CN116803128A - 使用多链路的无线通信方法和使用该方法的无线通信终端 - Google Patents

使用多链路的无线通信方法和使用该方法的无线通信终端 Download PDF

Info

Publication number
CN116803128A
CN116803128A CN202280012809.9A CN202280012809A CN116803128A CN 116803128 A CN116803128 A CN 116803128A CN 202280012809 A CN202280012809 A CN 202280012809A CN 116803128 A CN116803128 A CN 116803128A
Authority
CN
China
Prior art keywords
sta
channel
ppdu
frame
bss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280012809.9A
Other languages
English (en)
Inventor
高建重
孙周亨
金相贤
洪汉瑟
郭真三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilus Institute of Standards and Technology Inc
Original Assignee
Wilus Institute of Standards and Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilus Institute of Standards and Technology Inc filed Critical Wilus Institute of Standards and Technology Inc
Priority claimed from PCT/KR2022/001720 external-priority patent/WO2022169277A1/ko
Publication of CN116803128A publication Critical patent/CN116803128A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种在无线通信系统中由站(STA)发送帧的方法。在本发明中,STA从接入点(AP)接收包括第一操作元素和第二操作元素的管理帧,并且基于第一操作元素或第二操作元素向AP发送PPDU。此处,第一操作元素可以指示用于传统STA的基本服务集(BSS)操作信道,并且第二操作元素可以指示用于不是传统STA的上述STA的BSS操作信道。

