KR20230048064A - 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말 - Google Patents

멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말 Download PDF

Info

Publication number
KR20230048064A
KR20230048064A KR1020237006277A KR20237006277A KR20230048064A KR 20230048064 A KR20230048064 A KR 20230048064A KR 1020237006277 A KR1020237006277 A KR 1020237006277A KR 20237006277 A KR20237006277 A KR 20237006277A KR 20230048064 A KR20230048064 A KR 20230048064A
Authority
KR
South Korea
Prior art keywords
station
link
transmission
ppdu
str
Prior art date
Application number
KR1020237006277A
Other languages
English (en)
Inventor
김상현
고건중
홍한슬
손주형
곽진삼
Original Assignee
주식회사 윌러스표준기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 윌러스표준기술연구소 filed Critical 주식회사 윌러스표준기술연구소
Publication of KR20230048064A publication Critical patent/KR20230048064A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Abstract

멀티 링크 장치의 스테이션이 개시된다. 멀티 링크 장치의 스테이션은 송수신부; 및 프로세서를 포함한다. 상기 멀티 링크 장치는 어느 하나의 링크에서 상기 멀티링크 장치의 수신과 다른 링크에서 상기 멀티 링크 장치의 전송이 동시에 수행되는 것이 지원되지 않는 non-STR(simultaneous transmit and receive) 링크인 제1 링크와 제2 링크에서 동작한다. 상기 프로세서는 상기 제1 링크에서 상기 멀티 링크 장치의 다른 스테이션의 전송이 수행되는 것으로 판단하고, 상기 제2 링크에서 하나 이상의 미리 지정된 조건 모두를 만족하지 않는 경우 , 상기 제1 링크에서 상기 다른 스테이션의 상기 전송이 완료된 때로부터 미리 지정된 시간 동안 채널 액세스 제한에 따라 채널 액세스를 수행하한다. 상기 채널 액세스 제한은 상기 스테이션이 채널 액세스 제한이 적용되지 않는 때에 사용하는 판단 조건보다 엄격한 판단 조건을 사용하여 무선 매개체가 유휴한지 판단하는 것이다.

