WO2022267818A1 - 一种移动性管理方法及通信装置 - Google Patents

一种移动性管理方法及通信装置 Download PDF

Info

Publication number
WO2022267818A1
WO2022267818A1 PCT/CN2022/095525 CN2022095525W WO2022267818A1 WO 2022267818 A1 WO2022267818 A1 WO 2022267818A1 CN 2022095525 W CN2022095525 W CN 2022095525W WO 2022267818 A1 WO2022267818 A1 WO 2022267818A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
target cell
condition
target
terminal device
Prior art date
Application number
PCT/CN2022/095525
Other languages
English (en)
French (fr)
Inventor
顾志方
娄崇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022267818A1 publication Critical patent/WO2022267818A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • H04W36/362Conditional handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a mobility management method and a communication device.
  • the terminal equipment In the scenario of high-frequency beamforming, due to the movement of the terminal equipment and the limited coverage of the beam, the terminal equipment needs to perform cell switching frequently.
  • the quality of communication between the terminal device and the network device may be poor at the time of handover, which may easily lead to handover failure.
  • the source network device In the handover process configured with CHO, when the communication quality is good, the source network device can send the neighbor cell configuration and handover conditions to the terminal equipment in advance, and the terminal equipment will perform handover when the handover conditions are met, which can improve the communication quality to a certain extent. Handover robustness.
  • the beam alignment mechanism is not efficient enough, and the beam direction is not accurate enough, which increases the handover delay and even leads to handover failure.
  • the present application provides a mobility management method and a communication device, which are used to reduce delay and improve communication quality.
  • an embodiment of the present application provides a mobility management method, and the method may be executed by a terminal device, or may be executed by a component (such as a chip or a circuit) configured on the terminal device.
  • the method includes: receiving first configuration information from a first network device, where the first configuration information includes measurement configuration information of a candidate cell; performing measurement on the candidate cell according to the measurement configuration information; according to the measurement result, and, At least one of the first condition and the second condition determines a target cell, the target cell is one of the candidate cells, and the target cell satisfies the first condition and/or the second condition;
  • the first network device sends first indication information, where the first indication information indicates whether to switch to the target cell, and/or whether to add the target cell as a serving cell.
  • the terminal device can decide whether to switch to the target cell or whether to add the target cell as a serving cell according to the measurement results at the cell level and/or beam level, without waiting for a handover command from the network device or adding a service cell.
  • the command of the cell can simplify the signaling interaction process in the process of switching or adding a serving cell, thereby reducing the delay.
  • the terminal device has carried out the beam management process of the target cell before the handover is completed or the target cell is added. After switching to the target cell, it can transmit data in a better beam direction, so that it can maintain large-capacity data immediately after the handover transmission, improving the communication quality.
  • the first configuration information includes the first condition, and the target cell is determined according to the measurement result, and at least one of the first condition and the second condition, specifically
  • the method includes: determining whether to switch to the target cell according to the measurement result and the first condition.
  • the first condition includes at least one of the following:
  • the cell-level signal quality of the target cell is higher than a first threshold
  • the difference between the cell-level signal quality of the target cell and the cell-level signal quality of the serving cell is higher than a second threshold, and the serving cell is a cell serving the terminal device before handover;
  • the signal quality of one or more beams of the target cell is higher than a third threshold
  • the difference between the signal quality of one or more beams of the target cell and the signal quality of a beam used by the terminal device in the serving cell is higher than a fourth threshold
  • the difference between the signal quality of one or more beams of the target cell and the signal quality of the strongest beam in the serving cell is greater than a fifth threshold.
  • the first configuration information includes the second condition
  • the first configuration information includes the first condition
  • the first condition and Determining the target cell by at least one of the second conditions specifically includes: determining whether to add the target cell as a serving cell according to the measurement result and the second condition.
  • the second condition includes at least one of the following:
  • the cell-level signal quality of the target cell is higher than the sixth threshold, and the cell-level signal quality of the serving cell is higher than the sixth threshold; the signal of one or more beams of the target cell The quality is higher than the seventh threshold, and the signal quality of one or more beams of the serving cell is higher than the seventh threshold.
  • the first indication information further includes at least one of the following:
  • a measurement result of a serving cell where the serving cell is a cell serving the terminal device before handover, and the measurement result is a cell-level measurement result and/or a beam-level measurement result;
  • a measurement result of at least one cell in the candidate cells where the measurement result is a cell-level measurement result and/or a beam-level measurement result.
  • the first network device is a source network device.
  • the method further includes: receiving a response message from the target network device, where the response message is used to indicate whether the target network device agrees to handover the terminal device to the target cell or add the target cell as a service Community decisions.
  • the terminal device uses the dual-antenna panel when receiving the response information from the target network device, and uses the single-antenna panel when the terminal device communicates with the first network device.
  • the terminal device monitors the scheduling and/or response information of the source serving cell and the target cell at the same time during the cell switching process by activating the dual-antenna panel. When the cell switching request is rejected or the switching fails, the terminal can continue to monitor the source.
  • the scheduling and/or response information of the serving cell reduces the probability of the cell reselection process and improves the reliability of the handover process.
  • the embodiment of the present application provides a mobility management method, and the method may be executed by the first network device, or may be executed by a component (such as a chip or a circuit) configured on the first network device.
  • the method includes: sending configuration information to a terminal device, the configuration information including measurement configuration information of a candidate cell, the measurement configuration information is used by the terminal device to measure the candidate cell, and the target cell is the candidate cell One of the cells, the target cell satisfies the first condition and/or the second condition; receiving first indication information from the terminal device, the first indication information indicating whether to switch to the target cell, And/or, whether to add the target cell as a serving cell.
  • the first configuration information includes the first condition, and the first condition is used to determine whether to switch to the target cell.
  • the first condition includes at least one of the following:
  • the cell-level signal quality of the target cell is higher than a first threshold
  • the difference between the cell-level signal quality of the target cell and the cell-level signal quality of the serving cell is higher than a second threshold value, and the serving cell is a cell serving the terminal device before handover;
  • the signal quality of one or more beams of the target cell is higher than a third threshold
  • the difference between the signal quality of one or more beams of the target cell and the signal quality of a beam used by the terminal device in the serving cell is higher than a fourth threshold
  • the difference between the signal quality of one or more beams of the target cell and the signal quality of the strongest beam in the serving cell is greater than a fifth threshold.
  • the configuration information includes a second condition, and the second condition is used to determine whether to add the target cell as a serving cell.
  • the second condition includes at least one of the following:
  • the cell-level signal quality of the target cell is higher than a sixth threshold, and the cell-level signal quality of the serving cell is higher than the sixth threshold;
  • the signal quality of one or more beams of the target cell is higher than a seventh threshold, and the signal quality of one or more beams of the serving cell is higher than a seventh threshold.
  • the first indication information further includes at least one of the following:
  • a measurement result of a serving cell where the serving cell is a cell serving the terminal device before handover, and the measurement result is a cell-level measurement result and/or a beam-level measurement result;
  • a measurement result of at least one cell in the candidate cells where the measurement result is a cell-level measurement result and/or a beam-level measurement result.
  • the first network device is a source network device.
  • the method further includes sending a handover request message to a candidate network device, where the request message is used to request configuration information of the candidate cell, the candidate cell belongs to the candidate Internet equipment;
  • Configuration information of the candidate cell is received from the candidate network device.
  • the method further includes: sending second indication information to the target network device, the target cell belongs to the target network device, and the second indication information includes at least one of the following :
  • a cell-level measurement result and/or a beam-level measurement result of the target cell are described.
  • the information for the terminal device to decide whether to switch specifically includes:
  • Handover is not performed, and the resource of the target cell is used for data transmission.
  • the method further includes:
  • the embodiment of the present application provides a mobility management method, and the method may be executed by a terminal device, or may be executed by a component (such as a chip or a circuit) configured on the terminal device.
  • the method includes: receiving first configuration information from a first network device, where the first configuration information includes measurement configuration information of a candidate cell; performing measurement on the candidate cell according to the measurement configuration information; according to the measurement result, and, At least one of the first condition and the second condition determines a target cell, the target cell is one of the candidate cells, and the target cell satisfies the first condition and/or the second condition;
  • the target network device sends third indication information, where the third indication information indicates whether to switch to the target cell, and/or whether to add the target cell as a serving cell.
  • the terminal device can decide whether to switch to the target cell or whether to Adding a target cell as a serving cell does not need to wait for a switching command from a network device or a command to add a serving cell, which can simplify the signaling interaction process in the process of switching or adding a serving cell, thereby reducing time delay.
  • the terminal device has carried out the beam management process of the target cell before the handover is completed. After handing over to the target cell, it can perform data transmission in a better beam direction, so that it can maintain large-capacity data transmission immediately after the handover, which improves communication quality.
  • the first network device is a source network device.
  • the first configuration information includes the first condition
  • the target cell is determined according to the measurement result, and at least one of the first condition and the second condition
  • the method includes: determining whether to switch to the target cell according to the measurement result and the first condition.
  • the first condition includes at least one of the following:
  • the cell-level signal quality of the target cell is higher than a first threshold
  • the difference between the cell-level signal quality of the target cell and the cell-level signal quality of the serving cell is higher than a second threshold, and the serving cell is a cell serving the terminal device before handover;
  • the signal quality of one or more beams of the target cell is higher than a third threshold
  • the difference between the signal quality of one or more beams of the target cell and the signal quality of a beam used by the terminal device in the serving cell is higher than a fourth threshold
  • the difference between the signal quality of one or more beams of the target cell and the signal quality of the strongest beam in the serving cell is greater than a fifth threshold.
  • the first configuration information includes the second condition
  • the first configuration information includes the first condition
  • the first condition and Determining the target cell by at least one of the second conditions specifically includes: determining whether to add the target cell as a serving cell according to the measurement result and the second condition.
  • the second condition includes at least one of the following:
  • the cell-level signal quality of the target cell is higher than a sixth threshold, and the cell-level signal quality of the serving cell is higher than the sixth threshold;
  • the signal quality of one or more beams of the target cell is higher than a seventh threshold, and the signal quality of one or more beams of the serving cell is higher than a seventh threshold.
  • the target cell is not added as a serving cell, and resources of the target cell are used for data transmission.
  • the third indication information further includes at least one of the following:
  • a cell-level measurement result and/or a beam-level measurement result of the target cell are described.
  • the embodiment of the present application provides a mobility management method, and the method may be executed by a first network device, or may be executed by a component (such as a chip or a circuit) configured on the first network device.
  • the method includes: sending configuration information to a terminal device, the configuration information including measurement configuration information of a candidate cell, the measurement configuration information is used by the terminal device to measure the candidate cell, and the target cell is the candidate cell One of the cells, the target cell satisfies the first condition and/or the second condition.
  • the first configuration information includes the first condition, and the first condition is used to determine whether to switch to the target cell.
  • the first condition includes at least one of the following:
  • the cell-level signal quality of the target cell is higher than a first threshold
  • the difference between the cell-level signal quality of the target cell and the cell-level signal quality of the serving cell is higher than a second threshold, and the serving cell is a cell serving the terminal device before handover;
  • the signal quality of one or more beams of the target cell is higher than a third threshold
  • the difference between the signal quality of one or more beams of the target cell and the signal quality of a beam used by the terminal device in the serving cell is higher than a fourth threshold
  • the difference between the signal quality of one or more beams of the target cell and the signal quality of the strongest beam in the serving cell is greater than a fifth threshold.
  • the configuration information includes a second condition, and the second condition is used to determine whether to add the target cell as a serving cell.
  • the second condition includes at least one of the following:
  • the cell-level signal quality of the target cell is higher than a sixth threshold, and the cell-level signal quality of the serving cell is higher than the sixth threshold;
  • the signal quality of one or more beams of the target cell is higher than a seventh threshold, and the signal quality of one or more beams of the serving cell is higher than a seventh threshold.
  • the first indication information further includes at least one of the following:
  • a measurement result of a serving cell where the serving cell is a cell serving the terminal device before handover, and the measurement result is a cell-level measurement result and/or a beam-level measurement result;
  • a measurement result of at least one cell in the candidate cells where the measurement result is a cell-level measurement result and/or a beam-level measurement result.
  • the first network device is a source network device.
  • the method further includes sending a handover request message to a candidate network device, where the request message is used to request configuration information of the candidate cell, and the candidate cell belongs to the candidate Internet equipment;
  • Configuration information of the candidate cell is received from the candidate network device.
  • the method further includes: sending second indication information to the target network device, the target cell belongs to the target network device, and the second indication information includes at least one of the following :
  • a cell-level measurement result and/or a beam-level measurement result of the target cell are described.
  • the information on whether the terminal device decides to switch specifically includes:
  • Handover is not performed, and the resource of the target cell is used for data transmission.
  • the method further includes:
  • a communication device including functional modules for implementing the method in the foregoing first aspect, any possible implementation manner of the first aspect, the third aspect, and any possible implementation manner of the third aspect.
  • a communication device including functional modules for implementing the methods in the second aspect, any possible implementation manner of the second aspect, the fourth aspect, and any possible implementation manner of the fourth aspect.
  • a communication device including a processor and a memory, the processor and the memory are coupled, and the processor is used to control the device to implement the aforementioned first aspect, any possible implementation of the first aspect, the third aspect, A method in any possible implementation of the third aspect.
  • a communication device including a processor and a memory, the processor and the memory are coupled, and the processor is used to control the device to implement the aforementioned second aspect, any possible implementation of the second aspect, the fourth aspect, A method in any possible implementation manner of the fourth aspect.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor is used to implement the method in any possible implementation of the first aspect, the first aspect, the third aspect, and the third aspect through a logic circuit or executing code instructions A method in any possible implementation.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit to the processor or transmit signals from the processor sent to other communication devices other than the communication device, the processor is used to implement the aforementioned second aspect, any possible implementation of the second aspect, the fourth aspect, and any possible implementation of the fourth aspect through a logic circuit or executing code instructions A method within a method within an implementation of .
  • a computer-readable storage medium in which a computer program or instruction is stored, and when the computer program or instruction is executed, the aforementioned first aspect, the first aspect, and the first aspect are realized.
  • a computer-readable storage medium in which a computer program or instruction is stored, and when the computer program or instruction is executed, any of the aforementioned second aspect and second aspect can be realized.
  • a thirteenth aspect provides a computer program product containing instructions. When the instructions are executed, the first aspect, any possible implementation of the first aspect, the third aspect, and any possible implementation of the third aspect can be realized. method in the implementation.
  • a computer program product containing instructions is provided.
  • the instructions are executed, the aforementioned second aspect, the method in any possible implementation of the second aspect, the fourth aspect, and the method of the fourth aspect are implemented.
  • a computer program includes codes or instructions, and when the codes or instructions are executed, any possible implementation of the aforementioned first aspect, the first aspect, the third aspect, and the third aspect can be realized method in the implementation.
  • a sixteenth aspect provides a computer program.
  • the computer program includes codes or instructions.
  • the codes or instructions are executed, the aforementioned second aspect, the method in any possible implementation of the second aspect, and the fourth aspect are implemented.
  • a chip system in a seventeenth aspect, includes a processor, and may also include a memory, for realizing the aforementioned first aspect, any possible implementation of the first aspect, the second aspect, and any of the second aspects Possible implementation, the third aspect, any possible implementation of the third aspect, the fourth aspect, at least one method described in any possible implementation of the fourth aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a communication system in an eighteenth aspect, includes the device described in the fifth aspect, the seventh aspect, or the ninth aspect, and the device described in the sixth aspect, the eighth aspect, or the tenth aspect.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a CU-DU separation architecture adopted by an access network device in an embodiment of the present application
  • FIG. 3 is a schematic flow diagram of a conditional switching provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a mobility management method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flow chart of another mobility management method provided by the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another mobility management method provided by the embodiment of the present application.
  • FIG. 7 , FIG. 8 and FIG. 9 are schematic structural diagrams of a communication device provided by an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as universal mobile telecommunications system (universal mobile telecommunications system, UMTS) system, code division multiple access (code division multiple access, CDMA) system, wireless local area network (WLAN, wireless local area network), long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), fifth generation (5th generation, 5G ) mobile communication system or new radio (new radio, NR) system, or applied to future communication systems or other similar communication systems, etc.
  • universal mobile telecommunications system universal mobile telecommunications system
  • CDMA code division multiple access
  • WLAN wireless local area network
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • 5G fifth generation
  • 5G new radio
  • FIG. 1 is a schematic diagram of a network architecture of a communication system provided by the present application.
  • the communication system includes access network equipment and terminal equipment.
  • the terminal device is located within the coverage of one or more cells (carriers) provided by the access network device, and there may be one or more cells serving the terminal device.
  • the terminal device can use carrier aggregation (carrier aggregation, CA) or dual connectivity (dual connectivity, DC) or coordinated multiple points transmission/reception (CoMP) Working in this way, at least one cell can provide the terminal equipment with radio resources corresponding to more than one transmission parameter set. For example, as shown in FIG.
  • carrier aggregation carrier aggregation
  • DC dual connectivity
  • CoMP coordinated multiple points transmission/reception
  • the terminal device 110 is located in the cell of the access network device 120, the cell of the access network device 130, and the cell of the access network device 140 at the same time, and the access network device 120 may be a macro base station (such as a macro base station) eNB), the access network device 130 and the access network device 140 may be micro base stations (such as small eNB).
  • FIG. 1 is only a schematic diagram, and the communication system may also include other network devices such as core network equipment, wireless relay equipment, and wireless backhaul equipment, which are not shown in FIG. 1 .
  • the embodiment of the present application does not limit the number of access network devices, terminal devices, core network devices, and other network devices included in the communication system.
  • the access network equipment in the embodiment of this application can correspond to different equipment in different types or standards of communication systems, for example, in a 5G system, it corresponds to an access network equipment (such as gNB or ng-eNB) in 5G, and in a 4G system Corresponds to access network equipment (such as eNB or en-gNB) in 4G.
  • 5G system it corresponds to an access network equipment (such as gNB or ng-eNB) in 5G
  • 4G system corresponds to access network equipment (such as eNB or en-gNB) in 4G.
  • the access network device and the terminal device can communicate through the licensed spectrum, the unlicensed spectrum, or the licensed spectrum and the unlicensed spectrum at the same time.
  • the access network device and the terminal device can communicate through the frequency spectrum below 6 gigahertz (GHz), or through the frequency spectrum above 6 GHz, and can also use the frequency spectrum below 6 GHz and the frequency spectrum above 6 GHz for communication at the same time.
  • GHz gigahertz
  • the embodiments of the present application do not limit the frequency spectrum resources used between the access network device and the terminal device.
  • the access network devices and terminal devices in the embodiments of this application can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airplanes, balloons and artificial satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the access network device and the terminal device.
  • the terminal equipment involved in the embodiments of the present application may also be called a terminal, user equipment (UE), mobile station, mobile terminal, etc., and is a device that provides voice and/or data connectivity to users , such as handheld devices with wireless connectivity, vehicle-mounted devices, etc.
  • the terminal device is connected to the access network device in a wireless manner, so as to be connected to the communication system.
  • Some current examples of terminal devices include: mobile phones, tablet computers, computers with wireless transceiver functions, handheld computers, mobile Internet devices, wearable devices, virtual reality terminal devices, augmented reality terminal devices, wireless terminals in industrial control, unmanned Wireless terminals in driving, wireless terminals in remote surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc., which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device can also be an on-board module, on-board component, on-board chip or on-board unit built into the vehicle as one or more components or units, and the vehicle can A unit may implement the methods of the present application.
  • the access network device involved in the embodiment of the present application may also be referred to as a base station, and is a node or device in a radio access network (radio access network, RAN) for connecting a terminal device to a wireless network.
  • Some current examples of access network equipment include: base station (base station), evolved base station (evolved NodeB, eNB) in LTE system or evolved LTE system (LTE-Advanced, LTE-A), downlink in 5G communication system Next generation NodeB (gNB), transmission reception point (transmission reception point, TRP), Node B (Node B, NB), radio network controller (radio network controller, RNC), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (home (evolved) NodeB, HNB), base band unit (base band unit, BBU), wireless fidelity (wireless fidelity, WiFi) access point (access point, AP), base stations in future mobile communication systems, etc.
  • the access network device may also be a module or unit that completes some functions of the base station, for example, it may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • CU central unit
  • DU distributed unit
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the access network equipment.
  • the access network device in the embodiment of the present application may adopt a CU-DU separation architecture, and the CU-DU separation architecture may also be called a distributed deployment architecture.
  • the access network device can logically include one CU and one or more DUs, each DU can be connected to the CU through the F1 interface, and the information exchange between different DUs can be completed based on the forwarding of the CU .
  • the CU and the DU may be physically set together, or physically separated, which is not limited.
  • CU can support functions of radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP), service data adaptation protocol (service data adaptation protocol, SDAP); DU can support wireless link The functions of the radio link control (radio link control, RLC) layer protocol, media access control (medium access control, MAC) layer protocol and physical (physical, PHY) layer protocol.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • DU can support wireless link
  • RLC radio link control
  • media access control medium access control
  • PHY physical (physical, PHY) layer protocol.
  • physical downlink shared channel (physical downlink shared channel, PDSCH), physical downlink control channel (physical downlink control channel, PDCCH), physical uplink shared channel (physical uplink shared channel, PUSCH) and physical uplink control channel (physical uplink control channel, PUCCH) is just an example of the downlink data channel, downlink control channel, uplink data channel and uplink control channel of the physical layer.
  • the data channel and control channel may have different names, which are not limited in this application.
  • “Multiple” means two or more, and in view of this, “multiple” can also be understood as “at least two” in the embodiments of the present application.
  • “At least one” can be understood as one or more, such as one, two or more. For example, including at least one means including one, two or more, and does not limit which ones are included. For example, where at least one of A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C may be included. Similarly, the understanding of descriptions such as “at least one" is similar.
  • ordinal numerals such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of multiple objects. Moreover, the descriptions of “first” and “second” do not limit that the objects must be different.
  • Control resource set (control resource set, CORESET): It can be understood as a time-frequency resource set, which is used to indicate the resource location of physical downlink control channel (physical downlink control channel, PDCCH) transmission, including the number of time domain symbols occupied by PDCCH, frequency The number of resource blocks in the domain and the allocation of time slots, etc.
  • a CORESET can be configured as one or several consecutive OFDM symbols; in the frequency domain, a CORESET can be a group of continuous or non-continuous frequency domain resources, including search spaces at different aggregation levels .
  • Search space (search space, SS): It is used to indicate the cycle of CORESET occurrence and specific resource information, such as the starting time slot and symbol, and the cycle of repeated occurrence, so that the terminal device can search for the PDCCH at the resource position of the indicated search space
  • a search space can be associated with at least one CORESET.
  • Multi-antenna beamforming can make the beam point to a specific direction by changing the phase and amplitude of the signal of each antenna.
  • the transmission and reception of all uplink and downlink channels are based on beams, so beam management is required to facilitate data transmission and reception on the most suitable beam at both ends of the transceiver, improve signal strength, and avoid signal interference, thereby improving communication quality.
  • the beam management mechanism may include the following processes: 1) Beam scanning: the beam of the reference signal is sent, and spatial scanning is performed at a predefined time interval; 2) Beam measurement/judgment: the terminal device measures the reference signal and selects the best beam. 3) Beam report: the terminal device reports the result of beam measurement; 4) Beam indication: the access network device instructs the terminal device to select a specified beam.
  • Reference signals for beam management may include: synchronization signal and physical broadcast channel block (SSB) in the downlink direction, channel state information reference signal (CSI-RS), And the PRACH and channel sounding reference signal (sounding reference signal, SRS) in the uplink direction, wherein, SSB can be applied to the initial access state or connection state of the idle state, and PRACH can be applied to the initial access of the idle state, CSI-RS and SRS Applicable to connected state.
  • SSB can be applied to the initial access state or connection state of the idle state
  • PRACH can be applied to the initial access of the idle state
  • Multi-antenna panel terminal equipment Terminal equipment supporting mmWave can compress MIMO arrays in a single antenna panel, multiple panels can be placed together to form a large antenna array with high correlation, or they can be separated as much as possible to maintain low correlation. Each antenna panel can form its own beam, respectively pointing to the required access network equipment.
  • Quasi co-location (quasi co-location, QCL): If the channel characteristics on an antenna port symbol can be derived from another antenna port, then two antenna ports are considered to be QCL, and two antenna ports are considered to be QCL, that is, from one antenna port The channel estimation results obtained at one antenna port can be used at another antenna port to facilitate receiver processing. In particular, the QCL can also be used to indicate that the signals sent by the two antenna ports have the same beam direction.
  • FIG. 3 shows a schematic flow chart of CHO, including:
  • the source network device sends a handover request message to the candidate network device, and correspondingly, the candidate network device receives the handover request message from the source network device.
  • the candidate network device receives the handover request message from the source network device.
  • the candidate network device sends the configuration information of the candidate cell to the source network device, and correspondingly, the source network device receives the configuration information of the candidate cell.
  • the source network device sends an RRC reconfiguration message to the terminal device, and correspondingly, the terminal device receives the RRC reconfiguration message from the source network device.
  • the RRC reconfiguration message includes configuration information of candidate cells and conditions for performing handover.
  • the terminal device sends an RRC reconfiguration complete message to the source network device, and correspondingly, the source network device receives the RRC reconfiguration complete message from the terminal device.
  • the RRC reconfiguration complete message includes a conditional handover configuration confirmation message.
  • the terminal device measures the candidate cell and the serving cell, and judges whether a condition for performing conditional handover is satisfied according to the measurement result.
  • the serving cell refers to a cell serving the terminal device before the handover, and the network device to which the serving cell belongs is the first network device.
  • a "serving cell” may also be referred to as a "current serving cell", a "source cell”, or a "source serving cell”.
  • the terminal device disconnects the connection with the source network device, and accesses the target network device through a random access process.
  • the terminal device when the terminal device successfully accesses the target network device, it indicates that the handover is completed.
  • the terminal device ends the handover process by sending an RRC reconfiguration complete message to the target network device.
  • the target network device sends indication information indicating that the handover is successful to the source network device.
  • the terminal device accesses the target network device through a random access procedure.
  • the manner of random access may be contention-based random access or non-contention-based random access.
  • the non-contention-based random access process may include: the source network device configures the SSB or CSI-RS resource of the target network device for the terminal device, and the SSB or CSI-RS resource corresponding to the above-mentioned SSB or CSI-RS resource is used to send the preamble (preamble) Time-frequency resources, where the number of SSB or CSI-RS resources can be one or more.
  • the terminal device measures the above two SSBs respectively, where different SSBs correspond to different beam directions, and the terminal device selects one of the two SSBs according to the measurement results.
  • the preamble is sent on the time-frequency resource corresponding to the selected SSB. If the signal quality measurement results of the two configured SSB resources are both lower than the threshold (the threshold may be preconfigured by the source network device), the terminal device will use contention-based random access.
  • the contention-based random access process may include: the terminal device separately measures multiple SSBs of the target network device configured by the source network device, wherein different SSBs correspond to different beam directions; Select an SSB; the terminal device sends the preamble at the time-frequency position corresponding to the selected SSB. Since there is a corresponding relationship between the SSB and the time-frequency position where the preamble is sent, the target network device can know the SSB/beam direction selected by the terminal device. .
  • the terminal device judges whether the candidate cell meets the handover condition according to the cell-level measurement result, and then decides whether to handover to the candidate cell (ie, the target cell) that meets the handover condition. That is to say, if the terminal device completes cell switching through the method shown in Figure 3, the terminal device cannot determine the situation of each beam of the target cell before switching to the target cell, and can only achieve preliminary beam alignment with the target cell through the random access process .
  • the terminal device accesses a target cell through a contention-based random access method, different SSBs need to be measured for preliminary downlink beam alignment.
  • the direction of the downlink beam is a "wider" direction, which is not accurate enough; when the terminal device accesses the target cell through a non-contention-based random access method, due to the accuracy of downlink beam alignment and the random access resources allocated by the target cell.
  • the terminal device accesses the target cell through a non-contention-based random access method, due to the accuracy of downlink beam alignment and the random access resources allocated by the target cell.
  • the present application provides a mobility management method, which is used to reduce the delay in the handover process or the process of adding a serving cell, and improve the quality of data communication.
  • FIG. 4 is a schematic flowchart of a mobility management method provided by an embodiment of the present application.
  • This embodiment relates to a specific process of data transmission between a first network device and a terminal device.
  • the executors of this embodiment may be the first network device and the terminal device, or may be modules respectively applied to the first network device and the terminal device, for example, chips.
  • the description below takes the first network device and the terminal device as execution subjects as an example.
  • the method may include: S401 , S402 , S403 and S404 , and this embodiment of the present application does not limit the execution order of each step.
  • the first network device sends first configuration information to the terminal device, and correspondingly, the terminal device receives the first configuration information from the first network device.
  • the first configuration information includes configuration information of candidate cells.
  • the candidate cell may be selected by the first network device according to the measurement result of the neighboring cell of the terminal device.
  • the first network device may select a candidate cell according to a cell-level measurement result.
  • the received signal receiving power may be used as an indicator representing the quality of the received signal
  • the first network device may use a cell whose RSRP of the cell-level reference signal is higher than a threshold value as a candidate cell; the first network The device may also use the cell whose RSRP of the cell-level reference signal and the RSRP of the cell-level reference signal of the serving cell is higher than a certain offset value as a candidate cell.
  • the foregoing threshold value and offset value may be preset by a protocol or configured by the first network device.
  • the first network device may select a candidate cell according to a beam-level measurement result. For example, the first network device may select a cell that has any beam direction and the RSRP of the reference signal corresponding to the beam direction is higher than a threshold value as the cell.
  • the first network device may use any number of beam directions, and the RSRP of the reference signal corresponding to the multiple beam directions is higher than the threshold value as a candidate cell; the first network device may also use any beam direction The difference between the RSRP of the reference signal corresponding to the beam direction and the RSRP of the reference signal corresponding to the beam direction of the serving cell is higher than a certain offset value as the candidate cell, wherein the beam direction of the serving cell can refer to the terminal equipment in the serving cell
  • the beam direction with the strongest signal in the medium may also refer to the beam direction used by the terminal device in the serving cell; the first network device may also have any number of beam directions, and the reference signal corresponding to each beam direction in the multiple beam directions
  • the RSRP of the serving cell and the RSRP of the reference signal corresponding to the beam direction of the serving cell have a difference higher than a certain offset value as the candidate cell, where the beam direction of the serving cell may refer to the beam direction with the strongest signal of the terminal device in the serving cell, It can also refer to the beam
  • the first network device may combine cell-level and beam-level measurement results to select a candidate cell. intersection or union.
  • the first network device may also select according to information such as geographic location, and this embodiment of the present application does not limit the manner of selecting candidate cells.
  • the first configuration information includes configuration information of some or all candidate cells.
  • the above configuration information may include M groups of configuration information, where N and M are positive integers, M is less than or equal to N, and each group of configuration information corresponds to one candidate cell.
  • Each set of configuration information can include one or more of the following configuration information of the corresponding candidate cell: reference signal configuration information, measurement configuration information, beam configuration information, QCL information, control resource set CORESET configuration information, search space configuration information, time advance timing advance (TA) information, terminal device identification information, sequence information for PDCCH scrambling/descrambling, random access resource configuration information, PUCCH resource configuration information, wireless link monitoring configuration information, security-related configuration information, MAC configuration information, RLC configuration information, PDCP configuration information or SDAP configuration information.
  • TA time advance timing advance
  • a set of configuration information corresponding to a candidate cell may contain all types of configuration information listed above, while a set of configuration information corresponding to another candidate cell may contain some types of configuration information listed above, optional
  • the terminal device can be considered to be consistent with the serving cell.
  • the configuration information of the serving cell may also be carried in the first configuration information.
  • the configuration information of the candidate cell may be separated from the configuration information of the serving cell, or the configuration information of the candidate cell may be added to the configuration information of the serving cell, that is, as the configuration information of the serving cell Part of it is not limited here.
  • the first configuration information may also include the association relationship between the configuration information of the candidate cells and the corresponding candidate cells.
  • the association may be displayed to indicate the cell identifier corresponding to each set of configuration information, so that the terminal device can distinguish different candidate cells. Corresponding to different configuration content.
  • the first configuration information may also include conditions for triggering switching.
  • the condition for triggering switching (hereinafter referred to as the first condition) may include but not limited to any one or more of the following:
  • the cell-level signal quality of the target cell is higher than the first threshold
  • the difference between the cell-level signal quality of the target cell and the cell-level signal quality of the serving cell is higher than the second threshold
  • the signal quality of one or more beams of the target cell is higher than the third threshold
  • the difference between the signal quality of one or more beams of the target cell and the signal quality of the beam used by the terminal device in the serving cell is higher than the fourth threshold
  • the difference between the signal quality of one or more beams of the target cell and the signal quality of the strongest beam of the serving cell is greater than the fifth threshold.
  • the cell-level signal quality of the target cell is higher than the first threshold, which can be understood as: the terminal device detects that the cell-level signal quality of the target cell is higher than the first threshold according to a measurement result , or, the terminal device detects that the cell-level signal quality of the target cell is higher than the first threshold value according to the measurement results accumulatively W1 times within the duration T1; wherein, T1 and W1 may be configured through the first configuration information.
  • the difference between the cell-level signal quality of the target cell and the cell-level signal quality of the serving cell is higher than the second threshold value, which can be understood as: the terminal device detects the cell level of the target cell according to a measurement result The difference between the cell-level signal quality of the target cell and the cell-level signal quality of the serving cell is higher than the second threshold value, or the terminal device measures the cell-level signal quality of the target cell and the cell-level signal quality of the serving cell for a total of W2 times within the duration T2 The signal quality difference is higher than the second threshold; wherein, T2 and W2 may be configured through the first configuration information.
  • the candidate cell that satisfies A1 can be used as the target cell after the handover of the terminal equipment; when the first condition is the above-mentioned B1, satisfies B1
  • the candidate cell can be used as the target cell after the handover of the terminal equipment, and so on.
  • the first configuration information may include a second condition.
  • the terminal device may determine whether to add the target cell as the serving cell according to the second condition.
  • the second condition may include but not limited to any one or more of the following:
  • the cell-level signal quality of the target cell is higher than the threshold value a, and the cell-level signal quality of the current serving cell is higher than the threshold value b, where a and b can be the same or different;
  • the signal quality of one or more beams of the target cell is higher than the threshold value c, and the signal quality of one or more beams of the current serving cell is higher than the threshold value d, where c and d can be the same or different .
  • the terminal device measures based on one measurement result, or the terminal device measures the cell-level signal quality of the target cell higher than A first threshold; wherein, T and K may be configured through the first configuration information.
  • the terminal device determines whether to add the target cell as the serving cell according to the second condition, specifically including: when the second condition is met, the terminal device adds the target cell as the serving cell; or, when the second condition is met, the terminal device does not add the target cell is the serving cell, and the terminal device uses the resources of the target cell for data transmission.
  • the terminal device may not perform handover. Further, the target cell satisfying A2 is added as the serving cell; or, the terminal device may not add the target cell satisfying A2 as the serving cell, but the terminal device may use resources of the target cell for data transmission.
  • the first configuration information may include the first condition and/or the second condition.
  • the above-mentioned first condition and second condition may be preset.
  • the signal quality may be the RSRP of the reference signal and the reference signal received quality (Reference Signal Received Quality, RSRQ) of the reference signal.
  • the foregoing first configuration information may be any air interface signaling such as an RRC message, a MAC message, or a DCI message.
  • the foregoing first configuration information may be carried in one signaling, or may be carried in multiple signalings, which is not limited here.
  • the first condition, the second condition, and the configuration information of the candidate cell may be carried in different signaling.
  • the terminal device measures the candidate cell according to the measurement configuration information of the candidate cell. Optionally, the terminal device also performs measurement on the current serving cell.
  • the terminal device measures the reference signal of the serving cell and/or the candidate cell according to the measurement configuration information of the current serving cell and/or the candidate cell in the first configuration information.
  • the terminal device determines a candidate cell satisfying the first condition according to the measurement result. For example, a total of 6 candidate cells are cell 1, cell 2, cell 3, cell 4, cell 5 and cell 6. After performing the measurement, the terminal device determines that the cells satisfying the first condition are cell 1 and cell 2 .
  • the terminal device may choose a cell among the candidate cells that meet the first condition or select the cell with the best measurement result among the candidate cells that meet the first condition as the target area.
  • the terminal device determines whether the second condition is satisfied according to the measurement result.
  • a total of six candidate cells are cell 1, cell 2, cell 3, cell 4, cell 5 and cell 6.
  • the terminal device determines that the measurement results of the cell 1 and the current serving cell meet the second condition, and the terminal device does not perform handover temporarily.
  • the terminal device may regard both the current serving cell and cell 1 as the serving cell, or may only regard the current serving cell as the serving cell, and regard cell 1 as another data transmission channel of the current serving cell.
  • the terminal device sends the first indication information to the first network device, and correspondingly, the first network device accepts the first indication information from the terminal device.
  • the first indication information may be air interface signaling such as an RRC message, a MAC message, or a PUCCH.
  • the first indication information indicates whether to switch to the target cell, and/or whether to add the target cell as the serving cell.
  • the first indication information includes a cell identity of the target cell.
  • the first indication information includes a reference signal identifier corresponding to the target beam direction in the target cell.
  • the first indication information includes a measurement result of the serving cell, where the measurement result is a cell-level measurement result and/or a beam-level measurement result;
  • the first indication information includes a measurement result of at least one cell in the candidate cells, where the measurement result is a cell-level measurement result and/or a beam-level measurement result.
  • the first indication information includes 1 bit, where "0" and “1" respectively indicate that cell switching is performed and that cell switching is not performed;
  • the first indication information includes 2 bits, wherein “00” indicates that the terminal device does not perform cell switching and does not communicate with the target cell, “01” indicates that the terminal device does not perform cell switching and adds the target cell as a serving cell, “10” indicates that the terminal device does not perform cell handover and does not add the target cell as a serving cell, but uses resources of the target cell for data transmission, and "11” indicates that the terminal device performs cell handover. It should be understood that the value of the above bit is just an example, which is not limited in this embodiment of the present application.
  • the source network device can learn the target cell selected by the terminal device.
  • the terminal device implicitly instructs the terminal device to decide to switch to the target cell by using the first indication information.
  • the source network device can learn the target cell selected by the terminal device.
  • the first indication information also includes 1 bit, and if the value of the bit indicates that cell handover is performed, that is, the terminal device explicitly instructs the terminal device to decide to switch to the target cell through the first indication information, and indicates the target cell's Identification; if the value of the 1 bit indicates that cell handover is not performed, that is, the terminal device explicitly instructs the terminal device to decide not to handover through the first indication information, and to add the target cell as a serving cell and use the resources of the target cell for communication , or, the terminal device explicitly instructs the terminal device to decide not to switch, and to use resources of the target cell for communication through the first indication information.
  • the source network device can learn the target cell and the target beam selected by the terminal device.
  • the terminal device implicitly instructs the terminal device to decide to switch to the target cell and use the target beam for communication by using the first indication information.
  • the source network device can know the target cell and the target beam selected by the terminal device.
  • the first indication information also carries the above 1-bit or 2-bit information. The source network device determines whether the terminal device performs handover and whether to add the target cell as the serving cell according to the values of the two bits.
  • the first indication information carries the beam-level measurement results of the serving cell and/or the candidate cell, and the first indication information also carries the aforementioned 1 bit.
  • the value of this 1 bit is "0", it means to switch to the cell corresponding to the strongest beam in the measurement result, and use the beam direction for communication; when the value of this 1 bit is "1", it means that the cell is not executed Handover, and add the cell corresponding to the strongest beam in the measurement results as the serving cell, and use this beam direction for communication.
  • the first indication information carries the beam-level measurement results of the serving cell and/or the candidate cell, and the first indication information also carries the aforementioned 1 bit.
  • the value of this 1 bit is "0", it means to switch to the cell corresponding to the strongest beam in the measurement result, and use this beam direction for communication; when the value of this 1 bit is "1", it means that the cell is not executed Handover does not add the target cell as the serving cell, and the first indication message is only used for reporting measurement results.
  • the first network device sends a response message to the terminal device, and correspondingly, the terminal device receives the response message from the first network device.
