WO2022262620A1 - 一种指示解调参考信号的方法和装置 - Google Patents

一种指示解调参考信号的方法和装置 Download PDF

Info

Publication number
WO2022262620A1
WO2022262620A1 PCT/CN2022/097650 CN2022097650W WO2022262620A1 WO 2022262620 A1 WO2022262620 A1 WO 2022262620A1 CN 2022097650 W CN2022097650 W CN 2022097650W WO 2022262620 A1 WO2022262620 A1 WO 2022262620A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
indication information
symbol
configuration
time
Prior art date
Application number
PCT/CN2022/097650
Other languages
English (en)
French (fr)
Inventor
杭海存
纪刘榴
王潇涵
金黄平
李婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022262620A1 publication Critical patent/WO2022262620A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the communication field, and more specifically, to a method and device for indicating a demodulation reference signal.
  • multi-station coordinated transmission (coordinated multiple points, CoMP) is a method to improve resource utilization and reduce inter-cell interference level.
  • Multi-station coordinated transmission technology includes coordinated beam-forming, coordinated scheduling, joint transmission, dynamic point selection, and dynamic point blanking and other technologies.
  • the base stations can interact through backhaul, air interface and other ways to coordinate and transmit the required information. Through these transmission methods, the interference to edge users can be reduced and the performance of the system can be improved.
  • a multi-station cooperative transmission mode is usually adopted to improve the throughput of the system, and at this time, the system can schedule more data streams.
  • the maximum number of ports (ports) of a demodulation reference signal (demodulation reference signal, DMRS) is only 12. At this time, the number of ports of the DMRS has become a bottleneck affecting system performance.
  • the present application provides a method and device for indicating a demodulation reference signal, which increases the number of orthogonal DMRS ports and ensures system performance.
  • a method for indicating a demodulation reference signal includes: a terminal device receives first indication information from a network device, the first indication information is used to determine a configuration of a demodulation reference signal DMRS, and the DMRS The configuration includes the time-frequency resources occupied by the DMRS, and the DMRS occupies K symbols; the terminal device receives the second indication information from the network device, and the second indication information is used to determine the first DMRS used for channel estimation in the DMRS, and the first DMRS occupies L symbols symbol, L is less than K; the terminal device determines the time-frequency resource of the first DMRS according to the first indication information and the second indication information; the terminal equipment uses the first DMRS to perform channel estimation, wherein K is an integer greater than 1, and L is greater than Integer of 0.
  • the terminal equipment can use part of the DMRS for channel estimation.
  • the technical solution of this application increases The number of orthogonal DMRS ports is increased, and the performance of the system is guaranteed.
  • DMRS configuration can be understood as various time-frequency resource configurations and symbol type configurations of DMRSs to be sent by network equipment (or DMRSs to be sent). For example, the symbols occupied by the DMRS, the port information of the DMRS, whether the DMRS is single-symbol or double-symbol, etc. are configured. It should be understood that in this application, which symbols finally have DMRSs (that is, the first DMRS), or in other words, which symbols the terminal device finally uses DMRSs on which symbols (that is, the first DMRS) to perform channel estimation need to be determined according to the second indication information .
  • the first DMRS is a part of the DMRS configured by the network device for the terminal. It can also be understood that the symbol occupied by the first DMRS in this application may be the DMRS configured by the network device for the terminal device. Part of the DMRS symbol.
  • the network device may send DMRSs (ie, the first DMRS) on some symbols, and the terminal device may perform channel estimation according to the DMRSs on some symbols (ie, the first DMRS).
  • the DMRS includes a pre-DMRS and at least one additional DMRS
  • the second indication information is used to determine the first DMRS used for channel estimation in the DMRS
  • the DMRS includes: the second indication information is specifically used to determine the type of the first DMRS, and the type of the first DMRS includes at least one of the following items: pre-DMRS type and additional DMRS type.
  • the terminal device may only use the pre-DMRS for channel estimation (it can also be understood that the first DMRS is the pre-DMRS), or the terminal device may also only use the additional DMRS for channel estimation (also can be understood as It can be understood that the first DMRS is an additional DMRS), thereby increasing the number of orthogonal DMRS ports and ensuring system performance.
  • the pre-DMRS type includes a first type and a second type
  • the first type is: the pre-DMRS is the first DMRS, Neither the pre-DMRS nor the additional DMRS transmits data
  • the second type is: the pre-DMRS is the first DMRS, the pre-DMRS does not transmit data, and the additional DMRS is used for transmission data.
  • neither the pre-DMRS nor the additional DMRS may transmit data.
  • other users can use the additional DMRS to perform channel estimation.
  • the number of orthogonal DMRS ports is increased, so that the system can support more data streams, which ensures the performance of the system, and the channel estimation of the orthogonal DMRS ports can reduce the interference between users, so that the channel estimation is more accurate.
  • the pre-DMRS does not transmit data, and the additional DMRS can be used to transmit data. At this time, system resources can be fully utilized.
  • the configuration of the DMRS further includes symbols occupied by the DMRS
  • the second indication information is used to determine the first DMRS used for channel estimation in the DMRS, Including: the second indication information is specifically used to determine the configuration of symbols occupied by the first DMRS.
  • the DMRS used for channel estimation can be more flexibly determined by indicating the symbol of the first DMRS.
  • the DMRS is a single-symbol DMRS
  • the first indication information is used to determine the configuration of the symbol Y of the DMRS, and when Y is equal to 4, the The number of bits N of the second indication information is equal to 4, the N bits of the second indication information correspond to Y symbols of the DMRS one by one, and the i-th bit of the N bits The i-th symbol corresponding to the bit value is used to indicate whether the DMRS corresponding to the i-th symbol belongs to the first DMRS, where 1 ⁇ i ⁇ 4.
  • the symbols for configuring the DMRS are: symbol 2, symbol 5, symbol 8, and symbol 11.
  • the first DMRS is composed of DMRSs on symbol 2 and symbol 5.
  • whether the DMRS corresponding to the i-th symbol belongs to the first DMRS can be understood as that the DMRS corresponding to the i-th symbol is one of the first DMRSs.
  • the symbols corresponding to the first DMRS can be regarded as a set J, and the set J includes ⁇ j1, j2, j3...jn ⁇ and other elements, and the corresponding DMRSs on each symbol in the set together constitute the first DMRS, for example,
  • i may belong to J set, that is, i may be an element in J set.
  • the DMRS on this symbol is the first DMRS.
  • all bits in each symbol in the first DMRS are 1. Of course, it may also be specified that all bits on each symbol in the first DMRS are 0. Use "0" or "1" in the bit value to indicate the first DMRS, which is not limited in this application.
  • the first DMRS can be flexibly indicated by 4 bits, for example, the terminal device only uses the pre-DMRS for signaling estimation, the terminal device only uses the additional DMRS for channel estimation, The terminal device uses part of the additional DMRS for channel estimation, or the terminal device uses the pre-DMRS and part of the additional DMRS for channel estimation, which not only increases the number of orthogonal DMRS ports, ensures system performance, but also reduces signaling overhead.
  • the terminal device defaults that neither DMRS nor data is transmitted on the ith symbol.
  • the DMRS is a single-symbol DMRS
  • the first indication information is used to determine the configuration of the symbol Y of the DMRS, and when the Y is less than 4, the The number of bits N of the second indication information is equal to 4, the first Y bits of the N bits correspond to the Y symbols of the DMRS one by one, and the first Y bits of the N bits The bits are used to indicate whether the DMRSs corresponding to the Y symbols belong to the first DMRS.
  • the first DMRS can still be flexibly indicated through 4 bits, which not only increases the number of orthogonal DMRS ports, ensures the performance of the system, but also reduces the Signaling overhead.
  • the bit value of the jth bit corresponding to the jth symbol in the Y symbols indicates the DMRS corresponding to the jth symbol
  • the last bit of the N bits is used to indicate whether to transmit data on the jth symbol, where the Y is an integer greater than 0.
  • the DMRS is a double-symbol DMRS
  • the first indication information is used to determine the configuration of the double-symbol X of the DMRS, and when X is equal to 2,
  • the bit Z of the second indication information is equal to 2
  • the Z bits of the second indication information are in one-to-one correspondence with the X symbols of the DMRS
  • the bit value of the rth bit corresponding to the rth symbol It is used to indicate whether the DMRS corresponding to the r-th symbol belongs to the first DMRS, where 1 ⁇ r ⁇ 2.
  • the first DMRS can be flexibly indicated by 2 bits, which not only increases the number of orthogonal DMRS ports, ensures system performance, but also reduces signaling overhead.
  • the terminal device defaults that neither DMRS nor data is transmitted on the rth symbol.
  • the method further includes: the terminal device determines the time-frequency resource of the transmitted data according to the first indication information and the second indication information, the The data time-frequency resources do not include the pre-DMRS time-frequency resources on the physical downlink shared channel.
  • the terminal device can flexibly determine the position of the time-frequency resource of the transmitted data according to the indication of the second indication information, so as to perform decoding.
  • the configuration of the DMRS includes at least one of the following: configuration of the symbol type of the DMRS, configuration of the time-frequency resources of the pre-DMRS, and time-frequency resources of the additional DMRS Configuration.
  • the terminal device can determine the position of the time-frequency resource of the first DMRS according to the configuration of the DMRS.
  • a method for instructing a demodulation reference signal includes: a network device sends first indication information to a terminal device, the first indication information is used to determine the configuration of the demodulation reference signal DMRS, and the configuration of the DMRS includes The time-frequency resource occupied by the DMRS, the DMRS occupies K symbols; the network device terminal device sends the second indication information, the second indication information is used to determine the first DMRS used for channel estimation in the DMRS, the first DMRS occupies L symbols, and the L less than K, where K is an integer greater than 1, and L is an integer greater than 0.
  • the network device sends indication information to the terminal device, instructing the terminal device to use part of the DMRS for channel estimation, thereby increasing the number of orthogonal DMRS ports and ensuring system performance.
  • the DMRS includes a pre-DMRS and at least one additional DMRS
  • the second indication information is used to determine the first DMRS used for channel estimation in the DMRS
  • the DMRS includes: the second indication information is specifically used to determine the type of the first DMRS, and the type of the first DMRS includes at least one of the following items: pre-DMRS type and additional DMRS type.
  • the network device can instruct the terminal device to use only the pre-DMRS for channel estimation (it can also be understood that the first DMRS is the pre-DMRS), or instruct the terminal device to use only the additional DMRS for channel estimation. estimation (it can also be understood that the first DMRS is an additional DMRS), thereby increasing the number of orthogonal DMRS ports and ensuring system performance.
  • the pre-DMRS type includes a first type and a second type
  • the first type is: the pre-DMRS is the first DMRS, Neither the pre-DMRS nor the additional DMRS transmits data
  • the second type is: the pre-DMRS is the first DMRS, the pre-DMRS does not transmit data, and the additional DMRS is used for transmission data.
  • neither the pre-DMRS nor the additional DMRS may transmit data. At this time, other users can use the additional DMRS to perform channel estimation.
  • the number of orthogonal DMRS ports is increased to ensure system performance and reduce interference between users.
  • the pre-DMRS does not transmit data, and the additional DMRS can be used to transmit data. At this time, system resources can be fully utilized.
  • the configuration of the DMRS further includes symbols occupied by the DMRS
  • the second indication information is used to determine the first DMRS used for channel estimation in the DMRS, Including: the second indication information is specifically used to determine the configuration of symbols occupied by the first DMRS.
  • the network device can more flexibly determine the DMRS used for channel estimation by indicating the symbol of the first DMRS.
  • the DMRS is a single-symbol DMRS
  • the first indication information is used to determine the configuration of the symbol Y of the DMRS, and when Y is equal to 4, the The number of bits N of the second indication information is equal to 4, the N bits of the second indication information correspond to Y symbols of the DMRS one by one, and the i-th bit of the N bits The i-th symbol corresponding to the bit value is used to indicate whether the DMRS corresponding to the i-th symbol belongs to the first DMRS, where 1 ⁇ i ⁇ 4.
  • the network device can flexibly indicate the first DMRS through 4 bits, for example, the network device instructs the terminal device to use Only using additional DMRS for channel estimation, the network device instructs the terminal device to use part of the additional DMRS for channel estimation, or the network device instructs the terminal device to use the pre-DMRS and part of the additional DMRS for channel estimation, which not only increases the number of orthogonal DMRS ports, The performance of the system is guaranteed, and the signaling overhead is also reduced.
  • the terminal device defaults that neither DMRS nor data is transmitted on the ith symbol.
  • the DMRS is a single-symbol DMRS
  • the first indication information is used to determine the configuration of the symbol Y of the DMRS, and when Y is less than 4, the The number of bits N of the second indication information is equal to 4, the first Y bits of the N bits correspond to the Y symbols of the DMRS one by one, and the first Y bits of the N bits The bits are used to indicate whether the DMRSs corresponding to the Y symbols belong to the first DMRS.
  • the network device can still flexibly indicate the first DMRS through 4 bits, which not only increases the number of orthogonal DMRS ports, ensures the performance of the system, but also reduces Small signaling overhead.
  • the bit value of the jth bit corresponding to the jth symbol in the Y symbols indicates the DMRS corresponding to the jth symbol
  • the last bit of the N bits is used to indicate whether to transmit data on the jth symbol, where the Y is an integer greater than 0.
  • the DMRS is a double-symbol DMRS
  • the first indication information is used to determine the configuration of the double-symbol X of the DMRS, and when X is equal to 2,
  • the bit Z of the second indication information is equal to 2
  • the Z bits of the second indication information are in one-to-one correspondence with the X symbols of the DMRS
  • the bit value of the rth bit corresponding to the rth symbol It is used to indicate whether the DMRS corresponding to the r-th symbol belongs to the first DMRS, where 1 ⁇ r ⁇ 2.
  • the network device can flexibly indicate the first DMRS through 2 bits, which not only increases the number of orthogonal DMRS ports, ensures the performance of the system, but also reduces the signaling overhead .
  • the terminal device defaults that neither DMRS nor data is transmitted on the rth symbol.
  • the method further includes: the network device determining the time-frequency resource of the transmitted data, and the time-frequency resource of the data does not include all the time-frequency resources on the physical downlink shared channel.
  • the preceding DMRS time-frequency resource the network device sending the data on the physical downlink shared channel.
  • the network device can flexibly determine the location of the time-frequency resource of the transmitted data.
  • the configuration of the DMRS includes at least one of the following items: configuration of the symbol type of the DMRS, configuration of time-frequency resources of the pre-DMRS, and time-frequency resources of the additional DMRS Configuration.
  • the terminal device can determine the position of the time-frequency resource of the first DMRS according to the configuration of the DMRS.
  • a communication device in a third aspect, includes a unit for executing the method in the first aspect or any possible implementation manner of the first aspect.
  • a communication device in a fourth aspect, includes a unit for executing the method in the second aspect or any possible implementation manner of the second aspect.
  • a communication device including a processor.
  • the processor is coupled with the memory, and may be used to execute instructions in the memory, so as to implement the method in any possible implementation manner of the above first aspect.
  • the device further includes a memory.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • the apparatus is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • the apparatus is a host node device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in the host node.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • an apparatus for instructing a demodulation reference signal including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory, so as to implement the method in any possible implementation manner of the second aspect above.
  • the device further includes a memory.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • the apparatus is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the apparatus is a host node device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in the host node device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any one possible implementation manner of the first aspect and the second aspect.
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop and various logic circuits, etc.
  • the input signal received by the input circuit may be received and input by, for example but not limited to, a transceiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and may receive signals through the transceiver and transmit signals through the transmitter, so as to execute the method in any possible implementation manner of the first aspect and the second aspect.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be set separately from the processor.
  • the memory can be a non-transitory (non-transitory) memory, such as a read-only memory (read only memory, ROM), which can be integrated with the processor on the same chip, or can be respectively arranged in different On the chip, the embodiment of the present application does not limit the type of the memory and the configuration of the memory and the processor.
  • a non-transitory memory such as a read-only memory (read only memory, ROM)
  • ROM read only memory
  • a related data interaction process such as sending indication information may be a process of outputting indication information from a processor
  • receiving capability information may be a process of receiving input capability information from a processor.
  • the data output by the processor may be output to the transmitter, and the input data received by the processor may be from the transceiver.
  • the transmitter and the transceiver may be collectively referred to as a transceiver.
  • the processing device in the above eighth aspect may be one or more chips.
  • the processor in the processing device may be implemented by hardware or by software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, which is implemented by reading software codes stored in a memory, which can Integrated in a processor, it can exist independently of that processor.
  • a computer program product including: a computer program (also referred to as code, or an instruction), when the computer program is executed, the computer executes the above-mentioned first aspect and the first aspect A method in any possible implementation manner in the two aspects.
  • a computer program also referred to as code, or an instruction
  • a computer-readable medium stores a computer program (also referred to as code, or an instruction), and when it is run on a computer, it causes the computer to execute the above-mentioned first aspect and The method in any possible implementation manner in the second aspect.
  • a computer program also referred to as code, or an instruction
  • a system-on-a-chip including a processor, configured to call and run a computer program from a memory, so that a device installed with the system-on-a-chip executes the methods in each implementation manner of the above-mentioned first aspect and the second aspect .
  • a communication system in a twelfth aspect, includes the device involved in the third aspect and the device involved in the fourth aspect.
  • FIG. 1 is a schematic diagram of a scene applicable to this application.
  • FIG. 2 is a schematic diagram of a system architecture applicable to this application.
  • Fig. 3 is a schematic diagram of the time-frequency resources of the demodulation reference signal provided in this application.
  • Fig. 4 is a schematic flowchart of a method for indicating a demodulation reference signal provided by the present application.
  • Fig. 5 is a schematic flowchart of a method for indicating a demodulation reference signal provided by the present application.
  • FIG. 6 is another schematic diagram of the demodulation reference signal time-frequency resources provided in this application.
  • Fig. 7 is a schematic flowchart of a method for indicating a demodulation reference signal provided by the present application.
  • FIG. 8 is another schematic diagram of demodulation reference signal time-frequency resources provided in this application.
  • FIG. 9 is another schematic diagram of demodulation reference signal time-frequency resources provided in this application.
  • Fig. 10 is a schematic block diagram of a communication device provided by the present application.
  • Fig. 11 is a schematic block diagram of a communication device provided by the present application.
  • Fig. 12 is a schematic diagram of a network device provided by the present application.
  • Fig. 13 is a schematic diagram of a terminal device provided by the present application.
  • the wireless communication systems applicable to the embodiments of the present application include but are not limited to: global system of mobile communication (GSM) system, long term evolution (long term evolution, LTE) frequency division duplex (frequency division duplex, FDD) system , LTE time division duplex (time division duplex, TDD), LTE system, advanced long-term evolution (LTE-Advanced, LTE-A) system, next-generation communication system (for example, 5G, 6G communication system), multiple access systems A converged system, or an evolved system.
  • GSM global system of mobile communication
  • LTE long term evolution
  • FDD frequency division duplex
  • FDD frequency division duplex
  • LTE time division duplex time division duplex
  • LTE-A advanced long-term evolution
  • next-generation communication system for example, 5G, 6G communication system
  • 5G, 6G communication system multiple access systems A converged system
  • evolved system evolved system.
  • the technical solution provided by this application can also be applied to machine type communication (machine type communication, MTC), inter-machine communication long-term evolution technology (Long Term Evolution-machine, LTE-M), device to device (device to device, D2D) network , machine to machine (machine to machine, M2M) network, Internet of things (internet of things, IoT) network or other networks.
  • MTC machine type communication
  • LTE-M inter-machine communication long-term evolution technology
  • D2D device to device
  • machine to machine machine to machine
  • M2M machine to machine
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively referred to as vehicle to other devices (vehicle to X, V2X, X can represent anything), for example, the V2X can include: vehicle to vehicle (vehicle to vehicle, V2V) communication, vehicle and Infrastructure (vehicle to infrastructure, V2I) communication, vehicle to pedestrian (vehicle to pedestrian, V2P) or vehicle to network (vehicle to network, V2N) communication, etc.
  • vehicle to vehicle vehicle to vehicle
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2P vehicle to pedestrian
  • V2N vehicle to network
  • the terminal equipment involved in the embodiment of the present application is an entrance for mobile users to interact with the network, and can provide basic computing capabilities and storage capabilities, display service windows to users, and accept user operation inputs.
  • Terminal equipment in 5G can use new air interface technology to establish signal and data connections with wireless access network equipment, thereby transmitting control signals and business data to the mobile network.
  • the terminal equipment involved in the embodiments of the present application may include various access terminals, mobile equipment, user terminals or user devices with wireless communication functions.
  • the terminal device may be user equipment (user equipment, UE), for example, a mobile phone (mobile phone), a tablet computer (pad), a desktop computer, a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, TV, augmented reality (augmented reality, AR) terminal equipment, etc.
  • UE user equipment
  • a mobile phone mobile phone
  • a tablet computer pad
  • a desktop computer a computer with a wireless transceiver function
  • VR virtual reality
  • TV augmented reality
  • AR augmented reality
  • Terminal equipment can also be wireless terminals in industrial control (industrial control), machine type communication (machine type communication, MTC) terminals, customer premise equipment (CPE), wireless terminals in self-driving , wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, smart home ), smart speakers, electronic door locks, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs) , handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, automatic guided vehicles (automatic guided vehicle, AGV), drones, cars, vehicle-mounted devices, wearable devices, 5G network Terminal equipment or terminal equipment in the future evolved public land mobile network (public land mobile network, PLMN) or non-public network (non-public network, NPN), etc.
  • industrial control industrial control
  • MTC machine type communication
  • CPE customer premise equipment
  • wireless terminals in self-driving wireless terminals in remote medical,
  • the wireless access network equipment involved in the embodiment of this application is similar to the base station in the traditional network, and is deployed close to the terminal equipment to provide network access functions for authorized users in a specific area, and can be based on user levels, business needs, etc. Determine transmission tunnels of different qualities to transmit user data.
  • Wireless access network equipment can manage its own resources, use them reasonably, provide access services for terminal equipment on demand, and be responsible for forwarding control signals and user data between terminal equipment and the core network.
  • the radio access network device involved in the embodiment of the present application may be an access device for a terminal device to access the mobile communication system through wireless means.
  • the radio access network device may be: a base station, an evolved base station (evolved node B, eNB), a home base station, an access point (access point, AP) in a wireless fidelity (wireless fidelity, WiFi) system, a station (station , STA), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), macro base station or micro base station, high frequency base station, etc.
  • eNB evolved base station
  • AP access point in a wireless fidelity (wireless fidelity, WiFi) system
  • station station (station , STA), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), macro base station or micro base station, high frequency base station, etc.
  • the wireless access network equipment can also be a next generation base station (next generation node B, gNB) in the NR system, or it can also be a component or a part of equipment that constitutes a base station, such as a central unit (CU), distributed A unit (distributed unit, DU) or a baseband unit (baseband unit, BBU), or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN) scenario.
  • CU central unit
  • DU distributed unit
  • BBU baseband unit
  • CRAN Cloud Radio Access Network
  • wireless access network equipment is referred to as network equipment for short.
  • network equipment refers to wireless access network equipment.
  • the network device may refer to the network device itself, or may be a chip applied to the network device to complete the wireless communication processing function.
  • the embodiments of the present application may be applied to a 5G network, and may also be applied to scenarios such as other wireless communication networks that can use uplink precoding indication.
  • the communication process may occur between network equipment and terminal equipment.
  • the applicable scenarios of the embodiment of the present application will be described in detail below with reference to FIG. 1 .
  • the network device is a base station (base station, BS) and the terminal device is a user equipment (user equipment, UE) as an example.
  • the base station and UE#1-UE#6 form a communication system.
  • UE#1-UE#6 can send uplink data to the base station, and the base station can receive the uplink data sent by UE#1-UE#6. It may also be that the base station sends data to UE#1-UE#6, and UE#1-UE#6 receives the data sent by the base station.
  • UE#4-UE#6 can also form a communication system.
  • the base station can send downlink information to UE#1, UE#2, UE#5, etc., and UE#5 can also send downlink information to UE#4 and UE#6.
  • FIG. 2 is a schematic diagram of a system architecture applicable to this application.
  • the network equipment is used as a base station
  • the terminal equipment is used as a user equipment as an example for introduction.
  • the base station and the user equipment may include, but are not limited to: a radio resource control (radio resource control, RRC) signaling interaction module, a medium access control unit (media access control-control element, MAC-CE) signaling interaction module, and a physical layer (Physical layer) Signaling interaction module.
  • RRC signaling interaction module may be a module used by the base station and the UE for sending and receiving RRC signaling.
  • the MAC signaling interaction module may be a module used by the base station and the UE to send and receive MAC-CE signaling.
  • the PHY signaling and data interaction module can be used by the base station and UE to send and receive uplink or downlink control signaling, for example, physical uplink control channel (physical uplink control channel, PUCCH), physical downlink control channel (physical downlink control channel, PDCCH) ), and modules for uplink or downlink data, for example, physical uplink shared channel (PUSCH), physical downlink shared channel (physical downlink shared channel, PDSCH).
  • uplink or downlink control signaling for example, physical uplink control channel (physical uplink control channel, PUCCH), physical downlink control channel (physical downlink control channel, PDCCH)
  • modules for uplink or downlink data for example, physical uplink shared channel (PUSCH), physical downlink shared channel (physical downlink shared channel, PDSCH).
  • PUSCH physical uplink shared channel
  • PDSCH physical downlink shared channel
  • DMRS demodulation reference signal
  • DMRS orthogonal demodulation reference signal
  • the maximum number of ports (ports) of the orthogonal demodulation reference signal (DMRS) that can be configured for data decoding in a cell is 12 .
  • DMRS orthogonal demodulation reference signal
  • FIG. 3 is a schematic diagram of time-frequency resources of a single-symbol DMRS and a double-symbol DMRS. As shown in (a) in FIG.
  • a single-symbol DMRS can have two sets of comb frequency division resources, and can support up to 4 ports (for example, port 0, port 1, port 2, port 3).
  • the number of superimposed orthogonal cover codes (orthogonal cover code, OCC) of the single-symbol DMRS is 2, occupying 1 symbol.
  • the double-symbol DMRS supports up to 8 ports (for example, port 0, port 1, port 2, port 3, port 4, port 5, port 6, port 7), each A symbol can support 4 ports.
  • the DMRS is a single-symbol DMRS;
  • the indication of determines whether it is a single-symbol DMRS or a double-symbol DMRS.
  • DMRS Type 1 Type 1
  • Type 2 Type 2
  • front-load DMRS front-load DMRS
  • additional DMRS additional DMRS
  • Front-end DMRS In order to reduce the delay of demodulation and decoding, the DMRS in the 5G NR system adopts the front-end design.
  • the position where the DMRS appears for the first time should be as close as possible to the starting point of scheduling.
  • the position of the pre-DMRS should be immediately after the PDCCH region.
  • the first symbol of the DMRS depends on the configuration of the PDCCH. For example, if the PDCCH occupies 2 symbols, the DMRS can start from the third symbol; if the PDCCH occupies 3 symbols, the DMRS can start from the fourth symbol.
  • pre-DMRS can be transmitted from the first symbol in the scheduling area.
  • the use of pre-DMRS helps the receiver quickly estimate the channel and perform reception detection, and plays an important role in reducing delay and supporting a self-contained frame structure.
  • pre-DMRS can obtain channel estimation performance that meets demodulation requirements with lower overhead.
  • the mobile speed considered by the 5G NR system can reach up to 500km/h. Facing the mobility with such a large dynamic range, in addition to the front-end DMRS, in medium and high-speed scenarios, more DMRS symbols to meet the estimation accuracy of the time-varying channel.
  • the 5G NR system adopts a DMRS structure that combines a pre-DMRS with an additional DMR with configurable time-domain density.
  • each group of additional DMRS pilots are repetitions of the pre-DMRS pilots, that is, each group of additional DMRSs and the pre-DMRS pilots occupy the same subcarrier and the same number of symbols.
  • a maximum of 3 sets of additional DMRS can be added when a single-symbol pre-DMRS is used, and a maximum of 1 set of additional DMRS can be added when a double-symbol DMRS is pre-deployed, which can be configured as required and indicated through control signaling.
  • the network device can notify the positions of the pre-DMRS and the additional DMRS through RRC signaling.
  • Table 1 shows the time-domain resource positions occupied by the single-symbol DMRS
  • Table 2 shows the time-domain resource positions occupied by the double-symbol DMRS.
  • the position of the DMRS of type A for example, dmrs-TypeA-Position in Table 1 represents the position of the pre-DMRS
  • the position of the additional DMRS for example, dmrs-AdditionalPosition in Table 1 represents the position of the additional DMRS.
  • l d in the table refers to the number of symbols, counting from the first symbol of the time slot (slot) where the PDSCH is located to the last symbol occupied by the PDSCH.
  • l 0 indicates the time domain position of the pre-DMRS, while l 1 and specific numbers indicate the time domain position of the additional DMRS.
  • the occupied frequency domain resources corresponding to different port numbers are determined. Therefore, for the same port, the frequency domain resources of the pre-DMRS and the additional DMRS are the same.
  • multi-station coordinated transmission is a method to improve resource utilization and reduce inter-cell interference.
  • Multi-station coordination technology includes coordinated beamforming, coordinated scheduling, joint transmission, dynamic point selection, dynamic point blanking and other technologies.
  • the base stations can interact through backhaul, air interface and other ways to coordinate and transmit the required information. Through these transmission methods, the interference to edge users can be reduced and the performance of the system can be improved.
  • the system can schedule more data streams, but the maximum number of DMRS ports is only 12. At this time, the number of DMRS ports has become an important factor affecting system performance.
  • the present application provides a method for indicating DMRS, which increases the number of DMRS orthogonal ports by using part of the DMRS for channel estimation, thereby ensuring system performance.
  • the method provided in this application is suitable for uplink transmission, and can also be used for downlink transmission.
  • the following embodiments are only for the downlink transmission as an example, without any limitation.
  • a base station is taken as an example of a network device
  • a UE is taken as an example of a terminal device for illustration.
  • the embodiment of the present application is only described by taking the configuration of Type A of the DMRS and the configuration of Type 1 of the DMRS as examples.
  • the technical solution of the present application can also be applied to the configuration of Type B of DMRS and the configuration of Type 2 of DMRS.
  • FIG. 4 is a schematic diagram of a method 400 for indicating a DMRS provided by an embodiment of the present application.
  • the method 400 includes:
  • Step S410 the terminal device receives first indication information, the first indication information is used to determine the configuration of the demodulation reference signal DMRS, the DMRS occupies K symbols, and K is an integer greater than 1.
  • DMRS configuration can be understood as various time-frequency resource configurations and symbol type configurations of DMRSs to be sent by network equipment (or DMRSs to be sent). For example, the symbols occupied by the DMRS, the port information of the DMRS, whether the DMRS is single-symbol or double-symbol, etc. are configured.
  • a single-symbol DMRS indicates that the DMRS occupies a single symbol
  • a double-symbol DMRS indicates that the DMRS occupies two symbols that appear in pairs.
  • the first DMRS is part of the DMRS configured by the network device for the terminal. It can also be understood that the symbols occupied by the first DMRS in this application may be the DMRS symbols configured by the network device for the terminal device. part symbol.
  • the network device may send DMRSs (ie, the first DMRS) on some symbols, and the terminal device may perform channel estimation according to the DMRSs on some symbols (ie, the first DMRS).
  • step S411 may also be included, where the network device sends the first indication information to the terminal device.
  • Step S420 the terminal device receives second indication information, the second indication information is used to determine the first DMRS used for channel estimation in the configured DMRS, and the first DMRS occupies L symbols, where L is smaller than K.
  • part of the DMRS is used for channel estimation, and the part of the DMRS is the first DMRS.
  • the second indication information may indicate the type of the first DMRS.
  • the first DMRS is a pre-DMRS or the first DMRS is an additional DMRS.
  • the pre-DMRS may further include the following two types. The first type: the front DMRS is the first DMRS, neither the front DMRS nor the additional DMRS transmits data; the second type: the front DMRS is the first DMRS, the front DMRS does not transmit data, but the additional DMRS can be used to transmit data .
  • the second indication information may indicate the symbol configuration of the first DMRS.
  • the second indication information may indicate which symbols in the DMRS can be used for channel estimation, and if some of the DMRS are not used for channel estimation, whether the symbols can be used for data transmission.
  • step S421 may also be included, where the network device sends the second indication information to the terminal device.
  • L is an integer greater than 0.
  • the indication information may be indicated in downlink control information (DCI).
  • DCI downlink control information
  • the indication information may be a field in the downlink control information.
  • the terminal device can acquire type information according to the indication in the DCI.
  • the indication information may also be indicated in radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the indication information may be a field in RRC signaling.
  • the terminal device may acquire indication information according to indications in RRC.
  • the indication information mentioned here may refer to the first indication information or the second indication information in the text.
  • step S410 and step S420 may be performed separately or together.
  • the first indication information and the second indication information may be transmitted in the same downlink control information, or may be transmitted in different downlink control information.
  • Step S430 the terminal device determines the time-frequency resource of the first DMRS according to the first indication information and the second indication information.
  • the terminal device may determine the pre-DMRS for channel estimation according to the second indication information (it can also be understood that the pre-DMRS is the first DMRS), and determine the time-frequency resource position of the pre-DMRS according to the first indication information .
  • the terminal device may determine the additional DMRS for channel estimation according to the second indication information (it can also be understood that the additional DMRS is the first DMRS), and determine the time-frequency resource position of the additional DMRS according to the first indication information.
  • the terminal device may determine according to the second indication information that some symbols in the DMRS are used for channel estimation (it can also be understood that some symbols in the DMRS are the first DMRS), and determine which symbols are the first DMRS according to the first indication information.
  • Step S440 the terminal device performs channel estimation according to using the first DMRS.
  • the UR can estimate the channel at the time-frequency resource element (resource element, RE) position of the pre-DMRS according to the pre-DMRS, and expand the entire resource block according to the channels on these REs (resource block, RB) on the channel.
  • RE resource element
  • the terminal device can use part of the DMRS to perform channel estimation, for example, independently use pre-DMRS for channel estimation, independently use additional DMRS for channel estimation, use part of additional DMRS for channel estimation, or use pre-DMRS and Some additional DMRSs are used for channel estimation.
  • the number of DMRS orthogonal ports is increased to ensure the performance of the system.
  • FIG. 5 is a schematic diagram of a method 500 for indicating a DMRS provided in an embodiment of the present application.
  • the method 500 includes:
  • Step S510 the base station sends indication information #1 (an example of the first indication information) to the UE, and the indication information #1 is used to determine the configuration of the demodulation reference signal DMRS, where the DMRS occupies K symbols (K is an integer greater than 1) .
  • the base station may send downlink control information #1 or radio resource control information #1 to the UE, indicating the configuration of the demodulation reference signal DMRS.
  • the indication information #1 of the DMRS may include: DMRS symbol type information, for example, whether the DMRS is a single symbol or a double symbol; DMRS time-frequency resource information, for example, the position of the pre-DMRS time domain, the position of the additional DMRS time domain The location, and the port information of the pre-DMRS, the port information of the additional DMRS, etc.
  • the base station may send RRC signaling to the terminal equipment, where the RRC signaling is used to indicate the symbol type of the DMRS, such as single symbol or double symbol; time domain resources, such as configuration of symbols occupied by the DMRS, and the like.
  • the base station may also send DCI signaling to the terminal device, where the DCI signaling is used to indicate frequency domain resources of the DMRS, for example, port information of the DMRS, and the like.
  • step S520 the base station sends indication information #2 (an example of second indication information) to the UE, where the indication information #2 is used to determine the type of the first DMRS used for channel estimation in the DMRS.
  • indication information #2 an example of second indication information
  • the base station may send downlink control information #2 to the UE, and the downlink control information #2 may be used to determine the type of the first DMRS used for channel estimation in the DMRS.
  • the type of the first DMRS used for channel estimation may include the following situations: a pre-DMRS is used solely for channel estimation, and an additional DMRS is solely used for channel estimation.
  • the first DMRS being a pre-DMRS may also include two cases, such as the following case 1 and case 2:
  • the base station may send DCI signaling to the UE, and the DCI carries a DMRS type enabling indication, that is, indicates the type of the DMRS used by the UE for channel estimation.
  • the DMRS type enabling indication is 2 bits (bit), including 4 states, as shown in Table 3.
  • an enumeration manner may be used to indicate the type of the first DMRS.
  • Table 3 ⁇ only Front-load 1 ⁇ can indicate that only the front DMRS is used for channel estimation, and neither the front DMRS nor the additional DMRS transmits data; ⁇ only additional ⁇ can indicate that only the additional DMRS is used for channel estimation , the front DMRS and the additional DMRS do not transmit data; ⁇ both Front-load and additional ⁇ can mean that the front DMRS and the additional DMRS are used for channel estimation at the same time; ⁇ only Front-load 2 ⁇ can mean that only the front DMRS is used by default. Channel estimation, the front DMRS does not transmit data and the additional DMRS position can transmit data
  • the indication information #1 and the indication information #2 may be in the same signaling or in different signalings, for example, the base station may send DCI to the UE, and the DCI includes both the indication information #1 and the indication information Instruction #2. It can also be understood that in this application, the base station may send the indication information #1 and the indication information #2 respectively, or the base station may only send one signaling, and the signaling includes the indication information #1 and the indication information #2.
  • step S510 and step S520 may be performed separately or together. In some embodiments, if step S510 and step S520 are performed separately, the order of step S510 and step S520 in the present application is not limited.
  • step S521 the base station determines the time-frequency resource of the data to be transmitted.
  • the base station may specifically determine on which time-frequency resources to transmit data according to the second indication information.
  • the second indication information indicates that the first DMRS is a pre-DMRS (for example, bit status bit 01 or indication ⁇ only Front-load 1 ⁇ )
  • the base station may determine to remove the pre-DMRS and The time-frequency resource of the DMRS is added, and data is transmitted on other time-frequency resources.
  • the base station may determine to remove the time-frequency resource of the pre-DMRS in the PDSCH, And transmit data on additional DMRS and other time-frequency resources.
  • the base station may determine when to remove the pre-DMRS and the additional DMRS in the PDSCH frequency resources, and transmit data on other time-frequency resources.
  • step S522 the base station sends data to the UE.
  • the base station may send data to the UE on the PDSCH.
  • step S530 the UE receives the indication information #1 and the indication information #2 sent by the base station, and determines the time-frequency resource of the first DMRS according to the indication information #1 and the indication information #2.
  • the UE may receive indication information #1 and indication information #2 sent by the base station, and determine the position of the time-frequency resource of the first DMRS used for channel estimation in combination with the first DMRS type indication and DMRS configuration information.
  • the UE may determine frequency resources for channel estimation.
  • the UE uses dmrs-TypeA-Position to determine the time domain position of the pre-DMRS; when the PDSCH is type B, the time domain position of the pre-DMRS is the first symbol of the PDSCH.
  • the UE can determine the additional DMRS time domain resource position through dmrs-AdditionalPosition.
  • the UE can determine the frequency domain positions of the pre-DMRS and the additional DMRS according to the DMRS port information.
  • the UE neither transmits data nor transmits DMRS on the time-frequency resource of the additional DMRS, or transmits zero power DMRS (zero power DMRS); in other words, when the UE determines the time-frequency resource of data on the PDSCH, it does not Consider the time-frequency resources of pre-DMRS and additional DMRS.
  • the UE may determine to perform channel estimation only according to the time-frequency resource of the additional DMRS. For example, in (b) in Figure 6, UE#1 only uses the additional DMRS for channel estimation. In addition, UE#1 can determine the position of the pre-DMRS time domain resource. UE#1 determines that neither DMRS, or zero-power DMRS, nor data transmission is transmitted on this time-frequency resource; in other words, after the UE determines the PDSCH When uploading data time-frequency resources, the time-frequency resources of pre-DMRS and additional DMRS are not considered.
  • the UE may determine to perform channel estimation only according to the time-frequency resource of the pre-DMRS. For example, in (a) in Fig. 6, UE#2 only uses pre-DMRS to perform channel estimation. In other words, when UE#2 subsequently determines the time-frequency resource of data on the PDSCH, it does not consider the pre-DMRS time-frequency resource, but needs to consider the time-frequency resource of the additional DMRS. Because, at this time, there is data transmission on the additional DMRS.
  • the bit status bit of the type indication information of the first DMRS is 11 (or, indicating ⁇ both Front-load and additional ⁇ ), or the base station does not send the type indication information of the first DMRS, or the UE does not receive
  • the bit status bit of the type indication information of the first DMRS is 11 (or, indicating ⁇ both Front-load and additional ⁇ )
  • the base station does not send the type indication information of the first DMRS
  • the UE does not receive
  • Channel estimation and data decoding is 11 (or, indicating ⁇ both Front-load and additional ⁇ )
  • step S540 the UE uses the first DMRS to perform channel estimation.
  • UE#1 when UE#1 performs channel estimation based on the pre-DMRS, it can only use the pre-DMRS for channel estimation, that is, it can only estimate the channels on the RE positions of the pre-DMRS, and expand the channels on the entire RB according to the channels on these REs.
  • the extended process includes interpolation, filtering and other methods.
  • UE#2 when UE#2 performs channel estimation based on the additional DMRS, it can only use the additional DMRS for channel estimation, that is, it can only estimate the channels at the RE positions of the additional DMRS, and expand the channels on the entire RB according to the channels on these REs.
  • the extended process includes interpolation, filtering and other methods.
  • the UE can separately estimate the channel on the RE where the DMRS is located according to the pre-DMRS and the additional DMRS, and then expand the channel on the entire RB according to the channels on these REs.
  • the extended process includes interpolation, filtering and other methods.
  • step S550 the UE determines the time-frequency resource of the transmitted data.
  • the UE after the UE determines the position of the DMRS used for channel estimation according to the indication information #1, it can also jointly determine the time-frequency resource of the transmitted data according to the RRC time-frequency resource allocation (resource allocation, RA) s position.
  • RRC time-frequency resource allocation resource allocation, RA
  • the UE may determine to perform channel estimation only according to the time-frequency resources of the pre-DMRS.
  • the UE determines the time-frequency resources of the data on the PDSCH, it does not consider the time-frequency resources of the pre-DMRS and the additional DMRS. That is to say, except the time-frequency resources of the pre-DMRS and the additional DMRS in the PDSCH, data is transmitted on other time-frequency resources.
  • the UE may determine to perform channel estimation only according to the time-frequency resource of the additional DMRS.
  • the UE determines the time-frequency resources of the data on the PDSCH, it does not consider the time-frequency resources of the pre-DMRS and the additional DMRS. That is to say, except the time-frequency resources of the pre-DMRS and the additional DMRS in the PDSCH, data is transmitted on other time-frequency resources.
  • the UE may determine to perform channel estimation only according to the time-frequency resources of the pre-DMRS, and Data is placed on the time-frequency resource position of the additional DMRS. Therefore, when the UE determines the time-frequency resources of the data on the PDSCH, it does not consider the pre-DMRS time-frequency resources, but needs to consider the time-frequency resources of the additional DMRS, that is, when the UE determines the time-frequency resources of the data on the PDSCH, only the pre-DMRSs are removed. The time-frequency resources occupied by other time-frequency resources are used to transmit data.
  • the UE can independently use the pre-DMRS or independently use the additional DMRS to estimate the data channel.
  • the number of orthogonal DMRS ports can be increased, so that the entire system can schedule more data streams, ensuring system performance.
  • FIG. 7 is a schematic diagram of a method 700 for indicating a DMRS provided in an embodiment of the present application.
  • the method in FIG. 7 includes:
  • step S710 the base station sends DMRS indication information #1 (an example of first indication information) to the UE, where the indication information #1 is used to determine the configuration of the demodulation reference signal DMRS.
  • DMRS indication information #1 an example of first indication information
  • the indication information #1 of the DMRS includes symbol information of the DMRS and time-frequency position information of the DMRS.
  • DMRS configuration information #1 may include: DMRS symbol type information, for example, whether DMRS is single symbol or double symbol; The location of the DMRS, as well as the port information of the pre-DMRS, the port information of the additional DMRS, and so on.
  • the base station may send RRC signaling to the terminal equipment, where the RRC signaling is used to indicate the symbol type of the DMRS, such as single symbol or double symbol; time domain resources, such as configuration of symbols occupied by the DMRS, and the like.
  • the base station may also send DCI signaling to the terminal device, where the DCI signaling is used to indicate frequency domain resources of the DMRS, for example, port information of the DMRS, and the like.
  • step S720 the base station sends indication information #2 (an example of second indication information) to the UE, where the indication information #2 is used to determine the symbol configuration of the first DMRS used for channel estimation in the DMRS.
  • indication information #2 an example of second indication information
  • the indication information #2 there are many specific implementations of the indication information #2 in this application.
  • a new field can be added to the DCI, and the content carried by this domain is the indication information #2 , the indication information #2 at this time is independently indicated for each UE.
  • a UE group (group) in the following text may be considered as only one UE in the group.
  • group DCI may be used for implementation.
  • the content of the indication information #2 can be enumerated. For example, when the indication information indicates 4 bits, there are 16 types of indication information in total.
  • UEs can be grouped, and the indication information used by each group of UEs is the same.
  • this group of UEs it can be realized by using group DCI, where the content of group DCI is indication information #2.
  • RNTI radio network temporary identity
  • RNTI #1 is used to detect the DCI carrying DMRS type of downlink control information.
  • UE group #1 can correctly decode the DCI, it means that the DCI is sent to UE group #1.
  • RNTI #2 is used to scramble the DCI.
  • the base station may send downlink control information #2 to the UE, indicating the symbol configuration of the first DMRS used for channel estimation. It can also be understood that the downlink control information #2 may indicate the time-frequency of the first DMRS used for channel estimation The location of the resource.
  • the protocol may stipulate that N bits are used to indicate whether the DMRS of N symbols is used for channel estimation.
  • the RRC configures a single-symbol DMRS, it may be a Type1 single-symbol DMRS or a Type2 single-symbol DMRS.
  • a single-symbol pre-DMRS a maximum of 3 groups of additional DMRSs can be configured, therefore, a single-symbol DMRS has a maximum of 4 symbols. That is, in this application, the length of the downlink control information DCI is 4 bits, and each bit can indicate whether the corresponding symbol belongs to the first DMRS.
  • RRC configures a single-symbol DMRS, and there are 4 symbols of the configured DMRS.
  • RRC can configure the pre-DMRS as symbol 2, and the additional DMRS occupies symbol 5, symbol 8 and symbol 11 respectively.
  • DCI #2 indicates 1010
  • FIG. 8 Composed of DMRS on symbols 2 and 8
  • the DMRS on symbol 2 and symbol 8 is used for data channel estimation; the time-frequency resource of PDSCH is based on the time-frequency resource in DCI After allocating the frequency resources and deducting the time-frequency resources on symbols 2, 5, 8 and 11, the time-frequency resources of the transmitted data are determined.
  • the DCI indication is 0101, as shown in (c) in FIG. Composed of DMRS on symbols 5 and 11), there is neither data nor DMRS on symbols 2 and 8.
  • the data channel estimation uses the DMRS on symbol 5 and symbol 11; during data demodulation, the time-frequency resource of PDSCH is based on the time-frequency resource in DCI After allocating and deducting the time-frequency resources on symbol 2, symbol 5, symbol 8 and symbol 11, the time-frequency resources of the transmitted data are determined.
  • the DMRS can be configured according to symbols, so the DCI can also be flexibly indicated.
  • 1000 may be indicated in the DCI, indicating that symbol 2 is used for data channel estimation (it can also be understood that the first DMRS is the DMRS on symbol 2).
  • the DCI can indicate 0110, indicating that the data channel estimation uses symbols 5 and 8 (also It can be understood that the first DMRS is jointly composed of DMRSs on symbol 2 and symbol 8).
  • part of the additional DMRS is used for channel estimation; for another example, the DCI may indicate 0111, indicating that symbol 5, symbol 8, and symbol 11 are used for data channel estimation. It can also be understood that all additional DMRSs are used for channel estimation. Or, for another example, the DCI may indicate 1110, indicating that symbol 2, symbol 5, and symbol 8 are used for data channel estimation. It can also be understood that the pre-DMRS and part of the additional DMRS can be used for channel estimation.
  • the protocol can specify that N bits can be used to indicate that DMRS of N symbols is used for channel estimation; optionally, the last bit can be used to indicate whether there is data transmission on the remaining symbols.
  • RRC can configure DMRS as symbol 2, symbol 6 and symbol 9.
  • the DCI indication is 1010
  • the first 3 bits "101" in the DCI indicate that the data channel estimation uses the DMRS on symbol 2 and symbol 9 (it can also be understood that the first DMRS is composed of the DMRS on symbol 2 and symbol 9 jointly formed); the last bit "0" indicates that no data is sent on the unused symbol 6;
  • the DCI indication is 1011
  • the first 3 bits "101" in the DCI indicate that the channel estimation uses symbols 2 and 9
  • the last bit "1" indicates that data is sent on symbol 6 that is not used.
  • the DCI indication is 1000
  • the first 3 digits "100" in the DCI indicate that the data channel estimation uses DMRS on symbol 2; the last digit "0" indicates that the unused symbol 6 and symbol 9 are not sent data.
  • the DCI indication is 1001
  • the first 3 digits "100” in the DCI indicate that the data channel estimation uses DMRS on symbol 2; the last digit "1" indicates that the unused symbols 6 and 9 can be sent data.
  • RRC can configure DMRS as symbols 2 and 7.
  • the DCI indication is 1100
  • the first 2 bits "11” in the DCI indicate that the data channel estimation uses the DMRS on symbol 2 and symbol 7 (it can also be understood that the first DMRS is composed of the DMRS on symbol 2 and symbol 7 jointly formed); at this time, the last two digits "00" in the DCI may have no meaning.
  • the DCI indication is 1000
  • the first 2 bits "10" in the DCI indicate that the data channel estimation uses the DMRS on symbol 2; the last bit “0” may indicate that no data is sent on the unused symbol 7.
  • the DCI indication is 1001, the first 2 bits "10” in the DCI indicate that the data channel estimation uses the DMRS on symbol 2; the last bit “0” may indicate that the unused symbol 7 is used to send data.
  • Case 3 The number of bits of the DCI is determined according to the number of symbols of the DMRS configured by the RRC.
  • the protocol can stipulate that N bits can be used to indicate that DMRS with N symbols is used for channel estimation .
  • the RRC configures a dual-symbol DMRS, it may be a Type1 dual-symbol DMRS or a Type2 dual-symbol DMRS.
  • the dual-symbol DMRS has at most 2 double-symbols. That is, the length of the downlink control information DCI may be 2 bits, and each bit may indicate whether a corresponding symbol has a DMRS signal. The specific operation is similar to that of single-symbol DMRS.
  • dual-symbol DMRSs are generally configured in pairs.
  • the RRC configures a dual-symbol DMRS, and there are 2 symbols of the configured DMRS.
  • the RRC can configure the double symbols of the pre-DMRS to be symbol 2 and symbol 3, and the double symbols of the additional DMRS to be symbol 8 and symbol 9.
  • symbols 2 and 3 are DMRSs for channel estimation (for example, the first DMRS), and symbol 8 There is neither data nor DMRS on symbol 9.
  • the data channel estimation uses the DMRS on symbol 2 and symbol 3; when the data is demodulated, the time-frequency resource of PDSCH is based on the time-frequency resource in DCI After allocating and deducting the time-frequency resources on symbols 2, 3, 8 and 9, the time-frequency resources of the transmitted data are determined.
  • the DCI indication is 01
  • symbol 8 and symbol 9 are DMRS
  • symbols 2 and 3 have neither data nor DMRS.
  • the data channel estimation uses DMRS on symbol 8 and symbol 9; when data demodulation, the time-frequency resource of PDSCH is based on the time-frequency resource in DCI After allocating and deducting the time-frequency resources on symbol 2, symbol 3, symbol 8, and symbol 9, the time-frequency resources of the transmitted data are determined.
  • step S721 the base station determines the time-frequency resource of the transmitted data according to the second indication information.
  • the base station may specifically determine on which time-frequency resources to transmit data according to the second indication information.
  • the base station may specifically determine on which time-frequency resources to transmit data according to the second indication information.
  • the base station may transmit data on time-frequency resources except symbol 2 and symbol 5, for example, data may be transmitted on symbol 11. It is also similar to the dual-symbol DMRS, and will not be repeated here.
  • Step S722 the base station sends downlink data to the UE.
  • the base station may send downlink data to the UE on the PDSCH.
  • step S730 the UE receives the indication information #2 and the indication information #2 sent by the base station, and determines the time-frequency resource of the first DMRS according to the indication information #2 and the indication information #2.
  • DMRS symbols there are four DMRS symbols configured by the base station, which are respectively symbol 2, symbol 5, symbol 8, and symbol 11.
  • the UE may determine that the DMRS on symbol 2 is used for data channel estimation, that is, the first DMRS is the DMRS on symbol 2.
  • the UE may determine that the DMRS on symbol 5 and symbol 11 is used for data channel estimation, that is, the first DMRS is the DMRS on symbol 5 and symbol 11.
  • step S740 the UE uses the first DMRS to perform channel estimation.
  • the UE when the UE performs channel estimation based on the DMRS on symbol 2 and symbol 5, it can only use the DMRS on symbol 2 and symbol 5 for channel estimation, that is, it can only estimate the channel at the RE position of the preceding DMRS and part of the additional DMRS
  • the channels on the RE positions are extended to the channels on the entire RB according to the channels on these REs.
  • the extended process includes interpolation, filtering and other methods.
  • the UE when the UE performs channel estimation based on the DMRS on symbol 5 and symbol 11, it can only use the DMRS on symbol 5 and symbol 11 to perform channel estimation, that is, it can only estimate the channel at some RE positions with DMRS attached.
  • the channels of are extended to the channels on the entire RB.
  • the extended process includes interpolation, filtering and other methods.
  • step S750 the UE determines the location of the time-frequency resource of the transmitted data.
  • the UE after the UE determines the position of the DMRS used for channel estimation according to the indication information #2, it can also jointly determine the time-frequency resource of the transmitted data according to the RRC time-frequency resource allocation (resource allocation, RA) s position.
  • RRC time-frequency resource allocation resource allocation, RA
  • the UE can determine that the time-frequency resources of the PDSCH are allocated according to the time-frequency resources in the DCI and after deducting the time-frequency resources on symbols 2, 5, 8 and 11 during data demodulation, Thus, the time-frequency resource of the transmitted data is determined. If the DCI indication is 1000, the UE can determine that the time-frequency resources of the PDSCH are allocated according to the time-frequency resources in the DCI and after deducting the time-frequency resources on symbols 2, 5, 8 and 11 during data demodulation, Thus, the time-frequency resource of the transmitted data is determined.
  • sequence numbers of the steps do not completely represent the execution order of each step. In the actual operation process, the information exchange between the base station and the terminal device can be realized flexibly. In this application, the sequence numbers of the steps The execution order of the various steps is not limited.
  • words such as “first” and “second” are used to describe the same functions and functions that are basically the same. item or similar items.
  • the first information and the second information are only for distinguishing different information, and the sequence thereof is not limited.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • At least one means one or more, and “multiple” means two or more.
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (unit) of a, b, or c may represent: a, b, c; a and b; a and c; b and c; or a and b and c.
  • a, b, c can be single or multiple.
  • the pre-DMRS is used, the additional DMRS is used for data channel estimation, part of the additional DMRS is used for channel estimation, or the pre-DMRS and part of the Additional DMRS for channel estimation.
  • the number of orthogonal DMRS ports is increased, so that the entire system can schedule more data streams, ensuring system performance.
  • the indication information is 4 bits; for a double-symbol DMRS, the indication information is 2 bits, and the signaling overhead is small.
  • the instruction of the DCI it is possible to flexibly adopt a pre-DMRS or a part of additional DMRS.
  • the method for indicating the DMRS provided by the embodiment of the present application is described in detail with reference to FIG. 3 to FIG. 9 .
  • the following describes the indication DMRS device provided by the embodiment of the present application with reference to FIG. 10 and FIG. 11 . It should be understood that the descriptions of the device embodiments correspond to the descriptions of the method embodiments. Therefore, for details that are not described in detail, reference may be made to the method embodiments above. For brevity, details are not repeated here.
  • each node such as a terminal device or a network device, includes a corresponding hardware structure and/or software module for performing each function.
  • each node such as a terminal device or a network device
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application may divide the terminal device or the terminal device into functional modules according to the above method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, description will be made by taking the division of each functional module corresponding to each function as an example.
  • Fig. 10 is a schematic block diagram of a communication device 100 provided by an embodiment of the present application.
  • the apparatus 100 may include: a transceiver unit 110 and a processing unit 120 .
  • the apparatus 100 may be the terminal device in the above method embodiment, or a chip for realizing the functions of the terminal device in the above method embodiment. It should be understood that the apparatus 100 may correspond to the terminal device in the method 400, the method 500, and the method 700 according to the embodiment of the present application, and the apparatus 100 may execute the terminal device in the method 400, the method 500, and the method 700 of the embodiment of the present application corresponding steps. It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the transceiver unit is used to receive the first indication information, the first indication information is used to determine the configuration of the demodulation reference signal DMRS, the configuration of the DMRS includes the time-frequency resources occupied by the DMRS, and the DMRS occupies K symbols; the transceiver unit is used to receive The second indication information, the second indication information is used to determine the first DMRS used for channel estimation in the DMRS, the first DMRS occupies L symbols, and the L is less than K; the processing unit is configured to according to the first indication information and second indication information to determine the time-frequency resource of the first DMRS; the processing unit is configured to perform channel estimation according to the first DMRS, wherein the K is an integer greater than 1, and the L is an integer greater than 0.
  • the processing unit is configured to determine the time-frequency resource of the transmitted data according to the first indication information and the second indication information, and the time-frequency resource of the data does not include the pre-DMRS time-frequency resource on the physical downlink shared channel .
  • the apparatus 100 may be the network device in the above method embodiment, or a chip for implementing the functions of the network device in the above method embodiment. It should be understood that the apparatus 100 may correspond to the network device in the method 400, the method 500, and the method 700 according to the embodiment of the present application, and the apparatus 100 may execute the network device in the method 400, the method 500, and the method 700 of the embodiment of the present application corresponding steps. It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the transceiver unit is used to send the first indication information, the first indication information is used to determine the configuration of the demodulation reference signal DMRS, the configuration of the DMRS includes the time-frequency resources occupied by the DMRS, and the DMRS occupies K symbols; the transceiver unit is used to send The second indication information, the second indication information is used to determine the first DMRS used for channel estimation in the DMRS, the first DMRS occupies L symbols, L is less than K, where K is an integer greater than 1, and L is an integer greater than 0 .
  • the processing unit is used to determine the time-frequency resources of the transmitted data, and the time-frequency resources of the data do not include the pre-DMRS time-frequency resources on the physical downlink shared channel;
  • the data is sent on a shared channel.
  • FIG. 11 is a schematic block diagram of a communication device 200 provided by an embodiment of the present application.
  • the apparatus 200 includes: at least one processor 220 .
  • the processor 220 is coupled with the memory for executing instructions stored in the memory to send signals and/or receive signals.
  • the device 200 further includes a memory 230 for storing instructions.
  • the apparatus 200 further includes a transceiver 210, and the processor 220 controls the transceiver 210 to send signals and/or receive signals.
  • processor 220 and memory 230 may be combined into one processing device, and the processor 220 is used to execute the program code stored in the memory 230 to realize the above functions.
  • the memory 230 may also be integrated in the processor 220 , or be independent of the processor 220 .
  • the transceiver 210 may include a transceiver (or a receiver) and a transmitter (or a transmitter).
  • the transceiver may further include antennas, and the number of antennas may be one or more.
  • the transceiver 210 may be a communication interface or an interface circuit.
  • the transceiver 210 in the device 200 may correspond to the transceiver unit 110 in the device 100
  • the processor 220 in the device 200 may correspond to the processing unit 120 in the device 200 .
  • FIG. 12 is a schematic diagram of a network device provided by this application. The structure and function of the network device will be described below with reference to FIG. 12 .
  • FIG. 12 is a schematic structural diagram of a network device 10 provided by an embodiment of the present application.
  • the network device 12 may be a base station in the method 400 shown in FIG. 4 .
  • the network device 10 includes: a transceiver 1010 and a processor 1020 .
  • the transceiver 1010 may be called a remote radio unit (Remote Radio Unit, RRU), a transceiver unit, a transceiver, or a transceiver circuit, and the like.
  • the transceiver 1010 may include at least one antenna 1011 and a radio frequency unit 1012, and the transceiver 1010 may be used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals.
  • the network device 10 includes one or more baseband units (Baseband Unit, BBU) 1020.
  • the baseband unit 1020 includes a processor 1022 .
  • the baseband unit 1020 is mainly used for baseband processing, such as channel coding, multiplexing, modulation, spread spectrum, etc., and controlling the base station.
  • the transceiver 1010 and the baseband unit 1020 may be physically set together, or physically separated, that is, a distributed base station.
  • the baseband unit 1020 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network of a single access standard, or may separately support radio access networks of different access standards.
  • the baseband unit 1020 includes a processor 1022 .
  • the processor 1022 may be configured to control the network device 10 to perform corresponding operations in the method embodiments described above with reference to FIG. 4 to FIG. 9 .
  • the baseband unit 1020 may also include a memory 1021 for storing necessary instructions and data.
  • Fig. 13 is a schematic diagram of a terminal device provided by the present application. The structure and functions of the terminal device will be described below with reference to FIG. 13 .
  • the terminal device 30 may be a UE in the method 400 shown in FIG. 4 .
  • the terminal device 30 includes a processor 31 and a transceiver 32 .
  • the transceiver 32 may include a control circuit and an antenna, wherein the control circuit may be used for converting baseband signals to radio frequency signals and processing radio frequency signals, and the antenna may be used for transmitting and receiving radio frequency signals.
  • the terminal device 30 may further include a memory, an input and output device, and the like.
  • the processor 31 can be used to process the communication protocol and communication data, control the entire terminal device, execute software programs, and process data of the software programs, for example, to support the terminal device to execute the above-mentioned processes described in conjunction with FIGS. 4 to 9 . Operate accordingly.
  • Memory is primarily used to store software programs and data. When the terminal device is turned on, the processor 31 can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application-specific integrated circuit (application-specific integrated circuit, ASIC), a field-programmable gate array (field-programmable gate array, FPGA) or Other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • Other programmable logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • static RAM static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory direct ram-bus RAM, DR RAM
  • direct ram-bus RAM direct ram-bus RAM
  • the present application also provides a computer program product, on which computer program code is stored, and when the computer program code is run on the computer, the computer is made to execute method 400 and method 500 .
  • the present application also provides a computer-readable medium, the computer-readable medium stores program code, and when the program code is run on the computer, the computer is made to execute the method 400, the method 500, The method in any one of the embodiments of the method 700.
  • the present application further provides a system, which includes the foregoing apparatus or equipment.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disc, SSD)
  • the network-side equipment in each of the above device embodiments corresponds to the terminal equipment and the network-side equipment or terminal equipment in the method embodiments, and the corresponding modules or units perform corresponding steps, for example, the communication unit (transceiver) executes the receiving method in the method embodiments. Or the step of sending, other steps besides sending and receiving may be performed by a processing unit (processor). For the functions of the specific units, reference may be made to the corresponding method embodiments. Wherein, there may be one or more processors.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are realized in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种指示解调参考信号的方法,该方法包括:终端设备接收第一指示信息,第一指示信息用于确定解调参考信号DMRS的配置,DMRS的配置包括DMRS占用的时频资源,DMRS占用K个符号;终端设备接收第二指示信息,第二指示信息用于确定DMRS中用于信道估计的第一DMRS,第一DMRS占用L个符号,L小于K;终端设备根据第一指示信息和第二指示信息,确定第一DMRS的时频资源;终端设备使用第一DMRS进行信道估计,其中,K为大于1的整数,L为大于0的整数。本申请中,终端设备可以采用部分DMRS进行信道估计,增加了正交DMRS端口的数量,从而保障了系统的性能。

Description

一种指示解调参考信号的方法和装置
本申请要求于2021年6月15日提交中国专利局、申请号为202110662449.4、申请名称为“一种指示解调参考信号的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种指示解调参考信号的方法和装置。
背景技术
在5G通信系统中,随着移动通信的快速发展,在系统容量、瞬时峰值速率、频谱效率、小区边缘用户吞吐量以及时延等诸多方面有了更高的要求。在系统中,多站协同传输(coordinated multiple points,CoMP)是一种提高资源利用率、降低小区间干扰水平的方法。多站协同传输技术包括了协同波束成型(coordinated beam-forming)、协同调度(coordinated scheduling)、联合传输(joint transmission)、动态传输点选择(dynamic point selection)、动态传输点静默(dynamic point blanking)等技术。基站之间可以通过回程、空口等途径进行交互,协调传输所需要的信息。通过这些传输方法,可以降低对边缘用户的干扰,提高系统的性能。
目前,通常采用多站协作的传输模式以提高系统的吞吐量,此时系统可以调度较多的数据流。然而解调参考信号(demodulation reference signal,DMRS)的端口(port)数最大仅为12,此时DMRS的端口数量即成为了影响系统性能的瓶颈。
发明内容
本申请提供一种指示解调参考信号的方法和装置,增加了正交DMRS端口的数量,保障了系统的性能。
第一方面,提供了一种指示解调参考信号的方法,该方法包括:终端设备从网络设备接收第一指示信息,第一指示信息用于确定解调参考信号DMRS的配置,所述DMRS的配置包括DMRS占用的时频资源,DMRS占用K个符号;终端设备从网络设备接收第二指示信息,第二指示信息用于确定DMRS中用于信道估计的第一DMRS,第一DMRS占用L个符号,L小于K;终端设备根据第一指示信息和第二指示信息,确定第一DMRS的时频资源;终端设备使用第一DMRS进行信道估计,其中,K为大于1的整数,L为大于0的整数。
基于上述技术方案,本申请中,终端设备可以采用部分DMRS进行信道估计,相比较目前终端设备采用全部DMRS,例如,同时采用前置DMRS和附加DMRS进行信道估计而言,本申请的技术方案增加了正交DMRS端口的数量,保障了系统的性能。
需要说明的是,本申请中,DMRS的配置可以理解为网络设备将要发送的DMRS(或 者待发送的DMRS)的各种时频资源配置,符号类型配置。例如,DMRS占用的符号,DMRS的端口信息、DMRS为单符号还是双符号等配置。应理解,本申请中,最终哪些符号上有DMRS(即,第一DMRS),或者说,终端设备最终使用哪些符号上的DMRS(即,第一DMRS)进行信道估计需要根据第二指示信息确定。
需要说明的是,本申请中,第一DMRS为网络设备给终端配置的DMRS中的部分DMRS,也可以理解为,本申请中的第一DMRS所占用的符号,可以是网络设备给终端设备配置的DMRS符号中的部分符号。换句话说,本申请中,网络设备可以在部分符号上发送DMRS(即,第一DMRS),终端设备可以根据部分符号上的DMRS(即,第一DMRS)进行信道估计。
结合第一方面,在第一方面的某些实施方式中,所述DMRS包括一个前置DMRS和至少一个附加DMRS,所述第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,包括:所述第二指示信息具体用于确定所述第一DMRS的类型,所述第一DMRS的类型至少包括以下一项:前置DMRS类型、附加DMRS类型。
基于上述技术方案,本申请中,终端设备可以仅使用前置DMRS进行信道估计(也可以理解为,第一DMRS为前置DMRS),或者,终端设备也可以仅使用附加DMRS进行信道估计(也可以理解为,第一DMRS为附加DMRS),从而增加了正交DMRS端口的数量,保障了系统的性能。
结合第一方面,在第一方面的某些实施方式中,其中,前置DMRS类型包括第一类型和第二类型,所述第一类型为:所述前置DMRS为所述第一DMRS,所述前置DMRS和所述附加DMRS均不传输数据,所述第二类型为:所述前置DMRS为所述第一DMRS,所述前置DMRS不传输数据,所述附加DMRS用于传输数据。
基于上述技术方案,本申请中,考虑到在小区用户很多,并且都需要信道估计的情况下,前置DMRS和附加DMRS可以均不传输数据,此时,其它用户可以利用附加DMRS进行信道估计,增加了正交DMRS端口的数量,从而系统可以支持更多的数据流,保障了系统的性能,并且对正交DMRS端口的信道估计,可以降低用户之间的干扰,从而信道估计更精确。或者,在小区用户很少,信道估计的用户不是很多的情况下,前置DMRS不传输数据,附加DMRS可以用于传输数据,此时,可以充分利用系统资源。
结合第一方面,在第一方面的某些实施方式中,所述DMRS的配置还包括DMRS占用的符号,所述第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,包括:所述第二指示信息具体用于确定所述第一DMRS占用的符号的配置。
基于上述技术方案,本申请中,通过指示第一DMRS的符号可以更为灵活的确定用于信道估计的DMRS。
结合第一方面,在第一方面的某些实施方式中,所述DMRS为单符号DMRS,所述第一指示信息用于确定所述DMRS的符号Y的配置,所述Y等于4时,所述第二指示信息的比特位数N等于4,所述第二指示信息的N个比特位与Y个所述DMRS的符号一一对应,所述N个比特位中的第i个比特位的比特值对应的第i个符号,用于指示所述第i个符号上对应的所述DMRS是否属于所述第一DMRS,其中,1≤i≤4。
假设第二指示信息的比特位为1100,配置DMRS的符号为:符号2、符号5、符号8以及符号11。此时,意味着,第一DMRS是由符号2以及符号5上的DMRS共同组成的。 本申请中,第i个符号上对应的DMRS是否属于第一DMRS可以理解为,第i个符号上对应的DMRS是第一DMRS中的其中一个。本申请中,可以将第一DMRS对应的符号看作集合J,集合J包括{j1,j2,j3…jn}等元素,集合中每个符号上对应的DMRS共同构成了第一DMRS,例如,本申请中的i可以属于J集合,即i可以是J集合中的一个元素。特别的,只有一个符号上的DMRS用作信道估计时,该符号上的DMRS就是第一DMRS。需要说明的是,在一些实施例中,本申请中,第一DMRS中的每个符号上的都是比特位为1。当然,也可以规定,第一DMRS中的每个符号上的都是比特位为0。比特值中用“0”或者用“1”指示第一DMRS本申请不做限定。
基于上述技术方案,本申请中,针对单符号DMRS,可以通过4个比特位灵活指示第一DMRS,例如,终端设备仅采用前置DMRS进行信令估计、终端设备仅采用附加DMRS进行信道估计、终端设备采用部分附加DMRS进行信道估计,或者,终端设备采用前置DMRS以及部分附加DMRS进行信道估计,不仅增加了正交DMRS端口的数量,保障系统的性能,还减小了信令开销。
结合第一方面,在第一方面的某些实施方式中,如果所述第i个符号对应的第i个比特位的比特值指示,所述第i个符号上对应的所述DMRS不为所述第一DMRS时,所述终端设备默认所述第i个符号上既没有传输DMRS也没有传输数据。
基于上述技术方案,本申请中,考虑到小区用户很多,并且都需要信道估计的情况下,如果某些符号上的DMRS不用做信道估计时,此时,该符号上既没有传输DMRS也没有传输数据。此时,其它用户可以利用该符号上的DMRS进行信道估计,从而增加了正交DMRS端口的数量,并且可以降低用户之间的干扰。
结合第一方面,在第一方面的某些实施方式中,所述DMRS为单符号DMRS,所述第一指示信息用于确定所述DMRS的符号Y的配置,所述Y小于4时,所述第二指示信息的比特位数N等于4,所述N个比特位中的前Y个比特位与Y个所述DMRS的符号一一对应,所述N个比特位中的前Y个比特位用于指示Y个符号上所对应的DMRS是否属于所述第一DMRS。
基于上述技术方案,本申请中,如果配置的DMRS符号小于4时,仍然可以通过4个比特位灵活指示第一DMRS,不仅增加了正交DMRS端口的数量,保障系统的性能,还减小了信令开销。
结合第一方面,在第一方面的某些实施方式中,如果所述Y个符号中的第j个符号对应的第j个比特位的比特值指示所述第j个符号对应的所述DMRS不属于所述第一DMRS时,所述N个比特位中的最后一个比特位用于指示所述第j个符号上是否传输数据,其中,所述Y为大于0的整数。
基于上述技术方案,本申请中,考虑到在小区用户很少,信道估计的用户不是很多的情况下,如果部分符号上的DMRS不用于信道估计,此时,还可以传输数据,从而充分利用系统资源。
结合第一方面,在第一方面的某些实施方式中,所述DMRS为双符号DMRS,所述第一指示信息用于确定所述DMRS的双符号X的配置,所述X等于2时,所述第二指示信息的比特位Z等于2,所述第二指示信息的Z个比特位与X个所述DMRS的符号一一对应,第r个符号对应的第r个比特位的比特值用于指示所述第r个符号上对应的所述 DMRS是否属于所述第一DMRS,其中,1≤r≤2。
基于上述技术方案,本申请中,针对双符号DMRS,可以通过2个比特位灵活指示第一DMRS,不仅增加了正交DMRS端口的数量,保障系统的性能,还减小了信令开销。
结合第一方面,在第一方面的某些实施方式中,如果所述第r个符号对应的第r个比特位的比特值指示,所述第r个符号上对应的所述DMRS不为所述第一DMRS时,所述终端设备默认所述第r个符号上既没有传输DMRS也没有传输数据。
结合第一方面,在第一方面的某些实施方式中,该方法还包括:所述终端设备根据所述第一指示信息和所述第二指示信息确定传输的数据的时频资源,所述数据的时频资源不包括物理下行共享信道上的所述前置DMRS时频资源。
基于上述技术方案,本申请中,终端设备可以根据第二指示信息的指示,灵活确定传输的数据的时频资源的位置,从而进行解码。
结合第一方面,在第一方面的某些实施方式中,所述DMRS的配置至少包括以下一项:DMRS的符号类型的配置、前置DMRS的时频资源的配置以及附加DMRS的时频资源的配置。
基于上述技术方案,本申请中,根据该DMRS的配置终端设备可以确定第一DMRS的时频资源的位置。
第二方面,提供了一种指示解调参考信号的方法,该方法包括:网络设备向终端设备发送第一指示信息,第一指示信息用于确定解调参考信号DMRS的配置,DMRS的配置包括DMRS占用的时频资源,DMRS占用K个符号;网络设备终端设备发送第二指示信息,第二指示信息用于确定DMRS中用于信道估计的第一DMRS,第一DMRS占用L个符号,L小于K,其中,K为大于1的整数,L为大于0的整数。
基于上述技术方案,本申请中,网络设备通过向终端设备发送指示信息,指示终端设备可以采用部分DMRS进行信道估计,从而增加了正交DMRS端口的数量,保障了系统的性能。
结合第二方面,在第二方面的某些实施方式中,所述DMRS包括一个前置DMRS和至少一个附加DMRS,所述第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,包括:所述第二指示信息具体用于确定所述第一DMRS的类型,所述第一DMRS的类型至少包括以下一项:前置DMRS类型、附加DMRS类型。
基于上述技术方案,本申请中,网络设备可以指示终端设备仅使用前置DMRS进行信道估计(也可以理解为,第一DMRS为前置DMRS),或者,指示终端设备可以仅使用附加DMRS进行信道估计(也可以理解为,第一DMRS为附加DMRS),从而增加了正交DMRS端口的数量,保障了系统的性能。
结合第二方面,在第二方面的某些实施方式中,其中,前置DMRS类型包括第一类型和第二类型,所述第一类型为:所述前置DMRS为所述第一DMRS,所述前置DMRS和所述附加DMRS均不传输数据,所述第二类型为:所述前置DMRS为所述第一DMRS,所述前置DMRS不传输数据,所述附加DMRS用于传输数据。
基于上述技术方案,本申请中,考虑到在小区用户很多,并且都需要信道估计的情况下,前置DMRS和附加DMRS可以均不传输数据,此时,其它用户可以利用附加DMRS进行信道估计,增加了正交DMRS端口的数量,保障了系统的性能,并且可以降低用户 之间的干扰。或者,在小区用户很少,信道估计的用户不是很多的情况下,前置DMRS不传输数据,附加DMRS可以用于传输数据,此时,可以充分利用系统资源。
结合第二方面,在第二方面的某些实施方式中,所述DMRS的配置还包括DMRS占用的符号,所述第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,包括:所述第二指示信息具体用于确定所述第一DMRS占用的符号的配置。
基于上述技术方案,本申请中,网络设备通过指示第一DMRS的符号可以更为灵活的确定用于信道估计的DMRS。
结合第二方面,在第二方面的某些实施方式中,所述DMRS为单符号DMRS,所述第一指示信息用于确定所述DMRS的符号Y的配置,所述Y等于4时,所述第二指示信息的比特位数N等于4,所述第二指示信息的N个比特位与Y个所述DMRS的符号一一对应,所述N个比特位中的第i个比特位的比特值对应的第i个符号,用于指示所述第i个符号上对应的所述DMRS是否属于所述第一DMRS,其中,1≤i≤4。
基于上述技术方案,本申请中,针对单符号DMRS,网络设备可以通过4个比特位灵活指示第一DMRS,例如,网络设备指示终端设备仅采用前置DMRS进行信令估计、网络设备指示终端设备仅采用附加DMRS进行信道估计、网络设备指示终端设备采用部分附加DMRS进行信道估计,或者,网络设备指示终端设备采用前置DMRS以及部分附加DMRS进行信道估计,不仅增加了正交DMRS端口的数量,保障系统的性能,还减小了信令开销。
结合第二方面,在第二方面的某些实施方式中,如果所述第i个符号对应的第i个比特位的比特值指示,所述第i个符号上对应的所述DMRS不为所述第一DMRS时,所述终端设备默认所述第i个符号上既没有传输DMRS也没有传输数据。
基于上述技术方案,本申请中,考虑到小区用户很多,并且都需要信道估计的情况下,如果某些符号上的DMRS不用做信道估计时,此时,该符号上既没有传输DMRS也没有传输数据。此时,其它用户可以利用该符号上的DMRS进行信道估计,从而增加了正交DMRS端口的数量,并且可以降低用户之间的干扰。
结合第二方面,在第二方面的某些实施方式中,所述DMRS为单符号DMRS,所述第一指示信息用于确定所述DMRS的符号Y的配置,所述Y小于4时,所述第二指示信息的比特位数N等于4,所述N个比特位中的前Y个比特位与Y个所述DMRS的符号一一对应,所述N个比特位中的前Y个比特位用于指示Y个符号上所对应的DMRS是否属于所述第一DMRS。
基于上述技术方案,本申请中,如果配置的DMRS符号小于4时,网络设备仍然可以通过4个比特位灵活指示第一DMRS,不仅增加了正交DMRS端口的数量,保障系统的性能,还减小了信令开销。
结合第二方面,在第二方面的某些实施方式中,如果所述Y个符号中的第j个符号对应的第j个比特位的比特值指示所述第j个符号对应的所述DMRS不属于所述第一DMRS时,所述N个比特位中的最后一个比特位用于指示所述第j个符号上是否传输数据,其中,所述Y为大于0的整数。
基于上述技术方案,本申请中,考虑到在小区用户很少,信道估计的用户不是很多的情况下,如果部分符号上的DMRS不用于信道估计,此时,还可以传输数据,从而充分 利用系统资源。
结合第二方面,在第二方面的某些实施方式中,所述DMRS为双符号DMRS,所述第一指示信息用于确定所述DMRS的双符号X的配置,所述X等于2时,所述第二指示信息的比特位Z等于2,所述第二指示信息的Z个比特位与X个所述DMRS的符号一一对应,第r个符号对应的第r个比特位的比特值用于指示所述第r个符号上对应的所述DMRS是否属于所述第一DMRS,其中,1≤r≤2。
基于上述技术方案,本申请中,针对双符号DMRS,网络设备可以通过2个比特位灵活指示第一DMRS,不仅增加了正交DMRS端口的数量,保障系统的性能,还减小了信令开销。
结合第二方面,在第二方面的某些实施方式中,如果所述第r个符号对应的第r个比特位的比特值指示,所述第r个符号上对应的所述DMRS不为所述第一DMRS时,所述终端设备默认所述第r个符号上既没有传输DMRS也没有传输数据。
结合第二方面,在第二方面的某些实施方式中,该方法还包括:所述网络设备确定传输的数据的时频资源,所述数据的时频资源不包括物理下行共享信道上的所述前置DMRS时频资源;所述网络设备在所述物理下行共享信道上发送所述数据。
基于上述技术方案,本申请中,网络设备可以灵活确定传输的数据的时频资源的位置。
结合第二方面,在第二方面的某些实施方式中,所述DMRS的配置至少包括以下一项:DMRS的符号类型的配置、前置DMRS的时频资源的配置以及附加DMRS的时频资源的配置。
基于上述技术方案,本申请中,根据该DMRS的配置终端设备可以确定第一DMRS的时频资源的位置。
第三方面,提供了一种通信装置,该装置包括用于执行第一方面或第一方面中任意一种可能的实现方式中的方法的单元。
第四方面,提供了一种通信装置,该装置包括用于执行第二方面或第二方面中任意一种可能的实现方式中的方法的单元。
第五方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为终端设备。当该装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于终端设备中的芯片。当该装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
在一种实现方式中,该装置为宿主节点设备。当该装置为宿主节点设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于宿主节点中的芯片。当该装置为配置于宿主节点中的芯片时,该通信接口可以是输入/输出接口。可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第六方面,提供了一种指示解调参考信号的装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面中任一种可能实现方式中的方法。 可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为网络设备。当该装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于网络设备中的芯片。当该装置为配置于网络设备中的芯片时,该通信接口可以是输入/输出接口。
在一种实现方式中,该装置为宿主节点设备。当该装置为宿主节点设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于宿主节点设备中的芯片。当该装置为配置于宿主节点设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面和第二方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于收发器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过收发器接收信号,通过发射器发射信号,以执行第一方面和第二方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自收发器。其中,发射器和收发器可以统称为收发器。
上述第八方面中的处理装置可以是一个或多个芯片。该处理装置中的处理器可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面和第二方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令),当其在计算机上运行时,使得计算机执行上述第一方面和第二方面中任一种可能实现方式中的方法。
第十一方面,提供了一种芯片系统,包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片系统的设备执行上述第一方面和第二方面各实现方式中的方法。
第十二方面,提供了一种通信系统,所述通信系统包括第三方面涉及的装置、第四方面涉及的装置。
附图说明
图1是本申请适用的场景示意图。
图2是本申请适用的系统架构示意图。
图3本申请提供的解调参考信号时频资源示意图。
图4是本申请提供的一种指示解调参考信号方法的示意性流程图。
图5是本申请提供的一种指示解调参考信号方法的示意性流程图。
图6是本申请提供的解调参考信号时频资源另一示意图。
图7是本申请提供的一种指示解调参考信号方法的示意性流程图。
图8是本申请提供的解调参考信号时频资源另一示意图。
图9是本申请提供的解调参考信号时频资源另一示意图。
图10是本申请提供的一种通信装置的示意性框图。
图11是本申请提供的一种通信装置的示意性框图。
图12是本申请提供的一种网络设备的示意图。
图13是本申请提供的一种终端设备的示意图。
具体实施方式
本申请实施例可应用的无线通信系统包括但不限于:全球移动通信(global system of mobile communication,GSM)系统、长期演进(long term evolution,LTE)频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、LTE系统、先进的长期演进(LTE-Advanced,LTE-A)系统、下一代通信系统(例如,5G、6G通信系统)、多种接入系统的融合系统,或演进系统。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请实施例中所涉及到的终端设备是移动用户与网络交互的入口,能够提供基本的计算能力,存储能力,向用户显示业务窗口,接受用户操作输入。5G中的终端设备可以 采用新空口技术,与无限接入网设备建立信号连接和数据连接,从而传输控制信号和业务数据到移动网络。本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的接入终端、移动设备、用户终端或用户装置。例如,终端设备可以为用户设备(user equipment,UE),例如,手机(mobile phone)、平板电脑(pad)、台式机、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、电视、增强现实(augmented reality,AR)终端设备等。终端设备也可是工业控制(industrial control)中的无线终端、机器类型通信(machine type communication,MTC)终端、客户终端设备(customer premise equipment,CPE)、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)、智能音箱、电子门锁、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、自动导引车(automatic guided vehicle,AGV)、无人机、汽车、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)或非公共用途网络(non-public network,NPN)中的终端设备等。
本申请实施例中所涉及到无线接入网设备类似于传统网络里面的基站,部署在靠近终端设备的位置,为特定区域的授权用户提供入网功能,并能够根据用户的级别,业务的需求等确定不同质量的传输隧道来传输用户数据。无线接入网设备能够管理自身的资源,合理利用,按需为终端设备提供接入服务,并负责把控制信号和用户数据在终端设备和核心网之间转发。本申请实施例中所涉及到无线接入网设备可以是终端设备通过无线方式接入到该移动通信系统中的接入设备。该无线接入网设备可以是:基站、演进型基站(evolved node B,eNB)、家庭基站、无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、站点(station,STA)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)、宏基站或微基站、高频基站等。该无线接入网设备还可以为NR系统中的下一代基站(next generation node B,gNB),或者,还可以是构成基站的组件或一部分设备,如汇聚单元(central unit,CU)、分布式单元(distributed unit,DU)或基带单元(baseband unit,BBU),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器等。应理解,本申请的实施例中,对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,在本申请中,网络设备均指无线接入网设备。在本申请中,网络设备可以是指网络设备本身,也可以是应用于网络设备中完成无线通信处理功能的芯片。
例如,本申请实施例可以应用于5G网络,也可以应用在其它可采用上行预编码指示的无线通信网络等场景。本申请中,通信过程可能发生在网络设备和终端设备之间。下面结合图1详细介绍本申请实施例适用的场景。
如图1所示,以网络设备为基站(base station,BS)终端设备为用户设备(user equipment,UE)为例。图1中,基站和UE#1~UE#6组成一个通信系统。在该通信系统中,UE#1~UE#6可以发送上行数据给基站,基站可以接收UE#1~UE#6发送的上行数据。也可以是,基站 向UE#1~UE#6发送数据,UE#1~UE#6接收基站发送的数据。此外,UE#4~UE#6也可以组成一个通信系统。在该通信系统中,基站可以发送下行信息给UE#1、UE#2、UE#5等,UE#5也可以发送下行信息给UE#4、UE#6。
图2是本申请适用的系统架构示意图。同样,以网络设备为基站,终端设备为用户设备为例,进行介绍。基站和用户设备之间可以包括但不限于:无线资源控制(radio resource control,RRC)信令交互模块、介质访问控制单元(media access control-control element,MAC-CE)信令交互模块以及物理层(Physical layer)信令交互模块。其中,RRC信令交互模块可以是基站和UE用于发送及接收RRC信令的模块。MAC信令交互模块可以是基站和UE用于发送及接收MAC-CE信令的模块。PHY信令及数据交互模块可以是基站和UE用于发送及接收上行或下行控制信令,例如,物理上行控制信道(physical uplink control channel,PUCCH)、物理下行控制信道(physical downlink control channel,PDCCH),以及上行或下行数据的模块,例如,物理上行共享信道(physical uplink sharedchannel,PUSCH)、物理下行共享信道(physical downlink sharedchannel,PDSCH)。
为了便于理解,本申请首先对解调参考信号(demodulation reference signal,DMRS)进行简单的介绍。
在5G中,DMRS广泛存在于各个重要的物理信道中,DMRS最重要的作用就是进行相干解调,服务于各种物理信道的解调。在新空口(new radio,NR)的现有3GPP协议中,一个小区可配置的用于数据解码的正交的解调参考信号(demodulation reference signal,DMRS)的端口(port)数最大是12个。在NR系统中,包括单符号DMRS(single-symbol DMRS)和双符号DMRS(double-symbol DMRS)。图3为了单符号DMRS和双符号DMRS的时频资源的示意图。如图3中的(a)所示,单符号DMRS可以有两组梳状频分资源,最多可以支持4个端口(例如,端口0、端口1、端口2、端口3)。单符号的DMRS的叠加正交码(orthogonal cover code,OCC)为2个,占用1个符号。如图3中的(b)所示,双符号的DMRS,最多支持8个端口(例如,端口0、端口1、端口2、端口3、端口4、端口5、端口6、端口7),每个符号可以支持4个端口。双符号的DMRS的叠加正交码为4个,占用连续的两个符号。当RRC信令的DMRS配置中没有配置maxLength或者配置maxLength=len1时,DMRS是单符号DMRS;当RRC信令的DMRS配置中maxLength=len2时,可以根据下行控制信息(downlink control information,DCI)中的指示确定是单符号DMRS还是双符号DMRS。上述介绍的是DMRS类型1(Type 1)单符号和双符号的时频资源配置。应理解,本申请的技术方案同样适用DMRS类型2(Type 2),为了简洁,这里省略对DMRS类型2的介绍。
在NR系统中,有两种DMRS设计,分别为前置DMRS(front-load DMRS)和附加DMRS(additional DMRS),下面分别介绍这两种DMRS。
前置DMRS:为了降低解调和译码时延,5G NR系统中DMRS采用了前置设计。在每个调度时间单位内,DMRS首次出现的位置应当尽可能靠近调度的起始点。例如,在基于时隙的调度传输(Type A)时,前置DMRS的位置应当紧邻PDCCH区域之后。此时DMRS的第一个符号取决于PDCCH的配置,例如,如果PDCCH占用2个符号,那么DMRS可以从第3个符号开始;如果PDCCH占用3个符号,那么DMRS可以从第4个符号开始。在基于非时隙的调度传输(调度单位小于1个时隙)(TypeB)时,前置DMRS可以是从 调度区域的第一个符号开始传输。前置DMRS的使用,有助于接收端快速估计信道并进行接收检测,对于降低时延并支持自包含帧结构具有重要的作用。
附加DMRS:对于低移动性场景,前置DMRS能以较低的开销获得满足解调需求的信道估计性能。但是,5G NR系统所考虑的移动速度最高可达500km/h,面临动态范围如此之大的移动性,除了前置DMRS之外,在中高速场景中,还需要在调度持续时间内安插更多的DMRS符号,以满足对信道时变性的估计精度。针对这一问题,5G NR系统中采取了前置DMRS与时域密度可配置的附加DMR相结合的DMRS结构。每一组附加DMRS导频的图样都是前置DMRS导频的重复,即每组附加DMRS与前置DMRS导频占用相同的子载波和相同的符号数。通常情况下,根据具体场景,在单符号前置DMRS时最多可以增加3组附加DMRS、在双符号前置DMRS时最多可以增加1组附加DMRS,可以根据需要进行配置并通过控制信令指示。
从时域上来看,网络设备可以通过RRC信令通知前置DMRS和附加DMRS的位置。表1为单符号DMRS的所占的时域资源位置,表2为双符号DMRS的所占的时域资源位置。其中,A类型的DMRS的位置,例如,表1中dmrs-TypeA-Position表示前置DMRS的位置,附加DMRS的位置,例如,表1中dmrs-AdditionalPosition表示附加DMRS的位置。表中的l d指符号数,从PDSCH所在的时隙(slot)的第一个符号开始算起,到PDSCH占用的最后一个符号截至。l 0表示前置DMRS的时域位置,而l 1和具体的数字表示附加DMRS的时域位置。
表1
Figure PCTCN2022097650-appb-000001
表2
Figure PCTCN2022097650-appb-000002
从频域上来看,不同的端口号对应的所占用的频域资源都是确定的,因此对于同一个端口,前置DMRS和附加DMRS的频域资源是相同的。
在5G通信系统中,随着移动通信的快速发展,在系统容量,瞬时峰值速率,频谱效率,小区边缘用户吞吐量以及时延等诸多方面有了更高的要求。在系统中,多站协同传输是一种提高资源利用率、降低小区间干扰水平的方法。多站协同技术包括了协同波束成型(coordinated beamforming)、协同调度(coordinated scheduling)、联合传输(joint transmission)、动态传输点选择(dynamic point selection)、动态传输点静默(dynamic point blanking)等技术。基站之间可以通过回程、空口等途径进行交互,协调传输所需要的信息。通过这些传输方法,可以降低对边缘用户的干扰,提高系统的性能。通过采用多站协作的传输模式,系统可以调度较多的数据流,然而DMRS端口数最大仅为12个,此时DMRS端口数量成为了影响系统性能的重要因素。
有鉴于此,本申请提供了一种指示DMRS方法,通过使用部分DMRS进行信道估计,增加了DMRS正交端口的数量,从而保障系统的性能。
本申请所提供的方法适用于上行传输,同样也可以用于下行传输。下述实施例是仅仅是以下行传输为例,不做任何限定。
下述实施例中网络设备以基站为例,终端设备以UE为例进行说明。
需要说明的是,本申请实施例仅仅是以DMRS的Type A的配置和DMRS的Type 1的配置为例进行说明。本申请的技术方案同样可以应用于DMRS的Type B的配置和DMRS的Type 2的配置。
图4是本申请实施例提供的一种指示DMRS方法400的示意图,方法400包括:
步骤S410,终端设备接收第一指示信息,第一指示信息用于确定解调参考信号DMRS 的配置,DMRS占用K个符号,K为大于1的整数。
本申请中,DMRS的配置可以理解为网络设备将要发送的DMRS(或者待发送的DMRS)的各种时频资源配置,符号类型配置。例如,DMRS占用的符号,DMRS的端口信息、DMRS为单符号还是双符号等配置。单符号的DMRS表示DMRS占用单个符号,双符号DMRS表示DMRS占用成对出现的两个符号。应理解,本申请中,最终哪些符号上有DMRS(即,第一DMRS),或者说,终端设备最终使用哪些符号上的DMRS(即,第一DMRS)进行信道估计需要根据第二指示信息确定。
本申请中,第一DMRS为网络设备给终端配置的DMRS中的部分DMRS,也可以理解为,本申请中的第一DMRS所占用的符号,可以是网络设备给终端设备配置的DMRS符号中的部分符号。换句话说,本申请中,网络设备可以在部分符号上发送DMRS(即,第一DMRS),终端设备可以根据部分符号上的DMRS(即,第一DMRS)进行信道估计。
应理解,在步骤S410之前,还可以包括步骤S411,网络设备向终端设备发送第一指示信息。
步骤S420,终端设备接收第二指示信息,第二指示信息用于确定配置的DMRS中用于信道估计的第一DMRS,第一DMRS占用L个符号,其中,L小于K。
本申请中,DMRS中的部分DMRS用于信道估计,所述部分DMRS为第一DMRS。
作为一个示例,第二指示信息可以指示第一DMRS的类型。
例如,第一DMRS为前置DMRS或者第一DMRS为附加DMRS。前置DMRS进一步还可以包括以下2种类型。第一类型:前置DMRS为第一DMRS,前置DMRS和附加DMRS均不传输数据;第二类型:前置DMRS为第一DMRS,前置DMRS不传输数据,但是附加DMRS可以用于传输数据。
作为一个示例,第二指示信息可以指示第一DMRS的符号的配置。
具体地,第二指示信息可以指示,DMRS中哪些符号可以用于信道估计,并且如果DMRS中的某些不用于信道估计,该符号是否可以用于传输数据。
应理解,在步骤S420之前,还可以包括步骤S421,网络设备向终端设备发送第二指示信息。
需要说明的是,本申请中,L为大于0的整数。
应理解,本申请中,指示信息可以在下行控制信息(downlink control information,DCI)中指示。示例性地,指示信息可以是下行控制信息中的一个字段。例如,终端设备可以根据DCI中的指示获取类型信息。指示信息也可以在无线资源控制(radio resource control,RRC)信令中指示。示例性地,指示信息可以是RRC信令中的一个字段。例如,终端设备可以根据RRC中的指示获取指示信息。
这里所说的指示信息可以是指文中的第一指示信息或第二指示信息。
可选地,步骤S410和步骤S420可以是分开的,也可以是一起执行的。例如,第一指示信息和第二指示信息可以是在同一下行控制信息中传输,也可以是在不同的下行控制信息中传输。
步骤S430,终端设备根据第一指示信息和第二指示信息,确定第一DMRS的时频资源。
作为一个示例,终端设备可以根据第二指示信息确定前置DMRS用于信道估计(也可以理解为,前置DMRS为第一DMRS),并且根据第一指示信息确前置DMRS的时频资源位置。
作为一个示例,终端设备可以根据第二指示信息确定附加DMRS用于信道估计(也可以理解为,附加DMRS为第一DMRS),并且根据第一指示信息确附加DMRS的时频资源位置。
作为一个示例,终端设备可以根据第二指示信息确定DMRS中的部分符号用于信道估计(也可以理解为,DMRS中的部分符号为第一DMRS),并且根据第一指示信息确定哪些符号为第一DMRS。等等。
步骤S440,终端设备根据使用第一DMRS进行信道估计。
例如,如果仅采用前置DMRS进行信道估计,UR可以根据前置DMRS估计出前置DMRS的时频资源单元(resource element,RE)位置上的信道,根据这些RE上的信道扩展出整个资源块(resource block,RB)上的信道。
根据本申请的方法,终端设备可以采用部分DMRS进行信道估计,例如,独立采用前置DMRS进行信道估计、独立采用附加DMRS进行信道的估计、采用部分附加DMRS进行信道的估计或者采用前置DMRS和部分附加DMRS进行信道估计。增加了DMRS正交端口的数量,从而保障系统的性能。
图5是本申请实施例提供的一种指示DMRS方法500的示意图,方法500包括:
步骤S510,基站向UE发送指示信息#1(第一指示信息的一例),指示信息#1用于确定解调参考信号DMRS的配置,其中,DMRS占用K个符号(K为大于1的整数)。
例如,基站可以向UE发送下行控制信息#1或者无线资源控制信息#1,指示解调参考信号DMRS的配置。
本申请中,DMRS的指示信息#1可以包括:DMRS符号类型信息,例如,DMRS是单符号还是双符号;DMRS的时频资源信息,例如,前置DMRS时域的位置、附加DMRS时域的位置,以及前置DMRS的端口信息,附加DMRS的端口信息等等。
作为一个示例,基站可以向终端设备发送RRC信令,该RRC信令用于指示DMRS的符号类型,例如,单符号还是双符号;时域资源,例如,DMRS占用的符号的配置等等。基站还可以向终端设备发送DCI信令,该DCI信令用于指示DMRS的频域资源,例如,DMRS的端口信息等。
步骤S520,基站向UE发送指示信息#2(第二指示信息的一例),指示信息#2用于确定DMRS中用于信道估计的第一DMRS的类型。
例如,基站可以向UE发送下行控制信息#2,下行控制信息#2可以用于确定DMRS中用于信道估计的第一DMRS的类型。
本申请中,用于信道估计的第一DMRS的类型可以包括以下几种情况:单独使用前置DMRS进行信道估计、单独使用附加DMRS进行信道估计。其中,第一DMRS为前置DMRS还可以包括2种情况,如下面的情况一和情况二:
情况一:仅采用前置DMRS进行信道估计,前置DMRS和附加DMRS均不传输数据。
情况二:仅采用前置DMRS进行信道估计,前置DMRS不传输数据且附加DMRS位置可以传输数据
在一种可能的实现方式中,基站可以向UE发送DCI信令,在DCI中携带一个DMRS类型使能指示,即,指示UE信道估计时所采用的DMRS的类型。作为一个示例,DMRS类型使能指示为2比特(bit),包含4个状态,如表3所示。
在一种可能的实现方式中,可以采用枚举的方式,指示第一DMRS的类型。例如,如表3所示:{only Front-load 1}可以表示仅采用前置DMRS进行信道估计,前置DMRS和附加DMRS均不传输数据;{only additional}可以表示仅采用附加DMRS进行信道估计,前置DMRS和附加DMRS均不传输数据;{both Front-load and additional}可以表示前置DMRS和附加DMRS同时用于信道估计;{only Front-load 2}可以表示默认仅采用前置DMRS进行信道估计,前置DMRS不传输数据且附加DMRS位置可以传输数据
表3.不同状态位指示不同的含义
Figure PCTCN2022097650-appb-000003
需要说明的是,表1中的各个比特状态与对应的描述之间的对应关系仅仅是示意性的,不做限定。
应理解,本申请中,指示信息#1和指示信息#2可以在同一个信令中也可以是在不同信令中,例如,基站可以向UE发送DCI,DCI中同时包含指示信息#1和指示信息#2。也可以理解为,本申请中,基站可以分别发送指示信息#1和指示信息#2,基站也可以只发送一个信令,该信令中包括指示信息#1和指示信息#2。
可选地,步骤S510和步骤S520可以是分开的,也可以是一起执行的。在一些实施例中,如果步骤S510和步骤S520是分开执行时,本申请的步骤S510和步骤S520没有先后顺序的限定。
步骤S521,基站确定传输的数据的时频资源。
在一种可能的实现方式中,基站可以根据第二指示信息具体确定在哪些时频资源上传输数据。作为一个示例,如果第二指示信息指示第一DMRS为前置DMRS(例如,比特位状态位01或指示{only Front-load 1}),此时,基站可以确定在PDSCH中除去前置DMRS和附加DMRS的时频资源,在其它时频资源上传输数据。如果第二指示信息指示第一DMRS为前置DMRS(例如,比特位状态位00或指示{only Front-load 2}),此时,基站可以确定在PDSCH中除去前置DMRS的时频资源,并且在附加DMRS以及其它时频资源上传输数据。作为一个示例,如果第二指示信息指示第一DMRS为附加DMRS(例如,比特位状态位10或指示{only additional}),此时,基站可以确定在PDSCH中除去前置DMRS和附加DMRS的时频资源,在其它时频资源上传输数据。
步骤S522,基站向UE发送数据。
在一种可能的实现方式中,基站可以在PDSCH上向UE发送数据。
步骤S530,UE接收基站发送的指示信息#1和指示信息#2,根据指示信息#1和指示信息#2确定第一DMRS的时频资源。
例如,UE可以接收基站发送的指示信息#1和指示信息#2,结合第一DMRS类型指示和DMRS配置信息判断用于信道估计的第一DMRS的时频资源的位置。
作为一个示例,如果第一DMRS的类型指示信息(例如,第二指示信息)的比特状态位为01(或者,指示{only Front-load 1})时,UE可以确定仅仅根据前置DMRS的时频资源进行信道估计。需要说明的时,当PDSCH是type A时,UE采用dmrs-TypeA-Position确定前置DMRS的时域位置;当PDSCH是type B时,前置DMRS的时域位置是PDSCH的首符号。UE可以通过dmrs-AdditionalPosition判断的附加DMRS时域资源位置。UE根据DMRS端口信息可以确定前置DMRS和附加DMRS的频域位置。UE默认在该附加DMRS的时频资源上既没有数据传输,也没有传输DMRS,或者传输的是零功率DMRS(zero power DMRS);换句话说,UE确定PDSCH上数据的时频资源时,不考虑前置DMRS和附加DMRS的时频资源。
作为另一个示例,如果第一DMRS的类型指示信息的比特状态位为10(或者,指示{only additional})时,UE可以确定仅仅根据附加DMRS的时频资源进行信道估计。例如,图6中的(b),UE#1仅仅采用附加DMRS进行信道估计。另外,UE#1可以判断的前置DMRS时域资源位置,UE#1确定在该时频资源上既没有传输DMRS,或者叫做零功率DMRS,也没有数据传输;换句话说,之后UE确定PDSCH上数据的时频资源时,不考虑前置DMRS和附加DMRS的时频资源。
作为另一个示例,如果第一DMRS的类型指示信息的比特状态位为00(或者,指示{only Front-load 2})时,UE可以确定仅仅根据前置DMRS的时频资源进行信道估计。例如,图6中的(a),UE#2仅仅采用前置DMRS进行信道估计。换句话说,之后UE#2确定PDSCH上数据的时频资源时,不考虑前置DMRS时频资源,但是需要考虑附加DMRS的时频资源。因为,此时附加DMRS上有数据传输。
需要说明的是,如果第一DMRS的类型指示信息的比特状态位为11(或者,指示{both Front-load and additional})时,或者基站不发送第一DMRS的类型指示信息,或者UE未收到第一DMRS的类型指示信息时,说明UE可以同时使用前置DMRS和附加DMRS进行信道估计,或者可以默认第一DMRS为前置DMRS和附件DMRS的合集,此时可以参照现有技术,进行信道估计和数据解码。
步骤S540,UE采用第一DMRS进行信道估计。
例如,UE#1根据前置DMRS进行信道估计时,可以仅采用前置DMRS进行信道估计,即仅仅能估计出前置DMRS的RE位置上的信道,根据这些RE上的信道扩展出整个RB上的信道。扩展的过程包括插值、滤波等方法。
例如,UE#2根据附加DMRS进行信道估计时,可以仅采用附加DMRS进行信道估计,即仅仅能估计出附加DMRS的RE位置上的信道,根据这些RE上的信道扩展出整个RB上的信道。扩展的过程包括插值、滤波等方法。
例如,UE可以根据前置DMRS和附加DMRS可以分别估计出DMRS所在的RE上 的信道,然后根据这些RE上的信道扩展出整个RB上的信道。扩展的过程包括插值、滤波等方法。
步骤S550,UE确定传输的数据的时频资源。
在一种可能的实施方式中,UE根据指示信息#1确定用于信道估计的DMRS的位置后,还可以根据RRC时频资源分配(resource allocation,RA)可以共同确定传输的数据的时频资源的位置。
作为一个示例,如果第一DMRS的类型指示信息的比特状态位为01(或者,指示{only Front-load 1})时,UE可以确定仅仅根据前置DMRS的时频资源进行信道估计。UE确定PDSCH上数据的时频资源时,不考虑前置DMRS和附加DMRS的时频资源。也就是说,PDSCH中除去前置DMRS和附加DMRS的时频资源,其它时频资源上传输数据。
作为一个示例,如果第一DMRS的类型指示信息的比特状态位为10(或者,指示{only additional})时,UE可以确定仅仅根据附加DMRS的时频资源进行信道估计。UE确定PDSCH上数据的时频资源时,不考虑前置DMRS和附加DMRS的时频资源。也就是说,PDSCH中除去前置DMRS和附加DMRS的时频资源,其它时频资源上传输数据。
作为另一个示例,如果第一DMRS的类型指示信息的比特状态位为00(或者,指示{only Front-load 2})时,UE可以确定仅仅根据前置DMRS的时频资源进行信道估计,且附加DMRS的时频资源位置上放置数据。因此,UE确定PDSCH上数据的时频资源时,不考虑前置DMRS时频资源,但需要考虑附加DMRS的时频资源,即UE确定PDSCH上的数据的时频资源时,仅除去前置DMRS所占的时频资源,其它时频资源上传输数据。
根据本申请实施例提供的方法,在不改变现有的信令架构的基础上,UE可以独立使用前置DMRS或者独立采用附加DMRS进行数据信道的估计。可以增加了正交的DMRS端口数,从而可以使得整个系统可以调度更多的数据流,保障了系统的性能。
图7是本申请实施例提供的一种指示DMRS方法700的示意图,图7的方法包括:
步骤S710,基站向UE发送DMRS的指示信息#1(第一指示信息的一例),指示信息#1用于确定解调参考信号DMRS的配置。
DMRS的指示信息#1包括DMRS的符号信息和DMRS的时频位置信息。
本申请中,DMRS的配置信息#1可以包括:DMRS符号类型信息,例如,是DMRS是单符号还是双符号;DMRS的时频位置信息,例如,前置DMRS时域的位置、附加DMRS时域的位置,以及前置DMRS的端口信息,附加DMRS的端口信息等等。
作为一个示例,基站可以向终端设备发送RRC信令,该RRC信令用于指示DMRS的符号类型,例如,单符号还是双符号;时域资源,例如,DMRS占用的符号的配置等等。基站还可以向终端设备发送DCI信令,该DCI信令用于指示DMRS的频域资源,例如,DMRS的端口信息等。
步骤S720,基站向UE发送指示信息#2(第二指示信息的一例),指示信息#2用于确定DMRS中用于信道估计的第一DMRS的符号的配置。
需要说明的是,本申请中指示信息#2的具体实现方式有多种,在一种可能的实现方式中,可以在DCI中添加一个新的域,该域承载的内容即为指示信息#2,此时的指示信息#2是针对每个UE独立指示的。在该实现方式中,下述文中的UE组(group)可以认为是该组中仅一个UE。
在另一种可能的实现方式中,可以采用group DCI的方式来实现。指示信息#2的内容是可以枚举的,例如当指示信息指示4个bit时,共有16种指示信息。针对系统中所有的UE而言,可以将UE分组,每组UE所用的指示信息是相同的。针对这一组UE而言,就可以采用group DCI来实现,其中group DCI的内容为指示信息#2。
需要说明的是,本申请中,区分不同的UE组,主要是因为针对不同的UE组在DCI上的加扰的无线网络临时标识(radio network tempory identity,RNTI)不一样。例如,对于UE组#1的用户而言,使用RNTI#1检测携带DMRS类型的下行控制信息DCI,当UE组#1能正确解码该DCI时,则说明该DCI是发送给UE组#1的;同理对于UE组#2的用户,采用RNTI#2对DCI加扰。
例如,基站可以向UE发送下行控制信息#2,指示用于信道估计的第一DMRS的符号的配置,也可以理解为,下行控制信息#2可以指示用于信道估计的第一DMRS的时频资源的位置。
需要说明的是,本申请中,协议可以规定N个比特用于指示N个符号的DMRS是否被采用做信道估计。
(1)单符号DMRS
如果RRC配置的是单符号DMRS时,可以是Type1的单符号DMRS,也可以是Type2的单符号DMRS。如前所述,对于单符号前置DMRS而言,最多可以配置3组附加DMRS,因此,单符号DMRS最多有4个符号。即,本申请中,下行控制信息DCI的长度为4比特,每个比特可以表示对应的符号是否属于第一DMRS。
情况一:RRC配置DMRS的符号数N等于4
作为一个示例,如图8中的(a)所示,假设RRC配置的为单符号DMRS,配置的DMRS的符号有4个。根据表1,RRC可以配置前置DMRS为符号2,附加DMRS分别占用符号5、符号8和符号11。针对UE组(group)#1,当DCI#2指示为1010,如图8中的(b)所示,符号2和符号8上的DMRS属于第一DMRS(也可以理解为,第一DMRS是由符号2和符号8上的DMRS共同组成的),符号5和符号11上既没有数据也不存在DMRS。也就是说,对于UE组#1中的每个UE而言,数据信道估计时,采用的是符号2和符号8上的DMRS;数据解调时,PDSCH的时频资源是根据DCI中的时频资源分配并且扣除符号2、符号5、符号8和符号11上的时频资源后,从而确定传输的数据的时频资源。作为另一个示例,针对UE组#2,当DCI指示为0101,如图8中的(c)所示,符号5和符号11上的DMRS属于第一DMRS(也可以理解为,第一DMRS是由符号5和符号11上的DMRS共同组成的),符号2和符号8上既没有数据也不存在DMRS。也就是说,对于UE组#2中的每个UE而言,数据信道估计采用的是符号5和符号11上的DMRS;数据解调时,PDSCH的时频资源是根据DCI中的时频资源分配并且扣除符号2、符号5、符号8和符号11上的时频资源后,从而确定传输的数据的时频资源。
本实施例中DMRS可以按照符号进行配置,因此,DCI也可以灵活指示。例如,DCI中可以指示为1000,表示数据信道估计采用的是符号2(也可以理解为,第一DMRS为符号2上的DMRS)。也可以理解为,仅仅采用前置DMRS进行信道估计(也可以理解为,第一DMRS为前置DMRS);又例如,DCI可以指示0110,表示数据信道估计采用的是符号5和符号8(也可以理解为,第一DMRS是由符号2和符号8上的DMRS共同 组成的)。也可以理解为,采用部分附加DMRS进行信道估计;再例如,DCI可以指示0111,表示数据信道估计采用的是符号5、符号8和符号11。也可以理解为,采用全部的附加DMRS进行信道估计。又或者,再例如,DCI可以指示1110,表示数据信道估计采用的是符号2、符号5和符号8。也可以理解为,可以采用前置DMRS和部分附加DMRS进行信道估计。
情况二:RRC配置DMRS的符号数N小于4
如果RRC配置的DMRS的符号数N小于4时,本申请中,DCI的比特位数仍然可以是4个比特(因为DCI是UE盲检的,UE需要知道DCI确定的比特长度)。本申请中,协议可以规定N个比特可以用于指示N个符号的DMRS被采用做信道估计的情况;可选的,最后1个比特可以用来指示剩余的符号上是否有数据发送。
作为一个示例,假设N=3时,根据表1,RRC可以配置DMRS为符号2、符号6和符号9。如果DCI指示为1010,则DCI中的前3位“101”表示数据信道估计采用的是符号2和符号9上的DMRS(也可以理解为,第一DMRS是由符号2和符号9上的DMRS共同组成的);最后一位“0”表示未被采用的符号6上不发送数据;如果DCI指示为1011,则DCI中的前3位“101”表示信道估计采用的是符号2和符号9上的DMRS,最后一位“1”表示未被采用的符号6上发送数据。又例如,如果DCI指示为1000,则DCI中的前3位“100”表示数据信道估计采用的是符号2上DMRS;最后一位“0”表示未被采用的符号6和符号9上不发送数据。又例如,如果DCI指示为1001,则DCI中的前3位“100”表示数据信道估计采用的是符号2上DMRS;最后一位“1”表示未被采用的符号6和符号9上可以发送数据。
作为一个示例,假设N=2时,根据表1,RRC可以配置DMRS为符号2、符号7。如果DCI指示为1100,则DCI中的前2位“11”表示数据信道估计采用的是符号2和符号7上的DMRS(也可以理解为,第一DMRS是由符号2和符号7上的DMRS共同组成的);此时,DCI中的后2位“00”可以没有任何意义。如果,DCI指示为1000,则DCI中的前2位“10”表示数据信道估计采用的是符号2上的DMRS;最后一位“0”可以表示未被采用的符号7上不发送数据。如果,DCI指示为1001,则DCI中的前2位“10”表示数据信道估计采用的是符号2上的DMRS;最后一位“0”可以表示未被采用的符号7上发送数据。
情况三:DCI的比特位数根据RRC配置DMRS的符号数确定。
作为一个示例,假设RRC配置DMRS的符号数为N,设置group DCI的第二指示信息的长度为N比特,协议可以规定N个比特可以用于指示N个符号的DMRS被采用做信道估计的情况。
(2)双符号DMRS
如果RRC配置的为双符号DMRS时,可以是Type1的双符号DMRS,也可以是Type2的双符号DMRS。如前所述,对于双符号前置DMRS而言,最多可以配置1组附加DMRS,因此,双符号DMRS最多有2个双符号。即下行控制信息DCI的长度可以为2比特,每个比特可以表示对应的符号是否有DMRS信号。具体操作和单符号DMRS类似。
需要说明的是,双符号DMRS一般均是成对配置的。
作为一个示例,如图9中的(a)所示,假设RRC配置的为双符号DMRS,配置的 DMRS的符号有2个。根据表2,RRC可以配置前置DMRS的双符号为符号2和符号3,附加DMRS的双符号为符号8和符号9。针对UE组(group)#3,当DCI指示为10,如图9中的(b)所示,符号2和符号3上是用于信道估计的DMRS(例如,是第一DMRS),符号8符号9上既没有数据也不存在DMRS。也就是说,对于UE组#3中的每个UE而言,数据信道估计采用的是符号2和符号3上的DMRS;数据解调时,PDSCH的时频资源是根据DCI中的时频资源分配并且扣除符号2、符号3、符号8和符号9上的时频资源后,从而确定传输的数据的时频资源。作为另一个示例,针对UE组#4,当DCI指示为01,如图8中的(c)所示,符号8符号9上是DMRS,符号2和符号3上既没有数据也不存在DMRS。也就是说,对于UE组#4中的每个UE而言,数据信道估计采用的是符号8和符号9上的DMRS;数据解调时,PDSCH的时频资源是根据DCI中的时频资源分配并且扣除符号2、符号3、符号8以及符号9上的时频资源后,从而确定传输的数据的时频资源。
步骤S721,基站根据第二指示信息确定传输的数据的时频资源。
在一种可能的实现方式中,基站可以根据第二指示信息具体确定在哪些时频资源上传输数据。作为一个示例,对于单符号DMRS而言,基站配置的DMRS的符号有4个,分别为符号2、符号5、符号8以及符号11。如果第二指示信息为“1101”时,基站可以在除符号2、符号5的时频资源上传输数据,例如,在符号11上可以传输数据。对于双符号DMRS而言,也是类似的,不再赘述。
步骤S722,基站向UE发送下行数据。
在一种可能的实现方式中,基站可以在PDSCH上向UE发送下行数据。
步骤S730,UE接收基站发送的指示信息#2和指示信息#2,根据指示信息#2和指示信息#2确定第一DMRS的时频资源。
作为一个示例,对于单符号DMRS而言,基站配置的DMRS的符号有4个,分别为符号2、符号5、符号8以及符号11。如果DCI指示为1000时,UE可以确定数据信道估计采用的是符号2上的DMRS,即第一DMRS为符号2上的DMRS。如果DCI指示为0101时,UE可以确定数据信道估计采用的是符号5、符号11上的DMRS,即第一DMRS为符号5符号11上DMRS。
步骤S740,UE采用第一DMRS进行信道估计。
例如,UE根据符号2、符号5上的DMRS进行信道估计时,可以仅采用符号2、符号5上的DMRS进行信道估计,即仅仅能估计出前置DMRS的RE位置上的信道和部分附加DMRS的RE位置上的信道,根据这些RE上的信道扩展出整个RB上的信道。扩展的过程包括插值、滤波等方法。
例如,UE根据符号5、符号11上的DMRS进行信道估计时,可以仅采用符号5、符号11上的DMRS进行信道估计,即仅仅能估计部分附加DMRS的RE位置上的信道,根据这些RE上的信道扩展出整个RB上的信道。扩展的过程包括插值、滤波等方法。
步骤S750,UE确定传输的数据的时频资源的位置。
在一种可能的实施方式中,UE根据指示信息#2确定用于信道估计的DMRS的位置后,还可以根据RRC时频资源分配(resource allocation,RA)可以共同确定传输的数据的时频资源的位置。
作为一个示例,对于单符号DMRS而言,基站配置的DMRS的符号有4个,分别为符号2、符号5、符号8以及符号11。如果DCI指示为1010时,UE在数据解调时,可以确定PDSCH的时频资源是根据DCI中的时频资源分配并且扣除符号2、符号5、符号8和符号11上的时频资源后,从而确定传输的数据的时频资源。如果DCI指示为1000时,UE在数据解调时,可以确定PDSCH的时频资源是根据DCI中的时频资源分配并且扣除符号2、符号5、符号8和符号11上的时频资源后,从而确定传输的数据的时频资源。
需要说明的是,本申请中,步骤的序号并不完全代表各个步骤的执行顺序,在实际操作过程中,基站和终端设备之间的信息交互可以很灵活的实现,本申请中,步骤的序号并未限定各个步骤的执行顺序。
需要说明的是,本申请中的为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一信息和第二信息仅仅是为了区分不同的信息,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c;a和b;a和c;b和c;或a和b和c。其中a,b,c可以是单个,也可以是多个。
可以理解,在本申请中,“如果…时”、“当…时”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
本申请中的“同时”可以理解为在相同的时间点,也可以理解为在一段时间段内,还可以理解为在同一个周期内,具体可以结合上下文进行理解。
根据本申请实施例提供的方法,在不改变现有的信令架构的基础上,使用前置DMRS、采用附加DMRS进行数据信道的估计,采用部分附加DMRS进行信道估计或者采用前置DMRS和部分附加DMRS进行信道估计。增加了正交的DMRS端口数,从而可以使得整个系统可以调度更多的数据流,保障了系统的性能。而且,对于单符号DMRS而言,指示信息为4比特;对于双符号DMRS而言,指示信息为2比特,信令开销小。而且通过DCI的指示,可以灵活采用前置DMRS或者部分附加DMRS等。
以上,结合图3至图9详细说明了本申请实施例提供的指示DMRS方法。下面结合图10和图11介绍本申请实施例提供的指示DMRS装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个节点之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个节点,例如终端设备或者网络设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来 实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备或者终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图10是本申请实施例提供的通信装置100的示意性框图。如图所示,该装置100可以包括:收发单元110和处理单元120。
在一种可能的设计中,该装置100可以是上文方法实施例中的终端设备,也可以是用于实现上文方法实施例中终端设备的功能的芯片。应理解,该装置100可对应于根据本申请实施例的方法400、方法500、方法700中的终端设备,该装置100可以执行本申请实施例的方法400、方法500、方法700中的终端设备所对应的步骤。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
具体的,收发单元用于接收第一指示信息,第一指示信息用于确定解调参考信号DMRS的配置,DMRS的配置包括DMRS占用的时频资源,DMRS占用K个符号;收发单元用于接收第二指示信息,第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,所述第一DMRS占用L个符号,所述L小于K;处理单元用于根据第一指示信息和第二指示信息,确定第一DMRS的时频资源;处理单元用于根据第一DMRS进行信道估计,其中,所述K为大于1的整数,所述L为大于0的整数。
在一些实施例中,处理单元用于根据第一指示信息和第二指示信息确定传输的数据的时频资源,所述数据的时频资源不包括物理下行共享信道上的前置DMRS时频资源。
在一种可能的设计中,该装置100可以是上文方法实施例中的网络设备,也可以是用于实现上文方法实施例中网络设备的功能的芯片。应理解,该装置100可对应于根据本申请实施例的方法400、方法500、方法700中的网络设备,该装置100可以执行本申请实施例的方法400、方法500、方法700中的网络设备所对应的步骤。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
具体的,收发单元用于发送第一指示信息,第一指示信息用于确定解调参考信号DMRS的配置,DMRS的配置包括DMRS占用的时频资源,DMRS占用K个符号;收发单元用于发送第二指示信息,第二指示信息用于确定DMRS中用于信道估计的第一DMRS,第一DMRS占用L个符号,L小于K,其中,K为大于1的整数,L为大于0的整数。
在一些实施例中,处理单元用于确定传输的数据的时频资源,数据的时频资源不包括物理下行共享信道上的所述前置DMRS时频资源;收发单元用于在所述物理下行共享信道上发送所述数据。
图11是本申请实施例提供的通信装置200的示意性框图。如图所示,该装置200包括:至少一个处理器220。该处理器220与存储器耦合,用于执行存储器中存储的指令,以发送信号和/或接收信号。可选地,该装置200还包括存储器230,用于存储指令。可选的,该装置200还包括收发器210,处理器220控制收发器210发送信号和/或接收信号。
应理解,上述处理器220和存储器230可以合成一个处理装置,处理器220用于执行 存储器230中存储的程序代码来实现上述功能。具体实现时,该存储器230也可以集成在处理器220中,或者独立于处理器220。
还应理解,收发器210可以包括收发器(或者称,接收机)和发射器(或者称,发射机)。收发器还可以进一步包括天线,天线的数量可以为一个或多个。收发器210有可以是通信接口或者接口电路。
具体的,该装置200中的收发器210可以对应于装置100中的收发单元110,该装置200中的处理器220可对应于装置200中的处理单元120。
应理解,各收发器处理器执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
图12是本申请提供的网络设备的示意图。下面结合图12对网络设备的结构和功能进行描述。图12是本申请实施例提供的网络设备10的结构示意图。该网络设备12可以是图4中示出的方法400中的基站。如图12所示,该网络设备10包括:收发器1010和处理器1020。
可选地,该收发器1010可以称为远端射频单元(Remote Radio Unit,RRU)、收发单元、收发机、或者收发电路等等。收发器1010可以包括至少一个天线1011和射频单元1012,收发器1010可以用于射频信号的收发以及射频信号与基带信号的转换。
可选地,该网络设备10包括一个或多个基带单元(Baseband Unit,BBU)1020。该基带单元1020包括处理器1022。基带单元1020主要用于进行基带处理,如信道编码,复用,调制,扩频等,以及对基站进行控制。收发器1010与该基带单元1020可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
在一个示例中,基带单元1020可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网,也可以分别支持不同接入制式的无线接入网。基带单元1020包括处理器1022。处理器1022可以用于控制网络设备10执行前文中的结合图4至图9描述的方法实施例中的相应操作。可选地,基带单元1020还可以包括存储器1021,用以存储必要的指令和数据。
图13是本申请提供的终端设备的示意图。下面结合图13对该终端设备的结构和功能进行描述。该终端设备30可以是图4中示出的方法400中的UE。如图13所示,该终端设备30包括处理器31和收发器32。
可选地,收发器32可以包括控制电路和天线,其中,控制电路可用于基带信号与射频信号的转换以及对射频信号的处理,天线可用于收发射频信号。
可选地,该终端设备30还可以包括存储器、输入输出装置等。
处理器31可用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行前文中的结合图4至图9描述的相应操作。存储器主要用于存储软件程序和数据。当终端设备开机后,处理器31可以读取存储器中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟 的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch-link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct ram-bus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品上存储有计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行方法400、方法500、方法700实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行方法400、方法500、方法700实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的装置或设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指 令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络侧设备与终端设备和方法实施例中的网络侧设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所述领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储 在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种指示解调参考信号的方法,其特征在于,包括:
    终端设备接收第一指示信息,所述第一指示信息用于确定解调参考信号DMRS的配置,所述DMRS的配置包括DMRS占用的时频资源,所述DMRS占用K个符号;
    所述终端设备接收第二指示信息,所述第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,所述第一DMRS占用L个符号,所述L小于K;
    所述终端设备根据所述第一指示信息和所述第二指示信息,确定所述第一DMRS的时频资源;
    所述终端设备使用所述第一DMRS进行信道估计,
    其中,所述K为大于1的整数,所述L为大于0的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述DMRS包括一个前置DMRS和至少一个附加DMRS,所述第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,包括:
    所述第二指示信息具体用于确定所述第一DMRS的类型,所述第一DMRS的类型至少包括以下一项:前置DMRS类型、附加DMRS类型。
  3. 根据权利要求1所述的方法,其特征在于,所述DMRS的配置还包括DMRS占用的符号,所述第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,包括:
    所述第二指示信息具体用于确定所述第一DMRS占用的符号的配置。
  4. 根据权利要求3所述的方法,其特征在于,所述DMRS为单符号DMRS,所述第一指示信息用于确定所述DMRS的符号Y的配置,所述Y等于4时,
    所述第二指示信息的比特位数N等于4,所述第二指示信息的N个比特位与Y个所述DMRS的符号一一对应,所述N个比特位中的第i个比特位的比特值对应的第i个符号,用于指示所述第i个符号上对应的所述DMRS是否属于所述第一DMRS,其中,1≤i≤4。
  5. 根据权利要求3所述的方法,其特征在于,所述DMRS为单符号DMRS,所述第一指示信息用于确定所述DMRS的符号Y的配置,所述Y小于4时,
    所述第二指示信息的比特位数N等于4,所述N个比特位中的前Y个比特位与Y个所述DMRS的符号一一对应,所述N个比特位中的前Y个比特位用于指示Y个符号上所对应的DMRS是否属于所述第一DMRS。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一指示信息和所述第二指示信息,确定传输的数据的时频资源,所述数据的时频资源不包括物理下行共享信道上的所述前置DMRS时频资源。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述DMRS的配置至少包括以下一项:DMRS的符号类型的配置、前置DMRS的时频资源的配置以及附加DMRS的时频资源的配置。
  8. 一种指示解调参考信号的方法,其特征在于,包括:
    网络设备发送第一指示信息,所述第一指示信息用于确定解调参考信号DMRS的配置,所述DMRS的配置包括DMRS占用的时频资源,所述DMRS占用K个符号;
    所述网络设备发送第二指示信息,所述第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,所述第一DMRS占用L个符号,所述L小于K,
    其中,所述K为大于1的整数,所述L为大于0的整数。
  9. 根据权利要求8所述的方法,其特征在于,所述DMRS包括一个前置DMRS和至少一个附加DMRS,所述第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,包括:
    所述第二指示信息具体用于确定所述第一DMRS的类型,所述第一DMRS的类型至少包括以下一项:前置DMRS类型、附加DMRS类型。
  10. 根据权利要求8所述的方法,其特征在于,所述DMRS的配置还包括DMRS占用的符号,所述第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,包括:
    所述第二指示信息具体用于确定所述第一DMRS占用的符号的配置。
  11. 根据权利要求10所述的方法,其特征在于,所述DMRS为单符号DMRS,所述第一指示信息用于确定所述DMRS的符号Y的配置,所述Y等于4时,
    所述第二指示信息的比特位数N等于4,所述第二指示信息的N个比特位与Y个所述DMRS的符号一一对应,第i个比特位的比特值对应的第i个符号,用于指示所述第i个符号上对应的所述DMRS是否属于所述第一DMRS,其中,1≤i≤4。
  12. 根据权利要求10所述的方法,其特征在于,所述DMRS为单符号DMRS,所述第一指示信息用于确定所述DMRS的符号Y的配置,所述Y小于4时,
    所述第二指示信息的比特位数N等于4,所述N个比特位中的前Y个比特位与Y个所述DMRS的符号一一对应,所述N个比特位中的前Y个比特位用于指示Y个符号上所对应的DMRS是否属于所述第一DMRS。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定传输的数据的时频资源,所述数据的时频资源不包括物理下行共享信道上的所述前置DMRS时频资源;
    所述网络设备在所述物理下行共享信道上发送所述数据。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,所述DMRS的配置至少包括以下一项:DMRS的符号类型的配置、前置DMRS的时频资源的配置以及附加DMRS的时频资源的配置。
  15. 一种通信装置,其特征在于,包括收发单元和处理单元:
    所述收发单元用于接收第一指示信息,所述第一指示信息用于确定解调参考信号DMRS的配置,所述DMRS的配置包括DMRS占用的时频资源,所述DMRS占用K个符号;
    所述收发单元用于接收第二指示信息,所述第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,所述第一DMRS占用L个符号,所述L小于K;
    所述处理单元用于根据所述第一指示信息和所述第二指示信息,确定所述第一DMRS的时频资源;
    所述处理单元用于根据所述第一DMRS进行信道估计,
    其中,所述K为大于1的整数,所述L为大于0的整数。
  16. 根据权利要求15所述的装置,其特征在于,所述DMRS包括一个前置DMRS和 至少一个附加DMRS,所述第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,包括:
    所述第二指示信息具体用于确定所述第一DMRS的类型,所述第一DMRS的类型至少包括以下一项:前置DMRS类型、附加DMRS类型。
  17. 根据权利要求15所述的装置,其特征在于,所述DMRS的配置还包括DMRS占用的符号,所述第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,包括:
    所述第二指示信息具体用于确定所述第一DMRS占用的符号的配置。
  18. 根据权利要求17所述的装置,其特征在于,所述DMRS为单符号DMRS,所述第一指示信息用于确定所述DMRS的符号Y的配置,所述Y等于4时,
    所述第二指示信息的比特位数N等于4,所述第二指示信息的N个比特位与Y个所述DMRS的符号一一对应,第i个比特位的比特值对应的第i个符号,用于指示所述第i个符号上对应的所述DMRS是否属于所述第一DMRS,其中,1≤i≤4。
  19. 根据权利要求17所述的装置,其特征在于,所述DMRS为单符号DMRS,所述第一指示信息用于确定所述DMRS的符号Y的配置,所述Y小于4时,
    所述第二指示信息的比特位数N等于4,所述N个比特位中的前Y个比特位与Y个所述DMRS的符号一一对应,所述N个比特位中的前Y个比特位用于指示Y个符号上所对应的DMRS是否属于所述第一DMRS。
  20. 根据权利要求15至19中任一项所述的装置,其特征在于,
    所述处理单元用于根据所述第一指示信息和所述第二指示信息确定传输的数据的时频资源,所述数据的时频资源不包括物理下行共享信道上的所述前置DMRS时频资源。
  21. 根据权利要求15至20中任一项所述的装置,其特征在于,所述DMRS的配置至少包括以下一项:DMRS的符号类型的配置、前置DMRS的时频资源的配置以及附加DMRS的时频资源的配置。
  22. 一种通信装置,其特征在于,包括收发单元和处理单元:
    所述收发单元用于发送第一指示信息,所述第一指示信息用于确定解调参考信号DMRS的配置,所述DMRS的配置包括DMRS占用的时频资源,所述DMRS占用K个符号;
    所述收发单元用于发送第二指示信息,所述第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,所述第一DMRS占用L个符号,所述L小于K,
    其中,所述K为大于1的整数,所述L为大于0的整数。
  23. 根据权利要求22所述的装置,其特征在于,所述DMRS包括一个前置DMRS和至少一个附加DMRS,所述第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,包括:
    所述第二指示信息具体用于确定所述第一DMRS的类型,所述第一DMRS的类型至少包括以下一项:前置DMRS类型、附加DMRS类型。
  24. 根据权利要求22所述的装置,其特征在于,所述DMRS的配置还包括DMRS占用的符号,所述第二指示信息用于确定所述DMRS中用于信道估计的第一DMRS,包括:
    所述第二指示信息具体用于确定所述第一DMRS占用的符号的配置。
  25. 根据权利要求24所述的装置,其特征在于,所述DMRS为单符号DMRS,所述 第一指示信息用于确定所述DMRS的符号Y的配置,所述Y等于4时,
    所述第二指示信息的比特位数N等于4,所述第二指示信息的N个比特位与Y个所述DMRS的符号一一对应,第i个比特位的比特值对应的第i个符号,用于指示所述第i个符号上对应的所述DMRS是否属于所述第一DMRS,其中,1≤i≤4。
  26. 根据权利要求24所述的装置,其特征在于,所述DMRS为单符号DMRS,所述第一指示信息用于确定所述DMRS的符号Y的配置,所述Y小于4时,
    所述第二指示信息的比特位数N等于4,所述N个比特位中的前Y个比特位与Y个所述DMRS的符号一一对应,所述N个比特位中的前Y个比特位用于指示Y个符号上所对应的DMRS是否属于所述第一DMRS。
  27. 根据权利要求22至26中任一项所述的装置,其特征在于,
    所述处理单元用于确定传输的数据的时频资源,所述数据的时频资源不包括物理下行共享信道上的所述前置DMRS时频资源;
    所述收发单元用于在所述物理下行共享信道上发送所述数据。
  28. 根据权利要求22至27中任一项所述的装置,其特征在于,所述DMRS的配置至少包括以下一项:DMRS的符号类型的配置、前置DMRS的时频资源的配置以及附加DMRS的时频资源的配置。
  29. 一种计算机可读存储介质,所述计算机可读介质上存储有计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1至7中或8至14中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序,当所述计算机程序被运行时,使得计算机执行如权利要求1至7中或8至14中任一项所述的方法。
PCT/CN2022/097650 2021-06-15 2022-06-08 一种指示解调参考信号的方法和装置 WO2022262620A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110662449.4 2021-06-15
CN202110662449.4A CN115484133A (zh) 2021-06-15 2021-06-15 一种指示解调参考信号的方法和装置

Publications (1)

Publication Number Publication Date
WO2022262620A1 true WO2022262620A1 (zh) 2022-12-22

Family

ID=84420136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097650 WO2022262620A1 (zh) 2021-06-15 2022-06-08 一种指示解调参考信号的方法和装置

Country Status (2)

Country Link
CN (1) CN115484133A (zh)
WO (1) WO2022262620A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118523891A (zh) * 2023-02-17 2024-08-20 华为技术有限公司 能力信息的确定方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109274472A (zh) * 2017-07-17 2019-01-25 华为技术有限公司 数据传输方法、网络设备和终端设备
CN109391402A (zh) * 2017-08-10 2019-02-26 电信科学技术研究院 一种下行控制信息的传输方法、基站、终端及存储介质
US20200052843A1 (en) * 2018-08-09 2020-02-13 FG Innovation Company Limited Method and apparatus for performing sidelink communication in wireless communication systems
CN110958067A (zh) * 2018-09-26 2020-04-03 华为技术有限公司 一种资源配置的方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109274472A (zh) * 2017-07-17 2019-01-25 华为技术有限公司 数据传输方法、网络设备和终端设备
CN109391402A (zh) * 2017-08-10 2019-02-26 电信科学技术研究院 一种下行控制信息的传输方法、基站、终端及存储介质
US20200052843A1 (en) * 2018-08-09 2020-02-13 FG Innovation Company Limited Method and apparatus for performing sidelink communication in wireless communication systems
CN110958067A (zh) * 2018-09-26 2020-04-03 华为技术有限公司 一种资源配置的方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on DMRS design for NoMA with large number of users", 3GPP DRAFT; R1-1801363, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20180226 - 20180302, 17 February 2018 (2018-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051397527 *

Also Published As

Publication number Publication date
CN115484133A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
US10904872B2 (en) Communication method and apparatus, and system
WO2020164404A1 (en) Systems and methodsfor multicast resource allocation
WO2020034889A1 (zh) 信号传输的方法和通信装置
CN108347778B (zh) 通信方法及装置
US20200068610A1 (en) Resource scheduling method, network device, and communications device
EP3955678A1 (en) Data receiving and transmitting method and apparatus
US11540267B2 (en) DCI detection method, PDCCH configuration method, and communications apparatus
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
CN108141841B (zh) 用于无线传输的自适应下行链路控制信息集的系统和方法
EP3726767B1 (en) Data transmission method and device and communication apparatus
WO2018202126A1 (zh) 用于数据传输的方法、终端和网络设备
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2022027308A1 (en) Enhanced configured grants
JP2023552433A (ja) RedCap UEの識別のための方法及び装置
WO2021134437A1 (zh) 传输初始接入配置信息的方法和装置
EP3849266A1 (en) Resource configuration method, apparatus, and system
WO2018196505A1 (zh) 星座图旋转方法及装置
WO2022262620A1 (zh) 一种指示解调参考信号的方法和装置
US11343038B2 (en) Electronic device, wireless communication method and computer readable medium
WO2022027294A1 (en) Mobile devices and methods for implementing enhanced configured grants
WO2022077352A1 (en) Technologies for reliable physical data channel reception in wireless communications
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
WO2022100362A1 (zh) 信号传输的方法和通信装置
WO2024067652A1 (zh) 通信方法、通信装置、芯片及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824100

Country of ref document: EP

Kind code of ref document: A1