WO2021008376A1 - 多用户多输入多输出的用户数指示方法和通信装置 - Google Patents

多用户多输入多输出的用户数指示方法和通信装置 Download PDF

Info

Publication number
WO2021008376A1
WO2021008376A1 PCT/CN2020/099894 CN2020099894W WO2021008376A1 WO 2021008376 A1 WO2021008376 A1 WO 2021008376A1 CN 2020099894 W CN2020099894 W CN 2020099894W WO 2021008376 A1 WO2021008376 A1 WO 2021008376A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource unit
mimo
subfield
site
field
Prior art date
Application number
PCT/CN2020/099894
Other languages
English (en)
French (fr)
Inventor
于健
淦明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20841565.3A priority Critical patent/EP3996441A4/en
Publication of WO2021008376A1 publication Critical patent/WO2021008376A1/zh
Priority to US17/574,444 priority patent/US11956032B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communications, and more specifically, to a method and communication device for indicating the number of users with multiple inputs and multiple outputs.
  • the 802.11 standard supports a significant increase in the number of spatial streams in the spatial domain. For example, from one spatial stream supported by the 802.11a/g standard to 16 spatial streams of the 802.11ax standard, as the number of supported spatial streams increases, the number of supported users will also increase.
  • MU-MIMO multiple user multiple input multiple output
  • the number of MU MIMO users supported by a resource unit consisting of greater than or equal to 106 subcarriers can currently indicate the resource unit The supported MU MIMO does not exceed 8.
  • the number of MU MIMO users actually supported by a resource unit composed of greater than or equal to 106 subcarriers can be greater than 8. How to realize that resource units composed of 106 sub-carriers with an indication size greater than or equal to 106 sub-carriers support more MU-MIMO users during MU-MIMO transmission, for example, more than 8 MU-MIMO user indications, has become an urgent problem to be solved.
  • This application provides a multi-user, multi-input and multi-output user number indication method and communication device.
  • an RU with a size greater than or equal to 106-tone it is realized through the design of the resource unit allocation subfield or the newly added indication field Indicates that the number of users supported by an RU with a size greater than or equal to 106-tone is greater than 8. Thereby improving resource utilization and improving communication efficiency.
  • a method for indicating the number of users with multiple inputs and multiple outputs is provided.
  • the execution subject of the method can be a sending device.
  • the sending device can be an AP or STA, or it can be applied to the sending device.
  • the chip taking the execution subject as the sending device as an example, the method includes: the sending device generates a physical layer protocol data unit PPDU, the PPDU includes a signaling field B, and the signaling field B includes at least one resource unit allocation subfield, one resource unit
  • the allocation subfield is a resource unit allocation index, a resource unit allocation index is used to indicate a permutation and combination of resource units, and a resource unit allocation index is also used to indicate multiple users supported by a resource unit composed of greater than or equal to 106 subcarriers
  • the number of multiple-input multiple-output MU MIMO users, the number of MU MIMO users is greater than 8; the sending device sends the PPDU.
  • the resource unit allocation index can indicate that the size is greater than or equal to 106-tone.
  • the number of users supported by tone RU is greater than 8.
  • the B field of the existing signaling field is changed slightly, which is easy to implement. Improve resource utilization and improve communication efficiency.
  • the resource unit allocation index includes a first index and a second index used to indicate the same type of resource unit arrangement and combination, and the first index indicates that it is composed of greater than or equal to 106 subcarriers
  • the number of MU MIMO users supported by the resource unit of, the number of MU MIMO users is less than or equal to 8; the second index indicates the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8 .
  • different indexes indicating the same type of resource unit arrangement and combination respectively indicate that the number of MU MIMO users is greater than 8 and the number of MU MIMO users is less than or equal to 8, which can reduce the resources used to indicate the number of MU MIMO users and increase the resource unit The resource utilization of the index.
  • the resource unit allocation index includes a field used to indicate the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the length of the field is greater than or equal to 4. Bit, the number of MU MIMO users is greater than 8.
  • an indication field with a length of 4 bits or more to indicate the number of MU MIMO users supported by a resource unit that is greater than or equal to 106 subcarriers, it is easy to indicate that the number of MU MIMO users is greater than 8 and improve MU MIMO. The accuracy of the number of users indicated. Easy to implement.
  • the signaling field B further includes a first indication subfield, and the first indication subfield is used to indicate the bit width of the resource unit allocation index.
  • the receiving device can accurately receive and parse the resource unit allocation subfield, and improve the receiving device’s ability to determine the resource unit indicated by the resource unit allocation subfield. The efficiency of permutation and combination and the number of MU MIMO users.
  • one resource unit allocation index is an 8-bit index or a 9-bit index.
  • a method for indicating the number of users with multiple inputs and multiple outputs is provided.
  • the execution subject of the method can be a sending device.
  • the sending device can be an AP or STA, or it can be applied to the sending device.
  • the method includes: the sending device generates a physical layer protocol data unit PPDU, the PPDU includes a signaling field B, and the signaling field B includes at least one resource unit allocation subfield and a second indication Field, a resource unit allocation subfield is used to indicate a permutation and combination of resource units, the at least one resource unit allocation subfield and the second indication field jointly indicate MU MIMO supported by resource units composed of greater than or equal to 106 subcarriers
  • the number of users, the number of MU MIMO users is greater than 8; the sending device sends the PPDU.
  • the second aspect provides the multi-user multi-input multi-output user number indication method. For an RU with a size greater than or equal to 106-tone, by adding a second indication field to the signaling field B, using the second indication field and at least A resource unit allocation subfield jointly indicates that the number of users supported by an RU with a size greater than or equal to 106-tone is greater than 8. With the newly added indication field, the indication that the number of MU MIMO users is greater than 8 can be accurately and conveniently realized. And there is no need to change the existing resource unit allocation index table, which is easy to implement. Improve the efficiency of indicating that the number of MU MIMO users is greater than 8.
  • the second indication field includes at least one MU MIMO user number indicator subfield, and one MU MIMO user number indicator subfield and one resource unit allocation subfield indicate that the number is greater than or equal to There is a one-to-one correspondence between 106 subcarriers and the number of supported MU MIMO users equal to 8 resource units.
  • One MU MIMO user number indicator subfield is used to indicate the number of MU MIMO users supported by the corresponding resource unit. The number of MU MIMO users is greater than 8.
  • At least one resource unit allocation subfield and at least one MU MIMO user number indicator subfield are respectively subjected to CRC check and coding, and at least one resource unit allocation subfield and at least one MU MIMO user number indicator are used.
  • the field indicates the number of MU MIMO users, which can improve the efficiency of indicating the number of MU MIMO users and avoid the appearance of more than MU MIMO user number indicator subfields.
  • the overhead is relatively small, saving resources, and it is also conducive to the receiving device to analyze and obtain the number of MU MIMO users. . Improve the efficiency of indicating that the number of MU MIMO users is greater than 8.
  • the second indicator field includes at least one MU MIMO user number indicator subfield, and the number of the MU MIMO user number indicator subfield is related to the number of possible subfields greater than or equal to 106 subfields.
  • the maximum number of resource units composed of carriers is the same, and one MU MIMO user number indicator subfield is used to indicate the number of MU MIMO users supported by the corresponding resource unit, and the number of MU MIMO users is greater than 8.
  • at least one resource unit allocation subfield and at least one MU MIMO user number indicator subfield are unified for CRC check and coding, and at least one resource unit allocation subfield and at least one MU MIMO user number indicator are used.
  • the field indicates the number of MU MIMO users, which can ensure that each RU greater than or equal to 106-tone has a corresponding MU MIMO user number indicator subfield, which ensures the reliability of the indication that the number of MU MIMO users is greater than 8.
  • the second indication field includes a user number bitmap subfield, and one bit of the user number bitmap subfield and one resource unit allocation subfield indicate greater than or equal to There is a one-to-one correspondence between resource units composed of 106 subcarriers.
  • One bit of the user number bitmap subfield is used to indicate that the number of MU MIMO users supported by the corresponding resource unit is the actual number of MU MIMO users or the actual number of MU MIMO users and 8 The difference.
  • At least one resource unit allocation subfield and user number bitmap subfield are respectively subjected to CRC check and coding, and at least one resource unit allocation subfield and user number bitmap subfield are used to jointly indicate MU
  • the number of MIMO users can improve the efficiency of MU MIMO user number indication, avoid the occurrence of more or useless user bits, reduce the overhead, save resources, and also help the receiving device to analyze the number of MU MIMO users. Improve the efficiency of indicating that the number of MU MIMO users is greater than 8.
  • the second indication field includes a user number bitmap subfield, and the length of the user number bitmap subfield may be greater than or equal to 106 subcarriers.
  • the maximum number of resource units is the same.
  • One bit of the user number bitmap subfield is used to indicate that the number of MU MIMO users supported by the corresponding resource unit is the actual number of MU MIMO users or the number of actual MU MIMO users is equal to 8. Difference.
  • at least one resource unit allocation subfield and user number bitmap subfield are unified for CRC check and coding, and at least one resource unit allocation subfield and user number bitmap subfield are used to indicate MU MIMO.
  • the number of users can ensure that each RU greater than or equal to 106-tone has a corresponding user number bit, which ensures the reliability of the indication that the number of MU MIMO users is greater than 8.
  • the relative overhead is small.
  • a method for indicating the number of users with multiple inputs and multiple outputs is provided.
  • the execution subject of the method can be a sending device.
  • the sending device can be an AP or STA, or it can be applied to the sending device.
  • the sending device is taken as an example.
  • the method includes: the sending device generates a physical layer protocol data unit PPDU.
  • the PPDU includes a signaling field B.
  • the signaling field B includes at least one resource unit allocation subfield and at least one one by one.
  • the site field a resource unit allocation subfield is used to indicate a permutation and combination of resource units, the sequence of the at least one site-by-site field corresponds to the sequence of the permutation and combination of the resource unit, and a site-by-site field is used to indicate that the sequence is greater than or equal to
  • the third aspect provides a method for indicating the number of users with multiple inputs and multiple outputs.
  • the station-by-site field in the signaling field B indicates the number of MU MIMO users supported by the corresponding resource unit composed of greater than or equal to 106 subcarriers, and, The number of MU MIMO users is greater than 8.
  • the situation where the number of users supported by the indicated size greater than or equal to 106-tone RU is greater than 8 is realized. It can accurately and conveniently realize the indication that the number of MU MIMO users is greater than 8. And there is no need to change the existing resource unit allocation index table, which is easy to implement. Improve the efficiency of indicating that the number of MU MIMO users is greater than 8.
  • the first site-by-site field in the at least one site-by-site field includes a MU MIMO user number indicator subfield
  • the first site-by-site field corresponds to a sub-carrier composed of greater than or equal to 106 subcarriers Resource unit
  • the MU MIMO user number indicator subfield is used to indicate the number of MU MIMO users supported by the resource unit composed of greater than or equal to 106 subcarriers
  • the number of MU MIMO users is greater than 8.
  • the number of MU MIMO users of the resource unit where the site is located through the MU MIMO user number indicator subfield included in the field of each site can improve the efficiency of the MU MIMO user number indicator, which is also conducive to receiving
  • the device performs analysis to obtain the number of MU MIMO users, which improves the efficiency of indicating that the number of MU MIMO users is greater than 8.
  • the first site-by-site field in the at least one site-by-site field includes a third indication subfield, and the first site-by-site field corresponds to a resource unit composed of greater than or equal to 106 subcarriers ,
  • the third indication subfield is used to indicate whether the station indicated by the first site-by-site field is the last station in a resource unit composed of greater than or equal to 106 subcarriers. In this implementation manner, by indicating whether a site-by-site field is the last site in the resource where the site is located, the efficiency of indicating the number of MU MIMO users is improved.
  • a method for indicating the number of users with multiple inputs and multiple outputs is provided.
  • the execution subject of the method can be a receiving device.
  • the receiving device can be an AP or STA, or it can be applied to the receiving device.
  • the chip taking the receiving device as the executive body as an example, the method includes: the receiving device receives a physical layer protocol data unit PPDU, the PPDU includes a signaling field B, and the signaling field B includes at least one resource unit allocation subfield, one resource unit
  • the allocation subfield is a resource unit allocation index, a resource unit allocation index is used to indicate a permutation and combination of resource units, and a resource unit allocation index is also used to indicate multiple users supported by a resource unit composed of greater than or equal to 106 subcarriers
  • the number of multiple-input multiple-output MU MIMO users where the number of MU MIMO users is greater than 8; the receiving device determines the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers according to at least one resource unit allocation subfield.
  • the fourth aspect provides a method for indicating the number of users of multi-user, multi-input and multi-output.
  • the receiving device can determine the size according to the resource unit allocation index
  • the existing signaling field B field is slightly changed, which is convenient for implementation. Improve resource utilization and improve communication efficiency.
  • the resource unit allocation index includes a first index and a second index used to indicate the same type of resource unit arrangement and combination, and the first index indicates that it is composed of greater than or equal to 106 subcarriers
  • the number of MU MIMO users supported by the resource unit of, the number of MU MIMO users is less than or equal to 8
  • the second index indicates the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8
  • determining the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers includes: determining, based on the first index and the second index, greater than or equal to 106 subcarriers The number of MU MIMO users supported by the composed resource unit.
  • the resource unit allocation index includes a field for indicating the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the length of the field is greater than or equal to 4. Bit, the number of MU MIMO users is greater than 8; according to the at least one resource unit allocation subfield, determining the number of MU MIMO users supported by a resource unit consisting of greater than or equal to 106 subcarriers includes: according to this field, determining the number of MU MIMO users is greater than or equal to The number of MU MIMO users supported by a resource unit composed of 106 subcarriers.
  • the signaling field B further includes a first indicator subfield, and the first indicator subfield is used to indicate the bit width of at least one resource unit allocation index
  • the method further includes: The receiving device determines the bit width of the resource unit allocation index according to the first indication subfield.
  • one resource unit allocation index is an 8-bit index or a 9-bit index.
  • a method for indicating the number of users with multiple inputs and multiple outputs is provided.
  • the subject of the method can be a receiving device.
  • the receiving device can be an AP or STA, or it can be applied to the receiving device.
  • the chip taking the execution subject as the receiving device as an example, the method includes: the receiving device receives a physical layer protocol data unit PPDU, the PPDU includes a signaling field B, and the signaling field B includes at least one resource unit allocation subfield and a second indication Field, one resource unit allocation subfield is used to indicate a permutation and combination of resource units, at least one resource unit allocation subfield and the second indication field jointly indicate MU MIMO users supported by resource units composed of greater than or equal to 106 subcarriers
  • the number of MU MIMO users is greater than 8.
  • the receiving device determines the number of MU MIMO users supported by a resource unit consisting of greater than or equal to 106 subcarriers according to at least one resource unit allocation subfield and the second indication field.
  • the multi-user, multi-input and multi-output user number indication method for an RU with a size greater than or equal to 106-tone, by adding a second indication field to the signaling field B, using the second indication field and at least A resource unit allocation subfield jointly indicates that the size is greater than or equal to the number of users supported by 106-tone RU is greater than 8.
  • the newly added indication field the indication that the number of MU MIMO users is greater than 8 can be accurately and conveniently realized. And there is no need to change the existing resource unit allocation index table, which is easy to implement. Improve the efficiency of indicating that the number of MU MIMO users is greater than 8.
  • the second indicator field includes at least one MU MIMO user number indicator subfield, and one MU MIMO user number indicator subfield and one resource unit allocation subfield indicate that the number is greater than or equal to There is a one-to-one correspondence between 106 subcarriers and the number of supported MU MIMO users is equal to 8 resource units.
  • a MU MIMO user number indicator subfield is used to indicate the number of MU MIMO users supported by the corresponding resource unit. The number of MU MIMO users is greater than 8.
  • the second indicator field includes at least one MU MIMO user number indicator subfield, and the number of the MU MIMO user number indicator subfield is related to the number of possible subfields greater than or equal to 106 subfields.
  • the maximum number of resource units composed of carriers is the same, and one MU MIMO user number indicator subfield is used to indicate the number of MU MIMO users supported by the corresponding resource unit, and the number of MU MIMO users is greater than 8.
  • the second indication field includes a user number bitmap subfield, and one bit of the user number bitmap subfield and a resource unit allocation subfield indicate greater than or equal to There is a one-to-one correspondence between resource units composed of 106 subcarriers.
  • One bit of the user number bitmap subfield is used to indicate that the number of MU MIMO users supported by the corresponding resource unit is the actual number of MU MIMO users or the actual number of MU MIMO users and 8 The difference.
  • the second indication field includes a user number bitmap subfield, and the length of the user number bitmap subfield may be greater than or equal to 106 subcarriers.
  • the maximum number of resource units is the same.
  • One bit of the user number bitmap subfield is used to indicate that the number of MU MIMO users supported by the corresponding resource unit is the actual number of MU MIMO users or the number of actual MU MIMO users is equal to 8. Difference.
  • a method for indicating the number of users with multiple inputs and multiple outputs is provided.
  • the execution subject of the method can be a receiving device.
  • the receiving device can be an AP or STA, or it can be applied to the receiving device.
  • the chip taking the receiving device as the executive body as an example, the method includes: the receiving device receives a physical layer protocol data unit PPDU, the PPDU includes a signaling field B, the signaling field B includes at least one resource unit allocation subfield and at least one by one The site field, a resource unit allocation subfield is used to indicate a permutation and combination of resource units, at least one site-by-site field sequence corresponds to the sequence of the resource unit permutation and combination, and a site-by-site field is used to indicate that the sequence is greater than or equal to 106
  • the number of MU MIMO users supported by a resource unit composed of three subcarriers, and the number of MU MIMO users is greater than 8.
  • the receiving device determines a resource unit composed of greater than or equal to 106 subcarriers according to at least one resource unit allocation subfield and at least one site-by-site field The number of MU MIMO users supported.
  • the sixth aspect provides a method for indicating the number of users with multiple inputs and multiple outputs.
  • the station-by-site field in the signaling field B indicates the number of MU MIMO users supported by a resource unit that is greater than or equal to 106 subcarriers. Indicates that the size is greater than or equal to the number of users supported by 106-tone RU is greater than 8. It can accurately and conveniently realize the indication that the number of MU MIMO users is greater than 8. And there is no need to change the existing resource unit allocation index table, which is easy to implement. Improve the efficiency of indicating that the number of MU MIMO users is greater than 8.
  • the first site-by-site field in the at least one site-by-site field includes a MU MIMO user number indicator subfield
  • the first site-by-site field corresponds to a sub-carrier composed of greater than or equal to 106 subcarriers Resource unit
  • the MU MIMO user number indicator subfield is used to indicate the number of MU MIMO users supported by the resource unit composed of greater than or equal to 106 subcarriers
  • the number of MU MIMO users is greater than 8.
  • the first site-by-site field in the at least one site-by-site field includes a third indication subfield, and the first site-by-site field corresponds to a resource unit consisting of greater than or equal to 106 subcarriers ,
  • the third indication subfield is used to indicate whether the station indicated by the first site-by-site field is the last station in a resource unit composed of greater than or equal to 106 subcarriers.
  • a communication device in a seventh aspect, includes: a processing unit configured to generate a physical layer protocol data unit PPDU, the PPDU includes a signaling field B, and the signaling field B includes at least one resource unit allocation subfield,
  • a resource unit allocation subfield is a resource unit allocation index, a resource unit allocation index is used to indicate a permutation and combination of resource units, and a resource unit allocation index is also used to indicate the support of resource units composed of greater than or equal to 106 subcarriers
  • the number of multi-user multi-input multi-output MU MIMO users, the number of MU MIMO users is greater than 8.
  • the communication unit is used to send the PPDU.
  • the device provided by the seventh aspect is configured to implement the foregoing first aspect or any possible implementation manner of the first aspect.
  • the device provided by the seventh aspect is configured to implement the foregoing first aspect or any possible implementation manner of the first aspect.
  • a communication device in an eighth aspect, includes a processing unit for generating a physical layer protocol data unit PPDU, the PPDU including a signaling field B, and the signaling field B includes at least one resource unit allocation subfield and The second indication field, a resource unit allocation subfield is used to indicate a permutation and combination of resource units, and the at least one resource unit allocation subfield and the second indication field jointly indicate that resource units composed of greater than or equal to 106 subcarriers are supported
  • the number of MU MIMO users is greater than 8; the communication unit is used to send the PPDU.
  • the device provided by the eighth aspect is configured to implement the foregoing second aspect or any possible implementation manner of the second aspect.
  • the device provided by the eighth aspect is configured to implement the foregoing second aspect or any possible implementation manner of the second aspect.
  • a communication device including: a processing unit for generating a physical layer protocol data unit PPDU, the PPDU including a signaling field B, the signaling field B includes at least one resource unit allocation subfield and At least one site-by-site field, one resource unit allocation subfield is used to indicate a permutation and combination of resource units, the sequence of the at least one site-by-site field corresponds to the sequence of the resource unit permutation, and a site-by-site field is used to indicate The number of MU MIMO users supported by a resource unit composed of 106 subcarriers is greater than or equal to, and the number of MU MIMO users is greater than 8.
  • the communication unit is used to send the PPDU.
  • the device provided by the ninth aspect is configured to implement the foregoing third aspect or any possible implementation manner of the third aspect.
  • the device provided by the ninth aspect is configured to implement the foregoing third aspect or any possible implementation manner of the third aspect.
  • a communication device in a tenth aspect, includes: a communication unit for receiving a physical layer protocol data unit PPDU, the PPDU includes a signaling field B, and the signaling field B includes at least one resource unit allocation subfield,
  • a resource unit allocation subfield is a resource unit allocation index, a resource unit allocation index is used to indicate a permutation and combination of resource units, and a resource unit allocation index is also used to indicate the support of resource units composed of greater than or equal to 106 subcarriers
  • the number of multi-user, multiple-input and multiple-output MU MIMO users, the number of MU MIMO users is greater than 8.
  • the processing unit is used to determine the MU MIMO supported by a resource unit consisting of greater than or equal to 106 subcarriers according to at least one resource unit allocation subfield User number.
  • the device provided by the tenth aspect is used to implement the foregoing fourth aspect or any possible implementation manner of the fourth aspect.
  • the foregoing fourth aspect or any possible implementation manner of the fourth aspect please refer to the foregoing fourth aspect or any possible implementation manner of the fourth aspect, and details are not described herein again.
  • a communication device in an eleventh aspect, includes: a communication unit for receiving a physical layer protocol data unit PPDU, the PPDU includes a signaling field B, and the signaling field B includes at least one resource unit allocation subfield And the second indication field, a resource unit allocation subfield is used to indicate a permutation and combination of resource units, the at least one resource unit allocation subfield and the second indication field jointly indicate a resource unit consisting of greater than or equal to 106 subcarriers
  • the number of MU MIMO users supported, and the number of MU MIMO users is greater than 8.
  • the processing unit is configured to determine the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers according to the at least one resource unit allocation subfield and the second indication field.
  • the apparatus provided by the eleventh aspect is configured to implement the foregoing fifth aspect or any possible implementation manner of the fifth aspect.
  • a communication device in a twelfth aspect, includes: a communication unit for receiving a physical layer protocol data unit PPDU, the PPDU includes a signaling field B, and the signaling field B includes at least one resource unit allocation subfield And at least one site-by-site field, a resource unit allocation subfield is used to indicate a permutation and combination of resource units, the sequence of the at least one site-by-site field corresponds to the sequence of the resource unit permutation, and a site-by-site field is used to indicate The number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8.
  • the processing unit is configured to determine, according to at least one resource unit allocation subfield and the at least one site-by-site field, the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers.
  • the device provided by the twelfth aspect is used to implement any possible implementation manner of the above sixth aspect or the sixth aspect.
  • any possible implementation manner of the above sixth aspect or the sixth aspect which will not be repeated here.
  • a communication device in a thirteenth aspect, includes a processor and a transceiver for internal communication with the processor; the processor is used to generate a physical layer protocol data unit PPDU, the PPDU including a signaling field B ,
  • the signaling field B includes at least one resource unit allocation subfield and a second indication field, one resource unit allocation subfield is used to indicate a permutation and combination of resource units, the at least one resource unit allocation subfield and the second indication field
  • the field jointly indicates the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8.
  • the transceiver is used to send the PPDU.
  • the apparatus provided by the thirteenth aspect is configured to implement the foregoing first aspect or any possible implementation manner of the first aspect.
  • a communication device in a fourteenth aspect, includes a processor and a transceiver internally connected and communicated with the processor; the processor is used to generate a physical layer protocol data unit PPDU, and the PPDU includes a signaling field B.
  • the signaling field B includes at least one resource unit allocation subfield and a second indication field, one resource unit allocation subfield is used to indicate a permutation and combination of resource units, and the at least one resource unit allocation subfield is combined with the second indication field Indicates the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8.
  • the transceiver is used to send the PPDU.
  • the device provided by the fourteenth aspect is configured to implement the foregoing second aspect or any possible implementation manner of the second aspect.
  • a communication device in a fifteenth aspect, includes a processor and a transceiver internally connected and communicated with the processor; the processor is used to generate a physical layer protocol data unit PPDU, and the PPDU includes a signaling field B.
  • the signaling field B includes at least one resource unit allocation subfield and at least one site-by-site field.
  • a resource unit allocation subfield is used to indicate a permutation and combination of a resource unit.
  • the sequence of the at least one site-by-site field corresponds to the arrangement of the resource unit.
  • the order of the combination corresponds.
  • a site-by-site field is used to indicate the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers.
  • the number of MU MIMO users is greater than 8; the transceiver is used to send the PPDU.
  • the device provided by the fifteenth aspect is used to implement the foregoing third aspect or any possible implementation manner of the third aspect.
  • a communication device in a sixteenth aspect, includes a processor and a transceiver that is internally connected and communicated with the processor; the transceiver is used to receive a physical layer protocol data unit PPDU, and the PPDU includes a signaling field B.
  • the signaling field B includes at least one resource unit allocation subfield, a resource unit allocation subfield is a resource unit allocation index, a resource unit allocation index is used to indicate a permutation and combination of resource units, and a resource unit allocation index is also used for Indicates the number of multi-user multiple-input multiple-output MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers.
  • the number of MU MIMO users is greater than 8.
  • the processor is used to determine the number of MU MIMO users based on the at least one resource unit allocation subfield. Or equal to the number of MU MIMO users supported by a resource unit composed of 106 subcarriers.
  • the device provided by the sixteenth aspect is configured to implement the foregoing fourth aspect or any possible implementation manner of the fourth aspect.
  • a communication device in a seventeenth aspect, includes a processor and a transceiver internally connected to the processor to communicate; the transceiver is used to receive a physical layer protocol data unit PPDU, the PPDU including a signaling field B, and
  • the signaling field B includes at least one resource unit allocation subfield and a second indication field.
  • One resource unit allocation subfield is used to indicate a permutation and combination of resource units.
  • At least one resource unit allocation subfield and the second indication field indicate jointly The number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8.
  • the processor is configured to determine, according to at least one resource unit allocation subfield and the second indication field, the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers.
  • the device provided by the seventeenth aspect is configured to implement any possible implementation manner of the fifth aspect or the fifth aspect.
  • a communication device in an eighteenth aspect, includes a processor and a transceiver that is internally connected and communicated with the processor; the transceiver is used to receive a physical layer protocol data unit PPDU, and the PPDU includes a signaling field B.
  • the signaling field B includes at least one resource unit allocation subfield and at least one site-by-site field.
  • a resource unit allocation subfield is used to indicate a permutation and combination of resource units, and at least one site-by-site field sequence and the permutation and combination of the resource unit
  • a site-by-site field is used to indicate the number of MU MIMO users supported by resource units composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8.
  • the processor determines, according to the at least one resource unit allocation subfield and the at least one site-by-site field, the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers.
  • a communication device in a nineteenth aspect, includes a processing circuit and a communication interface for internal connection and communication with the processing circuit.
  • the processing circuit is used to generate a physical layer protocol data unit PPDU, and the PPDU includes a signaling field.
  • the signaling field B includes at least one resource unit allocation subfield and a second indication field, one resource unit allocation subfield is used to indicate a permutation and combination of resource units, the at least one resource unit allocation subfield and the second indication field
  • the indication field jointly indicates the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8.
  • the communication interface is used to send the PPDU.
  • the device provided by the nineteenth aspect is configured to implement the foregoing first aspect or any possible implementation manner of the first aspect.
  • the device provided by the nineteenth aspect is configured to implement the foregoing first aspect or any possible implementation manner of the first aspect.
  • a communication device in a twentieth aspect, includes a processing circuit and a communication interface for internal connection and communication with the processing circuit.
  • the processing circuit is used to generate a physical layer protocol data unit PPDU.
  • the PPDU includes a signaling field B,
  • the signaling field B includes at least one resource unit allocation subfield and a second indication field, one resource unit allocation subfield is used to indicate a permutation and combination of resource units, the at least one resource unit allocation subfield and the second indication field Jointly indicates the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8.
  • the communication interface is used to send the PPDU.
  • the apparatus provided by the twentieth aspect is configured to implement the foregoing second aspect or any possible implementation manner of the second aspect.
  • a communication device in a twenty-first aspect, includes a processing circuit and a communication interface for internal communication with the processing circuit.
  • the processing circuit is used to generate a physical layer protocol data unit PPDU, the PPDU including a signaling field B
  • the signaling field B includes at least one resource unit allocation subfield and at least one site-by-site field.
  • One resource unit allocation subfield is used to indicate a permutation and combination of resource units.
  • the order of the at least one site-by-site field is the same as that of the resource unit.
  • the permutation and combination sequence corresponds to the per-site field used to indicate the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8; the communication interface is used to send the PPDU.
  • the apparatus provided by the twenty-first aspect is configured to implement the foregoing third aspect or any possible implementation manner of the third aspect.
  • the apparatus provided by the twenty-first aspect is configured to implement the foregoing third aspect or any possible implementation manner of the third aspect.
  • a communication device in a twenty-second aspect, includes a processing circuit and a communication interface for internal connection and communication with the processing circuit, the communication interface being used to receive a physical layer protocol data unit PPDU, the PPDU including a signaling field B ,
  • the signaling field B includes at least one resource unit allocation subfield, a resource unit allocation subfield is a resource unit allocation index, a resource unit allocation index is used to indicate a permutation and combination of resource units, and a resource unit allocation index is also It is used to indicate the number of multi-user multiple input multiple output MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8; the processing circuit is used to allocate subfields according to the at least one resource unit, Determine the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers.
  • the apparatus provided in the twenty-second aspect is configured to implement the foregoing fourth aspect or any possible implementation manner of the fourth aspect.
  • the foregoing fourth aspect or any possible implementation manner of the fourth aspect please refer to the foregoing fourth aspect or any possible implementation manner of the fourth aspect, and details are not repeated here.
  • a communication device in a twenty-third aspect, includes a processing circuit and a communication interface for internal connection and communication with the processing circuit.
  • the communication interface is used to receive a physical layer protocol data unit PPDU.
  • the PPDU includes a signaling field B.
  • the signaling field B includes at least one resource unit allocation subfield and a second indication field, one resource unit allocation subfield is used to indicate a permutation and combination of resource units, at least one resource unit allocation subfield and the second indication field Jointly indicates the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8.
  • the processing circuit is configured to determine the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers according to at least one resource unit allocation subfield and the second indication field.
  • the apparatus provided by the twenty-third aspect is configured to implement the foregoing fifth aspect or any possible implementation manner of the fifth aspect.
  • a communication device in a twenty-fourth aspect, includes a processing circuit and a communication interface for internal connection and communication with the processing circuit.
  • the communication interface is used to receive a physical layer protocol data unit PPDU.
  • the PPDU includes a signaling field B.
  • the signaling field B includes at least one resource unit allocation subfield and at least one site-by-site field.
  • One resource unit allocation subfield is used to indicate a permutation and combination of resource units.
  • the order of at least one site-by-site field is related to the order of the resource unit.
  • the sequence of permutation and combination corresponds to a site-by-site field used to indicate the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8.
  • the processing circuit determines the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers according to at least one resource unit allocation subfield and the at least one site-by-site field.
  • the apparatus provided by the twenty-fourth aspect is configured to implement any possible implementation manner of the above fifth aspect or the fifth aspect.
  • a computer program product includes a computer program.
  • the computer program product includes a computer program.
  • the computer program is executed by a processor, it is used to execute any one of the implementation manners of the first to sixth aspects. Method, or method in any possible implementation manner of any one of the first to sixth aspects.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed, it is used to implement any one of the first to sixth aspects.
  • the method in the manner, or the method in any possible implementation manner of any one of the first to sixth aspects.
  • a communication system which includes the device provided in the seventh aspect and the device provided in the tenth aspect; or
  • the system includes the device provided in the eighth aspect and the device provided in the eleventh aspect; or
  • the system includes the device provided by the ninth aspect and the device provided by the twelfth aspect; or
  • the system includes the device provided by the thirteenth aspect and the device provided by the sixteenth aspect; or
  • the system includes the device provided by the fourteenth aspect and the device provided by the seventeenth aspect; or
  • the system includes the device provided by the fifteenth aspect and the device provided by the eighteenth aspect; or
  • the system includes the device provided in the nineteenth aspect and the device provided in the twenty-second aspect; or
  • the system includes the device provided in the twentieth aspect and the device provided in the twenty-third aspect; or
  • the system includes the device provided in the above twenty-first aspect and the device provided in the twenty-fourth aspect.
  • Fig. 1 is a schematic diagram of an example of a communication system applicable to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the HE MU PPDU structure.
  • Fig. 3 is a schematic diagram of the structure of HE-SIG-B at 20 MHz.
  • FIG. 4 is a schematic interaction diagram of an example of a method for indicating the number of MU-MIMO users provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of various permutations and combinations of resource units when the data packet bandwidth is 20 MHz.
  • Fig. 6 is a schematic diagram of various permutations and combinations of resource units when the data packet bandwidth is 40 MHz.
  • Fig. 7 is a schematic diagram of various permutations and combinations of resource units when the data packet bandwidth is 80 MHz.
  • Fig. 8 is a schematic diagram of the structure of the content channel when the data packet bandwidth is 20 MHz.
  • FIG. 9 is a schematic diagram of the structure of the content channel when the data packet bandwidth is 40 MHz.
  • FIG. 10 is a schematic diagram of the structure of the content channel when the data packet bandwidth is 80 MHz.
  • FIG. 11 is a schematic interaction diagram of another example of a method for indicating the number of MU-MIMO users according to an embodiment of the present application.
  • FIG. 12 is a schematic interaction diagram of another example of a method for indicating the number of MU-MIMO users provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an example of the structure of a signaling field B provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of an example of arrangement and combination of resource units on two CCs according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of an example of the structure of two CCs provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of another example of the structure of the signaling field B provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of another example of the structure of two CCs provided by an embodiment of the present application.
  • FIG. 18 is a schematic interaction diagram of another example of a method for indicating the number of MU-MIMO users provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of another example of the structure of the signaling field B according to an embodiment of the present application.
  • FIG. 20 is a schematic diagram of another example of the structure of two CCs according to an embodiment of the present application.
  • FIG. 21 is a schematic diagram of another example of the structure of the signaling field B provided by an embodiment of the present application.
  • FIG. 22 is a schematic diagram of another example of the structure of two CCs provided by an embodiment of the present application.
  • FIG. 23 is a schematic interaction diagram of another example of a method for indicating the number of MU-MIMO users according to an embodiment of the present application.
  • FIG. 24 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 25 is a schematic diagram of another example of a communication device provided by an embodiment of the present application.
  • FIG. 26 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 27 is a schematic diagram of another example of a communication device provided by an embodiment of the present application.
  • FIG. 28 is a schematic diagram of a terminal device provided by an embodiment of the present application.
  • Figure 29 is a schematic diagram of a network device provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G 5th Generation
  • 5NR New Radio
  • the technical solution of the embodiment of this application can also be applied to a wireless local area network (WLAN) system.
  • WLAN wireless local area network
  • the embodiment of this application can be applied to the Institute of Electrical and Electronics Engineers (IEEE) currently adopted by WLAN. ) 802.11ac/802.11ax/802.11be in the 802.11 series of protocols or any of the future IEEE 802.11 series.
  • IEEE Institute of Electrical and Electronics Engineers
  • Fig. 1 shows an example of a schematic diagram of a communication system suitable for an embodiment of the present application.
  • the communication system shown in Fig. 1 may be a WLAN system or a wide area network system.
  • the communication system in Figure 1 may include one or more APs and one or more STAs.
  • Figure 1 uses two APs (AP 1 and AP 2) and two user stations (stations, STAs) (STA 1 and STA 2)
  • the AP and AP, AP and STA, and STA and STA can communicate wirelessly through various standards.
  • the solution provided in this application can be applied to the communication between AP and AP, the communication between STA and STA, and the communication between AP and STA.
  • User station can also be called system, subscriber unit, access terminal, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, user device, or user equipment (user equipment, UE).
  • the station can be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • the site is a mobile phone that supports wireless fidelity (WiFi) communication, a tablet that supports WiFi communication, a set-top box that supports WiFi communication, a smart TV that supports WiFi communication, and a smart wearable that supports WiFi communication.
  • WiFi wireless fidelity
  • the site is a mobile phone that supports wireless fidelity (WiFi) communication, a tablet that supports WiFi communication, a set-top box that supports WiFi communication, a smart TV that supports WiFi communication, and a smart wearable that supports WiFi communication.
  • the site may support 802.11 standard equipment under the current network system or the future network system.
  • the AP in the embodiments of this application may also be referred to as a network device.
  • the network device may be a device used to communicate with an STA.
  • the network device may be a Global System of Mobile Communication (GSM) system or a code division multiple access (GSM) system.
  • the base station (Base Transceiver Station, BTS) in Code Division Multiple Access (CDMA), it can also be the base station (NodeB, NB) in the Wideband Code Division Multiple Access (WCDMA) system, or the LTE system
  • the evolved base station (Evolutional NodeB, eNB, or eNodeB) in the cloud can also be the wireless controller in the cloud radio access network (CRAN) scenario, or the wireless access point in the WLAN/WiFi system Wait.
  • CRAN cloud radio access network
  • the network device may be a relay station, an access point, a vehicle-mounted device, a wearable device, a network device in a future 5G network or a network device in a future evolved PLMN network, etc., which is not limited in the embodiment of the present application.
  • the AP and the STA may communicate through a wireless local area network, and transmit data from the STA to the network side, or transmit data from the network side to the STA.
  • APs are also called wireless access points or hotspots.
  • AP is the access point for mobile users to enter the wired network. It is mainly deployed in homes, buildings and campuses. The typical coverage radius is from tens of meters to hundreds of meters. Of course, it can also be deployed outdoors.
  • AP is equivalent to a bridge connecting wired and wireless networks, and its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the AP may be a terminal device or a network device with a WiFi chip.
  • the AP may be a device that supports the 802.11 standard under the current network system or the future network system.
  • a multi-user multiple-input multiple-output (multi-users multiple-input multiple-output, MU-MIMO) technology can be used for wireless communication between the AP and the STA.
  • each STA is equipped with one or more antennas.
  • Each AP supports multi-site coordination and/or joint transmission.
  • Fig. 1 is only a schematic diagram.
  • the communication system may also include other network equipment or terminal equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Fig. 1.
  • the embodiment of the present application does not limit the number of APs and STAs included in the communication system.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • Table 1 shows the conditions supported in the spatial domain of each standard version of WLAN 802.11:
  • the 802.11a/g standard is called non-high throughput (Non-HT), and a single input single output (SISO) system can only send or receive one spatial stream at a time.
  • the name of the 802.11n standard is called high throughput (HT), and the single user multiple input multiple output (Single User Multiple Input Multiple Out, SU MIMO) system supports up to 4 spatial streams.
  • the 802.11ac standard is called Very High Throughput (VHT).
  • VHT Very High Throughput
  • the downlink multiple user multiple input multiple output (DL MU-MIMO) system supports up to 8 spatial streams and up to 4 Users, each user does not exceed 4 spatial streams.
  • the 802.11ax standard is called High Efficient (HE).
  • DL MU-MIMO and uplink (uplink UL) MU-MIMO support up to 8 spatial streams.
  • up to 8 users are supported.
  • Each user does not exceed 4 spatial streams.
  • it supports the existence of multiple MU-MIMO user groups in multiple resource units in the frequency domain.
  • 802.11ac further introduces MU MIMO on the basis of SU MIMO.
  • an access point for example, AP
  • a station for example, STA.
  • the maximum number of streams that the system can support is limited to the side with fewer antennas on both sides of the AP and STA.
  • MU-MIMO supports AP to communicate with multiple STAs at the same time, and the number of supported spatial streams is the lesser of the total number of spatial streams supported by multiple STAs and the number of spatial streams supported by the AP. In general, more spatial streams are supported, and the system throughput rate is improved.
  • the 802.11 standard Before the 802.11ax standard, the 802.11 standard only supported orthogonal frequency division multiplexing (OFDM) transmission, and the entire bandwidth was uniformly allocated to one or a group of stations for SU transmission or DL MU MIMO transmission.
  • OFDM orthogonal frequency division multiplexing
  • OFDMA orthogonal frequency division multiple access
  • RU resource units
  • the 802.11ax standard introduces DL OFDMA and UL OFDMA transmission.
  • HEMU PPDU high-efficient multiple user physical layer protocol data unit
  • the preamble part includes traditional short training field (legacy-short training field, L-STF), traditional long training field (legacy-long training field, L-LT), traditional signaling field (legacy-signal, L-SIG), Traditional signaling field repeated (repeated legacy-signal, RL-SIG), High Efficient Signal Field-A (HE-SIG-A), High Efficient Signal Field-B (HE-SIG-A), High Efficient Signal Field-B (HE) -SIG-B), High Efficient short training field (HE-STF), High Efficient long training field (HE-LTF).
  • L-STF long training field
  • L-LT traditional signaling field
  • Traditional signaling field repeated (repeated legacy-signal, RL-SIG)
  • High Efficient Signal Field-A HE-SIG-A
  • High Efficient Signal Field-B HE-SIG-A
  • HE-SIG-B High Efficient Signal Field-B
  • HE-STF High Efficient
  • HE-SIG-A is used to indicate the bandwidth of the data packet, the number of symbols contained in HE-SIG-B, the modulation and coding scheme (MCS) adopted by HE-SIG-B, and whether HE-SIG-B is adopted Indicate the compression mode and so on.
  • the HE-SIG-B mainly contains public fields and user-by-user fields.
  • the public field contains how the resource units of the entire bandwidth are allocated.
  • the user-by-user fields contain the association identifier (AID) of each user, MCS, and the number of spatial streams ( number of spatial and time streams, NSTS), coding method (Coding), whether transmit beamforming is used, etc.
  • the AP For UL OFDMA, the AP first sends a trigger frame to multiple STAs.
  • the trigger frame is one of the media access control (MAC) frames and is used to trigger multiple users to perform uplink multi-user transmission.
  • the trigger frame includes resource indication information required for uplink OFDMA transmission, including site identification, resource unit allocation information, etc., and provides multiple STAs with power, time, and frequency synchronization benchmarks.
  • multiple STAs send trigger-based PPDUs (trigger-based, HE TB PPDU) to the AP for UL OFDMA transmission.
  • the data packet structure of HE TB PPDU does not need to be indicated by HE-SIG-B in the HE TB PPDU, that is, the data packet structure of HE TB PPDU does not include HE-SIG -B field.
  • the data packet For DL OFDMA and DL MU MIMO transmission, when the sending device sends a data packet to the receiving device, the data packet contains HE-SIG-A, where HE-SIG-A indicates the symbol length of HE-SIG-B, and HE-SIG-B MCS, the bandwidth of the entire data packet, etc. If the data packet bandwidth is greater than 20MHz, HE-SIG-A replicates and transmits on every 20MHz.
  • the data packet also contains HE-SIG-B, which provides resource indication information for DL MU MIMO and DL OFDMA.
  • HE-SIG-B is individually coded on each 20MHz.
  • the information structure of HE-SIG-B on each 20MHz is shown in Figure 3.
  • HE-SIG-B is divided into two parts.
  • the first part is a common field (common part field), including 1 to N resource unit (RU) allocation subfields (RU allocation subfield). ), and the middle 26-subcarrier (Center 26-Tone) resource unit indication subfield (Center 26-Tone RU indication) that exists when the bandwidth is greater than or equal to 80MHz, and then the cyclic redundancy code (cyclic redundancy code) for verification code, CRC) and Tail subfields for cyclic decoding.
  • Each resource unit allocation subfield indicates a permutation and combination of resource units.
  • site-by-site field also called per user field
  • M site fields are usually two as a group.
  • CRC CRC and a tail field after the two site fields.
  • tail field a CRC and a tail field after the two site fields.
  • a resource unit allocation subfield in the HE-SIG-B field is used to indicate the number of MU MIMO users supported by a resource unit (106-tone RU) with a size greater than or equal to 106 subcarriers, but it can only indicate a maximum of 8 Users.
  • the next-generation 802.11be (extremely high throughput, EHT) standard of the 802.11ax standard the number of streams supported extends from 8 streams of 802.11ac and 802.11ax to 16 streams.
  • the number of MU MIMO users supported by the 106-tone RU may also increase further, for example, it can support 16 users.
  • the resource unit allocation subfield can only indicate the number of 8 MU-MIMO users at most.
  • the utilization rate of resources is relatively low, which seriously affects the efficiency of communication.
  • How to implement MU-MIMO transmission with an indication size greater than or equal to 106-tone supports more MU-MIMO users, for example, more than 8 MU-MIMO user indications, which has become an urgent problem to be solved.
  • this application provides a method for indicating the number of MU-MIMO users.
  • the size of the indicator is realized by designing the resource unit allocation subfield or adding a new indicator field.
  • the number of users supported by an RU greater than or equal to 106-tone is greater than 8. Thereby improving resource utilization and improving communication efficiency.
  • FIG. 4 is a schematic flowchart of a method 200 for indicating the number of MU-MIMO users according to an embodiment of the present application.
  • the method 200 can be applied to FIG. In the scene shown in 1.
  • it can also be applied in other communication scenarios or communication systems, and the embodiments of the present application are not limited herein.
  • the sending device and the receiving device are taken as an example of executing the method of each embodiment to describe the method of each embodiment.
  • the sending device may be the aforementioned AP or STA, and the receiving device may also be the aforementioned AP or STA.
  • the execution body of the execution method may also be a chip applied to the sending device and the receiving device.
  • the method 200 shown in FIG. 4 may include step S210 to step S220.
  • the steps in the method 200 are described in detail below in conjunction with FIG. 4.
  • the method 200 includes:
  • the sending device generates a PPDU.
  • the PPDU includes a signaling field B.
  • the signaling field B includes at least one resource unit allocation subfield.
  • a resource unit allocation subfield is a resource unit allocation index, and a resource unit allocation index is used to indicate A permutation and combination of resource units.
  • a resource unit allocation index is also used to indicate the number of multi-user, multiple-input, multiple-output MU MIMO users supported by resource units composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8.
  • S220 The sending device sends the PPDU.
  • the receiving device receives the PPDU.
  • the receiving device determines the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers according to at least one resource unit allocation subfield.
  • the sending device when it needs to send data to the receiving device, it sends a PPDU to the receiving device, and the PPDU includes a signaling field (Signal Field-B, SIG-B).
  • the PPDU may also include EHT-SIG-A fields, data fields, and so on.
  • the signaling field B includes at least one resource unit allocation subfield (RU allocation subfield).
  • the signaling field B may also include at least one site field (User Field).
  • a resource unit allocation subfield is a resource unit allocation index, and a resource unit allocation index is used to indicate a permutation and combination of resource units (or may also be referred to as an allocation sequence of resource units).
  • the sequence of at least one site field corresponds to the allocation sequence of the resource sheet.
  • the structure of each site field indicates the site information of the STA allocated in the RU included in the permutation and combination of resource units.
  • the resource unit allocation index is also used to indicate that the resource units composed of greater than or equal to 106 subcarriers support
  • the number of MU MIMO users is greater than 8. In the following description, the number of MU MIMO users is greater than 8 taking 9-16 as examples. It can be understood that the number of MU MIMO users greater than 8 may also include the case where the number of MU MIMO users is greater than 16.
  • the first is the sub-carrier distribution (Tone Plan) mode under different data packet bandwidths.
  • FIG. 5 shows various permutations and combinations of resource units when the data packet bandwidth is 20 MHz.
  • the entire 20MHz bandwidth can be composed of a resource unit (242-tone RU) composed of 242 sub-carriers, or a resource unit composed of 26 sub-carriers (26-tone RU), and resource unit (52-tone RU) composed of 52 sub-carriers.
  • RU resource unit
  • 106-tone RU resource unit
  • “Tone” can be understood as a subcarrier.
  • it also includes some guard (Guard) subcarriers, null subcarriers, or direct current (DC) subcarriers.
  • FIG. 6 shows various permutations and combinations of resource units when the data packet bandwidth is 40MHz.
  • the entire bandwidth is roughly equivalent to a copy of the 20MHz sub-carrier distribution.
  • the entire 40MHz bandwidth can be composed of a resource unit (484-tone RU) composed of a whole 484 subcarriers, or can be composed of various combinations of 26-tone RU, 52-tone RU, 106-tone RU, and 242-tone RU.
  • FIG. 7 shows various permutation and combination modes of resource units when the data packet bandwidth is 80 MHz.
  • the entire bandwidth is roughly equivalent to a copy of the 20MHz sub-carrier distribution.
  • the entire 80MHz bandwidth can be composed of an entire resource unit (996-tone RU) composed of 996 subcarriers, or it can be composed of 484-tone RU, 242-tone RU, 106-tone RU, 52-tone RU, 26-tone RU Various combinations.
  • the entire bandwidth can be regarded as a copy of the distribution of two 80Mhz subcarriers, and the entire bandwidth can be composed of a whole 2 ⁇ 996-tone RU (resource unit composed of 1992 subcarriers). It can also be composed of various combinations of 26-tone RU, 52-tone RU, 106-tone RU, 242-tone RU, 484-tone RU, and 996-tone RU. And, in the middle of the entire 80MHz bandwidth, there is also an intermediate 26-tone RU consisting of two 13-tone subunits.
  • the 242-tone RU is used as the unit, the 242-tone RU on the left can be regarded as the lowest frequency of the data packet bandwidth, and the 242-tone RU on the right can be regarded as the highest frequency.
  • the 242-tone RU can be labeled 1, 2, 3, and 4 in order from left to right.
  • the 242-tone RU can be labeled from left to right: 1, 2, ... 8.
  • the eight 242-tone RUs correspond to the eight 20MHz channels in a one-to-one correspondence from low to high in frequency, but due to the existence of the 26-tone RU in the middle, they do not completely overlap in frequency.
  • the following describes how the resource unit allocation subfield indicates the number of MU MIMO users.
  • the 802.11ax introduces the concept of content channel (CC).
  • the content channel can be understood as the content included in HE-SIG-B.
  • the content channel can include at least one resource unit allocation subfield (RU allocation subfield), multiple site-by-site fields, CRC for verification, and cyclic decoding The Tail subfield.
  • Figure 8 shows a schematic diagram of the content channel structure when the data packet bandwidth is 20 MHz. As shown in Figure 8, when the data packet bandwidth is only 20MHz, HE-SIG-B only contains one content channel, and the content channel contains one resource unit allocation subfield, which is used to indicate the first 242- of the data part. Tone indicates the resource unit allocation within the RU range.
  • One resource unit allocation subfield is a resource unit allocation index, which is used to indicate all possible resource unit permutation and combination modes in a 242-tone RU.
  • the index indicates the number of users performing SU/MU-MIMO transmission in the RU.
  • the 8-bit index can be used to indicate all possible resource unit permutations and combinations in a 242-tone RU.
  • an 8-bit index is used to indicate the number of users performing SU/MU-MIMO transmission in the RU.
  • the 8-bit index resource unit index table is shown in Table 2.
  • the first column represents an 8-bit index
  • the middle columns #1 to #9 represent permutations and combinations of different resource units.
  • the numbers in the table represent the number of subcarriers contained in the resource unit.
  • the index 00111y 2 y 1 y 0 indicates that the entire 242-tone RU is divided into four RUs: 52-tone RU, 52-tone RU, 26-tone RU, and 106-tone RU.
  • the number of entries in the third column indicates the number of entries allocated by the same resource unit, that is, the number of different indexes corresponding to the same resource unit arrangement.
  • the index 00111y 2 y 1 y 0 there are 8 entries, because while indicating the arrangement and combination of 242-tone RU resource units, y 2 y 1 y 0 is also used to indicate the 106-tone RU
  • the number of users for SU/MU-MIMO transmission included in the table corresponds to 1 to 8 users. That is, a 3-bit y 2 y 1 y 0 is used to indicate 1 to 8 users supported in the 106-tone RU.
  • the 8 entries can be regarded as 8 independent rows in the table. These 8 rows correspond to the same arrangement and combination of resource units, and each row corresponds to the number of users supported in a different 106-tone RU.
  • the middle 26-tone RU marked with "-" means that the middle 26-tone RU does not carry any users. Because of the insufficient number of entries, it was stipulated that in this special situation, each 106-tone RU supports a maximum of 4 users, so there are 16 entries in total.
  • the site-by-site field indicates the site information of the STAs allocated within the 242-tone RU according to the order of resource allocation.
  • the resource unit allocation subfield can also indicate that the resource unit is greater than 242-tone RU, for example, 484-tone RU or 996-tone RU, which means that a certain STA is allocated with the 242-tone RU.
  • Resource unit for larger RU.
  • different indexes will be used to indicate the number of users.
  • the site-by-site field indicates the site information of the STAs allocated within the 242-tone RU according to the order of resource allocation.
  • Figure 9 shows a schematic diagram of the content channel structure when the data packet bandwidth is 40 MHz.
  • CC1 and CC2 there are two HE-SIG-B content channels, CC1 and CC2.
  • CC1 on the first HE-SIG-B channel includes the resource unit allocation subfield within the first 242-tone RU and the corresponding site-by-site field.
  • the CC2 of the second HE-SIG-B channel includes the resource unit allocation subfield within the second 242-tone RU and the corresponding site-by-site field.
  • Figure 10 shows a schematic diagram of the content channel structure when the data packet bandwidth is 80 MHz.
  • the resource unit allocation information is indicated on the 4 channels according to the structure of CC1, CC2, CC1, and CC2 in order of frequency as a whole, including the first and third 242-tone RU ranges in CC1
  • CC2 includes the second and fourth resource unit subfields within the scope of 242-tone RU and the corresponding site-by-site fields within the scope.
  • the middle 26-tone RU indicator field of 80MHz will be included to indicate whether the resource unit is used to transmit data.
  • the resource unit allocation subfield is a 9-bit resource unit allocation index and an 8-bit resource unit allocation index as an example. It should be understood that the resource unit allocation index may also be more bits, such as 10 bits, 20 bits, and so on. Its implementation indicates that the number of MU MIMO users greater than or equal to 106-tone RU indicates that the number of MIMO users is greater than 8 indicates a 9-bit resource unit allocation index and an 8-bit resource unit allocation index is similar.
  • the resource unit allocation subfield may be a 9-bit resource unit allocation index.
  • the 9-bit resource unit index may include any one or more of the following items:
  • the permutation and combination of resource units includes only one 106-tone RU greater than or equal to, the indication that the 106-tone RU supports 9-16 MU MIMO users is supplemented, and 104 entries need to be added;
  • the newly added 2 ⁇ 996-tone RU (corresponding to 160MHz) supports the indication of the number of 1-16 MU MIMO users, and 16 new entries are needed;
  • the newly added 4 ⁇ 996-tone RU (corresponding to 320MHz) supports the indication of the number of 1-16 MU MIMO users, and 16 new entries are required;
  • the 512 entries include entries for indicating that the 106-tone RU supports 1 to 8 MU MIMO users, and the permutation and combination of resource units does not include entries greater than or equal to the 106-tone RU. Except for the entries used to indicate these two situations, the number of remaining entries is less than 328, which is not enough to carry the newly added 328 entries. So further.
  • the arrangement and combination of the resource units indicated by the partial indexes of the 9-bit resource unit index table can be changed, and these partial indexes can be used to indicate some newly added entries, or the number of entries to be added can be reduced, or the reserved entries can be used to indicate greater than or It is equal to the case where 106-tone RU supports more than 8 MU MIMO users.
  • these partial indexes can be used to indicate some newly added entries, or the number of entries to be added can be reduced, or the reserved entries can be used to indicate greater than or It is equal to the case where 106-tone RU supports more than 8 MU MIMO users.
  • RU allocation is not performed, that is, there is no need to add the number of entries in the third case (4*996-tone RU MU MIMO user number indication), which can be reduced 16 entries.
  • each 106-tone RU can support, for example, is still limited to a maximum of 8 MU MIMO users. Need to add 192 new entries in the fourth case above.
  • each 106-tone RU can be limited to a maximum of 12 MU MIMO users.
  • the first 106-tone RU supports 1-8 MU MIMO users
  • the second 106-tone RU supports 9-12 MU MIMO users (32 items need to be added)
  • the first 106-tone RU Supports 9-12 MU MIMO users
  • the second 106-tone RU supports 9-12 MU MIMO users (16 items need to be added)
  • the first 106-tone RU supports 9-12 MU MIMO users
  • the first 106-tone RU supports 9-12 MU MIMO users.
  • Two 106-tone RUs support 1-8 MU MIMO users (32 entries need to be added), in this case a total of 80 entries need to be added.
  • reserved entries such as 0011101x 1 x 0 and 001111y 2 y 1 y 0 can be further used for indication.
  • Table 3 shows an example of a 9-bit resource allocation index table.
  • the newly added entry is: when the permutation and combination of resource units includes only one RU greater than or equal to 106-tone, it is supplemented that the RU greater than or equal to 106-tone supports 9-16 MU MIMO The indicated entry for the number of users.
  • 2 ⁇ 996-tone RU (corresponding to 160MHz) is newly added to support 1-16 MU MIMO users indicating the number of entries.
  • the newly added 4 ⁇ 996-tone RU (corresponding to 320MHz) supports 1-16 MU MIMO users indicating the number of entries.
  • One 106-tone RU can support The maximum number of MU MIMO users. For example, one 106-tone RU supports 13-16 MU MIMO users, or one 106-tone RU supports 11-12 MU MIMO users.
  • the 9-bit resource unit index can indicate the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers.
  • the number of MU MIMO users can be greater than 8.
  • the resource unit allocation subfield may be an 8-bit resource unit allocation index.
  • the 8-bit resource unit index one or more of the above 328 entries may also be newly added.
  • an 8-bit resource unit index table there are always 256 entries (256 rows), which is not enough to carry the newly added 328 entries. So further.
  • the permutation and combination of the resource units indicated by the partial indexes of the 8-bit resource unit index table can be changed, and these partial indexes can be used to indicate some newly added entries, or the number of entries to be added can be reduced, or the reserved entries can be used to indicate greater than or It is equal to the case where 106-tone RU supports more than 8 MU MIMO users. For example, it only supports more than 8 MU MIMO users for 242-tone RU or more, while for 106-tone RU it still supports up to 8 MU MIMO users. In view of this situation, an 8-bit index table can be used for indication.
  • Table 8 shows an example of an 8-bit resource allocation index table.
  • the restriction only supports more than 8 MU MIMO users for more than or equal to 242-tone RU, while for 106-tone RU, it still supports a maximum of 8 users, achieving a greater than or equal to 242-tone RU.
  • the number of supported MU MIMO users greater than 8.
  • Table 3 and Table 4 are only exemplary and do not limit the resource unit index table.
  • the order of the entries in Table 3 and Table 4 may also be in any order, and it is not necessary to strictly follow the order in Table 3 and Table 4 for instructions.
  • the items that need to be added as well as the original items in the 802.11ax standard can all exist partially. This application does not restrict this.
  • the sending device sends the PPDU to the receiving device.
  • At least one resource unit allocation subfield included in the PPDU may be any one of the indexes in Table 3 or Table 4 above.
  • the receiving device determines RU allocation according to at least one resource unit allocation subfield included in the PPDU and a resource unit allocation index corresponding to one resource unit allocation subfield.
  • the number of MU MIMO users supported in each 106-tone RU is determined according to the resource unit allocation index.
  • read the site-by-site field according to the predetermined order indicated by the resource unit allocation subfield and determine the site-by-site field corresponding to oneself, the resource unit to which one belongs, and the corresponding number of spatial streams according to the site identifier carried in the site-by-site field, and modulate And coding strategies. For example, assume that the resource unit allocation index indicated by the resource unit allocation subfield received by the receiving device is 110111010.
  • the receiving device may determine the RU allocation mode as 106-tone RU+26-tone RU+106-tone RU according to the resource unit allocation index.
  • the three bits 111 in the middle of the resource unit allocation index are used to indicate that the first 106-tone RU supports 8 MU MIMO users, and the last three bits 010 are used to indicate the difference between the number of MU MIMO supported by the second 106-tone RU and 8.
  • the three-bit “010” can indicate 3, that is, the difference between the number of MU MIMO supported by the second 106-tone RU and 8 is 3, and the second 106-tone RU supports 11 MU MIMO users, then 106-tone RU RU+26-tone RU+106-tone RU supports a total of 20 MU MIMO users, the first 106-tone RU supports 8 MU MIMO users, the middle 26-tone RU supports 1 MU MIMO user, and the second 106-tone RU supports 1 MU MIMO user. -tone RU supports 11 MU MIMO users.
  • the resource unit allocation index can indicate the support of an RU with a size greater than or equal to 106-tone through the design of the resource unit allocation index
  • the number of users is greater than 8.
  • the B field of the existing signaling field is changed slightly, which is easy to implement. Improve resource utilization and improve communication efficiency.
  • the resource unit allocation index includes a first index and a second index used to indicate the arrangement and combination of the same type of resource unit, and the first index indicates the resource unit supported by a resource unit composed of greater than or equal to 106 subcarriers.
  • the number of MU MIMO users The number of MU MIMO users is less than or equal to 8.
  • the second index indicates the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8.
  • a resource unit allocation index of 8 bits or 9 bits is taken as an example.
  • Table 3 or Table 4 it can be found that for the same resource unit arrangement and combination, different resource unit allocation indexes are corresponding.
  • Table 3 for the permutation and combination of 106-tone RU+26-tone RU+26-tone RU+26-tone RU+26-tone RU+26-tone RU+26-tone RU, there are two different resource units Assign index.
  • the first index (first index) is 001000y 2 y 1 y 0 , indicating that the number of MU MIMO users supported by the 106-tone RU is 1 to 8.
  • the second index is 101000y 2 y 1 y 0 , indicating that the number of MU MIMO users supported by the 106-tone RU is 9-16.
  • y 2 y 1 y 0 is used to indicate that the number of MU MIMO users supported by the 106-tone RU is any one from 1 to 8.
  • y 2 y 1 y 0 is used to indicate that the number of MU MIMO users supported by the 106-tone RU is any one from 9 to 16.
  • the implementation is pre-defined or pre-configured for different indexes corresponding to the same kind of resource unit permutation and combination.
  • the highest bit of 0 means that the index uses a 3-bit indicator to indicate a MU greater than or equal to 106-tone RU support.
  • the number of MIMO users is less than or equal to 8.
  • the highest bit is 1 means that the index uses a 3-bit to indicate that the number of MU MIMO users is the actual number of MU MIMO users minus 8. That is, the index with the highest bit of 1 indicates that the index is greater than or equal to the MU supported by 106-tone RU The number of MIMO users is greater than 8.
  • the receiving device can determine whether the resource unit allocation index indicates that the number of MU MIMO users supported by 106-tone RU is greater than or equal to or less than or Equal to 8, or indicates a value exceeding 8. If the resource unit allocation index actually indicates greater than or equal to the number of MU MIMO users supported by the 106-tone RU is a value greater than 8, then the receiving device adds 8 to the number of MU MIMO users actually indicated by the resource unit allocation index. You can get the number of MU MIMO users that is greater than or equal to 106-tone RU actually supported.
  • a certain bit of the 8-bit or 9-bit resource unit index may be predefined or preconfigured as an indicator bit, and the indicator bit is used to indicate that the resource unit index indicates that the MU MIMO supported by the 106-tone RU is greater than or equal to
  • the number of users is the number of MU MIMO users actually supported by the RU, or the number of MU MIMO users actually supported by the RU minus 8.
  • the receiving device can determine that the resource unit allocation index indicates greater than or equal to the MU MIMO users supported by the 106-tone RU Is the number less than or equal to 8, or indicates a value greater than 8.
  • the resources used to indicate the number of MU MIMO users can be reduced and the resource utilization rate of the resource unit index can be improved.
  • another possible implementation is to pre-define or pre-configure the number of MU MIMO users indicated by two different indexes respectively.
  • the first index uses 3 bits to indicate that one is greater than or equal to the MU MIMO supported by 106-tone RU
  • the number of users is less than or equal to 8
  • the number of MU MIMO users supported by a 106-tone RU indicated by 4 bits in the second index is 9 to 16.
  • the resource unit allocation index includes a field for indicating the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers (for example, it may be a field for indicating the number of MU MIMO users).
  • the length of the indication field is greater than or equal to 4 bits, and the number of MU MIMO users is greater than 8.
  • the receiving device may determine the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers according to the indication field of the number of MU MIMO users.
  • an indication field of 4 bits or more may be predefined in the resource unit index, and the indication field is used to indicate that the index is composed of more than or equal to 106 children.
  • the number of MU MIMO users supported by a resource unit composed of carriers may be greater than or equal to the number of MU MIMO users supported by a resource unit composed of 106 subcarriers.
  • a 4-bit indication field it can indicate that the number of MU MIMO users supported by a resource unit that is greater than or equal to 106 subcarriers is 9 to 16.
  • an indication field greater than 4 bits it can indicate that the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers is greater than 16.
  • the index 01111y 3 y 2 y 1 y 0 in Table 3 uses y 3 y 2 y 1 y 0 to indicate that the number of users supported by the 2 ⁇ 996-tone RU is 1 to 16.
  • the index 11111x 3 x 2 x 1 x 0 use x 3 x 2 x 1 x 0 to indicate that the number of users supported by the 4 ⁇ 996-tone RU is 1 to 16.
  • the receiving device After the receiving device allocates a certain resource unit index, it can be determined according to the indication field that the resource unit allocation index indicates greater than or equal to the number of MU MIMO users supported by the 106-tone RU. And, the number of MU MIMO users is greater than 8.
  • the indication field with a length greater than or equal to 4 bits to indicate the number of MU MIMO users supported by a resource unit greater than or equal to 106 subcarriers, it is easy to indicate that the number of MU MIMO users is greater than 8, and the accuracy of the number of MU MIMO users is improved. . Easy to implement.
  • the signaling field B further includes a first indication subfield, and the first indication subfield is used to indicate the bit width of the resource unit allocation index.
  • the first indication subfield is used to indicate the bit width of the resource unit allocation index. For example, it is used to indicate that at least one resource unit allocation subfield is an index of 8bit, 9bit or other bit length.
  • the receiving device can determine the bit width (length) of a resource unit allocation index according to the first indication subfield.
  • the receiving device can accurately receive and parse the resource unit allocation subfield, which improves the receiving device's determination of the permutation and combination of resource units indicated by the resource unit allocation subfield and MU MIMO The efficiency of the number of users.
  • first indication subfield in addition to being set in signaling field B or signaling field A, it can also be set in other fields included in the PPDU, as long as the first indication subfield is located in at least one It is sufficient before the resource unit allocates the subfields, and this application is not limited here.
  • the reception of the resource unit allocation subfield of 9 bits or greater by the receiving device may be set as an optional feature.
  • a sending device when a sending device is associated with a receiving device, it can declare capabilities through extremely high throughput capability information, indicating whether it supports the reception of resource unit allocation subfields of 9 bits or greater.
  • the sending device may not send a PPDU containing the resource unit allocation subfield to the receiving device.
  • FIG. 11 is a schematic flowchart of a method 300 for indicating the number of MU-MIMO users according to an embodiment of the present application.
  • the method 300 may be applied in the scenario shown in FIG. 1.
  • it can also be applied to other communication scenarios or communication systems, and the embodiments of the present application are not limited herein.
  • the method 300 shown in FIG. 11 may include step S310 to step S330.
  • the steps in the method 200 are described in detail below with reference to FIG. 11.
  • the method 200 includes:
  • the sending device generates a physical layer protocol data unit PPDU.
  • the PPDU includes a signaling field B.
  • the signaling field B includes at least one resource unit allocation subfield and a second indication field.
  • One resource unit allocation subfield is used to indicate a Permutation and combination of resource units.
  • At least one resource unit allocation subfield and the second indication field jointly indicate the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8.
  • S320 The sending device sends the PPDU.
  • the receiving device receives the PPDU.
  • the receiving device determines, according to at least one resource unit allocation subfield and the second indication field, the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers.
  • the sending device when it needs to send data to the receiving device, it sends a PPDU to the receiving device, and the PPDU includes the signaling field B.
  • the PPDU may also include EHT-SIG-A fields, data fields, and so on.
  • the signaling field B includes at least one resource unit allocation subfield (RU allocation subfield).
  • the signaling field B may also include at least one site-by-site field (user field).
  • a resource unit allocation subfield is a resource unit allocation index, and a resource unit allocation index is used to indicate a permutation and combination of resource units (or may also be referred to as an allocation sequence of resource units).
  • the sequence of at least one site-by-site field corresponds to the allocation sequence of the resource sheet, and is used for the site information of the allocated STAs in the RU included in the permutation and combination of resource units.
  • a resource unit allocation index may be an 8-bit index, as shown in Table 2 above.
  • An 8-bit resource unit allocation index is used to indicate a permutation and combination of resource units.
  • the signaling field B also includes a second indication field.
  • the at least one resource unit allocation subfield and the second indication field jointly indicate the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers.
  • the MU MIMO user The number is greater than 8.
  • the PPDU includes at least one resource unit allocation subfield, and the resource unit allocation index indicated by one resource unit allocation subfield may be any one of the indexes in Table 2 above.
  • the sending device sends the PPDU to the receiving device.
  • the receiving device receives the PPDU.
  • the receiving device determines RU allocation according to at least one resource unit allocation subfield and a resource unit allocation index corresponding to one resource unit allocation subfield. Further, read the site-by-site field according to the predetermined order indicated by the resource unit allocation subfield, and determine the site-by-site field corresponding to oneself, the resource unit to which one belongs, and the corresponding number of spatial streams according to the site identifier carried in the site-by-site field, and modulate And coding strategies.
  • the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers can be determined.
  • the resource unit composed of greater than or equal to 106 subcarriers may be a resource unit to which it belongs, or may not be a resource unit to which it belongs.
  • the number of MU MIMO users can be greater than 8.
  • the second indicator field and at least one resource unit are allocated
  • the subfields jointly indicate the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, which realizes the situation that the number of users supported by an RU with a size greater than or equal to 106-tone is greater than 8.
  • the newly added indication field the indication that the number of MU MIMO users is greater than 8 can be accurately and conveniently realized. And there is no need to change the existing resource unit allocation index table, which is easy to implement. Improve the efficiency of indicating that the number of MU MIMO users is greater than 8.
  • the second indication field includes at least one MU MIMO user number indication subfield.
  • S310 in the method 300 the sending device generates a physical layer protocol data unit PPDU,
  • the PPDU includes a signaling field B, and the signaling field B includes at least one resource unit allocation subfield and a second indication field, including S311.
  • the sending device generates a physical layer protocol data unit PPDU.
  • the PPDU includes a signaling field B.
  • the signaling field B includes at least one resource unit and at least one MU MIMO user number indicator subfield.
  • One MU MIMO user number indicator subfield is used for To indicate the number of MU MIMO users supported by the corresponding resource unit, the number of MU MIMO users is greater than 8.
  • S330 in the method 300 the receiving device determines, according to at least one resource unit allocation subfield and the second indication field, the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, including S331.
  • the receiving device determines the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers according to at least one resource unit allocation subfield and at least one MU MIMO user number indicator subfield.
  • a MU MIMO user number indicator subfield corresponds to a resource unit that is composed of greater than or equal to 106 subcarriers and supports a MU MIMO user number equal to 8 indicated by a resource unit allocation subfield.
  • the second design method the number of MU MIMO user number indicator subfields is the same as the maximum number of resource units that may be greater than or equal to 106 subcarriers.
  • FIG. 13 shows a schematic diagram of the structure of the signaling field B corresponding to the first design method.
  • the signaling field B includes at least one resource unit allocation subfield and at least one MU MIMO user number indication subfield. It should be understood that the signaling field B may also include at least one site-by-site field. If the bandwidth is greater than or equal to 80 MHz, the signaling field B also has a center 26-tone RU indication field.
  • a MU MIMO user number indicator subfield corresponds to a resource unit that is composed of more than or equal to 106 subcarriers indicated by a resource unit allocation subfield and the indicated MU MIMO user number is equal to 8, and a MU MIMO user number indicator subfield is used It indicates the number of MU MIMO users supported by the corresponding resource unit.
  • the specific way to indicate the number of MU MIMO users is as follows:
  • a resource unit allocation subfield that is greater than or equal to 106-tone RU, if the number of MU MIMO users supported by the 106-tone RU is greater than or equal to less than 8, use the resource unit allocation index shown in Table 2 to indicate , Use the resource unit allocation subfield to indicate the number of MU MIMO users that the 106-tone RU actually supports.
  • the resource unit allocation subfield indicates 8 first, and further, the resource unit allocation subfield indicates greater than or equal to 106-tone RU and the sequence of the resource units with the number of MU MIMO users supported equal to 8, there is a one-to-one corresponding MU MIMO user number indicator subfield with the resource unit greater than or equal to 106-tone RU and the number of supported MU MIMO users equal to 8. .
  • the content indicated by the MU MIMO user number indication subfield may be the value of the number of MU MIMO users actually supported by the corresponding resource unit minus 8. In the first calculation rule, as shown in FIG.
  • At least one resource unit allocation subfield and at least one MU MIMO user number indicator subfield may be CRC checked and coded respectively.
  • the number of MU MIMO user number indicator subfields is the same as the number of resource units greater than or equal to 106-tone RU and the number of supported MU MIMO users equal to 8.
  • the receiving device obtains the number of MU-MIMO RUs with 8 users by receiving RU allocation subfield, and further obtains the number of subsequent MU-MIMO indication subfields.
  • the first CC includes the resource allocation subfield of the first 242-tone RU
  • the second CC includes the first Two 242-tone RU resource allocation subfields.
  • the resource unit allocation index corresponding to the resource unit allocation subfield is 10y 2 y 1 y 0 z 2 z 1 z 0 .
  • the first 106-tone RU supports 10 MU MIMO users
  • the second 106-tone RU supports 3 MU MIMO users.
  • the permutation and combination of the resources of the second 242-tone RU is 106-tone RU+26-tone RU+52-tone RU+52-tone RU, and the resource unit allocation index corresponding to the resource unit allocation subfield is 01011y 2 y 1 y 0 .
  • the first 106-tone RU supports 8 MU MIMO users.
  • CC1 includes the resource allocation subfield of the first 242-tone RU.
  • the number of users supported by the first 106-tone RU is 10, which is indicated by 8 users.
  • the resource unit allocation index 10y2y1y0z2z1z0 indicates 111 (binary 0 To 7 corresponds to 1 to 8 users), the number of the second 106-tone RU users is 3, according to the indication of 3 users, then z2z1z0 in 10y2y1y0z2z1z0 indicates 010, so the first resource unit allocation subfield (RU allocation subfield ) Indicates 10111010. Furthermore, because the bandwidth is less than 80MHz, there is no center 26-tone RU indication.
  • the receiving device After receiving at least one resource unit allocation subfield and at least one MU MIMO user number indicator subfield, the receiving device first determines the RU allocation according to the resource unit allocation index corresponding to one resource unit allocation subfield, and further determines the RU allocation according to the resource unit allocation index
  • the index indicates whether the number of MU-MIMO users supported by a 106-tone RU (referred to as the first RU for distinction) is less than 8 or equal to 8. If it is less than 8, the number of MU-MIMO users indicated by the resource unit allocation index is the actual number of MU-MIMO users supported by the first RU.
  • the first RU in the resource unit that is greater than or equal to 106-tone RU and the number of supported MU MIMO users is equal to 8 read the first RU in at least one MU MIMO user number indicator subfield.
  • the corresponding MU MIMO user number indicator subfield determines the number of MU MIMO users indicated by the MU MIMO user number indicator subfield corresponding to the first RU, and adds 8 to the number of MU MIMO users to obtain the number of users actually supported by the first RU.
  • a padding field may also exist in CC2, so that the receiving device can parse CC1 and CC2 more accurately and quickly. Improve the efficiency of receiving equipment to obtain the number of MU MIMO users.
  • Figure 16 shows a schematic diagram of the corresponding signaling field B structure in the second design mode.
  • the signaling field B includes at least one resource unit allocation subfield and at least one MU MIMO user number indication subfield. It should be understood that the signaling field B may also include at least one site-by-site field. If the bandwidth is greater than or equal to 80 MHz, the signaling field B also has a center 26-tone RU indication field.
  • the number of subfields indicating the number of MU MIMO users is the same as the maximum number of resource units that may exist that are greater than or equal to 106 subcarriers.
  • One MU MIMO user number indicator subfield is used to indicate the number of MU MIMO users supported by the corresponding resource unit.
  • At least one resource unit allocation subfield and at least one MU MIMO user number indicator subfield are uniformly CRC checked and coded.
  • the specific method for indicating the number of MU MIMO users is similar to the above-mentioned first design method, except for the number of MU MIMO user number indicator subfields and the number of MU MIMO users in the first design method.
  • the number of indicated subfields may be different. Since at least one resource unit allocation subfield and at least one MU MIMO user number indicator subfield are uniformly CRC checked and coded, the number of MU-MIMO user number indicator subfields needs to be obtained before reading the RU allocation subfield.
  • the receiving device can know the location of CRC and Tail, decode and check first, and then analyze the corresponding information. That is, the number of MU MIMO user number indicator subfields is fixed. Therefore, since one RU allocation subfield indicates at most two 106-tone RUs or indicates one greater than 106-tone RU, design according to the maximum number of 106-tone RUs that may exist, and the number of MU MIMO users indicates the number of subfields It is the same as twice the number of resource unit allocation subfields.
  • CC1 includes the resource allocation subfield of the first 242-tone RU.
  • the number of users supported by the first 106-tone RU is 10.
  • the resource unit allocation index is 10y 2 y 1 y 0 z 2 z 1 z
  • y 2 y 1 y 0 indicates 0 111 (corresponding to a binary 0 to 7 1 to 8 users)
  • a second support 106-tone RU number of users is 3, three users in accordance with an instruction, the 10y 2 In y 1 y0z 2 z 1 z 0 , z 2 z 1 z 0 is indicated as 010, so the first resource unit allocation subfield (RU allocation subfield) is indicated as 10111010.
  • the bandwidth is less than 80MHz, there is no center 26-tone RU indication. Since the MU MIMO user number indicator subfield and the resource unit allocation subfield are uniformly coded, the number of the MU-MIMO user number indicator subfield needs to be obtained before reading the RU allocation subfield. As shown in Figure 17. In CC1, the number of MU-MIMO user count subfields is the same as the maximum number of 106-tone RUs that may exist, that is, the same as the maximum number of 106-tone RUs that may be MU-MIMO transmission. That is, the number of RU allocation subfields is multiplied by 2.
  • the number of MU MIMO users supported by only one 106-tone RU is greater than 8
  • the value indicated by the first MU-MIMO user number subfield is 2, and the second MU-MIMO user number subfield may be reserved or not indicated.
  • CC2 resource allocation field comprises a second sub-242-tone RU, the number of users of a 106-tone RU 8 is supported, in accordance with a user instruction 8, the resource unit assignment index 01011y 2 y 1 y 0 y 2 in y 1 y 0 indicates 111, so the second RU allocation subfield indicates 01011111. Furthermore, because the bandwidth is less than 80MHz, there is no center 26-tone RU indication. Although there is only one RU indicating 8 users in the RU allocation subfield, there are still 2 subfields indicating the number of MU-MIMO users. The value indicated by the first MU-MIMO user number subfield is 0, which means that there are no additional users on the basis of 8. The second MU-MIMO user number subfield can be reserved or not indicated.
  • MU MIMO user number indicator subfields in the second design method is designed according to the maximum 106-tone RU that may appear, the actual number of MU-MIMO users subfield used to indicate The number is still the same as the first implementation.
  • the remaining MU MIMO user number indication subfield, if it exists, can be reserved without any indication.
  • At least one resource unit allocation subfield and at least one MU MIMO user number indicator subfield are unified for CRC check and coding, and at least one resource unit allocation subfield and at least one MU MIMO user number indicator subfield are used to indicate the number of MU MIMO users. It can ensure that each RU greater than or equal to 106-tone has a corresponding MU MIMO user number indicator subfield, which ensures the reliability of the indicator that the number of MU MIMO users is greater than 8.
  • the second indication field includes a user number bitmap subfield.
  • S310 in the method 300 the sending device generates a physical A layer protocol data unit PPDU, the PPDU includes a signaling field B, and the signaling field B includes at least one resource unit allocation subfield and a second indication field, including S311.
  • the sending device generates a physical layer protocol data unit PPDU.
  • the PPDU includes a signaling field B.
  • the signaling field B includes at least one resource unit and a user number bitmap (User Number bitmap) subfield.
  • the user number bitmap One bit of is used to indicate that the number of MU MIMO users supported by the corresponding resource unit is the actual number of MU MIMO users or the difference between the actual number of MU MIMO users and 8.
  • the receiving device determines the number of MU MIMO users supported by the resource unit composed of greater than or equal to 106 subcarriers according to at least one resource unit allocation subfield and the second indication field, including S332.
  • the receiving device determines the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers according to at least one resource unit allocation subfield and a bitmap of the number of households.
  • one bit of the user number bitmap subfield corresponds to a resource unit composed of greater than or equal to 106 subcarriers indicated by a resource unit allocation subfield.
  • the second design method the length of the bitmap subfield of the number of users is the same as the maximum number of resource units that may be greater than or equal to 106 subcarriers.
  • Figure 19 shows a schematic diagram of the corresponding signaling field B structure in the first design mode.
  • the signaling field B includes at least one resource unit allocation subfield and a user number bitmap subfield. It should be understood that the signaling field B may also include at least one site-by-site field. If the bandwidth is greater than or equal to 80 MHz, the signaling field B also has a center 26-tone RU indication field.
  • One bit of the user number bitmap subfield corresponds to a resource unit composed of greater than or equal to 106 subcarriers indicated by a resource unit allocation subfield, and one bit of the user number bitmap subfield is used to indicate the corresponding resource
  • the number of MU MIMO users supported by the unit is the actual number of MU MIMO users or the difference between the actual number of MU MIMO users and 8.
  • the specific way to indicate the number of MU MIMO users is as follows:
  • Manner a If the number of MU MIMO users supported by 106-tone RU is greater than or equal to 8, then the resource unit allocation index shown in Table 2 is used to indicate, and the resource unit allocation subfield is used to indicate the greater than or Equal to the number of MU MIMO users actually supported by 106-tone RU.
  • a bit in the user number bitmap subfield indicates whether the MU MIMO user number indication mode greater than or equal to 106-tone RU is mode a or mode b.
  • a bit of the user number bitmap subfield and a resource unit allocation subfield indicate resources that are greater than or equal to 106 subcarriers.
  • the units correspond one to one.
  • at least one resource unit allocation subfield and user number bitmap subfield may be CRC checked and coded separately.
  • the length (number of bits) of the user data bitmap subfield is the same as the number of resource units greater than or equal to 106-tone RU indicated by the resource unit allocation subfield.
  • the receiving device obtains the number of resource units greater than or equal to 106-tone RU by receiving the RU allocation subfield, and further obtains the number of bits in the subsequent user number bitmap subfield.
  • CC1 includes the resource allocation subfield of the first 242-tone RU.
  • the number of users supported by the first 106-tone RU is 10.
  • the resource unit allocation index is 10y 2 y 1 y 0 z 2 z 1 z 0 in y 2 y 1 y 0 indicated as 001 (binary 0 to 7 corresponding to user 1 to 8)
  • the second number of users supported by the 106-tone RU 3, 3 according to the user instruction the 10y 2 y 1 y0z 2 z 1 z 0 in z 2 z 1 z 0 is indicated as 010
  • the first subfield allocation resource unit (RU allocation subfield) indicated as 10,111,010.
  • the receiving device can obtain the number of 106-tone RUs greater than or equal to 106-tone RU by receiving the RU allocation subfield, and further obtain the number of bits of the subsequent user digital bitmap.
  • the 2-bit user number bitmap subfield can be indicated as 01 (assuming "0" means b and "1" means a ) Or 10 (assuming "1" means mode b, 0" means mode a). If a bit indicates mode b, the number of users that this bit corresponds to is greater than or equal to 106-tone RU actually supports the resource unit allocation index Add 8 to the number of users indicated.
  • CC2 includes the resource allocation subfield of the second 242-tone RU.
  • the number of users supported in the first 106-tone RU is 8. According to the instructions of the eight users, y 2 y 1 y 0 in 01011y 2 y 1 y 0 The indication is 111, so the second RU allocation subfield is indicated as 01011111. Furthermore, because the bandwidth is less than 80MHz, there is no center 26-tone RU indication.
  • the receiving device After receiving at least one resource unit allocation subfield and a user number bitmap subfield, the receiving device first determines RU allocation according to a resource unit allocation index corresponding to one resource unit allocation subfield. Further, read the site-by-site field according to the predetermined order indicated by the resource unit allocation subfield, and determine the site-by-site field corresponding to oneself, the resource unit to which one belongs, and the corresponding number of spatial streams according to the site identifier carried in the site-by-site field, and modulate And coding strategies. Furthermore, it is determined according to the resource unit allocation index that the index indicates the number of MU-MIMO users that is greater than or equal to 106-tone RU (referred to as the second RU for distinction).
  • the user number bitmap subfield read the bit corresponding to the second RU, and determine that the number of MU MIMO users indicated by the resource unit allocation index corresponding to the second RU is the number of MU MIMO users actually supported by the second RU or It is the difference between the actual number of MU MIMO users and 8. If it is the difference between the number of MU MIMO users actually supported by the second RU and 8, you need to add 8 to this value to get the number of MU MIMO users actually supported by the second RU.
  • MU MIMO user number indication avoids the occurrence of more or useless user bits, and the overhead is relatively small, saving resources, and it is also conducive to the analysis of the receiving device to obtain the number of MU MIMO users. Improve the efficiency of indicating that the number of MU MIMO users is greater than 8.
  • Figure 21 shows a schematic diagram of the corresponding signaling field B structure in the second design mode.
  • the signaling field B includes at least one resource unit allocation subfield and a user number bitmap subfield. It should be understood that the signaling field B may also include at least one site-by-site field. If the bandwidth is greater than or equal to 80 MHz, the signaling field B also has a center 26-tone RU indication field.
  • the bit width of the user number bitmap subfield is the same as the maximum number of possible resource units composed of greater than or equal to 106 subcarriers.
  • One bit of the user number bitmap subfield is used to indicate that the number of MU MIMO users supported by the corresponding resource unit is the actual number of MU MIMO users or the difference between the actual number of MU MIMO users and 8.
  • at least one resource unit allocation subfield and user number bitmap subfield are uniformly CRC checked and coded.
  • the specific method for indicating the number of MU MIMO users is similar to the first design method mentioned above, except for the length of the user number bitmap and the user number bitmap subfield in the first design method. The length may be different.
  • the user number bitmap subfield needs to be obtained before reading the RU allocation subfield.
  • the receiving device can know the location of CRC and Tail, decode and check first, and then analyze the corresponding information. That is, the length of the user digital bitmap subfield is fixed. Therefore, since an RU allocation subfield includes at most two 106-tone RUs, or includes one greater than 106-tone RU, design according to the maximum number of 106-tone RUs that may exist, and the length of the user digital bitmap (bits Number) is the same as twice the number of resource unit allocation subfields.
  • CC1 includes the resource allocation subfield of the first 242-tone RU.
  • the number of users supported by the first 106-tone RU is 10.
  • the resource unit allocation index is 10y 2 y 1 y 0 In z 2 z 1 z 0 , y 2 y 1 y 0 is indicated as 001 (binary 0 to 7 correspond to 1 to 8 users).
  • the number of users supported by the second 106-tone RU is 3.
  • z 2 z 1 z 0 in 10y 2 y 1 y0z 2 z 1 z 0 indicates 010, so the first resource unit is allocated
  • the subfield (RU allocation subfield) is indicated as 10111010.
  • the bandwidth is less than 80MHz, there is no center 26-tone RU indication. Because the user number bitmap subfield and the resource unit allocation subfield are jointly coded. The length of the user bitmap subfield needs to be obtained before reading the RU allocation subfield. As shown in Figure 22. In CC1, the length of the user number bitmap subfield is the same as the maximum number of 106-tone RUs that may exist, that is, the same as the maximum number of 106-tone RUs that may be MU-MIMO transmission. That is, the number of RU allocation subfields is multiplied by 2. Therefore, on CC1, there is also a user data bitmap subfield with a length of 2 bits. The first bit corresponds to the first 106-tone RU, and the second bit corresponds to the second 106-tone RU.
  • CC2 resource allocation field comprises a second sub-242-tone RU, the number of users of a 106-tone RU 8 is supported, in accordance with a user instruction 8, the resource unit assignment index 01011y 2 y 1 y 0 y 2 in y 1 y 0 indicates 111, so the second RU allocation subfield indicates 01011111. Furthermore, because the bandwidth is less than 80MHz, there is no center 26-tone RU indication. Although there is only one 106-tone RU in the RU allocation subfield, there is also a user number bitmap subfield with a length of 2 bits. The first bit corresponds to the first 106-tone RU, and the second bit can be reserved without any indication.
  • HE-SIG-A indicates that HE-SIG-B is in compression mode and multiplexes the number of HE-SIG-B symbols to indicate the number of users performing MU-MIMO transmission in full bandwidth. At this time, there is no common field in HE-SIG-B, and it directly indicates field by site.
  • the number of MU MIMO users is greater than 8 by restricting the transmission mode that supports the number of MU MIMO users greater than 8. For example, it is restricted to support MU-MIMO transmission for more than 8 users when performing full-bandwidth MU-MIMO transmission, that is, MU-MIMO transmission under non-OFDMA conditions. For the OFDMA scenario, if a certain RU with less than the full bandwidth is used for MU-MIMO transmission, the RU supports up to 8 users for MU-MIMO transmission.
  • the field used to indicate the number of EHT-SIG-B symbols in EHT-SIG-A can be multiplexed to indicate the number of MU-MIMO users.
  • a new field may be set in EHT-SIG-A or EHT-SIG-B to indicate the number of MU-MIMO users.
  • a field for indicating full-bandwidth MU-MIMO transmission can also be set in EHT-SIG-A or EHT-SIG-B.
  • the sending device may send the PPDU to the receiving device.
  • the PPDU includes signaling field A and/or signaling field B.
  • the signaling field A or signaling field B includes a full-bandwidth MU-MIMO transmission indication field and a full-bandwidth MU-MIMO user number indication field.
  • the full-bandwidth MU-MIMO transmission indication field is used to indicate full-bandwidth MU-MIMO transmission.
  • the full-bandwidth MU-MIMO user number indication field is used to indicate the number of MU-MIMO users supported during full-bandwidth MU-MIMO transmission.
  • the number of MU-MIMO users is Greater than 8.
  • the signaling field B may also include at least one site field (user field).
  • Each site field indicates the site information within the full bandwidth during full bandwidth MU-MIM transmission.
  • the receiving device includes the full-bandwidth MU-MIMO transmission indication field and the full-bandwidth MU-MIMO user number indication field according to the signaling field A or signaling field B, and can determine the MU-MIMO users supported during full-bandwidth MU-MIM transmission
  • the number of MU MIMO users is greater than 8.
  • the field for indicating the number of full-bandwidth MU MIMO users can be multiplexed with the field used to indicate the number of EHT-SIG-B symbols in EHT-SIG-A, using 4 bits to indicate the number of full-bandwidth MU MIMO users.
  • MU-MIMO transmission of more than 8 users can be supported.
  • the RU supports up to 8 users for MU-MIMO transmission. The situation indicating that the number of MU-MIMO users is greater than 8 is realized. Easy to implement and low complexity.
  • FIG. 23 is a schematic flowchart of a method 400 for indicating the number of MU-MIMO users according to an embodiment provided by the present application.
  • the method 400 may be applied in the scenario shown in FIG. 1.
  • it can also be applied in other communication scenarios or communication systems, and the embodiments of the present application are not limited herein.
  • the method 400 shown in FIG. 23 may include step S410 to step S430.
  • the steps in the method 400 are described in detail below in conjunction with FIG. 23.
  • the method 400 includes:
  • the sending device generates a physical layer protocol data unit PPDU.
  • the PPDU includes a signaling field B.
  • the signaling field B includes at least one resource unit allocation subfield and at least one site-by-site field.
  • One resource unit allocation subfield is used to indicate a The permutation and combination of resource units, the sequence of at least one site-by-site field corresponds to the sequence of the resource unit permutation, and a site-by-site field is used to indicate the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, The number of MU MIMO users is greater than 8.
  • the sending device sends the PPDU to the receiving device.
  • the receiving device receives the PPDU.
  • the receiving device determines the number of MU MIMO users supported by the resource unit (resource unit composed of greater than or equal to 106 subcarriers) where the receiving device is located according to at least one resource unit allocation subfield and at least one site-by-site field, and the MU MIMO The number of users is greater than 8.
  • the sending device when it needs to send data to the receiving device, it sends a PPDU to the receiving device, and the PPDU includes the signaling field B.
  • the PPDU may also include the HE-SIG-A field, the L-STF field, and the data field.
  • the signaling field B may be the HE-SIG-B field shown in FIG. 2, and its structure may be similar to the structure of the HE-SIG-B field shown in FIG.
  • the signaling field B includes at least one resource unit allocation subfield (RU allocation subfield). At least one site-by-site field.
  • a resource unit allocation subfield is a resource unit allocation index, and a resource unit allocation index is used to indicate a permutation and combination of resource units (or may also be referred to as an allocation sequence of resource units).
  • the sequence of at least one site-by-site field corresponds to the allocation sequence of the resource sheet, indicating the site information of the STAs allocated in the RU included in the permutation and combination of the resource units.
  • a resource unit allocation index may be 8 bits, and an 8-bit resource unit allocation index is used to indicate a permutation and combination of resource units.
  • a site-by-site field is used to indicate the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers where the site is located, and the number of MU MIMO users is greater than 8.
  • the sending device sends the PPDU to the receiving device.
  • the receiving device receives the PPDU.
  • the receiving device determines RU allocation according to at least one resource unit allocation subfield and a resource unit allocation index corresponding to one resource unit allocation subfield. Further, the field by site is read according to the predetermined order indicated by the resource unit allocation subfield. According to the site identifier carried in the site-by-site field, determine the site-by-site field corresponding to oneself (assuming the first site field). According to the first site field, the resource unit corresponding to the first site field and the corresponding number of spatial streams, modulation and coding strategy, etc. are obtained. Further, determine the number of MU MIMO users supported by the resource unit (resource unit composed of greater than or equal to 106 subcarriers) where the resource unit is located according to the first station field.
  • the method for indicating the number of MU-MIMO users indicates the number of MU MIMO users supported by the corresponding resource unit composed of greater than or equal to 106 subcarriers through the site-by-site field in the signaling field B, and the MU-MIMO user The number is greater than 8.
  • the situation where the number of users supported by the indicated size greater than or equal to 106-tone RU is greater than 8 is realized. It can accurately and conveniently realize the indication that the number of MU MIMO users is greater than 8. And there is no need to change the existing resource unit allocation index table, which is easy to implement. Improve the efficiency of indicating that the number of MU MIMO users is greater than 8.
  • the first site-by-site field in at least one site-by-site field includes a subfield indicating the number of MU MIMO users, and the first site-by-site field corresponds to a resource unit composed of greater than or equal to 106 subcarriers.
  • the MU MIMO The user number indicator subfield is used to indicate the number of MU MIMO users supported by the resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8.
  • a subfield for indicating the number of MU MIMO users can be added to the site-by-site field. It is used to indicate the number of MU MIMO users supported by the resource unit corresponding to the site-by-site field. For example, a subfield indicating the number of MIMO users can be added to each site-by-site field. If the resource unit corresponding to a certain site-by-site field is smaller than 106-tone RU, the number of MU MIMO users indicated by the MU-MIMO user number indication subfield in the site-by-site field is 1.
  • the number of MU MIMO users indicated by the MU MIMO user number indication subfield in the site-by-site field can be greater than 8, for example, 9 to 16 can be indicated user.
  • only one or more site-by-site fields (the first site-by-site field) corresponding to RU greater than or equal to 106-tone may be added with a MU MIMO user number indicator subfield to indicate that the number of MIMO users is greater than or equal to 106-tone.
  • the number of MIMO users indicated by the MU MIMO user number indication subfield may be greater than 8.
  • Table 5 shows the subfields included in each site field (or may also be referred to as site field) in an embodiment of this application.
  • the site-by-site fields include site identification subfields, space allocation subfields, coding and modulation strategy subfields, reserved fields, and coding subfields.
  • the spatial allocation subfield is used to indicate the number of spatial streams of a station in the MU-MIMO resource.
  • MU-MIMO resources can be understood as resources greater than or equal to 106-tone RU, such as 242-tone RU, 484-tone RU, 996-tone RU, and so on.
  • a subfield indicating the number of MU MIMO users can also be added to the site-by-site field to indicate the number of MU MIMO users supported by the resource unit corresponding to the site-by-site field.
  • the MU MIMO user number indicator subfield shown in Table 5 is 4 bits.
  • the bit width of the MU MIMO user number indicator subfield may also be other lengths, such as 5 bits, 6 bits, etc. This application does not limit the length of the MU MIMO user number indicator subfield.
  • the receiving device determines the RU allocation according to at least one resource unit allocation subfield included in the PPDU, and according to a resource unit allocation index corresponding to one resource unit allocation subfield. And read each site field according to the predetermined order indicated by the resource unit allocation subfield. According to the site identification carried in the site-by-site field, determine the site-by-site field corresponding to you, the resource unit to which you belong, the corresponding number of spatial streams, modulation and coding strategies, etc., and according to the number of MU MIMO users in the corresponding site-by-site field The indication subfield determines the number of MU MIMO users supported by the resource unit to which it belongs.
  • the number of MU MIMO users supported can be greater than 8.
  • the number of MU MIMO users of the resource unit where the site is located can improve the efficiency of the MU MIMO user number indicator, and it is also helpful for the receiving device to analyze and obtain the MU MIMO user number, which improves the indicator MU The efficiency of MIMO users greater than 8.
  • the first site-by-site field in the at least one site-by-site field includes a third indication subfield, and the first site-by-site field corresponds to a resource unit composed of greater than or equal to 106 subcarriers, and the third indication The subfield is used to indicate whether the site indicated by the first site-by-site field is the last site in a resource unit composed of greater than or equal to 106 subcarriers.
  • the site-by-site field indicates whether the station is the last MU MIMO user in the resource unit, or whether the station is the last MU MIMO user in the resource unit.
  • the receiving device After receiving the PPDU, the receiving device counts the number of MU MIMO users supported in the resource unit according to all the site-by-site fields corresponding to a certain resource unit. For example, assuming that the 1-bit indicator bit is used to indicate whether the station indicated by the site-by-site field is the last MU MIMO user in the resource unit, the receiving device can use the 1-bit indicator bit to count from the first non-last site to the last A station can determine the number of MU MIMO users supported in the resource unit.
  • the resource list can be a resource unit composed of 106 subcarriers or more.
  • the number of MU MIMO users can be greater than 8.
  • Table 6 shows the subfields included in each site field in an embodiment of this application.
  • the site-by-site fields include site identification subfields, space allocation subfields, coding and modulation strategy subfields, reserved fields, and coding subfields.
  • a 1-bit indicator can also be added to the site-by-site field to indicate whether the site indicated by the site-by-site field is the last MU MIMO user in the resource unit.
  • the MU-MIMO user number indicator subfield for the number of MU-MIMO users is set by the site-by-site field in the signaling field B, or through all the MU-MIMO users in a certain resource unit.
  • the site field setting indication subfield indicates whether the site is the last site or the first site supported by the resource unit.
  • the situation where the number of users supported by the indicated size greater than or equal to 106-tone RU is greater than 8 is realized. It can accurately and conveniently realize the indication that the number of MU MIMO users is greater than 8. And there is no need to change the existing resource unit allocation index table, which is easy to implement. Improve the efficiency of indicating that the number of MU MIMO users is greater than 8.
  • the first, the second, etc. are only used to indicate that multiple objects are different.
  • the first index and the second index are just to indicate different indexes. It should not have any influence on the index itself and the number, etc.
  • the above-mentioned first, second, etc. should not cause any limitation to the embodiments of the present application.
  • pre-defined can be implemented by pre-saving corresponding codes, tables, or other methods that can be used to indicate related information in devices (for example, including terminal devices and network devices). There is no limitation on its specific implementation.
  • FIG. 24 shows a schematic block diagram of a communication device 500 according to an embodiment of the present application.
  • the device 500 may correspond to the transmission device described in the foregoing method 200 to method 400, or may be a chip or component applied to the transmission device, and The modules or units in the device 500 are respectively used to execute the actions or processing procedures performed by the sending device in the foregoing method 200 to method 400.
  • the communication device 500 may include: a processing unit 510 and a communication unit 520.
  • the processing unit 410 is configured to generate a physical layer protocol data unit PPDU, the PPDU includes a signaling field B, the signaling field B includes at least one resource unit allocation subfield, and one resource unit allocation subfield is one resource Unit allocation index, one of the resource unit allocation indexes is used to indicate a permutation and combination of resource units, and one of the resource unit allocation indexes is also used to indicate the multi-user multiple input supported by a resource unit composed of greater than or equal to 106 subcarriers
  • the number of multi-output MU MIMO users where the number of MU MIMO users is greater than 8;
  • the PPDU includes a signaling field B
  • the signaling field B includes at least one resource unit allocation subfield and a second indication field
  • one resource unit allocation subfield is used to indicate a permutation and combination of resource units
  • the at least one resource unit allocation subfield and the second indication field jointly indicate the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8;
  • the PPDU includes a signaling field B
  • the signaling field B includes at least one resource unit allocation subfield and at least one site-by-site field
  • one resource unit allocation subfield is used to indicate a permutation and combination of resource units
  • the order of the at least one site-by-site field corresponds to the order of the permutation and combination of the resource units
  • one site-by-site field is used to indicate the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, so The number of MU MIMO users is greater than 8;
  • the communication unit 520 is used to send the PPDU.
  • the support for RUs with an indication size greater than or equal to 106-tone is realized.
  • the number of users is greater than 8. Thereby improving resource utilization and improving communication efficiency.
  • the communication unit 520 may include a receiving unit (module) and a sending unit (module) for executing the method 200 to the method 400 and the sending device in FIG. 4, FIG. 11, FIG. 11, FIG. 12, FIG. 18, and FIG. 23 Steps to send information.
  • the communication device 500 may further include a storage unit 550, and the storage unit 550 is configured to store instructions executed by the communication unit 520 and the processing unit 510.
  • the communication unit 520, the processing unit 510, and the storage unit 550 are coupled to each other.
  • the storage unit 550 stores instructions.
  • the processing unit 510 is used to execute the instructions stored in the storage unit 550.
  • the communication unit 520 is used to perform specific signal transceiving under the driving of the processing unit 510. .
  • the processing unit 510 may be a processor, and the communication unit 520 may be a transceiver, an input/output interface, or an interface circuit.
  • the storage unit 530 may be a memory.
  • the communication device 600 may include a processor 610, a memory 620, and a transceiver 630.
  • the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit outside the chip in the communication device (for example, Read only memory, random access memory, etc.).
  • the aforementioned communication device 500 or 600 may be a terminal device or a network device.
  • FIG. 26 shows a schematic block diagram of a communication device 700 according to an embodiment of the present application.
  • the device 700 may correspond to the receiving device described in the above method 200, or may be a chip or component applied to the receiving device, and in the device 700 Each module or unit is respectively used to execute each action or processing procedure performed by the receiving device in the foregoing method 200 to method 400.
  • the communication device 700 may include: a communication unit 710 and a processing unit 720.
  • the communication unit 710 is used to receive a physical layer protocol data unit PPDU, the PPDU includes a signaling field B, the signaling field B includes at least one resource unit allocation subfield and a second indication field, and one resource unit allocation subfield is used for Indicates a permutation and combination of a resource unit, the at least one resource unit allocation subfield and the second indication field jointly indicate the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8. ;
  • the PPDU includes a signaling field B
  • the signaling field B includes at least one resource unit allocation subfield and a second indication field
  • one resource unit allocation subfield is used to indicate a permutation and combination of resource units
  • the unit allocation subfield and the second indication field jointly indicate the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8;
  • the PPDU includes a signaling field B
  • the signaling field B includes at least one resource unit allocation subfield and at least one site-by-site field
  • one resource unit allocation subfield is used to indicate a permutation and combination of resource units.
  • the order of the site-by-site field corresponds to the order of the permutation and combination of the resource unit.
  • a site-by-site field is used to indicate the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers, and the number of MU MIMO users is greater than 8;
  • the processing unit 720 is configured to determine the number of MU MIMO users supported by a resource unit composed of greater than or equal to 106 subcarriers according to the PPDU.
  • the support for RUs with an indication size greater than or equal to 106-tone is realized.
  • the number of users is greater than 8. Thereby improving resource utilization and improving communication efficiency.
  • the communication unit 710 may include a receiving unit (module) and a sending unit (module) for executing the method 200 to the method 400 and the receiving device in FIG. 4, FIG. 11, FIG. 11, FIG. 12, FIG. 18, and FIG. 23 Steps to receive information.
  • the communication device 700 may further include a storage unit 730, and the storage unit 730 is configured to store instructions executed by the communication unit 710 and the processing unit 720.
  • the communication unit 710, the processing unit 720, and the storage unit 730 are coupled with each other.
  • the storage unit 730 stores instructions, the processing unit 720 is used to execute the instructions stored in the storage unit 730, and the communication unit 710 is used to perform specific signal transceiving under the driving of the processing unit 720. .
  • the processing unit 720 may be implemented by a processor, and the communication unit 710 may be implemented by a transceiver.
  • the storage unit 730 may be implemented by a memory.
  • the communication device 800 may include a processor 810, a memory 820, and a transceiver 830.
  • the aforementioned communication apparatus 700 or 800 may be a terminal device or a network device.
  • each unit in the above device can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; part of the units can be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separately established processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device.
  • the processing element may also be called a processor, and may be an integrated circuit with signal processing capability.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple digital signal processors (digital signal processors, DSP), or, one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuits.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • FPGA field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • FIG. 28 shows a schematic structural diagram of a terminal device provided by an embodiment of the present application. It may be the terminal device in the above embodiment, and is used to implement the operation of the terminal device in the above embodiment.
  • the terminal equipment includes an antenna 910, a radio frequency device 920, and a baseband device 930.
  • the antenna 910 is connected to the radio frequency device 920.
  • the radio frequency device 920 receives information sent by the network device through the antenna 910, and sends the information sent by the network device to the baseband device 930 for processing.
  • the baseband device 930 processes the information of the terminal device and sends it to the radio frequency device 920
  • the radio frequency device 920 processes the information of the terminal device and sends it to the network device via the antenna 910.
  • the baseband device 930 may include a modem subsystem, which is used to process data at various communication protocol layers; it may also include a central processing subsystem, which is used to process terminal operating systems and application layers; in addition, it may also include other Subsystems, such as multimedia subsystems, peripheral subsystems, etc., where the multimedia subsystem is used to control the terminal device camera, screen display, etc., and the peripheral subsystem is used to implement connections with other devices.
  • the modem subsystem can be an independent chip.
  • the above apparatus for the terminal may be located in the modem subsystem.
  • the modem subsystem may include one or more processing elements 931, for example, including a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 932 and an interface circuit 933.
  • the storage element 932 is used to store data and programs, but the program used to execute the method executed by the terminal device in the above method may not be stored in the storage element 932, but is stored in a memory outside the modem subsystem.
  • the interface circuit 933 is used to communicate with other subsystems.
  • the above apparatus for terminal equipment may be located in a modem subsystem, which may be implemented by a chip.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to perform any of the above terminal equipment executions.
  • the interface circuit is used to communicate with other devices.
  • the unit for the terminal device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the terminal device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method executed by the terminal in the above method embodiment.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program for executing the method executed by the terminal device in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads the program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the terminal in the above method embodiment.
  • the unit of the terminal device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the modem subsystem, where the processing elements may be integrated circuits, For example: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the terminal device that implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC), and the SOC chip is used to implement the above method.
  • SOC system-on-a-chip
  • FIG. 29 is a schematic structural diagram of a network device provided by an embodiment of the present application. Used to implement the operation of the network device in the above embodiment.
  • the network equipment includes: an antenna 1001, a radio frequency device 1002, and a baseband device 1003.
  • the antenna 1001 is connected to the radio frequency device 1002.
  • the radio frequency device 1002 receives the information sent by the terminal through the antenna 1001, and sends the information sent by the terminal device to the baseband device 1003 for processing.
  • the baseband device 1003 processes the information of the terminal and sends it to the radio frequency device 1002, and the radio frequency device 1002 processes the information of the terminal equipment and sends it to the terminal via the antenna 1001.
  • the baseband device 1003 may include one or more processing elements 10031, for example, a main control CPU and other integrated circuits.
  • the baseband device 1003 may also include a storage element 10032 and an interface 10033.
  • the storage element 10032 is used to store programs and data; the interface 10033 is used to exchange information with the radio frequency device 1002.
  • the interface is, for example, a common public radio interface. , CPRI).
  • the above apparatus for network equipment may be located in the baseband apparatus 1003.
  • the above apparatus for network equipment may be a chip on the baseband apparatus 1003.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit of the network device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the baseband device.
  • the processing elements here may be integrated circuits, such as one Or multiple ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for the network equipment to implement each step in the above method can be integrated together and implemented in the form of a system-on-chip.
  • the baseband device includes the SOC chip for implementing the above method.
  • the terminal equipment and network equipment in the foregoing device embodiments may completely correspond to the terminal equipment or network equipment in the method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the receiving unit may be an interface circuit used by the chip to receive signals from other chips or devices.
  • the above sending unit is an interface circuit of the device for sending signals to other devices.
  • the sending unit is the chip for sending signals to other chips or devices.
  • the interface circuit is the chip for sending signals to other chips or devices.
  • An embodiment of the present application also provides a communication system, which includes: the foregoing sending device and the foregoing receiving device.
  • the embodiment of the present application also provides a computer-readable medium for storing computer program code, and the computer program includes instructions for executing the method 200 to 400 for indicating the number of MU MIMO users in the embodiments of the present application.
  • the readable medium may be read-only memory (ROM) or random access memory (RAM), which is not limited in the embodiment of the present application.
  • the present application also provides a computer program product, the computer program product including instructions, when the instructions are executed, so that the sending device and the receiving device perform the operations of the sending device and the receiving device corresponding to the above method.
  • the embodiment of the present application also provides a system chip.
  • the system chip includes a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute computer instructions so that the chip in the communication device executes any of the MU MIMO user number indication methods provided in the foregoing embodiments of the present application.
  • the computer instructions are stored in a storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit in the terminal located outside the chip, such as a read-only memory (ROM).
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any one of the foregoing may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the program execution of the foregoing feedback information method.
  • the processing unit and the storage unit can be decoupled, respectively set on different physical devices, and connected in a wired or wireless manner to realize the respective functions of the processing unit and the storage unit, so as to support the system chip to implement the above-mentioned embodiments Various functions in.
  • the processing unit and the memory may also be coupled to the same device.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be ROM, programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM) , EEPROM) or flash memory.
  • Volatile memory can be RAM, which acts as an external cache.
  • RAM static RAM
  • dynamic RAM dynamic RAM
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate Synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory direct memory bus random access Access memory
  • direct rambus RAM direct rambus RAM
  • system and “network” in this article are often used interchangeably in this article.
  • and/or in this article is only an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • uplink and downlink appearing in this application are used to describe the direction of data/information transmission in a specific scenario.
  • the "uplink” direction generally refers to the direction or distribution of data/information from the terminal to the network side.
  • the “downlink” direction generally refers to the direction in which data/information is transmitted from the network side to the terminal, or the direction from the centralized unit to the distributed unit.
  • uplink and downlink “It is only used to describe the direction of data/information transmission.
  • the specific start and end equipment of the data/information transmission is not limited.
  • the methods in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请提供了一种MU MIMO的用户数指示方法和通信装置,该方法包括:生成PPDU,PPDU包括信令字段B,信令字段B包括至少一个资源单元分配子字段,一个资源单元分配子字段为一个资源单元分配索引,一个资源单元分配索引用于指示一种资源单元的排列组合,一个资源单元分配索引还用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8;发送该PPDU。本申请提供的方法,对于一个尺寸大于或者等于106-tone的RU,实现指示尺寸大于或者等于106-tone RU支持的用户数大于8的情况。提高通信的效率。示例性的,该方法可以应用于WLAN系统中。

Description

多用户多输入多输出的用户数指示方法和通信装置
本申请要求于2019年07月12日提交中国专利局、申请号为201910630772.6、申请名称为“多用户多输入多输出的用户数指示方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更为具体的,涉及一种多用户多输入多输出的用户数指示方法和通信装置。
背景技术
随着无线局域网(wireless local area network,WLAN)系统的802.11各个标准版本的演进,802.11标准在空间域上支持空间流数显著增加。例如,从802.11a/g标准支持的一个空间流扩展为802.11ax标准的16个空间流,随着支持的空间流数增加,支持的用户数也会增加。在多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)系统中,对于一个由大于或者等于106个子载波组成的资源单元支持的MU MIMO的用户数,目前可以指示出该资源单元支持的MU MIMO不超过8。由于802.11ax标准支持的空间流数已经超过8,因此由大于或者等于106个子载波组成的资源单元实际支持的MU MIMO的用户数可以是大于8。如何实现MU-MIMO传输时指示尺寸大于或者等于106个子载波组成的资源单元支持更多的MU-MIMO用户数,例如超过8个MU-MIMO用户指示,成为目前急需解决的问题。
发明内容
本申请提供了一种多用户多输入多输出的用户数指示方法和通信装置,对于一个尺寸大于或者等于106-tone的RU,通过对资源单元分配子字段的设计或者新增加指示字段,实现了指示尺寸大于或者等于106-tone的RU支持的用户数大于8的情况。从而提高了资源的利用率,提高通信的效率。
第一方面,提供了一种多用户多输入多输出的用户数指示方法,该方法的执行主体既可以是发送设备,例如,该发送设备可以是AP或者STA,也可以是应用于发送设备的芯片,以执行主体为发送设备为例,该方法包括:发送设备生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段,一个资源单元分配子字段为一个资源单元分配索引,一个资源单元分配索引用于指示一种资源单元的排列组合,一个资源单元分配索引还用于指示由大于或者等于106个子载波组成的资源单元支持的多用户多输入多输出MU MIMO用户数,该MU MIMO用户数大于8;发送设备发送该PPDU。
第一方面提供的多用户多输入多输出的用户数指示方法,对于一个尺寸大于或者等于 106-tone的RU,通过对资源单元分配索引的设计,资源单元分配索引可以指示尺寸大于或者等于106-tone的RU支持的用户数大于8的情况。对现有的信令字段B字段改动较小,便于实现。提高了资源的利用率,提高通信的效率。
在第一方面的一种可能的实现方式中,该资源单元分配索引包括用于指示同一种资源单元排列组合的第一索引和第二索引,该第一索引指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数小于或者等于8;该第二索引指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。在该实现方式中,通过指示同一种资源单元排列组合的不同索引分别指示MU MIMO用户数大于8和MU MIMO用户数小于或者等于8,可以减少用于指示MU MIMO用户数的资源,提高资源单元索引的资源利用率。
在第一方面的一种可能的实现方式中,该资源单元分配索引包括用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数的字段,该字段的长度大于或者等于4比特,该MU MIMO用户数大于8。在该实现方式中,通过利用长度大于或者等于4比特的指示字段指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,容易实现MU MIMO用户数大于8的指示,提高MU MIMO用户数指示的准确性。便于实现。
在第一方面的一种可能的实现方式中,该信令字段B还包括第一指示子字段,该第一指示子字段用于指示资源单元分配索引的位宽。该实现方式中,通过在信令字段B中设置第一指示子字段,可以使得接收设备准确的进行资源单元分配子字段的接收和解析,提高接收设备确定资源单元分配子字段指示的资源单元的排列组合以及MU MIMO用户数的效率。
在第一方面的一种可能的实现方式中,一个资源单元分配索引为8比特索引或者9比特索引。
第二方面,提供了一种多用户多输入多输出的用户数指示方法,该方法的执行主体既可以是发送设备,例如,该发送设备可以是AP或者STA,也可以是应用于发送设备的芯片,以执行主体为发送设备为例,该方法包括:发送设备生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和第二指示字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,该至少一个资源单元分配子字段和该第二指示字段联合指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8;发送设备发送该PPDU。
第二方面提供的多用户多输入多输出的用户数指示方法,对于一个尺寸大于或者等于106-tone的RU,通过对在信令字段B中增加第二指示字段,利用第二指示字段和至少一个资源单元分配子字段联合指示尺寸大于或者等于106-tone的RU支持的用户数大于8的情况。通过新增加指示字段,可以准确和方便的实现MU MIMO用户数大于8的指示。并且不用改变现有的资源单元分配索引表,容易实现。提高了指示MU MIMO用户数大于8的效率。
在第二方面的一种可能的实现方式中,该第二指示字段包括至少一个MU MIMO用户数指示子字段,一个MU MIMO用户数指示子字段与一个资源单元分配子字段指示的由大于或者等于106个子载波组成并且支持的MU MIMO用户数等于8的资源单元一一对应, 一个MU MIMO用户数指示子字段用于指示对应资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。在该实现方式中,通过将至少一个资源单元分配子字段和至少一个MU MIMO用户数指示子字段分别进行CRC校验和编码,利用至少一个资源单元分配子字段和至少一个MU MIMO用户数指示子字段指示MU MIMO用户数,可以提高MU MIMO用户数指示的效率,避免多于的MU MIMO用户数指示子字段出现,开销比较小,节省资源,同时也有利于接收设备进行解析获取MU MIMO用户数。提高了指示MU MIMO用户数大于8的效率。
在第二方面的一种可能的实现方式中,该第二指示字段包括至少一个MU MIMO用户数指示子字段,该MU MIMO用户数指示子字段的个数与可能存在的由大于或者等于106个子载波组成的资源单元的个数的最大值相同,一个MU MIMO用户数指示子字段用于指示对应的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。在该实现方式中,通过将至少一个资源单元分配子字段和至少一个MU MIMO用户数指示子字段统一进行CRC校验和编码,利用至少一个资源单元分配子字段和至少一个MU MIMO用户数指示子字段指示MU MIMO用户数,可以确保每一个大于或者等于106-tone的RU均有对应的MU MIMO用户数指示子字段,保证了MU MIMO用户数大于8的指示的可靠性。
在第二方面的一种可能的实现方式中,该第二指示字段包括用户数比特位图子字段,该用户数比特位图子字段的一个比特与一个资源单元分配子字段指示的大于或者等于106个子载波组成的资源单元一一对应,该用户数比特位图子字段的一个比特用于指示对应的资源单元支持的MU MIMO用户数为实际MU MIMO用户数或者为实际MU MIMO用户数与8的差值。在该实现方式中,通过将至少一个资源单元分配子字段和用户数比特位图子字段分别进行CRC校验和编码,利用至少一个资源单元分配子字段和用户数比特位图子字段联合指示MU MIMO用户数,可以提高MU MIMO用户数指示的效率,避免多于或者无用的用户数比特位出现,开销比较小,节省资源,同时也有利于接收设备进行解析获取MU MIMO用户数。提高了指示MU MIMO用户数大于8的效率。
在第二方面的一种可能的实现方式中,该第二指示字段包括用户数比特位图子字段,该用户数比特位图子字段的长度与可能存在的由大于或者等于106个子载波组成的资源单元的个数的最大值相同,该用户数比特位图子字段的一个比特用于指示对应的资源单元支持的MU MIMO用户数为实际MU MIMO用户数或者为实际MU MIMO用户数与8的差值。在该实现方式中,通过将至少一个资源单元分配子字段和用户数比特位图子字段统一进行CRC校验和编码,利用至少一个资源单元分配子字段和用户数比特位图子字段指示MU MIMO用户数,可以确保每一个大于或者等于106-tone的RU均有对应的用户数比特位,保证了MU MIMO用户数大于8的指示的可靠性。而且,相对开销较小。
第三方面,提供了一种多用户多输入多输出的用户数指示方法,该方法的执行主体既可以是发送设备,例如,该发送设备可以是AP或者STA,也可以是应用于发送设备的芯片,以执行主体为发送设备为例,该方法包括:发送设备生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和至少一个逐个站点字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,该至少一个逐个站点字段的顺序与该资源单元的排列组合的顺序对应,一个逐个站点字段用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户 数大于8;发送设备发送该PPDU。
第三方面提供的多用户多输入多输出的用户数指示方法,通过信令字段B中的逐个站点字段指示对应的由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,并且,该MU MIMO用户数大于8。实现了指示尺寸大于或者等于106-tone RU支持的用户数大于8的情况。可以准确和方便的实现MU MIMO用户数大于8的指示。并且不用改变现有的资源单元分配索引表,容易实现。提高了指示MU MIMO用户数大于8的效率。
在第三方面的一种可能的实现方式中,至少一个逐个站点字段中的第一逐个站点字段包括MU MIMO用户数指示子字段,该第一逐个站点字段对应由大于或者等于106个子载波组成的资源单元,该MU MIMO用户数指示子字段用于指示该由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。在该实现方式中,在该实现方式中,通过逐个站点字段包括的MU MIMO用户数指示子字段该站点所在资源单元的MU MIMO用户数,可以提高MU MIMO用户数指示的效率,也有利于接收设备进行解析获取MU MIMO用户数,提高了指示MU MIMO用户数大于8的效率。
在第三方面的一种可能的实现方式中,至少一个逐个站点字段中的第一逐个站点字段包括第三指示子字段,该第一逐个站点字段对应由大于或者等于106个子载波组成的资源单元,该第三指示子字段用于指示该第一逐个站点字段指示的站点是否为由大于或者等于106个子载波组成的资源单元内的最后一个站点。在该实现方式中,通过指示逐个站点字段是否为该站点所在资源内的最后一个站点,提高MU MIMO用户数指示的效率。
第四方面,提供了一种多用户多输入多输出的用户数指示方法,该方法的执行主体既可以是接收设备,例如,该接收设备可以是AP或者STA,也可以是应用于接收设备的芯片,以执行主体为接收设备为例,该方法包括:接收设备接收物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段,一个资源单元分配子字段为一个资源单元分配索引,一个资源单元分配索引用于指示一种资源单元的排列组合,一个资源单元分配索引还用于指示由大于或者等于106个子载波组成的资源单元支持的多用户多输入多输出MU MIMO用户数,该MU MIMO用户数大于8;接收设备根据至少一个资源单元分配子字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
第四方面提供的多用户多输入多输出的用户数指示方法,对于一个尺寸大于或者等于106-tone的RU,通过对资源单元分配索引的设计,使得接收设备可以根据资源单元分配索引,确定尺寸大于或者等于106-tone的RU支持的用户数大于8的情况,对现有的信令字段B字段改动较小,便于实现。提高了资源的利用率,提高通信的效率。
在第四方面的一种可能的实现方式中,该资源单元分配索引包括用于指示同一种资源单元排列组合的第一索引和第二索引,该第一索引指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数小于或者等于8;该第二索引指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8;根据该至少一个资源单元分配子字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,包括:根据该第一索引和该二索引,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
在第四方面的一种可能的实现方式中,该资源单元分配索引包括用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数的字段,该字段的长度大于或者等于4比特,该MU MIMO用户数大于8;根据该至少一个资源单元分配子字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,包括:根据该字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
在第四方面的一种可能的实现方式中,该信令字段B还包括第一指示子字段,该第一指示子字段用于指示至少一个资源单元分配索引的位宽,该方法还包括:接收设备根据该第一指示子字段,确定该资源单元分配索引的位宽。
在第四方面的一种可能的实现方式中,一个资源单元分配索引为8比特索引或者9比特索引。
第五方面,提供了一种多用户多输入多输出的用户数指示方法,该方法的执行主体既可以是接收设备,例如,该接收设备可以是AP或者STA,也可以是应用于接收设备的芯片,以执行主体为接收设备为例,该方法包括:接收设备接收物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和第二指示字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,至少一个资源单元分配子字段和该第二指示字段联合指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8;接收设备根据至少一个资源单元分配子字段和该第二指示字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
第五方面提供的多用户多输入多输出的用户数指示方法,对于一个尺寸大于或者等于106-tone的RU,通过对在信令字段B中增加第二指示字段,利用第二指示字段和至少一个资源单元分配子字段联合指示尺寸大于或者等于106-tone RU支持的用户数大于8的情况。通过新增加指示字段,可以准确和方便的实现MU MIMO用户数大于8的指示。并且不用改变现有的资源单元分配索引表,容易实现。提高了指示MU MIMO用户数大于8的效率。
在第五方面的一种可能的实现方式中,该第二指示字段包括至少一个MU MIMO用户数指示子字段,一个MU MIMO用户数指示子字段与一个资源单元分配子字段指示的由大于或者等于106个子载波组成并且支持的MU MIMO用户数等于8的资源单元一一对应,一个MU MIMO用户数指示子字段用于指示对应资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。
在第五方面的一种可能的实现方式中,该第二指示字段包括至少一个MU MIMO用户数指示子字段,该MU MIMO用户数指示子字段的个数与可能存在的由大于或者等于106个子载波组成的资源单元的个数的最大值相同,一个MU MIMO用户数指示子字段用于指示对应的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。
在第五方面的一种可能的实现方式中,该第二指示字段包括用户数比特位图子字段,该用户数比特位图子字段的一个比特与一个资源单元分配子字段指示的大于或者等于106个子载波组成的资源单元一一对应,该用户数比特位图子字段的一个比特用于指示对应的资源单元支持的MU MIMO用户数为实际MU MIMO用户数或者为实际MU MIMO用户数与8的差值。
在第五方面的一种可能的实现方式中,该第二指示字段包括用户数比特位图子字段,该用户数比特位图子字段的长度与可能存在的由大于或者等于106个子载波组成的资源单元的个数的最大值相同,该用户数比特位图子字段的一个比特用于指示对应的资源单元支持的MU MIMO用户数为实际MU MIMO用户数或者为实际MU MIMO用户数与8的差值。
第六方面,提供了一种多用户多输入多输出的用户数指示方法,该方法的执行主体既可以是接收设备,例如,该接收设备可以是AP或者STA,也可以是应用于接收设备的芯片,以执行主体为接收设备为例,该方法包括:接收设备接收物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和至少一个逐个站点字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,至少一个逐个站点字段的顺序与该资源单元的排列组合的顺序对应,一个逐个站点字段用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8;接收设备根据至少一个资源单元分配子字段和至少一个逐个站点字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
第六方面提供的多用户多输入多输出的用户数指示方法,通过信令字段B中的逐个站点字段指示对应的由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,实现了指示尺寸大于或者等于106-tone RU支持的用户数大于8的情况。可以准确和方便的实现MU MIMO用户数大于8的指示。并且不用改变现有的资源单元分配索引表,容易实现。提高了指示MU MIMO用户数大于8的效率。
在第六方面的一种可能的实现方式中,至少一个逐个站点字段中的第一逐个站点字段包括MU MIMO用户数指示子字段,该第一逐个站点字段对应由大于或者等于106个子载波组成的资源单元,该MU MIMO用户数指示子字段用于指示该由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。
在第六方面的一种可能的实现方式中,至少一个逐个站点字段中的第一逐个站点字段包括第三指示子字段,该第一逐个站点字段对应由大于或者等于106个子载波组成的资源单元,该第三指示子字段用于指示该第一逐个站点字段指示的站点是否为由大于或者等于106个子载波组成的资源单元内的最后一个站点。
第七方面,提供了一种通信装置,该装置包括:处理单元,用于生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段,一个资源单元分配子字段为一个资源单元分配索引,一个资源单元分配索引用于指示一种资源单元的排列组合,一个资源单元分配索引还用于指示由大于或者等于106个子载波组成的资源单元支持的多用户多输入多输出MU MIMO用户数,该MU MIMO用户数大于8;通信单元,用于发送该PPDU。
第七方面提供的装置用于执行上述第一方面或第一方面任意可能的实现方式,具体细节可参见上述第一方面或第一方面任意可能的实现方式,此处不再赘述。
第八方面,提供了一种通信装置,该装置包括:处理单元,用于生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和第二指示字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,该至少一个资源单元分配子字段和该第二指示字段联合指示由大于或者等于106个子载波组成的 资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8;通信单元,用于发送该PPDU。
第八方面提供的装置用于执行上述第二方面或第二方面任意可能的实现方式,具体细节可参见上述第二方面或第二方面任意可能的实现方式,此处不再赘述。
第九方面,提供了一种通信装置,该装置包括:处理单元,用于生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和至少一个逐个站点字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,该至少一个逐个站点字段的顺序与该资源单元的排列组合的顺序对应,一个逐个站点字段用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8;通信单元,用于发送该PPDU。
第九方面提供的装置用于执行上述第三方面或第三方面任意可能的实现方式,具体细节可参见上述第三方面或第三方面任意可能的实现方式,此处不再赘述。
第十方面,提供了一种通信装置,该装置包括:通信单元,用于接收物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段,一个资源单元分配子字段为一个资源单元分配索引,一个资源单元分配索引用于指示一种资源单元的排列组合,一个资源单元分配索引还用于指示由大于或者等于106个子载波组成的资源单元支持的多用户多输入多输出MU MIMO用户数,该MU MIMO用户数大于8;处理单元,用于根据至少一个资源单元分配子字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
第十方面提供的装置用于执行上述第四方面或第四方面任意可能的实现方式,具体细节可参见上述第四方面或第四方面任意可能的实现方式,此处不再赘述。
第十一方面,提供了一种通信装置,该装置包括:通信单元,用于接收物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和第二指示字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,该至少一个资源单元分配子字段和该第二指示字段联合指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。处理单元,用于根据该至少一个资源单元分配子字段和该第二指示字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
第十一方面提供的装置用于执行上述第五方面或第五方面任意可能的实现方式,具体细节可参见上述第五方面或第五方面任意可能的实现方式,此处不再赘述。
第十二方面,提供了一种通信装置,该装置包括:通信单元,用于接收物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和至少一个逐个站点字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,该至少一个逐个站点字段的顺序与该资源单元的排列组合的顺序对应,一个逐个站点字段用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。处理单元,用于根据至少一个资源单元分配子字段和该至少一个逐个站点字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
第十二方面提供的装置用于执行上述第六方面或第六方面任意可能的实现方式,具体 细节可参见上述第六方面或第六方面任意可能的实现方式,此处不再赘述。
第十三方面,提供了一种用于通信装置,该装置包括处理器和与该处理器内部连接通信的收发器;该处理器用于生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和第二指示字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,该至少一个资源单元分配子字段和该第二指示字段联合指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。该收发器用于发送该PPDU。
第十三方面提供的装置用于执行上述第一方面或第一方面任意可能的实现方式,具体细节可参见上述第一方面或第一方面任意可能的实现方式,此处不再赘述。
第十四方面,提供了一种通信装置,该装置包括处理器和与该处理器内部连接通信的收发器;该处理器用于生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和第二指示字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,该至少一个资源单元分配子字段和该第二指示字段联合指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。该收发器用于发送该PPDU。
第十四方面提供的装置用于执行上述第二方面或第二方面任意可能的实现方式,具体细节可参见上述第二方面或第二方面任意可能的实现方式,此处不再赘述。
第十五方面,提供了一种通信装置,该装置包括处理器和与该处理器内部连接通信的收发器;该处理器用于生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和至少一个逐个站点字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,该至少一个逐个站点字段的顺序与该资源单元的排列组合的顺序对应,一个逐个站点字段用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8;该收发器用于发送该PPDU。
第十五方面提供的装置用于执行上述第三方面或第三方面任意可能的实现方式,具体细节可参见上述第三方面或第三方面任意可能的实现方式,此处不再赘述。
第十六方面,提供了一种通信装置,该装置包括处理器和与该处理器内部连接通信的收发器;该收发器用于接收物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段,一个资源单元分配子字段为一个资源单元分配索引,一个资源单元分配索引用于指示一种资源单元的排列组合,一个资源单元分配索引还用于指示由大于或者等于106个子载波组成的资源单元支持的多用户多输入多输出MU MIMO用户数,该MU MIMO用户数大于8;该处理器用于根据该至少一个资源单元分配子字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
第十六方面提供的装置用于执行上述第四方面或第四方面任意可能的实现方式,具体细节可参见上述第三方面或第三方面任意可能的实现方式,此处不再赘述。
第十七方面,提供了一种通信装置,该装置包括处理器和与该处理器内部连接通信的收发器;该收发器用于接收物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和第二指示字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,至少一个资源单元分配子字段和该第二指示字段联合指 示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。该处理器用于根据至少一个资源单元分配子字段和该第二指示字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
第十七方面提供的装置用于执行上述第五方面或第五方面任意可能的实现方式,具体细节可参见上述第五方面或第五方面任意可能的实现方式,此处不再赘述。
第十八方面,提供了一种通信装置,该装置包括处理器和与该处理器内部连接通信的收发器;该收发器用于接收物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和至少一个逐个站点字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,至少一个逐个站点字段的顺序与该资源单元的排列组合的顺序对应,一个逐个站点字段用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。该处理器根据该至少一个资源单元分配子字段和该至少一个逐个站点字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
第十九方面,提供了一种用于通信装置,该装置包括处理电路和与该处理电路内部连接通信的通信接口,该处理电路用于生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和第二指示字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,该至少一个资源单元分配子字段和该第二指示字段联合指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。该通信接口用于发送该PPDU。
第十九方面提供的装置用于执行上述第一方面或第一方面任意可能的实现方式,具体细节可参见上述第一方面或第一方面任意可能的实现方式,此处不再赘述。
第二十方面,提供了一种通信装置,该装置包括处理电路和与该处理电路内部连接通信的通信接口,该处理电路用于生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和第二指示字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,该至少一个资源单元分配子字段和该第二指示字段联合指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。该通信接口用于发送该PPDU。
第二十方面提供的装置用于执行上述第二方面或第二方面任意可能的实现方式,具体细节可参见上述第二方面或第二方面任意可能的实现方式,此处不再赘述。
第二十一方面,提供了一种通信装置,该装置包括处理电路和与该处理电路内部连接通信的通信接口,该处理电路用于生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和至少一个逐个站点字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,该至少一个逐个站点字段的顺序与该资源单元的排列组合的顺序对应,一个逐个站点字段用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8;该通信接口用于发送该PPDU。
第二十一方面提供的装置用于执行上述第三方面或第三方面任意可能的实现方式,具体细节可参见上述第三方面或第三方面任意可能的实现方式,此处不再赘述。
第二十二方面,提供了一种通信装置,该装置包括处理电路和与该处理电路内部连接 通信的通信接口,该通信接口用于接收物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段,一个资源单元分配子字段为一个资源单元分配索引,一个资源单元分配索引用于指示一种资源单元的排列组合,一个资源单元分配索引还用于指示由大于或者等于106个子载波组成的资源单元支持的多用户多输入多输出MU MIMO用户数,该MU MIMO用户数大于8;该处理电路用于根据该至少一个资源单元分配子字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
第二十二方面提供的装置用于执行上述第四方面或第四方面任意可能的实现方式,具体细节可参见上述第四方面或第四方面任意可能的实现方式,此处不再赘述。
第二十三方面,提供了一种通信装置,该装置包括处理电路和与该处理电路内部连接通信的通信接口,该通信接口用于接收物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和第二指示字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,至少一个资源单元分配子字段和该第二指示字段联合指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。该处理电路用于根据至少一个资源单元分配子字段和该第二指示字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
第二十三方面提供的装置用于执行上述第五方面或第五方面任意可能的实现方式,具体细节可参见上述第五方面或第五方面任意可能的实现方式,此处不再赘述。
第二十四方面,提供了一种通信装置,该装置包括处理电路和与该处理电路内部连接通信的通信接口,该通信接口用于接收物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和至少一个逐个站点字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,至少一个逐个站点字段的顺序与该资源单元的排列组合的顺序对应,一个逐个站点字段用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。该处理电路根据至少一个资源单元分配子字段和该至少一个逐个站点字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
第二十四方面提供的装置用于执行上述第五方面或第五方面任意可能的实现方式,具体细节可参见上述第六方面或第六方面任意可能的实现方式,此处不再赘述。
第二十五方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序在被处理器执行时,用于执行第一方面至第六方面中任一方面实现方式中的方法,或第一方面至第六方面中任一方面中的任意可能的实现方式中的方法。
第二十六方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被执行时,用于执行第一方面至第六方面中任一方面实现方式中的方法,或第一方面至第六方面中任一方面中的任意可能的实现方式中的方法。
第二十七方面,提供了一种通信系统,该系统包括上述第七方面提供的装置以及第十方面提供的装置;或者
该系统包括上述第八方面提供的装置以及第十一方面提供的装置;或者
该系统包括上述第九方面提供的装置以及第十二方面提供的装置;或者
该系统包括上述第十三方面提供的装置以及第十六方面提供的装置;或者
该系统包括上述第十四方面提供的装置以及第十七方面提供的装置;或者
该系统包括上述第十五方面提供的装置以及第十八方面提供的装置;或者
该系统包括上述第十九方面提供的装置以及第二十二方面提供的装置;或者
该系统包括上述第二十方面提供的装置以及第二十三方面提供的装置;或者
该系统包括上述第二十一方面提供的装置以及第二十四方面提供的装置。
附图说明
图1是一例适用于本申请实施例的通信系统的示意图。
图2是HE MU PPDU结构的示意图。
图3是一个20MHz上的HE-SIG-B的结构的示意图。
图4是本申请实施例提供提供的一例MU-MIMO用户数指示的方法的示意性交互图。
图5是数据分组带宽为20MHz时资源单元的各种排列组合方式的示意图。
图6是数据分组带宽为40MHz时资源单元的各种排列组合方式的示意图。
图7是数据分组带宽为80MHz时资源单元的各种排列组合方式的示意图。
图8是当数据分组带宽为20MHz时内容信道的结构的示意图。
图9是当数据分组带宽为40MHz时内容信道的结构的示意图。
图10是当数据分组带宽为80MHz时内容信道的结构的示意图。
图11是本申请实施例提供的另一例MU-MIMO用户数指示的方法的示意性交互图。
图12是本申请实施例提供的另一例MU-MIMO用户数指示的方法的示意性交互图。
图13是本申请实施例提供的一例信令字段B结构的示意图。
图14是本申请实施例提供的一例两个CC上的资源单元的排列组合的方式的示意图。
图15是本申请实施例提供的一例两个CC的结构的示意图。
图16是本申请实施例提供的另一例信令字段B结构的示意图。
图17是本申请实施例提供的另一例两个CC的结构的示意图。
图18是本申请实施例提供的又一例MU-MIMO用户数指示的方法的示意性交互图。
图19本申请实施例提供的又一例信令字段B结构的示意图。
图20是本申请实施例提供的又一例两个CC的结构的示意图。
图21是本申请实施例提供的又一例信令字段B结构的示意图。
图22是本申请实施例提供的又一例两个CC的结构的示意图。
图23是本申请实施例提供的另一例MU-MIMO用户数指示的方法的示意性交互图。
图24是本申请实施例提供的通信装置的示意图。
图25是本申请实施例提供的又一例通信装置的示意图。
图26是本申请实施例提供的通信装置的示意图。
图27是本申请实施例提供的又一例通信装置的示意图。
图28是本申请实施例提供的终端设备的示意图。
图29是本申请实施例提供的网络设备的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
本申请实施例的技术方案还可以应用于无线局域网(Wireless Local Area Network,WLAN)系统,例如,本申请实施例可以适用于WLAN当前采用的国际电工电子工程学会(institute of electrical and electronics engineers,IEEE)802.11系列协议中的802.11ac/802.11ax/802.11be或者未来IEEE 802.11系列中任意一种协议。
图1示出了一例适用于本申请实施例的通信系统的示意图,如图1所示的通信系统可以是WLAN系统,也可以是广域网系统。图1的通信系统可以包括一个或多个AP,以及一个或多个STA,图1以两个AP(AP 1和AP 2)和两个用户站点(station,STA)(STA 1和STA 2)为例,其中,AP与AP、AP与STA、STA与STA之间可以通过各种标准进行无线通信。本申请提供的方案可以应用在AP与AP之间的通信、STA与STA之间的通信以及AP与STA之间的通信。
用户站点(STA)也可以称为系统、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(user equipment,UE)。站点可以为无线通信芯片、无线传感器或无线通信终端。例如站点为支持无线保真(wireless fidelity,WiFi)通信功能的移动电话、支持WiFi通信功能的平板电脑、支持WiFi通信功能的机顶盒、支持WiFi通信功能的智能电视、支持WiFi通信功能的智能可穿戴设备、支持WiFi通信功能的车载通信设备和支持WiFi通信功能的计算机。可选地,站点可以支持当前网络系统或者未来网络系统下802.11制式的设备。
本申请实施例中的AP也可以称为网络设备,网络设备可以是用于与STA通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,还可以是WLAN/WiFi系统中的无线接入点等。或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
本申请实施例中AP与STA可以通过无线局域网进行通信,并将STA的数据传输至网络侧,或将来自网络侧的数据传输至STA。AP也称之为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。 具体地,AP可以是带有WiFi芯片的终端设备或者网络设备。可选地,AP可以为支持当前网络系统或者未来网络系统下802.11制式的设备。
具体地,AP和STA之间可以多用户多入多出(multi-users multiple-input multiple-output,MU-MIMO)技术进行无线通信。在本申请实施例中,每个STA配备一个或多个天线。每个AP支持多站点协同和/或联合传输。
还应理解。图1只是示意图,该通信系统中还可以包括其它网络设备或者终端设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该通信系统中包括AP和STA的数量不做限定。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
WLAN的802.11各个标准版本空间域上支持的情况如表1所示:
表1 802.11各个标准版本空间域上支持情况
Figure PCTCN2020099894-appb-000001
其中,802.11a/g标准叫做非高吞吐率(non high throughput,Non-HT),单输入单输出(single input single output,SISO)系统一次只能发送或接收一个空间流。802.11n标准的名称叫做高吞吐率(high throughput,HT),单用户多输入多输出(Single User Multiple Input Multiple Out,SU MIMO)系统最多支持4个空间流。802.11ac标准叫做非常高吞吐率(Very High Throughput,VHT),其中下行多用户多输入多输出系统(downlink multiple user multiple input multiple output,DL MU-MIMO)最多支持8个空间流,最多支持4个用户,每个用户不超过4个空间流。802.11ax标准叫做高效(High Efficient,HE),其中,DL MU-MIMO以及上行(uplink UL)MU-MIMO最多支持8空间流,在进行MU-MIMO的某个资源单元中,最多支持8个用户,每个用户不超过4空间流。另外支持在频域上的多个资源单元中,存在多个MU-MIMO用户组。
802.11ac在SU MIMO的基础上进一步引入了MU MIMO。通常接入点(例如AP)比站点(例如STA)具备更多天线。而对于SU MIMO传输,系统所能支持的最大流数受限 于AP和STA两侧天线数较少的一侧。而MU-MIMO支持AP同时和多个STA进行通信,所支持的空间流数为多个STA支持空间流数的总和同AP所支持的空间流数中较少的一个。总体支持更多的空间流数,系统吞吐率得到提升。
在802.11ax标准之前,802.11标准只支持正交频分复用(orthogonal frequency division multiplexing,OFDM)传输,整个带宽统一分配给一个或一组站点进行SU传输或者DL MU MIMO传输。而到了802.11ax标准阶段,新引入了正交频分多址(orthogonal frequency division multiple access,OFDMA)技术,整个带宽被分为了一个或多个资源单元(resource unit,RU)。802.11ax标准引入了DL OFDMA和UL OFDMA传输,共有4种分组格式,其中高效多用户物理层协议数据单元(high efficient multiple user physical layer protocol data unit,HE MU PPDU)(也可以称为“数据分组”)用于进行DL OFDMA和DL MU MIMO传输,其数据分组格式如图2所示。
如图2所示,整个数据分组分为前导码和数据字段部分。前导码部分包括传统短训练字段(legacy-short training field,L-STF)、传统长训练字段(legacy-long training field,L-LT)、传统信令字段(legacy-signal,L-SIG)、传统信令字段重复(repeated legacy-signal,RL-SIG)、高效信令字段A(High Efficient Signal Field-A,HE-SIG-A)、高效信令字段B(High Efficient Signal Field-B,HE-SIG-B)、高效短训练字段(High Efficient short training field,HE-STF)、高效长训练字段(High Efficient long training field,HE-LTF)。在数据字段(data)后,还包括数据包分组扩展(packet extension,PE)字段。
HE-SIG-A用于指示数据分组的带宽、HE-SIG-B包含的符号数、HE-SIG-B所采用的编码调制策略(modulation and coding scheme,MCS)、HE-SIG-B是否采用了压缩模式等指示等。而HE-SIG-B主要包含公共字段和逐个用户字段,其中公共字段包含整个带宽的资源单元如何分配,逐个用户字段包含每个用户的关联标识(association identifier,AID),MCS、空间流数(number of spatial and time streams,NSTS)、编码方式(Coding)、是否采用了发送波束成型等。
对于UL OFDMA,AP首先向多个STA发送触发帧,该触发帧是媒体介入控制(medium access control,MAC)帧中的一种,用于触发多用户进行上行多用户传输。该触发帧中包括上行OFDMA传输所需要的资源指示信息,包括站点标识,资源单元分配信息等,并给多个STA提供功率、时间、频率同步的基准。在接收到触发帧后,多个STA向AP发送基于触发的PPDU(trigger based,HE TB PPDU),进行UL OFDMA传输。由于UL OFDMA传输的资源指示信息位于触发帧中,因此HE TB PPDU的数据分组结构无需在HE TB PPDU中通过HE-SIG-B去指示,即HE TB PPDU的数据分组结构中不包括HE-SIG-B字段。
对于DL OFDMA和DL MU MIMO传输,发送设备向接收设备发送数据分组时,数据分组中包含HE-SIG-A,其中HE-SIG-A指示HE-SIG-B的符号长度,HE-SIG-B的MCS,整个数据分组的带宽等。若数据分组带宽大于20MHz,HE-SIG-A在每个20MHz上是进行复制传输的。数据分组中还包含HE-SIG-B,提供DL MU MIMO和DL OFDMA的资源指示信息。
HE-SIG-B在每个20MHz上是单独编码的。在每一个20MHz上的HE-SIG-B的信息结构如图3所示。
如图3中所示的,HE-SIG-B分为两部分,其中第一部分是公共字段(公共部分字段),包括1~N个资源单元(resource unit,RU)分配子字段(RU allocation subfield),以及当带宽大于等于80MHz时存在的中间26-子载波(Center 26-Tone)资源单元指示子字段(Center 26-Tone RU indication),然后是用于校验的循环冗余码(cyclic redundancy code,CRC)以及用于循环解码的尾部(Tail)子字段。每一个资源单元分配子字段指示一种资源单元的排列组合。在逐个站点字段(也可以叫做逐个用户字段(per user field),按照资源单元分配的顺序,存在着1~M个站点字段(User Field),M个站点字段通常是两个为一组,每两个站点字段后有一个CRC和tail字段,除了最后一组,可能会存在1个或者2个站点字段。
现有技术中,对于某一种数据分组带宽,会将该数据分组带宽划分为由各种资源单元的排列组合组成。HE-SIG-B字段中的一个资源单元分配子字段用于指示尺寸大于或者等于106个子载波组成的资源的单元(106-tone RU)支持的MU MIMO的用户数,但是最多只能指示出8个用户。在802.11ax标准的下一代802.11be极高吞吐率(extremely high throughput,EHT)标准中,支持的流数从802.11ac,802.11ax的8个流,扩展到16个流,因此,尺寸大于或者等于106-tone的RU支持的MU MIMO的用户数也可能进一步增多,例如,可以支持16个用户。而目前指示MU-MIMO传输的用户数的方式中,资源单元分配子字段最多只能指示8个MU-MIMO用户数。从而使得资源的利用率比较低,严重的影响了通信的效率。如何实现MU-MIMO传输时指示尺寸大于或者等于106-tone的RU支持更多的MU-MIMO用户数,例如超过8个MU-MIMO用户指示,成为目前急需解决的问题。
有鉴于此,本申请提供了一种MU-MIMO用户数指示的方法,对于一个尺寸大于或者等于106-tone的RU,通过对资源单元分配子字段的设计或者新增加指示字段,实现了指示尺寸大于或者等于106-tone的RU支持的用户数大于8的情况。从而提高了资源的利用率,提高通信的效率。
下面结合图4详细说明本申请提供的MU-MIMO用户数指示的方法,图4是本申请一个实施例的MU-MIMO用户数指示的方法200的示意性流程图,该方法200可以应用在图1所示的场景中。当然也可以应用在其他通信场景或者通信系统中,本申请实施例在此不作限制。
应理解,下文的描述中,以发送设备和接收设备作为各个实施例的执行方法的执行主体为例,对各个实施例的方法进行说明。发送设备可以是上述的AP或者STA,接收设备也可以是上述的AP或者STA。作为示例而非限定,执行方法的执行主体也可以是应用于发送设备和接收设备的芯片。
如图4所示,图4中示出的方法200可以包括步骤S210至步骤S220。下面结合图4详细说明方法200中的各个步骤。该方法200包括:
S210,发送设备生成PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段,一个资源单元分配子字段为一个资源单元分配索引,一个资源单元分配索引用于指示一种资源单元的排列组合,一个资源单元分配索引还用于指示由大于或者等于106个子载波组成的资源单元支持的多用户多输入多输出MU MIMO用户数,该MU MIMO用户数大于8。
S220,发送设备发送该PPDU。相应的,接收设备接收PPDU。
S230,接收设备根据至少一个资源单元分配子字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
具体而言,在S210中,发送设备向接收设备需要发送数据时,会向接收设备发送PPDU,PPDU包括信令字段(Signal Field-B,SIG-B)。该PPDU除了包括信令字段B,还可以包括EHT-SIG-A字段、数据字段等。信令字段B包括至少一个资源单元分配子字段(RU allocation subfield)。该信令字段B还可以包括至少一个站点字段(User Field)。一个资源单元分配子字段为一个资源单元分配索引,一个资源单元分配索引用于指示一种资源单元的排列组合(或者也可以称为资源单元的分配顺序)。其中,至少一个站点字段的顺序和资源单的分配顺序是对应的。每一个站点字段的结构指示在资源单元的排列组合包括的RU内被分配的STA的站点信息。当一个资源单元分配子字段指示的资源单元的排列组合中包括由大于或者等于106个子载波组成的资源单元时,该资源单元分配索引还用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。其中MU MIMO用户数大于8。下文的描述中,MU MIMO用户数大于8以9~16为例进行说明,可以理解,MU MIMO用户数大于8还可以包括MU MIMO用户数大于16的情况。
为了便于理解上述的S210,首先简单介绍802.11ax标准中不同数据分组带宽下的子载波分布(Tone Plan)和资源单元分配子字段指示MU MIMO用户数的方式。
首先为不同数据分组带宽下的子载波分布(Tone Plan)方式。
当数据分组带宽为20MHz时,如图5所示的,图5所示为数据分组带宽为20MHz时资源单元的各种排列组合方式。整个20MHz带宽可以由一整个242个子载波组成的资源单元(242-tone RU)组成,也可以由26个子载波组成的资源单元(26-tone RU)、52个子载波组成的资源单元(52-tone RU)、106个子载波组成的资源单元(106-tone RU)的各种组合组成。其中“Tone”可以理解为子载波。除了用于传输数据的RU,此外,还包括一些保护(Guard)子载波,空子载波,或者直流(direct current,DC)子载波。
当数据分组带宽为40MHz时,如图6所示的,图6所示为数据分组带宽为40MHz时资源单元的各种排列组合方式。整个带宽大致相当于20MHz的子载波分布的复制。整个40MHz带宽可以由一整个484个子载波组成的资源单元(484-tone RU)组成,也可以由26-tone RU,52-tone RU,106-tone RU,242-tone RU的各种组合组成。
当数据分组带宽为80MHz时,如图7所示的,图7所示为数据分组带宽为80MHz时资源单元的各种排列组合方式。整个带宽大致相当于20MHz的子载波分布的复制。整个80MHz带宽可以由一整个996个子载波组成的资源单元(996-tone RU)组成,也可以由484-tone RU、242-tone RU,106-tone RU,52-tone RU,26-tone RU的各种组合组成。并且,在整个80MHz带宽的中间,还存在一个由两个13-tone子单元组成的中间26-tone RU(Center 26-Tone RU)。
类似的,当数据分组带宽为160MHz时,整个带宽可以看成两个80Mhz的子载波分布的复制,整个带宽可以由一整个2×996-tone RU(由1992个子载波组成的资源单元)组成,也可以由26-tone RU,52-tone RU,106-tone RU,242-tone RU,484-tone RU,996-tone RU的各种组合组成。并且,在整个80MHz带宽的中间,还存在一个由两个13-tone子单元组成的中间26-tone RU。
以上的各种子载波分布方式中,以242-tone RU为单位,左边的242-tone RU可以看作为数据分组带宽最低频率,右边的242-tone RU可以看作最高频率。例如,以图6所示的为例,从左到右,可以对242-tone RU依次进行标号:1,2,3,4。又例如,当数据分组带宽为160MHz时,从左到右,可以对242-tone RU依次进行标号:1,2,…8。应该理解的是,在数据字段,8个242-tone RU与8个20MHz信道按照频率从低到高一一对应,但是由于中间26-tone RU的存在,在频率上并不完全重合。
下面介绍资源单元分配子字段指示MU MIMO用户数的方式。
802.11ax引入了内容信道(content channel,CC)的概念。内容信道可以理解为HE-SIG-B包括的内容,例如,内容信道可以包括至少一个资源单元分配子字段(RU allocation subfield)、多个逐个站点字段、用于校验的CRC以及用于循环解码的尾部(Tail)子字段。图8所示的为当数据分组带宽为20MHz时内容信道的结构的示意图。如图8所示的,当数据分组带宽只有20MHz时,HE-SIG-B只包含1个内容信道,该内容信道中包含1个资源单元分配子字段,用于指示数据部分第一个242-tone RU范围内的资源单元分配指示。1个资源单元分配子字段为一个资源单元分配索引,用于指示一个242-tone RU内所有可能的资源单元排列组合方式。此外,对于尺寸大于或者等于106-tone的RU(即由大于或者等于106个子载波组成的RU),同时通过该索引,指示该RU中进行SU/MU-MIMO传输的用户数。
举例说明,假设资源单元分配子字段为8个比特的索引,可以通过8个比特索引的方式指示出一个242-tone RU内所有可能的资源单元排列组合方式。此外,对于尺寸大于或者等于106-tone的RU(即由大于或者等于106个子载波组成的RU),同时通过8个比特的索引,指示该RU中进行SU/MU-MIMO传输的用户数。8比特的索引资源单元索引表如表2所示。
表2
Figure PCTCN2020099894-appb-000002
Figure PCTCN2020099894-appb-000003
表2中,第一列代表8比特索引,中间列#1~#9代表着不同资源单元的排列组合。表格的数字代表该资源单元所包含的子载波数目。例如,索引00111y 2y 1y 0表示整个242-tone RU被分成了52-tone RU、52-tone RU、26-tone RU、106-tone RU这4个RU组成。第三列的条目数量指示相同资源单元分配的条目的个数,即相同资源单元排列方式对应的不同的索引个数。对于索引00111y 2y 1y 0而言,之所以会存在8个条目,是因为在指示242-tone RU资源单元排列组合的同时,y 2y 1y 0还用于指示在该106-tone RU内所包含的SU/MU-MIMO传输的用户数,对应1~8个用户。即利用3比特的y 2y 1y 0指示该106-tone RU内支持的1至8个用户。8个条目可以看成表格中独立的8行,这8行对应相同的资源单元排列组合,每一行对应不同的106-tone RU内支持的用户数。在802.11ax标准中,规定子载波数大于或者等于106的RU可以进行MU-MIMO,所以当表2中的某一行中存在子 载波数大于等于106的RU时,条目数会大于1。另外对于索引10y 2y 1y 0z 2z 1z 0,因为存在两个106-tone RU,所以共存在8×8=64个组合,对应表格中独立的64行。对于中间的26-tone RU标记为“-”,表示中间的26-tone RU上不承载任何用户。例如,对于索引0110y 1y 0z 1z 0,中间26-tone RU标记为“-”代表中间的26-tone RU中不承载任何用户。因为条目数的不足,当时规定在这种特殊情形,每个106-tone RU最多支持4个用户,所以共16个条目。对应的,逐个站点字段中按照资源分配的顺序,指示在该242-tone RU范围内被分配的STA的站点信息。
如果数据分组带宽大于20MHz,资源单元分配子字段还可以指示资源单元大于242-tone RU的情况,例如484-tone RU或者996-tone RU,代表某一个STA被分配了包含所在242-tone RU的更大RU的资源单元。同样,对于这些大于242-tone RU,会通过不同的索引指示其中的用户数。对应的,逐个站点字段中按照资源分配的顺序,指示在该242-tone RU范围内被分配的STA的站点信息。
图9所示的为当数据分组带宽为40MHz时内容信道的结构的示意图。如图9所示,当数据分组带宽为40MHz时,存在两个HE-SIG-B内容信道,CC1和CC2。其中在第1个HE-SIG-B信道的CC1包括第1个242-tone RU范围内的资源单元分配子字段以及所对应的逐个站点字段。第2个HE-SIG-B信道的CC2包括第2个242-tone RU范围内的资源单元分配子字段以及所对应的逐个站点字段。
图10所示的为当数据分组带宽为80MHz时内容信道的结构的示意图。如图10所示,当数据分组带宽为80MHz时,仍然存在2个CC,一共4个信道。因此整体上按照频率由低到高,按照CC1、CC2、CC1、CC2的结构在4个信道上对资源单元分配信息进行指示,其中在CC1中包括第1个和第3个242-tone RU范围内的资源单元分配子字段以及其范围内所对应的逐个站点字段。CC2包括第2个和第4个242-tone RU范围内的资源单元子字段以及其范围内所对应的逐个站点字段。另外在两个CC上,都会包括80MHz的中间26-tone RU指示字段,指示该资源单元是否被用于传输数据。
类似的,当数据分组带宽为160MHz时,仍然存在2个CC,一共8个信道,相当于在80MHz的基础上进一步扩展。
下文的描述中以分别以该资源单元分配子字段为9比特的资源单元分配索引和8比特的资源单元分配索引为例进行说明。应该理解的是,该资源单元分配索引还可为更多的比特,例如10比特、20比特等。其实现指示大于或者等于106-tone RU支持MU MIMO用户数大于8的指示9比特的资源单元分配索引以及8比特的资源单元分配索引类似。
作为一种可能的实现方式,该资源单元分配子字段可以是9比特的资源单元分配索引。在9比特的资源单元索引中,可以包括如下条目中的任意一个条目或者多个条目:
当资源单元的排列组合中只包括一个大于或者等于106-tone RU时,补充了该大于或者等于106-tone RU支持9~16个MU MIMO用户数的指示,需要新增加104个条目;
新补充2×996-tone RU(对应160MHz)支持1~16个MU MIMO用户数的指示,需要新增加16个条目;
新补充4×996-tone RU(对应320MHz)支持1~16个MU MIMO用户数的指示,需要新增加16个条目;
对于资源单元的排列组合为106-tone RU+26-tone RU+106-tone RU资源分配时,在每 个106-tone RU分别支持1~8个MU MIMO用户的基础上,进一步增加了第一个106-tone RU支持1~8个MU MIMO用户,第二个106-tone RU支持9~16个MU MIMO用户;第一个106-tone RU支持9~16个MU MIMO用户,第二个106-tone RU支持9~16个MU MIMO用户);第一个106-tone RU支持9~16个MU MIMO用户,第二个106-tone RU支持1~8个MU MIMO用户的情况。需要新增加192个条目。为了指示大于或者等于106-tone RU支持9~16个MU MIMO用户数。
上述的几种情况下总共需要增加328个条目。
对于9比特的资源单元索引表,总有512个条目(512行)。512个条目中包括用于指示大于或者等于106-tone RU支持1~8个MU MIMO用户的条目以及资源单元的排列组合中不包括大于或者等于106-tone RU的条目。除了用于指示这两种情况的条目之外,余下的条目数小于328,不足以承载新增加的328个条目。因此,进一步的。可以改变9比特的资源单元索引表的部分索引指示的资源单元的排列组合,利用这些部分索引指示部分新增加的条目,或者可以减少需要增加的条目数,或者,利用预留的条目指示大于或者等于106-tone RU支持大于8个MU MIMO用户的情况。例如:
对于全带宽的场景(例如数据分组带宽为320MHz)不进行RU分配,即不需要新增上述的第三种情况下(4*996-tone RU的MU MIMO用户数指示)的条目数,可以减少16个条目。
又例如,对于中间26-tone RU标记为“-”,的条目,即中间26-tone RU为空的条目,全部重新定义用于指示上述需要新增加的条目,可以新增加共约32个条目。
又例如,限制106-tone RU+26-tone RU+106-tone RU资源分配时,每个106-tone RU可以支持的最大MU MIMO用户数,例如仍然限定为最大8个MU MIMO用户,则不需要上述第四种情况新增加192个条目。又例如,可以限定每个106-tone RU最大为12个MU MIMO用户。则进一步补充第一个106-tone RU支持1~8个MU MIMO用户,第二个106-tone RU支持9~12个MU MIMO用户(需要新增32个条目);第一个106-tone RU支持9~12个MU MIMO用户,第二个106-tone RU支持9~12个MU MIMO用户(需要新增16个条目);第一个106-tone RU支持9~12个MU MIMO用户,第二个106-tone RU支持1~8个MU MIMO用户(需要新增32个条目),在这种情况下共需要新增80个条目。
又例如,还可以进一步利用0011101x 1x 0和001111y 2y 1y 0等预留条目进行指示。
表3所示的为9比特的资源分配索引表的一个例子。
表3
Figure PCTCN2020099894-appb-000004
Figure PCTCN2020099894-appb-000005
Figure PCTCN2020099894-appb-000006
表3所示的例子中,新增加的条目为:当资源单元的排列组合中只包括一个大于或者等于106-tone RU时,补充了该大于或者等于106-tone RU支持9~16个MU MIMO用户数的指示的条目。并且,新补充2×996-tone RU(对应160MHz)支持1~16个MU MIMO用户数的指示的条目。新补充4×996-tone RU(对应320MHz)支持1~16个MU MIMO用户数的指示的条目。对于资源单元的排列组合为106-tone RU+26-tone RU+106-tone RU资源分配时,限制106-tone RU+26-tone RU+106-tone RU资源分配时一个106-tone RU可以支持的最大MU MIMO用户数。例如,一个106-tone RU支持13~16个MU MIMO用户,或者,一个106-tone RU支持11~12个MU MIMO用户。
可以看出,通过9比特的资源单元索引,可以指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。其中MU MIMO用户数可以大于8。
作为另一种可能的实现方式,该资源单元分配子字段可以是8比特的资源单元分配索引。在8比特的资源单元索引中,可以也新增加上述328个条目中的一个条目或者多个条目。
对于8比特的资源单元索引表,总有256个条目(256行),不足以承载新增加的328个条目。因此,进一步的。可以改变8比特的资源单元索引表的部分索引指示的资源单元的排列组合,利用这些部分索引指示部分新增加的条目,或者可以减少需要增加的条目数,或者,利用预留的条目指示大于或者等于106-tone RU支持大于8个MU MIMO用户的情况。例如:只针对大于或者等于242-tone RU支持大于8个MU MIMO用户,而对于106-tone RU仍然最多支持8个MU MIMO用户。针对这种情形,8-bit的索引表就可以进行指示,如表4所示的,表8所示的为8比特的资源分配索引表的一个例子。表4所示的例子中,通过限制只针对大于或者等于242-tone RU支持大于8个MU MIMO用户,而对于106-tone  RU仍然最多支持8个用户情况,实现了大于或者等于242-tone RU支持的大于8的MU MIMO用户数指示。
表4
Figure PCTCN2020099894-appb-000007
Figure PCTCN2020099894-appb-000008
应该理解,上述的表3和表4仅仅是示例性的,并不对该资源单元索引表产生限制。例如,表3和表4中的条目的顺序还可以是任意排序,不需要严格按照表3和表4中中的顺序进行指示。并且,针对需要新增的条目以及802.11ax标准中原有的条目,都可以部分存在。本申请在此对此不做限制。
在S220中,发送设备将该PPDU发送给接收设备。该PPDU包括的至少一个资源单元分配子字段。例如,一个资源单元分配子字段指示的资源单元分配索引可以是上述的表3或者表4中的任意一个索引。
在S230中,接收设备根据该PPDU包括的至少一个资源单元分配子字段,根据一个资源单元分配子字段对应的资源单元分配索引,确定RU分配。并根据资源单元分配索引确定每个大于或者等于106-tone RU中支持的MU MIMO用户数。进一步的,根据资源单元分配子字段指示的预定顺序读取逐个站点字段,根据逐个站点字段携带的站点标识,确定与自己对应的逐个站点字段以及自己所属的资源单元、相应的空间流数,调制与编码策略等。例如,假设接收设备接收到的资源单元分配子字段指示的资源单元分配索引为110111010。接收设备可以根据该资源单元分配索引,确定RU分配方式为106-tone RU+26-tone RU+106-tone RU。该资源单元分配索引中间的三比特111用于指示第一个106-tone RU支持8个MU MIMO用户,最后三比特010用于指示第二个106-tone RU支持的MU MIMO数与8的差值,三比特“010”可以指示3,即第二个106-tone RU支持的MU MIMO数与8的差值为3,第二个106-tone RU支持11个MU MIMO用户,则106-tone RU+26-tone RU+106-tone RU总共支持20个MU MIMO用户,第一个106-tone RU支持8个MU MIMO用户,中间的26-tone RU支持1个MU MIMO用户,第二个106-tone RU支持11个MU MIMO用户。
本申请提供的MU-MIMO用户数指示的方法,对于一个尺寸大于或者等于106-tone的RU,通过对资源单元分配索引的设计,资源单元分配索引可以指示尺寸大于或者等于106-tone的RU支持的用户数大于8的情况。对现有的信令字段B字段改动较小,便于实现。提高了资源的利用率,提高通信的效率。
在一些可能的实现方式中,该资源单元分配索引包括用于指示同一种资源单元排列组合的第一索引和第二索引,该第一索引指示由大于或者等于106个子载波组成的资源单元 支持的MU MIMO用户数,该MU MIMO用户数小于或者等于8。该第二索引指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。
具体而言,例如,以资源单元分配索引为8比特或者9比特为例。在表3或者表4所示的例子中,可以发现,对于同一中资源单元排列组合,对应不同的资源单元分配索引。例如表3中,对于106-tone RU+26-tone RU+26-tone RU+26-tone RU+26-tone RU+26-tone RU这种资源单元的排列组合,存在两种的不同资源单元分配索引。第一种索引(第一索引)为001000y 2y 1y 0,指示的为106-tone RU支持的MU MIMO用户数为1至8。第二种索引(第二索引)为101000y 2y 1y 0,指示的为106-tone RU支持的MU MIMO用户数为9至16。对于第一种索引,利用y 2y 1y 0指示106-tone RU支持的MU MIMO用户数为1至8中的任意一个。对于第二种索引,利用y 2y 1y 0指示106-tone RU支持的MU MIMO用户数为9至16中的任意一个。一种可能是实现方式为预定义或者预配置对于同一种资源单元排列组合对应的不同索引,最高位为0则表示该索引中利用一个3比特指示的一个大于或者等于106-tone RU支持的MU MIMO用户数为小于或者等于8。最高位为1则表示该索引中利用一个3比特指示MU MIMO用户数为实际的MU MIMO用户数减去8的值,即最高位为1的索引指示的大于或者等于106-tone RU支持的MU MIMO用户数为大于8。接收设备根据预配置或者预定义的资源单元分配索引,接收到某一个资源单元分配索引后,便可以确定该资源单元分配索引指示的大于或者等于106-tone RU支持的MU MIMO用户数为小于或者等于8,还是指示的为超过8的值。如果该资源单元分配索引实际指示的大于或者等于106-tone RU支持的MU MIMO用户数为大于8的值,则接收设备在该资源单元分配索引实际指示的MU MIMO用户数的基础上加8,便可以得到大于或者等于106-tone RU实际支持的MU MIMO用户数。或者,还可以预定义或者预配置8比特或者9比特的资源单元索引中的某一比特为指示比特,该指示比特用于指示该资源单元索引指示的大于或者等于106-tone RU支持的MU MIMO用户数是该RU实际支持的MU MIMO用户数,还是该RU实际支持的MU MIMO用户数减去8的值。接收设备根据预配置或者预定义的资源单元分配索引中的指示比特,接收到某一个资源单元分配索引后,便可以确定该资源单元分配索引指示的大于或者等于106-tone RU支持的MU MIMO用户数为小于或者等于8,还是指示的为大于8的值。通过指示同一种资源单元排列组合的不同索引分别指示MU MIMO用户数大于8和MU MIMO用户数小于或者等于8,可以减少用于指示MU MIMO用户数的资源,提高资源单元索引的资源利用率。或者,另一种可能的实现方式为预定义或者预配置两种不同的索引分别指示的MU MIMO用户数,第一种索引中利用3比特指示的一个大于或者等于106-tone RU支持的MU MIMO用户数为小于或者等于8,第二种索引中利用4比特指示的一个大于或者等于106-tone RU支持的MU MIMO用户数为9到16。
在另一些可能的实现方式中,该资源单元分配索引包括用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数的字段(例如可以为MU MIMO用户数指示字段),该指示字段的长度大于或者等于4比特,该MU MIMO用户数大于8。接收设备可以根据该MU MIMO用户数的指示字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
具体而言,在另一些可能的实现方式中,对于一个资源单元索引,可以在该资源单元索引中预定义4比特或者大于4比特的指示字段,该指示字段用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数可以大于8。例如,如果利用4比特的指示字段可以指示大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数为9到16个。对于大于4比特的指示字段,可以指示大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数大于16个。例如表3中的索引01111y 3y 2y 1y 0,利用y 3y 2y 1y 0指示2×996-tone RU支持的用户数为1至16个。或者在索引11111x 3x 2x 1x 0中,利用x 3x 2x 1x 0指示4×996-tone RU支持的用户数为1至16个。接收设备某一个资源单元分配索引后,便可以根据该指示字段确定该资源单元分配索引指示的大于或者等于106-tone RU支持的MU MIMO用户数。并且,该MU MIMO用户数大于8。通过利用长度大于或者等于4比特的指示字段指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,容易实现MU MIMO用户数大于8的指示,提高MU MIMO用户数指示的准确性。便于实现。
在一些可能的实现方式中,该信令字段B还包括第一指示子字段,该第一指示子字段用于指示资源单元分配索引的位宽。
具体而言,在资源单元分配子字段之前,位于信令字段A或者信令字段B中,可以存在用于资源单元分配子字段类型指示的指示字段(第一指示子字段)。第一指示子字段用于指示资源单元分配索引的位宽。例如,用于指示至少一个资源单元分配子字段是8bit、9bit或者是其他比特长度的索引。接收设备根据该第一指示子字段,可以确定一个资源单元分配索引的位宽(长度)。
通过在信令字段B中设置第一指示子字段,可以使得接收设备准确的进行资源单元分配子字段的接收和解析,提高接收设备确定资源单元分配子字段指示的资源单元的排列组合以及MU MIMO用户数的效率。
应该理解的是,对于上述的第一指示子字段,除了设置在信令字段B或者信令字段A中,还可以设置在该PPDU包括的其他字段内,只要该第一指示子字段位于至少一个资源单元分配子字段之前即可,本申请在此不作限制。
可选的,对于接收设备针对9bit或者大于9bit的资源单元分配子字段的接收,可以设置为一个可选特性。例如,发送设备与接收设备关联的时候,可以通过极高吞吐率能力信息进行能力宣称,指示自己是否支持9bit或者大于9bit的资源单元分配子字段的接收。当某个接收设备宣称自己不支持9bit或者大于9bit资源单元分配子字段的接收时,发送设备不可以向该接收设备发送包含该资源单元分配子字段的PPDU。
本申请提供的MU-MIMO用户数指示的方法,对于一个尺寸大于或者等于106-tone的RU,将资源单元分配子字段扩展为9比特或者更多比特的索引,或者利用资源单元索引表中的预留条目、改变资源单元索引的方式指示尺寸大于或者等于106-tone的RU支持的用户数,实现了指示尺寸大于或者等于106-tone的RU支持的用户数大于8的情况。从而提高了资源的利用率,提高通信的效率。
图11是本申请提供的一个实施例的MU-MIMO用户数指示的方法300的示意性流程图,该方法300可以应用在图1所示的场景中。当然也可以应用在其他通信场景或者通信 系统中,本申请实施例在此不作限制。
如图11所示,图11中示出的方法300可以包括步骤S310至步骤S330。下面结合图11详细说明方法200中的各个步骤。该方法200包括:
S310,发送设备生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和第二指示字段,一个资源单元分配子字段用于指示一种资源单元的排列组合。至少一个资源单元分配子字段和该第二指示字段联合指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。
S320,发送设备发送该PPDU。相应的,接收设备接收PPDU。
S330,接收设备根据至少一个资源单元分配子字段和第二指示字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
具体而言,在S210中,发送设备向接收设备需要发送数据时,会向接收设备发送PPDU,PPDU包括信令字段B。该PPDU除了包括信令字段B,还可以包括EHT-SIG-A字段、数据字段等。信令字段B包括至少一个资源单元分配子字段(RU allocation subfield)。该信令字段B还可以包括至少一个逐个站点字段(user field)。一个资源单元分配子字段为一个资源单元分配索引,一个资源单元分配索引用于指示一种资源单元的排列组合(或者也可以称为资源单元的分配顺序)。其中,至少一个逐个站点字段的顺序和资源单的分配顺序是对应的,用于资源单元的排列组合包括的RU内被分配的STA的站点信息。例如,一个资源单元分配索引为可以为8比特索引,例如上述表2所示的。利用8比特长度的资源单元分配索引指示一种资源单元的排列组合。该信令字段B还包括第二指示字段,该至少一个资源单元分配子字段和该第二指示字段联合指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。该PPDU包括的至少一个资源单元分配子字段,一个资源单元分配子字段指示的资源单元分配索引可以是上述的表2中的任意一个索引。
在S320中,发送设备向接收设备发送该PPDU。相应的,接收设备接收PPDU。
在S330中,接收设备接收到该PPDU后,根据至少一个资源单元分配子字段,根据一个资源单元分配子字段对应的资源单元分配索引,确定RU分配。进一步的,根据资源单元分配子字段指示的预定顺序读取逐个站点字段,根据逐个站点字段携带的站点标识,确定与自己对应的逐个站点字段以及自己所属的资源单元、相应的空间流数,调制与编码策略等。通过读取至少一个资源单元分配子字段和第二指示字段,可以确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。该由大于或者等于106个子载波组成的资源单元可以是自己所属的资源单元,也可以不是自己所属的资源单元。并且,该MU MIMO用户数可以大于8。
本申请提供的MU-MIMO用户数指示的方法,对于一个尺寸大于或者等于106-tone的RU,通过对在信令字段B中增加第二指示字段,利用第二指示字段和至少一个资源单元分配子字段联合指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,实现了指示尺寸大于或者等于106-tone的RU支持的用户数大于8的情况。通过新增加指示字段,可以准确和方便的实现MU MIMO用户数大于8的指示。并且不用改变现有的资源单元分配索引表,容易实现。提高了指示MU MIMO用户数大于8的效率。
在一些可能的实现方式。第二指示字段包括至少一个MU MIMO用户数指示子字段,以图12为例,在图11所示的方法步骤的基础上,该方法300中的S310:发送设备生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和第二指示字段,包括S311。
S311:发送设备生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元和至少一个MU MIMO用户数指示子字段,一个MU MIMO用户数指示子字段用于指示对应资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。该方法300中的S330:接收设备根据至少一个资源单元分配子字段和第二指示字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,包括S331。
S331,接收设备根据至少一个资源单元分配子字段和至少一个MU MIMO用户数指示子字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
图12中所示的S320描述可以参考上述对S320的描述,为了简洁,这里不再赘述。
对于至少一个MU MIMO用户数指示子字段有两种设计方式,
第一种设计方式:一个MU MIMO用户数指示子字段与一个资源单元分配子字段指示的由大于或者等于106个子载波组成并且支持的MU MIMO用户数等于8的资源单元一一对应。
第二种设计方式:MU MIMO用户数指示子字段个数与可能存在的由大于或者等于106个子载波组成的资源单元的个数的最大值相同。
下面分别说明这两种不同的设计方式。
对于第一种设计方式,图13所示的为第一种设计方式对应的信令字段B结构的示意图。如图13所示的,信令字段B包括至少一个资源单元分配子字段和至少一个MU MIMO用户数指示子字段。应理解,信令字段B还可以包括至少一个逐个站点字段,如果带宽大于或者等于80MHz,信令字段B还存在center 26-tone RU indication字段。一个MU MIMO用户数指示子字段与一个资源单元分配子字段指示的由大于或者等于106个子载波组成并且指示的MU MIMO用户数等于8的资源单元一一对应,一个MU MIMO用户数指示子字段用于指示对应资源单元支持的MU MIMO用户数。在这种情况下,具体的指示MU MIMO用户数方式如下:
对于一个资源单元分配子字段指示的大于或者等于106-tone RU,如果该大于或者等于106-tone RU支持的MU MIMO用户数小于8,则利用如表2所示的资源单元分配索引的方式指示,利用该资源单元分配子字段指示该大于或者等于106-tone RU实际支持MU MIMO用户数。如果该大于或者等于106-tone RU支持的实际MU MIMO用户数大于或者等于8,则在资源单元分配子字段先指示为8,进一步的,按照资源单元分配子字段指示的大于或者等于106-tone RU并且支持的MU MIMO用户数等于8的资源单元的先后顺序,存在着与大于或者等于106-tone RU并且支持的MU MIMO用户数等于8的资源单元一一对应的MU MIMO用户数指示子字段。MU MIMO用户数指示子字段指示的内容可以为对应的资源单元实际支持的MU MIMO用户数减去8的值。在第一种计规则中,如图13所示的,至少一个资源单元分配子字段和至少一个MU MIMO用户数指示子字段可以是分别进行CRC校验和编码的。MU MIMO用户数指示子字段的个数和大于或者等于106-tone  RU并且支持的MU MIMO用户数等于8的资源单元的个数相同。接收设备通过接收RU allocation subfield获取用户数为8的MU-MIMO的RU个数,进一步获取后续MU-MIMO指示子字段的个数。
下面举例说明:
假设数据分组带宽为40Mhz,结合图8所示的内容可知存在两个CC,第1个CC(CC1)包括第一个242-tone RU的资源分配子字段,第2个CC(CC2)包括第二个242-tone RU的资源分配子字段。图14所示的,假设第一个242-tone RU的资源的排列组合为106-tone RU+26-tone RU+106-tone RU,资源单元分配子字段对应的资源单元分配索引为10y 2y 1y 0z 2z 1z 0。第一个106-tone RU支持10个MU MIMO用户,第二个106-tone RU支持3个MU MIMO用户。
第二个242-tone RU的资源的排列组合为106-tone RU+26-tone RU+52-tone RU+52-tone RU,资源单元分配子字段对应的资源单元分配索引为01011y 2y 1y 0。第一个106-tone RU支持8个MU MIMO用户。
对应的2个CC的结构如图15所示的。
CC1包括第一个242-tone RU的资源分配子字段,第一个106-tone RU支持的用户数为10,按照8个用户进行指示,资源单元分配索引10y2y1y0z2z1z0中y2y1y0指示为111(二进制的0到7对应1到8个用户),第二个106-tone RU用户数为3,按照3个用户进行指示,则10y2y1y0z2z1z0中z2z1z0指示为010,因此第一个资源单元分配子字段(RU allocation subfield)指示为10111010。进一步的,因为带宽小于80MHz,因此不存在center 26-tone RU indication。在RU allocation subfield中存在1个指示为8个用户的RU,因此还会存在1个MU-MIMO用户数的指示子字段,这个MU-MIMO用户数的指示子字段与第一个106-tone RU对应,指示的值为10-8=2,代表在8的基础上,额外还存在2个用户。在逐个站点字段,CC1中按资源分配的顺序,共存在14个STA的指示信息;
CC2包括第二个242-tone RU的资源分配子字段,第一个106-tone RU中支持的用户数为8,按照8个用户指示,资源单元分配索引01011y 2y 1y 0中的y 2y 1y 0指示为111,因此第二个RU allocation subfield指示为01011111。进一步的,因为带宽小于80MHz,因此不存在center 26-tone RU indication。在RU allocation subfield中存在1个指示为8个用户的RU,因此还会存在1个MU-MIMO用户数的指示子字段,指示的值为8-8=0,代表在8的基础上,不存在额外的用户。在逐个站点字段,共存在11个STA的指示信息。
接收设备接收到至少一个资源单元分配子字段和至少一个MU MIMO用户数指示子字段后,先根据一个资源单元分配子字段对应的资源单元分配索引,确定RU分配,进一步的根据资源单元分配索引确定该索引指示的大于或者等于106-tone RU(为了区分,称为第一RU)支持的MU-MIMO用户数是小于8还是等于8。如果是小于8,则该资源单元分配索引指示的MU-MIMO用户数即为该第一RU支持的实际MU-MIMO用户数。如果是等于8,按照第一RU在大于或者等于106-tone RU并且支持的MU MIMO用户数等于8的资源单元的先后顺序,在至少一个MU MIMO用户数指示子字段中读取与第一RU对应的MU MIMO用户数指示子字段,确定与第一RU对应的MU MIMO用户数指示子字段指示的MU MIMO用户数,将该MU MIMO用户数加8即得到第一RU实际支持的用户数。
可选的,为了使得CC1和CC2的长度相同,还可以在CC2中存在填充字段,这样可以使得接收设备更加准确和快速的解析CC1和CC2。提高接收设备获取MU MIMO用户数的效率。
通过将至少一个资源单元分配子字段和至少一个MU MIMO用户数指示子字段分别进行CRC校验和编码,利用至少一个资源单元分配子字段和至少一个MU MIMO用户数指示子字段指示MU MIMO用户数,可以提高MU MIMO用户数指示的效率,避免多于的MU MIMO用户数指示子字段出现,开销比较小,节省资源,同时也有利于接收设备进行解析获取MU MIMO用户数。提高了指示MU MIMO用户数大于8的效率。
对于第二种设计方式:图16所示的为第二种设计方式下对应的信令字段B结构的示意图。如图16示的,信令字段B包括至少一个资源单元分配子字段和至少一个MU MIMO用户数指示子字段。应理解,信令字段B还可以包括至少一个逐个站点字段,如果带宽大于或者等于80MHz,信令字段B还存在center 26-tone RU indication字段。MU MIMO用户数指示子字段个数与可能存在的由大于或者等于106个子载波组成的资源单元的最大个数相同。一个MU MIMO用户数指示子字段用于指示对应资源单元支持的MU MIMO用户数。在第二种设计中,如图16所示的,至少一个资源单元分配子字段和至少一个MU MIMO用户数指示子字段是统一进行CRC校验和编码的。在这种情况下,具体的指示MU MIMO用户数方式和上述的第一种设计方式类似,不同之处在于MU MIMO用户数指示子字段的个数和第一种设计方式下的MU MIMO用户数指示子字段的个数可能不同。由于至少一个资源单元分配子字段和至少一个MU MIMO用户数指示子字段是统一进行CRC校验和编码的,MU-MIMO用户数指示子字段的个数在读取RU allocation subfield之前就需要得到。这样接收设备才可以知道CRC和Tail的位置,先进行解码和校验,再进行相应信息的解析。即MU MIMO用户数指示子字段的个数是固定的。因此,由于一个RU allocation subfield最多指示两个106-tone RU或者指示一个大于106-tone RU,按照可能存在的106-tone RU的个数最大值进行设计,MU MIMO用户数指示子字段的个数和资源单元分配子字段个数的2倍相同。
例如,结合图14所示的资源单元的排列组合方式进行说明。对应的2个CC的结构如图17所示的。
CC1包括第一个242-tone RU的资源分配子字段,第一个106-tone RU支持的用户数为10,按照8个用户进行指示,资源单元分配索引10y 2y 1y 0z 2z 1z 0中y 2y 1y 0指示为111(二进制的0到7对应1到8个用户),第二个106-tone RU支持的用户数为3,按照3个用户进行指示,则10y 2y 1y0z 2z 1z 0中z 2z 1z 0指示为010,因此第一个资源单元分配子字段(RU allocation subfield)指示为10111010。进一步的,因为带宽小于80MHz,因此不存在center 26-tone RU indication。由于MU MIMO用户数指示子字段和资源单元分配子字段统一编码,MU-MIMO用户数指示子字段的个数在读取RU allocation subfield之前就需要得到。如图17所示。在CC1中,MU-MIMO的用户数子字段的个数同可能存在的106-tone RU的个数的最大值相同,即同可能进行MU-MIMO传输的106-tone RU个数的最大值相同,也就是RU allocation subfield的个数乘以2。因此在CC1上,虽然只有一个106-tone RU支持的MU MIMO用户数大于8,但是还是存在两个MU-MIMO的用户数子字段。第一个MU-MIMO的用户数子字段指示的值为2,第二个MU-MIMO的用户数子字段可以预留或 者不进行指示。
CC2包括第二个242-tone RU的资源分配子字段,第一个106-tone RU中支持的用户数为8,按照8个用户指示,资源单元分配索引01011y 2y 1y 0中的y 2y 1y 0指示为111,因此第二个RU allocation subfield指示为01011111。进一步的,因为带宽小于80MHz,因此不存在center 26-tone RU indication。在RU allocation subfield中虽然只存在1个指示为8个用户的RU,但是还是存在2个MU-MIMO用户数的指示子字段。第一个MU-MIMO的用户数子字段指示的值为0,代表在8的基础上,不存在额外的用户。第二个MU-MIMO的用户数子字段可以预留或者不进行指示。
应该理解的是,虽然第二种设计方式中MU MIMO用户数指示子字段的个数是按照可能出现的106-tone RU的最大值设计的,但是实际用于指示的MU-MIMO用户数子字段的个数还是同第一种实现方式。剩余的MU MIMO用户数指示子字段,若存在,可以进行预留,不进行任何指示。
通过将至少一个资源单元分配子字段和至少一个MU MIMO用户数指示子字段统一进行CRC校验和编码,利用至少一个资源单元分配子字段和至少一个MU MIMO用户数指示子字段指示MU MIMO用户数,可以确保每一个大于或者等于106-tone的RU均有对应的MU MIMO用户数指示子字段,保证了MU MIMO用户数大于8的指示的可靠性。
在另一些可能的实现方式,第二指示字段包括用户数比特位图子字段,以图18为例,在图11所示的方法步骤的基础上,该方法300中的S310:发送设备生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和第二指示字段,包括S311。
S312:发送设备生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元和用户数比特位图(User Number bitmap)子字段,该用户数比特位图的一个比特用于指示对应的资源单元支持的MU MIMO用户数为实际MU MIMO用户数或者为实际MU MIMO用户数与8的差值。
该方法300中的S330:接收设备根据至少一个资源单元分配子字段和第二指示字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,包括S332。
S332:接收设备根据至少一个资源单元分配子字段和户数比特位图,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
图18中所示的S320描述可以参考上述对S320的描述,为了简洁,这里不再赘述。
对于用户数比特位图子字段也存在有两种设计方式,
第一种设计方式:用户数比特位图子字段的一个比特与一个资源单元分配子字段指示的大于或者等于106个子载波组成的资源单元一一对应。
第二种设计方式:该用户数比特位图子字段的长度与可能存在的由大于或者等于106个子载波组成的资源单元的最大个数相同。
下面分别说明这两种不同的设计方式。
对于第一种设计方式,图19所示的为第一种设计方式下对应的信令字段B结构的示意图。如图19所示的,信令字段B包括至少一个资源单元分配子字段和用户数比特位图子字段。应理解,信令字段B还可以包括至少一个逐个站点字段,如果带宽大于或者等于80MHz,信令字段B还存在center 26-tone RU indication字段。用户数比特位图子字段的 一个比特与一个资源单元分配子字段指示的大于或者等于106个子载波组成的资源单元一一对应,该用户数比特位图子字段的一个比特用于指示对应的资源单元支持的MU MIMO用户数为实际MU MIMO用户数或者为实际MU MIMO用户数与8的差值。在这种情况下,具体的指示MU MIMO用户数方式如下:
对于一个资源单元分配子字段指示的大于或者等于106-tone RU,存在两种MU MIMO用户数指示方式。
方式a:如果该大于或者等于106-tone RU支持的MU MIMO用户数小于或者等于8,则利用如表2所示的资源单元分配索引的方式指示,利用该资源单元分配子字段指示该大于或者等于106-tone RU实际支持MU MIMO用户数。
方式b:如果该大于或者等于106-tone RU支持的实际MU MIMO用户数(假设为X)大于8,则在资源单元分配子字段先指示为X-8。
进一步的,对于上述的两种方式(方式a和方式b),通过用户数比特位图子字段中的一个比特指示该大于或者等于106-tone RU的MU MIMO用户数指示方式是方式a还是方式b。按照资源单元分配子字段指示的大于或者等于106-tone RU的资源单元的先后顺序,用户数比特位图子字段的一个比特与一个资源单元分配子字段指示的大于或者等于106个子载波组成的资源单元一一对应。在第一种计规则中,如图19所示的,至少一个资源单元分配子字段和用户数比特位图子字段可以是分别进行CRC校验和编码的。用户数比特位图子字段的长度(比特数)和资源单元分配子字段指示的大于或者等于106-tone RU的资源单元的个数相同。接收设备通过接收RU allocation subfield获取用大于或者等于106-tone RU的资源单元的个数,进一步获取后续用户数比特位图子字段的比特数。
例如,结合图14所示的资源单元的排列组合方式进行说明。对应的2个CC的结构如图20所示的。
CC1包括第一个242-tone RU的资源分配子字段,第一个106-tone RU支持的用户数为10,按照10-8=2个用户进行指示,资源单元分配索引10y 2y 1y 0z 2z 1z 0中y 2y 1y 0指示为001(二进制的0到7对应1到8个用户),第二个106-tone RU支持的用户数为3,按照3个用户进行指示,则10y 2y 1y0z 2z 1z 0中z 2z 1z 0指示为010,因此第一个资源单元分配子字段(RU allocation subfield)指示为10111010。进一步的,因为带宽小于80MHz,因此不存在center 26-tone RU indication。由于用户数比特位图子字段和资源单元分配子字段分别独立编码。接收设备可以通过接收RU allocation subfield获取大于或者等于106-tone RU的个数,进一步获取后续用户数比特位图的比特数。如图20所示,还存在长度为2比特的用户数比特位图子字段,2比特的用户数比特位图子字段可以指示为01(假设“0”表示方式b,“1”表示方式a)或者10(假设“1”表示方式b,0”表示方式a)。如果一个比特指示的为方式b,则这个比特对应的大于或者等于106-tone RU实际支持的用户数为资源单元分配索引指示的用户数加上8。
CC2包括第二个242-tone RU的资源分配子字段,第一个106-tone RU中支持的用户数为8,按照8个用户指示,01011y 2y 1y 0中的y 2y 1y 0指示为111,因此第二个RU allocation subfield指示为01011111。进一步的,因为带宽小于80MHz,因此不存在center 26-tone RU indication。在RU allocation subfield中只存在1个指示为8个用户的RU,还存在长度为1比特的用户数比特位图子字段,1比特的用户数比特位图子字段指示为1(假设“0”表示 方式b,“1”表示方式a)或者0(假设“1”表示方式b,“0”表示方式a)。表示该106-tone RU实际支持的MU-MIMO用户数为资源单元分配索引指示的MU-MIMO用户数。
接收设备接收到至少一个资源单元分配子字段和用户数比特位图子字段后,先根据一个资源单元分配子字段对应的资源单元分配索引,确定RU分配。进一步的,根据资源单元分配子字段指示的预定顺序读取逐个站点字段,根据逐个站点字段携带的站点标识,确定与自己对应的逐个站点字段以及自己所属的资源单元、相应的空间流数,调制与编码策略等。进一步的根据资源单元分配索引确定该索引指示的大于或者等于106-tone RU(为了区分,称为第二RU)支持的MU-MIMO用户数。然后在用户数比特位图子字段,读取与第二RU对应的比特位,确定与第二RU对应的资源单元分配索引指示的MU MIMO用户数是第二RU实际支持的MU MIMO用户数或者为实际MU MIMO用户数与8的差值。如果为第二RU实际支持的MU MIMO用户数与8的差值,则需要将该值加上8后便可以得到第二RU实际支持的MU MIMO用户数。
通过将至少一个资源单元分配子字段和用户数比特位图子字段分别进行CRC校验和编码,利用至少一个资源单元分配子字段和用户数比特位图子字段联合指示MU MIMO用户数,可以提高MU MIMO用户数指示的效率,避免多于或者无用的用户数比特位出现,开销比较小,节省资源,同时也有利于接收设备进行解析获取MU MIMO用户数。提高了指示MU MIMO用户数大于8的效率。
对于第二种设计方式:图21所示的为第二种设计方式下对应的信令字段B结构的示意图。如图21所示的,信令字段B包括至少一个资源单元分配子字段和用户数比特位图子字段。应理解,信令字段B还可以包括至少一个逐个站点字段,如果带宽大于或者等于80MHz,信令字段B还存在center 26-tone RU indication字段。用户数比特位图子字段的位宽和可能存在的由大于或者等于106个子载波组成的资源单元的最大的个数相同。该用户数比特位图子字段的一个比特用于指示对应的资源单元支持的MU MIMO用户数为实际MU MIMO用户数或者为实际MU MIMO用户数与8的差值。在第二种设计中,如图21所示的,至少一个资源单元分配子字段和用户数比特位图子字段是统一进行CRC校验和编码的。在这种情况下,具体的指示MU MIMO用户数方式和上述的第一种设计方式类似,不同之处在于用户数比特位图的长度和第一种设计方式下的用户数比特位图子字段的长度可能不同。由于至少一个资源单元分配子字段和用户数比特位图子字段可以统一进行CRC校验和编码的,用户数比特位图子字段在读取RU allocation subfield之前就需要得到。这样接收设备才可以知道CRC和Tail的位置,先进行解码和校验,再进行相应信息的解析。即用户数比特位图子字段的长度是固定的。因此,由于一个RU allocation subfield最多包括两个106-tone RU,或者包括一个大于106-tone RU,按照可能存在的106-tone RU的个数最大值进行设计,用户数比特位图的长度(比特数)和资源单元分配子字段个数的2倍相同。
例如,结合图14所示的资源单元的排列组合方式进行说明。对应的2个CC的结构如图22所示的。
CC1包括第一个242-tone RU的资源分配子字段,第一个106-tone RU支持的用户数为10,按照10-8=2个用户进行指示,资源单元分配索引10y 2y 1y 0z 2z 1z 0中y 2y 1y 0指示为001(二进制的0到7对应1到8个用户)。第二个106-tone RU支持的用户数为3,按照3 个用户进行指示,则10y 2y 1y0z 2z 1z 0中z 2z 1z 0指示为010,因此第一个资源单元分配子字段(RU allocation subfield)指示为10111010。因为带宽小于80MHz,因此不存在center 26-tone RU indication。由于用户数比特位图子字段和资源单元分配子字段联合编码。用户数比特位图子字段的长度在读取RU allocation subfield之前就需要得到。如图22所示。在CC1中,用户数比特位图子字段的长度同可能存在的106-tone RU的个数的最大值相同,即同可能进行MU-MIMO传输的106-tone RU个数的最大值相同,也就是RU allocation subfield的个数乘以2。因此在CC1上,还存在长度为2比特的用户数比特位图子字段,第一比特对应第一个106-tone RU,第二比特对应第二个106-tone RU。
CC2包括第二个242-tone RU的资源分配子字段,第一个106-tone RU中支持的用户数为8,按照8个用户指示,资源单元分配索引01011y 2y 1y 0中的y 2y 1y 0指示为111,因此第二个RU allocation subfield指示为01011111。进一步的,因为带宽小于80MHz,因此不存在center 26-tone RU indication。在RU allocation subfield中虽然只存在1个106-tone RU,还存在长度为2比特的用户数比特位图子字段。第一比特对应第一个106-tone RU,第二比特可以进行预留,不进行任何指示。
通过将至少一个资源单元分配子字段和用户数比特位图子字段统一进行CRC校验和编码,利用至少一个资源单元分配子字段和用户数比特位图子字段指示MU MIMO用户数,可以确保每一个大于或者等于106-tone的RU均有对应的用户数比特位,保证了MU MIMO用户数大于8的指示的可靠性。而且,相对开销较小。
在本申请提供的另一些可能的实现方式中,对于全带宽模式下的MU-MIMO,即非OFDMA场景,整个带宽分配给一组用户,不会去进行频分。802.11ax标准中在HE-SIG-A中指示HE-SIG-B为压缩模式,并复用HE-SIG-B符号数的指示,用于指示全带宽进行MU-MIMO传输的用户数。此时,HE-SIG-B不存在公共字段,直接指示逐个站点字段。
本申请的实施例中,还可以通过限制支持MU MIMO用户数大于8的传输模式,来进行指示MU MIMO用户数大于8。例如,限制在进行全带宽MU-MIMO传输时,即非OFDMA情况下的MU-MIMO传输时,才支持超过8个用户的MU-MIMO传输。对于OFDMA场景,利用某个小于全带宽的RU进行MU-MIMO传输的场景,则该RU最多支持8个用户的MU-MIMO传输。对于全带宽进行MU-MIMO的场景,可以复用EHT-SIG-A中用于指示EHT-SIG-B符号数的字段进行MU-MIMO用户数的指示。或者,也可以在EHT-SIG-A或者EHT-SIG-B中新设置字段指示MU-MIMO用户数。
另外,还可在EHT-SIG-A或者EHT-SIG-B中设置用于指示全带宽MU-MIMO传输的字段。
具体的,发送设备可以向接收设备发送PPDU。该PPDU包括信令字段A和/或信令字段B,该信令字段A或信令字段B包括全带宽MU-MIMO传输指示字段和全带宽MU MIMO用户数指示字段。全带宽MU-MIMO传输指示字段用于指示进行全带宽MU-MIMO传输,全带宽MU MIMO用户数指示字段用于指示全带宽MU-MIMO传输时支持的MU-MIMO用户数,该MU MIMO用户数大于8。该信令字段B还可以包括至少一个站点字段(user field)。每一个站点字段指示在全带宽MU-MIM传输时全带宽内的站点信息。接收设备根据该PPDU,根据信令字段A或信令字段B包括全带宽MU-MIMO传输指示字段和全带宽MU MIMO用户数指示字段,可以确定全带宽MU-MIM传输时支持的 MU-MIMO用户数,并且,MU MIMO用户数大于8。例如,全带宽MU MIMO用户数指示字段可以复用EHT-SIG-A中用于指示EHT-SIG-B符号数的字段,利用4比特指示全带宽MU MIMO用户数。
通过通过限制在进行全带宽MU-MIMO传输时,才支持超过8个用户的MU-MIMO传输。对于OFDMA场景,利用某个小于全带宽的RU进行MU-MIMO传输的场景,则该RU最多支持8个用户的MU-MIMO传输。实现了指示MU-MIMO用户数大于8的情况。容易实现,复杂度低。
图23是本申请提供的一个实施例的MU-MIMO用户数指示的方法400的示意性流程图,该方法400可以应用在图1所示的场景中。当然也可以应用在其他通信场景或者通信系统中,本申请实施例在此不作限制。
如图23所示,图23中示出的方法400可以包括步骤S410至步骤S430。下面结合图23详细说明方法400中的各个步骤。该方法400包括:
S410,发送设备生成物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和至少一个逐个站点字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,至少一个逐个站点字段的顺序与该资源单元的排列组合的顺序对应,一个逐个站点字段用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。
S420,发送设备向接收设备发送该PPDU。相应的,接收设备接收该PPDU。
S430,接收设备根据至少一个资源单元分配子字段和至少一个逐个站点字段,确定该接收设备所在的资源单元(由大于或者等于106个子载波组成的资源单元)支持的MU MIMO用户数,该MU MIMO用户数大于8。
具体而言,在S410中,发送设备向接收设备需要发送数据时,会向接收设备发送PPDU,PPDU包括信令字段B。该PPDU除了包括信令字段B,还可以包括HE-SIG-A字段、L-STF字段、数据字段等。信令字段B可以是图2所示的HE-SIG-B字段,其结构可以和图3所示的HE-SIG-B字段的结构类似。信令字段B包括至少一个资源单元分配子字段(RU allocation subfield)。至少一个逐个站点字段。一个资源单元分配子字段为一个资源单元分配索引,一个资源单元分配索引用于指示一种资源单元的排列组合(或者也可以称为资源单元的分配顺序)。其中,至少一个逐个站点字段的顺序和资源单的分配顺序是对应的,指示在资源单元的排列组合包括的RU内被分配的STA的站点信息。一个资源单元分配索引可以为8比特,利用8比特长度的资源单元分配索引指示一种资源单元的排列组合。一个逐个站点字段用于指示该站点所在的由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。
在S420中,发送设备向接收设备发送该PPDU。相应的,接收设备接收PPDU。
在S430中,接收设备接收到该PPDU后,根据至少一个资源单元分配子字段,根据一个资源单元分配子字段对应的资源单元分配索引,确定RU分配。进一步的,根据资源单元分配子字段指示的预定顺序读取逐个站点字段。根据逐个站点字段携带的站点标识,确定与自己对应的逐个站点字段(假设为第一站点字段)。根据第一站点字段,获取第一站点字段对应的资源单元以及相应的空间流数,调制与编码策略等。进一步的根据第一站点字段确定自己所在资源单元(大于或者等于106个子载波组成的资源单元)支持的MU  MIMO用户数。
本申请提供的MU-MIMO用户数指示的方法,通过信令字段B中的逐个站点字段指示对应的由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,并且,该MU MIMO用户数大于8。实现了指示尺寸大于或者等于106-tone RU支持的用户数大于8的情况。可以准确和方便的实现MU MIMO用户数大于8的指示。并且不用改变现有的资源单元分配索引表,容易实现。提高了指示MU MIMO用户数大于8的效率。
在一些可能的实现方式,至少一个逐个站点字段中的第一逐个站点字段包括MU MIMO用户数指示子字段,该第一逐个站点字段对应由大于或者等于106个子载波组成的资源单元,该MU MIMO用户数指示子字段用于指示该由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8。
具体而言,在利用逐个站点字段用于指示该站点所在的由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数时,可以在逐个站点字段中添加MU MIMO用户数指示子字段,用于指示该逐个站点字段对应的资源单元支持的MU MIMO用户数。例如,可以在每个逐个站点字段中添加MU MIMO用户数指示子字段。如果某一个逐个站点字段对应的资源单元小于106-tone RU,则该逐个站点字段中的MU MIMO用户数指示子字段指示的MU MIMO用户数为1。如果某一个逐个站点字段对应的资源单元大于或者等于106-tone RU,则该逐个站点字段中的MU MIMO用户数指示子字段指示的MU MIMO用户数为可以大于8,例如可以指示9至16个用户。又例如,也可以只在大于或者等于106-tone RU对应的一个或者多个逐个站点字段(第一逐个站点字段)中添加MU MIMO用户数指示子字段,用于指示该大于或者等于106-tone RU支持的MU MIMO用户数。MU MIMO用户数指示子字段指示的MIMO用户数可以大于8。
例如,表5所示为本申请一个实施例中逐个站点字段(或者也可以称为站点字段)包括的子字段。如表5所示的,逐个站点字段包括站点标识子字段、空间分配子字段、编码与调制策略子字段、保留字段以及编码子字段。空间分配子字段用于指示一个站点在MU-MIMO资源中的空间流数。MU-MIMO资源可以理解为大于或者等于106-tone RU的资源,例如242-tone RU、484-tone RU、996-tone RU等。如表5所示的,还可以在逐个站点字段中添加MU MIMO用户数指示子字段,用于指示该逐个站点字段对应的资源单元支持的MU MIMO用户数。应理解,表5所示的MU MIMO用户数指示子字段为4个比特,可选的,MU MIMO用户数指示子字段的位宽还可以是其他长度,例如5比特、6比特等。本申请对于MU MIMO用户数指示子字段的长度不作限制。
表5逐个站点字段包括的内容
Figure PCTCN2020099894-appb-000009
Figure PCTCN2020099894-appb-000010
接收设备根据该PPDU包括的至少一个资源单元分配子字段,根据一个资源单元分配子字段对应的资源单元分配索引,确定RU分配。并根据资源单元分配子字段指示的预定顺序读取逐个站点字段。根据逐个站点字段携带的站点标识,确定与自己对应的逐个站点字段以及自己所属的资源单元、相应的空间流数,调制与编码策略等,并根据自己对应的逐个站点字段中的MU MIMO用户数指示子字段,确定自己自己所属的资源单元支持的MU MIMO用户数。例如,当自己所属的资源单元为大于或者等于106-tone RU,支持的MU MIMO用户数可以大于8。通过逐个站点字段包括MU MIMO用户数指示子字段该站点所在资源单元的MU MIMO用户数,可以提高MU MIMO用户数指示的效率,也有利于接收设备进行解析获取MU MIMO用户数,提高了指示MU MIMO用户数大于8的效率。
在另一些可能的实现方式,至少一个逐个站点字段中的第一逐个站点字段包括第三指示子字段,该第一逐个站点字段对应由大于或者等于106个子载波组成的资源单元,该第三指示子字段用于指示该第一逐个站点字段指示的站点是否为由大于或者等于106个子载波组成的资源单元内的最后一个站点。
具体而言,除了利用上述的在部分或者全部逐个站点字段中设置用于指示该站点所在的资源单元支持的MU MIMO用户数之外。还可以在某一个资源单元(例如大于或者等于106-tone RU)内所有逐个站点字段(第一逐个站点字段)设置一个1比特的指示位(即第三指示子字段),用于指示该逐个站点字段指示的站点是否为资源单元内最后一个MU MIMO用户,或者指示该站点是否为资源单元内最后第一个MU MIMO用户。接收设备根据接收到该PPDU后,根据某一个资源单元对应的所有逐个站点字段,统计该资源单元内支持的MU MIMO用户数。例如,假设1比特的指示位用于指示该逐个站点字段指示的站点是否为资源单元内最后一个MU MIMO用户,接收设备可以通过1比特的指示位,统计从第一个非最后的站点到最后一个站点,便可以确定该资源单元内支持的MU MIMO用户数,该资源单可以是大于或者等于106个子载波组成的资源单元,该MU MIMO用户数可以大于8。
例如,表6所示为本申请一个实施例中逐个站点字段包括的子字段。如表6所示的,逐个站点字段包括站点标识子字段、空间分配子字段、编码与调制策略子字段、保留字段以及编码子字段。如表6所示的,还可以在逐个站点字段中添加1比特的指示位,于指示该逐个站点字段指示的站点是否为资源单元内最后一个MU MIMO用户。
表6逐个站点字段包括的内容
Figure PCTCN2020099894-appb-000011
Figure PCTCN2020099894-appb-000012
本申请提供的MU-MIMO用户数指示的方法,通过信令字段B中的逐个站点字段设置用于MU MIMO用户数的MU MIMO用户数指示子字段,或者通过在某一个资源单元内的所有逐个站点字段设置指示子字段指示站点是否为该资源单元支持的最后一个站点或者第一个站点。实现了指示尺寸大于或者等于106-tone RU支持的用户数大于8的情况。可以准确和方便的实现MU MIMO用户数大于8的指示。并且不用改变现有的资源单元分配索引表,容易实现。提高了指示MU MIMO用户数大于8的效率。
应理解,在本申请的各个实施例中,第一、第二等只是为了表示多个对象是不同的。例如第一索引和第二索引只是为了表示出不同的索引。而不应该对索引的本身和数量等产生任何影响,上述的第一、第二等不应该对本申请的实施例造成任何限制。
还应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
还应理解,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化.例如,上述方法200、方法300和方法400中某些步骤可以是不必须的,或者可以新加入某些步骤等。或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。
还应理解,上文对本申请实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
还应理解,本申请实施例中,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
以上结合图1至图23对本申请实施例的MU MIMO用户数指示方法进行了详细的说 明。以下,结合图24至图29对本申请实施例通信装置进行详细说明。
图24示出了本申请实施例的通信装置500的示意性框图,该装置500可以对应上述方法200至方法400中描述的发送设备,也可以是应用于发送设备的芯片或组件,并且,该装置500中各模块或单元分别用于执行上述方法200至方法400中发送设备所执行的各动作或处理过程,如图24所示,该通信装置500可以包括:处理单元510和通信单元520。
该处理单元410用于:生成物理层协议数据单元PPDU,所述PPDU包括信令字段B,所述信令字段B包括至少一个资源单元分配子字段,一个所述资源单元分配子字段为一个资源单元分配索引,一个所述资源单元分配索引用于指示一种资源单元的排列组合,一个所述资源单元分配索引还用于指示由大于或者等于106个子载波组成的资源单元支持的多用户多输入多输出MU MIMO用户数,所述MU MIMO用户数大于8;
或者,所述PPDU包括信令字段B,所述信令字段B包括至少一个资源单元分配子字段和第二指示字段,一个所述资源单元分配子字段用于指示一种资源单元的排列组合,所述至少一个资源单元分配子字段和所述第二指示字段联合指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,所述MU MIMO用户数大于8;
或者,所述PPDU包括信令字段B,所述信令字段B包括至少一个资源单元分配子字段和至少一个逐个站点字段,一个所述资源单元分配子字段用于指示一种资源单元的排列组合,所述至少一个逐个站点字段的顺序与所述资源单元的排列组合的顺序对应,一个所述逐个站点字段用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,所述MU MIMO用户数大于8;
该通信单元520用于:发送所述PPDU。
本申请提供的通信装置,对于一个尺寸大于或者等于106-tone的RU,通过对资源单元分配子字段的设计,或者通过新增指示字段,实现了指示尺寸大于或者等于106-tone的RU支持的用户数大于8的情况。从而提高了资源的利用率,提高通信的效率。
应理解,装置500中各单元执行上述相应步骤的具体过程请参照前文中结合图2至图23的方法实施例的描述,为了简洁,这里不加赘述。
可选的,通信单元520可以包括接收单元(模块)和发送单元(模块),用于执行方法200至方法400以及图4、图11、图11、图12、图18和图23中发送设备发送信息的步骤。可选的,通信装置500还可以存储单元550,存储单元550用于存储通信单元520和处理单元510执行的指令。通信单元520、处理单元510和存储单元550相互耦合,存储单元550存储指令,处理单元510用于执行存储单元550存储的指令,通信单元520用于在处理单元510的驱动下执行具体的信号收发。
处理单元510可以是处理器,通信单元520可以是收发器、输入/输出接口或接口电路。存储单元530可以是存储器。如图25所示,通信装置600可以包括处理器610、存储器620和收发器630。当该通信装置是通信设备内的芯片时,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该通信设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
本领域技术人员可以清楚地了解到,通信装置500和600所执行的步骤以及相应的有益效果可以参考上述方法200至方法400中发送设备的相关描述,为了简洁,在此不再赘述。
上述的通信装置500或者600可以为终端设备或者网络设备。
图26示出了本申请实施例的通信装置700的示意性框图,该装置700可以对应上述方法200中描述的接收设备,也可以是应用于接收设备的芯片或组件,并且,该装置700中各模块或单元分别用于执行上述方法200至方法400中接收设备所执行的各动作或处理过程,如图26所示,该通信装置700可以包括:通信单元710和处理单元720。
该通信单元710用于:接收物理层协议数据单元PPDU,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和第二指示字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,该至少一个资源单元分配子字段和该第二指示字段联合指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8;
或者,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和第二指示字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,该至少一个资源单元分配子字段和该第二指示字段联合指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8;
或者,该PPDU包括信令字段B,该信令字段B包括至少一个资源单元分配子字段和至少一个逐个站点字段,一个资源单元分配子字段用于指示一种资源单元的排列组合,该至少一个逐个站点字段的顺序与该资源单元的排列组合的顺序对应,一个逐个站点字段用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,该MU MIMO用户数大于8;
处理单元720用于:根据该PPDU,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
本申请提供的通信装置,对于一个尺寸大于或者等于106-tone的RU,通过对资源单元分配子字段的设计,或者通过新增指示字段,实现了指示尺寸大于或者等于106-tone的RU支持的用户数大于8的情况。从而提高了资源的利用率,提高通信的效率。
应理解,装置700中各单元执行上述相应步骤的具体过程请参照前文中结合图2至图16的方法实施例的描述,为了简洁,这里不加赘述。
可选的,通信单元710可以包括接收单元(模块)和发送单元(模块),用于执行方法200至方法400以及图4、图11、图11、图12、图18和图23中接收设备接收信息的步骤。可选的,通信装置700还可以存储单元730,存储单元730用于存储通信单元710和处理单元720执行的指令。通信单元710、处理单元720和存储单元730相互耦合,存储单元730存储指令,处理单元720用于执行存储单元730存储的指令,通信单元710用于在处理单元720的驱动下执行具体的信号收发。
应理解,处理单元720可由处理器实现,通信单元710可以由收发器实现。存储单元730可以由存储器实现。如图27所示,通信装置800可以包括处理器810、存储器820和收发器830。
本领域技术人员可以清楚地了解到,通信装置700和800所执行的步骤以及相应的有益效果可以参考上述方法200至方法400中接收设备的相关描述,为了简洁,在此不再赘述。
上述的通信装置700或者800可以为终端设备或者网络设备。
还应理解,以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。这里该处理元件又可以称为处理器,可以是一种具有信号处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图28示出了本申请实施例提供的一种终端设备的结构示意图。其可以为以上实施例中的终端设备,用于实现以上实施例中终端设备的操作。如图28所示,该终端设备包括:天线910、射频装置920、基带装置930。天线910与射频装置920连接。在下行方向上,射频装置920通过天线910接收网络设备发送的信息,将网络设备发送的信息发送给基带装置930进行处理。在上行方向上,基带装置930对终端设备的信息进行处理,并发送给射频装置920,射频装置920对终端设备的信息进行处理后经过天线910发送给网络设备。
基带装置930可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端设备相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为一个独立的芯片。可选的,以上用于终端的装置可以位于该调制解调子系统。
调制解调子系统可以包括一个或多个处理元件931,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件932和接口电路933。存储元件932用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件932中,而是存储于调制解调子系统之外的存储器中。接口电路933用于与其它子系统通信。以上用于终端设备的装置可以位于调制解调子系统,该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。
图29是本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中网络设备的操作。如图29所示,该网络设备包括:天线1001、射频装置1002、基带装置1003。天线1001与射频装置1002连接。在上行方向上,射频装置1002通过天线1001接收终端发送的信息,将终端设备发送的信息发送给基带装置1003进行处理。在下行方向上,基带装置1003对终端的信息进行处理,并发送给射频装置1002,射频装置1002对终端设备的信息进行处理后经过天线1001发送给终端。
基带装置1003可以包括一个或多个处理元件10031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置1003还可以包括存储元件10032和接口10033,存储元件10032用于存储程序和数据;接口10033用于与射频装置1002交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置1003,例如,以上用于网络设备的装置可以为基带装置1003上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。
上述各个装置实施例中的终端设备与网络设备可以与方法实施例中的终端设备或者网络设备完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该接收单元可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其他装置发送信号,例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其他芯片或者装置发送信号的接口电路。
本申请实施例还提供了一种通信系统,该通信系统包括:上述的发送设备和上述的接收设备。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行上述方法200至方法400中本申请实施例的MU MIMO用户数指示方法的指令。该可读介质可以是只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM),本申请实施例对此不做限制。
本申请还提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令被执行时,以使得该发送设备和该接收设备执行对应于上述方法的发送设备和接收设备的操作。
本申请实施例还提供了一种系统芯片,该系统芯片包括:处理单元和通信单元,该处理单元,例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该通信装置内的芯片执行上述本申请实施例提供的任一种MU MIMO用户数指示方法。
可选地,该计算机指令被存储在存储单元中。
可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该终端内的位于该芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述的反馈信息的方法的程序执行的集成电路。该处理单元和该存储单元可以解耦,分别设置在不同的物理设备上,通过有线或者无线的方式连接来实现该处理单元和该存储单元的各自的功能,以支持该系统芯片实现上述实施例中的各种功能。或者,该处理单元和该存储器也可以耦合在同一个设备上。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是RAM,其用作外部高速缓存。RAM有多种不同的类型,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的术语“上行”和“下行”,用于在特定场景描述数据/信息传输的方向,比如,“上行”方向一般是指数据/信息从终端向网络侧传输的方向,或者分布式单元向集中式单元传输的方向,“下行”方向一般是指数据/信息从网络侧向终端传输的方向,或者集中式单元向分布式单元传输的方向,可以理解,“上行”和“下行”仅用于描述数据/信息的传输方向,该数据/信息传输的具体起止的设备都不作限定。
在本申请中可能出现的对各种消息/信息/设备/网元/系统/装置/动作/操作/流程/概念等 各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请的实施例中的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种多用户多输入多输出的用户数指示方法,其特征在于,包括:
    生成物理层协议数据单元PPDU,所述PPDU包括信令字段B,所述信令字段B包括至少一个资源单元分配子字段,一个所述资源单元分配子字段为一个资源单元分配索引,一个所述资源单元分配索引用于指示一种资源单元的排列组合,一个所述资源单元分配索引还用于指示由大于或者等于106个子载波组成的资源单元支持的多用户多输入多输出MU MIMO用户数,所述MU MIMO用户数大于8;
    发送所述PPDU。
  2. 根据权利要求1所述的方法,其特征在于,所述资源单元分配索引包括用于指示同一种资源单元排列组合的第一索引和第二索引,所述第一索引指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,所述MU MIMO用户数小于或者等于8;所述第二索引指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,所述MU MIMO用户数大于8。
  3. 根据权利要求1或2所述的方法,其特征在于,所述资源单元分配索引包括用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数的字段,所述字段的长度大于或者等于4比特,所述MU MIMO用户数大于8。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述信令字段B还包括第一指示子字段,所述第一指示子字段用于指示资源单元分配索引的位宽。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,一个所述资源单元分配索引为8比特索引或者9比特索引。
  6. 一种多用户多输入多输出的用户数指示方法,其特征在于,包括:
    生成物理层协议数据单元PPDU,所述PPDU包括信令字段B,所述信令字段B包括至少一个资源单元分配子字段和第二指示字段,一个所述资源单元分配子字段用于指示一种资源单元的排列组合,所述至少一个资源单元分配子字段和所述第二指示字段联合指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,所述MU MIMO用户数大于8;
    发送所述PPDU。
  7. 根据权利要求6所述的方法,其特征在于,所述第二指示字段包括至少一个MU MIMO用户数指示子字段,一个所述MU MIMO用户数指示子字段与一个所述资源单元分配子字段指示的由大于或者等于106个子载波组成并且支持的MU MIMO用户数等于8的资源单元一一对应,一个所述MU MIMO用户数指示子字段用于指示对应资源单元支持的MU MIMO用户数,所述MU MIMO用户数大于8。
  8. 根据权利要求6所述的方法,其特征在于,所述第二指示字段包括至少一个MU MIMO用户数指示子字段,所述MU MIMO用户数指示子字段的个数与可能存在的由大于或者等于106个子载波组成的资源单元的个数的最大值相同,一个所述MU MIMO用户数指示子字段用于指示对应的资源单元支持的MU MIMO用户数,所述MU MIMO用户数大于8。
  9. 根据权利要求6所述的方法,所述第二指示字段包括用户数比特位图子字段,所述用户数比特位图子字段的一个比特与一个所述资源单元分配子字段指示的大于或者等于106个子载波组成的资源单元一一对应,所述用户数比特位图子字段的一个比特用于指示对应的资源单元支持的MU MIMO用户数为实际MU MIMO用户数或者为实际MU MIMO用户数与8的差值。
  10. 根据权利要求6所述的方法,其特征在于,所述第二指示字段包括用户数比特位图子字段,所述用户数比特位图子字段的长度与可能存在的由大于或者等于106个子载波组成的资源单元的个数的最大值相同,所述用户数比特位图子字段的一个比特用于指示对应的资源单元支持的MU MIMO用户数为实际MU MIMO用户数或者为实际MU MIMO用户数与8的差值。
  11. 一种多用户多输入多输出的用户数指示方法,其特征在于,包括:
    成物理层协议数据单元PPDU,所述PPDU包括信令字段B,所述信令字段B包括至少一个资源单元分配子字段和至少一个逐个站点字段,一个所述资源单元分配子字段用于指示一种资源单元的排列组合,所述至少一个逐个站点字段的顺序与所述资源单元的排列组合的顺序对应,一个所述逐个站点字段用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,所述MU MIMO用户数大于8;
    发送所述PPDU。
  12. 根据权利要求11所述的方法,其特征在于,所述至少一个逐个站点字段中的第一逐个站点字段包括MU MIMO用户数指示子字段,所述第一逐个站点字段对应由大于或者等于106个子载波组成的资源单元,所述MU MIMO用户数指示子字段用于指示所述由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,所述MU MIMO用户数大于8。
  13. 根据权利要求11所述的方法,其特征在于,所述至少一个逐个站点字段中的第一逐个站点字段包括第三指示子字段,所述第一逐个站点字段对应由大于或者等于106个子载波组成的资源单元,所述第三指示子字段用于指示所述第一逐个站点字段指示的站点是否为由大于或者等于106个子载波组成的资源单元内的最后一个站点。
  14. 一种多用户多输入多输出的用户数指示方法,其特征在于,包括:
    接收物理层协议数据单元PPDU,所述PPDU包括信令字段B,所述信令字段B包括至少一个资源单元分配子字段,一个所述资源单元分配子字段为一个资源单元分配索引,一个所述资源单元分配索引用于指示一种资源单元的排列组合,一个所述资源单元分配索引还用于指示由大于或者等于106个子载波组成的资源单元支持的多用户多输入多输出MU MIMO用户数,所述MU MIMO用户数大于8;
    根据所述至少一个资源单元分配子字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
  15. 根据权利要求14所述的方法,其特征在于,所述资源单元分配索引包括用于指示同一种资源单元排列组合的第一索引和第二索引,所述第一索引指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,所述MU MIMO用户数小于或者等于8;所述第二索引指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,所述MU MIMO用户数大于8,
    所述根据所述至少一个资源单元分配子字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,包括:
    根据所述第一索引和所述二索引,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
  16. 根据权利要求14或15所述的方法,其特征在于,所述资源单元分配索引包括用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数的字段,所述字段的长度大于或者等于4比特,所述MU MIMO用户数大于8,
    所述根据所述至少一个资源单元分配子字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,包括:
    根据所述字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述信令字段B还包括第一指示子字段,所述第一指示子字段用于指示所述至少一个资源单元分配索引的位宽,
    所述方法还包括:
    根据所述第一指示子字段,确定所述资源单元分配索引的位宽。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,一个所述资源单元分配索引为8比特索引或者9比特索引。
  19. 一种多用户多输入多输出的用户数指示方法,其特征在于,包括:
    接收物理层协议数据单元PPDU,所述PPDU包括信令字段B,所述信令字段B包括至少一个资源单元分配子字段和第二指示字段,一个所述资源单元分配子字段用于指示一种资源单元的排列组合,所述至少一个资源单元分配子字段和所述第二指示字段联合指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,所述MU MIMO用户数大于8;
    根据所述至少一个资源单元分配子字段和所述第二指示字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
  20. 根据权利要求19所述的方法,其特征在于,所述第二指示字段包括至少一个MU MIMO用户数指示子字段,一个所述MU MIMO用户数指示子字段与一个所述资源单元分配子字段指示的由大于或者等于106个子载波组成并且支持的MU MIMO用户数等于8的资源单元一一对应,一个所述MU MIMO用户数指示子字段用于指示对应资源单元支持的MU MIMO用户数,所述MU MIMO用户数大于8。
  21. 根据权利要求19所述的方法,其特征在于,所述第二指示字段包括至少一个MU MIMO用户数指示子字段,所述MU MIMO用户数指示子字段的个数与可能存在的由大于或者等于106个子载波组成的资源单元的个数的最大值相同,一个所述MU MIMO用户数指示子字段用于指示对应的资源单元支持的MU MIMO用户数,所述MU MIMO用户数大于8。
  22. 根据权利要求19所述的方法,所述第二指示字段包括用户数比特位图子字段,所述用户数比特位图子字段的一个比特与一个所述资源单元分配子字段指示的大于或者等于106个子载波组成的资源单元一一对应,所述用户数比特位图子字段的一个比特用于 指示对应的资源单元支持的MU MIMO用户数为实际MU MIMO用户数或者为实际MU MIMO用户数与8的差值。
  23. 根据权利要求19所述的方法,其特征在于,所述第二指示字段包括用户数比特位图子字段,所述用户数比特位图子字段的长度与可能存在的由大于或者等于106个子载波组成的资源单元的个数的最大值相同,所述用户数比特位图子字段的一个比特用于指示对应的资源单元支持的MU MIMO用户数为实际MU MIMO用户数或者为实际MU MIMO用户数与8的差值。
  24. 一种多用户多输入多输出的用户数指示方法,其特征在于,包括:
    接收物理层协议数据单元PPDU,所述PPDU包括信令字段B,所述信令字段B包括至少一个资源单元分配子字段和至少一个逐个站点字段,一个所述资源单元分配子字段用于指示一种资源单元的排列组合,所述至少一个逐个站点字段的顺序与所述资源单元的排列组合的顺序对应,一个所述逐个站点字段用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,所述MU MIMO用户数大于8;
    根据所述至少一个资源单元分配子字段和所述至少一个逐个站点字段,确定由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。
  25. 根据权利要求24所述的方法,其特征在于,所述至少一个逐个站点字段中的第一逐个站点字段包括MU MIMO用户数指示子字段,所述第一逐个站点字段对应由大于或者等于106个子载波组成的资源单元,所述MU MIMO用户数指示子字段用于指示所述由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数,所述MU MIMO用户数大于8。
  26. 根据权利要求24所述的方法,其特征在于,所述至少一个逐个站点字段中的第一逐个站点字段包括第三指示子字段,所述第一逐个站点字段对应由大于或者等于106个子载波组成的资源单元,所述第三指示子字段用于指示所述第一逐个站点字段指示的站点是否为由大于或者等于106个子载波组成的资源单元内的最后一个站点。
  27. 一种通信装置,其特征在于,包括用于执行如权利要求1至5,或6至10,或者11至13中任一项所述方法的各个步骤的单元。
  28. 一种通信装置,其特征在于,包括用于执行如权利要求14至18,或19至23,或者24至26中任一项所述方法的各个步骤的单元。
  29. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,所述至少一个处理器用于执行如权利要求1至5,或6至10,或者11至13中任一项所述的方法。
  30. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,所述至少一个处理器用于执行如权利要求14至18,或19至23,或者24至26中任一项所述方法。
  31. 一种存储介质,其特征在于,所述存储介质中存储有程序,当所述程序被处理器运行时,如权利要求1至26中任一项所述的方法被执行。
PCT/CN2020/099894 2019-07-12 2020-07-02 多用户多输入多输出的用户数指示方法和通信装置 WO2021008376A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20841565.3A EP3996441A4 (en) 2019-07-12 2020-07-02 MULTI-USER MULTIPLE-INPUT AND MULTIPLE-OUTPUT USER NUMBER INDICATION METHOD AND COMMUNICATION DEVICE
US17/574,444 US11956032B2 (en) 2019-07-12 2022-01-12 Method for indicating a number of multi-user multiple-input multiple-output users and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910630772.6A CN112217548B (zh) 2019-07-12 2019-07-12 多用户多输入多输出的用户数指示方法和通信装置
CN201910630772.6 2019-07-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/574,444 Continuation US11956032B2 (en) 2019-07-12 2022-01-12 Method for indicating a number of multi-user multiple-input multiple-output users and communications apparatus

Publications (1)

Publication Number Publication Date
WO2021008376A1 true WO2021008376A1 (zh) 2021-01-21

Family

ID=74048612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099894 WO2021008376A1 (zh) 2019-07-12 2020-07-02 多用户多输入多输出的用户数指示方法和通信装置

Country Status (4)

Country Link
US (1) US11956032B2 (zh)
EP (1) EP3996441A4 (zh)
CN (1) CN112217548B (zh)
WO (1) WO2021008376A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022170851A1 (zh) * 2021-02-10 2022-08-18 华为技术有限公司 一种信息指示方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11743016B2 (en) * 2020-04-24 2023-08-29 Nxp Usa, Inc. Method and apparatus for wireless communications
CN116668550B (zh) * 2021-05-20 2024-03-26 华为技术有限公司 通信方法和装置
CN115442894A (zh) * 2021-06-03 2022-12-06 华为技术有限公司 一种物理层协议数据单元、触发帧的传输方法以及装置
CN115842610A (zh) * 2021-08-24 2023-03-24 华为技术有限公司 一种tb ppdu传输方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170048844A1 (en) * 2015-08-12 2017-02-16 Xiaogang Chen Device, method and system using the he sig-b field spatial resource indication
CN107820683A (zh) * 2015-05-05 2018-03-20 三星电子株式会社 用于在无线局域网系统中发信息的设备和方法
CN108200000A (zh) * 2015-09-01 2018-06-22 华为技术有限公司 传输信息的方法、无线局域网装置
CN110768757A (zh) * 2018-07-25 2020-02-07 华为技术有限公司 资源单元指示方法、装置及存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150256309A1 (en) * 2014-03-06 2015-09-10 Samsung Electronics Co., Ltd. Methods and apparatuses for wirelessly communicating in a multiple user-multiple-in-multiple-out network
US10412744B2 (en) * 2014-08-21 2019-09-10 Lg Electronics Inc. Data transmission method in wireless communication system, and apparatus therefor
US10123330B2 (en) * 2015-07-01 2018-11-06 Samsung Electronics Co., Ltd. Methods to enable efficient wideband operations in local area networks using OFDMA
US10219271B1 (en) * 2015-07-01 2019-02-26 Newracom, Inc. Bandwidth allocation signalling
US10651983B2 (en) * 2015-08-11 2020-05-12 Lg Electronics Inc. Method and apparatus for configuring a signal field including allocation information for a resource unit in wireless local area network system
US10050751B2 (en) * 2015-08-11 2018-08-14 Lg Electronics Inc. Method and apparatus for configuring a signal field including allocation information for a resource unit in wireless local area network system
US20170149523A1 (en) * 2015-11-20 2017-05-25 Intel IP Corporation Aggregation of multiuser frames
US20170181129A1 (en) * 2015-12-21 2017-06-22 Qualcomm Incorporated Preamble design aspects for high efficiency wireless local area networks
CN113839766A (zh) * 2017-09-28 2021-12-24 华为技术有限公司 一种数据处理方法及设备
CN109756297B (zh) * 2017-11-03 2021-11-19 华为技术有限公司 下行ppdu的发送与接收方法及装置
US11159207B2 (en) * 2018-01-10 2021-10-26 Mediatek Singapore Pte. Ltd. Null data packet sounding for preamble puncture techniques
WO2019164362A1 (ko) * 2018-02-23 2019-08-29 엘지전자 주식회사 무선랜 시스템에서 fdr을 기반으로 ppdu를 송신하는 방법 및 장치
US11277252B2 (en) * 2018-03-23 2022-03-15 Lg Electronics Inc. Method and apparatus for transmitting PPDU on basis of FDR in wireless LAN system
US11764920B2 (en) * 2019-05-22 2023-09-19 Qualcomm Incorporated Backoff counter and TXOP duration settings for coordinated access point transmissions
US11259324B2 (en) * 2019-07-03 2022-02-22 Sony Group Corporation MU-MIMO pre-packet arrival channel contention

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107820683A (zh) * 2015-05-05 2018-03-20 三星电子株式会社 用于在无线局域网系统中发信息的设备和方法
US20170048844A1 (en) * 2015-08-12 2017-02-16 Xiaogang Chen Device, method and system using the he sig-b field spatial resource indication
CN108200000A (zh) * 2015-09-01 2018-06-22 华为技术有限公司 传输信息的方法、无线局域网装置
CN110768757A (zh) * 2018-07-25 2020-02-07 华为技术有限公司 资源单元指示方法、装置及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MING GAN (HUAWEI): "CR on PHY SIGB", IEEE DRAFT; 11-19-1185-03-00AX-CR-ON-PHY-SIGB,20190717IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11ax, no. 3, 17 July 2019 (2019-07-17), pages 1 - 8, XP068153199 *
ROBERT STACEY : "Specification Framework for TGax", IEEE P802.11 WIRELESS LANS; 11-15-0132-17-00AX-SPEC-FRAMEWORK, 25 May 2016 (2016-05-25), XP055452275 *
See also references of EP3996441A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022170851A1 (zh) * 2021-02-10 2022-08-18 华为技术有限公司 一种信息指示方法及装置

Also Published As

Publication number Publication date
US20220140868A1 (en) 2022-05-05
US11956032B2 (en) 2024-04-09
CN112217548A (zh) 2021-01-12
EP3996441A4 (en) 2022-08-10
EP3996441A1 (en) 2022-05-11
CN112217548B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN116388943B (zh) 资源单元指示方法、装置及存储介质
US11696338B2 (en) Random access resource unit allocation for a multiple BSSID network
US11984972B2 (en) Communication method and apparatus
WO2021008376A1 (zh) 多用户多输入多输出的用户数指示方法和通信装置
US20230116985A1 (en) Resource Scheduling Method, Apparatus, and Device
CN111669204B (zh) 用于无线通信系统的信息传输方法、信息接收方法和装置
EP4171142A1 (en) Ppdu transmission method and related device
US10231148B2 (en) Signaling data unit format parameters for multi-user transmissions
US11979342B2 (en) Resource indication method, access point, and station
EP3841818B1 (en) Random access resource unit allocation for a multiple bssid network
US20220353025A1 (en) Information Indication Method and Communications Apparatus
US20230016355A1 (en) Resource unit combination indication method and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020841565

Country of ref document: EP

Effective date: 20220202