WO2019137509A1 - 信号传输方法、相关设备及系统 - Google Patents

信号传输方法、相关设备及系统 Download PDF

Info

Publication number
WO2019137509A1
WO2019137509A1 PCT/CN2019/071493 CN2019071493W WO2019137509A1 WO 2019137509 A1 WO2019137509 A1 WO 2019137509A1 CN 2019071493 W CN2019071493 W CN 2019071493W WO 2019137509 A1 WO2019137509 A1 WO 2019137509A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
tci
pdsch
tci state
time period
Prior art date
Application number
PCT/CN2019/071493
Other languages
English (en)
French (fr)
Inventor
张荻
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019137509A1 publication Critical patent/WO2019137509A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to a signal transmission method, related device, and system.
  • a signal transmission mechanism based on beamforming technology is employed to compensate for the aforementioned loss in signal propagation by a large antenna gain.
  • the beamformed signal may include a broadcast channel, a synchronization signal, and a cell-specific reference signal.
  • the signal is transmitted based on the beamforming technology, once the user moves, the direction of the shaped beam corresponding to the transmission signal may no longer match the position of the user after the movement, and the received signal is frequently interrupted.
  • a channel quality measurement based on beamforming techniques and result reporting is introduced.
  • the UE selects the better N beams by measuring the multiple beams sent by the base station, and reports the better N beam measurement information to the base station.
  • the base station obtains N beam pairs BPL that are better communicated with the UE.
  • the base station uses the N BPLs for data transmission during subsequent UE communication.
  • the present application provides a signal transmission method, related device, and system, which can reliably detect a PDSCH after a link failure and before the network device explicitly indicates which receive beam is used to detect the PDSCH.
  • the present application provides a signal transmission method, which is applied to a terminal side, and the method may include: the terminal device sends link reconfiguration request information to the network device at time n.
  • the terminal device detects the PDSCH according to the first QCL information in the first time period after the n time.
  • the terminal device receives reconfiguration information sent by the network device, wherein the reconfiguration information includes one or more transmission configuration indication TCI states.
  • the terminal device detects the PDSCH according to the QCL information indicated by the first TCI state in a second time period after the n time, wherein the first TCI state is from the reconfiguration information.
  • the present application provides a signal transmission method, which is applied to a network device side, and the method may include: the network device receiving a link reconfiguration request sent by the terminal device at time n.
  • the network device transmits the PDSCH according to the first QCL information in the first time period after the n time.
  • the network device transmits reconfiguration information to the terminal device, wherein the reconfiguration information includes one or more transmission configuration indication TCI states.
  • the network device transmits the PDSCH according to the QCL information indicated by the first TCI state in a second time period after the n time, wherein the first TCI state is from the reconfiguration information.
  • the first QCL information indicates that the first reference signal and the second reference signal satisfy a QCL relationship, wherein the first reference signal is a demodulation reference signal DMRS of the PDSCH, and the second reference signal includes a link weight The downlink reference signal associated with the request information.
  • the end time of the first time period is the time at which the terminal device receives the reconfiguration information; the start time of the second time period is the time when the terminal device receives the reconfiguration information or after.
  • the second time period includes a first sub-time period; wherein the reconfiguration information includes M TCI states configured to detect the PDSCH by using the first RRC signaling ;M is a positive integer greater than or equal to 1.
  • the network device may send the PDSCH according to the QCL information indicated by the second TCI state in the first sub-time period; the second TCI state is from the M PDSCH TCI states; and the first TCI state includes the second TCI state.
  • the terminal device may detect the PDSCH according to the QCL information indicated by the second TCI state in the first sub-time period; the second TCI state is from the M PDSCH TCI states; and the first TCI state includes the second TCI state.
  • the second time period includes a second sub-time period;
  • the reconfiguration information includes K TCI states configured to detect the PDCCH by using the second RRC signaling, K is a positive integer greater than or equal to 1.
  • the network device may send the PDSCH according to the QCL information indicated by the third TCI state in the second sub-period; the third TCI state is from the K TCI states for detecting the PDCCH; and the first TCI state includes the third TCI state.
  • the terminal device may detect the PDSCH according to the QCL information indicated by the third TCI state in the second sub-period; the third TCI state is from the K TCI states for detecting the PDCCH; and the first TCI state includes the third TCI state.
  • the second time period includes a third sub-time period;
  • the reconfiguration information includes X TCIs configured to detect the PDCCH configured by the first MAC-CE signaling State, X is a positive integer, X ⁇ 1.
  • the network device may send the PDSCH according to the QCL information indicated by the fourth TCI state in the third sub-period; the fourth TCI state is from the X TCI states for detecting the PDCCH; and the first TCI state includes the fourth TCI state.
  • the terminal device may detect the PDSCH according to the QCL information indicated by the fourth TCI state in the third sub-time period; the fourth TCI state is from the X TCI states for detecting the PDCCH; and the first TCI state includes the fourth TCI state.
  • the second time period includes a fourth sub-time period
  • the reconfiguration information includes Y TCIs configured to detect the PDSCH by using the second MAC-CE signaling State, Y is a positive integer, Y ⁇ 1.
  • the network device may send the PDSCH according to the QCL information indicated by the fifth TCI state in the fourth sub-time period; the fifth TCI state is from the Y TCI states for detecting the PDSCH; and the first TCI state includes the fifth TCI state.
  • the terminal device detects the PDSCH according to the QCL information indicated by the fifth TCI state in the fourth sub-period; the fifth TCI state is from the Y TCI states for detecting the PDSCH; and the first TCI state includes the fifth TCI state.
  • the reconfiguration information of the second CORESET sent by the network device to the terminal device by using the resource scheduled by the first CORESET or the time-frequency resource location or QCL information of the new CORESET The second CORESET reconfiguration information is reconfiguration information, or the new CORESET QCL information is reconfiguration information.
  • the terminal device receives the reconfiguration information of the second CORESET sent by the network device by using the resource scheduled by the first CORESET or the time-frequency resource location or QCL information of the new CORESET; the reconfiguration information of the second CORESET is reconfiguration information, or The QCL information of the new CORESET is reconfiguration information.
  • the first TCI state includes at least one of the following:
  • the smallest control resource set in the reconfiguration information the TCI state corresponding to the CORESET identifier, the TCI state corresponding to the smallest CORESET identifier associated with the user-specific search space, the TCI state corresponding to the CORESET identifier associated with the common search space, and the link reconfiguration request associated with The TCI state corresponding to the downlink reference signal, the TCI state associated with the synchronization signal block SSB, and the TCI state corresponding to the CORESET scheduling the PDSCH.
  • the terminal device detects the PDSCH according to the QCL information indicated by the first TCI state; when the scheduling delay is less than the preset threshold, and the terminal device does not receive the minimum control resource.
  • the terminal device detects the PDSCH according to the QCL information indicated by the TCI state corresponding to the CORESET in which the PDCCH of the PDSCH is scheduled.
  • the terminal device detects the QCL information indicated by the reconfiguration information corresponding to the minimum control resource set CORESET.
  • the preset threshold is “Threshold-Sched-Offset”.
  • the field of the TCI status of the PDSCH is present in downlink control information DCI signaling.
  • the present application provides a terminal device, which may include multiple function modules or units for performing the signal transmission method provided by the first aspect, or in a possible implementation manner of the first aspect. Any of the provided signal transmission methods.
  • the present application provides a network device, where the network device may include multiple function modules or units for performing the signal transmission method provided by the second aspect, or in a possible implementation manner of the second aspect. Any of the provided signal transmission methods.
  • the present application provides a terminal device for performing the signal transmission method described in the first aspect.
  • the terminal device can include a memory and a processor coupled to the memory, the transceiver, wherein the transceiver is for communicating with other communication devices, such as network devices.
  • the memory is for storing the implementation code of the signal transmission method described in the first aspect
  • the processor is for executing the program code stored in the memory, that is, performing the signal transmission method provided by the first aspect, or any of the possible implementations of the first aspect A method of signal transmission provided.
  • the application provides a network device for performing the signal transmission method described in the second aspect.
  • the terminal device can include a memory and a processor coupled to the memory, the transceiver, wherein the transceiver is for communicating with other communication devices, such as network devices.
  • the memory is for storing the implementation code of the signal transmission method described in the second aspect
  • the processor is configured to execute the program code stored in the memory, that is, to perform the signal transmission method provided by the second aspect, or any of the possible implementations of the second aspect A method of signal transmission provided.
  • a communication system comprising: a terminal device and a network device. among them:
  • the terminal may be the terminal device described in the third aspect or the fifth aspect, or may be the network device described in the fourth aspect or the sixth aspect.
  • a computer readable storage medium is provided, the instructions being stored on a readable storage medium, when executed on a computer, cause the computer to perform the signal transmission method described in the first aspect above.
  • a computer readable storage medium is provided, the instructions being stored on a readable storage medium, when executed on a computer, cause the computer to perform the signal transmission method described in the second aspect above.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the signal transmission method described in the first aspect above.
  • a computer program product comprising instructions for causing a computer to perform the signal transmission method described in the second aspect above when provided on a computer.
  • the application provides an apparatus, the apparatus can include a processor, and one or more interfaces coupled to the processor.
  • the processor can be used to invoke the signal transmission method provided by the first aspect from the memory, or the implementation program of the signal transmission method provided by any one of the possible implementations of the first aspect, and execute the instruction included in the program.
  • the interface can be used to output the processing results of the processor.
  • the application provides an apparatus, the apparatus can include a processor, and one or more interfaces coupled to the processor.
  • the processor can be used to invoke the signal transmission method provided by the second aspect from the memory, or the implementation program of the signal transmission method provided by any one of the possible implementations of the second aspect, and execute the instruction included in the program.
  • the interface can be used to output the processing results of the processor.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by the present application.
  • 2A-2D are schematic diagrams showing several PDCCH transmission scenarios in a multi-beam network according to the present application.
  • FIG. 3 is a schematic diagram of a beam training process involved in the present application.
  • FIG. 5 is a schematic diagram of a hardware architecture of a terminal device according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a hardware architecture of a network device according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a control resource set involved in the present application.
  • FIG. 8A is a schematic flowchart diagram of a signal transmission method provided by the present application.
  • Figure 8B is a schematic diagram of a critical time intercept point in the present application.
  • FIG. 9 is a schematic diagram of detecting PDSCH by using default QCL information provided by the present application.
  • FIG. 10 is another schematic diagram of detecting PDSCH by using default QCL information provided by the present application.
  • FIG. 11 is a schematic diagram of still detecting PDSCH by using default QCL information provided by the present application.
  • FIG. 12 is a schematic diagram of still another method for detecting a PDSCH by using default QCL information provided by the present application.
  • FIG. 13 is a schematic diagram of still another method for detecting a PDSCH by using default QCL information provided by the present application.
  • FIG. 14 is a functional block diagram of a wireless communication system, a terminal, and a network device provided by the present application.
  • FIG. 1 shows a wireless communication system to which the present application relates.
  • the wireless communication system can work in the high frequency band, not limited to the Long Term Evolution (LTE) system, or the fifth generation mobile communication (5th Generation, 5G) system and the new radio (New Radio, NR) System, Machine to Machine (M2M) system, etc.
  • LTE Long Term Evolution
  • 5G fifth generation mobile communication
  • NR New Radio
  • M2M Machine to Machine
  • wireless communication system 100 can include one or more network devices 101, one or more terminals 103, and a core network (not shown). among them:
  • the network device 101 can be a base station, and the base station can be used for communicating with one or more terminals, and can also be used for communicating with one or more base stations having partial terminal functions (such as a macro base station and a micro base station, such as an access point, Communication between).
  • the base station may be a Base Transceiver Station (BTS) in a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) system, or may be an evolved base station in an LTE system (Evolutional Node B). , eNB), and base stations in 5G systems, new air interface (NR) systems.
  • the base station may also be an Access Point (AP), a Transmission Receive Point (TRP), a Central Unit (CU), or other network entity, and may include some of the functions of the above network entities. Or all features.
  • Terminals 103 may be distributed throughout wireless communication system 100, either stationary or mobile.
  • terminal 103 may be a mobile device, a mobile station, a mobile unit, an M2M terminal, a wireless unit, a remote unit, a terminal agent, a mobile client, and the like.
  • the wireless communication system 100 is a multi-beam communication system. among them:
  • the network device 101 can be configured with a large-scale antenna array and utilize beamforming techniques to control the antenna array to form beams of different orientations. In order to cover the entire cell 107, the network device 101 needs to use a plurality of differently directed beams.
  • the network device 101 may sequentially transmit wireless signals (Reference Signals (RSs) and/or Synchronization Signal Blocks (SS blocks)) using different directional beams. It is called Beam scanning.
  • the terminal 103 measures the transmit beam to determine the signal quality of the transmit beam that the terminal 103 can receive. This process is called Beam measurement.
  • the terminal 103 may be configured with an antenna array, or may convert different beams to transmit and receive signals. That is to say, in the wireless communication system 100, both the network device 101 and the terminal 103 may use multiple beams for communication.
  • the manner in which the network device 101 sends the PDSCH to the terminal 103 may be as shown in FIG. 2A-2D:
  • FIG. 2A shows that network device 101 transmits a PDSCH to terminal 103 using a transmit beam (e.g., beam a), and terminal 103 receives the PDSCH using a receive beam (e.g., beam 1).
  • beam a is paired with beam 1.
  • FIG. 2B shows that network device 101 transmits a PDSCH to terminal 103 using one transmit beam (e.g., beam a), and terminal 103 receives the PDSCH using a plurality of receive beams (e.g., beams 1, 3).
  • beam a is paired with beam 1 and beam a and beam 3 are paired.
  • FIG. 2C shows that network device 101 transmits a PDSCH to terminal 103 using a plurality of transmit beams (e.g., beams a, b), and terminal 103 receives PDSCH using a plurality of receive beams (e.g., beam 1, beam 3).
  • beam a is paired with beam 1
  • beam b is paired with beam 3.
  • 2D shows terminal 103 transmitting a PDSCH to terminal 103 using a plurality of transmit beams (e.g., beams a, b), and terminal 103 receives the PDSCH using the same receive beam (e.g., beam 1).
  • beam a is paired with beam 1
  • beam b is paired with beam 1.
  • the four types of PDSCH transmission scenarios shown in FIG. 2A-2D can also be applied to the scenario in which the network device 101 sends the PDSCH to the terminal 103, and details are not described herein again.
  • the transmit and receive beams of the network device may be referred to as a base station beam, including a base station transmit beam (or a base station transmit beam) and a base station receive beam.
  • a network device can have multiple base station transmit beams and multiple base station receive beams.
  • the transceiver beam of the terminal device is referred to as a terminal beam, and includes a terminal transmit beam (or a terminal transmit beam) and a terminal receive beam.
  • a terminal device may have multiple terminal transmit beams, and multiple terminal receive beams.
  • each base station receive beam corresponds to one base station transmit beam.
  • the base station receive beam corresponding to the base station transmit beam means that it has the same directivity.
  • the base station receive beam and its corresponding base station transmit beam may be the same beam, and the two may share the same transceiver.
  • the antenna ports corresponding to the base station receive beams and their corresponding base station transmit beams may be in a Quasi-collocation (QCL) relationship.
  • QCL Quasi-collocation
  • each terminal receiving beam corresponds to one terminal transmitting beam.
  • the terminal receiving beam corresponding to the terminal transmitting beam means: having the same directivity.
  • the terminal receive beam and its corresponding terminal transmit beam may be the same beam, and the two may share the same transceiver.
  • the antenna ports corresponding to the terminal receiving beams and their corresponding terminal transmitting beams may be in a QCL relationship.
  • the beam can be divided into a transmit beam and a receive beam of the network device, and a transmit beam and a receive beam of the terminal device.
  • the transmitting beam of the network device is used to describe the beam-forming information of the transmitting device of the network device
  • the receiving beam of the base station is used to describe the beam-forming information of the receiving device of the network device.
  • the transmitting beam of the terminal device is used to describe the beam-forming information of the transmitting device of the terminal device. Describe the beam-forming information of the receiving side of the terminal device. That is, the beam is used to describe beam-specific information.
  • the beam may correspond to a time resource or a space resource.
  • the beam may also correspond to a reference signal resource (eg, a beamformed reference signal resource), or beam-specific information.
  • a reference signal resource eg, a beamformed reference signal resource
  • the beam may also correspond to information related to a reference signal resource of the network device, where the reference signal may be a channel state information reference signal (CSI-RS), a synchronization signal block (SS) Block), demodulation reference signal (DMRS), phase tracking reference signal (PTRS), tracking reference signal (TRS), etc.
  • the information associated with the reference signal resource may be a reference signal resource identifier , or QCL information, etc.
  • the reference signal resource identifier corresponds to a transceiver beam pair previously established based on the reference signal resource measurement, and the terminal can infer the beam information by using the reference signal resource index.
  • the TCI status may be configured for the PDSCH or may be configured for the PDCCH to indicate the QCL information. If the TCI state is configured for the PDSCH, the QCL information indicates that the DMRS of the PDSCH and the reference signal indicated by the TCI state satisfy the QCL relationship. If the TCI state is configured for the PDCCH, the QCL information indicates that the DMRS of the PDCCH and the reference signal indicated by the TCI state satisfy the QCL relationship.
  • the PDSCH detects the PDSCH by using the QCL information indicated by the TCI state, which means that the DMRS of the PDSCH and the reference signal indicated by the TCI state satisfy the QCL relationship or the DMRS of the PDSCH and the DMRS of the PDSCH satisfy the QCL relationship.
  • the paired base station transmit beam and the terminal receive beam shown in Figures 2A-2D, and the terminal transmit beam and the base station receive beam are paired by a beam training procedure.
  • the beam training process may include:
  • BPL Optimal N beam pair
  • a BPL includes a base station transmit beam and a terminal receive beam
  • a BPL includes a terminal transmit beam and a base station receive beam
  • the network device-based beam scanning for the terminal device enables selection of the base station transmit beam and/or the terminal receive beam, and the network device implements selection of the terminal transmit beam and/or the base station receive beam based on the terminal device's beam scan. As shown in (a) and (b) of Figure 3.
  • the transmit beam which may be a base station transmit beam or a terminal transmit beam.
  • the transmit beam is a base station transmit beam, as shown in (e) of FIG. 3, the base station sends a reference signal to the UE through different transmit beams, and the UE receives the reference transmitted by the base station through different transmit beams through the same receive beam. And determining an optimal transmit beam of the base station based on the received signal, and then feeding back the optimal transmit beam of the base station to the base station, so that the base station updates the transmit beam.
  • the transmit beam is a terminal transmit beam, as shown in (d) of FIG.
  • the UE transmits a reference signal to the base station through different transmit beams, and the base station receives the reference transmitted by the UE through different transmit beams through the same receive beam. And determining an optimal transmit beam of the UE based on the received signal, and then feeding back the optimal transmit beam of the UE to the UE, so that the UE updates the transmit beam.
  • the process of transmitting the reference signal by using different transmit beams may be referred to as beam scanning, and the process of determining the optimal transmit beam based on the received signal may be referred to as beam matching.
  • Update of the receive beam which may be a base station receive beam or a terminal receive beam.
  • the receiving beam is a base station receiving beam
  • the UE transmits a reference signal to the base station through the same transmitting beam, and the base station receives the reference signal sent by the UE by using different receiving beams, and then based on the received signal.
  • the optimal receive beam of the base station is determined to update the receive beam of the base station.
  • the receiving beam is the receiving beam of the UE, as shown in (c) of FIG. 3
  • the base station sends a reference signal to the UE through the same transmitting beam, and the UE receives the reference signal sent by the base station by using different receiving beams, and then receives the reference signal.
  • the signal determines the optimal receive beam of the UE to update the receive beam of the UE.
  • both the base station transmit beam and the terminal receive beam may dynamically change.
  • the optimal receive beam determined by the terminal device based on the received signal may include multiple.
  • the terminal device may The information of the multiple receive beams is fed back to the network device, and the network device can indicate the terminal receive beam to the terminal device by sending the beam indication information to the terminal device.
  • the terminal device adopts the beamforming of the analog domain, the terminal device can accurately determine the terminal receiving beam based on the beam indication information sent by the network device, thereby saving the beam scanning time of the terminal device and achieving the power saving effect.
  • the communication link failure described in the present application refers to when the network device sends signaling and/or data to the terminal device by using a certain transmit beam, because the transmit beam is blocked, the signal cannot continue to be transmitted, thereby causing communication interruption, and the terminal The device cannot receive the signaling and/or data sent by the network device.
  • the network device In order to detect and recover the link failure, the network device needs to configure the terminal with a reference signal resource set for beam failure detection (Beam-Failure-Detection-RS-ResourceConfig) and a reference signal resource for restoring the link between the terminal device and the network device.
  • a candidate beam RS list also known as a set of candidate reference signal resources.
  • the RS in the beam failure detection RS set and the demodulation reference signal of the downlink physical control channel PDCCH satisfy the QCL relationship or use the same transmission configuration indicator (TCI) state as the PDCCH, when part or all of the set
  • TCI transmission configuration indicator
  • the channel quality information (such as RSPR, CQI, BLER, SINR, SNR, etc.) of the reference signal is below a predetermined threshold, it is determined that the communication link is faulty.
  • the predetermined threshold may be the same as the threshold of the radio link failure OOS.
  • a communication link failure may also be referred to as a communication link failure, a beam failure, a beam failure, a link failure, a link failure, a communication failure, a communication failure, and the like.
  • the terminal After the communication link is faulty, the terminal needs to select a reference signal resource whose channel quality information (such as RSRP, CQI, etc.) is higher than a predetermined threshold from the candidate reference signal resource set, and is used to restore the communication link.
  • the predetermined threshold may be configured by a network device.
  • the Beam-Failure-Detection-RS-ResourceConfig is used for the terminal to detect the channel quality of a certain transmit beam of the network device, and the transmit beam is a beam used when the network device communicates with the terminal.
  • the candidate beam RS list is used by the terminal to initiate a link reconfiguration reference signal set after determining that the transmission beam of the network device is faulty.
  • the link reconfiguration may also be referred to as restoring the network device to communicate with the terminal device, and the link failure recovery.
  • the names of the reference signal resource set for beam failure detection and the reference signal resource set for restoring the terminal device and the network device link may have other names, which are not specifically described in this application. limited.
  • the link reconfiguration request information may be referred to as a communication link failure (or a communication link failure, a beam failure, a beam failure, a link failure, a link failure, a communication failure, a communication failure, etc.) recovery request.
  • Information, re-allocation request information may be referred to as restoring the network device to communicate with the terminal device, and the link failure recovery.
  • the network device receives the PDCCH/PDSCH by indicating which receive beam the terminal uses by notifying the QCL relationship of the PDCCH/PDSCH.
  • RRC radio resource control
  • MAC media access control
  • CE control element
  • the PDSCH dynamically signals the QSCH relationship (TCI table, also called TCI list) of the PDSCH through RRC, MAC-CE, and downlink control information (DCI), or notifies the TCI status of the PDSCH through RRC and DCI signaling.
  • TCI table also called TCI list
  • FIG. 4 shows a link failure detection and a method of restoring a link in the prior art. As shown in FIG. 4, the method includes the following steps.
  • the terminal device performs beam failure detection and performs new beam identification.
  • the identification of the new beam described in the present application means that after the communication link failure occurs, the terminal needs to select a reference signal resource whose channel quality information (such as RSRP, CQI, etc.) is higher than a predetermined threshold from the set of candidate reference signal resources. Used to restore the communication link.
  • a reference signal resource whose channel quality information (such as RSRP, CQI, etc.) is higher than a predetermined threshold from the set of candidate reference signal resources. Used to restore the communication link.
  • communication failure occurs, that is, a beam pair (Bam) for transmitting and receiving the PDCCH.
  • Communication failure occurs when the quality degradation is low enough.
  • the beam failure is considered when the quality of the reference signal used for beam failure detection is below a predetermined threshold.
  • the reasons for the communication link failure include, but are not limited to, obstacle occlusion during communication, and poor diffracting capability under the high frequency channel, causing the current serving beam to be blocked and the signal to continue to be transmitted.
  • the signal quality deterioration may be that the channel quality information (such as RSPR, CQI, etc.) is lower than a predetermined threshold.
  • the terminal After a link fault occurs, the terminal continues to detect the downlink reference signal (or becomes a candidate reference signal set) sent by the network device, and measures the signal quality of the downlink reference signal to identify (or select) the channel/signal quality.
  • a good downlink reference signal identifies a downlink reference signal with good channel/signal quality, that is, a downlink beam with good channel quality.
  • a downlink beam with good channel quality means that the channel quality information (such as RSPR, CQI, etc.) of the downlink reference signal sent by the base station is higher than a predetermined threshold, or the terminal continuously measures the channel quality of the downlink reference signal sent by multiple base stations.
  • the channel quality of a downlink reference signal is the best among the multiple downlink reference signals, and the beam corresponding to the downlink reference signal with the best channel quality is the identified beam with good channel quality.
  • the network device may use multiple transmit beams to separately transmit downlink reference signals, and the terminal uses the downlink reference signals respectively sent by the multiple transmit beams of the network device to measure the channel quality of the multiple transmit beams, thereby selecting a channel quality.
