信息字段,即站点1,站点6,站点11至站点14的站点信息字段,从而节省开销。
需要说明的是,不同80MHz之间触发帧携带的站点信息字段不同,但由于带宽内的在不同的分段上的不同触发帧需要触发一个完整的上行的多用户PPDU,而不是多个80MHz分段的不同的上行多用户PPDU,所以各个不同的分段上的不同触发帧需要对齐,以方便该完整的上行的多用户PPDU的发送。也就是说,多个被调度的站点各自发送的上行PPDU构成的完整上行的多用户PPDU,需要对齐上行PPDU发送时间,包括开始时间对齐和结束时间对齐。由于各个不同的分段上的不同触发帧需要对齐,以及上行PPDU是在收到触发帧的一定间隔(固定值,例如SIFS)后发送,从而使得上行PPDU的开始时间对齐。
具体例子中,不同的80MHz(这里以80MHz为频域分段举例)之间触发帧携带的站点信息字段可以不同,可能导致不同的80MHz上传输的触发帧的信息部分(不含padding部分)的长度不同,然而,本实施例中,每个80MHz上传输的触发帧最好长度相同。具体的,可以通过填充(padding)的方法对齐每个80MHz上传输的触发 帧。
提供了如下通过填充对齐触发帧的实施方式:
方法1.在信息部分较短(实质指示调度信息的部分)的触发帧中任意的位置包括或者设置哑(dummy)站点信息字段,使得每80MHz上传输的触发帧长度相同。具体的,dummy站点信息字段与标准规定的站点信息字段的长度相同,但是通过特殊的设置避免被接收端误读为站点信息字段。例如dummy站点信息字段中在AID字段中的值为特殊值,或者dummy站点信息字段中在资源分配指示字段上的值为特殊值,比如2047。dummy站点信息字段中除上述特殊值之外的值可以是任意的信息,也可以简化为全0或者全1的比特。采用本对齐方式,可以dummy站点信息字段可以放在真实的站点信息字段之间,提高对齐时的灵活性。
方法2.在信息部分较短的触发帧的尾部增加:第一个dummy站点信息字段,之后的位置填充全0或者全1或者其他填充信息,使得每80MHz上传输的触发帧长度相同。
方法3.在信息部分较短的触发帧的尾部增加(最后一个调度的站点信息字段之后):特殊的AID标识符,比如2047,之后的位置填充全0或者全1或者其他填充信息,使得每80MHz上传输的触发帧长度相同。
4.在信息部分较短的触发帧中包括MPDU分隔符,使得每80MHz上传输的触发帧长度相同。
在具体的例子中,PPDU的带宽内不同的触发帧中的公共字段里携带的GI+EHT-LTF类型,PE相关参数(包括Pre-FEC填充因子字段和PE模糊字段),EHT-LTF符号数目或者上行长度等参数字段的值分别需要相同,从而使得在各个频域分段上传输的上行OFDMA PPDU对齐,包括结束时间对齐,EHT-LTF字段对齐等。
其中,频域分段以80MHz为例,不同的频域分段上的触发帧中包含的上行PPDU长度字段的值相同,可以使得各个站点的上行PPDU传输的时间相同,再由于不同分段上传输的触发帧对齐导致上行PPDU开始时间相同,从而使得上行PPDU传输的结束时间对齐。不同的触发帧中包含的上行EHT-LTF符号数目字段的值相同,可以使得各个站点的上行PPDU的EHT-LTF的OFDM符号个数相同。不同的触发帧中包含的GI+EHT-LTF类型字段的值相同,可以使得各个站点传输的上行PPDU的EHT-LTF的单个OFDM符号长度相同(这里的OFDM符号长度包括GI的长度,以下一样,不在赘述),也可以使得各个站点传输的上行PPDU的数据字段包含的单个OFDM符号的长度相同。Pre-FEC填充因子字段和PE模糊字段的相同可以使得各个站点的上行PPDU的物理层填充长度相同。由于协议规定不带GI的OFDM长度的为12.8us,以及GI+EHT-LTF类型字段相同可以使得数据字段的OFDM符号的GI长度相同。采用上述方案,上行PPDU的持续时间,EHT符号字段对齐,及上行PPDU结束时间对齐,便于AP针对上行PPDU的发送确认帧。