Description

使用多链路的无线通信方法和使用该方法的无线通信终端
技术领域
本发明涉及一种使用多链路的无线通信方法和使用该方法的无线通信终端。
背景技术
近年来,随着移动装置的供给扩展,能向移动装置提供快速无线互联网服务的无线LAN(Wireless LAN)技术已经受到重视。无线LAN技术允许包括智能电话、智能平板、膝上型计算机、便携式多媒体播放器、嵌入式装置等等的移动装置基于近距离的无线通信技术,无线地接入家庭或者公司或者特殊服务提供区域中的互联网。
自使用2.4GHz的频率支持初始无线LAN技术以来,电气与电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11已经商业化或者开发了各种技术标准。首先,IEEE 802.11b在使用2.4GHz频带的频率时,支持最大11Mbps的通信速度。与显著地拥塞的2.4GHz频带的频率相比,在IEEE 802.11b之后商业化的IEEE802.11a使用不是2.4GHz频带而是5GHz频带的频率来减少干扰的影响,并且通过使用OFDM技术,将通信速度提高到最大54Mbps。然而,IEEE 802.11a的缺点在于通信距离短于IEEE802.11b。此外,与IEEE 802.11b类似,IEEE 802.11g使用2.4GHz频带的频率来实现最大54Mbps的通信速度并且满足后向兼容以显著地引起关注,并且进一步地,就通信距离而言,优于IEEE 802.11a。
此外,作为为了克服在无线LAN中作为弱点被指出的通信速度的限制而建立的技术标准,已经提供了IEEE 802.11n。IEEE 802.11n旨在提高网络的速度和可靠性并且延长无线网络的工作距离。更详细地,IEEE 802.11n支持高吞吐量(High Throughput,HT),其中数据处理速度为最大540Mbps或更高,并且进一步,基于多输入和多输出(Multiple InputsMultiple Outputs,MIMO)技术,其中在传输单元和接收单元的两侧均使用多个天线来最小化传输误差并且优化数据速度。此外,该标准能使用传输相互叠加的多个副本的编译方案以便增加数据可靠性。
随着无线LAN的供应变得活跃,并且进一步地,随着使用无线LAN的应用的多样化,对支持比由IEEE 802.11n支持的数据处理速度更高的吞吐量(极高吞吐量(Very HighThroughput,VHT))的新无线LAN系统的需求已经受到关注。在它们中,IEEE 802.11ac支持在5GHz频率中的带宽(80至160MHz)。仅在5GHz频带中定义IEEE 802.11ac标准,但初始11ac芯片组甚至支持在2.4GHz频带中的操作,用于与现有的2.4GHz频带产品后向兼容。理论上,根据该标准,能使能多个站的无线LAN速度达到最小1Gbps,并且能使最大单链路速度达到最小500Mbps。这通过扩展由802.11n接收的无线接口的概念来实现,诸如更宽无线频率带宽(最大160MHz)、更多MIMO空间流(最大8个)、多用户MIMO、和高密度调制(最大256QAM)。此外,作为通过使用60GHz频带而不是现有的2.4GHz/5GHz传输数据的方案,已经提供了IEEE802.11ad。IEEE 802.11ad是通过使用波束成形技术提供最大7Gbps的速度的传输标准,并且适合于高比特位速率运动图像流,诸如大规模数据或非压缩HD视频。然而,由于60GHz频带难以穿过障碍物,所以其缺点在于仅能在近距离空间的设备当中使用60GHz频带。
作为802.11ac和802.11ad之后的无线LAN标准,用于在AP和终端集中的高密度环境中提供高效和高性能无线LAN通信技术的IEEE 802.11ax(高效无线LAN(HighEfficiency无线LAN,HEW))标准处于开发完成阶段。在基于802.11ax的无线LAN环境中,在存在高密度站和接入点(AP)的情况下,应在室内/室外提供具有高频效率的通信,并且已经开发了实现这种通信的各种技术。
为了支持新的多媒体应用,诸如高清晰度视频和实时游戏,已经开始开发新的无线LAN标准以提高最大传输速率。在作为第7代无线LAN标准的IEEE 802.11be极高吞吐量(Extremely High Throughput,EHT)中,以在2.4/5/6GHz频带中通过较带宽、增加的空间流、多AP协作等支持高达30Gbps的传输速率为目的,正在进行标准的开发。在IEEE802.11be提出了诸如320MHz带宽、多链路(Multi-link)操作、多接入点(Multi-AccessPoint,Multi-AP)操作和混合自动重复请求(Hybrid Automatic Repeat Request,HARQ)等技术。
多链路操作可以根据其操作方法和实现方法以各种类型操作。在这种情况下,由于可能会发生在现有的基于IEEE 802.11的无线LAN通信操作中未曾发生问题,所以需要定义多链路操作中的详细操作方法。
另一方面,本发明的背景技术是为了提高对背景的理解而撰写的,因此可以包含对于该技术所属技术领域的普通技术人员已知的不属于现有技术的内容。
发明内容
技术问题
本发明的一个目的在于提供一种用于在多链路操作中建立基本服务集(BSS)操作信道(operating channel)的方法。
此外,本发明的另一个目的在于提供一种用于为传统终端建立不同的BSS操作信道的方法。
此外,本发明的另一个目的在于提供一种用于指示包括在BSS操作信道中的不可用子信道的方法。
此外,本发明的另一个目的在于提供一种用于在向包括传统终端的终端发送响应帧时确定针对各个终端的响应信息的大小的方法。
本说明书中要实现的技术问题不限于以上提及的技术问题,并且本领域技术人员在以下说明的基础上可以清楚地理解未提及的其他技术问题。
解决方法
一种无线通信系统中的站(STA)包括收发器和控制收发器的处理器,并且处理器从接入点(AP)接收包括第一操作元素和第二操作元素的管理帧,其中,第一操作元素指示用于传统STA的基本服务集(BSS)操作信道,第二操作元素指示用于不是传统STA的STA的BSS操作信道,基于第一操作元素或第二操作元素将PPDU发送到AP,其中,当用于STA的BSS操作信道包括至少一个不可用信道和/或超过由传统STA支持的最大带宽时,由第一操作元素指示的用于传统STA的BSS操作信道不同于由第二操作元素指示的用于STA的BSS操作信道。
此外,在本发明中,当用于STA的BSS操作信道包括至少一个不可用信道和/或超过由传统STA支持的最大带宽时,由第一操作元素指示的用于传统STA的BSS操作信道可以是在由第二操作元素指示的用于STA的BSS操作信道中包括主信道的连续信道。
此外,在本发明中,当用于STA的BSS操作信道包括至少一个不可用信道和/或超过由传统STA支持的最大带宽时,由第一操作元素指示的用于传统STA的BSS操作信道可以被设置为在由第二操作元素指示的用于STA的BSS操作信道内排除至少一个不可用信道之后的最大带宽内。
此外,在本发明中,第一操作元素可以是用于高效率(HE)STA的操作元素,并且第二操作元素可以是用于极高吞吐量(EHT)STA的操作元素。
此外,在本发明中,第二操作元素包括指示是否包括禁用的子信道位图子字段的禁用的子信道位图存在子字段,该禁用的子信道位图子字段指示用于STA的BSS操作信道的至少一个不可用信道。
此外,在本发明中,禁用的子信道位图子字段的每个比特位指示对应的不可用信道是否被包括在用于STA的BSS操作信道中。
此外,在本发明中,当用于STA的BSS操作信道不包括至少一个不可用信道时,禁用的子信道位图存在子字段的值被设置为表示不包括禁用的子信道位图子字段的值“0”。
此外,在本发明中,处理器从AP接收包括表示操作参数是否被改变的特定字段的帧,并且当操作参数被改变时,特定字段的值增加。
此外,在本发明中,当禁用的子信道位图子字段的包括与否改变、或者至少一个不可用信道的包括与否改变时,特定字段的值增加。
此外,在本发明中,处理器可以接收指示一个或多个STA发送PPDU的触发帧,接收响应于PPDU的多STA块确认帧,并且当传统STA被包括在一个或多个STA中响应于触发帧而发送PPDU的至少一个STA中时,针对包括在多STA块确认帧中的至少一个STA的确认信息的大小可以被限制为小于或等于特定大小。
此外,在本发明中,当传统STA被包括在一个或多个STA中响应于触发帧而发送PPDU的至少一个STA中并且通过由AP单独分配给STA的资源单元(RU)发送多STA块确认帧时,确认信息的大小不限于小于或等于特定大小。
此外,本发明提供了一种方法,该方法包括以下步骤:从接入点(AP)接收包括第一操作元素和第二操作元素的管理帧,其中,第一操作元素指示用于传统STA的基本服务集(BSS)操作信道,并且第二操作元素指示用于不是传统STA的STA的BSS操作信道;以及基于第一操作元素或第二操作元素向AP发送PPDU,其中,当用于STA的BSS操作信道包括至少一个不可用信道和/或超过由传统STA支持的最大带宽时,由第一操作元素指示的用于传统STA的BSS操作信道不同于由第二操作元素指示的用于STA的BSS操作信道。
有益效果
根据本发明的实施例,本发明提供了一种用于为传统终端设置不同的BSS操作信道的方法,从而有效地为针对终端设置BSS操作信道。
此外,根据本发明,通过指示包括在BSS操作信道中的不可用子信道,实现使终端能够有效地发送上行链路帧的效果。
此外,根据本发明,通过提供一种在向包括遗留终端的终端发送响应帧时,确定针对各个终端的响应信息的大小的方法,实现使各个终端能够发送可支持的响应信息。
在本发明中可获得的效果不限于上述效果,并且本发明所属领域的技术人员可以从下面的说明中清楚地理解未提及的其他效果。
附图说明
图1图示根据本发明的一实施例的无线LAN系统。
图2图示根据本发明的另一实施例的无线LAN系统。
图3图示根据本发明的一实施例的站的配置。
图4图示根据本发明的一实施例的接入点的配置。
图5示意性地图示站和接入点设置链路的过程。
图6图示无线LAN通信中使用的载波感应多路接入(Carrier Sense MultipleAccess,CSMA)/冲突避免(Collision Avoidance,CA)方法。
图7图示用于各种标准代中的每一个的PLCP协议数据单元(PLCP Protocol DataUnit,PPDU)的格式的实施例。
图8图示根据本发明的一实施例的各种极高吞吐量(Extremely HighThroughput,EHT)物理协议数据单元(PPDU)格式以及用于指示该格式的方法的示例。
图9是图示根据本发明的一实施例的多链路(multi-link)装置的图。
图10是图示根据本发明的一实施例的TID至链路(TID-to-link)映射方法的一示例的图。
图11是图示根据本发明的一实施例的多链路NAV设置操作的一示例的图。
图12是图示根据本发明的一实施例的多链路NAV设置操作的另一示例的图。
图13是图示根据本发明的一实施例的BSS分类和基于BSS分类的操作的一示例的图。
图14图示根据本发明的一实施例的无线LAN功能。
图15图示根据本发明的一实施例的上行链路(Uplink:UL)多用户(multi user:MU)操作。
图16图示根据本发明的一实施例的触发帧(Trigger frame)格式。
图17图示根据本发明的一实施例的用于指示基于触发的PPDU格式的方法。
图18图示根据本发明的一实施例的UL MU操作的一示例。
图19图示根据本发明的实施例的块确认(Block Ack)帧的格式。
图20图示根据本发明的实施例的片段号(Fragment Number)子字段和块确认位图(块确认位图)子字段。
图21图示根据本发明的实施例的响应于HE TB PPDU发送多STA块确认(Multi-STABlock Ack)帧的情况。
图22图示根据本发明的实施例的UL MU操作。
图23图示根据本发明的实施例的UL MU操作和多STA块确认帧的格式。
图24图示根据本发明的另一实施例的UL MU操作和多STA块确认帧的格式。
图25图示根据本发明的实施例的发送管理帧的情况。
图26图示根据本发明的实施例的当应用TID至链路映射时发送管理帧的方法。
图27图示根据本发明的另一实施例的当应用TID至链路映射时发送管理帧的方法。
图28是图示根据本发明的实施例的管理帧(Management frame)和信道宽度(channel width)信令的图。
图29是图示根据本发明的实施例的设置BSS操作信道的宽度的图。
图30是图示根据本发明另一实施例的设置BSS操作信道的宽度的图。
图31是图示根据本发明的实施例的信道化(channelization)和BSS操作信道宽度的设置的图。
图32是图示根据本发明的实施例的EHT操作元素格式(Operation elementformat)的图。
图33是图示根据本发明的实施例的考虑了禁用的子信道(disabled subchannel)的传输的示例的图。
图34是图示根据本发明的实施例的禁用的子信道的信令的示例的图。
图35是图示根据本发明的实施例的禁用的子信道的信令和重要更新的图。
图36是图示根据本发明的另一实施例的禁用的子信道的信令和重要更新的图。
图37是图示根据本发明的实施例的EHT操作元素格式的示图。
图38是图示根据本发明的另一实施例的EHT操作元素格式(Operation elementformat)的图。
图39是图示根据本发明的实施例的终端的操作的示例的流程图。
具体实施方式
通过考虑本发明的功能,在本说明书中使用的术语采用当前广泛地使用的通用术语,但是,术语可以根据本领域技术人员的意图、习惯和新技术的出现而改变。此外,在特殊的情况下,存在由申请人任意所选的术语,并且在这种情况下,将在本发明的相应说明部分中说明其含义。因此,应该理解,在本说明书中使用的术语将不仅应基于该术语的名称,而是应基于该术语的实质含义和整个说明书的内容来分析。
贯穿整个说明书,当说明一个元件被“耦合”到另一个元件时,该元件可以被“直接耦合”到另一个元件,或者经由第三元件“电耦合”到另一个元件。此外,除非有相反的明确地说明,否则单词“包括”将被理解为隐含包括陈述的元件,但是不排除任何其他的元件。此外,基于特殊的阈值的诸如“或者以上”或者“或者以下”的限制可以分别适当地以“大于”或者“小于”来替代。以下,在本发明中,字段和子字段可以互换使用。
图1图示根据本发明的一实施例的无线LAN系统。
无线LAN系统包括一个或多个基本服务集(Basic Service Set,BSS),并且BSS表示成功地相互同步以互相通信的装置的集合。通常,BSS可以被划分为基础结构BSS(infrastructure BSS)和独立的BSS(Independent BSS,IBSS),并且图1图示在它们之间的基础结构BSS。
如图1所示,基础设施BSS(BSS1和BSS2)包括一个或多个站(STA 1、STA 2、STA 3、STA 4和STA5)、作为提供分布式服务(Distribution Service)的站的接入点(AP-1和AP-2)、以及连接多个接入点(AP-1和AP-2)的分布式系统(Distribution System,DS)。
站(Station,STA)是包括遵循IEEE 802.11标准的规定的媒体接入控制(MediumAccess Control,MAC)和用于无线媒体的物理层(Physical Layer)接口的预先确定的设备,并且广义上包括非接入点(非AP)站和接入点(AP)两者。此外,在本说明书中,术语“终端”可用于指代非AP STA或者AP,或者这两者术语。用于无线通信的站包括处理器和通信单元,并且根据实施例,可以进一步包括用户接口单元和显示单元。处理器可以生成要经由无线网络传输的帧,或者处理经由无线网络接收的帧,并且此外,执行用于控制站的各种处理。此外,通信单元功能上与处理器相连接,并且经由用于站的无线网络传输和接收帧。根据本发明,终端可以被用作包括终端(user equipment,UE)的术语。
接入点(Access Point,AP)是提供经由用于与之关联(associated)的站的无线媒体对分布式系统(DS)接入的实体。在基础结构BSS中,在非AP站之中的通信原则上经由AP执行,但是当直接链路被配置时,甚至允许在非AP站之中直接通信。同时,在本发明中,AP用作包括个人BSS协调点(Personal BSS Coordination Point,PCP)的概念,并且广义上可以包括中央控制器、基站(Base Station,BS)、节点B、基站收发器系统(Base TransceiverSystem,BTS)或者站控制器等概念。在本发明中,AP也可以被称为基站无线通信终端。基站无线通信终端可以用作广义上包括AP、基站(base station)、e节点B(eNodeB,eNB)和传输点(TP)术语。此外,基站无线通信终端可以包括在与多个无线通信终端的通信中分配通信媒体(medium)资源并执行调度(scheduling)的各种类型的无线通信终端。
多个基础结构BSS可以经由分布式系统(DS)相互连接。在这种情况下,经由分布式系统连接的多个BSS称为扩展的服务集(Extended Service Set,ESS)。
图2图示根据本发明的另一实施例的独立的BSS,其是无线LAN系统。在图2的实施例中,与图1相同或者对应于图1的实施例的部分的重复说明将被省略。
由于在图2中图示的BSS3是独立的BSS,并且不包括AP,所有站STA6和STA7不与AP相连接。独立的BSS不被允许接入分布式系统,并且形成自含的网络(self-containednetwork)。在独立的BSS中,相应站STA6和STA7可以直接地相互连接。
图3图示根据本发明的一实施例的站100的配置的框图。如在图3中图示的,根据本发明的一实施例的站100可以包括处理器110、通信单元120、用户接口单元140、显示单元150和存储器160。
首先,通信单元120传输和接收无线信号,诸如无线LAN分组等,并且可以嵌入在站100中,或者作为外设提供。根据实施例,通信单元120可以包括使用不同的频带的至少一个通信模块。例如,通信单元120可以包括具有不同的频带(诸如2.4GHz、5GHz、6GHz和60GHz)的通信模块。根据实施例,站100可以包括使用7.125GHz或以上的频带的通信模块,以及使用7.125GHz或以下的频带的通信模块。各个通信模块可以根据由相应通信模块支持的频带的无线LAN标准执行与AP或者外部站的无线通信。通信单元120可以根据站100的性能和要求在一次仅操作一个通信模块,或者同时一起操作多个通信模块。当站100包括多个通信模块时,每一个通信模块可以通过独立的元件实现,或者多个模块可以集成为一个芯片。在本发明的实施例中,通信单元120可以表示用于处理射频(Radio Frequency,RF)信号的RF通信模块。
其次,用户接口单元140包括在站100中提供的各种类型的输入/输出装置。也就是说,用户接口单元140可以通过使用各种输入装置接收用户输入,并且处理器110可以基于接收的用户输入控制站100。此外,用户接口单元140可以通过使用各种输出装置,基于处理器110的命令执行输出。
接下来,显示单元150在显示屏上输出图像。显示单元150可以基于处理器110的控制命令输出各种显示对象,诸如由处理器110执行的内容或者用户界面等等。此外,存储器160存储在站100中使用的控制程序和各种数据。控制程序可以包括站100接入AP或者外部站所需要的接入程序。
本发明的处理器110可以执行各种命令或者程序,并且在站100中处理数据。此外,处理器110可以控制站100的各个单元,并且控制在单元之中的数据传输/接收。根据本发明的一实施例,处理器110可以执行在存储器160中存储的用于接入AP的程序,并且接收由AP传输的通信配置消息。此外,处理器110可以读取有关被包括在通信配置消息中的站100的优先级条件的信息,并且基于有关站100的优先级条件的信息请求接入AP。本发明的处理器110可以表示站100的主控制单元,并且根据实施例,处理器110可以表示用于单独地控制站100的某些部件(例如通信单元120等等)的控制单元。也就是说,处理器110可以是用于调制传输给通信单元120的无线信号以及解调从通信单元120接收的无线信号的调制解调器或者调制器/解调器(modulator and/or demodulator)。处理器110根据本发明的一实施例控制站100的无线信号传输/接收的各种操作。其详细的实施例将在下面说明。
在图3中图示的站100是根据本发明的一实施例的框图,这里分开的块被作为逻辑上区分的设备的元件图示。因此,设备的元件可以根据设备的设计安装在单个芯片或者多个芯片中。例如,处理器110和通信单元120可以在集成为单个芯片时被实现,或者作为分开的芯片被实现。此外,在本发明的实施例中,站100的某些部件,例如,用户接口单元140和显示单元150等可以选择性地被提供在站100中。
图4图示根据本发明的一实施例的AP 200的配置的框图。如在图4中图示的,根据本发明的一实施例的AP 200可以包括处理器210、通信单元220和存储器260。在图4中,在AP200的部件之中,与图2的站100的部件相同或者对应于图2的站100的部件的部分的重复说明将被省略。
参照图4,根据本发明的AP 200包括在至少一个频带中操作BSS的通信单元220。如在图3的实施例中说明的,AP 200的通信单元220也可以包括使用不同频带的多个通信模块。也就是说,根据本发明的一实施例的AP 200可以一同包括不同的频带(例如,2.4GHz、5GHz、6GHz和60GHz)中的两个或更多个通信模块。优选地,AP 200可以包括使用7.125GHz或以上的频带的通信模块,以及使用7.125GHz或以下的频带的通信模块。各个通信模块可以根据由相应通信模块支持的频带的无线LAN标准执行与站的无线通信。通信单元220可以根据AP 200的性能和要求一次仅操作一个通信模块,或者同时一起操作多个通信模块。在本发明的实施例中,通信单元220可以表示用于处理RF信号的射频(Radio Frequency,RF)通信模块。
接下来,存储器260存储在AP 200中使用的控制程序和各种结果数据。控制程序可以包括用于管理站的接入的接入程序。此外,处理器210可以控制AP 200的各个单元,并且控制在单元之中的数据传输/接收。根据本发明的一实施例,处理器210可以执行在存储器260中存储的用于接入站的程序,并且传输用于一个或多个站的通信配置消息。在这种情况下,该通信配置消息可以包括有关各个站的接入优先级条件的信息。此外,处理器210根据站的接入请求执行接入配置。根据一实施例,处理器210可以是用于调制传输给通信单元220的无线信号以及解调从通信单元220接收的无线信号的调制解调器或者调制器/解调器(modulator and/or demodulator)。处理器210根据本发明的一实施例控制各种操作,诸如AP 200的无线信号传输/接收。其详细实施例将在下面说明。
图5是示意地图示STA设置与AP的链路的过程的图。
参照图5,广义上,在STA 100和AP 200之间的链路经由扫描(scanning)、认证(authentication)和关联(association)的三个步骤被设置。首先,扫描步骤是STA 100获得由AP 200操作的BSS的接入信息的步骤。用于执行扫描的方法包括被动扫描(passivescanning)方法,其中AP 200通过使用周期地传输的信标(beacon)消息(S101)获得信息,以及主动扫描(active scanning)方法,其中STA 100传输探测请求(probe request)给AP(S103),并且通过从AP接收探测响应(probe response)来获得接入信息(S105)。
在扫描步骤中成功地接收无线接入信息的STA 100通过传输认证请求(authentication request)(S107a)以及从AP 200接收认证响应(authenticationresponse)(S107b)执行认证步骤。在执行认证步骤之后,STA 100通过传输关联请求(association request)(S109a)以及从AP 200接收关联响应(association response)(S109b)来执行关联步骤。在本说明书中,关联(association)基本上指的是无线关联,但是,本发明不限于此,并且关联广义上可以包括无线关联和有线关联两者。
同时,基于802.1X的认证步骤(S111)和经由DHCP的IP地址获取步骤(S113)可以被此外执行。在图5中,认证服务器300是处理对STA 100的基于802.1X的认证的服务器,并且可以存在于与AP 200的物理关联中,或者作为单独的服务器存在。
图6是图示在无线LAN通信中使用的载波感测多路接入(Carrier Sense MultipleAccess,CSMA)/冲突避免(Collision Avoidance,CA)方法的图。
执行无线LAN通信的终端通过在传输数据之前执行载波感测来确认信道是否为占有状态(busy)。当感测到具有预先设定强度或更大强度的无线信号时,确定相应信道为占有状态(busy)并且终端延迟对相应信道的接入。这种过程被称为清闲信道评估(ClearChannel Assessment,CCA),并且决定是否感测到相应信号的级别被称为CCA阈值(CCAthreshold)。当终端接收到的具有CCA阈值或更高的无线信号将相应终端指示为接收者时,终端处理接收到的无线信号。同时,当在相应信道中没有检测到无线信号或者检测到具有小于CCA阈值的强度的无线信号时,确定该信道是空闲状态(idle)。
当确定信道空闲时,具有要传输的数据的每一个终端在帧间间隔(Inter FrameSpace,IFS)时间之后执行退避过程,该帧间间隔时间取决于每一个终端的情况,例如,经过仲裁IFS(Arbitration IFS,AIFS),PCF IFS(PIFS)等。根据该实施例,AIFS可以用作替代现有DCF IFS(DIFS)的组件。每一个终端在信道的空闲状态的间隔(interval)期间在减少与由相应终端确定的随机数(random number)一样长的时隙时间的同时等待,并且完全耗尽时隙时间的终端试图接入相应信道。这样,其中每一个终端执行退避过程的间隔被称为竞争窗口间隔。
当特殊终端成功于信道接入时,相应终端可以通过信道传输数据。然而,当尝试接入的终端与另一个终端冲突时,彼此冲突的终端分别被分配新的随机数,以再次执行退避过程。根据实施例,可以在范围(2*CW)内确定新分配给每一个终端的随机数,该范围(2*CW)是先前分配给相应终端的随机数的范围(竞争窗口CW)的两倍。同时,每一个终端通过在下一个竞争窗口间隔中再次执行退避过程来尝试接入,并且在这种情况下,每一个终端从先前竞争窗口间隔中剩余的时隙时间开始执行退避过程。通过这种方法,执行无线LAN通信的各个终端可以避免特殊信道的相互冲突。
以下,在本发明中,终端可以被称为非AP STA、AP STA、STA、接收装置或传输装置,并且本发明并不限于此。此外,在本发明中,AP STA可以被称为AP。
<各种PPDU格式的示例>
图7图示用于各种标准代中的每一个的PLCP协议数据单元(PLCP Protocol DataUnit,PPDU)的格式的示例。更具体地,图7的(a)图示基于802.11a/g的传统PPDU格式的一实施例,图7的(b)图示基于802.11ax的HE PPDU格式的一实施例,并且图7的(c)图示基于802.11be的非传统PPDU(即,EHT PPDU)格式的一实施例。图7的(d)图示PPDU格式中共同地使用的RL-SIG和L-SIG的详细字段配置。
参照图7的(a),传统PPDU的前导包括传统短训练字段(Legacy Short Trainingfield,L-STF)、传统长训练字段(Legacy Long Training field,L-LTF)和传统信号字段(Legacy Signal field,L-SIG)。在本发明的实施例中,L-STF、L-LTF和L-SIG可以被称为传统前导。
参照图7的(b),HE PPDU的前导在传统前导中还包括重复传统短训练字段(Repeated Legacy Short Training field,RL-SIG)、高效率信号A字段(High EfficiencySignal A field,HE-SIG-A)、高效率信号B字段(High Efficiency Signal B field,HE-SIG-B)、高效率短训练字段(High Efficiency Short Training field,HE-STF)和高效率长训练字段(High Efficiency Long Training field,HE-LTF)。在本发明的实施例中,RL-SIG、HE-SIG-A、HE-SIG-B、HE-STF和HE-LTF可以被称为HE前导。HE前导的详细配置可以根据HE PPDU格式来修改。例如,HE-SIG-B可以仅在HE MU PPDU格式中使用。
参照图7的(c),EHT PPDU在传统前导中还包括重复的传统短训练字段(RepeatedLegacy Short Training field,RL-SIG)、通用信号字段(Universal Signal field,U-SIG)和极高吞吐量信号A字段(Extremely High Throughput Signal A field,EHT-SIG-A)、极高吞吐量信号B字段(Extremely High Throughput Signal B field,EHT-SIG-B)、极高吞吐量短训练字段(Extremely High Throughput Short Training field,EHT-STF)和极高吞吐量长训练字段(Extremely High Throughput Long Training field,EHT-LTF)。在本发明的实施例中,RL-SIG、EHT-SIG-A、EHT-SIG-B、EHT-STF和EHT-LTF可以被称为EHT前导。可以根据EHT PPDU格式修改非传统前导的具体配置。例如,EHT-SIG-A和EHT-SIG-B可以仅在EHT PPDU格式的一部分中使用。
64-FFT OFDM被应用于包括在PPDU的前导中的L-SIG字段,并且L-SIG字段总共包括64个子载波。在64个子载波当中,除了保护子载波、DC子载波和导频子载波之外的48个子载波被用于L-SIG数据的传输。BPSK和码率=1/2的调制和编码方案(Modulation andCoding Scheme,MCS)被应用于L-SIG中,因此L-SIG可以包括总共24个比特的信息。图7的(d)图示L-SIG的24比特信息的配置。
参照图7的(d),L-SIG包括L_RATE字段和L_LENGTH字段。L_RATE字段包括4个比特,并且指示用于数据传输的MCS。具体地,L_RATE字段指示通过组合BPSK/QPSK/16-QAM/64-QAM等的调制方案与诸如1/2、2/3、3/4等的非效率获得的6/9/12/18/24/36/48/54Mbps的传输速率中的一个值。可以通过组合L_RATE字段的信息和L_LENGTH字段的信息来指示相应PPDU的总长度。在非传统PPDU格式中,L_RATE字段配置为6Mbps的最小速率。
L_LENGTH字段的单位按字节可以被分配总共12个比特,可以用信令传输多达4095,并且可以通过与L_RATE字段的组合来指示相应PPDU的长度。在这种情况下,传统终端和非传统终端可以使用不同的方法来解释L_LENGTH字段。
首先,传统终端或非传统终端使用L_LENGTH字段来分析相应PPDU的长度的方法如下。当L_RATE字段的值被设置为指示6Mbps时,可在作为64FFT的一个符号持续时间的4us期间传输3字节(即,24比特)。因此,将对应于SVC字段和尾部字段的3个字节加到字段L_LENGTH的值,并且将相加的值除以作为一个符号的传输量的3个字节,从而获得L-SIG之后的基于64FFT的符号个数。将所获得的符号个数乘以4us(即,一个符号的长度),然后加上L-STF、L-LTF和L-SIG的传输所需的时间20us,从而获得相应PPDU的长度,即,接收时间RXTIME。这可以通过下面的等式1来表示。
[等式1]
在这种情况下,表示大于或等于x的最小自然数。由于L_LENGTH字段的最大值是4095,因此PPDU的长度能够被设置为长达5.464ms。传输PPDU的非传统终端应如下面的等式2所示设置L_LENGTH字段。
[等式2]
这里,TXTIME是组成相应PPDU的总传输时间,并且由下面的等式3表示。在这种情况下,TX表示X的传输时间。
[等式3]
TXTIME(us)=TL-sTF+TL-LTF+TL-SIG+TRL-sIG+TU-SIG+(TEHT-SIG-A)+(TEHT-SIG-B)
+TEHT-STF+NEHT-LTF·TEHT-LTF+TDARA
参照上面的等式,基于L_LENGTH/3的向上舍入值来计算PPDU的长度。因此,对于k的随机值,L_LENGTH={3k+1,3k+2,3(k+1)}的三个不同值指示相同的PPDU长度。
参照图7的(e),通用SIG(Universal SIG,U-SIG)字段继续存在于后续一代的EHTPPDU和无线LAN PPDU中,并且用于对包括11be的PPDU的一代进行分类。U-SIG是基于64FFT的OFDM 2符号,并且可以传送总共52比特的信息。在52个比特中,除了CRC/尾部的9个比特之外的43个比特主要被分成版本独立(Version Independent,VI)字段和版本相关(Version Dependent,VD)字段。
VI比特使当前比特配置能够在后续维持,从而即使定义了下一代的PPDU,当前的11be终端也可以通过PPDU的VI字段获得关于PPDU的信息。为此,VI字段包括PHY版本、UL/DL、BSS颜色、TXOP和保留字段。PHY版本字段是3个比特,并且用于顺序地将11be和后续一代无线LAN标准分类为各版本。11be的值为000b。UL/DL字段识别PPDU是否是上行链路/下行链路PPDU。BSS颜色指示11ax中定义的每一个BSS的标识符,并且具有6个比特或更高的值。TXOP指示在MAC头部传输的传输机会持续时间(Transmit Opportunity Duration),其中,通过将TXOP添加到PHY报头,PPDU可以推断包括在其中的TXOP的长度,而不必解码MPDU,并且TXOP具有7比特或更高的值。
VD字段是仅对PPDU的11be版本有用的信令信息,并且可以包括在诸如PPDU格式和BW的任何PPDU格式中共同地使用的字段,以及针对每一个PPDU格式不同地定义的字段。PPDU格式是对EHT单用户(Single User,SU)、EHT多用户(Multiple User,MU)、EHT基于触发(Trigger-based,TB),EHT扩展范围(Extended Range,ER)PPDU等进行分类的分类器。BW字段用信号通知20、40、80、160(80+80)和320(160+160)MHz的五个基本PPDU BW选项(BW,其可以以20*2的指数幂的类型表达,可以被称为基本BW),以及经由前导打孔(PreamblePuncturing)配置的各种剩余PPDU BW。在以320MHz进行信号通知之后,可以以一些80MHz被打孔的类型执行信令。可以在BW字段中直接用信号通知经打孔和修改的信道类型,或者可以使用BW字段与出现在BW字段之后的字段(例如,EHT-SIG字段内的字段)来用信号通知经打孔和修改的信道类型。如果BW字段被配置为3比特,则可以执行总共8个BW信令,并且因此可以在打孔模式中仅执行多达3个信令。如果BW字段被配置为4比特,则可以执行总共16个BW信令,并且因此可以在打孔模式中执行多达11个信令。
位于BW字段之后的字段根据PPDU的类型和格式而变化,MU PPDU和SU PPDU可以以相同的PPDU格式被用信号通知,用于在MU PPDU和SU PPDU之间进行分类的字段可以位于EHT-SIG字段之前,并且可以对该字段执行附加信令。SU PPDU和MU PPDU都包括EHT-SIG字段,但是在SU PPDU中不需要的一些字段可以被压缩(compression)。关于已经应用压缩的字段的信息可以被省略或者可以具有小于包括在MU PPDU中的原始字段的大小的大小。例如,在SU PPDU的情况下,EHT-SIG的共同字段可以被省略或替换,或者SU PPDU可以具有不同的配置,其中用户特殊字段被替换、减少到一个等。
替代地,SU PPDU还可以包括指示是否执行压缩的压缩字段,并且可以根据压缩字段的值来省略字段(例如,RA字段等)的一部分。
如果SU PPDU的EHT-SIG字段的一部分被压缩,则还可以在未压缩字段(例如,共同字段等)中用信号通知要包括在压缩字段中的信息。MU PPDU对应于用于由多个用户同时接收的PPDU格式,并且因此要求在U-SIG字段之后传输EHT-SIG字段,并且所传输的信息的量可以变化。也就是说,多个MU PPDU被传输到多个STA,使得各个STA应当识别MU PPDU被传输的RU的位置、RU被分别分配到的STA、以及所传输的MU PPDU是否已经被传输到STA本身。因此,AP应当通过将上述信息包括在EHT-SIG字段中来传输该信息。为此,在U-SIG字段中用信号通知用于EHT-SIG字段的有效传输的信息,并且这可以对应于作为调制方法的MCS和/或EHT-SIG字段中的符号的个数。EHT-SIG字段可以包括关于分配给每一个用户的RU的大小和位置的信息。
在SU PPDU的情况下,可以将多个RU分配给STA,并且多个RU可以是连续的或不连续的。如果分配给STA的RU是不连续的,则STA应识别中间的打孔RU,以便有效地接收SUPPDU。因此,AP可以传输SU PPDU,该SU PPDU包括分配给STA的RU中的被打孔的RU的信息(例如,RU的打孔模式等)。也就是说,在SU PPDU的情况下,可以在EHT-SIG字段包括打孔模式字段,该打孔模式字段包括以位图格式等指示打孔模式以及是否应用了打孔模式的信息,并且打孔模式字段可以用信号通知在带宽内出现的不连续信道类型。
用信号通知的不连续信道类型是有限的,并且指示与BW字段的值组合的SU PPDU的BW和不连续信道信息。例如,SU PPDU是仅传输到单个终端的PPDU,从而STA可以识别经由PPDU包含的BW字段分配给自身的带宽,并且SU PPDU可以经由PPDU包含的EHT-SIG字段或U-SIG字段的打孔模式字段识别分配的带宽中的打孔资源。在这种情况下,终端可以在排除被打孔的资源单元的特殊信道之后的剩余的资源单元中接收PPDU。分配给STA的多个RU可以由不同的频带或音调来配置。
为了减少SU PPDU的信令开销,只用信号通知有限的不连续信道类型。可以对每一个20MHz子信道执行打孔,从而如果对具有大量20MHz子信道的BW(诸如80、160和320MHz)执行打孔,则在320MHz的情况下,应当通过表示在排除主(primary)信道之后剩余的15个20MHz子信道中的每一个是否被使用来用信号通知不连续信道(如果仅对边缘20MHz的打孔也被认为是不连续的)类型。这样,考虑到信令部分的低传输速率,分配15个比特以用信号通知单个用户传输的不连续信道类型可以充当过大的信令开销。
本发明提出了一种用于用信号通知SU PPDU的不连续信道类型的技术,并且图示根据所提出的技术确定的不连续信道类型。本发明还提出了一种用于在SU PPDU的320MHzBW配置中用信号通知主(Primary)160MHz和辅助(Secondary)160MHz的打孔类型中的每一种的技术。