  • the response message may also be understood as scheduling information.
  • the first network device schedules the terminal device in the target cell through the scheduling message.
  • the first network device may use the target beam direction selected by the terminal device to send scheduling information to the terminal device, or, if the first network device considers that the target beam direction is unavailable, it may adjust the beam direction according to the actual situation of the target cell. Adjust, and use the adjusted beam direction to send scheduling information to the terminal equipment.
  • the first network device may inform the terminal device through the response message that the first network device agrees end-device decisions.
  • the terminal device may use the same RNTI as that used in the current serving cell, but use a different physical layer signal scrambling sequence.
  • the terminal device may be notified in the following manner: (1) the first network device informs the terminal device through a response message that the first network device rejects the terminal device's decision; (2) The first network device does not send a response message or scheduling information, indicating that the first network device rejects the decision made by the terminal device.
  • the terminal device can decide whether to switch to the target cell or whether to add the target cell as a serving cell according to the measurement results at the cell level and/or beam level, without waiting for the handover command from the network device or adding
  • the command of the serving cell can simplify the signaling interaction process in the process of switching or adding the serving cell, thereby reducing the delay.
  • the terminal device has carried out the beam management process of the target cell before the handover is completed. After handing over to the target cell, it can perform data transmission in a better beam direction, so that it can maintain large-capacity data transmission immediately after the handover, which improves communication quality.
  • FIG. 5 is a schematic flowchart of a mobility management method provided by an embodiment of the present application.
  • This embodiment involves a first network device (referred to as a source network device in the embodiment shown in FIG. 5 ), a target network device, and The specific process of data transmission between terminal devices.
  • the execution subject of this embodiment may be the first network device (source network device), the target network device and the terminal device, or may be modules respectively applied to the first network device (source network device), the target network device and the terminal device , for example, chips.
  • the description below takes the first network device (source network device), the target network device and the terminal device as execution subjects as examples.
  • the method may include: S501 to S508, wherein S507 and S508 may be replaced by S509, S510 and S511.
  • S501 to S508 may be replaced by S509, S510 and S511.
  • S509, S510 and S511 may be replaced by S509, S510 and S511.
  • the embodiment of the present application does not limit the execution sequence of each step.
  • the source network device sends a handover request message to the candidate network device, and correspondingly, the candidate network device receives the handover request message from the source network device.
  • a candidate network device refers to any one of one or more candidate network devices.
  • the source network device requests the configuration information of the candidate cell from the candidate network device.
  • the network device to which the candidate cell belongs is a candidate network device, that is, the candidate network device may correspond to one or more candidate cells.
  • the candidate network device sends the configuration information of the candidate cell to the source network device, and correspondingly, the source network device receives the configuration information of the candidate cell.
  • the candidate cell can be selected by the candidate network device according to the measurement result of the adjacent cell of the terminal device, or can be selected according to information such as geographical location.
  • the method for the first network device to select a candidate cell in S401 Just put " First Network Device” is replaced with "Candidate Network Device”.
  • the source network device sends the first configuration information to the terminal device, and correspondingly, the terminal device receives the first configuration information from the source network device.
  • the first configuration information includes configuration information of some or all candidate cells.
  • the terminal device measures the candidate cell according to the measurement configuration information of the candidate cell.
  • S504 For a detailed description of S504, reference may be made to S402.
  • the terminal device sends first indication information to the source network device, and correspondingly, the source network device accepts the first indication information from the terminal device.
  • the source network device accepts the first indication information from the terminal device.
  • the source network device sends the second indication information to the target network device, and correspondingly, the target network device receives the second indication information from the source network device.
  • the second indication information includes at least one or more of the following:
  • the cell identity of the target cell is the cell identity of the target cell
  • the second indication information also indicates whether the terminal device decides whether to perform cell switching, for example, the second indication information includes 1 bit, where "0" and "1" respectively indicate that cell switching is performed or not;
  • the second indication information further instructs the terminal device to decide whether to add the target cell as the serving cell.
  • the second indication information includes 2 bits, where "00" indicates that the terminal device does not perform cell switching and does not communicate with the target cell, "01” indicates that the terminal device does not perform cell switching and adds the target cell as a serving cell, "10” indicates that the terminal device does not perform cell handover and does not add the target cell as a serving cell, but uses resources of the target cell for data transmission, and "11” indicates that the terminal device performs cell handover. It should be understood that the value of the above bit is just an example, which is not limited in this embodiment of the present application.
  • the target network device sends a response message to the source network device, and correspondingly, the source network device receives the response message from the target network device.
  • the second indication information indicates that the terminal device decides to switch to the target cell, and the target network device may send the response message to indicate acceptance or rejection of the switching decision. If the target network device accepts the handover decision, the source network device releases the connection with the terminal device; if the target network device rejects the handover decision, the source network device does not release the connection with the terminal device.
  • the source network device notifies the terminal device of the judgment result of the target network device after receiving the response message.
  • the target network device sends a response message to the terminal device, and correspondingly, the terminal device receives the response message from the target network device.
  • the response message can also be understood as scheduling information.
  • the target network device schedules the terminal device in the target cell through the scheduling message.
  • the target network device may use the target beam direction selected by the terminal device to send scheduling information to the terminal device, or, if the target network device believes that the target beam direction is unavailable, adjust the beam direction according to the actual situation of the target cell, And use the adjusted beam direction to send scheduling information to the terminal equipment.
  • the target network device can inform the terminal device through the response message that the target network device agrees to the decision of the terminal device decision.
  • the terminal device may use the same RNTI as that used in the current serving cell, but use a different physical layer signal scrambling sequence.
  • the terminal device may be notified in the following manner: (1) the target network device informs the terminal device through a response message that the target network device rejects the terminal device's decision; (2) The target network device does not send a response message or scheduling information, indicating that the target network device rejects the terminal device's decision; (3) the source network device sends the result of the response message in S507 to the terminal device.
  • the terminal device After the terminal device considers that the judgment result is rejected, it can use the beam direction of the current serving cell to continue to perform uplink and downlink transmission in the serving cell, or perform a process of cell reselection.
  • S507 and S508 may be replaced by the following operations:
  • the target network device sends scheduling information to the terminal device.
  • the terminal device receives the scheduling information from the target network device. For details, refer to S508.
  • the terminal device sends a response message to the target network device, and correspondingly, the target network device receives the response message from the terminal device.
  • the response message is used to indicate whether the scheduling information in S509 is successfully received.
  • the target network device sends a response message to the source network device.
  • the source network device receives the response message from the target network device. For details, refer to S507.
  • different antenna panels may be used for communication at different stages.
  • the terminal device uses the single antenna panel to communicate with the source network device in the serving cell, where the beam direction points to the serving cell.
  • the terminal device uses a dual-antenna panel, and the beam directions are respectively directed to the serving cell and the target cell, and monitors scheduling information from the serving cell or the target cell.
  • the terminal device uses the single-antenna panel to communicate in the target cell; or, if the terminal device does not perform handover in the end, the terminal device uses the single-antenna panel to continue to communicate in the serving cell.
  • the terminal device can decide whether to switch to the target cell or not based on the measurement results at the cell level and/or beam level.
  • the cell or whether to add the target cell as the serving cell does not need to wait for the handover command from the network device or the command to add the serving cell, which can simplify the signaling interaction process in the process of switching or adding the serving cell, thereby reducing the delay.
  • the terminal device has carried out the beam management process of the target cell before the handover is completed.
  • the terminal device After handing over to the target cell, it can perform data transmission in a better beam direction, so that it can maintain large-capacity data transmission immediately after the handover, which improves communication quality.
  • the terminal device monitors the scheduling and/or response information of the source serving cell and the target cell at the same time during the cell switching process. When the cell switching request is rejected or the switching fails, the terminal can Continue to monitor the scheduling and/or response information of the source serving cell, reduce the probability of the cell reselection process, and improve the reliability of the handover process.
  • FIG. 6 is a schematic flowchart of a mobility management method provided by an embodiment of the present application.
  • This embodiment involves a first network device (referred to as a source network device in the embodiment shown in FIG. 6 ), a target network device and The specific process of data transmission between terminal devices.
  • the execution subject of this embodiment may be the first network device (source network device), the target network device and the terminal device, or may be modules respectively applied to the first network device (source network device), the target network device and the terminal device , for example, chips.
  • the description below takes the first network device (source network device), the target network device and the terminal device as execution subjects as examples.
  • the method may include: S601 to S608 , where the embodiment of the present application does not limit the execution order of each step.
  • the terminal device sends third indication information to the target network device, and correspondingly, the target network device accepts the third indication information from the terminal device.
  • the content of the third indication information may refer to the content of the second indication information in S506.
  • the terminal device may use the target beam direction to send the third indication information.
  • the terminal device when the terminal device sends the third indication information to the target cell, it may need to acquire the TA value of the target cell.
  • the terminal device obtains the TA of the target cell, and there are several possible situations as follows:
  • Case 1 The TA of the target cell is 0, such as a cell with a small coverage area.
  • the terminal device may directly send the third indication information to the target network device.
  • Case 2 The time difference between the TA of the target cell and the TA of the current serving cell is less than the time of a cyclic prefix, for example, the coverage distance between the source cell and the target cell is close, and the terminal device is at the edge of the cell, triggering a cell handover or adding a serving cell.
  • the terminal device may directly send the third indication information to the target network device.
  • Case 3 The terminal device needs to know the TA value of the target cell in advance, and the TA value needs to be indicated to the terminal device by the current serving cell.
  • the SRS resource of the candidate cell is configured, and the candidate cell performs TA estimation through the SRS sent by the terminal device, and informs the current serving cell of the TA result, and then sends the TA through the serving cell to the terminal device.
  • the target network device sends a response message to the terminal device, and correspondingly, the terminal device receives the response message from the target network device, see S508 for details.
  • the terminal device sends a response message to the target network device, and correspondingly, the target network device receives the response message from the terminal device.
  • the response message is used to indicate whether the scheduling information in S606 is successfully received.
  • the target network device sends fourth indication information to the source network device, and correspondingly, the source network device accepts the fourth indication information from the target device. Through the fourth indication information, the target network device notifies the source network device of whether the terminal device successfully accesses the target cell.
  • different antenna panels are used for communication at different stages.
  • the terminal device uses the single-antenna panel to communicate in the serving cell, where the beam direction points to the serving cell.
  • the terminal device uses the single-antenna panel to communicate in the target cell, where the beam direction points to the target cell.
  • the terminal device uses a dual-antenna panel, the beam directions are respectively directed to the serving cell and the target cell, and monitors scheduling information from the serving cell or the target cell. After the handover is completed, the terminal device uses the single-antenna panel to communicate in the target cell; or, if the terminal device does not perform handover in the end, the terminal device uses the single-antenna panel to continue to communicate in the serving cell.
  • the terminal device can trigger handover or add a serving cell according to the measurement results at the cell level and/or beam level without waiting for the handover at the network side or the addition of a serving cell.
  • the indication information can reduce the signaling interaction process and delay in the process of switching or adding a serving cell.
  • the terminal device can decide whether to switch to the target cell or whether to add the target cell as a serving cell according to the measurement results at the cell level and/or beam level, and There is no need to wait for a switching command from a network device or a command to add a serving cell, and the signaling interaction process in the process of switching or adding a serving cell can be simplified, thereby reducing time delay.
  • the terminal device directly sends the determined instruction information to the target network device, without the process of forwarding the instruction information by the source network device, further reducing the delay.
  • the terminal device has carried out the beam management process of the target cell before the handover is completed.
  • the terminal device After handing over to the target cell, it can perform data transmission in a better beam direction, so that it can maintain large-capacity data transmission immediately after the handover, which improves communication quality.
  • the terminal device monitors the scheduling and/or response information of the source serving cell and the target cell at the same time during the cell switching process. When the cell switching request is rejected or the switching fails, the terminal can Continue to monitor the scheduling and/or response information of the source serving cell, reduce the probability of the cell reselection process, and improve the reliability of the handover process.
  • FIG. 7 to FIG. 9 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application.
  • a communication device 700 includes a processing unit 710 and a transceiver unit 720 .
  • the communication device 700 is used to realize the function of the terminal device in the method embodiment shown in FIG. A module, which may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • the communication device 700 is used to implement the functions of the first network device in the method embodiment shown in FIG. 4 above, or, the communication device 700 may include any A module of function or operation, which may be realized in whole or in part by software, hardware, firmware or any combination thereof.
  • the communication device 700 is used to realize the function of the terminal device in the method embodiment shown in FIG. A module, which may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • the communication device 700 is used to implement the function of the source network device in the method embodiment shown in FIG. 5 above, or, the communication device 700 may include any function or A module of operation, which may be realized in whole or in part by software, hardware, firmware or any combination thereof.
  • the communication device 700 is used to realize the function of the terminal device in the method embodiment shown in FIG. A module, which may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • the communication device 700 is used to implement the function of the source network device in the method embodiment shown in FIG. 6 above, or the communication device 700 may include any function or A module of operation, which may be realized in whole or in part by software, hardware, firmware or any combination thereof.
  • the transceiver unit 720 is used to receive the first configuration information from the first network device, the first configuration information includes the measurement configuration of the candidate cell Information; the transceiving unit 720 is further configured to send first indication information to the first network device, where the first indication information indicates whether to switch to the target cell, and/or whether to add the target cell as a serving cell.
  • the processing unit 710 is configured to measure the candidate cell according to the measurement configuration information; the processing unit 710 is also configured to determine the target cell according to the measurement result, and at least one of the first condition and the second condition, wherein the target cell is the candidate cell In one cell, the target cell satisfies the first condition and/or the second condition.
  • the transceiver unit 720 is used to send configuration information to the terminal device, where the configuration information includes measurement configuration information of candidate cells, where the The measurement configuration information is used by the terminal device to measure the candidate cell, the target cell is one of the candidate cells, and the target cell satisfies the first condition and/or the second condition; the transceiver unit 720 is also used to receive the first condition from the terminal device Indication information, the first indication information indicates whether to switch to the target cell, and/or whether to add the target cell as the serving cell.
  • the transceiver unit 720 is used to receive the first configuration information from the source network device, the first configuration information including the measurement configuration information of the candidate cell
  • the transceiving unit 720 is also configured to send first indication information to the source network device, the first indication information indicating whether to switch to the target cell, and/or, whether to add the target cell as a serving cell.
  • the processing unit 710 is configured to measure the candidate cell according to the measurement configuration information; the processing unit 710 is also configured to determine the target cell according to the measurement result, and at least one of the first condition and the second condition, wherein the target cell is the candidate cell In one cell, the target cell satisfies the first condition and/or the second condition.
  • the configuration information is used by the terminal device to measure the candidate cell, the target cell is one of the candidate cells, and the target cell satisfies the first condition and/or the second condition; the transceiver unit 720 is also used to receive the first Indication information, the first indication information indicates whether to switch to the target cell, and/or whether to add the target cell as the serving cell.
  • the transceiver unit 720 is used to receive the first configuration information from the source network device, the first configuration information including the measurement configuration information of the candidate cell
  • the transceiving unit 720 is further configured to send third indication information to the target network device, the third indication information indicating whether to switch to the above target cell, and/or, whether to add the target cell as a serving cell.
  • the processing unit 710 is configured to measure the candidate cell according to the measurement configuration information; the processing unit 710 is also configured to determine the target cell according to the measurement result, and at least one of the first condition and the second condition, wherein the target cell is the candidate cell In one cell, the target cell satisfies the first condition and/or the second condition.
  • the transceiver unit 720 is used to send configuration information to the terminal device, where the configuration information includes measurement configuration information of candidate cells, where the measurement The configuration information is used by the terminal device to measure the candidate cell, the target cell is one of the candidate cells, and the target cell satisfies the first condition and/or the second condition; the transceiver unit 720 is also used to receive the first condition from the target network device Four indication information, the fourth indication information indicates whether the terminal equipment successfully accesses the target cell.
  • processing unit 710 and the transceiver unit 720 can be directly obtained by referring to the relevant descriptions in the method embodiments shown in FIG. 4 , FIG. 5 or FIG. 6 , and will not be repeated here.
  • FIG. 8 is a schematic structural diagram of another possible communication device provided by an embodiment of the present application.
  • the communication device 800 includes a processor 810 and an interface circuit 820 .
  • the processor 810 and the interface circuit 820 are coupled to each other.
  • the interface circuit 820 may be a transceiver or an input-output interface.
  • the communication device 800 may further include a memory 830 for storing instructions executed by the processor 810 or storing input data required by the processor 810 to execute the instructions or storing data generated after the processor 810 executes the instructions.
  • the processor 810 is used to implement the functions of the processing unit 710
  • the interface circuit 820 is used to implement the functions of the transceiver unit 720 .
  • FIG. 9 is a schematic structural diagram of an access network device provided by an embodiment of the present application.
  • the access network device 90 includes one or more DUs 901 and one or more CUs 902, wherein the DUs 901 can be used to implement the above method
  • the function of the DU in the example, the CU 902 can be used to perform the function of the CU in the above method embodiment.
  • the DU 901 may include at least one antenna 9011, at least one radio frequency unit 9012, at least one processor 9013 and at least one memory 9014.
  • the DU 901 part is mainly used for transmitting and receiving radio frequency signals, conversion of radio frequency signals and baseband signals, and part of baseband processing.
  • the CU 902 may include at least one processor 9022 and at least one memory 9021 .
  • CU902 and DU901 can communicate through F1 interface (such as F1-C or F1-U).
  • the CU 902 part is mainly used for baseband processing and the like.
  • the DU 901 and the CU 902 may be physically set together or physically separated. In the embodiment of the present application, the DU 901 and the CU 902 are physically separated as an example for description.
  • the access network device 90 may include one or more radio frequency units, one or more DUs, and one or more CUs.
  • the DU may include at least one processor 9013 and at least one memory 9014
  • the radio frequency unit may include at least one antenna 9011 and at least one radio frequency unit 9012
  • the CU may include at least one processor 9022 and at least one memory 9021.
  • the CU902 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network (such as a 5G network) with a single access indication, or can separately support wireless access networks of different access standards.
  • Access network (such as LTE network, 5G network or other networks).
  • the memory 9021 and the processor 9022 can serve one or more single boards; that is to say, each single board can be provided with a separate memory and processor, or multiple single boards can share the same memory and processor .
  • necessary circuits can also be set on each single board.
  • the DU901 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network (such as a 5G network) with a single access indication, or can respectively support wireless access networks of different access standards (such as a 5G network). LTE network, 5G network or other networks).
  • the memory 9014 and processor 9013 may serve one or more boards. That is to say, the memory and the processor can be set independently on each single board, or multiple single boards can share the same memory and processor. In addition, necessary circuits can also be set on each single board.
  • the DU shown in FIG. 9 can implement various processes related to the DU in the method embodiment shown in FIG. 4 , FIG. 5 or FIG. 6 .
  • the operations and/or functions of the modules in the DU shown in FIG. 9 are respectively for realizing the corresponding processes in the above method embodiments.
  • the CU shown in FIG. 9 can implement various processes involving the CU in the method embodiment shown in FIG. 4 , FIG. 5 or FIG. 6 .
  • the operations and/or functions of the various modules in the CU shown in FIG. 9 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the processor can be random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable In addition to programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art middle.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device. Certainly, the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted via a computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a DVD; it may also be a semiconductor medium, such as a solid state disk (solid state disk, SSD).
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种移动性管理方法及通信装置,该方法包括:终端设备接收来自第一网络设备的第一配置信息,该第一配置信息包括候选小区的测量配置信息;终端设备根据测量配置信息对候选小区进行测量;终端设备根据测量结果,与,第一条件和第二条件中的至少一项确定目标小区,其中,目标小区为候选小区中的一个小区,目标小区满足第一条件和/或第二条件;终端设备向第一网络设备发送第一指示信息,该第一指示信息指示是否切换到目标小区,和/或,是否添加目标小区为服务小区。通过该方法,可以减少切换过程或添加目标小区为服务小区过程的时延。

Description

一种移动性管理方法及通信装置 技术领域
本申请涉及无线通信技术领域,尤其涉及一种移动性管理方法及通信装置。
背景技术
在高频波束赋型的场景下,由于终端设备移动以及波束覆盖范围受限,终端设备需要频繁地进行小区切换。在未配置条件切换(Conditional Handover,CHO)的传统切换过程中,终端设备在发生切换的时刻与网络设备的通信质量可能已较差,进而容易导致发生切换失败。在配置了CHO的切换过程中,在通信质量较好时,源网络设备可以提前将邻区配置与切换条件发送给终端设备,终端设备在切换条件满足时进行切换,从而能够在一定程度上提升切换的鲁棒性。然而,在配置了CHO的切换过程中,依然存在波束对齐机制不够高效,且波束方向不够准确的问题,从而增加了切换时延,甚至导致切换失败。
发明内容
本申请提供一种移动性管理方法及通信装置,用于降低时延,提升通信质量。
第一方面,本申请实施例提供一种移动性管理方法,该方法可由终端设备执行,也可以由配置于终端设备的部件(例如芯片或者电路)执行。
该方法包括:接收来自第一网络设备的第一配置信息,所述第一配置信息包括候选小区的测量配置信息;根据所述测量配置信息对所述候选小区进行测量;根据测量结果,与,第一条件和第二条件中的至少一项确定目标小区,所述目标小区为所述候选小区中的一个小区,所述目标小区满足所述第一条件和/或所述第二条件;向所述第一网络设备发送第一指示信息,所述第一指示信息指示是否切换到所述目标小区,和/或,是否添加所述目标小区为服务小区。通过实施第一方面所描述的方法,终端设备可根据小区级和/或波束级的测量结果决定是否切换到目标小区或是否添加目标小区为服务小区,而无需等待网络设备的切换命令或添加服务小区的命令,能够简化切换或添加服务小区过程的信令交互过程,从而降低时延。此外,终端设备在切换完成或添加目标小区之前便进行了目标小区的波束管理过程,在切换至目标小区后,能够在较优波束方向进行数据传输,从而可以在切换后立即能保持大容量数据传输,提升了通信质量。
在第一方面的一种可能的设计中,所述第一配置信息包括所述第一条件,所述根据测量结果,与,第一条件和第二条件中的至少一项确定目标小区,具体包括:根据所述测量结果和所述第一条件确定是否切换到所述目标小区。
在第一方面的一种可能的设计中,所述第一条件包括以下至少一项:
所述目标小区的小区级信号质量高于第一门限值;
所述目标小区的小区级信号质量与服务小区的小区级信号质量之差高于第二门限值,所述服务小区为切换前为所述终端设备服务的小区;
所述目标小区的一个或多个波束的信号质量高于第三门限值;
所述目标小区的一个或多个波束的信号质量与所述终端设备在所述服务小区中使用的波束的信号质量之差高于第四门限值;
所述目标小区的一个或多个波束的信号质量与所述服务小区中的最强波束的信号质量之 差高于第五门限值。
在第一方面的一种可能的设计中,所述第一配置信息包括所述第二条件,所述第一配置信息包括所述第一条件,所述根据测量结果,与,第一条件和第二条件中的至少一项确定目标小区,具体包括:根据所述测量结果和所述第二条件确定是否添加所述目标小区为服务小区。
在第一方面的一种可能的设计中,所述第二条件包括以下至少一项:
所述目标小区的小区级信号质量高于第六门限值,且,所述服务小区的小区级信号质量高于所述第六门限值;所述目标小区的一个或多个波束的信号质量高于第七门限值,且,所述服务小区的一个或多个波束的信号质量高于第七门限值。
在第一方面的一种可能的设计中,当满足所述第二条件时,添加所述目标小区为服务小区;或,当满足所述第二条件时,不添加所述目标小区为服务小区,且,使用所述目标小区的资源进行数据传输。
在第一方面的一种可能的设计中,所述第一指示信息还包括以下至少一项:
所述目标小区的小区标识;
所述目标小区中与目标波束方向对应的参考信号标识;
服务小区的测量结果,所述服务小区为切换前为所述终端设备服务的小区,所述测量结果为小区级测量结果和/或波束级测量结果;
所述候选小区中的至少一个小区的测量结果,所述测量结果为小区级测量结果和/或波束级测量结果。
在第一方面的一种可能的设计中,所述第一网络设备为源网络设备。
在第一方面的一种可能的设计中,所述方法还包括:接收来自目标网络设备的响应消息,该响应消息用于指示目标网络设备是否同意终端设备切换至目标小区或添加目标小区为服务小区的决策。
在第一方面的一种可能的设计中,对于具有多天线面板能力的终端设备,在不同的阶段使用不同的天线面板通信。示例性地,终端设备接收来自目标网络设备的响应信息时采用双天线面板,终端设备与第一网络设备通信时采用单天线面板。
终端设备通过启动双天线面板,在小区切换过程中同时对源服务小区和目标小区的调度和/或响应信息进行监听,在小区切换请求被拒绝等切换失败的情况下,终端能够继续保持监听源服务小区的调度和/或响应信息,降低小区重选过程发生的概率,提升切换过程的可靠性。
第二方面,本申请实施例提供一种移动性管理方法,该方法可由第一网络设备执行,也可以由配置于第一网络设备的部件(例如芯片或者电路)执行。
该方法包括:向终端设备发送配置信息,所述配置信息包括候选小区的测量配置信息,所述测量配置信息用于所述终端设备对所述候选小区进行测量,所述目标小区为所述候选小区中的一个小区,所述目标小区满足第一条件和/或所述第二条件;接收来自所述终端设备的第一指示信息,所述第一指示信息指示是否切换到所述目标小区,和/或,是否添加所述目标小区为服务小区。
在第二方面的一种可能的设计中,所述第一配置信息包括所述第一条件,所述第一条件用于确定是否切换到所述目标小区。
在第二方面的一种可能的设计中,所述第一条件包括以下至少一项:
所述目标小区的小区级信号质量高于第一门限值;
所述目标小区的小区级信号质量与服务小区的小区级信号质量之差高于第二门限值,所 述服务小区为切换前为所述终端设备服务的小区;
所述目标小区的一个或多个波束的信号质量高于第三门限值;
所述目标小区的一个或多个波束的信号质量与所述终端设备在所述服务小区中使用的波束的信号质量之差高于第四门限值;
所述目标小区的一个或多个波束的信号质量与所述服务小区中的最强波束的信号质量之差高于第五门限值。
在第二方面的一种可能的设计中,所述配置信息包括第二条件,所述第二条件用于确定是否添加所述目标小区为服务小区。
在第二方面的一种可能的设计中,所述第二条件包括以下至少一项:
所述目标小区的小区级信号质量高于第六门限值,且,所述服务小区的小区级信号质量高于所述第六门限值;
所述目标小区的一个或多个波束的信号质量高于第七门限值,且,所述服务小区的一个或多个波束的信号质量高于第七门限值。
在第二方面的一种可能的设计中,所述第一指示信息还包括以下至少一项:
所述目标小区的小区标识;
所述目标小区中与目标波束方向对应的参考信号标识;
服务小区的测量结果,所述服务小区为切换前为所述终端设备服务的小区,所述测量结果为小区级测量结果和/或波束级测量结果;
所述候选小区中的至少一个小区的测量结果,所述测量结果为小区级测量结果和/或波束级测量结果。
在第二方面的一种可能的设计中,所述第一网络设备为源网络设备。
在第二方面的一种可能的设计中,所述方法还包括,向候选网络设备发送切换请求消息,所述请求消息用于请求所述候选小区的配置信息,所述候选小区属于所述候选网络设备;
接收来自所述候选网络设备的所述候选小区的配置信息。
在第二方面的一种可能的设计中,所述方法还包括:向目标网络设备发送第二指示信息,所述目标小区属于所述目标网络设备,所述第二指示信息包括以下至少一项:
所述终端设备决策是否切换的信息;
所述目标小区的小区标识;
所述目标小区中与目标波束方向对应的参考信号标识;
所述目标小区的小区级测量结果和/或波束级测量结果。
在第二方面的一种可能的设计中,所述终端设备决策是否切换的信息,具体包括:
不执行切换;或,
不执行切换,且,添加所述目标小区为服务小区;或,
不执行切换,且,使用所述目标小区的资源进行数据传输。
在第二方面的一种可能的设计中,所述方法还包括:
接收来自目标网络设备的第四指示信息,所述第四指示信息指示是否同意所述终端设备的切换决策。
第三方面,本申请实施例提供一种移动性管理方法,该方法可由终端设备执行,也可以由配置于终端设备的部件(例如芯片或者电路)执行。
该方法包括:接收来自第一网络设备的第一配置信息,所述第一配置信息包括候选小区的测量配置信息;根据所述测量配置信息对所述候选小区进行测量;根据测量结果,与,第 一条件和第二条件中的至少一项确定目标小区,所述目标小区为所述候选小区中的一个小区,所述目标小区满足所述第一条件和/或所述第二条件;向目标网络设备发送第三指示信息,所述第三指示信息指示是否切换到所述目标小区,和/或,是否添加所述目标小区为服务小区。
通过实施第三方面的方法,在跨站场景下(即目标小区和源服务小区属于不同的网络设备),终端设备可根据小区级和/或波束级的测量结果决定是否切换到目标小区或是否添加目标小区为服务小区,而无需等待网络设备的切换命令或添加服务小区的命令,能够简化切换或添加服务小区过程的信令交互过程,从而降低时延。此外,终端设备在切换完成之前便进行了目标小区的波束管理过程,在切换至目标小区后,能够在较优波束方向进行数据传输,从而可以在切换后立即能保持大容量数据传输,提升了通信质量。
在第三方面的一种可能的设计中,所述第一网络设备为源网络设备。
在第三方面的一种可能的设计中,所述第一配置信息包括所述第一条件,所述根据测量结果,与,第一条件和第二条件中的至少一项确定目标小区,具体包括:根据所述测量结果和所述第一条件确定是否切换到所述目标小区。
在第三方面的一种可能的设计中,所述第一条件包括以下至少一项:
所述目标小区的小区级信号质量高于第一门限值;
所述目标小区的小区级信号质量与服务小区的小区级信号质量之差高于第二门限值,所述服务小区为切换前为所述终端设备服务的小区;
所述目标小区的一个或多个波束的信号质量高于第三门限值;
所述目标小区的一个或多个波束的信号质量与所述终端设备在所述服务小区中使用的波束的信号质量之差高于第四门限值;
所述目标小区的一个或多个波束的信号质量与所述服务小区中的最强波束的信号质量之差高于第五门限值。
在第三方面的一种可能的设计中,所述第一配置信息包括所述第二条件,所述第一配置信息包括所述第一条件,所述根据测量结果,与,第一条件和第二条件中的至少一项确定目标小区,具体包括:根据所述测量结果和所述第二条件确定是否添加所述目标小区为服务小区。
在第三方面的一种可能的设计中,所述第二条件包括以下至少一项:
所述目标小区的小区级信号质量高于第六门限值,且,所述服务小区的小区级信号质量高于所述第六门限值;
所述目标小区的一个或多个波束的信号质量高于第七门限值,且,所述服务小区的一个或多个波束的信号质量高于第七门限值。
在第三方面的一种可能的设计中,当满足所述第二条件时,添加所述目标小区为服务小区;或,
当满足所述第二条件时,不添加所述目标小区为服务小区,且,使用所述目标小区的资源进行数据传输。
在第三方面的一种可能的设计中,所述第三指示信息还包括以下至少一项:
所述目标小区的小区标识;
所述目标小区中的目标波束方向对应的参考信号标识;
所述目标小区的小区级测量结果和/或波束级测量结果。
第四方面,本申请实施例提供一种移动性管理方法,该方法可由第一网络设备执行,也可以由配置于第一网络设备的部件(例如芯片或者电路)执行。
该方法包括:向终端设备发送配置信息,所述配置信息包括候选小区的测量配置信息,所述测量配置信息用于所述终端设备对所述候选小区进行测量,所述目标小区为所述候选小区中的一个小区,所述目标小区满足第一条件和/或所述第二条件。
在第四方面的一种可能的设计中,所述第一配置信息包括所述第一条件,所述第一条件用于确定是否切换到所述目标小区。
在第四方面的一种可能的设计中,所述第一条件包括以下至少一项:
所述目标小区的小区级信号质量高于第一门限值;
所述目标小区的小区级信号质量与服务小区的小区级信号质量之差高于第二门限值,所述服务小区为切换前为所述终端设备服务的小区;
所述目标小区的一个或多个波束的信号质量高于第三门限值;
所述目标小区的一个或多个波束的信号质量与所述终端设备在所述服务小区中使用的波束的信号质量之差高于第四门限值;
所述目标小区的一个或多个波束的信号质量与所述服务小区中的最强波束的信号质量之差高于第五门限值。
在第四方面的一种可能的设计中,所述配置信息包括第二条件,所述第二条件用于确定是否添加所述目标小区为服务小区。
在第四方面的一种可能的设计中,所述第二条件包括以下至少一项:
所述目标小区的小区级信号质量高于第六门限值,且,所述服务小区的小区级信号质量高于所述第六门限值;
所述目标小区的一个或多个波束的信号质量高于第七门限值,且,所述服务小区的一个或多个波束的信号质量高于第七门限值。
在第四方面的一种可能的设计中,所述第一指示信息还包括以下至少一项:
所述目标小区的小区标识;
所述目标小区中与目标波束方向对应的参考信号标识;
服务小区的测量结果,所述服务小区为切换前为所述终端设备服务的小区,所述测量结果为小区级测量结果和/或波束级测量结果;
所述候选小区中的至少一个小区的测量结果,所述测量结果为小区级测量结果和/或波束级测量结果。
在第四方面的一种可能的设计中,所述第一网络设备为源网络设备。
在第四方面的一种可能的设计中,所述方法还包括,向候选网络设备发送切换请求消息,所述请求消息用于请求所述候选小区的配置信息,所述候选小区属于所述候选网络设备;
接收来自所述候选网络设备的所述候选小区的配置信息。
在第四方面的一种可能的设计中,所述方法还包括:向目标网络设备发送第二指示信息,所述目标小区属于所述目标网络设备,所述第二指示信息包括以下至少一项:
所述终端设备决策是否切换的信息;
所述目标小区的小区标识;
所述目标小区中与目标波束方向对应的参考信号标识;
所述目标小区的小区级测量结果和/或波束级测量结果。
在第四方面的一种可能的设计中,所述终端设备决策是否切换的信息,具体包括:
不执行切换;或,
不执行切换,且,添加所述目标小区为服务小区;或,
不执行切换,且,使用所述目标小区的资源进行数据传输。
在第四方面的一种可能的设计中,所述方法还包括:
接收来自目标网络设备的第四指示信息,所述第四指示信息指示是否同意所述终端设备的切换决策。
第五方面,提供了一种通信装置,包括用于实现前述第一方面、第一方面的任意可能的实现方式、第三方面、第三方面的任意可能的实现方式中的方法的功能模块。
第六方面,提供了一种通信装置,包括用于实现前述第二方面、第二方面的任意可能的实现方式、第四方面、第四方面的任意可能的实现方式中的方法的功能模块。
第七方面,提供了一种通信装置,包括处理器和存储器,该处理器和存储器耦合,处理器用于控制该装置实现前述第一方面、第一方面的任意可能的实现方式、第三方面、第三方面的任意可能的实现方式中的方法。
第八方面,提供了一种通信装置,包括处理器和存储器,该处理器和存储器耦合,处理器用于控制该装置实现前述第二方面、第二方面的任意可能的实现方式、第四方面、第四方面的任意可能的实现方式中的方法。
第九方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面、第一方面、第三方面、第三方面的任意可能的实现方式中的方法的任意可能的实现方式中的方法。
第十方面,提供了一种通信装置,包括处理器和接口电路,该接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面、第二方面的任意可能的实现方式、第四方面、第四方面的任意可能的实现方式中的方法中的方法。
第十一方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现前述第一方面、第一方面、第三方面、第三方面的任意可能的实现方式中的方法的任意可能的实现方式中的方法。
第十二方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现前述第二方面、第二方面的任意可能的实现方式、第四方面、第四方面的任意可能的实现方式中的方法中的方法。
第十三方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现前述第一方面、第一方面的任意可能的实现方式、第三方面、第三方面的任意可能的实现方式中的方法。
第十四方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现前述第二方面、第二方面的任意可能的实现方式中的方法、第四方面、第四方面的任意可能的实现方式中的方法。
第十五方面,提供了一种计算机程序,该计算机程序包括代码或指令,当该代码或指令被运行时,实现前述第一方面、第一方面、第三方面、第三方面的任意可能的实现方式中的方法。
第十六方面,提供了一种计算机程序,该计算机程序包括代码或指令,当该代码或指令被运行时,实现前述第二方面、第二方面的任意可能的实现方式中的方法、第四方面、第四 方面的任意可能的实现方式中的方法。
第十七方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第一方面、第一方面的任意可能的实现方式、第二方面、第二方面的任意可能的实现方式、第三方面、第三方面的任意可能的实现方式、第四方面、第四方面的任意可能的实现方式中描述的至少一种方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十八方面,提供一种通信系统,该通信系统包括第五方面、第七方面或者第九方面所述的装置,和,第六方面、第八方面或者第十方面所述的装置。
附图说明
图1为本申请实施例适用的一种通信系统的网络架构示意图;
图2为本申请实施例中接入网设备采用的CU-DU分离架构的示意图;
图3为本申请实施例提供的一种条件切换的流程示意图;
图4为本申请实施例提供的一种移动性管理方法的流程示意图;
图5为本申请实施例提供的另一种移动性管理方法的流程示意图;
图6为本申请实施例提供的另一种移动性管理方法的流程示意图;
图7、图8和图9为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如通用移动通信系统(universal mobile telecommunications system,UMTS)系统、码分多址(code division multiple access,CDMA)系统、无线局域网(WLAN,wireless local area network)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)移动通信系统或新无线(new radio,NR)系统,或者应用于未来的通信系统或其它类似的通信系统等。
请参考图1,为本申请提供的一种通信系统的网络架构示意图,该通信系统中包括接入网设备和终端设备。其中,终端设备位于接入网设备提供的一个或多个小区(载波)的覆盖范围内,且为终端设备服务的小区可以有一个或多个。当为终端设备提供服务的小区有多个时,终端设备可以按照载波聚合(carrier aggregation,CA)或双连接(dual connectivity,DC)或协作多点传输(coordinated multiple points transmission/reception,CoMP)的方式工作,至少一个小区可以为终端设备提供多于一种传输参数集对应的无线资源。例如,图1中所示,终端设备110同时位于接入网设备120的小区、接入网设备130的小区、接入网设备140的小区中,接入网设备120可以为宏基站(如macro eNB),接入网设备130和接入网设备140可以为微基站(如small eNB)。应注意,图1只是示意图,该通信系统中还可以包括核心网设备、无线中继设备、无线回传设备等其他网络设备,在图1中未示出。
本申请实施例对该通信系统中包括的接入网设备、终端设备、核心网设备、以及其它网络设备的数量均不作限定。
本申请实施例中的接入网设备在不同类型或制式的通信系统可对应不同的设备,例如在5G系统中对应5G中的接入网设备(例如gNB或者ng-eNB),在4G系统中对应4G中的接入网设备(例如eNB或者en-gNB)。
接入网设备与终端设备之间可以通过授权频谱进行通信,也可以通过非授权频谱进行通 信,也可以同时通过授权频谱和非授权频谱进行通信。接入网设备与终端设备之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请实施例对接入网设备和终端设备之间所使用的频谱资源不做限定。
本申请实施例中的接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请实施例对接入网设备和终端设备的应用场景不作限定。
需要说明的是,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)本申请实施例中所涉及的终端设备,又可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等,是一种向用户提供语音和/或数据连通性的设备,例如具有无线连接功能的手持式设备、车载设备等。终端设备通过无线方式与接入网设备相连,从而接入到通信系统中。目前一些终端设备的举例包括:手机、平板电脑、带无线收发功能的电脑、掌上电脑、移动互联网设备、可穿戴设备、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请实施例对终端设备所采用的具体技术和具体设备形态不作限定。
作为示例而非限定,终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
2)本申请实施例中所涉及的接入网设备,又可以称为基站,是用于将终端设备接入到无线网络的无线接入网(radio access network,RAN)中的节点或设备。目前一些接入网设备的举例包括:基站(base station)、LTE系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(evolved NodeB,eNB)、5G通信系统中的下一代基站(next generation NodeB,gNB)、传输接收点(transmission reception point,TRP)、节点B(Node B,NB)、无线网络控制器(radio network controller,RNC)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home(evolved)NodeB,HNB)、基带单元(base band unit,BBU)、无线保真(wireless fidelity,WiFi)接入点(access point,AP)、未来移动通信系统中的基站等。接入网设备也可以是完成基站部分功能的模块或单元,例如可 以是集中式单元(central unit,CU),或者分布式单元(distributed unit,DU)。本申请实施例对接入网设备所采用的具体技术和具体设备形态不作限定。
本申请实施例中的接入网设备可以采用CU-DU分离架构,所述CU-DU分离架构也可以称为分布式的部署架构。例如,如图2所示,接入网设备从逻辑上可以包括一个CU和一个或多个DU,每个DU可通过F1接口与CU连接,不同DU之间的信息交互可以基于CU的转发完成。CU与DU可以是物理上设置在一起,也可以物理上分离设置的,并不限定。其中,CU可以支持无线资源控制(radio resource control,RRC)、分组数据汇聚协议(packet data convergence protocol,PDCP)、业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU可以支持无线链路控制(radio link control,RLC)层协议、媒体接入控制(medium access control,MAC)层协议和物理(physical,PHY)层协议的功能。
本申请的实施例中,物理下行共享信道(physical downlink shared channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)和物理上行控制信道(physical uplink control channel,PUCCH)只是作为物理层的下行数据信道、下行控制信道、上行数据信道和上行控制信道的一种举例,在不同的系统和不同的场景中,数据信道和控制信道可能有不同的名称,本申请对此并不做限定。
需要说明的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度,并且“第一”、“第二”的描述也并不限定对象一定不同。
下面对本申请实施例中所涉及的相关技术特征进行解释说明。
控制资源集合(control resource set,CORESET):可以理解为一个时频资源集合,用于指示物理下行控制信道(physical downlink control channel,PDCCH)传输的资源位置,包括PDCCH占用的时域符号数,频域的资源块数以及时隙的分配等。在时域上,1个CORESET可以被配置为1个或连续几个OFDM符号;在频域上,1个CORESET可以是一组连续或非连续的频域资源,包含不同聚合等级下的搜索空间。
搜索空间(search space,SS):用于指示CORESET出现的周期和具体资源信息,例如起始的时隙以符号,以及重复出现的周期,从而终端设备可在指示的搜索空间的资源位置对PDCCH进行监听,一个搜索空间可以关联至少一个CORESET。
波束管理(beam management):多天线进行波束赋型,能够通过改变每根天线的信号的相位和振幅,可以使波束指向特定的方向。对于NR系统,所有上下行信道的发送和接收都是基于波束的,因此需要进行波束管理,便于收发两端能够在最适合的波束上进行数据收发,提高信号强度,避免信号干扰,从而改善通信质量。
波束管理机制可包括如下过程:1)波束扫描:发送参考信号的波束,在预定义的时间间隔进行空间扫描;2)波束测量/判决:终端设备测量参考信号,选择最好的波束。3)波束报告:终端设备上报波束测量的结果;4)波束指示:接入网设备指示终端设备选择指定的波束。
用于波束管理的参考信号可包括:下行方向上的同步信号和物理广播信道块(synchronization signal and physical broadcast channel block,SSB)、信道状态信息参考信号(channel state information reference signal,CSI-RS),以及上行方向上的PRACH和信道探测参考信号(sounding reference signal,SRS),其中,SSB可适用于空闲态初始接入态或连接态,PRACH可适用于空闲态初始接入,CSI-RS和SRS可适用于连接态。
多天线面板终端设备:支持毫米波的终端设备可以将MIMO阵列压缩在一个天线面板,可以将多个面板放置在一起,形成一个高相关性的大型天线阵列,或尽可能地将它们分开以保持低相关性。每个天线面板可以形成自己的波束,分别指向所需的接入网设备。
准共址(quasi co-location,QCL):如果某个天线端口符号上的信道特性可以从另一天线端口推导出,则两天线端口认为QCL,两个天线端口认为是QCL,即,从一个天线端口上获得的信道估计结果,可用于另一个天线端口,有利于接收机处理。特别地,QCL也可以用来指示两天线端口发送的信号具有相同的波束方向。
条件切换(CHO)过程
终端设备从一个网络设备向另一个网络设备切换之前,为终端设备的至少一个无线承载RB提供服务的网络设备可以称为源网络设备;在切换之后,为终端设备的至少一个RB提供服务的网络设备可以称为目标网络设备。图3示出的是CHO的一种流程示意图,包括:
S301,源网络设备向候选网络设备发送切换请求消息,对应的,候选网络设备接收来自源网络设备的切换请求消息。其中,候选网络设备可以有一个或多个,这一个或多个候选网络设备中包括目标网络设备。
S302,候选网络设备向源网络设备发送候选小区的配置信息,对应的,源网络设备接收候选小区的配置信息。
S303,源网络设备向终端设备发送RRC重配置消息,对应的,终端设备接收来自源网络设备的RRC重配置消息。其中,RRC重配置消息包括候选小区的配置信息以及执行切换的条件。
S304,终端设备向源网络设备发送RRC重配置完成消息,对应的,源网络设备接收来自终端设备的RRC重配置完成消息。其中,RRC重配置完成消息包括条件切换配置确认消息。
S305,终端设备对候选小区和服务小区进行测量,并根据测量结果判断是否满足执行条件切换的条件。在本申请实施例中,服务小区指的是在切换前为终端设备设备服务的小区,服务小区所属的网络设备为第一网络设备。在本申请实施例中,“服务小区”也可以称为“当前服务小区”、“源小区”、或“源服务小区”。
S306,若终端设备根据测量结果判断满足执行条件切换的条件,则该终端设备断开与源网络设备之间的连接,通过随机接入过程接入到目标网络设备。
S307,当终端设备成功接入到目标网络设备时,表示切换完成。该终端设备通过向目标网络设备发送RRC重配置完成消息结束切换过程。
S308,目标网络设备向源网络设备发送切换成功的指示信息。
在上述S306中,终端设备通过随机接入过程接入到目标网络设备。其中,随机接入的方式可以是基于竞争的随机接入或基于非竞争的随机接入。
其中,基于非竞争的随机接入过程可以包括:源网络设备为终端设备配置目标网络设备 的SSB或CSI-RS资源,以及上述SSB或CSI-RS资源对应的用于发送前导码(preamble)的时频资源,其中SSB或CSI-RS资源的数目可以是一个或多个。以配置了两个SSB资源为例,终端设备对上述两个SSB分别进行测量,其中不同的SSB对应着不同的波束方向,终端设备根据测量结果在在两个SSB中选择一个SSB,终端设备在所选的SSB对应的时频资源上发送preamble。若配置的两个SSB资源的信号质量测量结果均低于门限值(这个门限值可以是源网络设备预配置的),则终端设备将采用基于竞争的随机接入。
基于竞争的随机接入过程可以包括:终端设备对源网络设备配置的目标网络设备的多个SSB分别进行测量,其中,不同的SSB对应着不同的波束方向;终端设备根据测量结果在多个SSB中选择一个SSB;终端设备在所选的SSB对应的时频位置上发送preamble,由于SSB与发送preamble的时频位置存在对应关系,如此,目标网络设备就可以知道终端设备选择的SSB/波束方向。
S305中终端设备根据小区级测量结果判断候选小区是否满足切换条件,进而决策是否切换到满足切换条件的候选小区(即,目标小区)。也就是说,若终端设备通过图3所示的方法完成小区切换,终端设备在切换到目标小区前无法确定目标小区各个波束的情况,只能通过随机接入过程实现与目标小区的初步波束对齐。当终端设备通过基于竞争的随机接入方式接入目标小区时,需测量不同的SSB进行初步下行波束对齐,若SSB周期较长,则该过程所需时间也会较长,且利用SSB测量找到的下行波束方向是一个“较宽”的方向,不够准确;当终端设备通过非基于竞争的随机接入方式接入目标小区时,由于下行波束对齐的准确程度与目标小区分配的随机接入资源有关,若目标小区分配的SSB对应的下行波束方向与终端设备的实际位置存在明显偏差时,则可能导致切换失败,或回退至基于竞争的随机接入。
针对上述问题,本申请提供一种移动性管理方法,用于减少切换过程或添加服务小区过程的时延,提高数据通信质量。
图4为本申请实施例提供的一种移动性管理方法的流程示意图,本实施例涉及的是第一网络设备和终端设备之间进行数据传输的具体过程。本实施例的执行主体可以是第一网络设备和终端设备,也可以是分别应用于第一网络设备和终端设备中的模块,例如,芯片。下面以第一网络设备和终端设备作为执行主体为例进行描述。
如图4所示,该方法可以包括:S401、S402、S403和S404,本申请实施例对各个步骤的执行顺序不作限制。
S401,第一网络设备向终端设备发送第一配置信息,对应的,终端设备接收来自第一网络设备的第一配置信息。第一配置信息包括候选小区的配置信息。
可选地,候选小区可以由第一网络设备根据终端设备的邻区测量结果进行选取。
示例性地,第一网络设备可以根据小区级的测量结果选取候选小区。例如,可以将接收信号接收功率(receive signal receiving power,RSRP)作为表示接收信号质量的指标,第一网络设备可以将小区级参考信号的RSRP高于门限值的小区作为候选小区;第一网络设备也可以将小区级参考信号的RSRP与服务小区的小区级参考信号的RSRP的差值高于某一偏置值的小区作为候选小区。可选地,上述门限值和偏置值可以是协议预设的,或者第一网络设备配置的。
示例性地,第一网络设备可以根据波束级的测量结果选取候选小区,例如,第一网络设备可以将存在任意一个波束方向,该波束方向对应的参考信号的RSRP高于门限值的小区作为候选小区;第一网络设备可以将存在任意多个波束方向,该多个波束方向对应的参考信号 的RSRP高于门限值的小区作为候选小区;第一网络设备也可以将存在任意一个波束方向,该波束方向对应的参考信号的RSRP与服务小区波束方向对应的参考信号的RSRP的差值高于某一偏置值的小区作为候选小区,其中,服务小区波束方向可以指终端设备在服务小区中信号最强的波束方向,也可以指终端设备在服务小区使用的波束方向;第一网络设备也可以将存在任意多个波束方向,该多个波束方向中的每个波束方向对应的参考信号的RSRP与服务小区波束方向对应的参考信号的RSRP的差值高于某一偏置值的小区作为候选小区,其中,服务小区波束方向可以指终端设备在服务小区中信号最强的波束方向,也可以指终端设备在服务小区使用的波束方向。可选地,上述门限值和偏置值可以是协议预设的,或者第一网络设备配置的。
示例性地,第一网络设备可以结合小区级与波束级的测量结果选取候选小区,例如,第一网络设备将根据小区级测量结果确定的候选小区与根据波束级测量结果选取的候选小区中取交集或并集。
可选地,第一网络设备也可以根据地理位置等信息进行选取,本申请实施例对候选小区的选取方式不作限制。
第一配置信息包括部分或全部候选小区的配置信息。示例性地,当候选小区有N个时,上述配置信息可以包括M组配置信息,其中,N,M为正整数,M小于等于N,每组配置信息对应一个候选小区。
每组配置信息中可包括对应候选小区的以下一项或多项配置信息:参考信号配置信息、测量配置信息、波束配置信息、QCL信息、控制资源集合CORESET配置信息、搜索空间配置信息、时间提前量(timing advance,TA)信息、终端设备标识信息、用于PDCCH加扰/解扰的序列信息、随机接入资源配置信息、PUCCH资源配置信息、无线链路监控配置信息、安全相关配置信息、MAC配置信息、RLC配置信息、PDCP配置信息或SDAP配置信息。应注意,不同候选小区对应的一组配置信息中包括的配置信息的种类和具体内容可以相同,也可以不同,本申请并不限定。例如某个候选小区对应的一组配置信息中可能包含上述列出的所有种类的配置信息,而另一个候选小区对应的一组配置信息中可能包含上述列出的部分种类的配置信息,可选的,对于不包含的那部分配置信息,终端设备可认为与服务小区保持一致。
可选地,若需修改当前服务小区的配置信息,也可在第一配置信息中携带服务小区的配置信息。可选地,在第一配置信息中,候选小区的配置信息可以与服务小区的配置信息分开,也可以将候选小区的配置信息添加在服务小区的配置信息中,即作为服务小区的配置信息的一部分,此处不做限定。
可选地,第一配置信息还可以包括候选小区的配置信息与对应的候选小区的关联关系,例如可通过显示关联方式,指明每一套配置信息对应的小区标识,便于终端设备分辨不同候选小区对应的不同配置内容。
可选地,第一配置信息还可以包括触发切换的条件。该触发切换的条件(以下称为第一条件)可以包括但不限于以下任意一项或多项:
A1.目标小区的小区级信号质量高于第一门限值;
B1.目标小区的小区级信号质量与服务小区的小区级信号质量之差高于第二门限值;
C1.目标小区的一个或多个波束的信号质量高于第三门限值;
D1.目标小区的一个或多个波束的信号质量与终端设备在服务小区中使用的波束的信号质量之差高于第四门限值;
E1.目标小区的一个或多个波束的信号质量与服务小区最强波束的信号质量之差高于第五门限值。
可选地,在上述A1中,目标小区的小区级信号质量高于第一门限值,可以理解为:终端设备根据一次测量结果测出目标小区的小区级信号质量高于第一门限值,或者,终端设备在时长T1内累计W1次根据测量结果测出目标小区的小区级信号质量高于第一门限值;其中,T1和W1可以是通过第一配置信息配置的。
可选地,在上述B1中,目标小区的小区级信号质量与服务小区的小区级信号质量之差高于第二门限值,可以理解为:终端设备根据一次测量结果测出目标小区的小区级信号质量与服务小区的小区级信号质量之差高于第二门限值,或者,终端设备在时长T2内累计W2次根据测量结果测出目标小区的小区级信号质量与服务小区的小区级信号质量之差高于第二门限值;其中,T2和W2可以是通过第一配置信息配置的。
C1至E1依次类推,这里不再赘述。
示例性地,当第一配置信息包括第一条件,该第一条件为上述A1时,则满足A1的候选小区可以作为终端设备切换后的目标小区;当第一条件为上述B1时,满足B1的候选小区可以作为终端设备切换后的目标小区,以此类推。
可选地,第一配置信息可以包括第二条件。终端设备可以根据该第二条件确定是否添加目标小区为服务小区。其中,第二条件可以包括但不限于以下任意一项或多项:
A2.目标小区的小区级信号质量高于门限值a,且,当前服务小区的小区级信号质量高于门限值b,其中,a与b可以相同或不同;
B2.目标小区的一个或多个波束的信号质量高于门限值c,且,当前服务小区的一个或多个波束的信号质量高于门限值d,其中,c与d可以相同或不同。
可选地,与A1至E1类似地,在上述A2中,终端设备根据一次测量结果测出,或者,终端设备在时长T内累计K次根据测量结果测出目标小区的小区级信号质量高于第一门限值;其中,T和K可以是通过第一配置信息配置的。
终端设备根据该第二条件确定是否添加目标小区为服务小区,具体包括:当满足第二条件时,终端设备添加目标小区为服务小区;或,当满足第二条件时,终端设备不添加目标小区为服务小区,且,终端设备使用目标小区的资源进行数据传输。
示例性地,当第一配置信息包括第二条件,该第二条件被满足且为上述A2时,则终端设备可以不执行切换。进一步地,将满足A2的目标小区添加为服务小区;或者,终端设备可以不将满足A2的目标小区添加为服务小区,但终端设备可以使用目标小区的资源进行数据传输。
可选地,第一配置信息可以包括第一条件和/或第二条件。
可选地,上述第一条件和第二条件可以是预设的。在上述第一条件和第二条件中,信号质量可以是参考信号的RSRP,参考信号的参考信号接收质量(Reference Signal Received Quality,RSRQ)。
可选地,上述第一配置信息可以是RRC消息,MAC消息,DCI消息等任意空口信令。
可选地,上述第一配置信息可以承载在一条信令中,也可以承载在多条信令中,此处不做限定。示例性地,上述第一条件、第二条件、以及候选小区的配置信息可以承载在不同的信令中。
S402,终端设备根据候选小区的测量配置信息对候选小区进行测量。可选地,终端设备还对当前服务小区进行测量。
示例性地,终端设备根据第一配置信息中的当前服务小区和/或候选小区的测量配置信息,对服务小区和/或候选小区的参考信号进行测量。
可选地,当第一配置信息中包括第一条件时,终端设备根据测量结果确定满足第一条件的候选小区。例如,共有6个候选小区分别是小区1,小区2,小区3,小区4,小区5和小区6。终端设备执行测量后,确定满足第一条件的小区是小区1和小区2。可选地,若满足第一条件的候选小区多于一个,则终端设备可以在满足第一条件的候选小区中任选一个小区或者选择满足第一条件的候选小区中测量结果最好的那个小区作为目标小区。
可选地,当第一配置信息中包括第二条件时,终端设备根据测量结果确定是否满足第二条件。示例性地,共有6个候选小区分别是小区1,小区2,小区3,小区4,小区5和小区6。终端设备执行测量后,确定小区1和当前服务小区的测量结果满足第二条件,则终端设备暂不执行切换。此时,终端设备可以将当前服务小区和小区1均视为服务小区,也可以只将当前服务小区作为服务小区,而将小区1视作当前服务小区的另一路数据传输通道。
S403,终端设备向第一网络设备发送第一指示信息,对应的,第一网络设备接受来自终端设备的第一指示信息。可选地,第一指示信息可以是RRC消息,MAC消息,PUCCH等空口信令。
第一指示信息指示是否切换到目标小区,和/或,是否添加目标小区为服务小区。
可选地,第一指示信息包括目标小区的小区标识。
可选地,第一指示信息包括目标小区中与目标波束方向对应的参考信号标识。
可选地,第一指示信息包括服务小区的测量结果,该测量结果为小区级测量结果和/或波束级测量结果;
可选地,第一指示信息包括候选小区中的至少一个小区的测量结果,该测量结果为小区级测量结果和/或波束级测量结果。
可选地,第一指示信息包括1比特,其中,“0”和“1”分别表示执行小区切换和不执行小区切换;
可选地,第一指示信息包括2比特,其中,“00”表示终端设备不执行小区切换也不与目标小区通信,“01”表示终端设备不执行小区切换且将目标小区添加为服务小区,“10”表示终端设备不执行小区切换且不添加目标小区为服务小区,但使用目标小区的资源进行数据传输,“11”表示终端设备执行小区切换。应当理解,上述比特的取值只是一种示例,本申请实施例对此不作限制。
对于上述几种第一指示信息中可能包含的内容,可以有不同的组合方式,下面给出第一指示信息的几种可能的示例。
示例1:第一指示信息指示目标小区为PCI=A的小区。源网络设备接收到第一指示信息后可获知终端设备选择的目标小区。终端设备通过第一指示信息隐式地指示终端设备决策切换到目标小区。
示例2:第一指示信息指示目标小区为PCI=A的小区。源网络设备接收到第一指示信息后可获知终端设备选择的目标小区。进一步地,第一指示信息还包括1个比特,若该比特的取值表示执行小区切换,即,终端设备通过第一指示信息显示地指示终端设备决策切换到目标小区,并指示了目标小区的标识;若该1比特的取值特表示不执行小区切换,即,终端设备通过第一指示信息显示地指示终端设备决策不切换,并将目标小区添加为服务小区并使用目标小区的资源进行通信,或者,终端设备通过第一指示信息显示地指示终端设备决策不切换,并使用目标小区的资源进行通信。
示例3:第一指示信息指示目标小区为PCI=A的小区。源网络设备接收到第一指示信息后可获知终端设备选择的目标小区。进一步地,第一指示信息还包括2个比特,源网络设备根据该2比特的取值确定终端设备决策是否切换以及是否将目标小区添加为服务小区。
示例4:第一指示信息指示目标小区为PCI=A的小区,并且,第一指示信息指示目标波束方向对应目标小区中SSB ID=B的参考信号。源网络设备接收到第一指示信息后可获知终端设备选择的目标小区和目标波束。终端设备通过第一指示信息隐式地指示终端设备决策切换到目标小区并使用目标波束进行通信。
示例5:第一指示信息指示目标小区为PCI=A的小区,并且,第一指示信息指示目标波束方向对应目标小区中SSB ID=B的参考信号。源网络设备接收到第一指示信息后可获知终端设备选择的目标小区与目标波束。此外,第一指示信息还携带上述1比特或2比特的信息。源网络设备根据该两比特的取值确定终端设备是否执行切换以及是否添加目标小区为服务小区。
示例6:第一指示信息携带服务小区和/或候选小区的波束级测量结果,并且,第一指示信息还携带上述1比特。当该1比特取值为“0”时,表示表示切换到测量结果中最强波束对应的小区,并使用该波束方向进行通信,当该1比特取值为“1”时,表示不执行小区切换,并添加测量结果中最强波束对应的小区为服务小区,并使用该波束方向进行通信。
示例7:第一指示信息携带服务小区和/或候选小区的波束级测量结果,并且,第一指示信息还携带上述1比特。当该1比特取值为“0”时,表示表示切换到测量结果中最强波束对应的小区,并使用该波束方向进行通信,当该1比特取值为“1”时,表示不执行小区切换,也不添加目标小区为服务小区,该第一指示消息仅作为上报测量结果使用。