Description

멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
본 발명은 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말에 관한 것이다.
최근 모바일 기기의 보급이 확대됨에 따라 이들에게 빠른 무선 인터넷 서비스를 제공할 수 있는 무선랜(Wireless LAN) 기술이 많은 각광을 받고 있다. 무선랜 기술은 근거리에서 무선 통신 기술을 바탕으로 스마트 폰, 스마트 패드, 랩탑 컴퓨터, 휴대형 멀티미디어 플레이어, 임베디드 기기 등과 같은 모바일 기기들을 가정이나 기업 또는 특정 서비스 제공지역에서 무선으로 인터넷에 접속할 수 있도록 하는 기술이다.
IEEE(Institute of Electrical and Electronics Engineers) 802.11은 2.4GHz 주파수를 이용한 초기의 무선랜 기술을 지원한 이래, 다양한 기술의 표준을 실용화 또는 개발 중에 있다. 먼저, IEEE 802.11b는 2.4GHz 밴드의 주파수를 사용하면서 최고 11Mbps의 통신 속도를 지원한다. IEEE 802.11b 이후에 상용화된 IEEE 802.11a는 2.4GHz 밴드가 아닌 5GHz 밴드의 주파수를 사용함으로써 상당히 혼잡한 2.4GHz 밴드의 주파수에 비해 간섭에 대한 영향을 줄였으며, OFDM(orthogonal frequency division multiplexing) 기술을 사용하여 통신 속도를 최대 54Mbps까지 향상시켰다. 그러나 IEEE 802.11a는 IEEE 802.11b에 비해 통신 거리가 짧은 단점이 있다. 그리고 IEEE 802.11g는 IEEE 802.11b와 마찬가지로 2.4GHz 밴드의 주파수를 사용하여 최대 54Mbps의 통신속도를 구현하며, 하위 호환성(backward compatibility)을 만족하고 있어 상당한 주목을 받았는데, 통신 거리에 있어서도 IEEE 802.11a보다 우위에 있다.
그리고 무선랜에서 취약점으로 지적되어온 통신 속도에 대한 한계를 극복하기 위하여 제정된 기술 규격으로서 IEEE 802.11n이 있다. IEEE 802.11n은 네트워크의 속도와 신뢰성을 증가시키고, 무선 네트워크의 운영 거리를 확장하는데 목적을 두고 있다. 보다 구체적으로, IEEE 802.11n에서는 데이터 처리 속도가 최대 540Mbps 이상인 고처리율(High Throughput, HT)을 지원하며, 또한 전송 에러를 최소화하고 데이터 속도를 최적화하기 위해 송신부와 수신부 양단 모두에 다중 안테나를 사용하는 MIMO(Multiple Inputs and Multiple Outputs) 기술에 기반을 두고 있다. 또한, 이 규격은 데이터 신뢰성을 높이기 위해 중복되는 사본을 여러 개 전송하는 코딩 방식을 사용할 수 있다.
무선랜의 보급이 활성화되고 또한 이를 이용한 어플리케이션이 다양화됨에 따라, IEEE 802.11n이 지원하는 데이터 처리 속도보다 더 높은 처리율(Very High Throughput, VHT)을 지원하기 위한 새로운 무선랜 시스템에 대한 필요성이 대두되었다. 이 중 IEEE 802.11ac는 5GHz 주파수에서 넓은 대역폭(80MHz~160MHz)을 지원한다. IEEE 802.11ac 표준은 5GHz 대역에서만 정의되어 있으나 기존 2.4GHz 대역 제품들과의 하위 호환성을 위해 초기 11ac 칩셋들은 2.4GHz 대역에서의 동작도 지원할 것이다. 이론적으로, 이 규격에 따르면 다중 스테이션의 무선랜 속도는 최소 1Gbps, 최대 싱글 링크 속도는 최소 500Mbps까지 가능하게 된다. 이는 더 넓은 무선 주파수 대역폭(최대 160MHz), 더 많은 MIMO 공간적 스트림(최대 8개), 다중 사용자 MIMO, 그리고 높은 밀도의 변조(최대 256 QAM) 등 802.11n에서 받아들인 무선 인터페이스 개념을 확장하여 이루어진다. 또한, 기존 2.4GHz/5GHz 대신 60GHz 밴드를 사용해 데이터를 전송하는 방식으로 IEEE 802.11ad가 있다. IEEE 802.11ad는 빔포밍 기술을 이용하여 최대 7Gbps의 속도를 제공하는 전송규격으로서, 대용량의 데이터나 무압축 HD 비디오 등 높은 비트레이트 동영상 스트리밍에 적합하다. 하지만 60GHz 주파수 밴드는 장애물 통과가 어려워 근거리 공간에서의 디바이스들 간에만 이용이 가능한 단점이 있다.
한편, 802.11ac 및 802.11ad 이후의 무선랜 표준으로서, AP와 단말들이 밀집한 고밀도 환경에서의 고효율 및 고성능의 무선랜 통신 기술을 제공하기 위한 IEEE 802.11ax(High Efficiency WLAN, HEW) 표준이 개발 완료단계에 있다. 802.11ax 기반 무선랜 환경에서는 고밀도의 스테이션들과 AP(Access Point)들의 존재 하에 실내/외에서 높은 주파수 효율의 통신이 제공되어야 하며, 이를 구현하기 위한 다양한 기술들이 개발되었다.
또한 고화질 비디오, 실시간 게임 등과 같은 새로운 멀티미디어 응용을 지원하기 위하여 최대 전송 속도를 높이기 위한 새로운 무선랜 표준 개발이 시작되었다. 7세대 무선랜 표준인 IEEE 802.11be(Extremely High Throughput, EHT)에서는 2.4/5/6 GHz의 대역에서 더 넓은 대역폭과 늘어난 공간 스트림 및 다중 AP 협력 등을 통해 최대 30Gbps의 전송율을 지원하는 것을 목표로 표준 개발을 진행 중이다.
본 발명의 일 실시 예는 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말을 제공하는 것을 목적으로 한다.
본 발명의 일 실시 예에 따른 멀티 링크 장치의 스테이션은 송수신부; 및 프로세서를 포함한다. 상기 멀티 링크 장치는 어느 하나의 링크에서 상기 멀티링크 장치의 수신과 다른 링크에서 상기 멀티 링크 장치의 전송이 동시에 수행되는 것이 지원되지 않는 non-STR(simultaneous transmit and receive) 링크인 제1 링크와 제2 링크에서 동작한다. 상기 프로세서는 상기 제1 링크에서 상기 멀티 링크 장치의 다른 스테이션의 전송이 수행되는 것으로 판단하고, 상기 제2 링크에서 하나 이상의 미리 지정된 조건 모두를 만족하지 않는 경우, 상기 제1 링크에서 상기 다른 스테이션의 상기 전송이 완료된 때로부터 미리 지정된 시간 동안 채널 액세스 제한에 따라 채널 액세스를 수행한다. 상기 채널 액세스 제한은 상기 스테이션이 채널 액세스 제한이 적용되지 않는 때에 사용하는 판단 조건보다 엄격한 판단 조건을 사용하여 무선 매개체가 유휴한지 판단하는 것일 수 있다.
상기 하나 이상의 미리 지정된 조건은 상기 다른 스테이션의 상기 전송의 듀레이션이 미리 지정된 듀레이션 문턱값보다 크지 않은 것일 수 있다.
상기 미리 지정된 듀레이션 문턱값은 특정 프레임의 전송에 소요되는 시간을 기초로 결정될 수 있다.
상기 특정 프레임은 ACK 프레임 또는 CTS(clear to send) 프레임일 수 있다.
상기 프로세서는 상기 스테이션과 결합된 AP(access point)로부터 상기 미리 지정된 듀레이션 문턱값을 수신할 수 있다.
상기 프로세서는 상기 스테이션과 결합된 AP(access point)로부터 시그널링된 CCA(clear channel assessment)에 관한 파라미터에 따라 CCA를 수행할 수 있다.
상기 CCA에 관한 파라미터는 ED(energy detection) 문턱값일 수 있다.
상기 프로세서는 상기 미리 지정된 시간 구간 내의 전송의 첫 번째 프레임의 전송이 실패한 경우, 상기 미리 지정된 시간 구간의 남은 시간 동안 전송을 시도하지 않을 수 있다.
상기 프로세서는 상기 미리 지정된 시간 구간 내에서 상기 제1 링크에서 상기 다른 스테이션의 상기 전송 이후 NAV(network allocation vector)가 설정되는 경우, 상기 미리 지정된 시간 내 일부 시간 구간 내에서 상기 채널 액세스 제한 없이 채널 액세스를 수행할 수 있다.
본 발명의 실시 예에 따른 멀티 링크 장치의 스테이션의 동작 방법은 상기 멀티 링크 장치는 어느 하나의 링크에서 상기 멀티링크 장치의 수신과 다른 링크에서 상기 멀티 링크 장치의 전송이 동시에 수행되는 것이 지원되지 않는 non-STR(simultaneous transmit and receive) 링크인 제1 링크와 제2 링크에서 동작하고, 상기 동작 방법은 상기 제1 링크에서 상기 멀티 링크 장치의 다른 스테이션의 전송이 수행되는 것으로 판단하는 단계 및 상기 제2 링크에서 하나 이상의 미리 지정된 조건 모두를 만족하지 않는 경우, 상기 제1 링크에서 상기 다른 스테이션의 상기 전송이 완료된 때로부터 미리 지정된 시간 동안 채널 액세스 제한에 따라 채널 액세스를 수행하는 단계를 포함한다. 상기 채널 액세스 제한은 상기 스테이션이 채널 액세스 제한이 적용되지 않는 때에 사용하는 판단 조건보다 엄격한 판단 조건을 사용하여 무선 매개체가 유휴한지 판단하는 것일 수 있다.
상기 하나 이상의 미리 지정된 조건은 상기 제1 링크에서 상기 다른 스테이션의 상기 전송의 듀레이션이 미리 지정된 듀레이션 문턱값보다 크지 않은 것일 수 있다.
상기 미리 지정된 듀레이션 문턱값은 특정 프레임의 전송에 소요되는 시간을 기초로 결정될 수 있다.
상기 특정 프레임은 ACK 프레임 또는 CTS(clear to send) 프레임일 수 있다.
상기 동작 방법은 상기 스테이션과 결합된 AP(access point)로부터 상기 미리 지정된 듀레이션 문턱값을 수신하는 단계를 포함할 수 있다.
상기 동작 방법은 상기 스테이션과 결합된 AP(access point)로부터 시그널링된 CCA(clear channel assessment)에 관한 파라미터에 따라 CCA를 수행하는 단계를 더 포함할 수 있다.
상기 CCA에 관한 파라미터는 ED(energy detection) 문턱값일 수 있다.
상기 제1 링크에서 상기 다른 스테이션의 상기 전송이 완료된 때로부터 미리 지정된 시간 동안 채널 액세스 제한에 따라 채널 액세스를 수행하는 단계는 상기 미리 지정된 시간 구간 내의 전송의 첫 번째 프레임의 전송이 실패한 경우, 상기 미리 지정된 시간 구간의 남은 시간 동안 전송을 시도하지 않는 단계를 포함할 수 있다.
상기 제1 링크에서 상기 다른 스테이션의 상기 전송이 완료된 때로부터 미리 지정된 시간 동안 채널 액세스 제한에 따라 채널 액세스를 수행하는 단계는 상기 미리 지정된 시간 구간 내에서 상기 제1 링크에서 전송 이후 NAV(network allocation vector)가 설정되는 경우, 상기 미리 지정된 시간 내 일부 시간 구간 내에서 상기 채널 액세스 제한 없이 채널 액세스를 수행하는 단계를 포함할 수 있다.
본 발명의 일 실시 예는 효율적으로 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말을 제공한다.
도 1은 본 발명의 일 실시예에 따른 무선랜 시스템을 나타낸다.
도 2는 본 발명의 또 다른 일 실시예에 따른 무선랜 시스템을 나타낸다.
도 3은 본 발명의 일 실시예에 따른 스테이션의 구성을 나타낸다.
도 4는 본 발명의 일 실시예에 따른 액세스 포인트의 구성을 나타낸다.
도 5는 스테이션이 액세스 포인트와 링크를 설정하는 과정을 개략적으로 나타낸다.
도 6은 무선랜 통신에서 사용되는 CSMA(Carrier Sense Multiple Access)/CA(Collision Avoidance) 방법의 일 예를 나타낸다.
도 7은 다양한 표준 세대별 PPDU(PLCP Protocol Data Unit) 포맷의 일 예를 도시한다.
도 8은 본 발명의 실시예에 따른 다양한 EHT(Extremely High Throughput) PPDU(Physical Protocol Data Unit) 포맷 및 이를 지시하기 위한 방법의 일 예를 나타낸다.
도 9는 본 발명의 실시 예에 따른 멀티 링크 장치(multi-link device)를 보여준다.
도 10은 본 발명의 실시 예에 따라 멀티 링크 동작에서 서로 다른 링크의 전송이 동시에 수행되는 것을 보여준다.
도 11은 본 발명의 일 실시예에 따라 링크가 변경된 경우, 멀티 링크 장치의 동작을 보여준다.
도 12는 본 발명의 일 실시예에 따라 non-STR 멀티 링크 장치의 어느 하나의 스테이션 수신을 수행 중일 때, non-STR 멀티 링크 장치의 다른 스테이션의 채널 엑세스가 금지되는 것을 보여준다.
도 13은 본 발명의 실시 예에 따라 non-STR 멀티 링크 장치의 스테이션이 수신하는 PPDU의 의도된 수신자가 스테이션이 아님을 확인한 경우, 채널 액세스 금지를 해제하는 동작을 보여준다.
도 14는 본 발명의 실시 예에 따른 스테이션이 채널 액세스 금지가 해제된 후 채널 액세스를 수행하는 것을 보여준다.
도 15는 본 발명의 일 실시예에 따른 스테이션이 채널 액세스 금지 해제 이후 전송을 수행하는 동작을 보여준다.
도 16은 본 발명의 실시 예에 따라 non-STR 멀티 링크 장치 내 스테이션의 상태를 기초로 수행되는 전송을 보여준다.
도 17은 링크 사이의 간섭 또는 충돌이 발생할 수 있는 상황을 보여준다.
도 18은 본 발명의 일 실시예에 따라 STR 멀티 링크 장치가 non-STR 멀티 링크 장치에 대한 전송을 중지하는 동작을 보여준다.
도 19는 본 발명의 실시 예에 따라 STR 멀티 링크 장치가 링크 사이의 전송 충돌을 인지한 경우, CW의 값을 처리하는 것을 보여준다.
도 20은 본 발명의 실시 예에 따라 STR 멀티 링크 장치가 non-STR 멀티 링크 장치에 대한 전송을 중지한 후 다시 채널 액세스를 수행하는 동작을 보여준다.
도 21 은 본 발명의 실시 예에 따라 STR 멀티 링크 장치가 non-STR 멀티 링크 장치에 대한 전송을 전에 CTS-to-Self 프레임을 전송하는 동작을 보여준다.
도 22는 본 발명의 실시 예에 따라 STR 멀티 링크 장치에 포함된 복수의 AP가 하나의 non-STR 멀티 링크 장치에 포함된 복수의 스테이션에게 전송을 수행하는 것을 보여준다.
도 23은 본 발명의 실시 예에 따라 STR 멀티 링크 장치에 포함된 복수의 AP가 하나의 non-STR 멀티 링크 장치에 포함된 복수의 스테이션에게 전송의 종료가 동기화된 복수의 전송을 수행하는 것을 보여준다.
도 24는 본 발명의 실시 예에 따라 멀티 링크 장치가 RTS/CTS 프레임을 교환하는 것을 보여준다.
도 25는 도 24를 통해 설명한 실시 예에 따른 RTS/CTS 프레임 교환 절차에서 발생하는 히든 노드 문제를 보여준다.
도 26은 본 발명의 실시 예에 따라 멀티 링크 장치가 RTS/CTS 프레임을 교환하는 것을 보여준다.
도 27은 본 발명의 일시 예에 따라 멀티 링크 장치가 채널 액세스가 금지된 경우에도 예외적으로 제어 프레임에 대한 응답을 전송하는 것을 보여준다.
도 28은 non-STR 멀티 링크 장치의 스테이션에 대한 전송을 재전송하는 것을 보여준다.
도 29는 본 발명의 실시 예에 따라 채널 액세스가 금지된 스테이션이 동작하는 링크가 아니라 채널 액세스가 금지되지 않은 스테이션이 동작하는 링크를 통해 제어 프레임이 전송되는 것을 보여준다.
도 30은 본 발명의 실시 예에 따라 멀티 링크 장치가 ACK을 전송하는 것을 보여준다.
도 31은 본 발명의 실시 예에 따라 싱크 PPDU 수신 지원 또는 전송 지원에 관한 정보를 지시하는 엘레멘트 필드를 보여준다.
도 32는 본 발명의 실시 예에 따라 non-STR 멀티 링크 장치가 Inter-link TXOP 절전 모드 동작을 수행하는 것을 보여준다.
도 33은 본 발명의 실시 예에 따라 non-STR 멀티 링크 장치의 스테이션이 싱크 PPDU 수신 대기에서 절전 상태에 진입하는 것을 보여준다.
도 34는 본 발명의 또 다른 실시 예에 따라 non-STR 멀티 링크 장치의 스테이션이 싱크 PPDU 수신 대기에서 절전 상태에 진입하는 것을 보여준다.
도 35는 본 발명의 실시 예에 따라 블라인드 상태에서 벗어난 스테이션의 채널 액세스가 제한되는 것을 보여준다.
도 36은 본 발명의 또 다른 실시 예에 따라 블라인드 상태에서 벗어난 스테이션의 채널 액세스가 제한되는 것을 보여준다.
도 37은 본 발명의 또 다른 실시 예에 따라 블라인드 상태에서 벗어난 스테이션의 채널 액세스가 제한되는 것을 보여준다.
도 38은 본 발명의 본 또 다른 실시 예에 따라 블라인드 상태에서 벗어난 스테이션이 일정한 조건을 만족하는 경우 채널 액세스가 제한되지 않는 것을 보여준다.
도 39는 본 발명의 실시 예에 따라 채널 액세스 제한 시간에 관한 정보를 포함하는 Operation 엘리멘트를 보여준다.
도 40은 본 발명의 실시 예에 따라 채널 액세스 제한 구간에서 스테이션이 스테이션이 포함된 non-STR 멀티 링크 장치의 다른 스테이션과 동시 전송을 수행하는 것을 보여준다.
도 41은 본 발명의 또 다른 실시 예에 따라 채널 액세스 제한 구간에서 스테이션이 스테이션이 포함된 non-STR 멀티 링크 장치의 다른 스테이션과 동시 전송을 수행하는 것을 보여준다.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도, 관례 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한 특정 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 그 의미를 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는, 단순한 용어의 명칭이 아닌 그 용어가 가진 실질적인 의미와 본 명세서의 전반에 걸친 내용을 토대로 해석되어야 함을 밝혀두고자 한다.
명세서 전체에서, 어떤 구성이 다른 구성과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 구성요소를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 구성이 특정 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 이에 더하여, 특정 문턱값을 기준으로 "이상" 또는 "이하"라는 한정 사항은 실시예에 따라 각각 "초과" 또는 "미만"으로 적절하게 대체될 수 있다.
이하, 본 발명에서 필드와 서브 필드는 혼용되어 사용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 무선랜 시스템을 나타낸다.
무선랜 시스템은 하나 또는 그 이상의 베이직 서비스 세트(Basic Service Set, BSS)를 포함하는데, BSS는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 기기들의 집합을 나타낸다. 일반적으로 BSS는 인프라스트럭쳐 BSS(infrastructure BSS)와 독립 BSS(Independent BSS, IBSS)로 구분될 수 있으며, 도 1은 이 중 인프라스트럭쳐 BSS를 나타내고 있다.
도 1에 도시된 바와 같이 인프라스트럭쳐 BSS(BSS1, BSS2)는 하나 또는 그 이상의 스테이션(STA1, STA2, STA3, STA4, STA5), 분배 서비스(Distribution Service)를 제공하는 스테이션인 액세스 포인트(AP-1, AP-2), 및 다수의 액세스 포인트(AP-1, AP-2)를 연결시키는 분배 시스템(Distribution System, DS)을 포함한다.
스테이션(Station, STA)은 IEEE 802.11 표준의 규정을 따르는 매체 접속 제어(Medium Access Control, MAC)와 무선 매체에 대한 물리층(Physical Layer) 인터페이스를 포함하는 임의의 디바이스로서, 광의로는 비 액세스 포인트(non-AP) 스테이션뿐만 아니라 액세스 포인트(AP)를 모두 포함한다. 또한, 본 명세서에서 '단말'은 non-AP STA 또는 AP를 가리키거나, 양 자를 모두 가리키는 용어로 사용될 수 있다. 무선 통신을 위한 스테이션은 프로세서와 통신부를 포함하고, 실시예에 따라 유저 인터페이스부와 디스플레이 유닛 등을 더 포함할 수 있다. 프로세서는 무선 네트워크를 통해 전송할 프레임을 생성하거나 또는 상기 무선 네트워크를 통해 수신된 프레임을 처리하며, 그 밖에 스테이션을 제어하기 위한 다양한 처리를 수행할 수 있다. 그리고, 통신부는 상기 프로세서와 기능적으로 연결되어 있으며 스테이션을 위하여 무선 네트워크를 통해 프레임을 송수신한다. 본 발명에서 단말은 사용자 단말기(user equipment, UE)를 포함하는 용어로 사용될 수 있다.
액세스 포인트(Access Point, AP)는 자신에게 결합된(associated) 스테이션을 위하여 무선 매체를 경유하여 분배시스템(DS)에 대한 접속을 제공하는 개체이다. 인프라스트럭쳐 BSS에서 비 AP 스테이션들 사이의 통신은 AP를 경유하여 이루어지는 것이 원칙이지만, 다이렉트 링크가 설정된 경우에는 비AP 스테이션들 사이에서도 직접 통신이 가능하다. 한편, 본 발명에서 AP는 PCP(Personal BSS Coordination Point)를 포함하는 개념으로 사용되며, 광의적으로는 집중 제어기, 기지국(Base Station, BS), 노드-B, BTS(Base Transceiver System), 또는 사이트 제어기 등의 개념을 모두 포함할 수 있다. 본 발명에서 AP는 베이스 무선 통신 단말로도 지칭될 수 있으며, 베이스 무선 통신 단말은 광의의 의미로는 AP, 베이스 스테이션(base station), eNB(eNodeB) 및 트랜스미션 포인트(TP)를 모두 포함하는 용어로 사용될 수 있다. 뿐만 아니라, 베이스 무선 통신 단말은 복수의 무선 통신 단말과의 통신에서 통신 매개체(medium) 자원을 할당하고, 스케줄링(scheduling)을 수행하는 다양한 형태의 무선 통신 단말을 포함할 수 있다.
복수의 인프라스트럭쳐 BSS는 분배 시스템(DS)을 통해 상호 연결될 수 있다. 이때, 분배 시스템을 통하여 연결된 복수의 BSS를 확장 서비스 세트(Extended Service Set, ESS)라 한다.
도 2는 본 발명의 다른 실시예에 따른 무선랜 시스템인 독립 BSS를 도시하고 있다. 도 2의 실시예에서 도 1의 실시예와 동일하거나 상응하는 부분은 중복적인 설명을 생략하도록 한다.
도 2에 도시된 BSS3는 독립 BSS이며 AP를 포함하지 않기 때문에, 모든 스테이션(STA6, STA7)이 AP와 접속되지 않은 상태이다. 독립 BSS는 분배 시스템으로의 접속이 허용되지 않으며, 자기 완비적 네트워크(self-contained network)를 이룬다. 독립 BSS에서 각각의 스테이션들(STA6, STA7)은 다이렉트로 서로 연결될 수 있다.
도 3은 본 발명의 일 실시예에 따른 스테이션(100)의 구성을 나타낸 블록도이다. 도시된 바와 같이, 본 발명의 실시예에 따른 스테이션(100)은 프로세서(110), 통신부(120), 유저 인터페이스부(140), 디스플레이 유닛(150) 및 메모리(160)를 포함할 수 있다.
먼저, 통신부(120)는 무선랜 패킷 등의 무선 신호를 송수신 하며, 스테이션(100)에 내장되거나 외장으로 구비될 수 있다. 실시예에 따르면, 통신부(120)는 서로 다른 주파수 밴드를 이용하는 적어도 하나의 통신 모듈을 포함할 수 있다. 이를 테면, 상기 통신부(120)는 2.4GHz, 5GHz, 6GHz 및 60GHz 등의 서로 다른 주파수 밴드의 통신 모듈을 포함할 수 있다. 일 실시예에 따르면, 스테이션(100)은 7.125GHz 이상의 주파수 밴드를 이용하는 통신 모듈과, 7.125GHz 이하의 주파수 밴드를 이용하는 통신 모듈을 구비할 수 있다. 각각의 통신 모듈은 해당 통신 모듈이 지원하는 주파수 밴드의 무선랜 규격에 따라 AP 또는 외부 스테이션과 무선 통신을 수행할 수 있다. 통신부(120)는 스테이션(100)의 성능 및 요구 사항에 따라 한 번에 하나의 통신 모듈만을 동작시키거나 동시에 다수의 통신 모듈을 함께 동작시킬 수 있다. 스테이션(100)이 복수의 통신 모듈을 포함할 경우, 각 통신 모듈은 각각 독립된 형태로 구비될 수도 있으며, 복수의 모듈이 하나의 칩으로 통합되어 구비될 수도 있다. 본 발명의 실시예에서 통신부(120)는 RF(Radio Frequency) 신호를 처리하는 RF 통신 모듈을 나타낼 수 있다.
다음으로, 유저 인터페이스부(140)는 스테이션(100)에 구비된 다양한 형태의 입/출력 수단을 포함한다. 즉, 유저 인터페이스부(140)는 다양한 입력 수단을 이용하여 유저의 입력을 수신할 수 있으며, 프로세서(110)는 수신된 유저 입력에 기초하여 스테이션(100)을 제어할 수 있다. 또한, 유저 인터페이스부(140)는 다양한 출력 수단을 이용하여 프로세서(110)의 명령에 기초한 출력을 수행할 수 있다.
다음으로, 디스플레이 유닛(150)은 디스플레이 화면에 이미지를 출력한다. 상기 디스플레이 유닛(150)은 프로세서(110)에 의해 실행되는 컨텐츠 또는 프로세서(110)의 제어 명령에 기초한 유저 인터페이스 등의 다양한 디스플레이 오브젝트를 출력할 수 있다. 또한, 메모리(160)는 스테이션(100)에서 사용되는 제어 프로그램 및 그에 따른 각종 데이터를 저장한다. 이러한 제어 프로그램에는 스테이션(100)이 AP 또는 외부 스테이션과 접속을 수행하는데 필요한 접속 프로그램이 포함될 수 있다.
본 발명의 프로세서(110)는 다양한 명령 또는 프로그램을 실행하고, 스테이션(100) 내부의 데이터를 프로세싱 할 수 있다. 또한, 상기 프로세서(110)는 상술한 스테이션(100)의 각 유닛들을 제어하며, 유닛들 간의 데이터 송수신을 제어할 수 있다. 본 발명의 실시예에 따르면, 프로세서(110)는 메모리(160)에 저장된 AP와의 접속을 위한 프로그램을 실행하고, AP가 전송한 통신 설정 메시지를 수신할 수 있다. 또한, 프로세서(110)는 통신 설정 메시지에 포함된 스테이션(100)의 우선 조건에 대한 정보를 판독하고, 스테이션(100)의 우선 조건에 대한 정보에 기초하여 AP에 대한 접속을 요청할 수 있다. 본 발명의 프로세서(110)는 스테이션(100)의 메인 컨트롤 유닛을 가리킬 수도 있으며, 실시예에 따라 스테이션(100)의 일부 구성 이를 테면, 통신부(120) 등을 개별적으로 제어하기 위한 컨트롤 유닛을 가리킬 수도 있다. 즉, 프로세서(110)는 통신부(120)로부터 송수신되는 무선 신호를 변복조하는 모뎀 또는 변복조부(modulator and/or demodulator)일 수 있다. 프로세서(110)는 본 발명의 실시예에 따른 스테이션(100)의 무선 신호 송수신의 각종 동작을 제어한다. 이에 대한 구체적인 실시예는 추후 기술하기로 한다.
도 3에 도시된 스테이션(100)은 본 발명의 일 실시예에 따른 블록도로서, 분리하여 표시한 블록들은 디바이스의 엘리먼트들을 논리적으로 구별하여 도시한 것이다. 따라서 상술한 디바이스의 엘리먼트들은 디바이스의 설계에 따라 하나의 칩으로 또는 복수의 칩으로 장착될 수 있다. 이를테면, 상기 프로세서(110) 및 통신부(120)는 하나의 칩으로 통합되어 구현될 수도 있으며 별도의 칩으로 구현될 수도 있다. 또한, 본 발명의 실시예에서 상기 스테이션(100)의 일부 구성들, 이를 테면 유저 인터페이스부(140) 및 디스플레이 유닛(150) 등은 스테이션(100)에 선택적으로 구비될 수 있다.
도 4는 본 발명의 일 실시예에 따른 AP(200)의 구성을 나타낸 블록도이다. 도시된 바와 같이, 본 발명의 실시예에 따른 AP(200)는 프로세서(210), 통신부(220) 및 메모리(260)를 포함할 수 있다. 도 4에서 AP(200)의 구성 중 도 3의 스테이션(100)의 구성과 동일하거나 상응하는 부분에 대해서는 중복적인 설명을 생략하도록 한다.
도 4를 참조하면, 본 발명에 따른 AP(200)는 적어도 하나의 주파수 밴드에서 BSS를 운영하기 위한 통신부(220)를 구비한다. 도 3의 실시예에서 전술한 바와 같이, 상기 AP(200)의 통신부(220) 또한 서로 다른 주파수 밴드를 이용하는 복수의 통신 모듈을 포함할 수 있다. 즉, 본 발명의 실시예에 따른 AP(200)는 서로 다른 주파수 밴드, 이를 테면 2.4GHz, 5GHz, 6GHz 및 60GHz 중 두 개 이상의 통신 모듈을 함께 구비할 수 있다. 바람직하게는, AP(200)는 7.125GHz 이상의 주파수 밴드를 이용하는 통신 모듈과, 7.125GHz 이하의 주파수 밴드를 이용하는 통신 모듈을 구비할 수 있다. 각각의 통신 모듈은 해당 통신 모듈이 지원하는 주파수 밴드의 무선랜 규격에 따라 스테이션과 무선 통신을 수행할 수 있다. 상기 통신부(220)는 AP(200)의 성능 및 요구 사항에 따라 한 번에 하나의 통신 모듈만을 동작시키거나 동시에 다수의 통신 모듈을 함께 동작시킬 수 있다. 본 발명의 실시예에서 통신부(220)는 RF(Radio Frequency) 신호를 처리하는 RF 통신 모듈을 나타낼 수 있다.
다음으로, 메모리(260)는 AP(200)에서 사용되는 제어 프로그램 및 그에 따른 각종 데이터를 저장한다. 이러한 제어 프로그램에는 스테이션의 접속을 관리하는 접속 프로그램이 포함될 수 있다. 또한, 프로세서(210)는 AP(200)의 각 유닛들을 제어하며, 유닛들 간의 데이터 송수신을 제어할 수 있다. 본 발명의 실시예에 따르면, 프로세서(210)는 메모리(260)에 저장된 스테이션과의 접속을 위한 프로그램을 실행하고, 하나 이상의 스테이션에 대한 통신 설정 메시지를 전송할 수 있다. 이때, 통신 설정 메시지에는 각 스테이션의 접속 우선 조건에 대한 정보가 포함될 수 있다. 또한, 프로세서(210)는 스테이션의 접속 요청에 따라 접속 설정을 수행한다. 일 실시예에 따르면, 프로세서(210)는 통신부(220)로부터 송수신되는 무선 신호를 변복조하는 모뎀 또는 변복조부(modulator and/or demodulator)일 수 있다. 프로세서(210)는 본 발명의 실시예에 따른 AP(200)의 무선 신호 송수신의 각종 동작을 제어한다. 이에 대한 구체적인 실시예는 추후 기술하기로 한다.
도 5는 스테이션이 액세스 포인트와 링크를 설정하는 과정을 개략적으로 나타낸다.
도 5를 참조하면, STA(100)와 AP(200) 간의 링크는 크게 스캐닝(scanning), 인증(authentication) 및 결합(association)의 3단계를 통해 설정된다. 먼저, 스캐닝 단계는 AP(200)가 운영하는 BSS의 접속 정보를 STA(100)가 획득하는 단계이다. 스캐닝을 수행하기 위한 방법으로는 AP(200)가 주기적으로 전송하는 비콘(beacon) 메시지(S101)만을 활용하여 정보를 획득하는 패시브 스캐닝(passive scanning) 방법과, STA(100)가 AP에 프로브 요청(probe request)을 전송하고(S103), AP로부터 프로브 응답(probe response)을 수신하여(S105) 접속 정보를 획득하는 액티브 스캐닝(active scanning) 방법이 있다.
스캐닝 단계에서 성공적으로 무선 접속 정보를 수신한 STA(100)는 인증 요청(authentication request)을 전송하고(S107a), AP(200)로부터 인증 응답(authentication response)을 수신하여(S107b) 인증 단계를 수행한다. 인증 단계가 수행된 후, STA(100)는 결합 요청(association request)를 전송하고(S109a), AP(200)로부터 결합 응답(association response)을 수신하여(S109b) 결합 단계를 수행한다. 본 명세서에서 결합(association)은 기본적으로 무선 결합을 의미하나, 본 발명은 이에 한정되지 않으며 광의의 의미로의 결합은 무선 결합 및 유선 결합을 모두 포함할 수 있다.
한편, 추가적으로 802.1X 기반의 인증 단계(S111) 및 DHCP를 통한 IP 주소 획득 단계(S113)가 수행될 수 있다. 도 5에서 인증 서버(300)는 STA(100)와 802.1X 기반의 인증을 처리하는 서버로서, AP(200)에 물리적으로 결합되어 존재하거나 별도의 서버로서 존재할 수 있다.
도 6은 무선랜 통신에서 사용되는 CSMA(Carrier Sense Multiple Access)/CA(Collision Avoidance) 방법의 일 예를 나타낸다.
무선랜 통신을 수행하는 단말은 데이터를 전송하기 전에 캐리어 센싱(Carrier Sensing)을 수행하여 채널이 점유 상태(busy)인지 여부를 체크한다. 만약, 일정한 세기 이상의 무선 신호가 감지되는 경우 해당 채널이 점유 상태(busy)인 것으로 판별되고, 상기 단말은 해당 채널에 대한 액세스를 지연한다. 이러한 과정을 클리어 채널 할당(clear channel assessment, CCA) 이라고 하며, 해당 신호 감지 유무를 결정하는 레벨을 CCA 문턱값(CCA threshold)이라 한다. 만약 단말에 수신된 CCA 문턱값 이상의 무선 신호가 해당 단말을 수신자로 하는 경우, 단말은 수신된 무선 신호를 처리하게 된다. 한편, 해당 채널에서 무선 신호가 감지되지 않거나 CCA 문턱값보다 작은 세기의 무선 신호가 감지될 경우 상기 채널은 유휴 상태(idle)인 것으로 판별된다.
채널이 유휴 상태인 것으로 판별되면, 전송할 데이터가 있는 각 단말은 각 단말의 상황에 따른 IFS(Inter Frame Space) 이를테면, AIFS(Arbitration IFS), PIFS(PCF IFS) 등의 시간 뒤에 백오프 절차를 수행한다. 실시예에 따라, 상기 AIFS는 기존의 DIFS(DCF IFS)를 대체하는 구성으로 사용될 수 있다. 각 단말은 해당 단말에 결정된 난수(random number) 만큼의 슬롯 타임을 상기 채널의 유휴 상태의 간격(interval) 동안 감소시켜가며 대기하고, 슬롯 타임을 모두 소진한 단말이 해당 채널에 대한 액세스를 시도하게 된다. 이와 같이 각 단말들이 백오프 절차를 수행하는 구간을 경쟁 윈도우 구간이라고 한다. 이때, 난수를 백오프 카운터라 지칭할 수 있다. 즉, 단말이 획득한 난수인 정수에 의해 백오프 카운터의 초기값이 설정된다. 단말이 슬롯 타임동안 채널이 유휴한 것으로 감지한 경우, 단말은 백오프 카운터를 1만큼 감소시킬 수 있다. 또한, 백오프 카운터가 0에 도달한 경우, 단말은 해당 채널에서 채널 액세스를 수행하는 것이 허용될 수 있다. 따라서 AIFS 시간 및 백오프 카운터의 슬롯 시간 동안 채널이 유휴한 경우에 단말의 전송이 허용될 수 있다.
만약, 특정 단말이 상기 채널에 성공적으로 액세스하게 되면, 해당 단말은 상기 채널을 통해 데이터를 전송할 수 있다. 그러나, 액세스를 시도한 단말이 다른 단말과 충돌하게 되면, 충돌된 단말들은 각각 새로운 난수를 할당 받아 다시 백오프 절차를 수행한다. 일 실시예에 따르면, 각 단말에 새로 할당되는 난수는 해당 단말이 이전에 할당 받은 난수 범위(경쟁 윈도우, CW)의 2배의 범위(2*CW) 내에서 결정될 수 있다. 한편, 각 단말은 다음 경쟁 윈도우 구간에서 다시 백오프 절차를 수행하여 액세스를 시도하며, 이때 각 단말은 이전 경쟁 윈도우 구간에서 남게 된 슬롯 타임부터 백오프 절차를 수행한다. 이와 같은 방법으로 무선랜 통신을 수행하는 각 단말들은 특정 채널에 대한 서로간의 충돌을 회피할 수 있다.
<다양한 PPDU 포맷 실시예>
도 7은 다양한 표준 세대별 PPDU(PLCP Protocol Data Unit) 포맷의 일 예를 도시한다. 더욱 구체적으로, 도 7(a)는 802.11a/g에 기초한 레거시 PPDU 포맷의 일 실시예, 도 7(b)는 802.11ax에 기초한 HE PPDU 포맷의 일 실시예를 도시하며, 도 7(c)는 802.11be에 기초한 논-레거시 PPDU(즉, EHT PPDU) 포맷의 일 실시예를 도시한다. 또한, 도 7(d)는 상기 PPDU 포맷들에서 공통적으로 사용되는 L-SIG 및 RL-SIG의 세부 필드 구성을 나타낸다.
도 7(a)를 참조하면 레거시 PPDU의 프리앰블은 L-STF(Legacy Short Training field), L-LTF(Legacy Long Training field) 및 L-SIG(Legacy Signal field)를 포함한다. 본 발명의 실시예에서, 상기 L-STF, L-LTF 및 L-SIG는 레거시 프리앰블로 지칭될 수 있다.
도 7(b)를 참조하면 HE PPDU의 프리앰블은 상기 레거시 프리앰블에 RL-SIG(Repeated Legacy Short Training field), HE-SIG-A(High Efficiency Signal A field), HE-SIG-B(High Efficiency Signal B field), HE-STF(High Efficiency Short Training field), HE-LTF(High Efficiency Long Training field)를 추가적으로 포함한다. 본 발명의 실시예에서, 상기 RL-SIG, HE-SIG-A, HE-SIG-B, HE-STF 및 HE-LTF는 HE 프리앰블로 지칭될 수 있다. HE 프리앰블의 구체적인 구성은 HE PPDU 포맷에 따라 변형될 수 있다. 예를 들어, HE-SIG-B는 HE MU PPDU 포맷에서만 사용될 수 있다.
도 7(c)를 참조하면 EHT PPDU의 프리앰블은 상기 레거시 프리앰블에 RL-SIG(Repeated Legacy Short Training field), U-SIG(Universal Signal field), EHT-SIG-A(Extremely High Throughput Signal A field), EHT-SIG-A(Extremely High Throughput Signal B field), EHT-STF(Extremely High Throughput Short Training field), EHT-LTF(Extremely High Throughput Long Training field)를 추가적으로 포함한다. 본 발명의 실시예에서, 상기 RL-SIG, EHT-SIG-A, EHT-SIG-B, EHT-STF 및 EHT-LTF는 EHT 프리앰블로 지칭될 수 있다. 논-레거시 프리앰블의 구체적인 구성은 EHT PPDU 포맷에 따라 변형될 수 있다. 예를 들어, EHT-SIG-A와 EHT-SIG-B는 EHT PPDU 포맷들 중 일부 포맷에서만 사용될 수 있다.
PPDU의 프리앰블에 포함된 L-SIG 필드는 64FFT OFDM이 적용되며, 총 64개의 서브캐리어로 구성된다. 이 중 가드 서브캐리어, DC 서브캐리어 및 파일럿 서브캐리어를 제외한 48개의 서브캐리어들이 L-SIG의 데이터 전송용으로 사용된다. L-SIG에는 BPSK, Rate=1/2의 MCS(Modulation and Coding Scheme)가 적용되므로, 총 24비트의 정보를 포함할 수 있다. 도 7(d)는 L-SIG의 24비트 정보 구성을 나타낸다.
도 7(d)를 참조하면 L-SIG는 L_RATE 필드와 L_LENGTH 필드를 포함한다. L_RATE 필드는 4비트로 구성되며, 데이터 전송에 사용된 MCS를 나타낸다. 구체적으로, L_RATE 필드는 BPSK/QPSK/16-QAM/64-QAM 등의 변조방식과 1/2, 2/3, 3/4 등의 부효율을 조합한 6/9/12/18/24/36/48/54Mbps의 전송 속도들 중 하나의 값을 나타낸다. L_RATE 필드와 L_LENGTH 필드의 정보를 조합하면 해당 PPDU의 총 길이를 나타낼 수 있다. 논-레거시 PPDU 포맷에서는 L_RATE 필드를 최소 속도인 6Mbps로 설정한다.
L_LENGTH 필드의 단위는 바이트로 총 12비트가 할당되어 최대 4095까지 시그널링할 수 있으며, L_RATE 필드와의 조합으로 해당 PPDU의 길이를 나타낼 수 있다. 이때, 레거시 단말과 논-레거시 단말은 L_LENGTH 필드를 서로 다른 방법으로 해석할 수 있다.
먼저, 레거시 단말 또는 논-레거시 단말이 L_LENGTH 필드를 이용하여 해당 PPDU의 길이를 해석하는 방법은 다음과 같다. L_RATE 필드의 값이 6Mbps를 지시하도록 설정된 경우, 64FFT의 한 개의 심볼 듀레이션인 4us동안 3 바이트(즉, 24비트)가 전송될 수 있다. 따라서, L_LENGTH 필드 값에 SVC 필드 및 Tail 필드에 해당하는 3바이트를 더하고, 이를 한 개의 심볼의 전송량인 3바이트로 나누면 L-SIG 이후의 64FFT 기준 심볼 개수가 획득된다. 획득된 심볼 개수에 한 개의 심볼 듀레이션인 4us를 곱한 후 L-STF, L-LTF 및 L-SIG의 전송에 소요되는 20us를 더하면 해당 PPDU의 길이 즉, 수신 시간(RXTIME)이 획득된다. 이를 수식으로 표현하면 아래 수학식 1과 같다.
Figure pct00001
이때,
Figure pct00002
는 x보다 크거나 같은 최소의 자연수를 나타낸다. L_LENGTH 필드의 최대값은 4095이므로 PPDU의 길이는 최대 5.484ms까지로 설정될 수 있다. 해당 PPDU를 전송하는 논-레거시 단말은 L_LENGTH 필드를 아래 수학식 2와 같이 설정해야 한다.
Figure pct00003
여기서 TXTIME은 해당 PPDU를 구성하는 전체 전송 시간으로서, 아래 수학식 3과 같다. 이때, TX는 X의 전송 시간을 나타낸다.
Figure pct00004
상기 수식들을 참고하면, PPDU의 길이는 L_LENGTH/3의 올림 값에 기초하여 계산된다. 따라서, 임의의 k 값에 대하여 L_LENGTH={3k+1, 3k+2, 3(k+1)}의 3가지 서로 다른 값들이 동일한 PPDU 길이를 지시하게 된다.
도 7(e)를 참조하면 U-SIG(Universal SIG) 필드는 EHT PPDU 및 후속 세대의 무선랜 PPDU에서 계속 존재하며, 11be를 포함하여 어떤 세대의 PPDU인지를 구분하는 역할을 수행한다. U-SIG는 64FFT 기반의 OFDM 2 심볼로서 총 52비트의 정보를 전달할 수 있다. 이 중 CRC/Tail 9비트를 제외한 43비트는 크게 VI(Version Independent) 필드와 VD(Version Dependent) 필드로 구분된다.
VI 비트는 현재의 비트 구성을 향후에도 계속 유지하여 후속 세대의 PPDU가 정의되더라도 현재의 11be 단말들이 해당 PPDU의 VI 필드들을 통해서 해당 PPDU에 대한 정보를 얻을 수 있다. 이를 위해 VI 필드는 PHY version, UL/DL, BSS Color, TXOP, Reserved 필드들로 구성된다. PHY version 필드는 3비트로 11be 및 후속 세대 무선랜 표준들을 순차적으로 버전으로 구분하는 역할을 한다. 11be의 경우 000b의 값을 갖는다. UL/DL 필드는 해당 PPDU가 업링크/다운링크 PPDU인지를 구분한다. BSS Color는 11ax에서 정의된 BSS별 식별자를 의미하며, 6비트 이상의 값을 갖는다. TXOP은 MAC 헤더에서 전달되던 전송 기회 듀레이션(Transmit Opportunity Duration)을 의미하는데, PHY 헤더에 추가함으로써 MPDU를 디코딩 할 필요 없이 해당 PPDU가 포함된 TXOP의 길이를 유추할 수 있으며 7비트 이상의 값을 갖는다.