此外,在本发明的实施例中提出了一种根据在PPDU格式字段中用信号通知的PPDU格式来不同地配置由前导打孔BW值指示的PPDU的技术。假设BW字段是4个比特,并且在EHTSU PPDU或TB PPDU的情况下,可以在U-SIG之后附加地用信号通知1符号的EHT-SIG-A,或者根本不用信号通知EHT-SIG-A,因此,考虑到这一点,有必要仅经由U-SIG的BW字段完全用信号通知多达11个打孔模式。然而,在EHT MU PPDU的情况下,在U-SIG之后附加地用信号通知EHT-SIG-B,从而可以用与SU PPDU的方法不同的方法来用信号通知多达11个打孔模式。在EHT ER PPDU的情况下,BW字段可以被配置为1比特,以用信号通知EHT ER PPDU是使用20MHz频带还是10MHz频带的PPDU。
图7的(f)图示当在U-SIG的PPDU格式字段中指示EHT MU PPDU时VD字段的格式特殊(Format-specific)字段的配置。在MU PPDU的情况下,必要地需要SIG-B,它是用于由多个用户同时接收的信令字段,并且可以在U-SIG之后在没有单独的SIG-A的情况下传输SIG-B。为此,应该在U-SIG中用信号通知用于解码SIG-B的信息。这些字段包括SIG-B MCS、SIG-BDCM、SIG-B符号的个数、SIG-B压缩和EHT-LTF符号的个数等。
图8图示根据本发明的一实施例的各种极高吞吐量(Extremely HighThroughput,EHT)物理协议数据单元(PPDU)格式的示例以及用于指示该格式的方法。
参照图8,PPDU可以包括前导(preamble)和数据部分,并且可以根据包括在前导(preamble)中的U-SIG字段来分类作为PPDU类型的EHT PPDU格式。具体地,基于包括在U-SIG字段中的PPDU格式字段,可以指示PPDU的格式是否是EHT PPDU。
图8的(a)图示用于单个STA的EHT SU PPDU格式的示例。EHT SU PPDU是用于AP和单个STA之间的单用户(Single User,SU)传输的PPDU,并且用于附加信令的EHT-SIG-A字段可以位于U-SIG字段之后。
图8的(b)图示与基于触发帧传输的EHT PPDU相对应的EHT基于触发的PPDU格式的示例。EHT基于触发的PPDU是基于触发帧传输的EHT PPDU,并且是用于对触发帧的响应的上行链路PPDU。与EHT SU PPDU不同,EHT-SIG-A字段在EHT PPDU中不位于U-SIG字段之后。
图8的(c)图示与多个用户的EHT PPDU相对应的EHT MU PPDU格式的示例。EHT MUPPDU是用于向一个或多个STA传输PPDU的PPDU。在EHT MU PPDU格式中,HE-SIG-B字段可以位于U-SIG字段之后。
图8的(d)图示EHT ER SU PPDU格式的示例,该格式用于与扩展范围内的STA的单个用户传输。与图8的(a)中说明的EHT SU PPDU相比,EHT ER SU PPDU可以用于与更宽范围的STA的单用户传输,并且在时间轴上,U-SIG字段可以重复定位。
图8的(c)中说明的EHT MU PPDU可以由AP用来执行朝向多个STA的下行链路传输。这里,EHT MU PPDU可以包括调度信息,使得多个STA可以同时接收从AP传输的PPDU。EHT MUPPDU可以将经由EHT-SIG-B的用户特殊(user specific)字段传输的PPDU的发射方和/或接收者的AID信息传输到STA。因此,已经接收到EHT MU PPDU的多个终端可以基于包括在接收到的PPDU的前导中的用户特殊字段的AID信息来执行空间重用(spatial reuse)操作。
具体地,包括在HE MU PPDU中的HE-SIG-B字段的资源单元分配(resource unitallocation,RA)字段可以包括关于频率轴的特殊带宽(例如,20MHz等)中的资源单元的配置(例如,资源单元的划分类型)的信息。也就是说,RA字段可以指示在用于HE MU PPDU的传输的带宽中分割的资源单元的配置,以便STA接收PPDU。关于分配(或指定)给每一个分割的资源单元的STA的信息可以被包括在EHT-SIG-B的用户特殊字段中,以便被传输到STA。也就是说,用户特殊字段可以包括对应于相应分割的资源单元的一个或多个用户字段。
例如,与多个分割的资源单元当中的用于数据传输的至少一个资源单元相对应的用户字段可以包括接收者或发射方的AID,并且与未用于数据传输的剩余资源单元相对应的用户字段可以包括预先配置的空(Null)STA ID。
图8中所示的两个或更多个PPDU可以被指示为表示相同PPDU格式的值。即,可以通过相同的值以相同的PPDU格式来指示两个或更多个PPDU。例如,可以通过U-SIG PPDU格式子字段以相同的值指示EHT SU PPDU和EHT MU PPDU。在这种情况下,可以通过接收PPDU的STA的个数来区分EHT SU PPDU和EHT MU PPDU。例如,仅接收一个STA的PPDU可以被识别为EHT SU PPDU,并且当STA的个数被设置为接收两个或更多个STA时,PPDU可以被识别为EHTMU PPDU。换句话说,可以通过相同的子字段值指图8中所示的两个或更多个PPDU格式。
此外,可省略图8中图示的字段中的部分字段或字段的部分信息,并且可将部分字段或字段的部分信息被省略的情况定义为压缩模式(compression mode)或经压缩模式(compressed mode)。
图9是图示根据本发明的实施例的多链路(multi-link)设备的图。
参照图9,可以定义一个或多个STA所从属(affiliate)的设备(device)的概念。作为另一实施例,根据本发明的实施例,可定义多于一个(即,两个以上)的STA所从属的设备。在这种情况下,设备可以是逻辑(logical)概念。因此,具有这种概念的一个以上或多于一个STA所从属的设备可以被称为多链路设备(multi-link device:MLD)、多频带(multi-band)设备或多链路逻辑实体(multi-link logical entity:MLLE)。
替代地,上述概念的装置可以被称为多链路实体(multi-link entity:MLE)。此外,MLD可以具有到LLC(逻辑链路控制;logical link control)的一个MAC SAP(媒体接入控制服务接入点;medium access control service access point),并且MLD可以具有一个MAC数据服务。
包括在MLD中的STA可在一个或多个链路(link)或信道(channel)上操作。即,包括在MLD中的STA可在不同的多个信道上操作。例如,包括在MLD中的STA可使用2.4GHz、5GHz、6GHz的不同频带的信道来操作。由此,MLD可以在信道接入(channel access)中获得益处,并且可以提高整个网络的性能。现有技术的无线LAN在单个链路(single link)上操作,但是MLD操作可以通过使用多个链路来获得更多的信道接入机会,或者考虑到信道状态,STA可以在多个链路上有效地操作。
此外,当从属于MLD的STA是AP时,AP所从属的MLD可以是AP MLD。然而,当从属于MLD的STA是非AP STA时,非AP所从属的MLD可以是非AP MLD。
此外,AP多链路设备(Multi-link Device,MLD)可以是包括一个或多个无线接入点(AP)的设备,或者可以是通过一个接口连接到上层的设备。即,AP MLD可以通过一个接口连接到逻辑链路控制(Logical Link Control,LLC)层。包括在AP MLD中的多个AP可以共享MAC层中的一些功能。AP MLD中的每一个AP可以在不同的链路上操作。STA MLD可以是包括一个或多个非AP STA的设备,或者可以是通过一个接口连接到上层的设备。
即,STA MLD可以通过一个接口连接到LLC层。包括在STA MLD中的多个STA可以共享MAC层中的一些功能。此外,STA MLD可以被称为非AP MLD。在这种情况下,AP MLD和STAMLD可以执行使用多个单独链路进行通信的多链路操作。即,当AP MLD包括多个AP时,每个AP可配置单独的链路,并使用多个链路与包括在STA MLD中的每个终端执行帧的收发操作。在这种情况下,每个链路可以在2.4GHz、5GHz或6GHz频带中操作,并且在每个链路上可以执行带宽扩展操作。例如,当AP MLD在2.4GHz频带中建立一条链路和在5GHz频带中建立两条链路时,AP MLD可以在2.4GHz频带中通过带宽扩展方案以40MHz的带宽执行帧传输,并且在使用5GHz频带的每个链路中,AP MLD可以通过使用不连续带宽以最大为320MHz的带宽执行帧传输。
另外,AP MLD或STA MLD可能由于设备内部的干扰问题而在MLD中的一个终端执行发送操作期间似的另一终端不能执行接收操作。如上所述,当MLD内的一个AP或终端执行发送操作期间,MLD内的另一个AP或终端执行接收的操作被称为同时发送和接收(Simultaneous Transimit and Receive,STR)。AP MLD可以针对所有链路执行STR操作。或者,在AP MLD的一些链路中,STR操作可能是不可能的。可以执行STR操作的终端MLD可以接入AP MLD,并且针对部分链路或全部链路不能执行STR操作的MLD可以接入AP MLD。此外,不属于MLD的终端(例如,IEEE802.11a/b/g/n/ac/ax终端)可以附加地接入AP MLD中包括的AP。
AP MLD和STA MLD可以在图5所示的扫描和接入过程中执行用于多链路使用的协商过程。例如,在图5所示的扫描过程中,包括在AP MLD中的AP可以发送包括指示多链路操作是可用的指示符、可用链路的数量和多个可用链路的信息的信标帧。此外,属于STA MLD的终端可以发送包括指示多链路操作可用的指示符的探测请求帧,并且属于AP MLD的AP可以发送包括指示多链路操作可用的指示符的探测响应帧。在这种情况下,AP可以附加包括在多链路操作期间可用的链路的数量和链路信息等进行发送。
在扫描过程中,已经检查了AP MLD的多链路操作和使用链路信息的STA MLD可以执行与AP MLD的接入过程。在这种情况下,AP MLD和STA MLD可以开始用于多链路操作的协商过程。可以在属于AP MLD的AP和属于STA MLD的STA之间的接入过程中执行用于多链路操作的协商过程。也就是说,属于STA MLD的任意终端(例如,STA 1)可以向属于AP MLD的任意AP(例如,AP1)发送接入请求帧,以发送指示终端的多链路操作可用的指示符和请求执行多链路操作的请求指示符。从STA接收到接入请求帧的AP可以检查用于请求多链路操作的指示符,并且如果AP能够执行多链路操作,则AP可以向相应的终端发送用于允许多链路操作的接入响应帧,该接入响应帧包括将要用于多链路操作的链路信息以及用于每个链路的参数等。用于多链路操作的参数可以包括使用的每个链路的频带、带宽扩展方向、目标信标传输时间(Target Beacon Transmission Time,TBTT)、是否执行STR操作中的一个或多个。通过交换接入请求帧和响应帧而确认使用多链路操作的AP MLD和STA MLD可以在响应接入过程之后使用包括在AP MLD中的多个AP和包括在STA MLD中的多个终端来执行使用多个链路的帧传输操作。
参照图9,可以存在包括多个STA的MLD,并且包括在MLD中的多个STA可以在多个链路上操作。在图9中,包括AP(即,AP1、AP2和AP3)的MLD可以被称为AP MLD,包括非AP STA(即,非AP STA 1、非AP STA 2和非AP STA 3)的MLD可以被称为非AP MLD。包括在MLD中的STA可以在链路1(Link1)、链路2(Link2)、链路3(Link3)或链路1至3中的一些链路上操作。
根据本发明的实施例,多链路操作可以包括多链路设置(multi-link setup)操作。多链路设置操作可以对应于在单个链路操作中执行的关联(association)。为了在多个链路中交换帧,可以首先设置多个链路。可以使用多链路设置元素(multi-link setupelement)来执行多链路建立操作。在这种情况下,多链路设置元素可以包括与多链路相关的能力信息(capability information),并且能力信息可以包括与包括在MLD中的STA通过某一链路接收帧的同时,包括在MLD中的另一STA可以通过另一链路发送帧有关的信息。也就是说,能力信息可包括与STA(非AP STA)和/或AP(或AP STA)是否可通过包括在MLD中的链路在不同的传输方向上同时发送/接收帧有关的信息。此外,能力信息还可以包括与可用的链路或操作信道(operating channel)有关的信息。可以通过对等STA(peer STA)之间的协商(negotiation)来设置多链路设置,并且可以通过一个链路来设置多链路操作。
根据本发明的一实施例,TID和MLD的链路之间可以存在映射关系。例如,当TID和链路被映射时,可以通过映射的链路来发送TID。TID和链路之间的映射可以基于传输方向(directional-based)来实现。例如,可以针对MLD1和MLD2之间的两个方向分别实现映射。此外,在TID和链路之间的映射可具有默认(default)设置。例如,TID和链路之间的映射可以基本上是所有TID被映射到某一链路。
图10是图示根据本发明的一实施例的TID-to-link映射方法的一示例的图。
参照图10,如参照图9所述,可以存在TID和链路之间的映射关系。此外,在本发明中,TID和链路之间的映射关系可以被称为TID-to-link映射、TID到链路映射、TID映射、链路映射等。TID可以是业务标识符(traffic identifier)。此外,TID可以是用于对业务、数据等进行分类以支持服务质量(QoS)的标识符(ID)。
此外,TID可以是比MAC层更高的层中使用或分配的ID。TID可以表示业务类别(TC)和业务流(TS)。此外,TID可以是16个值,例如,可以由从0到15的值来表示。此外,根据接入策略、信道接入和介质接入方法可以使用不同的TID值。例如,当使用EDCA(混合协同函数(HCF)基于竞争的信道接入、增强分布信道接入)时,可能的TID值可以是0至7。此外,在使用EDCA的情况下,TID值可以指示用户优先级(UP),并且该UP可以是关于TC或TS的值。此外,UP可以是在比MAC更高的层中分配的值。此外,当使用HCCA(HCF受控信道接入)或SPCA时,可能的TID值可以是8至15。此外,当使用HCCA或SPCA时,TID可以指示TSID。此外,当使用HEMM或SEMM时,TID值可以为8至15。此外,当使用HEMM或SEMM时,TID可以表示TSID。
此外,在UP和接入类别(AC)之间可以存在映射关系。AC可以是指示用于在EDCA中提供QoS的标签,或指示EDCA参数的集的标签。EDCA参数或EDCA参数的集可以用于信道接入。AC可以由QoS STA使用。
AC值可被设置为AC_BK、AC_BE、AC_VI和AC_VO中的一个。AC_BK、AC_BE、AC_VI和AC_VO可分别表示背景、最大努力(best effort)、视频和语音。此外,可以细分AC_BK、AC_BE、AC_VI和AC_VO。例如,AC_VI可被细分为主AC_VI和备用AC_VI。此外,AC_VO可被细分为主AC_VO和备用AC_VO。此外,UP值或TID值可以被映射到AC值。例如,UP值或TID值1、2、0、3、4、5、6、7可分别映射到AC_BK、AC_BK、AC_BE、AC_BE、AC_VI、AC_VI、AC_VO、AC_VO。或者,UP值或TID值1、2、0、3、4、5、6、7可分别映射为AC_BK、AC_BK、AC_BE、AC_BE、备用AC_VI、主AC_VI、主AC_VO、备用AC_VO。此外,UP值或TID值1、2、0、3、4、5、6和7可以具有按顺序变高的优先级。即,“1”可以是低优先级,而“7”可以是高优先级。因此,优先级可以按照AC_BK、AC_BE、AC_VI和AC_VO的顺序增加。此外,AC_BK、AC_BE、AC_VI和AC_VO可以分别对应于AC索引(ACI)0、1、2和3。
因此,可存在TID和AC之间的关系。因此,本发明的TID-to-link映射也可以是AC和链路之间的映射关系。此外,在本发明中,“TID被映射”可以意味着AC被映射,反之亦然。
根据本发明的一实施例,可以存在被映射到多链路中的每个链路的TID。例如,可以存在关于特定TID或特定AC被允许在多个链路中的哪个链路上发送和接收的映射。此外,可以针对链路的两个方向中的每个方向分别定义这种映射。此外,如上所述,TID和链路之间的映射可以具有默认(default)配置。例如,TID和链路之间的映射可以基本上是所有TID被映射到某个链路。此外,根据一实施例,在特定时间点,某个TID或某个AC可以被映射到至少一个链路。此外,管理帧或控制帧可以在所有的链路上被发送。
在本发明中,可以发送与针对链路的特定方向映射的TID或AC对应的数据帧。此外,不能发送与针对链路的特定方向未映射的TID或AC对应的数据帧。
根据一实施例,TID-to-link映射也可以应用于确认(acknowledgement)。例如,块确认协议(block ack agreement)可以基于TID-to-link映射。或者,TID-to-link映射可以基于块确认协议。例如,可以存在用于TID-to-link映射的TID的块确认协议。
可以通过TID-to-link映射来提供QoS服务。例如,通过将具有高优先级的AC、TID映射到具有良好信道状态或具有较少STA的链路来快速地发送相应的AC、TID的数据。或者,通过TID-to-link映射,使得特定链路的STA可以实现节电(power save)(或者可以进入瞌睡状态(doze state))。
参照图10,可以存在包括AP1和AP2的AP MLD。此外,可以存在包括STA 1和STA 2的非AP MLD。此外,作为多个链路的链路1和链路2可以存在于AP MLD中。AP1和STA 1可以在链路1中关联,并且AP2和STA 2可以在链路2中关联。
因此,链路1可以包括从AP1发送到STA 1的链路和/或从STA 1发送到AP1的链路,并且链路2可以包括从AP2发送到STA 2的链路和/或从STA 2发送到AP2的链路。在这种情况下,TID和/或AC可以被映射到每个链路。
例如,所有的TID和所有的AC可以被映射到链路1中的从AP1发送到STA 1的链路以及链路1中的从STA 1发送到AP1的链路。此外,只有AC_VO或与AC_VO对应的TID可以被映射到链路2中的从STA 2发送到AP2的链路。此外,只有被映射的TID和/或AC的数据可以通过相应的链路发送。此外,未被映射到链路的TID或AC的数据不能在相应的链路上发送。
图11是图示根据本发明的一实施例的多链路NAV设置操作的一示例的图。
由MLD同时发送或接收的同时发送和接收(STR)操作可以是受限的,并且可以与通过多链路操作的多个链路之间的频率间隔相关联。
因此,根据本发明的实施例,当链路之间的间隔是m MHz时,同时发送或接收受限制,并且当链路之间的间隔是n MHz时(n大于m),同时发送或接收可以不受限。本实施例可以解决同时发送或接收的局限性问题,并且可以省略重复的描述。此外,本实施例可以应用于不能STR的MLD。
根据本发明的一实施例,持续时间信息可以在通过多链路操作的链路之间共享。持续时间信息可以是在前导的信令字段中发送的TXOP持续时间信息。信令字段可以是上述的U-SIG字段。或者,信令字段可以是上述的HE-SIG-A字段。在另一实施例中,持续时间信息可以是由MAC头部所包括的Duration/ID字段指示的持续时间信息。在另一实施例中,持续时间信息可以是由包括在L-SIG字段中的长度字段(LLength field)指示的持续时间信息。根据一实施例,由U-SIG字段、HE-SIG-A字段或Duration/ID字段指示的持续时间信息可以是指示TXOP持续时间的值。根据一实施例,由L-SIG字段指示的持续时间信息可以是指示包括L-SIG字段的物理层协议数据单元(PPDU)的长度或者指示包括L-SIG字段的PPDU的结尾的值。
此外,根据本发明的一实施例,可以限制在基于在链路之间共享的持续时间信息的持续时间期间进行传输或信道接入。限制传输或信道接入的方法可以包括设置NAV。或者,可以重置NAV以恢复传输或信道接入。此时,NAV可以是BSS内NAV。BSS内NAV可以是由BSS内帧(或PPDU)设置的NAV。也就是说,属于MLD的STA可以基于指向属于MLD的另一STA的帧(或PPDU)来设置NAV。
根据本发明的一实施例,可以存在链路间NAV。在通过多链路操作的情况下,链路间NAV可以是由属于特定MLD的多个链路的STA使用的NAV。例如,基于根据在链路1中接收的持续时间信息设置的链路间NAV,可以不在链路2上发送数据。此外,链路间NAV可以针对不能STR的MLD存在或使用。例如,当设置了链路间NAV时,设置了链路间NAV的MLD可以不在多个链路(或MLD所使用的所有链路)上执行传输或信道接入。
此外,除了BSS内NAV之外,NAV的类型还可以包括基本NAV。基本NAV可以是由BSS间帧(或PPDU)设置的NAV,也可以是由不确定是BSS内还是BSS间的帧(或PPDU)设置的。
与不使用链路间NAV的情况相比,在另外使用链路间NAV的情况下,在更新NAV设置方面可以具有优势。例如,可能发生即使重置通过另一链路设置的NAV也无妨的情况。例如,尽管基于特定帧(或PPDU)设置了链路间NAV,但是当确定上述帧(或PPDU)不是指向相同的MLD时,可以重置所设置的链路间NAV。如果存在在链路1和链路2中操作的MLD,则可以基于在链路1中接收到的帧来设置链路1的NAV。此后,可以基于链路2的帧来更新链路1的NAV。此外,如果当不需要保持链路2的NAV时重置链路1的NAV,则基于在链路1中接收的帧设置的NAV信息可能丢失。如果将链路间NAV与每个链路的NAV一起使用,则即使当链路间NAV被重置时,每个链路的NAV也可以被保持,从而可以解决这个问题。
在本发明的实施例中,以设置NAV为例进行说明,但是本发明的实施例不限于此,而是可以被应用于指示物理层中断信道接入或者指示信道状态为忙的情况。此外,本发明不限于NAV被重置的情况,而是也可以被应用于指示物理层继续信道接入或者指示信道状态为空闲的情况。在这种情况下,可以使用在物理层和MAC层之间交换的原语。或者,可以使用在MLD的一个STA和另一个STA之间交换的原语。或者,可以使用在MLD的一个MAC层和另一个MAC层之间交换的原语。
根据本发明的一实施例,当属于MLD的STA开始接收PPDU时,属于MLD的另一STA可以停止信道接入。如上所述,可以基于接收到的持续时间信息来停止信道接入,但是由于包括持续时间信息的字段的位置或解码等所需的时间,可能存在从开始接收PPDU到获得持续时间信息为止的时间。因此,如果在该时间期间接入信道并开始传输,则可能发生上述问题。因此,根据本发明的一实施例,MLD的STA可以从MLD的另一STA开始接收的时间点停止信道接入。此外,当确定在MLD的另一STA开始接收之后接收到的帧不是指向另一STA时,可以重新开始信道接入。
图12是图示根据本发明另一实施例的多链路NAV设置操作的另一示例的图。
图12图示图11中所示的实施例的具体方法的详细描述,因此将省略重复的描述。
如上所述,基于由属于MLD的某一STA接收的帧或PPDU,属于相同MLD的另一STA可停止或恢复信道接入或传输。在本发明中,停止信道接入或传输可以包括设置(更新)NAV、确定信道为忙或停止CCA的操作。此外,恢复信道接入或传输可以包括重置NAV、取消NAV设置、确定信道为空闲、或执行CCA等操作。在下文中,可以将这种操作指示为停止和恢复信道接入。此外,在下文中,STA 1和STA 2属于MLD,并且STA 1和STA 2分别在链路1和链路2上操作。此外,帧和PPDU可以混用。此外,此时的NAV可以是如图11中所述的BSS内NAV或链路间NAV。
根据本发明的实施例,当STA 1开始接收帧时,STA 2可以中断信道接入。此外,当STA 1从L-SIG获得持续时间信息时,STA 2可继续中断信道接入的状态。在这种情况下,STA2中断信道接入的状态可以被确定为直到STA 1接收到的帧的结束为止。此外,当STA 1没有正确地解码L-SIG(即,无效L-SIG)时,STA 2可恢复信道接入。
此外,STA 1可从接收的帧的U-SIG接收TXOP持续时间和BSS颜色。如果接收到的BSS颜色是BSS内,或者BSS颜色是对应于STA 1的BSS颜色,则可以中断信道接入。在一个实施例中,此时用于中断信道接入的时间段可以是直到接收到的帧的结束为止。在这种情况下,在接收到的帧结束之后,可以更快地开始信道接入。在另一实施例中,中断信道接入的持续时间可以是TXOP持续时间。在这种情况下,可以基于L-SIG来更新中断的信道接入的持续时间。在这种情况下,可以更好地保护在接收帧之后的后续序列。
或者,存在这种情况,其中,STA 1可从接收的帧的U-SIG接收TXOP持续时间和BSS颜色,并且接收的BSS颜色可指示不是BSS内,或者BSS颜色不是与STA 1对应的BSS颜色。或者,可能存在STA 1未能成功解码U-SIG的情况。在这种情况下,STA 2可以恢复信道接入。
或者,如果从由STA 1接收的帧的U-SIG获得的信息指示相应的帧是STA 1不接收的帧,则STA 2可以恢复信道接入。例如,如果从U-SIG获得的PHY标识符是对应于未来标准的ID或不能被识别的ID,则STA 2可以恢复信道接入。
此外,虽然已经描述了接收U-SIG的情况,但是相同的实施例也可以应用于在接收HE PPDU的情况下接收HE-SIG-A的情况。例如,HE-SIG-A可包括TXOP持续时间和BSS颜色,因此可执行如上所述的操作。
此外,可以从由STA 1接收的帧的EHT-SIG接收STA-ID。如果接收到的STA-ID是应由STA 1接收的指示符,例如,如果STA-ID指示STA 1,STA-ID指示STA 1所属的组,或者STA-ID指示广播,则STA 2可以保持信道接入被中断的状态。
或者,可以从由STA 1接收的帧的EHT-SIG接收STA-ID。如果接收到的STA-ID是不对应于STA 1的指示符,例如,如果STA-ID不表示对应于STA 1的指示符,STA-ID不表示STA1所属的组,并且STA-ID不表示广播,则STA 2可以恢复信道接入。或者,即使STA 1没有成功地解码EHT-SIG,STA 2也可以恢复信道接入。
此外,尽管已经描述了接收EHT-SIG的情况,但是相同的实施例也可应用于接收HEPPDU的情况下接收HE-SIG-B的情况。例如,HE-SIG-B可以包括STA-ID,并且因此可以执行如上所述的操作。
此外,STA 1可以接收到要接收的帧的MAC头部。如果包括在接收的MAC头部中的接收地址(RA)或目的地址(DA)指示STA 1应该接收的值,例如,如果RA或DA指示STA 1所属的组或者STA-ID指示广播,则STA 2可以保持信道接入的中断状态。在这种情况下,可基于包括在接收的MAC头部中的持续时间信息来确定信道持续时间。更具体地,中断的信道接入的持续时间可以是基于包括在接收的MAC头部中的Duration/ID字段指示的持续时间信息的。
此外,STA 1可以接收到要接收的帧的MAC头部。如果包括在接收到的MAC头部中的RA或DA是不对应于STA 1的指示符,例如,如果RA或DA不表示对应于STA 1的指示符,不表示STA 1所属的组并且不表示广播,则STA 2可以恢复信道接入。或者,STA 1可能没有接收到所有MAC头部。例如,STA 1可能未成功地接收到包括在A-MPDU中的所有MPDU。在这种情况下,STA 2可以恢复信道接入。
在图12中描述的信道接入中断和恢复可以随着在STA 1中开始接收帧(或PPDU)并依次进行解码而根据解码顺序依次操作。解码顺序可以基于PPDU格式、帧格式等。例如,可以按照L-SIG、U-SIG、EHT-SIG和MAC头部的顺序来执行解码(在EHT PPDU的情况下)。或者,可以按照L-SIG、HE-SIG-A和MAC头部的顺序执行解码(在HE SU PPDU和HE TB PPDU的情况下)。或者,可以按照L-SIG、HE-SIG-A、HE-SIG-B和MAC头部的顺序来执行解码(在HE MUPPDU的情况下)。或者,可以按照L-SIG和MAC头部的顺序执行解码(在11a/g PPDU的情况下)。
根据本发明的实施例,上述STA-ID可以是指示PPDU或资源单元(RU)的期望接收者的值。此外,STA-ID可以被包括在EHT-SIG字段或HE-SIG-B字段中。此外,STA-ID可以指示与单个STA相对应的值。例如,当多个STA被包括在MLD中时,STA-ID可以指示与多个STA中的一个STA相对应的值。此外,STA-ID可以是基于STA的AID或MAC地址的一个值。
图13是图示根据本发明的一实施例的BSS分类和基于BSS分类的操作的一示例的图。
根据本发明的一实施例,STA可基于接收到的帧或接收到的PPDU对BSS进行分类(或判断)。对BSS的分类可包括根据接收到的帧或接收到的PPDU是否对应于进行分类的STA所属的BSS而进行的分类。或者,对BSS的分类可以指根据接收到的帧或接收到的PPDU是否是从进行分类的STA所属的BSS发送的而进行分类的操作。此外,对BSS的分类可包括根据接收到的帧或接收到的PPDU是否是从被分类的STA所不属于的BSS发送的而进行分类的操作。此外,对BSS的分类可以包括根据接收到的帧或接收到的PPDU属于哪个BSS而进行分类的操作。或者,对BSS的分类可以表示根据接收到的帧或接收到的PPDU从哪个BSS发送的而进行分类的操作。根据本发明的一实施例,被分类的STA所属的BSS可被称为BSS内。或者,包括被分类的STA所属的BSS的BSS可以被称为BSS内。此外,不是BSS内的BSS可以被称为BSS间。或者,不是BSS内的BSS可以是BSS间或未被分类的BSS。或者,BSS间可以包括未被分类的BSS。此外,被分类的STA不所属的BSS可以被称为BSS间。
根据本发明的一实施例,当确定接收到的帧或接收到的PPDU对应于BSS内或从BSS内发送时,接收到的帧或接收到的PPDU可以分别被称为BSS内帧或BSS内PPDU。此外,当确定接收到的帧或接收到的PPDU对应于BSS间或从BSS间发送时,接收到的帧或接收到的PPDU可以分别被称为BSS间帧或BSS间PPDU。此外,包括BSS内帧的PPDU可以是BSS内PPDU。此外,包括BSS间帧的PPDU可以是BSS间PPDU。
根据本发明的一实施例,可基于一个或多个BSS分类条件对BSS进行分类。例如,可以根据是否满足一个或多个BSS分类条件中的至少一个来分类BSS。
BSS分类条件可以包括基于BSS颜色的条件。BSS颜色可以是BSS的标识符。此外,BSS颜色可以被包括在PPDU的前导中,更具体地,被包括在信令字段(例如,HE-SIG-A字段、U-SIG字段或VHT-SIG-A字段)中。此外,BSS颜色可被包括在从发送方的MAC层传送到PHY层的TXVECTOR中。此外,BSS颜色可以被包括在从接收者的PHY层传送到MAC层的RXVECTOR中。包括在TXVECTOR和RXVECTOR中的参数可分别被称为TXVECTOR参数和RXVECTOR参数。此外,BSS颜色可被包括在TXVECTOR参数或RXVECTOR参数中。此外,AP可以向STA通知由AP设置的BSS颜色。根据一实施例,可基于包括在接收到的PPDU中的BSS颜色对BSS进行分类。如果包括在STA接收到的PPDU中的BSS颜色不同于与STA对应的BSS的BSS颜色,则接收到的PPDU可以被分类为BSS间PPDU。或者,如果包括在STA接收到的PPDU中的BSS颜色不同于与STA对应的BSS的BSS颜色并且其值不为零,则接收到的PPDU可以被分类为BSS间PPDU。此外,如果包括在STA接收到的PPDU中的BSS颜色与对应于STA的BSS的BSS颜色相同,则接收到的PPDU可以被分类为BSS内PPDU。
BSS分类条件可以包括基于MAC地址的条件。MAC地址可以被包括在帧的MAC头部中。此外,MAC地址可以包括接收器地址(RA)、发送器地址(TA)、BSSID、源地址(SA)、目的地址(DA)等。根据一实施例,可基于包括在接收到的帧中的MAC地址对BSS进行分类。如果包括在接收到的帧中的MAC地址与对应于STA的BSS的BSSID不同,则接收到的帧可以被分类为BSS间PPDU。更具体地,如果包括在接收到的帧中的所有MAC地址与对应于STA的BSS的BSSID不同,则接收到的帧可以被分类为BSS间PPDU。此外,如果包括在接收到的帧中的MAC地址与对应于STA的BSS的BSSID相同,则接收到的帧可以被分类为BSS内帧。更具体地,如果包括在接收的帧中的MAC地址中的至少一个与对应于STA的BSS的BSSID相同,则接收的帧可被分类为BSS内帧。
上述对应的BSS可以包括STA所关联的BSS。此外,对应的BSS可以包括包含在与STA所关联的BSS相同的多重BSSID集中的BSS。此外,对应的BSS可以包括包含在与STA所关联的BSS相同的共宿(co-hosted)BSSID集中的BSS。此外,关于包括在相同的多重BSSID集或相同的共宿BSSID集中的一个或多个BSS的信息可以通过一个帧来传送。
BSS分类条件可以包括基于包括在VHT PPDU中的部分AID字段的值的条件。部分AID字段可以被包括在VHT PPDU的前导中。此外,部分AID字段可以被包括在VHT PPDU中所包括的VHT-SIG-A字段中。根据本发明的一实施例,部分AID字段可以表示BSS颜色的一部分。例如,当使用部分BSS颜色功能时,部分AID字段可以指示BSS颜色的一部分。或者,当使用AID分配规则时,部分AID字段可以指示BSS颜色的一部分。AID分配规则可以是基于BSS颜色分配AID的方法。此外,如果VHT PPDU的VHT-SIG-A字段中包括的组ID字段具有预设值(例如,组ID字段被设置为63),则部分AID字段可以指示BSS颜色的一部分。根据一实施例,当接收到的PPDU的部分AID字段指示BSS颜色的一部分时,如果接收到的部分AID字段的值不同于与接收到的STA对应的BSS颜色的一部分,则接收到的PPDU可以被分类为BSS间PPDU。
此外,当接收到的PPDU的部分AID字段指示BSS颜色的一部分时,如果接收到的部分AID字段值等于与接收到的STA对应的BSS颜色的一部分,则接收到的PPDU可以被分类为BSS内PPDU。此外,在这种情况下,BSS颜色的一部分可以是BSS颜色的4个LSB。根据另一实施例,部分AID字段可以指示BSSID的一部分。例如,如果VHT PPDU的VHT-SIG-A字段中包括的组ID字段具有预设值(例如,组ID字段被设置为0),则部分AID字段可以指示BSSID的一部分。根据一实施例,当接收到的PPDU的部分AID字段指示BSSID的一部分时,如果接收到的部分AID字段值不同于与接收到的STA对应的BSSID的一部分,则接收到的PPDU可以被分类为BSS间PPDU。此外,当接收到的PPDU的部分AID字段指示BSSID的一部分时,如果接收到的部分AID字段值等于与接收到的STA对应的BSSID的一部分,则接收到的PPDU可以被分类为BSS内PPDU。此外,在这种情况下,BSSID的一部分可以是BSSID的9个MSB。此外,部分AID字段值可被包括在TXVECTOR参数PARTIAL_AID或RXVECTOR参数PARTIAL_AID中。此外,组ID字段值可被包括在TXVECTOR参数GROUP_ID或RXVECTOR参数GROUP_ID中。
BSS分类条件可以包括AP接收满足预定条件的PPDU的条件。例如,预定条件的PPDU可以包括下行链路PPDU。根据一实施例,下行链路PPDU可以包括VHT MU PPDU。此外,下行链路PPDU可以包括其中指示是上行链路还是下行链路的信令被设置为预设值的PPDU。指示是上行链路还是下行链路的信令可以被包括在HE PPDU的信令字段中。或者,指示是上行链路还是下行链路的信令可以被包括在U-SIG中。U-SIG可以被包括在EHT PPDU或EHT标准之后的PPDU的前导中。
此外,可能存在不能被分类为BSS内PPDU或BSS间PPDU的情况。例如,如果不满足上述分类为BSS内PPDU的条件和分类为BSS间PPDU的条件两者,则可能无法分类为BSS内PPDU或BSS间PPDU。
此外,当在对BSS进行分类时如果根据多个条件的分类结果不一致,则可以根据预定条件来确定最终结果。例如,当根据基于BSS颜色的条件的结果与根据基于MAC地址的条件的结果不一致时,根据基于MAC地址的条件的结果可以被优先考虑或可以将最终结果确定为根据基于MAC地址的条件的结果。或者,如果满足了分类为BSS内PPDU的条件和分类为BSS间PPDU的条件两者,则可以将其分类为BSS内PPDU。
根据本发明的一实施例,STA可以执行基于分类的BSS的操作。基于分类的BSS的操作可以包括PPDU内节电操作。PPDU内节电操作可以是基于接收到的PPDU的节电操作。当满足预定条件时,可以执行PPDU内节电操作。预定条件可以包括将接收到的PPDU分类为BSS内PPDU的条件。此外,预定条件可以包括这样的条件,其中,接收到的PPDU的强制接收者不是接收到该PPDU的STA。例如,如果包括在PPDU中的ID或地址不对应于接收到该PPDU的STA,则PPDU的强制接收者可以不对应于接收到该PPDU的STA。ID可以被包括在PPDU的前导中。例如,ID可以是包括在PPDU的前导中的STA_ID。此外,STA_ID可以被包括在HE MU PPDU或EHTPPDU中。此外,地址可以是上述MAC地址。此外,当包括在接收到的PPDU中的指示是上行链路还是下行链路的信令指示上行链路时,PPDU的强制接收者可以不是接收到该PPDU的STA。此外,当接收到PPDU的STA被配置为不支持接收到的PPDU的配置时,PPDU的强制接收者可以不是接收到该PPDU的STA。接收到的PPDU的配置可以包括PPDU的MCS、空间流数量、信道宽度等。此外,如果接收到PPDU的STA不支持所接收的PPDU的配置,则可以接收PHY-RXEND.indication(UnsupportedRate)原语。此外,如果接收到的PPDU具有预设格式,则PPDU的强制接收者可以不是接收到该PPDU的STA。预定格式可以包括TB PPDU。TB PPDU可以包括HE TB PPDU和EHT TB PPDU。此外,TB PPDU可以是响应于触发的帧而发送的PPDU。触发的帧可以包括触发帧。触发的帧可以包括包含触发信息的帧。触发信息可以被包括在MAC头部(例如,A-控制字段)中。此外,触发信息或包括在触发帧中的信息可以包括响应PPDU的长度、响应时要使用的RU、响应时要使用的PHY配置、MAC配置等。PPDU内节电操作可以是进入瞌睡(doze)状态直到接收到的PPDU的末尾的操作。在另一实施例中,当STA确定所接收的PPDU或帧的强制接收者不是STA时,可以中断PPDU或帧的接收或解码。
基于分类的BSS的操作可以包括设置(或更新)NAV的操作。根据一实施例,STA可操作一个或多个NAV。此外,当STA接收到PPDU或帧时,STA可以基于接收到的PPDU或帧来设置与分类的BSS相对应的NAV。例如,BSS内NAV可以是对应于BSS内PPDU的NAV。此外,基本NAV可以是对应于除BSS内PPDU之外的PPDU的NAV。或者,基本NAV可以是对应于BSS间PPDU的NAV。此外,当基于接收到的PPDU或接收到的帧设置NAV时,可使用包括在接收到的PPDU或接收到的帧中的持续时间信息。持续时间信息可包括TXOP。例如,TXOP可指示包括在TXOP字段中的值。TXOP字段可被包括在PPDU的前导中。例如,TXOP字段可被包括在HE PPDU的HE-SIG-A字段中。或者,TXOP字段可被包括在EHT PPDU或EHT之后的标准的PPDU的U-SIG字段中。此外,持续时间信息可以被包括在MAC头部中。例如,持续时间信息可以被包括在MAC头部中包括的持续时间/ID字段中。
基于分类的BSS的操作可以包括空间重用操作。此外,基于分类的BSS的操作可以包括信道接入操作。空间重用操作可以是信道接入操作。当STA接收到PPDU或帧时,如果满足预设条件,则STA可以执行空间重用操作。预设条件可以包括与接收到的PPDU或接收到的帧对应于BSS间的条件。此外,预设条件可以包括接收到的PPDU或帧的信号强度小于阈值的条件。例如,阈值可以是可变的。此外,阈值可以是用于基于OBSS PD的空间重用操作的阈值。此外,阈值可以是大于或等于CCA阈值的值。此外,阈值可以是基于要发送的功率的值。空间重用操作可以包括发送PPDU的操作。此外,空间重用操作可以包括复位PHY的操作。例如,复位PHY的操作可以是发布PHY-CCARESET.request原语的操作。此外,空间重用操作可以包括不基于接收到的PPDU或接收到的帧来设置NAV的操作。如果STA执行空间重用操作,则STA可以在接收到的PPDU或帧被发送或接收期间发送PPDU。
参照图13,可以存在BSS A和BSS B,并且BSS A和BSS B可以是不同的BSS。此外,BSS A和BSS B可以彼此对应于BSS间。也就是说,由关联于BSS A的STA在BSS B中发送的PPDU或帧可以被分类为BSS间PPDU或BSS间帧。此外,可以存在属于BSS A(或与运行BSS A的AP相关联)的STA 1和STA 2。可以存在属于BSS B(或与运行BSS B的AP相关联)的STA 3和STA 4。参照图13,STA 1可以发送PPDU。此外,由STA 1发送的PPDU可以包括关于BSS的信息。例如,关于BSS的信息可以是用于对上述BSS进行分类的信息。此外,由STA 1发送的PPDU可以包括持续时间信息。
STA 2可接收由STA 1发送的PPDU,并对该PPDU的BSS进行分类。此外,由于STA 2和STA 1属于BSS A,所以由STA 2接收的PPDU可以被分类为BSS内PPDU。此外,STA 2接收的PPDU可以是UL PPDU,或者可以是其强制接收者不是STA的PPDU。因此,根据上述实施例,STA2可以执行PPDU内节电。参照图13,STA 2可以进入瞌睡状态直到接收到的PPDU的结束时间。STA 2可基于包括在接收到的PPDU中的持续时间信息来设置NAV。由于STA 2将接收到的PPDU分类为BSS内PPDU,因此STA 2可以设置BSS内NAV。
STA 3可以接收从STA 1发送的PPDU,并且对该PPDU的BSS进行分类。此外,由于STA3和STA 1分别属于BSS B和BSS A,所以STA 3接收的PPDU可以被分类为BSS间PPDU。此外,STA 3可基于包括在接收到的PPDU中的持续时间信息来设置NAV。由于STA 3将接收到的PPDU分类为BSS间PPDU,因此STA 3可以设置基本NAV。
STA 4可以接收从STA 1发送的PPDU,并且对该PPDU的BSS进行分类。此外,由于STA4和STA 1分别属于BSS B和BSS A,因此STA 4接收到的PPDU可以被分类为BSS间PPDU。此外,STA 4接收到的PPDU的信号强度可以小于阈值。因此,由于STA 4接收到的PPDU被分类为BSS间PPDU,并且STA 4接收到的PPDU的信号强度小于阈值,因此STA 4可以执行空间重用操作。因此,STA 4可以执行信道接入和退避过程,并且可以开始发送。例如,STA 4可以在由STA 1发送的PPDU尚未结束的时间点开始发送。
图14图示根据本发明的实施例的站的功能。
根据本发明的实施例,遵循某个无线LAN标准的站可包括先前的无线LAN标准的功能。这是为了向下兼容性。例如,支持特定无线LAN标准的站可以支持前一代无线LAN标准功能,并且还可以支持新功能。例如,HT站可支持OFDM PHY站的基本功能。因此,HT站可被分类为OFDM PHY站。此外,HT站不仅支持OFDM PHY站的功能,而且支持不支持OFDM PHY站的附加功能。VHT站可以在支持HT站的基本功能的同时支持HT站不支持的功能。VHT站可以被分类为HT站。此外,HE站可以在支持VHT站的基本功能的同时支持VHT站不支持的功能。HE站可被分类为VHT站。此外,EHT STA也可以是HE STA。此外,EHT站可在支持HE站的基本功能的同时支持HE站不支持的功能。此外,EHT站可被分类为HE站。此外,可以重新定义EHT标准之后的无线LAN标准。在本发明中,EHT标准之后的标准被称为NEXT标准,并且遵循NEXT标准的站被称为NEXT站。NEXT站可在支持EHT站的基本功能的同时支持EHT站不支持的功能。NEXT站可被分类为EHT站。
图14是图示支持各无线LAN标准的站之间的关系的图。参照图11,EHT站可以是HE站,可以是VHT站,可以是HT站,可以是OFDM PHY站。此外,NEXT站可以是EHT站,可以是HE站,可以是VHT站,可以是HT站,可以是OFDM PHY站。
图16图示根据本发明的实施例的UL MU操作。
在本发明的一实施例中,接入点可发送引起多用户(MU;multi-user)传输的帧。这种帧被称为触发帧。在这种情况下,已经接收到触发帧的一个或多个站可以基于触发帧执行上行链路传输。具体地,已经接收到触发帧的一个或多个站可发送针对该帧的响应帧。在这种情况下,包括触发帧的PPDU与用于上行链路传输的PPDU之间的间隔(inter-space)可以是SIFS。具体地,多个站可接收触发帧并同时(simulatneous)发送即时(immediate)响应。即时响应表示先前接收的PPDU和包括响应的PPDU之间的间隔是SIFS。
触发帧是一种控制帧,并且可以是包括触发信息的触发帧。此外,触发帧可以是在MAC头部中包括触发信息的帧。在这种情况下,触发信息可以是包括在MAC头部的HT控制字段、控制子字段或A-控制子字段中的触发响应调度(TRS;triggered responsescheduling)。此外,触发信息可以是引起TB PPDU的传输的信息。
TB PPDU是包括对触发帧的响应帧的PPDU格式。TB PPDU可以包括HE TB PPDU和EHT TB PPDU。此外,TB PPDU可以包括在NEXT无线LAN标准中定义的NEXT TB PPDU。HE TBPPDU可包括顺序地包括L-STF、L-LTF、L-SIG、RL-SIG、HE-SIG-A、HE-STF和HE-LTF的前导,并且可包括前导之后的数据和分组扩展(PE;packet extension)。此外,EHT TB PPDU和NEXTTB PPDU可以包括顺序包括L-STF、L-LTF、L-SIG、RL-SIG、U-SIG、(EHT-/NEXT-)STF和(EHT-/NEXT-)LTF的前导,并且可以包括前导之后的数据和分组扩展(PE)。
触发帧可以包括发送TB PPDU所需的信息。如果MAC帧的类型子字段(B 3B2)的值是01b,并且子类型子字段(B7 B6 B5 B4)的值是0010b,则该帧可以是MAC帧触发帧。
当响应触发帧的多个站发送不同格式的TB PPDU时,接入点可能难以接收TBPPDU。此外,当由多个站发送的PPDU的前导彼此不同时,接入点可能难以接收TB PPDU。尤其是,当发送不同格式的TB PPDU的RU彼此重叠时,接入点可能难以接收TB PPDU。因此,发送针对一个触发帧的响应的多个站可使用相同格式的TB PPDU。此外,由发送针对一个触发帧的响应的多个站发送的TB PPDU的前导信息可以相同。
如参照图14所述,HE站可发送HE TB PPDU。此外,EHT站可发送EHT TB PPDU或HETB PPDU。此外,NEXT站可发送NEXT TB PPDU、EHT TB PPDU或HE TB PPDU。
在图15的实施例中,AP发送用于调度HE站(HE STA)的发送和EHT站(EHT STA)的发送的触发帧。在这种情况下,在触发帧不指示将被发送以响应触发帧的TB PPDU的格式的情况下,HE站(HE STA)和EHT站(EHT STA)或彼此不同的EHT站(EHT STA)可以发送不同格式的TB PPDU。因此,TB PPDU的传输可能失败,并且可能浪费传输机会。为了便于描述,在HE、EHT和NEXT标准中定义的触发帧分别被称为HE触发帧、EHT触发帧和NEXT触发帧。此外,在HE、EHT和NEXT标准中定义的TRS被称为HE TRS、EHT TRS和NEXT TRS。将参照图13描述触发帧的格式。
图16图示根据本发明的实施例的触发帧的格式和包括在触发帧中的子字段。
具体地,图16的(a)图示触发帧的格式,图16的(b)图示触发帧的公共信息(CommonInfo)字段,且图16的(c)图示触发帧的用户信息(User Info)字段。触发帧的MAC头部包括帧控制(Frame Control)字段、持续时间(Duration)字段和地址(Address)字段。在这种情况下,地址字段包括RA字段和TA字段。触发帧包括公共信息字段和用户信息列表(UserInfo List)字段。公共信息字段包括用于由触发帧触发的所有站的信息。此外,用户信息列表字段可包括用户信息字段。在具体实施例中,特定类型的触发帧可以不包括用户信息列表字段。此外,触发帧可以包括填充(Padding)字段和FCS字段。填充字段可用于增加帧长度以确保接收触发帧的STA准备响应所需的时间,并且可存在可选(optionally)字段。
公共信息字段可包括触发类型(Trigger Type)子字段。触发类型子字段识别触发帧变体(varaint)。触发帧可以通过触发类型子类型的值来指示触发帧的类型。此外,可根据触发类型子字段来确定包含在触发相关公共信息(Trigger Dependent Common Info)子字段、触发相关用户信息(Trigger Dependent User Info)子字段中的信息和触发相关公共信息子字段、触发相关用户信息子字段的长度。例如,可以由公共信息字段的B0到B3比特位的比特位表示触发类型子字段。
此外,公共信息字段可包括UL长度子字段(UL Length subfield)。UL长度子字段可以包括关于响应于触发帧的TB PPDU的长度的信息。或者,UL长度子字段可以包括关于响应于触发帧的帧的长度的信息。此外,UL长度子字段可以指示响应于触发帧的TB PPDU的L-SIG的长度子字段中将要包括的值。因此,用TB PPDU进行响应的STA可以基于包括在接收到的触发帧中的UL长度子字段的值来设置TB PPDU的L-SIG的长度子字段。更具体地,用TBPPDU进行响应的STA可以将TB PPDU的L-SIG的长度子字段设置为包括在接收到的触发帧中的UL长度子字段的值。例如,可以由公共信息字段的B4到B15的比特位表示UL长度子字段。
此外,公共信息字段可以包括UL BW子字段。UL BW子字段可以指示响应于触发帧的TB PPDU的信令字段(例如,HE-SIG-A字段或U-SIG字段)中包括的带宽(BW)值。此外,ULBW子字段可以指示响应于触发帧的TB PPDU的最大带宽。
此外,公共信息字段可以包括响应于触发帧的TB PPDU的信令字段,例如,HE-SIG-A字段或U-SIG字段中将要包括的信息等。
用户信息字段可包括AID12子字段。AID12子字段可以起到指示包括AID12子字段的用户信息字段的期望接收者或指示用户信息字段的功能的作用。因此,AID12子字段可以起到指示包括AID12子字段的触发帧的期望接收者或指示触发帧的功能的作用。例如,当AID12子字段的值是预定值时,可以表示用户信息字段指示随机接入资源单元(RA-RU;random access resource unit)。更具体地,如果AID12子字段的值是0,则用户信息字段可以指示用于关联(associated)的站的RA-RU。此外,如果AID12子字段的值是2045,则用户信息字段可以指示用于未关联(unassociated)的站的RA-RU。此外,对于与由AID12子字段的值指示的STAID(例如,AID(关联ID))对应的站,包括AID12子字段的用户信息字段或包括AID12子字段的触发帧可以指示触发响应。例如,AID12子字段可以表示AID或AID的12个LSB。与AID12子字段的值对应的站可以用TB PPDU响应触发帧。此外,AID12子字段的值可以在1至2007的范围内(包括1和2007)。此外,当AID12子字段具有预定值(例如,2046)时,相应的RU可以指示没有分配给任何站。此外,当AID12子字段具有预定值(例如,4095)时,可以指示触发帧的填充的开始。
此外,包括AID12子字段的用户信息字段的信息可以是与由AID12子字段指示的站对应的信息。例如,RU分配(RU Allocation)子字段可以指示RU的大小和位置。在这种情况下,包括AID12子字段的用户信息字段的RU分配子字段的值可以是与由AID12子字段指示的站对应的信息。此外,用户信息字段可以指示用于针对包括用户信息字段的触发帧的响应的编码方法(UL FEC编码类型)、调制方法(UL HE-MCS、UL DCM)和传输功率(UL目标RSSI)。
如上所述,根据响应于触发帧而同时发送的TB PPDU以哪种PPDU格式被发送,可能出现问题。将参照图14来描述与此相关的触发帧的发送方法。
图17图示根据本发明的实施例的由触发帧的AID12子字段的值指示的信息。
根据本发明的实施例,EHT站可选择性地发送HE TB PPDU和EHT TB PPDU。此外,NEXT站可选择性地发送HE TB PPDU、EHT TB PPDU和NEXT TB PPDU。由此,可以使用一个帧或一个PPDU来调度多个无线LAN标准的站。因此,可以提高传输介质的使用效率。例如,可以使不支持EHT标准的HE站和EHT站用一个帧的HE TB PPDU来进行响应。
此外,用于选择TB PPDU格式的信息可以被包括在触发帧、TRS或包括触发帧的PPDU或包括TRS的PPDU中。
根据本发明的实施例,关于响应的TB PPDU格式的信息可以存在于MAC层。根据本发明的实施例,触发帧可被划分为HE触发帧、EHT触发帧和NEXT触发帧。此外,由HE触发帧、EHT触发帧和NEXT触发帧触发的响应可以分别用HE TB PPDU、EHT TB PPDU和NEXT TB PPDU响应。
此外,区分HE触发帧、EHT触发帧和NEXT触发帧可以意味着将要响应于该触发帧的TB PPDU格式分别区分为HE TB PPDU、EHT TB PPDU和NEXT TB PPDU。即,根据触发帧的格式,针对该触发帧的TB PPDU的格式也可以改变,并且下一代触发帧可以同时指示前一代TBPPDU的传输。即,EHT触发帧可以同时指示HE TB PPDU和EHT TB PPDU的传输。然而,HE触发帧不能指示EHT TB PPDU的传输。
在具体的实施例中,可以根据包括在触发帧中的MAC头部的帧控制字段来确定触发帧对应于HE触发帧、EHT触发帧和NEXT触发帧中的哪一种触发帧。例如,根据包括在触发帧中的MAC头部的帧控制字段的类型(Type)子字段、子类型(Subtype)子字段或控制帧扩展(Control Frame Extension)子字段中的至少一个,可以确定触发帧对应于HE触发帧、EHT触发帧和NEXT触发帧中的哪一种触发帧。例如,当包括在触发帧中的MAC头部的帧控制字段的类型子字段、子类型子字段或控制帧扩展子字段是第一值时,触发帧可以被分类为HE触发帧。此外,当包括在触发帧中的MAC头部的帧控制字段的类型子字段、子类型子字段或控制帧扩展子字段是第二值时,触发帧可以被分类为EHT触发帧。此外,当包括在触发帧中的MAC头部的帧控制字段的类型子字段、子类型子字段或控制帧扩展子字段是第三值时,触发帧可以被分类为NEXT触发帧。当MAC头部的帧控制字段的类型子字段的值是01b并且子类型子字段的值是0010b时,触发帧可以被分类为HE触发帧。类型子字段、子类型子字段和控制帧扩展子字段中的每一个被限制为2比特位、4比特位和4比特位。因此,这种实施例具有使用有限比特位字段的值来限制将来可使用的类型的缺点。
在另一具体实施例中,可以根据触发帧所包括的公共信息字段来确定触发帧对应于HE触发帧、EHT触发帧和NEXT触发帧中的哪一种触发帧。例如,当触发帧的公共信息字段的触发类型子字段的值是第一值时,触发帧可被分类为HE触发帧。当触发帧的公共信息字段的触发类型子字段的值是第二值时,触发帧可被分类为EHT触发帧。当触发帧的公共信息字段的触发类型子字段的值是第三值时,触发帧可被分类为NEXT触发帧。具体地,当触发帧的公共信息字段的触发类型子字段的值为0至7时,触发帧可被分类为HE触发帧。此外,当触发帧的公共信息字段的触发类型子字段的值不是0至7时,触发帧可被分类为EHT触发帧或NEXT触发帧。由于触发类型子字段的比特位数是有限的,因此该实施例具有使用有限的比特位字段的值来限制将来可使用的触发类型的缺点。
在另一个具体实施例中,可以根据触发帧所包括的UL长度字段来确定触发帧对应于HE触发帧、EHT触发帧和NEXT触发帧中的哪一种触发帧。例如,当通过将触发帧的UL长度字段的值除以3而获得的余数为第一值时,触发帧可以被分类为HE触发帧。当通过将触发帧的UL长度字段的值除以3获得的余数值是第二值时,触发帧可以被分类为EHT触发帧。当通过将触发帧的UL长度字段的值除以3而获得的余数为第三值时,触发帧可以被分类为NEXT触发帧。当通过将触发帧的UL长度字段的值除以3而获得的余数不为0时,触发帧可以被分类为HE触发帧。当通过将触发帧的UL长度字段的值除以3而获得的余数为1时,触发帧可以被分类为HE触发帧。当通过将触发帧的UL长度字段的值除以3而获得的余数为0时,可以将触发帧分类为EHT触发帧或NEXT触发帧。此外,可以根据触发帧的UL长度字段的值以及触发帧的格式标识符(Format Identifier)、PHY标识符和TB PPDU格式信令中的至少一个来确定触发帧对应于HE触发帧、EHT触发帧和NEXT触发帧中的哪一种触发帧。
在另一具体实施例中,根据触发帧所包括的用户信息字段,可以确定触发帧对应于HE触发帧、EHT触发帧和NEXT触发帧中的哪一种触发帧。具体地,可根据触发帧的用户信息字段的AID12子字段的值来确定触发帧对应于HE触发帧、EHT触发帧和NEXT触发帧中的哪一种触发帧。例如,可以根据触发帧的用户信息字段的AID12子字段的值是否为预先指定的值来确定触发帧对应于HE触发帧、EHT触发帧和NEXT触发帧中的哪一种触发帧。在这种情况下,包括指示触发帧的类型的AID12子字段的用户信息字段可以是用户信息字段列表中的第一用户信息字段。包括指示触发帧的类型的AID12子字段的用户信息字段可以位于包括指示站的AID的AID12子字段的用户信息字段之前。由此,接收触发帧的站可以在早期确定触发帧的类型。在另一具体实施例中,包括指示触发帧的类型的AID12子字段的用户信息字段可以在用户信息字段列表中位于用于HE站的用户信息字段之后。由此,可以防止由于传统站(即,HE站)不能确定AID12子字段的值的含义而产生的问题。此外,包括指示触发帧的类型的AID12子字段的用户信息字段可以不包括除了AID12子字段之外的子字段。这是因为,相应的用户信息字段用于指示触发帧类型,因此可能不需要除了触发帧类型之外的信息。在该实施例中,用户信息字段的长度根据AID12子字段的值而变化。图17图示当应用该实施例时AID12子字段的值所表示的含义。当AID12子字段的值是第一值时,AID12子字段可以表示包括AID12子字段的触发帧触发EHT TB PPDU的发送。第一值可以是2047。当AID12子字段的值是第二值时,AID12子字段可以表示包括AID12子字段的触发帧触发NEXT TB PPDU的发送。第二值可以是2048。
在另一具体实施例中,站可以根据触发站的用户信息字段的位置来确定作为对触发帧的响应而发送的TB PPDU的格式。具体地,站可以基于触发站的用户信息字段是否位于包括具有预定值的AID12子字段的用户信息字段之后,来确定作为对触发帧的响应而发送的TB PPDU的格式。在这种情况下,站可以基于触发站的用户信息字段是否位于包括具有第一值的AID12子字段的用户信息字段之后以及用户信息字段是否位于包括具有第二值的AID12子字段的用户信息字段之后,来确定作为对触发帧的响应而发送的TB PPDU的格式。在图17的实施例中,当触发站的用户信息字段位于包括具有2047的AID12子字段的用户信息字段之后时,站可以响应于触发帧而发送EHT TB PPDU。此外,当触发站的用户信息字段位于包括具有2048的AID12子字段的用户信息字段之后时,站可以响应于触发帧发送NEXTTB PPDU。此外,当触发站的用户信息字段位于包括具有2047的AID12子字段的用户信息字段和包括具有2048的AID12子字段的用户信息字段之后时,站可以响应于触发帧发送NEXTTB PPDU。此外,当触发站的用户信息字段位于包括具有2047的AID12子字段的用户信息字段和包括具有2048的AID12子字段的用户信息字段之前时,站可以响应于触发帧发送HE TBPPDU。
可以由用户信息字段中的除了AID12子字段之外的子字段来确定触发帧对应于HE触发帧、EHT触发帧和NEXT触发帧中的哪一种触发帧。
可以根据触发帧的填充字段来确定触发帧对应于HE触发帧、EHT触发帧和NEXT触发帧中的哪一种触发帧。例如,可以根据触发帧的填充字段是否包含预先指定的值来确定触发帧对应于HE触发帧、EHT触发帧和NEXT触发帧中的哪一种触发帧。
此外,前述实施例可以组合应用。例如,可以通过组合影响上述用于确定触发帧是否是HE触发帧、EHT触发帧还是NEXT触发帧的要素来进行判断。
此外,前述实施例可以用于确定要作为对TRS字段的响应而发送的TB PPDU的格式。
图18图示根据本发明的实施例的UL MU操作。
如上所述,触发帧可以在MAC帧头中包括TRS。如上所述,TRS可以被包括在HT控制字段中。具体地,当HT控制字段包括A-控制字段时,HT控制字段可以包括TRS。此外,TRS可以被包括在TRS控制字段中。控制列表(Control List)字段可以被连续地位于A-控制字段中。在这种情况下,控制列表字段可以包括TRS。
与包括TRS的MAC帧的期望接收者对应的站可基于TRS字段发送PPDU。在这种情况下,TRS可包括关于将由站响应于包括TRS的MAC帧而发送的PPDU或帧的长度的信息(ULData Symbols)。关于针对包括TRS的MAC帧的响应发送的功率的信息(AP Tx功率,UL目标RSSI)、用于发送针对包括TRS的MAC帧的响应的RU的位置和大小(RU分配)、以及关于针对包括TRS的MAC帧的响应发送的调制方法的信息(UL HE-MCS)。
可以根据无线LAN标准来定义TRS。在这种情况下,已经接收到包括TRS的MAC帧的站可以根据TRS的格式(即,根据在哪个无线LAN标准中定义的TRS)来确定要作为对TRS的响应发送的TB PPDU的格式。具体地,当站接收到HE TRS时,站可响应于TRS发送HE TB PPDU。此外,当站接收到EHT TRS时,站可响应于TRS发送EHT TB PPDU。此外,当站接收到NEXT TRS时,站可响应于TRS发送NEXT TB PPDU。在这种情况下,站可以基于A-控制子字段的控制ID子字段来确定是在哪个无线LAN标准中定义的TRS。TRS可以被划分为HE TRS和非HE的TRS。
TRS的格式可以根据包括TRS的HT控制字段是HE变体(variant)、EHT变体还是NEXT变体来确定。如果包括TRS的HT控制字段是EHT变体,则TRS可以是EHT TRS。此外,如果包括TRS的HT控制字段是NEXT变体,则TRS可以是NEXT TRS。此外,可以根据包括TRS的HT控制字段的比特位中的预定比特位的值、根据HT控制字段是HE变体、EHT变体还是NEXT变体来确定TRS的格式。例如,当HT控制字段的第一比特位B0和第二比特位B1的值是11b时,HT控制字段可以是HE变体。此外,可基于HT控制字段的第一比特位B0和第二比特位B1以及附加比特位(例如,第32比特位B31)来确定HT控制字段是HE变体、EHT变体还是NEXT变体。
在图18的一实施例中,当TRS包括在HE PPDU中时,接收到HE PPDU的站可响应于TRS发送HE TB PPDU。当TRS包括在EHT PPDU中时,接收到EHT PPDU的站响应于TRS发送EHTTB PPDU。当TRS包括在NEXT PPDU中时,接收到EHT PPDU的站响应于TRS发送NEXT TB PPDU。
此外,由包括在TRS中的子字段表示的信息可以根据包括TRS的PPDU格式而改变。如果TRS被包括在HE PPDU中,则包括在TRS中的与MCS相关的子字段(例如,UL HE-MCS子字段)可以指示与HE MCS表对应的值。此外,如果TRS被包括在EHT PPDU中,则包括在TRS中的与MCS相关的子字段(例如,UL HE-MCS子字段)可以指示与EHT MCS表对应的值。此外,如果TRS被包括在NEXT PPDU中,则包括在TRS中的与MCS相关的子字段(例如,UL HE-MCS子字段)可以指示与NEXT MCS表对应的值。此外,由RU分配子字段表示的信息可以根据包括TRS的PPDU格式而改变。
图19图示根据一实施例的块确认帧的格式。
接入点可以使用块确认帧来发送用于一个或多个MAC协议数据单元(MPDU;MACprotocol data unit)或一个或多个MAC服务数据单元(MSDU;MAC service data unit)的确认(ACK;acknowledgment)信息。已经接收到块确认帧的站可从块确认帧获得关于一个或多个MPDU或一个或多个MSDU的ACK信息。在这种情况下,MPDU或MSDU可以包括聚合(A)-MPDU或A-MSDU。ACK信息可以是表示MPDU或MSDU是否被成功接收的信息。此外,ACK信息可被包括在块确认帧中包括的块确认位图(Block ACK Bitmap)子字段中。例如,与块确认开始序列控制(块确认开始序列控制)字段相对应的块确认位图子字段可以表示关于从块确认帧所包括的块确认开始序列控制字段所指示的序列号开始的预定数量的MPDU或MSDU的ACK信息。块确认开始序列控制字段可以包括片段号(Fragment Number)字段和开始序列号(Starting Sequence Number)字段。开始序列号字段可以表示与开始序列号字段相对应的块确认位图字段的第一MSDU或MPDU或A-MSDU的序列号。
图19的(a)图示块确认帧的格式。在图19的(a)中,块确认帧可包括帧控制字段、持续时间字段、RA字段、TA字段、BA控制字段、BA信息字段和FCS字段。块确认帧可依次包括帧控制字段、持续时间字段、RA字段、TA字段、BA控制字段、BA信息字段和FCS字段。此外,帧控制字段可以是2个八位字节字段,持续时间字段可以是2个八位字节字段,RA字段可以是6个八位字节字段,TA字段可以是6个八位字节字段,BA控制字段可以是2个八位字节字段,BA信息字段可以具有可变长度,并且FCS字段可以是4个八位字节字段。
帧控制字段可以指示包括帧控制字段的帧的类型和子类型。已经接收到块确认帧的站可基于由帧控制字段指示的类型和子类型来确定帧是否是块确认帧。
持续时间字段可包括持续时间信息。已经接收到块确认帧的站可基于持续时间信息设置NAV。此外,已经接收到块确认帧的站可基于持续时间信息来延迟发送。
RA字段可指示块确认帧的期望接收者的地址。
TA字段可包括发送方STA地址。
图19的(b)图示BA控制字段的格式。
在图19的(b)中,BA控制字段可包括BA确认策略(BA Ack Policy)字段、BA类型字段、保留字段和TID_INFO字段。BA确认策略字段、BA类型字段、保留字段和TID_INFO字段可以顺序地位于BA控制字段中,并且BA控制字段可以是1比特位字段,BA确认策略字段可以是1比特位字段,BA类型字段可以是4比特位字段,保留字段可以是7比特位字段,并且TID_INFO字段可以是4比特位字段。
在除了HT-delayed协议之外的协议(例如,HE-Immediate协议)中,BA确认策略子字段可以被解码为保留字段。
BA类型子字段可以指示包括BA类型子字段的块确认帧是哪种变体。块确认帧的格式可根据块确认帧的变体而改变。已经接收到块确认帧的站可基于BA类型字段确定BA信息字段的格式。此外,由TID_INFO字段表示的信息可根据BA类型字段的值而改变。例如,当BA类型字段的值为1、2、3、6、10、11时,可以分别指示扩展压缩块确认变体、压缩块确认变体、多TID块确认变体、GCR块确认变体、GLK-GCR块确认变体、多STA块确认变体。在这种情况下,块确认变体可以被解释为表示块确认帧。
图19的(c)图示压缩块确认变体的BA信息字段和多STA块确认变体的BA信息字段。压缩块确认变体可以包括块确认开始序列控制字段和块确认位图字段。块确认开始序列控制字段可以是2个八位字节字段。包括在压缩块确认变体中的TID_INFO字段可以指示与压缩块确认变体所确认(ACK)的MSDU和MPDU相对应的业务标识符(TID;traffic identifier)值。可以基于块确认开始序列控制字段的片段号子字段来确定压缩块确认变体的块确认位图子字段的大小。例如,压缩块确认变体的块确认位图子字段的大小可以是8、32、64或128或256或512个八位字节。例如,如图20所示,可以基于片段号子字段来确定块确认位图子字段的大小以及可以被确认(ACK)的MSDU和A-MSDU的最大值。
多STA块确认变体可包括关于一个或多个站的ACK信息。此外,多STA块确认变体可包括关于一个或多个TID的ACK信息。多STA块确认变体可根据包括在Per AID TID Info(每个AID TID信息)字段中的AID和TID的组合包括多个BA信息字段。
图19的(d)图示Per AID TID Info子字段的格式。当包括在Per AID TID Info子字段中的AID11子字段的值不是预定值时,可以使用如图16的(d)的第一实施例中所示的Per AID TID Info子字段的格式。在这种情况下,预定值可以是2045。此外,当包括在PerAID TID Info子字段中的AID11子字段的值是预定值时,使用如图19的(d)的第二实施例中所示的Per AID TID Info子字段的格式。AID11子字段可以指示包括AID11子字段的PerAID TID Info子字段的接收者或Per AID TID Info子字段对应于哪一个站。此外,图16的(d)的第一个Per AID TID Info字段可以是用于关联的站的Per AID TID Info字段。图16的(d)的第二个Per AID TID Info字段可以是用于未关联的站的Per AID TID Info字段。
图19的(d)的第一个Per AID TID Info字段可包括AID TID Info字段、块确认开始序列控制字段和块确认位图字段。此外,AID TID Info字段、块确认开始序列控制字段和块确认位图字段可顺序地位于Per AID TID Info字段中。AID TID Info字段可以是2个八位字节字段。具体地,AID TID Info字段的格式可以如图19的(e)所示。此外,可根据AIDTID Info子字段的值来确定Per AID TID Info字段是否包括块确认开始序列控制字段和块确认位图字段。更具体地,可根据包括在AID TID信息子字段中的确认类型子字段的值来确定Per AID TID Info字段是否包括块确认开始序列控制字段和块确认位图字段。当PerAID TID Info字段包括块确认开始序列控制字段时,Per AID TID Info字段可包括片段号字段和开始序列号字段。此外,可以根据片段号字段的值来确定分片的程度、块确认位图子字段的大小、可以被确认(ACK)的MSDU和A-MSDU的最大数量。将参照图20详细描述根据片段号字段的值确定分片的程度、块确认位图子字段的大小、可以被确认(ACK)的MSDU和A-MSDU的最大数量。块确认位图子字段的大小可以是4个八位字节、8个八位字节、16个八位字节、32个八位字节、64个八位字节、128个八位字节、256个八位字节以及512个八位字节。
图19的(d)的第二个Per AID TID Info字段可包括AID TID Info字段、保留字段和RA字段。AID TID Info字段、保留字段和RA字段可被顺序地布置在Per AID TID Info字段中。AID TID Info字段可以是2个八位字节字段,保留字段可以是4个八位字节字段,且RA字段可以是6个八位字节字段。
AID TID Info字段的格式可以如图19的(e)的实施例所示。RA字段可以指示包括RA字段的Per AID TID Info字段的接收者的MAC地址。这是因为,当前述Per AID TID Info字段的接收者是未关联的站时,AID没有被分配给未关联的站。
AID TID Info子字段可以包括AID11子字段、Ack类型子字段和TID子字段。此外,AID11子字段和确认类型子字段和TID子字段可以依次位于AID TID Info子字段中。AID11子字段可以是11比特位字段,确认类型子字段可以是1比特位字段,TID子字段可以是4比特位字段。此外,如果AID11子字段不是预定值,则包括AID11子字段的Per AID TID Info子字段的接收者的AID可以包括11比特位。此外,确认类型子字段可指示Per AID TID Info字段是否包括块确认开始序列控制字段和块确认位图字段。如果确认类型子字段的值为1,则可以不存在块确认开始序列控制字段、块确认位图字段。当确认类型子字段的值为1时,包括确认类型子字段的Per AID TID Info子字段可以指示由Per AID TID Info子字段的接收者发送的所有帧被成功接收。在这种情况下,帧可以是一个或多个帧。如果确认类型子字段的值是1并且TID子字段的值是0至7,则Per AID TID Info字段可以指示针对请求确认帧的QoS数据帧或QoS空帧的确认(ACK)。如果确认类型子字段的值是1并且TID子字段的值是14,则Per AID TID Info字段可以表示成功接收到包括请求立即响应的MPDU的A-MPDU的所有MPDU的ACK。如果确认类型子字段的值是1并且TID子字段的值是15,则Per AID TID Info字段可以表示针对管理帧或节电轮询(PS-Poll)帧的ACK。TID子字段可以指示与块确认位图对应的TID。如上所述,TID子字段可以指示Per AID TID Info子字段是哪种ACK。
图20图示根据本发明的实施例的片段号子字段和块确认位图子字段。
如上所述,可以根据片段号子字段的值来确定块确认位图子字段的大小、可以被确认(ACK)的MSDU、A-MSDU的最大数量。此外,片段号子字段可以指示是否使用了分片。在这种情况下,分片可以是3级动态分片片段。图17图示与片段号相对应的块确认位图子字段的大小、可以被确认(ACK)的MSDU、A-MSDU的最大数量、以及是否使用了分片。可以针对图17中图示的被表示为保留的片段号子字段的值,来分配图17中未图示的块确认位图子字段的大小。
图21图示根据本发明的实施例的响应于HE TB PPDU发送多STA块确认帧的情况。
由某一标准支持的块确认位图的大小可能受限制。为了便于描述,块确认位图被称为位图。此外,位图的大小和长度可被用作相同的含义。在802.11ax HE标准中,位图的大小被限制为最大256比特位。
802.11ax HE标准可支持512比特位和1024比特位的位图。然而,支持802.11ax HE标准而不支持802.11ax HE标准之后的标准的站不能识别512比特位和1024比特位的位图。因此,相应站可能不能准确地解析包括512比特位或1024比特位的位图的Per AID TIDInfo字段或位于相应字段之后的Per AID TID Info字段。
在图21中,多STA块确认帧可包括多个Per AID TID Info字段,并且Per AID TIDInfo字段可具有可变长度。可以根据块确认位图子字段的大小或包含与否、块确认开始序列控制子字段的包含与否、片段号子字段的值、确认类型子字段的值、AID11子字段的值来确定Per AID TID Info字段的长度。在图18的实施例中,第一Per AID TID Info字段(PerAID TID Info 1)、第二Per AID TID Info字段(Per AID TID Info2)和第三Per AID TIDInfo字段(Per AID TID Info 3)分别是用于第一站(STA 1)、第二站(STA 2)和第三STA(STA 3)的Per AID TID Info字段。此外,第一Per AID TID Info字段(Per AID TID Info1)、第二Per AID TID Info字段(Per AID TID Info 2)和第三Per AID TID Info字段(PerAID TID Info 3)可以分别包括64比特位、512比特位和64比特位的块确认位图。此外,第三站(STA 3)可以是不支持512比特位、1024比特位的位图的站。接收多STA块确认帧的站可确定包括在Per AID TID Info字段中的AID11子字段是否指示站的AID,并且可顺序地解析AID11子字段直到获得指示站的AID的Per AID TID Info字段为止。在图18的实施例中,第三站(STA 3)在顺序地解析Per AID TID Info字段的过程中可能无法准确地解析第二PerAID TID Info字段(Per AID TID Info 2)。这是因为,第二Per AID TID Info字段(PerAID TID Info 2)具有第三站(STA 3)不支持的长度。因此,第三站(STA 3)可能不能准确地接收或解析第三个AID信息字段(第三个AID信息3)。
下面将参照图22描述不产生这种问题的方法。在以下描述中,为了便于解释,位图的大小被表示为512比特位和1024比特位。这是在先前标准中不支持但在新标准中使用的位图的大小。因此,可以应用不同数量的比特位,例如2048比特位和4096比特位,而不是512比特位和1024比特位。
图22图示根据本发明的实施例的UL MU操作。
如上所述,触发帧可以触发来自一个或多个站的响应。此时,响应可以是即时响应。因此,包括触发帧的PPDU和包括即时响应的PPDU之间的间隔可以是预定时间。在这种情况下,预定时间可以是SIFS。在2.4GHz频带中,SIFS可以是10us,在5GHz频带和6GHz频带中,SIFS可以是16us。如上所述,当AP发送触发帧并且接收触发帧的非AP站发送TB PPDU作为响应时,可以发送EHT TB PPDU或HE TB PPDU。在这种情况下,非AP站可以不仅是EHT站,还可以是HE站。此外,包括在TB PPDU中的帧可请求立即响应。在这种情况下,AP可发送多STA块确认帧。