S404,可选地,第一网络设备向终端设备发送响应消息,对应的,终端设备接收来自第一网络设备的响应消息。
示例性地,若此前终端设备决策的结果是切换到目标小区,且第一网络设备同意了终端设备的决策,该响应消息也可以理解为调度信息。第一网络设备通过该调度消息,在目标小区对终端设备进行调度。可选地,第一网络设备可以使用终端设备选择的目标波束方向向终端设备发送调度信息,或者,若第一网络设备认为目标波束方向不可用,则根据目标小区的实际情况,对波束方向进行调整,并使用调整后的波束方向向终端设备发送调度信息。
示例性地,若此前终端设备决策的结果是将目标小区添加为服务小区,且第一网络设备同意了终端设备的决策,第一网络设备可以通过该响应消息告知终端设备,第一网络设备同意了终端设备的决策。可选地,终端设备在目标小区通信时,可以使用与在当前服务小区通信所使用的相同的RNTI,但使用不同的物理层信号加扰序列。
示例性地,若第一网络设备拒绝了终端设备的决策,则可通过如下方式告知终端设备:(1)第一网络设备通过响应消息告知终端设备,第一网络设备拒绝了终端设备的决策;(2)第一网络设备不发送响应消息或调度信息,表示第一网络设备拒绝了终端设备的决策。
通过实施图4所示实施例的方法,终端设备可根据小区级和/或波束级的测量结果决定是否切换到目标小区或是否添加目标小区为服务小区,而无需等待网络设备的切换命令或添加服务小区的命令,能够简化切换或添加服务小区过程的信令交互过程,从而降低时延。此外,终端设备在切换完成之前便进行了目标小区的波束管理过程,在切换至目标小区后,能够在较优波束方向进行数据传输,从而可以在切换后立即能保持大容量数据传输,提升了通信质量。
图5为本申请实施例提供的一种移动性管理方法的流程示意图,本实施例涉及的是第一网络设备(在图5所示的实施例中称为源网络设备)、目标网络设备和终端设备之间进行数据传输的具体过程。本实施例的执行主体可以是第一网络设备(源网络设备)、目标网络设备和终端设备,也可以是分别应用于第一网络设备(源网络设备)、目标网络设备和终端设备中的模块,例如,芯片。下面以第一网络设备(源网络设备)、目标网络设备和终端设备作为执行主体为例进行描述。
如图5所示,该方法可以包括:S501至S508,其中,S507和S508可以被S509、S510和S511替换。本申请实施例对各个步骤的执行顺序不作限制。
S501,源网络设备向候选网络设备发送切换请求消息,对应的,候选网络设备接收来自源网络设备的切换请求消息。其中,候选网络设备可以有一个或多个,这一个或多个候选网络设备中包括目标网络设备。为了方便描述,在以下的内容中,候选网络设备表示一个或多个候选网络设备中的任意一个。
通过上述切换请求消息,源网络设备向候选网络设备请求候选小区的配置信息。其中,候选小区所属的网络设备为候选网络设备,也即,候选网络设备可以对应一个或多个候选小区。
S502,候选网络设备向源网络设备发送候选小区的配置信息,对应的,源网络设备接收候选小区的配置信息。
可选地,候选小区可以由候选网络设备根据终端设备的邻区测量结果进行选取,也可以根据地理位置等信息进行选取,具体参见S401中第一网络设备选择候选小区的方式,只需把“第一网络设备”替换为“候选网络设备”。
S503,源网络设备向终端设备发送第一配置信息,对应的,终端设备接收来自源网络设备的第一配置信息。其中,第一配置信息包括部分或全部候选小区的配置信息。
示例性地,源网络设备接收到来自I个候选网络设备的配置信息,每个候选网络设备的第一配置信息包含X i(1<=i<=I)个候选小区的配置信息,即,源网络设备接收到X 1+X 2+…+X I个候选小区的配置信息,源网络设备通过第一配置信息将Q个候选小区的配置信息发送给终端设备,其中,i和I为正整数,Q小于等于X 1+X 2+…+X I
关于第一配置信息包含的内容可参见S401中的描述,这里不再赘述。
S504,终端设备根据候选小区的测量配置信息对候选小区进行测量。关于S504的详细描述可参考S402。
S505,终端设备向源网络设备发送第一指示信息,对应的,源网络设备接受来自终端设备的第一指示信息。关于第一指示信息的详细描述可参见S403。
S506,源网络设备向目标网络设备发送第二指示信息,对应的,目标网络设备接收来自源网络设备的第二指示信息。其中,第二指示信息包括以下至少一项或多项:
目标小区的小区标识;
目标小区中的目标波束方向对应的参考信号标识;
目标小区的小区级测量结果和/或波束级测量结果;
可选地,第二指示信息还指示终端设备决策是否执行小区切换,例如,第二指示信息包括1比特,其中,“0”和“1”分别表示执行小区切换和不执行小区切换;
可选地,第二指示信息还指示终端设备决策是否添加目标小区为服务小区。示例性地,第二指示信息包括2比特,其中,“00”表示终端设备不执行小区切换也不与目标小区通信,“01”表示终端设备不执行小区切换且将目标小区添加为服务小区,“10”表示终端设备不执 行小区切换且不添加目标小区为服务小区,但使用目标小区的资源进行数据传输,“11”表示终端设备执行小区切换。应当理解,上述比特的取值只是一种示例,本申请实施例对此不作限制。
S507,目标网络设备向源网络设备发送响应消息,对应的,源网络设备接收来自目标网络设备的响应消息。
示例性地,第二指示信息指示了终端设备决策切换至目标小区,目标网络设备可以发送该响应消息,用于指示接受或拒绝该切换决策。若目标网络设备接受了该切换决策,则源网络设备释放与终端设备的连接;若目标网络设备拒绝了该切换决策,则源网络设备不释放该终端设备的连接。
可选地,源网络设备在收到响应消息后通知终端设备目标网络设备的判决结果。
S508,目标网络设备向终端设备发送响应消息,对应的,终端设备接收来自目标网络设备的响应消息。
示例性地,若此前终端设备决策的结果是切换到目标小区,且目标网络设备同意了终端设备的决策,该响应消息也可以理解为调度信息。目标网络设备通过该调度消息,在目标小区对终端设备进行调度。可选地,目标网络设备可以使用终端设备选择的目标波束方向向终端设备发送调度信息,或者,若目标网络设备认为目标波束方向不可用,则根据目标小区的实际情况,对波束方向进行调整,并使用调整后的波束方向向终端设备发送调度信息。
示例性地,若此前终端设备决策的结果是将目标小区添加为服务小区,且目标网络设备同意了终端设备的决策,目标网络设备可以通过该响应消息告知终端设备,目标网络设备同意了终端设备的决策。可选地,终端设备在目标小区通信时,可以使用与在当前服务小区通信所使用的相同的RNTI,但使用不同的物理层信号加扰序列。
示例性地,若目标网络设备拒绝了终端设备的决策,则可通过如下方式告知终端设备:(1)目标网络设备通过响应消息告知终端设备,目标网络设备拒绝了终端设备的决策;(2)目标网络设备不发送响应消息或调度信息,表示目标网络设备拒绝了终端设备的决策;(3)源网络设备将S507中响应消息的结果发送给终端设备。
终端设备在认为判决结果被拒绝后,可使用当前服务小区的波束方向,继续在服务小区进行上下行传输,或执行小区重选的过程。
可选地,S507和S508可以被如下操作替换:
S509,目标网络设备向终端设备发送调度信息,对应的,终端设备接收来自目标网络设备的调度信息,具体描述参见S508。
S510,终端设备向目标网络设备发送响应消息,对应的,目标网络设备接收来自终端设备的响应消息。其中,该响应消息用于表示是否成功接收S509中的调度信息。
S511,目标网络设备向源网络设备发送响应消息,对应的,源网络设备接收来自目标网络设备的响应消息,具体描述参见S507。
可选地,对于具有多天线面板能力的终端设备,可在不同的阶段使用不同的天线面板通信。
在S503和S505中,终端设备使用单天线面板在服务小区与源网络设备进行通信,其中,波束方向指向服务小区。在S508和S509中,终端设备使用双天线面板,波束方向分别指向服务小区和目标小区,监听来自服务小区或目标小区的调度信息。终端设备在切换完成后,使用单天线面板在目标小区通信;或者,若终端设备最终未执行切换,终端设备使用单天线面板继续在服务小区通信。
通过实施图5所示实施例的方法,在跨站场景下(即目标小区和源服务小区属于不同的网络设备),终端设备可根据小区级和/或波束级的测量结果决定是否切换到目标小区或是否添加目标小区为服务小区,而无需等待网络设备的切换命令或添加服务小区的命令,能够简化切换或添加服务小区过程的信令交互过程,从而降低时延。此外,终端设备在切换完成之前便进行了目标小区的波束管理过程,在切换至目标小区后,能够在较优波束方向进行数据传输,从而可以在切换后立即能保持大容量数据传输,提升了通信质量。另一方面,终端设备通过启动双天线面板,在小区切换过程中同时对源服务小区和目标小区的调度和/或响应信息进行监听,在小区切换请求被拒绝等切换失败的情况下,终端能够继续保持监听源服务小区的调度和/或响应信息,降低小区重选过程发生的概率,提升切换过程的可靠性。
图6为本申请实施例提供的一种移动性管理方法的流程示意图,本实施例涉及的是第一网络设备(在图6所示的实施例中称为源网络设备)、目标网络设备和终端设备之间进行数据传输的具体过程。本实施例的执行主体可以是第一网络设备(源网络设备)、目标网络设备和终端设备,也可以是分别应用于第一网络设备(源网络设备)、目标网络设备和终端设备中的模块,例如,芯片。下面以第一网络设备(源网络设备)、目标网络设备和终端设备作为执行主体为例进行描述。
如图6所示,该方法可以包括:S601至S608,其中,本申请实施例对各个步骤的执行顺序不作限制。
S601至S604参见S501至S504。
S605,终端设备向目标网络设备发送第三指示信息,对应的,目标网络设备接受来自终端设备的第三指示信息。其中,第三指示信息的内容可以参考S506中第二指示信息的内容。
可选地,终端设备可以使用目标波束方向发送第三指示信息。
可选地,在终端设备向目标小区发送第三指示信息时,可能需获取目标小区的TA值。其中,终端设备获取目标小区的TA,有以下几种可能的情况:
情况1:目标小区的TA为0,例如覆盖范围较小的小区。在这种情况下,终端设备可直接向目标网络设备发送第三指示信息。
情况2:目标小区的TA与当前服务小区TA相差时间小于一个循环前缀的时间,例如源小区与目标小区覆盖距离接近,终端设备处于小区边缘位置时触发了小区切换或添加服务小区。在这种情况下,终端设备可直接向目标网络设备发送第三指示信息。
情况3:终端设备需提前获知目标小区的TA值,该TA值需由当前服务小区向终端设备指示。一种可能的实现方式为,在第一配置信息中,配置了候选小区的SRS资源,候选小区通过终端设备发送的SRS进行TA估计,并将TA结果告知当前服务小区,通过服务小区再下发至终端设备。
S606,目标网络设备向终端设备发送响应消息,对应的,终端设备接收来自目标网络设备的响应消息,具体参见S508。
S607,终端设备向目标网络设备发送响应消息,对应的,目标网络设备接收来自终端设备的响应消息。其中,该响应消息用于表示是否成功接收S606中的调度信息。
S608,目标网络设备向源网络设备发送第四指示信息,对应的,源网络设备接受来自目标设备的第四指示信息。通过第四指示信息,目标网络设备将终端设备是否成功接入目标小区的情况告知源网络设备。
可选地,对于具有多天线面板能力的终端设备,在在不同的阶段使用不同的天线面板通 信。
在S603中,终端设备使用单天线面板在服务小区进行通信,其中,波束方向指向服务小区。在S605中,终端设备使用单天线面板在目标小区进行通信,其中,波束方向指向目标小区。在S606中,终端设备使用双天线面板,波束方向分别指向服务小区和目标小区,监听来自服务小区或目标小区的调度信息。终端设备在切换完成后,使用单天线面板在目标小区通信;或者,若终端设备最终未执行切换,终端设备使用单天线面板继续在服务小区通信。
通过实施图6所示实施例的方法,在跨站场景下,终端设备可根据小区级和/或波束级的测量结果触发切换或添加服务小区,而无需等待网络侧的切换或添加服务小区的指示信息,能够减少切换或添加服务小区过程的信令交互过程与时延。在跨站场景下(即目标小区和源服务小区属于不同的网络设备),终端设备可根据小区级和/或波束级的测量结果决定是否切换到目标小区或是否添加目标小区为服务小区,而无需等待网络设备的切换命令或添加服务小区的命令,能够简化切换或添加服务小区过程的信令交互过程,从而降低时延。终端设备将判决的指示信息直接发给目标网络设备,无需源网络设备转发该指示信息的过程,进一步降低时延。此外,终端设备在切换完成之前便进行了目标小区的波束管理过程,在切换至目标小区后,能够在较优波束方向进行数据传输,从而可以在切换后立即能保持大容量数据传输,提升了通信质量。另一方面,终端设备通过启动双天线面板,在小区切换过程中同时对源服务小区和目标小区的调度和/或响应信息进行监听,在小区切换请求被拒绝等切换失败的情况下,终端能够继续保持监听源服务小区的调度和/或响应信息,降低小区重选过程发生的概率,提升切换过程的可靠性。
需要说明的是,在具体实施中可以选择图4、图5和图6中的部分步骤进行实施,还可以调整图示中步骤的顺序进行实施,本申请对此不做限定。应理解,执行图示中的部分步骤或调整步骤的顺序进行具体实施,均落在本申请的保护范围内。
图7至图9为本申请实施例提供的可能的通信装置的结构示意图。
如图7所示,通信装置700包括处理单元710和收发单元720。
通信装置700用于实现上述图4所示的方法实施例中终端设备的功能,或者,通信装置700可以包括用于实现上述图4所示的方法实施例中终端设备的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。通信装置700用于实现上述图4所示的方法实施例中第一网络设备的功能,或者,通信装置700可以包括用于实现上述图4所示的方法实施例中第一网络设备的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
通信装置700用于实现上述图5所示的方法实施例中终端设备的功能,或者,通信装置700可以包括用于实现上述图5所示的方法实施例中终端设备的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。通信装置700用于实现上述图5所示的方法实施例中源网络设备的功能,或者,通信装置700可以包括用于实现上述图5所示的方法实施例中源网络设备的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
通信装置700用于实现上述图6所示的方法实施例中终端设备的功能,或者,通信装置700可以包括用于实现上述图6所示的方法实施例中终端设备的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。通信装置700用于实现上述图6所示的方法实施例中源网络设备的功能,或者,通信装置700可以包括用于实现 上述图6所示的方法实施例中源网络设备的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
当通信装置700用于实现图4所示的方法实施例中终端设备的功能时,收发单元720用于接收来自第一网络设备的第一配置信息,该第一配置信息包括候选小区的测量配置信息;收发单元720还用于向第一网络设备发送第一指示信息,该第一指示信息指示是否切换到目标小区,和/或,是否添加目标小区为服务小区。处理单元710用于根据测量配置信息对候选小区进行测量;处理单元710还用于根据测量结果,与,第一条件和第二条件中的至少一项确定目标小区,其中,目标小区为候选小区中的一个小区,目标小区满足第一条件和/或第二条件。
当通信装置700用于实现图4所示的方法实施例中第一网络设备的功能时,收发单元720用于向终端设备发送配置信息,该配置信息包括候选小区的测量配置信息,其中,该测量配置信息用于终端设备对所述候选小区进行测量,目标小区为候选小区中的一个小区,目标小区满足第一条件和/或第二条件;收发单元720还用于接收来自终端设备的第一指示信息,该第一指示信息指示是否切换到目标小区,和/或,是否添加目标小区为服务小区。
当通信装置700用于实现图5所示的方法实施例中终端设备的功能时,收发单元720用于接收来自源网络设备的第一配置信息,该第一配置信息包括候选小区的测量配置信息;收发单元720还用于向源网络设备发送第一指示信息,该第一指示信息指示是否切换到目标小区,和/或,是否添加目标小区为服务小区。处理单元710用于根据测量配置信息对候选小区进行测量;处理单元710还用于根据测量结果,与,第一条件和第二条件中的至少一项确定目标小区,其中,目标小区为候选小区中的一个小区,目标小区满足第一条件和/或第二条件。
当通信装置700用于实现图4所示的方法实施例中源网络设备的功能时,收发单元720用于向终端设备发送配置信息,该配置信息包括候选小区的测量配置信息,其中,该测量配置信息用于终端设备对所述候选小区进行测量,目标小区为候选小区中的一个小区,目标小区满足第一条件和/或第二条件;收发单元720还用于接收来自终端设备的第一指示信息,该第一指示信息指示是否切换到目标小区,和/或,是否添加目标小区为服务小区。
当通信装置700用于实现图6所示的方法实施例中终端设备的功能时,收发单元720用于接收来自源网络设备的第一配置信息,该第一配置信息包括候选小区的测量配置信息;收发单元720还用于向目标网络设备发送第三指示信息,该第三指示信息指示是否切换到上述目标小区,和/或,是否添加目标小区为服务小区。处理单元710用于根据测量配置信息对候选小区进行测量;处理单元710还用于根据测量结果,与,第一条件和第二条件中的至少一项确定目标小区,其中,目标小区为候选小区中的一个小区,目标小区满足第一条件和/或第二条件。
当通信装置700用于实现图6所示的方法实施例中源网络设备的功能时,收发单元720用于向终端设备发送配置信息,该配置信息包括候选小区的测量配置信息,其中,该测量配置信息用于终端设备对所述候选小区进行测量,目标小区为候选小区中的一个小区,目标小区满足第一条件和/或第二条件;收发单元720还用于接收来自目标网络设备的第四指示信息,该第四指示信息指示终端设备是否成功接入目标小区。
有关上述处理单元710和收发单元720更详细的描述可以直接参考图4、图5或图6所示的方法实施例中相关描述直接得到,这里不加赘述。
图8为本申请实施例提供的另一种可能的通信装置的结构示意图。如图8所示,通信装置800包括处理器810和接口电路820。处理器810和接口电路820之间相互耦合。可以理 解的是,接口电路820可以为收发器或输入输出接口。可选的,通信装置800还可以包括存储器830,用于存储处理器810执行的指令或存储处理器810运行指令所需要的输入数据或存储处理器810运行指令后产生的数据。
当通信装置800用于实现图4、图5或图6所示的方法时,处理器810用于实现上述处理单元710的功能,接口电路820用于实现上述收发单元720的功能。
图9为本申请实施例提供的一种接入网设备的结构示意图,该接入网设备90包括一个或多个DU 901和一个或多个CU 902,其中,DU901可以用于执行上述方法实施例中DU的功能,CU 902可以用于执行上述方法实施例中CU的功能。
所述DU 901可以包括至少一个天线9011,至少一个射频单元9012,至少一个处理器9013和至少一个存储器9014。所述DU 901部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU902可以包括至少一个处理器9022和至少一个存储器9021。CU902和DU901之间可以通过F1接口(比如F1-C或F1-U)进行通信。所述CU 902部分主要用于进行基带处理等。所述DU 901与CU 902可以是物理上设置在一起,也可以物理上分离设置的,本申请实施例中是以DU 901与CU 902物理上分离设置为例进行描述的。
此外,可选的,接入网设备90可以包括一个或多个射频单元,一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器9013和至少一个存储器9014,射频单元可以包括至少一个天线9011和至少一个射频单元9012,CU可以包括至少一个处理器9022和至少一个存储器9021。
在一个实例中,所述CU902可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器9021和处理器9022可以服务于一个或多个单板;也就是说,可以每个单板上单独设置存储器和处理器,或者也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU901可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器9014和处理器9013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器,或者也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图9所示的DU能够实现图4、图5或图6所示意的方法实施例中涉及DU的各个过程。图9所示的DU中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
图9所示的CU能够实现图4、图5或图6所示意的方法实施例中涉及CU的各个过程。图9所示的CU中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中处理器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically  EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产 品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (30)