  • Good downlink reference signal is equivalent to the channel/signal quality good downlink reference signal.
  • the selected base station since the selected base station has good transmit beam quality, it indicates that the terminal receive beam corresponding to the base station transmit beam is also good in quality. Similarly, it also indicates that the terminal transmit beam corresponding to the receiving beam of the terminal is also of good quality.
  • the terminal device sends a link reconfiguration request to the network device, where the sent link reconfiguration request is used to initiate link reconfiguration.
  • the link reconfiguration request is used to initiate link reconfiguration, that is, to indicate that the link fails or the communication fails.
  • the terminal device identifies a good quality downlink beam in step S101, wherein the downlink beam includes a transmit beam of the base station and a receive beam of the terminal device.
  • the terminal receiving beam has a corresponding relationship with the terminal transmitting beam.
  • the terminal device may use the newly identified terminal receiving beam to send the link reconfiguration request.
  • the terminal device needs to use other transmit beams to send the link reconfiguration request information.
  • each receive beam of the terminal corresponds to one transmit beam of the terminal.
  • the terminal receiving beam corresponding to the terminal transmitting beam means: having the same directivity.
  • the terminal receive beam and its corresponding terminal transmit beam may be the same beam, and the two may share the same transceiver.
  • the antenna ports corresponding to the terminal receiving beams and their corresponding terminal transmitting beams may be quasi-co-location (QCL).
  • the quasi co-location means that at least one of the following parameters is the same or has a certain correspondence: an angle of arrival AoA (angle of arrival), a main incident angle Dominant AoA, an average incident angle, and a power angle spectrum of the incident angle (power angular spectrum) (PAS) of AoA), angle of departure AoD (angle of departure), main exit angle, average exit angle, power angle spectrum of exit angle, terminal transmit beamforming, terminal receive beamforming, spatial channel correlation, base station transmit beamforming Base station receive beamforming, average channel gain, average channel delay, delay spread delay spread, Doppler spread, etc.
  • the network device receives the terminal device link reconfiguration request, and the network device sends the link reconfiguration response information to the terminal.
  • the terminal device receives the link reconfiguration response information sent by the network device, where the terminal device performs beam measurement.
  • the terminal device receives the downlink reference signal sent by the network device by using different transmit beams, thereby measuring channel quality of different transmit beams.
  • the network device also configures a dedicated CORESET (dedicate CORESET) for the terminal device.
  • the dedicate CORESET is used for downlink communication after a link failure, and is mainly used for a network device to send a link reconfiguration response information.
  • S105 The terminal device performs beam quality reporting, and the network device receives the beam quality reported by the terminal device.
  • the terminal device measures channel quality of a plurality of base station transmit beams, and selects a better Q (Q is a positive integer greater than or equal to 1) base station transmit beams to perform beam channel quality reporting. That is, the terminal device measures the channel quality of the plurality of downlink reference signals sent by the base station, and selects a better Q downlink reference signal for reporting.
  • the base station transmitting beam with better channel quality means that the channel quality information (such as RSPR, CQI, etc.) of the transmitting beam of the base station is higher than a predetermined threshold, or the terminal device continuously measures the channel quality of the transmitting beams of the plurality of base stations, wherein The channel quality of a base station transmit beam is the best of the multiple base station transmit beams.
  • the network device may reconfigure the terminal device by using radio resource control (RRC) signaling, MAC CE signaling, or downlink control information (DCI).
  • RRC radio resource control
  • MAC CE MAC CE
  • DCI downlink control information
  • the QCL information of the PDSCH is detected. That is to say, the network device will explicitly indicate which receiving beam the terminal device should use to detect the PDSCH.
  • the terminal 200 may include: one or more terminal processors 201, a memory 202, a communication interface 203, a receiver 205, a transmitter 206, a coupler 207, an antenna 208, a terminal interface 202, and an input and output module. (including audio input and output module 210, key input module 211, display 212, etc.). These components can be connected by bus 204 or other means, and FIG. 5 is exemplified by a bus connection. among them:
  • Communication interface 203 can be used by terminal 200 to communicate with other communication devices, such as network devices.
  • the network device may be the network device 300 shown in FIG. 5.
  • the communication interface 203 may be a Long Term Evolution (LTE) (4G) communication interface, or may be a 5G or a future communication interface of a new air interface.
  • LTE Long Term Evolution
  • 5G Fifth Generation
  • the terminal 200 may be configured with a wired communication interface 203, such as a Local Access Network (LAN) interface.
  • LAN Local Access Network
  • the transmitter 206 can be used to perform transmission processing on signals output by the terminal processor 201, such as by beamforming.
  • Receiver 205 can be used to receive processing of the mobile communication signals received by antenna 208, such as by directional reception.
  • the transmitter 305/receiver 306 may include a beamforming controller for multiplying the transmit/receive signals by weight vectors W1, . . . , Wm, directional transmit/receive of the control signals.
  • the base station beam switching referred to in this application can be implemented by the beamforming controller in transmitter 305/receiver 306 changing the transmit/receive signal by a weight vector.
  • transmitter 206 and receiver 205 can be viewed as a wireless modem.
  • the number of the transmitter 206 and the receiver 205 may each be one or more.
  • the antenna 208 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • the coupler 207 is configured to divide the mobile communication signal received by the antenna 208 into multiple channels and distribute it to a plurality of receivers 205.
  • the terminal 200 may also include other communication components such as a GPS module, a Bluetooth module, a Wireless Fidelity (Wi-Fi) module, and the like. Not limited to the above-described wireless communication signals, the terminal 200 can also support other wireless communication signals such as satellite signals, short-wave signals, and the like. Not limited to wireless communication, the terminal 200 may also be configured with a wired network interface (such as a LAN interface) to support wired communication.
  • a wired network interface such as a LAN interface
  • the input and output module can be used to implement the interaction between the terminal 200 and the terminal/external environment, and can include the audio input and output module 210, the key input module 211, the display 212, and the like. Specifically, the input and output module may further include: a camera, a touch screen, a sensor, and the like. The input and output modules communicate with the terminal processor 201 through the terminal interface 209.
  • Memory 202 is coupled to terminal processor 201 for storing various software programs and/or sets of instructions.
  • memory 202 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 202 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 202 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the memory 202 can also store a terminal interface program, which can realistically display the content of the application through a graphical operation interface, and receive control operations of the application through the input control such as menus, dialog boxes, and keys. .
  • the memory 202 can be used to store an implementation of the signal transmission method provided by one or more embodiments of the present application on the terminal 200 side.
  • the signal transmission method provided by one or more embodiments of the present application please refer to the subsequent embodiments.
  • Terminal processor 201 can be used to read and execute computer readable instructions. Specifically, the terminal processor 201 can be used to invoke a program stored in the memory 212, such as the implementation of the signal transmission method provided by one or more embodiments of the present application on the terminal 200 side, and execute the instructions contained in the program.
  • the terminal 200 can be the terminal 103 in the wireless communication system 100 shown in FIG. 1, and can be implemented as a mobile device, a mobile station, a mobile unit, a wireless unit, a remote unit, and a terminal agent. , mobile client and more.
  • the terminal 200 shown in FIG. 5 is only one implementation manner of the embodiment of the present application. In an actual application, the terminal 200 may further include more or less components, which are not limited herein.
  • FIG. 6 illustrates a network device 300 provided by some embodiments of the present application.
  • network device 300 can include one or more network device processors 301, memory 302, communication interface 303, transmitter 305, receiver 306, coupler 307, and antenna 308. These components can be connected via bus 304 or other types, and FIG. 6 is exemplified by a bus connection. among them:
  • Communication interface 303 can be used by network device 300 to communicate with other communication devices, such as terminal devices or other network devices.
  • the terminal device may be the terminal 200 shown in FIG. 4.
  • the communication interface 303 may be a Long Term Evolution (LTE) (4G) communication interface, or may be a 5G or a future communication interface of a new air interface.
  • LTE Long Term Evolution
  • the network device 300 may also be configured with a wired communication interface 303 to support wired communication.
  • the backhaul link between one network device 300 and other network devices 300 may be a wired communication connection.
  • Transmitter 305 can be used to perform transmission processing on signals output by network device processor 301, such as by beamforming.
  • Receiver 306 can be used to receive processing of the mobile communication signals received by antenna 308, such as by beamforming.
  • the transmitter 305/receiver 306 may include a beamforming controller for multiplying the transmit/receive signal by a weight vector W'1, ..., W'm, the orientation of the control signal Transmit/receive.
  • the base station beam switching referred to in this application can be implemented by the beamforming controller in transmitter 305/receiver 306 changing the transmit/receive signal by a weight vector.
  • transmitter 305 and receiver 306 can be viewed as a wireless modem.
  • the number of the transmitter 305 and the receiver 306 may each be one or more.
  • the antenna 308 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • Coupler 307 can be used to divide the mobile pass signal into multiple channels and distribute it to multiple receivers 306.
  • Memory 302 is coupled to network device processor 301 for storing various software programs and/or sets of instructions.
  • memory 302 may include high speed random access memory, and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 302 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as uCOS, VxWorks, or RTLinux.
  • the memory 302 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the network device processor 301 can be used to perform wireless channel management, implement call and communication link establishment and teardown, and provide cell handover control and the like for terminals in the control area.
  • the network device processor 301 may include: an Administration Module/Communication Module (AM/CM) (a center for voice exchange and information exchange), and a Basic Module (BM) (for Complete call processing, signaling processing, radio resource management, radio link management and circuit maintenance functions), code conversion and sub-multiplexer (TCSM) (for multiplexing demultiplexing and code conversion functions) )and many more.
  • AM/CM Administration Module/Communication Module
  • BM Basic Module
  • TCSM code conversion and sub-multiplexer
  • the network device processor 301 can be used to read and execute computer readable instructions. Specifically, the network device processor 301 can be used to invoke a program stored in the memory 302, for example, the implementation of the signal transmission method provided by one or more embodiments of the present application on the network device 300 side, and execute the instructions included in the program. .
  • the network device 300 can be the network device 101 in the wireless communication system 100 shown in FIG. 1, and can be implemented as a base transceiver station, a wireless transceiver, a basic service set (BSS), and an extended service set (ESS). , NodeB, eNodeB, access point or TRP, etc.
  • the network device 300 shown in FIG. 6 is only one implementation of the embodiment of the present application. In actual applications, the network device 300 may further include more or fewer components, which are not limited herein.
  • the present application provides a signal transmission method.
  • the QCL information may include at least one of a beam group index number of the reference signal, a resource index number of the reference signal, a port number of the reference signal, and a port group number of the reference signal.
  • the beam group index number of the reference signal is equivalent to a resource set index number of the reference signal.
  • the resource index number of the reference signal may be a relative index number based on a plurality of resource index number sets. For example, if the terminal reports the absolute resource index numbers ⁇ 1, 5, 7, 9 ⁇ of the four reference signals, the relative resource index number of the reference signal is ⁇ 0, 1, 2, 3 ⁇ based on the reported result of the terminal. Any one of them.
  • the relative resource index number 0 corresponds to the resource index number 1 of the reference signal reported by the terminal
  • the relative resource index number 1 corresponds to the resource index number 5 of the reference signal reported by the terminal
  • the relative resource index number 2 corresponds to the reference signal reported by the terminal.
  • the resource index number 7 and the relative resource index number 3 correspond to the resource index number 9 of the reference signal reported by the terminal.
  • the network device may indicate that one or more of a Demodulation Reference Signal (DMRS) of the PDSCH or the PDCCH and a plurality of reference signal resources previously reported by the terminal satisfy the QCL relationship, such as
  • the reference signal may be a Channel State Information Reference Signal (CSI-RS).
  • CSI-RS Channel State Information Reference Signal
  • each of the reported CSI-RS resource indexes corresponds to a transceiver beam pair that was previously established based on the CSI-RS resource measurement.
  • the received beam information of the two reference signals or channels satisfying the QCL relationship is the same, so that based on the reference signal resource index, the terminal can infer the receive beam receiving the PDSCH or PDCCH.
  • the reference signal involved in the above may be a CSI-RS, or an SS block, or other reference signals. The specific type of the reference signal is not limited in the embodiment of the present application.
  • the QCL information may also include some spatial characteristic parameters, such as an Azimuth angle of Departure (AoD), a Zenith angle of Departure (ZoD), and an Azimuth angle spread.
  • Azimuth angle of Departure Azimuth angle of Departure
  • ZoD Zenith angle of Departure
  • Azimuth angle spread of Departure ZSD
  • angle of arrival related parameters Azimuth angle of Arrival
  • ZoA vertical angle of departure
  • Zenith angle of Arrival referred to as ZoA
  • ASA Azimuth angle spread of Arrival
  • ZSA Zenith angle spread of Arrival
  • the QCL information may further include a spatial Rx parameter.
  • the QCL information includes but is not limited to at least one of the following parameters: delay spread, Doppler spread, Doppler shift, and average. Gain and average delay.
  • the spatial characteristic parameter included in the QCL may also be other parameters than the foregoing parameters, which are not limited herein.
  • the receive beam of the modulation reference signal (DMRS) of the current data is the same as one of the M transmit/receive beam pairs based on the CSI-RS measurement reported by the terminal.
  • the terminal selects a plurality of the CSI-RSs of the plurality of beams sent by the network device, for example, four beams, and reports the four beam measurement information to the network device.
  • the beam measurement information that is, the beam status information (BSI)
  • BSI includes the reference signal resource index and the reference signal received power (RSRP) of the beam.
  • the QCL sent by the network device to the terminal indicates that the third CSI-RS of the four CSI-RS-based transmit/receive beam pairs reported by the terminal satisfies the QCL relationship, and the terminal adopts the receive beam receiving network corresponding to the third CSI-RS.
  • PDSCH delivered by the device indicates that the third CSI-RS of the four CSI-RS-based transmit/receive beam pairs reported by the terminal satisfies the QCL relationship, and the terminal adopts the receive beam receiving network corresponding to the third CSI-RS.
  • a CORESET is a time-frequency resource within the control region.
  • the first four time domain symbols of the 14 time domain symbols are used as the control region, but only a part of the resources in the first four time domain symbols may be defined as resources corresponding to a certain CORESET.
  • a CORESET corresponds to a group of users (such as UE1, UE2, UE3, etc.).
  • the physical downlink control channel (PDCCH) of this group of users is sent on this CORESET.
  • Each user has a search space on a CORESET whose resources are less than or equal to the resources of the CORESET.
  • a user can correspond to multiple CORESETs.
  • the Numerology associated with these CORESETs can be the same or different.
  • the numerology here can include subcarrier spacing and cyclic prefix (CP) length.
  • FIG. 8A is a general flow of a signal transmission method provided by the present application.
  • This application mainly discusses how the terminal device detects the PDSCH in two time periods after the link fails. These two time periods are after the terminal device sends a link reconfiguration request to the network device, and before the network device re-instructs which receive beam is used to detect the PDSCH.
  • the two time periods include: a first time period and a first time period, wherein the end time of the first time period is when the terminal device receives the reconfiguration information, and the start time of the second time period is that the terminal device receives the heavy When distributing information.
  • the signal transmission method provided by the present application may include:
  • the terminal device sends a link reconfiguration request to the network device at time n.
  • the link reconfiguration request is used to initiate link reconfiguration.
  • the time at which the link reconfiguration request is transmitted is the time n.
  • the terminal transmits the link reconfiguration request by using the newly identified good quality base station transmit beam and/or terminal receive beam.
  • the terminal transmits the link reconfiguration request by using the newly identified good quality base station transmit beam and/or terminal receive beam.
  • the terminal device detects the PDSCH according to the first QCL information in a first time period after the n time.
  • the first QCL information may indicate that the first reference signal and the second reference signal satisfy a QCL relationship.
  • the first reference signal (DM-RS) is used to demodulate the PDSCH.
  • the second reference signal may include a downlink reference signal associated with the link reconfiguration request.
  • the downlink reference signal associated with the link reconfiguration request information refers to the downlink reference signal with good channel quality identified by the terminal device in step S401.
  • which/or several transmit beams for example, beam 2 are used by the terminal device to transmit the link reconfiguration request information, and which one of the transmit beams (beam 2) corresponding to the receive beam (beam 2) is used.
  • Receive PDSCH which/or several transmit beams (for example, beam 2) are used by the terminal device to transmit the link reconfiguration request information, and which one of the transmit beams (beam 2) corresponding to the receive beam (beam 2) is used.
  • the second reference signal can also be implemented as follows:
  • the second reference signal may include a reference signal that the terminal device receives after the link fails and before the transmission of the link reconfiguration request information, the channel quality is higher than the first threshold.
  • the second reference signal may include a reference signal with the best channel quality among the reference signals whose channel quality is higher than the first threshold after the link fails and before the link reconfiguration request information is sent.
  • the two cases are that the terminal device can recognize the new beam after detecting that the downlink beamforming link of the network device fails and before the terminal device sends the link reconfiguration request information. That is, the network device periodically sends the downlink reference signal. After the terminal device detects the downlink beam link failure/failure of the current communication of the network device, the terminal device measures the channel quality of the downlink reference signal sent by the network device, thereby identifying the channel. A reference signal with a quality higher than the first threshold. Further, the PDSCH transmitted by the network device is received by the receiving beam with the reference signal whose channel quality is higher than the first threshold, that is, the DMRS in the PDSCH and the reference signal are assumed to satisfy the QCL relationship.
  • the QCL relationship is satisfied, which spatial reception parameter (for example, beam 2) receives the reference signal whose channel quality is higher than the first threshold, and which spatial reception parameter (beam 2) is used to receive the PDSCH sent by the network device.
  • the terminal device detects the downlink beam-forming link failure/failure of the current communication of the network device, the terminal device measures the channel quality of the downlink reference signal sent by the network device, thereby identifying that the channel quality is higher than the first threshold. The best reference signal for channel quality.
  • the PDSCH transmitted by the network device is received by using the receive beam with the best reference signal of the channel quality, that is, the DMRS in the PDSCH and the reference signal are assumed to satisfy the QCL relationship.
  • satisfying the QCL relationship refers to which receiving beam (beam 2) received by the terminal device uses the best reference signal of the channel quality, and which receiving beam (beam 2) is used to receive the PDSCH transmitted by the network device.
  • the downlink reference signal with the best channel quality means that the terminal device measures the reference signal with the best channel quality among the plurality of downlink reference signals.
  • the second reference signal may include a reference signal that the terminal device receives the channel quality in the first time period that is higher than the first threshold.
  • the second reference signal may include a reference signal with the best channel quality among the reference signals whose channel quality is higher than the first threshold received by the terminal device in the first time period.
  • the two cases are that the terminal device can train a new beam within a first time period after the terminal device sends the link reconfiguration request information. That is, after receiving the link reconfiguration request information sent by the terminal device, the network device sends a downlink reference signal, and the terminal device measures the channel quality of the downlink reference signal sent by the network device, thereby identifying that the channel quality is higher than the first threshold. Reference signal. Further, the PDSCH transmitted by the network device is received by the receiving beam with the reference signal whose channel quality is higher than the first threshold, that is, the DMRS in the PDSCH and the reference signal are assumed to satisfy the QCL relationship.
  • satisfying the QCL relationship refers to which receive beam (beam 2) received by the terminal device using which receive beam (for example, beam 2) is higher than the first threshold, and which receive beam (beam 2) is used to receive the PDSCH transmitted by the network device.
  • the terminal device measures the channel quality of the downlink reference signal sent by the network device, thereby identifying a reference signal with the best channel quality among the reference signals whose channel quality is higher than the first threshold.
  • the PDSCH transmitted by the network device is received by using the receive beam with the best reference signal of the channel quality, that is, the DMRS in the PDSCH and the reference signal are assumed to satisfy the QCL relationship.
  • satisfying the QCL relationship refers to which receiving beam (beam 2) received by the terminal device uses the best reference signal of the channel quality, and which receiving beam (beam 2) is used to receive the PDSCH transmitted by the network device.
  • the downlink reference signal with the best channel quality means that the terminal device measures the reference signal with the best channel quality among the plurality of downlink reference signals.
  • the terminal device receives reconfiguration information sent by the network device.
  • the reconfiguration information is a TCI table reconfigured by the network device or a candidate state called TCI, and the TCItable includes one or more TCI states.
  • a TCI status indicates a QCL message.
  • the network device needs to reconfigure the TCI table according to the beam measurement report reported by the terminal device.
  • the network device reconfigures M TCI states, where the M TCI states correspond to downlink reference signals associated with M good base station transmit beams.
  • the TCI status is used to indicate which/or which receiving beams are used to receive the PDSCH, which is used by the base station to transmit the downlink reference signal associated with the base station transmit beam corresponding to the TCI state received by the terminal device.
  • the reconfigured TCI table can be associated with a previous CORESET, ie the network device reconfigures the TCI table for the previous CORESET.
  • the reconfigured TCI table can also be associated with a new CORESET, and the previous CORESET is no longer available.
  • the previous CORESET is a set of control resources for data scheduling allocated by the network device for the terminal device before the link fails.
  • the terminal device detects the PDSCH according to the first TCI state in a second time period after the n time, where the first TCI state is from the reconfiguration information.
  • the first TCI state from the reconfiguration information means that the first TCI state is one or more TCI states in the reconfiguration information.
  • the QCL information indicated by the first TCI state may indicate that the third reference signal and the fourth reference signal satisfy the QCL relationship.
  • a third reference signal (DM-RS) is used to demodulate the PDSCH.
  • the fourth reference signal may be a downlink reference signal associated with a good base station transmit beam indicated in the beam measurement report sent by the terminal device to the network device.
  • the terminal device detects that the PDSCH according to the QCL information indicated by the first TCI state refers to which/or which receiving beams are used by the terminal device to receive the PDSCH. That is to say, the PDSCH and the fourth reference signal satisfy the QCL relationship, or the DMRS of the PDSCH and the fourth reference signal satisfy the QCL relationship. That is to say, the PDSCH is received using the same spatial Rx parameter as the fourth reference signal.
  • FIG. 8B exemplarily shows the first time period and the second time period in the present application.
  • the end time of the first time period may be when the terminal device receives the reconfiguration information
  • the start time of the second time period may be when the terminal device receives the reconfiguration information.
  • the start time of the second time period may also be after the terminal device receives the reconfiguration information.
  • the reconfiguration information is the TCI table (referred to as the new TCI table) for network device reconfiguration.
  • the new TCI table is configured by the network device according to the beam measurement report reported by the terminal device, and is reliable. Therefore, the first TCI state from the candidate QCL information is reliable, and it is also reliable for the terminal device to detect the PDSCH according to the first TCI state.
  • the reconfiguration information may be a TCI state configured for different signaling for the PDSCH or the PDCCH.
  • the reconfiguration information may be a TCI state in which RRC signaling is configured for the PDSCH.
  • the reconfiguration information may be a TCI state in which RRC signaling is configured for the PDCCH.
  • the reconfiguration information may be a TCI state in which the MAC CE signaling is configured for the PDSCH.
  • the reconfiguration information may be a TCI state configured by the MAC CE signaling for the PDCCH.
  • the different time refers to a time when transmission/reception signaling (such as first RRC signaling/second RRC signaling/second MAC CE signaling/first MAC CE signaling). That is to say, a plurality of situations can occur at the beginning of the second time period.
  • transmission/reception signaling such as first RRC signaling/second RRC signaling/second MAC CE signaling/first MAC CE signaling. That is to say, a plurality of situations can occur at the beginning of the second time period.
  • the time at which the terminal device receives signaling may also be referred to as a time intercept point.
  • the start time of the second time period is a time when the terminal device receives the first RRC signaling.
  • the end time of the first time period is the time when the terminal device receives the first RRC signaling.
  • the first RRC signaling is configured to detect M (M is a positive integer greater than or equal to 1) TCI states of the PDSCH. That is to say, part1 in Fig. 9 is the first time period.
  • the QCL information used by each part is as follows:
  • the starting moment of the part1 may be a time when the terminal device sends a link reconfiguration request to the network device or four slots after the link reconfiguration request is sent.
  • the terminal device may detect the PDSCH using the first QCL information.
  • the terminal device may detect the PDSCH using the first QCL information. For details, refer to S202 in the embodiment of FIG. 7, and details are not described herein again.
  • Part2 After the terminal device receives the first RRC signaling, the terminal device receives the second RRC signaling.
  • the first RRC signaling is configured to detect M (M is a positive integer greater than or equal to 1) TCI states of the PDSCH.
  • the reconfiguration information sent by the network device to the terminal device may include the M TCI states.
  • the terminal device may detect the PDSCH by using the QCL information indicated by the second TCI status.
  • the second TCI state is one or more of the M TCI states.
  • Part3 After the terminal device receives the second RRC signaling, the terminal device receives the first MAC CE signaling.
  • the second RRC signaling is configured to detect K (K is a positive integer greater than or equal to 1) TCI states of the PDCCH.
  • the reconfiguration information sent by the network device to the terminal device may include the K TCI states.
  • the terminal device may detect the PDSCH by using the QCL information indicated by the third TCI status.
  • the third TCI state is one or more of the K TCI states.
  • the part 4 is: after the terminal device receives the first MAC CE signaling, before the terminal device receives the second MAC CE signaling.
  • the first MAC CE signaling is configured to detect X (X is a positive integer greater than or equal to 1) TCI states of the PDCCH.
  • the reconfiguration information sent by the network device to the terminal device may include the X TCI states.
  • the terminal device may detect the PDSCH by using the QCL information indicated by the fourth TCI status.
  • the fourth TCI state is one or more of the X TCI states.
  • Part 5 After the terminal device receives the second MAC CE signaling, the terminal device receives the first DCI signaling.
  • the second MAC CE signaling is configured to detect Y (Y is a positive integer greater than or equal to 1) TCI states of the PDSCH.
  • the reconfiguration information sent by the network device to the terminal device may include the Y TCI states.
  • the terminal device may detect the PDSCH by using the QCL information indicated by the fifth TCI status.
  • the fifth TCI state is one or more of the T TCI states.
  • the terminal device detects the PDSCH using the QCL information determined in the prior art. For example, when the scheduling delay is less than the predetermined threshold, the terminal device adopts the QCL information based on the default TCI state, and the default TCI state corresponds to the TCI state configured for the lowest CORESET ID. When the scheduling delay is greater than the predetermined threshold, the terminal device adopts the The QSCH information indicated by a DCI signaling detects the PDSCH.
  • the scheduling delay is a delay of the terminal device receiving the DCI and the corresponding PDSCH scheduled by the DCI.
  • the time period in which the second TCI state is adopted may be referred to as a first sub-period
  • the time period in which the third TCI state is adopted may be referred to as a second sub-period
  • the time period in which the fourth TCI state is adopted may be used.
  • the time period in which the fifth TCI state is employed may be referred to as a fourth sub-period.
  • the second time period may include at least one of the following: a first sub-period, a second sub-period, a third sub-period, and a fourth sub-period.
  • the first TCI state in the application when the second time period includes the first sub-time period, includes: a second TCI status.
  • the first TCI state in the present application includes: a third TCI status.
  • the first TCI state in the present application includes: a fourth TCI state.
  • the first TCI state in the present application includes: a fifth TCI state.
  • the TCI state adopted in each part starting from part 2 can be extended to the time when the terminal device receives the first DCI signaling or any time intercept point before the moment.
  • the TCI state (ie, the second TCI state) adopted in the part 2 may be extended to the time when the terminal device receives the first DCI signaling or any time intercept point before the moment.
  • the first sub-period includes part 2 in FIG.
  • the default TCI state (ie, the second TCI state) adopted in the part 2 is extended to the time when the terminal device receives the first DCI signaling or any time intercept point before the moment, and the first sub-period can also be used. Further includes the part after part 2 in FIG. 9, such as part3, part4, and part5.
  • the termination time of the first sub-time period may include at least one of: a moment when the terminal device receives the second RRC signaling, a moment when the terminal device receives the first MAC CE signaling, and a terminal device receives the second MAC The time of the CE signaling, the time when the terminal device receives the first DCI signaling.
  • FIG. 9 only exemplarily shows the timing of each signaling. Not limited to FIG. 9, the signaling timing may be different.
  • the second MAC CE signaling may be before the first MAC CE signaling, that is, the part 5 may be before the part 4.
  • the second MACCE signaling may not be needed, and part 5 does not exist at this time.
  • N is the sequence length of the TCI field in the DCI signaling, that is, the TCI field contains N b bits.
  • K the first MACCE command is not needed, and part4 does not exist at this time.
  • the terminal device uses the first RRC signaling to reconfigure one or more of the TCI states of the PDSCH.
  • the QCL information indicated by the TCI status detects the PDSCH.
  • the newly configured TCI status indicates that the QCL information is more than the QCL information used in the first time period. it is good.
  • the start time of the second time period is a time when the terminal device receives the second RRC signaling.
  • the end time of the first time period is the time when the terminal device receives the second RRC signaling.
  • the second RRC signaling is configured to detect K (K is a positive integer greater than or equal to 1) TCI states of the PDCCH. That is to say, part1 in Fig. 10 is the first time period.
  • the QCL information used by each part is as follows:
  • the starting moment of the part1 may be a time when the terminal device sends a link reconfiguration request to the network device or four slots after the link reconfiguration request is sent.
  • the terminal device may detect the PDSCH using the first QCL information.
  • the terminal device may detect the PDSCH using the first QCL information. For details, refer to S202 in the embodiment of FIG. 7, and details are not described herein again.
  • Part2 After the terminal device receives the second RRC signaling, the terminal device receives the first MAC CE signaling.
  • the second RRC signaling is configured to detect K (K is a positive integer greater than or equal to 1) TCI states of the PDCCH.
  • the reconfiguration information sent by the network device to the terminal device may include the K TCI states.
  • the terminal device may detect the PDSCH by using the QCL information indicated by the third TCI status.
  • the third TCI state is one or more of the K TCI states.
  • the part 3 is: after the terminal device receives the first MAC CE signaling, before the terminal device receives the second MAC CE signaling.
  • the first MAC CE signaling is configured to detect X (X is a positive integer greater than or equal to 1) TCI states of the PDCCH.
  • the reconfiguration information sent by the network device to the terminal device may include the X TCI states.
  • the terminal device may detect the PDSCH by using the QCL information indicated by the fourth TCI status.
  • the fourth TCI state is one or more of the X TCI states.
  • Part4 After the terminal device receives the second MAC CE signaling, the terminal device receives the first DCI signaling.
  • the second MAC CE signaling is configured to detect Y (Y is a positive integer greater than or equal to 1) TCI states of the PDSCH.
  • the reconfiguration information sent by the network device to the terminal device may include the Y TCI states.
  • the terminal device may detect the PDSCH by using the QCL information indicated by the fifth TCI status.
  • the fifth TCI state is one or more of the T TCI states.
  • the terminal device detects the PDSCH using the QCL information determined in the prior art. For example, when the scheduling delay is less than the predetermined threshold, the terminal device adopts the QCL information based on the default TCI state, and the default TCI state corresponds to the TCI state configured for the lowest CORESET ID. When the scheduling delay is greater than the predetermined threshold, the terminal device adopts the The QSCH information indicated by a DCI signaling detects the PDSCH.
  • the time period in which the third TCI state is adopted may be referred to as a second sub-period
  • the time period in which the fourth TCI state is adopted may be referred to as a third sub-period
  • the time in which the fifth TCI state is adopted may be used.
  • the segment is called the fourth sub-period.
  • the second time period may include at least one of the following: a second sub-time period, a third sub-time period, and a fourth sub-time period.
  • the first TCI state in the application includes: a third TCI status.
  • the first TCI state in the present application includes: a fourth TCI state.
  • the first TCI state in the present application includes: a fifth TCI state.
  • the TCI state adopted in each part from the part 2 can be extended to the time when the terminal device receives the first DCI signaling or any time intercept point before the moment.
  • the TCI state (ie, the third TCI state) adopted in the part 2 may be extended to the time when the terminal device receives the first DCI signaling or any time intercept point before the moment.
  • the second sub-period includes part 2 in FIG.
  • the TCI state (ie, the third TCI state) adopted in the part 2 is extended to the time when the terminal device receives the first DCI signaling or any time intercept point before the moment, and the second sub-period may further Includes the parts after part2 in Figure 10, such as part3, part4.
  • the termination time of the second sub-time period may include at least one of: a moment when the terminal device receives the first MAC CE signaling, a moment when the terminal device receives the second MAC CE signaling, and the terminal device receives the first The moment of DCI signaling.
  • Figure 10 only exemplarily shows the timing of carrying individual signaling. Not limited to FIG. 10, the signaling timing may be different.
  • the second MAC CE signaling may be before the first MAC CE signaling, that is, the part 4 may be before the part 3.
  • the second MAC CE signaling may not be needed, and part 4 does not exist at this time.
  • N is the sequence length of the TCI field in the DCI signaling, that is, the TCI field contains N b bits.
  • K the first MAC CE is not needed, and part3 does not exist at this time.
  • the terminal device uses the second RRC signaling to reconfigure one or more of the TCI states for the PDCCH.
  • the QCI information indicated by the TCI state detects the PDSCH.
  • the reconfigured TCI state is the TCI state newly configured for the PDCCH after the link is restored, the newly configured TCI state indicates the QCL information is greater than the QCL information used in the first time period. Better performance.
  • the performance of the QCL information indicated by the TCI state of the second RRC signaling configuration is more accurate. Furthermore, since it is a TCI state configured for the PDCCH, its robustness is better.
  • the start time of the second time period is the time when the terminal device receives the first MAC CE signaling.
  • the end time of the first time period is the time when the terminal device receives the first MAC CE signaling.
  • the first MAC CE signaling configuration is used to detect X (X is a positive integer greater than or equal to 1) TCI states of the PDCCH. That is to say, part1 in Fig. 11 is the first time period.
  • the QCL information used by each part is as follows:
  • Part1 Before the terminal device receives the first MAC CE signaling time.
  • the starting moment of the part1 may be a time when the terminal device sends a link reconfiguration request to the network device or four slots after the link reconfiguration request is sent.
  • the terminal device may detect the PDSCH using the first QCL information.
  • the terminal device may detect the PDSCH using the first QCL information. For details, refer to S202 in the embodiment of FIG. 7, and details are not described herein again.
  • Part2 After the terminal device receives the first MAC CE signaling, the terminal device receives the second MAC CE signaling.
  • the first MAC CE signaling is configured to detect X (X is a positive integer greater than or equal to 1) TCI states of the PDCCH.
  • the reconfiguration information sent by the network device to the terminal device may include the X TCI states.
  • the terminal device may detect the PDSCH by using the QCL information indicated by the fourth TCI status.
  • the fourth TCI state is one or more of the X TCI states.
  • Part3 After the terminal device receives the second MAC CE signaling, the terminal device receives the first DCI signaling.
  • the second MAC CE signaling is configured to detect Y (Y is a positive integer greater than or equal to 1) TCI states of the PDSCH.
  • the reconfiguration information sent by the network device to the terminal device may include the Y TCI states.
  • the terminal device may detect the PDSCH by using the QCL information indicated by the fifth TCI status.
  • the fifth TCI state is one or more of the T TCI states.
  • the terminal device detects the PDSCH using the QCL information determined in the prior art. For example, when the scheduling delay is less than the predetermined threshold, the terminal device adopts the QCL information based on the default TCI state, and the default TCI state corresponds to the TCI state configured for the lowest CORESET ID. When the scheduling delay is greater than the predetermined threshold, the terminal device adopts the The QSCH information indicated by a DCI signaling detects the PDSCH.
  • the time period in which the fourth TCI state is adopted may be referred to as a third sub-period, and the time period in which the fifth TCI state is adopted may be referred to as a fourth sub-period.
  • the second time period may include at least one of the following: a third sub-period, and a fourth sub-period.
  • the first TCI state in the application includes: a fourth TCI status.
  • the first TCI state in the present application includes: a fifth TCI state.
  • the default TCI state adopted in each part starting from part 2 can be extended to the time when the terminal device receives the first DCI signaling or any time intercept point before the moment.
  • the default TCI state (ie, the fourth TCI state) adopted in the part 2 may be extended to the time when the terminal device receives the first DCI signaling or any time intercept point before the moment.
  • the third sub-period includes part 2 in FIG.
  • the default TCI state (ie, the fourth TCI state) adopted in the part 2 is extended to the time when the terminal device receives the first DCI signaling or any time intercept point before the moment, and the third sub-time period can also be used. Further includes the part after part 2 in FIG. 11, such as part3.
  • the termination time of the third sub-time period may include at least one of the following: a moment when the terminal device receives the second MAC CE signaling, and a moment when the terminal device receives the first DCI signaling.
  • Fig. 11 only exemplarily shows the timing of carrying individual signaling. Not limited to FIG. 11, the signaling timing may be different.
  • the second MAC CE signaling may be before the first MAC CE signaling, that is, part3 may be before part 2.
  • the second MAC CE signaling may not be needed, and part 3 does not exist at this time.
  • N is the sequence length of the TCI field in the DCI signaling, that is, the TCI field contains N b bits.
  • K the first MAC CE is not needed, and part2 does not exist at this time.
  • the terminal device uses the first MAC CE signaling to reconfigure the PDCCH in the TCI state.
  • the QSCH information indicated by one or more TCI states detects the PDSCH.
  • the reconfigured TCI state is the TCI state newly configured for the PDCCH after the link is restored, the newly configured TCI state indicates the QCL information is smaller than the QCL used in the first time period. Information, its performance is better.
  • the first MAC CE signaling activates one or more of the TCI states of the second RRC signaling configuration, and the indicated QCL information is used to detect the PDCCH, which is more accurate and more robust.
  • the start time of the second time period is a time when the terminal device receives the second MAC CE signaling.
  • the end time of the first time period is the time when the terminal device receives the second MAC CE signaling.
  • the second MAC CE signaling is configured to detect Y (Y is a positive integer greater than or equal to 1) TCI states of the PDSCH. That is to say, part1 in Fig. 12 is the first time period.
  • the QCL information adopted by each part is as follows:
  • Part1 Before the terminal device receives the second MAC CE signaling moment.
  • the starting moment of the part1 may be a moment when the terminal device sends a link reconfiguration request to the network device.
  • the terminal device may detect the PDSCH using the first QCL information.
  • the terminal device may detect the PDSCH using the first QCL information. For details, refer to S202 in the embodiment of FIG. 7, and details are not described herein again.
  • Part2 After the terminal device receives the second MAC CE signaling, the terminal device receives the first DCI signaling.
  • the second MAC CE signaling is configured to detect Y (Y is a positive integer greater than or equal to 1) TCI states of the PDSCH.
  • the reconfiguration information sent by the network device to the terminal device may include the Y TCI states.
  • the terminal device may detect the PDSCH by using the QCL information indicated by the fifth TCI status.
  • the fifth TCI state is one or more of the T TCI states.
  • the terminal device detects the PDSCH using the QCL information determined in the prior art. For example, when the scheduling delay is less than the predetermined threshold, the terminal device adopts the QCL information based on the default TCI state, and the default TCI state corresponds to the TCI state configured for the lowest CORESET ID. When the scheduling delay is greater than the predetermined threshold, the terminal device adopts the The QSCH information indicated by a DCI signaling detects the PDSCH.
  • the time period in which the fifth TCI state is adopted may be referred to as a fourth sub-period.
  • the fourth sub-period is part 2 in FIG.
  • the termination time of the fourth sub-time period may be the time when the terminal device receives the first DCI signaling.
  • the second time period may include: a fourth sub-time period.
  • the first TCI state may include: a fifth TCI state.
  • the second MAC CE signaling may be referred to as the second MAC CE signaling
  • the first DCI signaling may be referred to as the first DCI signaling
  • the terminal device uses the second MAC CE signaling to reconfigure the PDSCH in the TCI state.
  • the QSCH information indicated by one or more TCI states detects the PDSCH.
  • the reconfigured TCI state is the TCI state newly configured for the PDCCH after the link is restored, the newly configured TCI state indicates the QCL information is smaller than the QCL used in the first time period. Information, its performance is better.
  • the second MAC CE signaling activates one or more of the TCI states of the first RRC signaling configuration, and the indicated QCL information is candidate information for detecting the PDSCH, which is more accurate.
  • the end time of the first time period is the time when the terminal device receives the first DCI signaling. That is to say, part1 in Fig. 13 is the first time period.
  • the QCL information adopted by each part is as follows:
  • the starting moment of the part1 may be a moment when the terminal device sends a link reconfiguration request to the network device.
  • the terminal device may detect the PDSCH using the first QCL information.
  • the terminal device may detect the PDSCH using the first QCL information. For details, refer to S202 in the embodiment of FIG. 7, and details are not described herein again.
  • the terminal device detects the PDSCH using the QCL information determined in the prior art. For example, when the scheduling delay is less than the predetermined threshold, the terminal device adopts the QCL information based on the default TCI state, and the default TCI state corresponds to the TCI state configured for the lowest CORESET ID. When the scheduling delay is greater than the predetermined threshold, the terminal device adopts the The QSCH information indicated by a DCI signaling detects the PDSCH.
  • the fifth embodiment does not involve the second time period.
  • the first QCL information is used to detect the PDSCH.
  • the second MAC CE signaling may be referred to as the second MAC CE signaling
  • the first DCI signaling may be referred to as the first DCI signaling
  • the first TCI state may include at least one of the following: the smallest control resource set coreset in the candidate QCL information identifies the corresponding QCL information, and the smallest coreset associated with the user-specific search space in the candidate QCL information.
  • the Identify the corresponding QCL information (the scenario without the public beam uses this mode, the throughput is better), the QCL information corresponding to the coreset identifier associated with the common search space in the candidate QCL information (the common beam is wider, the coverage is better), and the link
  • the QCL information corresponding to the reference signal associated with the reconfiguration request, the QCL information corresponding to the synchronization signal block SSB (link failure does not occur, the SSB for communicating with the base station may be adopted), the CORESET of the PDCCH for scheduling the PDSCH, or the QCL corresponding to the PDCCH information.
  • the network device configures one or more CORESET resources for the terminal device, and configures a corresponding TCI state for each CORESET resource, and the TCI state is used to indicate QCL information.
  • the network device also configures a search space for the terminal device. In the prior art, a search space is associated with a CORESET.
  • the smallest control resource set corresponding to the QRESET information of the CORESET identifier means that the CORESET with the smallest ID among the plurality of CORESETs configured by the base station for the terminal corresponds to a TCI state, the state is used to indicate the QCL information of the CORESET, and the second QCL information may be The QCL information. Since the minimum CORESET ID is always present, the UE can detect the PDSCH using the QCL information.
  • the plurality of CORESETs configured for the terminal device by the network device may include a CSS (common search space) and a USS (UE-specific search space).
  • the second QCL information may be the QCL information corresponding to the CORESET corresponding to the CSS.
  • the second QCL information may be For the QCL information corresponding to the lowest CORESET ID of all CORESETs corresponding to the CSS, the advantage is that the QCL information corresponding to the CSS is more robust and well covered.
  • the second QCL information may also be the QCL information corresponding to the CORESET corresponding to the USS, and the benefit is better performance.
  • the second QCL information may be the QCL information corresponding to the CORESET corresponding to the USS.
  • the second QCL information may be the USS corresponding.
  • the QCL information corresponding to the lowest CORESET ID in all CORESETs has the advantage of using the QCL information corresponding to the USS.
  • the second QCL information may be the QCL information corresponding to the CORESET corresponding to the CSS.
  • the second QCL information may be the CSS corresponding.
  • the QCL information corresponding to the lowest CORESET ID in all CORESETs has the advantage that the QCL information corresponding to the CSS is more robust and well covered.
  • the second QCL may also be QCL information for detecting the PDCCH.
  • the present application also provides a method for detecting CORESET.
  • the network device sends the reconfiguration information of the previous CORESET (that is, the TCI table reconfigured by the network device to the previous CORESET) or the new CORESET time-frequency resource location or the QCL information by using the resource scheduled by the dedicate CORESET.
  • the dedicate CORESET can be referred to as a first CORESET
  • the previous CORESET can be referred to as a second CORESET.
  • the reconfiguration information of the second CORESET may be reconfiguration information sent by the network device to the terminal device, and the QCL information of the new CORESET may also be sent to the terminal device for the network device.
  • the wireless communication system 10 includes a terminal 400 and a network device 500.
  • the wireless communication system 10 can be the wireless communication system 100 shown in FIG.
  • the terminal 400 may be the terminal device 103 in the wireless communication system 100 shown in FIG. 1.
  • Network device 500 may be network device 101 in wireless communication system 100 shown in FIG. The functional units respectively included in the terminal 400 and the network device 500 are described below.
  • the terminal 400 may include a receiving unit 401 and a transmitting unit 403. among them:
  • the sending unit 403 can be configured to send link reconfiguration request information to the network device at time n.
  • the receiving unit 401 is configured to detect the PDSCH according to the first QCL information in a first time period after the n time; the first QCL information indicates that the first reference signal and the second reference signal satisfy a QCL relationship, where the first reference signal is a PDSCH
  • the reference signal DMRS is demodulated, and the second reference signal includes a downlink reference signal associated with the link reconfiguration request information.
  • the receiving unit 401 is further configured to receive reconfiguration information sent by the network device, where the reconfiguration information includes one or more transmission configuration indication TCI states.
  • the receiving unit 401 is further configured to detect the PDSCH according to the QCL information indicated by the first TCI state in a second time period after the n time, wherein the first TCI state is from reconfiguration information.
  • the end time of the first time period is a time when the terminal device receives the reconfiguration information
  • the start time of the second time period is a time when the terminal device receives the reconfiguration information or after.
  • the second time period includes a first sub-period; wherein the reconfiguration information includes M TCI states configured to detect PDSCH by first RRC signaling; M is positive greater than or equal to 1. Integer.
  • the receiving unit 401 is specifically configured to detect the PDSCH according to the QCL information indicated by the second TCI state in the first sub-period; the second TCI state is from the M PDSCH TCI states; and the first TCI state includes the second TCI state.
  • the second time period includes a second sub-time period; the reconfiguration information includes K TCI states configured to detect the PDCCH configured by the second RRC signaling, where K is a positive integer greater than or equal to .
  • the receiving unit 401 may be specifically configured to: in the second sub-period, detect the PDSCH according to the QLC information indicated by the third TCI state; the third TCI state is from the K TCI states used to detect the PDCCH; and the first TCI state includes the third TCI state. .
  • the second time period includes a third sub-time period;
  • the reconfiguration information includes X TCI states configured to detect the PDCCH configured by the first MAC-CE signaling, where X is a positive integer, X ⁇ 1 .
  • the receiving unit 401 may be specifically configured to: in the third sub-period, detect the PDSCH according to the QLC information indicated by the fourth TCI state; the fourth TCI state is from the X TCI states used to detect the PDCCH; and the first TCI state includes the fourth TCI state. .
  • the second time period includes a fourth sub-time period
  • the reconfiguration information includes Y TCI states configured to detect the PDSCH configured by the second MAC-CE signaling, where Y is a positive integer, Y ⁇ 1 .
  • the receiving unit 401 may be specifically configured to: in the fourth sub-time period, detect the PDSCH according to the QCL information indicated by the fifth TCI state; the fifth TCI state is from the Y TCI states for detecting the PDSCH; and the first TCI state includes the fifth TCI state. .
  • the receiving unit 401 is further configured to receive reconfiguration information of the second CORESET sent by the network device by using the resource scheduled by the first CORESET or time-frequency resource location or QCL information of the new CORESET;
  • the reconfiguration information is reconfiguration information, or the QCL information of the new CORESET is reconfiguration information.
  • the network device 500 may include a transmitting unit 501 and a receiving unit 503. among them:
  • the receiving unit 503 is configured to receive a link reconfiguration request sent by the terminal device at time n.
  • the sending unit 501 is configured to send the PDSCH according to the first QCL information in a first time period after the n time; the first QCL information indicates that the first reference signal and the second reference signal satisfy a QCL relationship, where the first reference signal is a PDSCH
  • the reference signal DMRS is demodulated, and the second reference signal includes a downlink reference signal associated with the link reconfiguration request information.
  • the sending unit 501 is further configured to send reconfiguration information to the terminal device, where the reconfiguration information includes one or more transmission configuration indication TCI states.
  • the sending unit 501 is further configured to send the PDSCH according to the QCL information indicated by the first TCI state in a second time period after the n time, wherein the first TCI state is from reconfiguration information.
  • the end time of the first time period is a time when the terminal device receives the reconfiguration information
  • the start time of the second time period is a time when the terminal device receives the reconfiguration information or after.
  • the second time period includes a first sub-period; wherein the reconfiguration information includes M TCI states configured to detect PDSCH by first RRC signaling; M is positive greater than or equal to 1. Integer.
  • the sending unit 501 is specifically configured to send, according to the QCI information indicated by the second TCI status, the PDSCH in the first sub-period; the second TCI state is from the M PDSCH TCI states; and the first TCI state includes the second TCI state.
  • the second time period includes a second sub-time period; the reconfiguration information includes K TCI states configured to detect the PDCCH configured by the second RRC signaling, where K is a positive integer greater than or equal to .
  • the sending unit 501 may be specifically configured to send, according to the QCI information indicated by the third TCI status, the PDSCH in the second sub-period; the third TCI state is from the K TCI states for detecting the PDCCH; and the first TCI state includes the third TCI state. .
  • the second time period includes a third sub-time period;
  • the reconfiguration information includes X TCI states configured to detect the PDCCH configured by the first MAC-CE signaling, where X is a positive integer, X ⁇ 1 .
  • the sending unit 501 may be specifically configured to send, according to the QCI information indicated by the fourth TCI state, the PDSCH in the third sub-period; the fourth TCI state is from the X TCI states used to detect the PDCCH; and the first TCI state includes the fourth TCI state. .
  • the second time period includes a fourth sub-time period
  • the reconfiguration information includes Y TCI states configured to detect the PDSCH configured by the second MAC-CE signaling, where Y is a positive integer, Y ⁇ 1 .
  • the sending unit 501 is specifically configured to send, according to the QCI information indicated by the fifth TCI state, the PDSCH in the fourth sub-time period; the fifth TCI state is from the Y TCI states for detecting the PDSCH; and the first TCI state includes the fifth TCI state. .
  • the sending unit 501 is further configured to use the re-distribution information of the second CORESET or the time-frequency resource location or QCL information of the new CORESET sent by the first CORESET scheduled resource to the terminal device; the second CORESET
  • the reconfiguration information is reconfiguration information, or the QCL information of the new CORESET is reconfiguration information.
  • implementing the technical solution provided by the present application can reliably detect the PDSCH after a link failure and before the network device explicitly indicates which receiving beam is used to detect the PDSCH.
  • the steps of the method or algorithm described in connection with the disclosure of the embodiments of the present invention may be implemented in a hardware manner, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in RAM, flash memory, ROM, Erasable Programmable ROM (EPROM), and electrically erasable programmable read only memory (Electrically EPROM).
  • EEPROM electrically erasable programmable read only memory
  • registers hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a transceiver or relay device.
  • the processor and the storage medium may also exist as discrete components in the radio access network device or the
  • the functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息传输方法、相关设备及系统,该方法包括:终端设备在n时刻向网络设备发送链路重配请求信息;终端设备在n时刻后的第一时间段内根据第一QCL信息检测PDSCH;第一QCL信息指示第一参考信号和第二参考信号满足QCL关系;终端设备在n时刻后的第二时间段内根据第一TCI状态指示的QCL信息检测PDSCH,其中第一TCI状态来自网络设备发送的重配信息。第二时间段的起始时刻为终端设备接收重配信息的时刻或之后。上述方案可实现在链路故障之后且在网络设备重新明确指示检测PDSCH的QCL信息之前,终端设备可靠的检测PDSCH。

Description

信号传输方法、相关设备及系统 技术领域
本申请涉及无线通信技术领域,尤其涉及一种信号传输方法、相关设备及系统。
背景技术
随着智能终端特别是视频业务的出现,当前的频谱资源已经难以满足用户对容量需求的爆炸式增长。具有更大的可用带宽的高频频段特别是毫米波频段,日益成为下一代通信系统的候选频段。然而,与现有LTE等系统的工作频段不同的是,高频频段将导致更大的路径损耗,特别是大气、植被等因素的影响更进一步加剧了无线传播的损耗。
为克服上述较大的传播损耗,一种基于波束赋形技术的信号传输机制被采用,以通过较大的天线增益来补偿信号传播过程中的上述损耗。其中,波束赋形的信号可包括广播信道,同步信号,以及小区特定的参考信号等。当信号基于波束赋形技术进行传输时,一旦用户发生移动,可能出现传输信号对应的赋形波束的方向不再匹配移动后的用户位置,从而接收信号频繁中断的问题。为跟踪信号传输过程中的赋形波束变化,一种基于波束赋形技术的信道质量测量及结果上报被引入。UE通过对基站发送的多个波束进行测量选择其较优的N个波束,并将较优的N个波束测量信息上报给基站。通过波束训练过程,基站获得和UE通信较优的N个波束对BPL。基站在后续和UE通信过程中会采用这N个BPL进行数据传输。
但是由于在通信过程中存在遮挡,高频信道下的绕射能力差,导致当前服务的波束被阻挡,信号无法继续传输。为了防止在出现波束被阻挡的情况下,通信被突然中段,需要引入相应的机制对波束质量进行检测,并在发生阻挡的情况下快速恢复链路。在链路故障发生后且在链路恢复之前,终端如何检测物理下行共享信道(Physical Downlink Shared Channel,PDSCH)是目前需要解决的技术问题。
发明内容
本申请提供了一种信号传输方法、相关设备及系统,可以实现在链路故障之后且在网络设备重新明确指示使用哪个接收波束来检测PDSCH之前,终端设备可靠的检测PDSCH。
第一方面,本申请提供了一种信号传输方法,应用于终端侧,该方法可包括:终端设备在n时刻向网络设备发送链路重配请求信息。终端设备在n时刻后的第一时间段内根据第一QCL信息检测PDSCH。终端设备接收网络设备发送的重配信息,其中重配信息包括一个或多个传输配置指示TCI状态。终端设备在n时刻后的第二时间段内根据第一TCI状态指示的QCL信息检测PDSCH,其中第一TCI状态来自重配信息。
第二方面,本申请提供了一种信号传输方法,应用于网络设备侧,该方法可包括:网络设备接收终端设备在n时刻发送的链路重配请求。网络设备在n时刻后的第一时间段内根据第一QCL信息发送PDSCH。网络设备向终端设备发送重配信息,其中重配信息包括一个或多个传输配置指示TCI状态。网络设备在n时刻后的第二时间段内根据第一TCI状态指示的QCL信息发送PDSCH,其中第一TCI状态来自重配信息。
结合第一方面和第二方面,第一QCL信息指示第一参考信号和第二参考信号满足QCL 关系,其中,第一参考信号是PDSCH的解调参考信号DMRS,第二参考信号包括链路重配请求信息关联的下行参考信号。第一时间段的结束时刻为终端设备接收重配信息的时刻;第二时间段的起始时刻为终端设备接收重配信息的时刻或之后。
结合第一方面和第二方面,在一些可选实施例中,第二时间段包括第一子时间段;其中重配信息包括通过第一RRC信令配置的用于检测PDSCH的M个TCI状态;M是大于或等于1的正整数。
具体的,网络设备可在第一子时间段内根据第二TCI状态指示的QCL信息发送PDSCH;第二TCI状态来自M个PDSCH TCI状态;第一TCI状态包括第二TCI状态。
具体的,终端设备可在第一子时间段内根据第二TCI状态指示的QCL信息检测PDSCH;第二TCI状态来自M个PDSCH TCI状态;第一TCI状态包括第二TCI状态。
结合第一方面和第二方面,在一些可选实施例中,第二时间段包括第二子时间段;重配信息包括通过第二RRC信令配置的用于检测PDCCH的K个TCI状态,K是大于或等于1的正整数。
具体的,网络设备可在第二子时间段内根据第三TCI状态指示的QCL信息发送PDSCH;第三TCI状态来自用于检测PDCCH的K个TCI状态;第一TCI状态包括第三TCI状态。
具体的,终端设备可在第二子时间段内根据第三TCI状态指示的QCL信息检测PDSCH;第三TCI状态来自用于检测PDCCH的K个TCI状态;第一TCI状态包括第三TCI状态。
结合第一方面和第二方面,在一些可选实施例中,第二时间段包括第三子时间段;重配信息包括通过第一MAC-CE信令配置的用于检测PDCCH的X个TCI状态,X是正整数,X≥1。
具体的,网络设备可在第三子时间段内根据第四TCI状态指示的QCL信息发送PDSCH;第四TCI状态来自用于检测PDCCH的X个TCI状态;第一TCI状态包括第四TCI状态。
具体的,终端设备可在第三子时间段内根据第四TCI状态指示的QCL信息检测PDSCH;第四TCI状态来自用于检测PDCCH的X个TCI状态;第一TCI状态包括第四TCI状态。
结合第一方面和第二方面,在一些可选实施例中,第二时间段包括第四子时间段,重配信息包括通过第二MAC-CE信令配置的用于检测PDSCH的Y个TCI状态,Y是正整数,Y≥1。
具体的,网络设备可在第四子时间段内根据第五TCI状态指示的QCL信息发送PDSCH;第五TCI状态来自用于检测PDSCH的Y个TCI状态;第一TCI状态包括第五TCI状态。
具体的,终端设备在第四子时间段内根据第五TCI状态指示的QCL信息检测PDSCH;第五TCI状态来自用于检测PDSCH的Y个TCI状态;第一TCI状态包括第五TCI状态。
结合第一方面和第二方面,在一些可选实施例中,网络设备通过第一CORESET调度的资源向终端设备发送的第二CORESET的重配信息或新的CORESET的时频资源位置或QCL信息;第二CORESET的重配信息为重配信息,或者新的CORESET的QCL信息为重配信息。相应的,终端设备接收网络设备通过第一CORESET调度的资源发送的第二CORESET的重配信息或新的CORESET的时频资源位置或QCL信息;第二CORESET的重配信息为重配信息,或者新的CORESET的QCL信息为重配信息。
结合第一方面和第二方面,在一些可选实施例中,第一TCI状态包括以下至少一项:
重配信息中最小的控制资源集合CORESET标识对应的TCI状态、用户专用搜索空间关联的最小的CORESET标识对应的TCI状态、公共搜索空间关联的CORESET标识对应的TCI状态、链路重配请求关联的下行参考信号对应的TCI状态、与同步信号块SSB关联的TCI状态、调度该PDSCH的CORESET对应的TCI状态。
在第二时间段内,当调度时延大于预设门限时,终端设备根据第一TCI状态指示的QCL信息检测PDSCH;当调度时延小于预设门限,且终端设备没有接收到最小的控制资源集合CORESET对应的重配信息时,终端设备根据调度该PDSCH的PDCCH所在的CORESET对应的TCI状态指示的QCL信息检测PDSCH。可选的,当调度时延小于预设门限,且终端设备接收到最小的控制资源集合CORESET对应的重配信息时,终端设备根据最小的控制资源集合CORESET对应的重配信息指示的QCL信息检测PDSCH。可选的,预设门限为“Threshold-Sched-Offset”。
结合第一方面和第二方面,在一些可选实施例中,PDSCH的TCI状态的字段在下行控制信息DCI信令中存在。
第三方面,本申请提供了一种终端设备,该终端设备可包括多个功能模块或单元,用于相应的执行第一方面所提供的信号传输方法,或者第一方面可能的实施方式中的任意一种所提供的信号传输方法。
第四方面,本申请提供了一种网络设备,该网络设备可包括多个功能模块或单元,用于相应的执行第二方面所提供的信号传输方法,或者第二方面可能的实施方式中的任意一种所提供的信号传输方法。
第五方面,本申请提供了一种终端设备,用于执行第一方面描述的信号传输方法。终端设备可包括:存储器以及与存储器耦合的处理器、收发器,其中:收发器用于与其他通信设备(如网络设备)通信。存储器用于存储第一方面描述的信号传输方法的实现代码,处理器用于执行存储器中存储的程序代码,即执行第一方面所提供的信号传输方法,或者第一方面可能的实施方式中的任意一种所提供的信号传输方法。
第六方面,本申请提供了一种网络设备,用于执行第二方面描述的信号传输方法。终端设备可包括:存储器以及与存储器耦合的处理器、收发器,其中:收发器用于与其他通信设备(如网络设备)通信。存储器用于存储第二方面描述的信号传输方法的实现代码,处理器用于执行存储器中存储的程序代码,即执行第二方面所提供的信号传输方法,或者第二方面可能的实施方式中的任意一种所提供的信号传输方法。
第七方面,提供了一种通信系统,通信系统包括:终端设备和网络设备。其中:
终端可以是上述第三方面或第五方面描述的终端设备,也可以是上述第四方面或第六方面描述的网络设备。
第八方面,提供了一种计算机可读存储介质,可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面描述的信号传输方法。
第九方面,提供了一种计算机可读存储介质,可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面描述的信号传输方法。
第十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面描述的信号传输方法。
第十一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面描述的信号传输方法。
第十二方面,本申请提供了一种装置,该装置可包括:处理器,以及耦合于处理器的一个或多个接口。其中,处理器可用于从存储器中调用第一方面所提供的信号传输方法,或者第一方面可能的实施方式中的任意一种所提供的信号传输方法的实现程序,并执行该程序包含的指令。接口可用于输出处理器的处理结果。
第十三方面,本申请提供了一种装置,该装置可包括:处理器,以及耦合于处理器的一个或多个接口。其中,处理器可用于从存储器中调用第二方面所提供的信号传输方法,或者第二方面可能的实施方式中的任意一种所提供的信号传输方法的实现程序,并执行该程序包含的指令。接口可用于输出处理器的处理结果。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请提供的一种无线通信系统的架构示意图;
图2A-2D是本申请涉及的多波束网络中几种PDCCH传输场景的示意图;
图3是本申请涉及的波束训练过程的示意图;
图4是现有技术中的链路故障检测和恢复的流程示意图;
图5是本申请的一个实施例提供的终端设备的硬件架构示意图;
图6是本申请的一个实施例提供的网络设备的硬件架构示意图;
图7是本申请涉及的控制资源集合的示意图;
图8A是本申请提供的一种信号传输方法的流程示意图;
图8B是本申请中的关键时间截点的示意图;
图9是本申请提供的一种采用默认QCL信息检测PDSCH的示意图;
图10是本申请提供的另一种采用默认QCL信息检测PDSCH的示意图;
图11是本申请提供的再一种采用默认QCL信息检测PDSCH的示意图;
图12是本申请提供的再一种采用默认QCL信息检测PDSCH的示意图;
图13是本申请提供的再一种采用默认QCL信息检测PDSCH的示意图;
图14是本申请的提供的无线通信系统,终端和网络设备的功能框图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
图1示出了本申请涉及的无线通信系统。无线通信系统可以工作在高频频段上,不限于长期演进(Long Term Evolution,LTE)系统,还可以是未来演进的第五代移动通信(the 5th Generation,5G)系统、新空口(New Radio,NR)系统,机器与机器通信(Machine to Machine,M2M)系统等。如图1所示,无线通信系统100可包括:一个或多个网络设备101,一个或多个终端103,以及核心网(未示出)。其中:
网络设备101可以为基站,基站可以用于与一个或多个终端进行通信,也可以用于与一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。基站可以是时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统中的基站收发台(Base Transceiver Station,BTS),也可以是LTE系统中的演进型基站(Evolutional Node B,eNB),以及5G系统、新空口(NR)系统中的基站。另外,基站也可以为接入点(Access Point,AP)、收发点(Transmission Receive Point,TRP)、中心单元(Central Unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。
终端103可以分布在整个无线通信系统100中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端103可以是移动设备、移动台(mobile station)、移动单元(mobile unit)、M2M终端、无线单元,远程单元、终端代理、移动客户端等等。
本申请中,无线通信系统100是多波束通信系统。其中:
网络设备101可以被配置有大规模的天线阵列,并利用波束成形技术控制天线阵列形成不同指向的波束。为了覆盖整个小区107,网络设备101需要使用多个不同指向的波束。
例如,在下行过程中,网络设备101可以依次使用不同指向的波束发射无线信号(如下行参考信号(Reference Signal,RS)和/或下行同步信号块(Synchronization Signal block,SS block)),该过程被称为波束扫描(Beam scanning)。同时,终端103对发射波束进行测量,确定终端103所能接收到的发射波束的信号质量,该过程被称为波束测量(Beam measurement)。
在未来通信系统中,终端103也可以被配置有天线阵列,也可以变换不同的波束进行信号的收发。也即是说,在无线通信系统100中,网络设备101和终端103都可能采用多波束进行通信。在下行传输过程中,网络设备101向终端103发送PDSCH的方式可以如图2A-2D所示:
图2A示出了网络设备101使用一个发送波束(如波束a)向终端103发送PDSCH,终端103使用一个接收波束(如波束1)接收PDSCH。在图2A所示的场景中,波束a与波束1是配对的。
图2B示出了网络设备101使用一个发送波束(如波束a)向终端103发送PDSCH,终端103使用多个接收波束(如波束1、3)接收PDSCH。在图2B所示的场景中,波束a与波束1是配对的,波束a与波束3是配对的。
图2C示出了网络设备101使用多个发送波束(如波束a、b)向终端103发送PDSCH,终端103使用多个接收波束(如波束1、波束3)接收PDSCH。在图2C所示的场景中,波束a与波束1是配对的,波束b与波束3是配对的。
图2D示出了终端103使用多个发送波束(如波束a、b)向终端103发送PDSCH,终端103使用同一接收波束(如波束1)接收PDSCH。在图2D所示的场景中,波束a与波束1是配对的,波束b与波束1是配对的。
相应地,图2A-2D所示的4种PDSCH发送场景也可以适用于网络设备101向终端103发送PDSCH的场景,这里不再赘述。
为了便于区别描述,可以将网络设备的收发波束称为基站波束,包括基站发射波束(或 称基站发送波束)和基站接收波束。一个网络设备可以具有多个基站发射波束,和多个基站接收波束。将终端设备的收发波束称为终端波束,包括终端发射波束(或称终端发送波束)和终端接收波束。一个终端设备可以具有多个终端发射波束,和多个终端接收波束。
本申请中,每一个基站接收波束均对应有一个基站发射波束。这里,基站接收波束与基站发射波束对应是指:具有相同的指向性。可选的,基站接收波束和其对应的基站发射波束可以是相同的波束,二者可以共享相同收发装置。可选的,基站接收波束和其对应的基站发射波束各自对应的天线端口可以是满足准共址(Quasi-collocation,QCL)关系的。
本申请中,每一个终端接收波束均对应有一个终端发射波束。这里,终端接收波束与终端发射波束对应是指:具有相同的指向性。可选的,终端接收波束和其对应的终端发射波束可以是相同的波束,二者可以共享相同收发装置。可选的,终端接收波束和其对应的终端发射波束各自对应的天线端口可以是满足QCL关系的。
本申请中,波束可以分为网络设备的发送波束和接收波束,与终端设备的发送波束和接收波束。网络设备的发送波束用于描述网络设备发送侧波束赋性信息,基站接收波束用于描述网络设备接收侧波束赋性信息,终端设备的发送波束用于描述终端设备发送侧波束赋性信息,终端接收波束用于描述终端设备接收侧波束赋性信息。也即波束用于描述波束赋性信息。
本申请中,波束可以对应时间资源或者空间资源。
可选地,波束还可以与参考信号资源(例如,波束赋形的参考信号资源),或者波束赋性信息对应。
可选地,波束还可以与网络设备的参考信号资源关联的信息对应,其中参考信号可以为信道状态信息参考信号(channel state information reference signal,CSI-RS),同步信号块(synchronization signal block,SS block),解调参考信号(demodulation reference signal,DMRS),相位跟踪信号(phase tracking reference signal,PTRS),跟踪信号(tracking reference signal,TRS)等,参考信号资源关联的信息可以是参考信号资源标识,或者QCL信息等。
其中,参考信号资源标识对应了之前基于该参考信号资源测量时建立的一个收发波束对,通过该参考信号资源索引,终端可推断波束信息。
本申请中,TCI状态可以是为PDSCH配置的,也可以是为PDCCH配置的,用于指示QCL信息。若TCI状态是为PDSCH配置的,那么QCL信息指PDSCH的DMRS与TCI状态指示的参考信号满足QCL关系。若TCI状态是为PDCCH配置的,那么QCL信息指PDCCH的DMRS与TCI状态指示的参考信号满足QCL关系。若TCI状态是为PDCCH配置的,PDSCH使用该TCI状态指示的QCL信息检测PDSCH,是指PDSCH的DMRS与该TCI状态指示的参考信号满足QCL关系或者PDSCH的DMRS与PDSCH的DMRS满足QCL关系。图2A-2D所示的配对的基站发射波束和终端接收波束,以及终端发射波束和基站接收波束是通过波束训练过程来实现配对的。
下面说明申请涉及的波束训练过程。如图3所示,波束训练过程可包括:
1)最优的N个波束对(Beam pair link,BPL)(一个BPL包括一个基站发射波束和一个终端接收波束,或者,一个BPL包括一个终端发射波束和一个基站接收波束)的选择。用于终端设备基于网络设备的波束扫描实现对基站发射波束和/或终端接收波束的选择,以 及,网络设备基于终端设备的波束扫描实现对终端发射波束和/或基站接收波束的选择。如图3中的(a)和(b)所示。
2)发射波束的更新,该发射波束可以为基站发射波束,也可以为终端发射波束。当该发射波束为基站发射波束时,如图3中的(e)所示,基站通过不同的发射波束向UE发送参考信号,UE通过同一个接收波束来接收基站通过不同的发射波束发送的参考信号,并基于接收信号确定基站的最优发射波束,然后将基站的最优发射波束反馈给基站,以便于基站对发射波束进行更新。当该发射波束为终端发射波束时,如图3中的(d)所示,UE通过不同的发射波束向基站发送参考信号,基站通过同一个接收波束来接收UE通过不同的发射波束发送的参考信号,并基于接收信号确定UE的最优发射波束,然后将UE的最优发射波束反馈给UE,以便于UE对发射波束进行更新。其中,上述通过不同的发射波束发送参考信号的过程可以称为波束扫描,基于接收信号确定最优发射波束的过程可以称为波束匹配。
3)接收波束的更新,该接收波束可以为基站接收波束,也可以为终端接收波束。当该接收波束为基站接收波束时,如图3中的(f)所示,UE通过同一个发射波束向基站发送参考信号,基站采用不同的接收波束接收UE发送的参考信号,然后基于接收信号确定基站的最优接收波束,以对基站的接收波束进行更新。当该接收波束为UE的接收波束时,如图3中的(c)所示,基站通过同一个发射波束向UE发送参考信号,UE采用不同的接收波束接收基站发送的参考信号,然后基于接收信号确定UE的最优接收波束,以对UE的接收波束进行更新。
在下行信号的传输中,基站发射波束和终端接收波束均可能发生动态变化,终端设备基于接收信号确定的最优接收波束可能包括多个,为了使终端设备确定自身的接收波束,终端设备可以将多个接收波束的信息反馈给网络设备,网络设备可以通过向终端设备发送波束指示信息来向终端设备指示终端接收波束。当终端设备采用模拟域的波束赋形时,终端设备可以基于网络设备发送的波束指示信息来精确的确定终端接收波束,从而可以节省终端设备的波束扫描时间,达到省电的效果。
本申请中所描述的通信链路故障是指网络设备采用某一发射波束向终端设备发送信令和/或数据时,由于该发射波束被阻挡,信号无法继续传输,进而导致通信发生中断,终端设备无法正常接收到网络设备下发的信令和/或数据的场景。
为了检测和恢复链路故障,网络设备需要给终端配置用于波束失败检测的参考信号资源集合(Beam-Failure-Detection-RS-ResourceConfig)和用于恢复终端设备与网络设备链路的参考信号资源集合(candidate beam RS list)(也称为候选参考信号资源集合)。其中,beam failure detection RS set中的RS与下行物理控制信道PDCCH的解调参考信号满足QCL关系或者与PDCCH使用相同的传输配置指示(transmission configuration indicator,TCI)状态,当该集合中的部分或者所有参考信号的信道质量信息(如RSPR、CQI,BLER,SINR,SNR等)低于预定门限,则判定为通信链路故障。可选的,该预定门限可以和radio link failure OOS的门限相同。在本申请中,通信链路故障还可以称为通信链路失败、波束失败、波束失败、链路故障、链路失败、通信故障、通信失败等。在本文中,这些概念是相同的含义。通信链路故障后,终端需要从候选参考信号资源集合中选出信道质量信息(如RSRP、CQI 等)高于预定门限的参考信号资源,用于恢复通信链路。可选的,该预定门限可以由网络设备配置。这里,Beam-Failure-Detection-RS-ResourceConfig是用于终端检测网络设备的某一发射波束的信道质量,该发射波束是网络设备与该终端进行通信时所使用的波束。candidate beam RS list用于终端在判断出网络设备的该发射波束发生通信链路故障后,用于发起链路重配的参考信号集合。在本申请中,链路重配也可以叫作恢复网络设备与终端设备通信,链路失败恢复。在具体实现中,用于波束失败检测的参考信号资源集合以及用于恢复终端设备与网络设备链路的参考信号资源集合这两个集合的名称还可以有其他叫法,本申请对此不作具体限定。本申请中,链路重配请求信息又可以称为通信链路故障(或称为通信链路失败、波束故障、波束失败、链路故障、链路失败、通信故障、通信失败等)恢复请求信息,重配请求信息。
网络设备通过通知PDCCH/PDSCH的QCL关系以指示终端使用哪个接收波束接收PDCCH/PDSCH。目前标准中同意使用无线资源控制(radio resource control,RRC)和或媒体接入控制(media access control,MAC)控制单元(control element,CE))的半静态信令通知PDCCH的QCL关系。PDSCH通过RRC,MAC-CE,下行物理控制信息(downlink control information,DCI)动态信令通知PDSCH的QCL关系(TCI table,又称为TCI list),或者通过RRC以及DCI信令通知PDSCH的TCI状态。
图4示出了现有技术中的链路失败检测以及恢复链路的方法。如图4所示,该方法包括如下步骤。
S101,终端设备进行波束失败检测以及进行新波束识别。
本申请中所描述的新波束的识别是指在发生通信链路故障之后,终端需要从候选参考信号资源集合中选出信道质量信息(如RSRP、CQI等)高于预定门限的参考信号资源,用于恢复通信链路。
具体的,用于网络设备发送物理下行控制信道PDCCH的波束和终端设备接收PDCCH的波束质量下降足够低时发生通信失败,也即用于发送和接收PDCCH的波束对(Beam Pair Link,BPL)的质量下降足够低时发生通信失败。或者用于波束失败检测的参考信号的质量低于预定门限时,认为波束失败。发生通信链路故障的原因包括但不限于:在通信过程中存在障碍物遮挡,高频信道下的绕射能力差,导致当前服务的波束被阻挡,信号无法继续传输。其中,信号质量变差可以是信道质量信息(如RSPR、CQI等)低于预定门限。
当发生链路故障后,终端继续检测网络设备下发的下行参考信号(或者成为候选参考信号集合),并对下行参考信号的信号质量进行测量,从而识别出(或选出)信道/信号质量好的下行参考信号,识别出信道/信号质量好的下行参考信号也即是说识别出了信道质量好的下行波束。信道质量好的下行波束是指:该基站发送的下行参考信号的信道质量信息(如RSPR、CQI等)高于预定门限,或者,终端连续测量了多个基站发送的下行参考信号的信道质量,其中某个下行参考信号的信道质量是这多个下行参考信号中最好的,那么这个信道质量最好的下行参考信号对应的波束即为识别出的信道质量好的波束。这里,网络设备可以采用多个发射波束来分别发送下行参考信号,那么终端利用网络设备这多个发射波束各自发送的下行参考信号来测量这多个发射波束的信道质量,从而选出一个信道质量好的下行参考信号。本申请中,信道质量好的波束与信道/信号质量好的下行参考信号的意 思等同。
可以理解的,由于选择出的该基站发射波束质量好,因此表明该基站发射波束对应的终端接收波束也质量好。同样的,也表明该终端接收波束对应的终端发射波束也质量好。
S102,终端设备向网络设备发送链路重配请求,发送的该链路重配请求用于发起链路重配。
其中,链路重配请求用于发起链路重配也即是说:用于指示链路失败或者通信失败。
这里,终端设备在步骤S101中识别出了质量好的下行波束,其中所述下行波束包括基站的发射波束和或终端设备的接收波束。对于有波束互易性的场景,终端接收波束与终端发射波束有对应关系,此时终端设备可以采用新识别终端接收波束来发送该链路重配请求。对于没有波束互易性的场景,终端设备需要使用其它的发射波束发送该链路重配请求信息。
对于有波束互易性的场景,终端的每一个接收波束均对应有终端的一个发射波束。这里,终端接收波束与终端发射波束对应是指:具有相同的指向性。可选的,终端接收波束和其对应的终端发射波束可以是相同的波束,二者可以共享相同收发装置。可选的,终端接收波束和其对应的终端发射波束各自对应的天线端口可以是准共址(QCL)的。可选的,准共址是指以下至少一个参数相同或者有确定的对应关系:入射角AoA(angle of arrival)、主入射角Dominant AoA、平均入射角、入射角的功率角度谱(power angular spectrum(PAS)of AoA)、出射角AoD(angle of departure)、主出射角、平均出射角、出射角的功率角度谱、终端发送波束成型、终端接收波束成型、空间信道相关性、基站发送波束成型、基站接收波束成型、平均信道增益、平均信道时延、时延扩展delay spread、多普勒扩展Doppler spread等。
S103,网络设备接收终端设备链路重配请求,网络设备向终端发送链路重配响应信息。
S104,终端设备接收网络设备发送的链路重配响应信息,终端设备进行波束测量。
具体的,终端设备接收网络设备利用不同的发射波束发送的下行参考信号,从而测量不同的发射波束的信道质量。网络设备还为终端设备配置专用CORESET(dedicate CORESET)。dedicate CORESET用于链路失败后的下行通信,主要用于网络设备发送链路重配响应信息。
S105,终端设备进行波束质量上报,网络设备接收终端设备上报的波束质量。
终端设备测量出多个基站发射波束的信道质量,从中选出较优的Q(Q为大于等于1的正整数)个基站发射波束进行波束信道质量上报。即,终端设备测量基站发送的多个下行参考信号的信道质量,从中选出较优的Q下行参考信号进行上报。这里,信道质量较优的基站发射波束是指:该基站发射波束的信道质量信息(如RSPR、CQI等)高于预定门限,或者,终端设备连续测量了多个基站发射波束的信道质量,其中某个基站发射波束的信道质量是这多个基站发射波束中最好的。
网络设备在接收到终端设备上报的波束信道质量后,可以通过无线资源控制(radio resource control,RRC)信令、MACCE信令或下行控制信息(downlink control information,DCI)为该终端设备重新配置用于检测PDSCH的QCL信息。也即是说,网络设备会重新明确指示终端设备应采用哪个接收波束来检测PDSCH。
但是,在链路故障之后且在网络设备重新明确指示使用哪个接收波束来检测PDSCH 之前,对于终端设备如何检测PDSCH,现有技术没有考虑。本申请主要解决这个问题,详见后续内容。
参考图5,图5示出了本申请的一些实施例提供的终端200。如图5所示,终端200可包括:一个或多个终端处理器201、存储器202、通信接口203、接收器205、发射器206、耦合器207、天线208、终端接口202,以及输入输出模块(包括音频输入输出模块210、按键输入模块211以及显示器212等)。这些部件可通过总线204或者其他方式连接,图5以通过总线连接为例。其中:
通信接口203可用于终端200与其他通信设备,例如网络设备,进行通信。具体的,网络设备可以是图5所示的网络设备300。具体的,通信接口203可以是长期演进(LTE)(4G)通信接口,也可以是5G或者未来新空口的通信接口。不限于无线通信接口,终端200还可以配置有有线的通信接口203,例如局域接入网(Local Access Network,LAN)接口。
发射器206可用于对终端处理器201输出的信号进行发射处理,例如通过波束成形实现定向发送。接收器205可用于对天线208接收的移动通信信号进行接收处理,例如通过波束成形实现定向接收。在本申请的一些实施例中,发射器305/接收器306可以包括波束成形控制器,用于对发送信号/接收信号乘以权重向量W1,……,Wm,控制信号的定向发射/接收。本申请中提及的基站波束切换可以通过发射器305/接收器306中的波束成形控制器改变发送信号/接收信号乘以权重向量来实现。
在本申请的一些实施例中,发射器206和接收器205可看作一个无线调制解调器。在终端200中,发射器206和接收器205的数量均可以是一个或者多个。天线208可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器207用于将天线208接收到的移动通信信号分成多路,分配给多个的接收器205。
除了图5所示的发射器206和接收器205,终端200还可包括其他通信部件,例如GPS模块、蓝牙(Bluetooth)模块、无线高保真(Wireless Fidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,终端200还可以支持其他无线通信信号,例如卫星信号、短波信号等等。不限于无线通信,终端200还可以配置有有线网络接口(如LAN接口)来支持有线通信。
输入输出模块可用于实现终端200和终端/外部环境之间的交互,可主要包括包括音频输入输出模块210、按键输入模块211以及显示器212等。具体的,输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,输入输出模块均通过终端接口209与终端处理器201进行通信。
存储器202与终端处理器201耦合,用于存储各种软件程序和/或多组指令。具体的,存储器202可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器202可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器202还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一 个或多个终端设备,一个或多个网络设备进行通信。存储器202还可以存储终端接口程序,该终端接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收终端对应用程序的控制操作。
在本申请的一些实施例中,存储器202可用于存储本申请的一个或多个实施例提供的信号传输方法在终端200侧的实现程序。关于本申请的一个或多个实施例提供的信号传输方法的实现,请参考后续实施例。
终端处理器201可用于读取和执行计算机可读指令。具体的,终端处理器201可用于调用存储于存储器212中的程序,例如本申请的一个或多个实施例提供的信号传输方法在终端200侧的实现程序,并执行该程序包含的指令。
可以理解的,终端200可以是图1示出的无线通信系统100中的终端103,可实施为移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,终端代理,移动客户端等等。
需要说明的,图5所示的终端200仅仅是本申请实施例的一种实现方式,实际应用中,终端200还可以包括更多或更少的部件,这里不作限制。
参考图6,图6示出了本申请的一些实施例提供的网络设备300。如图6所示,网络设备300可包括:一个或多个网络设备处理器301、存储器302、通信接口303、发射器305、接收器306、耦合器307和天线308。这些部件可通过总线304或者其他式连接,图6以通过总线连接为例。其中:
通信接口303可用于网络设备300与其他通信设备,例如终端设备或其他网络设备,进行通信。具体的,终端设备可以是图4所示的终端200。具体的,通信接口303通信接口203可以是长期演进(LTE)(4G)通信接口,也可以是5G或者未来新空口的通信接口。不限于无线通信接口,网络设备300还可以配置有有线的通信接口303来支持有线通信,例如一个网络设备300与其他网络设备300之间的回程链接可以是有线通信连接。
发射器305可用于对网络设备处理器301输出的信号进行发射处理,例如通过波束成形实现定向发送。接收器306可用于对天线308接收的移动通信信号进行接收处理,例如通过波束成形实现定向接收。在本申请的一些实施例中,发射器305/接收器306可以包括波束成形控制器,用于对发送信号/接收信号乘以权重向量W’1,……,W’m,控制信号的定向发射/接收。本申请中提及的基站波束切换可以通过发射器305/接收器306中的波束成形控制器改变发送信号/接收信号乘以权重向量来实现。
在本申请的一些实施例中,发射器305和接收器306可看作一个无线调制解调器。在网络设备300中,发射器305和接收器306的数量均可以是一个或者多个。天线308可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器307可用于将移动通信号分成多路,分配给多个的接收器306。
存储器302与网络设备处理器301耦合,用于存储各种软件程序和/或多组指令。具体的,存储器302可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器302可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器302 还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
网络设备处理器301可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内的终端提供小区切换控制等。具体的,网络设备处理器301可包括:管理/通信模块(Administration Module/Communication Module,AM/CM)(用于话路交换和信息交换的中心)、基本模块(Basic Module,BM)(用于完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(Transcoder and SubMultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。
本申请实施例中,网络设备处理器301可用于读取和执行计算机可读指令。具体的,网络设备处理器301可用于调用存储于存储器302中的程序,例如本申请的一个或多个实施例提供的信号传输方法在网络设备300侧的实现程序,并执行该程序包含的指令。
可以理解的,网络设备300可以是图1示出的无线通信系统100中的网络设备101,可实施为基站收发台,无线收发器,一个基本服务集(BSS),一个扩展服务集(ESS),NodeB,eNodeB,接入点或TRP等等。
需要说明的,图6所示的网络设备300仅仅是本申请实施例的一种实现方式,实际应用中,网络设备300还可以包括更多或更少的部件,这里不作限制。
基于前述无线通信系统100、终端200以及网络设备300分别对应的实施例,本申请提供了一种信号传输方法。
首先,介绍本申请涉及的基本概念。
(1)准共址(QCL)信息
QCL信息可以包括参考信号的波束组索引号、参考信号的资源索引号、参考信号的端口号以及参考信号的端口组号中的至少一个。这里,参考信号的波束组索引号等价于参考信号的一个资源集索引号。参考信号的资源索引号可以为基于多个资源索引号集合的一个相对索引号。如,终端上报了4个参考信号的绝对资源索引号{1,5,7,9},则基于该终端的上报结果,参考信号的相对资源索引号为{0,1,2,3}中的任意一个。其中,相对资源索引号0对应了终端上报的参考信号的资源索引号1,相对资源索引号1对应了终端上报的参考信号的资源索引号5,相对资源索引号2对应了终端上报的参考信号的资源索引号7,相对资源索引号3对应了终端上报的参考信号的资源索引号9。
作为示例而非限定,例如:网络设备可以指示PDSCH或PDCCH的解调参考信号(Demodulation Reference Signal,DMRS)与终端之前上报的多个参考信号资源中的一个或多个是满足QCL关系的,如,该参考信号可以是信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)。这里,每一个上报的CSI-RS资源索引对应了之前基于该CSI-RS资源测量时建立的一个收发波束对。应理解满足QCL关系的两个参考信号或信道的接收波束信息是相同的,从而基于该参考信号资源索引,终端可推断出接收PDSCH或PDCCH的接收波束。其中,上述所涉及的参考信号,可以是CSI-RS,或者是SS block,或者是其他参考信号。本申请实施例对参考信号的具体类型并不做限定。
可选的,QCL信息也可以包括一些空间特性参数,例如,水平向出发角(Azimuth angle  of Departure,AoD),垂直向出发角(Zenith angle of Departure,ZoD),水平向角度扩展(Azimuth angle spread of Departure,ASD),垂直向角度扩展(Zenith angle spread of Departure,ZSD),到达角相关参数,水平向到达角(Azimuth angle of Arrival,AoA),垂直向出发角(Zenith angle of Arrival,简称,ZoA),水平向角度扩展(Azimuth angle spread of Arrival,ASA)以及垂直向角度扩展(Zenith angle spread of Arrival,ZSA)等。这些空间特性参数描述了参考信号之间的天线端口间的空间信道特性,有助于终端根据该QCL信息完成接收侧波束赋形或接收处理过程。
可选的,QCL信息还可以包括空间接收参数(Spatial Rx parameter),此外,QCL信息还包括但不限于如下参数中的至少一种:延迟扩展、多普勒扩展、多普勒频移、平均增益和平均延迟。可选地,该QCL包括的空间特性参数也可以为除上述参数外的其他参数,这里不做限定。而为节省网络设备对终端的QCL指示开销,一种候选的现有技术是,网络设备发送给终端的QCL指示限定终端之前上报的S(S为大于等于1的正整数)个基于信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)测量的收发波束对中的一个是满足QCL关系的。即,当前数据的调制参考信号(Demodulation Reference Signal,DMRS)的接收波束与终端之前上报的M个基于CSI-RS测量的收发波束对中的一个接收波束是相同的。例如,终端通过对网络设备发送的多个波束的CSI-RS进行测量选择其较优的几个,例如4个波束,并将较优的4个波束测量信息上报给网络设备。波束测量信息也即波束状态信息(Beam Status Information,BSI),内容主要包括参考信号资源索引,波束的参考信号接收功率(Reference Signal Received Power,RSRP)。网络设备发送给终端的QCL指示终端之前上报的4个基于CSI-RS测量的收发波束对中的第3个CSI-RS满足QCL关系,那么终端采用第3个CSI-RS对应的接收波束接收网络设备下发的PDSCH。
(2)控制资源集合(CORESET)
如图8A所示,一个CORESET是控制区域内的一块时频资源。图8A中以14个时域符号的前4个时域符号为控制区域,但可以只定义前4个时域符号中一部分资源为某一个CORESET所对应的资源。一个CORESET对应一组用户(如UE1,UE2,UE3等)。在这个CORESET上会发送这一组用户的物理下行控制信道(PDCCH)。每个用户在一个CORESET上有一个搜索空间(search space),该search space的资源小于等于CORESET的资源。一个用户可以对应多个CORESET,这些CORESET关联的Numerology可以相同或不同,这里的numerology可包括子载波间隔和循环前缀(cyclic prefix,CP)长度。
其次,图8A是本申请提供的信号传输方法的总体流程。本申请主要讨论在链路失败之后的两个时间段内终端设备如何检测PDSCH。这两个时间段在终端设备向网络设备发送链路重配请求之后,且在网络设备重新明确指示使用哪个接收波束来检测PDSCH之前。这两个时间段包括:第一时间段和第一时间段,其中,第一时间段的结束时刻为终端设备接收到重配信息时,第二时间段的起始时刻为终端设备接收到重配信息时。实施图8A所示的信号传输方法的前提可以包括:PDSCH的TCI状态的字段在下行控制信息DCI信令中存在,即DCI信令中包含PDSCH的QCL指示域(TCI filed)。具体的,可以通过RRC信令配置TCI-PresentInDCI等于true或者enable来实现该前提。如图8A所示,本申请提供 的信号传输方法可包括:
S201,终端设备在n时刻向网络设备发送链路重配请求。链路重配请求用于发起链路重配。这里,n时刻即发送该链路重配请求的时刻。
参考图4可知,终端采用新识别的质量好的基站发射波束和/或终端接收波束来发送该链路重配请求。具体实现可参考图4相关内容,这里不再赘述。
S202,终端设备在n时刻后的第一时间段内根据第一QCL信息检测PDSCH。
这里,第一QCL信息可指示第一参考信号和第二参考信号满足QCL关系。第一参考信号(DM-RS)用于解调PDSCH。
本申请中,第二参考信号可包括链路重配请求关联的下行参考信号。链路重配请求信息相关联的下行参考信号是指,终端设备在步骤S401时识别出的信道质量好的下行参考信号。这种情况下,终端设备采用哪个/哪几个发射波束(例如波束2)发送链路重配请求信息,就采用哪个/哪几个发射波束(波束2)对应的接收波束(波束2)来接收PDSCH。
不限于链路重配请求关联的下行参考信号,第二参考信号还可以实现如下:
1.第二参考信号可包括终端设备在链路失败之后且在发送链路重配请求信息之前接收的信道质量高于第一门限的参考信号。或者,第二参考信号可包括终端设备在链路失败之后且在发送链路重配请求信息之前接收的信道质量高于第一门限的参考信号中信道质量最好的参考信号。
这两种情况是指,终端设备在检测到网络设备的下行波束发生链路失败之后且在终端设备发送上述链路重配请求信息之前,终端设备可以识别新的波束。即,网络设备会周期性发送下行参考信号,当终端设备检测到网络设备当前通信的下行波束发生链路故障/失败后,终端设备测量网络设备发送的下行参考信号的信道质量,从而识别出信道质量高于第一门限的参考信号。进而利用与该信道质量高于第一门限的参考信号的接收波束接收网络设备发送的PDSCH,也即此时假设PDSCH中的DMRS与参考信号满足QCL关系。这里,满足QCL关系是指,终端设备采用哪个空间接收参数(例如波束2)接收的信道质量高于第一门限的参考信号,就利用哪个空间接收参数(波束2)来接收网络设备发送的PDSCH。或者,当终端设备检测到网络设备当前通信的下行波束发生链路故障/失败后,终端设备测量网络设备发送的下行参考信号的信道质量,从而识别出信道质量高于第一门限的参考信号中信道质量最好的参考信号。进而利用与该信道质量最好的参考信号的接收波束接收网络设备发送的PDSCH,也即此时假设PDSCH中的DMRS与参考信号满足QCL关系。这里,满足QCL关系是指,终端设备采用哪个接收波束(例如波束2)接收的信道质量最好的参考信号,就利用哪个接收波束(波束2)来接收网络设备发送的PDSCH。这里,信道质量最好的下行参考信号是指,终端设备测量了多个下行参考信号中信道质量最好的参考信号。
2.第二参考信号可包括终端设备在第一时间段内接收的信道质量高于第一门限的参考信号。或者,第二参考信号可包括终端设备在第一时间段内接收的信道质量高于第一门限的参考信号中信道质量最好的参考信号。
这两种情况是指,终端设备发送上述链路重配请求信息之后的第一时间段内,终端设备可以训练新的波束。即,网络设备在接收到终端设备发送的链路重配请求信息之后,会 发送下行参考信号,终端设备测量网络设备发送的下行参考信号的信道质量,从而识别出信道质量高于第一门限的参考信号。进而利用与该信道质量高于第一门限的参考信号的接收波束接收网络设备发送的PDSCH,也即此时假设PDSCH中的DMRS与参考信号满足QCL关系。这里,满足QCL关系是指,终端设备采用哪个接收波束(例如波束2)接收的信道质量高于第一门限的参考信号,就利用哪个接收波束(波束2)来接收网络设备发送的PDSCH。或者,终端设备测量网络设备发送的下行参考信号的信道质量,从而识别出信道质量高于第一门限的参考信号中信道质量最好的参考信号。进而利用与该信道质量最好的参考信号的接收波束接收网络设备发送的PDSCH,也即此时假设PDSCH中的DMRS与参考信号满足QCL关系。这里,满足QCL关系是指,终端设备采用哪个接收波束(例如波束2)接收的信道质量最好的参考信号,就利用哪个接收波束(波束2)来接收网络设备发送的PDSCH。这里,信道质量最好的下行参考信号是指,终端设备测量了多个下行参考信号中信道质量最好的参考信号。
S203,终端设备接收网络设备发送的重配信息。
本申请中,该重配信息是网络设备重新配置的TCI table或者称为TCI的候选状态,该TCItable包括一个或者多个TCI状态。一个TCI状态指示一个QCL信息。
可以理解的,链路失败之前的previous CORESET的TCI table变得不可靠,因此,网络设备需要根据终端设备上报的波束测量报告重新配置TCI table。
举例说明,假设波束测量报告中指示了M个质量好的基站发射波束。那么,网络设备重新配置M个TCI状态,这M个TCI状态对应M个质量好的基站发射波束关联的下行参考信号。其中,一个TCI状态用于指示终端设备采用哪个/哪几个接收波束接收的该TCI状态对应的基站发射波束关联的下行参考信号,就采用哪个/哪几个接收波束来接收PDSCH。
可以理解的,利用该重配信息指示的候选QCL信息检测PDSCH是可靠的。
可选的,该重新配置的TCI table可关联previous CORESET,即网络设备针对previous CORESET重新配置了TCI table。可选的,该重新配置的TCI table也可关联新的CORESET,previous CORESET不再可用。这里,previous CORESET为在链路失败之前网络设备为终端设备分配的用于数据调度的控制资源集合。
S204,终端设备在n时刻后的第二时间段内根据第一TCI状态检测PDSCH,第一TCI状态来自上述重配信息。
这里,第一TCI状态来自重配信息是指:第一TCI状态是重配信息中的一个或多个TCI状态。
这里,第一TCI状态指示的QCL信息可指示第三参考信号和第四参考信号满足QCL关系。第三参考信号(DM-RS)用于解调PDSCH。第四参考信号可以是终端设备发送给网络设备的波束测量报告中指示的质量好的基站发射波束关联的下行参考信号。
这里,终端设备根据第一TCI状态指示的QCL信息检测PDSCH是指,终端设备采用哪个/哪几个接收波束接收的第四参考信号,就采用哪个/哪几个接收波束来接收PDSCH。也即是说,PDSCH与第四参考信号满足QCL关系,或者,PDSCH的DMRS与第四参考信号满足QCL关系。也就是说使用与第四参考信号相同的空间接收参数(Spatial Rx parameter)接收PDSCH。
图8B示例性示出了本申请中的第一时间段和第二时间段。如图8B所示,第一时间段的结束时刻可以为终端设备接收到重配信息时,第二时间段的起始时刻可以为终端设备接收到重配信息时。可选的,第二时间段的起始时刻也可以为终端设备接收到重配信息之后。重配信息即网络设备重新配置的TCI table(简称新的TCI table)。参考S203可知,新的TCI table是网络设备根据终端设备上报的波束测量报告配置的,是可靠的。因此,来自候选QCL信息的第一TCI状态是可靠的,终端设备根据第一TCI状态检测PDSCH也是可靠的。
本申请中,重配信息(新的TCI table)可以为不同信令为PDSCH或PDCCH配置的TCI状态。
1.该重配信息可以为RRC信令为PDSCH配置的TCI状态。
2.该重配信息可以为RRC信令为PDCCH配置的TCI状态。
3.该重配信息可以为MAC CE信令为PDSCH配置的TCI状态。
4.该重配信息可以为MAC CE信令为PDCCH配置的TCI状态。
上述4种情况也表明该重配信息可以在不同时刻被网络设备下发,即在不同时刻被终端接收。这里,该不同时刻是指发送/接收信令(如第一RRC信令/第二RRC信令/第二MAC CE信令/第一MAC CE信令)的时刻。也即是说,第二时间段的起始时刻可以出现多种情况。本申请中,也可以将终端设备接收信令(包括第一DCI信令)的时刻称为时间截点。
下面通过多个实施例详细说明本申请提供的技术方案。
(一)实施例一
本实施例中,第二时间段的起始时刻是终端设备接收到第一RRC信令的时刻。第一时间段的结束时刻是终端设备接收到第一RRC信令的时刻。第一RRC信令配置用于检测PDSCH的M(M为大于等于1的正整数)个TCI状态。也即是说,图9中的part1即第一时间段。
实施例一中,各个part采用的QCL信息具体如下:
part1:终端设备接收到第一RRC信令时刻之前。可选的,part1的起始时刻可以是终端设备向网络设备发送链路重配请求的时刻或者是发送链路重配请求后的4个时隙(slot)。
在part1中,终端设备可采用第一QCL信息检测PDSCH。具体可参考图7实施例中的S202,这里不再赘述。
part2:终端设备接收到第一RRC信令的时刻之后,终端设备接收到第二RRC信令之前。
其中,第一RRC信令配置用于检测PDSCH的M(M为大于等于1的正整数)个TCI状态。网络设备发送给终端设备的重配信息可包括该M个TCI状态。
在part2中,终端设备可采用第二TCI状态指示的QCL信息检测PDSCH。第二TCI状态是M个TCI状态中的一个或多个TCI状态。
part3:终端设备接收到第二RRC信令的时刻之后,终端设备接收到第一MAC CE信令之前。
其中,第二RRC信令配置用于检测PDCCH的K(K为大于等于1的正整数)个TCI 状态。网络设备发送给终端设备的重配信息可包括该K个TCI状态。
在part3中,终端设备可采用第三TCI状态指示的QCL信息检测PDSCH。第三TCI状态是该K个TCI状态中的一个或多个TCI状态。
part4为:终端设备接收到第一MAC CE信令的时刻之后,终端设备接收到第二MAC CE信令之前。
其中,第一MAC CE信令配置用于检测PDCCH的X(X为大于等于1的正整数)个TCI状态。网络设备发送给终端设备的重配信息可包含该X个TCI状态。
在part4中,终端设备可采用第四TCI状态指示的QCL信息检测PDSCH。第四TCI状态是X个TCI状态中的一个或多个TCI状态。
part5:终端设备接收到第二MAC CE信令的时刻之后,终端设备接收到第一DCI信令之前。
其中,第二MAC CE信令配置用于检测PDSCH的Y(Y为大于等于1的正整数)个TCI状态。网络设备发送给终端设备的重配信息可包含该Y个TCI状态。
在part5中,终端设备可采用第五TCI状态指示的QCL信息检测PDSCH。第五TCI状态是该Y个TCI状态中的一个或多个TCI状态。
part5之后,终端设备采用现有技术中所确定的QCL信息检测PDSCH。如,当调度时延小于预定门限时,终端设备采用QCL信息基于默认的TCI状态,默认的TCI状态对应于为lowest CORESET ID配置的TCI状态,当调度时延大于预定门限时,终端设备采用第一DCI信令指示的QCL信息检测PDSCH。其中,所述调度时延为终端设备接收DCI与该DCI调度的相应PDSCH的时延。
本申请中,可以将采用第二TCI状态的时间段称为第一子时间段,可以将采用第三TCI状态的时间段称为第二子时间段,可以将采用第四TCI状态的时间段称为第三子时间段,可以将采用第五TCI状态的时间段称为第四子时间段。
实施例一中,第二时间段可包括以下至少一项:第一子时间段、第二子时间段、第三子时间段、第四子时间段。
具体的,当第二时间段包括第一子时间段时,本申请中的第一TCI状态包括:第二TCI状态。当第二时间段包括第二子时间段时,本申请中的第一TCI状态包括:第三TCI状态。当第二时间段包括第三子时间段时,本申请中的第一TCI状态包括:第四TCI状态。当第二时间段包括第四子时间段时,本申请中的第一TCI状态包括:第五TCI状态。
实施例一中,从part 2开始每一个part中采用的TCI状态均可以顺延到终端设备接收到第一DCI信令的时刻或该时刻之前的任何一个时间截点。
可选的,part 2中采用的TCI状态(即第二TCI状态)可以顺延到终端设备接收到第一DCI信令的时刻或该时刻之前的任何一个时间截点。可以理解的,第一子时间段包括图9中的part2。在part 2中采用的默认TCI状态(即第二TCI状态)顺延到终端设备接收到第一DCI信令的时刻或该时刻之前的任何一个时间截点的情况下,第一子时间段还可进一步包括图9中的part2之后的part,如part3、part4、part5。
可选的,第一子时间段的终止时刻可包括以下至少一个:终端设备接收到第二RRC信令的时刻、终端设备接收到第一MAC CE信令的时刻、终端设备接收到第二MAC CE信令 的时刻、终端设备接收到第一DCI信令的时刻。
图9仅仅示例性的示出了各个信令的时序。不限于图9所示,信令时序可以不同,例如第二MAC CE信令可以在第一MAC CE信令之前,即part5可以在part4之前。
可选的,当2^N=M或者M<=8时,可能不需要第二MACCE信令,此时part 5不存在。其中,N是DCI信令中TCI field的序列长度,即TCI field包含N个b比特。可选的,当K=1时,不需要第一MACCE行令,此时part4不存在。
可以理解的,当第二时间段的起始时刻为第一RRC信令时,在通知第一RRC信令后,终端设备使用第一RRC信令为PDSCH重新配置的TCI状态中的一个或多TCI状态指示的QCL信息检测PDSCH,此时由于重新配置的TCI状态是恢复链路后新配置的TCI状态,新配置的TCI状态指示的QCL信息比第一时间段使用的QCL信息,其性能更好。
(二)实施例二
本实施例中,第二时间段的起始时刻是终端设备接收到第二RRC信令的时刻。第一时间段的结束时刻是终端设备接收到第二RRC信令的时刻。第二RRC信令配置用于检测PDCCH的K(K为大于等于1的正整数)个TCI状态。也即是说,图10中的part1即第一时间段。
实施例二中,各个part采用的QCL信息具体如下:
part1:终端设备接收到第二RRC信令时刻之前。可选的,part1的起始时刻可以是终端设备向网络设备发送链路重配请求的时刻或者是发送链路重配请求后的4个时隙(slot)。
在part1中,终端设备可采用第一QCL信息检测PDSCH。具体可参考图7实施例中的S202,这里不再赘述。
part2:终端设备接收到第二RRC信令的时刻之后,终端设备接收到第一MAC CE信令之前。
其中,第二RRC信令配置用于检测PDCCH的K(K为大于等于1的正整数)个TCI状态。网络设备发送给终端设备的重配信息可包括该K个TCI状态。
在part2中,终端设备可采用第三TCI状态指示的QCL信息检测PDSCH。第三TCI状态是该K个TCI状态中的一个或多个TCI状态。
part3为:终端设备接收到第一MAC CE信令的时刻之后,终端设备接收到第二MAC CE信令之前。
其中,第一MAC CE信令配置用于检测PDCCH的X(X为大于等于1的正整数)个TCI状态。网络设备发送给终端设备的重配信息可包含该X个TCI状态。
在part3中,终端设备可采用第四TCI状态指示的QCL信息检测PDSCH。第四TCI状态是X个TCI状态中的一个或多个TCI状态。
part4:终端设备接收到第二MAC CE信令的时刻之后,终端设备接收到第一DCI信令之前。
其中,第二MAC CE信令配置用于检测PDSCH的Y(Y为大于等于1的正整数)个TCI状态。网络设备发送给终端设备的重配信息可包含该Y个TCI状态。
在part4中,终端设备可采用第五TCI状态指示的QCL信息检测PDSCH。第五TCI 状态是该Y个TCI状态中的一个或多个TCI状态。
par4之后,终端设备采用现有技术中所确定的QCL信息检测PDSCH。如,当调度时延小于预定门限时,终端设备采用QCL信息基于默认的TCI状态,默认的TCI状态对应于为lowest CORESET ID配置的TCI状态,当调度时延大于预定门限时,终端设备采用第一DCI信令指示的QCL信息检测PDSCH。
本申请中,可以将采用第三TCI状态的时间段称为第二子时间段,可以将采用第四TCI状态的时间段称为第三子时间段,可以将采用第五TCI状态息的时间段称为第四子时间段。
实施例二中,第二时间段可包括以下至少一项:第二子时间段、第三子时间段、第四子时间段。
具体的,当第二时间段包括第二子时间段时,本申请中的第一TCI状态包括:第三TCI状态。当第二时间段包括第三子时间段时,本申请中的第一TCI状态包括:第四TCI状态。当第二时间段包括第四子时间段时,本申请中的第一TCI状态包括:第五TCI状态。
实施例二中,从part 2开始每一个part中采用的TCI状态均可以顺延到终端设备接收到第一DCI信令的时刻或该时刻之前的任何一个时间截点。
可选的,part 2中采用的TCI状态(即第三TCI状态)可以顺延到终端设备接收到第一DCI信令的时刻或该时刻之前的任何一个时间截点。可以理解的,第二子时间段包括图10中的part2。在part 2中采用的TCI状态(即第三TCI状态)顺延到终端设备接收到第一DCI信令的时刻或该时刻之前的任何一个时间截点的情况下,第二子时间段还可进一步包括图10中的part2之后的part,如part3、part4。
可选的,第二子时间段的终止时刻可包括以下至少一个:终端设备接收到第一MAC CE信令的时刻、终端设备接收到第二MAC CE信令的时刻、终端设备接收到第一DCI信令的时刻。
图10仅仅示例性的示出了携带各个信令的时序。不限于图10所示,信令时序可以不同,例如第二MAC CE信令可以在第一MAC CE信令之前,即part4可以在part3之前。
可选的,当2^N=M或者M<=8时,可能不需要第二MAC CE信令,此时part 4不存在。其中,N是DCI信令中TCI field的序列长度,即TCI field包含N个b比特。可选的,当K=1时,不需要第一MAC CE,此时part3不存在。
可以理解的,当第二时间段的起始时刻为第二RRC信令时,在通知第二RRC信令后,终端设备使用第二RRC信令为PDCCH重新配置的TCI状态中的一个或多TCI状态指示的QCL信息检测PDSCH,此时由于重新配置的TCI状态是恢复链路后为PDCCH新配置的TCI状态,新配置的TCI状态指示的QCL信息比第一时间段使用的QCL信息,其性能更好。此外,当第二RRC信令配置的TCI状态是第一RRC信令配置的TCI状态的子集时,由于第二RRC信令配置的TCI状态指示的QCL信息范围更精确,其性能更好。此外,由于其是为PDCCH配置的TCI状态,其鲁棒性更好。
(三)实施例三
本实施例中,第二时间段的起始时刻是终端设备接收到第一MAC CE信令的时刻。第一时间段的结束时刻是终端设备接收到第一MAC CE信令的时刻。第一MAC CE信令配置 用于检测PDCCH的X(X为大于等于1的正整数)个TCI状态。也即是说,图11中的part1即第一时间段。
实施例三中,各个part采用的QCL信息具体如下:
part1:终端设备接收到第一MAC CE信令时刻之前。可选的,part1的起始时刻可以是终端设备向网络设备发送链路重配请求的时刻或者是发送链路重配请求后的4个时隙(slot)。
在part1中,终端设备可采用第一QCL信息检测PDSCH。具体可参考图7实施例中的S202,这里不再赘述。
part2:终端设备接收到第一MAC CE信令的时刻之后,终端设备接收到第二MAC CE信令之前。
其中,第一MAC CE信令配置用于检测PDCCH的X(X为大于等于1的正整数)个TCI状态。网络设备发送给终端设备的重配信息可包含该X个TCI状态。
在part2中,终端设备可采用第四TCI状态指示的QCL信息检测PDSCH。第四TCI状态是X个TCI状态中的一个或多个TCI状态。
part3:终端设备接收到第二MAC CE信令的时刻之后,终端设备接收到第一DCI信令之前。
其中,第二MAC CE信令配置用于检测PDSCH的Y(Y为大于等于1的正整数)个TCI状态。网络设备发送给终端设备的重配信息可包含该Y个TCI状态。
在part3中,终端设备可采用第五TCI状态指示的QCL信息检测PDSCH。第五TCI状态是该Y个TCI状态中的一个或多个TCI状态。
part3之后,终端设备采用现有技术中所确定的QCL信息检测PDSCH。如,当调度时延小于预定门限时,终端设备采用QCL信息基于默认的TCI状态,默认的TCI状态对应于为lowest CORESET ID配置的TCI状态,当调度时延大于预定门限时,终端设备采用第一DCI信令指示的QCL信息检测PDSCH。
本申请中,可以将采用第四TCI状态的时间段称为第三子时间段,可以将采用第五TCI状态的时间段称为第四子时间段。
实施例三中,第二时间段可包括以下至少一项:第三子时间段、第四子时间段。
具体的,当第二时间段包括第三子时间段时,本申请中的第一TCI状态包括:第四TCI状态。当第二时间段包括第四子时间段时,本申请中的第一TCI状态包括:第五TCI状态。
实施例三中,从part 2开始每一个part中采用的默认TCI状态均可以顺延到终端设备接收到第一DCI信令的时刻或该时刻之前的任何一个时间截点。
可选的,part 2中采用的默认TCI状态(即第四TCI状态)可以顺延到终端设备接收到第一DCI信令的时刻或该时刻之前的任何一个时间截点。可以理解的,第三子时间段包括图11中的part2。在part 2中采用的默认TCI状态(即第四TCI状态)顺延到终端设备接收到第一DCI信令的时刻或该时刻之前的任何一个时间截点的情况下,第三子时间段还可进一步包括图11中的part2之后的part,如part3。
可选的,第三子时间段的终止时刻可包括以下至少一个:终端设备接收到第二MAC CE信令的时刻、终端设备接收到第一DCI信令的时刻。
图11仅仅示例性的示出了携带各个信令的时序。不限于图11所示,信令时序可以不 同,例如第二MAC CE信令可以在第一MAC CE信令之前,即part3可以在part2之前。
可选的,当2^N=M或者M<=8时,可能不需要第二MAC CE信令,此时part 3不存在。其中,N是DCI信令中TCI field的序列长度,即TCI field包含N个b比特。可选的,当K=1时,不需要第一MAC CE,此时part2不存在。
可以理解的,当第二时间段的起始时刻为第一MAC CE信令时,在通知第一MAC CE信令后,终端设备使用第一MAC CE信令为PDCCH重新配置的TCI状态中的一个或多TCI状态指示的QCL信息检测PDSCH,此时由于重新配置的TCI状态是恢复链路后为PDCCH新配置的TCI状态,新配置的TCI状态指示的QCL信息比第一时间段使用的QCL信息,其性能更好。此外,第一MAC CE信令激活了第二RRC信令配置的TCI状态中的一个或多个,其所指示的QCL信息用于检测PDCCH,更准确,鲁棒性更好。
(四)实施例四
本实施例中,第二时间段的起始时刻是终端设备接收到第二MAC CE信令的时刻。第一时间段的结束时刻是终端设备接收到第二MAC CE信令的时刻。第二MAC CE信令配置用于检测PDSCH的Y(Y为大于等于1的正整数)个TCI状态。也即是说,图12中的part1即第一时间段。
实施例四中,各个part采用的QCL信息具体如下:
part1:终端设备接收到第二MAC CE信令时刻之前。可选的,part1的起始时刻可以是终端设备向网络设备发送链路重配请求的时刻。
在part1中,终端设备可采用第一QCL信息检测PDSCH。具体可参考图7实施例中的S202,这里不再赘述。
part2:终端设备接收到第二MAC CE信令的时刻之后,终端设备接收到第一DCI信令之前。
其中,第二MAC CE信令配置用于检测PDSCH的Y(Y为大于等于1的正整数)个TCI状态。网络设备发送给终端设备的重配信息可包含该Y个TCI状态。
在part2中,终端设备可采用第五TCI状态指示的QCL信息检测PDSCH。第五TCI状态是该Y个TCI状态中的一个或多个TCI状态。
part2之后,终端设备采用现有技术中所确定的QCL信息检测PDSCH。如,当调度时延小于预定门限时,终端设备采用QCL信息基于默认的TCI状态,默认的TCI状态对应于为lowest CORESET ID配置的TCI状态,当调度时延大于预定门限时,终端设备采用第一DCI信令指示的QCL信息检测PDSCH。
本申请中,可以将采用第五TCI状态的时间段称为第四子时间段。第四子时间段即图12中的part2。第四子时间段的终止时刻可为终端设备接收到第一DCI信令的时刻。
实施例四中,第二时间段可包括:第四子时间段。第一TCI状态可包括:第五TCI状态。
实施例四中,第二MAC CE信令可以称为第二MAC CE信令,第一DCI信令可以称为第一DCI信令。
可以理解的,当第二时间段的起始时刻为第二MAC CE信令时,在通知第二MAC CE 信令后,终端设备使用第二MAC CE信令为PDSCH重新配置的TCI状态中的一个或多TCI状态指示的QCL信息检测PDSCH,此时由于重新配置的TCI状态是恢复链路后为PDCCH新配置的TCI状态,新配置的TCI状态指示的QCL信息比第一时间段使用的QCL信息,其性能更好。此外,第二MAC CE信令激活了第一RRC信令配置的TCI状态中的一个或多个,其所指示的QCL信息为检测PDSCH的候选信息,更准确。
(五)实施例五
本实施例中,第一时间段的结束时刻是终端设备接收到第一DCI信令的时刻。也即是说,图13中的part1即第一时间段。
实施例五中,各个part采用的QCL信息具体如下:
part1:终端设备接收到第一DCI信令时刻之前。可选的,part1的起始时刻可以是终端设备向网络设备发送链路重配请求的时刻。
在part1中,终端设备可采用第一QCL信息检测PDSCH。具体可参考图7实施例中的S202,这里不再赘述。
part1之后,终端设备采用现有技术中所确定的QCL信息检测PDSCH。如,当调度时延小于预定门限时,终端设备采用QCL信息基于默认的TCI状态,默认的TCI状态对应于为lowest CORESET ID配置的TCI状态,当调度时延大于预定门限时,终端设备采用第一DCI信令指示的QCL信息检测PDSCH。
可以看出,实施例五不涉及第二时间段。在终端设备接收到第一DCI信令之前,都采用第一QCL信息检测PDSCH。
实施例五中,第二MAC CE信令可以称为第二MAC CE信令,第一DCI信令可以称为第一DCI信令。
扩展的,结合上述多个实施例,第一TCI状态可包括以下至少一项:候选QCL信息中最小的控制资源集合coreset标识对应的QCL信息、候选QCL信息中用户专用搜索空间关联的最小的coreset标识对应的QCL信息(没有公共beam的场景使用该方式,吞吐更好)、候选QCL信息中公共搜索空间关联的coreset标识对应的QCL信息(公共的beam更宽,覆盖性更好)、链路重配请求关联的参考信号对应的QCL信息、同步信号块SSB对应的QCL信息(link failure没有发生,可以采用用于和基站通信的SSB)、调度该PDSCH的PDCCH所在的CORESET或者PDCCH对应的QCL信息。
网络设备会为终端设备配置一个或多个CORESET资源,且为每一个CORESET资源配置相应的TCI状态,TCI状态用于指示QCL信息。此外网络设备还会为终端设备配置搜索空间(search space),目前现有技术中,一个search space关联一个CORESET。
最小的控制资源集合CORESET标识对应的QCL信息是指,基站为终端配置的多个CORESET中ID最小的那个CORESET对应一个TCI状态,该状态用于指示该CORESET的QCL信息,第二QCL信息可以为该QCL信息。由于最小CORESET ID一直存在所以UE可以使用该QCL信息检测PDSCH。
对于网络设备为终端设备配置的多个CORESET可以包括CSS(common search space) 和USS(UE-specific search space)。当基站为终端设备配置的多个CORESET中既包括CSS也包括USS时,那么第二QCL信息可以为CSS对应的CORESET对应的QCL信息,当有多个CSS对应的CORESET时,第二QCL信息可以为CSS对应的所有CORESET中lowest CORESET ID对应的QCL信息,好处是使用CSS对应的QCL信息鲁棒性更好、覆盖好。此外第二QCL信息还可以为USS对应的CORESET对应的QCL信息,好处是性能更好。
当基站为终端设备配置的多个CORESET中仅包括USS时,那么第二QCL信息可以为USS对应的CORESET对应的QCL信息,当有多个USS对应的CORESET时,第二QCL信息可以为USS对应的所有CORESET中lowest CORESET ID对应的QCL信息,好处是使用USS对应的QCL信息性能好。
当基站为终端设备配置的多个CORESET中仅包括CSS时,那么第二QCL信息可以为CSS对应的CORESET对应的QCL信息,当有多个CSS对应的CORESET时,第二QCL信息可以为CSS对应的所有CORESET中lowest CORESET ID对应的QCL信息,好处是使用CSS对应的QCL信息鲁棒性更好、覆盖好。
由于PDSCH是通过PDCCH调度的,那么第二QCL还可以是检测PDCCH的QCL信息。
另外,本申请还提供了一种CORESET的检测方法。具体包括:网络设备通过dedicate CORESET调度的资源发送previous CORESET的重配信息(即网络设备为previous CORESET重新配置的TCI table)或者新的CORESET时频资源位置或者QCL等信息。本申请中,可以将dedicate CORESET称为第一CORESET,可以将previous CORESET称为第二CORESET。第二CORESET的重配信息可以为网络设备发送给终端设备的重配信息,新的CORESET的QCL信息也可以为网络设备发送给终端设备。
参见图14,图14示出了本申请提供一种无线通信系统及相关通信装置。无线通信系统10包括:终端400和网络设备500。无线通信系统10可以是图1所示的无线通信系统100。其中,终端400可以是图1所示的无线通信系统100中的终端设备103。网络设备500可以是图1所示的无线通信系统100中的网络设备101。下面分别描述终端400和网络设备500各自包含的功能单元。
如图14所示,终端400可包括:接收单元401和发送单元403。其中:
发送单元403可用于在n时刻向网络设备发送链路重配请求信息。
接收单元401可用于在n时刻后的第一时间段内根据第一QCL信息检测PDSCH;第一QCL信息指示第一参考信号和第二参考信号满足QCL关系,其中,第一参考信号是PDSCH的解调参考信号DMRS,第二参考信号包括链路重配请求信息关联的下行参考信号。
接收单元401还可用于收网络设备发送的重配信息,其中重配信息包括一个或多个传输配置指示TCI状态。
接收单元401还可用于在n时刻后的第二时间段内根据第一TCI状态指示的QCL信息检测PDSCH,其中第一TCI状态来自重配信息。
具体的,第一时间段的结束时刻为终端设备接收重配信息的时刻;第二时间段的起始 时刻为终端设备接收重配信息的时刻或之后。
在一些可选实施例中,第二时间段包括第一子时间段;其中重配信息包括通过第一RRC信令配置的用于检测PDSCH的M个TCI状态;M是大于或等于1的正整数。接收单元401可具体用于在第一子时间段内根据第二TCI状态指示的QCL信息检测PDSCH;第二TCI状态来自M个PDSCH TCI状态;第一TCI状态包括第二TCI状态。
在一些可选实施例中,第二时间段包括第二子时间段;重配信息包括通过第二RRC信令配置的用于检测PDCCH的K个TCI状态,K是大于或等于1的正整数。接收单元401可具体用于在第二子时间段内根据第三TCI状态指示的QCL信息检测PDSCH;第三TCI状态来自用于检测PDCCH的K个TCI状态;第一TCI状态包括第三TCI状态。
在一些可选实施例中,第二时间段包括第三子时间段;重配信息包括通过第一MAC-CE信令配置的用于检测PDCCH的X个TCI状态,X是正整数,X≥1。接收单元401可具体用于在第三子时间段内根据第四TCI状态指示的QCL信息检测PDSCH;第四TCI状态来自用于检测PDCCH的X个TCI状态;第一TCI状态包括第四TCI状态。
在一些可选实施例中,第二时间段包括第四子时间段,重配信息包括通过第二MAC-CE信令配置的用于检测PDSCH的Y个TCI状态,Y是正整数,Y≥1。接收单元401可具体用于在第四子时间段内根据第五TCI状态指示的QCL信息检测PDSCH;第五TCI状态来自用于检测PDSCH的Y个TCI状态;第一TCI状态包括第五TCI状态。
在一些可选实施例中,接收单元401还可用于接收网络设备通过第一CORESET调度的资源发送的第二CORESET的重配信息或新的CORESET的时频资源位置或QCL信息;第二CORESET的重配信息为重配信息,或者新的CORESET的QCL信息为重配信息。
可以理解的,关于终端400包括的各个功能单元的具体实现,可以参考前述实施例,这里不再赘述。
如图14所示,网络设备500可包括:发送单元501和接收单元503。其中:
接收单元503可用于接收终端设备在n时刻发送的链路重配请求。
发送单元501可用于在n时刻后的第一时间段内根据第一QCL信息发送PDSCH;第一QCL信息指示第一参考信号和第二参考信号满足QCL关系,其中,第一参考信号是PDSCH的解调参考信号DMRS,第二参考信号包括链路重配请求信息关联的下行参考信号。
发送单元501还可用于向终端设备发送重配信息,其中重配信息包括一个或多个传输配置指示TCI状态。
发送单元501还可用于在n时刻后的第二时间段内根据第一TCI状态指示的QCL信息发送PDSCH,其中第一TCI状态来自重配信息。
具体的,第一时间段的结束时刻为终端设备接收重配信息的时刻;第二时间段的起始时刻为终端设备接收重配信息的时刻或之后。
在一些可选实施例中,第二时间段包括第一子时间段;其中重配信息包括通过第一RRC信令配置的用于检测PDSCH的M个TCI状态;M是大于或等于1的正整数。发送单元501可具体用于在第一子时间段内根据第二TCI状态指示的QCL信息发送PDSCH;第二TCI状态来自M个PDSCH TCI状态;第一TCI状态包括第二TCI状态。
在一些可选实施例中,第二时间段包括第二子时间段;重配信息包括通过第二RRC信令配置的用于检测PDCCH的K个TCI状态,K是大于或等于1的正整数。发送单元501可具体用于在第二子时间段内根据第三TCI状态指示的QCL信息发送PDSCH;第三TCI状态来自用于检测PDCCH的K个TCI状态;第一TCI状态包括第三TCI状态。
在一些可选实施例中,第二时间段包括第三子时间段;重配信息包括通过第一MAC-CE信令配置的用于检测PDCCH的X个TCI状态,X是正整数,X≥1。发送单元501可具体用于在第三子时间段内根据第四TCI状态指示的QCL信息发送PDSCH;第四TCI状态来自用于检测PDCCH的X个TCI状态;第一TCI状态包括第四TCI状态。
在一些可选实施例中,第二时间段包括第四子时间段,重配信息包括通过第二MAC-CE信令配置的用于检测PDSCH的Y个TCI状态,Y是正整数,Y≥1。发送单元501可具体用于在第四子时间段内根据第五TCI状态指示的QCL信息发送PDSCH;第五TCI状态来自用于检测PDSCH的Y个TCI状态;第一TCI状态包括第五TCI状态。
在一些可选实施例中,发送单元501还可用于通过第一CORESET调度的资源向终端设备发送的第二CORESET的重配信息或新的CORESET的时频资源位置或QCL信息;第二CORESET的重配信息为重配信息,或者新的CORESET的QCL信息为重配信息。
可以理解的,关于网络设备500包括的各个功能单元的具体实现,可以参考前述实施例,这里不再赘述。
综上,实施本申请提供的技术方案,可以实现在链路故障之后且在网络设备重新明确指示使用哪个接收波束来检测PDSCH之前,终端设备可靠的检测PDSCH。
结合本发明实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于收发机或中继设备中。当然,处理器和存储介质也可以作为分立组件存在于无线接入网设备或终端设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (21)

  1. 一种信号传输方法,其特征在于,包括:
    终端设备在n时刻向网络设备发送链路重配请求信息;
    所述终端设备在n时刻后的第一时间段内根据第一QCL信息检测PDSCH;第一QCL信息指示第一参考信号和第二参考信号满足QCL关系,其中,所述第一参考信号是PDSCH的解调参考信号DMRS,所述第二参考信号包括链路重配请求信息关联的下行参考信号;
    所述终端设备接收所述网络设备发送的重配信息,其中所述重配信息包括一个或多个传输配置指示TCI状态;
    所述终端设备在n时刻后的第二时间段内根据第一TCI状态指示的QCL信息检测PDSCH,其中所述第一TCI状态来自所述重配信息;
    其中,第一时间段的结束时刻为所述终端设备接收所述重配信息的时刻;第二时间段的起始时刻为所述终端设备接收所述重配信息的时刻或之后。
  2. 如权利要求1的方法,其特征在于,所述第二时间段包括第一子时间段;其中所述重配信息包括通过第一RRC信令配置的用于检测PDSCH的M个TCI状态;M是大于或等于1的正整数;
    所述终端设备在n时刻后的第二时间段内根据第一TCI状态指示的QCL信息检测PDSCH,具体包括:
    所述终端设备在所述第一子时间段内根据第二TCI状态指示的QCL信息检测PDSCH;所述第二TCI状态来自所述M个PDSCH TCI状态;所述第一TCI状态包括所述第二TCI状态。
  3. 如权利要求1-2中任一项的方法,其特征在于,所述第二时间段包括第二子时间段;所述重配信息包括通过第二RRC信令配置的用于检测PDCCH的K个TCI状态,K是大于或等于1的正整数;
    所述终端设备在n时刻后的第二时间段内根据第一TCI状态指示的QCL信息检测PDSCH,具体包括:
    所述终端设备在所述第二子时间段内根据第三TCI状态指示的QCL信息检测PDSCH;所述第三TCI状态来自所述用于检测PDCCH的K个TCI状态;所述第一TCI状态包括所述第三TCI状态。
  4. 如权利要求1-3中任一项的方法,其特征在于,所述第二时间段包括第三子时间段;所述重配信息包括通过第一MAC-CE信令配置的用于检测PDCCH的X个TCI状态,X是正整数,X≥1;
    所述终端设备在n时刻后的第二时间段内根据第一TCI状态指示的QCL信息检测PDSCH,具体包括:
    所述终端设备在所述第三子时间段内根据第四TCI状态指示的QCL信息检测PDSCH;第四TCI状态来自所述用于检测PDCCH的X个TCI状态;所述第一TCI状态包括所述第 四TCI状态。
  5. 如权利要求1-4中任一项的方法,其特征在于,所述第二时间段包括第四子时间段,所述重配信息包括通过第二MAC-CE信令配置的用于检测PDSCH的Y个TCI状态,Y是正整数,Y≥1;
    所述终端设备在n时刻后的第二时间段内根据第一TCI状态指示的QCL信息检测PDSCH,具体包括:
    所述终端设备在第四子时间段内根据第五TCI状态指示的QCL信息检测PDSCH;第五TCI状态来自所述用于检测PDSCH的Y个TCI状态;所述第一TCI状态包括所述第五TCI状态。
  6. 根据权利要求1-5中任一项的方法,其特征在于,还包括:
    所述终端设备接收所述网络设备通过第一CORESET调度的资源发送的第二CORESET的重配信息或新的CORESET的时频资源位置或QCL信息;所述第二CORESET的重配信息为所述重配信息,或者新的CORESET的QCL信息为所述重配信息。
  7. 一种信号传输方法,其特征在于,包括:
    网络设备接收终端设备在n时刻发送的链路重配请求;
    所述网络设备在n时刻后的第一时间段内根据第一QCL信息发送PDSCH;第一QCL信息指示第一参考信号和第二参考信号满足QCL关系,其中,所述第一参考信号是PDSCH的解调参考信号DMRS,所述第二参考信号包括链路重配请求信息关联的下行参考信号;
    所述网络设备向所述终端设备发送重配信息,其中所述重配信息包括一个或多个传输配置指示TCI状态;
    所述网络设备在n时刻后的第二时间段内根据第一TCI状态指示的QCL信息发送PDSCH,其中所述第一TCI状态来自所述重配信息;
    其中,第一时间段的结束时刻为所述终端设备接收所述重配信息的时刻;第二时间段的起始时刻为所述终端设备接收所述重配信息的时刻或之后。
  8. 如权利要求7所述方法,其特征在于,所述第二时间段包括第一子时间段;其中所述重配信息包括通过第一RRC信令配置的用于检测PDSCH的M个TCI状态;M是大于或等于1的正整数;
    所述网络设备在n时刻后的第二时间段内根据第一TCI状态指示的QCL信息发送PDSCH,具体包括:
    所述网络设备在所述第一子时间段内根据第二TCI状态指示的QCL信息发送PDSCH;所述第二TCI状态来自所述M个PDSCH TCI状态;所述第一TCI状态包括所述第二TCI状态。
  9. 如权利要求7-8中任一项所述方法,其特征在于,所述第二时间段包括第二子时间 段;所述重配信息包括通过第二RRC信令配置的用于检测PDCCH的K个TCI状态,K是大于或等于1的正整数;
    所述网络设备在n时刻后的第二时间段内根据第一TCI状态指示的QCL信息发送PDSCH,具体包括:
    所述网络设备在所述第二子时间段内根据第三TCI状态指示的QCL信息发送PDSCH;所述第三TCI状态来自所述用于检测PDCCH的K个TCI状态;所述第一TCI状态包括所述第三TCI状态。
  10. 如权利要求7-9中任一项所述方法,其特征在于,所述第二时间段包括第三子时间段;所述重配信息包括通过第一MAC-CE信令配置的用于检测PDCCH的X个TCI状态,X是正整数,X≥1;
    所述网络设备在n时刻后的第二时间段内根据第一TCI状态指示的QCL信息发送PDSCH,具体包括:
    所述网络设备在所述第三子时间段内根据第四TCI状态指示的QCL信息发送PDSCH;第四TCI状态来自所述用于检测PDCCH的X个TCI状态;所述第一TCI状态包括所述第四TCI状态。
  11. 如权利要求7-10中任一项所述方法,其特征在于,所述第二时间段包括第四子时间段,所述重配信息包括通过第二MAC-CE信令配置的用于检测PDSCH的Y个TCI状态,Y是正整数,Y≥1;
    所述网络设备在n时刻后的第二时间段内根据第一TCI状态指示的QCL信息发送PDSCH,具体包括:
    所述网络设备在第四子时间段内根据第五TCI状态指示的QCL信息发送PDSCH;第五TCI状态来自所述用于检测PDSCH的Y个TCI状态;所述第一TCI状态包括所述第五TCI状态。
  12. 如权利要求7-11中任一项所述方法,其特征在于,还包括:
    所述网络设备通过第一CORESET调度的资源向所述终端设备发送的第二CORESET的重配信息或新的CORESET的时频资源位置或QCL信息;所述第二CORESET的重配信息为所述重配信息,或者新的CORESET的QCL信息为所述重配信息。
  13. 如权利要求2或8的方法,其特征在于,所述第一子时间段的起始时刻为所述终端设备接收到所述第一RRC信令时,所述第一子时间段的终止时刻包括以下至少一个:所述终端设备接收到第二RRC信令时、所述终端设备接收到第一MAC CE信令时、所述终端设备接收到第二MAC CE信令时、所述终端设备接收到第一DCI信令时;
    其中,所述第二RRC信令配置用于检测PDCCH的K个TCI状态,所述第一MAC CE信令配置用于检测PDCCH的X个TCI状态,所述第二MAC CE信令配置用于检测PDSCH的Y个TCI状态;所述第一DCI信令指示检测PDSCH的QCL信息;K、X、Y均是大于 或等于1的正整数。
  14. 如权利要求3或9的方法,其特征在于,所述第二子时间段的起始时刻为所述终端设备接收到所述第二RRC信令时,所述第二子时间段的终止时刻包括以下至少一个:所述终端设备接收到第一MAC CE信令时、所述终端设备接收到第二MAC CE信令时、所述终端设备接收到第一DCI信令时;
    其中,所述第一MAC CE信令配置用于检测PDCCH的X个TCI状态,所述第二MAC CE信令配置用于检测PDSCH的Y个TCI状态;所述第一DCI信令指示检测PDSCH的QCL信息;X、Y均是大于或等于1的正整数。
  15. 如权利要求4或10的方法,其特征在于,所述第三子时间段的起始时刻为所述终端设备接收到第一MAC-CE信令时,所述第三子时间段的终止时刻包括以下至少一个:所述终端设备接收到第二MAC CE信令时、所述终端设备接收到第一DCI信令时;
    其中,所述第二MAC CE信令配置用于检测PDSCH的Y个TCI状态;所述第一DCI信令指示检测PDSCH的QCL信息;Y是大于或等于1的正整数。
  16. 如权利要求5或11的方法,其特征在于,所述第四子时间段的起始时刻为所述终端设备接收到第二MAC-CE信令时,所述第四子时间段的终止时刻为所述终端设备接收到第一DCI信令时;所述第一DCI信令指示检测PDSCH的QCL信息。
  17. 如权利要求1-16中任一项的方法,其特征在于,所述第一TCI状态包括以下至少一项:
    所述重配信息中最小的控制资源集合CORESET标识对应的TCI状态、用户专用搜索空间关联的最小的CORESET标识对应的TCI状态、公共搜索空间关联的CORESET标识对应的TCI状态、链路重配请求关联的下行参考信号对应的TCI状态、与同步信号块SSB关联的TCI状态、调度所述PDSCH的PDCCH所在的CORESET对应的TCI状态。
  18. 如权利要求1-17中任一项的方法,其特征在于,所述PDSCH的TCI状态的字段在下行控制信息DCI信令中存在。
  19. 一种终端设备,其特征在于,所述终端设备包括用于执行权利要求1-6、13-18中任一项所述的信号传输方法的单元。
  20. 一种网络设备,其特征在于,所述网络设备包括用于执行权利要求7-12、13-18中任一项所述的信号传输方法的单元。
  21. 一种通信系统,其特征在于,包括终端设备和网络设备,所述终端设备为权利要求19所述的终端设备,所述网络设备为权利要求20所述的网络设备。
PCT/CN2019/071493 2018-01-12 2019-01-11 信号传输方法、相关设备及系统 WO2019137509A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810033821.3A CN110034853B (zh) 2018-01-12 2018-01-12 信号传输方法、相关设备及系统
CN201810033821.3 2018-01-12

Publications (1)

Publication Number Publication Date
WO2019137509A1 true WO2019137509A1 (zh) 2019-07-18

Family

ID=67219232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071493 WO2019137509A1 (zh) 2018-01-12 2019-01-11 信号传输方法、相关设备及系统

Country Status (2)

Country Link
CN (1) CN110034853B (zh)
WO (1) WO2019137509A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112423389A (zh) * 2019-08-20 2021-02-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112543082A (zh) * 2019-09-20 2021-03-23 维沃移动通信有限公司 监听方法、发送方法、终端及网络侧设备
WO2021212397A1 (en) * 2020-04-23 2021-10-28 Lenovo (Beijing) Limited Default beam determination in cross-carrier scheduling
US20220248406A1 (en) * 2021-02-01 2022-08-04 Qualcomm Incorporated Determination of default common beam
CN114930921A (zh) * 2019-10-03 2022-08-19 株式会社Ntt都科摩 终端以及无线通信方法
CN115038160A (zh) * 2019-11-05 2022-09-09 Oppo广东移动通信有限公司 无线通信的方法和终端设备
WO2023283844A1 (en) * 2021-07-14 2023-01-19 Nec Corporation Methods, devices and computer storage media for communication

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112291849A (zh) * 2019-07-24 2021-01-29 华为技术有限公司 无线网络通信方法和通信装置
JP7354302B2 (ja) * 2019-07-25 2023-10-02 オッポ広東移動通信有限公司 データを伝送するための方法及び端末装置
CN114175552B (zh) * 2019-07-25 2024-09-10 日本电气株式会社 用于物理共享信道的重复次数的指示
CN112312416B (zh) * 2019-07-26 2023-04-04 华为技术有限公司 一种通信方法及通信装置
CN112398615B (zh) * 2019-08-15 2021-10-01 华为技术有限公司 Tci状态确定方法、信道传输方法、终端设备、网络设备
CN114128352B (zh) * 2019-08-29 2023-11-10 华为技术有限公司 一种通信方法及装置
CN112637937B (zh) * 2019-09-24 2021-08-24 维沃移动通信有限公司 一种节能信号接收方法、节能信号发送方法及相关设备
CN112583547B (zh) * 2019-09-27 2022-12-13 中国移动通信有限公司研究院 Tci状态与dmrs映射关系的确定、配置方法及设备
EP4057731A4 (en) * 2019-11-07 2022-11-02 Fujitsu Limited METHOD AND DEVICE FOR DETERMINING TRANSMISSION PARAMETERS
CN112804692B (zh) * 2019-11-14 2023-01-03 中国移动通信有限公司研究院 信号处理方法及设备
CN115299088A (zh) * 2020-03-19 2022-11-04 株式会社Ntt都科摩 终端、无线通信方法以及基站
CN115189821B (zh) * 2021-04-01 2023-09-19 大唐移动通信设备有限公司 传输配置指示tci状态的确定方法、装置及终端设备
WO2022205452A1 (en) * 2021-04-02 2022-10-06 Zte Corporation Reference signal configuration for multi-beam communication in wireless networks
CN114143811B (zh) * 2021-12-02 2023-07-28 郑州航空工业管理学院 基于机器学习的篮球投射过程中的角度智能视觉图像传输方法及系统
CN116248238A (zh) * 2021-12-08 2023-06-09 维沃移动通信有限公司 检测及配置参考信号的方法、装置、终端及网络侧设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079459A (zh) * 2015-08-11 2017-08-18 瑞典爱立信有限公司 从波束故障中恢复
WO2018004509A1 (en) * 2016-06-27 2018-01-04 Nokia Technologies Oy Method, apparatus, and computer program product for improving reliability in wireless communication

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105874740A (zh) * 2014-03-13 2016-08-17 Lg电子株式会社 在无线通信系统中发送和接收低延时信号的方法及其装置
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079459A (zh) * 2015-08-11 2017-08-18 瑞典爱立信有限公司 从波束故障中恢复
WO2018004509A1 (en) * 2016-06-27 2018-01-04 Nokia Technologies Oy Method, apparatus, and computer program product for improving reliability in wireless communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL: "Remaining details on beam failure recovery", 3GPP TSG RAN WG1 MEETING 91 R1-1719423, 18 November 2017 (2017-11-18), XP051369330 *
SPREADTRUM COMMUNICATIONS: "Remaining issues on beam failure recovery mechanism", 3GPP TSG RAN WG1 MEETING 91 R1-1719695, 17 November 2017 (2017-11-17), XP051368853 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112423389A (zh) * 2019-08-20 2021-02-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112423389B (zh) * 2019-08-20 2022-07-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112543082A (zh) * 2019-09-20 2021-03-23 维沃移动通信有限公司 监听方法、发送方法、终端及网络侧设备
CN112543082B (zh) * 2019-09-20 2023-05-16 维沃移动通信有限公司 监听方法、发送方法、终端及网络侧设备
CN114930921A (zh) * 2019-10-03 2022-08-19 株式会社Ntt都科摩 终端以及无线通信方法
CN115038160A (zh) * 2019-11-05 2022-09-09 Oppo广东移动通信有限公司 无线通信的方法和终端设备
CN115038160B (zh) * 2019-11-05 2023-11-24 Oppo广东移动通信有限公司 无线通信的方法和终端设备
WO2021212397A1 (en) * 2020-04-23 2021-10-28 Lenovo (Beijing) Limited Default beam determination in cross-carrier scheduling
US20220248406A1 (en) * 2021-02-01 2022-08-04 Qualcomm Incorporated Determination of default common beam
US11564233B2 (en) * 2021-02-01 2023-01-24 Qualcomm Incorporated Determination of default common beam
WO2023283844A1 (en) * 2021-07-14 2023-01-19 Nec Corporation Methods, devices and computer storage media for communication

Also Published As

Publication number Publication date
CN110034853B (zh) 2021-09-21
CN110034853A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
WO2019137509A1 (zh) 信号传输方法、相关设备及系统
US11451433B2 (en) Signal transmission method, related device, and system
CN110972251B (zh) 信号传输方法、相关设备及系统
CN112351501B (zh) 通信方法及装置
US10644777B2 (en) Channel state information reference signal (CSI-RS) for layer-3 (L3) mobility
CN107852772B (zh) 发射波束成形参考/控制信号的系统和方法
CN108809370B (zh) 用于使用无线网络中的多个频带进行通信的系统
WO2018141272A1 (zh) 终端、网络设备和通信方法
US11582639B2 (en) Information transmission method, related device, and system
CN117998381A (zh) 用于通信波束恢复的系统和方法
JP2020509626A (ja) 基地局制御型ビーム管理
JP2019516329A (ja) 方法、システムおよび装置
US11290199B2 (en) Link recovery method, terminal device, and network device
CN111586858A (zh) 信号传输方法和通信装置
WO2019192410A1 (zh) 一种信号传输方法及通信设备
US20200120526A1 (en) Cell Quality Derivation Configuration
US20230140502A1 (en) Beam indication method and communications apparatus
WO2022151494A1 (zh) 一种传输参数确定方法及装置
US20210068116A1 (en) Reference signal transmission method and communications device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19739102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19739102

Country of ref document: EP

Kind code of ref document: A1