VD 필드는 11be 버전의 PPDU에만 유용한 시그널링 정보들로 PPDU 포맷, BW와 같이 어떤 PPDU 포맷에도 공통적으로 사용되는 필드와, PPDU 포맷별로 다르게 정의되는 필드로 구성될 수 있다. PPDU format은 EHT SU(Single User), EHT MU(Multiple User), EHT TB(Trigger-based), EHT ER(Extended Range) PPDU등을 구분하는 구분자이다. BW 필드는 크게 20, 40, 80, 160(80+80), 320(160+160) MHz의 5개의 기본 PPDU BW 옵션(20*2의 지수승 형태로 표현 가능한 BW를 기본 BW로 호칭할 수 있다.)들과, Preamble Puncturing을 통해 구성되는 다양한 나머지 PPDU BW들을 시그널링 한다. 또한, 320 MHz로 시그널링 된 후 일부 80 MHz가 펑처링된 형태로 시그널링 될 수 있다. 또한 펑처링되어 변형된 채널 형태는 BW 필드에서 직접 시그널링 되거나, BW 필드와 BW 필드 이후에 나타나는 필드(예를 들어 EHT-SIG 필드 내의 필드)를 함께 이용하여 시그널링 될 수 있다. 만약 BW 필드를 3비트로 하는 경우 총 8개의 BW 시그널링이 가능하므로, 펑처링 모드는 최대 3개만을 시그널링 할 수 있다. 만약 BW 필드를 4비트로 하는 경우 총 16개의 BW 시그널링이 가능하므로, 펑처링 모드는 최대 11개를 시그널링 할 수 있다.
BW 필드 이후에 위치하는 필드는 PPDU의 형태 및 포맷에 따라 달라지며, MU PPDU와 SU PPDU는 같은 PPDU 포맷으로 시그널링 될 수 있으며, EHT-SIG 필드 전에 MU PPDU와 SU PPDU를 구별하기 위한 필드가 위치할 수 있으며, 이를 위한 추가적인 시그널링이 수행될 수 있다. SU PPDU와 MU PPDU는 둘 다 EHT-SIG 필드를 포함하고 있지만, SU PPDU에서 필요하지 않은 일부 필드가 압축(compression)될 수있다. 이때, 압축이 적용된 필드의 정보는 생략되거나 MU PPDU에 포함되는 본래 필드의 크기보다 축소된 크기를 갖을 수 있다. 예를 들어 SU PPDU의 경우, EHT-SIG의 공통 필드가 생략 또는 대체되거나, 사용자 특정 필드가 대체되거나 1개로 축소되는 등 다른 구성을 갖을 수 있다.
또는, SU PPDU는 압축 여부를 나타내는 압축 필드를 더 포함할 수 있으며, 압축 필드의 값에 따라 일부 필드(예를 들면, RA 필드 등)가 생략될 수 있다.
SU PPDU의 EHT-SIG 필드의 일부가 압축된 경우, 압축된 필드에 포함될 정보는 압축되지 않은 필드(예를 들면, 공통 필드 등)에서 함께 시그널링될 수 있다. MU PPDU의 경우 다수의 사용자의 동시 수신을 위한 PPDU 포맷이기 때문에 U-SIG 필드 이후에 EHT-SIG 필드가 필수적으로 전송되어야 하며, 시그널링되는 정보의 양이 가변적일 수 있다. 즉, 복수 개의 MU PPDU가 복수 개의 STA에게 전송되기 때문에 각각의 STA은 MU PPDU가 전송되는 RU의 위치, 각각의 RU가 할당된 STA 및 전송된 MU PPDU가 자신에게 전송되었는지 여부를 인식해야 된다. 따라서, AP는 EHT-SIG 필드에 위와 같은 정보를 포함시켜서 전송해야 된다. 이를 위해, U-SIG 필드에서는 EHT-SIG 필드를 효율적으로 전송하기 위한 정보를 시그널링하며, 이는 EHT-SIG 필드의 심볼 수 및/또는 변조 방법인 MCS일 수 있다. EHT-SIG 필드는 각 사용자에게 할당 된 RU의 크기 및 위치 정보를 포함할 수 있다.
SU PPDU인 경우, STA에게 복수 개의 RU가 할당될 수 있으며, 복수 개의 RU들은 연속되거나 연속되지 않을 수 있다. STA에게 할당된 RU들이 연속하지 않은 경우, STA은 중간에 펑처링된 RU를 인식하여야 SU PPDU를 효율적으로 수신할 수 있다. 따라서, AP는 SU PPDU에 STA에게 할당된 RU들 중 펑처링된 RU들의 정보(예를 들면, RU 들의 펑처링 패턴 등)를 포함시켜 전송할 수 있다. 즉, SU PPDU의 경우 펑처링 모드의 적용 여부 및 펑처링 패턴을 비트맵 형식 등으로 나타내는 정보를 포함하는 펑처링 모드 필드가 EHT-SIG 필드에 포함될 수 있으며, 펑처링 모드 필드는 대역폭 내에서 나타나는 불연속한 채널의 형태를 시그널링할 수 있다.
시그널링되는 불연속 채널의 형태는 제한적이며, BW 필드의 값과 조합하여 SU PPDU의 BW 및 불연속 채널 정보를 나타낸다. 예를 들면, SU PPDU의 경우 단일 단말에게만 전송되는 PPDU이기 때문에 STA은 PPDU에 포함된 BW 필드를 통해서 자신에게 할당된 대역폭을 인식할 수 있으며, PPDU에 포함된 U-SIG 필드 또는 EHT-SIG 필드의 펑처링 모드 필드를 통해서 할당된 대역폭 중 펑처링된 자원을 인식할 수 있다. 이 경우, 단말은 펑처링된 자원 유닛의 특정 채널을 제외한 나머지 자원 유닛에서 PPDU를 수신할 수 있다. 이때, STA에게 할당된 복수 개의 RU들은 서로 다른 주파수 대역 또는 톤으로 구성될 수 있다.
제한된 형태의 불연속 채널 형태만이 시그널링되는 이유는 SU PPDU의 시그널링 오버헤드를 줄이기 위함이다. 펑처링은 20 MHz 서브채널 별로 수행될 수 있기 때문에 80, 160, 320 MHz과 같이 20 MHz 서브채널을 다수 가지고 있는 BW에 대해서 펑처링을 수행하면 320 MHz의 경우 primary 채널을 제외한 나머지 20 MHz 서브채널 15개의 사용여부를 각각 표현하여 불연속 채널(가장자리 20 MHz만 펑처링 된 형태도 불연속으로 보는 경우) 형태를 시그널링해야 한다. 이처럼 단일 사용자 전송의 불연속 채널 형태를 시그널링하기 위해 15 비트를 할애하는 것은 시그널링 부분의 낮은 전송 속도를 고려했을 때 지나치게 큰 시그널링 오버헤드로 작용할 수 있다.
본 발명은 SU PPDU의 불연속 채널 형태를 시그널링하는 기법을 제안하고, 제안한 기법에 따라 결정된 불연속 채널 형태를 도시한다. 또한, SU PPDU의 320 MHz BW 구성에서 Primary 160MHz와 Secondary 160 MHz의 펑처링 형태를 각각 시그널링하는 기법을 제안한다.
또한, 본 발명의 일 실시예에서는 PPDU Format 필드에 시그널링된 PPDU Format에 따라서 프리앰블 펑처링 BW 값들이 지시하는 PPDU의 구성을 다르게 하는 기법을 제안한다. BW 필드의 길이가 4 비트인 경우를 가정하며, EHT SU PPDU 또는 TB PPDU인 경우에는 U-SIG 이후에 1 심볼의 EHT-SIG-A를 추가로 시그널링 하거나 아예 EHT-SIG-A를 시그널링하지 않을 수 있으므로, 이를 고려하여 U-SIG의 BW 필드만을 통해 최대 11개의 펑처링 모드를 온전하게 시그널링할 필요가 있다. 그러나 EHT MU PPDU인 경우 U-SIG 이후에 EHT-SIG-B를 추가로 시그널링하므로, 최대 11개의 펑처링 모드를 SU PPDU와 다른 방법으로 시그널링할 수 있다. EHT ER PPDU의 경우 BW 필드를 1비트로 설정하여 20MHz 또는 10MHz 대역을 사용하는 PPDU인지를 시그널링할 수 있다.
도 7(f)는 U-SIG의 PPDU Format 필드에서 EHT MU PPDU로 지시된 경우, VD 필드의 Format-specific 필드의 구성을 도시한 것이다. MU PPDU의 경우 다수의 사용자의 동시 수신을 위한 시그널링 필드인 SIG-B가 필수적으로 필요하고, U-SIG 후에 별도의 SIG-A 없이 SIG-B가 전송될 수 있다. 이를 위해 U-SIG에서는 SIG-B를 디코딩하기 위한 정보를 시그널링해야 한다. 이러한 필드들로는 SIG-B MCS, SIG-B DCM, Number of SIG-B Symbols, SIG-B Compression, Number of EHT-LTF Symbols 필드 등이다.
도 8은 본 발명의 실시예에 따른 다양한 EHT(Extremely High Throughput) PPDU(Physical Protocol Data Unit) 포맷 및 이를 지시하기 위한 방법의 일 예를 나타낸다.
도 8을 참조하면, PPDU는 preamble과 데이터 부분으로 구성될 수 있으며, 하나의 타입인 EHT PPDU의 포맷은 preamble에 포함되어 있는 U-SIG 필드에 따라 구별될 수 있다. 구체적으로, U-SIG 필드에 포함되어 있는 PPDU 포맷 필드에 기초하여 PPDU의 포맷이 EHT PPDU인지 여부가 지시될 수 있다.
도 8의 (a)는 단일 STA를 위한 EHT SU PPDU 포맷의 일 예를 나타낸다. EHT SU PPDU는 AP와 단일 STA간의 단일 사용자(Single User, SU) 전송을 위해 사용되는 PPDU이며, U-SIG 필드 이후에 추가적인 시그널링을 위한 EHT-SIG-A필드가 위치할 수 있다.
도 8의 (b)는 트리거 프레임에 기초하여 전송되는 EHT PPDU인 EHT Trigger-based PPDU 포맷의 일 예를 나타낸다. EHT Trigger-based PPDU는 트리거 프레임에 기초하여 전송되는 EHT PPDU로 트리거 프레임에 대한 응답을 위해서 사용되는 상향링크 PPDU이다. EHT PPDU는 EHT SU PPDU와는 다르게 U-SIG 필드 이후에 EHT-SIG-A 필드가 위치하지 않는다.
도 8의 (c)는 다중 사용자를 위한 EHT PPDU인 EHT MU PPDU 포맷의 일 예를 나타낸다. EHT MU PPDU는 하나 이상의 STA에게 PPDU를 전송하기 위해 사용되는 PPDU이다. EHT MU PPDU 포맷은 U-SIG 필드 이후에 HE-SIG-B 필드가 위치할 수 있다.
도 8의 (d)는 확장된 범위에 있는 STA과의 단일 사용자 전송을 위해 사용되는 EHT ER SU PPDU 포맷의 일 예를 나타낸다. EHT ER SU PPDU는 도 8의 (a)에서 설명한 EHT SU PPDU보다 넓은 범위의 STA과의 단일 사용자 전송을 위해 사용될 수 있으며, 시간 축 상에서 U-SIG 필드가 반복적으로 위치할 수 있다.
도 8의 (c)에서 설명한 EHT MU PPDU는 AP가 복수 개의 STA들에게 하향링크 전송을 위해 사용할 수 있다. 이때, EHT MU PPDU는 복수 개의 STA들이 AP로부터 전송된 PPDU를 동시에 수신할 수 있도록 스케줄링 정보를 포함할 수 있다. EHT MU PPDU는 EHT-SIG-B의 사용자 특정(user specific) 필드를 통해서 전송되는 PPDU의 수신자 및/또는 송신자의 AID 정보를 STA에게 전달할 수 있다. 따라서, EHT MU PPDU를 수신한 복수 개의 단말들은 수신한 PPDU의 프리엠블에 포함된 사용자 특정 필드의 AID 정보에 기초하여 공간적 재사용(spatial reuse) 동작을 수행할 수 있다.
구체적으로, HE MU PPDU에 포함된 HE-SIG-B 필드의 자원 유닛 할당(resource unit allocation, RA) 필드는 주파수 축의 특정 대역폭(예를 들면, 20MHz 등)에서의 자원 유닛의 구성(예를 들면, 자원 유닛의 분할 형태)에 대한 정보를 포함할 수 있다. 즉, RA 필드는 STA이 PPDU를 수신하기 위해 HE MU PPDU의 전송을 위한 대역폭에서 분할된 자원 유닛들의 구성을 지시할 수 있다. 분할된 각 자원 유닛에 할당(또는 지정)된 STA의 정보는 EHT-SIG-B의 사용자 특정 필드에 포함되어 STA에게 전송될 수 있다. 즉, 사용자 특정 필드는 분할된 각 자원 유닛에 대응되는 하나 이상의 사용자 필드를 포함할 수 있다.
예를 들면, 분할된 복수 개의 자원 유닛들 중에서 데이터 전송을 위해 사용되는 적어도 하나의 자원 유닛에 대응되는 사용자 필드는 수신자 또는 송신자의 AID를 포함할 수 있으며, 데이터 전송에 수행되지 않는 나머지 자원 유닛(들)에 대응되는 사용자 필드는 기 설정된 널(Null) STA ID를 포함할 수 있다.
설명의 편의를 위해 본 명세서에서 프레임 또는 MAC 프레임은 MPDU와 혼용되어 사용될 수 있다.
하나의 무선 통신 장치가 복수의 링크를 사용하여 통신하는 경우, 무선 통신 장치의 통신 효율이 높아질 수 있다. 이때, 링크는 물리적 경로(path)로서, MSDU(MAC service data unit)를 전달하는데 사용할 수 있는 하나의 무선 매개체로 구성될 수 있다. 예컨대, 어느 하나의 링크의 주파수 대역이 다른 무선 통신 장치에 의해 사용 중인 경우, 무선 통신 장치는 다른 링크를 통해 통신을 계속 수행할 수 있다. 이와 같이 무선 통신 장치는 복수의 채널을 유용하게 사용할 수 있다. 또한, 무선 통신 장치가 복수의 링크를 사용해 동시에 통신을 수행하는 경우, 전체 쓰루풋(throughput)을 높일 수 있다. 다만, 기존 무선랜에서는 하나의 무선 통신 장치가 하나의 링크를 사용하는 것을 전제로 규정되었다. 따라서 복수의 링크를 사용하기 위한 무선랜 동작 방법이 필요하다. 도 9 내지 도 26을 통해 복수의 링크를 사용하는 무선 통신 장치의 무선 통신 방법에 대해 설명한다. 먼저, 도 9를 통해 복수의 링크를 사용하는 무선 통신 장치의 구체적인 형태에 대해 설명한다.
도 9는 본 발명의 실시 예에 따른 멀티 링크 장치(multi-link device)를 보여준다.
앞서 설명한 복수의 링크를 사용하는 무선 통신 방법을 위해 멀티 링크 장치(multi-link device, MLD)가 정의될 수 있다. 멀티 링크 장치는 하나 이상의 제휴된(affiliated) 스테이션을 갖는 장치를 나타낼 수 있다. 구체적인 실시 예에 따라 멀티 링크 장치는 두 개 이상의 제휴된 스테이션을 갖는 장치를 나타낼 수 있다. 또한, 멀티 링크 장치는 멀티 링크 엘리멘트를 교환할 수 있다. 멀티 링크 엘리멘트는 하나 이상의 스테이션 또는 하나 이상의 링크에 대한 정보를 포함한다. 멀티 링크 엘리멘트는 이후 설명될 multi-link setup 엘리멘트를 포함할 수 있다. 이때, 멀티 링크 장치는 논리적인 엔티티(entity)일 수 있다. 구체적으로 멀티 링크 장치는 복수의 제휴된 스테이션을 가질 수 있다. 멀티 링크 장치는 MLLE(multi-link logical entity) 또는 MLE(multi-link entity)라 지칭될 수 있다. 멀티 링크 장치는 로지컬 링크 제어 (logical link control, LLC)까지 하나의 MAC 서비스 액세스 포인트(medium access control service access point, SAP)를 가질 수 있다. 또한 MLD는 하나의 MAC data service를 가질 수 있다.
멀티 링크 장치에 포함된 복수의 스테이션은 복수의 링크에서 동작할 수 있다. 또한, 멀티 링크 장치에 포함된 복수의 스테이션은 복수의 채널에서 동작할 수 있다. 구체적으로 멀티 링크 장치에 포함된 복수의 스테이션은 서로 다른 복수의 링크 또는 서로 다른 복수의 채널에서 동작할 수 있다. 예컨대, 멀티 링크 장치에 포함된 복수의 스테이션은 2.4 GHz, 5 GHz, 및 6 GHz의 서로 다른 복수의 채널에서 동작할 수 있다.
멀티 링크 장치의 동작은 멀티 링크 오퍼레이션, MLD 동작, 또는 멀티-밴드 동작으로 지칭될 수 있다. 또한, 멀리 링크 장치에 제휴된 스테이션이 AP인 경우, 멀티 링크 장치는 AP MLD로 지칭될 수 있다. 또한, 멀리 링크 장치에 제휴된 스테이션이 논-AP 스테이션인 경우, 멀티 링크 장치는 non-AP MLD로 지칭될 수 있다.
도 9는 non-AP MLD와 AP-MLD가 통신하는 동작을 보여준다. 구체적으로 non-AP MLD와 AP-MLD는 각각 세 개의 링크를 사용하여 통신한다. AP MLD는 제1 AP(AP1), 제2 AP(AP2) 및 제3 AP(AP3)를 포함한다. non-AP MLD는 제1 non-AP STA(non-AP STA1), 제2 non-AP STA(non-AP STA2) 및 제3 non-AP STA(non-AP STA3)를 포함한다. 제1 AP(AP1)와 제1 non-AP STA(non-AP STA1)는 제1 링크(Link1)를 통해 통신한다. 또한, 제2 AP(AP2)와 제2 non-AP STA(non-AP STA2)는 제2 링크(Link2)를 통해 통신한다. 또한, 제3 AP(AP3)와 제3 non-AP STA(non-AP STA3)는 제3 링크(Link3)를 통해 통신한다.
멀티 링크 동작은 멀티 링크 설정(setup) 동작을 포함할 수 있다. 멀티 링크 설정은 앞서 설명한 싱글 링크 동작의 결합(association) 동작에 대응되는 것으로, 멀티 링크에서의 프레임 교환을 위해 먼저 선행되어야 할 수 있다. 멀티 링크 장치는 멀티 링크 설정을 위해 필요한 정보를 multi-link setup 엘리멘트로부터 획득할 수 있다. 구체적으로 multi-link setup 엘리멘트는 멀티링크와 관련된 능력 정보를 포함할 수 있다. 이때, 능력 정보는 멀티 링크 장치에 포함된 복수의 장치 중 어느 하나가 전송을 수행하고 동시에 다른 장치가 수신을 수행할 수 있는지 나타내는 정보를 포함할 수 있다. 또한, 능력 정보는 MLD에 포함된 각 스테이션이 사용할 수 있는 링크에 관한 정보를 포함할 수 있다. 또한, 능력 정보는 MLD에 포함된 각 스테이션이 사용할 수 있는 채널에 관한 정보를 포함할 수 있다.
멀티 링크 설정은 피어 스테이션 사이의 협상을 통해 설정될 수 있다. 구체적으로 AP와의 통신 없이 스테이션 사이의 통신을 통해 멀티 링크 설정이 수행될 수 있다. 또한, 멀티 링크 설정은 어느 하나의 링크를 통해 설정될 수 있다. 예컨대, 멀티 링크를 통해 제1 링크 내지 제3 링크가 설정되는 경우라도, 제1 링크를 통해 멀티 링크 설정이 수행될 수 있다.
또한, TID(traffic identifier)와 링크 사이의 매핑이 설정될 수 있다. 구체적으로 특정 값의 TID에 해당하는 프레임은 미리 지정된 링크를 통해서만 교환될 수 있다. TID와 링크 사이의 매핑은 방향 기반(directional-based)으로 설정될 수 있다. 예를 들어 제1 멀티 링크 장치와 제2 멀티 링크 장치 사이에 복수의 링크가 설정된 경우, 제1 멀티 링크 장치는 복수의 링크 제1 링크에 제1 TID의 프레임을 전송하도록 설정되고 제2 멀티 링크 장치는 제1 링크에 제2 TID의 프레임을 전송하도록 설정될 수 있다. 또한, TID와 링크 사이의 매핑에 기본 설정이 존재할 수 있다. 구체적으로 멀티 링크 설정에서 추가 설정이 없는 경우 멀티 링크 장치는 기본(default) 설정에 따라 각 링크에서 TID에 해당하는 프레임을 교환할 수 있다. 이때, 기본 설정은 어느 하나의 링크에서 모든 TID가 교환되는 것일 수 있다.
TID에 대해서 구체적으로 설명한다. TID는 QoS(quality of service)를 지원한기 위해 트래픽, 데이터를 분류하는 ID이다. 또한, TID는 MAC 레이어보다 상위 레이어에서 사용되거나 할당될 수 있다. 또한, TID는 트래픽 카테고리(traffic category, TC), 트래픽 스트림(traffic stream, TS)를 나타낼 수 있다. 또한, TID는 16개로 구별될 수 있다. 예컨대, TID는 0부터 15 중 어느 하나로 지정될 수 있다. 액세스 정책(access policy), 채널 액세스 또는 매체(medium) 액세스 방법에 따라 사용되는 TID 값이 달리 지정될 수 있다. 예컨대, EDCA(enhanced distributed channel access) 또는 HCAF(hybrid coordination function contention based channel access)가 사용되는 경우, TID의 값은 0부터 7에서 할당될 수 있다. EDCA가 사용되는 경우, TID는 사용자 우선순위(user priority, UP)를 나타낼 수 있다. 이때, UP는 TC 또는 TS에 따라 지정될 수 있다. UP는 MAC보다 상위 레이어에서 할당될 수 있다. 또한, HCCA(HCF controlled channel access) 또는 SPCA가 사용되는 경우, TID의 값은 8부터 15에서 할당될 수 있다. HCCA 또는 SPCA가 사용되는 경우, TID는 TSID를 나타낼 수 있다. 또한, HEMM 또는 SEMM이 사용되는 경우, TID의 값은 8부터 15에서 할당될 수 있다. HEMM 또는 SEMM이 사용되는 경우, TID는 TSID를 나타낼 수 있다.
UP와 AC는 매핑될 수 있다. AC는 EDCA에서 QoS를 제공하기 위한 라벨일 수 있다. AC는 EDCA 파라미터 셋을 지시하기 위한 라벨일 수 있다. EDCA 파라미터 또는 EDCA 파라미터 셋은 EDCA의 채널 경쟁(contention)에서 사용되는 파라미터이다. QoS 스테이션은 AC를 사용하여 QoS를 보장할 수 있다. 또한, AC는 AC_BK, AC_BE, AC_VI 및 AC_VO를 포함할 수 있다. AC_BK, AC_BE, AC_VI 및 AC_VO 각각은 백그라운드(background), 베스트 에포트(best effort), 비디오(video), 보이스(voice)를 나타낼 수 있다. 또한 AC_BK, AC_BE, AC_VI 및 AC_VO는 하위 AC로 분류될 수 있다. 예를 들어, AC_VI는 AC_VI primary와 AC_VI alternate로 세분화될 수 있다. 또한, AC_VO는 AC_VO primary와 AC_VO alternate로 세분화될 수 있다. 또한, UP 또는 TID는 AC에 매핑될 수 있다. 예를 들어, UP 또는 TID의 1, 2, 0, 3, 4, 5, 6, 7 각각은 AC_BK, AC_BK, AC_BE, AC_BE, AC_VI, AC_VI, AC_VO, AC_VO 각각에 매핑될 수 있다. 또한, UP 또는 TID의 1, 2, 0, 3, 4, 5, 6 및 7 각각은 AC_BK, AC_BK, AC_BE, AC_BE, AC_VI alternate, AC_VI primary, AC_VO primary, AC_VO alternate 각각에 매핑될 수 있다. 또한, UP 또는 TID의 1, 2, 0, 3, 4, 5, 6, 및 7는 차례대로 우선순위가 높은 것일 수 있다. 즉, 1 쪽이 낮은 우선순이고, 7 쪽이 높은 우선순위일 수 있다. 따라서 AC_BK, AC_BE, AC_VI, AC_VO 순서대로 우선순위가 높아질 수 있다. 또한, AC_BK, AC_BE, AC_VI, AC_VO 각각은 ACI (AC index) 0, 1, 2, 3 각각에 해당할 수 있다. 이러한 TID의 특성 때문에, TID와 링크 사이의 매핑은 AC와 링크 사이의 매핑을 나타낼 수 있다. 도한, 링크와 AC의 매핑은 TID와 링크 사이의 매핑을 나타낼 수 있다.
앞서 설명한 바와 같이 복수의 링크 각각에 TID가 매핑될 수 있다. 매핑은 특정 TID 또는 AC에 해당하는 트래픽이 교환될 수 있는 링크가 지정되는 것일 수 있다. 또한, 링크 내에서 전송 방향 별로 전송될 수 잇는 TID 또는 AC가 지정될 수 있다. 앞서 설명한 바와 같이 TID와 링크 사이의 매핑에 기본 설정이 존재할 수 있다. 구체적으로 멀티 링크 설정에서 추가 설정이 없는 경우 멀티 링크 장치는 기본(default) 설정에 따라 각 링크에서 TID에 해당하는 프레임을 교환할 수 있다. 이때, 기본 설정은 어느 하나의 링크에서 모든 TID가 교환되는 것일 수 있다. 항상 어느 시점에 어느 TID 또는 AC든 적어도 어느 하나의 링크와 매핑될 수 있다. 매니지먼트 프레임과 컨트롤 프레임은 모든 링크에서 전송될 수 있다.
링크가 TID 또는 AC에 매핑된 경우, 해당 링크에서 해당 링크에 매핑된 TID 또는 AC에 해당하는 데이터 프레임만이 전송될 수 있다. 따라서 링크가 TID 또는 AC에 매핑된 경우, 해당 링크에서 해당 링크에 매핑되지 TID 또는 AC에 해당하지 않은 프레임은 전송될 수 없다. 링크가 TID 또는 AC에 매핑된 경우, ACK도 TID 또는 AC가 매핑된 링크를 기초로 전송될 수 있다. 예컨대, 블락 ACK 합의(agreement)가 TID와 링크 사이의 매핑을 기초로 결정될 수 있다. 또 다른 구체적인 실시 예에서 TID와 링크 사이의 매핑이 블락 ACK 합의를 기초로 결정될 수 있다. 구체적으로 특정 링크에 매핑된 TID에 대해 블락 ACK 합의가 설정될 수 있다.
앞서 설명한 TID와 링크 사이의 매핑을 통해, QoS가 보장될 수 있다. 구체적으로 상대적으로 적은 수의 스테이션이 동작하거나 채널 상태가 좋은 링크에 우선순위가 높은 AC 또는 TID가 매핑될 수 있다. 또한, 앞서 설명한 TID와 링크 사이의 매핑을 통해, 스테이션이 더 많은 시간 동안 절전 상태를 유지하게 할 수 있다.
도 10은 본 발명의 실시 예에 따라 멀티 링크 동작에서 서로 다른 링크의 전송이 동시에 수행되는 것을 보여준다.
멀티 링크 장치의 구현에 따라, 멀티 링크에서 동시 동작이 지원되지 않을 수 있다. 예컨대, 멀티 링크 장치가 복수의 링크에서 동시에 전송을 수행하거나, 복수의 링크에서 동시에 수신을 수행하거나, 어느 하나의 링크에서 전송을 수행하고 동시에 다른 링크에서 수신을 수행하는 것이 지원되지 않을 수 있다. 어느 하나의 링크에서 수행되는 수신 또는 전송이 다른 링크에서 수행되는 수신 또는 전송에 영향을 미칠 수 있기 때문이다. 구체적으로 하나의 링크에서 전송이 다른 링크의 간섭으로 작용할 수 있다. 하나의 멀티 링크 장치의 하나의 링크에서 다른 링크에 작용하는 간섭을 내부 누출(internal leakage)이라 할 수 있다. 링크 사이의 주파수 간격이 작을수록 내부 누출이 커질 수 있다. 내부 누출이 너무 크지 않은 경우, 어느 하나의 링크에서의 전송이 수행될 때 다른 링크에서 전송이 수행될 수 있다. 내부 누출이 큰 경우, 어느 하나의 링크에서의 전송이 수행될 때 다른 링크에서 전송이 수행될 수 없다. 이와 같이 멀티 링크 장치가 복수의 링크에서 동시에 동작을 수행하는 것을 STR(simultaneous transmit and receive, simultaneous transmission and reception)이라 지칭할 수 있다. 예컨대, 멀티 링크 장치가 복수의 링크에서 동시에 전송하거나, 어느 하나의 링크에서 전송을 수행하고 동시에 다른 링크에서 수신을 수행하거나, 복수의 링크에서 동시에 수신을 수행하는 것을 STR이라할 수 있다.
앞서 언급한 바와 같이 멀티 링크 장치는 STR을 지원할 수도 있고, 제한적으로만 지원할 수도 있다. 구체적으로 멀티 링크 장치는 특정 조건하에서만 STR을 지원할 수 있다. 예컨대, 멀티 링크 장치가 단일 라디오(single radio)로 동작하는 경우, 멀티 링크 장치는 STR을 수행하지 못할 수 있다. 또한, 멀티 링크 장치가 단일 안테나로 동작하는 경우, 멀티 링크 장치의 STR이 수행될 수 없을 수 있다. 또한, 내부 누출이 미리 지정된 크기 이상으로 감지되는 경우, 멀티 링크 장치는 STR을 수행하지 못할 수 있다.
스테이션은 스테이션의 STR 능력에 관한 정보를 다른 스테이션과 교환할 수 있다. 구체적으로 스테이션은 스테이션이 복수의 링크에서 동시에 송신을 수행하거나 복수의 링크에서 동시에 수신을 수행하는 능력의 제한 여부에 대한 정보를 다른 스테이션과 교환할 수 있다. 구체적으로 복수의 링크에서 송신 또는 수신을 수행하는 능력의 제한 여부에 대한 정보는 복수의 링크에서 동시에 전송하거나, 동시에 수신하거나, 전송과 수신이 동시에 수행될 수 있는지를 나타낼 수 있다. 또한, 복수의 링크에서 송신을 수행하거나 수신을 수행하는 능력의 제한 여부에 대한 정보는 단계 별로 지시되는 정보일 수 있다. 구체적으로 복수의 링크에서 송신을 수행하거나 수신을 수행하는 능력의 제한 여부에 대한 정보는 내부 유출의 크기를 나타내는 단계를 지시하는 정보일 수 있다. 구체적인 실시 예에서 내부 유출의 크기를 나타내는 단계를 지시하는 정보는 내부 유출로 인해 발생되는 간섭의 크기를 나타내는 단계를 지시하는 정보일 수 있다. 또 다른 구체적인 실시 예에서 내부 유출 영향을 끼칠 수 있는 링크 사이의 주파수 간격을 나타내는 단계를 지시하는 정보일 수 있다. 또한, 내부 유출의 크기를 나타내는 단계를 지시하는 정보는 링크 사이의 주파수 간격과 내부 유출의 크기 사이의 관계를 단계 별로 지시하는 정보일 수 있다.
도 10에서 제1 스테이션(STA1)과 제2 스테이션(STA2)은 하나의 non-AP 멀티 링크 장치에 제휴(affiliate)된다. 또한, 제1 AP(AP1)와 제2 AP(AP2)는 하나의 non-AP 멀티 링크 장치에 제휴될 수 있다. 제1 AP(AP1)와 제1 스테이션(STA1) 사이에는 제1 링크(link 1)가 설정되고, 제2 AP(AP2)와 제2 스테이션(STA2) 사이에는 제2 링크(link 2)가 설정된다. 도 10에서 non-AP 멀티 링크 장치는 제한적으로 STR을 수행할 수 있다. 제2 스테이션(STA2)이 제2 링크(Link 2)에서 전송을 수행하는 경우, 제1 링크(Link 1)에서 제1 스테이션(STA1)의 수신은 제2 링크(Link 2)에서의 수행되는 전송에 의해 방해 받을 수 있다. 예컨대, 다음과 같은 경우, 제1 링크(Link 1)에서 제1 스테이션(STA1)의 수신은 제2 링크(Link 2)에서의 수행되는 전송에 의해 방해 받을 수 있다. 제2 링크(Link 2)에서 제2 스테이션(STA2)이 제1 데이터(Data1)를 전송하고, 제1 AP(AP1)가 제1 데이터(Data1)에 대한 응답(Ack for Data1)을 제1 스테이션(STA1)에게 전송한다. 제2 링크(Link2)에서 제2 스테이션(STA2)이 제2 데이터(Data2)를 전송한다. 이때, 제2 데이터(Data2)의 전송 시기와 제1 데이터(Data1)에 대한 응답(Ack for Data1)의 전송 시기가 겹칠 수 있다. 이때, 제2 링크(Link2)에서 제2 스테이션(STA2)로의 전송으로 인해 제1 링크(Link1)에 간섭이 발생할 수 있다. 따라서 제1 스테이션(STA1)이 제1 데이터(Data1)에 대한 응답(Ack for Data1)을 수신하지 못할 수 있다.
멀티 링크 장치가 채널 액세스를 수행하는 동작에 대해서 설명한다. 구체적인 설명이 없는 멀티 링크의 동작은 도 6을 통해 설명한 채널 액세스 절차를 따를 수 있다.
멀티 링크 장치는 복수의 링크에서 독립적으로 채널 액세스를 수행할 수 있다. 이때, 채널 액세스는 백오프 기반 채널 액세스일 수 있다. 멀티 링크 장치가 복수의 링크에서 독립적으로 채널 액세스를 수행하고 복수의 링크에서 백오프 카운터가 0에 도달하는 경우, 멀티 링크 장치는 복수의 링크에서 동시에 전송을 시작할 수 있다. 구체적인 실시 예에서 멀티 링크의 링크의 백오프 카운터 중 어느 하나가 0에 도달하고, 미리 지정된 조건을 만족하는 경우 멀티 링크 장치는 백오프 카운터가 0에 도달한 링크에서뿐만 아니라 백오프 카운터가 0에 도달하지 않은 다른 링크에서 채널 액세스를 수행할 수 있다. 구체적으로 멀티 링크의 링크의 백오프 카운터 중 어느 하나가 0에 도달한 경우, 멀티 링크 장치는 백오프 카운터가 0에 도달하지 않은 다른 링크에서 에너지 감지를 수행할 수 있다. 이때, 미리 지정된 크기 이상의 에너지가 감지되지 않는 경우, 멀티 링크 장치는 백오프 카운터가 0에 도달한 링크에서뿐만 아니라 에너지 감지를 수행한 링크에서 채널 액세스를 수행할 수 있다. 이를 통해 멀티 링크 장치는 복수의 링크에서 동시에 전송을 시작할 수 있다. 에너지 감지에 사용되는 문턱값의 크기는 백오프 카운터를 줄일 지 판단할 때 사용되는 문턱값의 크기보다 작을 수 있다. 또한, 백오프 카운터를 줄일 지 판단할 때, 멀티 링크 장치는 무선랜 신호뿐만 아니라 어떤 형태의 신호라도 감지할 수 있다. 또한, 앞서 설명한 에너지 감지에서 멀티 링크 장치는 무선랜 신호뿐만 아니라 어떤 형태의 신호라도 감지할 수 있다. 내부 유출은 무선랜 신호로 감지되지 않을 수 있다. 이러한 경우, 멀티 링크 장치는 내부 유출로 인해 감지되는 신호를 에너지 감지로 센싱할 수 있다. 또한, 앞서 설명한 바와 같이 에너지 감지에 사용되는 문턱값의 크기가 백오프 카운터를 줄일 지 판단할 때 사용되는 문턱값의 크기보다 작을 수 있다. 따라서 어느 하나의 링크에서 전송이 수행되는 중이라도 멀티 링크 장치는 다른 링크에서 백오프 카운터를 줄일 수 있다.
멀티 링크 장치가 사용하는 링크 사이의 간섭의 정도에 따라, 멀티 링크 장치는 각 링크에서 동작하는 스테이션이 독립적으로 동작할 수 있는지 결정될 수 있다. 이때, 링크 사이의 간섭 정도는 멀티 링크 장치의 어느 하나의 스테이션이 어느 하나의 링크에서 전송을 수행할 때 멀티 링크 장치의 다른 스테이션이 감지하는 간섭의 크기일 수 있다. 멀티 링크 장치의 제1 스테이션의 제1 링크에서의 전송이 제2 링크에서 동작하는 멀티 링크 장치의 제2 스테이션에게 미리 지정된 크기 이상의 간섭을 발생시키는 경우, 제2 스테이션의 동작이 제한될 수 있다. 구체적으로 제2 스테이션의 수신 또는 채널 액세스가 제한될 수 있다. 간섭이 발생하는 경우, 제2 스테이션은 간섭으로 인해 수신하는 신호의 디코딩에 실패할 수 있기 때문이다. 또한, 간섭이 발생하는 경우, 제2 스테이션이 백오프를 이용한 채널 액세스 시 제2 스테이션은 채널이 사용 중이라고 판단할 수 있기 때문이다.
또한, 멀티 링크 장치의 제1 스테이션의 제1 링크에서의 전송이 제2 링크에서 동작하는 멀티 링크 장치의 제2 스테이션에게 미리 지정된 크기 미만의 간섭을 발생시키는 경우, 제1 스테이션과 제2 스테이션은 독립적으로 동작할 수 있다. 구체적으로 멀티 링크 장치의 제1 스테이션의 제1 링크에서의 전송이 제2 링크에서 동작하는 멀티 링크 장치의 제2 스테이션에게 미리 지정된 크기 미만의 간섭을 발생시키는 경우, 제1 스테이션과 제2 스테이션은 독립적으로 채널 액세스를 수행할 수 있다. 또한, 멀티 링크 장치의 제1 스테이션의 제1 링크에서의 전송이 제2 링크에서 동작하는 멀티 링크 장치의 제2 스테이션에게 미리 지정된 크기 미만의 간섭을 발생시키는 경우, 제1 스테이션과 제2 스테이션은 독립적으로 전송 또는 수신을 수행할 수 있다. 미리 지정된 크기 미만의 간섭이 발생하는 경우, 제2 스테이션은 간섭이 존재하는 경우에도 수신하는 신호의 디코딩에 성공할 수 있기 때문이다. 또한, 미리 지정된 크기 미만의 간섭이 발생하는 경우, 제2 스테이션이 백오프를 이용한 채널 액세스 시 제2 스테이션은 채널이 유휴하다고 판단할 수 있기 때문이다.
멀티 링크 장치의 스테이션 사이에 발생하는 간섭 정도는 스테이션이 동작하는 링크의 주파수 대역 사이의 간격뿐만 아니라 멀티 링크 장치의 하드웨어 특성에 따라 달라질 수 있다. 예컨대, 고가 RF(radio frequency) 장치를 포함하는 멀티 링크 장치에서 발생하는 내부 간섭은 저가 RF 장치를 포함하는 멀티 링크 장치에서 발생하는 내부 간섭보다 작을 수 있다. 따라서 멀티 링크 장치의 스테이션 사이에 발생하는 간섭 정도는 멀티 링크 장치의 특성을 기초로 판단될 수 있다.
도 10은 링크의 주파수 대역 사이의 간격과 멀티 링크 장치의 특성에 따라 발생하는 간섭의 크기가 달라지는 것을 보여준다. 도 10의 실시 예에서 제1 멀티 링크 장치(MLD#1)는 제1 링크(Link1)에서 동작하는 제1 스테이션(STA1-1)과 제2 링크(Link2)에서 동작하는 제2 스테이션(STA1-2)을 포함한다. 제2 멀티 링크 장치(MLD#2)는 제1 링크(Link1)에서 동작하는 제1 스테이션(STA2-1)과 제2 링크(Link2)에서 동작하는 제2 스테이션(STA2-2)을 포함한다. 제1 멀티 링크 장치(MLD#1)가 동작하는 제1 링크(Link1)와 제2 링크(Link2) 사이의 주파수 간격과 제2 멀티 링크 장치(MLD#2)가 동작하는 제1 링크(Link1)와 제2 링크(Link2) 사이의 주파수 간격은 같다. 다만, 제1 멀티 링크 장치(MLD#1)의 특성과 제2 멀티 링크 장치(MLD#2)의 특성 차이로 인해 발생하는 간섭의 크기가 다르다. 구체적으로 제1 멀티 링크 장치(MLD#1)에서 발생되는 간섭의 크기보다 제2 멀티 링크 장치(MLD#2)에서 발생되는 간섭의 크기가 클 수 있다. 이와 같이 멀티 링크 장치의 특성에 따라 발생하는 간섭의 크기가 달라질 수 있고, 멀티 링크 장치 별로 STR 지원 여부가 달라질 수 있음을 고려할 때 STR 지원 여부에 대한 정보가 교환될 필요가 있다.
멀티 링크 장치는 멀팅 링크 장치가 포함하는 스테이션의 STR 지원 여부를 시그널링할 수 있다. 구체적으로 AP 멀티 링크 장치와 non-AP 멀티 링크 장치는 AP 멀티 링크 장치가 포함하는 AP의 STR 지원 여부와 non-AP 멀티 링크 장치가 포함하는 STA의 STR 지원 여부를 교환할 수 있다. 이러한 실시 예들에서 STR 지원 여부를 나타내는 엘리멘트가 사용될 수 있다. STR 지원 여부를 나타내는 엘리멘트는 STR support 엘리멘트로 지칭될 수 있다. STR support 엘리멘트는 1비트를 통해 STR support 엘리멘트를 전송한 멀티 링크 장치의 스테이션의 STR 지원 여부를 나타낼 수 있다. 구체적으로 STR support 엘리멘트는 STR support 엘리멘트를 전송하는 멀티 링크 장치가 포함하는 스테이션 각각의 STR 지원 여부를 1비트 별로 나타낼 수 있다. 이때, 스테이션이 STR을 지원하는 경우, 비트의 값은 1이고, 스테이션이 STR을 지원하지 않는 경우, 비트의 값은 0일 수 있다. STR support 엘리멘트를 전송한 멀티 링크 장치가 제1 스테이션(STA1), 제2 스테이션(STA2) 및 제3 스테이션(STA3)을 포함하고, 제1 스테이션(STA1)과 제3 스테이션(STA3)은 STR을 지원하고, 제2 스테이션(STA2)은 STR을 지원하지 않는 경우, STR support 엘리멘트는 1011b을 갖는 필드를 포함할 수 있다. 서로 다른 주파수 밴드에서 동작하는 스테이션은 STR을 지원하는 것으로 가정되고, STR support 엘리멘트는 서로 다른 주파수 밴드에서 동작하는 스테이션 사이의 STR 지원 여부에 대한 시그널링을 생략할 수 있다. 예컨대, 제1 스테이션(STA1)이 2.4GHz의 제1 링크에서 동작하고, 제2 스테이션(STA2)과 제3 스테이션(STA3) 각각이 5GHz의 제2 링크와 제3 링크에서 동작한다. 이때, STR support 엘리멘트는 1비트를 사용하여 제2 스테이션(STA2)과 제3 스테이션(STA3) 사이에 STR이 지원됨을 나타낼 수 있다. 또한, STR support 엘리멘트는 STR support 엘리멘트가 시그널링하는 스테이션이 2개인 경우 1비트만을 포함할 수 있다.
구체적인 실시 예에서 멀티 링크 장치의 링크 중 2.4 GHz에 위치한 링크와 5GHz 또는 6GHz에 위치한 링크의 관계는 항상 STR로 판단될 수 있다. 따라서 2.4 GHz에 위치한 링크와 5GHz 또는 6GHz에 위치한 링크의 STR 여부에 대해서는 시그널링이 생략될 수 있다.
도 11은 본 발명의 일 실시예에 따라 링크가 변경된 경우, 멀티 링크 장치의 동작을 보여준다.
링크의 주파수 대역이 변경되는 경우, STR support 엘리멘트가 교환될 수 있다. 앞서 설명한 바와 같이 스테이션의 STR 지원 여부는 링크의 주파수 대역 사이의 거리에 따라 달라질 수 있고, 링크의 주파수 대역이 변경되는 경우, 스테이션의 STR 지원 여부가 변경될 수 있기 때문이다. 링크의 주파수 대역이 변경되는 경우는 링크의 중심 주파수 변경, 주파수 대역의 대역폭 변경 및 20MHz 주 채널 중 적어도 어느 하나를 포함할 수 있다. AP와 스테이션은 요청과 응답을 통해 STR support 엘리멘트를 교환할 수 있다. 또 다른 구체적인 실시 예에서 링크의 주파수 대역이 변경되는 경우, STR support 엘리멘트가 별도의 요청 없이도 교환될 수 있다. 또한, 앞서 설명한 실시 예들에서 링크의 주파수 대역이 변경되는 경우는 스테이션의 동작 채널(operating channel)이 변경되는 것을 포함할 수 있다.
non-AP 멀티 링크 장치의 스테이션이 STR을 수행할 수 없는 경우, non-AP 멀티 링크 장치의 스테이션은 AP에게 링크의 변경을 요청할 수 있다. 구체적으로 non-AP 멀티 링크 장치의 스테이션은 중심 주파수 변경, 주파수 대역의 대역폭 변경 및 20MHz 주 채널 중 적어도 어느 하나의 변경을 요청할 수 있다. 링크 변경 요청은 변경을 요청하는 링크를 통해 AP에게 전송될 수 있다. 또 다른 구체적인 실시 예에서 링크 변경 요청은 변경을 요청하지 않는 링크를 통해 AP에게 전송될 수 있다. 이때, 링크 변경 요청은 변경을 요청하는 링크를 지시하는 정보를 포함할 수 있다. 링크를 지시하는 정보는 링크를 식별하는 번호일 수 있다. 이러한 실시 예들에서 링크의 변경은 하나의 주파수 대역 내에서 동작(operating) 채널이 변경되는 것일 수 있다. 또한, 링크의 변경은 링크를 변경하는 방법에 대한 정보를 포함할 수 있다. 구체적으로 링크 변경 요청은 링크의 중심 주파수를 현재 중심 주파수보다 높은 주파수로 이동시킬 지, 링크의 중심 주파수를 현재 중심 주파수보다 낮은 주파수로 이동시킬 지를 나타낼 수 있다. 또 다른 구체적인 실시 예에서 링크 변경 요청은 인접한 링크와 멀어지는 주파수 대역으로 변경을 암시적으로 나타낼 수 있다. 또한, 링크 변경 요청은 링크의 대역폭을 줄일 것을 나타낼 수 있다. 또한, 링크 변경 요청은 주 채널의 위치의 변경을 요청할 수 있다. 구체적으로 링크 변경 요청은 주 채널의 위치를 현재의 주 채널의 위치보다 낮은 주파수 대역의 채널 또는 높은 주파수 대역의 채널로 변경하는 것을 나타낼 수 있다. 링크 변경 요청을 수신한 AP는 링크 변경 요청에 따라 링크를 변경할 수 있다. 또한, 구체적인 실시 예에서 링크 변경 요청을 수신한 AP는 링크 변경 요청을 무시할 수 있다.
도 11의 실시 예에서 non-AP 멀티 링크 장치의 제2 스테이션이션STA2)과 제3 스테이션(STA3)은 STR을 지원하지 못하는 상태이다. Non-AP 멀티 링크 장치는 AP 멀티 링크 장치에게 제3 링크(Link3)의 변경을 요청한다. 링크 변경 요청을 수신한 AP 멀티 링크 장치는 제3 AP(AP3)의 동작 링크를 변경한다. 이때, 변경할 제3 링크(link3)에서 동작하는 제3 스테이션(STA3)이 제3 AP(AP3)에게 변경 요청을 전송할 수 있다. 또 다른 구체적인 실시 예에서 제3 링크(link3)에서 동작하지 않는 스테이션이 제3 링크(link3)에서 동작하지 않는 AP에게 변경 요청을 전송할 수 있다.
AP가 링크를 변경하는 경우, AP는 비콘 프레임을 통해 링크 변경에 대한 정보를 브로드캐팅할 수 있다. 이때, 링크 변경에 대한 정보는 링크의 주파수에 관한 정보를 포함할 수 있다. 링크의 주파수에 관한 정보는 링크의 중심 주파수, 동작 대역폭 및 주 채널의 변경 중 적어도 어느 하나를 포함할 수 있다. 또한, 링크 변경에 관한 정보는 링크 변경 시점에 관한 정보를 포함할 수 있다. 또한, 링크 변경은 링크 변경에 관한 정보를 포함하는 비콘 전송 시에 완료될 수 있다.
도 11에서 제3 스테이션(STA3)이 동작하는 링크가 변경되어 제3 스테이션(STA3)과 제2 스테이션(STA2)은 STR을 지원할 수 있다. 앞서 설명한 바와 같이 non-AP 멀티 링크 장치는 AP 멀티 링크 장치에게 STR support 엘리멘트를 전송하여, 변경된 STR 지원 여부를 시그널링할 수 있다.
앞서 설명한 링크 변경이 허용되지 않거나 링크 변경을 통해서도 STR이 지원되지 않을 수 있다. 또한, 도 11의 실시 예에서와 같이 AP 멀티 링크 장치는 STR을 지원하나 non-AP 멀티 링크 장치가 STR을 지원하지 않을 수 있다. 이는 AP 멀티 링크 장치에 상대적으로 고가의 장치가 사용되고, non-AP 멀티 링크 장치에 상대적으로 저가의 장치가 사용되는 것이 일반적일 수 있기 때문이다. 따라서 멀티 링크 장치간의 통신 시, 어느 하나의 멀티 링크 장치가 STR을 지원하지 않을 때도 효율적인 통신을 수행할 수 있는 방법이 필요하다. 이때, STR은 전송과 수신이 동시에 수행되는 것을 나타낼 수 있다. 이에 대해서는 도 12를 통해 설명한다.
도 12는 본 발명의 일 실시예에 따라 non-STR 멀티 링크 장치의 어느 하나의 스테이션 수신을 수행 중일 때, non-STR 멀티 링크 장치의 다른 스테이션의 채널 엑세스가 금지되는 것을 보여준다.
non-STR 멀티 링크 장치의 어느 하나의 링크에서 전송이 수행되고, non-STR 멀티 링크 장치의 다른 링크에서 수신이 수행되는 경우, non-STR 멀티 링크 장치의 수신과 전송이 실패할 수 있다. 이를 해결 하기 위해, non-STR 멀티 링크 장치의 어느 하나의 링크에서 수신이 수행될 때 non-STR 멀티 링크 장치의 다른 링크에서 채널 액세스가 금지될 수 있다. 구체적으로 non-STR 멀티 링크 장치의 어느 하나의 링크에서 수신이 수행될 때 non-STR 멀티 링크 장치의 다른 링크에서 채널 액세스의 백오프가 금지될 수 있다. 이를 통해 non-STR 멀티 링크 장치의 어느 하나의 링크에서 수신이 수행될 때 non-STR 멀티 링크 장치의 다른 링크에서 전송이 시작되는 것을 방지할 수 있다. 구체적인 실시 예에서 non-STR 멀티 링크 장치의 어느 하나의 링크에서 수신이 시작될 때 non-STR 멀티 링크 장치의 다른 링크에서 채널 액세스의 백오프가 금지될 수 있다. 채널 접근 금지 플래그와 같은 메모리의 특정 비트를 통해 설정될 수 있다. 이는 멀티 링크 장치 내부의 메모리 통해 채널 액세스 금지 여부가 공유될 수 있다. 이러한 실시 예를 통해 별도의 프레임 교환 없이 채널 액세스 금지가 구현될 수 있다. 설명의 편의를 위해 본 명세서에서 사용되는 채널 액세스 금지는 별도의 설명이 없는 한 NON-STR 멀티 링크 장치의 전송 또는 수신을 보호하기 위해 채널 액세스 또는 전송을 금지하는 것을 나타낸다.
채널 액세스가 금지되는 경우, 채널 액세스가 금지되는 링크에서 동작하는 스테이션은 NAV 및 CCA 결과에 관계없이 백오프 절차를 수행할 수 없다. 또한, 채널 액세스가 금지되는 경우, 채널 액세스가 금지되는 링크에서 동작하는 스테이션은 NAV 및 CCA 결과에 관계없이 전송을 수행할 수 없다. 다만, 채널 액세스가 금지되더라도 채널 액세스가 금지되는 링크에서 동작하는 스테이션은 수신을 수행할 수 있다. 또한, 제1 링크에서 수행되는 수신으로 인한 제2 링크에서의 채널 액세스 금지는 제1 링크에서의 수신이 완료된 때를 기초로 해제될 수 있다. 구체적으로 제1 링크에서 수행되는 수신으로 인한 제2 링크에서의 채널 액세스 금지는 제1 링크에서의 수신이 완료된 때 해제될 수 있다. 또 다른 구체적인 실시 예에서 제1 링크에서 수행되는 수신으로 인한 제2 링크에서의 채널 액세스 금지는 제1 링크에서 수신이 완료된 후 ACK이 전송되는 시점을 기초로 해제될 수 있다. 구체적으로 제1 링크에서 수행되는 수신으로 인한 제2 링크에서의 채널 액세스 금지는 제1 링크에서 수신이 완료된 후 ACK이 전송되는 시점에 해제될 수 있다. 또 다른 구체적인 실시 예에서 구체적인 실시 예에서 제1 링크에서 수행되는 수신으로 인한 제2 링크에서의 채널 액세스 금지는 제1 링크에서 수신이 완료된 후 ACK이 전송이 완료된 시점에 해제될 수 있다. 또한, 채널 액세스 금지가 해제된 직후, 스테이션은 추가 센싱없이 백오프 카운터를 바로 줄일 수 있다. 이때, 추가 센싱은 DIFS(DCF Interframe Space) 동안 수행되는 센싱을 나타낼 수 있다. 또 다른 구체적인 실시 예에서 채널 액세스 금지가 해제되기 직전 미리 지정된 시간 동안 채널이 유휴한 경우, 스테이션은 추가 센싱없이 백오프 카운터를 바로 줄일 수 있다. 이때, 미리 지정된 시간은 PIFS(PCF Interframe Sapce), DIFS, SIFS(Short Interframe Sapce) 및 AIFS(Arbitration Interframe Space) 중 어느 하나일 수 있다.
도 12의 실시 예에서 non-STR 멀티 링크 장치는 제1 링크(Link1)에서 동작하는 제1 스테이션(STA1)과 제2 링크(Link2)에서 동작하는 제2 스테이션(STA2)을 포함한다. 제1 스테이션(STA1)이 수신을 수행하는 동안 제2 링크(Link2)에서 제2 스테이션(STA2)이 전송을 수행하는 경우, 장치 내 간섭이 발생한다. 앞서 설명한 바와 같이 제1 링크(Link1)에서 동작하는 제1 스테이션(STA1)이 수신을 수행하는 동안 제2 링크(Link2)에서 수행되는 제2 스테이션(STA2)의 채널 액세스가 금지된다. 제1 링크(Link1)에서의 제1 스테이션(STA1)의 수신이 완료된 후, 채널 액세스 금지 해제된다. 채널 액세스 금지가 해제된 직후, 제2 스테이션(STA2)은 추가 센싱없이 이전 백오프 카운터 값을 3에서 2로 1만큼 줄일 수 있다.
표현상의 편의를 위해 도 12에서 활용한 도면은 Rx 및 Tx를 표현할 때에 단일 Block (Tx 실선, Rx 점선)을 활용하였으며, 상기 단일 Block은 별도의 Ack Block을 도시하지 않는다 할지라도 Tx / Ack 수신, Rx / Ack 전송이 포함된 동작을 표현한 것으로 이해될 수 있다. 이는 이후 설명하는 도면들에도 동일하게 적용될 수 있다.
스테이션이 수신되는 PPDU가 스테이션이 의도된 수신자가 아님을 확인한 경우, 스테이션은 PPDU의 수신을 중단할 수 있다. 이러한 경우, 멀티 링크 장치가 채널 액세스 금지 해제 동작이 문제된다. 본 명세서에서 의도된 수신자는 목적 스테이션과 동일한 의미로 사용된다.
도 13은 본 발명의 실시 예에 따라 non-STR 멀티 링크 장치의 스테이션이 수신하는 PPDU의 의도된 수신자가 스테이션이 아님을 확인한 경우, 채널 액세스 금지를 해제하는 동작을 보여준다.
스테이션이 수신되는 PPDU가 스테이션이 의도된 수신자가 아님을 확인한 경우, 스테이션은 채널 액세스 금지를 해제할 수 있다. 스테이션은 PPDU의 시그널링 필드의 수신자 주소를 지시하는 정보를 기초로 스테이션이 PPDU의 의도된 수신자인지 판단할 수 있다. 이때, PPDU의 시그널링 필드의 수신자 주소를 지시하는 정보는 앞서 설명한 EHT-SIG 필드의 STA-ID 필드의 값일 수 있다. 구체적으로 스테이션은 EHT-SIG 필드의 STA-ID 필드가 스테이션을 지시하는지 판단할 수 있다. 또한, 스테이션은 PPDU가 포함하는 MAC 프레임의 RA 필드의 값을 기초로 스테이션이 PPDU의 의도된 수신자인지 판단할 수 있다. 구체적으로 스테이션은 PPDU가 포함하는 MAC 프레임의 RA 필드가 스테이션을 지시하는지 판단할 수 있다. 도 13에서 non-STR 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 스테이션(STA1)과 제2 링크(Link 2)에서 동작하는 제2 스테이션(STA2)을 포함한다. 제1 스테이션(STA1)이 PPDU를 수신한다. 제1 스테이션(STA1)은 수신되는 PPDU의 의도된 수신자가 제1 스테이션(STA1)이 아닌 것으로 판단하고, PPDU의 수신을 중단한다. 이때, 제1 스테이션(STA1)은 제2 스테이션(STA2)의 채널 액세스 금지를 해제할 수 있다. 제2 스테이션(STA2)의 채널 액세스 금지가 해제되더라도 제2 스테이션(STA2)에게 설정된 NAV에 따라 제2 스테이션(STA2)의 채널 액세스가 지연될 수 있다.
도 13에서와 같이 채널 액세스 금지가 해제되더라도 멀티 링크 장치에 포함되지 않은 스테이션 또는 STR 멀티 링크 장치에 포함된 스테이션에 비해, non-STR 멀티 링크 장치에 포함된 스테이션의 채널 액세스 기회를 갖지 못하는 경우가 많을 수 있다. 따라서 다른 스테이션들과 공정한 경쟁을 위해 non-STR 멀티 링크 장치에 포함된 스테이션의 채널 액세스 기회를 보상하기 위한 방법이 필요할 수 있다. 예컨대, 채널 액세스 금지 해제 직후, 채널 액세스 금지가 해제된 스테이션이 백오프 카운터를 줄일 때 2이상 줄이는 것이 허용될 수 있다. 이에 대해서는 도 14를 통해 설명한다.
도 14는 본 발명의 실시 예에 따른 스테이션이 채널 액세스 금지가 해제된 후 채널 액세스를 수행하는 것을 보여준다.
채널 액세스 금지가 해재된 스테이션은 채널 액세스 금지 해제 직후 백오프 카운터를 2이상 줄일 수 있다. 스테이션의 채널 액세스가 금지되는 동안 다른 스테이션은 백오프 절차를 수행하였으므로 다른 스테이션과 채널 액세스 기회의 형평성을 맞추기 위한 것이다.
또 다른 구체적인 실시 예에서 채널 액세스가 금지된 스테이션은 채널 액세스가 금지되는 동안 CCA(CSMA) 및 백오프 카운터를 줄이는 채널 액세스 절차를 수행할 수 있다. 도 14에서 non-STR 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 스테이션(STA1)과 제2 링크(Link 2)에서 동작하는 제2 스테이션(STA2)을 포함한다. 도 14에서 제1 스테이션(STA1)이 수신을 수행하는 동안 제2 스테이션(STA2)의 채널 액세스가 금지된다. 도 14(a)에서 제2 스테이션(STA2)의 채널 액세스가 금지되는 동안, 제2 스테이션(STA2)은 CCA(CSMA) 및 백오프 카운터를 줄이는 채널 액세스 절차를 수행할 수 있다. 도 14(a)에서 제2 스테이션(STA2)의 채널 액세스가 금지되는 동안, 제2 링크(Link 2)의 채널이 유휴하므로 제2 스테이션(STA2)은 백오프 카운터를 줄인다.
또한, 채널 액세스가 금지된 스테이션은 채널 액세스가 금지되는 동안 백오프 카운터가 0에 도달하더라도 전송을 시작하지 않고 전송을 지연시킬 수 있다. 이때, 스테이션은 백오프 카운터의 값을 0으로 유지할 수 있다. 또한, 스테이션이 전송을 지연시키더라도 스테이션은 CW의 값을 그대로 유지할 수 있다. 따라서 스테이션 액세스하는 채널이 사용 중(busy)이어서, 스테이션이 CW의 값을 더블링(doubling)하는 것과는 차별화된다. 이는 전송이 지연된 사유가 채널이 사용 중이라고 판단된 경우가 아니기 때문이다. 도 14(b)에서 제2 스테이션(STA2)의 채널 액세스가 금지되는 동안, 제2 스테이션(STA2)은 CCA(CSMA) 및 백오프 카운터를 줄이는 채널 액세스 절차를 수행할 수 있다. 도 14(b)에서 제2 스테이션(STA2)의 채널 액세스가 금지되는 동안, 제2 링크(Link 2)의 채널이 유휴하므로 제2 스테이션(STA2)은 백오프 카운터를 줄인다. 제2 스테이션(STA2)의 채널 액세스가 금지되는 동안, 제2 스테이션(STA2)의 백오프 카운터가 0에 도달한다. 제2 스테이션(STA2)은 전송을 지연시키고, 채널 액세스 금지가 해제된 후 전송을 시작한다.
앞서 설명한 바와 같이 채널 액세스 금지는 non-STR 멀티 링크 장치의 제1 스테이션이 전송을 수행할 때, 제2 스테이션에 대한 전송이 금지되는 것을 포함할 수 있다. 또한, 채널 액세스 금지는 non-STR 멀티 링크 장치의 제1 스테이션이 수신을 수행할 때, 제2 스테이션의 전송이 금지되는 것을 포함할 수 있다.
도 14(b)를 통해 실시 예들에서 채널 액세스가 금지된 스테이션이 복수인 경우, 복수의 스테이션의 채널 액세스 금지가 동시에 해제되고 복수의 스테이션이 동시에 전송을 시도할 가능성이 높다. 따라서 전송 충돌 확률을 낮출 수 있는 방법이 필요하다. 이에 대해서는 도 15를 통해 설명한다.
도 15는 본 발명의 일 실시예에 따른 스테이션이 채널 액세스 금지 해제 이후 전송을 수행하는 동작을 보여준다.
앞서 설명한 바와 같이 non-STR 멀티 링크 장치가 동작하는 복수의 링크 중 제1 링크에서 전송이 수행되어 제2 링크에서 전송이 금지될 수 있다. 제1 링크에서 해당 전송이 완료된 경우, 제2 링크에서의 전송은 RTS/CTS 프레임 교환으로 시작될 수 있다. 따라서 non-STR 멀티 링크 장치가 동작하는 복수의 링크 중 제1 링크에서 전송이 수행되는 경우, non-STR 멀티 링크 장치는 제2 링크에서 RTS/CTS 프레임 교환을 시작할 수 있다. 채널 액세스 금지로 인해 전송이 지연된 스테이션의 채널 액세스 금지 해제 이후, 스테이션은 지연된 전송을 시작하기 전 RTS/CTS(request to send/clear to send) 프레임의 교환을 시작할 수 있다. 이때, 스테이션이 CTS 프레임을 수신하지 못한 경우 지연된 전송을 시작하지 못할 수 있다. 도 15(a)의 실시 예에서 채널 액세스 금지로 인해 전송이 지연된 스테이션은 지연된 전송을 시작하기 전 RTS 프레임을 전송한다. 스테이션은 RTS 프레임에 대한 응답으로 CTS 프레임을 수신한 후 지연된 전송을 시작한다.
또 다른 구체적인 실시 예에서 채널 액세스 금지로 인해 전송이 지연된 스테이션의 채널 액세스 금지 해제 이후, 스테이션은 지연된 전송의 일부만을 포함하는 프레임을 전송할 수 있다. 이때, 스테이션이 지연된 전송의 일부만을 포함하는 프레임에 대한 응답, 예컨대 ACK을 수신한 후, 스테이션은 지연된 전송 중 전송되지 않은 부분의 전송을 수행할 수 있다. 스테이션이 지연된 전송의 일부만을 포함하는 프레임에 대한 응답을 수신하지 못한 경우, 스테이션은 지연된 전송 중 전송되지 않은 부분의 전송을 수행하지 않을 수 있다. 이와 같이 스테이션이 채널 액세스 금지 해제 이후 RTS/CTS 교환을 시작하거나 지연된 전송의 일부만을 전송하는 것은 일반적인 전송에 비해 채널 액세스 금지 이후의 전송의 충돌 확률이 높을 수 있기 때문이다. 따라서 앞서 설명한 실시 예들이 채널 액세스 금지 해제 이후 수행된 전송에 의무적으로 적용될 수 있다. 기존 무선랜 동작에서 RTS/CTS 프레임은 히든 노드(hidden node) 문제를 해결하기 위해 사용되었고, 전송 데이터의 크기를 기초로 사용될 수 있었다. 앞서 설명한 실시 예들에서 RTS/CTS 프레임은 NON-STR 멀티 링크 장치의 전송 또는 수신을 보호하기 위해 지연된 전송을 수행하려는 스테이션과의 전송 충돌을 방지하기 위한 것이다.
앞서 설명한 바와 같이 non-STR 멀티 링크 장치의 어느 하나의 스테이션이 수신을 수행할 때 non-STR 멀티 링크 장치의 다른 스테이션의 전송이 제한될 수 있다. 또한, non-STR 멀티 링크 장치의 어느 하나의 스테이션이 전송을 수행할 때 non-STR 멀티 링크 장치의 다른 스테이션이 스테이션이 동작하는 링크의 채널 상태를 정확히 센싱하기 어려울 수 있다. 구체적으로 non-STR 멀티 링크 장치의 제1 스테이션이 전송을 수행할 때 non-STR 멀티 링크 장치의 제2 스테이션은 제2 스테이션이 동작하는 링크의 채널 상태를 항상 사용 중(busy)으로 판단할 수 있다. 이로 인해 제2 스테이션은 제2 스테이션이 동작하는 링크의 채널이 유휴한 경우에도 장치 내 간섭으로 인해 채널이 사용 중으로 판단할 수 있다. 이와 같이 장치 내 간섭으로 인해 채널 상태를 판단할 수 없는 스테이션 또는 non-STR 멀티 링크 장치의 어느 하나의 스테이션이 전송이 계속 중인 경우 non-STR 멀티 링크 장치의 다른 스테이션을 블라인드(blind) 상태로 지칭한다. 앞서 설명한 상황들로 인해 블라인드 상태인 스테이션은 백오프 절차를 수행하여 전송을 시도하기 어려울 수 있다. 또한, 앞서 설명한 상황들로 인해 블라인드 상태인 스테이션은 PPDU의 수신을 시작하거나 디코딩에 성공하기 어려울 수 있다. 따라서 블라인드 상태인 스테이션을 고려한 전송 방법이 필요하다. 이에 대해서는 도 16을 통해 설명한다.
도 16은 본 발명의 실시 예에 따라 non-STR 멀티 링크 장치 내 스테이션의 상태를 기초로 수행되는 전송을 보여준다.
non-STR 멀티 링크 장치의 스테이션에게 전송을 수행하려는 스테이션은 non-STR 멀티 링크 장치의 스테이션이 블라인드 상태인지에 따라 전송을 수행할지 결정할 수 있다. 이때, non-STR 멀티 링크 장치의 스테이션에게 전송을 수행하려는 스테이션은 STR 멀티 링크 장치에게 포함된 스테이션일 수 있다. 또한, non-STR 멀티 링크 장치의 스테이션에게 전송을 수행하려는 스테이션은 AP 멀티 링크 장치에 포함된 AP이고, non-STR 멀티 링크 장치는 non-AP 멀티 링크 장치일 수 있다. non-STR 멀티 링크 장치의 스테이션에게 전송을 수행하려는 스테이션은 non-STR 멀티 링크 장치의 스테이션이 블라인드 상태인지 다음과 같이 판단할 수 있다. 전송을 수행하려는 스테이션은 스테이션이 포함된 멀티 링크 장치의 다른 스테이션이 해당 non-STR 멀티 링크 장치에게 전송을 수행 중인지 판단할 수 있다. 스테이션이 포함된 멀티 링크 장치의 다른 스테이션이 해당 non-STR 멀티 링크 장치로부터 수신을 수행 중인 경우, 스테이션은 스테이션의 전송을 수신할 non-STR 멀티 링크 장치의 스테이션이 블라인드 상태인 것으로 판단할 수 있다. 도 16의 실시 예에서 STR AP 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 AP(AP1)와 제2 링크(Link 2)에서 동작하는 제2 AP(AP2)를 포함한다. non-STR non-AP 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 스테이션(STA1)와 제2 링크(Link 2)에서 동작하는 제2 스테이션(STA2)를 포함한다. 제2 스테이션(STA2)이 제2 AP(AP2)에게 전송 중이다. 따라서 제2 AP(AP2)는 제2 스테이션(STA2)로부터 수신을 수행 중임을 제1 AP(AP1)에게 알려줄 수 있다. 구체적으로 제2 AP(AP2)는 제2 AP(AP2)에 대한 전송의 주체가 제2 스테이션(STA2)임을 제1 AP(AP1)에게 알려줄 수 있다. 또 다른 구체적인 실시 예에서 제2 AP(AP2)는 제2 스테이션(STA2)이 현재 전송 중임을 제1 AP(AP1)에게 알려줄 수 있다. 이때, 제1 AP(AP1)는 알림을 기초로 제1 스테이션(STA1)이 블라인드 상태라고 판단할 수 있다.
스테이션은 블라인드 상태인 스테이션에게 전송을 수행하지 않을 수 있다. 이는 블라인드 상태인 스테이션에게 전송을 수행하더라도 블라인드 상태인 스테이션이 수신을 시작하지 못하거나 블라인드 상태인 스테이션이 PPDU를 디코딩하지 못할 가능성이 높기 때문이다. 이때, 스테이션은 블라인드 상태인 스테이션에 대한 전송을 취소하고, 다른 스테이션에 대한 전송을 수행할 수 있다.
STR 멀티 링크 장치가 non-STR 멀티 링크 장치에게 전송을 수행할 때, STR 멀티 링크 장치는 복수의 링크에서 non-STR 멀티 링크 장치에 대한 전송을 수행할 수 있다. 구체적으로 STR 멀티 링크 장치가 제1 링크에서 non-STR 멀티 링크 장치에 대한 전송을 수행할 때, STR 멀티 링크 장치는 제2 링크에서 non-STR 멀티 링크 장치에 대한 전송을 시작할 수 있다. 이때, STR 멀티 링크 장치는 non-STR 멀티 링크 장치에 대한 전송임을 기초로 제2 링크에서 수행되는 전송의 길이를 결정할 수 있다. 구체적으로 STR 멀티 링크 장치는 제1 링크에서 non-STR 멀티 링크 장치에 대한 전송의 길이를 기초로 제2 링크에서 non-STR 멀티 링크 장치에 대한 전송의 길이를 결정할 수 있다. 구체적인 실시 예에서 STR 멀티 링크 장치는 제1 링크에서의 전송과 제2 링크에서의 전송을 동시에 종료할 수 있다. 이는 non-STR 멀티 링크 장치의 스테이션 중 어느 하나에 대한 전송이 먼저 종료하여, non-STR 멀티 링크 장치의 스테이션 중 어느 하나가 전송에 대한 응답, 예컨대 ACK을 전송할 동안 non-STR 멀티 링크 장치의 다른 스테이션에 대한 전송이 수행되는 것을 방지하기 위함이다. 앞서 설명한 실시 예를 통해 non-STR 멀티 링크 장치의 복수의 스테이션이 복수의 스테이션에 대한 전송에 대한 응답을 동시에 전송할 수 있다.
STR 멀티 링크 장치가 non-STR 멀티 링크 장치에 포함된 스테이션의 상태를 실시간으로 판단할 수 없다. 따라서 STR 멀티 링크 장치가 도 16을 통해 설명한 실시 예들에 따라 동작하더라도 non-STR 멀티 링크 장치가 동작하는 링크 사이에서 간섭 또는 전송 충돌이 발생할 수 있다. 예컨대, 도 16의 실시 예에서 제2 스테이션(STA2)이 제2 AP(AP2)에 대한 전송을 수행 중임을 인식하기 전에, 제1 AP(AP1)가 제1 스테이션(STA1)에 대한 전송을 시작할 수 있다. 이와 같이 링크 사이의 간섭 또는 충돌의 발생 확률이 링크 내 간섭 또는 전송 충돌의 발생 확률 보다 클 수 있다. 이에 대해서는 도 17을 통해 더 구체적으로 설명한다.
도 17은 링크 사이의 간섭 또는 충돌이 발생할 수 있는 상황을 보여준다.
non-STR 스테이션 멀티 링크 장치의 제2 스테이션의 STR AP 멀티 링크 장치의 제2 AP에 대한 전송이 STR AP 멀티 링크 장치의 제1 AP의 non-STR 스테이션 멀티 링크 장치의 제1 스테이션에 대한 전송과 동시에 시작되는 경우 링크 사이에서 전송 충돌이 발생할 수 있다. 도 17(a)는 이를 보여준다. 이는 앞서 설명한 바와 같이 STR 멀티 링크 장치가 non-STR 멀티 링크 장치에 포함된 스테이션의 상태를 실시간으로 판단할 수 없기 때문에 발생할 수 있다.
또한, non-STR 스테이션 멀티 링크 장치의 제2 스테이션의 STR AP 멀티 링크 장치의 제2 AP에 대한 전송이 STR AP 멀티 링크 장치의 제1 AP의 non-STR 스테이션 멀티 링크 장치의 제1 스테이션에 대한 전송보다 빨리 시작된 경우라도 링크 사이에서 전송 충돌이 발생할 수 있다. 도 17(b)는 이를 보여준다. 제2 AP(AP2)가 제1 AP(AP1)에게 제2 스테이션(STA2)이 전송을 수행 중임을 알려주기까지 시간이 소요될 수 있기 때문이다. 이와 같이 서로 다른 시점에 전송을 시작한 스테이션 사이에서도 전송 충돌이 발생하므로 사이의 간섭 또는 전송 충돌의 발생 확률이 링크 내 간섭 또는 충돌의 발생 확률 보다 클 수 있다. 또한, STR 멀티 링크 장치의 AP가 수신하는 PPDU의 전송자를 식별하는 시간이 지연될수록 링크 사이의 간섭 또는 전송 충돌의 발생 확률이 커질 수 있다. 따라서 이를 해결하기 위한 방법이 필요하다. STR 멀티 링크 장치의 스테이션 중 하나가 수신을 수행 중인 경우, STR 멀티 링크 장치의 다른 스테이션의 채널 액세스를 수행하지 않을 수 있다. 다만, 이와 같이 채널 액세스가 금지되는 경우, STR 기능 구현의 의미가 사라질 수 있다. 따라서 STR 멀티 링크 장치의 채널 액세스 금지가 아닌 동작 방법이 필요할 수 있다. 이에 대해서는 도 18을 통해 설명한다.
도 18은 본 발명의 일 실시예에 따라 STR 멀티 링크 장치가 non-STR 멀티 링크 장치에 대한 전송을 중지하는 동작을 보여준다.
STR 멀티 링크 장치의 스테이션이 non-STR 멀티 링크 장치의 스테이션에 대한 전송 중 non-STR 멀티 링크 장치의 스테이션이 블라인드 상태로 판단한 경우, STR 멀티 링크 장치는 블라인드 상태인 non-STR 멀티 링크 장치의 스테이션에 대한 전송을 중단할 수 있다. 구체적으로 STR 멀티 링크 장치는 수신되는 PPDU의 시그널링 필드가 STA(AID)-ID로 지시하는 값 또는 수신되는 PPDU가 포함하는 MAC 프레임의 TA(transmitting address) 필드를 기초로 non-STR 멀티 링크 장치의 스테이션이 블라인드 상태인지 판단할 수 있다. 이때, STA-ID는 UL PPDU에서 UL PPDU를 전송하는 스테이션을 지시하는 값일 수 있다. 구체적인 실시 예에서 STR 멀티 링크 장치는 수신되는 PPDU의 시그널링 필드가 STA(AID)-ID 지시하는 값이 non-STR 멀티 링크 장치에 포함된 제1 스테이션을 지시하는 경우 non-STR 멀티 링크 장치에 포함된 제2 스테이션이 블라인드 상태라고 판단할 수 있다. 또한, STR 멀티 링크 장치는 수신되는 PPDU가 포함하는 MAC 프레임의 TA 필드가 non-STR 멀티 링크 장치에 포함된 제1 스테이션을 지시하는 경우 non-STR 멀티 링크 장치에 포함된 제2 스테이션이 블라인드 상태라고 판단할 수 있다. 전송 취소 후 스테이션의 동작에 대해서 먼저 설명한다.
non-STR 멀티 링크 장치의 스테이션에게 설정된 TXOP가 남아 있는 경우, non-STR 멀티 링크 장치의 스테이션에 대한 전송을 취소한 스테이션은 해당 non-STR 멀티 링크 장치의 스테이션과 다른 스테이션에 대한 전송을 시도할 수 있다. 이때, non-STR 멀티 링크 장치의 스테이션에 대한 전송을 취소한 스테이션은 별도의 백오프 절차 없이 non-STR 멀티 링크 장치의 스테이션과 다른 스테이션에 대한 전송을 수행할 수 있다. 구체적인 실시 예에서 non-STR 멀티 링크 장치의 스테이션에 대한 전송을 취소 이후 별도의 백오프 절차 없이 미리 지정된 시간 구간동안 채널이 유휴한 것으로 감지되는 경우, non-STR 멀티 링크 장치의 스테이션에 대한 전송을 취소한 스테이션은 non-STR 멀티 링크 장치의 스테이션과 다른 스테이션에 대한 전송을 수행할 수 있다. 이때, 미리 지정된 시간 구간은 SIFS, PDIF 및 DIFS 중 어느 하나일 수 있다.
non-STR 멀티 링크 장치의 스테이션에 대한 전송을 취소한 스테이션은 non-STR 멀티 링크 장치의 스테이션과 다른 스테이션에 대한 전송을 수행할 때, non-STR 멀티 링크 장치의 스테이션에 대한 전송을 취소한 스테이션은 취소한 전송의 트래픽과 동일한 우선순위(priority)를 갖는 트래픽 또는 더 높은 우선순위를 갖는 트래픽을 전송할 수 있다. 이는 취소한 전송을 위한 채널 액세스 시 사용한 트래픽의 우선순위보다 낮은 우선순위에 해당하는 트래픽을 전송하는 경우, 형평성에 맞지 않을 수 있기 때문이다. 앞서 설명한 실시 예들에서 STR 멀티 링크 장치의 스테이션은 AP일 수 있다.
non-STR 멀티 링크 장치의 스테이션에 대한 전송을 취소한 스테이션은 설정한 TXOP을 초기화할 수 있다. 구체적으로 non-STR 멀티 링크 장치의 스테이션에 대한 전송을 취소한 스테이션은 전송 취소 후 CF-End 프레임을 전송할 수 있다 이를 통해 전송이 예정된 링크에서 동작하는 다른 스테이션이 링크를 사용할 수 있게 할 수 있다.
도 18에서 STR AP 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 AP(AP1)와 제2 링크(Link 2)에서 동작하는 제2 AP(AP2)를 포함한다. non-STR non-AP 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 스테이션(STA1)와 제2 링크(Link 2)에서 동작하는 제2 스테이션(STA2)를 포함한다. 제2 스테이션(STA2)이 제2 AP(AP2)에게 전송 중이다. 제1 AP(AP1)는 제1 스테이션(STA1)에 대한 전송을 수행 중에 제1 스테이션(STA1)이 블라인드 상태라 판단한다. 따라서 제1 AP(AP1)는 제1 스테이션(STA1)에 대한 전송을 중단한다. 도 18(a)에서 제1 스테이션(STA1)에 대한 전송을 중단 후, 제1 AP(AP1)는 먼저 설명한 실시 예에서와 같이 제1 스테이션(STA1)과 다른 스테이션에 대한 전송을 수행한다. 도 18(b)에서 제1 스테이션(STA1)에 대한 전송을 중단 후, 제1 AP(AP1)는 나중에 설명한 실시 예에서와 같이 CF-END 프레임을 전송한다.
스테이션이 전송을 중단할 때, 전송 중이던 프래그멘트를 전송한 후 다음 프래그멘트를 전송하지 않을 수 있다. 또 다른 구체적인 실시 예에서 스테이션은 전송 중 이던 패킷의 전송을 바로 중지할 수 있다.
앞서 설명한 실시 예들에서 STR 멀티 링크 장치가 블라인드 상태인 non-STR 멀티 링크 장치의 스테이션에 대한 전송을 중단하고 블라인드 상태인 non-STR 멀티 링크 장치의 스테이션과 다른 스테이션에 대한 전송을 수행할 때, 안정적인 수신을 위해 다른 스테이션에게 다른 스테이션에 대한 전송이 수행될 수 있다는 것을 알릴 필요가 있다. 이를 위한 방법에 대해 설명한다. 설명의 편의를 위해 블라인드 상태인 non-STR 멀티 링크 장치의 스테이션과 다른 스테이션을 다른 스테이션으로 지칭한다.
STR 멀티 링크 장치의 스테이션은 MAC 프레임에 다른 스테이션의 주소를 삽입할 수 있다. 구체적으로 STR 멀티 링크 장치의 스테이션은 MAC 프레임의 RA(receiving address)에 MAC 프레임의 의도된 수신자의 주소를 삽입하고, 별도의 필드에 다른 스테이션의 주소를 삽입할 수 있다. 또 다른 구체적인 실시 예에서 장치의 스테이션은 EHT-SIG에 다른 스테이션의 주소를 삽입할 수 있다. 구체적으로 STR 멀티 링크 장치의 스테이션은 PPDU의 시그널링 필드의 User 필드에 PPDU의 의도된 수신자의 주소와 다른 스테이션의 주소를 삽입할 수 있다. 이때, 다른 스테이션의 주소는 PPDU의 시그널링 필드의 User 필드에서 PPDU의 의도된 수신자의 주소 뒤에 삽입될 수 있다.
또 다른 구체적인 실시 예에서 스테이션은 수신되는 PPDU의 의도된 수신자가 스테이션이 아님을 인식한 후에도 미리 지정된 시간 동안 PPDU의 수신을 모니터링할 수 있다. 구체적으로 스테이션은 수신되는 PPDU의 의도된 수신자가 스테이션이 아님을 인식한 후에도 미리 지정된 시간 동안 PPDU의 수신이 계속되는지 모니터링할 수 있다. 이를 통해 스테이션은 PPDU의 전송이 중단되고 스테이션에 대한 전송이 시작할지 판단할 수 있다. 이러한 실시 예들에서 미리 지정된 시간 동안 PPDU의 전송이 계속되는 것으로 판단된 경우, 스테이션은 절전 상태(doze state)에 진입할 수 있다. 미리 지정된 시간 동안 PPDU의 전송이 계속되지 않은 것으로 판단된 경우, 스테이션은 웨이크-업 상태를 유지할 수 있다. 이때, 스테이션에게 새로운 PPDU가 수신되는 경우, 스테이션은 PPDU를 디코딩할 수 있다.
또 다른 구체적인 실시 예에서 PPDU를 전송하는 스테이션이 PPDU의 전송이 중단될 수 있음을 시그널링하는 정보를 PPDU에 삽입할 수 있다. PPDU의 전송이 중단될 수 있음을 시그널링하는 정보는 1비트의 서브필드일 수 있다. 예컨대, PPDU의 전송이 중단될 수 있음을 시그널링하는 서브필드의 값이 1인 경우, PPDU를 수신하는 스테이션은 PPDU의 전송이 PPDU의 시그널링 필드의 Length 필드 및 MAC 프레임의 Duration 필드가 지시하는 시점보다 이전에 PPDU의 전송이 중단될 수 있다고 판단할 수 있다. 스테이션이 PPDU의 전송이 PPDU의 시그널링 필드의 Length 필드 및 MAC 프레임의 Duration 필드가 지시하는 시점보다 이전에 PPDU의 전송이 중단될 수 있다고 판단한 경우, 스테이션은 절전 상태에 진입하는 것을 유예할 수 있다. 또한, PPDU를 전송하는 스테이션이 PPDU의 리저브드 필드에 전송이 중단될 수 있음을 시그널링하는 정보를 PPDU에 삽입할 수 있다.
이와 같이 전송 취소 또는 전송 중단을 통해 불필요하게 채널을 점유하는 것을 방지할 수 있다.
링크 사이의 전송 충돌로 인해 전송이 중단되거나 연기된 경우, 일반적인 전송 실패와 같이 채널 액세스에 사용되는 CW의 값이 더블링될 수 있다. 링크 사이의 전송 충돌로 인해 전송이 중단되거나 연기된 경우, 일반적인 채널 액세스 실패나 전송 실패와 달리 채널 액세스에 사용되는 CW의 값이 더블링(doubling)되지 않을 수 있다. 즉, 스테이션은 채널 액세스에 사용되는 CW의 값을 그대로 유지할 수 있다. CW의 값을 더블링하는 것은 백오프 카운터의 값이 될 수 있는 수의 범위를 키워 전송 충돌의 확률을 줄이기 위함이다. 스테이션이 링크 사이의 전송 충돌임을 명확히 인식할 수 있는 경우, 이러한 필요가 적을 수 있다. 또한, 링크 사이의 전송 충돌로 인해 전송이 중단되거나 연기된 경우, 스테이션이 CW의 값을 더블링하는 것이 전송을 지연시킬 수 있다. 다만, 링크 사이의 전송 충돌뿐만 아니라 링크 내 충돌이 동시에 발생하는 경우, 스테이션은 CW의 값을 더블링할 필요가 있다. 이에 대해서는 도 19를 통해 설명한다.
도 19는 본 발명의 실시 예에 따라 STR 멀티 링크 장치가 링크 사이의 전송 충돌을 인지한 경우, CW의 값을 처리하는 것을 보여준다.
스테이션이 앞서 설명한 실시 예들에서와 같이 non-STR 멀티 링크 장치에서 수행되는 전송으로 인해 전송을 취소한 경우, 스테이션은 전송을 취소한 후 채널 상태를 센싱할 수 있다. 채널이 유휴하지 않은 것으로 센싱된 경우, 스테이션은 CW의 값을 더블링할 수 있다. 이때, 더블링은 도 6을 통해 설명한 실시 예를 따를 수 있다. 또한, 채널이 유휴한 것으로 센싱된 경우, 스테이션은 CW의 값을 유지할 수 있다. 이러한 실시 예는 채널이 유휴한 것으로 센싱 되더라도 링크 내의 전송 충돌이 발생할 가능성이 낮으므로 전송 성공 시와 다르게 취급하기 위함이다. 또 다른 구체적인 실시 예에서 채널이 유휴한 것으로 센싱된 경우, 스테이션은 CW의 값을 트래픽의 CW의 최솟값(CW_min)으로 설정할 수 있다. 이러한 실시 예는 채널이 유휴한 것으로 센싱된 경우, 링크 내의 전송 충돌이 발생할 가능성이 낮으므로 전송 성공 시와 동일하게 취급하기 위함이다. 스테이션은 앞서 설명한 실시 예들을 취소한 전송에 포함된 트래픽의 AC의 CW에 적용할 수 있다.
또한, 스테이션은 앞서 설명한 실시 예들에 따라 전송을 취소한 경우, Retry Counter를 증가시키지 않을 수 있다. 이때, Retry Counter는 long retry counter 및 short try counter 중 적어도 하나를 포함할 수 있다.
앞선 실시 예에서 전송을 취소하는 것은 전송을 중단하거나 전송을 시작하기 전에 전송을 지연한 것 중 적어도 어느 하나를 포함할 수 있다.
스테이션이 전송을 시도하기 전에 CTS-to-Self 프레임을 전송한 후, 전송을 취소한 경우, 스테이션은 전송 취소 후 전송을 시도하기 전에 RTS/CTS 프레임 교환을 시작하지 않을 수 있다. 이미 CTS-to-Self 프레임을 통해 NAV가 설정되었기 때문이다. 또한, 스테이션이 전송을 취소한 후, 다시 전송을 시도 할 때 TXOP이 남은 경우, 스테이션은 백오프 절차 없이 전송을 시도할 수 있다.
도 19에서 STR AP 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 AP(AP1)와 제2 링크(Link 2)에서 동작하는 제2 AP(AP2)를 포함한다. non-STR non-AP 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 스테이션(STA1)와 제2 링크(Link 2)에서 동작하는 제2 스테이션(STA2)를 포함한다. 제2 스테이션(STA2)이 제2 AP(AP2)에게 전송 중이다. 제1 AP(AP1)는 제1 스테이션(STA1)에 대한 전송을 수행 중에 제1 스테이션(STA1)이 블라인드 상태라 판단한다. 따라서 제1 AP(AP1)는 제1 스테이션(STA1)에 대한 전송을 중단한다. 도 19(a)에서 제1 AP(AP1)는 제1 링크(Link 1)의 채널이 유휴한 것으로 판단한다. 이때, TXOP가 남아있지 않으므로 제1 AP(AP1)는 백오프 절차를 통해 채널에 액세스한다. 도 19(b)에서 제1 AP(AP1)는 제1 링크(Link 1)의 채널이 유휴하지 않은 것으로 판단한다. 이때, TXOP가 남아있으므로 제1 AP(AP1)는 백오프 절차 없이 전송을 시도한다.
앞서 설명한 실시 예들에서 non-STR 멀티 링크 장치의 스테이션에 대한 전송을 취소 이후 별도의 백오프 절차 없이 미리 지정된 시간 구간동안 채널이 유휴한 것으로 감지되는 경우, non-STR 멀티 링크 장치의 스테이션에 대한 전송을 취소한 스테이션은 non-STR 멀티 링크 장치의 스테이션과 다른 스테이션에 대한 전송을 수행할 수 있다. 이때, 미리 지정된 시간 구간의 듀레이션이 문제될 수 있다. 취소된 전송의 PPDU를 수신한 스테이션은 PPDU의 디코딩에 실패할 수 있다. 이때, EIFS(extended interframe space)만큼 채널이 유휴한 것으로 센싱된 경우, PPDU의 디코딩에 실패한 스테이션은 백오프 절차를 시작할 수 있다. 따라서 미리 지정된 시간 구간을 EIFS보다 길게 설정할지 동일하게 설정할지 문제된다. 이에 대해서는 도 20을 통해 설명한다.
도 20은 본 발명의 실시 예에 따라 STR 멀티 링크 장치가 non-STR 멀티 링크 장치에 대한 전송을 중지한 후 다시 채널 액세스를 수행하는 동작을 보여준다.
도 20(a)와 같이 미리 지정된 시간 구간은 DIFS일 수 있다. 이는 STR 멀티 링크 장치의 스테이션이 경쟁 절차를 통해 채널 액세스 기회를 획득하였고, 링크 사이의 전송 충돌로 인해 획득한 채널 액세스 기회를 잃어버린 것이 고려된 것이다. 즉, STR 멀티 링크 장치의 스테이션 경쟁 절차를 통해 채널 액세스 기회를 획득하였으므로 다른 스테이션이 채널 액세스를 수행하는 것보다 우선권을 준 것이다. EDCA가 적용되는 경우, DIFS는 AIFS[AC]로 대체될 수 있다.
또 다른 구체적인 실시 예에서 도 20(b)와 같이 미리 지정된 시간 구간은 EIFS일 수 있다. 이는 STR 멀티 링크 장치가 이미 전송 기회를 소진한 것으로 간주될 수 있음과 다른 스테이션과의 형평성이 고려된 것이다.
또 다른 구체적인 실시 예에서 도 20(c)와 같이 PPDU의 시그널링 필드에 전송이 중단될 수 있음을 시그널링하는 경우, 미리 지정된 시간 구간은 DIFS일 수 있다. 또한, PPDU를 수신한 스테이션이 PPDU의 전송이 중단된 것을 감지한 경우, 스테이션은 EIFS 대신 DIFS 동안 채널이 유휴한지 센싱할 수 있다. 이때, DIFS 동안 채널이 유휴한 것으로 센싱된 경우, 해당 스테이션은 백오프 절차를 시작할 수 있다. 이러한 실시 예를 통해 전체 네트워크의 성능을 향상 시키고, 스테이션들 사이의 형평성도 보장할 수 있다. EDCA가 적용되는 경우, DIFS는 AIFS[AC]로 대체될 수 있다.
앞서 설명한 바와 같이 STR 멀티 링크 장치는 링크 사이의 전송 충돌이 발생할 수 있음을 인지할 수 있다. 구체적으로 STR 멀티 링크 장치의 제1 스테이션이 백오프 절차를 완료한 때, STR 멀티 링크 장치의 제2 스테이션이 PPDU를 수신하는 중일 수 있다. 이때, 제2 스테이션이 PPDU의 시그널링 필드를 디코딩을 완료하지 못한 경우, 제1 스테이션은 링크 사이의 전송 충돌이 일어 난 것을 인지할 수 없으나 가능성이 있다고 판단할 수 있다. 이때, 제1 스테이션은 앞서 설명한 바와 같이 전송하는 PPDU에 전송이 중단될 수 있음을 나타내는 정보를 삽입할 수 있다. 또한, NSTR 멀티 링크 장치는 안정적이고, 효율적인 전송을 위해 non-STR 멀티 링크 장치에 대한 전송 전에 CTS-to-Self 프레임을 전송할 수 있다. 이에 대해서는 도 21를 통해 설명한다.
도 21은 본 발명의 실시 예에 따라 STR 멀티 링크 장치가 non-STR 멀티 링크 장치에 대한 전송을 전에 CTS-to-Self 프레임을 전송하는 동작을 보여준다.
STR 멀티 링크 장치의 스테이션은 non-STR 멀티 링크 장치에 대한 전송 전에 CTS-to-Self 프레임을 전송할 수 있다. 구체적으로 STR 멀티 링크 장치의 제1 스테이션이 수신을 수행하는 동안 STR 멀티 링크 장치의 제2 스테이션이 non-STR 멀티 링크 장치에 대한 전송을 시도하는 경우, STR 멀티 링크 장치의 제2 스테이션은 non-STR 멀티 링크 장치에 대한 전송 전에 CTS-to-Self 프레임을 전송할 수 있다. 이를 통해 제2 스테이션은 non-STR 멀티 링크 장치에 대한 전송을 위한 TXOP를 확보할 수 있다. 또한, 제2 스테이션은 non-STR 멀티 링크 장치에 대한 전송을 수행하기 전에 제1 스테이션에 대한 전송이 해당 non-STR 멀티 링크 장치로부터 전송되는지 판단할 수 있다. 제2 스테이션은 제1 스테이션에 대한 전송이 해당 non-STR 멀티 링크 장치로부터 전송되는지에 따라 전송의 목적 스테이션을 결정할 수 있다. 구체적으로 제1 스테이션에 대한 전송이 해당 non-STR 멀티 링크 장치로부터 전송되지 않는 경우, 제2 스테이션은 해당 non-STR 멀티 링크 장치에 대한 전송을 수행할 수 있다. 제1 스테이션에 대한 전송이 해당 non-STR 멀티 링크 장치로부터 전송되는 경우, 제2 스테이션은 해당 non-STR 멀티 링크 장치에 포함되지 않은 스테이션에 대한 전송을 수행할 수 있다. 예컨대, 제1 스테이션이 non-STR 멀티 링크 장치의 스테이션에 대한 SU-PPDU, non-STR 멀티 링크 장치의 스테이션에 대한 데이터를 포함하는 MU-PPDU, non-STR 멀티 링크 장치의 스테이션의 전송을 트리거하는 트리거 프레임을 포함하는 PPDU의 전송을 계획한 경우, 제1 스테이션은 계획한 전송을 취소할 수 있다. 이때, 제1 스테이션은 non-STR 멀티 링크 장치의 스테이션이 아닌 스테이션에 대한 SU-PPDU, non-STR 멀티 링크 장치의 스테이션에 대한 데이터를 포함하지 않는 MU-PPDU, non-STR 멀티 링크 장치의 스테이션의 전송을 트리거하지 않는 트리거 프레임을 포함하는 PPDU의 전송을 시도할 수 있다. 이때, 제1 스테이션은 CTS-to-Self 프레임을 전송한 때로부터 SIFS보다 큰 시간 후에 전송을 시작할 수 있다. 구체적으로 제1 스테이션은 CTS-to-Self 프레임을 전송한 때로부터 PIFS 후에 전송을 시작할 수 있다. CTS-to-Self 프레임을 전송한 스테이션은 CTS-to-Self 프레임을 전송한 때로부터 SIFS 후에 전송을 시작하여야 한다. 앞서 설명한 실시 예들과 같이 계획된 전송을 취소하고, 새로운 전송을 시도하는 경우, 새롭게 전송하려는 MPDU를 생성하는 등 STR 멀티 링크 장치의 프로세싱 시간이 필요하다. 따라서 CTS-to-Self 프레임과 전송 사이의 시간 간격에 대한 규정에 대한 예외가 적용될 수 있다. 이러한 실시 예들에서 원칙적으로 제2 스테이션은 CTS-to-Self에 의해 획득된 TXOP을 초과하여 전송을 수행할 수 없다.