当AP响应于从HE站发送的HE TB PPDU而发送多STA块确认帧时,AP可将包括在多STA块确认帧中的块确认位图子字段的长度限制为小于512比特位的值。因此,多STA块确认帧可以不包括512比特位或1024比特位的块确认位图子字段。当AP发送针对TB PPDU的响应时,AP可以在发送TB PPDU的站所支持的PPDU格式内无限制地使用。此外,当AP发送针对TBPPDU的响应时,AP可发送控制帧,例如,多STA块确认帧。当AP响应于TB PPDU发送响应帧时,如果通过将响应帧包括在HE SU PPDU、HE MU PPDU或EHT MU PPDU中来发送PPDU时的PPDU的长度小于或等于通过将响应帧包括在非HT PPDU中并以初级速率(primary rate)发送非HT PPDU时的PPDU的长度,则AP可使用HE SU PPDU、HE MU PPDU或EHT MU PPDU来发送响应帧。因此,AP可使用多STA块确认帧的期望接收者支持的任何PPDU来发送响应于HE站发送的HE TB PPDU的多STA块确认帧。在这种情况下,AP可以使用HE SU PPDU或HE MU PPDU。在这种情况下,包括在HE SU PPDU或HE MU PPDU中的多STA块确认帧所包括的块确认位图的长度可以是有限的。
在图22的实施例中,AP可将触发帧发送到第一站(非EHT HE STA1)、第二站(非EHTHE STA2)、第三站(EHT STA1)和第四站(EHT STA2)。在这种情况下,第一站(非EHT HESTA1)和第二站(非EHT HE STA2)是非EHT站并且是HE站。此外,第三站(EHT STA1)和第四站(EHT STA2)是EHT站。触发帧可以将要作为对触发帧的响应而发送的TB PPDU的格式指示为HE TB PPDU。第一站(非EHT HE STA1)、第二站(非EHT HE STA2)、第三站(EHT STA1)和第四站(EHT STA2)将HE TB PPDU发送到AP。AP向第一站(非EHT HE STA1)、第二站(非EHT HESTA2)、第三站(EHT STA1)和第四站(EHT STA2)发送多STA块确认帧,该多STA块确认帧仅包括具有小于预定大小的比特位数的块确认位图。在这种情况下,预定大小可以是512比特位。此外,AP向第一站(非EHT HE STA1)、第二站(非EHT HE STA2)、第三站(EHT STA1)和第四站(EHT STA2)发送多STA块确认帧,该多STA块确认帧仅包括具有小于或等于256比特位的比特位数的块确认位图。在这种情况下,即使AP没有从非EHT HE站接收到帧,AP也发送仅包括具有小于预定大小的比特位数的块确认位图的多STA块确认帧。这是因为非EHT HE站不知道发送是否成功。
即便对于能够处理长的块确认位图的站,也限制块确认位图的大小,可能是低效的。将参照图20描述用于解决该问题的方法。
图23图示根据本发明的实施例的UL MU操作和多STA块确认帧的格式。
即使当HE站将HE TB PPDU发送到AP时,如果满足预定条件,AP可不将包括在多STA块确认帧中的块确认位图的大小限制为小于或等于预定大小。具体地,预定条件可以是多STA块确认帧仅被发送到EHT站。预定条件可以是通过仅分配给EHT站的RU来发送多STA块确认帧。在这种情况下,包括在多STA块确认帧中的块确认位图的大小可以是512比特位或1024比特位。因此,当多STA块确认帧的接收者中包括至少一个非EHT HE站时,AP可将多STA块确认帧的块确认位图的大小设置为小于或等于预定比特位数。如果发送多STA块确认帧的RU中的至少一个被分配给非EHT HE站,则AP可将多STA块确认帧的块确认位图的大小设置为小于或等于预定比特位数。预定比特位的数量可以是256比特位。
此外,可以通过一个或多个RU来发送HE MU PPDU或EHT MU PPDU。此外,HE MUPPDU或EHT MU PPDU中的每一个可以指示发送PPDU的RU和与RU相对应的接收者ID(STA-ID)。包括在HE MU PPDU的前导中的HE-SIG-B字段可以指示发送HE MU PPDU的RU和与RU相对应的接收者ID(STA-ID)。包括在EHT MU PPDU的前导中的EHT-SIG字段可以指示发送EHTMU PPDU的RU和与RU相对应的接收者ID(STA-ID)。
HE-SIG-B字段和EHT-SIG字段可以包括公共字段和用户特定字段。此外,用户特定字段可以包括一个或多个用户字段。接收EHT MU PPDU或HE MU PPDU的站可基于公共字段或用户字段的位置来确定分配给用户字段的RU。此外,用户字段可以包括STA-ID字段,STA-ID字段是指示与用户字段相对应的接收者的ID的字段。STA-ID字段可以指示与包括STA-ID字段的用户字段对应的RU所对应的EHT MU PPDU或HE MU PPDU的接收者。在这种情况下,当RU被分配给单个站时,与RU相对应的STA-ID字段的值可以指示基于站的AID或AID值获得的值。在这种情况下,基于AID值获得的值可以是AID的最低有效位(LSB)11比特位。此外,当RU被分配给多个站时,与RU相对应的STA-ID字段的值可以包括预定值。RU被分配给多个站可以是发送通过RU广播的PPDU。在这种情况下,预定值可以是0。当AP不使用多个BSSID时,分配给多个站的RU的STA-ID字段的值可以被设置为0。当AP使用多个BSSID时,分配给多个站的RU的STA-ID字段的值可以针对与传输BSSID(transmitted BSSID)的BSS关联的站设置为0。当AP使用多个BSSID时,分配给多个站的RU的STA-ID字段的值可以是与分配给RU的站关联的BSS的BSSID索引。BSSID索引的值可以是从1到多个BSSID集的最大值之一。即,BSSID索引的值可以是0到多个BSSID集的最大BSSID索引(或多个BSSID集的最大数量-1或与多个BSSID集中包括的BSSID的最大数量对应的索引值)之一。在这种情况下,在多个BSSID集中,“0”是对应于传输BSSID的BSSID索引,并且在多个BSSID集中,从“1”到多个BSSID集的最大BSSID索引(或多个BSSID集的最大数量-1或与包括在多个BSSID集中的BSSID的最大数量对应的索引值)是对应于非传输BSSID(non-transmitted BSSID)的BSSID索引。
分配给多个站的RU的STA-ID字段的值可以是2047。此外,分配给与非传输BSSID的BSS关联的站的RU的STA-ID字段的值可以是2047。在这种情况下,通过RU描述的帧的TA字段可以指示传输BSSID。在AP是EHT MU PPDU或HE MU PPDU的接收者的情况下,STA-ID字段可以指示HE MU PPDU或EHT MU PPDU的发送者。分配给未关联的STA的RU的STA-ID字段的值可以是2045。
STA-ID字段的值可以是TXVECTOR参数或RXVECTOR参数的STA_ID值。
通过分配给一个EHT站的RU发送的多STA块确认帧或发送至一个EHT站的多STA块确认帧的块确认位图的大小可以不限于小于预定值的值。在这种情况下,多STA块确认帧可包括512比特位的块确认位图或1024比特位的块确认位图。此外,在该实施例中,多STA块确认帧可以通过HE MU PPDU、HE SU PPDU、EHT MU PPDU或非HT PPDU来发送。
当通过分配给一个EHT站的RU发送多STA块确认帧时,多STA块确认帧的块确认位图的大小可以不限于小于预定值的值。当多STA块确认帧的RA字段指示单独的EHT站的MAC地址时,多STA块确认帧的块确认位图的大小可以不限于小于预定值的值。在该实施例中,多STA块确认帧可包括512比特位的块确认位图或1024比特位的块确认位图。当响应于由至少一个非EHT HE站发送的HE TB PPDU而发送多STA块确认帧,但不是通过分配给一个EHT站的RU发送多STA块确认帧,并且多STA块确认帧的RA字段不指示单独的EHT站的MAC地址时,多STA块确认帧的块确认位图的大小可被限制为小于预定值的值。在这种情况下,多STA块确认帧可能不被允许包括512比特位的块确认位图或1024比特位的块确认位图。
即,当在一个或多个STA中的响应于触发帧发送PPDU的至少一个STA不仅包括EHTSTA,还包括作为传统STA的HE STA时,作为由触发帧指示的PPDU的响应帧的多STA块确认帧中包括的块确认位图(即,针对至少一个STA中的每一个的Ack信息)的大小可以被限制为等于或小于特定大小(例如,256比特位)。也就是说,512比特位和1024比特位不能被用作块确认位图的大小。
然而,即使当作为传统STA的HE STA被包括在一个或多个STA中的响应于触发帧而发送PPDU的至少一个STA中时,如果多STA块确认帧通过由AP单独分配给上述STA的资源单元(RU)被发送,则Ack信息的大小可以不限于等于或小于特定大小。即,即使AP从STA接收到HE TB PPDU,如果通过单独分配给EHT STA的RU发送多STA块确认帧,则ACK信息的大小可以不受限制。换句话说,当AP通过专门分配给EHT STA的RU发送多STA块确认帧时,由于多STA块确认帧仅需要被EHT STA接收和分析,所以对于HE STA不需要限制块确认位图的大小。
在图23的实施例中,AP可将触发帧发送到第一站(非EHT HE STA1)、第二站(非EHTHE STA2)、第三站(EHT STA1)和第四站(EHT STA2)。在这种情况下,第一站(非EHT HESTA1)和第二站(非EHT HE STA2)是非EHT站,并且是HE站。此外,第三站(EHT STA1)和第四站(EHT STA2)是EHT站。触发帧可以将要作为对触发帧的响应而发送的TB PPDU的格式指示为HE TB PPDU。第一站(非EHT HE STA1)、第二站(非EHT HE STA2)、第三站(EHT STA1)和第四站(EHT STA2)将HE TB PPDU发送到AP。AP通过第一RU(RU1)发送针对第一站(非EHT HESTA1)、第二站(非EHT HE STA2)和第四站(EHT STA2)的多STA块确认帧。在这种情况下,被分配第一RU(RU 1)的站包括作为非EHT站的第一站(非EHT HE STA1)和第二站(非EHT HESTA2)。因此,多STA块确认帧仅包括大小小于512比特位的块确认位图。此外,AP通过第二RU(RU 2)发送针对第三站(EHT STA1)的多STA块确认帧。第二RU(RU 2)是仅被分配给作为EHT站的第三站(EHT STA1)的RU。因此,通过第二RU(RU 2)发送的多STA块确认帧所包括的块确认位图的大小不限于小于512比特位。
图24图示根据本发明的另一实施例的UL MU操作和多STA块确认帧的格式。
当AP从至少一个HE站接收到HE TB PPDU,并响应于包括在HE TB PPDU中的帧发送多STA块确认帧时,AP可基于预定条件确定是否将多STA块确认帧的块确认位图的大小限制为小于预定大小的值。当满足所有预定条件时,AP可以不将多STA块确认帧的块确认位图的大小限制为小于预定大小的值。即使当在分配用于广播帧的RU中发送多STA块确认帧时,如果满足所有预定条件,则AP可不将多STA块确认帧的块确认位图的大小限制为小于预定大小的值。在这种情况下,预定条件可包括多STA块确认帧仅被发送到EHT站的情况。因此,当多STA块确认帧通过广播RU仅发送到EHT站时,AP可不将多STA块确认帧的块确认位图的大小限制为小于预定大小的值。当多STA块确认帧通过广播RU仅发送到EHT站时,AP可不将多STA块确认帧的大小限制为小于预定大小的值。
此外,预定条件可以包括以下情况:即,在触发了紧接在多STA块确认帧之前发送的TB PPDU的发送的触发帧所触发的所有HE站中的每一个所被分配的不同的RU中发送包括多STA块确认帧的PPDU。
该实施例以AP将多STA块确认帧发送到至少一个非EHT HE STA作为前提。
此外,在上述实施例中,不将多STA块确认帧的块确认位图的大小限制为小于预定大小的值可表示多STA块确认帧包括512比特位或1024比特位的块确认位图。
在图24的实施例中,AP可将触发帧发送到第一站(非EHT HE STA1)、第二站(非EHTHE STA2)、第三站(EHT STA1)和第四站(EHT STA2)。第一站(非EHT HE STA1)和第二站(非EHT HE STA2)是非EHT站,并且是HE站。此外,第三站(EHT STA1)和第四站(EHT STA2)是EHT站。触发帧可以将要作为对触发帧的响应而发送的TB PPDU的格式指示为HE TB PPDU。第一站(非EHT HE STA1)、第二站(非EHT HE STA2)、第三站(EHT STA1)和第四站(EHT STA2)将HE TB PPDU发送到AP。AP通过第一RU(RU 1)发送针对第一站(非EHT HE STA1)的多STA块确认帧,通过第二RU(RU 2)发送针对第二站(非EHT HE STA2)的多STA块确认帧,并且通过第三RU(RU 3)发送针对第三站(EHT STA1)和第四站(EHT STA2)的多STA块确认帧。在这种情况下,被分配第一RU(RU 1)的站包括作为非EHT STA的第一站(非EHT HE STA1),并且被分配第二RU(RU 2)的站包括第二站(非EHT HE STA2)。因此,通过第一RU(RU 1)和第二RU(RU2)中的每一个发送的多STA块确认帧仅包括具有小于512比特位的大小的块确认位图。尽管第三RU(RU 3)是广播RU,但是被分配第三RU(RU 3)的所有站都是EHT站。因此,通过第三RU(RU 3)发送的多STA块确认帧所包括的块确认位图的大小不限于小于512比特位。
当不满足上述预定条件时,不存在单独分配给非EHT HE站以用于发送多STA块确认帧的RU。因此,非EHT HE站通过分配给多个站的RU接收多STA块确认帧。在这种情况下,如果多STA块确认帧的块确认位图的大小等于或大于512比特位,则非EHT HE站可能不能准确地解析多STA块确认帧。此外,当AP没有接收到由非EHT HE站发送的HE TB PPDU时,多STA块确认帧的期望接收者可以不包括非EHT HE站。在这种情况下,如果多STA块确认帧的块确认位图的大小等于或大于512比特位,则非EHT HE站可能不能准确地解析多STA块确认帧。
总结参照图23至图24描述的实施例,当AP响应于仅由EHT站发送的TB PPDU或触发帧仅触发EHT站而发送的TB PPDU而发送多STA块确认帧时,AP可以不将多STA块确认帧的大小限制为小于预定大小的值。此外,当AP发送包括对由至少一个非EHT HE站发送的HE TBPPDU所包括的帧的响应的多STA块确认帧时,AP可将多STA块确认帧的大小限制为小于预定大小的值。当AP在单独分配(individual addressed)给EHT站的RU中发送多STA块确认帧时,AP可不将多STA块确认帧的大小限制为小于预定大小的值。此外,当在仅被分配给EHT站的RU中发送多STA块确认帧,并且当在触发与触发了多STA块确认帧的发送的TB PPDU同时被发送的所有TB PPDU的触发帧所触发的所有非EHT HE站单独被分配的RU中发送包括多STA块确认帧的PPDU时,AP可不将多STA块确认帧的大小限制为小于预定大小的值。此外,当在仅被分配给EHT站的RU中发送多STA块确认帧,并且在单独分配给触发了用于触发多STA块确认帧的发送的TB PPDU的PPDU所触发的所有非EHT HE站的RU中发送包括多STA块确认帧的PPDU时,AP可不将多STA块确认帧的大小限制为小于预定大小的值。
此外,在仅用于EHT STA的广播RU中包括的多STA块确认帧的情况下,如果包括上述广播RU的PPDU中包括由请求(solicit)了用于请求(solicit)多STA块确认帧的帧的PPDU所触发的所有非EHT HE STA单独被分配(individually addressed)的RU,则位图大小可能不受限制。
已经参照图20至图24描述了AP配置和发送多STA块确认帧的过程。站根据如上所述的多STA块确认帧的配置和发送方法来接收和解析多STA块确认帧。此外,站可基于多STA块确认帧的块确认位图的大小来确定可被聚合到A-MPDU的MPDU的数量。
图25图示根据本发明的实施例的管理帧的发送。
管理帧可以被包括在聚合(A)-MPDU中。如果包括在帧控制字段中的类型字段具有预定值,则类型字段可以指示包括类型字段的帧是管理帧。预定值可以是00b
管理帧可包括关联请求(Association Request)帧、关联响应(AssociationResponse)帧、重新关联请求(Reassociation Request)帧、重新关联响应(ReassociationResponse)帧、探测请求(Probe Request)帧、探测响应(Probe Response)帧、时序广告(Timing Advertisement)帧、信标(Beacon)帧、ATIM帧、解除关联(Disassociation)帧、认证(Authentication)帧、解除认证(Deauthentication)帧、行动(Action)帧和无需确认(Action No Ack)帧。
管理帧可以被包括在启用确认的(ack-enabled)单-TID A-MPDU中。或者,管理帧可以被包括在启用确认的多-TID A-MPDU中。启用确认的单-TID A-MPDU是包括至少两个A-MPDU子帧的A-MPDU,这些A-MPDU子帧具有不同的TID,并且其中仅一个子帧引起ACK(即,包括至少两个A-MPDU子帧的A-MPDU,所述至少两个A-MPDU子帧具有不同的业务标识符(TID),并且两个A-MPDU子帧中的仅一个包括请求确认上下文的被标记的MPDU)。启用确认的多-TID A-MPDU是聚合有被标记为引起ACK的至少一个MPDU,并从引起ACK或块确认的一个或多个TID聚合MPDU的A-MPDU(即,其中请求确认上下文的至少一个被标记的MPDU聚合在该A-MPDU中,并且来自请求Ack确认或Block Ack确认的一个或多个TID的MPDU聚合在该A-MPDU中)。
启用确认的A-MPDU可以是引起Ack帧或引起多STA块确认帧的ACK上下文的A-MPDU。此外,可以执行能力信令,以确定是否可以接收启用确认的A-MPDU。在这种情况下,可以通过HE能力元素来执行能力信令。更具体地,可以通过包括在HE MAC能力信息字段中的启用确认的聚合支持子字段来执行能力信令。
管理帧的TID可以被认为是15。具体地,管理帧可被视为单一TID帧。管理帧可以是引起ACK的帧。此外,管理帧可以被包括在启用确认的单-TID A-MPDU或启用确认的多-TIDA-MPDU中。
在这种情况下,管理帧可以是用于请求(solicit)确认的帧。此外,在该情况下,管理帧可以被包括在启用确认的单-TID A-MPDU或启用确认的多-TID A-MPDU中。
作为对管理帧的响应,可以发送ACK帧。此外,AP可使用包括在多STA块确认帧中的Per AID TID字段来发送对管理帧的响应。在这种情况下,AP可将Per AID TID字段的TID字段的值设置为15。
在图25的实施例中,站发送包括管理帧的A-MPDU。AP使用多STA块确认帧发送针对管理帧的ACK。在这种情况下,AP将与针对管理帧的响应相对应的Per AID TID字段的TID字段的值设置为15。
图26图示根据本发明的实施例的当应用TID至链路(TID-to-link)映射时发送管理帧的方法。
如上所述,TID至链路映射可以应用于多链路操作。特定TID被映射到链路,并且在各链路上发送与映射到链路的TID相应的帧,而不允许发送与未映射到链路的TID相对应的帧。至少一个TID被映射到的链路被称为激活(enabled)链路,并且未映射有任何TID的链路被称为非激活(disabled)的链路。
如上所述,可以在任何链路中发送管理帧。此外,管理帧可以对应于单TID帧。此外,管理帧可被视为TID为15的帧。因此,TID至链路映射和管理帧的处理之间可能发生冲突。
在具体实施例中,管理帧可以与TID值无关地映射到所有链路。在另一个具体实施例中,与管理帧的TID是15的情况无关地,管理帧可以被映射到所有链路。在这种情况下,可以在所有链路中发送管理帧。所有链路可以仅限于激活链路。在这种情况下,管理帧可以被包括在启用确认的单-TID A-MPDU或启用确认的多-TID A-MPDU中。此外,管理帧可以是引起ACK的帧。
在另一具体实施例中,管理帧可以与TID至链路映射映射无关地发送。TID至链路映射映射可以仅应用于数据帧或QoS数据帧。
在图26的实施例中,执行TID至链路映射,并且TID 0到TID 7被映射到第一链路(链路1)。在这种情况下,可以通过第一链路(链路1)发送管理帧。具体地,可以在第一链路(链路1)中发送包括管理帧的启用确认的单-TID A-MPDU或启用确认的多-TID A-MPDU。更具体地,可以在第一链路(链路1)中发送包括引起ACK的管理帧的启用确认的单-TID A-MPDU或启用确认的多-TID A-MPDU。即,仅针对TID至链路映射,管理帧可以不被视为单TID帧,而管理帧的TID值可以不被视为15。
图27图示根据本发明的另一实施例的当应用TID至链路映射时发送管理帧的方法。
在另一具体实施例中,TID至链路映射可以应用于管理帧。即,与管理帧相对应的TID可被映射到链路。此外,当与管理帧对应的TID被映射到链路时,管理帧可在相应的链路中被发送。此外,如果与管理帧对应的TID没有被映射到链路,则不能在相应的链路中发送管理帧。管理帧的TID可以是15。在这种情况下,管理帧可以被包括在启用确认的单-TID A-MPDU或启用确认的多-TID A-MPDU中。此外,管理帧可以引发ACK。
在图27的实施例中,执行TID至链路映射。在这种情况下,TID 0至7被映射到第一链路(链路1),并且管理帧被映射到第二链路(链路2)。在这种情况下,管理帧不能在第一链路(链路1)被发送。因此,在第二链路(链路2)中发送管理帧。具体地,包括管理帧的启用确认的单-TID A-MPDU或启用确认的多-TID A-MPDU可以在第二链路(链路2)中发送。更具体地,可以在第二链路(链路2)中发送包括引起ACK的管理帧的启用确认的单-TID A-MPDU或启用确认的多-TID A-MPDU。
在上述实施例中,管理帧的TID值被描述为15,但是管理帧的TID值可使用其他值。
针对与管理帧对应的TID,用于上行链路传输的TID至链路映射和用于下行链路传输的TID至链路映射可以不被独立地执行。因此,当管理帧被映射到某个链路时,管理帧的上行链路传输和管理帧的下行链路传输被映射到相应链路。如上所述,针对数据帧或QoS数据帧的TID至链路映射,上行链路传输的TID至链路映射和下行链路传输的TID至链路映射可以被独立地执行。如上所述,数据帧或QoS数据帧的TID至链路映射与管理帧的TID至链路映射方法可以不同。
在TID至链路映射协商过程中发送的元素可以分别用信号通知上行链路传输的TID至链路映射和下行链路传输的TID至链路映射。在这种情况下,可以将管理帧的上行链路传输的TID至链路映射值设置为与管理帧的下行链路传输的TID至链路映射值相同。在另一具体实施例中,管理帧的上行链路传输的TID至链路映射和下行链路传输的TID至链路映射可以不被单独地用信号通知。在另一具体实施例中,管理帧的TID至链路映射可以隐式地用信号通知,而不是显式地用信号通知。在另一具体实施例中,如果管理帧的一个传输方向上的TID至链路映射被用信号通知,则可以相同地应用另一传输方向上的TID至链路映射。
用于管理帧的TID至链路映射可以仅应用于特定管理帧。例如,TID至链路映射可以不被应用于信标帧。在这种情况下,信标帧可以通过任何链路发送,而不管TID至链路映射如何。此外,特定帧可以是行动帧。
在设置多链路之前,TID至链路映射可以不被应用到管理帧,而在设置多链路之后,TID至链路映射可以被应用到管理帧。在设置多链路之前,可以在任何链路中发送管理帧。在设置多链路之后,可仅在管理帧被映射到的链路中发送管理帧。
图28是图示根据本发明的实施例的管理帧和信道宽度信令的图。
参照图28,AP向STA发送的管理帧可以包括根据每个STA的操作元素。
具体地,根据本发明的实施例,管理帧可包括能力元素。此外,管理帧可以包括操作元素。管理帧可以包括信标帧、关联响应帧、重新关联响应帧、探测响应帧、关联请求帧、重新关联请求帧、探测请求帧等。此外,能力元素可以包括关于每个标准的能力的信息。例如,能力元素可以包括HT能力元素、VHT能力元素、HE能力元素、EHT能力元素等。操作元素可以包括关于每个标准的操作的信息。例如,操作元素可以包括HT操作元素、VHT操作元素、HE操作元素、EHT操作元素等。
根据一实施例,能力元素可以包括指示由发送能力元素的STA支持的信道宽度集(channel width set)的信令。指示信道宽度的信令可以是支持信道宽度集子字段。包括在HT能力元素中的支持信道宽度集子字段可以是1)20MHz,2)20或40MHz的信道宽度。此外,包括在HT能力元素中的支持信道宽度集子字段可以是1比特位。包括在VHT能力元素或HE能力元素中的支持信道宽度集子字段可以指示支持20MHz、40MHz、80MHz、160MHz和80+80MHz信道宽度中的哪种组合的信道宽度。包括在VHT能力元素中的支持信道宽度集子字段可以是2比特位。包括在HE能力元素中的支持信道宽度集子字段可以是7比特位。包括在EHT能力元素中的支持信道宽度集子字段可以指示支持20MHz、40MHz、80MHz、160MHz和320MHz信道宽度中的哪种组合的信道宽度。
操作元素可以指示由发送操作元素的STA操作的信道信息。例如,操作元素可以指示发送操作元素的STA操作的信道宽度。指示包括在操作元素中的信道宽度的信令可以是信道宽度子字段。另外,操作元素可以指示由发送操作元素的STA操作的信道的位置。指示包括在操作元素中的信道位置的信令可以包括主信道子字段、信道中心频率分段0子字段、信道中心频率分段1子字段和辅信道偏移字段。主信道子字段可以指示主信道的位置。信道中心频率分段0子字段和信道中心频率分段1子字段可以指示操作的子信道的中心频率。辅信道偏移字段可以指示辅信道的位置。
此外,可以基于指示包括在操作元素中的信道宽度的信令和指示信道位置的信令中的至少一个来确定BSS所操作的信道宽度。此外,可以基于指示包括在操作元素中的信道宽度的信令和指示信道位置的信令中的至少一个来确定BSS所操作的信道位置。此外,可基于与一个或多个标准对应的操作元素来确定信道宽度或信道位置。已经描述了基于操作元素来确定信道宽度和信道位置,但是这可以是接收操作元素的STA的操作。例如,接收操作元素的STA可以是非AP STA。相反,如上所述,发送操作元素的STA可以基于操作元素来用信号通知信道宽度,并且可以用信号通知信道位置。例如,发送操作元素的STA可以是AP。根据本发明的实施例,由HT STA指示的信道宽度可以是20MHz和40MHz中的一个。根据本发明的实施例,由VHT STA指示的信道宽度可以是20、40、80、160、80+80MHz信道宽度中的一个。根据本发明的实施例,由HE STA指示的信道宽度可以是20、40、80、160、80+80MHz信道宽度中的一个。根据本发明的实施例,由EHT STA指示的信道宽度可以是20、40、80、160和320MHz信道宽度中的一个。根据本发明的实施例,由EHT STA指示的信道宽度可以是20、40、80、160、80+80和320MHz信道宽度中的一个。
参照图28的(a),管理帧可以包括如上所述的能力元素或操作元素。根据实施例,管理帧可以包括对应于一个或多个标准的能力元素或操作元素。因此,先前标准的STA也可以基于管理帧来操作。因此,可以减少与新标准的STA相对应的信息的开销(overhead)。参照图28的(a),由EHT AP发送的管理帧可包括HT能力元素、HT操作元素、VHT能力元素、VHT操作元素、HE能力元素、HE操作元素、EHT能力元素和EHT操作元素。
参考图28的(b),HE操作元素可以包括6GHz操作信息字段。6GHz操作信息字段可以是指示信道信息的信令。或者,6GHz操作信息字段可以包括指示信道信息的信令。此外,6GHz操作信息字段可以指示6GHz频带的BSS的信道信息。
参照图28的(c),6GHz操作信息字段可以包括主信道子字段、控制字段、信道中心频率分段0子字段、信道中心频率分段1子字段和最小速率子字段。此外,所提及的每个字段可以具有1个八位字节的大小。包括在6GHz操作信息字段中的主信道子字段可以指示在6GHz频带中主信道的信道编号。信道中心频率分段0子字段可以指示当以20、40和80MHz的信道宽度操作时的整个操作信道的中心频率索引。信道中心频率分段0子字段可以指示当以160、80+80MHz信道宽度操作时的主80MHz信道的中心频率索引。信道中心频率分段1的子字段可以指示当以20、40、80和160MHz的信道宽度操作时的整个操作信道的中心频率索引。信道中心频率分段1子字段可以指示当以80+80MHz的信道宽度操作时的辅80MHz信道的中心频率索引。
此外,包括在6GHz操作信息字段中的控制字段可以具有如图28的(d)中所示的格式。参照图28的(d),控制字段可以包括信道宽度、重复信标(Duplicate Beacon)、规范信息(Regulatory Info)和保留子字段。此外,所提及的每个子字段可以具有2、1、3和2比特位的大小。即,6GHz操作信息字段可以包括信道宽度子字段。在这种情况下,由信道宽度子字段指示的信道宽度可以是20、40、80、160/80+80MHz。更具体地,当信道宽度子字段是0时,可以指示20MHz的信道宽度,当信道宽度子字段是1时,可以指示40MHz的信道宽度,当信道宽度子字段是2时,可以指示80MHz的信道宽度,并且当信道宽度子字段是3时,可以指示160MHz或80+80MHz的信道宽度。
图29是图示根据本发明的实施例的设置BSS操作信道的宽度的图。
参照图29,AP可以根据STA是否支持来为每个STA设置不同的BSS操作信道。
具体地,根据本发明的实施例,AP可将不同的BSS操作信道通知给非EHT STA和EHTSTA。例如,AP可以向非EHT STA和EHT STA通知不同的BSS操作信道宽度。这可以被限制为在6GHz频带中操作的示例。非EHT STA可以包括HE STA。在本发明的实施例中,通知给非EHTSTA的BSS操作信道可以被称为非EHT BSS操作信道。此外,通知给EHT STA的BSS操作信道可以被称为EHT BSS操作信道。在本发明中,EHT BSS操作信道不同于非EHT BSS操作信道的原因在于,EHT BSS操作信道不能被非EHT BSS或非EHT STA支持。或者,在本发明中,EHT BSS操作信道不同于非EHT BSS操作信道的原因在于,EHT BSS的操作信道包括不允许(disallowed)信道。更具体地,EHT BSS操作信道不同于非EHT BSS操作信道的原因在于,EHT BSS操作信道包括至少一个不允许20MHz信道。在这种情况下,BSS操作信道可以表示更具体的BSS操作信道宽度。
换句话说,AP可以通过将与BSS操作信道相关的信息包括在管理帧中所包括的每个STA的操作元素中来发送信息。在这种情况下,当设置每个STA的BSS操作信道时,AP可以根据每个STA设置不同的BSS操作信道。例如,当AP设置用于EHT STA的操作信道和用于HESTA的操作信道时,所设置的用于EHT STA的操作信道和用于HE STA的操作信道可以彼此不同。具体地,即便BSS操作信道中包括穿孔子信道(或不可用子信道或非激活子信道),EHTSTA也可以操作。此外,即使被分配不连续或大于或等于160MHz的频率,也可以操作。然而,当设置的BSS操作信道中包括穿孔子信道,或者BSS操作信道是不连续信道或大于或等于160MHz时,HE STA可能不能操作。
因此,当AP通过包括在管理帧中的每个操作元素将BSS操作信道设置给STA时,AP可分别不同地设置EHT STA和HE STA。即,当EHT BSS操作信道包括至少一个穿孔子信道和/或EHT BSS操作信道的信道宽度不被HE BSS支持时,与EHT STA的BSS操作信道不同地,AP可通过HE操作元素为HE STA设置BSS操作信道。
在这种情况下,可以在包括主信道的最大带宽内连续地设置用于HE STA的BSS操作信道。
因此,包括在管理帧中的用于HE STA的HE操作元素(第一操作元素)和用于EHTSTA的EHT操作元素(第二操作元素)可分别针对各个STA设置为不同的BSS操作信道。在这种情况下,每个STA可以根据设置的BSS操作信道向AP发送PPDU。此外,信道被穿孔或不被允许(disallowed)可以由AP的判断来确定。例如,如果AP通过观察特定信道而确定难以操作,则AP可以将该信道设置为不允许信道。或者,可以基于数据库(database)来确定信道是不被允许的。例如,当基于数据库将特定信道被认为不被允许时,AP可以将该信道设置为不允许信道。根据实施例,不允许信道可以由EHT操作元素或EHT能力元素指示。例如,不允许信道可以以20MHz的频带宽度为单位被信号通知。例如,EHT操作元素可以用信号通知构成BSS操作信道的每个20MHz信道是否是不被允许的。此外,被设置不允许信道的BSS的AP和非APSTA可以不发送包括不允许信道的PPDU。
根据实施例,非EHT BSS操作信道可以是基于除了EHT操作元素或EHT能力元素之外的元素被通知的BSS操作信道。例如,非EHT BSS操作信道可以是基于HE操作元素或HE能力元素而被通知的非EHT BSS操作信道。更具体地,非EHT BSS操作信道可以是基于包括在HE操作元素中的6GHz操作信息字段而被通知的非EHT BSS操作信道。能够表示为非EHT BSS操作信道宽度的值可以是20、40、80和160MHz。或者,能够表示为非EHT BSS操作信道宽度的值可以是20、40、80、160、80+80MHz。
此外,EHT BSS操作信道可以是基于包括EHT操作元素或EHT能力元素的元素而被通知的BSS操作信道。更具体地,EHT BSS操作信道可以是基于包括在EHT操作元素中的6GHz操作信息字段而被通知的EHT BSS操作信道。或者,EHT BSS操作信道可以是基于包括在EHT操作元素中的信道宽度子字段而被通知的EHT BSS操作信道。此外,EHT操作元素可以包括关于不允许信道的信息。能够表示为EHT BSS操作信道宽度的值可以是20、40、80、160和320MHz。或,能够表示为非EHT BSS操作信道宽度的值可以是20、40、80、160、80+80、320、160+160MHz。
根据本发明的实施例,非EHT BSS操作信道的宽度可以是在EHT操作信道的宽度中除了不允许信道之外的最大宽度。根据本发明的实施例,包括在HE操作元素中的BSS操作信道的宽度可以是在EHT操作信道的宽度中除了不允许信道之外的最大宽度。或者,包括在HE操作元素中的BSS操作信道的宽度可以是基于EHT操作元素用信号发送的信道的宽度中除了不允许信道之外的最大宽度。在这种情况下,更具体地,不允许信道可以表示不允许的20MHz信道。
参考图29,可以连续地存在4个80MHz信道。例如,可以存在80MHz信道1、80MHz信道2、80MHz信道3和80MHz信道4。此外,80MHz信道1可以是不允许信道。由于EHT标准支持比现有HE或其之前的标准宽的信道宽度,因此可以配置宽信道宽度的BSS而排除不允许信道。例如,可以设置320MHz的EHT BSS操作信道宽度。在这种情况下,可以用信号通知不允许信道,并且可以使用除了不允许信道之外的80MHz信道2、80MHz信道3和80MHz信道4,即可以使用最大240MHz的频带来操作。在这种情况下,非EHT BSS操作信道可以与EHT BSS操作信道不同地被通知。在这种情况下,如上所述,非EHT BSS操作信道宽度可以被通知为除了不允许信道之外的最大信道宽度。因此,非EHT BSS操作信道宽度可以被通知为160MHz。此外,在这种情况下,作为非EHT BSS操作信道的160MHz信道可以是由80MHz信道3和80MHz信道4组成的信道。因此,主信道可以需要存在于80MHz的信道3或80MHz的信道4中。即,主信道不能被包括在80MHz的信道2中。主信道可以指示主20MHz信道。或者,主信道可以是主40MHz信道或主80MHz信道。
图30是图示根据本发明另一实施例的设置BSS操作信道的宽度的图。
图30的实施例可以是用于解决图29中描述的主信道设置受限的问题的实施例。可以省略前面已描述的内容。
根据本发明的实施例,非EHT BSS操作信道的宽度可以在EHT操作信道宽度中除了不允许信道之外包括主信道的最大宽度。在这种情况下,主信道可以是主20MHz信道。在另一实施例中,主信道可以是主40MHz信道或主80MHz信道。更具体地,根据本发明的实施例,包括在HE操作元素中的BSS操作信道的宽度可以是在EHT操作信道宽度中除了不允许信道之外包括主信道的最大度。或者,包括在HE操作元素中的BSS操作信道的宽度可以是在基于EHT操作元素而用信号发送的信道宽度中除了不允许信道之外包括主信道的最大宽度。在这种情况下,更具体地,不允许信道可以表示不允许20MHz信道。
本发明的实施例可以限于在6GHz频带中操作的情况。
此外,非EHT BSS作信道宽度可以是包括在HE操作元素中的信息。更具体地,非EHTBSS操作信道宽度可以是包括在HE操作元素中的6GHz操作信息字段中所包括的信息。更具体地,非EHT BSS操作信道宽度可以是包括在HE操作元素中的6GHz操作信息字段中所包括的信道宽度信息。
参照图30,可以连续地存在4个80MHz信道。例如,可以存在80MHz信道1、80MHz信道2、80MHz信道3和80MHz信道4。此外,80MHz信道1可以是不允许信道。由于EHT标准支持比现有HE或其之前的标准宽的信道宽度,因此可以配置除了不允许信道之外的宽信道宽度。例如,可以设置320MHz的EHT BSS操作信道宽度。在这种情况下,可以用信号通知不允许信道,并且可以使用除了不允许信道之外的80MHz信道2、80MHz信道3和80MHz信道4,即使用最大240MHz的频带来操作。在这种情况下,非EHT BSS操作信道可以与EHT BSS操作信道不同地被通知。在这种情况下,如上所述,非EHT BSS操作信道宽度可以被通知为除了不允许信道之外包括主信道的最大宽度。因此,非EHT BSS操作信道宽度可以被通知为80MHz。此外,在这种情况下,作为非EHT BSS操作信道的80MHz信道可以是由80MHz信道2组成的信道。此外,与图中的实施例不同,当期望将主信道设置为存在于80MHz信道3或80MHz信道4时,可以将非EHT BSS操作信道设置为160MHz。因此,对于主信道的选择可以具有自由度。
图31是图示根据本发明的实施例的信道化和BSS操作信道宽度的设置的图。
图31的实施例可以是用于解决图29中描述的主信道设置受限的问题的实施例。可以省略上面已描述的内容。此外,图31的实施例可以与图30的实施例一起使用。
根据本发明的实施例,可存在信道化。即,可以定义可用信道(band)。图31的(a)图示针对6GHz频带的信道化。例如,可以定义如图所示的80MHz、160MHz和320MHz信道。例如,除了在信道化中定义的160MHz信道之外,不能使用任意两个连续的80MHz信道来配置160MHz信道。类似地,除了在信道化中定义的320MHz信道之外,不能使用任意四个连续的80MHz信道来配置320MHz信道。
根据本发明的实施例,非EHT BSS操作信道的宽度可以是在EHT操作信道宽度中除了不允许信道之外包括主信道的最大宽度。更具体地,根据本发明的实施例,非EHT BSS操作信道的宽度可以是在EHT操作信道宽度中除了不允许信道之外、包括主信道但不超过在信道化中定义的信道的最大宽度。在这种情况下,主信道可以是主20MHz信道。在另一实施例中,主信道可以是主40MHz信道或主80MHz信道。更具体地,根据本发明的实施例,包括在HE操作元素中的BSS操作信道宽度可以在EHT操作信道宽度中除了不允许信道之外、包括主信道但不超过在信道化中定义的信道的最大宽度。或者,包括在HE操作元素中的BSS操作信道宽度可以是在基于EHT操作元素而发送的信道宽度中除了不允许信道之外、包括主信道但不超过在信道化中定义的信道的最大宽度。在这种情况下,更具体地,不允许信道可以表示不允许的20MHz信道。
本发明的实施例可以限于在6GHz频带中操作的情况。
此外,非EHT BSS操作信道宽度可以是包括在HE操作元素中的信息。更具体地,非EHT BSS操作信道宽度可以是包括在HE操作元素中的6GHz操作信息字段中所包括的信息。更具体地,非EHT BSS操作信道宽度可以是包括在HE操作元素中的6GHz操作信息字段中所包括的信道宽度信息。
参照图31,可以连续地存在4个80MHz信道。例如,可以存在80MHz信道1、80MHz信道2、80MHz信道3和80MHz信道4。此外,80MHz信道1和80MHz信道4可以是不允许信道。由于EHT标准支持比现有HE或其之前的标准宽的信道宽度,因此可以配置除了不允许信道之外宽信道宽度的BSS。例如,可以设置320MHz的EHT BSS操作信道宽度。在这种情况下,可以用信号发送不允许信道,并且可以使用除了不允许信道之外的80MHz信道2和80MHz信道3,使用最大160MHz的频带来操作不允许信道。在这种情况下,非EHT BSS操作信道可以与EHT BSS操作信道不同地被通知。在这种情况下,如参照图30所述,当非EHT BSS操作信道宽度被通知为除了不允许信道之外包括主信道的最大宽度时,非EHT BSS操作信道宽度可以被通知为160MHz。然而,由80MHz信道2和80MHz信道3组成的160MHz信道可能不基于信道化而存在。因此,设置非EHT BSS操作信道宽度可能是一个问题,并且根据图31的实施例,可能无法设置非EHT BSS操作信道宽度。因此,非EHT BSS操作信道宽度可以被通知为除了不允许信道之外包括主信道且在由信道化定义的信道中的最大宽度。因此,非EHT BSS操作信道宽度可以被通知为80MHz。在这种情况下,作为非EHT BSS操作信道的80MHz信道可以是由80MHz信道2或80MHz信道3组成的信道。如果主信道存在于80MHz信道2中,则作为非EHT BSS操作信道的80MHz信道可以是80MHz信道2。如果主信道存在于80MHz信道3,则作为非EHT BSS操作信道的80MHz信道可以是80MHz信道3。
此外,当BSS操作信道宽度被定义为满足特定条件的最宽的信道宽度时,由于当考虑80+80MHz信道时,80+80MHz的信道宽度大于80MHz的信道宽度,因此80+80MHz的信道可以被设置为BSS操作信道宽度。然而,可能不期望设置非连续信道作为BSS操作信道。例如,非连续信道可以不被允许或者可能未实现为非EHT BSS操作信道宽度。或者,根据本发明的实施例,可能不允许非连续信道作为EHT BSS操作信道宽度。因此,根据本发明的实施例,非EHT BSS操作信道宽度可以是在EHT操作信道宽度中除了不允许信道之外、包括主信道而不超过由信道化定义的信道、并且不是非连续信道的最大宽度。在这种情况下,主信道可以是主20MHz信道。在另一实施例中,主信道可以是主40MHz信道或主80MHz信道。更具体地,根据本发明的实施例,包括在HE操作元素中的BSS操作信道的宽度可以是在EHT操作信道宽度中除了不允许信道之外、包括主信道而不超过由信道化定义的信道、并且不是非连续信道的最大宽度。或者,包括在HE操作元素中的BSS操作信道宽度可以是在基于EHT操作元素而被信号通知的信道宽度中除了不允许信道之外、包括主信道而不超过由信道化定义的信道、并且不是非连续信道的最大宽度。在这种情况下,更具体地,不允许信道可以表示不允许的20MHz信道。
图28至图31中描述的实施例可以彼此组合使用。总结图28至图31的实施例,非EHTBSS操作信道宽度可以与EHT操作信道宽度不同地被通知。例如,非EHT BSS操作信道的宽度可以被通知为EHT BSS操作信道中的满足以下条件的最宽信道的宽度。
1)除了不允许信道之外的信道。
2)包括主信道。
3)由信道化定义的信道中的信道。
4)连续信道。
根据一实施例,可满足上述所有条件。根据另一实施例,可满足上述条件中的至少一个。例如,可以满足条件1)、2)和3)。此外,在EHT BSS操作信道中满足上述条件的最宽信道可以是能够基于除了EHT操作元素之外的HE操作元素用信号通知的信道。
图32是图示根据本发明的实施例的EHT操作元素格式的图。
如上所述,关于EHT BSS的操作的信息可以被包括在EHT操作元素中。EHT操作元素可以是上面描述的操作元素之一。
此外,操作元素可以由AP或AP MLD发送。非AP STA或非AP MLD可以基于从AP或APMLD接收的操作元素来操作。此外,AP或AP MLD可以基于发送的操作元素来操作。
此外,EHT操作元素可以包括关于BSS的操作信道的信息。关于操作信道的信息可以包括信道宽度。此外,关于操作信道的信息可以包括信道中心频率分段(CCFS;channelcenter frequency segment)。CCFS可以表示预定频率分段的中心频率。此外,关于操作信道的信息可以包括不允许信道。此外,在本实施例中,可以省略上面描述的内容。
EHT操作元素可以指示不允许信道。在本发明中,不允许(disallowed)、禁用(disabled)、非激活(inactive)和穿孔(punctured)可以混用。此外,信道(channel)、子信道(subchannel)和频带(band)可以混用。因此,先前被标记为不允许信道的信道可以表示禁用的子信道。
根据本发明的实施例,禁用的子信道可以被指示为具有预定单位的子信道(band)。例如,预定单位可以是20MHz。可以通过位图来指示禁用的子信道。例如,位图的每个比特位可以指示预定单位的子信道是否被禁用。此外,位图的每个比特位可以对应于不重叠的子信道。此外,位图的比特位(比特位索引)可以依次对应于按频率顺序的预定单位的子信道。例如,位图的比特位索引B0、B1、B2、...、B15的比特位可以分别对应于具有最低频率的预定单位的子信道、具有第二低频率的预定单位的子信道、具有第三低频率的预定单位的子信道、……第十六低(或最高)频率的预定单位的子信道。例如,如果位图的比特位被设置为1,则与被设置为1的比特位相对应的子信道可以被禁用。此外,当位图的比特位被设置为0时,与被设置为0的比特位相对应的子信道可以不被禁用(启用(enabled))。或者,相反地,比特位值0和1可以分别指示启用和禁用。
此外,不对应于BSS所操作的子信道的比特位可以被设置为预定值,例如1。例如,当BSS以160MHz的信道宽度操作时,不对应于160MHz的位图的比特位可以被设置为预定值。此外,与主20MHz信道相对应的比特位可以被设置为预定值,例如0。
此外,STA或MLD可以不在禁用的子信道上发送PPDU、帧或能量。STA或MLD可以仅在非禁用子信道上发送PPDU、帧或能量。此外,“不在禁用的子信道上发送”可以被称为“穿孔”或“前导穿孔”。此外,基于被确定为长期(long term)的禁用的子信道的穿孔可以被称为静态穿孔(static puncturing)。例如,可以将基于发送或接收的EHT操作元素的穿孔可以被称为静态穿孔。此外,可以将能够以PPDU为单位改变禁用的子信道的穿孔称为动态打孔。例如,可以将基于包括PPDU或帧的禁用的子信道的穿孔称为动态打孔。在这种情况下,包括在PPDU或帧中的禁用的子信道可以不是EHT操作元素中包括的禁用的子信道信息。
此外,STA可基于接收的禁用的子信道信息或发送的禁用的子信道信息来设置TXVECTOR参数INACTIVE_子信道S值。TXVECTOR参数可以是从MAC层发送到PHY层的信息。STA可基于TXVECTOR参数INACTIVE_子信道S来发送PPDU。例如,可以不在TXVECTOR参数INACTIVE_子信道S中被指示为禁用的子信道中发送PPDU。
参照图32的(a),EHT操作元素可以包括元素ID、长度、元素ID扩展、EHT操作信息、禁用的子信道位图字段。元素ID和元素ID扩展字段用于识别包括元素ID和元素ID扩展字段的元素。长度字段可以指示元素的长度。EHT操作信息字段可以指示关于BSS的操作信道的信息。禁用的子信道位图子字段可以是指示如上所述的禁用的子信道的位图。可以存在指示是否存在禁用的子信道位图子字段的信令。例如,EHT操作元素或EHT操作信息字段可以包括指示是否存在禁用的子信道位图子字段的信令。指示是否存在禁用的子信道位图子字段的信令可以是禁用的子信道位图存在子字段。禁用的子信道位图存在子字段可以是1比特位。如果存在禁用的子信道位图子字段,则长度可以是2个八位字节。此外,禁用的子信道位图子字段的每个比特位可以指示与20MHz子信道相对应的信息。禁用的子信道位图子字段可以指示与总共320MHz相对应的信息。
例如,EHT操作信息字段格式可以如图32的(b1)或图32的(b2)所示。
参照图32的(b1),EHT操作信息字段可以包括指示信道宽度的信道宽度子字段。信道宽度子字段可以指示信道宽度,并且可以不包括其他信息。由信道宽度子字段指示的信道宽度可以包括20MHz、40MHz、80MHz、160MHz和320MHz。当信道宽度子字段的比特位B2、B1和B0的值是000、001、010、011和100时,可以分别指示20、40、80、160和320MHz。作为示例,信道宽度子字段可以是3比特位。在另一实施例中,信道宽度子字段可以是1个八位字节。此外,EHT操作信息字段可以包括如上所述的禁用的子信道位图子字段。可以基于禁用的子信道位图存在子字段值来确定EHT操作元素是否包括禁用的子信道位图子字段。例如,当禁用的子信道位图存在子字段被设置为1时,EHT操作元素可以包括禁用的子信道位图子字段。当禁用的子信道位图存在子字段被设置为0时,EHT操作元素可以不包括禁用的子信道位图子字段。
参照图32的(b2),EHT操作信息字段可以用一个子字段指示1)信道宽度和2)EHT操作元素是否包括禁用的子信道位图子字段。即,在一个字段中可以包括图32的(b1)中描述的信道宽度子字段和禁用的子信道位图存在子字段的功能。例如,一个子字段可以是图32的(b2)中所示的信道宽度(禁用的子信道位图存在)子字段。例如,由信道宽度(禁用的子信道位图存在)子字段指示的一个值可以指示信道宽度是多少并且表示是否包括禁用的子信道位图子字段。例如,禁用的子信道位图存在子字段的值可以指示以下所列(1)至(10)中的一个。
(1)信道宽度是20MHz,并且不包括禁用的子信道位图子字段。
(2)信道宽度是20MHz,并且包括禁用的子信道位图子字段。
(3)信道宽度是40MHz,并且不包括禁用的子信道位图子字段。
(4)信道宽度是40MHz,并且包括禁用的子信道位图子字段。
(5)信道宽度是80MHz,并且不包括禁用的子信道位图子字段。
(6)信道宽度是80MHz,并且包括禁用的子信道位图子字段。
(7)信道宽度是160MHz,并且不包括禁用的子信道位图子字段。
(8)信道宽度是160MHz,并且包括禁用的子信道位图子字段。
(9)信道宽度是320MHz,并且不包括禁用的子信道位图子字段。
(10)信道宽度是320MHz,并且包括禁用的子信道位图子字段。
然而,BSS的操作信道可以具有20MHz的宽度,并且用于设置禁用的子信道的单位可以是20MHz。在这种情况下,如果BSS的操作信道具有20MHz的宽度,则可以不设置禁用的子信道。或者,主20MHz信道可以不被禁用。因此,在这种情况下,包括禁用的子信道位图子字段可能是没有意义的。此外,如果BSS的操作信道具有40MHz的宽宽,并且用于设置禁用的子信道的单位是20MHz,则如果主20MHz信道不被禁用并且具有40MHz信道宽度,则能够禁用的信道可以是辅20MHz信道。然而,在这种情况下,由于被启用的子信道只有主20MHz信道,所以执行与BSS的操作信道宽度等于20MHz时的操作相同的操作。因此,当信道带宽为40MHz时,可以不设置禁用的子信道。此外,在这种情况下,包括禁用的子信道位图子字段可能是没有意义的。
因此,信道宽度(禁用的子信道位图存在)子字段的各个值可以指示以下所列(1)至(8)中的一个。
(1)信道宽度是20MHz,并且不包括禁用的子信道位图子字段。
(2)信道宽度是40MHz,并且不包括禁用的子信道位图子字段。
(3)信道宽度是80MHz,并且不包括禁用的子信道位图子字段。
(4)信道宽度是80MHz,并且包括禁用的子信道位图子字段。
(5)信道宽度是160MHz,并且不包括禁用的子信道位图子字段。
(6)信道宽度是160MHz,并且包括禁用的子信道位图子字段。
(7)信道宽度是320MHz,并且不包括禁用的子信道位图子字段。
(8)信道宽度是320MHz,并且包括禁用的子信道位图子字段。
或者,在上述(1)和(2)中,可以表示不包括关于不包括禁用的子信道位图子字段的信息,并且仅包括信道宽度信息。
在图32的(b2)中,信道宽度(禁用的子信道位图存在)子字段可以是3比特位。或者,在图32的(b2)中,信道宽度(禁用的子信道位图存在)子字段可以是1个八位字节。
参照图32的(b1)或图32的(b2),EHT操作信息字段可以包括CCFS信息。例如,CCFS信息可以被包括在信道中心频率分段0子字段和信道中心频率分段1子字段中。
图33是图示根据本发明的实施例的考虑了禁用的子信道的传输的示例的图。
根据本发明的实施例,如参照图32所述,可以指示禁用的子信道。参考图33,可以基于被指示或所指示的禁用的子信道来发送PPDU或帧。例如,可以基于最近被指示或所指示的禁用的子信道来发送PPDU或帧。例如,可以不在最近被指示或所指示的禁用的子信道中发送PPDU或帧。例如,当发送非HT(重复)PPDU时,可以基于被指示或所指示的禁用的子信道来发送PPDU。或者,当发送非HT(重复)PPDU时,可以基于如上所述的TXVECTOR参数INACTIVE_子信道S来发送PPDU。
参照图33,AP可以发送包括MU-RTS帧的PPDU。在这种情况下,可以在除了禁用的子信道之外的子信道上发送PPDU。此外,已经接收到MU-RTS帧的STA可以通过发送包括CTS帧的PPDU来进行响应。在这种情况下,发送CTS帧的STA可以在除了禁用的子信道之外的子信道中发送PPDU。例如,即使由MU-RTS帧指示的信道或RU包括禁用的子信道或者与禁用的子信道无关地被指示,STA也可以在除了已知的禁用子信道之外的子信道中发送PPDU。此外,当MU-RTS帧指示除了STA已知的禁用子信道之外的附加的禁用子信道时,可以在除了已知的禁用子信道和附加的禁用子信道之外的子信道中进行响应。在禁用的子信道中,也可以不发送前导。此外,已经接收到CTS帧的STA可以发送随后的帧(例如,数据帧)。在这种情况下,也可以仅在除了禁用的子信道之外的子信道上发送数据。如果CTS帧指示附加的禁用子信道,则可以在除了附加的禁用子信道之外的子信道中发送PPDU。
图34是图示根据本发明的实施例的禁用的子信道的信令的示例的图。
在图34的实施例中,将描述用于指示禁用的子信道的更具体的方法。可以省略上面已描述的内容。在本发明的一实施例中,EHT操作元素包括禁用的子信道位图子字段的记载可以表示如下情况:即,用于指示是否包括禁用的子信道位图存在子字段或禁用的子信道位图子字段的信令指示包括禁用的子信道位图子字段。此外,EHT操作元素不包括禁用的子信道位图子字段的记载可以表示如下情况:用于指示是否包括禁用的子信道位图存在子字段或禁用的子信道位图子字段的信令指示不包括禁用的子信道位图子字段。
根据本发明的实施例,即使在BSS中存在禁用的子信道,也可以不总是将禁用的子信道位图子字段包括在EHT操作元素中。因此,即使EHT操作元素不包括禁用的子信道位图子字段,接收EHT操作元素的STA也可以不识别为不存在禁用的子信道。根据实施例,这可以限于EHT操作元素被包括在信标帧中的情况。或者,这可以限于EHT操作元素被包括在信标帧或探测响应帧中的情况。由此,可以减少诸如信标帧或探测响应帧的管理帧占用大量资源的问题。
然而,当存在禁用的子信道时,STA可能需要清楚地识别并操作该禁用的子信道。
因此,根据本发明的实施例,包括在预定帧中的EHT操作元素可始终包括禁用的子信道位图子字段。上述预定帧可以是关联响应帧或重新关联响应帧。或者,预定帧可以是关联响应帧、重新关联响应帧或探测响应帧。此外,在本发明中,当STA基于接收到的预定帧操作时,可指示最近接收到的预定帧。
更具体地,根据本发明的实施例,在存在禁用的子信道的情况下,包括在预定帧中的EHT操作元素可以总是包括禁用的子信道位图子字段。在这种情况下,即使当不存在禁用的子信道时,包括在预定帧中的EHT操作元素也可以不包括禁用的子信道位图子字段。此外,当STA接收到的预定帧不包括禁用的子信道位图子字段时,STA可以识别为不存在禁用的子信道而进行操作。当STA接收到的预定帧包括禁用的子信道位图子字段时,STA可以基于接收到的禁用的子信道位图子字段识别禁用的子信道并进行操作。例如,完全没有接收到禁用的子信道位图子字段的STA可以确定不存在禁用的子信道。完全没有接收到禁用的子信道位图子字段可能是因为关联响应帧不包括禁用的子信道位图子字段。
根据更具体的另一实施例,不管是否存在禁用的子信道,包括在预定帧中的EHT操作元素可以总是包括禁用的子信道位图子字段。在这种情况下,当不存在禁用的子信道时,包括在预定帧中的EHT操作元素可以在禁用的子信道位图子字段中指示不存在禁用的子信道(例如,与操作信道对应的所有比特位可以被设置为0)。STA可以基于包括在接收到的预定帧中的禁用的子信道位图子字段来识别是否存在禁用的子信道,以及哪个子信道是禁用的子信道,从而进行操作。
参照图34,AP可发送行为帧、关联响应帧和重新关联帧。由AP发送的管理帧(例如,信标帧、关联响应帧、重新关联帧和探测响应帧)可包括EHT操作元素。此外,在AP操作的BSS中可以存在禁用的子信道。虽然存在禁用的子信道,当AP发送信标帧时,AP可以将禁用的子信道位图存在子字段设置为0(不包括位图)。这可以用于减小信标帧的大小。即使STA接收到其中禁用的子信道位图存在子字段被设置为0的EHT操作元素,STA也可以不基于EHT操作元素识别是否存在禁用的子信道。STA可以基于包括在最近接收的关联响应帧或重新关联帧中的EHT操作元素来识别是否存在禁用的子信道以及哪个子信道被禁用。
此外,当AP发送关联响应帧或重新关联响应帧时,AP可以将禁用的子信道位图存在子字段始终设置为1(包括位图)。当发送PPDU时,STA可以基于包括在最近接收的关联响应帧或重新关联响应帧中的EHT操作元素以及禁用的子信道位图子字段来发送PPDU。在这种情况下,可以通过对被指示为禁用的子信道的子信道执行穿孔来进行穿孔传输。在这种情况下,即使最近接收到的EHT操作元素不包括禁用的子信道位图子字段,如图34所示,由于最近接收到的EHT操作元素被包括在信标帧中,STA也可能不识别为不存在禁用的子信道。
图35是图示根据本发明的实施例的禁用的子信道的信令和重要更新(criticalupdate)的图。
根据本发明的实施例,以下事件可被分类为重要更新。
(a)包含信道切换公告元素
(b)包含扩展信道切换公告元素
(c)EDCA参数元素的修改
(d)包含静默元素
(e)DSSS参数集的修改
(f)CF参数集元素的修改
(g)HT操作元素的修改
(h)包含宽带信道切换元素
(i)包含信道切换包装元素
(j)包含操作模式通知元素
(k)包含静默信道元素
(1)VHT操作元素的修改
(m)HE操作元素的修改
(n)广播TWT元素的插入
(o)包含BSS颜色变化公告元素
(p)MU EDCA参数集元素的修改
(q)空间重用参数集元素的修改
(r)UORA参数集元素的修改
(s)EHT操作元素的修改
元素的修改可以指元素的至少一个字段值的变化。包含元素可以指示元素被包括在信标帧中。元素的插入可以指示该元素未被包括在先前的信标帧中,而是被包括在当前的信标帧中。或者,元素的插入可以指示该元素未被包括在先前的信标帧中,而是被包括在下一信标帧中。
此外,当发生重要更新时,AP可以改变预定字段(或子字段)的值。根据实施例,不仅当发生与AP所操作的BSS相对应的重要更新时,而且还在发生与AP所属的MLD的其它AP所操作的BSS相对应的重要更新时,AP可以改变预定字段的值。即,当与包括在多链路元素中的重要更新相对应的元素改变时,也可以改变预定字段的值。或者,不仅当发生与AP所操作的BSS相对应的重要更新时,而且还在发生与由AP所属的多重BSSID集的其他AP操作的BSS相对应的重要更新时,AP也可以改变预定字段的值。也就是说,当与包括在多重BSSID元素中的重要更新对应的元素改变时,也可以改变预定字段的值。STA可以通过检查预定字段的改变来检查发生了哪些重要更新生或者哪个元素发生改变,并且可以通过改变相应的参数来操作。
例如,预定字段可以是指示是否发生重要更新的标记(flag)。例如,预定字段可以是检查信标标记子字段(Check Beacon Flag subfield)或重要更新标记子字段(CriticalUpdate Flag subfield)。指示是否已经发生重要更新的标记可以是1比特位。如果指示是否已经发生重要更新的标记被设置为1,则可以表示发生重要更新。
或者,预定字段可以是指示序列的字段。例如,预定字段可以是当发生重要更新时增加值的字段。例如,预定字段可以是当发生重要更新时将值增加1的字段。在这种情况下,序列值可以是通过对最大值执行模运算而获得的值。例如,预定字段可以是检查信标字段(Check Beacon field)或改变序列字段(Change Sequence field)。
如图34中所示,即使存在禁用的子信道,EHT操作元素也可以不包括禁用的子信道位图子字段。此外,当存在禁用的子信道时,EHT操作元素可以包括禁用的子信道位图子字段。此外,如参照图32所述,当EHT操作元素包括禁用的子信道位图子字段与否被改变时,包括在EHT操作元素中的禁用的子信道位图存在子字段的值可被改变。因此,如果将EHT操作元素中包括的至少一个值的改变定义为重要更新,则当为了减小管理帧的大小而包括或不包括禁用的子信道位图子字段时,或者当实际禁用的子信道未改变但禁用的子信道位图子字段包括与否被改变时,该情况也可被分类为重要更新。因此,STA可能不必要地检查参数的改变。
因此,根据本发明的实施例,EHT操作元素包括禁用的子信道位图子字段与否可以不被分类为重要更新。或者,EHT操作元素中包括的禁用的子信道位图存在子字段的变化可以不被分类为重要更新。这可以限于EHT操作元素被包括在信标帧中的情况。
此外,EHT操作元素的除了禁用的子信道位图存在子字段之外的字段的至少一个值的变化可被分类为重要更新。此外,EHT操作元素中包括的禁用的子信道位图子字段的值的变化可以被分类为重要更新。
或者,与包括在先前的关联响应帧或重新关联响应帧(或探测响应帧)中的EHT操作元素相比,当包括在关联响应帧或重新关联响应帧(或探测响应帧)中的EHT操作元素的值改变时,可以被分类为重要更新。在这种情况下,即使当禁用的子信道位图存在子字段的值改变时,也可以将其分类为重要更新。
参照图35,AP可以在发送信标帧1时,可以将禁用的子信道位图存在子字段设置为1。此外,当AP发送信标帧2时,可以将禁用的子信道位图存在子字段设置为0。这可以用于减小信标帧2的大小。此外,在这种情况下,包括在EHT操作元素中的禁用的子信道位图存在子字段的值相比于之前被改变,但是可以不被分类为重要更新。因此,AP可以不改变当包括在信标帧2中的重要更新发生时变化的预定字段的值。此外,在信标帧3中,禁用的子信道位图存在子字段可以被设置为1,并且禁用的子信道位图子字段的值可以不同于包括在信标帧1中的禁用的子信道位图子字段的值。在这种情况下,可以被分类为重要更新。此外,AP可以改变当包括在信标帧3中的重要更新发生时变化的预定字段的值。
图36是图示根据本发明的另一实施例的禁用的子信道的信令和重要更新的图。
在使用如图34或图35中描述的实施例的情况下,STA可以附加地检查帧的类型等,以确定是否存在禁用的子信道,这可能会成为实施负担。因此,在图36中描述了解决这种问题的实施例。在本实施例中,可以省略上面已描述的内容。
根据本发明的实施例,当存在禁用的子信道时,EHT操作元素可以始终包括禁用的子信道位图子字段。因此,STA可以基于最近接收到的EHT操作元素来确定禁用的子信道。这可以包括EHT操作元素被包括在关联响应帧或重新关联响应帧中的情况以及EHT操作元素被包括在信标帧中的情况。
此外,在本实施例中,当不存在禁用的子信道时,AP可以不将禁用的子信道位图子字段包括在发送的EHT操作元素中。此外,当STA接收的EHT操作元素不包括禁用的子信道位图子字段时,可以确定不存在禁用的子信道。
即,操作元素可以包括指示是否包括禁用的子信道位图子字段的禁用的子信道位图存在子字段,其中禁用的子信道位图子字段指示BSS操作信道的至少一个不可用信道(或禁用的子信道或穿孔的子信道等)。在这种情况下,禁用的子信道位图子字段的每个比特位指示相应的子信道是否不可用。例如,当比特位值为“0”时,相应的信道可用(例如,未穿孔),而当比特位值为“1”时,相应的信道不可用(例如,被穿孔)。
此外,禁用的子信道位图存在子字段的比特位值可以指示是否存在禁用的子信道位图子字段。例如,如果禁用的子信道位图存在子字段的比特位值被设置为“1”,则禁用的子信道位图存在子字段包括在操作元素中,并且如果禁用的子信道位图存在子字段的比特位值被设置为“0”,则禁用的子信道位图存在子字段不包括在操作元素中。
或者,如果不存在禁用的子信道,则AP可以在发送的EHT操作元素中包括禁用的子信道位图子字段,但是可以将与操作的子信道相对应的所有比特位都设置为0(启用)。即使接收到的EHT操作元素包括禁用的子信道位图子字段,当针对操作信道的所有比特位都被设置为“启用”时,接收EHT操作元素的STA可以确定不存在禁用的子信道并进行操作。
因此,根据以上描述的实施例,关于EHT操作元素指示不存在禁用的子信道的方法,可以存在两种。两种方法中的一种方法是不在EHT操作元素中包括禁用的子信道位图子字段,另一种方法是将EHT操作元素所包括的禁用的子信道位图子字段的比特位中与操作信道对应的所有比特位的值设置为“启用”。此外,可以通过AP的选择来使用这两种方法。当EHT操作元素的设置在上述两种方法中切换时,包括在EHT操作元素中的字段的值可以被改变。例如,可以改变禁用的子信道位图存在子字段的值。根据本发明的实施例,这两种方法之间的切换可以不被分类为重要更新。即,即使禁用的子信道位图存在子字段的值改变,如果禁用的子信道位图子字段不指示至少一个禁用的子信道,则可以不将其分类为重要更新。
当禁用的子信道位图存在子字段的值改变时,可以将禁用的子信道位图子字段指示至少一个禁用的子信道的情况分类为重要更新。例如,当在发送其中禁用的子信道位图子字段指示至少一个禁用的子信道的EHT操作元素之后,发送不包括禁用的子信道位图子字段的EHT操作元素时,可以将其分类为重要更新。或者,当在发送不包括禁用的子信道位图子字段的EHT操作元素之后,发送其中禁用的子信道位图子字段指示至少一个子信道的EHT操作元素时,EHT操作元素可以被分类为重要更新。
此外,当EHT操作元素的除了以上提及的字段之外的字段改变时,也可被分类为重要更新。
因此,当指示不可用子信道的禁用的子信道位图子字段的存在与否的字段的值改变时,被分类为重要更新,并且表示重要更新的字段的值可以增加。在这种情况下,AP可以向STA发送包括表示重要更新的字段的帧(例如,TIM帧),并且STA可以基于该帧识别操作参数是否被改变。即,当作为指示禁用的子信道位图子字段的存在与否的字段的禁用的子信道位图存在子字段的比特位值从“0”改变为“1”(或从“1”改变为“0”)时,其被分类为重要更新。因此,AP可增加表示重要更新的字段的值,并将增加的值发送到STA。在这种情况下,STA可以识别出操作参数已被改变,并且可接收管理帧以识别更新的操作参数。
根据另一实施例,EHT操作元素指示不存在禁用的子信道的方法中的一种设置可以不被允许。例如,EHT操作元素为了指示不存在禁用的子信道,可以始终不包括禁用的子信道位图子字段。即,可以将子信道位图存在子字段设置为0。此外,可以不允许EHT操作元素包括禁用的子信道位图子字段、但不指示任何禁用的子信道的设置。例如,可以不允许EHT操作元素包括禁用的子信道位图子字段、但将禁用的子信道位图子字段的比特位中的与操作信道相对应的所有比特位都被设置为“启用”的设置。这种设置可能是冗余的。根据本发明的实施例,当EHT操作元素包括禁用的子信道位图子字段时,可指示至少一个禁用的子信道。即,当EHT操作元素包括禁用的子信道位图子字段时,禁用的子信道位图子字段的与操作信道相对应的比特位中的至少一个比特位可被设置为1。在这种情况下,当包括在EHT操作元素中的字段中的至少一个的值改变时,以备分类为重要更新。如果包括在EHT操作元素中的禁用的子信道位图存在子字段的值改变,则也可以将其分类为重要更新。
在本发明的实施例中,可以将禁用的子信道位图子字段的与操作信道相对应的值可以扩展为禁用的子信道位图子字段的比特位。例如,将禁用的子信道位图子字段的与操作信道相对应的值设置为相同的值的实施例可以被扩展为将禁用的子信道位图子字段的所有比特位设置为相同的值的实施例。
参照图36,AP可以发送信标帧1、信标帧2和信标帧3,并且每个帧可以包括EHT操作元素。在信标帧1中,禁用的子信道位图存在子字段可以被设置为1。此外,包括在信标帧1中的禁用的子信道位图子字段可以指示至少一个禁用的子信道(穿孔的子信道)。接收到信标帧1的STA可以基于禁用的子信道位图子字段来确定是否存在禁用的子信道以及哪个子信道被禁用。此外,由于信道状态改变,AP可以改变为使用所有子信道。包括在信标帧2中的EHT操作元素中所包括的禁用的子信道位图存在子字段可以被设置为0。因此,在包括在信标帧2中的EHT操作元素中可以不存在禁用的子信道位图子字段。接收EHT操作元素的STA可以确定不存在禁用的子信道位图子字段,并且可以确定不存在禁用的子信道。在这种情况下,AP在信标帧1中包括指示禁用的子信道的禁用的子信道位图子字段,并且在信标帧2中不包括禁用的子信道位图子字段,而该情况可以被分类为重要更新。包括在信标帧3中的EHT操作元素可以将禁用的子信道位图存在子字段设置为1,并且包括在信标帧3中的EHT操作元素所包括的禁用的子信道位图子字段可以指示不存在禁用的子信道。即,禁用的子信道位图子字段的与操作信道相对应的所有比特位都可以被设置为0。在这种情况下,因为在信标帧2中不包括禁用的子信道位图子字段,所以指示不存在禁用的信道,而在信标帧3中也同样指示不存在禁用的信道,因此,可以不将这种情况分类为重要更新。
图37是图示根据本发明的实施例的EHT操作元素格式的图。
图32中所示的禁用的子信道位图子字段存在时,其长度是恒定的。然而,BSS操作的信道宽度可以不是元素支持信令的最大信道宽度,在这种情况下,禁用的子信道位图子字段可能需要包括冗余的值。因此,将描述根据本发明的实施例的用于减小禁用的子信道位图子字段的长度的方法。
根据本发明的实施例,包括在EHT操作元素中的禁用的子信道位图子字段的长度可以基于由EHT操作元素指示的信道宽度而改变。例如,当由EHT操作元素指示的信道宽度是320MHz时,EHT操作元素所包括的禁用的子信道位图子字段可以是2个八位字节。此外,当由EHT操作元素指示的信道宽度小于320MHz时,即,小于或等于160MHz时,EHT操作元素所包括的禁用的子信道位图子字段可以是1个八位字节。当EHT操作元素所包括的信道宽度子字段是0、1、2、3和4时,可以表示各个信道宽度是20、40、80、160和320MHz。
参照图37,EHT操作元素可包括EHT操作信息字段和禁用的子信道位图子字段。EHT操作信息字段可以包括信道宽度子字段和禁用的子信道位图存在子字段。如果禁用的子信道位图存在子字段被设置为0,则禁用的子信道位图存在子字段的长度可以是0个八位字节。即,可以不存在。此外,当禁用的子信道位图存在子字段被设置为1并且信道宽度子字段指示320MHz的信道宽度时,禁用的子信道位图子字段的长度可以是2个八位字节。此外,当禁用的子信道位图存在子字段被设置为1并且信道宽度子字段指示小于或等于160MHz的信道宽度时,禁用的子信道位图子字段的长度可以是1个八位字节。
根据本发明的实施例,禁用的子信道位图子字段的长度可基于与EHT操作元素相对应的频带而改变。例如,当对应于EHT操作元素的频带是2.4GHz频带时,禁用的子信道位图子字段的长度可以是1个八位字节。这可能是因为在2.4GHz频带中没有定义320MHz的信道化。此外,当对应于EHT操作元素的频带是5GHz或6GHz频带时,禁用的子信道位图子字段的长度可以是2个八位字节。与EHT操作元素相对应的频带可以在与EHT操作元素相对应的HT操作元素、VHT操作元素或HE操作元素指示。例如,可以指示与信道编号相对应的频带。
图38是图示根据本发明的另一实施例的EHT操作元素格式的图。
在图32或图37中描述的EHT操作元素可以包括用于字节对齐的保留字段。因此,在图38中,将描述减少保留字段并且用信号通知禁用的子信道的实施例。
根据本发明的实施例,EHT操作元素可总是包括用于预定子信道1的禁用的子信道位图子字段。参照图38,用于预定子信道1的禁用的子信道位图子字段可以是禁用的子信道位图1子字段。禁用的子信道位图1子字段可以被包括在EHT操作信息字段中。例如,禁用的子信道位图1子字段的长度可以是1个八位字节。禁用的子信道位图1子字段可以包括与预定子信道1的每一个20MHz相对应的比特位。
根据本发明的实施例,EHT操作元素可选择性地包括用于预定子信道2的禁用的子信道位图子字段。参照图38,用于预定子信道2的禁用的子信道位图子字段可以是禁用的子信道位图2子字段。禁用的子信道位图2子字段可以被包括在除了EHT操作信息字段之外的位置中。例如,如果禁用的子信道位图2子字段存在,则其长度可以是1个八位字节。禁用的子信道位图2子字段可以包括与预定子信道2的每一个20MHz相对应的比特位。
根据实施例,预定子信道1可以是主160MHz信道。或者,预定子信道1可以是包括主20MHz的160MHz信道。此外,预定子信道2可以是辅160MHz信道。
根据另一实施例,预定子信道1可以是操作的320MHz信道中的具有低频率的160MHz信道。预定子信道2可以是操作的320MHz信道中的具有高频率的160MHz信道。
此外,可以存在指示EHT操作元素是否包括禁用的子信道位图2子字段的信令。例如,指示EHT操作元素是否包括禁用的子信道位图2子字段的信令可以被包括在EHT操作信息字段中。
根据本发明的实施例,EHT操作信息字段可以将指示EHT操作元素是否包括禁用的子信道位图2子字段的信令包括在一个子字段中。例如,可以存在指示是否包括1比特位的禁用的子信道位图2子字段的信令。根据另一实施例,如图32中所示,EHT操作信息字段中包括的一个子字段可以指示信道宽度,并且一起可以指示是否包括禁用的子信道位图2子字段。例如,当信道宽度是320MHz时,可以包括禁用的子信道位图2子字段。在这种情况下,可以基于信道宽度子信道的比特位索引为B2的比特位来指示是否包括禁用的子信道位图2子字段。例如,信道宽度子字段的预定比特位可以指示是否包括禁用的子信道位图2子字段。或者,可以存在指示信道宽度是320MHz并且包括禁用的子信道位图2子字段的值,并且可以存在指示信道宽度是320MHz并且不包括禁用的子信道位图2子字段的值。
此外,当信道宽度小于或等于160MHz时,EHT操作元素可被设置为不包括禁用的子信道位图2子字段。
已经接收到不包括禁用的子信道位图2子字段的EHT操作元素的STA可以确定在BSS中不使用预定子信道2,或者在预定子信道2中不存在禁用的子信道。
图39是图示根据本发明的实施例的终端的操作的流程图。
参照图39,STA可以从AP接收包括与操作信道相关的信息的操作元素,并且发送PPDU。
具体地,STA可以从AP接收包括第一操作元素和第二操作元素的管理帧(S39010)。
第一操作元素可以指示用于传统(legacy)STA的基本服务集(BSS)操作信道,并且第二操作元素可以指示用于不是传统STA的STA的BSS操作信道。
随后,STA可以基于第一操作元素或第二操作元素向AP发送PPDU(S39020)。
在这种情况下,当用于STA的BSS操作信道包括至少一个不可用信道和/或超过由传统STA支持的最大带宽时,由第一操作元素指示的用于传统STA的BSS操作信道可以不同于由第二操作元素指示的用于STA的BSS操作信道。
当用于STA的BSS操作信道包括至少一个不可用信道和/或超过由传统STA支持的最大带宽时,由第一操作元素指示的用于传统STA的BSS操作信道是由第二操作元素指示的用于STA的BSS操作信道中包括主信道的连续信道。
当用于STA的BSS操作信道包括至少一个不可用信道和/或超过由传统STA支持的最大带宽时,由第一操作元素指示的用于传统STA的BSS操作信道被设置为在由第二操作元素指示的用于STA的BSS操作信道内排除至少一个不可用信道之后的最大带宽内。
第一操作元素可以是用于高效率(HE)STA的操作元素,并且第二操作元素可以是用于极高吞吐量(EHT)STA的操作元素。
第二操作元素可以包括指示是否包括禁用的子信道位图子字段的禁用的子信道位图存在子字段,该禁用的子信道位图子字段指示用于STA的BSS操作信道的至少一个不可用信道。
禁用的子信道位图子字段的每个比特位指示相应的不可用信道是否被包括在用于STA的BSS操作信道中。
当用于STA的BSS操作信道不包括至少一个不可用信道时,禁用的子信道位图存在子字段的值被设置为表示不包括禁用的子信道位图子字段的值“0”。
STA可以从AP接收包括表示操作参数是否被改变的特定字段的帧,并且当操作参数被改变时,特定字段的值增加。
特定字段的值可以在禁用的子信道位图子字段的包括与否改变、或者至少一个不可用信道的包括与否改变时增加。
STA可以接收向一个或多个STA指示PPDU的发送的触发帧,并且可以响应于PPDU接收多STA块确认帧。
在这种情况下,当传统STA被包括在一个或多个STA中的响应于触发帧发送PPDU的至少一个STA中时,针对包括在多STA块确认帧中的至少一个STA的确认信息的大小可被限制为小于或等于特定大小。
然而,当传统STA被包括在一个或多个STA中的响应于触发帧发送PPDU的至少一个STA中,并且多STA块确认帧仅包括针对STA的PPDU的确认信息时,该确认信息的大小不限于小于或等于特定大小。
上述的本发明的说明是用于例示的目的,且本发明所属技术领域的技术人员应当理解,在不变更本发明的技术思想或必要特征的情况下,能够容易地变形为其他具体实施类型。因此,应理解为上述实施例在所有方面都是示例性的,而不是限制性的。例如,描述为单个形式的各构成元件可以被分散地实施,并且描述为分散的构成元件可以以结合的类型实施。
本发明的范围由所附权利要求范围来限定,而不是由说明书来限定,并且从权利要求范围的含义和范围以及其等同概念所导出的所有变更或变形实施类型应被解释为包括在本发明的范围内。

Claims (22)

1.一种无线通信系统的站(STA),包括:
收发器;以及
处理器,控制所述收发器,
其中,所述处理器:
从接入点(AP)接收包括第一操作元素和第二操作元素的管理帧,其中,所述第一操作元素指示用于传统STA的基本服务集(BSS)操作信道,并且所述第二操作元素指示用于不是所述传统STA的所述STA的BSS操作信道,以及
基于所述第一操作元素或所述第二操作元素向所述AP发送PPDU,
其中,当用于所述STA的所述BSS操作信道包括至少一个不可用信道和/或超过由所述传统STA支持的最大带宽时,由所述第一操作元素指示的用于所述传统STA的所述BSS操作信道不同于由所述第二操作元素指示的用于所述STA的所述BSS操作信道。
2.根据权利要求1所述的STA,其中,
当用于所述STA的所述BSS操作信道包括所述至少一个不可用信道和/或超过由所述传统STA支持的所述最大带宽时,由所述第一操作元素指示的用于所述传统STA的所述BSS操作信道是在由所述第二操作元素指示的用于所述STA的所述BSS操作信道内包括主信道的连续信道。
3.根据权利要求2所述的STA,其中,
当用于所述STA的所述BSS操作信道包括所述至少一个不可用信道和/或超过由所述传统STA支持的所述最大带宽时,由所述第一操作元素指示的用于所述传统STA的所述BSS操作信道被设置为在由所述第二操作元素指示的用于所述STA的所述BSS操作信道内排除所述至少一个不可用信道之后的最大带宽内。
4.根据权利要求1所述的STA,其中,
所述第一操作元素是用于高效率(HE)STA的操作元素,以及
所述第二操作元素是用于极高吞吐量(EHT)STA的操作元素。
5.根据权利要求1所述的STA,其中,
所述第二操作元素包括指示是否包括禁用的子信道位图子字段的禁用的子信道位图存在子字段,所述禁用的子信道位图子字段指示用于所述STA的所述BSS操作信道的所述至少一个不可用信道。
6.根据权利要求5所述的STA,其中,
所述禁用的子信道位图子字段的每个比特位指示相应的不可用信道是否被包括在用于所述STA的所述BSS操作信道中。
7.根据权利要求5所述的STA,其中,
当用于所述STA的所述BSS操作信道不包括所述至少一个不可用信道时,所述禁用的子信道位图存在子字段的值被设置为指示不包括所述禁用的子信道位图子字段的值“0”。
8.根据权利要求5所述的STA,其中,所述处理器:
从所述AP接收包括指示操作参数是否改变的特定字段的帧,
其中,当所述操作参数改变时,所述特定字段的值增加。
9.根据权利要求8所述的STA,其中,
当所述禁用的子信道位图子字段的包括与否被改变,或者当所述至少一个不可用信道的包括与否被改变时,所述特定字段的值增加。
10.根据权利要求1所述的STA,其中,所述处理器:
接收指示一个或多个STA发送PPDU的触发帧;以及
接收响应于所述PPDU的多STA块确认帧,
其中,当所述传统STA被包括在所述一个或多个STA之中的响应于所述触发帧发送所述PPDU的至少一个STA中时,包括在所述多STA块确认帧中的针对所述至少一个STA中的每一个的确认信息的大小被限制为小于或等于特定大小。
11.根据权利要求10所述的STA,其中,
当所述传统STA被包括在所述一个或多个STA之中的响应于所述触发帧发送所述PPDU的至少一个STA中,并且当通过由所述AP单独分配给所述STA的资源单元(RU)发送所述多STA块确认帧时,所述确认信息的大小不限于小于或等于所述特定大小。
12.一种在无线通信系统中由站(STA)发送帧的方法,所述方法包括以下步骤:
从接入点(AP)接收包括第一操作元素和第二操作元素的管理帧,其中,所述第一操作元素指示用于所述传统STA的基本服务集(BSS)操作信道,并且所述第二操作元素指示用于不是所述传统STA的所述STA的BSS操作信道;以及
基于所述第一操作元素或所述第二操作元素向所述AP发送PPDU,
其中,当用于所述STA的所述BSS操作信道包括至少一个不可用信道和/或超过由所述传统STA支持的最大带宽时,由所述第一操作元素指示的用于所述传统STA的所述BSS操作信道不同于由所述第二操作元素指示的用于所述STA的所述BSS操作信道。
13.根据权利要求12所述的方法,其中,
当用于所述STA的所述BSS操作信道包括至少一个不可用信道和/或超过由所述传统STA支持的最大带宽时,由所述第一操作元素指示的用于所述传统STA的所述BSS操作信道是在由所述第二操作元素指示的用于所述STA的所述BSS操作信道内包括主信道的连续信道。
14.根据权利要求13所述的方法,其中,
当用于所述STA的所述BSS操作信道包括所述至少一个不可用信道和/或超过由所述传统STA支持的所述最大带宽时,由所述第一操作元素指示的用于所述传统STA的所述BSS操作信道被设置为在由所述第二操作元素指示的用于所述STA的所述BSS操作信道内排除所述至少一个不可用信道之后的最大带宽内。
15.根据权利要求12所述的方法,其中,
所述第一操作元素是用于高效率(HE)STA的操作元素,以及
所述第二操作元素是用于极高吞吐量(EHT)STA的操作元素。
16.根据权利要求12所述的方法,其中,
所述第二操作元素包括指示是否包括禁用的子信道位图子字段的禁用的子信道位图存在子字段,所述禁用的子信道位图子字段指示用于所述STA的所述BSS操作信道的所述至少一个不可用信道。
17.根据权利要求16所述的方法,其中,
所述禁用的子信道位图子字段的每个比特位指示相应的不可用信道是否被包括在用于所述STA的所述BSS操作信道中。
18.根据权利要求16所述的方法,其中,
当用于所述STA的所述BSS操作信道不包括所述至少一个不可用信道时,所述禁用的子信道位图存在子字段的值被设置为指示不包括所述禁用的子信道位图子字段的值“0”。
19.根据权利要求16所述的方法,还包括以下步骤:
从所述AP接收包括指示操作参数是否改变的特定字段的帧,
其中,当所述操作参数改变时,所述特定字段的值增加。
20.根据权利要求19所述的方法,其中,
当所述禁用的子信道位图子字段的包括与否被改变,或者当所述至少一个不可用信道的包括与否被改变时,所述特定字段的值增加。
21.根据权利要求12所述的方法,还包括以下步骤:
接收指示一个或多个STA发送PPDU的触发帧;以及
接收响应于所述PPDU的多STA块确认帧,
其中,当所述传统STA被包括在所述一个或多个STA之中的响应于所述触发帧发送所述PPDU的至少一个STA中时,包括在所述多STA块确认帧中的针对所述至少一个STA中的每一个的确认信息的大小被限制为小于或等于特定大小。
22.根据权利要求21所述的方法,其中,
当所述传统STA被包括在所述一个或多个STA之中的响应于所述触发帧发送所述PPDU的至少一个STA中,并且当通过由所述AP单独分配给所述STA的资源单元(RU)发送所述多STA块确认帧时,所述确认信息的大小不限于小于或等于所述特定大小。
CN202280012809.9A 2021-02-02 2022-02-03 使用多链路的无线通信方法和使用该方法的无线通信终端 Pending CN116803128A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2021-0015032 2021-02-02
KR10-2021-0015578 2021-02-03
KR10-2021-0015114 2021-02-03
KR20210047460 2021-04-12
KR10-2021-0047460 2021-04-12
PCT/KR2022/001720 WO2022169277A1 (ko) 2021-02-02 2022-02-03 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말

Publications (1)

Publication Number Publication Date
CN116803128A true CN116803128A (zh) 2023-09-22

Family

ID=88042349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280012809.9A Pending CN116803128A (zh) 2021-02-02 2022-02-03 使用多链路的无线通信方法和使用该方法的无线通信终端

Country Status (1)

Country Link
CN (1) CN116803128A (zh)

Similar Documents

Publication Publication Date Title
CN110574441A (zh) 使用bss标识符的无线通信方法和使用该方法的无线通信终端
CN116158180A (zh) 在无线通信系统中用于传输和接收帧的方法和无线通信终端
EP4210417A1 (en) Method and wireless communication terminal for transmitting/receiving data in wireless communication system
KR102544254B1 (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
KR20230005824A (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
EP4311302A1 (en) Multi-link device operating in multiple links and method for operating multi-link device
KR20230118607A (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법및 무선 통신 단말
KR20230048064A (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
KR20230027165A (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 무선 통신 단말
CN115997476A (zh) 使用多链路的无线通信方法和使用该方法的无线通信终端
US20240008083A1 (en) Wireless communication method using multilink, and wireless communication terminal using same
CN116803128A (zh) 使用多链路的无线通信方法和使用该方法的无线通信终端
US20240114573A1 (en) Wireless communication method using multi-link and wireless communication terminal using same
US20240129866A1 (en) Wireless communication method using multilink, and wireless communication terminal using same
EP4362595A1 (en) Wireless communication method using shared txop, and wireless communication terminal using same
CN116830754A (zh) 使用多链路的无线通信方法和使用该方法的无线通信终端
CN116746106A (zh) 在无线通信系统中发送和接收数据的方法和终端
KR20230129510A (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는무선 통신 단말
CN117546590A (zh) 使用共享txop的无线通信方法及使用其的无线通信终端
CN116998184A (zh) 在多个链路上操作的多链路装置和操作该多链路装置的方法
CN117561789A (zh) 使用多链路的无线通信方法和使用该方法的无线通信终端
KR20230162681A (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는무선 통신 단말
KR20240027841A (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
CN117356156A (zh) 使用共享txop的无线通信设备和无线通信设备的操作方法
KR20230022186A (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 무선 통신 단말

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination