WO2018205990A1 - 一种数据处理方法及其装置 - Google Patents

一种数据处理方法及其装置 Download PDF

Info

Publication number
WO2018205990A1
WO2018205990A1 PCT/CN2018/086476 CN2018086476W WO2018205990A1 WO 2018205990 A1 WO2018205990 A1 WO 2018205990A1 CN 2018086476 W CN2018086476 W CN 2018086476W WO 2018205990 A1 WO2018205990 A1 WO 2018205990A1
Authority
WO
WIPO (PCT)
Prior art keywords
mapping
processing
data
time domain
transmission data
Prior art date
Application number
PCT/CN2018/086476
Other languages
English (en)
French (fr)
Inventor
葛士斌
施弘哲
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18799076.7A priority Critical patent/EP3618324A4/en
Publication of WO2018205990A1 publication Critical patent/WO2018205990A1/zh
Priority to US16/680,112 priority patent/US10951368B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data processing method and apparatus therefor.
  • the transmitting end scrambles and modulates the codeword (CW) to obtain a modulation symbol, and then performs modulation symbols.
  • the layer mapping process performs precoding processing on the modulation symbols after the layer mapping process, and performs resource element (RE) mapping processing on the symbols after the precoding process, and maps symbols after the precoding process to time-frequency resources.
  • OFDM Orthogonal Frequency Division Multiplex
  • the two layers of layer mapping and resource element mapping affect the mapping of codewords to layers.
  • the codeword to layer mapping level can be divided into a bit level, a symbol level, and a code block (CB).
  • the bit level mapping occurs after the rate matching module, and the symbol level and CB level mapping occurs after the modulation module.
  • the mapping order of the codeword to the layer mainly refers to the mapping order of the resources in the layer, the time domain, the frequency domain and the three dimensions when the codeword is mapped to the layer. For example, the modulation symbols obtained by the modulation process are first mapped to the layer.
  • mapping to the frequency domain and finally mapping to the time domain; or mapping the modulation symbols obtained by the modulation process to the layer, mapping to the time domain, and finally mapping to the frequency domain.
  • the mapping level and mapping order of the codeword to the layer, combined with the interleaving, constitute a mapping method.
  • the mapping level of the LTE system is symbol level.
  • the mapping order is first mapped to the layer, then mapped to the frequency domain, and finally mapped to the time domain.
  • the interleaved codeword-to-layer mapping mode is used to implement the data distribution in the time domain.
  • the way, that is, the data of the same CB is concentrated in the time domain, thus facilitating rapid demodulation.
  • the code-to-layer mapping method adopted by the LTE system can only implement the data distribution mode in the time domain.
  • NR New Radio
  • the technical problem to be solved by the embodiments of the present application is to provide a data processing method and a device thereof, which can be applied to a system with multiple application scenarios, and can implement a centralized distribution and a distributed distribution data distribution manner.
  • the embodiment of the present application provides a data processing manner, including:
  • the network device processes the transmission data to obtain a data distribution manner, where the processing includes at least one of performing an interleaving process and performing mapping processing according to a mapping order; the data distribution manner is used to indicate distribution of data from the same code block.
  • the mapping order does not include the first spatial domain mapping, the frequency domain mapping, and the last time domain mapping mapping order;
  • the network device transmits the transmission data distributed according to the data distribution manner.
  • the network device performs the interleaving process on the transmission data, or performs mapping processing on the transmission data according to the mapping order, or performs interleaving processing on the transmission data, and performs mapping processing on the transmission data according to the mapping order, for different
  • the processing method can obtain different data distribution modes, so that the data distribution manner of centralized distribution and distributed distribution can be realized, and can be applied to a system with multiple application scenarios.
  • the data distribution manner may be divided into a time domain centralized distribution manner and a time domain distributed distribution manner according to a time domain, where the time domain centralized distribution manner is used to represent the same code block.
  • the data is centrally distributed over at least one consecutive time domain symbol, the time domain dispersion distribution pattern being used to indicate that data from the same code block is distributed over a plurality of time domain symbols.
  • the data distribution manner may also be divided into a spatially distributed manner and a spatially dispersed distribution manner according to the airspace; and may be divided into a frequency domain centralized distribution manner and a frequency domain distributed distribution manner according to the frequency domain.
  • the network device performs interleaving processing on the transmission data, and performs mapping processing on the transmission data according to a mapping sequence before the time domain mapping according to the frequency domain mapping, to obtain a data distribution manner;
  • the network device performs mapping processing on the transmission data according to a mapping order of the time domain mapping before the frequency domain mapping, to obtain a distributed data distribution manner;
  • the network device performs interleaving processing on the transmission data, and performs mapping processing on the transmission data according to a mapping order of the time domain mapping before the frequency domain mapping to obtain a distributed data distribution manner.
  • the network device performs frequency domain interleaving processing on the transmission data, and performs mapping processing on the transmission data according to a mapping sequence before the time domain mapping according to the frequency domain mapping, to obtain a centralized distributed data distribution manner.
  • the frequency domain diversity gain can be obtained.
  • the network device performs time domain interleaving processing or time-frequency interleaving processing on the transmission data, and performs mapping processing on the transmission data according to a mapping sequence of the frequency domain mapping before the time domain mapping to obtain a distributed distribution.
  • the way data is distributed.
  • the foregoing interleaving process includes three types, namely, frequency domain interleaving, time domain interleaving, and time-frequency interleaving.
  • the mapping sequence includes an order of frequency domain mapping before time domain mapping.
  • the previous order is mapped, because in the case where the processing does not include the interleaving process, the order in which the mapping order includes the frequency domain mapping before the time domain mapping is the processing mode employed in the LTE system.
  • the mapping order (the frequency domain mapping before the time domain mapping and the time domain mapping before the frequency domain mapping) can obtain eight kinds of Combine to get different ways of data distribution.
  • the eight combinations and the corresponding data distribution methods are as follows:
  • (1) is a processing method adopted by the LTE system and a data distribution method obtained by using the processing method. (3) Compared with (1), the frequency domain diversity gain can be obtained.
  • the network device performs interleaving processing on the transmission data before performing layer mapping, that is, interleaving processing between the modulation processing and the layer mapping processing.
  • the network device performs interleaving processing on the transmission data after performing layer mapping, that is, interleaving processing between the layer mapping processing and the precoding processing.
  • the network device interleaves the transmission data when performing layer mapping.
  • the network device performs interleaving processing on the transmission data when performing resource element mapping.
  • the network device performs mapping processing on the transmission data according to the mapping order of the time domain mapping before the frequency domain mapping when performing resource element mapping.
  • the network device indicates the data distribution manner by using downlink control information DCI, radio resource control RRC signaling, media access control MAC layer control element CE, and the like.
  • a network device where the network device has a function of implementing network device behavior in the method in the first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device includes a processing unit and a sending unit, where the processing unit is configured to process the transmission data to obtain a data distribution manner, where the processing includes: performing interleaving processing and mapping according to a mapping order. At least one of the processing; the data distribution manner is used to indicate the distribution of data from the same code block; when the processing is only performing mapping processing according to the mapping order, the mapping order does not include the first spatial domain mapping, a frequency domain mapping, a mapping order of the last time domain mapping; the sending unit, configured to send the transmission data distributed according to the data distribution manner.
  • the network device includes a processor and a transceiver, and the processor is configured to process the transmission data to obtain a data distribution manner, where the processing includes performing an interleaving process and mapping according to a mapping order. At least one of the processing; the data distribution manner is used to indicate the distribution of data from the same code block; when the processing is only performing mapping processing according to the mapping order, the mapping order does not include the first spatial domain mapping, a frequency domain mapping, a mapping order of the last time domain mapping; the transceiver is configured to send the transmission data distributed according to the data distribution manner.
  • the principle and the beneficial effects of the network device for solving the problem can be referred to the method and the beneficial effects of the first aspect.
  • the network device refer to the network device side method of the first aspect. The implementation, repetitions will not be repeated.
  • an embodiment of the present application provides a data processing method, including:
  • the terminal device receives the processed transmission data
  • the de-processing includes at least one of deinterleaving the transmission data and performing demapping processing according to a demapping sequence; when the de-processing includes only performing demapping processing according to a demapping order, The demapping order does not include the first solution spatial domain mapping, then the frequency domain mapping, and finally the demapping order of the time domain mapping.
  • the terminal device performs de-processing according to the data distribution manner adopted by the network device to obtain transmission data.
  • the data distribution manner may be divided into a time domain centralized distribution manner and a time domain distributed distribution manner according to a time domain, where the time domain centralized distribution manner is used to represent the same code block.
  • the data is centrally distributed over at least one consecutive time domain symbol, the time domain dispersion distribution pattern being used to indicate that data from the same code block is distributed over a plurality of time domain symbols.
  • the data distribution manner may also be divided into a spatially distributed manner and a spatially dispersed distribution manner according to the airspace; and may be divided into a frequency domain centralized distribution manner and a frequency domain distributed distribution manner according to the frequency domain.
  • the terminal device performs the solution processing on the transmission data according to the data distribution manner, including:
  • the terminal device performs the demapping sequence processing on the transmission data according to the data distribution manner before the frequency domain mapping is performed;
  • the terminal device performs de-mapping processing on the de-mapped time domain mapping of the transmission data according to the data distribution manner before de-frequency domain mapping, and de-interleaving processing.
  • the terminal device performs corresponding solution processing according to the processing manner adopted by the network device.
  • a fourth aspect of the embodiments of the present application provides a terminal device, where the terminal device has a function of implementing a behavior of a terminal device in the method in the second aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal device includes a receiving unit and a processing unit, where the receiving unit is configured to receive the processed transmission data, and the processing unit is configured to determine a data distribution manner, where the data distribution The method is used to indicate the distribution of data from the same code block; the processing unit is further configured to perform de-processing on the transmission data according to the data distribution manner to obtain the transmission data; wherein the solution processing And performing at least one of performing deinterleaving processing on the transmission data and performing demapping processing according to a demapping sequence; when the de-processing includes only performing demapping processing according to a demapping order, the demapping order does not include Solve the spatial domain mapping, then solve the frequency domain mapping, and finally solve the demapping order of the time domain mapping.
  • the terminal device includes a processor and a transceiver, the transceiver is configured to receive processed transmission data, and the processor is configured to determine a data distribution manner, where the data distribution The method is used to indicate the distribution of data from the same code block; the processor is further configured to perform de-processing on the transmission data according to the data distribution manner to obtain the transmission data; wherein the solution processing And performing at least one of performing deinterleaving processing on the transmission data and performing demapping processing according to a demapping sequence; when the de-processing includes only performing demapping processing according to a demapping order, the demapping order does not include Solve the spatial domain mapping, then solve the frequency domain mapping, and finally solve the demapping order of the time domain mapping.
  • the principle and the beneficial effects of the terminal device for solving the problem can be referred to the method and the beneficial effects of the second aspect.
  • the terminal device refer to the terminal device side method of the second aspect. The implementation, repetitions will not be repeated.
  • an embodiment of the present application provides a computer readable storage medium, including instructions, when executed on a computer, causing a computer to perform the method of the network device according to the first aspect.
  • an embodiment of the present application provides a computer readable storage medium, including instructions, when executed on a computer, causing a computer to perform the method on the terminal device side according to the second aspect.
  • the network device performs interleaving processing on the transmission data, or performs mapping processing on the transmission data according to the mapping order, or performs interleaving processing on the transmission data, and performs mapping processing on the transmission data according to the mapping order, for different processing.
  • the method can obtain different data distribution modes, so that the data distribution mode of centralized distribution and distributed distribution can be realized, and can be applied to a system with multiple application scenarios.
  • FIG. 1 is a schematic diagram of a physical downlink channel processing procedure in an LTE system
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 3 is a schematic diagram of data distribution in a time domain centralized distribution manner
  • FIG. 4 is a schematic diagram of data distribution of a time domain distributed distribution manner
  • FIG. 5 is a schematic flowchart of a data transmission method according to an embodiment of the present disclosure.
  • Figure 6a is a diagram showing an example of a demodulation reference signal
  • Figure 6b is a diagram showing an example of another demodulation reference signal
  • Figure 6c is a diagram showing an example of another demodulation reference signal
  • Figure 6d is a diagram showing an example of another demodulation reference signal
  • FIG. 7 is a schematic diagram of a logical structure of a network device according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a physical structure of a network device according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a logical structure of a terminal device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a physical structure of a terminal device according to an embodiment of the present application.
  • the embodiment of the present application can be applied to a wireless communication system, where a wireless communication system usually consists of a cell, and each cell includes a base station (BS), and the base station provides communication services to multiple terminal devices, where the base station is connected to the core network device. as shown in picture 2.