这里的对齐,是指开始时间和/或结束时间对齐。结束时间对齐是指:结束时间相同或者结束时间之差在一个规定的间隔范围之内,其中规定的间隔范围由协议或者其他方式规定。开始时间对齐是指:开始时间相同或者开始时间之差在一个规定的间隔范围之内。本发明在其他地方提到对齐,不再赘述其含义。
触发帧的站点信息字段中的资源分配指示字段给可以给站点分配一个资源块传输上行帧,还可以给站点分配多个资源块传输上行帧。802.11ax协议中列出了80MHz带宽,40M带宽,20MHz带宽内的资源块索引,该资源块索引形成一个7比特的表格,其中每一个资源块索引对应一个资源块,包括26子载波资源块,52子载波资源块,106子载波资源块,242子载波资源块(20MHz带宽内最大资源块),484子载波资源块(40MHz带宽内最大资源块),996子载波资源块(80MHz带宽内最大资源块)。160MHz带宽内的资源块,通过增加额外1比特和7比特的80MHz带宽内的资源块索引指示,额外1比特指示是主80MHz内的资源块还是次80MHz内的资源块。7比特的80MHz内的资源分配表格见802.11ax协议,如下表4,其中RU序号0-36为80MHz内的26子载波资源块索引号,37~52为80MHz带宽内的52子载波资源块索引号,53~60为80MHz带宽内的106子载波资源块索引号,61~64为80MHz带宽内的242子载波资源块索引号,65~66为80MHz带宽内的484子载波资源块索引号,67为80MHz带宽内的996子载波资源块索引号。其中26子载波资源块的描述RU1~RU37,52子载波资源块的描述RU1~RU16,106子载波资源块的描述RU1~RU8,242子载波资源块索的描述RU1~RU4,484子载波资源块的描述RU1~RU2,996子载波资源块的描述RU1记载于802.11ax的标准协议,这里不再赘述
表4 7比特单资源分配表格
Figure PCTCN2021091564-appb-000006
Figure PCTCN2021091564-appb-000007
Figure PCTCN2021091564-appb-000008
Figure PCTCN2021091564-appb-000009
为了支持320MHz带宽,参见表4,本实施方式包括新的资源块2*996子载波资源块,3*996子载波资源块,4*996子载波资源块。7比特的80MHz内的资源分配表格可以分别增加以上3种资源块的索引(简称单资源块分配表格)。
另外的例子中,为了支持给单个站点分配多个资源块以及减少信令开销,规定以下几种资源块索引,参见图7a,包括16种多个小资源块分配,包括52+26资源块,106+26资源块,具体位置参见图7a上半部分中灰色方块所示,以及33种多个大资源块分配,总共49种多资源块分配,包括484+242资源块,996+484资源块,2X996+484资源块,3X996+484资源块和3X996资源块,具体位置参见图7a中下半部分的灰色方块所示。当然,也可以是该49种多资源块分配的子集,例如,不包括2X996+484或者3X996+484资源块,或者引进其他多资源块分配组合。
具体的,还可以根据两个不同的7比特的表格索引,分别指示图7a,图7b所示多资源块组合(简称多资源块分配表格)。一个例子中,使用1比特指示站点被分配的资源块是单个资源块还是多个资源块,即使用单资源块分配表格索引,还是使用多资源块分配表格索引。当然,可以替换的,采用同一个表格包括上述单资源块分配表格和上述多资源块分配表格中的内容。表格所需要的比特的长度取决于需要指示的资源块的项数。、
另一个例子中,提出使用2比特指示320MHz中的哪个80MHz,序号可以从低频到高频,也可以从高频到低频,表格中的索引可以以80MHz为基准(图7a或图7b),即包括80MHz范围中各种资源块的索引。