도 21에서 STR 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 AP(AP1)와 제2 링크(Link 2)에서 동작하는 제2 AP(AP2)를 포함한다. 제2 AP(AP2)가 수신을 수행하고 제1 AP(AP1)가 non-STR 멀티 링크 장치의 스테이션에게 전송을 계획하므로 제1 AP(AP1)는 계획한 전송 전에 CTS-to-Self 프레임을 전송한다. 앞서 설명한 바와 같이 제1 AP(AP1)는 제2 AP(AP2)가 수신하는 PPDU를 전송한 스테이션에 대한 판단을 기초로 전송의 목적 스테이션을 결정한다. 또한, 제1 AP(AP1)는 CTS-to-Self 프레임을 전송한 때로부터 SIFS 또는 PIFS 이후에 전송을 수행한다.
제2 스테이션은 CTS-to-Self 프레임을 전송하는 대신 RTS 프레임을 전송하여 RTS/CTS 프레임 교환 절차를 시작할 수 있다. 이를 통해 제2 스테이션은 CTS-to-Self 프레임을 전송하는 것과 유사한 효과를 획득할 수 있다. RTS/CTS 프레임 교환의 경우, 전송의 목적 스테이션이 블라인드 상태가 아닌 경우에만 제2 스테이션이 TXOP를 획득할 수 있다.
도 22는 본 발명의 실시 예에 따라 STR 멀티 링크 장치에 포함된 복수의 AP가 하나의 non-STR 멀티 링크 장치에 포함된 복수의 스테이션에게 전송을 수행하는 것을 보여준다.
하나의 non-STR 멀티 링크 장치에 포함된 복수의 스테이션은 동시에 수신을 수행할 수 있다. 복수의 스테이션 동시에 수신하는 것은 비교적 작은 간섭만을 일으킬 수도 있기 때문이다. 도 22는 하나의 non-STR 멀티 링크 장치에 포함된 복수의 스테이션은 동시에 수신을 수행하는 것을 보여준다. 이때, STR 멀티 링크 장치는 non-STR 멀티 링크 장치의 안정적인 동작을 위해 STR 멀티 링크 장치에 포함된 복수의 AP가 하나의 non-STR 멀티 링크 장치에 포함된 복수의 스테이션에게 전송의 종료가 동기화된 복수의 전송을 수행할 수 있다. 이에 대해서는 도 23을 통해 설명한다.
도 23은 본 발명의 실시 예에 따라 STR 멀티 링크 장치에 포함된 복수의 AP가 하나의 non-STR 멀티 링크 장치에 포함된 복수의 스테이션에게 전송의 종료가 동기화된 복수의 전송을 수행하는 것을 보여준다.
non-STR 링크에서 어느 하나의 링크에서 멀리 링크 장치가 전송을 수행할 때, 멀티 링크 장치는 다른 링크에서 수행되는 전송을 위한 채널 액세스 절차를 간소화할 수 있다. 구체적으로 멀티 링크 장치의 제1 스테이션이 제1 링크에서 백오프 채널 액세스 절차를 완료한 때, STR 멀티 링크 장치의 제2 스테이션의 링크 내에서 미리 지정된 시간 구간 동안 채널이 유휴한 경우, STR 멀티 링크 장치의 제2 스테이션은 제2 링크에서 전송을 시작할 수 있다.
구체적인 실시 예에서 STR 멀티 링크 장치의 하나의 스테이션이 non-STR 멀티 링크 장치의 하나의 스테이션에 대한 전송을 수행할 때, STR 멀티 링크 장치의 다른 스테이션의 채널 액세스 절차가 간소화될 수 있다. 구체적으로 STR 멀티 링크 장치의 제1 스테이션이 non-STR 멀티 링크 장치의 제1 스테이션에 대한 전송의 백오프 채널 액세스 절차를 완료한 때, STR 멀티 링크 장치의 제2 스테이션의 링크 내에서 미리 지정된 시간 구간 동안 채널이 유휴한 경우, STR 멀티 링크 장치의 제2 스테이션은 non-STR 멀티 링크 장치의 제2 스테이션에 대한 전송을 시작할 수 있다. 이때, 미리 지정된 시간 구간 동안은 PIFS일 수 있다. 이러한 동작은 STR 멀티 링크 장치의 제1 스테이션과 제2 스테이션이 하나의 non-STR 멀티 링크 장치에 포함되는 스테이션들에게 전송을 수행할 때 적용될 수 있다. 이러한 실시 예들에서 제1 스테이션과 제2 스테이션은 미리 지정된 시간 구간 이내의 차이로 전송을 시작할 수 있다. 미리 지정된 시간 구간은 슬롯 타임일 수 있다.
또한, STR 멀티 링크 장치의 제1 스테이션과 제2 스테이션이 하나의 non-STR 멀티 링크 장치에 포함되는 스테이션들에게 전송을 수행하는 경우, 제1 스테이션과 제2 스테이션의 전송 종료는 동기화될 수 있다. 이때, 제1 스테이션과 제2 스테이션의 전송 종료가 동기화되는 것은 제1 미리 지정된 시간 구간 내의 차이로 제1 스테이션의 전송과 제2 스테이션의 전송이 종료되는 것을 나타낼 수 있다. 제1 미리 지정된 시간 구간 내는 슬롯 경계 내 또는 심볼 경계 내를 나타낼 수 있다.
동기화된 전송 종료를 수신한 non-STR 멀티 링크 장치의 복수의 스테이션은 동시에 뒤 따르는 전송, 예컨대, 응답을 전송할 수 있다. 이때, 응답은 ACK을 포함할 수 있다. 종래 무선랜에서 수신 후에 뒤 따르는 전송은 수신으로부터 SIFS 후에 전송된다. 다만, 약간의 시차를 두고 종료된 복수의 전송에 대해 약간의 시차를 두고 뒤 따르는 전송을 전송하는 것이 동시에 뒤 따르는 전송을 전송하는 것보다 구현을 복잡하게 만들 수 있다. 따라서 앞서 설명한 바와 같이 동기화된 전송 종료를 수신한 non-STR 멀티 링크 장치의 복수의 스테이션은 동시에 뒤 따르는 전송을 전송할 수 있다. 이때, 전송 종료가 동기화된 복수의 전송 중 적어도 어느 하나에 뒤 따르는 전송과 전송의 간격은 SIFS와 미리 지정된 시간 구간 내 시간의 합일 수 있다. 구체적으로 전송 종료가 동기화된 복수의 전송 중 먼저 종료된 전송에 뒤 따르는 전송은 전송으로부터 SIFS와 미리 지정된 시간 구간 내 시간만큼 더해진 간격으로 전송될 수 있다. 이때, 미리 지정된 시간 구간은 슬롯 타임 또는 심볼 길이 중 하나일 수 있다. 또한, 미리 지정 시간 구간 내 차이는 전송 종료가 동기화된 복수의 전송 중 마지막에 종료된 전송의 종료와 전송 종료가 동기화된 복수의 전송 중 먼저 종료된 전송의 차이일 수 있다.
또 다른 구체적인 실시 예에서 제1 미리 지정된 시간 구간 내의 시간 차이로 복수의 전송이 종료된 경우, 전송을 수신한 복수의 스테이션은 동기화된 뒤 따르는 전송을 전송할 수 있다. 전송 종료가 동기화된 복수의 뒤 따르는 전송은 제2 미리 지정된 시간 구간 내 시간 차이로 전송된 복수의 뒤 따르는 전송을 나타낼 수 있다. 또한, 제2 미리 지정 시간 구간 내 차이는 동기화된 복수의 전송 중 마지막에 종료된 전송의 종료와 전송 종료가 동기화된 복수의 전송 중 먼저 종료된 전송의 차이일 수 있다. 이때, 제2 미리 지정된 시간 구간은 제1 미리 지정된 시간 구간보다 작을 수 있다. 이와 같이 전송 종료가 동기화된 PPDU를 싱크(sync) PPDU라 지칭될 수 있다.
도 23에서 STR AP 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 AP(AP1)와 제2 링크(Link 2)에서 동작하는 제2 AP(AP2)를 포함한다. non-STR non-AP 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 스테이션(STA1)와 제2 링크(Link 2)에서 동작하는 제2 스테이션(STA2)를 포함한다. 제1 AP(AP1)와 제2 AP(AP2)는 각각 제1 스테이션(STA1)과 제2 스테이션(STA2)에 대한 전송의 종료를 동기화한다. 즉, 제1 스테이션(STA1)이 전송을 종료한 후, 제2 스테이션(STA2)은 제1 스테이션(STA1)로부터 미리 지정된 시간 구간 내에서 전송을 종료한다. 제1 스테이션(STA1)과 제2 스테이션(STA2)은 동시에 ACK을 전송한다. 이때, 제1 스테이션(STA1)은 제1 스테이션(STA1)에 대한 전송 종료로부터 SIFS와 제1 스테이션에 대한 전송의 종료와 제2 스테이션(STA2)에 대한 전송 종료 차이만큼 후에 ACK을 전송한다.
이러한 실시 예들은 ACK 정책(policy)이 No ACK으로 설정되지 않은 전송에 대해 적용될 수 있다. 구체적으로 ACK 정책이 즉시 응답이 아닌 경우에도 적용될 수 있다. 구체적인 실시 예에서 멀티 링크 장치의 복수의 스테이션이 전송의 종료가 동기화된 전송을 수신한 경우, 멀티 링크 장치의 복수의 스테이션은 ACK 요청(request)을 동시에 수신하고 ACK 요청에 따라 동시에 ACK을 전송할 수 있다. No ACK 이외의 값으로 ACK 정책이 설정된 전송을 미리 지정된 시간 내에서 수신한 멀티 링크 장치의 복수의 스테이션은 동시에 ACK을 시작할 수 있다.
non-STR 멀티 링크 장치가 존재하는 경우, RTS/CTS 프레임과 CTS-to-Self 프레임을 전송하여 TXOP를 설정하는 동작에서 non-STR 멀티 링크 장치가 고려되어야 한다. 이에 대해서는 도 24 내지 도 29를 통해 설명한다.
도 24는 본 발명의 실시 예에 따라 멀티 링크 장치가 RTS/CTS 프레임을 교환하는 것을 보여준다.
non-STR 멀티 링크 장치가 존재하는 경우에도 RTS/CTS 프레임 교환 절차는 기존 무선랜에서 정의하는 절차를 따를 수 있다. RTS/CTS 프레임은 RTS/CTS 프레임은 다른 링크에서 동작하는 스테이션의 NAV를 설정하는 데 사용될 수 있다. 구체적으로 RTS/CTS 프레임을 수신한 스테이션은 해당 스테이션이 동작하는 링크와 다른 링크에서 동작하고 해당 스테이션이 포함된 멀티 링크 장치에 포함된 다른 스테이션에게 전달할 수 있다.
다만, 앞서 설명한 실시 예들에서와 같이 non-STR 멀티 링크 장치가 존재하는 경우, 채널 액세스 또는 전송이 제한될 수 있다. 이에 따라 도 24에서와 같이 RTS/CTS를 전송하지 못할 수 있다. 즉, non-STR 멀티 링크 장치의 제1 스테이션에 대한 전송을 계획하는 스테이션은 non-STR 멀티 링크 장치의 제2 스테이션이 수신을 수행 중인 경우, RTS/CTS 프레임 교환을 시도하지 않을 수 있다.
도 24에서 STR AP 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 AP(AP1)와 제2 링크(Link 2)에서 동작하는 제2 AP(AP2)를 포함한다. non-STR non-AP 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 스테이션(STA1)와 제2 링크(Link 2)에서 동작하는 제2 스테이션(STA2)를 포함한다. 제1 AP(AP1)가 제1 스테이션(STA1)에게 RTS 프레임을 전송할 때, 제2 스테이션(STA2)의 채널 액세스가 금지된다. 제2 AP(AP2)는 제2 스테이션(STA2)의 채널 액세스가 금지되는 것으로 판단할 수 있다. 따라서 제2 AP(AP2)는 제2 스테이션(STA2)과의 RTS/CTS 프레임 교환을 시도하지 않는다. 이러한 실시 예에서 히든 노드(hidden node) 문제가 발생할 수 있다. 이에 대해서는 도 25를 통해 설명한다.
도 25는 도 24를 통해 설명한 실시 예에 따른 RTS/CTS 프레임 교환 절차에서 발생하는 히든 노드 문제를 보여준다.
non-STR 멀티 링크 장치의 스테이션에게 전송하는 스테이션은 앞서 설명한 것과 같이 CTS/RTS 교환을 하지 못하고 전송을 수행할 수 있다. 이때, 다른 스테이션에게 TXOP이 설정되지 않으므로 다른 스테이션이 전송을 시도하여 non-STR 멀티 링크 장치의 스테이션이 전송 수신에 실패할 수 있다. 도 25의 실시 예에서 STR AP 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 AP(AP1)와 제2 링크(Link 2)에서 동작하는 제2 AP(AP2)를 포함한다. non-STR non-AP 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 스테이션(STA1)와 제2 링크(Link 2)에서 동작하는 제2 스테이션(STA2)를 포함한다. 제1 AP(AP1)의 제1 스테이션(STA1)에 대한 전송으로 인해, 제2 AP(AP2)는 전송 전에 RTS 프레임을 전송하지 못하였다. 따라서 제2 AP(AP2)의 전송을 위한 TXOP이 제2 링크(Link 2)에서 동작하는 스테이션에게 설정되지 않는다. 따라서 제2 AP(AP2)가 제2 스테이션(STA2)에 대한 전송을 수행할 때, 다른 BSS의 스테이션(OBSS STA)이 제2 링크(Link2)에서 전송을 수행한다. 이로 인해 제2 스테이션(STA2)은 제2 AP(AP2)의 전송을 수신하는데 실패한다. 이러한 히든 노드 문제를 해결하기 위해 다음과 같은 실시 예들이 적용될 수 있다.
구체적인 실시 예에서 non-STR 멀티 링크 장치의 어느 하나의 스테이션이 수신 수행 중인 경우, 스테이션은 non-STR 멀티 링크 장치의 어떤 스테이션에게도 전송을 수행하는 것이 허용되지 않을 수 있다. 또 다른 구체적인 실시 예에서 스테이션이 non-STR 멀티 링크 장치의 제1 스테이션에게 전송할 때 non-STR 멀티 링크 장치의 제2 스테이션이 수신 수행 중인 경우, 스테이션은 제2 스테이션에 대한 전송과 동시에 전송을 수행할 수 있다. 스테이션이 non-STR 멀티 링크 장치의 제1 스테이션에게 전송할 때 non-STR 멀티 링크 장치의 제2 스테이션이 수신 수행 중인 경우, 스테이션은 제1 스테이션에 대한 전송 종료를 제2 스테이션에 대한 전송의 종료와 동기화할 수 있다. 구체적으로 스테이션이 non-STR 멀티 링크 장치의 제1 스테이션에게 전송할 때 non-STR 멀티 링크 장치의 제2 스테이션이 수신 수행 중인 경우, 스테이션은 제1 스테이션에 대한 전송을 제2 스테이션에 대한 전송과 동시에 종료할 수 있다. 이러한 실시 예들에서 제2 스테이션에 대한 전송은 스테이션을 포함하는 멀티 링크 장치의 다른 스테이션에 의해 수행될 수 있다.
도 26은 본 발명의 실시 예에 따라 멀티 링크 장치가 RTS/CTS 프레임을 교환하는 것을 보여준다.
본 발명의 또 다른 실시 예에서 멀티 링크 장치의 제1 스테이션이 non-STR 멀티 링크 장치의 제3 스테이션에게 전송을 계속 중 멀티 링크 장치의 제2 스테이션이 non-STR 멀티 링크 장치의 제4 스테이션에게 RTS 프레임을 전송하려는 경우, 제1 스테이션은 제4 스테이션이 RTS 프레임을 전송하려는 시점 전에 제3 스테이션에 대한 전송을 종료할 수 있다. 이를 통해 제4 스테이션은 제2 스테이션에게 CTS 프레임을 전송할 수 있다. 따라서 제2 스테이션과 제4 스테이션 사이의 프레임 교환을 위한 TXOP가설정될 수 있다. 다만, 제1 스테이션이 제4 스테이션이 RTS 프레임을 전송하려는 시점 전에 전송을 종료하는 것을 구현하기 어려울 수 있다.
본 발명의 또 다른 실시 예에서 멀티 링크 장치의 제1 스테이션이 non-STR 멀티 링크 장치의 제3 스테이션에게 전송을 계속 중 멀티 링크 장치의 제2 스테이션이 non-STR 멀티 링크 장치의 제4 스테이션에게 RTS 프레임을 전송하려는 경우, 제2 스테이션은 제1 스테이션의 제3 스테이션에 대한 전송 종료시점에 맞추어 제4 스테이션에게 RTS 프레임을 전송할 수 있다. 이를 위해 제2 스테이션은 RTS 프레임에 패딩을 삽입할 수 있다. 이때, RTS 프레임은 전송 길이를 유연하게 조절할 수 있는 RTS 프레임 포맷일 수 있다. 설명의 편의를 위해 이러한 RTS 프레임 포맷을 ML(multilink)-RTS 프레임으로 지칭한다. ML-RTS 프레임은 패딩을 위한 패드 필드를 포함할 수 있다. 예컨대, ML-RTS 프레임의 포맷은 도 26에 기재된 RTS 프레임 포맷과 같을 수 있다. 또한, 제1 스테이션은 RTS 프레임과 전송 종료 시점을 맞추기 위해 제3 스테이션에 대한 전송에 패딩을 삽입할 수 있다.
도 26의 실시 예에서 STR AP 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 AP(AP1)와 제2 링크(Link 2)에서 동작하는 제2 AP(AP2)를 포함한다. non-STR non-AP 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 스테이션(STA1)와 제2 링크(Link 2)에서 동작하는 제2 스테이션(STA2)를 포함한다. 제2 AP(AP2)는 제1 AP(AP1)의 제1 스테이션(STA1)에 대한 전송 종료시점에 맞추어 제2 STA(STA2)에게 ML-RTS 프레임을 전송한다. 이후, 제1 스테이션(STA1)은 제1 AP(AP1)에게 ACK을 전송할 때, 제2 스테이션(STA2)은 제2 AP(AP2)에게 ACK을 전송한다. 이를 통해 제2 링크의 채널에서 동작하는 스테이션들에게 제2 AP(AP2)와 제2 스테이션(STA2) 사이 프레임 교환을 위한 TXOP이 설정된다.
또 다른 구체적인 실시 예에서 RTS/CTS 프레임 대신 NAV를 설정하는 다른 프레임이 교환될 수 있다. 앞서 설명한 실시 예들에서 RTS 프레임 대신 ACK request 프레임이 전송될 수 있다. ACK request 프레임은 전송 종료 시점과 관련된 듀레이션 정보를 포함할 수 있다. 또한, ACK request에 대응하여 전송되는 ACK을 포함하는 프레임도 듀레이션 정보를 포함할 수 있다. 이때, ACK을 포함하는 프레임의 듀레이션 정보는 ACK request 프레임의 듀레이션 정보에 따라 설정될 수 있다.
앞서 설명한 실시 예들은 RTS/CTS 프레임 교환을 위한 것으로 설명되었으나 RTS/CTS 프레임 이외의 제어(control) 프레임 교환을 위해서도 사용될 수 있다. 이때, 제어 프레임 교환은 PS-Poll 프레임 및 PS-Poll에 대한 응답 프레임의 교환을 포함할 수 있다.
도 27은 본 발명의 일시 예에 따라 멀티 링크 장치가 채널 액세스가 금지된 경우에도 예외적으로 제어 프레임에 대한 응답을 전송하는 것을 보여준다.
앞서 설명한 실시 예들에서 설명한 바와 같이 non-STR 멀티 링크 장치가 존재하는 경우 일부 스테이션의 채널 액세스가 금지될 수 있다. 스테이션의 채널 액세스가 금지되더라도 스테이션은 제어 프레임에 대한 응답을 전송할 수 있다. 구체적으로 스테이션의 채널 액세스가 금지되더라도 스테이션은 RTS 프레임에 대한 응답으로 CTS 프레임을 전송할 수 있다.
이와 같이 채널 액세스 금지의 예외로 제어 프레임에 대한 응답이 전송되는 경우 다음과 같은 실시 예가 적용될 수 있다. 제1 스테이션이 채널 액세스 금지의 예외로 제어 프레임에 대한 응답을 전송한다. 제1 스테이션이 제어 프레임에 대한 응답을 전송할 때, 제3 스테이션은 제1 스테이션이 포함된 멀티 링크 장치에 포함된 제2 스테이션에게 전송을 수행한다. 이러한 경우, 제3 스테이션은 제1 스테이션에 대한 재전송을 수 행할 수 있다. 제3 스테이션은 제2 스테이션에 대한 전송이 실패할 것으로 예상할 수 있기 때문이다.
도 27의 실시 예에서 STR AP 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 AP(AP1)와 제2 링크(Link 2)에서 동작하는 제2 AP(AP2)를 포함한다. non-STR non-AP 멀티 링크 장치는 제1 링크(Link 1)에서 동작하는 제1 스테이션(STA1)와 제2 링크(Link 2)에서 동작하는 제2 스테이션(STA2)를 포함한다. 제1 AP(AP)는 제1 스테이션(STA1)에 대한 전송을 수행한다. 제2 AP(AP2)는 제2 스테이션(STA2)에게 RTS 프레임을 전송한다. 제1 스테이션(STA1)이 수신을 수행하므로, 제2 스테이션(STA2)의 채널 액세스가 금지된다. 다만, 제2 스테이션(STA2)은 채널 액세스 금지의 예외 제2 AP(AP2)에게 CTS 프레임을 전송한다. 제1 AP(AP1)는 제2 스테이션(STA2)의 CTS 프레임 전송으로 인해 제1 AP(AP1)의 전송이 실패할 가능성이 높다고 판단할 수 있다. 따라서 제1 AP(AP1)는 제1 스테이션(STA1)에게 재전송을 수행한다. 재전송 방법에 대해서는 도 28을 통해 더 자세히 설명한다.
도 28은 non-STR 멀티 링크 장치의 스테이션에 대한 전송을 재전송하는 것을 보여준다.
도 27을 통해 설명한 재전송에서 최초 전송에 포함된 패킷 중 일부만이 재전송될 수 있다. 구체적으로 재전송을 수행하는 스테이션은 최초 전송에 포함된 패킷 중 일부만을 재전송할 수 있다. 재전송을 수행하는 스테이션은 재전송을 수행하는 스테이션이 CTS 프레임을 수신한 시간 구간을 기초로 최초 전송에 포함된 패킷 중 일부를 재전송할 패킷으로 결정할 수 있다. 구체적으로 재전송을 수행하는 스테이션은 최초 전송에 포함된 패킷 중 재전송을 수행하는 스테이션이 CTS 프레임을 수신한 시간 구간을 포함하는 시간 구간에 전송된 패킷을 재전송할 패킷으로 결정할 수 있다. 이때, 재전송을 수행하는 스테이션은 전파 지연(propagation delay)을 기초로 재전송을 수행하는 스테이션 CTS 프레임을 수신한 시간 구간을 포함하는 시간 구간에서 전송된 패킷을 재전송할 수 있다. 또 다른 구체적인 실시 예에서 재전송을 수행하는 스테이션은 최초 전송에 포함된 모든 패킷을 재전송할 수 있다.
또한, 재전송을 수행하는 스테이션은 전송에 대한 ACK을 수신하기 전에 재전송을 수행할 수 있다. 이때, 재전송을 수행하는 스테이션은 재전송을 수행한 후 최초 전송 및 재전송에 대한 수신여부를 지시하는 Block ACK을 수신할 수 있다. 이를 위해 재전송을 수행하는 스테이션은 최초 전송 후 SIFS 이전에 재전송을 수행할 수 있다. 또 다른 구체적인 실시 예에서 채널 액세스 금지의 예외로 전송된 제어 프레임으로 인해 수신에 실패한 스테이션은 ACK을 전송하지 않고 재전송의 수신을 대기할 수 있다.
도 28의 실시 예에서 제1 AP(AP1)는 제2 AP(AP2)가 CTS 프레임을 수신하는 구간과 전송 딜레이를 고려하여 제4 패킷과 제5 패킷을 재전송한다. 제1 AP(AP1)는 재전송 이후 재전송의 수신 여부를 포함하는 ACK을 수신한다.
도 29는 본 발명의 실시 예에 따라 채널 액세스가 금지된 스테이션이 동작하는 링크가 아니라 채널 액세스가 금지되지 않은 스테이션이 동작하는 링크를 통해 제어 프레임이 전송되는 것을 보여준다.
도 26을 통해 설명한 실시 예에서와 같이 non-STR 멀티 링크 장치의 복수 스테이션에 대한 전송의 종료를 동기화할 수 있다. 다만, 이는 이미 생성한 MPDU를 조정하거나 다시 MPDU를 생성해야 할 수 있어 구현에 어려움이 있을 수 있다. 따라서 멀티 링크 장치는 채널 액세스가 금지된 스테이션이 동작하는 링크가 아니라 채널 액세스가 금지되지 않은 스테이션이 동작하는 링크를 통해 제어 프레임을 전송할 수 있다. 구체적으로 멀티 링크 장치는 non-STR 멀티 링크 장치의 스테이션 중 멀티 링크 장치로부터 현재 수신을 수행 중인 링크를 통해 제어 프레임을 전송할 수 있다. 이때, 제어 프레임은 RTS 프레임일 수 있다.
도 29의 실시 예에서 STR AP 멀티 링크 장치는 제1 링크(Link1)에서 동작하는 제1 AP(AP1)와 제2 링크(Link2)에서 동작하는 제2 AP(AP2)를 포함한다. non-STR non-AP 멀티 링크 장치는 제1 링크(Link1)에서 동작하는 제1 스테이션(STA1)와 제2 링크(Link2)에서 동작하는 제2 스테이션(STA2)를 포함한다. 제1 AP(AP1)는 제1 스테이션(STA1)에게 전송을 수행한다. 제2 AP(AP2)가 백오프 절차에 성공하더라도, 제1 스테이션(STA1)이 제1 AP(AP1)로부터 전송된 전송을 수신 중이므로 제2 AP(AP2)는 제2 스테이션(STA2)에 대한 전송을 수행할 수 없다. 이때, 제2 AP(AP2)는 제1 AP(AP1)에게 제2 스테이션(STA2)이 수신자인 RTS 프레임을 전송해줄 것을 요청한다. 이때, 제1 AP(AP1)가 제1 AP(AP1)가 수행 중인 전송에 제2 스테이션(STA2)이 수신자인 RTS 프레임을 포함시킬 수 있다. 또 다른 구체적인 실시 예에서 제1 AP(AP1)가 제1 AP(AP1)가 수행 중인 전송을 종료한 후, 1 AP(AP1)는 제1 링크(Link1)를 통해서 해당 전송으로부터 SIFS 후에 제2 스테이션(STA2)이 수신자인 RTS 프레임을 전송할 수 있다. 제1 스테이션(STA1)은 2 스테이션(STA2)이 수신자인 RTS 프레임을 수신하고, 수신한 RTS 프레임을 제2 스테이션(STA2)에게 전달한다. 제2 스테이션(STA2)은 PIFS 동안 CCA 수행한다. PIFS 동안 채널이 유휴한 경우, 제2 스테이션(STA2)은 CTS-to-Self 프레임을 전송한다. 제1 AP(AP1)는 제2 스테이션(STA2)이 RTS 프레임에 대한 응답을 전송할 것으로 예상되는 시간 구간동안 제1 스테이션(STA1)에 대한 전송을 중지할 수 있다. 또한, 제2 스테이션(STA2)이 RTS 프레임에 대한 응답을 전송하는 동안 제1 스테이션(STA1)은 수신한 전송에 대한 ACK을 전송할 수 있다. 또 다른 구체적인 실시 예에서 제2 스테이션(STA2)이 RTS 프레임에 대한 응답을 전송하는 동안 제1 스테이션(STA1)은 RTS 프레임에 대한 응답을 함께 전송할 수 있다. 도 29는 설명의 이해를 돕기 위한 것으로 RTS 프레임 및 CTS-to-Self 프레임 이외의 제어 프레임의 전송에도 사용될 수 있다. 또한, PIFS 이외의 다른 시간 구간이 사용될 수 있다.
도 30은 본 발명의 실시 예에 따라 멀티 링크 장치가 ACK을 전송하는 것을 보여준다.
멀티 링크 장치의 스테이션은 no-STR 멀티 링크 장치의 스테이션에게 ACK을 전송할 링크를 요청할 수 있다. 구체적으로 멀티 링크 장치의 스테이션은 전송을 수행한 링크와 다른 링크에서 ACK을 전송할 것을 요청할 수 있다. 도 28의 실시 예에서 STR 멀티 링크 장치의 제1 AP(AP1)는 non-STR 멀티 링크 장치의 제1 스테이션(STA1)에 대한 전송(Tx(#2))을 수행한다. 이때, 제1 AP(AP1)는 전송(Tx(#2))에 대한 ACK을 제2 링크(Link2)로 전송하는 것을 요청한다. 이는 제2 AP(AP2)의 제2 스테이션(STA2)에 대한 전송보다 제1 AP(AP1)의 전송(Tx(#2))이 먼저 종료되어, 제1 AP(AP1)의 전송(Tx(#2))에 대한 ACK을 전송하기 힘들 수 있다고 판단했기 때문이다.
또한, 이러한 ACK 전송을 위해 스테이션은 전송에 대한 즉각적인 응답을 전송하지 않도록 implicit BAR로 ACK 정책을 설정할 수 있다. 또 다른 구체적인 실시 예에서 스테이션은 전송에 대한 ACK 정책을 BlockAckReq로 설정할 수 있다. 다만, Block ACK을 전송하기 위해서는 BlockAckReq를 전송해야 하므로 채널 액세스 부담과 전송 지연이 발생할 수 있다. 따라서 멀티 링크 장치를 위한 새로운 ACK 정책이 필요할 수 있다.
멀티 링크 장치의 하나의 스테이션은 스테이션이 수신한 전송에 대한 ACK과 같은 멀티 링크 장치에 포함된 다른 스테이션이 수신한 전송에 대한 ACK을 함께 전송할 수 있다. 이러한 ACK 전송을 ML(multilink)-ACK이라 지칭할 수 있다. 또한, ACK 정책으로 ML-ACK이 설정될 수 있다. 도 30의 실시 예에서 제1 AP(AP1)는 전송(Tx(#2))의 ACK 정책을 ML-ACK으로 설정한다. 제1 스테이션(STA1)은 전송(Tx(#2))을 수신한 후, 제1 AP(AP1)에게 ACK을 전송하지 않는다. 제2 스테이션(STA2)은 제2 AP(AP2)로부터 전송된 전송을 수신 완료하고, 제2 AP(AP2)에게 제1 AP(AP1)로부터 전송에 대한 ACK과 제2 AP(AP2)로부터 전송에 대한 ACK을 함께 전송한다. non-STR 멀티 링크 장치가 제1 스테이션(STA1), 제2 스테이션(STA2)뿐만 아니라 제3 스테이션(STA3)도 포함하고, STR 멀티 링크 장치가 제1 AP(AP1), 제2 AP(AP2)뿐만 아니라 제3 AP(AP3)를 포함할 수 있다. 이때, 제2 AP(AP2)로부터 제2 스테이션(STA2)에 대한 전송의 ACK 정책도 ML-ACK으로 설정될 수 있다. 제3 AP(AP3)로부터 제3 스테이션(STA3)에 대한 전송이 제2 AP(AP2)로부터 제2 스테이션(STA3)에 대한 전송보다 늦게 완료되는 경우, 제3 스테이션(STA1)은 제1 AP(AP1)로부터 제1 스테이션(STA1)에 대한 전송에 대한 ACK, 제2 AP(AP2)로부터 제2 스테이션(STA2)에 대한 전송에 대한 ACK 및 제3 AP(AP3)로부터 제3 스테이션(STA3)에 대한 전송에 대한 ACK을 제3 AP(AP3)에게 전송할 수 있다.
이러한 실시 예들을 통해 non-STR 멀티 링크 장치의 스테이션들에 대한 전송이 동시에 완료되지 않더라도 ACK 전송으로 인해 발생할 수 있는 링크 사이의 간섭을 방지할 수 있다. 앞서 설명한 실시 예에서 ACK 정책은 ML-ACK 대신 BlockAck으로도 설정될 수 있다. 또 다른 구체적인 실시 예에서 ACK 정책은 ML-ACK 대신 No Ack으로 설정될 수 있다.
멀티 링크 장치가 트래픽을 전송을 수행하면서 전송 기회를 획득한 링크의 개수가 늘어날 수 있다. 이때, 멀티 링크 장치는 먼저 전송 기회를 획득한 링크를 통해 전송하려던 트래픽을 나중에 전송 기회를 획득한 링크를 통해 전송할 수 있다. 이때, 멀티 링크 장치가 먼저 전송 기회를 획득한 링크에서 설정된 NAV는 트래픽을 전송하기 위해 필요한 NAV보다 크게 설정되어 있을 수 있다. 멀티 링크 장치가 먼저 전송 기회를 획득한 링크에서 트래픽을 전송하기 위해 필요한 NAV보다 크게 설정된 경우, 멀티 링크 장치는 먼저 전송 기회를 획득한 링크에서 전송을 완료한 후 CF-END 프레임을 전송하여 NAV를 리셋할 수 있다.
앞서 설명한 싱크 PPDU의 수신 및 싱크 PPDU의 수신과 관련된 시그널링에 관하여 도 31 내지 도 34를 통해 설명한다.
non-STR 멀티 링크 장치의 제1 스테이션이 앞서 설명한 싱크 PPDU를 수신하기 위해서는 제1 스테이션과 non-STR 관계인 제2 스테이션이 싱크 PPDU를 수신하기 시작하는지 판단해야 한다. 또한, 제1 스테이션은 지속적으로 PD(preamble detection)를 수행해야 한다. 싱크 PPDU를 수신하는 제1 스테이션이 non-STR 멀티 링크 장치의 다른 스테이션의 수신 수행에 의해 채널 액세스가 금지된 것을 고려하면 제1 스테이션의 이러한 동작 불합리할 수 있다. 따라서 제1 스테이션은 미리 지정된 조건 내에서 절전 상태에 진입할 수 있다. 싱크 PPDU는 기존에 설정된 TXOP 내에서 전송될 수 있다. 따라서 싱크 PPDU를 수신함으로써 얻을 수 있는 성능 이득은 남아있는 TXOP의 길이에 따라 결정될 수 있다. 따라서 제1 스테이션은 싱크 PPDU의 길이를 기초로 싱크 PPDU의 수신을 포기할지 판단할 수 있다. 제1 스테이션이 싱크 PPDU의 수신을 포기하는 경우, 제1 스테이션은 절전 상태에 진입할 수 있다. 이러한 절전 동작을 inter-link TXOP PS(power save)라 지칭할 수 있다. inter-link TXOP PS에서 절전 상태에 진입한 스테이션은 AP로부터 주기적으로 전송되는 프레임, 예컨대 비콘 프레임, TIM 프레임 및 DTIM 프레임을 수신하기 위해 절전 상태에서 깨어날 수 있다. 또한, TXOP가 종료되는 경우, 예컨대 CF-END 프레임이 전송되는 경우, inter-link TXOP PS에서 절전 상태에 진입한 스테이션은 절전 상태에서 깨어날 수 있다.
앞서 설명한 TXOP는 PPDU의 시그널링 필드의 length 필드, MAC 프레임의 Duration 필드를 통해 지시되는 기간으로 변경될 수 있다. 구체적으로 앞서 설명한 실시 예에서 스테이션은 length 필드, MAC 프레임의 Duration 필드를 통해 지시되는 기간을 기초로 PPDU가 점유하는 시간을 판단할 수 있다.
non-AP 멀티 링크 장치는 AP 멀티 링크 장치에게 싱크 PPDU 수신 지원 여부 및 싱크 PPDU 지원 조건에 대한 정보를 시그널링할 수 있다. 또한, AP 멀티 링크 장치는 non-AP 멀티 링크 장치에게 AP 멀티 링크 장치가 싱크 PPDU의 전송을 지원 하는지 시그널링할 수 있다. 이때, 멀티 링크 장치는 멀티 링크 장치 별로 싱크 PPDU의 지원 여부를 시그널링할 수 있다. 예컨대, AP 멀티 링크 장치는 AP 멀티 링크 장치 별로 싱크 PPDU 전송 지원 여부를 시그널링할 수 있다. 또 다른 구체적인 실시 예에서 멀티 링크 장치는 스테이션 별로 싱크 PPDU의 지원 여부를 시그널링할 수 있다. 구체적으로 AP 멀티 링크 장치는 AP 멀티 링크 장치에 포함된 AP 별로 싱크 PPDU 전송 지원 여부를 시그널링할 수 있다. 예컨대, 제1 AP, 제2 AP 및 제3 AP를 포함하는 AP 멀티 링크 장치는 제1 AP는 싱크 PPDU 전송을 지원하고, 제2 AP 및 제3 AP는 싱크 PPDU 전송을 지원하지 않음을 지시할 수 있다.
non-AP 멀티 링크 장치와 연결(association)된 AP 멀티 링크 장치가 싱크 PPDU 전송을 지원하지 않음을 시그널링하는 경우, non-AP 멀티 링크 장치의 스테이션은 non-AP 멀티 링크 장치의 다른 스테이션이 수신을 수행하는 중에 앞서 설명한 inter-link PS의 절전 상태에 진입할 수 있다. 이는 non-AP 멀티 링크 장치와 연결(association)된 AP 멀티 링크 장치가 싱크 PPDU를 전송할 수 없기 때문이다 이때, non-AP 멀티 링크 장치의 스테이션은 non-AP 멀티 링크 장치의 다른 스테이션이 수신하는 PPDU의 길이를 기초로 절전 상태를 유지하는 시간의 길이를 결정할 수 있다.
앞서 설명한 싱크 PPDU의 전송 지원 또는 수신 지원 여부는 하드웨어 성능뿐만 아니라 운영 정책에 따라 결정될 수 있다. 따라서 싱크 PPDU의 전송 지원 또는 수신 지원 여부는 성능에 관한 정보뿐만 아니라 동작 모드(operating mode)에 관한 정보를 통해 시그널링될 수 있다. 싱크 PPDU의 전송 지원 또는 수신 지원의 시그널링 방법에 대해서는 도 31을 통해 구체적으로 설명한다.
도 31은 본 발명의 실시 예에 따라 싱크 PPDU 수신 지원 또는 전송 지원에 관한 정보를 지시하는 엘레멘트 필드를 보여준다.
앞서 설명한 바와 같이 싱크 PPDU 전송 지원 여부를 지시하는 정보는 스테이션의 능력을 지시하는 엘리멘트에 포함될 수 있다. 설명의 편의를 위해 스테이션의 능력을 지시하는 엘리멘트를 Capability 엘리멘트로 지칭한다. 또한, Capability 엘리멘트에서 싱크 PPDU 전송 지원 여부를 지시하는 정보의 필드를 Supporting Sync PPDU Tx 서브필드로 지칭한다. 이때, Capability 엘리멘트는 멀티 링크에 관한 능력을 지시하는 엘리멘트인 Multi-Link 엘리멘트일 수 있다. 또한, Capability 엘리멘트는 EHT 관련 능력을 지시하는 엘리멘트인 EHT Capability 엘리멘트일 수 있다. 도 31(a)는 Capability 엘레멘트의 일 예를 보여준다.
Supporting Sync PPDU Tx 서브필드의 값이 1인 경우, Supporting Sync PPDU Tx는 Supporting Sync PPDU Tx 서브필드가 지시하는 스테이션 또는 멀티 링크 장치가 싱크 PPDU의 전송을 지원함을 나타낼 수 있다. Supporting Sync PPDU Tx 서브필드의 값이 0인 경우, Supporting Sync PPDU Tx는 Supporting Sync PPDU Tx 서브필드가 지시하는 스테이션 또는 멀티 링크 장치가 싱크 PPDU의 전송을 지원하지 않음을 나타낼 수 있다. 또한, 멀티 링크 장치에 포함되지 않은 스테이션이 Capability 엘리멘트를 전송하는 경우, Supporting Sync PPDU Tx 서브필드는 싱크 PPDU 전송 지원 여부와 관련없는 정보가 아닌 정보를 시그널링하거나 리저브드 필드로 이용될 수 있다.
앞서 설명한 바와 같이 싱크 PPDU 수신 지원 여부를 지시하는 정보는 스테이션의 동작 관련 정보를 지시하는 엘리멘트에 포함될 수 있다. 설명의 편의를 위해 스테이션의 동작 관련 정보를 지시하는 엘리멘트를 Operation 엘리멘트로 지칭한다. 또한, Operation 엘리멘트에서 싱크 PPDU 수신 지원 여부를 지시하는 정보의 필드를 Supporting Sync PPDU Rx Disable 서브필드로 지칭한다. 도 31(b)는 Operation 엘레멘트의 일 예를 보여준다. Supporting Sync PPDU Rx Disabled 서브필드의 값이 1인 경우 싱크 PPDU의 수신을 원하지 않음을 지시할 수 있다. 구체적으로 Supporting Sync PPDU Rx Disabled 서브필드의 값이 1인 경우, Supporting Sync PPDU Rx Disabled 서브필드는 Supporting Sync PPDU Rx Disabled 서브필드를 전송하는 스테이션이 싱크 PPDU의 수신 대기를 원하지 않음을 나타낼 수 있다. Supporting Sync PPDU Rx Disabled 서브필드의 값을 1로 설정한 멀티 링크 장치는 멀티 링크 장치의 제1 스테이션이 수신을 수행 중에 멀티 링크 장치의 제2 스테이션이 PD 및 CCA를 수행하지 않을 수 있다. Supporting Sync PPDU Rx Disabled 서브필드를 전송한 멀티 링크 장치와 연결된 AP 멀티 링크 장치는 Supporting Sync PPDU Rx Disabled 서브필드를 전송한 멀티 링크 장치의 복수 스테이션에게 동시에 PPDU를 전송하지 않는다. PPDU는 non-HT PPDU, HT PPDU, VHT PPDU, HE PPDU 및 EHT PPDU 포맷 중 어느 하나로 전송되는 SU PPDU, Full BW MU PPDU, OFDMA MU PPDU일 수 있다. 이때, AP 멀티 링크 장치는 응답, 예컨대, 즉각적인 응답을 요청 하는 프레임을 전송하지 않아야 한다. 응답을 요청하는 프레임은 RTS, MU-RTS(Multi-User RTS), 트리거 프레임, BAR(Block Ack Request) 중 적어도 어느 하나를 포함할 수 있다.
또한, Operation 엘리멘트는 Operation 엘리멘트를 전송한 스테이션 또는 멀티 링크 장치가 수신할 수 있는 싱크 PPDU의 최소 길이와 관련한 정보를 포함할 수 있다. 이때, 싱크 PPDU의 최소 길이와 관련한 정보를 지시하는 서브필드를 Remaining TXOP Threshold 서브필드로 지칭한다. Remaining TXOP Threshold 서브필드는 시간을 지시할 수 있다. 또한, Remaining TXOP Threshold 서브필드는 us, ms 또는 심볼 단위로 지시할 수 있다. Remaining TXOP Threshold 서브필드를 전송한 멀티 링크 장치와 연결된 멀티 링크 장치는 Remaining TXOP Threshold 서브필드가 지시하는 길이보다 짧은 싱크 PPDU를 Remaining TXOP Threshold 서브필드를 전송한 멀티 링크 장치 또는 스테이션에게 전송하는 것이 허용되지 않을 수 있다.
또한, Remaining TXOP Threshold 서브필드가 미리 지정된 값으로 설정된 경우, Remaining TXOP Threshold 서브필드를 전송한 멀티 링크 장치 또는 스테이션이 싱크 PPDU의 수신을 지원하지 않음을 나타낼 수 있다. 미리 지정된 값은 Remaining TXOP Threshold 서브필드가 나타낼 수 있는 최대 시간보다 큰 시간을 나타내는 값일 수 있다. 또 다른 구체적인 실시 예에서 미리 지정된 값은 0일 수 있다. 이러한 실시 예들이 적용되는 경우, Operation 엘리멘트에서 Sync PPDU Rx Disable 서브필드는 생략될 수 있다.
또한, 앞서 설명한 실시 예들에서 Sync PPDU Rx Disable 서브필드 및 Remaining TXOP Threshold 서브 필드가 Operation 엘리멘트를 통해 시그널링될 수 있음을 설명했다. Sync PPDU Rx Disable 서브필드 및 Remaining TXOP Threshold 서브 필드가 Operation 엘리멘트 이외의 엘리멘트 또는 시그널링 정보를 통해 시그널링될 수 있다. 도 32 내지 도 34를 통해 도 31을 통해 설명한 시그널링에 따라 Inter-link TXOP 절전 모드가 수행되는 실시 예를 설명한다.
도 32는 본 발명의 실시 예에 따라 non-STR 멀티 링크 장치가 Inter-link TXOP 절전 모드 동작을 수행하는 것을 보여준다.
non-STR 멀티 링크 장치가 싱크 PPDU 수신을 지원하지 않음을 시그널링한 경우, non-STR 멀티 링크 장치의 제1 스테이션이 수신을 수행 중 non-STR 멀티 링크 장치의 제2 스테이션은 절전 상태에 진입할 수 있다. 이때, 제2 스테이션은 제1 스테이션이 수신하는 PPDU이 지시하는 TXOP의 종료 시점까지 절전 상태를 유지할 수 있다. 앞서 설명한 바와 같이 제2 스테이션은 AP로부터 주기적으로 전송되는 프레임 수신이 예측되는 시점이 제1 스테이션이 수신하는 PPDU이 지시하는 TXOP의 종료 시점 전인 경우일 수 있다. 이때, 제2 스테이션은 제1 스테이션이 수신하는 PPDU이 지시하는 TXOP의 종료 시점 전에 절전 상태에서 깨어날 수 있다. 앞서 설명한 바와 같이 AP로부터 주기적으로 전송되는 프레임은 비콘 프레임, TIM 프레임 및 DTIM 프레임 중 적어도 어느 하나를 포함할 수 있다.
제2 스테이션은 제1 스테이션이 수신하는 PPDU의 지시하는 TXOP의 종료 시점 이후에도 절전 상태를 유지할 수 있다. 구체적으로 제2 스테이션은 제2 스테이션 연결된 AP로부터 수신한 정보를 기초로 제1 스테이션이 수신하는 PPDU의 지시하는 TXOP의 종료 시점 이후에도 절전 상태를 유지할지 판단할 수 있다. 이때, 제2 스테이션 연결된 AP로부터 수신한 정보는 NAV 관련 정보일 수 있다. 또한, 제2 스테이션 연결된 AP로부터 수신한 정보는 제1 스테이션이 연결된 AP의 동작 정보일 수 있다. non-AP 멀티 링크 장치의 제2 스테이션에게 전송을 수행 중인 AP 멀티 링크 장치의 제2 AP가 설정한 NAV가 만료되지 않은 경우, AP 멀티 링크 장치의 제1 AP는 싱크 PPDU의 수신을 원하지 않음을 시그널링한 non-AP 멀티 링크 장치의 제1 스테이션에게 제1 AP의 전송 또는 수신의 예상 종료 시점 및 NAV의 만료 예정 시점에 관한 정보를 전송할 수 있다. non-AP 멀티 링크 장치의 제2 스테이션에게 전송을 수행 중인 AP 멀티 링크 장치의 제2 AP가 설정한 NAV가 만료되지 않은 경우는 제2 AP가 어느 한 스테이션으로부터 PPDU를 전송하거나 수신하는 것을 포함할 수 있다. non-AP 멀티 링크 장치의 제2 스테이션에게 전송을 수행 중인 AP 멀티 링크 장치의 제2 AP가 설정한 NAV가 만료되지 않은 경우는 제2 스테이션이 전송하지 않은 PPDU에 의해 제2 AP에게 NAV가 설정된 것을 포함할 수 있다.
도 32의 실시 예에서 STR AP 멀티 링크 장치는 제1 링크(Link1)에서 동작하는 제1 AP(AP1)와 제2 링크(Link2)에서 동작하는 제2 AP(AP2)를 포함한다. non-STR non-AP 멀티 링크 장치는 제1 링크(Link1)에서 동작하는 제1 스테이션(STA1)와 제2 링크(Link2)에서 동작하는 제2 스테이션(STA2)를 포함한다. non-STR non-AP 멀티 링크 장치는 싱크 PPDU의 수신을 원하지 않음을 시그널링한다. 제1 AP(AP1)는 제1 스테이션(STA1)에게 전송을 수행한다. 이때, 제2 스테이션(STA2)은 제1 AP(AP1)가 제1 스테이션(STA1)에게 전송한 PPDU가 지시하는 TXOP의 종료 시점까지 절전 상태를 유지한다.
도 33은 본 발명의 실시 예에 따라 non-STR 멀티 링크 장치의 스테이션이 싱크 PPDU 수신 대기에서 절전 상태에 진입하는 것을 보여준다.
non-STR 멀티 링크 장치의 제1 스테이션은 non-STR 멀티 링크 장치의 제1 스테이션이 수신 중인 PPDU가 지시한 TXOP의 남은 듀레이션이 non-STR 멀티 링크 장치가 전송한 Remaining TXOP Threshold 서브필드가 지시하는 길이와 같거나 짧은 경우, inter-link TXOP의 절전 상태에 진입할 수 있다.` 이때, 절전 상태에 진입하기 전, 즉 제1 스테이션이 수신 중인 PPDU가 지시한 TXOP의 남은 듀레이션이 non-STR 멀티 링크 장치가 전송한 Remaining TXOP Threshold 서브필드가 지시하는 길이보다 큰 경우, 제2 스테이션이 제2 스테이션 전송된 싱크 PPDU를 수신할 수 있다. 이때, 제2 스테이션은 싱크 PPDU를 수신할 수 있다. 이를 위해 제2 스테이션은 PD를 수행하며, 수신한 PPDU의 의도된 수신자가 제2 스테이션인지 판단할 수 있다. 구체적으로 제2 스테이션은 PPDU의 시그널링 필드가 지시하는 AID 또는 PPDU에 포함된 MAC 프레임의 RA가 제2 스테이션을 지시하는지 판단할 수 있다.
도 33의 실시 예에서 STR AP 멀티 링크 장치는 제1 링크(Link1)에서 동작하는 제1 AP(AP1)와 제2 링크(Link2)에서 동작하는 제2 AP(AP2)를 포함한다. non-STR non-AP 멀티 링크 장치는 제1 링크(Link1)에서 동작하는 제1 스테이션(STA1)와 제2 링크(Link2)에서 동작하는 제2 스테이션(STA2)를 포함한다. non-STR non-AP 멀티 링크 장치는 싱크 PPDU의 수신을 원함을 시그널링한다. 이때, non-STR non-AP 멀티 링크 장치는 싱크 PPDU 수신에 필요한 최소 TXOP의 길이, 'a'를 함께 시그널링한다. 제1 AP(AP1)는 제1 스테이션(STA1)에게 전송을 수행하고, 제2 스테이션(STA2)은 싱크 PPDU의 수신을 대기한다. 제1 AP(AP1)가 제1 스테이션(STA1)에게 전송한 PPDU의 TXOP가 'a'와 같거나 짧을 때, 제2 스테이션(STA2)은 inter-link TXOP 절전 상태에 진입한다.
도 34는 본 발명의 또 다른 실시 예에 따라 non-STR 멀티 링크 장치의 스테이션이 싱크 PPDU 수신 대기에서 절전 상태에 진입하는 것을 보여준다.
non-STR 멀티 링크 장치의 스테이션이 싱크 PPDU를 수신을 대기하는 중 non-STR 멀티 링크 장치의 스테이션과 연결된 AP가 운영하는 BSS에서 싱크 PPDU가 아닌 PPDU의 전송이 감지한 경우, non-STR 멀티 링크 장치의 스테이션은 inter-link TXOP 절전 상태에 진입할 수 있다. 이때, 스테이션은 스테이션이 의도된 수신자가 아닌 PPDU를 싱크 PPDU가 아닌 것으로 판단할 수 있다. 또한, 스테이션은 스테이션이 시그널링한 최소 TXOP가 남아있더라도 절전 상태에 non-STR 멀티 링크 장치의 스테이션과 연결된 AP가 운영하는 BSS에서 싱크 PPDU가 아닌 PPDU의 전송이 감지한 경우, non-STR 멀티 링크 장치의 스테이션은 inter-link TXOP 절전 상태에 진입할 수 있다.
도 34의 실시 예에서 STR AP 멀티 링크 장치는 제1 링크(Link1)에서 동작하는 제1 AP(AP1)와 제2 링크(Link2)에서 동작하는 제2 AP(AP2)를 포함한다. non-STR non-AP 멀티 링크 장치는 제1 링크(Link1)에서 동작하는 제1 스테이션(STA1)와 제2 링크(Link2)에서 동작하는 제2 스테이션(STA2)를 포함한다. non-STR non-AP 멀티 링크 장치는 싱크 PPDU의 수신을 원함을 시그널링한다. 이때, non-STR non-AP 멀티 링크 장치는 싱크 PPDU 수신에 필요한 최소 TXOP의 길이, 'a'를 함께 시그널링한다. 제1 AP(AP1)는 제1 스테이션(STA1)에게 전송을 수행하고, 제2 스테이션(STA2)은 싱크 PPDU의 수신을 대기한다. 제2 스테이션(STA2)은 제2 스테이션 속한 BSS에서 싱크 PPDU가 아닌 PPDU가 전송되는 것을 감지한다. 제1 AP(AP1)가 제1 스테이션(STA1)에게 전송한 PPDU의 TXOP가 'a'보다 크지만, 제2 스테이션(STA2)은 inter-link TXOP 절전 상태에 진입한다.
앞서 설명한 블라인드 상태, 예컨대, 스테이션이 포함된 멀티 링크 장치의 다른 스테이션이 전송을 수행하는 상태에서 스테이션은 피지컬 레이어에서 캐리어 센싱을 수행하여 전송 매개체(medium)의 상태를 정확히 판단하기 힘들 수 있다. 구체적으로 non-STR 멀티 링크 장치의 스테이션이 전송으로 인해 간섭이 발생할 수 있다. 발생한 간섭으로 인해 non-STR 멀티 링크 장치의 스테이션이 캐리어 센싱을 수행하더라도 현재 전송 매체게의 상태를 판단하기 힘들 수 있다. 이때, 캐리어 센싱은 앞서 설명한 CCA일 수 있다. CCA는 앞서 설명한 바와 같이 PD 및 ED 중 적어도 하나를 포함할 수 있다. 따라서 블라인드 상태에서 스테이션은 다른 스테이션이 전송한 PPDU 또는 프레임을 기초로 NAV를 설정하지 못할 수 있다. 따라서 블라인드 상태에서 벗어난 스테이션이 바로 채널 액세스를 시도하는 경우, 전송 충돌을 발생시킬 수 있다. 이를 방지 하기 위해 블라인드 상태에서 벗어난 스테이션의 채널 액세스를 제한할 수 있다. 이때, 채널 액세스 제한은 스테이션이 채널 액세스 제한이 적용되지 않는 때에 사용하는 판단 조건보다 엄격한 판단 조건을 사용하여 무선 매개체가 유휴한지 판단하는 것을 나타낼 수 있다. 구체적으로 스테이션의 채널 액세스가 제한되는 경우, 스테이션은 NAV가 설정되어 무선 매개체가 비지(busy)하다고 판단할 수 있다. 이후 설명할 실시 예들에서 채널 액세스 제한 이와 같은 실시 예들에 따른 채널 액세스 제한을 나타낼 수 있다.. 구체적으로 블라인드 상태에서 벗어난 때로부터 지정된 시간 동안 블라인드 상태를 벗어난 스테이션의 채널 액세스가 제한될 수 있다. 설명의 편의를 위해 지정된 시간을 채널 액세스 제한 시간으로 지칭한다. 또한, 채널 액세스 제한 시간이 적용되는 시간 구간은 채널 액세스 제한 구간으로 지칭한다.
구체적인 실시 예에서 채널 액세스 제한 시간은 NAVSyncDelay일 수 있다. 채널 액세스 제한 시간은 PPDU가 가질 수 있는 최대 길이를 기초로 설정될 수 있다. 예컨대, 채널 액세스 제한 시간은 Max PPDU (aPPDUMaxTime) +SIFS+BAtime일 수 있다. 이때, Max PPDU (aPPDUMaxTime)는 PPDU가 가질 수 있는 최대 길이를 나타낸다. 또한, BAtime은 BA 프레임을 전송하는데 소요되는 시간을 나타낸다. 예컨대, 스테이션이 지원하는 PPDU의 최대 길이 중 HE PPDU의 최대 길이가 가장 큰 경우 Max PPDU (aPPDUMaxTime)는 5.484ms일 수 있다. 또한, SIFS는 16us일 수 있다. 이러한 실시 예를 통해 블라인드 상태에서 NAV가 설정되지 않은 스테이션이 블라인드 상태 이후 바로 채널 액세스를 시도하여 전송 충돌이 발생하는 것을 방지할 수 있다. 또한, 이러한 실시 예는 앞서 설명한 바와 같이 스테이션이 블라인드 상태에서 절전 상태에 진입하는 경우에도 스테이션이 전송 충돌을 일으키는 것을 방지할 수 있다.
채널 액세스 제한 구간 동안 채널 액세스가 제한되는 스테이션은 CCA를 수행할 수 있다. 이를 통해 스테이션은 PPDU를 수신하고 수신한 PPDU 또는 PPDU가 포함하는 프레임을 기초로 NAV를 설정할 수 있다.
도 35는 본 발명의 실시 예에 따라 블라인드 상태에서 벗어난 스테이션의 채널 액세스가 제한되는 것을 보여준다.
non-STR 멀티 링크 장치의 스테이션이 빈번하게 블라인드 상태에 진입하는 경우, 앞서 설명한 채널 액세스 제한은 스테이션은 채널 접근성을 지나치게 제한할 수 있다. 특히, 채널 액세스 제한 시간이 지나치게 큰 값, 예컨대 NAVSyncDelay로 설정되는 경우, 채널 액세스 제한은 스테이션은 채널 접근성을 지나치게 제한할 수 있다.
도 35의 실시 예에서 non-STR 멀티 링크 장치의 제1 스테이션(STA#1)과 제2 스테이션(STA#2) 각각은 제1 링크(Link 1)와 제2 링크(Link 2)에서 동작한다. STR 멀티 링크 장치의 제1 AP(AP#1)와 제2 AP(AP#2) 각각은 제1 링크(Link 1)와 제2 링크(Link 2)에서 동작한다. 제1 스테이션(STA#1)이 제1 링크(Link 1)에서 UL PPDU를 전송하는 동안 제2 스테이션(STA#2)은 블라인드 상태로 전환된다. 앞서 설명한 바와 같이 제2 스테이션(STA#2)은 블라인드 상태에서 PD를 수행하지 못할 수 있다. 제2 스테이션(STA#2)이 블라인드 상태에서 벗어난 때, 제2 스테이션(STA#2)은 채널 액세스 제한 시간 동안 CCA를 수행한다. 이때, 채널 액세스 제한 시간은 앞서 설명한 바와 같이 NAVSyncDelay일 수 있다. 제2 스테이션(STA#2)은 채널 액세스 제한 구간이 만료되고 NAV가 설정되지 않은 경우 채널 액세스를 시도할 수 있다. 이때, 채널 액세스는 백오프 절차를 포함할 수 있다. 이러한 채널 액세스 제한은 제2 스테이션(STA#2)이 블라인드 상태로 전환되었다가 복귀할 때마다 반복될 수 있다. 제1 스테이션(STA#1)이 빈번하게 전송을 수행하는 경우, 제2 스테이션(STA#2)의 채널 접근성이 지나치게 제한될 수 있다.
이를 방지하기 위해 채널 액세스 제한 시간은 앞서 설명한 실시 예 이외의 다른 실시 예에 따라 설정될 수 있다. 구체적인 실시 예에서 채널 액세스 제한 시간을 상황에 따라 설정하여 non-STR 스테이션의 채널 접근성이 지나치게 제한되는 것을 방지할 수 있다. 이에 대해서는 도 36을 통해 설명한다.
도 36은 본 발명의 또 다른 실시 예에 따라 블라인드 상태에서 벗어난 스테이션의 채널 액세스가 제한되는 것을 보여준다.
스테이션의 채널 액세스 제한 시간은 채널 액세스 직전에 스테이션이 블라인드 상태를 유지한 시간을 기초로 결정될 수 있다. 구체적으로 스테이션의 채널 액세스 제한 시간은 채널 액세스 직전에 스테이션이 블라인드 상태를 유지한 시간과 같을 수 있다. 예컨대, 스테이션이 5ms 동안 블라인드 상태에 머물렀다가 블라인드 상태에서 벗어난 경우, 5ms 동안 스테이션의 채널 액세스가 제한될 수 있다. 스테이션이 1ms 동안 블라인드 상태에 머물렀다가 블라인드 상태에서 벗어난 경우, 1ms 동안 스테이션의 채널 액세스가 제한될 수 있다. 또 다른 구체적인 실시 예에서 채널 액세스 제한 시간은 스테이션이 블라인드 상태를 유지한 시간, SIFS, 및 BA 프레임을 전송하는데 소요되는 시간의 합일 수 있다. BA 프레임을 전송하는데 소요되는 시간 대신 ACK 프레임을 전송하는 데 소용되는 시간이 사용될 수 있다.
블라인드 상태를 유지한 시간은 블라인드 상태를 발생시킨 전송의 길이를 기초로 판단할 수 있다. 즉, 블라인드 상태를 유지한 시간은 블라인트 상태를 발생시킨 전송 시간과 같을 수 있다.또 다른 구체적인 실시 예에서 채널 액세스 제한 시간이 채널 액세스 제한 시간의 최댓값보다 작은 시간으로 설정되는 경우, 스테이션은 채널 액세스 제한 구간이 만료된 때로부터 채널 액세스 제한 시간의 최댓값만큼의 시간이 만료되기 전까지는 채널 액세스 제한 시간의 최댓값만큼의 시간이 만료된 후 사용하는 ED 문턱값보다 작은 값을 ED 문턱값으로 사용할 수 있다. 이때, 채널 액세스 제한 시간의 최댓값은 NAVSyncDelay일 수 있다. 예컨대, 스테이션의 채널 액세스 제한 시간이 NAVSyncDelay보다 작은 시간일 수 있다. 이때, 스테이션이 블라인드 상태로부터 벗어난 때로부터 채널 액세스 제한 구간이 만료될 때, 스테이션은 채널 액세스를 시도할 수 있다. 채널 액세스 제한 구간이 만료하고 블라인드 상태로부터 벗어난 때로부터 채널 액세스 제한 시간의 최댓값이 만료하기 전까지 스테이션은 -72 dBm으로 ED를 수행할 수 있다. 이때, 블라인드 상태로부터 벗어난 때로부터 채널 액세스 제한 시간의 최댓값이 만료한 후 스테이션은 -62 dBm으로 ED를 수행할 수 있다.
또 다른 구체적인 실시 예에서 스테이션의 채널 액세스 제한 시간은 스테이션이 블라인드 상태를 유지한 시간에 미리 지정된 시간만큼을 더 한 시간으로 결정될 수 있다. 예컨대, 스테이션의 채널 액세스 제한 시간은 스테이션이 블라인드 상태를 유지한 시간, SIFS, 및 ACK 프레임의 길이의 합일 수 있다.
또 다른 구체적인 실시 예에서 스테이션의 채널 액세스 제한 시간은 스테이션이 블라인드 상태를 유지한 시간의 배수로 결정될 수 있다. 이와 같이 채널 액세스 제한 시간의 길이를 블라인드 상태를 유지한 시간을 기초로 결정되는 것은 블라인드 상태가 길어질수록 다른 스테이션이 전송하는 PPDU를 수신하지 못할 가능성이 높은 것을 반영한 것이다.
도 36의 실시 예에서 non-STR 멀티 링크 장치의 제1 스테이션(STA#1)과 제2 스테이션(STA#2) 각각은 제1 링크(Link 1)와 제2 링크(Link 2)에서 동작한다. STR 멀티 링크 장치의 제1 AP(AP#1)와 제2 AP(AP#2) 각각은 제1 링크(Link 1)와 제2 링크(Link 2)에서 동작한다. 제1 스테이션(STA#1)이 제1 링크(Link 1)에서 UL PPDU를 전송하는 동안 제2 스테이션(STA#2)은 블라인드 상태로 전환된다. 제2 스테이션(STA#2)은 첫 번째 블라인드 상태를 x us만큼 유지한다. 첫 번째 블라인드 상태 직후 제2 스테이션(STA#2)의 채널 액세스는 x us 동안 제한된다. 또한, 제2 스테이션(STA#2)은 두 번째 블라인드 상태를 y us만큼 유지한다. 두 번째 블라인드 상태 직후 제2 스테이션(STA#2)의 채널 액세스는 y us 동안 제한된다. 또한, 제1 스테이션(STA#1)은 첫 번째 블라인드 상태를 z us만큼 유지한다. 첫 번째 블라인드 상태 직후 제1 스테이션(STA#1)의 채널 액세스는 z us 동안 제한된다.
도 36의 실시 예에 앞서 설명한 또 다른 실시 예가 적용될 수 있다. 즉, 채널 액세스 제한 시간은 스테이션이 블라인드 상태를 유지한 시간과 SIFS와 BA 프레임을 전송하는데 소요되는 시간의 합일 수 있다. BA 프레임을 전송하는데 소요되는 시간 대신 ACK 프레임을 전송하는데 소요되는 시간이 사용될 수 있다.
또 다른 구체적인 실시 예에서 채널 액세스 제한 시간은 스테이션이 블라인드 상태를 유지한 시간이 미리 지정된 임계 값 내인지에 따라 결정될 수 있다. 이때, 임계 값은 STR 멀티 링크 장치의 AP와 non-STR 멀티 링크 장치 사이에 협의된 값일 수 있다. 이에 대해서 도 37을 통해 설명한다.
도 37은 본 발명의 또 다른 실시 예에 따라 블라인드 상태에서 벗어난 스테이션의 채널 액세스가 제한되는 것을 보여준다.
스테이션이 블라인드 상태를 유지한 시간이 미리 지정된 임계 값 이하인 경우, 스테이션의 채널 액세스 제한 시간은 제1 미리 지정된 값일 수 있다. 또한, 스테이션이 블라인드 상태를 유지한 시간이 미리 지정된 임계 값보다 큰 경우, 스테이션의 채널 액세스 제한 시간은 제2 미리 지정된 값일 수 있다. 이때, 제1 미리 지정된 값은 제2 미리 지정된 값보다 작은 값이다.
도 37의 실시 예에서 non-STR 멀티 링크 장치의 제1 스테이션(STA#1)과 제2 스테이션(STA#2) 각각은 제1 링크(Link 1)와 제2 링크(Link 2)에서 동작한다. STR 멀티 링크 장치의 제1 AP(AP#1)와 제2 AP(AP#2) 각각은 제1 링크(Link 1)와 제2 링크(Link 2)에서 동작한다. 제1 스테이션(STA#1)이 제1 링크(Link 1)에서 UL PPDU를 전송하는 동안 제2 스테이션(STA#2)은 블라인드 상태로 전환된다. 제2 스테이션(STA#2)은 첫 번째 블라인드 상태에서 문턱값보다 큰 시간동안 블라인드 상태에 머무른다. 따라서 제2 스테이션(STA#2)은 제2 미리 지정된 시간(Long NAVSyncDelay) 동안 채널 액세스가 제한된다. 제2 스테이션(STA#2)은 두 번째 블라인드 상태에서 문턱값 이하의 시간동안 블라인드 상태에 머무른다. 따라서 제2 스테이션은 제1 미리 지정된 시간(Short NAVSyncDelay) 동안 채널 액세스가 제한된다.
또 다른 구체적인 실시 예에서 채널 액세스 제한 시간은 스테이션이 블라인드 상태를 유지한 시간이 복수의 단계 중 어느 단계에 해당하는지에 따라 결정될 수 있다. 구체적으로 블라인드 상태를 유지한 시간에 대한 4개의 임계 값이 존재하고, 4개의 임계 값에 따라 5개의 단계가 존재할 수 있다. 이때, 스테이션이 블라인드 상태를 유지한 시간이 2단계에 해당하는 경우, 채널 액세스 제한 시간은 2단계의 채널 액세스 제한 시간으로 설정된다.
또한, 가장 낮은 단계에 해당하는 채널 액세스 제한 시간은 0일 수 있다. 즉, 스테이션이 블라인드 상태를 유지한 시간이 특정 값 이하인 경우, 채널 액세스 제한이 적용되지 않을 수 있다. 이에 대해서 도 38을 통해 설명한다.
도 38은 본 발명의 본 또 다른 실시 예에 따라 블라인드 상태에서 벗어난 스테이션이 일정한 조건을 만족하는 경우 채널 액세스가 제한되지 않는 것을 보여준다.
미리 지정된 조건 중 적어도 어느 하나를 만족하는 경우, 스테이션이 블라인드 상태를 벗어난 직후 스테이션의 채널 액세스가 제한되지 않을 수 있다. 즉, 미리 지정된 조건 중 어느 하나에도 해당하지 않는 경우, 스테이션이 블라인드 상태를 벗어난 직후 스테이션의 채널 액세스가 제한될 수 있다. 이를 통해 스테이션의 채널 접근성이 과도하게 제한되는 것을 방지할 수 있다. 구체적으로 앞서 설명한 바와 같이 스테이션이 블라인드 상태를 유지한 시간이 특정 값 이하인 경우, 채널 액세스 제한이 적용되지 않을 수 있다. 이때, 특정 값은 특정 프레임의 전송에 소요되는 시간을 기초로 결정될 수 있다. 구체적으로 특정 값은 특정 프레임의 길이를 기초로 결정될 수 있다. 예컨대, 특정 값은 특정 프레임의 길이와 전송 속도를 기초로 결정될 수 있다. 이러한 실시 예들에서 특정 프레임은 ACK 프레임, BA 프레임, 및 CTS 프레임 중 적어도 어느 하나일 수 있다. 또 다른 구체적인 실시 예에서 스테이션이 블라인드 상태를 유지한 시간 구간이 스테이션에게 설정된 NAV에 포함되는 경우, 스테이션이 블라인드 상태에서 벗어난 후 스테이션에게 채널 액세스 제한이 적용되지 않을 수 있다. 이와 같이 채널 액세스 제한을 적용하지 않는 실시 예들은 비교적 짧은 길이의 프레임, 예컨대 ACK 프레임, BA 프레임, 및 CTS 프레임이 전송되었을 때에 블라인드 상태를 벗어난 스테이션의 채널 접근성이 과도하게 제한 되는 것을 방지할 수 있다.
또 다른 구체적인 실시 예에서 스테이션이 블라인드 상태에서 벗어났을 때 스테이션에게 NAV가 설정되어 있는 경우, 스테이션이 블라인드 상태에서 벗어난 후 스테이션에게 NAV 이외의 별도의 채널 액세스 제한이 적용되지 않을 수 있다. 구체적으로 스테이션에게 NAV가 설정되어 있는 동안 스테이션이 블라인드 상태로 전환되었다가 블라인드 상태를 벗어난 경우, 스테이션에게 별도의 채널 액세스 제한이 적용되지 않을 수 있다. 즉, 채널 액세스 제한 시간은 0일 수 있다. 이는 NAV에 의해 다른 스테이션의 전송이 수행되지 않았을 가능성이 높기 때문이다.
채널 액세스 제한 구간에서 NAV가 설정되는 경우, 채널 액세스 제한 구간 내 일부 시간 구간 내에서 스테이션은 채널 액세스 제한 없이 채널 액세스를 수행할 수 있다. 구체적으로 앞서 설명한 실시 예에서 스테이션에게 설정된 NAV는 스테이션이 블라인드 상태로 전환된 후 설정된 NAV일 수 있다. 구체적으로 제1 스테이션이 PPDU를 수신하고 제1 스테이션이 PPDU의 수신을 완료하기 전에 블라인드 상태로 전환될 수 있다. 즉, 제1 스테이션이 포함되는 non-STR 멀티 링크 장치의 제2 스테이션이 제1 스테이션이 PPDU를 수신하는 도중 PPDU의 전송을 시작할 수 있다. 이때, 제1 스테이션은 PPDU의 수신을 완료하고 NAV를 설정할 수 있다. 또한, PPDU의 수신 완료는 PHY-RXEND.indication primitive 발생을 나타낼 수 있다. 또한, 제1 스테이션이 PPDU의 수신 도중 블라인드 상태에 진입하여 PPDU 수신을 완료하지 못한 경우, 제1 스테이션은 PPDU의 수신이 완료될 것으로 예상되었던 시점에 NAV를 설정할 수 있다.
또한, 앞서 설명한 실시 예들에서 NAV는 싱글 NAV가 운영될 때 NAV를 나타낼 수 있다. 또한, NAV는 복수의 NAV가 운영될 때 NAV를 나타낼 수 있다. 복수의 NAV는 베이직 NAV와 Intra-BSS NAV일 수 있다. Intra-BSS NAV는 Intra-BSS PPDU에 의해 설정된다. 베이직 NAV는 Inter-BSS PPDU 또는 Intra-BSS PPDU 인지 Inter-BSS PPDU 인지 구별되지 않는 PPDU에 의해 설정된다.
또한, 앞서 설명한 실시 예들에서 NAV가 설정되어 있다는 것은 NAV의 값이 0이 아닌 값(non-zero)으로 설정되는 것을 나타낸다. 또한, 앞서 설명한 실시 예들에서 NAV를 설정한다는 것은 NAV를 업데이트한다는 것을 나타낼 수 있다. 스테이션은 PPDU 또는 프레임으로부터 듀레이션 정보를 획득하고, 듀레이션 정보에 따라 NAV를 설정할 수 있다. 구체적으로 스테이션은 PPDU의 시그널링 필드로부터 듀레이션 정보를 획득할 수 있다. 구체적인 실시 예에서 스테이션은 PPDU의 HE-SIG-A 필드 또는 U-SIG 필드로부터 듀레이션 정보를 획득할 수 있다. 또한, 스테이션은 PPDU가 포함하는 MPDU의 MAC 헤더의 Duration/ID 필드로부터 듀레이션 정보를 획득할 수 있다. 또한, PPDU의 끝(end)에서 PPDU로부터 획득한 듀레이션 정보에 따라 NAV를 설정하거나 PPDU의 끝에서 PPDU가 포함하는 프레임으로부터 획득한 듀레이션 정보에 따라 NAV를 설정할 수 있다. 이때, 스테이션은 PPDU가 포함하는 L-SIG 필드를 기초로 PPDU의 끝을 판단할 수 있다. 구체적으로 스테이션은 L-SIG 필드의 L_LENGTH 필드와 L_DATARATE를 이용해 PPDU의 듀레이션을 획득하고, 회득한 듀레이션에 따라 PPDU의 끝을 판단할 수 있다.
또한, 스테이션이 동작하는 링크가 다른 스테이션이 전송한 PPDU로 점유되는 동안 스테이션이 블라인드 상태로 전환되었다가 블라인드 상태에서 벗어난 경우, 스테이션이 블라인드 상태를 벗어난 후 스테이션에게 채널 액세스 제한이 적용되지 않을 수 있다. 설명의 편의를 위해 non-STR 멀티 링크 장치가 제1 스테이션과 제2 스테이션을 포함하고, 제1 스테이션은 제1 링크에서 제2 스테이션은 제2 링크에서 동작하는 것을 예시로 설명한다. 제1 링크에서 동작하는 제3 스테이션이 전송한 PPDU가 제1 링크를 점유하는 동안 제1 링크에서 동작하는 제1 스테이션이 제2 스테이션이 수행하는 전송으로 인해 블라인드 상태로 전환될 수 있다. 제3 스테이션이 전송한 PPDU의 전송이 종료되기 전에 제1 스테이션이 블라인드 상태에서 벗어날 수 있다. 이때, 제1 스테이션은 채널 액세스 제한 없이 채널 액세스를 시도할 수 있다. 이러한 실시 예에서 링크를 점유하는 PPDU의 수신자 주소가 스테이션을 지시하지 않거나 스테이션이 PPDU의 의도된 수신자가 아닌 경우에만 스테이션이 블라인드 상태를 벗어난 후 스테이션에게 채널 액세스 제한이 적용되지 않을 수 있다. 또 다른 구체적인 실시 예에서 링크를 점유하는 PPDU의 수신자 주소 또는 의도된 수신자와 관계없이 스테이션이 블라인드 상태를 벗어난 후 스테이션에게 채널 액세스 제한이 적용되지 않을 수 있다. 이러한 실시 예들에서 스테이션은 앞서 설명한 바와 같이 L-SIG 필드를 기초로 PPDU의 끝을 판단할 수 있다. 또 다른 구체적인 실시 예에서 스테이션은 PPDU가 포함하는 TXOP에 관한 정보를 기초로 PPDU의 끝을 판단할 수 있다. 구체적으로 스테이션은 PPDU의 시그널링 필드가 지시하는 TXOP을 기초로 PPDU의 끝을 판단할 수 있다. 또한, 스테이션은 PPDU에 포함된 MPDU의 duration 필드를 획득하여, duration 필드가 지시하는 TXOP을 기초로 PPDU의 끝을 판단할 수 있다.
앞서 설명한 실시 예들에서 스테이션은 스테이션이 포함된 non-STR 멀티 링크 장치의 다른 스테이션이 전송을 종료한 시점에 블라인드 상태에서 벗어난 것으로 판단할 수 있다.
도 38의 실시 예에서 non-STR 멀티 링크 장치의 제1 스테이션(STA#1)과 제2 스테이션(STA#2) 각각은 제1 링크(Link 1)와 제2 링크(Link 2)에서 동작한다. STR 멀티 링크 장치의 제1 AP(AP#1)와 제2 AP(AP#2) 각각은 제1 링크(Link 1)와 제2 링크(Link 2)에서 동작한다. 제1 스테이션(STA#1)이 제1 링크(Link 1)에서 UL PPDU를 전송하는 동안 제2 스테이션(STA#2)은 블라인드 상태로 전환된다. 앞서 설명한 바와 같이 제2 스테이션(STA#2)이 일정한 조건을 만족하는 경우, 블라인드 상태를 벗어난 제2 스테이션(STA#2)에게 채널 액세스 제한이 적용되지 않는다. 예컨대, 제2 스테이션(STA#2)이 블라인드 상태에 머무른 시간이 미리 지정된 시간(No NavSyncDelay Threshold) 보다 작은 경우, 제2 스테이션(STA#2)이 블라인드 상태를 벗어난 직후라도 채널 액세스 제한이 적용되지 않을 수 있다. 또 다른 구체적인 실시 예에서 제2 스테이션(STA#2)에게 NAV가 설정되어 NAV가 적용되는 동안 제2 스테이션(STA#2)이 블라인드 상태에 머무르는 경우, 제2 스테이션(STA#2)이 블라인드 상태를 벗어난 직후라도 채널 액세스 제한이 적용되지 않을 수 있다.
스테이션의 채널 액세스 제한 구간에서 스테이션이 전송한 첫 번째 채널 액세스가 실패한 경우, 남은 채널 액세스 제한 구간 동안 스테이션의 채널 액세스가 허용되지 않을 수 있다. 구체적으로 앞서 설명한 실시 예들에서 채널 액세스 제한을 완화하는 실시 예들에 대해 설명하였다. 즉, 채널 액세스 제한 시간의 최댓값보다 짧은 시간만큼 채널 액세스를 제한되거나 채널 액세스가 제한되지 않는 실시 예들에 대해 설명하였다. 이러한 실시 예들에서 스테이션에게 채널 액세스 제한 완화가 적용되고 블라인드 상태에서 벗어난 후 스테이션의 첫 번째 전송으로 인하여 전송 충돌이 발생하는 경우, 스테이션에게 일정 시간 동안 채널 액세스 제한이 적용될 수 있다. 구체적으로 스테이션에게 채널 액세스 제한 완화가 적용되고 블라인드 상태에서 벗어난 후 스테이션의 첫 번째 전송이 실패한 경우, 스테이션이 첫 번째 프레임의 전송이 실패한 것으로 판단한 때로부터 일정한 시간동안 채널 액세스가 제한될 수 있다. 이때, 일정 시간은 채널 액세스 제한 시간의 최댓값을 기초로 결정될 수 있다. 즉, 스테이션이 첫 번째 프레임의 전송이 실패한 것으로 판단한 때로부터 남은 채널 액세스 제한 구간동안 스테이션의 전송이 허용되지 않을 수 있다. 따라서 스테이션이 첫 번째 프레임의 전송이 실패한 것으로 판단한 때로부터 남은 채널 액세스 제한 구간 동안 스테이션은 전송을 시도하지 않을 수 있다. 또한, 채널 액세스 제한은 스테이션이 무선 매개체가 유휴한지 판단할 때 NAV가 설정된 것으로 판단하는 것일 수 있다.
이때, 첫 번째 전송은 EDCA에 따라 수행한 전송 중 첫 번째 전송을 나타낼 수 있다. 따라서 스테이션이 수신한 프레임에 대한 응답인 전송이 실패한 경우에도 일정한 시간 동안 채널 액세스 제한이 적용되지 않을 수 있다. 스테이션이 수신한 프레임에 대한 응답인 전송은 ACK 프레임의 전송, BA 프레임 전송, CTS 프레임의 전송 및 TB PPDU의 중 중 적어도 어느 하나를 포함할 수 있다. 또한, 첫 번째 전송은 스테이션이 스테이션을 목적 장치 또는 의도된 수신자로 설정한 프레임을 수신하기 전 첫 번째 전송을 나타낼 수 있다. 또한, 첫 번째 전송은 스테이션이 블라인드 상태를 벗어난 때로부터 채널 액세스 제한 시간의 최댓값만큼 경과하기 전에 수행된 전송을 나타낼 수 있다. 이때, 스테이션이 블라인드 상태를 벗어난 때로부터 채널 액세스 제한 시간의 최댓값만큼 경과한 후 스테이션이 전송을 수행하고, 전송이 실패하더라도 스테이션의 채널 액세스가 제한되지 않는다.
앞서 설명한 실시 예들에서 채널 액세스 제한을 적용하지 않는 것은 채널 액세스 제한된 뒤 채널 액세스 제한이 해제되는 것을 포함할 수 있다. 예컨대, 채널 액세스 제한을 적용하지 않는 동작은 채널 액세스 제한을 적용한 뒤, 채널 액세스 제한 적용 예외에 해당하는 조건을 만족하는 경우 채널 액세스 제한 구간의 남은 시간을 0으로 설정하는 것일 수 있다.
도 39는 본 발명의 실시 예에 따라 채널 액세스 제한 시간에 관한 정보를 포함하는 Operation 엘리멘트를 보여준다.
도 37을 통해 설명한 바와 같이 스테이션이 블라인드 상태를 유지한 시간을 기초로 채널 액세스 시간이 결정될 수 있다. AP는 이러한 실시 예들에서 사용되는 스테이션이 블라인드 상태를 유지한 시간의 문턱값은 매니지먼트 프레임의 엘리멘트를 통해 시그널링할 수 있다. 또한, AP는 채널 액세스 제한 시간을 매니지먼트 프레임의 엘리멘트를 통해 시그널링할 수 있다. 또한, AP는 채널 액세스 제한 시간을 스테이션이 블라인드 상태를 유지한 시간을 기초로 적응적으로 조절할 지를 매니지먼트 프레임의 엘리멘트를 통해 시그널링할 수 있다. 이러한 실시 예들에서 매니지먼트 프레임의 엘리멘트는 Operation 엘리멘트일 수 있다.
스테이션은 스테이션과 결합된 AP로부터 시그널링된 블라인드 상태를 유지한 시간의 문턱값을 기초로 채널 액세스 제한 시간을 결정할 수 있다. 또한, 스테이션은 스테이션과 결합된 AP로부터 시그널링된 채널 액세스 제한 시간을 기초로 채널 액세스 제한을 적용할 수 있다. 또한, 스테이션은 스테이션과 결합된 AP로부터 시그널링된 채널 액세스 제한 시간을 스테이션이 블라인드 상태를 유지한 시간을 기초로 적응적으로 조절할 지를 기초로 채널 액세스 제한을 적용할 수 있다.
도 39의 실시 예에서 NoNAVSyncDelayThreshold는 채널 액세스 제한이 적용되는지 여부를 결정하는 임계 값을 지시한다. ShortNAVSyncDelayThreshold는 비교적 짧은 길이의 채널 액세스 제한 시간이 적용되는지 여부를 결정하는 임계 값을 지시한다. ProportionalNAVSyncDelay는 스테이션이 블라인드 상태에 머무른 시간을 기초로 채널 액세스 제한 시간이 결정되는지 나타낸다.
앞서 설명한 채널 액세스 제한의 예외로서 채널 액세스 제한 구간에서 스테이션이 스테이션이 포함된 non-STR 멀티 링크 장치의 다른 스테이션의 PPDU 전송과 동시에 전송이 시작되는 PPDU를 전송하는 것이 허용될 수 있다. 이때, 복수의 PPDU의 전송이 동시에 시작된다는 것은 미리 지정된 시간 차이 내에서 전송이 시작되는 것을 나타낼 수 있다. 이와 같이 다른 PPDU의 전송 시작과 미리 지정된 시간 차이 내에서 전송이 시작되는 PPDU를 시작 싱크 PPDU라 지칭한다. 이에 대해서는 도 40을 통해 설명한다.
도 40은 본 발명의 실시 예에 따라 채널 액세스 제한 구간에서 스테이션이 스테이션이 포함된 non-STR 멀티 링크 장치의 다른 스테이션과 동시 전송을 수행하는 것을 보여준다.
non-STR 멀티 링크 장치의 스테이션이 시작 싱크 PPDU를 전송할 때, 동기화된 PPDU와 전송 종료 시점이 다를 수 있다. 이때, 스테이션은 즉각적인 응답을 요청하지 않게 제한될 수 있다. 즉각적인 응답은 ACK 프레임 및 BA 프레임 중 적어도 어느 하나를 포함할 수 있다. 구체적으로 전송이 먼저 종료되는 시작 싱크 PPDU를 전송하는 스테이션은 즉각적인 응답을 요청하지 않게 제한될 수 있다. 이때, 일반적인 응답 규칙이 적용되지 않을 수 있다. 또한, 시작 싱크 PPDU를 수신한 스테이션의 판단에 따라 즉각적인 응답이 전송되지 않을 수 있다. 구체적으로 시작 싱크 PPDU를 수신한 스테이션은 수신한 PPDU가 시작 싱크 PPDU인지와 시작 싱크 PPDU를 전송한 PPDU가 non-STR 멀티 링크 장치의 스테이션인지를 기초로 즉각적인 응답을 전송할지 결정할 수 있다.
또한, 하나의 non-STR 멀티 링크 장치의 제1 스테이션과 제2 스테이션 각각이 제1 링크와 제2 링크에서 동작하는 상황을 가정하여 설명한다. 제1 스테이션이 제1 링크에서 백오프 절차를 통해 전송 기회를 획득하고, 전송 기회를 획득한 시점에 제2 스테이션이 제2 링크가 PIFS 동안 유휴한 것으로 감지한 경우, 제1 스테이션과 제2 스테이션은 시작 싱크 PPDU를 전송할 수 있다. 이때, 제2 스테이션이 블라인드 상태에서 벗어난 직후라도 채널 액세스 제한이 적용되더라도 제2 스테이션은 시작 싱크 PPDU를 전송할 수 있다. 이러한 실시 예에서도 제2 스테이션이 PIFS 동안 채널이 유휴한 것으로 감지하여야 한다. 따라서 제2 스테이션이 시작 싱크 PPDU 전송 시점에 CCA를 통해 채널이 비지(busy)한 것으로 감지한 경우, 제2 스테이션은 시작 싱크 PPDU를 전송할 수 없다. 이러한 실시 예에서 PIFS 이외의 미리 지정된 시간 구간, 예컨대 DIFS가 사용될 수 있다.
또한, AP는 스테이션에게 스테이션이 채널 액세스 제한 구간에서 채널 액세스 제한의 예외로서 시작 싱크 PPDU를 전송할 수 있는지 시그널링할 수 있다. 이때, AP는 Operation 엘리멘트를 통해 스테이션에게 스테이션이 채널 액세스 제한 구간에서 채널 액세스 제한의 예외로서 시작 싱크 PPDU를 전송할 수 있는지 시그널링할 수 있다. 구체적으로 Operation 엘리멘트는 스테이션이 채널 액세스 제한 구간에서 채널 액세스 제한의 예외로서 시작 싱크 PPDU를 전송할 수 있는지 나타내는 필드를 포함할 수 있다. 설명의 편의를 위해 이 필드를 NAVSyncDelay exception 필드로 지칭한다. NAVSyncDelay exception 필드가 스테이션이 채널 액세스 제한 구간에서 채널 액세스 제한의 예외로서 시작 싱크 PPDU를 전송할 수 있다고 나타내는 경우, 스테이션은 채널 액세스 제한 구간에서 스테이션이 채널 액세스 제한의 예외로서 시작 싱크 PPDU를 전송할 수 있다. NAVSyncDelay exception 필드가 스테이션이 채널 액세스 제한 구간에서 채널 액세스 제한의 예외로서 시작 싱크 PPDU를 전송할 수 없다고 나타내는 경우, 스테이션은 채널 액세스 제한 구간에서 스테이션이 채널 액세스 제한의 예외로서 시작 싱크 PPDU를 전송할 수 없다.
도 40의 실시 예에서 non-STR 멀티 링크 장치의 제1 스테이션(STA#1)과 제2 스테이션(STA#2) 각각은 제1 링크(Link 1)와 제2 링크(Link 2)에서 동작한다. STR 멀티 링크 장치의 제1 AP(AP#1)와 제2 AP(AP#2) 각각은 제1 링크(Link 1)와 제2 링크(Link 2)에서 동작한다. 제1 스테이션(STA#1)이 제1 링크(Link 1)에서 UL PPDU(UL PPDU#1)를 전송하는 동안 제2 스테이션(STA#2)은 블라인드 상태로 전환된다. 블라인드 상태를 벗어난 제2 스테이션(STA#2)에게 채널 액세스 제한이 적용된다. 채널 액세스 제한 구간에서 제1 스테이션(STA#1)이 백오프 절차에 성공하여 전송 기회를 획득한다. 이때, 제2 스테이션(STA#2)은 제2 링크(Link 2)가 PIFS 동안 유휴한 것으로 감지한다. 따라서 제2 스테이션(STA#2)이 채널 액세스 제한 구간 내에 있더라도, 제1 스테이션(STA#1)과 제2 스테이션(STA#2)은 시작 싱크 PPDU(UL PPDU#2_1, UL PPDU#2_2)를 전송한다.
이와 같이 채널 액세스 제한의 예외로 스테이션이 블라인드 상태에서 벗어난 직후 싱크 PPDU를 전송하는 것이 허용되는 경우, 다른 무선 통신 단말, 특히 OBSS에서 동작하는 스테이션의 전송을 방해할 수 있다. 블라인드 상태에서 벗어난 직후 스테이션은 MAC 레벨에서 수행되는 전송 보호 메커니즘이 적용하지 않기 때문이다. 따라서 채널 액세스 제한의 예외로 스테이션이 블라인드 상태에서 벗어난 직후 싱크 PPDU를 전송하는 조건을 엄격하게 규정할 수 있다. 이에 대해서는 도 41을 통해 설명한다.
도 41은 본 발명의 또 다른 실시 예에 따라 채널 액세스 제한 구간에서 스테이션이 스테이션이 포함된 non-STR 멀티 링크 장치의 다른 스테이션과 동시 전송을 수행하는 것을 보여준다.
스테이션은 스테이션이 결합된 AP로부터 채널 센싱 즉, CCA에 관련된 파라미터를 수신할 수 있다. CCA에 관련된 파라미터는 ED 문턱값을 포함할 수 있다. 스테이션은 AP로부터 수신한 CCA에 관련된 파라미터에 따라 CCA를 수행할 수 있다. 구체적으로 스테이션은 AP로부터 수신한 ED 문턱값에 따라 ED를 수행할 수 있다. 이러한 동작은 채널 액세스 제한의 예외로서 스테이션이 시작 싱크 PPDU를 전송하기 위해 채널 액세스를 수행할 때에도 적용될 수 있다.
채널 액세스 제한의 예외로서 스테이션이 시작 싱크 PPDU를 전송하기 위해 PIFS 동안 채널 센싱을 수행 할 때, 스테이션은 채널 액세스 제한이 적용되지 않을 때 시작 싱크 PPDU를 전송하기 위해 ED에서 적용되는 조건보다 엄격한 조건을 사용하여 ED를 수행할 수 있다. 설명의 편의를 위해 채널 액세스 제한이 적용되지 않을 때 시작 싱크 PPDU를 전송하기 위한 ED를 일반 싱크 PPDU ED라 지칭한다. 또한, 채널 액세스 제한의 예외로서 스테이션이 시작 싱크 PPDU를 전송하기 위해 수행하는 ED를 예외 싱크 PPDU ED라 지칭한다. 예컨대, 스테이션은 일반 싱크 PPDU ED에서 사용되는 문턱값보다 작은 문턱값을 사용하여 예외 싱크 PPDU ED를 수행할 수 있다. 스테이션이 예외 싱크 PPDU ED를 수행할 때, 스테이션은 일반 싱크 PPDU ED에서 사용되는 시간 구간보다 긴 시간 구간 동안 유휴한지 판단할 수 있다.
또한, AP는 스테이션에게 예외 싱크 PPDU ED의 조건이 일반 싱크 PPDU의 ED 조건보다 엄격한지 시그널링할 수 있다. 구체적으로 AP는 스테이션에게 예외 싱크 PPDU ED의 조건을 시그널링할 수 있다. 예컨대, AP는 스테이션에게 예외 싱크 PPDU ED에서 사용되는 문턱값을 시그널링할 수 있다. 또한, 스테이션에게 예외 싱크 PPDU ED에서 사용되는 유휴 시간 구간의 길이를 시그널링할 수 있다. AP는 Operation 엘리멘트를 사용하여 이러한 시그널링들을 수행할 수 있다.
또한, AP는 채널 액세스 제한의 예외로서 스테이션이 시작 싱크 PPDU를 전송할 수 있는지 시그널링할 수 있다. 이러한 실시 예에서 스테이션은 채널 액세스 제한의 예외로서 스테이션이 시작 싱크 PPDU를 전송할 수 있다고 시그널링되는 경우에만 채널 액세스 제한 구간에서 시작 싱크 PPDU를 전송할 수 있다. 이때, 스테이션은 예외 싱크 PPDU ED 조건에 따라 시작 싱크 PPDU를 전송할 수 있다.
도 41의 실시 예에서 non-STR 멀티 링크 장치의 제1 스테이션(STA#1)과 제2 스테이션(STA#2) 각각은 제1 링크(Link 1)와 제2 링크(Link 2)에서 동작한다. STR 멀티 링크 장치의 제1 AP(AP#1)와 제2 AP(AP#2) 각각은 제1 링크(Link 1)와 제2 링크(Link 2)에서 동작한다. 제1 스테이션(STA#1)이 제1 링크(Link 1)에서 UL PPDU(UL PPDU#1)를 전송하는 동안 제2 스테이션(STA#2)은 블라인드 상태로 전환된다. 블라인드 상태를 벗어난 제2 스테이션(STA#2)에게 채널 액세스 제한이 적용된다. 채널 액세스 제한 구간에서 제1 스테이션(STA#1)이 백오프 절차에 성공하여 전송 기회를 획득한다. 이때, 제2 스테이션(STA#2)은 일반 싱크 PPDU ED에서 사용되는 문턱값보다 낮은 문턱값인 -82 dBm을 사용하여 제2 링크(Link 2)가 PIFS 동안 유휴한 것으로 감지한다. 따라서 제2 스테이션(STA#2)이 채널 액세스 제한 구간 내에 있더라도, 제1 스테이션(STA#1)과 제2 스테이션(STA#2)은 시작 싱크 PPDU(UL PPDU#2_1, UL PPDU#2_2)를 전송한다.
이러한 실시 예를 통해 채널 액세스 제한의 예외가 적용되더라도 이로 인해 발생할 수 있는 전송 충돌을 완화할 수 있다.
앞서 설명한 실시 예들에서 멀티 링크 장치의 스테이션의 동작으로 설명한 것은 멀티 링크 장치의 동작으로 치환될 수 있다. 또한, 앞서 설명한 실시 예들에서 AP의 동작은 non-AP 스테이션의 동작으로 치환되고, non-AP 스테이션의 동작은 AP의 동작으로 치환될 수 있다. 따라서 non-STR 멀티 링크 장치의 AP의 동작은 non-STR 멀티 링크 장치의 non-AP 스테이션의 동작으로 치환되고, STR 멀리 링크 장치의 non-AP 스테이션의 동작은 STR 멀티 링크 장치의 AP의 동작으로 치환될 수 있다. 또한, non-STR 멀티 링크 장치의 non-AP 스테이션의 동작은 non-STR 멀티 링크 장치의 AP의 동작으로 치환되고, STR 멀리 링크 장치의 AP의 동작은 STR 멀티 링크 장치의 non-AP 스테이션의 동작으로 치환될 수 있다.
상기와 같이 무선랜 통신을 예로 들어 본 발명을 설명하였지만, 본 발명은 이에 한정하지 않으며 셀룰러 통신 등 다른 통신 시스템에서도 동일하게 적용될 수 있다. 또한 본 발명의 방법, 장치 및 시스템은 특정 실시 예와 관련하여 설명되었지만, 본 발명의 구성 요소, 동작의 일부 또는 전부는 범용 하드웨어 아키텍처를 갖는 컴퓨터 시스템을 사용하여 구현될 수 있다.
이상에서 실시 예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시 예에 포함되며, 반드시 하나의 실시 예에만 한정되는 것은 아니다. 나아가, 각 실시 예에서 예시된 특징, 구조, 효과 등은 실시 예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시 예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (18)

  1. 멀티 링크 장치의 스테이션에서,
    송수신부; 및
    프로세서를 포함하고,
    상기 멀티 링크 장치는 어느 하나의 링크에서 상기 멀티링크 장치의 수신과 다른 링크에서 상기 멀티 링크 장치의 전송이 동시에 수행되는 것이 지원되지 않는 non-STR(simultaneous transmit and receive) 링크인 제1 링크와 제2 링크에서 동작하고,
    상기 프로세서는
    상기 제1 링크에서 상기 멀티 링크 장치의 다른 스테이션의 전송이 수행되는 것으로 판단하고,
    상기 제2 링크에서 하나 이상의 미리 지정된 조건 모두를 만족하지 않는 경우, 상기 제1 링크에서 상기 다른 스테이션의 상기 전송이 완료된 때로부터 미리 지정된 시간 동안 채널 액세스 제한에 따라 채널 액세스를 수행하고,
    상기 채널 액세스 제한은 상기 스테이션이 채널 액세스 제한이 적용되지 않는 때에 사용하는 판단 조건보다 엄격한 판단 조건을 사용하여 무선 매개체가 유휴한지 판단하는 것인
    스테이션.
  2. 제1항에서,
    상기 하나 이상의 미리 지정된 조건은 상기 다른 스테이션의 상기 전송의 듀레이션이 미리 지정된 듀레이션 문턱값보다 크지 않은 것인
    스테이션.
  3. 제2항에서,
    상기 미리 지정된 듀레이션 문턱값은 특정 프레임의 전송에 소요되는 시간을 기초로 결정되는
    스테이션.
  4. 제3항에서,
    상기 특정 프레임은 ACK 프레임 또는 CTS(clear to send) 프레임인
    스테이션.
  5. 제2항에서,
    상기 프로세서는
    상기 스테이션과 결합된 AP(access point)로부터 상기 미리 지정된 듀레이션 문턱값을 수신하는
    스테이션.
  6. 제1항에서,
    상기 프로세서는
    상기 스테이션과 결합된 AP(access point)로부터 시그널링된 CCA(clear channel assessment)에 관한 파라미터에 따라 CCA를 수행하는
    스테이션.
  7. 제6 항에서,
    상기 CCA에 관한 파라미터는 ED(energy detection) 문턱값인
    스테이션.
  8. 제1항에서,
    상기 프로세서는
    상기 미리 지정된 시간 구간 내의 전송의 첫 번째 프레임의 전송이 실패한 경우, 상기 미리 지정된 시간 구간의 남은 시간 동안 전송을 시도하지 않는
    스테이션.
  9. 제1항에서,
    상기 프로세서는
    상기 미리 지정된 시간 구간 내에서 NAV(network allocation vector)가 설정되는 경우, 상기 미리 지정된 시간 내 일부 시간 구간 내에서 상기 채널 액세스 제한 없이 채널 액세스를 수행하는
    스테이션.
  10. 멀티 링크 장치의 스테이션의 동작 방법에서
    상기 멀티 링크 장치는 어느 하나의 링크에서 상기 멀티링크 장치의 수신과 다른 링크에서 상기 멀티 링크 장치의 전송이 동시에 수행되는 것이 지원되지 않는 non-STR(simultaneous transmit and receive) 링크인 제1 링크와 제2 링크에서 동작하고,
    상기 동작 방법은
    상기 제1 링크에서 상기 멀티 링크 장치의 다른 스테이션의 전송이 수행되는 것으로 판단하는 단계;
    상기 제2 링크에서 하나 이상의 미리 지정된 조건 모두를 만족하지 않는 경우, 상기 제1 링크에서 상기 다른 스테이션의 상기 전송이 완료된 때로부터 미리 지정된 시간 동안 채널 액세스 제한에 따라 채널 액세스를 수행하는 단계를 포함하고,
    상기 채널 액세스 제한은 상기 스테이션이 채널 액세스 제한이 적용되지 않는 때에 사용하는 판단 조건보다 엄격한 판단 조건을 사용하여 무선 매개체가 유휴한지 판단하는 것인
    동작 방법.
  11. 제10항에서,
    상기 하나 이상의 미리 지정된 조건은 상기 제1 링크에서 상기 다른 스테이션의 상기 전송의 듀레이션이 미리 지정된 듀레이션 문턱값보다 크지 않은 것인
    동작 방법.
  12. 제11항에서,
    상기 미리 지정된 듀레이션 문턱값은 특정 프레임의 전송에 소요되는 시간을 기초로 결정되는
    동작 방법.
  13. 제12항에서,
    상기 특정 프레임은 ACK 프레임 또는 CTS(clear to send) 프레임인
    동작 방법.
  14. 제10항에서,
    상기 동작 방법은
    상기 스테이션과 결합된 AP(access point)로부터 상기 미리 지정된 듀레이션 문턱값을 수신하는 단계를 더 포함하는
    동작 방법.
  15. 제10항에서,
    상기 동작 방법은
    상기 스테이션과 결합된 AP(access point)로부터 시그널링된 CCA(clear channel assessment)에 관한 파라미터에 따라 CCA를 수행하는 단계를 더 포함하는
    동작 방법.
  16. 제15항에서,
    상기 CCA에 관한 파라미터는 ED(energy detection) 문턱값인
    동작 방법.
  17. 제10항에서,
    상기 제1 링크에서 상기 다른 스테이션의 상기 전송이 완료된 때로부터 미리 지정된 시간 동안 채널 액세스 제한에 따라 채널 액세스를 수행하는 단계는
    상기 미리 지정된 시간 구간 내의 전송의 첫 번째 프레임의 전송이 실패한 경우, 상기 미리 지정된 시간 구간의 남은 시간 동안 전송을 시도하지 않는 단계를 더 포함하는
    동작 방법.
  18. 제10항에서,
    상기 제1 링크에서 상기 다른 스테이션의 상기 전송이 완료된 때로부터 미리 지정된 시간 동안 채널 액세스 제한에 따라 채널 액세스를 수행하는 단계는
    상기 미리 지정된 시간 구간 내에서 NAV(network allocation vector)가 설정되는 경우, 상기 미리 지정된 시간 내 일부 시간 구간 내에서 상기 채널 액세스 제한 없이 채널 액세스를 수행하는 단계를 더 포함하는
    동작 방법.
KR1020237006277A 2020-09-11 2021-09-13 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말 KR20230048064A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR1020200117228 2020-09-11
KR20200117228 2020-09-11
KR20200122117 2020-09-22
KR1020200122117 2020-09-22
PCT/KR2021/012441 WO2022055323A1 (ko) 2020-09-11 2021-09-13 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말

Publications (1)

Publication Number Publication Date
KR20230048064A true KR20230048064A (ko) 2023-04-10

Family

ID=80630315

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237006277A KR20230048064A (ko) 2020-09-11 2021-09-13 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말

Country Status (3)

Country Link
US (1) US20230217521A1 (ko)
KR (1) KR20230048064A (ko)
WO (1) WO2022055323A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116488783B (zh) * 2020-01-11 2024-04-12 华为技术有限公司 打孔信息的指示方法及通信装置

Also Published As

Publication number Publication date
WO2022055323A1 (ko) 2022-03-17
US20230217521A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
JP7461082B2 (ja) マルチリンクを用いる無線通信方法及びこれを用いる無線通信端末
KR20230070239A (ko) 무선 통신 시스템에서 프레임을 송수신하기 위한 방법 및 무선 통신 단말
EP4210417A1 (en) Method and wireless communication terminal for transmitting/receiving data in wireless communication system
KR102544254B1 (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
KR20230135600A (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는무선 통신 단말
EP4192179A1 (en) Wireless communication method using multiple links, and wireless communication terminal using same
CN116326162A (zh) 在无线通信系统中传输和接收数据的方法和无线通信终端
KR20230144075A (ko) 복수의 링크에서 동작하는 멀티 링크 장치 및 멀티링크 장치의 동작 방법
KR20230101844A (ko) 무선 통신 시스템에서 다중 링크(multi-link)를 통해 데이터를 송수신하기 위한 방법 및 무선 통신 단말
US20230217521A1 (en) Wireless communication method using multi-link, and wireless communication terminal using same
KR20220089458A (ko) 멀티 링크 장치를 위한 관리된 동시 송수신 동작
KR20230129401A (ko) 제한된 twt를 사용하는 무선 통신 방법 및 이를 사용하는무선 통신 단말
KR20230118607A (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법및 무선 통신 단말
US20240129866A1 (en) Wireless communication method using multilink, and wireless communication terminal using same
KR20240009977A (ko) 공유 txop을 사용하는 무선 통신 방법 및 이를 사용하는무선 통신 단말
KR20240004538A (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는무선 통신 단말
KR20220095015A (ko) 동시 송수신 동작이 제한된 다중 링크 동작에서의 nav 설정을 위한 채널 접근 제한 시간을 활용한 송신 기법
KR20230129510A (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는무선 통신 단말
CN116746106A (zh) 在无线通信系统中发送和接收数据的方法和终端
KR20230171987A (ko) 공유 txop를 이용하는 무선 통신 장치 및 무선 통신장치의 동작 방법
CN116783978A (zh) 使用多个链路的无线通信方法和使用该方法的无线通信终端
KR20230019124A (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
CN117322124A (zh) 使用多链路的无线通信方法及使用其的无线通信终端
KR20240027841A (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
KR20220104586A (ko) 동시 송수신 동작이 제한된 다중 링크 동작에서의 전송 기회 유지를 위한 채널 접근 방법