  • the base station includes a baseband unit (BBU) and a remote radio unit (RRU).
  • BBU baseband unit
  • RRU remote radio unit
  • the BBU and the RRU can be placed in different places, for example, the RRU is pulled away, placed in an open area from high traffic, and the BBU is placed in the central computer room.
  • BBUs and RRUs can also be placed in the same room.
  • the BBU and RRU can also be different parts under one rack.
  • the wireless communication system mentioned in the embodiments of the present application includes, but is not limited to, a Narrow Band-Internet of Things (NB-IoT), and a Global System for Mobile Communications (GSM) system.
  • NB-IoT Narrow Band-Internet of Things
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • LTE Long Term Evolution
  • 5G systems and future mobile communication systems.
  • the base station is a device deployed in a radio access network to provide a wireless communication function for the terminal device.
  • the base station may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, transmission access point (TRP), and the like.
  • TRP transmission access point
  • the name of a device having a base station function may be different, for example, in an LTE system, an evolved Node B (evolved NodeB, eNB or eNodeB), in the third In a 3rd generation (3G) system, it is called a Node B (NB).
  • a network device for example, in an LTE system, an evolved Node B (evolved NodeB, eNB or eNodeB), in the third In a 3rd generation (3G) system, it is called a Node B (NB).
  • the terminal devices involved in the embodiments of the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem.
  • the terminal device may also be referred to as a mobile station (MS), a terminal (Terminal), and may also include a subscriber unit, a cellular phone, a smart phone, a wireless data card, Personal Digital Assistant (PDA) computers, tablet computers, wireless modems, handsets, laptop computers, Machine Type Communication (MTC) terminals, and the like.
  • MS mobile station
  • Terminal Terminal
  • PDA Personal Digital Assistant
  • MTC Machine Type Communication
  • the data distribution manner involved in the embodiment of the present application is used to indicate the distribution of data from the same code block.
  • the data distribution mode can be used to represent the distribution of data from the same code block in the time domain dimension.
  • the data distribution manner of the time domain centralized distribution is used to indicate that the data from the same code block is in at least one consecutive time domain symbol.
  • the upper distributed distribution the time domain distributed data distribution mode is used to indicate that data from the same code block is distributed over multiple time domain symbols.
  • the data distribution mode can also be used to indicate the distribution of data from the same code block in the spatial domain dimension, and can also be used to represent the distribution of data from the same code block in the frequency domain dimension.
  • the data distribution manner in the time domain and the data distribution manner in the time domain distributed distribution are taken as an example, and the distribution of the spatial domain dimension and the frequency domain dimension may be analogized.
  • FIG. 3 it is a schematic diagram of data distribution in a time domain centralized distribution manner.
  • Each CB is concentrated on one or more consecutive time domain symbol distributions as much as possible, thereby ensuring fast demodulation of data by the receiving end.
  • FIG. 4 it is a schematic diagram of data distribution in a time domain distributed distribution manner.
  • Each CB is dispersed as much as possible on different time domain symbols. For example, in FIG. 4, CB0 is dispersedly placed in the first time domain symbol. The second time domain symbol and the last time domain symbol can greatly improve the transmission performance.
  • the time domain centralized distribution method needs to distribute the data of the same CB as much as possible in one time domain symbol, and if the time domain symbol cannot be placed, the remaining data of the CB is placed in the adjacent time domain. Symbolically, and so on, therefore, in the case of a time domain centralized distribution, the data of the same CB is distributed over at least one consecutive time domain symbol. While the time domain decentralized distribution method needs to disperse the same CB data, the data from the same CB may not be scattered to all available time domain symbols. For example, there are 10 available time domain symbols, one CB. It is possible to disperse only three time domain symbols, five time domain symbols or eight time domain symbols placed therein, which should belong to the time domain distributed distribution mode of the embodiment of the present application.
  • time domain distributed distribution can be in the following three ways:
  • a first time domain distributed distribution manner configured to indicate that data from the same code block is distributed over all time domain symbols in a resource unit, where the resource unit is a basic unit for resource allocation of the scheduling user;
  • a second time domain distributed distribution manner configured to indicate that data from the same code block is distributed over all time domain symbols of the same time slot in the resource unit
  • the third time domain distributed distribution manner is used to indicate that data from the same code block is distributed over N time domain symbols in the resource unit, and N is an integer greater than 1.
  • the data distribution manner of the time domain distributed distribution may include different degrees of dispersion, which may be measured by the number of time domain symbols distributed by data from the same CB.
  • Data from the same CB may be distributed over all time domain symbols in the resource unit, or distributed over all time domain symbols of the same time slot in the resource unit, and may also be dispersed over part of the time domain symbols in the resource unit.
  • the distribution of the present application is not limited thereto. It should be understood that the above Resource Unit (RU) can be used as a basic unit for scheduling user allocation of resources.
  • a resource unit occupies multiple consecutive subcarriers in the frequency domain and multiple consecutive symbols (OFDM symbols) in the time domain.
  • the data processing method provided by the embodiment of the present application is applied to the NR system, and is mainly applied to an NR system with multiple application scenarios.
  • the multiple application scenarios may include, but are not limited to, an enhanced mobile broadband (eMBB) scenario, and a super Ultra Reliable and Low Latency Communication (uRLLC) scenarios, Massive Machine Type Communication (mMTC) scenarios, and the like.
  • the application scenario may be that the network device determines that the terminal device is currently in a high-speed scene or a low-speed scenario according to the channel change of the terminal device, which is not limited in this embodiment.
  • the embodiments of the present application can implement a centralized distribution and distributed distribution data distribution manner to meet the requirements of various application scenarios in the NR system.
  • FIG. 5 is a schematic flowchart of a data processing method according to an embodiment of the present disclosure, which is introduced from the perspective of interaction between a network device and a terminal device, and the method may include, but is not limited to, the following steps:
  • Step S201 The network device processes the transmission data to obtain a data distribution manner, where the processing includes at least one of performing interleaving processing on the transmission data and performing mapping processing according to a mapping order; the data distribution manner is used to indicate that the same code is from the same code. The distribution of the data of the block;
  • the data distribution manner is used to indicate that data from the same code block is concentratedly distributed on at least one consecutive time domain symbol, and the real-time domain is distributed in a centralized manner. Or the data distribution manner is used to indicate that data from the same code block is distributed over multiple time domain symbols, and the real-time domain is distributed.
  • the LTE system uses the mapping order to map to the layer (space map), then to the frequency domain, and finally to the time domain.
  • the codeword-to-layer mapping mode is not interleaved, and the data distribution manner in the time domain can be realized. But only this kind of data distribution can be realized.
  • the network device performs interleaving processing on the transmission data, or performs mapping processing according to the mapping order, or performs interleaving processing on the transmission data and performs mapping processing according to the mapping order, thereby not only realizing the data distribution manner in the time domain centralized distribution, It is also possible to realize the data distribution manner of the time domain distributed distribution, and also realize the data distribution manner of the spatially distributed distribution, the data distribution manner of the spatially dispersed distribution, and the like.
  • the mapping order may refer to the mapping order of the three dimensions of the air domain, the time domain, and the frequency domain.
  • the spatial domain mapping refers to the mapping of the layer mapping module shown in FIG. 1, and the time domain mapping and the frequency domain mapping refer to the mapping of the resource element mapping module shown in FIG. 1.
  • the spatial domain mapping may not limit the mapping order of three dimensions, such as the first frequency domain mapping, the second time domain mapping, and the last spatial domain mapping.
  • mapping order in the embodiment of the present application does not include the first spatial domain mapping, the frequency domain mapping, and the last time domain mapping mapping sequence, that is, does not include the LTE system.
  • the order of the mapping is not limited
  • the embodiment of the present application introduces the airspace mapping before the time-frequency mapping, and mainly introduces the sequence of the time domain mapping and the frequency domain mapping.
  • No interleaving in the LTE system means that the order of the respective modulation symbols in the codeword or code block does not change after the modulation module shown in FIG.
  • the manner of interleaving in the embodiment of the present application may include frequency domain interleaving, time domain interleaving, and time-frequency interleaving.
  • the three interleaving modes will be introduced below.
  • a Resource Unit is provided in the present application, and the resource unit can be used as a basic unit for scheduling users to allocate resources. .
  • the resource unit occupies multiple consecutive subcarriers in the frequency domain and multiple consecutive symbols (OFDM symbols) in the time domain.
  • the scheduling resource has N OFDM symbols in the time domain, and the number of subcarriers available for data transmission (Physical Downlink Shared Channel (PDSCH)) in the nth OFDM symbol is Pn.
  • PDSCH Physical Downlink Shared Channel
  • F interleaving that is, interleaving of each OFDM symbol, which divides the CW into N parts, each part having Pn modulation symbols, and then changing the order of the modulation symbols in each part, one by one As an example, the order of Pn modulation symbols in the portion is changed.
  • F+T interleaving is a cross-OFDM symbol interleaving that divides CW into Q parts (1 ⁇ Q ⁇ N). Within each section, the order of the modulation symbols is changed separately. After time-frequency interleaving, the order of modulation symbols from different CBs also intersects within the number of modulation symbols corresponding to each OFDM symbol of the jth portion.
  • T interleaving is also a kind of inter-OFDM symbol interleaving, which divides CW into Q parts (1 ⁇ Q ⁇ N). Within each section, the order of the modulation symbols is changed separately. Different from the time-frequency interleaving, after the time-domain interleaving, the modulation symbols from different CBs are sequentially discharged within the number of modulation symbols corresponding to each OFDM symbol of the j-th portion, and no sequential crossing occurs.
  • the modulation symbols processed by the precoding module shown in FIG. 1 are used, and the first subcarriers of the OFDM symbols that can be used for data transmission are first placed in order. After the first OFDM symbol available for data transmission is completed, the second subcarrier of the OFDM symbol available for data transmission is placed, and the second OFDM symbol available for data transmission is completed, and then the third data is available for data transmission.
  • the transmitted OFDM symbols complete the data mapping of all OFDM symbols in sequence.
  • mapping order of the pre-frequency domain mapping and the time domain mapping in the embodiment of the present application is the same as that in the LTE system.
  • mapping sequence of the first time domain mapping and the frequency domain mapping in the embodiment of the present application, all the OFDM symbols corresponding to the first subcarrier are first placed in the order of the modulation symbols processed by the precoding module shown in FIG. It is not used for the PDSCH, and then all the OFDM symbols corresponding to the second subcarrier are not used (the middle is not used for the PDSCH), and the data mapping of all the subcarriers is completed in sequence.
  • the network device performs interleaving processing on the transmission data, and performs mapping processing on the transmission data according to a mapping sequence before the time domain mapping according to the frequency domain mapping, so that the data distribution mode can be obtained.
  • the mapping order is the mapping order of the pre-frequency domain mapping and the time domain mapping in the LTE system. If the network device performs frequency domain interleaving processing on the transmission data, and performs mapping processing on the transmission data according to a mapping sequence before the time domain mapping in the frequency domain mapping, the data distribution manner in the time domain centralized distribution may be obtained.
  • the frequency domain diversity gain can be obtained by performing frequency domain interleaving processing without interleaving in the LTE system.
  • the network device performs time-frequency interleaving processing or time-domain interleaving processing on the transmission data, mapping the transmission data according to a mapping sequence before the time domain mapping according to the frequency domain mapping, and then obtaining a time domain distributed distribution
  • the time domain interleaving process if the time domain interleaving process is performed, the time domain diversity gain can be obtained; if the time frequency interleaving process is performed, the time domain diversity gain and the frequency domain diversity gain can be obtained.
  • the network device performs mapping processing on the transmission data according to a mapping sequence of the time domain mapping before the frequency domain mapping, and at this time, the data distribution manner of the time domain distributed distribution may be obtained without interleaving. . In this way, the time diversity gain can be obtained.
  • the network device performs interleaving processing on the transmission data, and performs mapping processing on the transmission data according to a mapping sequence of the time domain mapping before the frequency domain mapping, so that the time domain is distributed and distributed. The way data is distributed. If the frequency domain interleaving process is performed, the time domain diversity gain and the frequency domain diversity gain can be obtained. If the time domain interleaving process is performed, the time domain diversity gain can be obtained. If the time-frequency interleaving process is performed, the time domain diversity gain and the frequency domain diversity gain can be obtained.
  • the number 1 corresponds to the mapping processing method and the data distribution mode of the LTE system; the number 3, the number 5, and the number 7 correspond to the first possible implementation manner; the number 2 corresponds to the second possible implementation manner; 4. No. 6, No. 8 corresponds to the third possible implementation described above.
  • Step S202 The network device sends the transmission data that is distributed according to the data distribution manner.
  • the network device sends the transmission data that is distributed according to the data distribution manner to the terminal device.
  • the network device may further obtain the transmission data that is distributed according to the data distribution manner, for example, may also be distributed according to a time domain centralized distribution manner. Transmitting data.
  • the network device sends the transmission data distributed according to the data distribution manner to the terminal device.
  • Step S203 The terminal device receives the processed transmission data; optionally, the terminal device receives the processed transmission data sent by the network device;
  • the terminal device receives the transmission data that is sent by the network device and is distributed according to the foregoing data distribution manner.
  • Step S204 The terminal device determines the data distribution manner
  • the terminal device adopts a pre-agreed data distribution manner.
  • the terminal device may determine the data distribution manner according to an attribute of a Demodulation Reference Signal (DMRS), where the attribute of the DMRS may be a DMRS pattern or a DMRS port. (port) number, different OMRS attributes correspond to different data distribution methods.
  • DMRS Demodulation Reference Signal
  • the network device may send the attributes of the DMRS to the terminal device by using multiple signaling, for example, downlink control information (DCI), radio resource control (RRC) signaling, and media access control. (media access control, MAC) layer control element (CE), etc., which is not limited in this embodiment of the present application.
  • DCI downlink control information
  • RRC radio resource control
  • CE layer control element
  • the terminal device may determine a data distribution manner according to the preset first correspondence, where different DMRS patterns correspond to different data distribution manners, or different DMRS port numbers correspond to different data distribution manners.
  • the terminal device may be configured according to the first DMRS, because the DMRS pattern or the port number of the DMRS used by the network device and the terminal device is known, for example, a first DMRS pattern or a first DMRS port number.
  • the pattern or the first DMRS port number determines a data distribution manner corresponding to the first DMRS pattern or the first DMRS port number from the plurality of data distribution manners.
  • the network device and the terminal device can specify the port number x1-y1 to indicate the data distribution mode of the port number corresponding to the time domain set, and the port number x2-y2 indicates the data distribution mode of the port number corresponding to the time domain, but the embodiment of the present application This is not limited.
  • the attributes of the foregoing DMRS may be a DMRS or a DMRS port number, or may be a scrambling code or an orthogonal sequence of the DMRS, which is not limited in this embodiment of the present application.
  • the terminal device may determine the data distribution manner according to the data distribution manner indication information sent by the network device, where the data distribution manner indication information is used to indicate that the network device uses
  • the data distribution manner may be DCI, RRC signaling, MAC layer CE, and the like, which is not limited in this embodiment of the present application.
  • the terminal device may determine the data distribution manner according to a frame structure.
  • the frame structure is used to indicate that the demodulation result needs to be fed back in the current resource unit (specifically, the current frame) or does not need to be fed back in the current resource unit. If the demodulation result needs to be fed back in the current resource unit, the corresponding data distribution mode is a time domain centralized distribution mode; if the current resource unit feedback is not needed, the corresponding data distribution mode is a time domain distributed distribution mode.
  • Step S205 The terminal device performs demapping processing on the transmission data according to the data distribution manner to obtain the transmission data.
  • the terminal device performs demapping processing on the transmission data according to the determined data distribution manner to obtain the transmission data.
  • the terminal device performs a first frequency decoding domain on the received transmission data.
  • the mapping and re-decoding time domain mapping is demapped and processed, and deinterleaved.
  • the terminal device performs mapping processing on the transmission data according to a mapping order of the time domain mapping before the frequency domain mapping, performs a first solution time domain mapping on the received transmission data, and then decomposes the frequency domain.
  • the demapping order of the mapping is processed;
  • the terminal device performs a first solution time domain on the received transmission data.
  • the demapping sequence processing of the mapping and resolving frequency domain mapping is performed, and the deinterleaving processing is performed.
  • the network device performs interleaving processing on the transmission data, or performs mapping processing according to the mapping order, or performs interleaving processing on the transmission data and performs mapping processing according to the mapping order, which may be different for different processing manners.
  • the data distribution method can realize the centralized distribution and distributed distribution data distribution manner, and can be applied to a system with multiple application scenarios.
  • the network device may perform interleaving processing on the transmission data before performing layer mapping, that is, an interleaving module may be added between the modulation module and the layer mapping module shown in FIG.
  • an interleaving module may be added between the modulation module and the layer mapping module shown in FIG.
  • the interleaving process is as follows:
  • M symbol represents an amount related to the number of OFDM symbols in the resource unit or the number of OFDM symbols available for transmitting the PDSCH
  • M' symbol represents the number of OFDM symbols in the Q portion or the number of OFDM symbols available for transmitting the PDSCH.
  • the quantity, N CB represents the amount related to the number of CBs of the jth part of the Q part; N CBSize represents the amount related to the CB size; nLayer represents the number of scheduled streams.
  • the network device may perform interleaving processing on the transmission data after layer mapping, that is, an interleaving module may be added between the layer mapping module and the precoding module shown in FIG. It is used to implement frequency domain interleaving, time domain interleaving, and time-frequency interleaving, and specific interleaving depends on the specific situation.
  • the interleaving process is as follows:
  • M symbol represents an amount related to the number of OFDM symbols in the resource unit or the number of OFDM symbols available for transmitting the PDSCH
  • M' symbol represents the number of OFDM symbols in the Q portion or the number of OFDM symbols available for transmitting the PDSCH.
  • the amount, N CB represents the amount related to the number of CBs of the j-th portion of the Q portion; N CBSize represents the amount related to the CB size.
  • the network device may perform interleaving processing on the transmission data when layer mapping is performed, so that the layer mapping module shown in FIG. 1 can be improved to not only implement layer mapping function, but also It can realize the functions of frequency domain interleaving, time domain interleaving and time-frequency interleaving.
  • the layer mapping table in the time domain centralized distribution mode is as shown in Table 2 below.
  • a layer mapping table in a time domain distributed distribution manner can be obtained, as shown in Table 3 below.
  • M symb represents an amount related to the number of OFDM symbols within a resource unit or the number of OFDM symbols available for transmitting a PDSCH; M' symb represents the number of OFDM symbols in the Q portion described above or the number of OFDM symbols available for transmitting a PDSCH
  • the network device may perform interleaving processing on the transmission data when performing resource element mapping, that is, the resource element mapping module shown in FIG. 1 is improved, so that not only the function of time-frequency mapping can be implemented. It can also implement the functions of frequency domain interleaving, time domain interleaving and time-frequency interleaving. In this case, the order of interleaving and time-frequency mapping may not be limited.
  • the network device may perform mapping processing on the transmission data according to the mapping order of the time domain mapping before the frequency domain mapping when performing resource element mapping, that is, the resource element mapping module shown in FIG. 1
  • the improvement is implemented to enable not only the mapping order of the pre-frequency domain mapping and the time domain mapping in the LTE system, but also the mapping order of the prior time domain mapping and the frequency domain mapping.
  • the complex symbols on each antenna are mapped onto the scheduling resources (k, l).
  • resources such as a Physical Broadcast Channel (PBCH) and a PDSCH/Physical Uplink Shared Channel (PUSCH) that are not available are removed.
  • PBCH Physical Broadcast Channel
  • PUSCH Physical Uplink Shared Channel
  • the process of first frequency domain mapping and then time domain mapping may be, first increase k, then increase l.
  • k denotes a frequency domain subcarrier
  • l denotes a time domain OFDM symbol.
  • the process of first-time domain mapping and frequency domain mapping may be to first increase l and then increase k.
  • k denotes a frequency domain subcarrier
  • l denotes a time domain OFDM symbol.
  • the network device may adopt a time domain centralized distribution manner when initially transmitting.
  • the network device adopts a time domain distributed distribution manner when retransmitting.
  • the network device may configure a pattern diagram of four DMRSs as shown in Figures 6a-6d.
  • the network device may adopt an attribute of the corresponding DMRS, and the attribute of the DMRS may correspond to a time domain centralized distribution manner, and the pattern of the DMRS shown in FIG. 6a and FIG. 6b may be configured.
  • the example diagram is an example diagram of the pattern of the DMRS that is required to be fed back in the frame for the demodulation result.
  • the data distribution pattern corresponding to the pattern of the DMRS shown in FIG. 6a and FIG. 6b may be a time domain centralized distribution manner.
  • the network device may adopt the attribute of the corresponding DMRS, and the attribute of the DMRS may correspond to the time domain distributed distribution manner, and may be configured as shown in FIG. 6c and FIG. 6d.
  • An example of the pattern of the DMRS is a pattern example of the DMRS that is not required to be fed back in the frame for the demodulation result, and the data distribution pattern corresponding to the DMRS pattern shown in FIG. 6c and FIG. 6d may be a time domain concentration mode.
  • the pattern of the DMRS corresponds to a time domain centralized distribution manner.
  • the pattern of the DMRS is that the DMRS occupies at least two time domain symbols
  • the pattern of the DMRS corresponds to The time domain is distributed in a centralized manner; if there is data transmission between at least two time domain symbols between time domain symbols occupied by the DMRS, the pattern of the DMRS corresponds to a time domain distributed distribution manner.
  • the DMRS pattern of the DMRS corresponds to a time domain centralized distribution manner; and when the DMRS pattern is that the DMRS occupies at least two time domain symbols, If the pattern of the DMRS is that there is no data transmission between any two time domain symbols occupied by the DMRS, that is, there is no data transmission between the time domain symbols of any two DMRSs, the pattern of the DMRS may correspond to the time domain concentration.
  • FIG. 6a is a schematic diagram of a DMRS pattern before the data transmission of the DMRS transmission, and the data distribution pattern corresponding to the DMRS pattern shown in FIG.
  • the data distribution pattern of the DMRS pattern may be a time domain distributed distribution manner.
  • the pattern examples of the DMRS in FIG. 6b-FIG. 6c are all after the transmission of the DMRS. Therefore, the data distribution pattern corresponding to the patterns of the three DMRSs may be Domain dispersed in a distributed fashion.
  • the correspondence between the data distribution mode and the DMRS pattern can be in two different ways.
  • Manner 1 In the pattern of DMRS (Fig. 6a) where there is no data transmission between transmissions applicable to any two DMRSs, the time domain centralized distribution mode is adopted; and data exists between transmissions suitable for the presence of two DMRSs. Under the transmission (Fig. 6b, Fig. 6c and Fig. 6d), the time domain distributed distribution mode is adopted.
  • Manner 2 In the DMRS pattern (Fig. 6a and Fig. 6b) that is required for the demodulation result to be fed back in the current resource unit, the time domain centralized distribution mode is adopted; in the DMRS which is suitable for demodulation results and does not need feedback in the current resource unit Under the pattern (Fig. 6c and Fig. 6d), the time domain dispersion distribution method is adopted.
  • the method is configured by the network device according to the application scenario or the service requirement of the terminal device, which is not limited by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a logical structure of a network device according to an embodiment of the present disclosure.
  • the network device 301 may include a processing unit 3011 and a sending unit 3012.
  • the processing unit 3011 is configured to process the transmission data to obtain a data distribution manner, where the processing includes at least one of performing an interleaving process and performing mapping processing according to a mapping order; the data distribution manner is used to indicate that the same code is from the same code.
  • the sending unit 3012 is configured to send the transmission data that is distributed according to the data distribution manner.
  • processing unit 3011 is configured to perform step S201 in the method embodiment shown in FIG. 5
  • sending unit 3012 is configured to perform step S202 in the method embodiment shown in FIG. 5.
  • FIG. 8 is a network device 302 according to an embodiment of the present application.
  • the network device 302 includes a processor 3021, a transceiver 3022, and a memory 3023.
  • the processor 3021, the memory 3023, and the transceiver 3022 pass through a bus. Connected to each other.
  • the memory 3023 includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), an Erasable Programmable Read Only Memory (EPROM), or A Compact Disc Read-Only Memory (CD-ROM) for storing related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM Erasable Programmable Read Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • the transceiver 3022 can be a communication module and a transceiver circuit for transmitting data, signaling, and the like between the network device and the terminal device.
  • the transceiver 3022 is configured to perform step S202 in the method embodiment shown in FIG. 5.
  • the processor 3021 can be a controller, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and an on-site Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or perform various exemplary logical blocks, modules and circuits described in connection with the disclosure of the embodiments of the present application. Processor 3021 may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like. In the embodiment of the present application, the processor 3021 is configured to perform step S201 in the embodiment shown in FIG. 5.
  • FIG. 9 is a schematic diagram of a logical structure of a terminal device according to an embodiment of the present disclosure.
  • the terminal device 401 may include a receiving unit 4011 and a processing unit 4012.
  • the receiving unit 4011 is configured to receive the processed transmission data, and the processing unit is configured to determine a data distribution manner, where the data distribution manner is used to indicate a distribution of data from the same code block.
  • the processing unit 4012 is further configured to perform de-processing on the transmission data according to the data distribution manner to obtain the transmission data;
  • the de-processing includes at least one of deinterleaving the transmission data and performing demapping processing according to a demapping sequence; when the de-processing includes only performing demapping processing according to a demapping order, The demapping order does not include the first solution spatial domain mapping, then the frequency domain mapping, and finally the demapping order of the time domain mapping.
  • the receiving unit 4011 is configured to perform step S203 in the method embodiment shown in FIG. 5, and the processing unit 4012 is configured to perform step S204 and step S205 in the method embodiment shown in FIG. 5.
  • FIG. 10 is a terminal device 402 according to an embodiment of the present application.
  • the terminal device 402 includes a processor 4021, a transceiver 4022, and a memory 4023.
  • the processor 4021, the memory 4023, and the transceiver 4022 pass through a bus. Connected to each other.
  • Memory 4023 includes, but is not limited to, RAM, ROM, EPROM, or CD-ROM, which is used for related instructions and data.
  • the transceiver 4022 can be a communication module and a transceiver circuit for transmitting data, signaling, and the like between the network device and the terminal device.
  • the transceiver 4022 is configured to perform step S203 in the method embodiment shown in FIG. 5.
  • the processor 4021 can be a controller, a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or perform various exemplary logical blocks, modules and circuits described in connection with the disclosure of the embodiments of the present application.
  • the processor 4021 can also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like. In the embodiment of the present application, the processor 4021 is configured to perform step S204 and step S205 in the embodiment shown in FIG. 5.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software units in the processor.
  • the software unit can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in a memory, and the processor executes instructions in the memory, in combination with hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present application may be in essence or part of the contribution to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请实施例公开了一种数据处理方法及其装置,其中方法包括如下步骤:网络设备对传输数据进行处理得到数据分布方式,处理包括交织处理和按照映射顺序进行映射处理中的至少一种;数据分布方式用于表示来自同一个码块的数据的分布情况;当处理只为按照映射顺序进行映射处理时,映射顺序不包括先空域映射,再频域映射,最后时域映射的映射顺序;网络设备发送根据数据分布方式进行分布的传输数据;终端设备接收处理后的传输数据;终端设备确定数据分布方式,根据数据分布方式对传输数据进行解处理,得到传输数据。本申请实施例,可以适用于具有多种应用场景的系统中,可以实现集中分布和分散分布的数据分布方式。

Description

一种数据处理方法及其装置
本申请要求于2017年5月12日提交中国专利局、申请号为201710336210.1、申请名称为“一种数据处理方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据处理方法及其装置。
背景技术
长期演进(Long Term Evolution,LTE)系统中的物理下行信道处理流程可参见图1所示,发送端对码字(codeword,CW)进行加扰、调制处理,得到调制符号,然后对调制符号进行层映射处理,再对层映射处理之后的调制符号进行预编码处理,再对预编码处理之后的符号进行资源元素(Resource Element,RE)映射处理,将预编码处理之后的符号映射到时频资源上,最后,生成正交频分复用(Orthogonal Frequency Division Multiplex,OFDM)信号并通过天线端口(antenna port)进行发送。
其中,层映射和资源元素映射两个模块影响码字到层的映射方式。码字到层的映射级别可分为比特(bit)级、符号(symbol)级和码块(code block,CB)。bit级的映射发生在速率匹配模块之后,symbol级和CB级的映射发生在调制模块之后。码字到层的映射顺序主要是指码字在映射到层时,资源在层、时域、频域,3个维度上的映射顺序,例如,将调制处理得到的调制符号先映射到层,再映射到频域,最后映射到时域;或者将调制处理得到的调制符号先映射到层,再映射到时域,最后映射到频域。码字到层的映射级别和映射顺序,再结合交织,就构成了一种映射方式。
LTE系统采用映射级别为symbol级,映射顺序为先映射到层,再映射到频域,最后映射到时域,不做交织的码字到层的映射方式,可以实现时域集中分布的数据分布方式,即同一CB的数据在时域上集中分布,这样,有利于快速解调。但是,LTE系统所采用的码字到层的映射方式仅可以实现时域集中分布的数据分布方式,对于应用场景较多的新空口(New Radio,NR)系统,一种数据分布方式很难适应多种应用场景。
发明内容
本申请实施例所要解决的技术问题在于,提供一种数据处理方法及其装置,可以适用于具有多种应用场景的系统中,可以实现集中分布和分散分布的数据分布方式。
第一方面,本申请实施例提供了一种数据处理方式,包括:
网络设备对传输数据进行处理得到数据分布方式,所述处理包括对交织处理和按照映射顺序进行映射处理中的至少一种;所述数据分布方式用于表示来自同一个码块的数据的分布情况;当所述处理只为按照映射顺序进行映射处理时,所述映射顺序不包括先空域映射,再频域映射,最后时域映射的映射顺序;
所述网络设备发送根据所述数据分布方式进行分布的所述传输数据。
本申请实施例第一方面,网络设备通过对传输数据进行交织处理,或按照映射顺序对 传输数据进行映射处理,或对传输数据进行交织处理并按照映射顺序对传输数据进行映射处理,针对不同的处理方式可以得到不同的数据分布方式,从而可以实现集中分布和分散分布的数据分布方式,可以适用于具有多种应用场景的系统中。
在一种可能实现的方式中,所述数据分布方式可根据时域分为时域集中分布方式、时域分散分布方式,其中,所述时域集中分布方式用于表示来自同一个码块的数据在连续的至少一个时域符号上集中分布,所述时域分散分布方式用于表示来自同一个码块的数据在多个时域符号上分散分布。所述数据分布方式还可以根据空域分为空域集中分布方式、空域分散分布方式;还可以根据频域分为频域集中分布方式、频域分散分布方式。
在一种可能实现的方式中,网络设备对传输数据进行交织处理,并按照频域映射在时域映射之前的映射顺序对所述传输数据进行映射处理,得到数据分布方式;
或,网络设备对传输数据按照时域映射在频域映射之前的映射顺序对所述传输数据进行映射处理,得到分散分布的数据分布方式;
或,网络设备对传输数据进行交织处理,并按照时域映射在频域映射之前的映射顺序对所述传输数据进行映射处理,得到分散分布的数据分布方式。
在一种可能实现的方式中,网络设备对传输数据进行频域交织处理,并按照频域映射在时域映射之前的映射顺序对所述传输数据进行映射处理,得到集中分布的数据分布方式,可以获得频域分集增益。
在一种可能实现的方式中,网络设备对传输数据进行时域交织处理或时频交织处理,并按照频域映射在时域映射之前的映射顺序对所述传输数据进行映射处理,得到分散分布的数据分布方式。
上述交织处理包括三种,分别为频域交织、时域交织、时频交织,在所述处理包括所述交织处理的情况下,所述映射顺序包括频域映射在时域映射之前的顺序,时域映射在频域映射之前的顺序;在所述处理不包括所述交织处理的情况下,所述映射顺序不包括频域映射在时域映射之前的顺序,只包括时域映射在频域映射之前的顺序,因为在所述处理不包括所述交织处理的情况下,所述映射顺序包括频域映射在时域映射之前的顺序是LTE系统中所采用的处理方式。
所述网络设备根据是否交织(不交织、频域交织、时域交织、时频交织),映射顺序(频域映射在时域映射之前、时域映射在频域映射之前),可以得到八种组合,进而得到不同的数据分布方式。以时域的数据分布方式为例,这八种组合以及各自对应的数据分布方式如下:
(1)不交织+频域映射在时域映射之前的映射顺序→时域集中分布方式;
(2)不交织+时域映射在频域映射之前的映射顺序→时域分散分布方式;
(3)频域交织+频域映射在时域映射之前的映射顺序→时域集中分布方式;
(4)频域交织+时域映射在频域映射之前的映射顺序→时域分散分布方式;
(5)时域交织+频域映射在时域映射之前的映射顺序→时域分散分布方式;
(6)时域交织+时域映射在频域映射之前的映射顺序→时域分散分布方式;
(7)时频交织+频域映射在时域映射之前的映射顺序→时域分散分布方式;
(8)时频交织+时域映射在频域映射之前的映射顺序→时域分散分布方式;
其中,(1)是LTE系统所采用的处理方式以及采用该处理方式得到的数据分布方式。(3)与(1)相比,可以获得频域分集增益。
在一种可能实现的方式中,网络设备在进行层映射之前对传输数据进行交织处理,即在进行调制处理与进行层映射处理之间对传输数据进行交织处理。
在一种可能实现的方式中,网络设备在进行层映射之后对传输数据进行交织处理,即在进行层映射处理与进行预编码处理之间对传输数据进行交织处理。
在一种可能实现的方式中,网络设备在进行层映射时对传输数据进行交织处理。
在一种可能实现的方式中,网络设备在进行资源元素映射时对传输数据进行交织处理。
在一种可能实现的方式中,网络设备在进行资源元素映射时按照时域映射在频域映射之前的映射顺序对传输数据进行映射处理。
在一种可能实现的方式中,网络设备通过下行控制信息DCI、无线资源控制RRC信令、媒体接入控制MAC层控制元素CE等指示数据分布方式。
本申请实施例第二方面,网络设备,所述网络设备具有实现第一方面所述方法中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能实现的方式中,所述网络设备包括处理单元和发送单元,所述处理单元,用于对传输数据进行处理得到数据分布方式,所述处理包括对交织处理和按照映射顺序进行映射处理中的至少一种;所述数据分布方式用于表示来自同一个码块的数据的分布情况;当所述处理只为按照映射顺序进行映射处理时,所述映射顺序不包括先空域映射,再频域映射,最后时域映射的映射顺序;所述发送单元,用于发送根据所述数据分布方式进行分布的所述传输数据。
在一种可能实现的方式中,所述网络设备包括处理器和收发器,所述处理器,用于对传输数据进行处理得到数据分布方式,所述处理包括对交织处理和按照映射顺序进行映射处理中的至少一种;所述数据分布方式用于表示来自同一个码块的数据的分布情况;当所述处理只为按照映射顺序进行映射处理时,所述映射顺序不包括先空域映射,再频域映射,最后时域映射的映射顺序;所述收发器,用于发送根据所述数据分布方式进行分布的所述传输数据。
基于同一发明构思,所述网络设备解决问题的原理以及有益效果可以参见第一方面所述的方法以及所带来的有益效果,所述网络设备的实施可以参见第一方面所述网络设备侧方法的实施,重复之处不再赘述。
第三方面,本申请实施例提供了一种数据处理方法,包括:
终端设备接收处理后的传输数据;
所述终端设备确定数据分布方式,所述数据分布方式用于表示来自同一个码块的数据的分布情况;
所述终端设备根据所述数据分布方式对所述传输数据进行解处理,得到所述传输数据;
其中,所述解处理包括对所述传输数据进行解交织处理和按照解映射顺序进行解映射处理中的至少一种;当所述解处理只包括按照解映射顺序进行解映射处理时,所述解映射顺序不包括先解空域映射,再解频域映射,最后解时域映射的解映射顺序。
本申请实施例第三方面,终端设备根据网络设备所采用的数据分布方式进行解处理,以得到传输数据。
在一种可能实现的方式中,所述数据分布方式可根据时域分为时域集中分布方式、时域分散分布方式,其中,所述时域集中分布方式用于表示来自同一个码块的数据在连续的至少一个时域符号上集中分布,所述时域分散分布方式用于表示来自同一个码块的数据在多个时域符号上分散分布。所述数据分布方式还可以根据空域分为空域集中分布方式、空域分散分布方式;还可以根据频域分为频域集中分布方式、频域分散分布方式。
在一种可能实现的方式中,所述终端设备根据所述数据分布方式对所述传输数据进行解处理,包括:
所述终端设备根据所述数据分布方式对所述传输数据进行解频域映射在解时域映射之前的解映射顺序处理,解交织处理;
或,所述终端设备根据所述数据分布方式对所述传输数据进行解时域映射在解频域映射之前的解映射顺序处理;
或,所述终端设备根据所述数据分布方式对所述传输数据进行解时域映射在解频域映射之前的解映射顺序处理,解交织处理。
所述终端设备根据网络设备所采用的处理方式进行相应的解处理。
本申请实施例第四方面提供一种终端设备,所述终端设备具有实现第二方面所述方法中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能实现的方式中,所述终端设备包括接收单元和处理单元,所述接收单元,用于接收处理后的传输数据;所述处理单元,用于确定数据分布方式,所述数据分布方式用于表示来自同一个码块的数据的分布情况;所述处理单元,还用于根据所述数据分布方式对所述传输数据进行解处理,得到所述传输数据;其中,所述解处理包括对所述传输数据进行解交织处理和按照解映射顺序进行解映射处理中的至少一种;当所述解处理只包括按照解映射顺序进行解映射处理时,所述解映射顺序不包括先解空域映射,再解频域映射,最后解时域映射的解映射顺序。
在一种可能实现的方式中,所述终端设备包括处理器和收发器,所述收发器,用于接收处理后的传输数据;所述处理器,用于确定数据分布方式,所述数据分布方式用于表示来自同一个码块的数据的分布情况;所述处理器,还用于根据所述数据分布方式对所述传输数据进行解处理,得到所述传输数据;其中,所述解处理包括对所述传输数据进行解交织处理和按照解映射顺序进行解映射处理中的至少一种;当所述解处理只包括按照解映射顺序进行解映射处理时,所述解映射顺序不包括先解空域映射,再解频域映射,最后解时域映射的解映射顺序。
基于同一发明构思,所述终端设备解决问题的原理以及有益效果可以参见第二方面所述的方法以及所带来的有益效果,所述终端设备的实施可以参见第二方面所述终端设备侧方法的实施,重复之处不再赘述。
第五方面,本申请实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第一方面所述网络设备的方法。
第六方面,本申请实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第二方面所述终端设备侧的方法。
在本申请实施例中,网络设备通过对传输数据进行交织处理,或按照映射顺序对传输数据进行映射处理,或对传输数据进行交织处理并按照映射顺序对传输数据进行映射处理,针对不同的处理方式可以得到不同的数据分布方式,从而可以实现集中分布和分散分布的数据分布方式,可以适用于具有多种应用场景的系统中。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是LTE系统中的物理下行信道处理流程的示意图;
图2是本申请实施例的应用场景示意图;
图3是一种时域集中分布方式的数据分布示意图;
图4是一种时域分散分布方式的数据分布示意图;
图5是本申请实施例提供的一种数据传输方法的流程示意图;
图6a是一种解调参考信号的图样示例图;
图6b是另一种解调参考信号的图样示例图;
图6c是又一种解调参考信号的图样示例图;
图6d是又一种解调参考信号的图样示例图;
图7是本申请实施例提供的网络设备的逻辑结构示意图;
图8是本申请实施例提供的网络设备的实体结构示意图;
图9是本申请实施例提供的终端设备的逻辑结构示意图;
图10是本申请实施例提供的终端设备的实体结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请实施例可以应用于无线通信系统,无线通信系统通常由小区组成,每个小区包含一个基站(Base Station,BS),基站向多个终端设备提供通信服务,其中基站连接到核心网设备,如图2所示。其中,基站包含基带单元(Baseband Unit,BBU)和远端射频单元(Remote Radio Unit,RRU)。BBU和RRU可以放置在不同的地方,例如:RRU拉远,放置于离高话务量的开阔区域,BBU放置于中心机房。BBU和RRU也可以放置在同一机房。BBU和RRU也可以为一个机架下的不同部件。
需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)、5G系统以及未来移动通信系统。
本申请实施例中,所述基站是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点,传输接入点(Transmission Receiver point,TRP)等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(3rd Generation,3G)系统中,称为节点B(Node B,NB)等。为方便描述,本申请所有实施例中,上述为终端设备提供无线通信功能的装置统称为网络设备。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述终端设备也可以称为移动台(Mobile Station,MS)、终端(Terminal),还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能手机(smart phone)、无线数据卡、个人数字助理(Personal Digital Assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(Machine Type Communication,MTC)终端等。为方便描述,本申请所有实施例中,上面提到的设备统称为终端设备。
本申请实施例中所涉及到的数据分布方式用于表示来自同一个码块的数据的分布情况。数据分布方式可以用于表示来自同一个码块的数据在时域维度的分布情况,例如,时域集中分布的数据分布方式用于表示来自同一个码块的数据在连续的至少一个时域符号上集中分布,时域分散分布的数据分布方式用于表示来自同一个码块的数据在多个时域符号上分散分布。数据分布方式还可以用于表示来自同一个码块的数据在空域维度的分布情况,也可以用于表示来自同一码块的数据在频域维度的分布情况。本申请所有实施例中,以时域集中分布的数据分布方式和时域分散分布的数据分布方式为例进行介绍,空域维度和频域维度的分布情况可类推。
请参见图3,是一种时域集中分布方式的数据分布示意图,每个CB尽可能地集中在一个或多个连续的时域符号分布,从而保证接收端对数据进行快速解调。请参见图4,是一种时域分散分布方式的数据分布示意图,每个CB被尽可能地分散放置在不同的时域符号上,例如图4中CB0被分散放置在第一个时域符号、第二个时域符号以及最后一个时域符号上,能够大大提高传输性能。
应理解,时域集中分布方式需要尽可能地将同一个CB的数据分布在一个时域符号,在一个时域符号放不下的情况下,再将该CB的剩余数据放置到相邻的时域符号上,以此类推,因此,在采用时域集中分布方式的情况下,同一个CB的数据分布在至少一个连续的时域符号。而时域分散分布方式虽然需要将同一个CB的数据分散放置,但是来自同一个CB的数据不一定会分散到全部可用的时域符号上,例如,共有10个可用的时域符号,一个CB可能只分散放置于其中的3个时域符号、5个时域符号或8个时域符号,这都应属于本申请实施例的时域分散分布方式。
其中,时域分散分布方式可以有以下三种方式:
第一时域分散分布方式,用于表示来自同一个码块的数据在资源单元内的所有时域符号上分散分布,所述资源单元为调度用户进行资源分配的基本单位;
第二时域分散分布方式,用于表示来自同一个码块的数据在所述资源单元内同一时隙的所有时域符号上分散分布;
第三时域分散分布方式,用于表示来自同一个码块的数据在所述资源单元内的N个时域符号上分散分布,N为大于1的整数。
具体地,时域分散分布的数据分布方式,可以包括不同的分散程度,该分散程度可以用来自同一个CB的数据所分布的时域符号数目衡量。来自同一CB的数据可以在资源单元中的所有时域符号上分散分布,也可以在资源单元中同一时隙的所有时域符号上分散分布,还可以在资源单元中的部分时域符号上分散分布,本申请实施例对此不作限定。应理解,上述资源单元(Resource Unit,RU)可以用作为调度用户进行资源分配的基本单位。一个资源单元占用频域内多个连续的子载波和时域内多个连续的符号(OFDM符号)。
本申请实施例提供的数据处理方法应用在NR系统中,主要应用在具有多种应用场景的NR系统中,多种应用场景可以包括但不限于增强移动带宽(Enhanced Mobile Broadband,eMBB)场景、超高可靠低时延通信(Ultra Reliable and Low Latency Communication,uRLLC)场景、海量物联网通信(Massive Machine Type Communication,mMTC)场景等。应用场景可以是网络设备根据终端设备的信道变化情况,确定该终端设备当前处于高速场景或低速场景,本申请实施例对此也不作限定。
应用本申请实施例可以实现集中分布和分散分布的数据分布方式,以满足NR系统中各种应用场景的需求。
下面将对本申请实施例提供的数据处理方法进行详细介绍。
请参见图5,图5是本申请实施例提供的一种数据处理方法的流程示意图,从网络设备与终端设备交互的角度进行介绍,该方法可以包括但不限于如下步骤:
步骤S201:网络设备对传输数据进行处理得到数据分布方式,所述处理包括对传输数据进行交织处理和按照映射顺序进行映射处理中的至少一种;所述数据分布方式用于表示来自同一个码块的数据的分布情况;
其中,所述数据分布方式用于表示来自同一个码块的数据在连续的至少一个时域符号上集中分布,即时域集中分布方式。或所述数据分布方式用于表示来自同一个码块的数据在多个时域符号上分散分布,即时域分散分布方式。
LTE系统采用映射顺序为先映射到层(空域映射),再映射到频域,最后映射到时域,不做交织的码字到层的映射方式,可以实现时域集中分布的数据分布方式,但只能实现这一种数据分布方式。本申请实施例中,网络设备对传输数据进行交织处理,或按照映射顺序进行映射处理,或对传输数据进行交织处理+按照映射顺序进行映射处理,不仅可以实现时域集中分布的数据分布方式,还可以实现时域分散分布的数据分布方式,还可以实现空域集中分布的数据分布方式、空域分散分布的数据分布方式等等。
其中,映射顺序可以指空域、时域、频域三个维度的映射先后顺序。空域映射是指图1所示的层映射模块的映射,时域映射和频域映射是指图1所示的资源元素映射模块的映射。根据图1所示可知,空域映射在时频映射之前,本申请实施例中可以不限定三个维度的映射顺序,例如先频域映射,再时域映射,最后空域映射。
需要说明的是,当只按照映射顺序进行映射处理时,本申请实施例中的映射顺序不包 括先空域映射,再频域映射,最后时域映射的映射顺序,即不包括LTE系统中所采用的映射顺序。
本申请实施例以空域映射在时频映射之前为例进行介绍,主要针对时域映射与频域映射的先后顺序进行介绍。
LTE系统中的不做交织(No interleaving)指在图1所示的调制模块后,码字或码块中各个调制符号的顺序不变。
本申请实施例中的交织的方式可以包括频域交织、时域交织和时频交织,下面将对这三种交织方式进行介绍。
类似于LTE标准中的资源块(Resource Block)RB和RB对(RB pair),在本申请中提供了一种资源单元(Resource Unit),该资源单元可以用作为调度用户进行资源分配的基本单位。资源单元占用频域内多个连续的子载波,和时域内多个连续的符号(OFDM符号)。
假设调度资源在时域上有N个OFDM符号,第n个OFDM符号内可用于数据传输(物理下行共享信道(Physical Downlink Shared Channel,PDSCH))的子载波数目为Pn。
频域交织(F interleaving),也就是每个OFDM符号的交织,该种交织将CW划分为N个部分,每个部分有Pn个调制符号,然后改变每个部分内调制符号的顺序,以一个部分为例,改变该部分中Pn个调制符号的顺序。(Pn及N的取值如上所述)
将资源单元内的N个OFDM符号划分为Q部分(1≤Q<N),假设第j部分有Nj(j=0,…,(Q-1))个OFDM符号,若j=0,则该部分用于数据传输的子载波数目为
Figure PCTCN2018086476-appb-000001
若j>0,则第j部分用于数据传输的子载波数据为
Figure PCTCN2018086476-appb-000002
时频交织(F+T interleaving),是一种跨OFDM符号交织,该种交织将CW划分为Q个部分(1≤Q<N)。在每个部分内,分别改变调制符号的顺序。时频交织后,在第j部分的每个OFDM符号对应的调制符号数目内,来自不同CB的调制符号顺序也会交叉。
时域交织(T interleaving),也是一种跨OFDM符号交织,该种交织将CW划分为Q个部分(1≤Q<N)。在每个部分内,分别改变调制符号的顺序。与时频交织不同的是,利用时域交织后,在第j部分的每个OFDM符号对应的调制符号数目内,来自不同CB的调制符号顺序排放,不会出现顺序交叉。
LTE系统中的先频域映射再时域映射的映射顺序,将通过图1所示的预编码模块处理之后的调制符号,按照顺序先放第一个可用于数据传输的OFDM符号的子载波,第一个可用于数据传输的OFDM符号完成后,再放第二个可用于数据传输的OFDM符号的子载波,第二个可用于数据传输的OFDM符号完成后,再放第三个可用于数据传输的OFDM符号,依次完成所有OFDM符号的数据映射。
本申请实施例中的先频域映射再时域映射的映射顺序与LTE系统中的相同。
本申请实施例中的先时域映射再频域映射的映射顺序,将通过图1所示的预编码模块处理之后的调制符号,按照顺序先放第一个子载波对应的所有OFDM符号(中间不用于PDSCH的不放),然后再放第二个子载波对应的所有OFDM符号(中间不用于PDSCH的 不放),依次完成所有子载波的数据映射。
在一种可能实现的方式中,所述网络设备对所述传输数据进行交织处理,按照频域映射在时域映射之前的映射顺序对所述传输数据进行映射处理,可以得到数据分布方式此时的映射顺序为LTE系统中的先频域映射再时域映射的映射顺序。若所述网络设备对所述传输数据进行频域交织处理,按照频域映射在时域映射之前的映射顺序对所述传输数据进行映射处理,则可以得到时域集中分布的数据分布方式,相比LTE系统中不做交织,进行频域交织处理可以获得频域分集增益。若所述网络设备对所述传输数据进行时频交织处理或时域交织处理,按照频域映射在时域映射之前的映射顺序对所述传输数据进行映射处理,则可以得到时域分散分布的数据分布方式,若进行时域交织处理,则可以获得时域分集增益;若进行时频交织处理,则可以获得时域分集增益和频域分集增益。
在一种可能实现的方式中,所述网络设备按照时域映射在频域映射之前的映射顺序对所述传输数据进行映射处理,此时不做交织,可以得到时域分散分布的数据分布方式。该种可能实现的方式,可以获得时间分集增益。
在一种可能实现的方式中,所述网络设备对所述传输数据进行交织处理,按照时域映射在频域映射之前的映射顺序对所述传输数据进行映射处理,可以得到时域分散分布的数据分布方式。若进行频域交织处理,则可以获得时域分集增益和频域分集增益。若进行时域交织处理,则可以获得时域分集增益。若进行时频交织处理,则可以获得时域分集增益和频域分集增益。
在不同的交织情况、不同的映射顺序的情况下,可以实现不同的数据分布方式,具体可参见下表1:
表1
Figure PCTCN2018086476-appb-000003
其中,编号1对应于LTE系统的映射处理方法和数据分布方式;编号3、编号5、编号7对应于上述第一种可能实现的方式;编号2对应于上述第二种可能实现的方式;编号4、编号6、编号8对应于上述第三种可能实现的方式。
步骤S202:所述网络设备发送根据所述数据分布方式进行分布的所述传输数据;可选地,所述网络设备向终端设备发送根据所述数据分布方式进行分布的所述传输数据;
具体地,所述网络设备在处理之后,得到所述数据分布方式之后,还可以得到按照所述数据分布方式进行分布的所述传输数据,例如还可以得到按照时域集中分布方式进行分 布的所述传输数据。
所述网络设备向所述终端设备发送按照所述数据分布方式进行分布的所述传输数据。
步骤S203:所述终端设备接收处理后的所述传输数据;可选地,所述终端设备接收所述网络设备发送的处理后的所述传输数据;
具体地,所述终端设备接收所述网络设备发送的按照上述数据分布方式进行分布的所述传输数据。
步骤S204:所述终端设备确定所述数据分布方式;
在一种可能实现的方式中,若所述网络设备与所述终端设备已经预先约定采用哪种数据分布方式,那么所述终端设备采用预先约定的数据分布方式。
在一种可能实现的方式中,所述终端设备可根据解调参考信号(Demodulation Reference Signal,DMRS)的属性确定所述数据分布方式,DMRS的属性可以是DMRS的图样(pattern)或DMRS的端口(port)号,不同的OMRS的属性对应不同的数据分布方式。
所述网络设备可以通过多种信令向所述终端设备发送DMRS的属性,例如,下行控制信息(downlink control information,DCI)、无线资源控制(Radio resource control,RRC)信令、媒体接入控制(media access control,MAC)层控制元素(control element,CE)等等,本申请实施例对此不作限定。
可选地,所述终端设备可以根据预设的第一对应关系,来确定数据分布方式,不同的DMRS的图样对应不同的数据分布方式,或不同的DMRS端口号对应不同的数据分布方式。由于所述网络设备和所述终端设备进行数据传输时采用的DMRS的图样或DMRS的端口号已知,例如为第一DMRS图样或第一DMRS端口号,所述终端设备可以根据该第一DMRS图样或第一DMRS端口号,从多个数据分布方式中确定与该第一DMRS图样或第一DMRS端口号对应的数据分布方式。例如,网络设备和终端设备可以约定端口号x1-y1表示该端口号对应时域集中的数据分布方式,端口号x2-y2表示该端口号对应时域分散的数据分布方式,但本申请实施例对此不作限定。
应理解,上述DMRS的属性除了可以是DMRS的图样或DMRS的端口号之外,还可以是DMRS的扰码或正交序列,本申请实施例对此不作限定。
在一种可能实现的方式中,所述终端设备可根据所述网络设备发送的数据分布方式指示信息确定所述数据分布方式,所述数据分布方式指示信息用于指示所述网络设备所采用的数据分布方式,可以是DCI、RRC信令、MAC层CE等等,本申请实施例对此不作限定。
在一种可能实现的方式中,所述终端设备可根据帧结构确定所述数据分布方式。所述帧结构用于指示解调结果需要在当前资源单元(具体可为当前帧)反馈或不需要在当前资源单元反馈。若解调结果需要在当前资源单元反馈,则对应的的数据分布方式为时域集中分布方式;若不需要在当前资源单元反馈,则对应的数据分布方式为时域分散分布方式。
步骤S205:所述终端设备根据所述数据分布方式对所述传输数据进行解映射处理,得到所述传输数据;
具体地,所述终端设备根据确定的所述数据分布方式对所述传输数据进行解映射处理,得到所述传输数据。
若所述网络设备对所述传输数据进行了交织处理,按照频域映射在时域映射之前的映 射顺序进行了映射处理,则所述终端设备对接收到的所述传输数据进行先解频域映射再解时域映射的解映射顺序处理,解交织处理。
若所述网络设备按照时域映射在频域映射之前的映射顺序对所述传输数据进行了映射处理,则所述终端设备对接收到的所述传输数据进行先解时域映射再解频域映射的解映射顺序处理;
若所述网络设备对所述传输数据进行了交织处理,按照时域映射在频域映射之前的映射顺序进行了映射处理,则所述终端设备对接收到的所述传输数据进行先解时域映射再解频域映射的解映射顺序处理,解交织处理。
在图5所描述的实施例中,网络设备对传输数据进行交织处理,或按照映射顺序进行映射处理,或对传输数据进行交织处理并按照映射顺序进行映射处理,针对不同的处理方式可以得到不同的数据分布方式,从而可以实现集中分布和分散分布的数据分布方式,可以适用于具有多种应用场景的系统中。
作为一个可选的实施例,所述网络设备可在进行层映射之前对传输数据进行交织处理,即可在图1所示的调制模块与层映射模块之间增加一个交织模块,该交织模块用于实现频域交织、时域交织、时频交织,具体实现哪种交织视具体情况而定。
具体地,d(m),m=0,...,M-1,d(m)表示层映射模块之前码字内的各个调制符号,m表示调制符号在码字内的序号。交织过程如下:
d'(i)=d(f(i,M symbol,M' symbol,N CB,N CBSize,nLayer))
其中,M symbol表示与资源单元内的OFDM符号数目或可用于传输PDSCH的OFDM符号数有关的量,M′ symbol表示与上述Q部分中的OFDM符号数或可用于传输PDSCH的OFDM符号数有关的量,N CB表示与Q部分的第j部分的CB数目有关的量;N CBSize表示与CB大小有关的量;nLayer表示调度的流数。
作为一个可选的实施例,所述网络设备可在进行层映射之后对传输数据进行交织处理,即可在图1所示的层映射模块与预编码模块之间增加一个交织模块,该交织模块用于实现频域交织、时域交织、时频交织,具体实现哪种交织视具体情况而定。
具体地,d(m),m=0,...,M-1,d(m)表示层映射模块之前码字内的各个调制符号,m表示调制符号在码字内的序号。交织过程如下:
d'(i)=d(f(i,M symbol,M' symbol,N CB,N CBSize))
其中,M symbol表示与资源单元内的OFDM符号数目或可用于传输PDSCH的OFDM符号数有关的量,M′ symbol表示与上述Q部分中的OFDM符号数或可用于传输PDSCH的OFDM符号数有关的量,N CB表示与Q部分的第j部分的CB数目有关的量;N CBSize表示与CB大小有关的量。
作为一个可选的实施例,所述网络设备可在进行层映射时对传输数据进行交织处理,即可对图1所示的层映射模块进行改进,使其不仅能够实现层映射的功能,还能实现频域交织、时域交织和时频交织的功能。
具体地,以一个码字映射到两层为例,LTE系统中,时域集中分布方式下的层映射表格如下表2所示。对图1所示的层映射模块改进后,可得到时域分散分布方式下的层映射 表格,如下表3所示。表3中,M symb表示与资源单元内的OFDM符号数目或可用于传输PDSCH的OFDM符号数目有关的量;M′ symb表示与上述Q部分中的OFDM符号数或可用于传输PDSCH的OFDM符号数目有关的量;N CB表示与Q部分的第j部分的CB数目有关的量;N CBsize表示与CB大小有关的量。若Q=1,则时域分散分布方式下的表3可为下表4。表4中,N CBNum表示资源单元内的CB数目;N CBsize表示与CB大小有关的量。
表2
Figure PCTCN2018086476-appb-000004
表3
Figure PCTCN2018086476-appb-000005
表4
Figure PCTCN2018086476-appb-000006
作为一个可选的实施例,所述网络设备可在进行资源元素映射时对传输数据进行交织处理,即对图1所示的资源元素映射模块进行改进,使其不仅能够实现时频映射的功能,还能实现频域交织、时域交织和时频交织的功能。此时,可以不限定交织与时频映射的先后顺序。
作为一个可选的实施例,所述网络设备可在进行资源元素映射时按照时域映射在频域映射之前的映射顺序对传输数据进行映射处理,即可对图1所示的资源元素映射模块进行改进,使其不仅能够实现LTE系统中先频域映射再时域映射的映射顺序,还可以实现先时域映射再频域映射的映射顺序。
具体地,每个天线上的复数符号映射到调度资源(k,l)上。映射过程中除去物理广播信道(Physical Broadcast Channel,PBCH)、同步等PDSCH/物理上行共享信道(Physical Uplink Shared Channel,PUSCH)不可用的资源。
先频域映射再时域映射的过程可以是,先增加k,后增加l。k表示频域子载波,l表示时域OFDM符号。
先时域映射再频域映射的过程可以是,先增加l,后增加k。k表示频域子载波,l表示 时域OFDM符号。
作为一个可选的实施例,所述网络设备可在初次传输时,采用时域集中分布方式。所述网络设备在重传时,采用时域分散分布方式。
作为一个可选的实施例,所述网络设备可配置如图6a-图6d所示的四种DMRS的图样示例图。在解调结果需要在当前帧反馈的情况下,所述网络设备可以采用对应的DMRS的属性,该DMRS的属性可以对应时域集中分布方式,可配置图6a和图6b所示的DMRS的图样示例图,为解调结果需要在本帧反馈的DMRS的图样的示例图,图6a和图6b所示的DMRS的图样对应的数据分布方式可以为时域集中分布方式。反之,在解调结果不需要在当前帧反馈的情况下,所述网络设备可以采用对应的DMRS的属性,该DMRS的属性可以对应时域分散分布方式,可配置图6c和图6d所示的DMRS的图样示例图,为解调结果不需要在本帧反馈的DMRS的图样示例图,图6c和图6d所示的DMRS pattern对应的数据分布方式均可以为时域集中方式。
在一种可能实现的方式中,在DMRS的图样为DMRS占用一个时域符号的情况下,该DMRS的图样对应时域集中分布方式。
在一种可能实现的方式中,在DMRS的图样为DMRS占用至少两个时域符号的情况下,若DMRS占用的任意两个时域符号之间不存在数据的传输,则该DMRS的图样对应时域集中分布方式;若DMRS占用的时域符号之间存在至少两个时域符号之间存在数据的传输,则该DMRS的图样对应时域分散分布方式。
具体地,所述网络设备在DMRS的图样为DMRS占用一个时域符号的情况下,该DMRS的图样对应时域集中分布方式;在DMRS的图样为DMRS占用至少两个时域符号的情况下,若该DMRS的图样为DMRS占用的任意两个时域符号之间不存在数据的传输,即任意两个DMRS的时域符号之间不存在数据的传输,那么该DMRS的图样可以对应时域集中分布方式,图6a为DMRS的传输在数据传输之前的一个DMRS的图样示例图,图6a所示的DMRS的图样对应的数据分布方式可以为时域集中分布方式;若该DMRS占用的时域符号之间存在至少两个时域符号之间存在数据的传输,即存在两个DMRS的时域符号之间存在数据的传输,那么该DMRS的图样可以对应的数据分布方式可以为时域分散分布方式,图6b-图6c的DMRS的图样示例图均存在DMRS的传输在数据传输之后,因此,这三种DMRS的图样对应的数据分布方式均可以为时域分散分布方式。
综上所述,数据分布方式与DMRS的图样之间的对应关系可以采用以下两种不同的方式。
方式一:在适用于任意两个DMRS的传输之间不存在数据的传输的DMRS的图样(图6a)下,采用时域集中分布方式;在适用于存在两个DMRS的传输之间存在数据的传输(图6b、图6c以及图6d)下,采用时域分散分布方式。
方式二:在适用于解调结果需要在当前资源单元反馈的DMRS的图样(图6a和图6b)下,采用时域集中分布方式;在适用于解调结果不需要在当前资源单元反馈的DMRS的图样(图6c和图6d)下,采用时域分散分布方式。
应理解,采用何种方式取决于应用场景或者终端设备的业务需求,由网络设备进行配置,本申请实施例对此不作限定。
上述详细阐述了本申请实施例的方法,下面阐述本申请实施例提供的装置。
请参见图7,图7是本申请实施例提供的一种网络设备的逻辑结构示意图,该网络设备301可以包括处理单元3011和发送单元3012。
所述处理单元3011,用于对传输数据进行处理得到数据分布方式,所述处理包括对交织处理和按照映射顺序进行映射处理中的至少一种;所述数据分布方式用于表示来自同一个码块的数据的分布情况;当所述处理只为按照映射顺序进行映射处理时,所述映射顺序不包括先空域映射,再频域映射,最后时域映射的映射顺序;
所述发送单元3012,用于发送根据所述数据分布方式进行分布的所述传输数据。
需要说明的是,所述处理单元3011用于执行图5所示的方法实施例中的步骤S201,所述发送单元3012用于执行图5所示的方法实施例中的步骤S202。
请参见图8,图8是本申请实施例提供的一种网络设备302,该网络设备302包括处理器3021、收发器3022和存储器3023,所述处理器3021、存储器3023和收发器3022通过总线相互连接。
存储器3023包括但不限于是随机存储记忆体(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM),该存储器3023用于相关指令及数据。
收发器3022可以是通信模块、收发电路,用于实现网络设备与终端设备之间的数据、信令等信息的传输。应用在本申请实施例中,收发器3022用于执行图5所示的方法实施例中的步骤S202。
处理器3021可以是控制器,中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器3021也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。应用在本申请实施例中,处理器3021用于执行图5所示实施例中的步骤S201。
请参见图9,图9是本申请实施例提供的一种终端设备的逻辑结构示意图,该终端设备401可以包括接收单元4011和处理单元4012。
所述接收单元4011,用于接收处理后的传输数据;所述处理单元,用于确定数据分布方式,所述数据分布方式用于表示来自同一个码块的数据的分布情况;
所述处理单元4012,还用于根据所述数据分布方式对所述传输数据进行解处理,得到所述传输数据;
其中,所述解处理包括对所述传输数据进行解交织处理和按照解映射顺序进行解映射处理中的至少一种;当所述解处理只包括按照解映射顺序进行解映射处理时,所述解映射 顺序不包括先解空域映射,再解频域映射,最后解时域映射的解映射顺序。
需要说明的是,所述接收单元4011用于执行图5所示的方法实施例中的步骤S203,所述处理单元4012用于执行图5所示的方法实施例中的步骤S204和步骤S205。
请参见图10,图10是本申请实施例提供的一种终端设备402,该终端设备402包括处理器4021、收发器4022和存储器4023,所述处理器4021、存储器4023和收发器4022通过总线相互连接。
存储器4023包括但不限于是RAM、ROM、EPROM或CD-ROM,该存储器4024用于相关指令及数据。
收发器4022可以是通信模块、收发电路,用于实现网络设备与终端设备之间的数据、信令等信息的传输。应用在本申请实施例中,收发器4022用于执行图5所示的方法实施例中的步骤S203。
处理器4021可以是控制器,CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器4021也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。应用在本申请实施例中,处理器4021用于执行图5所示实施例中的步骤S204和步骤S205。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组 件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (24)

  1. 一种数据处理方法,其特征在于,包括:
    网络设备对传输数据进行处理得到数据分布方式,所述处理包括交织处理和按照映射顺序进行映射处理中的至少一种;所述数据分布方式用于表示来自同一个码块的数据的分布情况;当所述处理只为按照映射顺序进行映射处理时,所述映射顺序不包括先空域映射,再频域映射,最后时域映射的映射顺序;
    所述网络设备发送根据所述数据分布方式进行分布的所述传输数据。
  2. 如权利要求1所述的方法,其特征在于,所述数据分布方式用于表示来自同一个码块的数据在连续的至少一个时域符号上集中分布,或用于表示来自同一个码块的数据在多个时域符号上分散分布。
  3. 如权利要求1或2所述的方法,其特征在于,所述网络设备对传输数据进行处理得到数据分布方式,包括:
    网络设备对传输数据进行交织处理,并按照频域映射在时域映射之前的映射顺序对所述传输数据进行映射处理,得到数据分布方式;
    或,网络设备对传输数据按照时域映射在频域映射之前的映射顺序对所述传输数据进行映射处理,得到分散分布的数据分布方式;
    或,网络设备对传输数据进行交织处理,并按照时域映射在频域映射之前的映射顺序对所述传输数据进行映射处理,得到分散分布的数据分布方式。
  4. 如权利要求3所述的方法,其特征在于,所述网络设备对传输数据进行交织处理,并按照频域映射在时域映射之前的映射顺序对所述传输数据进行映射处理,得到数据分布方式,包括:
    网络设备对传输数据进行频域交织处理,并按照频域映射在时域映射之前的映射顺序对所述传输数据进行映射处理,得到集中分布的数据分布方式。
  5. 如权利要求3所述的方法,其特征在于,所述网络设备对传输数据进行交织处理,并按照频域映射在时域映射之前的映射顺序对所述传输数据进行映射处理,得到数据分布方式,包括:
    网络设备对传输数据进行时域交织处理或时频交织处理,并按照频域映射在时域映射之前的映射顺序对所述传输数据进行映射处理,得到分散分布的数据分布方式。
  6. 如权利要求3所述的方法,其特征在于,所述网络设备对传输数据进行交织处理,包括:
    网络设备在进行层映射处理之前或之后对传输数据进行交织处理。
  7. 如权利要求3所述的方法,其特征在于,所述网络设备对传输数据进行交织处理,包括:
    网络设备在进行层映射处理或资源元素映射处理时对传输数据进行交织处理。
  8. 如权利要求3所述的方法,其特征在于,所述网络设备按照时域映射在频域映射之前的映射顺序对传输数据进行映射处理,包括:
    网络设备在进行资源元素映射时,按照时域映射在频域映射之前的映射顺序对传输数 据进行映射处理。
  9. 一种数据处理方法,其特征在于,包括:
    终端设备接收处理后的传输数据;
    所述终端设备确定数据分布方式,所述数据分布方式用于表示来自同一个码块的数据的分布情况;
    所述终端设备根据所述数据分布方式对所述传输数据进行解处理,得到所述传输数据;
    其中,所述解处理包括对所述传输数据进行解交织处理和按照解映射顺序进行解映射处理中的至少一种;当所述解处理只包括按照解映射顺序进行解映射处理时,所述解映射顺序不包括先解空域映射,再解频域映射,最后解时域映射的解映射顺序。
  10. 如权利要求9所述的方法,其特征在于,所述数据分布方式用于表示来自同一个码块的数据在连续的至少一个时域符号上集中分布,或用于表示来自同一码块的数据在多个时域符号上分散分布。
  11. 如权利要求9或10所述的方法,其特征在于,所述终端设备根据所述数据分布方式对所述传输数据进行解处理,包括:
    所述终端设备根据所述数据分布方式对所述传输数据进行解频域映射在解时域映射之前的解映射顺序处理,解交织处理;
    或,所述终端设备根据所述数据分布方式对所述传输数据进行解时域映射在解频域映射之前的解映射顺序处理;
    或,所述终端设备根据所述数据分布方式对所述传输数据进行解时域映射在解频域映射之前的解映射顺序处理,解交织处理。
  12. 一种网络设备,其特征在于,包括处理器和收发器,
    所述处理器,用于对传输数据进行处理得到数据分布方式,所述处理包括对交织处理和按照映射顺序进行映射处理中的至少一种;所述数据分布方式用于表示来自同一个码块的数据的分布情况;当所述处理只为按照映射顺序进行映射处理时,所述映射顺序不包括先空域映射,再频域映射,最后时域映射的映射顺序;
    所述收发器,用于发送根据所述数据分布方式进行分布的所述传输数据。
  13. 如权利要求12所述的网络设备,其特征在于,所述数据分布方式用于表示来自同一个码块的数据在连续的至少一个时域符号上集中分布,或用于表示来自同一个码块的数据在多个时域符号上分散分布。
  14. 如权利要求12或13所述的网络设备,其特征在于,所述处理器具体用于网络设备对传输数据进行交织处理,并按照频域映射在时域映射之前的映射顺序对所述传输数据进行映射处理,得到数据分布方式;
    或,所述处理器具体用于对传输数据按照时域映射在频域映射之前的映射顺序对所述传输数据进行映射处理,得到分散分布的数据分布方式;
    或,所述处理器具体用于对传输数据进行交织处理,并按照时域映射在频域映射之前的映射顺序对所述传输数据进行映射处理,得到分散分布的数据分布方式。
  15. 如权利要求14所述的网络设备,其特征在于,所述处理器具体用于对传输数据进行频域交织处理,并按照频域映射在时域映射之前的映射顺序对所述传输数据进行映射处 理,得到集中分布的数据分布方式。
  16. 如权利要求14所述的网络设备,其特征在于,所述处理器具体用于对传输数据进行时域交织处理或时频交织处理,并按照频域映射在时域映射之前的映射顺序对所述传输数据进行映射处理,得到分散分布的数据分布方式。
  17. 如权利要求14所述的网络设备,其特征在于,所述处理器具体用于在进行层映射之前或之后对传输数据进行交织处理。
  18. 如权利要求14所述的网络设备,其特征在于,所述处理器具体用于在进行层映射处理或资源元素映射处理时对传输数据进行交织处理。
  19. 如权利要求14所述的网络设备,其特征在于,所述处理器具体用于在进行资源元素映射时,按照时域映射在频域映射之前的映射顺序对传输数据进行映射处理。
  20. 一种终端设备,其特征在于,包括处理器和收发器,
    所述收发器,用于接收处理后的传输数据;
    所述处理器,用于确定数据分布方式,所述数据分布方式用于表示来自同一个码块的数据的分布情况;
    所述处理器,还用于根据所述数据分布方式对所述传输数据进行解处理,得到所述传输数据;
    其中,所述解处理包括对所述传输数据进行解交织处理和按照解映射顺序进行解映射处理中的至少一种;当所述解处理只包括按照解映射顺序进行解映射处理时,所述解映射顺序不包括先解空域映射,再解频域映射,最后解时域映射的解映射顺序。
  21. 如权利要求20所述的终端设备,其特征在于,所述数据分布方式用于表示来自同一个码块的数据在连续的至少一个时域符号上集中分布,或用于表示来自同一码块的数据在多个时域符号上分散分布。
  22. 如权利要求20或21所述的终端设备,其特征在于,所述处理器具体用于根据所述数据分布方式对所述传输数据进行解频域映射在解时域映射之前的解映射顺序处理,解交织处理;
    或,所述处理器具体用于根据所述数据分布方式对所述传输数据进行解时域映射在解频域映射之前的解映射顺序处理;
    或,所述处理器具体用于根据所述数据分布方式对所述传输数据进行解时域映射在解频域映射之前的解映射顺序处理,解交织处理。
  23. 一种计算机程序,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-8任意一项所述的数据处理方法。
  24. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求9-11任意一项所述的数据处理方法。
PCT/CN2018/086476 2017-05-12 2018-05-11 一种数据处理方法及其装置 WO2018205990A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18799076.7A EP3618324A4 (en) 2017-05-12 2018-05-11 DATA PROCESSING METHOD AND APPARATUS
US16/680,112 US10951368B2 (en) 2017-05-12 2019-11-11 Data processing method and apparatus thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710336210.1 2017-05-12
CN201710336210.1A CN108880741B (zh) 2017-05-12 2017-05-12 一种数据处理方法及其装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/680,112 Continuation US10951368B2 (en) 2017-05-12 2019-11-11 Data processing method and apparatus thereof

Publications (1)

Publication Number Publication Date
WO2018205990A1 true WO2018205990A1 (zh) 2018-11-15

Family

ID=64104344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086476 WO2018205990A1 (zh) 2017-05-12 2018-05-11 一种数据处理方法及其装置

Country Status (4)

Country Link
US (1) US10951368B2 (zh)
EP (1) EP3618324A4 (zh)
CN (1) CN108880741B (zh)
WO (1) WO2018205990A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055067B (zh) * 2019-12-27 2024-04-26 中兴通讯股份有限公司 下行信号处理方法、装置及基站
US20230171749A1 (en) * 2020-06-12 2023-06-01 Qualcomm Incorporated Time domain interleaving for physical shared channel communications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283630A (zh) * 2013-07-03 2015-01-14 电信科学技术研究院 数据传输方法和设备
US20150263825A1 (en) * 2007-10-04 2015-09-17 Samsung Electronics Co., Ltd. Method and apparatus for interleaving data in a mobile communication system
CN106160987A (zh) * 2015-04-23 2016-11-23 中兴通讯股份有限公司 控制信息的发送方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8254245B2 (en) * 2007-04-27 2012-08-28 Lg Electronics Inc. Method for transmitting downlink control channel in a mobile communications system and a method for mapping the control channel to physical resource using block interleaver in a mobile communications system
US8160177B2 (en) * 2007-06-25 2012-04-17 Samsung Electronics Co., Ltd. Transmit methods with delay diversity and space-frequency diversity
KR20100019948A (ko) * 2008-08-11 2010-02-19 엘지전자 주식회사 공간 다중화 기법을 이용한 데이터 전송방법
US8780821B2 (en) * 2009-02-20 2014-07-15 Qualcomm Incorporated Channel interleaver for transmission of multiple code blocks in a wireless communication system
US9136994B2 (en) * 2011-05-11 2015-09-15 Lg Electronics Inc. Method and device for transmitting data in a multi antenna wireless communication system
US9282552B2 (en) * 2011-05-17 2016-03-08 Lg Electronics Inc. Method for transmitting and receiving control information in a wireless communication system, and apparatus for same
CN105656596B (zh) 2014-11-14 2019-07-19 电信科学技术研究院 一种进行数据传输的方法和设备
CN105703882B (zh) 2014-11-28 2020-08-18 中兴通讯股份有限公司 一种控制信息、信道或信号的传输方法及相应的发送端
CN108632011B (zh) * 2017-03-24 2023-11-21 华为技术有限公司 用于进行数据传输的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150263825A1 (en) * 2007-10-04 2015-09-17 Samsung Electronics Co., Ltd. Method and apparatus for interleaving data in a mobile communication system
CN104283630A (zh) * 2013-07-03 2015-01-14 电信科学技术研究院 数据传输方法和设备
CN106160987A (zh) * 2015-04-23 2016-11-23 中兴通讯股份有限公司 控制信息的发送方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618324A4
ZTE: "Control Resource set", 3GPP TSG RAN WG1 MEETING #88BIS, R1-1704369, vol. RAN WG1, 2 April 2017 (2017-04-02), Spokane, USA, pages 1 - 5, XP051242517 *

Also Published As

Publication number Publication date
EP3618324A4 (en) 2020-05-20
US20200092058A1 (en) 2020-03-19
CN108880741A (zh) 2018-11-23
CN108880741B (zh) 2020-05-08
EP3618324A1 (en) 2020-03-04
US10951368B2 (en) 2021-03-16

Similar Documents

Publication Publication Date Title
CN108347778B (zh) 通信方法及装置
EP3739800A1 (en) Pilot signal generation method and apparatus
JP2020526996A (ja) 伝送方法及びその装置
CN108632011B (zh) 用于进行数据传输的方法和装置
WO2019029470A1 (zh) 用于数据传输的方法、网络设备和终端设备
JP7191998B2 (ja) アンテナポート指示方法および装置
US20210409186A1 (en) Communication method and network device
WO2018202126A1 (zh) 用于数据传输的方法、终端和网络设备
WO2018113618A1 (zh) 参考信号的发送和接收方法,接入网设备和终端设备
CN108632003A (zh) 一种信息传输方法和装置
US11212789B2 (en) Information sending method and device
WO2021017995A1 (zh) 控制信息传输方法及装置
CN112020145A (zh) 一种通信方法及装置
WO2018228522A1 (zh) 发送参考信号的方法、接收参考信号的方法和通信装置
TWI762531B (zh) 資源映射的方法和通訊設備
WO2018205990A1 (zh) 一种数据处理方法及其装置
TW202008827A (zh) 資源配置的方法、終端設備和網路設備
WO2018202103A1 (zh) 一种参考信号图样的传输方法及其装置
WO2022036529A1 (zh) 一种相位跟踪参考信号的发送方法、接收方法及通信装置
CN111181887B (zh) 一种序列的生成及处理方法和装置
WO2021062815A1 (zh) 调制解调参考信号的配置信息获取方法、配置方法及装置
TW202007204A (zh) 調度資源的方法、終端設備和網路設備
CN109495968B (zh) 用于进行数据传输的方法和装置
WO2018228296A1 (zh) 用于进行数据传输的方法和装置
CN115567890A (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018799076

Country of ref document: EP

Effective date: 20191127