  1. 一种移动性管理方法,其特征在于,所述方法应用于终端设备,所述方法包括:
    接收来自第一网络设备的第一配置信息,所述第一配置信息包括候选小区的测量配置信息;
    根据所述测量配置信息对所述候选小区进行测量;
    根据测量结果,与,第一条件和第二条件中的至少一项确定目标小区,所述目标小区为所述候选小区中的一个小区,所述目标小区满足所述第一条件和/或所述第二条件;
    向所述第一网络设备发送第一指示信息,所述第一指示信息指示是否切换到所述目标小区,和/或,是否添加所述目标小区为服务小区。
  2. 根据权利要求1所述的方法,其特征在于,所述第一配置信息包括所述第一条件,所述根据测量结果,与,第一条件和第二条件中的至少一项确定目标小区,具体包括:
    根据所述测量结果和所述第一条件确定是否切换到所述目标小区。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一条件包括以下至少一项:
    所述目标小区的小区级信号质量高于第一门限值;
    所述目标小区的小区级信号质量与服务小区的小区级信号质量之差高于第二门限值,所述服务小区为切换前为所述终端设备服务的小区;
    所述目标小区的一个或多个波束的信号质量高于第三门限值;
    所述目标小区的一个或多个波束的信号质量与所述终端设备在所述服务小区中使用的波束的信号质量之差高于第四门限值;
    所述目标小区的一个或多个波束的信号质量与所述服务小区中的最强波束的信号质量之差高于第五门限值。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一配置信息包括所述第二条件,所述第一配置信息包括所述第一条件,所述根据测量结果,与,第一条件和第二条件中的至少一项确定目标小区,具体包括:
    根据所述测量结果和所述第二条件确定是否添加所述目标小区为服务小区。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第二条件包括以下至少一项:
    所述目标小区的小区级信号质量高于第六门限值,且,所述服务小区的小区级信号质量高于所述第六门限值;
    所述目标小区的一个或多个波束的信号质量高于第七门限值,且,所述服务小区的一个或多个波束的信号质量高于第七门限值。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,
    当满足所述第二条件时,添加所述目标小区为服务小区;或,
    当满足所述第二条件时,不添加所述目标小区为服务小区,且,使用所述目标小区的资源进行数据传输。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一指示信息还包括以下至少一项:
    所述目标小区的小区标识;
    所述目标小区中与目标波束方向对应的参考信号标识;
    服务小区的测量结果,所述服务小区为切换前为所述终端设备服务的小区,所述测量结果为小区级测量结果和/或波束级测量结果;
    所述候选小区中的至少一个小区的测量结果,所述测量结果为小区级测量结果和/或波束级测量结果。
  8. 一种移动性管理方法,其特征在于,所述方法应用于终端设备,所述方法包括:
    接收来自第一网络设备的第一配置信息,所述第一配置信息包括候选小区的测量配置信息;
    根据所述测量配置信息对所述候选小区进行测量;
    根据测量结果,与,第一条件和第二条件中的至少一项确定目标小区,所述目标小区为所述候选小区中的一个小区,所述目标小区满足所述第一条件和/或所述第二条件;
    向目标网络设备发送第三指示信息,所述第三指示信息指示是否切换到所述目标小区,和/或,是否添加所述目标小区为服务小区。
  9. 根据权利要求8所述的方法,其特征在于,所述第一配置信息包括所述第一条件,所述根据测量结果,与,第一条件和第二条件中的至少一项确定目标小区,具体包括:
    根据所述测量结果和所述第一条件确定是否切换到所述目标小区。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一条件包括以下至少一项:
    所述目标小区的小区级信号质量高于第一门限值;
    所述目标小区的小区级信号质量与服务小区的小区级信号质量之差高于第二门限值,所述服务小区为切换前为所述终端设备服务的小区;
    所述目标小区的一个或多个波束的信号质量高于第三门限值;
    所述目标小区的一个或多个波束的信号质量与所述终端设备在所述服务小区中使用的波束的信号质量之差高于第四门限值;
    所述目标小区的一个或多个波束的信号质量与所述服务小区中的最强波束的信号质量之差高于第五门限值。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述第一配置信息包括所述第二条件,所述第一配置信息包括所述第一条件,所述根据测量结果,与,第一条件和第二条件中的至少一项确定目标小区,具体包括:
    根据所述测量结果和所述第二条件确定是否添加所述目标小区为服务小区。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述第二条件包括以下至少一项:
    所述目标小区的小区级信号质量高于第六门限值,且,所述服务小区的小区级信号质量高于所述第六门限值;
    所述目标小区的一个或多个波束的信号质量高于第七门限值,且,所述服务小区的一个或多个波束的信号质量高于第七门限值。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,
    当满足所述第二条件时,添加所述目标小区为服务小区;或,
    当满足所述第二条件时,不添加所述目标小区为服务小区,且,使用所述目标小区的资源进行数据传输。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,所述第三指示信息还包括以下至少一项:
    所述目标小区的小区标识;
    所述目标小区中的目标波束方向对应的参考信号标识;
    所述目标小区的小区级测量结果和/或波束级测量结果。
  15. 一种移动性管理方法,其特征在于,所述方法应用于第一网络设备,所述方法包括:
    向终端设备发送配置信息,所述配置信息包括候选小区的测量配置信息,所述测量配置信息用于所述终端设备对所述候选小区进行测量,所述目标小区为所述候选小区中的一个小区,所述目标小区满足第一条件和/或所述第二条件;
    接收来自所述终端设备的第一指示信息,所述第一指示信息指示是否切换到所述目标小区,和/或,是否添加所述目标小区为服务小区。
  16. 根据权利要求15所述的方法,其特征在于,所述第一配置信息包括所述第一条件,所述第一条件用于确定是否切换到所述目标小区。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第一条件包括以下至少一项:
    所述目标小区的小区级信号质量高于第一门限值;
    所述目标小区的小区级信号质量与服务小区的小区级信号质量之差高于第二门限值,所述服务小区为切换前为所述终端设备服务的小区;
    所述目标小区的一个或多个波束的信号质量高于第三门限值;
    所述目标小区的一个或多个波束的信号质量与所述终端设备在所述服务小区中使用的波束的信号质量之差高于第四门限值;
    所述目标小区的一个或多个波束的信号质量与所述服务小区中的最强波束的信号质量之差高于第五门限值。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述配置信息包括第二条件,所述第二条件用于确定是否添加所述目标小区为服务小区。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述第二条件包括以下至少一项:
    所述目标小区的小区级信号质量高于第六门限值,且,所述服务小区的小区级信号质量高于所述第六门限值;
    所述目标小区的一个或多个波束的信号质量高于第七门限值,且,所述服务小区的一个或多个波束的信号质量高于第七门限值。
  20. 根据权利要求15至19中任一项所述的方法,其特征在于,所述第一指示信息还包括以下至少一项:
    所述目标小区的小区标识;
    所述目标小区中与目标波束方向对应的参考信号标识;
    服务小区的测量结果,所述服务小区为切换前为所述终端设备服务的小区,所述测量结果为小区级测量结果和/或波束级测量结果;
    所述候选小区中的至少一个小区的测量结果,所述测量结果为小区级测量结果和/或波束级测量结果。
  21. 根据权利要求15至20中任一项所述的方法,其特征在于,所述第一网络设备为源网络设备。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    向候选网络设备发送切换请求消息,所述请求消息用于请求所述候选小区的配置信息, 所述候选小区属于所述候选网络设备;
    接收来自所述候选网络设备的所述候选小区的配置信息。
  23. 根据权利要求21或22所述的方法,其特征在于,所述方法还包括:
    向目标网络设备发送第二指示信息,所述目标小区属于所述目标网络设备,所述第二指示信息包括以下至少一项:
    所述终端设备决策是否切换的信息;
    所述目标小区的小区标识;
    所述目标小区中与目标波束方向对应的参考信号标识;
    所述目标小区的小区级测量结果和/或波束级测量结果。
  24. 根据权利要求23所述的方法,其特征在于,所述终端设备决策是否切换的信息,具体包括:
    不执行切换;或,
    不执行切换,且,添加所述目标小区为服务小区;或,
    不执行切换,且,使用所述目标小区的资源进行数据传输。
  25. 根据权利要求23或24所述的方法,其特征在于,所述方法还包括:
    接收来自目标网络设备的第四指示信息,所述第四指示信息指示是否同意所述终端设备的切换决策。
  26. 一种通信装置,其特征在于,包括用于执行如权利要求1至25中任一项所述方法的模块。
  27. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于控制所述装置实现如权利要求1至25中任一项所述的方法。
  28. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至25中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至25中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被计算机运行时,实现如权利要求1至25中任一项所述的方法。
PCT/CN2022/095525 2021-06-26 2022-05-27 一种移动性管理方法及通信装置 WO2022267818A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110714815.6A CN115529624A (zh) 2021-06-26 2021-06-26 一种移动性管理方法及通信装置
CN202110714815.6 2021-06-26

Publications (1)

Publication Number Publication Date
WO2022267818A1 true WO2022267818A1 (zh) 2022-12-29

Family

ID=84543919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095525 WO2022267818A1 (zh) 2021-06-26 2022-05-27 一种移动性管理方法及通信装置

Country Status (2)

Country Link
CN (1) CN115529624A (zh)
WO (1) WO2022267818A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024073998A1 (en) * 2023-02-14 2024-04-11 Lenovo (Beijing) Ltd. Support of ltm

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889145A (zh) * 2016-09-29 2018-04-06 华为技术有限公司 切换方法及装置
WO2019030731A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) SELECTION OF BEAMS TO INCLUDE IN THE MEASUREMENT REPORT
CN109891764A (zh) * 2016-10-24 2019-06-14 Oppo广东移动通信有限公司 波束测量的方法及装置
CN110612741A (zh) * 2017-05-04 2019-12-24 三星电子株式会社 Ue自主切换中用于测量报告事件操作和网络信令的方法
CN111372293A (zh) * 2018-12-26 2020-07-03 华为技术有限公司 通信方法和通信装置
CN111727625A (zh) * 2018-02-14 2020-09-29 诺基亚技术有限公司 条件切换
CN111757400A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 通信方法和通信装置
CN112839363A (zh) * 2019-11-22 2021-05-25 维沃移动通信有限公司 一种小区测量方法、设备及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889145A (zh) * 2016-09-29 2018-04-06 华为技术有限公司 切换方法及装置
CN109891764A (zh) * 2016-10-24 2019-06-14 Oppo广东移动通信有限公司 波束测量的方法及装置
CN110612741A (zh) * 2017-05-04 2019-12-24 三星电子株式会社 Ue自主切换中用于测量报告事件操作和网络信令的方法
WO2019030731A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) SELECTION OF BEAMS TO INCLUDE IN THE MEASUREMENT REPORT
CN111727625A (zh) * 2018-02-14 2020-09-29 诺基亚技术有限公司 条件切换
CN111372293A (zh) * 2018-12-26 2020-07-03 华为技术有限公司 通信方法和通信装置
CN111757400A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 通信方法和通信装置
CN112839363A (zh) * 2019-11-22 2021-05-25 维沃移动通信有限公司 一种小区测量方法、设备及系统

Also Published As

Publication number Publication date
CN115529624A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
WO2018141272A1 (zh) 终端、网络设备和通信方法
WO2020088571A1 (zh) 一种信息传输方法、装置和设备
EP3664344B1 (en) Data receiving method and device
JP6984667B2 (ja) ビーム失敗回復要求の伝送リソース設定装置、ビーム失敗回復要求の応答装置、方法及び通信システム
WO2022206670A1 (zh) 一种移动性管理方法及通信装置
CN110447280B (zh) 管理无线通信网络中的通信
US11172414B2 (en) Coordinated cell determining method and network device
WO2022228077A1 (zh) 一种移动性管理方法及通信装置
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
US20140274081A1 (en) Coordinated virtual devices using disparate wireless communication technologies
EP3716706A1 (en) Link recovery method, terminal device, and network device
WO2023011188A1 (zh) 一种通信方法及装置
US20230361962A1 (en) Electronic device, wireless communication method and computer readable medium
WO2023050472A1 (zh) 用于寻呼的方法和装置
CN107809770B (zh) 传输数据的方法、基站和用户设备
US11044701B2 (en) Communication method and communication apparatus
WO2022267818A1 (zh) 一种移动性管理方法及通信装置
WO2023011195A1 (zh) 一种通信方法及通信装置
WO2015043659A1 (en) Apparatus and method of determining resources for a cell
US20230247701A1 (en) Coordination of multiple connections with a user equipment using multiple subscriptions
CN117397173A (zh) 信息传输方法、设备及存储介质
US20240129909A1 (en) Carrier aggregation grouping based on user location in 5g nr massive mimo beamforming network
EP4346114A1 (en) User equipment and base station
WO2023208166A1 (zh) 一种定时指示的方法及通信装置
WO2023019464A1 (zh) 无线通信方法、第一终端设备和第二终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE