WO2023019464A1 - 无线通信方法、第一终端设备和第二终端设备 - Google Patents

无线通信方法、第一终端设备和第二终端设备 Download PDF

Info

Publication number
WO2023019464A1
WO2023019464A1 PCT/CN2021/113219 CN2021113219W WO2023019464A1 WO 2023019464 A1 WO2023019464 A1 WO 2023019464A1 CN 2021113219 W CN2021113219 W CN 2021113219W WO 2023019464 A1 WO2023019464 A1 WO 2023019464A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
terminal device
resource
indication information
rss
Prior art date
Application number
PCT/CN2021/113219
Other languages
English (en)
French (fr)
Inventor
赵振山
张世昌
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180101525.2A priority Critical patent/CN117813772A/zh
Priority to PCT/CN2021/113219 priority patent/WO2023019464A1/zh
Publication of WO2023019464A1 publication Critical patent/WO2023019464A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a wireless communication method, a first terminal device, and a second terminal device.
  • New air interface (New Radio, NR)/fifth-generation mobile communication technology (5-Generation, 5G) system design goals include large-bandwidth communications in high-frequency bands, such as frequency bands above 6GHz.
  • NR New Radio
  • 5G fifth-generation mobile communication technology
  • a large-scale antenna array Massive MIMO
  • the entire cell is covered by multi-beam, that is, each beam covers a small range, and the effect of multiple beams covering the entire cell is achieved by sweeping in time.
  • the network device may use the beam indication information to assist the terminal side in determining information about the sending beam on the network side or information about the receiving beam corresponding to the terminal side.
  • the receiving terminal since both the receiving terminal and the transmitting terminal perform sidelink communication based on multi-beams, at this time, the receiving terminal The receiving beam of the terminal may not be aligned with the transmitting beam of the transmitting terminal, which reduces the signal gain and transmission performance.
  • NR New Radio
  • SL sidelink
  • An embodiment of the present application provides a wireless communication method, a first terminal device, and a second terminal device, which can ensure that the target airspace receiving filter used by the first terminal device is aligned with the airspace transmitting filter used by the second terminal device, and then It can realize the maximization of signal gain and improve transmission performance.
  • the present application provides a wireless communication method, including:
  • a target spatial domain receiving filter for the first terminal device Based on the measurement results of the multiple CSI-RSs, among the multiple spatial domain receiving filters, determine a target spatial domain receiving filter for the first terminal device to receive sidelink data.
  • the present application provides a wireless communication method, including:
  • the multiple CSI-RSs are used by the first terminal device to determine a target spatial receiving filter for receiving sidelink data from a plurality of spatial receiving filters.
  • the present application provides a first terminal device configured to execute the method in the above first aspect or its various implementation manners.
  • the first terminal device includes a functional module configured to execute the method in the foregoing first aspect or each implementation manner thereof.
  • the first terminal device may include a processing unit, where the processing unit is configured to perform functions related to information processing.
  • the processing unit may be a processor.
  • the first terminal device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
  • the sending unit may be a transmitter or transmitter, and the receiving unit may be a receiver or receiver.
  • the first terminal device is a communication chip, the sending unit may be an input circuit or interface of the communication chip, and the sending unit may be an output circuit or interface of the communication chip.
  • the present application provides a second terminal device, configured to execute the method in the second aspect or various implementations thereof.
  • the second terminal device includes a function module configured to execute the method in the second aspect or each implementation manner thereof.
  • the second terminal device may include a processing unit configured to perform functions related to information processing.
  • the processing unit may be a processor.
  • the second terminal device may include a sending unit and/or a receiving unit.
  • the sending unit is used to perform functions related to sending, and the receiving unit is used to perform functions related to receiving.
  • the sending unit may be a transmitter or transmitter, and the receiving unit may be a receiver or receiver.
  • the second terminal device is a communication chip, the receiving unit may be an input circuit or interface of the communication chip, and the sending unit may be an output circuit or interface of the communication chip.
  • the present application provides a first terminal device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so as to execute the method in the above first aspect or each implementation manner thereof.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be separated from the processor.
  • the first terminal device further includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a second terminal device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so as to execute the method in the second aspect or each implementation manner thereof.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be separated from the processor.
  • the second terminal device further includes a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a chip configured to implement any one of the above-mentioned first aspect to the second aspect or a method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first to second aspects or various implementations thereof method in .
  • the present application provides a computer-readable storage medium for storing a computer program, and the computer program enables the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof .
  • the present application provides a computer program product, including computer program instructions, the computer program instructions cause a computer to execute any one of the above first to second aspects or the method in each implementation manner.
  • the present application provides a computer program, which, when run on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner.
  • the first terminal device can determine the target spatial receiving filter for the first terminal device to receive sidelink data from among the multiple spatial receiving filters Based on this, when the first terminal device receives the sidelink data sent by the second terminal device using the airspace transmit filter corresponding to the target airspace receive filter based on the target airspace receive filter, it can ensure that the The target spatial domain receive filter is aligned with the spatial domain transmit filter used by the second terminal device, thereby maximizing signal gain and improving transmission performance.
  • FIGS 1 to 7 are examples of scenarios provided in this application.
  • FIG. 8 is an example of a time slot structure not including a PSFCH channel provided by an embodiment of the present application.
  • FIG. 9 is an example of a time slot structure including a PSFCH channel provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a non-analog beam provided by an embodiment of the present application.
  • Fig. 11 is a schematic diagram of an analog beam provided by an embodiment of the present application.
  • Fig. 12 is a schematic flowchart of a method for configuring a TCI state of a PDSCH provided by an embodiment of the present application.
  • Fig. 13 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • Fig. 14 is a schematic diagram of receiving multiple CSI-RSs based on the first indication information provided by the embodiment of the present application.
  • FIG. 15 is a schematic diagram of a first terminal device receiving multiple CSI-RSs based on second indication information provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a first terminal device receiving multiple CSI-RSs on the multiple transmission resources by using multiple spatial domain receiving filters according to an embodiment of the present application.
  • Fig. 17 is another schematic flowchart of the wireless communication method provided by the embodiment of the present application.
  • Fig. 18 is a schematic block diagram of a first terminal device provided by an embodiment of the present application.
  • Fig. 19 is a schematic block diagram of a second terminal device provided by an embodiment of the present application.
  • Fig. 20 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 21 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • the embodiments of the present application may be applicable to any terminal device-to-terminal device communication framework.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • D2D Device to Device
  • the terminal device in this application may be any device or device configured with a physical layer and a media access control layer, and the terminal device may also be called an access terminal.
  • user equipment User Equipment, UE
  • subscriber unit subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless Handheld devices with communication capabilities, computing devices or other linear processing devices connected to wireless modems, in-vehicle devices, wearable devices, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the embodiment of the present invention is described by taking a vehicle-mounted terminal as an example, but it is not limited thereto.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) network deployment scenario.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent network deployment scenario
  • the communication system of the present application can be applied to unlicensed spectrum, wherein the unlicensed spectrum can also be considered as shared spectrum; or, the communication system of the present application can also be applied to licensed spectrum, wherein the licensed spectrum can also be considered as unlicensed spectrum Shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • terminal equipment can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as on aircraft, balloons and satellites, etc.) .
  • the terminal device can be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, an industrial Wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, transportation Wireless terminal devices in transportation safety, wireless terminal devices in smart city or wireless terminal devices in smart home, etc.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal device
  • an industrial Wireless terminal equipment in industrial control wireless terminal equipment in self-driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • transportation Wireless terminal devices in transportation safety wireless terminal devices in smart city or wireless terminal devices in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device can be a device used to communicate with the mobile device, and the network device can be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, or It is a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a network in a vehicle-mounted device, a wearable device, and an NR network Equipment or a base station (gNB) or network equipment in a future evolved PLMN network or network equipment in an NTN network.
  • Access Point Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • gNB NR network Equipment or a base station
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for the cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (for example, a base station)
  • the corresponding cell, the cell can belong to the macro base station, or the base station corresponding to the small cell (Small cell), where the small cell can include: Metro cell, Micro cell, Pico cell , Femto cell, etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices). Do limited. For example, pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include LTE protocol, NR protocol and related protocols applied in future communication systems, which is not limited in this application.
  • side communication can be divided into network coverage inner communication, partial network coverage side communication and network coverage outer communication.
  • FIG. 1 to FIG. 5 are system frameworks from vehicle-mounted terminals to vehicle-mounted terminals provided by the present application.
  • all terminals including terminal 1 and terminal 2 performing sideline communication are within the coverage of the network equipment, so all terminals can receive the configuration of the network equipment. Signaling, sidelink communication based on the same sidelink configuration.
  • some terminals performing lateral communication are located within the coverage of network equipment, and these terminals (ie, terminal 1) can receive configuration signaling from network equipment, and Sidewalk communication is performed according to the configuration of the network device.
  • the terminal outside the network coverage i.e. terminal 2 cannot receive the configuration signaling of the network equipment.
  • the terminal outside the network coverage will The sidelink configuration is determined by the information carried in the sidelink broadcast channel PSBCH sent by the internal terminal, and sidelink communication is performed.
  • all terminals including terminal 1 and terminal 2 performing side communication are located outside the network coverage, and all terminals determine the side configuration according to the pre-configuration information to perform side communication .
  • the central control node for side communication with a central control node, multiple terminals (including terminal 1, terminal 2, and terminal 3) form a communication group, and the communication group has a central control node and can become a group leader Terminal (Cluster Header, CH), the central control node has one of the following functions: responsible for the establishment of communication groups; joining and leaving of group members; performing resource coordination, allocating sideline transmission resources for other terminals, and receiving sideline transmission resources of other terminals. Feedback information; resource coordination with other communication groups and other functions.
  • terminal 1 shown in FIG. 4 is the central control node in the communication group formed by terminal 1 , terminal 2 and terminal 3 .
  • Device-to-device communication is a sidelink (Sidelink, SL) transmission technology based on D2D.
  • SL Sidelink
  • the Internet of Vehicles system uses terminal-to-device direct communication. way, so it has higher spectral efficiency and lower transmission delay.
  • Two transmission modes are defined in 3GPP: first mode and second mode.
  • the transmission resources of the terminal are allocated by the network equipment, and the terminal sends data on the sidelink according to the resources allocated by the network equipment; the network equipment can allocate resources for a single transmission to the terminal, and can also allocate semi-static transmission resources for the terminal resource. As shown in FIG. 1 , the terminal is located within the coverage of the network, and the network allocates transmission resources for sidelink transmission to the terminal.
  • the terminal selects a resource from the resource pool for data transmission.
  • the terminal is located outside the coverage area of the cell, and the terminal independently selects transmission resources from the pre-configured resource pool for sidelink transmission; or as shown in Figure 1, the terminal independently selects transmission resources for sidelink transmission from the resource pool configured by the network transmission.
  • LTE-V2X broadcast transmission is supported, and in NR-V2X, unicast and multicast transmission are introduced.
  • Fig. 5 is a schematic diagram of unicast transmission provided by this application. As shown in FIG. 5 , unicast transmission is performed between terminal 1 and terminal 2 .
  • FIG. 6 is a schematic diagram of multicast transmission provided by this application. As shown in FIG. 6 , terminal 1, terminal 2, terminal 3 and terminal 4 form a communication group, wherein terminal 1 sends data, and other terminal devices in the group are receiving terminals.
  • the receiving end is any terminal around the sending end terminal.
  • Fig. 7 is a schematic diagram of broadcast transmission provided by the present application. As shown in FIG. 7 , terminal 1 is a transmitting terminal, and other terminals around it, terminal 2 to terminal 6 are all receiving terminals.
  • FIG. 8 is an example of a time slot structure not including a PSFCH channel provided by an embodiment of the present application
  • FIG. 9 is an example of a time slot structure including a PSFCH channel provided by an embodiment of this application.
  • the PSCCH in NR-V2X starts from the second side row symbol of the time slot in the time domain and occupies 2 or 3 OFDM symbols, and can occupy ⁇ 10,12 in the frequency domain 15, 20, 25 ⁇ PRBs.
  • the number of PRBs occupied by PSCCH must be less than or equal to the number of PRBs contained in a subchannel in the resource pool, so as not to cause additional restrictions on PSSCH resource selection or allocation .
  • the PSSCH also starts from the second side row symbol of the time slot, the last time domain symbol in the time slot is a guard interval (GP) symbol, and the remaining symbols are mapped to the PSSCH.
  • the first side row symbol in this time slot is the repetition of the second side row symbol.
  • the receiving terminal uses the first side row symbol as an AGC (Automatic Gain Control, Automatic Gain Control) symbol. Data is generally not used for data demodulation.
  • the PSSCH occupies K sub-channels in the frequency domain, and each sub-channel includes N consecutive PRBs.
  • the PSFCH channel may not be included in the time slot.
  • a time slot includes a PSFCH channel
  • the second-to-last and third-to-last symbols in the time slot are used for PSFCH channel transmission, and a time domain symbol before the PSFCH channel is used as a GP symbol.
  • NR/5G systems include large-bandwidth communications in high-frequency bands (eg, frequency bands above 6 GHz). When the operating frequency becomes higher, the path loss in the transmission process will increase, thereby affecting the coverage capability of the high-frequency system.
  • an effective technical solution is based on a massive antenna array (Massive MIMO) to form a shaped beam with greater gain, overcome propagation loss, and ensure system coverage.
  • Mass MIMO massive antenna array
  • For the millimeter-wave antenna array due to the shorter wavelength, the antenna element spacing and the smaller aperture, more physical antenna elements can be integrated in a limited-sized two-dimensional antenna array.
  • a cell uses a wider beam (beam) to cover the entire cell. Therefore, at each moment, a terminal (User Equipment, UE) within the coverage of the cell has the opportunity to obtain the transmission resource allocated by the system.
  • Fig. 10 is a schematic diagram of a non-analog beam provided by an embodiment of the present application. As shown in Figure 10, the LTE/NR network side uses a wide beam to cover the entire cell, and UE1-UE5 can receive the signal sent by the network device at any time.
  • NR/5G multi-beam (Multi-beam) system covers the entire cell through different beams, that is, each beam covers a small area, and achieves the effect of multiple beams covering the entire cell through time sweeping.
  • Fig. 11 is a schematic diagram of an analog beam provided by an embodiment of the present application. As shown in Figure 11, the network side uses narrower beams (such as beams 1-4 in the figure), and uses different beams to cover different areas in the cell at different times.
  • the NR network side uses beam 1 Cover the area where user 1 is located; at time 2, the NR network side covers the area where user 2 is located through beam 2; at time 3, the NR network side covers the area where user 3 and user 4 are located through beam 3; at time 4, the NR network side Side pass beam 4 covers the area where user 5 is located. Because the network uses narrower beams, the transmission energy can be more concentrated, so it can cover a longer distance; at the same time, because the beams are narrower, each beam can only cover a part of the cell area, so analog beamforming is "time-for-time space".
  • Analog beamforming can be used not only for network-side devices, but also for terminal devices. At the same time, analog beamforming can be used not only for signal transmission, but also for signal reception; the beam used to transmit signals can be called a transmit beam, and the beam used to receive signals can be called a receive beam.
  • Different beams are identified by the different signals carried on them.
  • different synchronization signals and/or physical broadcast channel blocks (Synchronization Signal/PBCH Block, SSB) are transmitted on different beams, and the UE can distinguish different beams through different SSBs.
  • SSB Synchronization Signal/PBCH Block
  • different CSI-RSs are transmitted on different beams, and the UE identifies different beams through CSI-RS/CSI-RS resources.
  • the CSI-RS mentioned herein can be understood as a signal actually corresponding to a certain/certain physical beam.
  • the Physical Downlink Control Channel (PDCCH) and the Physical Downlink Shared Channel (PDSCH) can be transmitted through different downlink transmission beams.
  • omnidirectional antennas or near-omnidirectional antennas are used to receive signals sent by different downlink transmission beams of the base station.
  • corresponding beam indication (beam indication) information is needed to assist the UE in determining the related information of the transmitting beam on the network side, or the corresponding receiving beam related information on the UE side.
  • the beam indication information is not used to directly indicate the beam, but to indicate the beam through quasi-co-located (QCL) between signals.
  • QCL quasi-co-located
  • determining the statistical characteristics of receiving the corresponding channel/signal is also based on the QCL assumption.
  • the terminal when it performs signal reception, in order to improve the reception performance, it may use the characteristics of the transmission environment corresponding to the data transmission to improve the reception algorithm.
  • the statistical properties of the channel can be used to optimize the design and parameters of the channel estimator.
  • these characteristics corresponding to data transmission are represented by QCL status (QCL-Info).
  • the characteristics of the transmission environment corresponding to the data transmission may also change, so in the NR system , when the network side transmits the downlink control channel or data channel, it will indicate the corresponding QCL status information to the terminal device through the TCI status.
  • TRP Transmission Reception Point
  • panel panel
  • beam beam
  • a TCI state can contain the following configurations:
  • TCI state ID used to identify a TCI state
  • the TCI state may also include QCL information 2.
  • a QCL information contains the following information:
  • QCL type configuration which can be one of QCL type A, QCL typeB, QCL typeC or QCL typeD;
  • the QCL reference signal configuration includes the cell ID where the reference signal is located, the BWP ID and the identification of the reference signal; the identification of the reference signal can be a CSI-RS resource ID or an SSB index.
  • the QCL type of at least one QCL information must be one of QCL typeA, QCL typeB, and QCL typeC, and the QCL type of the other QCL information must be QCL type D.
  • QCL type configuration is as follows:
  • 'QCL-TypeA' ⁇ Doppler shift (Doppler shift), Doppler spread (Doppler spread), average delay (average delay), delay spread (delay spread) ⁇ ;
  • 'QCL-TypeB' ⁇ Doppler shift (Doppler shift), Doppler spread (Doppler spread) ⁇ ;
  • 'QCL-TypeC' ⁇ Doppler shift (Doppler shift), average delay (average delay) ⁇ ;
  • the syntax elements of the TCI state can be implemented as:
  • the network side can indicate the corresponding TCI state for the downlink signal or downlink channel.
  • the terminal can assume that the target downlink The channel or target downlink signal is the same as the large-scale parameter of the reference SSB or reference CSI-RS resource, and the large-scale parameter is determined through QCL type configuration.
  • the terminal can adopt and receive the reference SSB or reference CSI-RS resource through the TCI state, and the QCL type is configured as QCL typeD, then the terminal can adopt and receive the reference SSB or reference The receiving beams with the same CSI-RS resources are used to receive the target downlink channel or target downlink signal.
  • the target downlink channel (or downlink signal) and its reference SSB or reference CSI-RS resource are sent by the same TRP, the same antenna array block (panel) or the same beam on the network side. If the TRPs or antenna array blocks or transmit beams of two downlink signals or downlink channels are different, different TCI states are usually configured.
  • the TCI state of the corresponding CORESET can be indicated through RRC signaling or RRC signaling+MAC signaling.
  • the available TCI state set is indicated through RRC signaling, and some of the TCI states are activated through MAC layer signaling, and finally one or two of the activated TCI states are indicated through the TCI state indication field in DCI TCI state, used for the PDSCH scheduled by the DCI.
  • FIG. 12 is a schematic flowchart of a method 100 for configuring a TCI state of a PDSCH provided by an embodiment of the present application.
  • the method 100 may include:
  • the beam involved in this application may also be called a spatial domain filter or may correspond to a spatial domain filter
  • the transmitting beam may be referred to as a spatial domain transmission filter (spatial domain transmission filter) or may correspond to a spatial domain transmission filter
  • the receiving beam may be called a spatial domain receive filter (spatial domain receive filter) or may correspond to a spatial domain receive filter.
  • NR New Radio
  • 5G 5th Generation Mobile Communication Technology
  • NR New Radio
  • 5G 5th Generation Mobile Communication Technology
  • a large-scale antenna array Massive MIMO
  • the entire cell is covered by multi-beam, that is, each beam covers a small range, and the effect of multiple beams covering the entire cell is achieved by sweeping in time.
  • the network device may use the beam indication information to assist the terminal side in determining information about the sending beam on the network side or information about the receiving beam corresponding to the terminal side.
  • the receiving terminal since both the receiving terminal and the transmitting terminal perform sidelink communication based on multi-beams, at this time, the receiving terminal The receiving beam of the terminal may not be aligned with the transmitting beam of the transmitting terminal, which reduces the signal gain and transmission performance.
  • NR New Radio
  • SL sidelink
  • an embodiment of the present application provides a wireless communication method, a first terminal device, and a second terminal device, which can ensure that the target spatial domain receiving filter used by the first terminal device is compatible with the spatial domain transmitting filter used by the second terminal device. Accurate, which in turn can maximize the signal gain and improve transmission performance.
  • Fig. 13 is a schematic flowchart of a wireless communication method 200 provided by an embodiment of the present application, and the method 200 may be interactively executed by a first terminal device and a second terminal device.
  • the first terminal device may be a receiving end for receiving the CSI-RS
  • the second terminal device may be a sending end for sending the CSI-RS.
  • the first terminal device or the second terminal device may be the terminal B mentioned above
  • the first terminal device or the second terminal device may be the terminal A mentioned above.
  • the method 200 may include part or all of the following:
  • CSI-RS Channel State Information Reference Signal
  • the first terminal device respectively measures the CSI-RS received using multiple spatial receiving filters, and based on the measurement results of the multiple CSI-RS, among the multiple spatial receiving filters, A target spatial domain receiving filter for the first terminal device to receive sidelink data is determined.
  • the first terminal device can determine the target spatial receiving filter for the first terminal device to receive sidelink data from among the multiple spatial receiving filters Based on this, when the first terminal device receives the sidelink data sent by the second terminal device using the airspace transmit filter corresponding to the target airspace receive filter based on the target airspace receive filter, it can ensure that the The target spatial domain receive filter is aligned with the spatial domain transmit filter used by the second terminal device, thereby maximizing signal gain and improving transmission performance.
  • the CSI-RSs in the plurality of CSI-RSs are side row CSI-RSs.
  • the multiple CSI-RSs may also be replaced by other sidelink signals, that is, in the above S210, the first terminal device may use multiple spatial domain receiving filters to respectively receive multiple sidelink signals.
  • the side signals in the plurality of side signals include but are not limited to one of the following:
  • CSI-RS demodulation reference signal
  • DMRS demodulation Reference Signal
  • PSCCH DMRS PSSCH DMRS
  • positioning reference signal Positioning Reference Signals, PRS
  • phase tracking reference signal Phase Tracking Reference Signal
  • PT-RS Phase Tracking Reference Signal
  • side line Synchronization signals including side-line primary synchronization signals and/or side-line secondary synchronization signals.
  • the S210 may include:
  • the multiple spatial domain receiving filters respectively receive the multiple CSI-RSs sent by the second terminal device using the same spatial domain transmitting filters.
  • the second terminal device uses the same spatial domain transmit filter to send the multiple CSI-RSs, so that the first terminal device uses the multiple spatial domain receive filters to respectively receive the second terminal device using the same
  • the multiple CSI-RS sent by the spatial domain transmit filter and then determine the target spatial domain receive filter based on the measurement results of the multiple CSI-RS.
  • the spatial domain transmission filter used by the second terminal device when transmitting the plurality of CSI-RSs is a target (or optimal) spatial domain transmission filter
  • the target spatial domain reception filter is the An optimal spatial domain receive filter corresponding to the target spatial domain transmit filter of the device.
  • the second terminal device uses different spatial domain transmission filters to transmit CSI-RS in turn, and the first The terminal device uses the same spatial domain receiving filter to respectively receive multiple CSI-RS sent by the second terminal device, and measure the detected CSI-RS, select the optimal CSI-RS resource and feed it back to the
  • the spatial domain transmission filter corresponding to the CSI-RS resource is a target (or optimal) spatial domain transmission filter for the first terminal device.
  • the second terminal device uses the same spatial domain transmitting filter to transmit the CSI-RS.
  • the second terminal device transmits the CSI-RS using the optimal spatial domain transmission filter for the first terminal device, and the first terminal device uses different spatial domain reception filters in turn to receive the second terminal device
  • the CSI-RS is sent and measured, and the spatial receiving filter with the best measurement result is selected as the optimal spatial receiving filter corresponding to the optimal spatial transmitting filter of the first terminal device.
  • the first terminal device may use the corresponding optimal spatial domain receive filter to perform corresponding reception.
  • the second terminal device respectively adopts the above process for different sending spatial domain filters, and may respectively determine the optimal spatial receiving filter corresponding to each transmitting spatial domain filter. Therefore, when the second terminal device is performing sidelink transmission, the second terminal device can indicate the transmit spatial domain filter used for the sidelink transmission, and the first terminal device can determine the corresponding best An optimal spatial receiving filter is used to perform side-row receiving.
  • the method 200 may also include:
  • the first indication information is used to indicate the number of the plurality of spatial receiving filters.
  • the second terminal device may send CSI-RS to the first terminal device based on the number of spatial receiving filters indicated by the first indication information, for example, the number of CSI-RS sent by the second terminal device and the number of CSI-RSs sent by the first indication information
  • the number of spatial receive filters indicated is the same.
  • the second terminal device Since the second terminal device does not know the antenna configuration of the first terminal device, it cannot determine how many airspace receiving filters the first terminal device supports.