触发帧的站点信息字段中的资源分配指示字段给站点分配的一个资源块或者多资源块需要在站点的工作带宽范围之内。
实施例三
参考图8所示的上行多用户PPDU帧结构,提供了一种基于频域分段发送上行PPDU的方法。
201.站点基于接收到的触发帧发送上行PPDU。其中,上行PPDU的数据部分在分配给所述站点的资源块上发送。
具体的,站点可以在侦听信道所在的的频域分段上接收到AP发送的触发帧,如果该触发帧中的一个站点信息字段与自己的AID匹配,则该站点按照触发帧的与自己AID匹配站点信息字段中的资源块分配信息以及公共字段发送上行多用户PPDU。比如,在站点信息字段中的资源分配指示字段指示的资源块上传输站点的上行信息帧,例如数据帧。具体的,站点发送的上行PPDU包括公共物理层前导码,后物理层前导码(包括EHT-STF字段和EHT-LTF字段)和数据部分字段(包括MAC帧,例如数据帧)。其中公共物理层前导码可以在上行PPDU的带宽内以20MHz为单位传输,后物理层前导码和数据字段在资源块上传输。
202.AP按照触发帧中的分配的资源接收站点发送的上行PPDU中的数据部分。
具体的,AP在触发帧中的站点信息字段中的资源分配指示字段指示的资源块上接收站点发送的上行信息帧,按照触发帧中的站点信息字段中的MCS(modulation and coding scheme,调制编码方案)等参数对站点发送的上行信息帧进行解码。资源块的具体分配方法在本申请中不需要赘述。
步骤201中包括站点的上行公共物理层前导码传输方法,包括以下几种具体的例子:
方法1:根据触发帧中携带的上行PPDU的公共物理层前导码所在的频域分段的带宽的信息,站点可以仅该站点被调度的上行PPDU所在的频域分段内的各个20MHz信道发送上行公共物理层前导码。具体的如果上行多用户PPDU带宽大于站点停靠的频域分段,在该频域分段外的20MHz信道上可以不发送公共物理层前导码,可以减少干扰和增加频域复用的机会,提高资源利用效率。其中该站点被调度的上行PPDU所在的频域分段需位于站点的工作带宽范围内。可以理解的是,这里指示的上行PPDU所在的频域分段和触发帧所在的频域分段可以不同,其中,触发帧所在的频域分段可以大于站点的工作带宽,但是需要包括站点侦听的20MHz。站点在自己的工作带宽内的侦听的20MHz所在的频域分段接收触发帧,在触发帧指示的上行带宽所在的频域分段内的各个20MHz信道发送上行公共物理层前导码。
该公共物理层前导码可以包括传统前导码(L-STF,L-LTF,L-SIG),重复信令字段(RL-SIG),以及U-SIG字段。
以图3所示的通信系统为例,如图7所示,假设DATA#1是站点11按照接收到的触发帧中的指示在对应的资源块上传输的,站点11的上行PPDU的公共物理层前导码按照触发帧中的站点信息字段中的调度站点的上行PPDU的公共物理层前导码所在的频域分段的带宽的信息/字段指示的频域传输前导码,比如为第一次80MHz。具体 来讲,在第一次80MHz的每个20MHz上可以进行复制传输(这里复制传输可以包括在非第一20MHz的其他20MHz上分别乘以旋转因子,此处不赘述)。另一个例子中,假设DATA#1是站点6按照接收到的触发帧在对应的资源块上传输的,站点6的公共物理层前导码按照触发帧中的站点信息字段中的调度站点的上行PPDU的公共物理层前导码所在的频域分段的带宽的信息/字段指示的频域传输前导码,比如为主160MHz。具体来讲,其中80MHz内的各个20MHz传输的公共物理层前导为复制传输。不同的80MHz内传输的公共物理层前导码中U-SIG可以不同,比如携带打孔信息不同,该打孔信息指示该80MHz内的每个20MHz是否被打孔。另外,传统前导码和重复的信令字段仍是20MHz复制传输。
方式2:参考图8,根据触发帧中给站点分配的资源块的信息,站点可以仅在被分配的资源块(上行PPDU的数据部分所在的资源块)所在的频域分段(以80MHz为例)内发送上行公共物理层前导码。当被分配的资源块大于一个频域分段(例如80MHz)时,站点可以仅在被分配的资源块所在(或称交错的overlap)的多个频域分段(例如80MHz)内发送上行公共物理层前导码。其中上行公共物理层前导码,包括传统前导码,重复信令字段,或者U-SIG字段。
例如,以频域分段粒度为80MHz为例,如果资源块大于80MHz,则发送的上行物理层前导码包括相应的多个80MHz。以图3中的站点为例,图8所示的上行多用户PPDU的发送方法。该方法包括:站点11按照接收到的触发帧在对应的资源块上传输DATA#1,站点11在第一次80MHz上发送公共物理层前导码。具体来讲,在第一次80MHz的每个20MHz上进行复制传输(可以包括必要的旋转等步骤,此处不赘述)。再比如,站点6在接收到的触发帧中指示的资源块上传输DATA#2,站点6在主80MHz上发送公共物理层前导码。具体来讲,在主80MHz的每个20MHz上进行复制传输。
方式3:站点可以仅在被分配的资源块所在的一个或者多个20MHz带宽内发送上行公共物理层前导码。例如,包括传统前导码(L-STF,L-LTF,L-SIG),重复信令字段(RL-SIG),以及U-SIG字段。如果被分配的资源块大于20MHz,则发送的上行物理层前导码包括相应的多个20MHz。可选的,还可以在站点侦听的20MHz上发送上行物理层前导码。
值得注意的是,上述方式中的提到的上行物理层前导码是以20MHz单位进行传输。
其中,站点传输的上行公共物理层前导码在80MHz内的每20MHz是复制传输。
在上行多用户PPDU中,不同的80MHz上传输的上行公共物理层前导码可以不同。具体来讲,不同的上行PPDU的可以在U-SIG字段携带的打孔信息字段可以不同,该打孔信息字段可以仅指示所在的80MHz内的4个20MHz信道打孔模式。以便于告知其他站点该站点所在的频域分段的打孔信息。例如,可以用3或者4比特位图指示。例如1110,表示该80MHz内从低频到高频第4个20MHz被打孔(也可以是高频到低频),各个实施方式不做限制。另一个例子中,可以规定站点侦听的20MHz不能打孔,此时打孔比特位图只需要指示80MHz内其他的3个20MHz是否打孔,此时需要3比特,进一步讲,如果站点侦听的20MHz信道忙,此时站点不能发送上行 PPDU。
另一种方式可以通过打孔模式指示,参考图9所示的80MHz带宽下的6种打孔模式,需要3比特,其中白色的资源块是被打孔的资源块,灰色的资源块是未被打孔的资源块。
如果给单个站点的资源块在不同的80MHz或者说大于80MHz上,此时该站点在多个80MHz上发送的上行公共物理层前导码中的U-SIG字段可以不同。值得说明的是,在上行多用户PPDU中,每个站点发送上行公共物理层前导码中的传统前导码字段和重复的信令字段RL-SIG相同。
站点发送的上行物理层前导码除了公共物理层前导码和数据部分,还可以包括EHT-STF(extremely high throughput-short training field,高吞吐量-短训练字段)字段和EHT-LTF(extremely high throughput-long training field,高吞吐量-长训练字段)字段,其中EHT-LTF字段包含的OFDM符号数跟发送的流数相关。具体的,EHT-STF字段,EHT-LTF字段以及数据字段可以仅在分配给该站点的资源块上发送,该资源块是通过触发帧指示的。
实施例四
本实施例提供了一种AP发送确认帧的方法。
301.AP接收上行多用户PPDU。
302.基于频域分段生成并回复所述上行多用户PPDU的确认信息。具体的,在不同的频域分段,分别回复不同的确认帧。例如,在频域分段内可以仅发送针对该频域分段内停靠的站点的上行PPDU的确认帧。其中确认帧包括Ack和Block Ack,Block Ack又包括压缩的Block Ack和Multi-STA Block Ack。参考图4所示,AP收到TBPPDU(上行PPDU)后发送Multi-STA Block Ack。
AP回复的多用户确认帧可以OFDMA形式发送(例如EHT的MU PPDU),也可以Non-HT格式发送(前导码只采用传统前导码),还可以采用11n,11ac,11ax,11be等单用户PPDU格式发送。
例子1:AP回复的多用户确认帧是通过OFDMA形式方式的,当OFDMA确认帧PPDU的带宽大于80MHz时,每80MHz的下行物理层前导码中的U-SIG字段和EHT-SIG字段不同,80MHz内的每个20MHz的下行物理层前导码中的U-SIG字段相同,EHT-SIG字段可能相同,也可能不同,例如采用802.11ax的HE-SIG B的[1 2 1 2]结构。另外,OFDMA确认帧PPDU的传统前导码和重复的信令字段RL-SIG在PPDU带宽内的每20MHz上进行复制传输。
具体的例子中,AP可以在站点发送的上行公共物理层前导码所在的一个或者多个20MHz内的某个资源块上给该站点发送确认帧。其中20MHz可以为多个,取决于该站点发送的上行PPDU的公共物理层前导码传输的20MHz的个数。另外,由于下行OFDMAPPDU每80MHz的下行物理层前导码中的U-SIG字段可以不同,另一个具体的例子中,AP还可以在站点侦听的20MHz或者站点发送上行PPDU的数据字段所在的80MHz频域分段内的一个或者多个资源块上给该站点发送确认帧。
EHT的MU PPDU中携带分配给该确认帧的RU的信息,可以参考图4。
更具体的,站点在每80MHz上发送的子PPDU需对齐,比如结束时间对齐。
例子2:AP回复的多用户确认帧是采用Non-HT格式发送的。
本实施提出每80MHz携带的多用户确认信息可以不同,80MHz内的每20MHz传输的多用户确认信息相同。举例来讲,主80MHz上传输第一Non-HT确认帧,比如Multi-STA Block Ack,携带对站点1~4的确认信息。次80MHz上传输第二Non-HT确认帧,比如Multi-STA Block Ack,携带对站点5~6的确认信息。相比之前的Non-HT格式,大带宽内需要每20MHz进行复制传输,本实施例进一步减少了下行多用户确认帧的开销。
具体的,采用Non-HT格式发送确认帧包括下面两种方法之一
方法一:AP在站点侦听的20MHz信道所在的频域分段信道上给站点发送确认帧。频域分段例如80MHz,160MHz,240MHz或者320MHz
方法二:AP在站点传输上行数据字段所在的频域分段或者一个或多个80MHz频率内信道上给站点发送确认帧。
方法三:AP在站点传输上行数据字段所在的一个或多个20MHz频率内信道上给站点发送确认帧。
参考图10所示的确认帧的结构的简单示意图,AP在每20MHz发送的Multi-STA Block Ack帧,包括一个或多个块确认/确认信息,每个块确认/确认信息是给一个站点发送的PPDU的确认信息。Multi-STA Block Ack帧包括:帧控制(Control frame),时长/标识(duration/ID),接收地址(Receive Address,简称RA),发送地址(Transmit Address,简称TA),块确认控制(BA Control),块确认/确认信息(Block Acknowledgement/Acknowledgement Information,简称BA/ACK Info)和帧校验序列(Frame Check Sequence,简称FCS)。其中,BA/ACK Info包括:每个关联或者业务标识信息(Per association identifier Traffic Identifier Information,简称Per AID TID Info),当BA/ACK Info为BA时,则BA/ACK Info还包括块确认起始序列控制(Block Acknowledgement Starting Sequence Control)和块确认位图(Block Acknowledgement bitmap),其中,块确认起始序列控制的中分片字段可以用来指示块确认位图的长度。更进一步的,在Per AID TID Info的前11比特设置有STA的关联标识AID(association identifer),用来指示AP要将确认帧发送给哪个站点。第12比特为块确认/确认指示(BA/ACK Indication),第13~16比特为业务标识符TID(traffic identifer),如下图*所示。
AP在不同的频域分段(例如80MHz)发送的Non-HT Multi-STA确认帧携带的站点确认信息不同。换言之,不同的频域分段上确认帧的长度可以不一样。参考实施方式一,不同频域分段上的确认帧可以仅携带停靠在该频域分段上的站点的确认信息。
具体的,频域分段上的每个20MHz上传输的Non-HT Multi-STA确认帧一般需对齐。
AP可以通过填充的方法使得每个20MHz上传输的Non-HT Multi-STA确认帧对齐,具体可以包括如下方法之一:
方法1.Non-HT Multi-STA确认帧中包括哑块确认/确认信息字段,用来填充Non-HT Multi-STA确认帧以便于对齐。其中,哑块确认/确认信息字段的长度和标准规定的块确认/确认信息字段的长度相同,但是哑块确认/确认信息字段中的AID字段设置为特殊的值,例如2046。
方法2.Non-HT Multi-STA确认帧提供更长的块确认/确认信息字段。例如,通过块确认起始序列控制字段的中分段字段指示更长的块确认位图长度。
方法3.Non-HT Multi-STA确认帧中包括重复的一个或者多个站点的块确认/确认信息。其中,重复最后一个站点的块确认/确认信息一次或多次,以便于使得Non-HT Multi-STA确认帧对齐。
实施例一到实施例四中的一个或多个实施例的中的频域分段还可以简化成一种特例,即每个频域分段固定为一个大小,比如80MHz,这样可以减少关于频域分段的信息的指示。实施例一到实施例四中提到上行多用户PPDU是由一个或多个站点发送的上行PPDU组成的,其中一个或多个站点在AP发送的触发帧指示的对应的资源块上发送后物理层前导码和数据字段,站点发送的上行PPDU可以理解为该上行多用户PPDU的子PPDU。也可以理解的实施,上述各个实施方式在没有技术冲突的情况下能够任意的组合。例如,采用实施例一的方式灵活的进行频域分段后,根据实施例二的方式发送触发帧,再根据实施例三的方式基于触发帧发送上行PPDU,然后根据实施例四的方式反馈针对上行PPDU的确认帧。当然,有可能其中某个实施方式被替换为其他的方案,此处不赘述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机可读存储介质被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存 储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种无线局域网中发送触发帧的方法,其中,
    AP生成物理层协议数据单元PPDU,所述PPDU包含一个或者多个触发帧,每个触发帧对应一个频域分段;每个触发帧至少用于调度停靠在对应的频域分段上的一个或多个站点;
    发送该PPDU中的一个或者多个触发帧,其中每个触发帧承载在对应的频域分段上。
  2. 根据权利要求1所述的方法,其特征在于,
    每个触发帧仅用于调度停靠在对应的频域分段上的一个或多个站点。
  3. 根据权利要求1所述的方法,其特征在于,
    不同的触发帧中的内容不同,但是不同的触发帧的长度相同。
  4. 一种发送上行PPDU的方法,其特征在于,
    仅在所述触发帧中指示的所述站点的上行PPDU的的公共物理层前导码所在的频域分段内的各个20MHz信道上,或者,仅在被分配的资源块所在的一个或多个80MHz内的各个20MHz信道上,发送上行公共物理层前导码;
    在分配给所述站点的资源块上发送上行PPDU的数据部分。
  5. 一种发送确认帧的方法,其特征在于,
    AP接收上行多用户PPDU;
    基于频域分段回复所述上行多用户PPDU的确认信息。
  6. 根据权利要求5所示的方法,其特征在于,
    在不同的频域分段,分别回复不同的确认帧。
  7. 根据权利要求5所示的方法,其特征在于,
    在频域分段内可以仅发送针对该频域分段内停靠的站点的上行PPDU的确认帧。
  8. 根据权利要求6所示的方法,其特征在于,
    不同的频域分段上的确认帧内容不同,但是长度相同。
  9. 一种无线局域网中接收触发帧的方法,其中,
    站点仅在侦听的20MHz所在的频域分段上接收触发帧;
    根据所述触发帧确定所述站点是否被调度。
  10. 根据权利要求9所述的方法,其特征在于,
    仅在所述触发帧中指示的所述站点的上行PPDU的公共物理层前导码所在的频域分段内的各个20MHz信道上,或者,仅在所述站点被分配的资源块所在的一个或多个80MHz内的各个20MHz信道上,发送上行公共物理层前导码;
    在分配给所述站点的资源块上发送所述上行PPDU的数据部分。
  11. 根据权利要求9所述的方法,其特征在于,
    发送所述上行PPDU后,仅在所述站点侦听的20MHz所在的频域分段上接收所述上行PPDU的确认信息。
  12. 一种通信装置,其特征在于,包括一个或者多个模块,用于执行权利要求1-8中任意一个的方法。
  13. 一种通信装置,其特征在于,包括一个或者多个模块,用于执行权利要求9-11中任意一个的方法。
PCT/CN2021/091564 2020-04-30 2021-04-30 无线通信传输方法及相关装置 WO2021219136A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112022021936A BR112022021936A2 (pt) 2020-04-30 2021-04-30 Método de comunicação sem fio e aparelho relacionado
JP2022565955A JP2023523757A (ja) 2020-04-30 2021-04-30 無線通信方法および関連する装置
EP21796161.4A EP4135399A4 (en) 2020-04-30 2021-04-30 METHOD FOR WIRELESS COMMUNICATION TRANSMISSION AND ASSOCIATED DEVICE
KR1020227041395A KR20230007437A (ko) 2020-04-30 2021-04-30 무선 통신 방법 및 관련 장치
US17/975,135 US20230066731A1 (en) 2020-04-30 2022-10-27 Wireless communication method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010368087.3A CN113596927A (zh) 2020-04-30 2020-04-30 无线通信传输方法及相关装置
CN202010368087.3 2020-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/975,135 Continuation US20230066731A1 (en) 2020-04-30 2022-10-27 Wireless communication method and related apparatus

Publications (1)

Publication Number Publication Date
WO2021219136A1 true WO2021219136A1 (zh) 2021-11-04

Family

ID=78236915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091564 WO2021219136A1 (zh) 2020-04-30 2021-04-30 无线通信传输方法及相关装置

Country Status (7)

Country Link
US (1) US20230066731A1 (zh)
EP (1) EP4135399A4 (zh)
JP (1) JP2023523757A (zh)
KR (1) KR20230007437A (zh)
CN (1) CN113596927A (zh)
BR (1) BR112022021936A2 (zh)
WO (1) WO2021219136A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114710412A (zh) * 2022-03-08 2022-07-05 中电科思仪科技股份有限公司 一种网络协议信号模拟系统及方法
CN115623596A (zh) * 2022-12-20 2023-01-17 翱捷科技(深圳)有限公司 上行链路的ofdma处理方法、装置、系统及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746595B (zh) * 2020-05-28 2023-06-20 华为技术有限公司 数据传输方法及相关装置
US20220132481A1 (en) * 2020-10-22 2022-04-28 Apple Inc. System and method for supporting operating stations on an extreme high throughput link
US20240073746A1 (en) * 2021-01-06 2024-02-29 Beijing Xiaomi Mobile Software Co., Ltd. Communication method and communication device
CN116886240B (zh) * 2021-08-18 2024-04-12 华为技术有限公司 发送物理层协议数据单元的方法和通信装置
CN114172777B (zh) * 2021-11-26 2024-02-06 中电科思仪科技(安徽)有限公司 一种基于802.11be协议的PPDU信号发生装置
CN118348477A (zh) * 2023-01-13 2024-07-16 华为技术有限公司 测距方法和测距装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559900A (zh) * 2016-10-31 2017-04-05 西北工业大学 一种基于非对称带宽的多信道多址接入方法
CN107432012A (zh) * 2015-07-06 2017-12-01 索尼公司 通信装置和通信方法
CN107771376A (zh) * 2015-09-08 2018-03-06 Lg电子株式会社 无线通信系统中发送数据的方法及其设备
CN108701402A (zh) * 2015-12-28 2018-10-23 纽瑞科姆有限公司 多网络分配向量操作
US20190373605A1 (en) * 2015-07-07 2019-12-05 Sony Corporation Communication apparatus and communication method which utilizes a first frame including wireless communication resource information and attribute information
CN110768757A (zh) * 2018-07-25 2020-02-07 华为技术有限公司 资源单元指示方法、装置及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3228041B8 (en) * 2014-12-05 2020-03-11 NXP USA, Inc. Trigger frame format for orthogonal frequency division multiple access (ofdma) communication
TWI734725B (zh) * 2016-01-07 2021-08-01 美商內數位專利控股公司 多使用者(mu)傳輸保護方法及裝置
CN110912668B (zh) * 2016-06-14 2020-10-27 华为技术有限公司 一种数据传输方法及装置
CN112469088A (zh) * 2019-09-09 2021-03-09 华为技术有限公司 正交频分多址接入ofdma混合传输方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107432012A (zh) * 2015-07-06 2017-12-01 索尼公司 通信装置和通信方法
US20190373605A1 (en) * 2015-07-07 2019-12-05 Sony Corporation Communication apparatus and communication method which utilizes a first frame including wireless communication resource information and attribute information
CN107771376A (zh) * 2015-09-08 2018-03-06 Lg电子株式会社 无线通信系统中发送数据的方法及其设备
CN108701402A (zh) * 2015-12-28 2018-10-23 纽瑞科姆有限公司 多网络分配向量操作
CN106559900A (zh) * 2016-10-31 2017-04-05 西北工业大学 一种基于非对称带宽的多信道多址接入方法
CN110768757A (zh) * 2018-07-25 2020-02-07 华为技术有限公司 资源单元指示方法、装置及存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114710412A (zh) * 2022-03-08 2022-07-05 中电科思仪科技股份有限公司 一种网络协议信号模拟系统及方法
CN114710412B (zh) * 2022-03-08 2024-04-12 中电科思仪科技股份有限公司 一种网络协议信号模拟系统及方法
CN115623596A (zh) * 2022-12-20 2023-01-17 翱捷科技(深圳)有限公司 上行链路的ofdma处理方法、装置、系统及存储介质

Also Published As

Publication number Publication date
EP4135399A1 (en) 2023-02-15
US20230066731A1 (en) 2023-03-02
CN113596927A (zh) 2021-11-02
EP4135399A4 (en) 2023-10-04
KR20230007437A (ko) 2023-01-12
BR112022021936A2 (pt) 2023-01-17
JP2023523757A (ja) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2021219136A1 (zh) 无线通信传输方法及相关装置
US11470595B2 (en) Wireless communication method and wireless communication terminal, which use discontinuous channel
US10567047B2 (en) Wireless communication method and wireless communication terminal for signaling multi-user packet
CN112787792B (zh) 使用触发信息的无线通信方法、和无线通信终端
US11206676B2 (en) Method and device for transmitting or receiving scheduling information
CN115208509B (zh) 无线通信系统中以重复模式发送ppdu的方法和设备
WO2016201627A1 (zh) 资源分配的方法、发送端设备和接收端设备
US20240008083A1 (en) Wireless communication method using multilink, and wireless communication terminal using same
KR20240011712A (ko) 단말, 기지국, 및, 통신 방법
CN116803128A (zh) 使用多链路的无线通信方法和使用该方法的无线通信终端
WO2016107315A1 (zh) 调度指示信息的发送、接收方法及装置
KR102718696B1 (ko) 무선 통신 시스템에서 dup 모드에서 ppdu를 전송하는 방법 및 장치
CN116746106A (zh) 在无线通信系统中发送和接收数据的方法和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565955

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217061913

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022021936

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227041395

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021796161

Country of ref document: EP

Effective date: 20221110

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022021936

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221027