  • the device determines the number or times of CSI-RS sent, and the first terminal device sends the first indication information to the second terminal device to indicate the spatial domain reception filter supported by the first terminal device to ensure that the CSI-RS sent by the second terminal device can make the first terminal device receive the CSI-RS once by using all the spatial domain receiving filters.
  • the first terminal device supports N spatial receiving filters
  • the number or times of CSI-RS sent by the second terminal device should be greater than or equal to N.
  • the multiple spatial domain reception filters include a spatial domain reception filter supported by the first terminal device.
  • the plurality of spatial receiving filters include a spatial receiving filter of the first terminal device that can be used to receive sidelink data.
  • the first indication information is carried in at least one of the following: sidelink control information (Sidelink Control Information, SCI), media access control (Media Access Control, MAC) control element (Control Element, CE ) or PC5 Radio Resource Control (Radio Resource Control, RRC).
  • sidelink control information SCI
  • media access control Media Access Control
  • MAC Media Access Control
  • CE Control Element
  • PC5 Radio Resource Control Radio Resource Control
  • Fig. 14 is a schematic diagram of receiving multiple CSI-RSs based on the first indication information provided by the embodiment of the present application.
  • the first terminal device supports 4 spatial receiving filters, therefore, the first indication information sent by the first terminal device to the second terminal device indicates 4, the When sending CSI-RS, the second terminal device uses the optimal spatial transmission filter, such as spatial transmission filter 2, to transmit CSI-RS at least 4 times, so that the first terminal device can use different spatial domains to receive
  • the filter measures the CSI-RS sent by the second terminal device, so as to select an optimal spatial domain receiving filter, such as spatial domain receiving filter 2 .
  • the method 200 may also include:
  • the second indication information is used to indicate the maximum number of CSI-RS sent by the second terminal device; or the second indication information is used to indicate the CSI corresponding to the CSI-RS sent by the second terminal device - Maximum number of RS resources.
  • the second terminal device sends second indication information to the first terminal device, where the second indication information is used to indicate a parameter M, and the parameter M is used to indicate that the CSI-
  • the maximum number of CSI-RS resources included in the RS resource set or indicates the maximum number or maximum number of CSI-RSs to be sent by the second terminal device, or indicates the CSI-RSs to be sent by the second terminal device The maximum number or maximum number of RS resources.
  • the second terminal device may decide to send The maximum number of CSI-RS or CSI-RS resources, and indicate the maximum number to the first terminal device through the second indication information, so that the first terminal device indicates based on the second indication information
  • the maximum number of spatial domain reception filters selected for receiving the CSI-RS for example, the number of spatial domain reception filters selected by the first terminal device is equal to the maximum number.
  • the second terminal device may use the same spatial transmitting filter to send the CSI-RS M times, and Inform the first terminal device of the parameter M, and at this time, the first terminal device decides which airspace receiving filters to use to receive the CSI-RS sent by the second terminal device in turn.
  • the first terminal device can know how many times the second terminal device will send the CSI-RS according to the second indication information, so as to determine whether the second terminal device has finished sending all the CSI-RS, if If yes, the first terminal device may select a spatial domain reception filter according to the RSRP measured by the CSI-RS.
  • the second indication information may be used to indicate the number of CSI-RS sent by the second terminal device, or the second indication information may be used to indicate the CSI-RS sent by the second terminal device corresponds to Number of CSI-RS resources.
  • the second indication information may be used to indicate the number of the multiple CSI-RSs, or the second indication information may be used to indicate the number of CSI-RS resources corresponding to the multiple CSI-RSs.
  • the maximum number is greater than or equal to the number of the multiple CSI-RSs.
  • the maximum number of CSI-RS sent by the second terminal device may be greater than or equal to the number of CSI-RS actually sent by the second terminal device.
  • the CSI-RS sent by the second terminal device corresponds to The maximum number of CSI-RS resources may be greater than or equal to the number of resources corresponding to the CSI-RS actually sent by the second terminal device.
  • the maximum number of CSI-RSs sent by the second terminal device may be the number of CSI-RSs that the second terminal device plans or intends to send, and the CSI-RS sent by the second terminal device corresponds to the CSI-RS
  • the maximum number of RS resources may be the number of CSI-RSs corresponding to the CSI-RSs that the second terminal device plans or intends to send.
  • the second indication information is used to indicate the maximum number of CSI-RS resources corresponding to the CSI-RS sent by the second terminal device, including: the second indication information is used to indicate that the second terminal device The number of all CSI-RS resources in the CSI-RS resource set corresponding to the CSI-RS sent by the device.
  • the multiple CSI-RSs are the CSI-RSs received by the spatial receiving filter corresponding to the CSI-RS resources in the CSI-RS resource set corresponding to the CSI-RS sent by the second terminal device.
  • the second indication information is carried in at least one of the following: SCI, MAC CE or PC5RRC.
  • FIG. 15 is a schematic diagram of a first terminal device receiving multiple CSI-RSs based on second indication information provided by an embodiment of the present application.
  • the second terminal device When using the same spatial domain transmission filter to transmit CSI-RS, the second terminal device transmits CSI-RS twice, that is, uses spatial domain transmission filter 2 to transmit CSI-RS resources twice, and the transmission of CSI-RS resources The number of times (that is, 2) is indicated to the first terminal device, and the first terminal device can determine that the second terminal device will send the CSI-RS twice, and at this time, the first terminal device decides to receive the 2 CSI-RS Spatial reception filter used when sub-CSI-RS.
  • the first terminal device may use spatial receiving filter 1 and spatial receiving filter 2 to receive, or use spatial receiving filter 0 and spatial receiving filter 2 to receive, or use spatial receiving filter 1 and spatial receiving filter
  • the filter 3 receives, which is not specifically limited in this embodiment.
  • the method 200 may also include:
  • the third indication information is used to indicate at least one CSI-RS resource set corresponding to the multiple CSI-RSs and/or each CSI of the multiple CSI-RSs in the at least one CSI-RS resource set - the corresponding CSI-RS resource in the RS resource set.
  • the first terminal device may receive the multiple CSI-RSs based on the CSI-RS resource set or the CSI-RS resources indicated by the third indication information.
  • different CSI-RSs among the multiple CSI-RSs correspond to different CSI-RS resources.
  • the third indication information includes the identifier of the at least one CSI-RS resource set and/or the plurality of CSI-RS in each CSI-RS resource set in the at least one CSI-RS resource set The identifier of the corresponding CSI-RS resource.
  • the repetition parameter of the at least one CSI-RS resource set is turned on (on).
  • the repetition parameter of the CSI-RS resource set for receiving the plurality of CSI-RS is set to on.
  • the reported amount associated with the at least one CSI-RS resource set is set to no report or null (none).
  • the reporting amount of the CSI-RS resource set used to receive the multiple CSI-RSs is set to empty, that is, after the first terminal device receives the multiple CSI-RSs, it does not need to report to the second The terminal device reports.
  • the third indication information is carried in at least one of the following: SCI, MAC CE or PC5RRC.
  • the method 200 may also include:
  • the resource pool configuration information or BWP configuration information is used to configure a CSI-RS resource set or a CSI-RS resource;
  • the at least one CSI-RS resource set is determined according to the CSI-RS resource set configured by the resource pool configuration information or the BWP configuration information.
  • the first terminal device may determine the CSI-RS resource set used for The first terminal device receives the CSI-RS resource sets of the multiple CSI-RSs.
  • the second terminal device and the first terminal device can have the same CSI-RS resource configuration, and further, the second terminal device and the first terminal device can have the same CSI-RS resource configuration.
  • the first terminal device can have the same understanding regarding the sending of the CSI-RS resource and the at least one CSI-RS resource set and/or CSI-RS resource indicated by the third indication information.
  • the at least one CSI-RS resource set determined by the first terminal device may be one of the CSI-RS resource sets configured in the resource pool configuration information, or may be only Part of the CSI-RS resources are selected from the CSI-RS resource set configured in the resource pool configuration information, which is not specifically limited in this application.
  • the resource pool configuration information or the sidelink bandwidth part BWP configuration information is used to configure A CSI-RS resource sets, and the first terminal device sends the
  • the third indication information includes the index of the CSI-RS resource set in the third indication information, and the CSI-RS resource set can be determined through the index of the CSI-RS resource set, and the CSI-RS resource set is the The CSI-RS resource set corresponding to the CSI-RS to be sent by the second terminal device.
  • the CSI-RS resource set includes B CSI-RS resources
  • the second terminal device may select K CSI-RS resources from the CSI-RS resource set, and use the K CSI-RS resources
  • the information of the RS resources is sent to the first terminal device through the third indication information, and the CSI-RS resources sent subsequently by the second terminal device belong to the K CSI-RS resources.
  • the CSI-RS resource set includes 16 CSI-RS resources, and when it is necessary to determine the spatial domain reception filter of the first terminal device, the maximum number of spatial domain reception filters supported by the first terminal device is 4 At this time, the first terminal device selects 4 CSI-RS resources from the 16 CSI-RS resources included in the CSI-RS resource set, and sends the information of the 4 CSI-RS resources through the PC5 - sending RRC signaling to the second terminal device, so that the second terminal device and the first terminal device have the same CSI-RS resource information.
  • the CSI-RS resource set configured by the resource pool configuration information or the BWP configuration information includes a first CSI-RS resource set and a second CSI-RS resource set, and the repetition parameter of the first CSI-RS resource set set to off (off), the repetition parameter of the second CSI-RS resource set is set to on (on); the at least one CSI-RS resource set is determined according to the second CSI-RS resource set.
  • the CSI-RS resource set (CSI-RS-ResourceSet) configured by the resource pool configuration information or BWP configuration information may include at least one first CSI-RS resource set whose repetition (repetition) parameter is set to off (off), And/or include at least one second CSI-RS resource set whose repetition (repetition) parameter is set to on (on).
  • the first set of CSI-RS resources is used to determine a spatial domain transmit filter of the second terminal device
  • the second set of CSI-RS resources is used to determine a spatial domain receive filter of the first terminal device.
  • the repetition parameter of the CSI-RS resource set used by the second terminal device may be used to reflect or indicate that the CSI-RS sent by the second terminal device is used to determine the spatial domain transmission filter
  • the filter is also used to determine the spatial domain receive filter.
  • the CSI-RS resource set configured by the resource pool configuration information or BWP configuration information includes two CSI-RS resource sets, wherein the repetition parameter in one CSI-RS resource set is off, and the other CSI-RS resource set The repeat parameter in is on.
  • the second terminal device uses different spatial transmission filters to transmit the CSI-RS resources in the CSI-RS resource set respectively , the first terminal device measures the CSI-RS resources respectively, and feeds back the CSI-RS resource index, and the second terminal device can determine the corresponding airspace transmission filter according to the index; when it is determined that the airspace reception
  • the second terminal device uses the same spatial domain transmission filter to respectively transmit the CSI-RS resources in the CSI-RS resource set, and the second A terminal device respectively uses different spatial domain receiving filters for receiving, measures RSRP for the CSI-RS, and selects an optimal spatial domain receiving filter according to the measurement result.
  • the second terminal device uses different spatial domain transmission filters to transmit the CSI-RS resources in the first CSI-RS resource set; when the CSI-RS sent by the second terminal device is used to determine the spatial domain receiving filter of the first terminal device, the second terminal device uses the same spatial domain
  • the sending filter sends the CSI-RS resources in the second CSI-RS resource set.
  • the resource pool configuration information or BWP configuration information includes at least one of the following parameters:
  • the identifier of the CSI-RS resource set (CSI-RS-ResourceSetId);
  • N The number N of time-domain symbols occupied by a CSI-RS resource, where N is an integer greater than or equal to 1;
  • the CSI-RS density is used to indicate the number of REs occupied by the CSI-RS of one antenna port in one PRB.
  • the identifier of the CSI-RS resource set is used to uniquely identify the CSI-RS resource set.
  • the repetition parameter of the CSI-RS resource set may be set to on or off.
  • the identifier of the CSI-RS resource is used to uniquely identify the CSI-RS resource.
  • the resource pool configuration information or BWP configuration information may include the CSI-RS resource set The identifier (CSI-RS-ResourceSetId), the identifier of the CSI-RS resource (CSI-RS-Resource) and the repetition (repetition) parameter.
  • the CSI reporting amount is used to configure the reporting amount or feedback type, and the reporting amount or feedback type includes but is not limited to:
  • CSI-RS Resource Indicator CRI
  • CRI and Reference Signal Receiving Power Reference Signal Receiving Power
  • RSRP Reference Signal Receiving Power
  • SINR Signal to Interference plus Noise Ratio
  • slot resource indication slot resource indication and RSRP, slot resource indication and SINR, do not report or empty ('none').
  • the CSI reporting configuration identifier may be used to associate the CSI reporting amount with a CSI-RS resource set or a CSI-RS resource.
  • the CSI reporting amount and the CSI reporting configuration identifier may be included in CSI reporting configuration information (CSI-ReportConfig).
  • the resource pool configuration information or BWP configuration information may include at least one CSI report configuration information, where each CSI report configuration information in the at least one CSI report configuration information includes a CSI report configuration identifier (CSI-ReportConfigId) and Report Quantity.
  • CSI-ReportConfigId CSI report configuration identifier
  • the information for determining the time-domain symbol where the CSI-RS resource in a slot is located may be an index of the time-domain symbol in the slot.
  • the information for determining the resource element RE or the position of the subcarrier where the CSI-RS resource is located in a physical resource block PRB may indicate a PRB in the form of a bitmap through the parameter sl-CSI-RS-FreqAllocation The location of the RE or the subcarrier where the inner CSI-RS resource is located.
  • the information used to determine the resource element RE or the position of the subcarrier where the CSI-RS resource in a physical resource block PRB is located may be the information used to determine the first CSI-RS resource in a physical resource block PRB.
  • the number of CSI-RS antenna ports includes but not limited to 1, 2, 4, 8 and so on.
  • the CSI-RS density may be used to indicate the number of REs occupied by the CSI-RS of each antenna port in a PRB. If the density is 2, it means that in each PRB, the CSI-RS of each antenna port occupies 2 REs.
  • the CSI-RS density is less than 1, and the CSI-RS resource configuration information further includes PRB information used to indicate CSI-RS resource mapping. If the density is 0.5, that is, each antenna port in every 2 PRBs occupies 1 RE, at this time, the CSI-RS resource configuration information also includes PRB information used to indicate that CSI-RS resources are mapped in every 2 PRBs, For example, CSI-RSs are mapped on odd (or even) PRBs.
  • the method 200 may also include:
  • the fourth indication information is used to indicate that the CSI-RS sent by the second terminal device is used to measure channel state information; or the fourth indication information is used to indicate that the CSI-RS sent by the second terminal device is used to measure channel state information; Determining a target airspace transmission filter for the second terminal device to transmit sidelink data; or the fourth indication information is used to indicate that the CSI-RS transmitted by the second terminal device is used for the first terminal device The target spatial domain receive filter is determined.
  • the first terminal device may determine, based on the fourth indication information, whether the CSI-RS sent by the second terminal device is used for measuring channel state information or for determining
  • the target airspace transmit filter for the second terminal device to send sidelink data is also used to determine the target airspace receive filter.
  • the CSI-RS and the PSCCH carrying the SCI are usually transmitted in the same time slot.
  • the first terminal device When receiving the PSCCH, the first terminal device usually needs to use a spatial receiving filter to receive the PSCCH. Therefore, the The first terminal device needs to know in advance whether the PSCCH and its associated CSI-RS are used to determine the spatial receiving filter, so as to know whether to use different spatial receiving filters to receive the CSI-RS sent by the second terminal device respectively .
  • the first terminal device can use the fourth indication information to distinguish whether the sidelink data or CSI-RS sent by the second terminal device is used for normal data transmission or for determining the airspace transmission filter or spatial domain receive filter.
  • the first terminal device uses the spatial domain reception filter corresponding to the spatial domain transmission filter to receive, and measures the CSI-RS and feeds back the CQI and RI; and for determining the spatial domain transmission
  • the first terminal device usually uses the same spatial domain receiving filter to receive, and performs CSI-RS measurement and selects a preferred CSI-RS resource to feed back to the second terminal device,
  • the second terminal device determines the optimal spatial domain transmit filter; and for the CSI-RS sent during the process of determining the spatial domain receive filter of the first terminal device, the first terminal device needs to use different CSI-RS in turn.
  • the spatial domain receiving filter receives the CSI-RS, and selects the optimal spatial domain receiving filter according to the measurement results.
  • the channel state information includes but not limited to: Channel Quality Indicator (Channel Quality Indicator, CQI), Rank Indication (Rank Indication, RI) or Pre-coding Matrix Indicator (Pre-coding Matrix Indicator, PMI).
  • CQI Channel Quality Indicator
  • RI Rank Indication
  • PMI Pre-coding Matrix Indicator
  • the fourth indication information is used to indicate that the CSI-RS sent by the second terminal device is used by the first terminal device to determine the target airspace receiving filter, and the fourth indication information is used to Indicate at least one of the following:
  • the second terminal device sends a CSI-RS for the first terminal device to determine the target spatial domain receiving filter
  • the second terminal device transmits the multiple CSI-RSs using the same spatial transmission filter
  • the CSI-RS resource set corresponding to the CSI-RS sent by the second terminal device is a CSI-RS resource set whose repetition parameter is set to ON;
  • the reported amount associated with the CSI-RS sent by the second terminal device is set to be empty.
  • the fourth indication information is used to indicate that the CSI-RS sent by the second terminal device is used by the first terminal device to determine the target airspace reception filter, and the fourth indication information is included to indicate the following At least one of:
  • the second terminal device is about to send a CSI-RS used by the first terminal device to determine the target spatial reception filter
  • the second terminal device is about to use the same spatial domain transmission filter to transmit the multiple CSI-RSs;
  • the CSI-RS resource set corresponding to the CSI-RS to be sent by the second terminal device is a CSI-RS resource set whose repetition parameter is set to ON;
  • the second terminal device sets the reported amount associated with the CSI-RS to be sent to null.
  • the fourth indication information is used to indicate that the CSI-RS sent by the second terminal device is used to measure channel state information; or the fourth indication information is used to indicate that the CSI-RS sent by the second terminal device is used When determining the target airspace transmission filter for the second terminal device to transmit sidelink data, it may also be indicated in a similar manner, which is not specifically limited in this application.
  • the fourth indication information may indirectly indicate the CSI sent by the second terminal device by indicating that the CSI-RS resource set corresponding to the CSI-RS sent by the second terminal device is a repeated parameter setting. - the purpose or use of the RS.
  • the first terminal device may reflect or indicate the CSI sent by the second terminal device through the repetition parameter of the CSI-RS resource set used by the second terminal device. - Whether the RS is used to determine the optimal spatial transmit filter or to determine the optimal spatial receive filter.
  • the CSI-RS resource set configured by the resource pool configuration information or BWP configuration information includes two CSI-RS resource sets, wherein the repetition parameter in one CSI-RS resource set is off, and the other CSI-RS resource set The repeat parameter in is on.
  • the first terminal device may assume that The second terminal device uses different spatial domain transmission filters to transmit CSI-RS resources, therefore, the first terminal device can perform measurement according to the CSI-RS, and feed back a preferred CSI-RS resource index and/or measurement result, Thereby enabling the second terminal device to determine a preferred airspace transmission filter; when the fourth indication information is used to indicate that the CSI-RS resource set corresponding to the CSI-RS sent by the second terminal device is a repeated parameter set to open When the set of CSI-RS resources is set, the first terminal device may assume that the second terminal device uses the same spatial domain transmit filter to transmit CSI-RS resources, therefore, the first terminal device may use different spatial domain receive filter The receivers receive the CSI-RS respectively, measure the CSI-RS, and select the optimal spatial domain receiving filter according to the measurement results, so as to realize the selection
  • the fourth indication information may be used to indicate that the CSI-RS resource set corresponding to the CSI-RS sent by the second terminal device is a CSI-RS resource set with the repetition parameter set to ON, when the repetition parameter is set to When it is turned on, it means that the transmitted CSI-RS is transmitted using the same spatial domain transmission filter, that is, the same spatial domain transmission filter is used to transmit the CSI-RS.
  • the fourth indication information may be used to indicate that the CSI-RS resource set corresponding to the CSI-RS sent by the second terminal device is a CSI-RS resource set whose repetition parameter is set to off, and when the repetition parameter is set to When off, it means that the transmitted CSI-RS is not transmitted using the same spatial domain transmission filter, that is, different spatial domain transmission filters are used to transmit the CSI-RS.
  • the second terminal device uses the same spatial domain transmit filter to transmit CSI-RS
  • the first terminal device can use different spatial domain receive filters to receive, measure different CSI-RS, and select the optimal The spatial domain receiving filter of is used as the target spatial domain receiving filter.
  • the fourth indication information may indirectly indicate the purpose or use of the CSI-RS sent by the second terminal device by indicating the reported amount associated with the CSI-RS sent by the second terminal device.
  • the first terminal device may reflect or indicate the CSI-RS sent by the second terminal device through the reported amount associated with the CSI-RS sent by the second terminal device.
  • RS is used to determine the optimal spatial domain transmit filter or to determine the optimal spatial domain receive filter.
  • the CSI-RS resource set configured by the resource pool configuration information or BWP configuration information includes two CSI-RS resource sets, and the CSI reporting amount associated with the CSI-RS resource set is configured.
  • the CSI reporting amount associated with the RS resource set is RSRP
  • the CSI reporting amount associated with the second CSI-RS resource set is empty.
  • the first terminal device may transmit CSI-RS resources according to the CSI-RS performing measurement, and feeding back a preferred CSI-RS resource index and/or measurement result, so that the second terminal device determines a preferred airspace transmission filter; when the second terminal device sends to the first terminal device
  • the fourth indication information is used to indicate that when the amount of CSI reporting is empty, it means that the second terminal device will send the CSI-RS resource in the second CSI-RS resource set.
  • the first terminal device may assume that the second terminal device uses the same spatial domain transmit filter to transmit CSI-RS resources, therefore, the first terminal device may use different spatial domain receive filters to respectively receive the CSI-RS and measure the CSI-RS, The optimal spatial domain receiving filter is selected according to the measurement results, so as to realize the selection process of the spatial domain receiving filter.
  • the fourth indication information is carried in at least one of the following: SCI, MAC CE or PC5RRC.
  • the method 200 may also include:
  • the second terminal device sends the fifth indication information to the first terminal device, and correspondingly, after receiving the fifth indication information, the first terminal device may The delay boundary receives the multiple CSI-RSs.
  • the S210 may include:
  • the measurement results of the plurality of CSI-RSs include measurement results of received CSI-RSs in the plurality of CSI-RSs.
  • the first terminal device may determine the target receiving filter according to the CSI-RS measurement result.
  • the The first terminal device when the first terminal device exceeds the delay boundary, even if the first terminal device does not receive the CSI-RS sent by the second terminal device using a certain spatial domain receiving filter, the The first terminal device also assumes that the second terminal device has sent a CSI-RS to the first terminal device, so as to prevent the first terminal device from using the certain airspace receiving filter to perform meaningless reception, reducing It reduces the power consumption of the device and improves the utilization rate of the airspace receiving filter.
  • the fifth indication information is carried in at least one of the following: SCI, MAC CE or PC5RRC.
  • the method 200 may also include:
  • Receive sixth indication information sent by the second terminal device where the sixth indication information is used to indicate multiple transmission resources corresponding to the multiple CSI-RSs.
  • the second terminal device sends the sixth indication information to the first terminal device, and after receiving the sixth indication information, the first terminal device transmit resources, and receive the multiple CSI-RSs. That is to say, the second terminal device sends the transmission resource information to the first terminal device, so that the first terminal device can know the resources for CSI-RS transmission to be used by the second terminal device, Therefore, the CSI-RS sent by the second terminal device can be received using different spatial domain receiving filters.
  • the multiple CSI-RSs are in one-to-one correspondence with the multiple transmission resources.
  • the transmission resource involved in this application may be any resource used to transmit CSI-RS in the time domain, such as time domain symbols, time slots or subframes.
  • the S210 may include:
  • the multiple CSI-RSs are received on the multiple transmission resources by using multiple spatial domain receive filters.
  • the multiple transmission resources are obtained by the second terminal device through listening, or the multiple transmission resources are obtained by the second terminal device from a network device.
  • the priorities corresponding to the multiple CSI-RSs are the highest priorities.
  • the first terminal device expects the second terminal device to use the multiple transmission resources to send the multiple CSI-RSs; or, the first terminal device does not expect the second terminal device to Perform resource reselection on the multiple transmission resources; or, the second terminal device does not perform resource reselection on the multiple transmission resources; or, the second terminal device does not re-evaluate the multiple transmission resources ( Re-evaluation) detection and pre-emption (pre-emption) detection.
  • the second terminal device After the second terminal device determines the transmission resource for sending the CSI-RS, the second terminal device will not perform resource reselection before sending the CSI-RS.
  • the second terminal device acquires a transmission resource for sending CSI-RS from a network device, and the second terminal device sends the sixth indication information to the first terminal device to indicate the transmission resource.
  • a terminal device may use different spatial domain receiving filters to respectively receive different transmission resources.
  • the second terminal device acquires a transmission resource for sending a CSI-RS based on interception, and the second terminal device sends the sixth indication information to the first terminal device to indicate the transmission resource, Before the second terminal device finishes sending the CSI-RS, the second terminal device will not perform resource reselection, that is, set the priority of sending the CSI-RS to the highest priority, so that its corresponding transmission resources will not be used Other terminals preempt; or deactivate the re-evaluation and resource preemption mechanisms, so as to ensure that the resources selected by the second terminal device will not change due to resource occurrences, so that the first terminal device can use different airspace receiving filters to respectively Different transmission resources are received.
  • resource reselection that is, set the priority of sending the CSI-RS to the highest priority, so that its corresponding transmission resources will not be used
  • Other terminals preempt; or deactivate the re-evaluation and resource preemption mechanisms, so as to ensure that the resources selected by the second terminal device will not change due to resource occurrences,
  • the second terminal device may give up using the resource or reselect resources based on the resource to send CSI-RS.
  • the first terminal device cannot detect the SCI sent by the second terminal device on the resource by using a certain airspace receiving filter, and thus cannot detect the CSI-RS. Therefore, the first terminal device The spatial domain reception filter corresponding to the resource will not be selected either.
  • FIG. 16 is a schematic diagram of a first terminal device receiving multiple CSI-RSs on the multiple transmission resources by using multiple spatial domain receiving filters according to an embodiment of the present application.
  • the second terminal device obtains the transmission resource for sending the CSI-RS, and sends the sixth indication information to the first terminal device in time slot 0, which is used to indicate the resource to send the CSI-RS, That is, the transmission resource located in time slot 3/4/5/6, and resource reselection will not occur during the second terminal device sending the CSI-RS; correspondingly, the first terminal device according to the sixth instruction
  • the information may determine the resource on which the second terminal device will send the CSI-RS, therefore, the first terminal device uses different spatial domain receiving filters to receive corresponding transmission resources.
  • the sixth indication information is carried in at least one of the following: SCI, MAC CE or PC5RRC.
  • the S230 may include:
  • the target spatial reception filter is determined.
  • the measurement results of the plurality of CSI-RS are used to determine at least one candidate spatial reception filter among the plurality of spatial reception filters
  • the target spatial reception filter is the at least one candidate spatial reception filter Any one of the spatial domain receive filters.
  • the first terminal device may also directly determine the target spatial reception filter among the multiple spatial reception filters based on the measurement results of the multiple CSI-RSs.
  • the first terminal device when the first terminal device supports M spatial domain receive filters, the second terminal device will use the same spatial domain transmit filter to send M CSI-RSs, therefore, the first terminal device can respectively Corresponding reception is performed using M spatial reception filters.
  • the first terminal device may only detect a part of the SCI sent by the second terminal device, and then can only detect all
  • the CSI-RS scheduled by the above part of the SCI is measured, N optimal measurement results are selected from the measurement results, and the receiving beams corresponding to the N measurement results are used as candidate spatial receiving filters.
  • N 1 that is, the first terminal device uses the spatial domain receiving filter corresponding to the optimal measurement result as the optimal spatial domain receiving filter.
  • the spatial reception filter corresponding to the CSI-RS whose measurement result is greater than or equal to the first threshold is determined as the at least one candidate spatial reception filter.
  • the first terminal device when the first terminal device detects a CSI-RS resource and the measurement result exceeds a threshold, the first terminal device will use the spatial domain reception filter corresponding to the measurement result as a candidate spatial domain reception filter.
  • the first threshold is configured by the network device, or the first threshold is indicated by the second terminal device, or the first threshold is pre-configured.
  • the spatial reception filter corresponding to the CSI-RS with the best measurement result is determined as the target spatial reception filter filter.
  • the S220 may also include:
  • the first terminal device uses different spatial domain receiving filters to measure the CSI-RS sent by the second terminal device, such as measuring RSRP or SINR, etc., because it is for the measurement and selection of the optimal spatial domain receiving filter, so , the measurement results do not need to be filtered by layer 3, that is, the measurement results of the multiple CSI-RS measurements may be layer 1 measurement results, otherwise additional time delay will be caused.
  • the measurement result includes a sidelink reference signal received power RSRP and/or a sidelink signal-to-noise-interference ratio SINR.
  • the method 200 may also include:
  • Receive seventh indication information sent by the second terminal device where the seventh indication information is used to indicate a resource index corresponding to each received CSI-RS.
  • the resource index may be an index of a CSI-RS resource.
  • the second terminal device determines a CSI-RS resource set, determines a CSI-RS resource in the CSI-RS resource set, uses the same spatial domain transmission filter to transmit the multiple CSI-RS respectively, and
  • the SCI indicates the index of the corresponding CSI-RS resource.
  • resource pool configuration information or sideband bandwidth part BWP configuration information is used to configure A CSI-RS resource sets, and the second terminal device selects at least one CSI-RS resource set from them, and transmits the CSI-RS in at least one CSI-RS resource set, at this time, the second terminal device carries the index of the at least one CSI-RS resource set and the index of the CSI-RS resource in the SCI.
  • the second terminal device uses the same airspace transmission filter to send CSI-RS in turn, which means that the second terminal device uses the same airspace transmission filter to transmit different CSI-RS resources, so
  • the first terminal device uses different spatial domain receiving filters to respectively receive different CSI-RSs sent by the second terminal device, that is, the first terminal device determines the correspondence between CSI-RS resources and different spatial domain receiving filters, so The first terminal device can determine the corresponding spatial domain receiving filter according to the index of the CSI-RS resource.
  • the second terminal device may indicate TCI to the first terminal device, including CSI-RS resource information and QCL Type-D, and the first terminal device may indicate the TCI according to the TCI.
  • the information of the CSI-RS resource and the corresponding relationship between the CSI-RS resource and the spatial receiving filter can determine to use the spatial receiving filter corresponding to the CSI-RS resource to receive the sidelink data.
  • FIG. 17 is a schematic flowchart of a wireless communication method 300 provided by an embodiment of the present application.
  • the method 300 may include:
  • the first terminal device sends first indication information to the second terminal device or receives second indication information sent by the second terminal device, and the first terminal device receives third indication information sent by the second terminal device.
  • the second terminal device transmits different CSI-RSs to the first terminal device in turn through the same airspace transmission filter, and indicates the corresponding CSI-RS resources, and the first terminal device uses different airspace
  • the receiving filters respectively receive the CSI-RS and perform measurement, and among the plurality of spatial receiving filters, determine a target spatial receiving filter for the first terminal device to receive sidelink data.
  • the interaction of the first indication information to the third indication information between the second terminal device and the first terminal device may be understood as the interaction of sidewalk configuration information.
  • the second terminal device may send side configuration information to the first terminal device, or the first terminal device may send side configuration information to the second terminal device; the above-mentioned various side configuration information It may be carried in one or more sideline configuration signaling, which is not limited in this embodiment.
  • the method 200 and the method 300 are only examples of the present application, and only all or part of the steps in the method 200 or 300 may be included in the process of determining the target spatial domain receiving filter. One or more can be combined into one step, the application does not specifically limit this,
  • the sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
  • the implementation of the examples constitutes no limitation.
  • the terms “downlink” and “uplink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is from the station to the user equipment in the cell For the first direction, “uplink” is used to indicate that the signal or data transmission direction is the second direction from the user equipment in the cell to the station, for example, “downlink signal” indicates that the signal transmission direction is the first direction.
  • the term "and/or" is only an association relationship describing associated objects, indicating that there may be three relationships. Specifically, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or" relationship.
  • Fig. 18 is a schematic block diagram of a first terminal device 400 according to an embodiment of the present application.
  • the first terminal device 400 may include:
  • the receiving unit 410 is configured to use multiple spatial receiving filters to respectively receive multiple channel state information reference signals CSI-RS;
  • the processing unit 420 is used for:
  • a target spatial domain receiving filter for the first terminal device Based on the measurement results of the multiple CSI-RSs, among the multiple spatial domain receiving filters, determine a target spatial domain receiving filter for the first terminal device to receive sidelink data.
  • the receiving unit 410 is specifically configured to:
  • the multiple spatial domain receiving filters respectively receive the multiple CSI-RSs sent by the second terminal device using the same spatial domain transmitting filters.
  • the receiving unit 410 is also used for:
  • the first indication information is used to indicate the number of the plurality of spatial receiving filters.
  • the plurality of spatial domain reception filters include a spatial domain reception filter of the first terminal device that can be used for sidelink data reception.
  • the first indication information is carried in at least one of the following: Sidelink Control Information SCI, Medium Access Control Element MAC CE or PC5 Radio Resource Control RRC.
  • the receiving unit 410 is also used for:
  • the second indication information is used to indicate the maximum number of CSI-RS sent by the second terminal device; or the second indication information is used to indicate the CSI corresponding to the CSI-RS sent by the second terminal device - Maximum number of RS resources.
  • the maximum number is greater than or equal to the number of the plurality of CSI-RSs.
  • the second indication information is used to indicate the maximum number of CSI-RS resources corresponding to the CSI-RS sent by the second terminal device, including: the second indication information is used to indicate the CSI sent by the second terminal device - The number of all CSI-RS resources in the CSI-RS resource set corresponding to the RS.
  • the second indication information is carried in at least one of the following: Sidelink Control Information SCI, Medium Access Control Element MAC CE or PC5 Radio Resource Control RRC.
  • the receiving unit 410 is also used for:
  • the third indication information is used to indicate at least one CSI-RS resource set corresponding to the multiple CSI-RSs and/or each CSI of the multiple CSI-RSs in the at least one CSI-RS resource set - the corresponding CSI-RS resource in the RS resource set.
  • the third indication information includes an identifier of the at least one CSI-RS resource set and/or each CSI-RS resource of the plurality of CSI-RS in the at least one CSI-RS resource set The identifier of the corresponding CSI-RS resource in the set.
  • the repetition parameter of the at least one CSI-RS resource set is set to ON.
  • the reported amount associated with the at least one CSI-RS resource set is set to null.
  • the third indication information is carried in at least one of the following: Sidelink Control Information SCI, Medium Access Control Element MAC CE or PC5 Radio Resource Control RRC.
  • the receiving unit 410 is also used for:
  • the resource pool configuration information or BWP configuration information is used to configure a CSI-RS resource set or a CSI-RS resource;
  • the at least one CSI-RS resource set is determined according to the CSI-RS resource set configured by the resource pool configuration information or the BWP configuration information.
  • the CSI-RS resource set configured by the resource pool configuration information or the BWP configuration information includes a first CSI-RS resource set and a second CSI-RS resource set, and the first CSI-RS resource set The repetition parameter is set to off, and the repetition parameter of the second CSI-RS resource set is set to on; the at least one CSI-RS resource set is determined according to the second CSI-RS resource set.
  • the resource pool configuration information or BWP configuration information includes at least one of the following parameters:
  • N The number N of time-domain symbols occupied by a CSI-RS resource, where N is an integer greater than or equal to 1;
  • the CSI-RS density is used to indicate the number of REs occupied by the CSI-RS of one antenna port in one PRB.
  • the CSI-RS density is less than 1, and the CSI-RS resource configuration information further includes PRB information for indicating CSI-RS resource mapping.
  • the receiving unit 410 is also used for:
  • the fourth indication information is used to indicate that the CSI-RS sent by the second terminal device is used to measure channel state information; or the fourth indication information is used to indicate that the CSI-RS sent by the second terminal device is used to measure channel state information; Determining a target airspace transmission filter for the second terminal device to transmit sidelink data; or the fourth indication information is used to indicate that the CSI-RS transmitted by the second terminal device is used for the first terminal device The target spatial domain receive filter is determined.
  • the fourth indication information is used to indicate that the CSI-RS sent by the second terminal device is used by the first terminal device to determine the target airspace reception filter, including the fourth indication information Used to indicate at least one of the following:
  • the second terminal device sends a CSI-RS for the first terminal device to determine the target spatial domain receiving filter
  • the second terminal device transmits the multiple CSI-RSs using the same spatial transmission filter
  • the CSI-RS resource set corresponding to the CSI-RS sent by the second terminal device is a CSI-RS resource set whose repetition parameter is set to ON;
  • the reported amount associated with the CSI-RS sent by the second terminal device is set to be empty.
  • the fourth indication information is carried in at least one of the following: Sidelink Control Information SCI, Medium Access Control Element MAC CE or PC5 Radio Resource Control RRC.
  • the receiving unit 410 is also used for:
  • the receiving unit 410 is specifically configured to:
  • the measurement results of the plurality of CSI-RSs include measurement results of received CSI-RSs in the plurality of CSI-RSs.
  • the fifth indication information is carried in at least one of the following: Sideline Control Information SCI, Medium Access Control Element MAC CE or PC5 Radio Resource Control RRC.
  • the receiving unit 410 is also used for:
  • Receive sixth indication information sent by the second terminal device where the sixth indication information is used to indicate multiple transmission resources corresponding to the multiple CSI-RSs.
  • the receiving unit 410 is specifically configured to:
  • the multiple CSI-RSs are received on the multiple transmission resources by using multiple spatial domain receive filters.
  • the multiple transmission resources are obtained by the second terminal device through listening, or the multiple transmission resources are obtained by the second terminal device from a network device.
  • the priority corresponding to the multiple CSI-RS is the highest priority.
  • the first terminal device expects the second terminal device to use the multiple transmission resources to send the multiple CSI-RSs; or, the first terminal device does not expect the second terminal The device performs resource reselection on the multiple transmission resources; or, the second terminal device does not perform resource reselection on the multiple transmission resources; or, the second terminal device does not perform resource reselection on the multiple transmission resources Evaluation detection and preemption detection.
  • the sixth indication information is carried in at least one of the following: Sidelink Control Information SCI, Medium Access Control Element MAC CE or PC5 Radio Resource Control RRC.
  • the processing unit 420 is specifically configured to:
  • the target spatial reception filter is determined.
  • the processing unit 420 is specifically configured to:
  • the spatial domain reception filter corresponding to the CSI-RS whose measurement result is greater than or equal to a first threshold is determined as the at least one candidate spatial domain reception filter.
  • the first threshold is configured by the network device, or the first threshold is indicated by the second terminal device, or the first threshold is pre-configured.
  • the processing unit 420 is specifically configured to:
  • the spatial reception filter corresponding to the CSI-RS with the best measurement result is determined as the target spatial reception filter.
  • the processing unit 420 is specifically configured to:
  • the measurement result includes a sidelink reference signal received power RSRP and/or a sidelink signal-to-noise-interference ratio SINR.
  • the receiving unit 410 is also used for:
  • Receive seventh indication information sent by the second terminal device where the seventh indication information is used to indicate a resource index corresponding to each received CSI-RS.
  • the receiving unit 410 is specifically configured to:
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
  • the first terminal device 400 shown in FIG. 18 may correspond to the corresponding subject in the method 200 or 300 of the embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the first terminal device 400 In order to realize the corresponding processes in the respective methods in FIG. 13 or FIG. 17 , for the sake of brevity, details are not repeated here.
  • Fig. 19 is a schematic block diagram of a second terminal device 500 according to an embodiment of the present application.
  • the second terminal device 500 may include:
  • the sending unit 510 is configured to use the same spatial domain sending filter to send multiple channel state information reference signals CSI-RS to the first terminal device respectively;
  • the multiple CSI-RSs are used by the first terminal device to determine a target spatial receiving filter for receiving sidelink data from a plurality of spatial receiving filters.
  • the sending unit 510 is further configured to:
  • the first indication information is used to indicate the number of the plurality of spatial receiving filters.
  • the plurality of spatial domain reception filters include a spatial domain reception filter of the first terminal device that can be used for sidelink data reception.
  • the first indication information is carried in at least one of the following: Sidelink Control Information SCI, Medium Access Control Element MAC CE or PC5 Radio Resource Control RRC.
  • the sending unit 510 is further configured to:
  • the second indication information is used to indicate the maximum number of CSI-RS sent by the second terminal device; or the second indication information is used to indicate the CSI-RS corresponding to the CSI-RS sent by the second terminal device The maximum number of resources.
  • the maximum number is greater than or equal to the number of the plurality of CSI-RSs.
  • the second indication information is used to indicate the maximum number of CSI-RS resources corresponding to the CSI-RS sent by the second terminal device, including: the second indication information is used to indicate the first The quantity of all CSI-RS resources in the CSI-RS resource set corresponding to the CSI-RS sent by the terminal device.
  • the second indication information is carried in at least one of the following: Sidelink Control Information SCI, Medium Access Control Element MAC CE or PC5 Radio Resource Control RRC.
  • the sending unit 510 is further configured to:
  • the third indication information is used to indicate at least one CSI-RS resource set corresponding to the multiple CSI-RSs and/or each CSI of the multiple CSI-RSs in the at least one CSI-RS resource set - the corresponding CSI-RS resource in the RS resource set.
  • the third indication information includes an identifier of the at least one CSI-RS resource set and/or each CSI-RS resource of the plurality of CSI-RS in the at least one CSI-RS resource set The identifier of the corresponding CSI-RS resource in the set.
  • the repetition parameter of the at least one CSI-RS resource set is set to ON.
  • the reported amount associated with the at least one CSI-RS resource set is set to null.
  • the third indication information is carried in at least one of the following: Sidelink Control Information SCI, Medium Access Control Element MAC CE or PC5 Radio Resource Control RRC.
  • the sending unit 510 is further configured to:
  • the resource pool configuration information or BWP configuration information is used to configure a CSI-RS resource set or a CSI-RS resource;
  • the at least one CSI-RS resource set is determined according to the CSI-RS resource set configured by the resource pool configuration information or the BWP configuration information.
  • the CSI-RS resource set configured by the resource pool configuration information or the BWP configuration information includes a first CSI-RS resource set and a second CSI-RS resource set, and the first CSI-RS resource set The repetition parameter is set to off, and the repetition parameter of the second CSI-RS resource set is set to on; the at least one CSI-RS resource set is determined according to the second CSI-RS resource set.
  • the resource pool configuration information or BWP configuration information includes at least one of the following parameters:
  • N The number N of time-domain symbols occupied by a CSI-RS resource, where N is an integer greater than or equal to 1;
  • the CSI-RS density is used to indicate the number of REs occupied by the CSI-RS of one antenna port in one PRB.
  • the CSI-RS density is less than 1, and the CSI-RS resource configuration information further includes PRB information for indicating CSI-RS resource mapping.
  • the sending unit 510 is further configured to:
  • the fourth indication information is used to indicate that the CSI-RS sent by the second terminal device is used to measure channel state information; or the fourth indication information is used to indicate that the CSI-RS sent by the second terminal device is used to measure channel state information; Determining a target airspace transmission filter for the second terminal device to transmit sidelink data; or the fourth indication information is used to indicate that the CSI-RS transmitted by the second terminal device is used for the first terminal device The target spatial domain receive filter is determined.
  • the fourth indication information is used to indicate that the CSI-RS sent by the second terminal device is used by the first terminal device to determine the target airspace reception filter, including the fourth indication information Used to indicate at least one of the following:
  • the second terminal device sends a CSI-RS for the first terminal device to determine the target spatial domain receiving filter
  • the second terminal device transmits the multiple CSI-RSs using the same spatial transmission filter
  • the CSI-RS resource set corresponding to the CSI-RS sent by the second terminal device is a CSI-RS resource set whose repetition parameter is set to ON;
  • the reported amount associated with the CSI-RS sent by the second terminal device is set to be empty.
  • the fourth indication information is carried in at least one of the following: Sidelink Control Information SCI, Medium Access Control Element MAC CE or PC5 Radio Resource Control RRC.
  • the sending unit 510 is further configured to:
  • the sending unit 510 is specifically configured to:
  • the fifth indication information is carried in at least one of the following: Sidelink Control Information SCI, Medium Access Control Element MAC CE or PC5 Radio Resource Control RRC.
  • the sending unit 510 is further configured to:
  • the sending unit 510 is specifically configured to:
  • the multiple transmission resources are obtained by the second terminal device through listening, or the multiple transmission resources are obtained by the second terminal device from a network device.
  • the priority corresponding to the multiple CSI-RS is the highest priority.
  • the first terminal device expects the second terminal device to use the multiple transmission resources to send the multiple CSI-RSs; or, the first terminal device does not expect the second terminal device to Perform resource reselection on the multiple transmission resources; or, the second terminal device does not perform resource reselection on the multiple transmission resources; or, the second terminal device does not perform re-evaluation detection on the multiple transmission resources and preemption detection.
  • the sixth indication information is carried in at least one of the following: Sidelink Control Information SCI, Medium Access Control Element MAC CE or PC5 Radio Resource Control RRC.
  • the sending unit 510 is further configured to:
  • the seventh indication information is used to indicate the resource index corresponding to the CSI-RS sent each time.
  • the sending unit 510 is specifically configured to:
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
  • the second terminal device 500 shown in FIG. 19 may correspond to the corresponding subject in the method 200 or 300 of the embodiment of the present application, and the aforementioned and other operations and/or functions of each unit in the second terminal device 500 In order to realize the corresponding processes in the respective methods in FIG. 13 or FIG. 17 , for the sake of brevity, details are not repeated here.
  • the functional modules may be implemented in the form of hardware, may also be implemented by instructions in the form of software, and may also be implemented by a combination of hardware and software modules.
  • each step of the method embodiment in the embodiment of the present application can be completed by an integrated logic circuit of the hardware in the processor and/or instructions in the form of software, and the steps of the method disclosed in the embodiment of the present application can be directly embodied as hardware
  • the decoding processor is executed, or the combination of hardware and software modules in the decoding processor is used to complete the execution.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the above method embodiments in combination with its hardware.
  • the acquiring unit 310, the transmitting unit 320, and the sending unit 410 mentioned above can all be implemented by a transceiver.
  • FIG. 20 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 may include a processor 610 .
  • processor 610 may invoke and run a computer program from the memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the memory 620 may be used to store indication information, and may also be used to store codes, instructions, etc. executed by the processor 610 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630 .
  • the processor 610 can control the transceiver 630 to communicate with other devices, specifically, can send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • bus system includes not only a data bus, but also a power bus, a control bus, and a status signal bus.
  • the communication device 600 may be the first terminal device in the embodiment of the present application, and the communication device 600 may implement the corresponding procedures implemented by the first terminal device in the various methods of the embodiment of the application, that is, the The communication device 600 in the embodiment of the application may correspond to the first terminal device 400 in the embodiment of the application, and may correspond to the corresponding subject performing the method 200 or 300 according to the embodiment of the application. For the sake of brevity, no further details are given here. .
  • the communication device 600 may be the second terminal device in the embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the second terminal device in each method of the embodiment of the present application.
  • the communication device 600 in the embodiment of the present application may correspond to the second terminal device 500 in the embodiment of the present application, and may correspond to the corresponding subject performing the method 200 or 300 according to the embodiment of the present application.
  • the communication device 600 in the embodiment of the present application may correspond to the second terminal device 500 in the embodiment of the present application, and may correspond to the corresponding subject performing the method 200 or 300 according to the embodiment of the present application.
  • a chip is also provided in the embodiment of the present application.
  • the chip may be an integrated circuit chip, which has signal processing capabilities, and can implement or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • the chip can also be called system-on-chip, system-on-chip, system-on-chip or system-on-chip, etc.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • FIG. 21 is a schematic structural diagram of a chip 700 according to an embodiment of the present application.
  • the chip 700 includes a processor 710 .
  • the processor 710 can invoke and run a computer program from the memory, so as to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be used to store indication information, and may also be used to store codes, instructions, etc. executed by the processor 710 .
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip 700 can be applied to the first terminal device or the second terminal device in the embodiment of the present application, in other words, the chip can implement the corresponding process implemented by the first terminal device in each method of the embodiment of the present application, Corresponding processes implemented by the second terminal device in each method of the embodiments of the present application may also be implemented, and for the sake of brevity, details are not repeated here.
  • bus system includes not only a data bus, but also a power bus, a control bus, and a status signal bus.
  • Processors mentioned above may include, but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the storage mentioned above includes but is not limited to:
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium stores one or more programs, and the one or more programs include instructions.
  • the portable electronic device can perform the wireless communication provided by the application. communication method.
  • the computer-readable storage medium can be applied to the first terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the first terminal device in the methods of the embodiments of the present application, in order It is concise and will not be repeated here.
  • the computer-readable storage medium can be applied to the second terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the second terminal device in each method of the embodiment of the present application, in order It is concise and will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including a computer program.
  • the computer program When the computer program is executed by the computer, the computer can execute the wireless communication method provided in this application.
  • the computer program product can be applied to the first terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the first terminal device in each method of the embodiment of the present application.
  • the computer program product can be applied to the second terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the second terminal device in each method of the embodiment of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program When the computer program is executed by the computer, the computer can execute the wireless communication method provided in this application.
  • the computer program can be applied to the first terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes the corresponding For the sake of brevity, the process will not be repeated here.
  • the computer program can be applied to the second terminal device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding For the sake of brevity, the process will not be repeated here.
  • An embodiment of the present application also provides a communication system, where the communication system may include the first terminal device and the second terminal device mentioned above, and details are not described here for brevity. It should be noted that the terms "system” and the like in this document may also be referred to as “network management architecture” or “network system”.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in the embodiment of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk.
  • the units/modules/components described above as separate/display components may or may not be physically separated, that is, they may be located in one place, or may also be distributed to multiple network units. Part or all of the units/modules/components can be selected according to actual needs to achieve the purpose of the embodiments of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed above may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法、第一终端设备和第二终端设备,所述方法包括:使用多个空域接收滤波器分别接收多个信道状态信息参考信号CSI-RS;对所述多个CSI-RS进行测量,得到所述多个CSI-RS的测量结果;基于所述多个CSI-RS的测量结果,在所述多个空域接收滤波器中,确定用于第一终端设备进行侧行数据接收的目标空域接收滤波器。所述方法能够保证第一终端设备使用的目标空域接收滤波器与第二终端设备使用的空域发送滤波器对准,进而能够实现信号增益的最大化并提高传输性能。

Description

无线通信方法、第一终端设备和第二终端设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法、第一终端设备和第二终端设备。
背景技术
新空口(New Radio,NR)/第五代移动通信技术(5-Generation,5G)系统的设计目标包括高频段的大带宽通信,例如6GHz以上的频段。然而,当终端设备工作频率变高时,传输过程中的路径损耗会增大,从而影响高频系统的覆盖能力。为了能够有效地保证高频段NR系统的覆盖,可以基于大规模天线阵列(Massive MIMO)以模拟波束赋形方式形成增益更大的赋形波束,进而克服传播损耗以及确保系统覆盖。具体而言,通过多波束(Multi-beam)来覆盖整个小区,即每个波束覆盖一个较小的范围,通过时间上的扫描(sweeping)来实现多个波束覆盖整个小区的效果。在具体传输过程中,网络设备可通过波束指示信息来协助终端侧确定网络侧的发送波束的相关信息或终端侧对应的接收波束的相关信息。
然而,如果在新空口(New Radio,NR)侧行链路(SL)系统中引入高频段的大带宽通信,由于接收终端和发送终端均是基于多波束进行侧行通信的,此时,接收终端的接收波束与发送终端的发送波束有可能出现不对准的情况,降低了信号的增益以及传输性能。
发明内容
本申请实施例提供了一种无线通信方法、第一终端设备和第二终端设备,能够保证第一终端设备使用的目标空域接收滤波器与第二终端设备使用的空域发送滤波器对准,进而能够实现信号增益的最大化并提高传输性能。
第一方面,本申请提供了一种无线通信方法,包括:
使用多个空域接收滤波器分别接收多个信道状态信息参考信号CSI-RS;
对所述多个CSI-RS进行测量,得到所述多个CSI-RS的测量结果;
基于所述多个CSI-RS的测量结果,在所述多个空域接收滤波器中,确定用于第一终端设备进行侧行数据接收的目标空域接收滤波器。
第二方面,本申请提供了一种无线通信方法,包括:
使用相同的空域发送滤波器分别向第一终端设备发送多个信道状态信息参考信号CSI-RS;
其中,所述多个CSI-RS用于所述第一终端设备从多个空域接收滤波器中确定用于进行侧行数据接收的目标空域接收滤波器。
第三方面,本申请提供了一种第一终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述第一终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该第一终端设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该第一终端设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该第一终端设备为通信芯片,该发送单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第四方面,本申请提供了一种第二终端设备,用于执行第二方面或其各实现方式中的方法。具体地,所述第二终端设备包括用于执行第二方面或其各实现方式中的方法的功能模块。
在一种实现方式中,该第二终端设备可包括处理单元,该处理单元用于执行与信息处理相关的功能。例如,该处理单元可以为处理器。
在一种实现方式中,该第二终端设备可包括发送单元和/或接收单元。该发送单元用于执行与发送相关的功能,该接收单元用于执行与接收相关的功能。例如,该发送单元可以为发射机或发射器,该接收单元可以为接收机或接收器。再如,该第二终端设备为通信芯片,该接收单元可以为该通信芯片的输入电路或者接口,该发送单元可以为该通信芯片的输出电路或者接口。
第五方面,本申请提供了一种第一终端设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该第一终端设备还包括发射机(发射器)和接收机(接收器)。
第六方面,本申请提供了一种第二终端设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行第二方面或其各实现方式中的方法。
在一种实现方式中,该处理器为一个或多个,该存储器为一个或多个。
在一种实现方式中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在一种实现方式中,该第二终端设备还包括发射机(发射器)和接收机(接收器)。
第七方面,本申请提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,本申请提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,本申请提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,本申请提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
基于以上方案,第一终端设备基于所述多个CSI-RS的测量结果,可在所述多个空域接收滤波器中,确定出用于第一终端设备进行侧行数据接收的目标空域接收滤波器,基于此,所述第一终端设备基于所述目标空域接收滤波器接收第二终端设备使用与所述目标空域接收滤波器对应的空域发送滤波器发送的侧行数据时,能够保证所述目标空域接收滤波器与第二终端设备使用的空域发送滤波器对准,进而能够实现信号增益的最大化并提高传输性能。
附图说明
图1至图7是本申请提供的场景的示例。
图8是本申请实施例提供的不包括PSFCH信道的时隙结构的示例。
图9是本申请实施例提供的包括PSFCH信道的时隙结构的示例。
图10是本申请实施例提供的非模拟波束的示意图。
图11是本申请实施例提供的模拟波束的示意图。
图12是本申请实施例提供的PDSCH的TCI状态配置方法的示意性流程图。
图13是本申请实施例提供的无线通信方法的示意性流程图。
图14是本申请实施例提供的基于第一指示信息接收多个CSI-RS的示意图。
图15是本申请实施例提供的第一终端设备基于第二指示信息接收多个CSI-RS的示意图。
图16是本申请实施例提供的第一终端设备使用多个空域接收滤波器在所述多个传输资源上接收多个CSI-RS的示意图。
图17是本申请实施例提供的无线通信方法的另一示意性流程图。
图18是本申请实施例提供的第一终端设备的示意性框图。
图19是本申请实施例提供的第二终端设备的示意性框图。
图20是本申请实施例提供的通信设备的示意性框图。
图21是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例可以适用于任何终端设备到终端设备的通信框架。例如,车辆到车辆(Vehicle to Vehicle,V2V)、车辆到其他设备(Vehicle to Everything,V2X)、终端到终端(Device to Device,D2D)等。其中,本申请的终端设备可以是任何配置有物理层和媒体接入控制层的设备或装置,终端设备也可称为接入终端。例如,用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字线性处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它线性处理设备、车载设备、可穿戴设备等等。本发明实施例以车载终端为例进行说明,但并不限于此。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile  communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源, 或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
针对侧行通信,可以根据进行通信的终端所处的网络覆盖情况,将侧行通信分为网络覆盖内侧行通信,部分网络覆盖侧行通信及网络覆盖外侧行通信。
图1至图5是本申请提供的车载终端到车载终端的系统框架。
如图1所示,在网络覆盖内侧行通信中,所有进行侧行通信的终端(包括终端1和终端2)均处于网络设备的覆盖范围内,从而,所有终端均可以通过接收网络设备的配置信令,基于相同的侧行配置进行侧行通信。
如图2所示,在部分网络覆盖侧行通信情况下,部分进行侧行通信的终端位于网络设备的覆盖范围内,这部分终端(即终端1)能够接收到网络设备的配置信令,而且根据网络设备的配置进行侧行通信。而位于网络覆盖范围外的终端(即终端2),无法接收网络设备的配置信令,在这种情况下,网络覆盖范围外的终端将根据预配置(pre-configuration)信息及位于网络覆盖范围内的终端发送的侧行广播信道PSBCH中携带的信息确定侧行配置,进行侧行通信。
如图3所示,对于网络覆盖外侧行通信,所有进行侧行通信的终端(包括终端1和终端2)均位于网络覆盖范围外,所有终端均根据预配置信息确定侧行配置进行侧行通信。
如图4所示,对于有中央控制节点的侧行通信,多个终端(包括终端1、终端2以及终端3)构成一个通信组,所述通信组内具有中央控制节点,又可以成为组头终端(Cluster Header,CH),所述中央控制节点具有以下功能之一:负责通信组的建立;组成员的加入、离开;进行资源协调,为其他终端分配侧行传输资源,接收其他终端的侧行反馈信息;与其他通信组进行资源协调等功能。例如,图4所示的终端1为终端1、终端2以及终端3所构成的通信组中的中央控制节点。
设备到设备通信是基于D2D的一种侧行链路(Sidelink,SL)传输技术,与传统的蜂窝系统中通信数据通过网络设备接收或者发送的方式不同,车联网系统采用终端到终端直接通信的方式,因此具有更高的频谱效率以及更低的传输时延。在3GPP定义了两种传输模式:第一模式和第二模式。
第一模式:
终端的传输资源是由网络设备分配的,终端根据网络设备分配的资源在侧行链路上进行数据的发送;网络设备可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。如图1中,终端位于网络覆盖范围内,网络为终端分配侧行传输使用的传输资源。
第二模式:
终端在资源池中选取一个资源进行数据的传输。如图3中,终端位于小区覆盖范围外,终端在预配置的资源池中自主选取传输资源进行侧行传输;或者在图1中,终端在网络配置的资源池中自主选取传输资源进行侧行传输。
在NR-V2X中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐 量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在LTE-V2X中,支持广播传输方式,在NR-V2X中,引入了单播和组播的传输方式。
对于单播传输,其接收端终端只有一个终端。图5是本申请提供的单播传输的示意图。如图5所示,终端1、终端2之间进行单播传输。
对于组播传输,其接收端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端。图6是本申请提供的组播传输的示意图。如图6所示,终端1、终端2、终端3和终端4构成一个通信组,其中终端1发送数据,该组内的其他终端设备都是接收端终端。
对于广播传输方式,其接收端是发送端终端周围的任意一个终端。图7是本申请提供的广播传输的示意图。如图7所示,终端1是发送端终端,其周围的其他终端,第终端2-终端6都是接收端终端。
下面结合图8和图9对NR-V2X中的时隙结构进行说明。
图8是本申请实施例提供的不包括PSFCH信道的时隙结构的示例;图9是本申请实施例提供的包括PSFCH信道的时隙结构的示例。
如图8或图9所示,NR-V2X中PSCCH在时域上从该时隙的第二个侧行符号开始,占用2个或3个OFDM符号,在频域上可以占用{10,12 15,20,25}个PRB。为了降低UE对PSCCH的盲检测的复杂度,在一个资源池内只允许配置一个PSCCH符号个数和PRB个数。另外,因为子信道为NR-V2X中PSSCH资源分配的最小粒度,PSCCH占用的PRB个数必须小于或等于资源池内一个子信道中包含的PRB个数,以免对PSSCH资源选择或分配造成额外的限制。PSSCH在时域上也是从该时隙的第二个侧行符号开始,该时隙中的最后一个时域符号为保护间隔(GP)符号,其余符号映射PSSCH。该时隙中的第一个侧行符号是第二个侧行符号的重复,通常接收端终端将第一个侧行符号用作AGC(自动增益控制,Automatic Gain Control)符号,该符号上的数据通常不用于数据解调。PSSCH在频域上占据K个子信道,每个子信道包括N个连续的PRB。
如图8所示,时隙中可以不包括PSFCH信道。
如图9所示,当时隙中包含PSFCH信道时,该时隙中倒数第二个和倒数第三个符号用作PSFCH信道传输,在PSFCH信道之前的一个时域符号用作GP符号。
为了便于本申请提供的技术方案,下面对波束的相关内容进行说明。
NR/5G系统的设计目标包括高频段(例如6GHz以上的频段)的大带宽通信。当工作频率变高时,传输过程中的路径损耗会增大,从而影响高频系统的覆盖能力。为了能够有效地保证高频段NR系统的覆盖,一种有效的技术方案便是基于大规模天线阵列(Massive MIMO),以形成增益更大的赋形波束,克服传播损耗,确保系统覆盖。针对毫米波天线阵列,由于波长更短,天线阵子间距以及孔径更小,可以让更多的物理天线阵子集成在一个有限大小的二维天线阵列中,同时,由于毫米波天线阵列的尺寸有限,从硬件复杂度、成本开销以及功耗等因素考虑,无法采用数字波束赋形方式,而是通常采用模拟波束赋形方式,在增强网络覆盖同时,也可以降低设备的实现复杂度。
2/3/4G典型系统中,一个小区(扇区)使用一个较宽的波束(beam)来覆盖整个小区。因此在每个时刻,小区覆盖范围内的终端(User Equipment,UE)都有机会获得系统分配的传输资源。图10是本申请实施例提供的非模拟波束的示意图。如图10所示,LTE/NR网络侧使用一个宽的波束来覆盖整个小区,UE1-UE 5在任何时刻都可以接收到网络设备发送的信号。
NR/5G的多波束(Multi-beam)系统通过不同的波束来覆盖整个小区,即每个波束覆盖一个较小的范围,通过时间上的扫描(sweeping)来实现多个波束覆盖整个小区的效果。图11是本申请实施例提供的模拟波束的示意图。如图11所示,网络侧使用较窄的波束(例如图中的波束1-4),在不同的时刻使用不同波束来覆盖小区中的不同区域,例如在时刻1,NR网络侧通过波束1覆盖用户1所在的区域;在时刻2,NR网络侧通过波束2覆盖用户2所在的区域;在时刻3,NR网络侧通过波束3覆盖用户3和用户4所在的区域;在时刻4,NR网络侧通过波束4覆盖用户5所在的区域。由于网络使用较窄的波束,发射能量可以更集中,因此可以覆盖更远的距离;同时由于波束较窄,每个波束只能覆盖小区中的部分区域,因此模拟波束赋形是“以时间换空间”。
模拟波束赋形不仅可以用于网络侧设备,也同样可以用于终端设备。同时,模拟波束赋形不仅可以用于信号的发送,同样也可以用于信号的接收;用于发送信号的波束可称为发送波束,用于接收信号的波束可称为接收波束。
不同的波束通过上面承载的不同信号来进行识别。作为一个示例,不同波束上传输不同的同步信号和/或物理广播信道块(Synchronization Signal/PBCH Block,SSB),UE可以通过不同的SSB来分辨出不同的波束。作为另一个示例,不同的波束上传输不同的CSI-RS,UE通过CSI-RS/CSI-RS资源来识别出不同的波束。换言之,本文涉及的CSI-RS可以理解为实际和某个/某些物理的波束对应的信号。
在一个多波束系统中,物理下行控制信道(Physical Downlink Control Channel,PDCCH)和物理下 行共享信道(Physical Downlink Shared Channel,PDSCH)可以通过不同的下行发送波束来传输。
对于载频为6GHz以下的系统,UE侧一般没有模拟波束,因此采用全向天线(或者接近全向的天线)来接收基站不同下行发送波束发送的信号。
对于毫米波系统,UE侧可能会有模拟波束,需要使用对应的下行接收波束去接收对应的下行发送波束发送的信号。此时,需要相应的波束指示(beam indication)信息来协助UE确定网络侧的发送波束相关信息,或者UE侧对应的接收波束相关信息。
在NR协议中,波束指示信息不用于直接指示波束,而是通过信号之间的准共址(Quasi-co-located,QCL)来指示波束。在UE侧,确定接收相应的信道/信号的统计特性,也是基于QCL假设。具体而言,终端在进行信号接收时,为了提高接收性能,可以利用数据传输所对应的传输环境的特性来改进接收算法。例如可以利用信道的统计特性来优化信道估计器的设计和参数。在NR系统中,数据传输所对应的这些特性通过QCL状态(QCL-Info)来表示。
下行传输如果来自不同的传输接收点(Transmission Reception Point,TRP)/天线阵列块(panel)/波束(beam),则数据传输所对应的传输环境的特性可能也会有变化,因此在NR系统中,网络侧在传输下行控制信道或数据信道时,会通过TCI状态将对应的QCL状态信息指示给终端设备。
一个TCI状态可以包含如下配置:
TCI状态ID,用于标识一个TCI状态;
QCL信息1。
可选的,所述TCI状态还可包括QCL信息2。
其中,一个QCL信息又包含如下信息:
QCL类型配置,可以是QCL type A,QCL typeB,QCL typeC或QCL typeD中的一个;
QCL参考信号配置,包括参考信号所在的小区ID,BWP ID以及参考信号的标识;参考信号的标识可以是CSI-RS资源ID或SSB索引。
其中,如果QCL信息1和QCL信息2都配置了,至少一个QCL信息的QCL类型必须为QCL typeA,QCL typeB,QCL typeC中的一个,另一个QCL信息的QCL类型必须为QCL type D。
其中,QCL类型配置的定义如下:
'QCL-TypeA':{多普勒频移(Doppler shift),多普勒扩展(Doppler spread),平均时延(average delay),延时扩展(delay spread)};
'QCL-TypeB':{多普勒频移(Doppler shift),多普勒扩展(Doppler spread)};
'QCL-TypeC':{多普勒频移(Doppler shift),平均时延(average delay)};
'QCL-TypeD':{空间接收参数(Spatial Rx parameter)}。
TCI状态的语法元素可实现为:
Figure PCTCN2021113219-appb-000001
在NR系统中,网络侧可以为下行信号或下行信道指示相应的TCI状态。
如果网络侧通过TCI状态配置目标下行信道或目标下行信号的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为QCL typeA,QCL typeB或QCL typeC,则终端可以假设所述目标下行信道或目标下行信号与所述参考SSB或参考CSI-RS资源的大尺度参数是相同的,所述大尺度参数通过QCL类型配置来确定。
类似的,如果网络侧通过TCI状态配置目标下行信道或下行信号的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为QCL typeD,则终端可以采用与接收所述参考SSB或参考CSI-RS资源相同的接收波束,来接收所述目标下行信道或目标下行信号。通常的,目标下行信道(或下行信号)与其参考SSB或参考CSI-RS资源在网络侧由同一个TRP、同一个天线阵列块(panel)或者相同的波束来发送。如果两个下行信号或下行信道的TRP或天线阵列块或发送波束不同,通常会配置不同的TCI状态。
对于下行控制信道,可以通过RRC信令或者RRC信令+MAC信令的方式来指示对应CORESET的TCI状态。
对于下行数据信道,可用的TCI状态集合通过RRC信令来指示,并通过MAC层信令来激活其中部分TCI状态,最后通过DCI中的TCI状态指示域从激活的TCI状态中指示一个或两个TCI状态,用于所述DCI调度的PDSCH。
图12是本申请实施例提供的PDSCH的TCI状态配置方法100的示意性流程图。
如图12所示,所述方法100可包括:
S110,指示N个候选的TCI状态。
S120,指示K个激活的TCI状态。
S130,指示1个或2个使用的TCI状态。
需要说明的是,本申请涉及的波束也可称为空域滤波器或可对应至空域滤波器,其中,发送波束可称为空域发送滤波器(spatial domain transmission filter)或可对应至空域发送滤波器,接收波束可称为空域接收滤波器(spatial domain receive filter)或可对应至空域接收滤波器。
由上文可知,新空口(New Radio,NR)/第五代移动通信技术(5-Generation,5G)系统的设计目标包括高频段的大带宽通信,例如6GHz以上的频段。然而,当终端设备工作频率变高时,传输过程中的路径损耗会增大,从而影响高频系统的覆盖能力。为了能够有效地保证高频段NR系统的覆盖,可以基于大规模天线阵列(Massive MIMO)以模拟波束赋形方式形成增益更大的赋形波束,进而克服传播损耗以及确保系统覆盖。具体而言,通过多波束(Multi-beam)来覆盖整个小区,即每个波束覆盖一个较小的范围,通过时间上的扫描(sweeping)来实现多个波束覆盖整个小区的效果。在具体传输过程中,网络设备可通过波束指示信息来协助终端侧确定网络侧的发送波束的相关信息或终端侧对应的接收波束的相关信息。
然而,如果在新空口(New Radio,NR)侧行链路(SL)系统中引入高频段的大带宽通信,由于接收终端和发送终端均是基于多波束进行侧行通信的,此时,接收终端的接收波束与发送终端的发送波束有可能出现不对准的情况,降低了信号的增益以及传输性能。
基于此,本申请实施例提供了一种无线通信方法、第一终端设备和第二终端设备,能够保证第一终端设备使用的目标空域接收滤波器与第二终端设备使用的空域发送滤波器对准,进而能够实现信号增益的最大化并提高传输性能。
图13是本申请实施例提供的无线通信方法200的示意性流程图,所述方法200可以由第一终端设备和第二终端设备交互执行。所述第一终端设备可以是用于接收CSI-RS的接收端,所述第二终端设备可以是用于发送所述CSI-RS的发送端。例如,所述第一终端设备或所述第二终端设备可以是上文涉及的终端B,所述第一终端设备或所述第二终端设备可以是上文涉及的终端A。
如图13所示,所述方法200可包括以下部分或全部内容:
S210,使用多个空域接收滤波器分别接收多个信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS);
S220,对所述多个CSI-RS进行测量,得到所述多个CSI-RS的测量结果;
S230,基于所述多个CSI-RS的测量结果,在所述多个空域接收滤波器中,确定用于第一终端设备进行侧行数据接收的目标空域接收滤波器。
换言之,所述第一终端设备分别对使用多个空域接收滤波器接收到的CSI-RS进行测量,并基于所述多个CSI-RS的测量结果,在所述多个空域接收滤波器中,确定用于第一终端设备进行侧行数据接收的目标空域接收滤波器。
基于以上方案,第一终端设备基于所述多个CSI-RS的测量结果,可在所述多个空域接收滤波器中,确定出用于第一终端设备进行侧行数据接收的目标空域接收滤波器,基于此,所述第一终端设备基于所述目标空域接收滤波器接收第二终端设备使用与所述目标空域接收滤波器对应的空域发送滤波器发送的侧行数据时,能够保证所述目标空域接收滤波器与第二终端设备使用的空域发送滤波器对准,进而能够实现信号增益的最大化并提高传输性能。
在一些实施例中,该多个CSI-RS中的CSI-RS为侧行CSI-RS。
在一些实施例中,该多个CSI-RS也可以由其他侧行信号代替,即在上述S210中,该第一终端设备可以使用多个空域接收滤波器分别接收多个侧行信号。
在一些实施例中,该多个侧行信号中的侧行信号包括但不限于以下之一:
CSI-RS,解调参考信号(Demodulation Reference Signal,DMRS),PSCCH DMRS,PSSCH DMRS,定位参考信号(Positioning Reference Signals,PRS),相位跟踪参考信号(Phase Tracking Reference Signal,PT-RS)或侧行同步信号(包括侧行主同步信号和/或侧行辅同步信号)。
在一些实施例中,所述S210可包括:
使用所述多个空域接收滤波器,分别接收第二终端设备使用相同的空域发送滤波器发送的所述多个CSI-RS。
换言之,所述第二终端设备使用相同的空域发送滤波器发送的所述多个CSI-RS,以便所述第一终端设备使用所述多个空域接收滤波器,分别接收第二终端设备使用相同的空域发送滤波器发送的所述多个CSI-RS,进而基于对所述多个CSI-RS的测量结果确定所述目标空域接收滤波器。
也就是说,所述第二终端设备发送所述多个CSI-RS时使用的空域发送滤波器为目标(或最优)空域发送滤波器,所述目标空域接收滤波器为所述第一终端设备的与所述目标空域发送滤波器对应的最优空域接收滤波器。
具体而言,在确定所述第二终端设备的目标(或最优)空域发送滤波器的过程中,所述第二终端设备使用不同的空域发送滤波器轮流发送CSI-RS,所述第一终端设备使用相同的空域接收滤波器分别接收所述第二终端设备发送的多个CSI-RS,并且对检测到的CSI-RS进行测量,选取最优的CSI-RS资源将其反馈给所述第二终端设备,所述CSI-RS资源对应的空域发送滤波器为针对所述第一终端设备目标(或最优)空域发送滤波器。
在确定所述第一终端设备的目标(或最优)空域接收滤波器的过程中,所述第二终端设备使用相同的空域发送滤波器发送CSI-RS。优选的,所述第二终端设备使用针对所述第一终端设备的最优空域发送滤波器发送CSI-RS,所述第一终端设备轮流使用不同的空域接收滤波器接收所述第二终端设备发送的CSI-RS,并进行测量,选取具有最优测量结果的空域接收滤波器为第一终端设备的与所述最优空域发送滤波器对应的最优空域接收滤波器。当所述第二终端设备使用所述最优空域发送滤波器进行侧行传输时,所述第一终端设备可以使用与其对应的最优空域接收滤波器进行相应的接收。可选的,所述第二终端设备针对不同的发送空域滤波器分别采用上述过程,可以分别确定与各个发送空域滤波器相对应的最优的空域接收滤波器。因此,当所述第二终端设备在进行侧行传输时,所述第二终端设备可以指示所述侧行传输使用的发送空域滤波器,所述第一终端设备即可确定与之对应的最优的空域接收滤波器,并利用该最优空域接收滤波器进行侧行接收。
在一些实施例中,所述方法200还可包括:
向第二终端设备发送第一指示信息;
其中,所述第一指示信息用于指示所述多个空域接收滤波器的数量。
换言之,第一终端设备通过所述第一指示信息将所述第一终端设备可用于进行侧行数据接收CSI-RS的空域接收滤波器的数量指示给第二终端设备后,所述第二终端设备可基于所述第一指示信息指示的空域接收滤波器的数量向所述第一终端设备发送CSI-RS,例如所述第二终端设备发送的CSI-RS的数量与所述第一指示信息指示的空域接收滤波器的数量相同。
由于所述第二终端设备不知道所述第一终端设备的天线配置情况,因此,无法确定所述第一终端设备支持多少个空域接收滤波器,本实施例中,为了辅助所述第二终端设备确定发送的CSI-RS的个数或次数,所述第一终端设备通过向所述第二终端设备发送所述第一指示信息,用于指示所述第一终端设备支持的空域接收滤波器的个数,以保证所述第二终端设备发送的CSI-RS,能够使得所述第一终端设备使用所有的空域接收滤波器都接收一遍CSI-RS。可选的,当所述第一终端设备支持N个空域接收滤波器时,所述第二终端设备发送的CSI-RS的个数或次数应该大于或等于N。
可选的,所述多个空域接收滤波器包括所述第一终端设备支持的空域接收滤波器。
可选的,所述多个空域接收滤波器包括所述第一终端设备的可用于进行侧行数据接收的空域接收滤波器。
可选的,所述第一指示信息携带在以下中的至少一项中:侧行控制信息(Sidelink Control Information,SCI)、媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)或PC5无线资源控制(Radio Resource Control,RRC)。
图14是本申请实施例提供的基于第一指示信息接收多个CSI-RS的示意图。
如图14所示,假设所述第一终端设备支持4个空域接收滤波器,因此,所述第一终端设备向所述第二终端设备发送的所述第一指示信息中指示4,所述第二终端设备在发送CSI-RS时,使用最优的空 域发送滤波器,如空域发送滤波器2,发送至少4次CSI-RS,从而使得所述第一终端设备可以分别使用不同的空域接收滤波器对所述第二终端设备发送的CSI-RS进行测量,从而选取最优的空域接收滤波器,如空域接收滤波器2。
在一些实施例中,所述方法200还可包括:
接收第二终端设备发送的第二指示信息;
其中,所述第二指示信息用于指示所述第二终端设备发送的CSI-RS的最大数量;或所述第二指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源的最大数量。
换言之,所述第二终端设备向所述第一终端设备发送第二指示信息,所述第二指示信息用于指示参数M,所述参数M用于表示所述第二终端设备发送的CSI-RS资源集合中包括的CSI-RS资源的最大个数,或表示所述第二终端设备将要发送的CSI-RS的最大个数或最大次数,或表示所述第二终端设备将要发送的CSI-RS资源的最大个数或最大次数。
由于所述第二终端设备不清楚第一终端设备可用于进行侧行数据接收的空域接收滤波器的数量,本实施例中,可以由所述第二终端设备决定向所述第一终端设备发送的CSI-RS或CSI-RS资源的最大数量,并通过所述第二指示信息将所述最大数量指示给所述第一终端设备,以便所述第一终端设备基于所述第二指示信息指示的最大数量选择用于接收CSI-RS的空域接收滤波器,例如,所述第一终端设备选择的空域接收滤波器的数量等于所述最大数量。
换言之,当所述第二终端设备无法获知所述第一终端设备支持的空域接收滤波器的个数时,所述第二终端设备可以使用相同的空域发送滤波器发送CSI-RS M次,并且将所述参数M告知所述第一终端设备,此时由所述第一终端设备自己决定用哪些空域接收滤波器轮流接收所述第二终端设备发送的CSI-RS。
此外,所述第一终端设备根据所述第二指示信息可以获知所述第二终端设备将要发送多少次CSI-RS,从而可以确定第二终端设备是否已经完成所有的CSI-RS的发送,如果是,则所述第一终端设备可以根据CSI-RS测量的RSRP进行空域接收滤波器的选取。
可选的,所述第二指示信息可用于指示所述第二终端设备发送的CSI-RS的数量,或所述第二指示信息可用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源的数量。或者说,所述第二指示信息可用于指示所述多个CSI-RS的数量,或所述第二指示信息可用于指示所述多个CSI-RS对应的CSI-RS资源的数量。
可选的,所述最大数量大于或等于所述多个CSI-RS的数量。
换言之,所述第二终端设备发送的CSI-RS的最大数量可以大于或等于所述第二终端设备实际发送的CSI-RS的数量,类似的,所述第二终端设备发送的CSI-RS对应的CSI-RS资源的最大数量可以大于或等于所述第二终端设备实际发送的CSI-RS对应的资源的数量。换言之,所述第二终端设备发送的CSI-RS的最大数量可以是所述第二终端设备计划或打算发送的CSI-RS的数量,所述第二终端设备发送的CSI-RS对应的CSI-RS资源的最大数量可以是所述第二终端设备计划或打算发送的CSI-RS对应的CSI-RS的数量。
可选的,所述第二指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源的最大数量,包括:所述第二指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源集合中的所有CSI-RS资源的数量。
换言之,所述多个CSI-RS为所述第二终端设备发送的CSI-RS对应的CSI-RS资源集合中的CSI-RS资源对应的空域接收滤波器上收到的CSI-RS。
可选的,所述第二指示信息携带在以下中的至少一项中:SCI、MAC CE或PC5RRC。
图15是本申请实施例提供的第一终端设备基于第二指示信息接收多个CSI-RS的示意图。
如图15所示,假设所述第一终端设备支持4个空域接收滤波器,但是所述第二终端设备不知道所述第一终端设备支持4个空域接收滤波器,所述第二终端设备在使用相同的空域发送滤波器发送CSI-RS时,所述第二终端设备发送2次CSI-RS,即使用空域发送滤波器2发送2次CSI-RS资源,并且将CSI-RS资源的发送次数(即2)指示给所述第一终端设备,所述第一终端设备可以确定所述第二终端设备会发送2次CSI-RS,此时由所述第一终端设备决定接收所述2次CSI-RS时使用的空域接收滤波器。如,所述第一终端设备可以使用空域接收滤波器1和空域接收滤波器2接收,也可以使用空域接收滤波器0和空域接收滤波器2接收,也可以使用空域接收滤波器1和空域接收滤波器3接收,本实施例对此不作具体限定。
在一些实施例中,所述方法200还可包括:
接收第二终端设备发送的第三指示信息;
其中,所述第三指示信息用于指示所述多个CSI-RS对应的至少一个CSI-RS资源集合和/或所述多 个CSI-RS在至少一个CSI-RS资源集合中的每一个CSI-RS资源集合中对应的CSI-RS资源。
换言之,所述第一终端设备可基于所述第三指示信息指示的CSI-RS资源集合或CSI-RS资源,接收所述多个CSI-RS。
可选的,所述多个CSI-RS中不同的CSI-RS对应不同的CSI-RS资源。
可选的,所述第三指示信息包括所述至少一个CSI-RS资源集合的标识和/或所述多个CSI-RS在至少一个CSI-RS资源集合中的每一个CSI-RS资源集合中对应的CSI-RS资源的标识。
可选的,所述至少一个CSI-RS资源集合的重复参数置为打开(on)。
换言之,用于接收所述多个CSI-RS的CSI-RS资源集合的重复参数置为打开。
可选的,所述至少一个CSI-RS资源集合关联的上报量置为不上报或空(none)。
换言之,用于接收所述多个CSI-RS的CSI-RS资源集合的上报量置为空,即所述第一终端设备收到所述多个CSI-RS后,不需要向所述第二终端设备进行上报。
可选的,所述第三指示信息携带在以下中的至少一项中:SCI、MAC CE或PC5RRC。
在一些实施例中,所述方法200还可包括:
获取资源池配置信息或侧行带宽部分BWP配置信息;其中,所述资源池配置信息或BWP配置信息用于配置CSI-RS资源集合或CSI-RS资源;
根据所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合确定所述至少一个CSI-RS资源集合。
换言之,所述第一终端设备获取所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合后,可根据所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合确定用于所述第一终端设备接收所述多个CSI-RS的CSI-RS资源集合。
通过所述资源池配置信息或侧行带宽部分BWP配置信息,可以使得所述第二终端设备和所述第一终端设备具有相同的CSI-RS资源配置,进而,使得所述第二终端设备和所述第一终端设备针对CSI-RS资源的发送以及所述第三指示信息指示的至少一个CSI-RS资源集合和/或CSI-RS资源,能够具有相同的理解。
需要说明的是,所述第一终端设备确定的所述至少一个CSI-RS资源集合有可能是所述资源池配置信息配置的CSI-RS资源集合中的一个CSI-RS资源集合,也有可能只是从所述资源池配置信息配置的CSI-RS资源集合中选取部分CSI-RS资源,本申请对此不作具体限定。
作为一个示例,所述第三指示信息用于指示所述资源池配置信息或侧行带宽部分BWP配置信息配置的A个CSI-RS资源集合中的至少一个CSI-RS资源集合,并且,对于每一个CSI-RS资源集合,所述第三指示信息还用于指示所述CSI-RS资源集合中的K个CSI-RS资源,其中,1<=K<=B,B表示所述CSI-RS资源集合包括的总的CSI-RS资源个数。
作为另一个示例,所述资源池配置信息或侧行带宽部分BWP配置信息用于配置A个CSI-RS资源集合,所述第一终端设备向第二终端设备通过PC5-RRC信令发送所述第三指示信息,在所述第三指示信息中包括CSI-RS资源集合的索引,通过所述CSI-RS资源集合的索引可以确定CSI-RS资源集合,所述CSI-RS资源集合也就是所述第二终端设备将要发送的CSI-RS所对应的CSI-RS资源集合。进一步的,所述CSI-RS资源集合包括B个CSI-RS资源,所述第二终端设备可以从所述CSI-RS资源集合中选取K个CSI-RS资源,并且将所述K个CSI-RS资源的信息通过所述第三指示信息发送给所述第一终端设备,所述第二终端设备在随后发送的CSI-RS资源中是属于所述K个CSI-RS资源中的资源。例如,所述CSI-RS资源集合包括16个CSI-RS资源,当需要确定第一终端设备的空域接收滤波器时,所述第一终端设备支持的最多的空域接收滤波器的个数为4个,此时,所述第一终端设备从所述CSI-RS资源集合包括的16个CSI-RS资源中选取4个CSI-RS资源,并且将所述4个CSI-RS资源的信息通过PC5-RRC信令发送给所述第二终端设备,从而使得所述第二终端设备和所述第一终端设备具有相同的CSI-RS资源信息。
可选的,所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合包括第一CSI-RS资源集合和第二CSI-RS资源集合,所述第一CSI-RS资源集合的重复参数设置为关闭(off),所述第二CSI-RS资源集合的重复参数置为打开(on);所述至少一个CSI-RS资源集合是根据所述第二CSI-RS资源集合确定的。
换言之,所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合(CSI-RS-ResourceSet)可以包括至少一个重复(repetition)参数置为关闭(off)的第一CSI-RS资源集合,和/或包括至少一个重复(repetition)参数置为打开(on)的第二CSI-RS资源集合。可选的,所述第一CSI-RS资源集合用于确定第二终端设备的空域发送滤波器,所述第二CSI-RS资源集合用于确定第一终端设备的空域接收滤波器。
需要说明的是,本实施例中,可以通过所述第二终端设备使用的CSI-RS资源集合的重复参数来体现或指示所述第二终端设备发送的CSI-RS是用于确定空域发送滤波器还是用于确定空域接收滤波器。例如,假设所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合包括2个CSI-RS资源集合,其中一个CSI-RS资源集合中的重复参数为关闭,另一个CSI-RS资源集合中的重复参数为打开。当确定空域发送滤波器时,使用重复参数为关闭的CSI-RS资源集合,此时所述第二终端设备使用不同的空域发送滤波器分别发送所述CSI-RS资源集合中的CSI-RS资源,所述第一终端设备分别对CSI-RS资源进行测量,并反馈CSI-RS资源索引,所述第二终端设备根据所述索引即可确定与之对应的空域发送滤波器;当确定空域接收滤波器时,使用重复参数为打开的CSI-RS资源集合,此时所述第二终端设备使用相同的空域发送滤波器分别发送所述CSI-RS资源集合中的CSI-RS资源,所述第一终端设备分别使用不同的空域接收滤波器进行接收,并对CSI-RS测量RSRP,根据测量结果选取最优的空域接收滤波器。
也即是说,所述第二终端设备发送的CSI-RS是用于确定所述第二终端设备的空域发送滤波器时,所述第二终端设备使用不同的空域发送滤波器轮流发送所述第一CSI-RS资源集合中的CSI-RS资源;所述第二终端设备发送的CSI-RS是用于确定第一终端设备的空域接收滤波器时,所述第二终端设备使用相同的空域发送滤波器发送所述第二CSI-RS资源集合中的CSI-RS资源。
可选的,所述资源池配置信息或BWP配置信息包括以下参数中的至少一项:
CSI-RS资源集合的标识(CSI-RS-ResourceSetId);
CSI-RS资源集合的重复参数;
CSI-RS资源的标识;
CSI上报量;
CSI上报配置标识;
一个CSI-RS资源占据的时域符号个数N,其中,N是大于或等于1的整数;
用于确定一个时隙中CSI-RS资源所在的时域符号的信息;
用于确定一个物理资源块PRB内CSI-RS资源所在的资源元素RE或子载波的位置的信息;
CSI-RS天线端口数;或
CSI-RS密度,用于指示一个天线端口的CSI-RS在一个PRB内占用的RE个数。
可选的,所述CSI-RS资源集合的标识用于唯一标识CSI-RS资源集合。
可选的,所述CSI-RS资源集合的重复参数可置为打开或关闭。
可选的,所述CSI-RS资源的标识用于唯一标识CSI-RS资源。
可选的,针对所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合中的每一个CSI-RS资源集合,所述资源池配置信息或BWP配置信息可包括CSI-RS资源集合的标识(CSI-RS-ResourceSetId)、CSI-RS资源(CSI-RS-Resource)的标识和重复(repetition)参数。
可选的,所述CSI上报量用于配置上报量或反馈类型,所述上报量或反馈类型包括但不限于:
CSI-RS资源指示(CSI-RS Resource Indicator,CRI),CRI和参考信号接收功率(Reference Signal Receiving Power,RSRP)(‘cri-RSRP’),CRI和信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)(‘cri-SINR’),时隙资源指示,时隙资源指示和RSRP,时隙资源指示和SINR,不上报或空(‘none’)。
可选的,所述CSI上报配置标识可用于将CSI上报量关联至CSI-RS资源集合或CSI-RS资源。
可选的,所述CSI上报量和所述CSI上报配置标识可包括在CSI上报配置信息(CSI-ReportConfig)中。
换言之,所述资源池配置信息或BWP配置信息可包括至少一个CSI上报配置信息,其中,所述至少一个CSI上报配置信息中的每一个CSI上报配置信息包括CSI上报配置标识(CSI-ReportConfigId)和上报量(report Quantity)。
可选的,所述用于确定一个时隙中CSI-RS资源所在的时域符号的信息可以是时隙中时域符号的索引。
可选的,所述用于确定一个物理资源块PRB内CSI-RS资源所在的资源元素RE或子载波的位置的信息可通过参数sl-CSI-RS-FreqAllocation以比特位图的形式指示一个PRB内CSI-RS资源所在的RE或子载波的位置。
可选的,所述用于确定一个物理资源块PRB内CSI-RS资源所在的资源元素RE或子载波的位置的信息,可以是所述用于确定一个物理资源块PRB内第一个CSI-RS资源所在的资源元素RE或子载波的位置的信息。
可选的,所述CSI-RS天线端口数包括但不限于1,2,4,8等。
可选的,所述CSI-RS密度可用于用于指示一个PRB内每一个天线端口的CSI-RS占据的RE个数。如密度为2,即表示每一个PRB内,每一个天线端口的CSI-RS占据2个RE。
可选的,所述CSI-RS密度小于1,所述CSI-RS资源配置信息还包括用于指示用于映射CSI-RS资源的PRB信息。如密度为0.5,即每2个PRB内每一个天线端口占据1个RE,此时,所述CSI-RS资源配置信息还包括用于指示每2个PRB中映射CSI-RS资源的PRB信息,如奇数(或偶数)PRB上映射CSI-RS。
在一些实施例中,所述方法200还可包括:
接收第二终端设备发送的第四指示信息;
其中,所述第四指示信息用于指示第二终端设备发送的CSI-RS用于测量信道状态信息;或所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于确定用于所述第二终端设备进行侧行数据发送的目标空域发送滤波器;或所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于所述第一终端设备确定所述目标空域接收滤波器。
换言之,第一终端设备收到所述第四指示信息后,可基于所述第四指示信息确定所述第二终端设备发送的CSI-RS是用于测量信道状态信息,还是用于确定用于所述第二终端设备进行侧行数据发送的目标空域发送滤波器,还是用于确定所述目标空域接收滤波器。
在侧行系统中,CSI-RS和承载SCI的PSCCH通常在相同的时隙中传输,所述第一终端设备在接收PSCCH时,通常需要使用一个空域接收滤波器接收所述PSCCH,因此,所述第一终端设备需要提前获知所述PSCCH及其关联的CSI-RS是否用于确定空域接收滤波器,从而才能获知是否需要使用不同的空域接收滤波器分别接收第二终端设备发送的CSI-RS。本实施例中,所述第一终端设备可通过所述第四指示信息区分所述第二终端设备发送的侧行数据或CSI-RS是用于正常的数据传输还是用于确定空域发送滤波器或空域接收滤波器的。对于正常数据传输过程中的CSI-RS,所述第一终端设备使用与空域发送滤波器对应的空域接收滤波器进行接收,并且针对CSI-RS进行测量并反馈CQI和RI;而对于确定空域发送滤波器过程中发送的CSI-RS,所述第一终端设备通常采用相同的空域接收滤波器进行接收,并且进行CSI-RS测量并选取优选的CSI-RS资源反馈给所述第二终端设备,从而使得所述第二终端设备确定最优的空域发送滤波器;而对于确定所述第一终端设备的空域接收滤波器过程中发送的CSI-RS,所述第一终端设备需要轮流使用不同的空域接收滤波器接收CSI-RS,并且根据测量结果选取最优的空域接收滤波器。
可选的,所述信道状态信息包括但不限于:信道质量指示(Channel Quality Indicator,CQI)、秩指示(Rank Indication,RI)或预编码矩阵指示(Pre-coding Matrix Indicator,PMI)。
可选的,所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于所述第一终端设备确定所述目标空域接收滤波器,包括所述第四指示信息用于指示以下中的至少一项:
所述第二终端设备发送用于所述第一终端设备确定所述目标空域接收滤波器的CSI-RS;
所述第二终端设备使用相同的空域发送滤波器发送所述多个CSI-RS;
所述第二终端设备发送的CSI-RS对应的CSI-RS资源集合为重复参数置为打开的CSI-RS资源集合;或
所述第二终端设备发送的CSI-RS关联的上报量置为空。
换言之,所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于所述第一终端设备确定所述目标空域接收滤波器,包括所述第四指示信息用于指示以下中的至少一项:
所述第二终端设备即将发送用于所述第一终端设备确定所述目标空域接收滤波器的CSI-RS;
所述第二终端设备即将使用相同的空域发送滤波器发送所述多个CSI-RS;
所述第二终端设备即将发送的CSI-RS对应的CSI-RS资源集合为重复参数置为打开的CSI-RS资源集合;或
所述第二终端设备即将发送的CSI-RS关联的上报量置为空。
当然,所述第四指示信息用于指示第二终端设备发送的CSI-RS用于测量信道状态信息时;或所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于确定用于所述第二终端设备进行侧行数据发送的目标空域发送滤波器时,也可以采用类似的方式进行指示,本申请对此不作具体限定。
可选的,所述第四指示信息可通过指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源集合为重复参数置,来间接性的指示所述第二终端设备发送的CSI-RS的目的或用途。
换言之,所述第一终端设备收到所述第四指示信息后,可以通过所述第二终端设备使用的CSI-RS资源集合的重复参数,来体现或指示所述第二终端设备发送的CSI-RS是用于确定最优空域发送滤波器还是用于确定最优空域接收滤波器。
例如,假设所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合包括2个CSI-RS资源集 合,其中一个CSI-RS资源集合中的重复参数为关闭,另一个CSI-RS资源集合中的重复参数为打开。当所述第四指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源集合为重复参数置为关闭的CSI-RS资源集合时,所述第一终端设备可以假设所述第二终端设备使用不同的空域发送滤波器发送CSI-RS资源,因此,所述第一终端设备可以根据CSI-RS进行测量,并反馈优选的CSI-RS资源索引和/或测量结果,从而使得所述第二终端设备确定优选的空域发送滤波器;当所述第四指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源集合为重复参数置为打开的CSI-RS资源集合时,所述第一终端设备可以假设所述第二终端设备使用相同的空域发送滤波器发送CSI-RS资源,因此,所述第一终端设备可以使用不同的空域接收滤波器分别接收CSI-RS,并对CSI-RS进行测量,根据测量结果选取最优的空域接收滤波器,从而实现对空域接收滤波器的选取过程。
简言之,所述第四指示信息可用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源集合为重复参数置为打开的CSI-RS资源集合,当所述重复参数置为打开时,表示发送的CSI-RS是使用相同的空域发送滤波器发送的,即使用相同的空域发送滤波器发送CSI-RS。类似的,所述第四指示信息可用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源集合为重复参数置为关闭的CSI-RS资源集合,当所述重复参数置为关闭时,表示发送的CSI-RS不是使用相同的空域发送滤波器发送的,即使用不同的空域发送滤波器发送CSI-RS。所述第二终端设备使用相同的空域发送滤波器发送CSI-RS时,所述第一终端设备可以使用不同的空域接收滤波器进行接收,并且对不同的CSI-RS进行测量,并选取最优的空域接收滤波器作为所述目标空域接收滤波器。
可选的,所述第四指示信息可通过指示所述第二终端设备发送的CSI-RS关联的上报量,来间接性的指示所述第二终端设备发送的CSI-RS的目的或用途。
换言之,所述第一终端设备收到所述第四指示信息后,可以通过所述第二终端设备发送的CSI-RS关联的上报量,来体现或指示所述第二终端设备发送的CSI-RS是用于确定最优空域发送滤波器还是用于确定最优空域接收滤波器。
例如,假设所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合包括2个CSI-RS资源集合,并且配置了与CSI-RS资源集合相关联的CSI上报量,与第一个CSI-RS资源集合相关联的CSI上报量为RSRP,与第二个CSI-RS资源集合相关联的CSI上报量为空。当所述第二终端设备向所述第一终端设备发送的所述第四指示信息用于指示CSI上报量为RSRP时,即表示所述第二终端设备将会发送第一个CSI-RS资源集合中的CSI-RS资源,此时所述第一终端设备可以假设所述第二终端设备使用不同的空域发送滤波器发送CSI-RS资源,因此,所述第一终端设备可以根据CSI-RS进行测量,并反馈优选的CSI-RS资源索引和/或测量结果,从而使得所述第二终端设备确定优选的空域发送滤波器;当所述第二终端设备向所述第一终端设备发送的所述第四指示信息用于指示CSI上报量为空时,即表示所述第二终端设备将会发送第二个CSI-RS资源集合中的CSI-RS资源,此时,所述第一终端设备可以假设第二终端设备使用相同的空域发送滤波器发送CSI-RS资源,因此,所述第一终端设备可以使用不同的空域接收滤波器分别接收CSI-RS,并对CSI-RS进行测量,根据测量结果选取最优的空域接收滤波器,从而实现对空域接收滤波器的选取过程。
可选的,所述第四指示信息携带在以下中的至少一项中:SCI、MAC CE或PC5RRC。
在一些实施例中,所述方法200还可包括:
接收第二终端设备发送的第五指示信息,所述第五指示信息用于指示时延边界。
换言之,第二终端设备向所述第一终端设备发送所述第五指示信息,相应的,所述第一终端设备收到所述第五指示信息后,可基于所述第五指示信息指示的时延边界接收所述多个CSI-RS。
可选的,所述S210可包括:
在超过所述时延边界时,停止接收所述多个CSI-RS;
其中,所述多个CSI-RS的测量结果包括所述多个CSI-RS中已收到的CSI-RS的测量结果。
换言之,超过所述时延边界后,所述第一终端设备可以根据CSI-RS测量结果确定所述目标接收滤波器。
也即是说,所述第一终端设备在超过所述时延边界时,即使所述第一终端设备使用某一个空域接收滤波器没有收到所述第二终端设备发送的CSI-RS,所述第一终端设备也假设所述第二终端设备已经向所述第一终端设备发送了CSI-RS,避免所述第一终端设备使用所述某一个空域接收滤波器进行无意义的接收,降低了设备功耗以及提升了空域接收滤波器的利用率。
可选的,所述第五指示信息携带在以下中的至少一项中:SCI、MAC CE或PC5RRC。
在一些实施例中,所述方法200还可包括:
接收第二终端设备发送的第六指示信息,所述第六指示信息用于指示所述多个CSI-RS对应的多个传输资源。
换言之,所述第二终端设备向所述第一终端设备发送所述第六指示信息,所述第一终端设备接收到所述第六指示信息后,基于所述第六指示信息指示的多个传输资源,接收所述多个CSI-RS。也即是说,所述第二终端设备将传输资源的信息发送给所述第一终端设备,使得所述第一终端设备可以获知第二终端设备将要使用的用于CSI-RS发送的资源,从而可以对所述第二终端设备发送的CSI-RS使用不同空域接收滤波器进行接收。
可选的,所述多个CSI-RS和所述多个传输资源一一对应。
需要说明的是,本申请涉及的传输资源可以是时域上的用于传输CSI-RS的任意资源,例如时域符号、时隙或子帧等。
可选的,所述S210可包括:
使用多个空域接收滤波器在所述多个传输资源上,接收所述多个CSI-RS。
可选的,所述多个传输资源是第二终端设备通过侦听的方式获取的,或所述多个传输资源是所述第二终端设备从网络设备获取的。
可选的,所述多个CSI-RS对应的优先级为最高优先级。
可选的,所述第一终端设备期待所述第二终端设备使用所述多个传输资源发送所述多个CSI-RS;或者,所述第一终端设备不期待所述第二终端设备对所述多个传输资源进行资源重选;或者,所述第二终端设备不对所述多个传输资源进行资源重选;或者,所述第二终端设备不对所述多个传输资源进行重评估(Re-evaluation)检测和抢占(pre-emption)检测。
换言之,所述第二终端设备确定发送CSI-RS的传输资源后,所述第二终端设备在发送完CSI-RS之前不会进行资源重选。
例如,所述第二终端设备从网络设备获取发送CSI-RS的传输资源,所述第二终端设备向第一终端设备发送所述第六指示信息,用于指示所述传输资源,所述第一终端设备根据所述第六指示信息,可以使用不同的空域接收滤波器分别对不同的传输资源进行接收。
又例如,所述第二终端设备基于侦听获取发送CSI-RS的传输资源,所述第二终端设备向所述第一终端设备发送所述第六指示信息,用于指示所述传输资源,在所述第二终端设备发送完CSI-RS之前,所述第二终端设备不会进行资源重选,即将发送CSI-RS的优先级设置为最高优先级,使得其对应的传输资源不会被其他终端抢占;或者去激活重评估和资源抢占机制,从而保证所述第二终端设备选取的资源不会因为发生资源而变化,使得所述第一终端设备可以使用不同的空域接收滤波器分别对不同的传输资源进行接收。
当然,在其他可替代实施例中,当第二终端设备的某个资源被其他用户抢占或发生变化时,所述第二终端设备可以放弃使用所述资源或基于所述资源的重选资源发送CSI-RS。此时,所述第一终端设备使用某个空域接收滤波器在所述资源上无法检测到第二终端设备发送的SCI,也就无法针对CSI-RS进行检测,因此,所述第一终端设备也不会选取所述资源对应的空域接收滤波器。
图16是本申请实施例提供的第一终端设备使用多个空域接收滤波器在所述多个传输资源上接收多个CSI-RS的示意图。
如图16所示,所述第二终端设备获取发送CSI-RS的传输资源,并且在时隙0向第一终端设备发送所述第六指示信息,用于指示将要发送CSI-RS的资源,即位于时隙3/4/5/6中的传输资源,并且第二终端设备在发送CSI-RS过程中不会发生资源重选;相应的,所述第一终端设备根据所述第六指示信息可以确定第二终端设备将要发送CSI-RS的资源,因此,第一终端设备使用不同的空域接收滤波器对相应的传输资源进行接收。
可选的,所述第六指示信息携带在以下中的至少一项中:SCI、MAC CE或PC5RRC。
在一些实施例中,所述S230可包括:
基于所述多个CSI-RS的测量结果,在所述多个空域接收滤波器中,确定至少一个候选空域接收滤波器;
在所述至少一个候选空域接收滤波器中,确定所述目标空域接收滤波器。
换言之,所述多个CSI-RS的测量结果用于在所述多个空域接收滤波器中确定至少一个候选空域接收滤波器,所述目标空域接收滤波器为所述至少一个候选空域接收滤波器中的任一个空域接收滤波器。当然,在其他可替代实施例中,所述第一终端设备也可基于所述多个CSI-RS的测量结果,直接在所述多个空域接收滤波器中确定所述目标空域接收滤波器。
需要说明的是,当第一终端设备支持M个空域接收滤波器时,所述第二终端设备会使用相同的空域发送滤波器发送M个CSI-RS,因此,所述第一终端设备可以分别使用M个空域接收滤波器进行相应的接收。但是由于半双工限制,或者由于空域发送滤波器和空域接收滤波器没有对准等因素,所述第一终端设备可能只检测到所述第二终端设备发送的一部分SCI,进而只能对所述部分SCI调度的CSI-RS 进行测量,从测量结果中选取N个最优的测量结果,将所述N个测量结果对应的接收波束作为候选空域接收滤波器。优选的,N=1,即所述第一终端设备将最优测量结果对应的空域接收滤波器作为最优空域接收滤波器。
可选的,基于所述多个CSI-RS的测量结果,将测量结果大于或等于第一阈值的CSI-RS对应的空域接收滤波器,确定为所述至少一个候选空域接收滤波器。
换言之,在所述第一终端设备检测到CSI-RS资源,并且其测量结果超过门限时,所述第一终端设备才会将所述测量结果对应的空域接收滤波器作为候选空域接收滤波器。
可选的,所述第一阈值为网络设备配置的,或所述第一阈值为第二终端设备指示的,或所述第一阈值为预配置的。
可选的,在所述至少一个候选空域接收滤波器中,根据测量结果从高到低的顺序,将具有最优测量结果的CSI-RS对应的空域接收滤波器,确定为所述目标空域接收滤波器。
在一些实施例中,所述S220还可包括:
对所述多个CSI-RS进行测量,得到所述多个CSI-RS的层1测量结果。
换言之,所述第一终端设备利用不同的空域接收滤波器对第二终端设备发送的CSI-RS进行测量,如测量RSRP或SINR等,由于是针对最优空域接收滤波器的测量及选择,因此,所述测量结果不需要进行层3滤波,即对所述多个CSI-RS进行测量的测量结果可以是层1测量结果,否则会引起额外的时延。
在一些实施例中,所述测量结果包括侧行参考信号接收功率RSRP和/或侧行信号噪声干扰比SINR。
在一些实施例中,所述方法200还可包括:
接收第二终端设备发送的第七指示信息,所述第七指示信息用于指示每次接收的CSI-RS对应的资源索引。
可选的,所述资源索引可以是CSI-RS资源的索引。
可选的,接收所述第二终端设备发送的SCI,所述SCI中包括所述第七指示信息。
换言之,所述第二终端设备确定CSI-RS资源集合,并在所述CSI-RS资源集合中确定CSI-RS资源,利用相同的空域发送滤波器分别发送所述多个CSI-RS,并且在SCI中指示相应的CSI-RS资源的索引。例如,资源池配置信息或侧行带宽部分BWP配置信息用于配置A个CSI-RS资源集合,所述第二终端设备从中选取至少一个CSI-RS资源集合,并且通过空域发送滤波器发送所述至少一个CSI-RS资源集合中的CSI-RS,此时,所述第二终端设备在SCI中携带所述至少一个CSI-RS资源集合的索引以及CSI-RS资源的索引。
需要说明的是,在本实施例中,第二终端设备利用相同的空域发送滤波器轮流发送CSI-RS,体现为第二终端设备利用相同的空域发送滤波器发送不同的CSI-RS资源,所述第一终端设备利用不同的空域接收滤波器分别接收第二终端设备发送的不同的CSI-RS,即第一终端设备确定CSI-RS资源和不同的空域接收滤波器之间的对应关系,所述第一终端设备根据CSI-RS资源的索引即可确定相应的空域接收滤波器。所述第二终端设备在进行侧行传输时,可以向所述第一终端设备指示TCI,其中包括CSI-RS资源的信息以及QCL Type-D,所述第一终端设备根据所述TCI中指示的CSI-RS资源的信息,以及CSI-RS资源和空域接收滤波器之间的对应关系,即可确定使用与所述CSI-RS资源对应的空域接收滤波器进行侧行数据的接收。
图17是本申请实施例提供的无线通信方法300的示意性流程图。
如图17所示,所述方法300可包括:
S310,第一终端设备向第二终端设备发送第一指示信息或接收第二终端设备发送的第二指示信息,以及所述第一终端设备接收所述第二终端设备发送的第三指示信息。
S320,发送第四指示信息。
S330,使用所述多个空域接收滤波器,分别接收第二终端设备使用相同的空域发送滤波器发送的所述多个CSI-RS。
S340,对所述多个CSI-RS进行测量,得到所述多个CSI-RS的测量结果。
S350,基于所述多个CSI-RS的测量结果,在所述多个空域接收滤波器中,确定用于第一终端设备进行侧行数据接收的目标空域接收滤波器。
本实施例中,所述第二终端设备通过相同的空域发送滤波器向第一终端设备轮流发送不同的CSI-RS,并且指示相应的CSI-RS资源,所述第一终端设备利用不同的空域接收滤波器分别接收CSI-RS,并且进行测量,在多个空域接收滤波器中,确定用于第一终端设备进行侧行数据接收的目标空域接收滤波器。
需要说明的是,所述第二终端设备和第一终端设备之间进行第一指示信息至第三指示信息的交互可 以理解为侧行配置信息的交互。换言之,所述第二终端设备可以向所述第一终端设备发送侧行配置信息,或者所述第一终端设备可以向所述第二终端设备发送侧行配置信息;上述各种侧行配置信息可以承载在一个或多个侧行配置信令中,本实施例不做限定。
此外,所述方法300中的相关术语和实现方式可参考方法200中的相关方案,为避免重复,此处不再赘述。
另外,所述方法200和所述方法300仅为本申请的示例,在确定目标空域接收滤波器的过程中可以只包括所述方法200或300中的全部或部分步骤,上述的各个步骤中的一个或多个可以合并为一个步骤,本申请对此不作具体限定,
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”和“上行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文结合附图详细描述了本申请的方法实施例,下文结合图25至图28,详细描述本申请的装置实施例。
图18是本申请实施例的第一终端设备400的示意性框图。
如图18所示,所述第一终端设备400可包括:
接收单元410,用于使用多个空域接收滤波器分别接收多个信道状态信息参考信号CSI-RS;
处理单元420,用于:
对所述多个CSI-RS进行测量,得到所述多个CSI-RS的测量结果;
基于所述多个CSI-RS的测量结果,在所述多个空域接收滤波器中,确定用于第一终端设备进行侧行数据接收的目标空域接收滤波器。
在一些实施例中,所述接收单元410具体用于:
使用所述多个空域接收滤波器,分别接收第二终端设备使用相同的空域发送滤波器发送的所述多个CSI-RS。
在一些实施例中,所述接收单元410还用于:
向第二终端设备发送第一指示信息;
其中,所述第一指示信息用于指示所述多个空域接收滤波器的数量。
在一些实施例中,所述多个空域接收滤波器包括所述第一终端设备的可用于进行侧行数据接收的空域接收滤波器。
在一些实施例中,所述第一指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
在一些实施例中,所述接收单元410还用于:
接收第二终端设备发送的第二指示信息;
其中,所述第二指示信息用于指示所述第二终端设备发送的CSI-RS的最大数量;或所述第二指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源的最大数量。
在一些实施例中,所述最大数量大于或等于所述多个CSI-RS的数量。
所述第二指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源的最大数量,包括:所述第二指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源集合中的所有CSI-RS资源的数量。
在一些实施例中,所述第二指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
在一些实施例中,所述接收单元410还用于:
接收第二终端设备发送的第三指示信息;
其中,所述第三指示信息用于指示所述多个CSI-RS对应的至少一个CSI-RS资源集合和/或所述多个CSI-RS在至少一个CSI-RS资源集合中的每一个CSI-RS资源集合中对应的CSI-RS资源。
在一些实施例中,所述第三指示信息包括所述至少一个CSI-RS资源集合的标识和/或所述多个CSI-RS在至少一个CSI-RS资源集合中的每一个CSI-RS资源集合中对应的CSI-RS资源的标识。
在一些实施例中,所述至少一个CSI-RS资源集合的重复参数置为打开。
在一些实施例中,所述至少一个CSI-RS资源集合关联的上报量置为空。
在一些实施例中,所述第三指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
在一些实施例中,所述接收单元410还用于:
获取资源池配置信息或侧行带宽部分BWP配置信息;其中,所述资源池配置信息或BWP配置信息用于配置CSI-RS资源集合或CSI-RS资源;
根据所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合确定所述至少一个CSI-RS资源集合。
在一些实施例中,所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合包括第一CSI-RS资源集合和第二CSI-RS资源集合,所述第一CSI-RS资源集合的重复参数设置为关闭,所述第二CSI-RS资源集合的重复参数置为打开;所述至少一个CSI-RS资源集合是根据所述第二CSI-RS资源集合确定的。
在一些实施例中,所述资源池配置信息或BWP配置信息包括以下参数中的至少一项:
CSI-RS资源集合的标识;
CSI-RS资源集合的重复参数;
CSI-RS资源的标识;
CSI上报量;
CSI上报配置标识;
一个CSI-RS资源占据的时域符号个数N,其中,N是大于或等于1的整数;
用于确定一个时隙中CSI-RS资源所在的时域符号的信息;
用于确定一个物理资源块PRB内CSI-RS资源所在的资源元素RE或子载波的位置的信息;
CSI-RS天线端口数;或
CSI-RS密度,用于指示一个天线端口的CSI-RS在一个PRB内占用的RE个数。
在一些实施例中,所述CSI-RS密度小于1,所述CSI-RS资源配置信息还包括用于指示用于映射CSI-RS资源的PRB信息。
在一些实施例中,所述接收单元410还用于:
接收第二终端设备发送的第四指示信息;
其中,所述第四指示信息用于指示第二终端设备发送的CSI-RS用于测量信道状态信息;或所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于确定用于所述第二终端设备进行侧行数据发送的目标空域发送滤波器;或所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于所述第一终端设备确定所述目标空域接收滤波器。
在一些实施例中,所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于所述第一终端设备确定所述目标空域接收滤波器,包括所述第四指示信息用于指示以下中的至少一项:
所述第二终端设备发送用于所述第一终端设备确定所述目标空域接收滤波器的CSI-RS;
所述第二终端设备使用相同的空域发送滤波器发送所述多个CSI-RS;
所述第二终端设备发送的CSI-RS对应的CSI-RS资源集合为重复参数置为打开的CSI-RS资源集合;或
所述第二终端设备发送的CSI-RS关联的上报量置为空。
在一些实施例中,所述第四指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
在一些实施例中,所述接收单元410还用于:
接收第二终端设备发送的第五指示信息,所述第五指示信息用于指示时延边界。
在一些实施例中,所述接收单元410具体用于:
在超过所述时延边界时,停止接收所述多个CSI-RS;
其中,所述多个CSI-RS的测量结果包括所述多个CSI-RS中已收到的CSI-RS的测量结果。
在一些实施例中,所述第五指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控 制控制元素MAC CE或PC5无线资源控制RRC。
在一些实施例中,所述接收单元410还用于:
接收第二终端设备发送的第六指示信息,所述第六指示信息用于指示所述多个CSI-RS对应的多个传输资源。
在一些实施例中,所述接收单元410具体用于:
使用多个空域接收滤波器在所述多个传输资源上,接收所述多个CSI-RS。
在一些实施例中,所述多个传输资源是第二终端设备通过侦听的方式获取的,或所述多个传输资源是所述第二终端设备从网络设备获取的。
在一些实施例中,所述多个CSI-RS对应的优先级为最高优先级。
在一些实施例中,所述第一终端设备期待所述第二终端设备使用所述多个传输资源发送所述多个CSI-RS;或者,所述第一终端设备不期待所述第二终端设备对所述多个传输资源进行资源重选;或者,所述第二终端设备不对所述多个传输资源进行资源重选;或者,所述第二终端设备不对所述多个传输资源进行重评估检测和抢占检测。
在一些实施例中,所述第六指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
在一些实施例中,所述处理单元420具体用于:
基于所述多个CSI-RS的测量结果,在所述多个空域接收滤波器中,确定至少一个候选空域接收滤波器;
在所述至少一个候选空域接收滤波器中,确定所述目标空域接收滤波器。
在一些实施例中,所述处理单元420具体用于:
基于所述多个CSI-RS的测量结果,将测量结果大于或等于第一阈值的CSI-RS对应的空域接收滤波器,确定为所述至少一个候选空域接收滤波器。
在一些实施例中,所述第一阈值为网络设备配置的,或所述第一阈值为第二终端设备指示的,或所述第一阈值为预配置的。
在一些实施例中,所述处理单元420具体用于:
在所述至少一个候选空域接收滤波器中,根据测量结果从高到低的顺序,将具有最优测量结果的CSI-RS对应的空域接收滤波器,确定为所述目标空域接收滤波器。
在一些实施例中,所述处理单元420具体用于:
对所述多个CSI-RS进行测量,得到所述多个CSI-RS的层1测量结果。
在一些实施例中,所述测量结果包括侧行参考信号接收功率RSRP和/或侧行信号噪声干扰比SINR。
在一些实施例中,所述接收单元410还用于:
接收第二终端设备发送的第七指示信息,所述第七指示信息用于指示每次接收的CSI-RS对应的资源索引。
在一些实施例中,所述接收单元410具体用于:
接收所述第二终端设备发送的侧行控制信息SCI,所述SCI中包括所述第七指示信息。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图18所示的第一终端设备400可以对应于执行本申请实施例的方法200或300中的相应主体,并且第一终端设备400中的各个单元的前述和其它操作和/或功能分别为了实现图13或图17中的各个方法中的相应流程,为了简洁,在此不再赘述。
图19是本申请实施例的第二终端设备500的示意性框图。
如图19所示,所述第二终端设备500可包括:
发送单元510,用于使用相同的空域发送滤波器分别向第一终端设备发送多个信道状态信息参考信号CSI-RS;
其中,所述多个CSI-RS用于所述第一终端设备从多个空域接收滤波器中确定用于进行侧行数据接收的目标空域接收滤波器。
在一些实施例中,所述发送单元510还用于:
接收所述第一终端设备发送的第一指示信息;
其中,所述第一指示信息用于指示所述多个空域接收滤波器的数量。
在一些实施例中,所述多个空域接收滤波器包括所述第一终端设备的可用于进行侧行数据接收的空域接收滤波器。
在一些实施例中,所述第一指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
在一些实施例中,所述发送单元510还用于:
向所述第一终端设备发送第二指示信息;
其中,所述第二指示信息用于指示第二终端设备发送的CSI-RS的最大数量;或所述第二指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源的最大数量。
在一些实施例中,所述最大数量大于或等于所述多个CSI-RS的数量。
在一些实施例中,所述第二指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源的最大数量,包括:所述第二指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源集合中的所有CSI-RS资源的数量。
在一些实施例中,所述第二指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
在一些实施例中,所述发送单元510还用于:
向所述第一终端设备发送第三指示信息;
其中,所述第三指示信息用于指示所述多个CSI-RS对应的至少一个CSI-RS资源集合和/或所述多个CSI-RS在至少一个CSI-RS资源集合中的每一个CSI-RS资源集合中对应的CSI-RS资源。
在一些实施例中,所述第三指示信息包括所述至少一个CSI-RS资源集合的标识和/或所述多个CSI-RS在至少一个CSI-RS资源集合中的每一个CSI-RS资源集合中对应的CSI-RS资源的标识。
在一些实施例中,所述至少一个CSI-RS资源集合的重复参数置为打开。
在一些实施例中,所述至少一个CSI-RS资源集合关联的上报量置为空。
在一些实施例中,所述第三指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
在一些实施例中,所述发送单元510还用于:
获取资源池配置信息或侧行带宽部分BWP配置信息;其中,所述资源池配置信息或BWP配置信息用于配置CSI-RS资源集合或CSI-RS资源;
根据所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合确定所述至少一个CSI-RS资源集合。
在一些实施例中,所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合包括第一CSI-RS资源集合和第二CSI-RS资源集合,所述第一CSI-RS资源集合的重复参数设置为关闭,所述第二CSI-RS资源集合的重复参数置为打开;所述至少一个CSI-RS资源集合是根据所述第二CSI-RS资源集合确定的。
在一些实施例中,所述资源池配置信息或BWP配置信息包括以下参数中的至少一项:
CSI-RS资源集合的标识;
CSI-RS资源集合的重复参数;
CSI-RS资源的标识;
CSI上报量;
CSI上报配置标识;
一个CSI-RS资源占据的时域符号个数N,其中,N是大于或等于1的整数;
用于确定一个时隙中CSI-RS资源所在的时域符号的信息;
用于确定一个物理资源块PRB内CSI-RS资源所在的资源元素RE或子载波的位置的信息;
CSI-RS天线端口数;或
CSI-RS密度,用于指示一个天线端口的CSI-RS在一个PRB内占用的RE个数。
在一些实施例中,所述CSI-RS密度小于1,所述CSI-RS资源配置信息还包括用于指示用于映射CSI-RS资源的PRB信息。
在一些实施例中,所述发送单元510还用于:
向所述第一终端设备发送第四指示信息;
其中,所述第四指示信息用于指示第二终端设备发送的CSI-RS用于测量信道状态信息;或所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于确定用于所述第二终端设备进行侧行数据发送的目标空域发送滤波器;或所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于所述第一终端设备确定所述目标空域接收滤波器。
在一些实施例中,所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于所述第一终端设备确定所述目标空域接收滤波器,包括所述第四指示信息用于指示以下中的至少一项:
所述第二终端设备发送用于所述第一终端设备确定所述目标空域接收滤波器的CSI-RS;
所述第二终端设备使用相同的空域发送滤波器发送所述多个CSI-RS;
所述第二终端设备发送的CSI-RS对应的CSI-RS资源集合为重复参数置为打开的CSI-RS资源集合;或
所述第二终端设备发送的CSI-RS关联的上报量置为空。
在一些实施例中,所述第四指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
在一些实施例中,所述发送单元510还用于:
向所述第一终端设备发送第五指示信息,所述第五指示信息用于指示时延边界。
在一些实施例中,所述发送单元510具体用于:
在超过所述时延边界时,停止发送所述多个CSI-RS。
在一些实施例中,所述第五指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
在一些实施例中,所述发送单元510还用于:
向所述第一终端设备发送第六指示信息,所述第六指示信息用于指示所述多个CSI-RS对应的多个传输资源。
在一些实施例中,所述发送单元510具体用于:
使用相同的空域发送滤波器在所述多个传输资源上,发送所述多个CSI-RS。
在一些实施例中,所述多个传输资源是第二终端设备通过侦听的方式获取的,或所述多个传输资源是所述第二终端设备从网络设备获取的。
在一些实施例中,所述多个CSI-RS对应的优先级为最高优先级。
在一些实施例中,所述第一终端设备期待第二终端设备使用所述多个传输资源发送所述多个CSI-RS;或者,所述第一终端设备不期待所述第二终端设备对所述多个传输资源进行资源重选;或者,所述第二终端设备不对所述多个传输资源进行资源重选;或者,所述第二终端设备不对所述多个传输资源进行重评估检测和抢占检测。
在一些实施例中,所述第六指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
在一些实施例中,所述发送单元510还用于:
向所述第一终端设备发送第七指示信息,所述第七指示信息用于指示每次发送的CSI-RS对应的资源索引。
在一些实施例中,所述发送单元510具体用于:
向所述第一终端设备发送侧行控制信息SCI,所述SCI中包括所述第七指示信息。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图19所示的第二终端设备500可以对应于执行本申请实施例的方法200或300中的相应主体,并且第二终端设备500中的各个单元的前述和其它操作和/或功能分别为了实现图13或图17中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的获取单元310、传输单元320以及发送单元410均可由收发器实现。
图20是本申请实施例的通信设备600示意性结构图。
如图20所示,所述通信设备600可包括处理器610。
其中,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图20所示,通信设备600还可以包括存储器620。
其中,该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
如图20所示,通信设备600还可以包括收发器630。
其中,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器630可以包括发射机和接收机。收发器630还可以 进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备600可为本申请实施例的第一终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由第一终端设备实现的相应流程,也就是说,本申请实施例的通信设备600可对应于本申请实施例中的第一终端设备400,并可以对应于执行根据本申请实施例的方法200或300中的相应主体,为了简洁,在此不再赘述。类似地,该通信设备600可为本申请实施例的第二终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由第二终端设备实现的相应流程。也就是说,本申请实施例的通信设备600可对应于本申请实施例中的第二终端设备500,并可以对应于执行根据本申请实施例的方法200或300中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图21是根据本申请实施例的芯片700的示意性结构图。
如图21所示,所述芯片700包括处理器710。
其中,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
如图21所示,所述芯片700还可以包括存储器720。
其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器720可以用于存储指示信息,还可以用于存储处理器710执行的代码、指令等。存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
如图21所示,所述芯片700还可以包括输入接口730。
其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
如图21所示,所述芯片700还可以包括输出接口740。
其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片700可应用于本申请实施例中的第一终端设备或第二终端设备,换言之,该芯片可以实现本申请实施例的各个方法中由第一终端设备实现的相应流程,也可以实现本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片700中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行本申请提供的无线通信方法。
可选的,该计算机可读存储介质可应用于本申请实施例中的第一终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一终端设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的第二终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行本申请提供的无线通信方法。
可选的,该计算机程序产品可应用于本申请实施例中的第一终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一终端设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的第二终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行本申请提供的无线通信方法。
可选的,该计算机程序可应用于本申请实施例中的第一终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一终端设备实现的相应流程,为了简洁,在此不再赘述。可选的,该计算机程序可应用于本申请实施例中的第二终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的第一终端设备和第二终端设备,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员还可以意识到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (77)

  1. 一种无线通信方法,其特征在于,包括:
    使用多个空域接收滤波器分别接收多个信道状态信息参考信号CSI-RS;
    对所述多个CSI-RS进行测量,得到所述多个CSI-RS的测量结果;
    基于所述多个CSI-RS的测量结果,在所述多个空域接收滤波器中,确定用于第一终端设备进行侧行数据接收的目标空域接收滤波器。
  2. 根据权利要求1所述的方法,其特征在于,所述使用多个空域接收滤波器分别接收多个信道状态信息参考信号CSI-RS,包括:
    使用所述多个空域接收滤波器,分别接收第二终端设备使用相同的空域发送滤波器发送的所述多个CSI-RS。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    向第二终端设备发送第一指示信息;
    其中,所述第一指示信息用于指示所述多个空域接收滤波器的数量。
  4. 根据权利要求3所述的方法,其特征在于,所述多个空域接收滤波器包括所述第一终端设备的可用于进行侧行数据接收的空域接收滤波器。
  5. 根据权利要求3所述的方法,其特征在于,所述第一指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
  6. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收第二终端设备发送的第二指示信息;
    其中,所述第二指示信息用于指示所述第二终端设备发送的CSI-RS的最大数量;或所述第二指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源的最大数量。
  7. 根据权利要求6所述的方法,其特征在于,所述最大数量大于或等于所述多个CSI-RS的数量。
  8. 根据权利要求6所述的方法,其特征在于,所述第二指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源的最大数量,包括:所述第二指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源集合中的所有CSI-RS资源的数量。
  9. 根据权利要求6所述的方法,其特征在于,所述第二指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    接收第二终端设备发送的第三指示信息;
    其中,所述第三指示信息用于指示所述多个CSI-RS对应的至少一个CSI-RS资源集合和/或所述多个CSI-RS在至少一个CSI-RS资源集合中的每一个CSI-RS资源集合中对应的CSI-RS资源。
  11. 根据权利要求10所述的方法,其特征在于,所述第三指示信息包括所述至少一个CSI-RS资源集合的标识和/或所述多个CSI-RS在至少一个CSI-RS资源集合中的每一个CSI-RS资源集合中对应的CSI-RS资源的标识。
  12. 根据权利要求10所述的方法,其特征在于,所述至少一个CSI-RS资源集合的重复参数置为打开。
  13. 根据权利要求10所述的方法,其特征在于,所述至少一个CSI-RS资源集合关联的上报量置为空。
  14. 根据权利要求10所述的方法,其特征在于,所述第三指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述方法还包括:
    获取资源池配置信息或侧行带宽部分BWP配置信息;其中,所述资源池配置信息或BWP配置信息用于配置CSI-RS资源集合或CSI-RS资源;
    根据所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合确定所述至少一个CSI-RS资源集合。
  16. 根据权利要求15所述的方法,其特征在于,所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合包括第一CSI-RS资源集合和第二CSI-RS资源集合,所述第一CSI-RS资源集合的重复参数设置为关闭,所述第二CSI-RS资源集合的重复参数置为打开;所述至少一个CSI-RS资源集合是根据所述第二CSI-RS资源集合确定的。
  17. 根据权利要求15所述的方法,其特征在于,所述资源池配置信息或BWP配置信息包括以下参数中的至少一项:
    CSI-RS资源集合的标识;
    CSI-RS资源集合的重复参数;
    CSI-RS资源的标识;
    CSI上报量;
    CSI上报配置标识;
    一个CSI-RS资源占据的时域符号个数N,其中,N是大于或等于1的整数;
    用于确定一个时隙中CSI-RS资源所在的时域符号的信息;
    用于确定一个物理资源块PRB内CSI-RS资源所在的资源元素RE或子载波的位置的信息;
    CSI-RS天线端口数;或
    CSI-RS密度,用于指示一个天线端口的CSI-RS在一个PRB内占用的RE个数。
  18. 根据权利要求17所述的方法,其特征在于,所述CSI-RS密度小于1,所述CSI-RS资源配置信息还包括用于指示用于映射CSI-RS资源的PRB信息。
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,所述方法还包括:
    接收第二终端设备发送的第四指示信息;
    其中,所述第四指示信息用于指示第二终端设备发送的CSI-RS用于测量信道状态信息;或所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于确定用于所述第二终端设备进行侧行数据发送的目标空域发送滤波器;或所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于所述第一终端设备确定所述目标空域接收滤波器。
  20. 根据权利要求19所述的方法,其特征在于,所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于所述第一终端设备确定所述目标空域接收滤波器,包括所述第四指示信息用于指示以下中的至少一项:
    所述第二终端设备发送用于所述第一终端设备确定所述目标空域接收滤波器的CSI-RS;
    所述第二终端设备使用相同的空域发送滤波器发送所述多个CSI-RS;
    所述第二终端设备发送的CSI-RS对应的CSI-RS资源集合为重复参数置为打开的CSI-RS资源集合;或
    所述第二终端设备发送的CSI-RS关联的上报量置为空。
  21. 根据权利要求20所述的方法,其特征在于,所述第四指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
  22. 根据权利要求1至21中任一项所述的方法,其特征在于,所述方法包括:
    接收第二终端设备发送的第五指示信息,所述第五指示信息用于指示时延边界。
  23. 根据权利要求22所述的方法,其特征在于,所述使用多个空域接收滤波器分别接收多个信道状态信息参考信号CSI-RS,包括:
    在超过所述时延边界时,停止接收所述多个CSI-RS;
    其中,所述多个CSI-RS的测量结果包括所述多个CSI-RS中已收到的CSI-RS的测量结果。
  24. 根据权利要求22所述的方法,其特征在于,所述第五指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
  25. 根据权利要求1至24中任一项所述的方法,其特征在于,所述方法还包括:
    接收第二终端设备发送的第六指示信息,所述第六指示信息用于指示所述多个CSI-RS对应的多个传输资源。
  26. 根据权利要求25所述的方法,其特征在于,所述使用多个空域接收滤波器分别接收多个信道状态信息参考信号CSI-RS,包括:
    使用多个空域接收滤波器在所述多个传输资源上,接收所述多个CSI-RS。
  27. 根据权利要求25所述的方法,其特征在于,所述多个传输资源是第二终端设备通过侦听的方式获取的,或所述多个传输资源是所述第二终端设备从网络设备获取的。
  28. 根据权利要求25所述的方法,其特征在于,所述多个CSI-RS对应的优先级为最高优先级。
  29. 根据权利要求25所述的方法,其特征在于,所述第一终端设备期待所述第二终端设备使用所述多个传输资源发送所述多个CSI-RS;或者,所述第一终端设备不期待所述第二终端设备对所述多个传输资源进行资源重选;或者,所述第二终端设备不对所述多个传输资源进行资源重选;或者,所述第二终端设备不对所述多个传输资源进行重评估检测和抢占检测。
  30. 根据权利要求25所述的方法,其特征在于,所述第六指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
  31. 根据权利要求1至30中任一项所述的方法,其特征在于,所述基于所述多个CSI-RS的测量结 果,在所述多个空域接收滤波器中,确定用于第一终端设备进行侧行数据接收的目标空域接收滤波器,包括:
    基于所述多个CSI-RS的测量结果,在所述多个空域接收滤波器中,确定至少一个候选空域接收滤波器;
    在所述至少一个候选空域接收滤波器中,确定所述目标空域接收滤波器。
  32. 根据权利要求31所述的方法,其特征在于,所述基于所述多个CSI-RS的测量结果,在所述多个空域接收滤波器中,确定至少一个候选空域接收滤波器,包括:
    基于所述多个CSI-RS的测量结果,将测量结果大于或等于第一阈值的CSI-RS对应的空域接收滤波器,确定为所述至少一个候选空域接收滤波器。
  33. 根据权利要求32所述的方法,其特征在于,所述第一阈值为网络设备配置的,或所述第一阈值为第二终端设备指示的,或所述第一阈值为预配置的。
  34. 根据权利要求31所述的方法,其特征在于,所述在所述至少一个候选空域接收滤波器中,确定所述目标空域接收滤波器,包括:
    在所述至少一个候选空域接收滤波器中,根据测量结果从高到低的顺序,将具有最优测量结果的CSI-RS对应的空域接收滤波器,确定为所述目标空域接收滤波器。
  35. 根据权利要求1至34中任一项所述的方法,其特征在于,所述对所述多个CSI-RS进行测量,得到所述多个CSI-RS的测量结果,包括:
    对所述多个CSI-RS进行测量,得到所述多个CSI-RS的层1测量结果。
  36. 根据权利要求1至35中任一项所述的方法,其特征在于,所述测量结果包括侧行参考信号接收功率RSRP和/或侧行信号噪声干扰比SINR。
  37. 根据权利要求1至36中任一项所述的方法,其特征在于,所述方法还包括:
    接收第二终端设备发送的第七指示信息,所述第七指示信息用于指示每次接收的CSI-RS对应的资源索引。
  38. 根据权利要求37所述的方法,其特征在于,所述接收第二终端设备发送的第七指示信息,包括:
    接收所述第二终端设备发送的侧行控制信息SCI,所述SCI中包括所述第七指示信息。
  39. 一种无线通信方法,其特征在于,包括:
    使用相同的空域发送滤波器分别向第一终端设备发送多个信道状态信息参考信号CSI-RS;
    其中,所述多个CSI-RS用于所述第一终端设备从多个空域接收滤波器中确定用于进行侧行数据接收的目标空域接收滤波器。
  40. 根据权利要求39所述的方法,其特征在于,所述方法还包括:
    接收所述第一终端设备发送的第一指示信息;
    其中,所述第一指示信息用于指示所述多个空域接收滤波器的数量。
  41. 根据权利要求40所述的方法,其特征在于,所述多个空域接收滤波器包括所述第一终端设备的可用于进行侧行数据接收的空域接收滤波器。
  42. 根据权利要求40所述的方法,其特征在于,所述第一指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
  43. 根据权利要求39所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第二指示信息;
    其中,所述第二指示信息用于指示第二终端设备发送的CSI-RS的最大数量;或所述第二指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源的最大数量。
  44. 根据权利要求43所述的方法,其特征在于,所述最大数量大于或等于所述多个CSI-RS的数量。
  45. 根据权利要求43所述的方法,其特征在于,所述第二指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源的最大数量,包括:所述第二指示信息用于指示所述第二终端设备发送的CSI-RS对应的CSI-RS资源集合中的所有CSI-RS资源的数量。
  46. 根据权利要求43所述的方法,其特征在于,所述第二指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
  47. 根据权利要求39至46中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第三指示信息;
    其中,所述第三指示信息用于指示所述多个CSI-RS对应的至少一个CSI-RS资源集合和/或所述多个CSI-RS在至少一个CSI-RS资源集合中的每一个CSI-RS资源集合中对应的CSI-RS资源。
  48. 根据权利要求47所述的方法,其特征在于,所述第三指示信息包括所述至少一个CSI-RS资源 集合的标识和/或所述多个CSI-RS在至少一个CSI-RS资源集合中的每一个CSI-RS资源集合中对应的CSI-RS资源的标识。
  49. 根据权利要求47所述的方法,其特征在于,所述至少一个CSI-RS资源集合的重复参数置为打开。
  50. 根据权利要求47所述的方法,其特征在于,所述至少一个CSI-RS资源集合关联的上报量置为空。
  51. 根据权利要求47所述的方法,其特征在于,所述第三指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
  52. 根据权利要求47至51中任一项所述的方法,其特征在于,所述方法还包括:
    获取资源池配置信息或侧行带宽部分BWP配置信息;其中,所述资源池配置信息或BWP配置信息用于配置CSI-RS资源集合或CSI-RS资源;
    根据所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合确定所述至少一个CSI-RS资源集合。
  53. 根据权利要求52所述的方法,其特征在于,所述资源池配置信息或BWP配置信息配置的CSI-RS资源集合包括第一CSI-RS资源集合和第二CSI-RS资源集合,所述第一CSI-RS资源集合的重复参数设置为关闭,所述第二CSI-RS资源集合的重复参数置为打开;所述至少一个CSI-RS资源集合是根据所述第二CSI-RS资源集合确定的。
  54. 根据权利要求52所述的方法,其特征在于,所述资源池配置信息或BWP配置信息包括以下参数中的至少一项:
    CSI-RS资源集合的标识;
    CSI-RS资源集合的重复参数;
    CSI-RS资源的标识;
    CSI上报量;
    CSI上报配置标识;
    一个CSI-RS资源占据的时域符号个数N,其中,N是大于或等于1的整数;
    用于确定一个时隙中CSI-RS资源所在的时域符号的信息;
    用于确定一个物理资源块PRB内CSI-RS资源所在的资源元素RE或子载波的位置的信息;
    CSI-RS天线端口数;或
    CSI-RS密度,用于指示一个天线端口的CSI-RS在一个PRB内占用的RE个数。
  55. 根据权利要求54所述的方法,其特征在于,所述CSI-RS密度小于1,所述CSI-RS资源配置信息还包括用于指示用于映射CSI-RS资源的PRB信息。
  56. 根据权利要求39至55中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第四指示信息;
    其中,所述第四指示信息用于指示第二终端设备发送的CSI-RS用于测量信道状态信息;或所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于确定用于所述第二终端设备进行侧行数据发送的目标空域发送滤波器;或所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于所述第一终端设备确定所述目标空域接收滤波器。
  57. 根据权利要求56所述的方法,其特征在于,所述第四指示信息用于指示所述第二终端设备发送的CSI-RS用于所述第一终端设备确定所述目标空域接收滤波器,包括所述第四指示信息用于指示以下中的至少一项:
    所述第二终端设备发送用于所述第一终端设备确定所述目标空域接收滤波器的CSI-RS;
    所述第二终端设备使用相同的空域发送滤波器发送所述多个CSI-RS;
    所述第二终端设备发送的CSI-RS对应的CSI-RS资源集合为重复参数置为打开的CSI-RS资源集合;或
    所述第二终端设备发送的CSI-RS关联的上报量置为空。
  58. 根据权利要求57所述的方法,其特征在于,所述第四指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
  59. 根据权利要求39至58中任一项所述的方法,其特征在于,所述方法包括:
    向所述第一终端设备发送第五指示信息,所述第五指示信息用于指示时延边界。
  60. 根据权利要求59所述的方法,其特征在于,所述使用相同的空域发送滤波器分别向第一终端设备发送多个信道状态信息参考信号CSI-RS,包括:
    在超过所述时延边界时,停止发送所述多个CSI-RS。
  61. 根据权利要求59所述的方法,其特征在于,所述第五指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
  62. 根据权利要求39至61中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第六指示信息,所述第六指示信息用于指示所述多个CSI-RS对应的多个传输资源。
  63. 根据权利要求62所述的方法,其特征在于,所述使用相同的空域发送滤波器分别向第一终端设备发送多个信道状态信息参考信号CSI-RS,包括:
    使用相同的空域发送滤波器在所述多个传输资源上,发送所述多个CSI-RS。
  64. 根据权利要求62所述的方法,其特征在于,所述多个传输资源是第二终端设备通过侦听的方式获取的,或所述多个传输资源是所述第二终端设备从网络设备获取的。
  65. 根据权利要求62所述的方法,其特征在于,所述多个CSI-RS对应的优先级为最高优先级。
  66. 根据权利要求62所述的方法,其特征在于,所述第一终端设备期待第二终端设备使用所述多个传输资源发送所述多个CSI-RS;或者,所述第一终端设备不期待所述第二终端设备对所述多个传输资源进行资源重选;或者,所述第二终端设备不对所述多个传输资源进行资源重选;或者,所述第二终端设备不对所述多个传输资源进行重评估检测和抢占检测。
  67. 根据权利要求62所述的方法,其特征在于,所述第六指示信息携带在以下中的至少一项中:侧行控制信息SCI、媒体接入控制控制元素MAC CE或PC5无线资源控制RRC。
  68. 根据权利要求39至67中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第七指示信息,所述第七指示信息用于指示每次发送的CSI-RS对应的资源索引。
  69. 根据权利要求68所述的方法,其特征在于,所述向所述第一终端设备发送第七指示信息,包括:
    向所述第一终端设备发送侧行控制信息SCI,所述SCI中包括所述第七指示信息。
  70. 一种第一终端设备,其特征在于,包括:
    接收单元,用于使用多个空域接收滤波器分别接收多个信道状态信息参考信号CSI-RS;
    处理单元,用于:
    对所述多个CSI-RS进行测量,得到所述多个CSI-RS的测量结果;
    基于所述多个CSI-RS的测量结果,在所述多个空域接收滤波器中,确定用于第一终端设备进行侧行数据接收的目标空域接收滤波器。
  71. 一种第二终端设备,其特征在于,包括:
    发送单元,用于使用相同的空域发送滤波器分别向第一终端设备发送多个信道状态信息参考信号CSI-RS;
    其中,所述多个CSI-RS用于所述第一终端设备从多个空域接收滤波器中确定用于进行侧行数据接收的目标空域接收滤波器。
  72. 一种终端设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至38中任一项所述的方法。
  73. 一种网络设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求39至69中任一项所述的方法。
  74. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至38中任一项所述的方法或如权利要求39至69中任一项所述的方法。
  75. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至38中任一项所述的方法或如权利要求39至69中任一项所述的方法。
  76. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至38中任一项所述的方法或如权利要求39至69中任一项所述的方法。
  77. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至38中任一项所述的方法或如权利要求39至69中任一项所述的方法。
PCT/CN2021/113219 2021-08-18 2021-08-18 无线通信方法、第一终端设备和第二终端设备 WO2023019464A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180101525.2A CN117813772A (zh) 2021-08-18 2021-08-18 无线通信方法、第一终端设备和第二终端设备
PCT/CN2021/113219 WO2023019464A1 (zh) 2021-08-18 2021-08-18 无线通信方法、第一终端设备和第二终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113219 WO2023019464A1 (zh) 2021-08-18 2021-08-18 无线通信方法、第一终端设备和第二终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/436,174 Continuation US20240178895A1 (en) 2024-02-08 Wireless communication method, first terminal device, and second terminal device

Publications (1)

Publication Number Publication Date
WO2023019464A1 true WO2023019464A1 (zh) 2023-02-23

Family

ID=85239974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113219 WO2023019464A1 (zh) 2021-08-18 2021-08-18 无线通信方法、第一终端设备和第二终端设备

Country Status (2)

Country Link
CN (1) CN117813772A (zh)
WO (1) WO2023019464A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190253119A1 (en) * 2018-02-13 2019-08-15 Industrial Technology Research Institute Channel status information reporting method and detecting method and communication device and base station therefor
CN110661556A (zh) * 2018-06-29 2020-01-07 华为技术有限公司 发送和接收信道状态信息的方法和通信装置
CN111567081A (zh) * 2017-12-19 2020-08-21 三星电子株式会社 用于下一代无线系统中的波束报告的方法和装置
CN112312460A (zh) * 2019-07-29 2021-02-02 华为技术有限公司 测量上报的方法与装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111567081A (zh) * 2017-12-19 2020-08-21 三星电子株式会社 用于下一代无线系统中的波束报告的方法和装置
US20190253119A1 (en) * 2018-02-13 2019-08-15 Industrial Technology Research Institute Channel status information reporting method and detecting method and communication device and base station therefor
CN110661556A (zh) * 2018-06-29 2020-01-07 华为技术有限公司 发送和接收信道状态信息的方法和通信装置
CN112312460A (zh) * 2019-07-29 2021-02-02 华为技术有限公司 测量上报的方法与装置

Also Published As

Publication number Publication date
CN117813772A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
WO2018141272A1 (zh) 终端、网络设备和通信方法
WO2021013013A1 (en) Methods and devices for determining spatial relation, user equipment and network device
US20220286251A1 (en) Method for transmitting srs and terminal therefor
CN115553005A (zh) 侧行反馈资源配置方法、终端设备和网络设备
US20230063901A1 (en) Sidelink feedback method and terminal device
WO2021159413A1 (zh) 下行传输方法和终端设备
US20220394503A1 (en) Wireless communication method and device
WO2023028969A1 (zh) 通信方法及终端
CN113286276A (zh) 侧行链路中确定传输模式的方法、终端设备和网络设备
WO2023019464A1 (zh) 无线通信方法、第一终端设备和第二终端设备
WO2022155975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022082511A1 (zh) 无线通信的方法及设备
CN117397173A (zh) 信息传输方法、设备及存储介质
US20240178895A1 (en) Wireless communication method, first terminal device, and second terminal device
WO2023023946A1 (zh) 无线通信的方法和终端设备
WO2023019860A1 (zh) 无线通信的方法和终端设备
WO2023019463A1 (zh) 无线通信的方法和设备
WO2023028988A1 (zh) 无线通信的方法和终端设备
WO2023115296A1 (zh) 无线通信方法、第一终端设备和第二终端设备
WO2023019465A1 (zh) 无线通信的方法和终端设备
WO2023028987A1 (zh) 无线通信的方法和终端设备
WO2023142016A1 (zh) 无线通信的方法及终端设备
AU2019460763A1 (en) Information processing method, network device, and user equipment
WO2023142122A1 (zh) 通信方法、装置、终端设备、芯片、介质、产品及程序
WO2023115335A1 (zh) 一种侧行传输方法及装置、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953712

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101525.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021953712

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021953712

Country of ref document: EP

Effective date: 20240318