WO2023019463A1 - 无线通信的方法和设备 - Google Patents

无线通信的方法和设备 Download PDF

Info

Publication number
WO2023019463A1
WO2023019463A1 PCT/CN2021/113218 CN2021113218W WO2023019463A1 WO 2023019463 A1 WO2023019463 A1 WO 2023019463A1 CN 2021113218 W CN2021113218 W CN 2021113218W WO 2023019463 A1 WO2023019463 A1 WO 2023019463A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
terminal device
information
resources
resource
Prior art date
Application number
PCT/CN2021/113218
Other languages
English (en)
French (fr)
Inventor
赵振山
张世昌
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/113218 priority Critical patent/WO2023019463A1/zh
Priority to CN202180101560.4A priority patent/CN117941387A/zh
Publication of WO2023019463A1 publication Critical patent/WO2023019463A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • the embodiments of the present application relate to the communication field, and in particular to a method and device for wireless communication.
  • NR New Radio
  • an effective solution is based on a large-scale antenna array (Massive MIMO) to form a shaped beam with greater gain and overcome propagation loss. Make sure the system is covered. For example, different beams are used to cover the entire cell.
  • Mass MIMO massive MIMO
  • the present application provides a method and device for wireless communication, which is beneficial for selecting an optimal airspace transmission filter between a transmitting terminal and a receiving terminal.
  • a method for wireless communication including: a first terminal device sends M channel state information reference signals CSI-RS to a second terminal device using a spatial transmission filter, and the M CSI-RS are used for Selecting a target spatial domain transmission filter; wherein, the M CSI-RSs correspond to multiple CSI-RS resources in the target CSI-RS resource set, and M is a positive integer.
  • a wireless communication method including: a second terminal device receiving M channel state information reference signals CSI-RS sent by a first terminal device, wherein the M CSI-RS are used to select a target In the spatial domain transmission filter, the M CSI-RSs correspond to multiple CSI-RS resources in the target CSI-RS resource set, and M is a positive integer.
  • a terminal device configured to execute the method in the foregoing first aspect or various implementation manners thereof.
  • the terminal device includes a functional module for executing the method in the above first aspect or its various implementation manners.
  • a terminal device configured to execute the method in the foregoing second aspect or its various implementation manners.
  • the network device includes a functional module for executing the method in the above second aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above first aspect or its various implementations.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above second aspect or its various implementations.
  • a chip is provided for implementing any one of the above first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first to second aspects or any of the implementations thereof. method.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • a ninth aspect provides a computer program product, including computer program instructions, the computer program instructions cause a computer to execute any one of the above first to second aspects or the method in each implementation manner.
  • a computer program which, when running on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner.
  • the transmitting terminal uses the airspace transmission filter to transmit M CSI-RSs to the receiving terminal.
  • the receiving terminal can measure the M CSI-RSs, which is beneficial for selecting the transmitting terminal and the receiving terminal.
  • Fig. 1 is a schematic diagram of a communication system architecture provided by the present application.
  • Fig. 2 is a schematic diagram of another communication system architecture provided by the present application.
  • Fig. 3 is a schematic diagram of uplink communication within a network coverage provided by the present application.
  • Fig. 4 is a schematic diagram of partial network coverage side communication provided by the present application.
  • Fig. 5 is a schematic diagram of outbound communication provided by the network coverage provided by the present application.
  • Fig. 6 is a schematic diagram of unicast sidelink communication provided by the present application.
  • Fig. 7 is a schematic diagram of multicast sideline communication provided by the present application.
  • Fig. 8 is a schematic diagram of broadcast sideline communication provided by the present application.
  • FIG. 9 is a schematic diagram of a time slot structure of NR-V2X.
  • Fig. 10 is a schematic diagram of a system without using analog beams and using analog beams.
  • Fig. 11 is a schematic interaction diagram of a wireless communication method provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a sending beam used by a sending terminal.
  • Fig. 13 is a schematic diagram of a process of determining a transmission beam by a transmitting terminal and a receiving terminal.
  • FIG. 20 is a schematic diagram of a MAC CE carrying first information according to an embodiment of the present application.
  • FIG. 21 is a schematic diagram of another MAC CE carrying first information according to an embodiment of the present application.
  • Fig. 22 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 23 is a schematic block diagram of another terminal device provided according to an embodiment of the present application.
  • Fig. 24 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 25 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • Fig. 26 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network A network device or a base station (gNB) in a network device or a network device in a future evolved PLMN network or a network device in an NTN network.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • eNB evolved base station
  • gNB base station
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • Fig. 1 is a schematic diagram of a communication system to which the embodiment of the present application is applicable.
  • the transmission resources of the vehicle-mounted terminals (vehicle-mounted terminal 121 and vehicle-mounted terminal 122 ) are allocated by the base station 110 , and the vehicle-mounted terminals transmit data on the sidelink according to the resources allocated by the base station 110 .
  • the base station 110 may allocate resources for a single transmission to the terminal, or may allocate resources for semi-static transmission to the terminal.
  • Fig. 2 is a schematic diagram of another communication system to which the embodiment of the present application is applicable.
  • the vehicle-mounted terminals (vehicle-mounted terminal 131 and vehicle-mounted terminal 132 ) autonomously select transmission resources on sidelink resources for data transmission.
  • the vehicle-mounted terminal may select transmission resources randomly, or select transmission resources by listening.
  • side communication according to the network coverage of the communicating terminal, it can be divided into network coverage inner communication, as shown in Figure 3; part of the network coverage side communication, as shown in Figure 4 ; and network coverage outer line communication, as shown in FIG. 5 .
  • Figure 3 In inline communication within the network coverage, all terminals performing sideline communication are within the coverage of the base station. Therefore, the above-mentioned terminals can perform sideline communication based on the same sideline configuration by receiving configuration signaling from the base station .
  • FIG 4 In the case of partial network coverage for sidelink communication, some terminals performing sidelink communication are located within the coverage of the base station. These terminals can receive configuration signaling from the base station and perform sidelink communication according to the configuration of the base station. However, terminals located outside the network coverage cannot receive the configuration signaling from the base station. In this case, the terminals outside the network coverage will use the pre-configuration information and the physical The information carried in the Physical Sidelink Broadcast Channel (PSBCH) determines the sidelink configuration for sidelink communication.
  • PSBCH Physical Sidelink Broadcast Channel
  • Figure 5 For outbound communication under network coverage, all terminals performing side communication are located outside the network coverage, and all terminals determine side communication according to pre-configuration information to perform side communication.
  • device-to-device communication is based on a sidelink (Sidelink, SL) transmission technology based on device to device (D2D), and the communication data in the traditional cellular system is received or sent through the base station.
  • SL sidelink
  • D2D device to device
  • the Internet of Vehicles system adopts the method of terminal-to-terminal direct communication, so it has higher spectral efficiency and lower transmission delay.
  • Two transmission modes are defined in 3GPP, which are respectively recorded as: the first mode and the second mode.
  • the first mode the transmission resources of the terminal are allocated by the base station, and the terminal sends data on the sidelink according to the resources allocated by the base station; the base station can allocate resources for a single transmission to the terminal, and can also allocate semi-static transmission to the terminal H. As shown in FIG. 3 , the terminal is located within the coverage of the network, and the network allocates transmission resources for sidelink transmission to the terminal.
  • the second mode the terminal selects a resource from the resource pool for data transmission.
  • the terminal is located outside the coverage of the cell, and the terminal independently selects transmission resources from the pre-configured resource pool for sidelink transmission; or, as shown in Figure 3, the terminal independently selects transmission resources from the resource pool configured by the network Make sideways transfers.
  • unicast transmission there is only one receiving terminal.
  • the receiving terminal is all terminals in a communication group, or in All terminals within a certain transmission distance, as shown in Figure 7, UE1, UE2, UE3, and UE4 form a communication group, in which UE1 sends data, and other terminal devices in the group are receiver terminals; for broadcast transmission mode, its The receiving terminal is any terminal around the transmitting terminal.
  • UE1 is the transmitting terminal, and other terminals around it, UE2-UE6 are all receiving terminals.
  • time slot structure in NR-V2X will be described with reference to FIG. 9 .
  • FIG. 9 represents a time slot structure not including a physical sidelink feedback channel (Physical Sidelink Feedback Channel, PSFCH) PSFCH in a time slot;
  • PSFCH Physical Sidelink Feedback Channel
  • the Physical Sidelink Control Channel starts from the second sidelink symbol of the time slot in the time domain and occupies 2 or 3 OFDM symbols.
  • ⁇ 10, 12 15, 20, 25 ⁇ physical resource blocks (physical resource blocks, PRBs) can be occupied.
  • PRBs physical resource blocks
  • the sub-channel is the minimum granularity for Physical Sidelink Shared Channel (PSSCH) resource allocation in NR-V2X
  • the number of PRBs occupied by PSCCH must be less than or equal to the number of PRBs in a sub-channel in the resource pool.
  • the number of included PRBs so as not to impose additional restrictions on PSSCH resource selection or allocation.
  • the PSSCH also starts from the second side row symbol of the time slot, the last time domain symbol in the time slot is a guard interval (Guard Period, GP) symbol, and the remaining symbols are mapped to the PSSCH.
  • the first side row symbol in this time slot is the repetition of the second side row symbol.
  • the receiving terminal uses the first side row symbol as an automatic gain control (Automatic Gain Control, AGC) symbol.
  • AGC Automatic Gain Control
  • Data is generally not used for data demodulation.
  • the PSSCH occupies P subchannels in the frequency domain, and each subchannel includes Q consecutive PRBs, where P and Q are positive integers.
  • Multi-beam multi-beam
  • the design goal of the NR system includes large-bandwidth communication in a high-frequency band (for example, a frequency band above 6 GHz).
  • a high-frequency band for example, a frequency band above 6 GHz.
  • the path loss in the transmission process will increase, thereby affecting the coverage capability of the high-frequency system.
  • an effective technical solution is based on a massive antenna array (Massive MIMO) to form a shaped beam with greater gain, overcome propagation loss, and ensure system coverage.
  • Mass MIMO massive antenna array
  • the millimeter-wave antenna array due to the shorter wavelength, smaller antenna element spacing and smaller aperture, allows more physical antenna elements to be integrated in a limited-sized two-dimensional antenna array.
  • Due to the limited size of the millimeter-wave antenna array from Considering factors such as hardware complexity, cost overhead, and power consumption, digital beamforming cannot be used, but analog beamforming is usually used, which can reduce the complexity of device implementation while enhancing network coverage.
  • a cell uses a wider beam (beam) to cover the entire cell. Therefore, at each moment, UEs within the coverage of the cell have a chance to obtain transmission resources allocated by the system.
  • NR's Multi-beam system covers the entire cell through different beams, that is, each beam covers a small range, and the effect of multiple beams covering the entire cell is realized through time sweeping.
  • FIG. 10 shows a schematic diagram of a system without beamforming and with beamforming.
  • FIG. 10 is a schematic diagram of a traditional LTE system and an NR system without beamforming
  • FIG. 10 is a schematic diagram of an NR system using beamforming.
  • different beams are identified by different signals carried on them.
  • synchronization signals/physical broadcast channel blocks (synchronization signal/physical broadcast channel block, SS/PBCH block, or SSB) are transmitted on different beams, and the UE can distinguish different beams through different SSBs.
  • CSI-RS Channel State Information Reference Signal
  • a physical downlink control channel Physical Downlink Control Channel, PDCCH
  • a physical downlink shared channel Physical Downlink Shared Channel, PDSCH
  • omnidirectional antennas or near-omnidirectional antennas are used to receive signals sent by the base station through different downlink transmission beams.
  • a corresponding downlink receiving beam needs to be used to receive a signal sent by a corresponding downlink transmitting beam.
  • corresponding beam indication information (beam indication) is needed to assist the terminal device to determine the related information of the transmitting beam on the network device side, or the corresponding receiving beam related information on the terminal device side.
  • the beam indication information does not directly indicate the beam itself, but is indicated by quasi-co-located (QCL) ('QCL-TypeD' type) between signals.
  • QCL quasi-co-located
  • determining the statistical characteristics of receiving the corresponding channel/signal is also based on the QCL assumption.
  • the terminal device When the terminal device receives signals, in order to improve the receiving performance, it can use the characteristics of the transmission environment corresponding to the data transmission to improve the receiving algorithm. For example, the statistical properties of the channel can be used to optimize the design and parameters of the channel estimator. In the NR system, these characteristics corresponding to data transmission are represented by QCL status (QCL-Info).
  • QCL-Info QCL status
  • the network When the device side is transmitting the downlink control channel or data channel, it will indicate the corresponding QCL status information to the terminal device through the Transmission Configuration Indicator (TCI) state.
  • TRP Transmission Reception Point
  • TRP Transmission Reception Point
  • panel panel
  • beam beam
  • a TCI state may include the following configurations:
  • TCI state ID used to identify a TCI state
  • a QCL information contains the following information:
  • QCL type configuration which can be one of QCL type A, QCL typeB, QCL typeC or QCL typeD;
  • QCL reference signal configuration including the cell ID where the reference signal is located, the BWP ID and the identification of the reference signal (which can be a CSI-RS resource ID or a synchronization signal block (Synchronization Signal Block, SSB) index);
  • the QCL type of at least one QCL information must be one of QCL typeA, QCL typeB, and QCL typeC, and the QCL type of the other QCL information must be QCL type D.
  • 'QCL-TypeA' ⁇ Doppler shift (Doppler shift), Doppler spread (Doppler spread), average delay (average delay), delay spread (delay spread) ⁇ ;
  • 'QCL-TypeB' ⁇ Doppler shift (Doppler shift), Doppler spread (Doppler spread) ⁇ ;
  • 'QCL-TypeC' ⁇ Doppler shift (Doppler shift), average delay (average delay) ⁇ ;
  • the network device side can indicate the corresponding TCI state for the downlink signal or downlink channel.
  • the terminal device can assume that the target downlink signal It is the same as the large-scale parameter of the reference SSB or reference CSI-RS resource, and the large-scale parameter is determined through QCL type configuration.
  • the terminal device can adopt and receive the reference SSB or reference CSI-RS resource.
  • the target downlink channel or target downlink signal is received with reference to the receiving beam (that is, the Spatial Rx parameter) with the same CSI-RS resource.
  • the target downlink channel (or downlink signal) and its reference SSB or reference CSI-RS resource are sent by the same TRP or the same panel or the same beam on the network device side. If the transmission TRP or transmission panel or transmission beam of two downlink signals or downlink channels are different, different TCI states are usually configured.
  • control resource set (Control Resource Set, CORESET) TCI status.
  • the available TCI state set is indicated by RRC signaling, and some of the TCI states are activated by MAC layer signaling, and finally activated by the TCI state indication field in the downlink control information (Downlink Control Information, DCI)
  • DCI Downlink Control Information
  • One or two TCI states are indicated in the TCI state for the PDSCH scheduled by the DCI.
  • the millimeter wave frequency band is considered to be used in the sidelink transmission system.
  • how to select the optimal transmission beam between the transmitting terminal and the receiving terminal is a problem that needs to be solved.
  • this application proposes a scheme for determining the optimal spatial transmission filter between the transmitting terminal and the receiving terminal, which is beneficial to determine the optimal spatial transmission filter between the transmitting terminal and the receiving terminal .
  • FIG. 11 is a schematic interaction diagram of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 11 , the method 200 includes at least part of the following content:
  • the first terminal device sends M channel state information reference signals CSI-RS to the second terminal device using the airspace transmission filter, and the M CSI-RSs are used to select a target airspace transmission filter, wherein the M The CSI-RS corresponds to multiple CSI-RS resources in the target CSI-RS resource set, and M is a positive integer.
  • the second terminal device can measure the received CSI-RS, obtain the measurement result, and further perform CSI reporting or feedback according to the measurement result, so that the first terminal device can determine the target airspace transmission filter according to the CSI reporting or feedback. device.
  • S210 may be replaced by: the first terminal device sends M side signals to the second terminal device using the airspace transmission filter, and the M sideline signals are used to select the target airspace transmission filter .
  • the sidelink signal can be, for example, CSI-RS, demodulation reference signal (Demodulation Reference Signal, DMRS), positioning reference signal (positioning reference signals, PRS), phase tracking reference signal (Phase Tracking Reference Signal , PT-RS) or side line synchronization signal (including side line main synchronization signal and/or side line secondary synchronization signal), etc.
  • the DMRS can be used for demodulation of Physical Sidelink Control Channel (Physical Sidelink Control Channel, PSCCH ) DMRS, or a DMRS used to demodulate a Physical Sidelink Shared Channel (PSSCH).
  • PSSCH Physical Sidelink Shared Channel
  • the sidelink signal is CSI-RS as an example for description, but the present application is not limited thereto.
  • the first terminal device is a sending terminal
  • the second terminal device is a receiving terminal
  • a spatial domain transmission filter may also be referred to as a transmission beam, a spatial relation, or a spatial setting.
  • the spatial transmit filter and the spatial receive filter are collectively referred to as a spatial filter
  • the spatial transmit filter may also be referred to as a transmit-end spatial filter
  • the spatial receive filter may also be referred to as a receive-end spatial filter.
  • the sending of the CSI-RS by the first terminal device may also be expressed as sending the CSI-RS resource by the first terminal device, that is, the two are equivalent expressions.
  • the CSI-RS measurement result is equivalent to the CSI-RS resource measurement result.
  • each CSI-RS in the M CSI-RS corresponds to a CSI-RS resource in the target CSI-RS resource set
  • the M CSI-RS corresponds to the target CSI-RS resource set
  • the multiple CSI-RS resources in the RS resource set may refer to: the CSI-RS resources corresponding to the M CSI-RS are different in pairs, that is, the M CSI-RS and the multiple CSI-RS resources are in one-to-one correspondence or, among the M CSI-RSs, there are at least two CSI-RSs corresponding to different CSI-RS resources. That is, the first terminal device transmits at least two CSI-RS resources by using the spatial domain transmission filter.
  • the sending of the M CSI-RSs by the first terminal device to the second terminal device using a spatial transmission filter may refer to: the sending of the M CSI-RSs by the first terminal device using a different spatial transmission filter - RSs, for example, the M CSI-RSs correspond to different transmission beams; or, the first terminal device does not use the same spatial domain transmission filter to transmit the M CSI-RSs, for example, transmits the M CSI-RSs CSI-RS uses at least two different transmit beams.
  • the sending of the M CSI-RSs to the second terminal device by the first terminal device using a spatial transmission filter may include:
  • the first terminal device transmits M CSI-RSs to the second terminal device by using M spatial transmission filters, where each spatial transmission filter corresponds to one CSI-RS.
  • the sending of the M CSI-RSs to the second terminal device by the first terminal device using a spatial transmission filter may include:
  • the first terminal device transmits M CSI-RSs to the second terminal device using K spatial domain transmission filters, where K is less than M and K is greater than 1, that is, there are at least two CSI-RSs among the M CSI-RSs - RS is transmitted through different spatial domain transmit filters.
  • the terminal device may use a beam for sidelink data transmission.
  • the transmitting terminal may determine a transmitting beam suitable for the receiving terminal to improve sidelink transmission performance.
  • the first terminal device when used as the transmitting terminal, it can transmit the side-going reference signal through different transmitting beams.
  • the receiving-end terminal can measure the side-going reference signal sent by the transmitting terminal, and select the optimal measurement result corresponding to The optimal transmit beam is further fed back to the receiving terminal, so that the transmitting terminal performs subsequent lateral transmission according to the optimal transmitting beam fed back by the receiving terminal, thereby improving transmission performance.
  • there is a corresponding relationship between the transmission beam and the reference signal resource The receiving terminal selects the transmission beam corresponding to the optimal measurement result, and feeds back the reference signal resource information corresponding to the transmission beam to the transmitting terminal.
  • the transmitting terminal according to The reference signal resource information and the corresponding relationship can determine the optimal transmission beam.
  • the corresponding repetition (repetition) field in the configuration information of the target CSI-RS resource set takes a first value, where the first value is used to indicate that the first terminal device does not use the same
  • the spatial domain transmission filter transmits the CSI-RS resources in the target CSI-RS resource set, in other words, the first value is used to instruct the first terminal device to use a different spatial domain transmission filter to transmit the target CSI-RS CSI-RS resources in the resource set.
  • the first value may be off (off), indicating that the first terminal device transmits the M CSI-RSs for selecting a target airspace transmission filter.
  • the first terminal device when the first terminal device works in the first mode, the first terminal device may send the CSI-RS based on the sidelink transmission resource allocated by the network device; when the first terminal device works in the second mode The first terminal device may determine the transmission resource for sending the CSI-RS based on the interception result, where, for the working principles of the first mode and the second mode, refer to the relevant descriptions of the foregoing embodiments.
  • the method 200 further includes:
  • the first terminal device sends first indication information to a network device, where the first indication information is used to instruct the first terminal device to request the network device to allocate a transmission resource for sending a CSI-RS.
  • the first indication information is carried in resource request information, and the resource request information is used to request a sidelink transmission resource from a network device.
  • the first terminal device works in the first mode, and when the first terminal device determines that it needs to send CS-RS to determine the optimal transmission beam, it sends resource request information to the network device, and the resource request information carries The first instruction message.
  • the fact that the first terminal device needs to send CSI-RS may refer to that the first terminal device needs to send multiple CSI-RSs, or that the first terminal device needs to send CSI-RSs through different sending beams.
  • the first terminal device may periodically send the CSI-RS, so that the second terminal device may perform periodic measurement. Therefore, the first indication information may be used to indicate that the first terminal device needs to periodically send a CSI-RS, or that the first terminal device requests periodic sidelink resources.
  • the first indication information may further include period information for sending the CSI-RS by the first terminal device. Therefore, the network device can allocate periodic sidelink resources to the first terminal device according to the first indication information.
  • the first indication information may further include the value of M.
  • the network device can respectively allocate corresponding sidelink transmission resources for the first terminal device to send the M CSI-RSs.
  • the resource request information may include but not limited to at least one of the following:
  • SR Scheduling Request
  • BSR Buffer Status Report
  • the first indication information may be sent through any uplink channel or signaling.
  • physical uplink control channel Physical Uplink Control Channel, PUCCH
  • uplink radio resource control Radio Resource Control, RRC
  • the method further includes:
  • the first terminal device receives first configuration information sent by a network device, where the first configuration information includes transmission resources allocated by the network device to the first terminal device for sending CSI-RS.
  • the first configuration information includes second indication information
  • the second indication information is used to indicate that the sidelink side transmission resource allocated by the network device is used to transmit the information used to select the target airspace transmission filter.
  • the CSI-RS or, the second indication information is used to indicate that the sidelink transmission resource allocated by the network device is used for sending the CSI-RS by the first terminal device.
  • the network device may allocate sidelink transmission resources to the first terminal device by means of dynamic resource allocation, or allocation of a sidelink configuration grant (Configure Grant, CG).
  • CG sidelink configuration grant
  • Allocating, by the network device, the sidelink transmission resource of the sidelink configuration grant to the first terminal device may be: the network device allocates the periodic sidelink transmission resource to the first terminal device. In this way, the first terminal device may periodically send the CSI-RS to the second terminal device by using the periodic resource authorized by the sideline configuration.
  • the network device when the network device allocates the periodic resources of the sidelink configuration grant to the first terminal device, only one sidelink transmission resource is included in each period.
  • the network device may allocate sidelink transmission resources to the first terminal device through the DCI, and in this case, the allocated sidelink resources are dynamic resources.
  • the network device may allocate sidelink transmission resources to the first terminal device through RRC signaling, and in this case, the allocated sidelink resources may be Type 1 (Type-1) sidelink configuration grants.
  • the network device may allocate sidelink transmission resources to the first terminal device through RRC signaling and DCI, and in this case, the allocated sidelink resources may be Type-2 (Type-2) sidelink configuration grants.
  • the second indication information is carried by at least one of the following signalings: DCI, RRC signaling.
  • the embodiment of the present application does not limit the manner in which the second indication information is carried in signaling.
  • the second indication information is carried by DCI
  • the second indication information is carried in the information field of the DCI, for example, the DCI is carried in the DCI by adding an information field or multiplexing an existing information field
  • the second indication information, or, the second indication information is carried by a radio network temporary identifier (Radio Network Temporary Identity, RNTI) that generates a scrambling sequence of information bits of the scrambled DCI.
  • RNTI Radio Network Temporary Identity
  • the first terminal device determines the target CSI-RS according to the resource pool configuration information or the first CSI-RS resource set included in the sidelink bandwidth part (Band Width Part, BWP) configuration information A resource set, determining the CSI-RS resources included in the target CSI-RS resource set according to the CSI-RS resources included in the first CSI-RS resource set.
  • BWP sidelink bandwidth part
  • the resource pool configuration information or side BWP configuration information includes CSI-RS resource set (CSI-RS-ResourceSet) configuration information and/or CSI reporting configuration information.
  • CSI-RS-ResourceSet CSI-RS resource set
  • the CSI-RS resource set configuration information includes one or more of the following parameters:
  • CSI-RS resource set identifier (CSI-RS-ResourceSetId);
  • CSI-RS resource configuration information (CSI-RS-Resource);
  • Parameter repetition (repetition) configuration information for example, the value is off (off) or on (on);
  • Indication information for determining the time-domain symbol where the first CSI-RS resource is located for example, indicated by the time-domain symbol index in the time slot;
  • RE Resource Element
  • PRB physical resource block
  • the transmitting terminal When the transmitting terminal sends indication information to the receiving terminal, indicating that the CSI-RS resource in the CSI-RS resource set whose repetition is off is to be transmitted, the receiving terminal may assume that the transmitting terminal does not use the same transmission beam to transmit CSI-RS Therefore, the receiving terminal can measure according to the CSI-RS, and report or feed back CSI to the transmitting terminal, so that the first terminal can determine the target transmission beam according to the CSI reporting or feedback.
  • the receiving terminal may assume that the transmitting terminal uses the same transmission beam to transmit the CSI-RS resources. Therefore, the receiving terminal The terminal may use different receiving beams for reception, measure the CSI-RS, and determine the receiving beam according to the measurement result.
  • the CSI reporting configuration information includes one or more of the following parameters:
  • CSI report configuration identifier (CSI-ReportConfigId);
  • the CSI-RS resource set identifier (CSI-RS-ResourceSetId) is used for associating the CSI-RS resource set with the amount of CSI reporting.
  • the amount of CSI reporting may include indication information of the CSI-RS resources that the receiving terminal selects to report and/or measurement results of the CSI-RS resources that the receiving terminal selects to report.
  • the indication information of the CSI-RS resource may be direct indication information of the CSI-RS resource, such as a resource index of the CSI-RS resource, or may be indirect indication information of the CSI-RS resource, such as , transmission resource information corresponding to the CSI-RS resource, and the like.
  • the transmission resource information corresponding to the CSI-RS resource may refer to resource information for transmitting the CSI-RS resource, for example, time slot information for transmitting the CSI-RS resource.
  • the measurement results of CSI-RS resources may include but not limited to at least one of the following:
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • SINR Signal to Interference plus Noise Ratio
  • the CSI reporting amount may include but not limited to at least one of the following:
  • CSI-RS Resource Indicator CRI
  • CRI and Reference Signal Receiving Power Reference Signal Receiving Power
  • RSRP Reference Signal Receiving Power
  • SINR Signal to Interference plus Noise Ratio
  • slot resource indication slot resource indication and RSRP, slot resource indication and SINR, do not report or empty ('none').
  • the CRI may be a resource index of a CSI-RS resource.
  • the time slot resource indication may be used to indicate the time slot information corresponding to the CSI-RS resource selected by the receiving end terminal of the CSI-RS resource.
  • the first terminal device sends a CSI-RS resource in a time slot, and when the second terminal device receives the CSI-RS resource, it can know the time slot information of the first terminal device sending the CSI-RS resource, if If the second terminal device chooses to report or feed back the CSI-RS resource, it can feed back the time slot information corresponding to the CSI-RS resource. In this way, the first terminal device can determine the CSI corresponding to the time slot information based on the time slot information. -RS resources.
  • the resource pool configuration information or side BWP configuration information further includes one or more of the following parameters:
  • the number of antenna ports for example, the number of antenna ports indicating the CSI-RS is ⁇ 1,2,4,8 ⁇ , etc.;
  • the CSI-RS density is used to indicate the number of REs occupied by the CSI-RS of each antenna port in each PRB. If the density is 2, it means that in each PRB, the CSI-RS of each antenna port occupies 2 REs.
  • the resource pool configuration information or side BWP configuration information may further include PRB information used to indicate the CSI-RS resource mapping.
  • PRB information used to indicate the CSI-RS resource mapping.
  • the density is 0.5, that is, when each antenna port occupies 1 RE in every 2 PRBs
  • the resource pool configuration information or sideline BWP configuration information may also include PRB information that maps a CSI-RS resource in every 2 PRBs , such as mapping CSI-RS resources on odd (or even) PRBs.
  • the value of the repetition field of the CSI-RS resource set may indicate the use of the CSI-RS resource set, for example, whether it is used to determine a target transmission beam or a target reception beam.
  • the transmitting terminal when determining a target transmission beam, may use a CSI-RS resource set with repetition set to off, and when determining a target receiving beam, the transmitting terminal may use a CSI-RS resource set with repetition being on.
  • the resource pool configuration information or the side BWP configuration information includes configuration information of the first CSI-RS resource set and configuration information of the second CSI-RS resource set. Wherein, the repetition of the first CSI-RS resource set is off, and the repetition of the second CSI-RS resource set is on.
  • the first terminal device can use the first CSI-RS resource set, for example, the first terminal device can use different transmission beams to respectively transmit the M CSIs in the first CSI-RS resource set -RS resources, the second terminal device measures the received CSI-RS resources respectively, and reports or feeds back the CSI according to the measurement results, and the first terminal device selects the target transmission beam according to the CSI report or feedback of the second terminal device .
  • the first terminal device may use the second set of CSI-RS resources. For example, the first terminal device uses the same transmission beam to respectively transmit the M CSI-RS resources in the second CSI-RS resource set, and the second terminal device uses different reception beams to receive and measure the CSI-RS resources , according to the measurement results to select the target receiving beam.
  • the usage of the CSI-RS resource set may be indicated through the configuration of the CSI reporting amount corresponding to the CSI-RS resource set, for example, whether it is used to determine a target transmission beam or a target reception beam. For example, when determining the target transmission beam, the transmitting terminal uses a CSI-RS resource set whose CSI reporting amount is not 'none', and when determining the target receiving beam, the transmitting terminal uses a CSI-RS resource set whose CSI reporting amount is 'none' .
  • the resource pool configuration information or the side row BWP configuration information configures two CSI-RS resource sets, and configures the CSI reporting amount associated with the CSI-RS resource set, and the CSI report amount associated with the first CSI-RS resource set
  • the CSI reporting quantity is 'cri-RSRP'
  • the CSI reporting quantity associated with the second CSI-RS resource set is 'none'.
  • the first terminal device when the first terminal device indicates to the second terminal device that the amount of CSI reporting is 'cri-RSRP', it means that the first terminal device will send the CSI-RS resources in the first CSI-RS resource set.
  • the second terminal device may assume that the first terminal device uses a different transmission beam to transmit CSI-RS resources. Therefore, the second terminal device measures the CSI-RS resources and performs CSI reporting or feedback, so that the first terminal device can be based on CSI reporting or feedback determines the target transmission beam.
  • the first terminal device When the first terminal device indicates to the second terminal device that the amount of CSI reporting is 'none', it means that the first terminal device will send the CSI-RS resources in the second CSI-RS resource set.
  • the second terminal The device may assume that the first terminal device uses the same transmit beam to transmit CSI-RS resources, therefore, the second terminal device may use different receive beams to receive the CSI-RS resources respectively, and measure the CSI-RS resources, and select The target receives the beam.
  • both the first terminal device and the second terminal device may obtain the resource pool configuration information or sideline BWP configuration information. That is, the first terminal device and the second terminal device have the same understanding of the CSI-RS resource configuration information.
  • the first terminal device when the first terminal device transmits the CSI-RS to the second terminal device using a spatial transmission filter, the first terminal device carries the SCI associated with the CSI-RS with the CSI-RS resource indication information corresponding to the above CSI-RS.
  • the first terminal device when the first terminal device transmits the CSI-RS to the second terminal device each time using the airspace transmission filter, the first terminal device carries the CSI-RS in the SCI associated with the CSI-RS Corresponding CSI-RS resource indication information, for example, index information of the CSI-RS resource.
  • the first terminal device may indicate the CSI-RS resource corresponding to the CSI-RS to the second terminal device through the SCI associated with the CSI-RS.
  • the method 200 further includes:
  • the first terminal device sends first side row configuration information to the second terminal device.
  • the first side line configuration information is used to indicate at least one of CSI-RS resource sending configuration, CSI-RS resource receiving configuration, and CSI-RS resource reporting or feedback configuration.
  • the second terminal device can learn the configuration used by the sending terminal terminal to send the CSI-RS resource according to the first side row configuration information, and/or the configuration used by the receiving terminal terminal to receive the CSI-RS resource, and/or, receive The configuration used by the end terminal for CSI reporting or feedback.
  • the first terminal device sends the first sideline configuration information to the second terminal device, so that the second terminal device can know the sending configuration and/or receiving configuration of the CSI-RS, and can further perform a CSI-RS based on the sending configuration and/or receiving configuration.
  • the detection and measurement of the CSI-RS resource selects the reported or fed back CSI-RS resource according to the measurement result combined with the reported or fed back configuration, so as to realize the selection process of the target transmission beam.
  • the first side row configuration information includes but is not limited to at least one of the following:
  • the index of the target CSI-RS resource set, the index of the CSI-RS resource included in the target CSI-RS resource set, the number of CSI-RS resources included in the target CSI-RS resource set, the M The value of , the corresponding relationship between the CSI-RS resource set and the CSI reporting amount, the number of CSI-RS resources reported or fed back by the second terminal device to the first terminal device, the delay boundary, the target CSI-
  • the value of the repetition field corresponding to the RS resource set, the first terminal device sends the transmission resource information used by the M CSI-RSs, the resource pool information corresponding to the transmission resources used by the M CSI-RSs, the transmission mode of the first terminal device;
  • the repetition field corresponding to the target CSI-RS resource set takes the first value to indicate that the first terminal device does not use the same spatial domain transmission filter to transmit CSI-RS, and the target CSI-RS resource set corresponds to The second value of the repetition field is used to indicate that the first terminal device uses the same spatial domain transmission filter to transmit the CSI-RS.
  • the first sidelink configuration information may be configured through any sidelink information or sidelink signaling.
  • the first sidelink configuration information is carried by one of the following: sidelink control information (Sidelink Control Information, SCI), media access control control element (Media Access Control Control Element, MAC CE), PC5-RRC signal make.
  • the first terminal device when the first sidelink configuration information is carried by SCI or MAC CE, the first terminal device indicates activation of sidelink feedback.
  • the second terminal device can know which CSI-RS resource in which CSI-RS resource set the first terminal device will send. Further, it can be determined whether the CSI-RS resources in the target CSI-RS resource set are used to determine the target transmission beam or to determine the target reception beam in combination with the value of the repetition field corresponding to the target CSI-RS resource set or the CSI reporting amount . For example, when the target CSI-RS resource set is used to determine a target transmission beam, the second terminal device may use the same reception beam to receive the CSI-RS resources transmitted by the first terminal device. For another example, when the target CSI-RS resource set is used to determine a target receiving beam, the second terminal device may use a different receiving beam to receive the CSI-RS resources sent by the first terminal device.
  • the index of the CSI-RS resources included in the target CSI-RS resource set may be the index of all the CSI-RS resources included in the target CSI-RS set, or may also be the The index of the CSI-RS resource actually sent by the first terminal device, for example, the index of multiple CSI-RS resources corresponding to the M CSI-RS.
  • the second terminal device can know the CSI to be sent (possibly sent) by the first terminal device - RS resource, further, the CSI-RS resource can be measured and reported.
  • the value of the repetition field corresponding to the target CSI-RS resource set may be used by the second terminal device to determine the CSI-RS resource to be transmitted by the first terminal device for determining the target transmission
  • the beam is also the target receiving beam.
  • the detection and measurement of the CSI-RS resources may be performed in a corresponding manner. For example, when the value of the repetition field corresponding to the target CSI-RS resource set is the first value (for example, the value is off), the second terminal device can use the same receiving beam to receive the CSI-RS resource sent by the first terminal device . For another example, when the value of the repetition field corresponding to the target CSI-RS resource set is the second value (for example, the value is on), the second terminal device may use a different receiving beam to receive the CSI-RS transmitted by the first terminal device. resource.
  • the first side row configuration information may also include at least one CSI-RS resource set among multiple CSI-RS resource sets in the resource pool configuration information or the side row BWP configuration information.
  • the resource pool configuration information or side BWP configuration information configures A CSI-RS resource sets, and each CSI-RS resource set includes at least one CSI-RS resource, where A is a positive integer.
  • the first side line configuration information may include at least one CSI-RS resource set in the A CSI-RS resource sets.
  • the first side line configuration information may further include at least one CSI-RS resource in each CSI-RS resource set in the at least one CSI-RS resource set.
  • the number of CSI-RS resources in each CSI-RS resource set included in the first side row configuration information may be the same, or may also be different.
  • the first side row configuration includes P resources in the first CSI-RS resource set and Q resources in the second CSI-RS resource set, where P and Q can be the same, or can also be different .
  • the resource pool configuration information configures A sets of CSI-RS resources
  • the transmitting terminal sends the first side configuration information to the receiving terminal
  • the first side configuration information includes the index of the CSI-RS resource set
  • the receiving terminal can determine the corresponding CSI-RS resource set through the index of the CSI-RS resource set.
  • the CSI-RS resource set includes B CSI-RS resources
  • the transmitting terminal can select K CSI-RS resources from the CSI-RS resource set, and use the K CSI-RS resources
  • the CSI-RS resource set includes 16 CSI-RS resources.
  • the maximum number of transmitting beams supported by the transmitting terminal is 4.
  • the transmitting terminal can Select 4 CSI-RS resources from the 16 CSI-RS resources included in the CSI-RS resource set, and send the information of the 4 CSI-RS resources to the receiving terminal, so that the transmitting terminal and the receiving terminal
  • the transmission configuration of the CSI-RS resource has the same understanding.
  • the receiving terminal When the receiving terminal reports or feeds back the CSI-RS resource to the transmitting terminal, it can report the resource index information corresponding to the CSI-RS resource, such as using 2 bits to represent the CSI-RS resource index, where 00 corresponds to the CSI-RS resource set The CSI-RS resource with the lowest index, 01 corresponds to the CSI-RS resource with the second lowest index in the CSI-RS resource set, and so on.
  • the number of CSI-RS resources included in the target CSI-RS resource set may refer to the number of all CSI-RS resources included in the target CSI-RS set, or may also be the The number of CSI-RS resources actually sent by the first terminal device, for example, the number of multiple CSI-RS resources corresponding to the M CSI-RSs.
  • the first terminal device indicates to the second terminal device the number of CSI-RS resources included in the target CSI-RS resource set or the value of M, so that the second terminal device can -
  • the number of RS resources or the value of M determines the bit length corresponding to each CSI-RS resource index when performing CSI reporting or feedback.
  • the bit length for feeding back a CSI-RS resource index may be ceil(log 2 M).
  • the first terminal device may also configure the correspondence between the CSI-RS resource set and the CSI reporting amount for the second terminal device.
  • the CSI report configuration information includes the CSI-RS resource set identification information (CSI-RS-ResourceSetId) or CSI-RS resource configuration identification information (CSI-ResourceConfigId), which is used to correlate the CSI report amount and
  • the CSI-RS resource set for another example, includes CSI report configuration identification information (CSI-ReportConfigId) in the configuration information (CSI-RS-ResourceSet) or CSI-RS resource configuration information (CSI-ResourceConfig) of the CSI-RS resource set,
  • the embodiment of the present application does not limit the association manner of the two.
  • the latency boundary may be referenced to the first time slot, for example, the first time slot is the time slot where the first sidelink configuration information is located.
  • the delay boundary may be a time slot offset, where the time slot offset is relative to the time slot where the first sideline configuration information is located.
  • the first terminal device does not expect the second terminal device to report or feed back the CSI-RS resources. In other words, the first terminal device does not expect the second terminal device to perform CSI reporting or feedback within the delay boundary.
  • the second terminal device after exceeding the delay boundary, is allowed to report or feed back the CSI-RS resource. In other words, after exceeding the delay boundary, the second terminal device may perform CSI reporting or feedback.
  • the second terminal device does not expect the first terminal device to send CSI-RS resources for determining a spatial domain transmission filter.
  • the second terminal device stops receiving the CSI-RS resource sent by the first terminal device and used for determining the spatial transmission filter. In other words, after exceeding the delay boundary, the first terminal device stops sending the CSI-RS resource used for determining the spatial domain transmission filter.
  • the second terminal device may not be able to know the number of transmission beams used by the first terminal device, or the number of CSI-RS resources to be transmitted by the first terminal device (for example, the transmitting terminal does not transmit to the receiving terminal value of M), in this case, the second terminal device may determine the time to perform CSI-RS measurement and feedback according to the delay boundary. For example, when the delay boundary is exceeded, it means that the first terminal device will no longer send the CSI-RS, and at this time, the second terminal device may perform measurement and feedback based on the detected CSI-RS.
  • the first terminal device uses four transmit beams (transmit beam 0 to transmit beam 3) to transmit CSI-RS resources respectively, and the first terminal device transmits the first Sideline configuration information, the delay boundary indicated by the first sideline configuration information is 10 time slots, that is, the first terminal device sends CSI-RS resources in turn before time slot 10, and the second terminal device sends CSI-RS resources after time slot 10 Carry out CSI-RS reporting or feedback.
  • the transmission resource information used by the first terminal device to send the M CSI-RSs is used to indicate the transmission resources used by the first terminal device to send the M CSI-RSs.
  • the network device allocates transmission resources on four time slots of time slot 3, time slot 5, time slot 6 and time slot 8 to the first terminal device, and the first terminal device sends CSI- RS resources, and use different transmission beams to transmit CSI-RS resources in different time slots.
  • the first sideline configuration information may include transmission resources on time slot 3, time slot 5, time slot 6, and time slot 8, and after receiving the first sideline configuration information, the second terminal device may, in this CSI-RS detection and measurement are performed on the transmission resources of the four time slots, and CSI reporting or feedback is performed after the time slot 10, for example, in the time slot 12.
  • the transmission resource information used by the M CSI-RSs sent by the first terminal device may be configured by the network device, or may be independently selected.
  • the transmission resource information used by the first terminal device to send the M CSI-RS resources may be configured by the network device through the aforementioned first configuration information.
  • the transmission resource information used by the M CSI-RS sent by the first terminal device may be a periodic transmission resource, or may also be a single-use transmission resource, which is not discussed in this application. limited.
  • the first terminal device sends the transmission resources used to send the CSI-RS to the second terminal device, so that the second terminal device can know which transmission resources the first terminal device will send the CSI-RS on, and can transmit the CSI-RS on the transmission resources. Reception of the CSI-RS is performed.
  • the transmission resource information used by the first terminal device to send the M CSI-RSs may include period information and/or transmission resource information within one period.
  • the sender terminal when the sender terminal works in the second mode, the sender terminal acquires sidelink transmission resources based on interception, however mechanisms such as re-evaluation and pre-emption may result in
  • the sending terminal needs to perform resource reselection.
  • the receiving terminal cannot accurately know the transmission resources selected by the transmitting terminal.
  • the CSI-RS sent by the transmitting terminal may not be received by the receiving terminal, such as the influence of half-duplex, or the SCI detection failure, or the receiving terminal cannot detect it because the transmitting beam is not aligned with the receiving terminal.
  • the receiving terminal may not be able to acquire all the CSI-RS transmitted by the transmitting terminal.
  • the sidelink transmission resources of the transmitting terminal are allocated by the network equipment, and the sidelink transmission resources are usually not preempted by other terminals.
  • the transmitting terminal can transfer the network
  • the sidelink transmission resources allocated by the device for sending CSI-RS are sent to the receiving terminal, so that the receiving terminal can also know the transmission resources used by the sending terminal to send CSI-RS, and further can use these transmission resources Perform CSI-RS detection and measurement.
  • the system can configure multiple resource pools, and the network device can allocate sidelink transmission resources in the multiple resource pools for the first terminal device working in the first mode.
  • the first terminal device When indicating the transmission resource information used to send the CSI-RS to the second terminal device, the resource pool information corresponding to the transmission resource information can be notified to the second terminal device, so that the second terminal device can determine whether the transmission resource information corresponds to The transfer resource in which resource pool.
  • the resource pool information corresponding to the transmission resources used by the M CSI-RSs may be index information corresponding to the resource pool.
  • the first terminal device may indicate to the second terminal device the transmission mode of the first terminal device, such as the first mode, the second terminal device may consider that the transmission resources of the first terminal device will not change, Even if the second terminal device does not detect the SCI on the transmission resource indicated by the first terminal device, the second terminal device may also perform CSI-RS resource measurement on the transmission resource. It is beneficial to ensure that the second terminal device obtains the measurement results of all CSI-RS sent by the first terminal device, and can avoid that the second terminal device does not detect the SCI correctly, resulting in the inability to know the receiving configuration of the CSI-RS, and thus unable to perform corresponding measurements question.
  • the content indicated by the first side row configuration information may be sent through the same message or signaling, or may also be sent through different messages or signaling, which is not limited in this application.
  • the present application does not limit the type of signaling.
  • the first side row configuration information is sent through two signalings, wherein the first signaling is PC5-RRC signaling, and the second signaling is SCI; or, both signalings are PC5-RRC signaling.
  • the method 200 further includes:
  • the first terminal device sends third indication information to the second terminal device
  • the third indication information is used to indicate at least one of the following:
  • the first terminal device will send the CSI-RS used to select the target airspace transmission filter, the first terminal device will use different airspace transmission filters to send the CSI-RS, the channel state information CSI reporting amount, the first The index of the first CSI-RS resource sent by a terminal device, the time interval for sending the first CSI-RS resource by the first terminal device, wherein the time interval is the time unit where the third indication information is located for reference.
  • the third indication information may be configured through any sidelink information or sidelink signaling.
  • the third indication information is carried by one of the following: PC5-RRC signaling, SCI, MAC CE, sidelink feedback information, such as Physical Sidelink Feedback Channel (Physical Sidelink Feedback Channel, PSFCH).
  • PC5-RRC signaling SCI
  • MAC CE MAC CE
  • sidelink feedback information such as Physical Sidelink Feedback Channel (Physical Sidelink Feedback Channel, PSFCH).
  • the first terminal device when the third indication information is carried by SCI or MAC CE, the first terminal device indicates activation of sidelink feedback.
  • the first terminal device may notify the second terminal device that the first terminal device will send the CSI-RS, or that the CSI for selecting the target airspace transmission filter will be sent.
  • -RS or the CSI-RS will be transmitted using different spatial transmission filters, so that the second terminal device can perform CSI-RS resource measurement and Report to realize the selection process of the target transmission beam.
  • the sending configuration, receiving configuration and reporting configuration of the CSI-RS may be configured in the first side line configuration information, or may also be configured in the third indication information, for example, the first terminal device is configured in When the CSI-RS needs to be sent, third indication information is sent to the second terminal device, where the third indication information is used to indicate at least one of the sending configuration, receiving configuration and reporting configuration of the CSI-RS.
  • part or all of the first side configuration information may be indicated by the third indication information.
  • the content indicated by the first side configuration information and the third indication information may be indicated by the same information. signaling, or may also be carried by different signaling.
  • the first terminal device sends the CSI-RS resources in a certain order starting from the CSI-RS resource corresponding to the resource index of the first sent CSI-RS resource, and correspondingly, the second The terminal device receives the CSI-RS resources in a certain order starting from the CSI-RS resource corresponding to the resource index of the first sent CSI-RS resource.
  • the order may be the order of resource indexes from small to large, or may be the order of resource indexes from large to small.
  • the target CSI-RS resource set includes 8 CSI-RS resources, and when the index of the first transmitted CSI-RS resource is resource index 2, it means that the first terminal device will start from the CSI-RS resource corresponding to the CSI-RS resource index 2.
  • the CSI-RS resources start to send the CSI-RS resources sequentially, that is, first send the CSI-RS resources corresponding to the CSI-RS resource index 2, and then send the CSI-RS resources corresponding to the CSI-RS resource index 3, and so on, when After sending the CSI-RS resource corresponding to the CSI-RS resource index 7, then send the CSI-RS resource corresponding to the CSI-RS resource index 0 and the CSI-RS resource corresponding to the CSI-RS resource index 1.
  • the second terminal device When the second terminal device knows the order of the CSI-RS resources to be sent by the first terminal device and the transmission resource of the CSI-RS to be sent by the first terminal device, even if the second terminal device does not correctly receive the CSI-RS resource sent on the transmission resource SCI, the second terminal device can also perform CSI-RS detection and measurement on this transmission resource, which is beneficial to ensure that the second terminal device obtains all the CSI-RS measurement results sent by the first terminal device, and can prevent the second terminal device from failing to The correct detection of the SCI results in the inability to know the receiving configuration of the CSI-RS, and thus the inability to perform corresponding measurements.
  • the first terminal device when the first terminal device does not send the index information of the first sent CSI-RS resource to the second terminal device, by default, the first terminal device selects the index information of the first CSI-RS resource in the CSI-RS resource set.
  • the RS resource index (such as resource index 0 or the CSI-RS resource corresponding to the lowest resource index) starts to be sent.
  • the time interval for the first terminal device to send the first CSI-RS resource may be based on the time unit where the third indication information is located, and the second terminal device receives the first CSI-RS resource of the first terminal device After the third indication information, the time unit and the time interval of the third indication information can be known, so that the time unit for sending the first CSI-RS resource by the first terminal device can be determined, and the CSI-RS resource can be received at the time unit .
  • the third indication information may be used to indicate the time slot interval for the first terminal device to send the first CSI-RS resource, and the time slot interval is based on the time slot where the third indication information is located.
  • the information indicated by the third indication information may be sent through the same message or signaling, or may also be sent through different messages or signaling.
  • the method 200 further includes:
  • the first terminal device sends fourth indication information to the second terminal device
  • the fourth indication information is used to indicate that the CSI-RS sent by the first terminal device is used to select a spatial domain transmission filter for the first terminal device to transmit sidelink data; or, the fourth The indication information is used to indicate that the CSI-RS sent by the first terminal device is used to select a spatial domain receiving filter for the second terminal device to receive sidelink data; or, the fourth indication information is used to indicate the The CSI-RS sent by the first terminal device is used to measure channel state information.
  • the fourth indication information may be configured through any sidelink information or sidelink signaling.
  • the fourth indication information is carried by one of the following: PC5-RRC signaling, SCI, MAC CE, sidelink feedback information, such as PSFCH.
  • the first terminal device when the fourth indication information is carried by SCI or MAC CE, the first terminal device indicates activation of sidelink feedback.
  • the channel state information may include but not limited to at least one of the following:
  • CQI Channel Quality Indicator
  • RI Rank Indication
  • PMI Precoding Matrix Indicator
  • the third indication information may be used to indicate that the first terminal device will send a CSI-RS resource
  • the first terminal device may indicate the first terminal device through the fourth indication information
  • the purpose of the CSI-RS resources to be transmitted by a terminal device for example, to determine the target transmission beam or to determine the target reception beam, so that the second terminal device can detect the CSI-RS resources in a corresponding manner based on the fourth indication information and feedback.
  • the second terminal device may use the same receive beam to receive the CSI-RS resource sent by the first terminal device.
  • the second terminal device may use a different receiving beam to receive the CSI-RS resource sent by the first terminal device.
  • the method 200 further includes:
  • the second terminal device measures the CSI-RS sent by the first terminal device, and determines first information to report or feed back to the second terminal device according to the measurement result.
  • the second terminal device sends the first information to the first terminal device.
  • the first terminal device receives the first information sent by the second terminal device.
  • the first information includes a target CSI reporting amount
  • the target CSI reporting amount includes at least one of the following:
  • the time slot resource indication information is used to determine the time slot corresponding to the CSI-RS sent by the first terminal device, or the time slot resource indication information is used to determine the CSI-RS sent by the first terminal device The index corresponding to the resource.
  • the receiving of the first information sent by the second terminal device by the first terminal device includes:
  • the first terminal device receives the first information sent by the second terminal device in a first time unit, where the first time unit is located after a second time unit determined based on a delay boundary.
  • the CRI may be an index of a CSI-RS resource.
  • the second terminal device may only Feedback the index of the CSI-RS resource; for another example, when the CSI reporting amount indicated by the first side configuration information or the third indication information is CRI-RSRP, the second terminal device may feed back the CSI-RS resource index Index and RSRP; for another example, when the CSI reporting amount indicated by the first side configuration information or the third indication information includes CRI-SINR, the second terminal device may feed back the index and SINR of the CSI-RS resource.
  • the CSI-RS resource may also be indicated by a time slot resource, and for a specific indication manner, refer to the relevant description of the foregoing embodiments.
  • the target CSI reporting amount may be determined by the second terminal device according to a measurement result obtained by measuring the received CSI-RS.
  • the measurement results (including RSRP and/or SINR) in this application are obtained based on the measurement of CSI-RS.
  • the measurement result is obtained based on the measurement of PSCCH DRMS, PSSCH DMRS or sideline PT-RS.
  • the CSI-RS sent by the sender is carried in the PSSCH, that is, the CSI-RS is mapped in the resources of the PSSCH, the PSSCH is scheduled through the SCI, and the transmission of the CSI-RS is indicated.
  • the receiver can perform measurements based on PSCCH DMRS or PSSCH DMRS. That is, the CSI-RS resources may also be determined based on the measurement results of the PSCCH DMRS or PSSCH DMRS associated with the CSI-RS.
  • the sending end indicates to send the CSI-RS through the indication information
  • the receiving end measures the PSCCH DMRS or PSSCH DMRS associated with the CSI-RS
  • the measurement result is PSCCH-RSRP or PSSCH-RSRP, based on the measurement result Determine the CSI-RS resource, and send the CSI-RS resource index, or the CSI-RS resource index and its associated measurement results (ie, PSCCH-RSRP or PSSCH-RSRP) to the sender to assist the sender in selecting the airspace transmission filter device.
  • the measurement results obtained based on CSI-RS are taken as an example for illustration, and the embodiments of the present invention are also applicable to the measurement results obtained based on PSCCH DMRS or PSSCH DMRS Condition.
  • the first information includes indexes of N CSI-RS resources, or, the first information is used to determine indexes of N CSI-RS resources, and the N CSI-RS resources are the indexes of the second terminal Determined by the device according to the measurement result obtained by measuring the received CSI-RS, N is the number of CSI-RS resources that the second terminal device needs to feed back or report, N is a positive integer, and N ⁇ M.
  • the second terminal device may send indication information to the first terminal device, which is used to indicate the number of CSI-RS resource information (or CSI-RS resource indexes) fed back by the second terminal device.
  • the indexes of the N CSI-RS resources are arranged according to the order of the measurement results corresponding to the N CSI-RS resources from high to low, or, the indexes of the N CSI-RS resources are arranged according to the order of the N CSI-RS resources
  • the measurement results corresponding to the CSI-RS resources are arranged in descending order.
  • N 1, that is, the second terminal device only needs to feed back one CSI-RS resource index. In this case, it only needs to feed back the CSI-RS with the best measurement result.
  • the index may determine that the corresponding transmit beam is the target transmit beam.
  • the second terminal device does not need to feed back the measurement result.
  • the second terminal device may also only feed back CSI-RS resource information, and at this time, the fed back CSI-RS resource information is arranged in descending order of measurement results.
  • N 3, that is, three CSI-RS resource information needs to be fed back, namely CSI-RS resource 1, CSI-RS resource 2, and CSI-RS resource 3, and the corresponding RSRP measurement results are -30dBm and -10dBm respectively , -20dBm
  • the feedback CSI-RS resource information is shown in Figure 14, that is, the CSI-RS resource with the best measurement result is at the top, followed by the CSI-RS resource with the suboptimal measurement result, and so on. It may also be that the CSI-RS resource with the best measurement result is last, followed by the CSI-RS resource with the second best measurement result, and so on, as shown in FIG. 15 .
  • the first information further includes first measurement information, and the first measurement information is used to indicate measurement results corresponding to the N CSI-RS resources.
  • the second terminal device feeds back indices of N CSI-RS resources and corresponding measurement results.
  • the first terminal device when the first terminal device needs to switch the spatial domain transmission filter, it can quickly select and switch from the N spatial domain transmission filters corresponding to the N CSI-RS resources fed back by the second terminal device, and There is no need for the first terminal device to perform the process of selecting the optimal spatial domain transmission filter again.
  • the transmitting terminal needs to re-determine Optimal spatial domain transmit filter. If the receiving terminal only feeds back one CSI-RS resource, when the link fails, the transmitting terminal needs to re-execute the process of selecting the optimal spatial transmission filter, so as to re-determine a new optimal spatial transmission filter.
  • the receiving end terminal feeds back N CSI-RS resources
  • the airspace transmission filter selected by the transmitting end terminal fails, it can be selected from the airspace transmission filters corresponding to the remaining N-1 CSI-RS resources fed back by the receiving end terminal
  • One performs sidelink transmission such as selecting the CSI-RS resource corresponding to the suboptimal measurement result, and then determining the spatial domain transmission filter corresponding to the CSI-RS resource. In this way, the process of reselecting the optimal airspace transmit filter is avoided, and the speed of airspace transmit filter reselection or beam failure recovery (beam failure recovery) is improved.
  • the transmitting terminal can have a higher probability of selecting one airspace transmission filter to simultaneously transmit sidelink data to multiple receiving terminals.
  • the transmitting terminal supports 4 transmit airspace transmit filters, corresponding to the airspace transmit filters 0-3 respectively.
  • the receiving end terminal 1 only feeds back one preferred airspace transmit filter, such as airspace transmit filter 0, the receiving end terminal 2 feeds back With an optimal airspace transmission filter, such as airspace transmission filter 2, the transmitting terminal cannot simultaneously transmit sidelink data for two receiving terminals. And if the receiving terminal 1 feeds back two preferred spatial transmission filters, such as spatial transmission filters 0 and 1, and the receiving terminal 2 feeds back two preferred spatial transmission filters, such as spatial transmission filters 1 and 2, then the transmitting terminal The sidelink data can be transmitted to two receiver terminals simultaneously using the spatial domain transmit filter 1 .
  • the measurement results corresponding to the N CSI-RS resources are greater than or equal to a first threshold.
  • the first threshold value is pre-configured or agreed by the protocol, or the first threshold value is configured by the network device, or the first threshold value is configured by the first terminal device .
  • the N CSI-RS resources correspond to the first N CSI-RSs arranged in descending order of the measurement results of the CSI-RSs received by the second terminal device.
  • the number of CSI-RS sent by the first terminal device detected by the second terminal device is less than N, or the number of CSI-RS resources for which the detected CSI-RS meets the reporting conditions is less than N.
  • N The CSI-RS resources include N1 first-type CSI-RS resources and N2 second-type CSI-RS resources.
  • the first terminal device When the first terminal device receives the feedback information (that is, the first information) from the second terminal device, it can be determined according to the default value that its corresponding CSI-RS resource index is an invalid index.
  • the default value is pre-configured or agreed by the protocol, or the default value is configured by the network device, or the default value is configured for the second terminal device by the first terminal device , or, the default value is configured for the first terminal device by the second terminal device, or, the default value is configured for the third terminal device, and the third terminal device is the first terminal device and the second terminal device The group head terminal of the communication group where the second terminal device is located.
  • the group head terminal is a terminal that has at least one of the following functions in the communication group: resource management, resource allocation, resource coordination, resource configuration, and management of joining and leaving of group members.
  • the default value indicates the default measurement result when there is no measurement result.
  • the measurement result fed back by the receiving terminal to the transmitting terminal is the default value, it means that the receiving terminal has a default value for the CSI- There are no measurements for RS resources.
  • the default value is pre-configured or network device configuration, for example, the default value is included in resource pool configuration information or sidewalk bandwidth part (BWP) configuration information.
  • BWP sidewalk bandwidth part
  • the sending terminal sends the receiving terminal Send PC5-RRC signaling, which carries the default value information.
  • the default value is less than or equal to the second threshold value, or the default value corresponds to negative infinity or infinity.
  • the second threshold value is pre-configured or agreed by the protocol, or the second threshold value is configured by the network device, or the second threshold value is configured by the first terminal device .
  • the default value may be less than or equal to the value corresponding to the lowest measurement result.
  • the index corresponding to the N2 second-type CSI-RS resources is determined by at least one CSI-RS resource in the N1 first-type CSI-RS resources, for example, select N1
  • the resource index corresponding to the CSI-RS resource with the best or worst measurement result in the first type of CSI-RS resource is used as the index of the N2 second type of CSI-RS resources.
  • N 3
  • the second terminal device In addition to feeding back the resource index corresponding to CSI-RS resource 1 and CSI-RS resource 2, the second terminal device The second terminal device also needs to feed back a CSI-RS resource index.
  • the second terminal device selects the CSI-RS with the best RSRP measurement result, that is, CSI-RS resource 1, and feeds back its CSI-RS resource index.
  • the second terminal arranges its corresponding CSI-RS resources in descending order of RSRP measurement results, so the order of the fed back CSI-RS resource indexes is shown in Figure 16 . Therefore, among the three CSI-RS resource indexes fed back by the second terminal device, two CSI-RS resource index values of 1 and one CSI-RS resource index value of 2 are included.
  • the first terminal device receives the feedback information from the second terminal device, according to the repeated CSI-RS resource index 1, it can be determined that one of the CSI-RS index 1 (such as the second CSI-RS resource index 1) is a Invalid index.
  • the index corresponding to the N2 second-type CSI-RS resources is determined by at least one CSI-RS resource among the N1 first-type CSI-RS resources, specifically, for example, N1 is selected.
  • the resource index corresponding to the CSI-RS resource with the best or worst measurement result among the CSI-RS resources of the first type is used as the index of the N2 CSI-RS resources of the second type.
  • the second terminal device In addition to feeding back the resource index corresponding to CSI-RS resource 1 and CSI-RS resource 2, the second terminal device The second terminal device also needs to feed back two CSI-RS resource indexes. Since both CSI-RS resource 1 and CSI-RS resource 2 have measurement results, the second terminal device can repeatedly feed back CSI-RS resource 1 and CSI-RS resource 2.
  • the order of the fed back CSI-RS resource indexes is shown in FIG. 17 . Therefore, the 4 CSI-RS resource indexes fed back by the second terminal device include two CSI-RS resource index values of 1 and two CSI-RS resource index values of 2.
  • the first terminal device receives the feedback information from the second terminal device, it can determine one of the CSI-RS indexes (such as the second CSI-RS resource index 1 and the second CSI-RS resource index 1) according to the repeated CSI-RS resource indexes.
  • -RS resource index 2 is an invalid index.
  • the second terminal device when the number of CSI-RS resources meeting the conditions detected by the second terminal device is N1 (N1 ⁇ N), the second terminal device feeds back N CSI-RS resource information and N measurement results , which includes N1 pieces of CSI-RS resource information satisfying the conditions and their corresponding measurement results, and other (N-N1) pieces of CSI-RS resource information, and their corresponding measurement results are default values.
  • the CSI-RS resources that meet the conditions include the following two situations:
  • the CSI-RS resource meeting the condition includes the CSI-RS resource detected by the second terminal device. That is, the second terminal device will detect the SCI sent by the first terminal device. If the SCI is detected, the resource information of the CSI-RS sent by the first terminal device can be determined through the SCI. Therefore, the second terminal device can use the CSI -RS to measure and obtain corresponding measurement results.
  • the CSI-RS resource meeting the condition includes the CSI-RS resource detected by the second terminal device, and the measurement result thereof exceeds the first threshold. That is, the second terminal device will feed back the CSI-RS resource information only when the second terminal device detects the CSI-RS resource and the measurement result exceeds the first threshold.
  • the fed back CSI-RS resource information includes CSI-RS resource 1 and CSI-RS resource 2, and CSI-RS resource 3 is not fed back.
  • the second terminal device may select any CSI-RS resource (except the CSI-RS resource meeting the condition) to associate with the default value.
  • the second terminal device randomly selects one of the CSI-RS resources 0/1/3 and feeds back its index value, and its corresponding measurement result is set as a default value.
  • the second terminal device selects CSI-RS resource 0 sets its measurement result as a default value, and feeds it back to the first terminal device, as shown in FIG. 20 .
  • the second terminal equipment from N1 Select a CSI-RS resource from the CSI-RS resources that meet the conditions, and set its measurement result as the default value. For example, the CSI-RS with the best or worst measurement result is selected from the N1 CSI-RS resources, or a CSI-RS is selected arbitrarily or randomly.
  • two CSI-RS such as CSI-RS resource 1 and CSI-RS -RS resource 2
  • the RSRP threshold is-80dBm
  • the measurement result is -10dBm and the default value, as shown in Figure 19.
  • the first measurement information includes quantization index information of measurement results respectively corresponding to the N CSI-RS resources.
  • the index of the N CSI-RS resources and the number of bits occupied by the quantization index information of the measurement results corresponding to the N CSI-RS resources are:
  • A represents the number of bits occupied by one CSI-RS resource index among the N CSI-RS resource indexes
  • B represents the quantization index of the measurement result corresponding to one CSI-RS resource among the N CSI-RS resource indexes the number of bits occupied by the information
  • the first measurement information includes quantization index information of the first measurement result and N-1 differential quantization index information, where the first measurement result corresponds to the measurement results corresponding to the N CSI-RS resources highest value.
  • the index of the N CSI-RS resources and the number of bits occupied by the quantization index information of the measurement results corresponding to the N CSI-RS resources are:
  • A represents the number of bits occupied by the index of one CSI-RS resource among the indexes of the N CSI-RS resources
  • B represents the number of bits occupied by the quantized index information of the first CSI-RS resource among the N CSI-RS resources.
  • the number of bits, and the measurement result corresponding to the first CSI-RS resource is the CSI-RS resource with the largest corresponding measurement result among the N CSI-RS resources, and C represents other CSI-RS resources among the N CSI-RS resources The number of bits occupied by the quantization index information of the difference between the measurement result corresponding to the resource and the measurement result corresponding to the first CSI-RS resource, or, C represents the two adjacent CSI-RS resources corresponding to the measurement result The number of bits occupied by the quantization index information of the difference of the measurement result corresponding to the CSI-RS resource, and
  • the range of RSRP measurement results represented by B bits is [B1, B2]dBm, (such as [-140,-44]dBm), the step size is 1dBm, and the range represented by differential RSRP It is [C1,C2]dB (such as [-30,0]dB), and the step size is 2dB.
  • the differential RSRP is obtained relative to the maximum RSRP measurement result, that is, the difference between the differential RSRP representation and the maximum RSRP measurement result.
  • the differential RSRP is obtained relative to the measurement result of an RSRP adjacent to it and greater than it.
  • the maximum RSRP corresponds to -60dBm, and the remaining two differential RSRPs are -10dB and -30dB respectively;
  • the maximum RSRP corresponds to -60dBm, and the remaining two differential RSRPs are -10dB and -20dB respectively.
  • the second terminal device performs RSRP measurement according to CSI-RS, and feeds back the measurement result of RSRP.
  • the second terminal device usually uses Sidelink Control Information (Sidelink Control Information, SCI) or Media Access Control Control Element (Media Access Control Control Element, MAC CE) to carry the feedback CSI-RS resource information and corresponding measurement results. Therefore, it is necessary to quantify the RSRP measurement results.
  • SCI Sidelink Control Information
  • MAC CE Media Access Control Element
  • the second terminal device feeds back is the layer 1 RSRP measurement result (that is, L1 RSRP), that is, the RSRP result obtained by physical layer measurement is directly quantized and fed back to the first terminal device without going through layer 3 filtering.
  • 7 bits are used to quantize the measured RSRP, as shown in Table 1 below.
  • the range of quantized RSRP is [-140,44]dBm
  • the measurement results smaller than the minimum value (ie -140dBm) are represented by an RSRP index
  • the measurement result is represented by an RSRP index. Therefore, the default value can be defined to be less than or equal to the minimum value in the quantization range.
  • the default RSRP is -141dBm, which is smaller than the minimum quantization value; at this time, the quantized RSRP can be expressed as the following table.
  • the RSRP corresponding index fed back by the second terminal device to the first terminal device is RSRP_15
  • 7 bits are used to quantize the measured RSRP, as shown in Table 2 below.
  • RSRP_2 invalid dBm RSRP_3 invalid dBm RSRP_4 invalid dBm RSRP_5 invalid dBm RSRP_6 invalid dBm RSRP_7 invalid dBm RSRP_8 invalid dBm RSRP_9 invalid dBm RSRP_10 invalid dBm RSRP_11 invalid dBm RSRP_12 invalid dBm RSRP_13 invalid dBm RSRP_14 invalid dBm RSRP_15 RSRP ⁇ -141 dBm RSRP_16 -141 ⁇ RSRP ⁇ -140 dBm RSRP_17 -140 ⁇ RSRP ⁇ -139 dBm RSRP_18 -139 ⁇ RSRP ⁇ -138 dBm ... the ... RSRP_111 -46 ⁇ RSRP ⁇ -45 dBm RSRP_112 -45 ⁇ RSRP ⁇ -44 dBm RSRP_113 -44 ⁇ RSRP d
  • the default RSRP setting is negative infinity (or a very small value, such as -1000dBm), or the default RSRP setting is infinity (or a very large value, such as 1000dBm); at this time, the quantized RSRP They can be expressed as the following Table 3-1 and Table 3-2 respectively.
  • the RSRP corresponding index fed back by the second terminal device to the first terminal device is RSRP_0 in Table 3-1 (or RSRP_127 in Table 3-2)
  • the second terminal device When the above example is applicable to the N CSI-RSs fed back by the second terminal device and their measurement results, a corresponding RSRP result (such as a 7-bit quantization result) is fed back for each measurement result.
  • the second terminal device in order to reduce the overhead of feedback signaling, the second terminal device usually adopts a differential RSRP feedback manner for multiple RSRP measurement results.
  • the second terminal device when the second terminal device needs to feed back N CSI-RS resource information and their corresponding RSRP measurement results, for those with the best RSRP measurement results, the second terminal device feeds back its corresponding CSI-RS and corresponding RSRP measurement results
  • the result (such as the RSRP index after 7-bit quantization in Table 1 above), but for the other N-1 measurement results, the feedback differential RSRP is usually used.
  • the so-called differential RSRP can include two situations:
  • the first case the difference relative to the optimal RSRP result.
  • the corresponding differential RSRP index is "DIFFRSRP_12".
  • the second case that is, the difference with respect to its neighbor and the measurement result is greater than or equal to its RSRP measurement result.
  • a default value for differential RSRP may be defined.
  • the last differential RSRP index ie DIFFRSRP_15
  • DIFFRSRP_15 the last differential RSRP index
  • the first information includes indexes of N3 CSI-RS resources
  • the N3 CSI-RS resources are determined by the second terminal device according to the measurement results of the received CSI-RS measurements, N3 ⁇ N, N is the number of CSI-RS resources that the second terminal device needs to feed back or report, N3 and N are positive integers, and N ⁇ M.
  • the N3 CSI-RS resources correspond to the CSI-RS received by the second terminal device, or, the N3 CSI-RS resources correspond to the CSI-RS received by the second terminal device and the corresponding measurement result is greater than Or a CSI-RS equal to the first threshold.
  • the indexes of the N3 CSI-RS resources are arranged according to the order of the measurement results corresponding to the N3 CSI-RS resources from high to low, or, the indexes of the N3 CSI-RS resources are arranged according to the order of the N3 CSI-RS resources
  • the measurement results corresponding to the CSI-RS resources are arranged in descending order. For details, reference may be made to the relevant description about the quantization index information of the measurement results respectively corresponding to the N CSI-RS resources, which will not be repeated here.
  • the first information further includes second measurement information, where the second measurement information is used to indicate measurement results corresponding to the N3 CSI-RS resources.
  • the second measurement information includes quantization index information of measurement results respectively corresponding to the N3 CSI-RS resources.
  • quantization index information of the measurement results respectively corresponding to the N CSI-RS resources For details, reference may be made to the relevant description about the quantization index information of the measurement results respectively corresponding to the N CSI-RS resources, which will not be repeated here.
  • the second measurement information includes quantization index information of the second measurement result and N3-1 differential quantization index information, where the second measurement result corresponds to the measurement results corresponding to the N3 CSI-RS resources highest value.
  • quantization index information of the measurement results respectively corresponding to the N CSI-RS resources, which will not be repeated here.
  • the first information further includes fifth indication information, where the fifth indication information is used to indicate the value of N3.
  • the measurements include lateral RSRP and/or lateral SINR.
  • the first information is carried by one of the following:
  • SCI Sidelink Control Information
  • MAC CE Media Access Control Control Element
  • PSFCH Physical Sidelink Feedback Channel
  • PC5-RRC signaling PC5-RRC signaling.
  • an information field included in SCI, MAC CE or PC5-RRC is used to indicate the value of parameter N and/or N3.
  • the format of the MAC CE may be as shown in FIG. 20 or FIG. 21 .
  • the MAC CE when the RSRP to be fed back is fed back its corresponding quantized RSRP index (as shown in Table 1), that is, when each RSRP is represented by 7 bits, the MAC CE includes N3 CSI-RS resource indexes and their The corresponding RSRP measurement result, and includes the information field indicating the value of N3.
  • N 3, that is, at most 3 CSI-RS resources and their corresponding measurement results are fed back, and the CSI-RS resource set includes 4 CSI-RS resources, so 2 bits are used to represent the CSI-RS index,
  • each Each RSRP measurement result is represented by 7 bits, so the order of each CSI-RS resource in the MAC CE may not be agreed upon.
  • Oct1 means byte 1, and so on.
  • the second terminal device may Sending indication information (that is, second information) to the first terminal device, used to indicate that the second terminal device has not received the CSI-RS, or used to instruct the first terminal device to resend the CSI-RS in turn.
  • the second terminal device may send the indication information (i.e. the second information) through SCI, MAC CE or PC5-RRC, when the indication information (i.e. the second information) is carried by the MAC CE, as shown in Figure 20 (d) shown.
  • the MAC CE includes N1 CSI-RS resource indexes and their corresponding RSRP measurement results.
  • N 3, that is, at most 3 CSI-RS resources and their corresponding measurement results are fed back, and the CSI-RS resource set includes 4 CSI-RS resources, so 2 bits are used to represent the CSI-RS index,
  • the CSI-RS resource corresponding to the measurement result, CSI-RS k2 indicates the CSI-RS resource corresponding to the second highest RSRP measurement result, and CSI-RS k3 indicates the CSI-RS resource corresponding to the third highest RSRP measurement result.
  • the second terminal device may Sending indication information (that is, second information) to the first terminal device, used to indicate that the second terminal device has not received the CSI-RS, or used to instruct the first terminal device to resend the CSI-RS in turn.
  • the second terminal device may send the indication information (i.e. the second information) through SCI, MAC CE or PC5-RRC, when the indication information (i.e. the second information) is carried by the MAC CE, as shown in Figure 21 (d) shown.
  • the method 200 further includes:
  • the first terminal device selects a target CSI-RS resource according to the first information, and the airspace transmission filter corresponding to the target CSI-RS resource is the target airspace transmission filter.
  • the first terminal device sends sidelink data to the second terminal device by using the target airspace transmission filter.
  • the second terminal device receives the sidelink data sent by the first terminal device using the target airspace transmit filter corresponding to the target CSI-RS resource.
  • the transmission beam corresponding to the target CSI-RS resource may be considered as the target transmission beam.
  • the method also includes:
  • the first terminal device sends second sideline configuration information to the second terminal device, where the second sideline configuration information is used to configure at least one transmission configuration indication TCI state, the at least one TCI state includes a first TCI state, and the second sideline configuration information
  • the reference signal included in a TCI state is the CSI-RS corresponding to the target CSI-RS resource.
  • the first terminal device can use different transmit beams to transmit CSI-RS resources, and the second terminal device can use the same receive beam to receive CSI-RS resources, and perform measurement and report based on the CSI-RS resources , so that the first terminal device can report the amount to determine the target transmission beam.
  • the determined target transmission beam is the target transmission beam corresponding to the reception beam, that is, when the first terminal device uses the target transmission beam to send a signal, the second terminal device
  • the sidewalk transmission performance is optimal when using this receive beam for signal reception.
  • the second terminal device may use polling to receive the CSI-RS resource using a different receiving beam to determine The target receiving beam corresponding to each receiving beam obtains at least one TCI state.
  • the first terminal device uses four transmit beams (transmit beam 0 to airspace transmit beam 3) to transmit CSI-RS resources respectively, and the second terminal device can use four receive beams (receive beam 0 to airspace receive beam 3) ) to receive CSI-RS resources.
  • the second terminal device first uses receive beam 0 to receive the CSI-RS resource, and according to the CSI-RS The RS resource is measured and reported, so that the first terminal device can report the quantity to determine the target transmission beam.
  • the target reception beam is the target transmission beam corresponding to the reception beam 0 and then the first terminal device uses four transmission beams ( When sending CSI-RS resources from sending beam 0 to airspace sending beam 3), the second terminal device uses receiving beam 1 to receive the CSI-RS resources, and performs measurement and reporting based on the CSI-RS resources, so that the first terminal device can The reported amount determines the target sending beam.
  • the target receiving beam is the target sending beam corresponding to the receiving beam 1.
  • the polling process can determine the target sending beam corresponding to each receiving beam.
  • the quasi-co-site (QCL) type included in the first TCI state is QCL-TypeD.
  • the method 200 also includes:
  • the first terminal device sends sixth indication information to the second terminal device, where the sixth indication information is used to indicate the state of the first TCI.
  • the sixth indication information includes index information corresponding to the first TCI state.
  • the sixth indication information is carried by one of the following:
  • SCI Sidelink Control Information
  • Media Access Control Element Media Access Control Element
  • MAC CE Media Access Control Control Element
  • PC5-RRC signaling PC5-RRC signaling.
  • the first terminal device when the sixth indication information is carried by SCI or MAC CE, the first terminal device indicates activation of sidelink feedback.
  • the first terminal device can indicate the corresponding TCI status for the sidelink signal or sidelink channel
  • the second terminal device can use the same receiving beam as the CSI-RS resource that receives the TCI status indication to receive the sidelink signal or sidelink channel.
  • the horizontal signal or the side channel is beneficial to improve the performance of the side transmission.
  • the method 200 also includes:
  • the first terminal device receives the second information sent by the second terminal device; wherein,
  • the second information is used to indicate that the second terminal device has not detected the CSI-RS, or the second information is used to indicate that the second terminal device detects that the CSI-RS corresponding to the measurement results is lower than the first threshold value , or, the second information is used to instruct the first terminal device to resend the M CSI-RSs. Further, the first terminal device re-uses the spatial domain transmission filter to respectively transmit the M CSI-RSs to the second terminal device.
  • the second terminal device sends the second information to the second terminal device, including:
  • the second terminal device sends the second information to the second terminal device in a third time unit, where the third time unit is located after a fourth time unit determined based on a delay boundary.
  • the second information is carried by one of the following:
  • an optimal airspace transmission filter between the first terminal device and the second terminal device can be selected.
  • the first terminal device and the second terminal device exchange CSI-RS resource sending configuration, receive configuration and report or feedback at least one of the configuration, so that the second terminal device can perform CSI-RS resource measurement based on the above configuration and report, the first terminal device can determine the target CSI-RS resource according to the reported amount, and the transmission beam corresponding to the target CSI-RS resource can be regarded as the target transmission beam, thereby realizing the selection of the optimal transmission beam in the sidelink transmission system .
  • the sending terminal can perform sidelink transmission based on the optimal transmission beam, and correspondingly, the receiving terminal can perform sidelink reception based on the receiving beam corresponding to the optimal transmission beam, which is beneficial to improve sidelink transmission performance.
  • Fig. 22 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the communication unit 410 is configured to use the airspace transmission filter to send M channel state information reference signals CSI-RS to the second terminal device, and the M CSI-RS are used to select a target airspace transmission filter;
  • the M CSI-RSs correspond to multiple CSI-RS resources in the target CSI-RS resource set, and M is a positive integer.
  • the corresponding repetition field in the configuration information of the target CSI-RS resource set takes the first value
  • the first value is used to indicate that the terminal device does not use the same spatial domain transmission filter to transmit the CSI-RS resources in the target CSI-RS resource set.
  • the communication unit 410 is further configured to: send first indication information to the network device, where the first indication information is used to instruct the terminal device to request the network device to allocate transmission resources for sending CSI-RS .
  • the first indication information includes period information for sending the CSI-RS by the terminal device.
  • the first indication information includes the value of M.
  • the communication unit 410 is further configured to: receive first configuration information sent by the network device, where the first configuration information includes the CSI- RS transmission resources.
  • the first configuration information includes second indication information, and the second indication information is used to indicate that the transmission resource allocated by the network device is used to transmit the CSI-RS for selecting the target airspace transmission filter .
  • the first indication information is carried by one of the following:
  • Physical uplink control channel PUCCH Physical uplink control channel PUCCH, uplink radio resource control RRC signaling.
  • the second indication information is carried by one of the following: downlink control information DCI and RRC signaling.
  • the communication unit 410 is further configured to: send first lateral configuration information to the second terminal device;
  • the first side row configuration information includes at least one of the following:
  • the repetition field corresponding to the target CSI-RS resource set takes the first value to indicate that the terminal device does not use the same spatial domain transmission filter to transmit CSI-RS, and the repetition field corresponding to the target CSI-RS resource set Taking the second value is used to instruct the terminal device to use the same spatial domain transmission filter to transmit the CSI-RS.
  • the terminal device does not expect the second terminal device to report or feedback the CSI-RS; and/or, after exceeding the delay boundary, allow The second terminal device reports or feeds back the CSI-RS; and/or, after exceeding the delay boundary, the second terminal device does not expect the terminal device to send the CSI-RS; and/or, After exceeding the delay boundary, the second terminal device stops receiving the CSI-RS sent by the terminal device.
  • the communication unit 410 is further configured to: send third indication information to the second terminal device;
  • the third indication information is used to indicate at least one of the following:
  • the terminal device will send the CSI-RS for selecting the target airspace transmission filter, the terminal device will use different airspace transmission filters to send the CSI-RS, and the amount of channel state information CSI reporting, the terminal device is the first The index of the sent CSI-RS resource, the time interval for the terminal device to send the first CSI-RS resource, where the time interval is based on the time unit where the third indication information is located.
  • the communication unit 410 is further configured to: send fourth indication information to the second terminal device;
  • the fourth indication information is used to indicate that the CSI-RS sent by the terminal equipment is used to select a spatial domain transmission filter for the terminal equipment to transmit sidelink data; or, the fourth indication information is used to indicating that the CSI-RS sent by the terminal device is used to select a spatial receiving filter for the second terminal device to receive sidelink data; or, the fourth indication information is used to indicate the CSI sent by the terminal device - RS is used to measure channel state information.
  • the terminal device further includes: a processing unit configured to determine the target CSI-RS resource set according to the resource pool configuration information or the first CSI-RS resource set included in the sidelink bandwidth part configuration information;
  • the CSI reporting amount includes at least one of the following:
  • CSI-RS resource indication CRI, CRI and reference signal received power RSRP, CRI and received signal strength indication SINR, slot resource indication, slot resource indication and RSRP, slot resource indication and SINR, not reported.
  • the first side row configuration information is carried by one of the following:
  • the third indication information is carried by one of the following:
  • PC5-RRC signaling SCI, MAC CE, sidelink feedback information.
  • the fourth indication information is carried by one of the following:
  • PC5-RRC signaling SCI, MAC CE, sidelink feedback information.
  • the communication unit 410 is further configured to: carry the CSI-RS in the SCI associated with the CSI-RS when sending the CSI-RS to the second terminal device using an airspace transmission filter.
  • the CSI-RS resource indication information corresponding to the CSI-RS includes an index of a CSI-RS resource set corresponding to the CSI-RS and/or an index of the CSI-RS resource.
  • the communication unit 410 is further configured to: receive first information sent by the second terminal device;
  • the first information includes a target CSI reporting amount
  • the target CSI reporting amount includes at least one of the following:
  • the time slot resource indication information is used to determine the corresponding time slot for the terminal device to send the CSI-RS, or the time slot resource indication information is used to determine the index corresponding to the CSI-RS resource sent by the terminal device .
  • the first information includes indexes of N CSI-RS resources, or, the first information is used to determine indexes of N CSI-RS resources, and the N CSI-RS resources are all
  • the second terminal device determines according to the received CSI-RS measurement result, N is the number of CSI-RS resources that the second terminal device needs to report or feed back, N is a positive integer, and N ⁇ M.
  • the indexes of the N CSI-RS resources are arranged according to the order of the measurement results corresponding to the N CSI-RS from high to low, or the indexes of the N CSI-RS resources are arranged according to the The measurement results corresponding to the N CSI-RSs are arranged in descending order.
  • the first information further includes first measurement information, and the first measurement information is used to indicate measurement results corresponding to the N CSI-RS resources.
  • the measurement results corresponding to the N CSI-RS resources are greater than or equal to a first threshold.
  • the first measurement information includes quantization index information of measurement results respectively corresponding to the N CSI-RS resources.
  • the first measurement information includes quantization index information of the first measurement result and N-1 differential quantization index information, where the first measurement result corresponds to the N CSI-RS resources corresponding to The highest value in the measurement result.
  • the first information includes indexes of N3 CSI-RS resources, and the N3 CSI-RS resources are determined by the second terminal device according to the measurement results of the received CSI-RS. Yes, N3 ⁇ N, N is the number of CSI-RS resources that the second terminal device needs to feed back or report, N3 and N are positive integers, and N ⁇ M.
  • the measurement results corresponding to the N3 CSI-RS resources are greater than or equal to a first threshold.
  • the first information further includes fifth indication information, and the fifth indication information is used to indicate the value of N3.
  • the first information further includes second measurement information, and the second measurement information is used to indicate measurement results corresponding to the N3 CSI-RS resources.
  • the second measurement information includes quantization index information of measurement results respectively corresponding to the N3 CSI-RS resources.
  • the second measurement information includes quantization index information of the second measurement result and N3-1 differential quantization index information, where the second measurement result corresponds to the N3 CSI-RS resources corresponding to The highest value in the measurement result.
  • the value of N is determined according to at least one of the following information:
  • Resource pool configuration information instruction information sent by the terminal device to the second terminal device, instruction information sent by the second terminal device to the terminal device.
  • the measurements include RSRP and/or SINR.
  • the first information is carried by one of the following:
  • the terminal device further includes a processing unit, configured to select a target CSI-RS resource according to the first information, and the airspace transmission filter corresponding to the target CSI-RS resource is used for the target airspace transmission filter.
  • the communication unit 410 is further configured to: send second side configuration information to the second terminal device, where the second side configuration information is used to configure at least one transmission configuration indication TCI state, the The at least one TCI state includes a first TCI state, and the reference signal included in the first TCI state is a CSI-RS corresponding to a target CSI-RS resource determined by the terminal device according to the first information.
  • the quasi-co-site QCL type included in the first TCI state is QCL-TypeD.
  • the communication unit 410 is further configured to: send sixth indication information to the second terminal device, where the sixth indication information is used to indicate the first TCI state.
  • the communication unit 410 is also used for:
  • the communication unit 410 is further configured to: receive the first information sent by the second terminal device in a first time unit, wherein the first time unit is located at a time interval determined based on a delay boundary After the second time unit.
  • the communication unit 410 is further configured to: receive second information sent by the second terminal device; wherein,
  • the second information is used to indicate that the second terminal device does not detect the CSI-RS or that the measurement results of the CSI-RS detected by the second terminal are all smaller than the first threshold value, or the second information It is used to instruct the terminal device to resend the M CSI-RSs.
  • the communication unit 410 is further configured to: re-use a spatial domain transmission filter to respectively transmit the M CSI-RSs to the second terminal device.
  • the communication unit 410 is further configured to: receive the third information sent by the second terminal device at a third time unit, where the third time unit is located at a time interval determined based on a delay boundary After the fourth time unit.
  • the first threshold value is pre-configured or agreed by the protocol, or the first threshold value is configured by the network device, or the first threshold value is configured by the terminal device configured.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the first terminal in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are respectively in order to realize the For the sake of brevity, the corresponding process of the first terminal device in method 200 will not be repeated here.
  • Fig. 23 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • the terminal device 500 of FIG. 23 includes:
  • the communication unit 510 is configured to receive M channel state information reference signals CSI-RS sent by the first terminal device, wherein the M CSI-RS are used to select a target airspace transmission filter, and the M CSI-RS correspond to Multiple CSI-RS resources in the target CSI-RS resource set, M is a positive integer.
  • the corresponding repetition field in the configuration information of the target CSI-RS resource set takes the first value
  • the first value is used to indicate that the first terminal device does not use the same spatial domain transmission filter to transmit the CSI-RS resources in the target CSI-RS resource set.
  • the communication security 510 is also used to:
  • the first side row configuration information includes at least one of the following:
  • the repetition field corresponding to the target CSI-RS resource set takes the first value to indicate that the first terminal device does not use the same spatial domain transmission filter to transmit CSI-RS, and the target CSI-RS resource set corresponds to The second value of the repetition field is used to indicate that the first terminal device uses the same spatial domain transmission filter to transmit the CSI-RS.
  • the first terminal device does not expect the terminal device to report or feedback the CSI-RS; and/or, after exceeding the delay boundary, allow The terminal device reports or feeds back the CSI-RS; and/or, after exceeding the delay boundary, the terminal device does not expect the first terminal device to send the CSI-RS; and/or, after exceeding After the delay boundary, the terminal device stops receiving the CSI-RS sent by the first terminal device.
  • the communication unit 510 is also used for:
  • the third indication information is used to indicate at least one of the following:
  • the first terminal device will send the CSI-RS used to select the target airspace transmission filter, the first terminal device will use different airspace transmission filters to send the CSI-RS, the channel state information CSI reporting amount, the first The index of the first CSI-RS resource sent by a terminal device, the time interval for sending the first CSI-RS resource by the first terminal device, wherein the time interval is the time unit where the third indication information is located for reference.
  • the communication unit 510 is further configured to: receive fourth indication information sent by the first terminal device;
  • the fourth indication information is used to indicate that the CSI-RS sent by the first terminal device is used to select a spatial domain transmission filter for the first terminal device to transmit sidelink data; or, the fourth The indication information is used to indicate that the CSI-RS sent by the first terminal equipment is used to select a spatial domain receiving filter for the terminal equipment to receive sidelink data; or, the fourth indication information is used to indicate the first The CSI-RS sent by a terminal device is used to select and measure channel state information.
  • the CSI reporting amount includes at least one of the following:
  • CSI-RS resource indication CRI, CRI and reference signal received power RSRP, CRI and received signal strength indication SINR, slot resource indication, slot resource indication and RSRP, slot resource indication and SINR, not reported.
  • the first side row configuration information is carried by one of the following:
  • the third indication information is carried by one of the following:
  • PC5-RRC signaling SCI, MAC CE, sidelink feedback information.
  • the fourth indication information is carried by one of the following:
  • PC5-RRC signaling SCI, MAC CE, sidelink feedback information.
  • the communication unit 510 is also used for:
  • the first terminal device transmits the CSI-RS to the terminal device each time using the airspace transmission filter, receiving the CSI-RS corresponding to the CSI-RS carried by the first terminal device in the SCI associated with the CSI-RS CSI-RS resource indication information.
  • the CSI-RS resource indication information corresponding to the CSI-RS includes an index of a CSI-RS resource set corresponding to the CSI-RS and/or an index of the CSI-RS resource.
  • the communication unit 510 is also used for:
  • the first information includes a target CSI reporting amount
  • the target CSI reporting amount includes at least one of the following:
  • the time slot resource indication information is used to determine the time slot corresponding to the CSI-RS sent by the first terminal device, or the time slot resource indication information is used to determine the CSI-RS sent by the first terminal device The index corresponding to the resource.
  • the first information includes indexes of N CSI-RS resources, or, the first information is used to determine indexes of N CSI-RS resources, and the N CSI-RS resources are all
  • the terminal device determines according to the received CSI-RS measurement results, N is the number of CSI-RS resources that the terminal device needs to report or feed back, N is a positive integer, and N ⁇ M.
  • the indexes of the N CSI-RS resources are arranged according to the order of the measurement results corresponding to the N CSI-RS from high to low, or the indexes of the N CSI-RS resources are arranged according to the The measurement results corresponding to the N CSI-RSs are arranged in descending order.
  • the first information further includes first measurement information, and the first measurement information is used to indicate measurement results corresponding to the N CSI-RS resources.
  • the measurement results corresponding to the N CSI-RS resources are greater than or equal to a first threshold.
  • the first measurement information includes quantization index information of measurement results respectively corresponding to the N CSI-RS resources.
  • the first measurement information includes quantization index information of the first measurement result and N-1 differential quantization index information, where the first measurement result corresponds to the N CSI-RS resources corresponding to The highest value in the measurement result.
  • the first information includes indexes of N3 CSI-RS resources, and the N3 CSI-RS resources are determined by the terminal device according to the measurement results of the received CSI-RS measurements, N3 ⁇ N, N is the number of CSI-RS resources that the terminal device needs to feed back or report, N3 and N are positive integers, and N ⁇ M.
  • the measurement results corresponding to the N3 CSI-RS resources are greater than or equal to a first threshold.
  • the first information further includes fifth indication information, and the fifth indication information is used to indicate the value of N3.
  • the first information further includes second measurement information, and the second measurement information is used to indicate measurement results corresponding to the N3 CSI-RS resources.
  • the second measurement information includes quantization index information of measurement results respectively corresponding to the N3 CSI-RS resources.
  • the second measurement information includes quantization index information of the second measurement result and N3-1 differential quantization index information, where the second measurement result corresponds to the N3 CSI-RS resources corresponding to The highest value in the measurement result.
  • the value of N is determined according to at least one of the following information:
  • Resource pool configuration information instruction information sent by the first terminal device to the terminal device, instruction information sent by the terminal device to the first terminal device.
  • the measurements include RSRP and/or SINR.
  • the first information is carried by one of the following:
  • the communication unit 510 is further configured to: receive second side configuration information sent by the first terminal device, where the second side configuration information is used to configure at least one transmission configuration indication TCI state,
  • the at least one TCI state includes a first TCI state, and the reference signal included in the first TCI state is a CSI-RS corresponding to a target CSI-RS resource determined by the first terminal device according to the first information.
  • the quasi-co-site QCL type included in the first TCI state is QCL-TypeD.
  • the communication unit 510 is further configured to: receive sixth indication information sent by the first terminal device, where the sixth indication information is used to indicate the first TCI state.
  • the communication unit 510 is further configured to: receive sidelink data sent by the first terminal device using the spatial domain transmit filter corresponding to the target CSI-RS resource.
  • the communication unit 510 is further configured to: send the first information to the terminal device in a first time unit, wherein the first time unit is located at a second time determined based on a delay boundary after the unit.
  • the communication unit 510 is further configured to: send second information to the terminal device; wherein,
  • the second information is used to indicate that the terminal device has not detected the CSI-RS or that the measurement results of the CSI-RS detected by the second terminal are all smaller than the first threshold value, or the second information is used to Instructing the first terminal device to resend the M CSI-RSs.
  • the communication unit 510 is also used for:
  • the first threshold value is pre-configured or agreed by the protocol, or the first threshold value is configured by the network device, or the first threshold value is the first terminal device configuration.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 500 may correspond to the second terminal in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 500 are respectively in order to realize the For the sake of brevity, the corresponding process of the second terminal in the method 200 will not be repeated here.
  • FIG. 24 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 24 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the first terminal device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the first terminal in each method of the embodiment of the application. For the sake of brevity, here No longer.
  • the transceiver 630 in the communication device 600 may correspond to the communication unit 410 in the terminal device 400 shown in FIG. 22, and the transceiver 630 may perform the operations or functions performed by the communication unit 510. For simplicity , which will not be repeated here.
  • the processor 610 in the communication device 600 may correspond to the processing unit 420 in the terminal device 400 shown in FIG. 22, and the processor 610 may perform the operations or functions performed by the processing unit 420. , which will not be repeated here.
  • the communication device 600 may specifically be the second terminal device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the second terminal device in each method of the embodiment of the present application. For the sake of brevity, the This will not be repeated here.
  • the transceiver 630 in the communication device 600 may correspond to the communication unit 510 in the terminal device 500 shown in FIG. 23, and the transceiver 630 may perform the operations or functions performed by the communication unit 510. , which will not be repeated here.
  • the processor 610 in the communication device 600 may correspond to the processing unit 520 in the terminal device 500 shown in FIG. 23, and the processor 610 may perform the operations or functions performed by the processing unit 520. , which will not be repeated here.
  • FIG. 25 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 25 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may also include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the first terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the first terminal in the various methods of the embodiments of the present application. For the sake of brevity, details are not repeated here. .
  • the processor 710 in the chip 700 may correspond to the processing unit 420 in the terminal device 400 shown in FIG. 22, and the processor 710 may perform the operations or functions performed by the processing unit 420.
  • the processor 710 in the chip 700 may correspond to the processing unit 420 in the terminal device 400 shown in FIG. 22, and the processor 710 may perform the operations or functions performed by the processing unit 420.
  • the input interface 730 and the output interface 740 in the chip 700 may correspond to the communication unit 410 in the terminal device 400 shown in FIG.
  • the operation or function of for the sake of brevity, will not be repeated here.
  • the chip can be applied to the second terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the second terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the second terminal device in each method of the embodiment of the present application.
  • the processor 710 in the chip 700 may correspond to the processing unit 520 of the terminal device 500 shown in FIG. No longer.
  • the input interface 730 and output interface 740 in the chip 700 may correspond to the communication unit 510 in the terminal device 500 shown in FIG.
  • the operation or function of for the sake of brevity, will not be repeated here.
  • chips mentioned in the embodiments of the present application may also be referred to as system-on-chip, system-on-chip, system-on-a-chip, or system-on-chip.
  • FIG. 26 is a schematic block diagram of a communication system 700 provided by an embodiment of the present application. As shown in FIG. 26 , the communication system 700 includes a first terminal 710 and a second terminal 720 .
  • the first terminal 710 can be used to realize the corresponding functions realized by the first terminal device in the above method
  • the second terminal 720 can be used to realize the corresponding functions realized by the second terminal device in the above method. , which will not be repeated here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the first terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the first terminal device in the methods of the embodiments of the present application, in order It is concise and will not be repeated here.
  • the computer-readable storage medium can be applied to the second terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the second terminal device in each method of the embodiment of the present application, in order It is concise and will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the first terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the first terminal device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the first terminal device in the methods of the embodiments of the present application.
  • the computer program product can be applied to the second terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the second terminal device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the second terminal device in the methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the first terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes the corresponding
  • the process will not be repeated here.
  • the computer program can be applied to the second terminal device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding
  • the process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法和设备,有利于选取发送端终端和接收端终端之间的最优空域发送滤波器,该方法包括:第一终端设备使用空域发送滤波器向第二终端设备发送M个信道状态信息参考信号CSI-RS,所述M个CSI-RS用于选取目标空域发送滤波器;其中,所述M个CSI-RS对应目标CSI-RS资源集合中的多个CSI-RS资源,M为正整数。

Description

无线通信的方法和设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法和设备。
背景技术
在新无线(New Radio,NR)系统中,为了保证高频段的覆盖,一种有效的解决方案是基于大规模天线阵列(Massive MIMO),以形成增益更大的赋形波束,克服传播损耗,确保系统覆盖。例如,采用不同波束(beam)来覆盖整个小区。
为了提升侧行通信系统的传输速率,考虑在侧行传输系统中使用高频段,例如毫米波频段,此情况下,如何选取发送端终端和接收端终端之间的最优发送波束是一项亟需解决的问题。
发明内容
本申请提供了一种无线通信的方法和设备,有利于选取发送端终端和接收端终端之间的最优空域发送滤波器。
第一方面,提供了一种无线通信的方法,包括:第一终端设备使用空域发送滤波器向第二终端设备发送M个信道状态信息参考信号CSI-RS,所述M个CSI-RS用于选取目标空域发送滤波器;其中,所述M个CSI-RS对应目标CSI-RS资源集合中的多个CSI-RS资源,M为正整数。
第二方面,提供了一种无线通信的方法,包括:第二终端设备接收第一终端设备发送的M个信道状态信息参考信号CSI-RS,其中,所述M个CSI-RS用于选取目标空域发送滤波器,所述M个CSI-RS对应目标CSI-RS资源集合中的多个CSI-RS资源,M为正整数。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种终端设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,发送端终端使用空域发送滤波器向接收端终端发送M个CSI-RS,对应地,接收端终端可以对该M个CSI-RS进行测量,有利于选取发送端终端和接收端终端之间的最优空域发送滤波器。
附图说明
图1是本申请提供的一种通信系统架构的示意性图。
图2是本申请提供的另一种通信系统架构的示意性图。
图3是本申请提供的一种网络覆盖范围内侧行通信的示意性图。
图4是本申请提供的一种部分网络覆盖侧行通信的示意性图。
图5是本申请提供的一种网络覆盖外侧行通信的示意性图。
图6是本申请提供的一种单播侧行通信的示意性图。
图7是本申请提供的一种组播侧行通信的示意性图。
图8是本申请提供的一种广播侧行通信的示意性图。
图9是NR-V2X的时隙结构的示意图。
图10是不使用模拟波束和使用模拟波束的系统示意性图。
图11是本申请实施例提供的一种无线通信的方法的示意性交互图。
图12是发送端终端采用的发送波束的示意图。
图13是发送端终端和接收端终端确定发送波束的过程的示意性图。
图14至19分别是根据本申请实施例提供的第一信息所包含的内容的示意性图。
图20是根据本申请实施例提供的一种MAC CE承载第一信息的示意性图。
图21是根据本申请实施例提供的另一种MAC CE承载第一信息的示意性图。
图22是根据本申请实施例提供的一种终端设备的示意性框图。
图23是根据本申请实施例提供的另一种终端设备的示意性框图。
图24是根据本申请实施例提供的一种通信设备的示意性框图。
图25是根据本申请实施例提供的一种芯片的示意性框图。
图26是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart  home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
图1是本申请实施例适用的一种通信系统的示意图。车载终端(车载终端121和车载终端122)的传输资源是由基站110分配的,车载终端根据基站110分配的资源在侧行链路上进行数据的发送。具体地,基站110可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。
图2是本申请实施例适用的另一种通信系统的示意图。车载终端(车载终端131和车载终端132)在侧行链路的资源上自主选取传输资源进行数据传输。可选地,车载终端可以随机选取传输资源,或者通过侦听的方式选取传输资源。
需要说明的是,在侧行通信中,根据进行通信的终端所处的网络覆盖情况,可以分为网络覆盖内侧行通信,如图3所示;部分网络覆盖侧行通信,如图4所示;及网络覆盖外侧行通信,如图5所示。
图3:在网络覆盖内侧行通信中,所有进行侧行通信的终端均处于基站的覆盖范围内,从而,上述终端均可以通过接收基站的配置信令,基于相同的侧行配置进行侧行通信。
图4:在部分网络覆盖侧行通信情况下,部分进行侧行通信的终端位于基站的覆盖范围内,这部 分终端能够接收到基站的配置信令,而且根据基站的配置进行侧行通信。而位于网络覆盖范围外的终端,无法接收基站的配置信令,在这种情况下,网络覆盖范围外的终端将根据预配置(pre-configuration)信息及位于网络覆盖范围内的终端发送的物理侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)中携带的信息确定侧行配置,进行侧行通信。
图5:对于网络覆盖外侧行通信,所有进行侧行通信的终端均位于网络覆盖范围外,所有终端均根据预配置(pre-configuration)信息确定侧行配置进行侧行通信。
需要说明的是,设备到设备通信是基于终端到终端(Device to Device,D2D)的一种侧行链路(Sidelink,SL)传输技术,与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同,车联网系统采用终端到终端直接通信的方式,因此具有更高的频谱效率以及更低的传输时延。在3GPP定义了两种传输模式,分别记为:第一模式和第二模式。
第一模式:终端的传输资源是由基站分配的,终端根据基站分配的资源在侧行链路上进行数据的发送;基站可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。如图3所示,终端位于网络覆盖范围内,网络为终端分配侧行传输使用的传输资源。
第二模式:终端在资源池中选取一个资源进行数据的传输。如图5所示,终端位于小区覆盖范围外,终端在预配置的资源池中自主选取传输资源进行侧行传输;或者,如图3所示,终端在网络配置的资源池中自主选取传输资源进行侧行传输。
在NR-V2X中,支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在LTE-V2X中,支持广播传输方式,在NR-V2X中,引入了单播和组播的传输方式。对于单播传输,其接收端终端只有一个终端,如图6所示,UE1、UE2之间进行单播传输;对于组播传输,其接收端终端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端,如图7所示,UE1、UE2、UE3和UE4构成一个通信组,其中UE1发送数据,该组内的其他终端设备都是接收端终端;对于广播传输方式,其接收端终端是发送端终端周围的任意一个终端,如图8所示,UE1是发送端终端,其周围的其他终端,UE2-UE6都是接收端终端。
为便于更好的理解本申请实施例,结合图9对NR-V2X中的时隙结构进行说明。
图9中的(a)表示时隙中不包括物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)PSFCH的时隙结构;图9中的(b)表示包括PSFCH信道的时隙结构。
如图9中的(a)所示,物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)在时域上从时隙的第二个侧行符号开始,占用2个或3个OFDM符号,在频域上可以占用{10,12 15,20,25}个物理资源块(physical resource block,PRB)。为了降低UE对PSCCH的盲检测的复杂度,在一个资源池内只允许配置一个PSCCH符号个数和PRB个数。另外,因为子信道(sub-channel)为NR-V2X中物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)资源分配的最小粒度,PSCCH占用的PRB个数必须小于或等于资源池内一个子信道中包含的PRB个数,以免对PSSCH资源选择或分配造成额外的限制。PSSCH在时域上也是从该时隙的第二个侧行符号开始,该时隙中的最后一个时域符号为保护间隔(Guard Period,GP)符号,其余符号映射PSSCH。该时隙中的第一个侧行符号是第二个侧行符号的重复,通常接收端终端将第一个侧行符号用作自动增益控制(Automatic Gain Control,AGC)符号,该符号上的数据通常不用于数据解调。PSSCH在频域上占据P个子信道,每个子信道包括Q个连续的PRB,其中P、Q是正整数。
如图9中的(b)所示,当时隙中包含PSFCH时,该时隙中倒数第二个和倒数第三个符号用作PSFCH信道传输,在PSFCH信道之前的一个时域符号用作保护间隔GP符号。
为便于更好的理解本申请实施例,对本申请相关的多波束(Multi-beam)系统进行说明。
NR系统的设计目标包括高频段(例如6GHz以上的频段)的大带宽通信。当工作频率变高时,传输过程中的路径损耗会增大,从而影响高频系统的覆盖能力。为了能够有效地保证高频段NR系统的覆盖,一种有效的技术方案便是基于大规模天线阵列(Massive MIMO),以形成增益更大的赋形波束,克服传播损耗,确保系统覆盖。
毫米波天线阵列,由于波长更短,天线阵子间距以及孔径更小,可以让更多的物理天线阵子集成在一个有限大小的二维天线阵列中,同时,由于毫米波天线阵列的尺寸有限,从硬件复杂度、成本开销以及功耗等因素考虑,无法采用数字波束赋形方式,而是通常采用模拟波束赋形方式,在增强网络覆盖同时,也可以降低设备的实现复杂度。
在2G/3G/4G系统中,一个小区(扇区)使用一个较宽的波束(beam)来覆盖整个小区。因此在每个时刻,小区覆盖范围内UE都有机会获得系统分配的传输资源。
NR的Multi-beam系统通过不同的beam来覆盖整个小区,即每个beam覆盖一个较小的范围,通 过时间上的sweeping来实现多个beam覆盖整个小区的效果。
图10示出了不使用波束赋形和使用波束赋形系统的示意图。其中,图10中的(a)是传统的、不使用波束赋形的LTE系统和NR系统示意图,图10中的(b)是使用波束赋形的NR系统示意图。
在一些场景中,不同的beam通过上面承载的不同信号来进行识别。
例如一些不同beam上传输不同的同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block,或称SSB),UE可以通过不同的SSB来分辨出不同的beam。
又例如,一些不同的beam上传输不同的信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),UE通过CSI-RS信号/CSI-RS资源来识别出不同的beam。
在一个multi-beam系统中,物理下行控制信道(Physical Downlink Control Channel,PDCCH)和物理下行共享信道(Physical Downlink Shared Channel,PDSCH)可以通过不同的下行发送波束来传输。
例如,对于载频在6G Hz以下系统,终端设备侧一般没有模拟波束,因此采用全向天线(或者接近全向的天线)来接收基站通过不同下行发送波束发送的信号。
又例如,对于毫米波系统,终端设备侧可能会有模拟波束,需要使用对应的下行接收波束去接收对应的下行发送波束发送的信号。此时,需要相应的波束指示信息(beam indication)来协助终端设备确定网络设备侧的发送波束相关信息,或者终端设备侧对应的接收波束相关信息。
在NR系统中,波束指示信息不是直接指示波束本身,而是通过信号之间的准共址(Quasi-co-located,QCL)('QCL-TypeD'类型)来进行指示。在终端设备侧,确定接收相应的信道/信号的统计特性,也是基于QCL假设。
为便于更好的理解本申请实施例,对下行传输的QCL指示或假设进行说明。
终端设备在进行信号接收时,为了提高接收性能,可以利用数据传输所对应的传输环境的特性来改进接收算法。例如可以利用信道的统计特性来优化信道估计器的设计和参数。在NR系统中,数据传输所对应的这些特性通过QCL状态(QCL-Info)来表示。
下行传输如果来自不同的传输接收点(Transmission Reception Point,TRP)/面板(panel)/波束(beam),则数据传输所对应的传输环境的特性可能也会有变化,因此在NR系统中,网络设备侧在传输下行控制信道或数据信道时,会通过传输配置指示(Transmission Configuration Indicator,TCI)状态将对应的QCL状态信息指示给终端设备。
在一些实施例中,一个TCI状态可以包含如下配置:
TCI状态ID,用于标识一个TCI状态;
QCL信息1
QCL信息2(可选)
其中,一个QCL信息又包含如下信息:
QCL类型配置,可以是QCL type A,QCL typeB,QCL typeC或QCL typeD中的一个;
QCL参考信号配置,包括参考信号所在的小区ID,BWP ID以及参考信号的标识(可以是CSI-RS资源ID或同步信号块(Synchronization Signal Block,SSB)索引);
其中,如果QCL信息1和QCL信息2都配置了,至少一个QCL信息的QCL类型必须为QCL typeA,QCL typeB,QCL typeC中的一个,另一个QCL信息的QCL类型必须为QCL type D。
其中,不同QCL类型配置的定义如下:
'QCL-TypeA':{多普勒频移(Doppler shift),多普勒扩展(Doppler spread),平均时延(average delay),延时扩展(delay spread)};
'QCL-TypeB':{多普勒频移(Doppler shift),多普勒扩展(Doppler spread)};
'QCL-TypeC':{多普勒频移(Doppler shift),平均时延(average delay)};
'QCL-TypeD':{空间接收参数(Spatial Rx parameter)}。
在NR系统中,网络设备侧可以为下行信号或下行信道指示相应的TCI状态。
如果网络设备侧通过TCI状态配置目标下行信道或目标下行信号的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为typeA,typeB或typeC,则终端设备可以假设所述目标下行信号与所述参考SSB或参考CSI-RS资源的大尺度参数是相同的,所述大尺度参数通过QCL类型配置来确定。
类似的,如果网络设备侧通过TCI状态配置目标下行信道或下行信号的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为typeD,则终端设备可以采用与接收所述参考SSB或参考CSI-RS资源相同的接收波束(即Spatial Rx parameter),来接收所述目标下行信道或目标下行信号。通常的,目标下行信道(或下行信号)与它的参考SSB或参考CSI-RS资源在网络设备侧由同一个 TRP或者同一个panel或者相同的波束来发送。如果两个下行信号或下行信道的传输TRP或传输panel或发送波束不同,通常会配置不同的TCI状态。
对于下行控制信道,可以通过无线资源控制(Radio Resource Control,RRC)信令或者RRC信令+媒体接入控制(Media Access Control,MAC)信令的方式来指示对应控制资源集(Control Resource Set,CORESET)的TCI状态。
对于下行数据信道,可用的TCI状态集合通过RRC信令来指示,并通过MAC层信令来激活其中部分TCI状态,最后通过下行控制信息(Downlink Control Information,DCI)中的TCI状态指示域从激活的TCI状态中指示一个或两个TCI状态,用于所述DCI调度的PDSCH。
为了提升侧行通信系统的传输速率,考虑在侧行传输系统中使用毫米波频段,此情况下,如何选取发送端终端和接收端终端之间的最优发送波束是需要解决的问题。
基于上述技术问题,本申请提出了一种确定发送端终端和接收端终端之间的最优空域发送滤波器的方案,有利于确定发送端终端和接收端终端之间的最优空域发送滤波器。
图11是根据本申请实施例的无线通信的方法200的示意性交互图,如图11所示,该方法200包括如下至少部分内容:
S210,第一终端设备使用空域发送滤波器向第二终端设备发送M个信道状态信息参考信号CSI-RS,所述M个CSI-RS用于选取目标空域发送滤波器,其中,所述M个CSI-RS对应目标CSI-RS资源集合中的多个CSI-RS资源,M为正整数。
对应地,第二终端设备可以对接收到的CSI-RS进行测量,得到测量结果,进一步根据该测量结果进行CSI上报或反馈,从而第一终端设备可以根据该CSI上报或反馈确定目标空域发送滤波器。
在本申请实施例中,所述S210可以替换为:第一终端设备使用空域发送滤波器向第二终端设备发送M个侧行信号,所述M个侧行信号用于选取目标空域发送滤波器。
在一些实施例中,所述侧行信号例如可以为CSI-RS,解调参考信号(Demodulation Reference Signal,DMRS),定位参考信号(positioning reference signals,PRS)、相位跟踪参考信号(Phase Tracking Reference Signal,PT-RS)或侧行同步信号(包括侧行主同步信号和/或侧行辅同步信号)等,其中,该DMRS可以为用于解调物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)的DMRS,或者用于解调物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)的DMRS,以下,以侧行信号为CSI-RS为例进行说明,但本申请并不限于此。
在本申请实施例中,该第一终端设备为发送端终端,该第二终端设备为接收端终端。
在一些实施例中,空域发送滤波器(spatial domain transmission filter)也可以称为发送波束(transmission beam)或者空间关系(Spatial relation)或者空间配置(spatial setting)。
在一些实施例中,空域发送滤波器和空域接收滤波器统称为空域滤波器,空域发送滤波器也可以称为发送端空域滤波器,空域接收滤波器也可以称为接收端空域滤波器。
在本申请实施例中,第一终端设备发送CSI-RS也可以表述为第一终端设备发送CSI-RS资源,即二者是等价表述。类似地,CSI-RS的测量结果和CSI-RS资源的测量结果等价。
在本申请一些实施例中,所述M个CSI-RS中的每个CSI-RS在所述目标CSI-RS资源集合中对应一个CSI-RS资源,所述M个CSI-RS对应目标CSI-RS资源集合中的多个CSI-RS资源可以指:所述M个CSI-RS对应的CSI-RS资源两两不同,即所述M个CSI-RS和多个CSI-RS资源是一一对应的;或者,所述M个CSI-RS中存在至少两个CSI-RS对应的CSI-RS资源不同。即所述第一终端设备使用空域发送滤波器发送了至少两个CSI-RS资源。
在一些实施例中,所述第一终端设备使用空域发送滤波器向第二终端设备发送M个CSI-RS可以指:所述第一终端设备使用不同的空域发送滤波器发送所述M个CSI-RS,例如所述M个CSI-RS分别对应不同的发送波束;或者,所述第一终端设备不是使用相同的空域发送滤波器发送所述M个CSI-RS,例如,发送所述M个CSI-RS至少使用了两个不同的发送波束。
作为示例,所述第一终端设备使用空域发送滤波器向第二终端设备发送M个CSI-RS可以包括:
所述第一终端设备使用M个空域发送滤波器向第二终端设备发送M个CSI-RS,其中,每个空域发送滤波器对应一个CSI-RS。
作为示例,所述第一终端设备使用空域发送滤波器向第二终端设备发送M个CSI-RS可以包括:
所述第一终端设备使用K个空域发送滤波器向第二终端设备发送M个CSI-RS,其中,K小于M,并且K大于1,即所述M个CSI-RS中存在至少两个CSI-RS是通过不同的空域发送滤波器发送的。
在本申请实施例中,终端设备可以使用波束进行侧行数据传输,此情况下,发送端终端可以确定适用于接收端终端的发送波束以提升侧行传输性能。例如,第一终端设备作为发送端终端时,可以通过不同的发送波束发送侧行参考信号,进一步地,接收端终端可以对发送端终端发送的侧行参考信号 进行测量,选取最优测量结果对应的发送波束,进一步向接收端终端反馈该最优的发送波束,从而发送端终端根据接收端终端反馈的最优发送波束进行后续的侧行传输,从而能够提高传输性能。在一些实施方式中,发送波束和参考信号资源之间具有对应关系,接收端终端选取最优测量结果对应的发送波束,向发送端终端反馈该发送波束对应的参考信号资源信息,发送端终端根据该参考信号资源信息及该对应关系即可确定最优的发送波束。
在一些实施例中,所述目标CSI-RS资源集合的配置信息中对应的重复(repetition)字段取第一值,其中,所述第一值用于指示所述第一终端设备不是使用相同的空域发送滤波器发送所述目标CSI-RS资源集合中的CSI-RS资源,换言之,所述第一值用于指示所述第一终端设备使用不同的空域发送滤波器发送所述目标CSI-RS资源集合中的CSI-RS资源。
在一些实施例中,所述第一值可以为关闭(off),表示所述第一终端设备发送所述M个CSI-RS用于选取目标空域发送滤波器。
在本申请一些实施例中,所述第一终端设备工作在第一模式时,第一终端设备可以基于网络设备分配的侧行传输资源发送CSI-RS;第一终端设备工作在第二模式时,第一终端设备可以基于侦听结果确定用于发送CSI-RS的传输资源,其中,所述第一模式和所述第二模式的工作原理参考前述实施例的相关说明。
在一些实施例中,如图11所示,所述方法200还包括:
S201,所述第一终端设备向网络设备发送第一指示信息,所述第一指示信息用于指示所述第一终端设备请求网络设备分配用于发送CSI-RS的传输资源。
在一些实施例中,所述第一指示信息承载在资源请求信息中,所述资源请求信息用于向网络设备请求侧行传输资源。
例如,所述第一终端设备工作在第一模式,当所述第一终端设备确定需要发送CS-RS以确定最优发送波束时,向网络设备发送资源请求信息,在该资源请求信息中携带第一指示信息。
可选地,所述第一终端设备需要发送CSI-RS可以指所述第一终端设备需要发送多个CSI-RS,或者,需要通过不同的发送波束发送CSI-RS。
在一些实施例中,所述第一终端设备可以周期性的发送CSI-RS,以便于第二终端设备进行周期性的测量。因此,所述第一指示信息可以用于指示所述第一终端设备需要周期性的发送CSI-RS,或者,所述第一终端设备请求周期性的侧行资源。
可选地,所述第一指示信息还可以包括第一终端设备发送CSI-RS的周期信息。从而网络设备可以根据该第一指示信息为第一终端设备分配周期性的侧行资源。
在一些实施例中,所述第一指示信息还可以包括所述M的取值。通过向网络设备指示M的取值,从而网络设备可以为该第一终端设备发送该M个CSI-RS分别分配对应的侧行传输资源。
在一些实施例中,所述资源请求信息可以包括但不限于以下至少之一:
调度请求(Scheduling Request,SR),缓存状态报告(Buffer Status Report,BSR)。
应理解,所述第一指示信息可以通过任一上行信道或信令发送。作为示例,物理上行控制信道(Physical Uplink Control Channel,PUCCH),上行无线资源控制(Radio Resource Control,RRC)信令等。
进一步地,在一些实施例中,如图11所示,所述方法还包括:
S202,所述第一终端设备接收网络设备发送的第一配置信息,所述第一配置信息包括所述网络设备为所述第一终端设备分配的用于发送CSI-RS的传输资源。
在一些实施例中,所述第一配置信息包括第二指示信息,所述第二指示信息用于指示所述网络设备分配的侧行侧传输资源用于发送用于选取目标空域发送滤波器的CSI-RS,或者,所述第二指示信息用于指示所述网络设备分配的侧行传输资源用于第一终端设备发送CSI-RS。
在一些实施例中,网络设备可以通过动态资源分配,或分配侧行配置授权(Configure Grant,CG)等方式为第一终端设备分配侧行传输资源。
网络设备为第一终端设备分配侧行配置授权的侧行传输资源可以为:网络设备为该第一终端设备分配周期性的侧行传输资源。这样,第一终端设备可以利用该侧行配置授权的周期性资源向第二终端设备周期性的发送CSI-RS。
在一些实施例中,网络设备为第一终端设备分配侧行配置授权的周期性资源时,每个周期内只包括一个侧行传输资源。
在一些实施例中,网络设备可以通过DCI为第一终端设备分配侧行传输资源,此情况下分配的侧行资源为动态资源。
在另一些实施例中,网络设备可以通过RRC信令为第一终端设备分配侧行传输资源,此情况下 分配的侧行资源可以为类型1(Type-1)侧行配置授权。
在又一些实施例中,网络设备可以通过RRC信令和DCI为第一终端设备分配侧行传输资源,此情况下分配的侧行资源可以为类型2(Type-2)侧行配置授权。
在一些实施例中,所述第二指示信息通过以下信令中的至少之一承载:DCI,RRC信令。
应理解,本申请实施例并不限定所述第二指示信息在信令中的承载方式。当所述第二指示信息通过DCI承载时,所述第二指示信息携带在所述DCI的信息域中,例如,通过新增信息域或复用已有信息域的方式在DCI中携带所述第二指示信息,或者,所述第二指示信息通过生成加扰DCI的信息比特的扰码序列的无线网络临时标识符(Radio Network Temporary Identity,RNTI)携带。
在本申请一些实施例中,所述第一终端设备根据资源池配置信息或侧行带宽部分(Band Width Part,BWP)配置信息中包括的第一CSI-RS资源集合确定所述目标CSI-RS资源集合,根据所述第一CSI-RS资源集合包括的CSI-RS资源确定所述目标CSI-RS资源集合中包括的CSI-RS资源。
在一些实施例中,该资源池配置信息或侧行BWP配置信息包括CSI-RS资源集合(CSI-RS-ResourceSet)配置信息和/或CSI上报配置信息。
在一些实施例中,该CSI-RS资源集合配置信息中包括以下参数中的一种或多种:
CSI-RS资源集合标识(CSI-RS-ResourceSetId);
CSI-RS资源的配置信息(CSI-RS-Resource);
参数重复(repetition)的配置信息,例如,取值为关闭(off)或打开(on);
一个CSI-RS资源占据的时域符号个数;
用于确定第一个CSI-RS资源所在的时域符号的指示信息,例如通过时隙中的时域符号索引指示;
用于确定一个物理资源块(physical resource block,PRB)内CSI-RS资源所在的资源元素(Resource Element,RE)或子载波的指示信息,例如,通过参数侧行CSI-RS频率分配(sl-CSI-RS-FreqAllocation)以比特位图(bitmap)的形式指示PRB内第一个CSI-RS所在的RE的位置。
当发送端终端向接收端终端发送指示信息,指示将要发送repetition为off的CSI-RS资源集合中的CSI-RS资源时,接收端终端可以假设发送端终端不是使用相同的发送波束发送CSI-RS资源,因此,接收端终端可以根据CSI-RS进行测量,并向发送端终端进行CSI上报或反馈,从而使得第一终端设备可以根据CSI上报或反馈确定目标发送波束。
当发送端终端向接收端终端指示发送repetition为on的CSI-RS资源集合中的CSI-RS资源时,接收端终端可以假设发送端终端使用相同的发送波束发送CSI-RS资源,因此,接收端终端可以使用不同的接收波束进行接收,并对CSI-RS进行测量,根据测量结果确定接收波束。
在一些实施例中,该CSI上报配置信息包括以下参数中的一种或多种:
CSI上报配置标识(CSI-ReportConfigId);
CSI上报量(reportQuantity);
CSI-RS资源集合标识(CSI-RS-ResourceSetId),用于关联CSI-RS资源集合和CSI上报量。
应理解,所述CSI上报量可以包括接收端终端选择上报的CSI-RS资源的指示信息和/或接收端终端选择上报的CSI-RS资源的测量结果。
在一些实施例中,所述CSI-RS资源的指示信息可以为CSI-RS资源的直接指示信息,例如CSI-RS资源的资源索引,或者,也可以为CSI-RS资源的间接指示信息,例如,CSI-RS资源对应的传输资源信息等。应理解,CSI-RS资源对应的传输资源信息可以指传输该CSI-RS资源的资源信息,例如,传输该CSI-RS资源的时隙信息。
在一些实施例中,CSI-RS资源的测量结果可以包括但不限于以下至少之一:
参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)、信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)。
作为示例,所述CSI上报量可以包括但不限于以下至少之一:
CSI-RS资源指示(CSI-RS Resource Indicator,CRI),CRI和参考信号接收功率(Reference Signal Receiving Power,RSRP)(‘cri-RSRP’),CRI和信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)(‘cri-SINR’),时隙资源指示,时隙资源指示和RSRP,时隙资源指示和SINR,不上报或空(‘none’)。
在一些实施例中,CRI可以为CSI-RS资源的资源索引。
在一些实施例中,所述时隙资源指示可以用于指示CSI-RS资源的接收端终端选择的CSI-RS资源对应的时隙信息。例如,第一终端设备在一个时隙中发送了一个CSI-RS资源,第二终端设备接收到该CSI-RS资源时,可以获知第一终端设备发送该CSI-RS资源的时隙信息,如果第二终端设备选择上报或反馈该CSI-RS资源,则可以反馈该CSI-RS资源对应的时隙信息,这样,第一终端设备基于该时 隙信息即可确定与该时隙信息对应的CSI-RS资源。
在一些实施例中,所述资源池配置信息或侧行BWP配置信息还包括以下参数中的一种或多种:
天线端口数,例如,指示CSI-RS的天线端口数为{1,2,4,8}等;
CSI-RS密度。
在一些实施例中,该CSI-RS密度用于指示每个PRB内每个天线端口的CSI-RS占据的RE个数。如密度为2,即表示每个PRB内,每个天线端口的CSI-RS占据2个RE。
在一些实施例中,当CSI-RS密度小于1时,该资源池配置信息或侧行BWP配置信息还可以包括用于指示映射CSI-RS资源的PRB信息。例如,密度为0.5,即每2个PRB内每个天线端口占据1个RE时,该资源池配置信息或侧行BWP配置信息还可以包括每2个PRB中映射一个CSI-RS资源的PRB信息,如奇数(或偶数)PRB上映射CSI-RS资源。
在本申请一些实施例中,可以通过CSI-RS资源集合的重复字段的取值指示该CSI-RS资源集合的用途,例如是用于确定目标发送波束还是用于确定目标接收波束。
例如确定目标发送波束时,发送端终端可以使用repetition为off的CSI-RS资源集合,确定目标接收波束时,发送端终端可以使用repetition为on的CSI-RS资源集合。
在一些实施例中,资源池配置信息或侧行BWP配置信息包括第一CSI-RS资源集合的配置信息和第二CSI-RS资源集合的配置信息。其中,所述第一CSI-RS资源集合的repetition为off,所述第二CSI-RS资源集合的repetition为on。
则当需要确定目标发送波束时,第一终端设备可以使用第一CSI-RS资源集合,例如,第一终端设备可以使用不同的发送波束分别发送该第一CSI-RS资源集合中的M个CSI-RS资源,第二终端设备分别对接收的CSI-RS资源进行测量,并根据测量结果进行CSI上报或反馈,第一终端设备根据该第二终端设备的CSI上报或反馈进行目标发送波束的选取。
当确定接收波束时,第一终端设备可以使用第二CSI-RS资源集合。例如第一终端设备使用相同的发送波束分别发送该第二CSI-RS资源集合中的M个CSI-RS资源,第二终端设备分别使用不同的接收波束进行接收,并对CSI-RS资源进行测量,根据测量结果进行目标接收波束的选取。
在本申请另一些实施例中,可以通过CSI-RS资源集合对应的CSI上报量配置指示该CSI-RS资源集合的用途,例如是用于确定目标发送波束还是用于确定目标接收波束。例如,确定目标发送波束时,发送端终端使用CSI上报量不为'none'的CSI-RS资源集合,确定目标接收波束时,发送端终端使用CSI上报量为'none'的CSI-RS资源集合。
例如,资源池配置信息或侧行BWP配置信息配置了两个CSI-RS资源集合,并且配置了与CSI-RS资源集合相关联的CSI上报量,与第一个CSI-RS资源集合相关联的CSI上报量为'cri-RSRP',与第二个CSI-RS资源集合相关联的CSI上报量为'none'。
则当第一终端设备向第二终端设备指示CSI上报量为'cri-RSRP'时,即表示第一终端设备将会发送第一个CSI-RS资源集合中的CSI-RS资源,此时,第二终端设备可以假设第一终端设备使用不同的发送波束发送CSI-RS资源,因此,第二终端设备对CSI-RS资源进行测量,并进行CSI上报或反馈,从而使得第一终端设备可以根据CSI上报或反馈确定目标发送波束。
当第一终端设备向第二终端设备指示CSI上报量为'none'时,即表示第一终端设备将会发送第二个CSI-RS资源集合中的CSI-RS资源,此时,第二终端设备可以假设第一终端设备使用相同的发送波束发送CSI-RS资源,因此,第二终端设备可以使用不同的接收波束分别接收CSI-RS资源,并对CSI-RS资源进行测量,根据测量结果选取目标接收波束。
在本申请实施例中,所述第一终端设备和所述第二终端设备均可以获知该资源池配置信息或侧行BWP配置信息。即第一终端设备和第二终端设备对于CSI-RS资源配置信息的理解一致。
在一些实施例中,在所述第一终端设备使用空域发送滤波器向所述第二终端设备发送CSI-RS时,所述第一终端设备在与所述CSI-RS关联的SCI中携带所述CSI-RS对应的CSI-RS资源指示信息。
例如,第一终端设备在每次使用空域发送滤波器向所述第二终端设备发送CSI-RS时,所述第一终端设备在与所述CSI-RS关联的SCI中携带所述CSI-RS对应的CSI-RS资源指示信息,例如CSI-RS资源的索引信息。
即第一终端设备可以通过CSI-RS关联的SCI向第二终端设备指示该CSI-RS对应的CSI-RS资源。
在本申请一些实施例中,如图11所示,所述方法200还包括:
S203,所述第一终端设备向所述第二终端设备发送第一侧行配置信息。
在一些实施例中,所述第一侧行配置信息用于指示CSI-RS资源的发送配置、CSI-RS资源的接收配置,CSI-RS资源的上报或反馈配置中的至少之一。
即,第二终端设备根据第一侧行配置信息可以获知发送端终端发送CSI-RS资源所使用的配置, 和/或,接收端终端接收CSI-RS资源所使用的配置,和/或,接收端终端进行CSI上报或反馈所使用的配置。
因此,第一终端设备向第二终端设备发送第一侧行配置信息,从而第二终端设备可以获知CSI-RS的发送配置和/或接收配置,进一步可以基于该发送配置和/或接收配置进行CSI-RS资源的检测和测量,根据测量结果结合上报或反馈配置选取上报或反馈的CSI-RS资源,从而实现目标发送波束的选取过程。
在一些实施例中,所述第一侧行配置信息包括但不限于以下至少之一:
所述目标CSI-RS资源集合的索引,所述目标CSI-RS资源集合中包括的CSI-RS资源的索引,所述目标CSI-RS资源集合中包括的CSI-RS资源的数量,所述M的取值,CSI-RS资源集合与CSI上报量的对应关系,所述第二终端设备向所述第一终端设备上报或反馈的CSI-RS资源的数量,时延边界,所述目标CSI-RS资源集合对应的重复字段的取值,所述第一终端设备发送所述M个CSI-RS所使用的传输资源信息,所述M个CSI-RS所使用的传输资源对应的资源池信息,所述第一终端设备的传输模式;
其中,所述目标CSI-RS资源集合对应的重复字段取第一值用于指示所述第一终端设备不是使用相同的空域发送滤波器发送CSI-RS,所述目标CSI-RS资源集合对应的重复字段取第二值用于指示所述第一终端设备使用相同的空域发送滤波器发送CSI-RS。
应理解,所述第一侧行配置信息可以通过任一侧行信息或侧行信令配置。作为示例,所述第一侧行配置信息通过以下之一承载:侧行控制信息(Sidelink Control Information,SCI),媒体接入控制控制元素(Media Access Control Control Element,MAC CE),PC5-RRC信令。
在一些实施方式中,当所述第一侧行配置信息通过SCI或MAC CE承载时,所述第一终端设备指示激活侧行反馈。
所述第一终端设备通过向第二终端设备指示目标CSI-RS资源集合的索引,第二终端设备可以获知第一终端设备将要发送哪个CSI-RS资源集合中的CSI-RS资源。进一步地,可以结合该目标CSI-RS资源集合对应的重复字段的取值或CSI上报量确定该目标CSI-RS资源集合中的CSI-RS资源用于确定目标发送波束还是用于确定目标接收波束。例如,该目标CSI-RS资源集合用于确定目标发送波束时,第二终端设备可以使用相同的接收波束接收第一终端设备发送的CSI-RS资源。又例如,该目标CSI-RS资源集合用于确定目标接收波束时,第二终端设备可以使用不同的接收波束接收第一终端设备发送的CSI-RS资源。
在一些实施例中,所述目标CSI-RS资源集合中包括的CSI-RS资源的索引可以为所述目标CSI-RS集合中包括的全部CSI-RS资源的索引,或者,也可以为所述第一终端设备实际发送的CSI-RS资源的索引,例如所述M个CSI-RS对应的多个CSI-RS资源的索引。
所述第一终端设备通过向第二终端设备指示所述目标CSI-RS资源集合中包括的CSI-RS资源的索引,第二终端设备可以获知第一终端设备将要发送(可能会发送)的CSI-RS资源,进一步地,可以对该CSI-RS资源进行测量和上报。
在一些实施例中,所述目标CSI-RS资源集合对应的重复字段的取值,可以用于所述第二终端设备确定所述第一终端设备将要发送的CSI-RS资源用于确定目标发送波束还是目标接收波束。进一步可以采用相应的方式进行CSI-RS资源的检测和测量。例如,该目标CSI-RS资源集合对应的重复字段的取值为第一值(如取值为off)时,第二终端设备可以使用相同的接收波束接收第一终端设备发送的CSI-RS资源。又例如,该目标CSI-RS资源集合对应的重复字段的取值为第二值(如取值为on)时,第二终端设备可以使用不同的接收波束接收第一终端设备发送的CSI-RS资源。
在一些实施例中,所述第一侧行配置信息也可以包括所述资源池配置信息或侧行BWP配置信息中的多个CSI-RS资源集合中的至少一个CSI-RS资源集合。
例如,资源池配置信息或侧行BWP配置信息配置A个CSI-RS资源集合,在每个CSI-RS资源集合中包括至少一个CSI-RS资源,其中,A为正整数。则所述第一侧行配置信息可以包括该A个CSI-RS资源集合中的至少一个CSI-RS资源集合。
进一步地,所述第一侧行配置信息还可以包括所述至少一个CSI-RS资源集合中的每个CSI-RS资源集合中的至少一个CSI-RS资源。
应理解,第一侧行配置信息中包括的每个CSI-RS资源集合中的CSI-RS资源的数量可以相同,或者,也可以不同。例如,所述第一侧行配置中包括第一CSI-RS资源集合中的P个资源以及第二CSI-RS资源集合中的Q个资源,其中,P和Q可以相同,或者,也可以不同。
举例说明,资源池配置信息配置了A个CSI-RS资源集合,发送端终端向接收端终端发送所述第一侧行配置信息,在第一侧行配置信息中包括CSI-RS资源集合的索引,接收端终端通过该CSI-RS 资源集合的索引可以确定相应的CSI-RS资源集合。在资源池配置信息中,该CSI-RS资源集合包括B个CSI-RS资源,发送端终端可以从该CSI-RS资源集合中选取K个CSI-RS资源,将该K个CSI-RS资源的信息发送给接收端终端,发送端终端后续发送的CSI-RS资源属于该K个CSI-RS资源,其中,1<=K<=B,B为正整数。例如,该CSI-RS资源集合包括16个CSI-RS资源,当需要确定发送端终端的发送波束时,发送端终端支持的最多的发送波束的个数为4个,此时,发送端终端可以从该CSI-RS资源集合包括的16个CSI-RS资源中选取4个CSI-RS资源,并且将该4个CSI-RS资源的信息发送给接收端终端,从而使得发送端终端和接收端终端对于的CSI-RS资源的发送配置理解一致。当接收端终端向发送端终端上报或反馈CSI-RS资源时,可以上报CSI-RS资源对应的资源索引信息,如用2比特表示CSI-RS资源索引,其中00对应该CSI-RS资源集合中最低索引的CSI-RS资源,01对应该CSI-RS资源集合中次低索引的CSI-RS资源,以此类推。
在一些实施例中,所述目标CSI-RS资源集合中包括的CSI-RS资源的数量可以指所述目标CSI-RS集合中包括的全部CSI-RS资源的数量,或者,也可以为所述第一终端设备实际发送的CSI-RS资源的数量,例如,所述M个CSI-RS对应的多个CSI-RS资源的数量。
第一终端设备通过向第二终端设备指示目标CSI-RS资源集合中包括的CSI-RS资源的数量或M的取值,从而第二终端设备可以根据该目标CSI-RS资源集合中包括的CSI-RS资源的数量或M的取值确定进行CSI上报或反馈时,每个CSI-RS资源索引对应的比特长度。
以第一终端设备向第二终端设备指示参数M的取值为例,则用于反馈一个CSI-RS资源索引的比特长度可以为ceil(log 2M)。
在一些实施例中,第一终端设备还可以给第二终端设备配置CSI-RS资源集合与CSI上报量的对应关系。例如,在CSI上报配置信息(CSI-ReportConfig)中包括CSI-RS资源集合的标识信息(CSI-RS-ResourceSetId)或CSI-RS资源配置标识信息(CSI-ResourceConfigId),用于关联CSI上报量和CSI-RS资源集合,又例如,在CSI-RS资源集合的配置信息(CSI-RS-ResourceSet)或CSI-RS资源配置信息(CSI-ResourceConfig)中包括CSI上报配置标识信息(CSI-ReportConfigId),本申请实施例并不限定二者的关联方式。
在一些实施例中,所述时延边界(latency boundary)可以是以第一时隙为参考的,该第一时隙例如是该第一侧行配置信息所在的时隙。例如,所述时延边界可以为时隙偏移量,该时隙偏移量是相对于第一侧行配置信息所在时隙的偏移量。
在一些实施例中,在所述时延边界内,所述第一终端设备不期待所述第二终端设备进行针对CSI-RS资源的上报或反馈。换言之,第一终端设备不期望第二终端设备在时延边界内进行CSI上报或反馈。
在一些实施例中,在超过所述时延边界之后,允许所述第二终端设备进行针对CSI-RS资源的上报或反馈。换言之,在超过所述时延边界之后,第二终端设备可以进行CSI上报或反馈。
在一些实施例中,在超过所述时延边界之后,所述第二终端设备不期待所述第一终端设备发送用于确定空域发送滤波器的CSI-RS资源。
在一些实施例中,在超过所述时延边界之后,所述第二终端设备停止接收所述第一终端设备发送的用于确定空域发送滤波器的CSI-RS资源。换言之,在超过所述时延边界之后,第一终端设备停止发送用于确定空域发送滤波器的CSI-RS资源。
在一些场景中,第二终端设备可能不能获知第一终端设备使用的发送波束的数量,或者,第一终端设备将要发送的CSI-RS资源的数量(例如,发送端终端不向接收端终端发送M的取值),此情况下,第二终端设备可以根据时延边界确定进行CSI-RS测量和反馈的时刻。例如,超过该时延边界时,即表示第一终端设备不会再发送CSI-RS了,此时,第二终端设备可以基于检测到的CSI-RS进行测量和反馈。
如图12和图13所示,第一终端设备使用4个发送波束(发送波束0至发送波束3)分别发送CSI-RS资源,第一终端设备在时隙0向第二终端设备发送第一侧行配置信息,该第一侧行配置信息指示的时延边界为10个时隙,即第一终端设备在时隙10之前轮流发送CSI-RS资源,第二终端设备在时隙10之后才进行CSI-RS上报或反馈。
所述第一终端设备发送所述M个CSI-RS所使用的传输资源信息用于指示所述第一终端设备发送所述M个CSI-RS所使用的传输资源。
例如,网络设备为第一终端设备分配了时隙3、时隙5、时隙6和时隙8四个时隙上的传输资源,第一终端设备在该四个时隙上分别发送CSI-RS资源,并且在不同的时隙上使用不同的发送波束发送CSI-RS资源。
则所述第一侧行配置信息中可以包括时隙3、时隙5、时隙6和时隙8上的传输资源,第二终端 设备接收到该第一侧行配置信息后,可以在这四个时隙上的传输资源上进行CSI-RS检测与测量,并且在时隙10之后,例如时隙12中进行CSI上报或反馈。
在一些实施例中,所述第一终端设备发送的所述M个CSI-RS所使用的传输资源信息,可以是网络设备配置的,或者,也可以是自主选取的。
例如,所述第一终端设备发送所述M个CSI-RS资源所使用的传输资源信息可以是网络设备通过前文所述的第一配置信息配置的。
可选地,所述第一终端设备发送的所述M个CSI-RS所使用的传输资源信息可以是周期性的传输资源,或者,也可以是单次使用的传输资源,本申请对此不作限定。
第一终端设备将发送CSI-RS所使用的传输资源发送给第二终端设备,从而第二终端设备可以获知第一终端设备将在哪些传输资源上发送CSI-RS,从而能够在该传输资源上进行CSI-RS的接收。
在一些实施例中,所述第一终端设备发送所述M个CSI-RS所使用的传输资源信息可以包括周期信息和/或一个周期内的传输资源信息。
在一些实施例中,当发送端终端工作在第二模式时,发送端终端基于侦听获取侧行传输资源,然而重评估(re-evaluation)和抢占(pre-emption)等机制可能会导致在发送端终端选取的侧行传输资源被其他终端占用的情况下,发送端终端需要进行资源重选。此情况下,接收端终端并不能准确获知发送端终端选取的传输资源。另外,发送端终端发送的CSI-RS有可能并不能被接收端终端接收,例如半双工的影响,或SCI检测失败,或由于发送波束没有对准接收端终端等原因导致接收端终端无法检测该发送波束上发送的CSI-RS,因此,接收端终端有可能无法获取发送端终端发送的所有的CSI-RS。而当发送端终端工作在第一模式时,该发送端终端的侧行传输资源由网络设备分配的,该侧行传输资源通常不会被其他终端抢占,此情况下,发送端终端可以将网络设备为其分配的用于发送CSI-RS的侧行传输资源发送给接收端终端,从而接收端终端也就可以获知发送端终端用于发送CSI-RS的传输资源,进一步可以在这些传输资源上进行CSI-RS的检测和测量。
在一些实施例中,系统可以配置多个资源池,网络设备可以为工作在第一模式的第一终端设备在该多个资源池中分配侧行传输资源,此情况下,第一终端设备在向第二终端设备指示用于发送CSI-RS的传输资源信息时,可以将该传输资源信息对应的资源池信息通知给第二终端设备,从而第二终端设备可以确定该传输资源信息对应的是哪个资源池中的传输资源。
在一些实施例中,所述M个CSI-RS所使用的传输资源对应的资源池信息可以为资源池对应的索引信息。
在一些实施例中,第一终端设备可以向第二终端设备指示所述第一终端设备的传输模式,如第一模式,则第二终端设备可以认为第一终端设备的传输资源不会变化,即使第二终端设备在第一终端设备指示的传输资源上没有检测到SCI,第二终端设备也可以在该传输资源上进行CSI-RS资源的测量。有利于保证第二终端设备获取第一终端设备发送的所有CSI-RS的测量结果,能够避免第二终端设备没有正确检测SCI,导致无法获知CSI-RS的接收配置,进而无法进行相应的测量的问题。
应理解,所述第一侧行配置信息所指示的内容可以通过同一消息或信令发送,或者,也可以通过不同的消息或信令发送,本申请对此不作限定。
需要说明的是,所述第一侧行配置信息所指示的内容通过不同的信令发送时,本申请并不限定信令的发送顺序。
需要说明的是,该第一侧行配置信息所指示的内容通过不同的信令发送时,本申请并不限定信令的类型。例如,第一侧行配置信息通过两个信令发送,其中第一个信令是PC5-RRC信令,第二个信令是SCI;或者,两个信令都是PC5-RRC信令。
在一些实施例中,如图11所示,所述方法200还包括:
S204,所述第一终端设备向所述第二终端设备发送第三指示信息;
其中,所述第三指示信息用于指示以下至少之一:
所述第一终端设备将要发送用于选取目标空域发送滤波器的CSI-RS,所述第一终端设备将使用不同的空域发送滤波器发送CSI-RS,信道状态信息CSI上报量,所述第一终端设备第一个发送的CSI-RS资源的索引,所述第一终端设备发送第一个CSI-RS资源的时间间隔,其中,所述时间间隔以所述第三指示信息所在的时间单元为参考。
应理解,所述第三指示信息可以通过任一侧行信息或侧行信令配置。所述第三指示信息通过以下之一承载:PC5-RRC信令,SCI,MAC CE,侧行反馈信息,例如物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)。
在一些实施方式中,当所述第三指示信息通过SCI或MAC CE承载时,所述第一终端设备指示激活侧行反馈。
在一些实施例中,在发送CSI-RS之前,第一终端设备可以向第二终端设备通知所述第一终端设备将要发送CSI-RS,或者,将要发送用于选取目标空域发送滤波器的CSI-RS,或者,将要使用不同的空域发送滤波器发送CSI-RS,从而第二终端设备可以基于CSI-RS的发送配置、接收配置和上报配置中的至少一项进行CSI-RS资源的测量和上报,实现目标发送波束的选取过程。
应理解,该CSI-RS的发送配置、接收配置和上报配置可以是在第一侧行配置信息中配置的,或者,也可以是在第三指示信息中配置的,例如,第一终端设备在需要发送CSI-RS时,向第二终端设备发送第三指示信息,所述第三指示信息用于指示CSI-RS的发送配置、接收配置和上报配置中的至少一项。
也就是说,所述第一侧行配置信息中的部分或全部可以通过所述第三指示信息指示,换言之,所述第一侧行配置信息和第三指示信息所指示的内容可以通过同一信令承载,或者,也可以通过不同的信令承载。
在一些实施例中,所述第一终端设备从第一个发送的CSI-RS资源的资源索引对应的CSI-RS资源开始,按照一定的顺序进行CSI-RS资源的发送,对应地,第二终端设备从第一发送的CSI-RS资源的资源索引对应的CSI-RS资源开始,按照一定的顺序进行CSI-RS资源的接收。其中,该顺序可以为资源索引由小到大的顺序,或者,也可以为资源索引由大到小的顺序。
例如,目标CSI-RS资源集合中包括8个CSI-RS资源,当第一个发送的CSI-RS资源的索引为资源索引2时,表示第一终端设备会从CSI-RS资源索引2对应的CSI-RS资源开始进行CSI-RS资源的顺序发送,即首先发送CSI-RS资源索引2对应的CSI-RS资源,然后发送CSI-RS资源索引3对应的CSI-RS资源,以此类推,当发送完CSI-RS资源索引7对应的CSI-RS资源时,接着发送CSI-RS资源索引0对应的CSI-RS资源、CSI-RS资源索引1对应的CSI-RS资源。
在第二终端设备获知第一终端设备将要发送的CSI-RS资源的顺序,并且获知第一终端设备将要发送CSI-RS的传输资源时,即使第二终端设备没有正确接收该传输资源上发送的SCI,第二终端设备也可以在该传输资源上进行CSI-RS检测和测量,有利于保证第二终端设备获取第一终端设备发送的所有CSI-RS的测量结果,能够避免第二终端设备没有正确检测SCI,导致无法获知CSI-RS的接收配置,进而无法进行相应的测量的问题。
在一些实施例中,当第一终端设备未向第二终端设备发送第一个发送的CSI-RS资源的索引信息时,默认第一终端设备从CSI-RS资源集合中的第一个CSI-RS资源索引(如资源索引0或最低资源索引对应的CSI-RS资源)开始发送。
应理解,所述第三指示信息中的所述CSI上报量的具体实现参考前述实施例的相关说明,为了简洁,这里不再赘述。
在一些实施例中,所述第一终端设备发送第一个CSI-RS资源的时间间隔可以是以所述第三指示信息所在时间单元为参考的,第二终端设备接收到第一终端设备的第三指示信息后,可以获知第三指示信息的时间单元以及该时间间隔,从而可以确定第一终端设备发送第一CSI-RS资源的时间单元,进一步可以在该时间单元上接收CSI-RS资源。
作为示例,所述第三指示信息可以用于指示所述第一终端设备发送第一个CSI-RS资源的时隙间隔,该时隙间隔是以所述第三指示信息所在时隙为参考的。
应理解,所述第三指示信息所指示的各个信息可以通过同一消息或信令发送,或者,也可以通过不同的消息或信令发送。
在一些实施例中,如图11所示,所述方法200还包括:
S205,所述第一终端设备向所述第二终端设备发送第四指示信息;
其中,所述第四指示信息用于指示所述第一终端设备发送的CSI-RS用于选取用于所述第一终端设备进行侧行数据发送的空域发送滤波器;或者,所述第四指示信息用于指示所述第一终端设备发送的CSI-RS用于选取用于所述第二终端设备进行侧行数据接收的空域接收滤波器;或者,所述第四指示信息用于指示所述第一终端设备发送的CSI-RS用于测量信道状态信息。
应理解,所述第四指示信息可以通过任一侧行信息或侧行信令配置。所述第四指示信息通过以下之一承载:PC5-RRC信令,SCI,MAC CE,侧行反馈信息,例如PSFCH。
在一些实施方式中,当所述第四指示信息通过SCI或MAC CE承载时,所述第一终端设备指示激活侧行反馈。
在一些实施例中,该信道状态信息可以包括但不限于以下至少之一:
信道质量指示(Channel Quantity Indicator,CQI),秩指示(Rank Indication,RI),预编码矩阵指示(Precoding Matrix Indicator,PMI)。
在一些实施例中,所述第三指示信息可以用于指示所述第一终端设备将要发送CSI-RS资源,进 一步地,所述第一终端设备可以通过所述第四指示信息指示所述第一终端设备将要发送的CSI-RS资源的用途,例如用于确定目标发送波束还是用于确定目标接收波束,从而第二终端设备可以基于第四指示信息采用相应的方式进行CSI-RS资源的检测和反馈。例如,该第一终端设备发送的CSI-RS资源用于选取目标发送波束时,第二终端设备可以使用相同的接收波束接收第一终端设备发送的CSI-RS资源。又例如,该第一终端设备发送的CSI-RS资源用于选取目标接收波束时,第二终端设备可以使用不同的接收波束接收第一终端设备发送的CSI-RS资源。
在一些实施例中,如图11所示,所述方法200还包括:
S220,第二终端设备对第一终端设备发送的CSI-RS进行测量,根据测量结果确定向第二终端设备上报或反馈的第一信息。
S230,第二终端设备向第一终端设备发送第一信息。
对应地,所述第一终端设备接收所述第二终端设备发送的第一信息。
其中,该第一信息包括目标CSI上报量,该目标CSI上报量包括以下至少之一:
CRI,CRI和RSRP,CRI和SINR,时隙资源指示,时隙资源指示和RSRP,时隙资源指示和SINR;
其中,所述时隙资源指示信息用于确定所述第一终端设备发送CSI-RS对应的时隙,或者,所述时隙资源指示信息用于确定所述第一终端设备发送的CSI-RS资源对应的索引。
在一些实施例中,所述第一终端设备接收所述第二终端设备发送的第一信息,包括:
所述第一终端设备在第一时间单元接收所述第二终端设备发送的所述第一信息,其中,所述第一时间单元位于基于时延边界确定的第二时间单元之后。
在一些实施例中,CRI可以是CSI-RS资源的索引,例如,在该第一侧行配置信息或第三指示信息所指示的CSI上报量为CRI的情况下,该第二终端设备可以仅反馈CSI-RS资源的索引;又例如,在该第一侧行配置信息或第三指示信息所指示的CSI上报量为CRI-RSRP的情况下,该第二终端设备可以反馈CSI-RS资源的索引和RSRP;再例如,在该第一侧行配置信息或第三指示信息所指示的CSI上报量包括CRI-SINR的情况下,该第二终端设备可以反馈CSI-RS资源的索引和SINR。
在一些实施例中,CSI-RS资源也可以通过时隙资源指示,具体指示方式参考前述实施例的相关描述。
在一些实施例中,该目标CSI上报量可以是该第二终端设备根据接收到的CSI-RS进行测量得到的测量结果确定的。
在一些实施例中,本申请中的测量结果(包括RSRP和/或SINR)是基于对CSI-RS进行测量得到的。在另一些实施方式中,测量结果是基于对PSCCH DRMS、PSSCH DMRS或侧行PT-RS进行测量得到的。在一些实施方式中,发送端发送的CSI-RS是承载在PSSCH中的,即在PSSCH的资源中映射CSI-RS,通过SCI调度PSSCH,并指示CSI-RS传输。此时,在每次CSI-RS传输中,都有与其相关联的PSCCH和PSSCH。因此,接收端可以基于PSCCH DMRS或PSSCH DMRS进行测量。也即,CSI-RS资源也可以基于与CSI-RS相关联的PSCCH DMRS或PSSCH DMRS的测量结果确定。
在一些实施方式中,发送端通过指示信息指示发送CSI-RS,接收端通过对与该CSI-RS关联的PSCCH DMRS或PSSCH DMRS进行测量,测量结果为PSCCH-RSRP或PSSCH-RSRP,基于测量结果确定CSI-RS资源,并将该CSI-RS资源索引,或该CSI-RS资源索引及其关联的测量结果(即PSCCH-RSRP或PSSCH-RSRP)发送给发送端以辅助发送端选取空域发送滤波器。
应理解,在以下的实施例中,以测量结果为基于CSI-RS得到的测量结果为例进行说明,本发明中的实施例同样适用于测量结果是基于PSCCH DMRS或PSSCH DMRS得到的测量结果的情况。
在一些实施例中,该第一信息包括N个CSI-RS资源的索引,或者,该第一信息用于确定N个CSI-RS资源的索引,该N个CSI-RS资源为该第二终端设备根据接收到的CSI-RS进行测量得到的测量结果确定的,N为该第二终端设备需要反馈或上报的CSI-RS资源的数量,N为正整数,且N≤M。
在一些实施例中,第二终端设备可以向第一终端设备发送一个指示信息,用于指示第二终端设备反馈的CSI-RS资源信息(或CSI-RS资源索引)的个数。
在一些实施例中,该N个CSI-RS资源的索引按照该N个CSI-RS资源对应的测量结果从高到低的顺序排列,或者,该N个CSI-RS资源的索引按照该N个CSI-RS资源对应的测量结果从低到高的顺序排列。
作为示例,N=1,即第二终端设备只需要反馈一个CSI-RS资源索引即可,此情况下只需反馈具有最优测量结果的CSI-RS,第一终端设备根据该CSI-RS资源索引可以确定与其对应的发送波束为目标发送波束。可选的,当N=1时,第二终端设备不需要反馈测量结果。可选的,当N大于1时,第二终端设备也可以只反馈CSI-RS资源信息,此时反馈的CSI-RS资源信息按照测量结果从高到低的顺 序排列。例如,N=3,即需要反馈3个CSI-RS资源信息,分别是CSI-RS资源1、CSI-RS资源2、CSI-RS资源3,其对应的RSRP测量结果分别为-30dBm,-10dBm,-20dBm,则反馈的CSI-RS资源信息如图14所示,即具有最优测量结果的CSI-RS资源在最前面,其次是具有次优测量结果的CSI-RS资源,以此类推。也可以是具有最优测量结果的CSI-RS资源在最后面,其次是具有次优测量结果的CSI-RS资源,以此类推,如图15所示。
在一些实施例中,该第一信息还包括第一测量信息,该第一测量信息用于指示该N个CSI-RS资源对应的测量结果。
也即,第二终端设备反馈N个CSI-RS资源的索引及其对应的测量结果。
在一些实施例中,当第一终端设备需要切换空域发送滤波器时,可以从第二终端设备反馈的N个CSI-RS资源对应的N个空域发送滤波器中进行快速的选取和切换,而无需第一终端设备再次执行选取最优空域发送滤波器的过程。
具体例如,当侧行链路工作在毫米波段时,发送端终端和接收端终端之间的链路很容易因为其他物体的遮挡而导致当前的传输链路失效,此时发送端终端需要重新确定最优的空域发送滤波器。如果接收端终端只反馈一个CSI-RS资源,当链路失效时,发送端终端需要重新执行选取最优空域发送滤波器的过程,从而重新确定新的最优空域发送滤波器。如果接收端终端反馈N个CSI-RS资源,当发送端终端选取的空域发送滤波器失效时,可以从接收端终端反馈的其余的N-1个CSI-RS资源对应的空域发送滤波器中选取一个进行侧行传输,如选取次优测量结果所对应的CSI-RS资源,进而确定该CSI-RS资源对应的空域发送滤波器。从而避免重选执行选取最优空域发送滤波器的过程,提高空域发送滤波器重选或空域发送滤波器失效恢复(beam failure recovery)的速度。
具体例如,当发送端终端需要向多个接收端终端同时发送侧行数据时(如发送端终端在同一个时隙需要向多个接收端终端发送侧行反馈信息),如果各个接收端终端反馈多个优选的CSI-RS资源,相对于只反馈一个优选CSI-RS资源的情况,发送端终端可以有更高的概率选取一个空域发送滤波器同时向多个接收端终端发送侧行数据。例如,发送端终端支持4个发送空域发送滤波器,分别对应空域发送滤波器0-3,如果接收端终端1只反馈一个优选空域发送滤波器,如空域发送滤波器0,接收端终端2反馈一个优选空域发送滤波器,如空域发送滤波器2,则发送端终端无法同时为两个接收端终端发送侧行数据。而如果接收端终端1反馈两个优选空域发送滤波器,如空域发送滤波器0和1,接收端终端2反馈两个优选空域发送滤波器,如空域发送滤波器1和2,则发送端终端可以使用空域发送滤波器1同时向两个接收端终端发送侧行数据。
在一些实施例中,该N个CSI-RS资源对应的测量结果大于或等于第一门限值。
在一些实施例中,该第一门限值为预配置或协议约定的,或者,该第一门限值为网络设备配置的,或者,该第一门限值为该第一终端设备配置的。
在一些实施例中,该N个CSI-RS资源对应于该第二终端设备接收到的CSI-RS按照测量结果从高到低的顺序排列的前N个CSI-RS。
在一些实施例中,该N个CSI-RS资源包括N1个第一类CSI-RS资源和N2个第二类CSI-RS资源,其中,该N1个第一类CSI-RS资源对应于该第二终端设备接收到的CSI-RS,或者,该N1个第一类CSI-RS资源对应于该第二终端设备接收到的并且测量结果大于或等于第一门限值的CSI-RS,该N2个第二类CSI-RS资源对应的索引由该N1个第一类CSI-RS资源中的至少一个CSI-RS资源确定,或者,该N2个第二类CSI-RS资源对应的索引由该多个CSI-RS资源中除该N1个第一类CSI-RS资源之外的CSI-RS资源中的至少一个CSI-RS资源确定,该N2个第二类CSI-RS资源对应的测量结果为缺省值,N1和N2为正整数,N1+N2=N。
例如,第二终端设备检测到的第一终端设备发送的CSI-RS的数量小于N,或者,检测到的CSI-RS满足上报条件的CSI-RS资源的数量小于N,此情况下,N个CSI-RS资源包括N1个第一类CSI-RS资源和N2个第二类CSI-RS资源。
当第一终端设备接收到第二终端设备的反馈信息(即第一信息)时,根据该缺省值可以确定其对应的CSI-RS资源索引是一个无效索引。
在一些实施例中,该缺省值为预配置或协议约定的,或者,该缺省值为网络设备配置的,或者,该缺省值为该第一终端设备配置给该第二终端设备的,或者,该缺省值为该第二终端设备配置给该第一终端设备的,或者,该缺省值为第三终端设备配置的,该第三终端设备为该第一终端设备和该第二终端设备所在的通信组的组头终端。
在一些实施例中,组头终端即在通信组内至少具有如下功能之一的终端:资源管理,资源分配,资源协调,资源配置,管理组成员加入、离开。
具体例如,该缺省值指示没有测量结果时的缺省测量结果,当接收端终端向发送端终端反馈的测 量结果为缺省值时,表示接收端终端对与该缺省值对应的CSI-RS资源没有测量结果。
例如,在该缺省值是预配置或网络设备配置的情况下,例如,在资源池配置信息或侧行带宽部分(BWP)配置信息中包括该缺省值。
例如,在该缺省值是发送端终端配置给接收端终端,或者,接收端终端配置给发送端终端的情况下,例如,在单播链路建立的过程中,发送端终端向接收端终端发送PC5-RRC信令,其中携带该缺省值信息。
在一些实施例中,该缺省值小于或等于第二门限值,或者,该缺省值对应于负无穷大或无穷大。
在一些实施例中,该第二门限值为预配置或协议约定的,或者,该第二门限值为网络设备配置的,或者,该第二门限值为该第一终端设备配置的。
在一些实施例中,该缺省值可以是小于或等于最低测量结果对应的值。
在一些实施例中,在该N2个第二类CSI-RS资源对应的索引由该N1个第一类CSI-RS资源中的至少一个CSI-RS资源确定的情况下,具体例如,选取N1个第一类CSI-RS资源中具有最优或最差测量结果的CSI-RS资源对应的资源索引作为该N2个第二类CSI-RS资源的索引。例如,在图12和图13中,N=3,CSI-RS资源集合中包括4个CSI-RS资源,但是第二终端设备只接收到两个CSI-RS(如CSI-RS资源1和CSI-RS资源2),并且有相应的测量结果,分别为RSRP1=-10dBm和RSRP2=-20dBm,第二终端设备除了反馈CSI-RS资源1和CSI-RS资源2对应的资源索引之外,第二终端设备还需要反馈一个CSI-RS资源索引,第二终端设备选取具有最优RSRP测量结果的CSI-RS,即CSI-RS资源1,并且将其CSI-RS资源索引进行反馈,第二终端设备按照RSRP测量结果从高到低的顺序排列其相应的CSI-RS资源,因此反馈的CSI-RS资源索引的顺序如图16所示。因此,在第二终端设备反馈的3个CSI-RS资源索引中,包括两个CSI-RS资源索引值1,一个CSI-RS资源索引值2。当第一终端设备接收到第二终端设备的反馈信息时,根据重复的CSI-RS资源索引1,即可确定其中一个CSI-RS索引1(如第二个CSI-RS资源索引1)是一个无效索引。
在一些实施例中,在该N2个第二类CSI-RS资源对应的索引由该N1个第一类CSI-RS资源中的至少一个CSI-RS资源确定的情况下,具体又例如,选取N1个第一类CSI-RS资源中具有最优或最差测量结果的CSI-RS资源对应的资源索引作为该N2个第二类CSI-RS资源的索引。例如,在图12和图13中,N=4,CSI-RS资源集合中包括4个CSI-RS资源,但是第二终端设备只接收到2个CSI-RS(如CSI-RS资源1和CSI-RS资源2),并且有相应的测量结果,分别为RSRP1=-10dBm和RSRP2=-20dBm,第二终端设备除了反馈CSI-RS资源1和CSI-RS资源2对应的资源索引之外,第二终端设备还需要反馈2个CSI-RS资源索引,由于CSI-RS资源1和CSI-RS资源2都有测量结果,因此第二终端设备选可以重复反馈CSI-RS资源1和CSI-RS资源2,因此反馈的CSI-RS资源索引的顺序如图17所示。因此,在第二终端设备反馈的4个CSI-RS资源索引中,包括两个CSI-RS资源索引值1,两个CSI-RS资源索引值2。当第一终端设备接收到第二终端设备的反馈信息时,根据重复的CSI-RS资源索引,即可确定其中一个CSI-RS索引(如第二个CSI-RS资源索引1和第二个CSI-RS资源索引2)是一个无效索引。
在一些实施例中,当第二终端设备检测到的满足条件的CSI-RS资源个数为N1(N1<N)时,第二终端设备反馈N个CSI-RS的资源信息和N个测量结果,其中,包括N1个满足条件的CSI-RS资源信息及其对应的测量结果,以及另外的(N-N1)个CSI-RS资源信息,其对应的测量结果为缺省值。
具体的,满足条件的CSI-RS资源包括如下两种情况:
情况1:该满足条件的CSI-RS资源包括第二终端设备检测到的CSI-RS资源。也即,第二终端设备会检测第一终端设备发送的SCI,如果检测到SCI,通过SCI即可确定第一终端设备发送的CSI-RS的资源信息,因此,第二终端设备可以对该CSI-RS进行测量,并获得相应的测量结果。
情况2:该满足条件的CSI-RS资源包括第二终端设备检测到的CSI-RS资源,并且其测量结果超过第一门限值。也即,在第二终端设备检测到CSI-RS资源,并且其测量结果超过第一门限值时,第二终端设备才会反馈该CSI-RS资源信息。例如,第二终端设备检测到第一终端设备发送的3个CSI-RS资源(如CSI-RS资源1、CSI-RS资源2和CSI-RS资源3),并且相应的测量结果,分别为RSRP1=-10dBm,RSRP2=-20dBm,RSRP3=-120dBm,RSRP门限(即第一门限值)为-80dBm,由于CSI-RS资源3对应的测量结果低于该RSRP门限,因此,第二终端设备反馈的CSI-RS资源信息包括CSI-RS资源1和CSI-RS资源2,而不反馈CSI-RS资源3。
具体例如,第二终端设备可以选取任意的一个CSI-RS资源(除了满足条件的CSI-RS资源之外)与该缺省值相联。例如,在图12和图13中,N=2,CSI-RS资源集合中包括4个CSI-RS资源,但是第二终端设备只接收到一个CSI-RS(如CSI-RS资源2),并且测量结果为RSRP2=-20dBm(满足上述情况1中的条件),则第二终端设备除了反馈该CSI-RS资源对应的索引2及其相应的测量结果之 外,第二终端设备还需要反馈一个CSI-RS资源索引以及相应的测量结果,则第二终端设备从CSI-RS资源0/1/3中任意选取一个并且反馈其索引值,并且其相应的测量结果设置为缺省值。如第二终端设备选取CSI-RS资源0,将其测量结果设置为缺省值,并且反馈给第一终端设备,如图20所示。
具体又例如,第二终端设备除了反馈N1个满足条件的CSI-RS资源信息及其相应的测量结果之外,在反馈其他的N-N1个CSI-RS资源信息时,第二终端设备从N1个满足条件的CSI-RS资源中选取一个CSI-RS资源,并将其测量结果设置为缺省值。例如,选取N1个CSI-RS资源中具有最优或最差测量结果的CSI-RS,或任意选取或随机选取一个CSI-RS。例如,在图12和图13中,N=3,CSI-RS资源集合中包括4个CSI-RS资源,但是第二终端设备只接收到两个CSI-RS(如CSI-RS资源1和CSI-RS资源2),并且有相应的测量结果,分别为RSRP1=-10dBm和RSRP2=-20dBm,RSRP门限为-80dBm,因此,两个CSI-RS资源的测量结果都大于该门限(满足上述情况2中的条件),第二终端设备除了反馈CSI-RS资源1和CSI-RS资源2对应的资源索引及其相应的测量结果之外,第二终端设备还需要反馈一个CSI-RS资源索引以及相应的测量结果,则第二终端设备选取具有最优RSRP测量结果的CSI-RS,即CSI-RS资源1,并且将其测量值设置为缺省值。因此,在第二终端设备反馈的3个CSI-RS资源索引中,包括两个CSI-RS资源索引值1,一个CSI-RS资源索引值2,两个CSI-RS资源索引值1分别对应的测量结果为-10dBm和缺省值,如图19所示。
在一些实施例中,该第一测量信息包括该N个CSI-RS资源分别对应的测量结果的量化索引信息。
在一些实施例中,该N个CSI-RS资源的索引及该N个CSI-RS资源分别对应的测量结果的量化索引信息占用的比特数为:
(A+B)×N;
其中,A表示该N个CSI-RS资源的索引中的一个CSI-RS资源的索引占用的比特数,B表示该N个CSI-RS资源中的一个CSI-RS资源对应的测量结果的量化索引信息占用的比特数,且
Figure PCTCN2021113218-appb-000001
例如,M=8,则A=3。对RSRP(或SINR)测量结果进行量化,用B比特表示量化后的RSRP(或SINR)取值,如B=7;量化的RSRP的范围为[B1,B2]dBm(如[-140,-44]dBm),步长为1dBm。
在一些实施例中,该第一测量信息包括第一测量结果的量化索引信息以及N-1个差分量化索引信息,其中,该第一测量结果对应该N个CSI-RS资源对应的测量结果中的最高值。
在一些实施例中,该N个CSI-RS资源的索引及该N个CSI-RS资源分别对应的测量结果的量化索引信息占用的比特数为:
A×N+B+C×(N-1);
其中,A表示该N个CSI-RS资源的索引中的一个CSI-RS资源的索引占用的比特数,B表示该N个CSI-RS资源中的第一CSI-RS资源的量化索引信息占用的比特数,且该第一CSI-RS资源对应的测量结果为该N个CSI-RS资源中对应的测量结果最大的CSI-RS资源,C表示该N个CSI-RS资源中其他的CSI-RS资源对应的测量结果与该第一CSI-RS资源对应的测量结果的差值的量化索引信息占用的比特数,或者,C表示该N个CSI-RS资源中对应的测量结果相邻的两个CSI-RS资源对应的测量结果的差值的量化索引信息占用的比特数,且
Figure PCTCN2021113218-appb-000002
具体例如,对RSRP(或SINR)测量结果进行量化,具有最大RSRP(或SINR)的测量结果用B比特表示,其余的测量结果用差分RSRP(或差分SINR)表示,如B=7,差分RSRP用C比特表示,如C=4;B比特表示的RSRP的测量结果的范围为[B1,B2]dBm,(如[-140,-44]dBm),步长为1dBm,差分RSRP表示的范围为[C1,C2]dB(如[-30,0]dB),步长为2dB。其中,差分RSRP是相对于最大RSRP测量结果得到的,即差分RSRP表示和最大RSRP测量结果之间的差值。或者,差分RSRP是相对于与其相邻的并且比其大的RSRP测量结果得到的。
例如,如果测量的3个RSRP结果分别为-60dBm、-70dBm、-90dBm,采用第一种差分RSRP方式时,最大RSRP对应-60dBm,余下的两个差分RSRP分别为-10dB和-30dB;采用第二种差分RSRP方式时,最大RSRP对应-60dBm,余下的两个差分RSRP分别为-10dB和-20dB。
在一些实施例中,第二终端设备根据CSI-RS进行RSRP测量,并且反馈RSRP的测量结果,通常,第二终端设备为了能快速的反馈测量结果,通常采用侧行控制信息(Sidelink Control Information,SCI)或媒体接入控制控制元素(Media Access Control Control Element,MAC CE)来承载反馈的CSI-RS资源信息和相应的测量结果。因此,需要对RSRP测量结果进行量化处理。而且,第二终端设备反馈的是层1的RSRP测量结果(即L1 RSRP),即不经过层3滤波处理,直接把物理层测量得到的RSRP结果量化后反馈给第一终端设备。
例如,采用7比特对测量的RSRP进行量化,如下表1所示。
表1
上报值 L1 RSRP 单位
RSRP_0 无效 dBm
RSRP_1 无效 dBm
RSRP_2 无效 dBm
RSRP_3 无效 dBm
RSRP_4 无效 dBm
RSRP_5 无效 dBm
RSRP_6 无效 dBm
RSRP_7 无效 dBm
RSRP_8 无效 dBm
RSRP_9 无效 dBm
RSRP_10 无效 dBm
RSRP_11 无效 dBm
RSRP_12 无效 dBm
RSRP_13 无效 dBm
RSRP_14 无效 dBm
RSRP_15 无效 dBm
RSRP_16 RSRP<-140 dBm
RSRP_17 -140≤RSRP<-139 dBm
RSRP_18 -139≤RSRP<-138 dBm
 
RSRP_111 -46≤RSRP<-45 dBm
RSRP_112 -45≤RSRP<-44 dBm
RSRP_113 -44≤RSRP dBm
RSRP_114 无效 dBm
RSRP_115 无效 dBm
RSRP_116 无效 dBm
RSRP_117 无效 dBm
RSRP_118 无效 dBm
RSRP_119 无效 dBm
RSRP_120 无效 dBm
RSRP_121 无效 dBm
RSRP_122 无效 dBm
RSRP_123 无效 dBm
RSRP_124 无效 dBm
RSRP_125 无效 dBm
RSRP_126 无效 dBm
RSRP_127 无穷 dBm
从上表1可以看出,量化后的RSRP的范围为[-140,44]dBm,小于最小值(即-140dBm)的测量结果用一个RSRP索引表示,大于或等于最大值(即44dBm)的测量结果用一个RSRP索引表示。因此,可以定义缺省值为小于或等于该量化范围中的最小值,例如,缺省的RSRP为-141dBm,即小于量化的最小值;此时,量化的RSRP可以表示为下表所示。当第二终端设备向第一终端设备反馈的RSRP对应索引为RSRP_15时,即表示第二终端设备反馈的是缺省RSRP值,即第二终端设备没有检测到该RSRP测量值所对应的CSI-RS资源。
又例如,采用7比特对测量的RSRP进行量化,如下表2所示。
表2
上报值 L1 RSRP 单位
RSRP_0 无效 dBm
RSRP_1 无效 dBm
RSRP_2 无效 dBm
RSRP_3 无效 dBm
RSRP_4 无效 dBm
RSRP_5 无效 dBm
RSRP_6 无效 dBm
RSRP_7 无效 dBm
RSRP_8 无效 dBm
RSRP_9 无效 dBm
RSRP_10 无效 dBm
RSRP_11 无效 dBm
RSRP_12 无效 dBm
RSRP_13 无效 dBm
RSRP_14 无效 dBm
RSRP_15 RSRP<-141 dBm
RSRP_16 -141≤RSRP<-140 dBm
RSRP_17 -140≤RSRP<-139 dBm
RSRP_18 -139≤RSRP<-138 dBm
 
RSRP_111 -46≤RSRP<-45 dBm
RSRP_112 -45≤RSRP<-44 dBm
RSRP_113 -44≤RSRP dBm
RSRP_114 无效 dBm
RSRP_115 无效 dBm
RSRP_116 无效 dBm
RSRP_117 无效 dBm
RSRP_118 无效 dBm
RSRP_119 无效 dBm
RSRP_120 无效 dBm
RSRP_121 无效 dBm
RSRP_122 无效 dBm
RSRP_123 无效 dBm
RSRP_124 无效 dBm
RSRP_125 无效 dBm
RSRP_126 无效 dBm
RSRP_127 无穷 dBm
又例如,缺省的RSRP设置为负无穷大(或一个非常小的数值,如-1000dBm),或者缺省的RSRP设置为无穷大(或一个非常大的数值,如1000dBm);此时,量化的RSRP可以分别表示为下表3-1和表3-2所示。当第二终端设备向第一终端设备反馈的RSRP对应索引为表3-1中的RSRP_0(或表3-2中的RSRP_127)时,即表示第二终端设备反馈的是缺省RSRP值,即第二终端设备没有检测到该RSRP测量值所对应的CSI-RS资源。
表3-1
上报值 L1 RSRP 单位
RSRP_0 负无穷 dBm
RSRP_1 无效 dBm
RSRP_2 无效 dBm
RSRP_3 无效 dBm
RSRP_4 无效 dBm
RSRP_5 无效 dBm
RSRP_6 无效 dBm
RSRP_7 无效 dBm
RSRP_8 无效 dBm
RSRP_9 无效 dBm
RSRP_10 无效 dBm
RSRP_11 无效 dBm
RSRP_12 无效 dBm
RSRP_13 无效 dBm
RSRP_14 无效 dBm
RSRP_15 无效 dBm
RSRP_16 RSRP<-140 dBm
RSRP_17 -140≤RSRP<-139 dBm
RSRP_18 -139≤RSRP<-138 dBm
 
RSRP_111 -46≤RSRP<-45 dBm
RSRP_112 -45≤RSRP<-44 dBm
RSRP_113 -44≤RSRP dBm
RSRP_114 无效 dBm
RSRP_115 无效 dBm
RSRP_116 无效 dBm
RSRP_117 无效 dBm
RSRP_118 无效 dBm
RSRP_119 无效 dBm
RSRP_120 无效 dBm
RSRP_121 无效 dBm
RSRP_122 无效 dBm
RSRP_123 无效 dBm
RSRP_124 无效 dBm
RSRP_125 无效 dBm
RSRP_126 无效 dBm
RSRP_127 无效 dBm
表3-2
上报值 L1 RSRP 单位
RSRP_0 无效 dBm
RSRP_1 无效 dBm
RSRP_2 无效 dBm
RSRP_3 无效 dBm
RSRP_4 无效 dBm
RSRP_5 无效 dBm
RSRP_6 无效 dBm
RSRP_7 无效 dBm
RSRP_8 无效 dBm
RSRP_9 无效 dBm
RSRP_10 无效 dBm
RSRP_11 无效 dBm
RSRP_12 无效 dBm
RSRP_13 无效 dBm
RSRP_14 无效 dBm
RSRP_15 无效 dBm
RSRP_16 RSRP<-140 dBm
RSRP_17 -140≤RSRP<-139 dBm
RSRP_18 -139≤RSRP<-138 dBm
 
RSRP_111 -46≤RSRP<-45 dBm
RSRP_112 -45≤RSRP<-44 dBm
RSRP_113 -44≤RSRP dBm
RSRP_114 无效 dBm
RSRP_115 无效 dBm
RSRP_116 无效 dBm
RSRP_117 无效 dBm
RSRP_118 无效 dBm
RSRP_119 无效 dBm
RSRP_120 无效 dBm
RSRP_121 无效 dBm
RSRP_122 无效 dBm
RSRP_123 无效 dBm
RSRP_124 无效 dBm
RSRP_125 无效 dBm
RSRP_126 无效 dBm
RSRP_127 无穷 dBm
以上示例适用于第二终端设备反馈的N个CSI-RS及其测量结果时,对于每个测量结果都反馈相应的RSRP结果(如7比特的量化结果)。但是,通常情况下,为了降低反馈信令的开销,第二终端设备对于多个RSRP测量结果通常采用差分RSRP反馈的方式。
例如,第二终端设备需要反馈N个CSI-RS资源信息及其各自对应的RSRP测量结果时,对于具有最优RSRP测量结果的,第二终端设备反馈其对应的CSI-RS及相应的RSRP测量结果(如上面表1中经过7比特量化后的RSRP索引),但是对于其他N-1个测量结果通常采用反馈差分RSRP的方式,所谓差分RSRP可以包括两种情况:
第一种情况:即相对于最优的RSRP结果的差值。
例如,第二终端设备检测到3个CSI-RS资源,分别对应CSI-RS资源1、CSI-RS资源2和CSI-RS资源3,分别进行测量得到3个RSRP结果,分别为RSRP1=-10dBm,RSRP2=-20dBm,RSRP3=-35dBm,当采用差分RSRP反馈时,第二终端设备反馈的3个RSRP结果分别是:
反馈CSI-RS资源1的索引1及其对应的RSRP测量结果,即RSRP1=-10dBm;
反馈CSI-RS资源2的索引2及其相对于RSRP1的差分RSRP测量结果,即ΔRSRP=-10dB,根据下表4,其对应的差分RSRP索引为“DIFFRSRP_5”;
反馈CSI-RS资源3的索引3及其相对于RSRP1的差分RSRP测量结果,即ΔRSRP=-25dB,根据下表4,其对应的差分RSRP索引为“DIFFRSRP_12”。
第二种情况:即相对于与之相邻并且测量结果大于或等于其RSRP测量结果的差值。
例如,第二终端设备检测到3个CSI-RS资源,分别对应CSI-RS资源1、CSI-RS资源2和CSI-RS资源3,分别进行测量得到3个RSRP结果,分别为RSRP1=-10dBm,RSRP2=-20dBm,RSRP3=-35dBm,当采用差分RSRP反馈时,第二终端设备反馈的3个RSRP结果分别是:
反馈CSI-RS资源1的索引1及其对应的RSRP测量结果,即RSRP1=-10dBm;
反馈CSI-RS资源2的索引2及其相对于RSRP1的差分RSRP测量结果,即ΔRSRP=-10dB,根据下表4,其对应的差分RSRP索引为“DIFFRSRP_5”;
反馈CSI-RS资源3的索引3及其相对于RSRP2的差分RSRP测量结果,即ΔRSRP=-15dB,根据下表4,其对应的差分RSRP索引为“DIFFRSRP_7”。
表4
Figure PCTCN2021113218-appb-000003
Figure PCTCN2021113218-appb-000004
在一些实施例中,当使用差分RSRP进行反馈时,可以定义差分RSRP的缺省值。例如,在表4中,将最后一个差分RSRP索引(即DIFFRSRP_15)设置为缺省值,即当第二终端设备反馈的差分RSRP对应该索引时,即表示第二终端设备没有检测到该差分RSRP测量结果所关联的CSI-RS资源。
在一些实施例中,该第一信息包括N3个CSI-RS资源的索引,该N3个CSI-RS资源为该第二终端设备根据接收到的CSI-RS进行测量得到的测量结果确定的,N3<N,N为该第二终端设备需要反馈或上报的CSI-RS资源的数量,N3和N的正整数,且N≤M。
在一些实施例中,该N3个CSI-RS资源对应该第二终端设备接收到的CSI-RS,或者,该N3个CSI-RS资源对应该第二终端设备接收到的并且对应的测量结果大于或等于第一门限值的CSI-RS。
在一些实施例中,该N3个CSI-RS资源的索引按照该N3个CSI-RS资源对应的测量结果从高到低的顺序排列,或者,该N3个CSI-RS资源的索引按照该N3个CSI-RS资源对应的测量结果从低到高的顺序排列。具体可以参考上述关于N个CSI-RS资源分别对应的测量结果的量化索引信息的相关描述,在此不再赘述。
在一些实施例中,该第一信息还包括第二测量信息,该第二测量信息用于指示该N3个CSI-RS资源对应的测量结果。
在一些实施例中,该第二测量信息包括该N3个CSI-RS资源分别对应的测量结果的量化索引信息。具体可以参考上述关于N个CSI-RS资源分别对应的测量结果的量化索引信息的相关描述,在此不再赘述。
在一些实施例中,该第二测量信息包括第二测量结果的量化索引信息以及N3-1个差分量化索引信息,其中,该第二测量结果对应该N3个CSI-RS资源对应的测量结果中的最高值。具体可以参考上述关于N个CSI-RS资源分别对应的测量结果的量化索引信息的相关描述,在此不再赘述。
在一些实施例中,该第一信息还包括第五指示信息,该第五指示信息用于指示N3的取值。
在一些实施例中,该测量结果包括侧行RSRP和/或侧行SINR。
在一些实施例中,该第一信息通过以下之一承载:
侧行控制信息(Sidelink Control Information,SCI)、媒体接入控制控制元素(Media Access Control Control Element,MAC CE)、侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)、PC5-RRC信令。
具体例如,在SCI、MAC CE或PC5-RRC中包括的一个信息域,用于指示参数N和/或N3的值。
在一些实施例中,当采用MAC CE承载该第一信息时,MAC CE的格式可以如图20或图21所示。
具体例如,对于待反馈的RSRP,都反馈其对应的量化后的RSRP索引时(如表1),即每个RSRP用7比特表示时,在MAC CE中包括N3个CSI-RS资源索引以及其对应的RSRP测量结果,并且包括信息域指示N3的值。如图20所示,N=3,即最多反馈3个CSI-RS资源及其对应的测量结果,CSI-RS资源集合中包括4个CSI-RS资源,因此用2比特表示CSI-RS索引,N3的取值小于或等于N,即N3<=3,因此N3也需要2比特表示;图中k1/k2/k3分别表示3个CSI-RS资源对应的索引信息,在该方式中,由于每个RSRP测量结果都用7比特表示,所以MAC CE中各个CSI-RS资源的顺序可以不做约定,优选的,RSRP测量结果越大的,在MAC CE中的位置越靠前。Oct1表示字节1,以此类推。图20中(a),(b),(c)可以分别看做是N3=3,N3=2,N3=1的情况。
特别的,当N3=0,即第二终端设备没有接收到任何第一终端设备发送的CSI-RS时,或检测到的CSI-RS资源都不满足条件时,此时,第二终端设备可以向第一终端设备发送一个指示信息(即第二 信息),用于指示第二终端设备没有接收到CSI-RS,或用于指示第一终端设备重新轮流发送CSI-RS。可选的,第二终端设备可以通过SCI、MAC CE或PC5-RRC发送该指示信息(即第二信息),当通过MAC CE携带该指示信息(即第二信息)时,如图20中的(d)所示。
具体又例如,当采用差分RSRP进行反馈时,用7比特表示最高RSRP测量结果(如表1),其他的RSRP测量结果采用4比特差分RSRP表示(如表4)。在MAC CE中包括N1个CSI-RS资源索引以及其对应的RSRP测量结果。如图21所示,N=3,即最多反馈3个CSI-RS资源及其对应的测量结果,CSI-RS资源集合中包括4个CSI-RS资源,因此用2比特表示CSI-RS索引,N3的取值小于或等于N,即N3<=3,因此N3也需要2比特表示;图中k1/k2/k3分别表示3个CSI-RS资源对应的索引信息,CSI-RS k1表示最高RSRP测量结果对应的CSI-RS资源,CSI-RS k2表示第二高RSRP测量结果对应的CSI-RS资源,CSI-RS k3表示第三高RSRP测量结果对应的CSI-RS资源。在该方式中,MAC CE中各个CSI-RS资源的顺序按照RSRP测量结果从高到低(或从低到高)的顺序排列。Oct1表示字节1,以此类推。图21中(a),(b),(c)可以分别看做是N3=3,N3=2,N3=1的情况。
特别的,当N3=0,即第二终端设备没有接收到任何第一终端设备发送的CSI-RS时,或检测到的CSI-RS资源都不满足条件时,此时,第二终端设备可以向第一终端设备发送一个指示信息(即第二信息),用于指示第二终端设备没有接收到CSI-RS,或用于指示第一终端设备重新轮流发送CSI-RS。可选的,第二终端设备可以通过SCI、MAC CE或PC5-RRC发送该指示信息(即第二信息),当通过MAC CE携带该指示信息(即第二信息)时,如图21中的(d)所示。
在一些实施例中,如图11所示,所述方法200还包括:
S240,该第一终端设备根据该第一信息,选取目标CSI-RS资源,该目标CSI-RS资源对应的空域发送滤波器为该目标空域发送滤波器。
进一步地,S250,该第一终端设备使用该目标空域发送滤波器向该第二终端设备发送侧行数据。相应的,该第二终端设备接收该第一终端设备使用该目标CSI-RS资源对应的目标空域发送滤波器发送的侧行数据。
在一些实施例中,可以认为所述目标CSI-RS资源对应的发送波束为目标发送波束。
在一些实施例中,所述方法还包括:
该第一终端设备向该第二终端设备发送第二侧行配置信息,该第二侧行配置信息用于配置至少一个传输配置指示TCI状态,该至少一个TCI状态包括第一TCI状态,该第一TCI状态中包括的参考信号为该目标CSI-RS资源对应的CSI-RS。
由前文描述可知,所述第一终端设备可以使用不同的发送波束发送CSI-RS资源,第二终端设备可以使用相同的接收波束接收CSI-RS资源,并根据该CSI-RS资源进行测量和上报,从而第一终端设备可以上报量确定目标发送波束,此情况下确定的目标发送波束为该接收波束对应的目标发送波束,即第一终端设备使用该目标发送波束发送信号时,第二终端设备使用该接收波束进行信号接收时的侧行传输性能最优。
进一步地,在本申请实施例中,在所述第一终端设备使用不同的发送波束发送CSI-RS资源时,第二终端设备可以使用轮询使用不同的接收波束接收CSI-RS资源,以确定每个接收波束对应的目标接收波束,得到至少一个TCI状态。
举例说明,所述第一终端设备使用四个发送波束(发送波束0至空域发送波束3)分别发送CSI-RS资源,第二终端设备可以使用四个接收波束(接收波束0至空域接收波束3)接收CSI-RS资源。例如,在第一终端设备使用四个发送波束(发送波束0至空域发送波束3)分别发送CSI-RS资源时,第二终端设备先使用接收波束0接收CSI-RS资源,并根据该CSI-RS资源进行测量和上报,从而第一终端设备可以上报量确定目标发送波束,此情况下的目标接收波束是该接收波束0对应的目标发送波束,然后在第一终端设备使用四个发送波束(发送波束0至空域发送波束3)分别发送CSI-RS资源时,第二终端设备再使用接收波束1接收CSI-RS资源,并根据该CSI-RS资源进行测量和上报,从而第一终端设备可以上报量确定目标发送波束,此情况下的目标接收波束是该接收波束1对应的目标发送波束,轮询执行上述过程可以确定每个接收波束对应的目标发送波束。
在一些实施例中,该第一TCI状态中包括的准共站址(QCL)类型为QCL-TypeD。
在一些实施例中,所述方法200还包括:
该第一终端设备向该第二终端设备发送第六指示信息,该第六指示信息用于指示该第一TCI状态。例如,该第六指示信息包括该第一TCI状态对应的索引信息。
在一些实施例中,该第六指示信息通过以下之一承载:
侧行控制信息(Sidelink Control Information,SCI)、媒体接入控制控制元素(Media Access Control Control Element,MAC CE)、PC5-RRC信令。
在一些实施方式中,当所述第六指示信息通过SCI或MAC CE承载时,所述第一终端设备指示激活侧行反馈。
在一些侧行通信中,第一终端设备可以为侧行信号或侧行信道指示相应的TCI状态,则第二终端设备可以采用接收该TCI状态指示的CSI-RS资源相同的接收波束来接收侧行信号或侧行信道,有利于提升侧行传输性能。
在一些实施例中,所述方法200还包括:
该第一终端设备接收该第二终端设备发送的第二信息;其中,
该第二信息用于指示该第二终端设备未检测到CSI-RS,或者,该第二信息用于指示该第二终端设备检测到CSI-RS对应的测量结果都低于第一门限值,或者,该第二信息用于指示该第一终端设备重新发送该M个CSI-RS。进一步地,该第一终端设备重新使用空域发送滤波器分别该第二终端设备发送该M个CSI-RS。
在一些实施例中,所述第二终端设备向所述第二终端设备发送第二信息,包括:
所述第二终端设备在第三时间单元向所述第二终端设备发送所述第二信息,其中,所述第三时间单元位于基于时延边界确定的第四时间单元之后。在一些实施例中,该第二信息通过以下之一承载:
SCI、MAC CE、PSFCH、PC5-RRC信令。
因此,在本申请实施例中,能够选取第一终端设备和第二终端设备之间的最优空域发送滤波器。
综上,第一终端设备和第二终端设备通过交互CSI-RS资源的发送配置,接收配置和上报或反馈配置的至少一项,从而第二终端设备可以基于上述配置进行CSI-RS资源的测量和上报,第一终端设备可以根据上报量确定目标CSI-RS资源,该目标CSI-RS资源对应的发送波束可以认为是目标发送波束,从而实现了侧行传输系统中的最优发送波束的选取。进一步地,发送端终端可以基于该最优发送波束进行侧行发送,对应地,接收端终端基于该最优发送波束对应的接收波束进行侧行接收,有利于提升侧行传输性能。
上文结合图11至图21,详细描述了本申请的方法实施例,下文结合图22至图23,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图22示出了根据本申请实施例的终端设备400的示意性框图。如图22所示,该终端设备400包括:
通信单元410,用于使用空域发送滤波器向第二终端设备发送M个信道状态信息参考信号CSI-RS,所述M个CSI-RS用于选取目标空域发送滤波器;
其中,所述M个CSI-RS对应目标CSI-RS资源集合中的多个CSI-RS资源,M为正整数。
在一些实施例中,所述目标CSI-RS资源集合的配置信息中对应的重复字段取第一值;
其中,所述第一值用于指示所述终端设备不是使用相同的空域发送滤波器发送所述目标CSI-RS资源集合中的CSI-RS资源。
在一些实施例中,所述通信单元410还用于:向网络设备发送第一指示信息,所述第一指示信息用于指示所述终端设备请求网络设备分配用于发送CSI-RS的传输资源。
在一些实施例中,所述第一指示信息包括所述终端设备发送CSI-RS的周期信息。
在一些实施例中,所述第一指示信息包括所述M的取值。
在一些实施例中,所述通信单元410还用于:接收所述网络设备发送的第一配置信息,所述第一配置信息包括所述网络设备为所述终端设备分配的用于发送CSI-RS的传输资源。
在一些实施例中,所述第一配置信息包括第二指示信息,所述第二指示信息用于指示所述网络设备分配的传输资源用于发送用于选取目标空域发送滤波器的CSI-RS。
在一些实施例中,所述第一指示信息通过以下之一承载:
物理上行控制信道PUCCH,上行无线资源控制RRC信令。
在一些实施例中,所述第二指示信息通过以下之一承载:下行控制信息DCI,RRC信令。
在一些实施例中,所述通信单元410还用于:向所述第二终端设备发送第一侧行配置信息;
其中,所述第一侧行配置信息包括以下至少之一:
所述目标CSI-RS资源集合的索引,所述目标CSI-RS资源集合中包括的CSI-RS资源的索引,所述目标CSI-RS资源集合中包括的CSI-RS资源的数量,M的取值,CSI-RS资源集合与CSI上报量的对应关系,所述第二终端设备向所述终端设备上报或反馈的CSI-RS资源的数量,时延边界,所述目标CSI-RS资源集合对应的重复字段的取值,所述终端设备发送所述M个CSI-RS所使用的传输资源信息,所述M个CSI-RS所使用的传输资源对应的资源池信息,所述终端设备的传输模式;
其中,所述目标CSI-RS资源集合对应的重复字段取第一值用于指示所述终端设备不是使用相同的空域发送滤波器发送CSI-RS,所述目标CSI-RS资源集合对应的重复字段取第二值用于指示所述终 端设备使用相同的空域发送滤波器发送CSI-RS。
在一些实施例中,在所述时延边界内,所述终端设备不期待所述第二终端设备进行针对CSI-RS的上报或反馈;和/或,在超过所述时延边界之后,允许所述第二终端设备进行针对CSI-RS的上报或反馈;和/或,在超过所述时延边界之后,所述第二终端设备不期待所述终端设备发送CSI-RS;和/或,在超过所述时延边界之后,所述第二终端设备停止接收所述终端设备发送的CSI-RS。
在一些实施例中,所述通信单元410还用于:向所述第二终端设备发送第三指示信息;
其中,所述第三指示信息用于指示以下至少之一:
所述终端设备将要发送用于选取目标空域发送滤波器的CSI-RS,所述终端设备将使用不同的空域发送滤波器发送CSI-RS,信道状态信息CSI上报量,所述终端设备第一个发送的CSI-RS资源的索引,所述终端设备发送第一个CSI-RS资源的时间间隔,其中,所述时间间隔以所述第三指示信息所在的时间单元为参考。
在一些实施例中,所述通信单元410还用于:向所述第二终端设备发送第四指示信息;
其中,所述第四指示信息用于指示所述终端设备发送的CSI-RS用于选取用于所述终端设备进行侧行数据发送的空域发送滤波器;或者,所述第四指示信息用于指示所述终端设备发送的CSI-RS用于选取用于所述第二终端设备进行侧行数据接收的空域接收滤波器;或者,所述第四指示信息用于指示所述终端设备发送的CSI-RS用于测量信道状态信息。
在一些实施例中,所述终端设备还包括:处理单元,用于根据资源池配置信息或侧行带宽部分配置信息中包括的第一CSI-RS资源集合确定所述目标CSI-RS资源集合;
根据所述第一CSI-RS资源集合包括的CSI-RS资源确定所述目标CSI-RS资源集合中包括的CSI-RS资源。
在一些实施例中,所述CSI上报量包括以下至少之一:
CSI-RS资源指示CRI,CRI和参考信号接收功率RSRP,CRI和接收信号强度指示SINR,时隙资源指示,时隙资源指示和RSRP,时隙资源指示和SINR,不上报。
在一些实施例中,所述第一侧行配置信息通过以下之一承载:
侧行控制信息SCI,媒体接入控制控制元素MAC CE,PC5-无线资源控制RRC信令中。
在一些实施例中,所述第三指示信息通过以下之一承载:
PC5-RRC信令,SCI,MAC CE,侧行反馈信息。
在一些实施例中,所述第四指示信息通过以下之一承载:
PC5-RRC信令,SCI,MAC CE,侧行反馈信息。
在一些实施例中,所述通信单元410还用于:在使用空域发送滤波器向所述第二终端设备发送CSI-RS时,在与所述CSI-RS关联的SCI中携带所述CSI-RS对应的CSI-RS资源指示信息。
在一些实施例中,所述CSI-RS对应的CSI-RS资源指示信息包括所述CSI-RS对应的CSI-RS资源集合的索引和/或所述CSI-RS资源的索引。
在一些实施例中,所述通信单元410还用于:接收所述第二终端设备发送的第一信息;
其中,所述第一信息包括目标CSI上报量,所述目标CSI上报量包括以下至少之一:
CRI,CRI和RSRP,CRI和SINR,时隙资源指示,时隙资源指示和RSRP,时隙资源指示和SINR;
其中,所述时隙资源指示信息用于确定所述终端设备发送CSI-RS对应的时隙,或者,所述时隙资源指示信息用于确定所述终端设备发送的CSI-RS资源对应的索引。
在一些实施例中,所述第一信息包括N个CSI-RS资源的索引,或者,所述第一信息用于确定N个CSI-RS资源的索引,所述N个CSI-RS资源为所述第二终端设备根据接收到的CSI-RS的测量结果确定的,N为所述第二终端设备需要上报或反馈的CSI-RS资源的数量,N为正整数,且N≤M。
在一些实施例中,所述N个CSI-RS资源的索引按照所述N个CSI-RS对应的测量结果从高到低的顺序排列,或者,所述N个CSI-RS资源的索引按照所述N个CSI-RS对应的测量结果从低到高的顺序排列。
在一些实施例中,所述第一信息还包括第一测量信息,所述第一测量信息用于指示所述N个CSI-RS资源对应的测量结果。
在一些实施例中,所述N个CSI-RS资源对应的测量结果大于或等于第一门限值。
在一些实施例中,所述N个CSI-RS资源包括N1个第一类CSI-RS资源和N2个第二类CSI-RS资源,其中,所述N1个第一类CSI-RS资源对应的测量结果大于或等于第一门限值,所述N2个第二类CSI-RS资源对应的索引由所述N1个第一类CSI-RS资源中的至少一个CSI-RS资源确定,或者,所述N2个第二类CSI-RS资源对应的索引由所述多个CSI-RS资源中除所述N1个第一类CSI-RS资源之外的CSI-RS资源中的至少一个CSI-RS资源确定,所述N2个第二类CSI-RS资源对应的测量结 果为缺省值,N1和N2为正整数,N1+N2=N。
在一些实施例中,所述第一测量信息包括所述N个CSI-RS资源分别对应的测量结果的量化索引信息。
在一些实施例中,所述第一测量信息包括第一测量结果的量化索引信息以及N-1个差分量化索引信息,其中,所述第一测量结果对应所述N个CSI-RS资源对应的测量结果中的最高值。
在一些实施例中,所述第一信息包括N3个CSI-RS资源的索引,所述N3个CSI-RS资源为所述第二终端设备根据接收到的CSI-RS进行测量得到的测量结果确定的,N3<N,N为所述第二终端设备需要反馈或上报的CSI-RS资源的数量,N3和N的正整数,且N≤M。
在一些实施例中,所述N3个CSI-RS资源对应的测量结果大于或等于第一门限值。
在一些实施例中,所述第一信息还包括第五指示信息,所述第五指示信息用于指示N3的取值。
在一些实施例中,所述第一信息还包括第二测量信息,所述第二测量信息用于指示所述N3个CSI-RS资源对应的测量结果。
在一些实施例中,所述第二测量信息包括所述N3个CSI-RS资源分别对应的测量结果的量化索引信息。
在一些实施例中,所述第二测量信息包括第二测量结果的量化索引信息以及N3-1个差分量化索引信息,其中,所述第二测量结果对应所述N3个CSI-RS资源对应的测量结果中的最高值。
在一些实施例中,所述N的取值根据以下信息中的至少一种确定:
资源池配置信息,所述终端设备向所述第二终端设备发送的指示信息,所述第二终端设备向所述终端设备发送的指示信息。
在一些实施例中,所述测量结果包括RSRP和/或SINR。
在一些实施例中,所述第一信息通过以下之一承载:
SCI、MAC CE、侧行反馈信道PSFCH、PC5-RRC信令。
在一些实施例中,所述终端设备还包括处理单元,用于根据所述第一信息,选取目标CSI-RS资源,所述目标CSI-RS资源对应的空域发送滤波器为所述目标空域发送滤波器。
在一些实施例中,所述通信单元410还用于:向所述第二终端设备发送第二侧行配置信息,所述第二侧行配置信息用于配置至少一个传输配置指示TCI状态,所述至少一个TCI状态包括第一TCI状态,所述第一TCI状态中包括的参考信号为所述终端设备根据所述第一信息确定的目标CSI-RS资源对应的CSI-RS。
在一些实施例中,所述第一TCI状态中包括的准共站址QCL类型为QCL-TypeD。
在一些实施例中,所述通信单元410还用于:向所述第二终端设备发送第六指示信息,所述第六指示信息用于指示所述第一TCI状态。
在一些实施例中,所述通信单元410还用于:
使用所述目标CSI-RS资源对应的目标空域发送滤波器进行侧行传输。
在一些实施例中,所述通信单元410还用于:在第一时间单元接收所述第二终端设备发送的所述第一信息,其中,所述第一时间单元位于基于时延边界确定的第二时间单元之后。
在一些实施例中,所述通信单元410还用于:接收所述第二终端设备发送的第二信息;其中,
所述第二信息用于指示所述第二终端设备未检测到CSI-RS或所述第二终端检测到的CSI-RS的测量结果均小于第一门限值,或者,所述第二信息用于指示所述终端设备重新发送所述M个CSI-RS。
在一些实施例中,所述通信单元410还用于:重新使用空域发送滤波器分别向所述第二终端设备发送所述M个CSI-RS。
在一些实施例中,所述通信单元410还用于:在第三时间单元接收所述第二终端设备发送的所述第三信息,其中,所述第三时间单元位于基于时延边界确定的第四时间单元之后。
在一些实施例中,所述第一门限值为预配置或协议约定的,或者,所述第一门限值为网络设备配置的,或者,所述第一门限值为所述终端设备配置的。可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的第一终端,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图11所示方法200中第一终端设备的相应流程,为了简洁,在此不再赘述。
图23是根据本申请另一实施例的终端设备的示意性框图。图23的终端设备500包括:
通信单元510,用于接收第一终端设备发送的M个信道状态信息参考信号CSI-RS,其中,所述M个CSI-RS用于选取目标空域发送滤波器,所述M个CSI-RS对应目标CSI-RS资源集合中的多个 CSI-RS资源,M为正整数。
在一些实施例中,所述目标CSI-RS资源集合的配置信息中对应的重复字段取第一值;
其中,所述第一值用于指示所述第一终端设备不是使用相同的空域发送滤波器发送所述目标CSI-RS资源集合中的CSI-RS资源。
在一些实施例中,所述通信安逸510还用于:
接收所述第一终端设备发送的第一侧行配置信息;
其中,所述第一侧行配置信息包括以下至少之一:
所述目标CSI-RS资源集合的索引,所述目标CSI-RS资源集合中包括的CSI-RS资源的索引,所述目标CSI-RS资源集合中包括的CSI-RS资源的数量,M的取值,CSI-RS资源集合与CSI上报量的对应关系,所述终端设备向所述第一终端设备上报或反馈的CSI-RS资源的数量,时延边界,所述目标CSI-RS资源集合对应的重复字段的取值,所述第一终端设备发送所述M个CSI-RS所使用的传输资源信息,所述第一终端设备的传输模式;
其中,所述目标CSI-RS资源集合对应的重复字段取第一值用于指示所述第一终端设备不是使用相同的空域发送滤波器发送CSI-RS,所述目标CSI-RS资源集合对应的重复字段取第二值用于指示所述第一终端设备使用相同的空域发送滤波器发送CSI-RS。
在一些实施例中,在所述时延边界内,所述第一终端设备不期待所述终端设备进行针对CSI-RS的上报或反馈;和/或,在超过所述时延边界之后,允许所述终端设备进行针对CSI-RS的上报或反馈;和/或,在超过所述时延边界之后,所述终端设备不期待所述第一终端设备发送CSI-RS;和/或,在超过所述时延边界之后,所述终端设备停止接收所述第一终端设备发送的CSI-RS。
在一些实施例中,所述通信单元510还用于:
接收所述第一终端设备发送的第三指示信息;
其中,所述第三指示信息用于指示以下至少之一:
所述第一终端设备将要发送用于选取目标空域发送滤波器的CSI-RS,所述第一终端设备将使用不同的空域发送滤波器发送CSI-RS,信道状态信息CSI上报量,所述第一终端设备第一个发送的CSI-RS资源的索引,所述第一终端设备发送第一个CSI-RS资源的时间间隔,其中,所述时间间隔以所述第三指示信息所在的时间单元为参考。
在一些实施例中,所述通信单元510还用于:接收所述第一终端设备发送的第四指示信息;
其中,所述第四指示信息用于指示所述第一终端设备发送的CSI-RS用于选取用于所述第一终端设备进行侧行数据发送的空域发送滤波器;或者,所述第四指示信息用于指示所述第一终端设备发送的CSI-RS用于选取用于所述终端设备进行侧行数据接收的空域接收滤波器;或者,所述第四指示信息用于指示所述第一终端设备发送的CSI-RS用于选取用于测量信道状态信息。
在一些实施例中,所述CSI上报量包括以下至少之一:
CSI-RS资源指示CRI,CRI和参考信号接收功率RSRP,CRI和接收信号强度指示SINR,时隙资源指示,时隙资源指示和RSRP,时隙资源指示和SINR,不上报。
在一些实施例中,所述第一侧行配置信息通过以下之一承载:
侧行控制信息SCI,媒体接入控制控制元素MAC CE,PC5-无线资源控制RRC信令中。
在一些实施例中,所述第三指示信息通过以下之一承载:
PC5-RRC信令,SCI,MAC CE,侧行反馈信息。
在一些实施例中,所述第四指示信息通过以下之一承载:
PC5-RRC信令,SCI,MAC CE,侧行反馈信息。
在一些实施例中,所述通信单元510还用于:
在第一终端设备每次使用空域发送滤波器向所述终端设备发送CSI-RS时,接收所述第一终端设备在与所述CSI-RS关联的SCI中携带的所述CSI-RS对应的CSI-RS资源指示信息。
在一些实施例中,所述CSI-RS对应的CSI-RS资源指示信息包括所述CSI-RS对应的CSI-RS资源集合的索引和/或所述CSI-RS资源的索引。
在一些实施例中,所述通信单元510还用于:
向所述第一终端设备发送第一信息;
其中,所述第一信息包括目标CSI上报量,所述目标CSI上报量包括以下至少之一:
CRI,CRI和RSRP,CRI和SINR,时隙资源指示,时隙资源指示和RSRP,时隙资源指示和SINR;
其中,所述时隙资源指示信息用于确定所述第一终端设备发送CSI-RS对应的时隙,或者,所述时隙资源指示信息用于确定所述第一终端设备发送的CSI-RS资源对应的索引。
在一些实施例中,所述第一信息包括N个CSI-RS资源的索引,或者,所述第一信息用于确定N 个CSI-RS资源的索引,所述N个CSI-RS资源为所述终端设备根据接收到的CSI-RS的测量结果确定的,N为所述终端设备需要上报或反馈的CSI-RS资源的数量,N为正整数,且N≤M。
在一些实施例中,所述N个CSI-RS资源的索引按照所述N个CSI-RS对应的测量结果从高到低的顺序排列,或者,所述N个CSI-RS资源的索引按照所述N个CSI-RS对应的测量结果从低到高的顺序排列。
在一些实施例中,所述第一信息还包括第一测量信息,所述第一测量信息用于指示所述N个CSI-RS资源对应的测量结果。
在一些实施例中,所述N个CSI-RS资源对应的测量结果大于或等于第一门限值。
在一些实施例中,所述N个CSI-RS资源包括N1个第一类CSI-RS资源和N2个第二类CSI-RS资源,其中,所述N1个第一类CSI-RS资源对应的测量结果大于或等于第一门限值,所述N2个第二类CSI-RS资源对应的索引由所述N1个第一类CSI-RS资源中的至少一个CSI-RS资源确定,或者,所述N2个第二类CSI-RS资源对应的索引由所述多个CSI-RS资源中除所述N1个第一类CSI-RS资源之外的CSI-RS资源中的至少一个CSI-RS资源确定,所述N2个第二类CSI-RS资源对应的测量结果为缺省值,N1和N2为正整数,N1+N2=N。
在一些实施例中,所述第一测量信息包括所述N个CSI-RS资源分别对应的测量结果的量化索引信息。
在一些实施例中,所述第一测量信息包括第一测量结果的量化索引信息以及N-1个差分量化索引信息,其中,所述第一测量结果对应所述N个CSI-RS资源对应的测量结果中的最高值。
在一些实施例中,所述第一信息包括N3个CSI-RS资源的索引,所述N3个CSI-RS资源为所述终端设备根据接收到的CSI-RS进行测量得到的测量结果确定的,N3<N,N为所述终端设备需要反馈或上报的CSI-RS资源的数量,N3和N的正整数,且N≤M。
在一些实施例中,所述N3个CSI-RS资源对应的测量结果大于或等于第一门限值。
在一些实施例中,所述第一信息还包括第五指示信息,所述第五指示信息用于指示N3的取值。
在一些实施例中,所述第一信息还包括第二测量信息,所述第二测量信息用于指示所述N3个CSI-RS资源对应的测量结果。
在一些实施例中,所述第二测量信息包括所述N3个CSI-RS资源分别对应的测量结果的量化索引信息。
在一些实施例中,所述第二测量信息包括第二测量结果的量化索引信息以及N3-1个差分量化索引信息,其中,所述第二测量结果对应所述N3个CSI-RS资源对应的测量结果中的最高值。
在一些实施例中,所述N的取值根据以下信息中的至少一种确定:
资源池配置信息,所述第一终端设备向所述终端设备发送的指示信息,所述终端设备向所述第一终端设备发送的指示信息。
在一些实施例中,所述测量结果包括RSRP和/或SINR。
在一些实施例中,所述第一信息通过以下之一承载:
SCI、MAC CE、侧行反馈信道PSFCH、PC5-RRC信令。
在一些实施例中,所述通信单元510还用于:接收所述第一终端设备发送的第二侧行配置信息,所述第二侧行配置信息用于配置至少一个传输配置指示TCI状态,所述至少一个TCI状态包括第一TCI状态,所述第一TCI状态中包括的参考信号为所述第一终端设备根据所述第一信息确定的目标CSI-RS资源对应的CSI-RS。
在一些实施例中,所述第一TCI状态中包括的准共站址QCL类型为QCL-TypeD。
在一些实施例中,所述通信单元510还用于:接收所述第一终端设备发送的第六指示信息,所述第六指示信息用于指示所述第一TCI状态。
在一些实施例中,所述通信单元510还用于:接收所述第一终端设备使用所述目标CSI-RS资源对应的空域发送滤波器发送的侧行数据。
在一些实施例中,所述通信单元510还用于:在第一时间单元向所述终端设备发送所述第一信息,其中,所述第一时间单元位于基于时延边界确定的第二时间单元之后。
在一些实施例中,所述通信单元510还用于:向所述终端设备发送第二信息;其中,
所述第二信息用于指示所述终端设备未检测到CSI-RS或所述第二终端检测到的CSI-RS的测量结果均小于第一门限值,或者,所述第二信息用于指示所述第一终端设备重新发送所述M个CSI-RS。
在一些实施例中,所述通信单元510还用于:
在第三时间单元向所述终端设备发送所述第二信息,其中,所述第三时间单元位于基于时延边界确定的第四时间单元之后。
在一些实施例中,所述第一门限值为预配置或协议约定的,或者,所述第一门限值为网络设备配置的,或者,所述第一门限值为所述第一终端设备配置的。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备500可对应于本申请方法实施例中的第二终端,并且终端设备500中的各个单元的上述和其它操作和/或功能分别为了实现图11所示方法200中第二终端的相应流程,为了简洁,在此不再赘述。
图24是本申请实施例提供的一种通信设备600示意性结构图。图24所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图24所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图24所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的第一终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由第一终端实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备600中的收发器630可以对应于图22所示终端设备400中的通信单元410,该收发器630可以执行该通信单元510所执行的操作或功能,为了简洁,这里不再赘述。
在一些实施例中,该通信设备600中的处理器610可以对应于图22所示终端设备400中的处理单元420,该处理器610可以执行该处理单元420所执行的操作或功能,为了简洁,这里不再赘述。
可选地,该通信设备600具体可为本申请实施例的第二终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备600中的收发器630可以对应于图23所示终端设备500中的通信单元510,该收发器630可以执行该通信单元510所执行的操作或功能,为了简洁,这里不再赘述。
在一些实施例中,该通信设备600中的处理器610可以对应于图23所示终端设备500中的处理单元520,该处理器610可以执行该处理单元520所执行的操作或功能,为了简洁,这里不再赘述。
图25是本申请实施例的芯片的示意性结构图。图25所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图25所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的第一终端设备,并且该芯片可以实现本申请实施例的各个方法中由第一终端实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该芯片700中的处理器710可以对应于图22所示终端设备400中的处理单元420,该处理器710可以执行该处理单元420所执行的操作或功能,为了简洁,这里不再赘述。
在一些实施例中,该芯片700中的输入接口730和输出接口740可以对应于图22所示终端设备400中的通信单元410,该输入接口730和输出接口740可以执行该通信单元410所执行的操作或功能,为了简洁,这里不再赘述。
可选地,该芯片可应用于本申请实施例中的第二终端设备,并且该芯片可以实现本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该芯片700中的处理器710可以对应于图23所示终端设备500的处理单元520,该处理器710可以执行该处理单元520所执行的操作或功能,为了简洁,这里不再赘述。
在一些实施例中,该芯片700中的输入接口730和输出接口740可以对应于图23所示终端设备500中的通信单元510,该输入接口730和输出接口740可以执行该通信单元510所执行的操作或功能,为了简洁,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片 等。
图26是本申请实施例提供的一种通信系统700的示意性框图。如图26所示,该通信系统700包括第一终端710和第二终端720。
其中,该第一终端710可以用于实现上述方法中由第一终端设备实现的相应的功能,以及该第二终端720可以用于实现上述方法中由第二终端设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的第一终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的第二终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的第一终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的第二终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的第一终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的第二终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执 行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (91)

  1. 一种无线通信的方法,其特征在于,包括:
    第一终端设备使用空域发送滤波器向第二终端设备发送M个信道状态信息参考信号CSI-RS,所述M个CSI-RS用于选取目标空域发送滤波器;
    其中,所述M个CSI-RS对应目标CSI-RS资源集合中的多个CSI-RS资源,M为正整数。
  2. 根据权利要求1所述的方法,其特征在于,
    所述目标CSI-RS资源集合的配置信息中对应的重复字段取第一值;
    其中,所述第一值用于指示所述第一终端设备不是使用相同的空域发送滤波器发送所述目标CSI-RS资源集合中的CSI-RS资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向网络设备发送第一指示信息,所述第一指示信息用于指示所述第一终端设备请求网络设备分配用于发送CSI-RS的传输资源。
  4. 根据权利要求3所述的方法,其特征在于,所述第一指示信息包括所述第一终端设备发送CSI-RS的周期信息。
  5. 根据权利要3或4所述的方法,其特征在于,所述第一指示信息包括所述M的取值。
  6. 根据权利要求3至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收所述网络设备发送的第一配置信息,所述第一配置信息包括所述网络设备为所述第一终端设备分配的用于发送CSI-RS的传输资源。
  7. 根据权利要求6所述的方法,其特征在于,所述第一配置信息包括第二指示信息,所述第二指示信息用于指示所述网络设备分配的传输资源用于发送用于选取目标空域发送滤波器的CSI-RS。
  8. 根据权利要求3-7中任一项所述的方法,其特征在于,所述第一指示信息通过以下之一承载:
    物理上行控制信道PUCCH,上行无线资源控制RRC信令。
  9. 根据权利要求3-8中任一项所述的方法,其特征在于,所述第二指示信息通过以下之一承载:下行控制信息DCI,RRC信令。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述第二终端设备发送第一侧行配置信息;
    其中,所述第一侧行配置信息包括以下至少之一:
    所述目标CSI-RS资源集合的索引,所述目标CSI-RS资源集合中包括的CSI-RS资源的索引,所述目标CSI-RS资源集合中包括的CSI-RS资源的数量,M的取值,CSI-RS资源集合与CSI上报量的对应关系,所述第二终端设备向所述第一终端设备上报或反馈的CSI-RS资源的数量,时延边界,所述目标CSI-RS资源集合对应的重复字段的取值,所述第一终端设备发送所述M个CSI-RS所使用的传输资源信息,所述M个CSI-RS所使用的传输资源对应的资源池信息,所述第一终端设备的传输模式;
    其中,所述目标CSI-RS资源集合对应的重复字段取第一值用于指示所述第一终端设备不是使用相同的空域发送滤波器发送CSI-RS,所述目标CSI-RS资源集合对应的重复字段取第二值用于指示所述第一终端设备使用相同的空域发送滤波器发送CSI-RS。
  11. 根据权利要求10所述的方法,其特征在于,
    在所述时延边界内,所述第一终端设备不期待所述第二终端设备进行针对CSI-RS的上报或反馈;和/或,在超过所述时延边界之后,允许所述第二终端设备进行针对CSI-RS的上报或反馈;和/或,在超过所述时延边界之后,所述第二终端设备不期待所述第一终端设备发送CSI-RS;和/或,在超过所述时延边界之后,所述第二终端设备停止接收所述第一终端设备发送的CSI-RS。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述第二终端设备发送第三指示信息;
    其中,所述第三指示信息用于指示以下至少之一:
    所述第一终端设备将要发送用于选取目标空域发送滤波器的CSI-RS,所述第一终端设备将使用不同的空域发送滤波器发送CSI-RS,信道状态信息CSI上报量,所述第一终端设备第一个发送的CSI-RS资源的索引,所述第一终端设备发送第一个CSI-RS资源的时间间隔,其中,所述时间间隔以所述第三指示信息所在的时间单元为参考。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述第二终端设备发送第四指示信息;
    其中,所述第四指示信息用于指示所述第一终端设备发送的CSI-RS用于选取用于所述第一终端设备进行侧行数据发送的空域发送滤波器;或者,所述第四指示信息用于指示所述第一终端设备发送 的CSI-RS用于选取用于所述第二终端设备进行侧行数据接收的空域接收滤波器;或者,所述第四指示信息用于指示所述第一终端设备发送的CSI-RS用于测量信道状态信息。
  14. 根据权利要求1至13任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据资源池配置信息或侧行带宽部分配置信息中包括的第一CSI-RS资源集合确定所述目标CSI-RS资源集合;
    所述第一终端设备根据所述第一CSI-RS资源集合包括的CSI-RS资源确定所述目标CSI-RS资源集合中包括的CSI-RS资源。
  15. 根据权利要求10至14任一项所述的方法,其特征在于,所述CSI上报量包括以下至少之一:
    CSI-RS资源指示CRI,CRI和参考信号接收功率RSRP,CRI和接收信号强度指示SINR,时隙资源指示,时隙资源指示和RSRP,时隙资源指示和SINR,不上报。
  16. 根据权利要求10所述的方法,其特征在于,所述第一侧行配置信息通过以下之一承载:
    侧行控制信息SCI,媒体接入控制控制元素MAC CE,PC5-无线资源控制RRC信令中。
  17. 根据权利要求12所述的方法,其特征在于,所述第三指示信息通过以下之一承载:
    PC5-RRC信令,SCI,MAC CE,侧行反馈信息。
  18. 根据权利要求13所述的方法,其特征在于,所述第四指示信息通过以下之一承载:
    PC5-RRC信令,SCI,MAC CE,侧行反馈信息。
  19. 根据权利要求1-9中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一终端设备使用空域发送滤波器向所述第二终端设备发送CSI-RS时,所述第一终端设备在与所述CSI-RS关联的SCI中携带所述CSI-RS对应的CSI-RS资源指示信息。
  20. 根据权利要求19所述的方法,其特征在于,所述CSI-RS对应的CSI-RS资源指示信息包括所述CSI-RS对应的CSI-RS资源集合的索引和/或所述CSI-RS资源的索引。
  21. 根据权利要求1至20中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收所述第二终端设备发送的第一信息;
    其中,所述第一信息包括目标CSI上报量,所述目标CSI上报量包括以下至少之一:
    CRI,CRI和RSRP,CRI和SINR,时隙资源指示,时隙资源指示和RSRP,时隙资源指示和SINR;
    其中,所述时隙资源指示信息用于确定所述第一终端设备发送CSI-RS对应的时隙,或者,所述时隙资源指示信息用于确定所述第一终端设备发送的CSI-RS资源对应的索引。
  22. 根据权利要求21所述的方法,其特征在于,
    所述第一信息包括N个CSI-RS资源的索引,或者,所述第一信息用于确定N个CSI-RS资源的索引,所述N个CSI-RS资源为所述第二终端设备根据接收到的CSI-RS的测量结果确定的,N为所述第二终端设备需要上报或反馈的CSI-RS资源的数量,N为正整数,且N≤M。
  23. 根据权利要求22所述的方法,其特征在于,所述N个CSI-RS资源的索引按照所述N个CSI-RS对应的测量结果从高到低的顺序排列,或者,所述N个CSI-RS资源的索引按照所述N个CSI-RS对应的测量结果从低到高的顺序排列。
  24. 根据权利要求22或23所述的方法,其特征在于,所述第一信息还包括第一测量信息,所述第一测量信息用于指示所述N个CSI-RS资源对应的测量结果。
  25. 根据权利要求22-24中任一项所述的方法,其特征在于,所述N个CSI-RS资源对应的测量结果大于或等于第一门限值。
  26. 根据权利要求22-24中任一项所述的方法,其特征在于,所述N个CSI-RS资源包括N1个第一类CSI-RS资源和N2个第二类CSI-RS资源,其中,所述N1个第一类CSI-RS资源对应的测量结果大于或等于第一门限值,所述N2个第二类CSI-RS资源对应的索引由所述N1个第一类CSI-RS资源中的至少一个CSI-RS资源确定,或者,所述N2个第二类CSI-RS资源对应的索引由所述多个CSI-RS资源中除所述N1个第一类CSI-RS资源之外的CSI-RS资源中的至少一个CSI-RS资源确定,所述N2个第二类CSI-RS资源对应的测量结果为缺省值,N1和N2为正整数,N1+N2=N。
  27. 根据权利要求24所述的方法,其特征在于,所述第一测量信息包括所述N个CSI-RS资源分别对应的测量结果的量化索引信息。
  28. 根据权利要求24所述的方法,其特征在于,所述第一测量信息包括第一测量结果的量化索引信息以及N-1个差分量化索引信息,其中,所述第一测量结果对应所述N个CSI-RS资源对应的测量结果中的最高值。
  29. 根据权利要求21所述的方法,其特征在于,
    所述第一信息包括N3个CSI-RS资源的索引,所述N3个CSI-RS资源为所述第二终端设备根据接收到的CSI-RS进行测量得到的测量结果确定的,N3<N,N为所述第二终端设备需要反馈或上报 的CSI-RS资源的数量,N3和N的正整数,且N≤M。
  30. 根据权利要求29所述的方法,其特征在于,所述N3个CSI-RS资源对应的测量结果大于或等于第一门限值。
  31. 根据权利要求29或30所述的方法,其特征在于,所述第一信息还包括第五指示信息,所述第五指示信息用于指示N3的取值。
  32. 根据权利要求29至31中任一项所述的方法,其特征在于,所述第一信息还包括第二测量信息,所述第二测量信息用于指示所述N3个CSI-RS资源对应的测量结果。
  33. 根据权利要求32所述的方法,其特征在于,所述第二测量信息包括所述N3个CSI-RS资源分别对应的测量结果的量化索引信息。
  34. 根据权利要求32所述的方法,其特征在于,所述第二测量信息包括第二测量结果的量化索引信息以及N3-1个差分量化索引信息,其中,所述第二测量结果对应所述N3个CSI-RS资源对应的测量结果中的最高值。
  35. 根据权利要求22至34中任一项所述的方法,其特征在于,所述N的取值根据以下信息中的至少一种确定:
    资源池配置信息,所述第一终端设备向所述第二终端设备发送的指示信息,所述第二终端设备向所述第一终端设备发送的指示信息。
  36. 根据权利要求22至35中任一项所述的方法,其特征在于,所述测量结果包括RSRP和/或SINR。
  37. 根据权利要求21至36中任一项所述的方法,其特征在于,所述第一信息通过以下之一承载:
    SCI、MAC CE、侧行反馈信道PSFCH、PC5-RRC信令。
  38. 根据权利要求21至37中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据所述第一信息,选取目标CSI-RS资源,所述目标CSI-RS资源对应的空域发送滤波器为所述目标空域发送滤波器。
  39. 根据权利要求38所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述第二终端设备发送第二侧行配置信息,所述第二侧行配置信息用于配置至少一个传输配置指示TCI状态,所述至少一个TCI状态包括第一TCI状态,所述第一TCI状态中包括的参考信号为所述第一终端设备根据所述第一信息确定的目标CSI-RS资源对应的CSI-RS。
  40. 根据权利要求39中所述的方法,其特征在于,所述第一TCI状态中包括的准共站址QCL类型为QCL-TypeD。
  41. 根据权利要求39或40所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述第二终端设备发送第六指示信息,所述第六指示信息用于指示所述第一TCI状态。
  42. 根据权利要求38-41中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备使用所述目标CSI-RS资源对应的目标空域发送滤波器进行侧行传输。
  43. 根据权利要求21至42中任一项所述的方法,其特征在于,所述第一终端设备接收所述第二终端设备发送的第一信息,包括:
    所述第一终端设备在第一时间单元接收所述第二终端设备发送的所述第一信息,其中,所述第一时间单元位于基于时延边界确定的第二时间单元之后。
  44. 根据权利要求1至20中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收所述第二终端设备发送的第二信息;其中,
    所述第二信息用于指示所述第二终端设备未检测到CSI-RS或所述第二终端检测到的CSI-RS的测量结果均小于第一门限值,或者,所述第二信息用于指示所述第一终端设备重新发送所述M个CSI-RS。
  45. 根据权利要求44所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备重新使用空域发送滤波器分别向所述第二终端设备发送所述M个CSI-RS。
  46. 根据权利要求44或45所述的方法,其特征在于,所述第一终端设备接收所述第二终端设备发送的第三信息,包括:
    所述第一终端设备在第三时间单元接收所述第二终端设备发送的所述第三信息,其中,所述第三时间单元位于基于时延边界确定的第四时间单元之后。
  47. 根据权利要求25、26、30或44所述的方法,其特征在于,所述第一门限值为预配置或协议约定的,或者,所述第一门限值为网络设备配置的,或者,所述第一门限值为所述第一终端设备配置的。
  48. 一种无线通信的方法,其特征在于,包括:
    第二终端设备接收第一终端设备发送的M个信道状态信息参考信号CSI-RS,其中,所述M个CSI-RS用于选取目标空域发送滤波器,所述M个CSI-RS对应目标CSI-RS资源集合中的多个CSI-RS资源,M为正整数。
  49. 根据权利要求48所述的方法,其特征在于,
    所述目标CSI-RS资源集合的配置信息中对应的重复字段取第一值;
    其中,所述第一值用于指示所述第一终端设备不是使用相同的空域发送滤波器发送所述目标CSI-RS资源集合中的CSI-RS资源。
  50. 根据权利要求48或49所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备接收所述第一终端设备发送的第一侧行配置信息;
    其中,所述第一侧行配置信息包括以下至少之一:
    所述目标CSI-RS资源集合的索引,所述目标CSI-RS资源集合中包括的CSI-RS资源的索引,所述目标CSI-RS资源集合中包括的CSI-RS资源的数量,M的取值,CSI-RS资源集合与CSI上报量的对应关系,所述第二终端设备向所述第一终端设备上报或反馈的CSI-RS资源的数量,时延边界,所述目标CSI-RS资源集合对应的重复字段的取值,所述第一终端设备发送所述M个CSI-RS所使用的传输资源信息,所述第一终端设备的传输模式;
    其中,所述目标CSI-RS资源集合对应的重复字段取第一值用于指示所述第一终端设备不是使用相同的空域发送滤波器发送CSI-RS,所述目标CSI-RS资源集合对应的重复字段取第二值用于指示所述第一终端设备使用相同的空域发送滤波器发送CSI-RS。
  51. 根据权利要求50所述的方法,其特征在于,
    在所述时延边界内,所述第一终端设备不期待所述第二终端设备进行针对CSI-RS的上报或反馈;和/或,在超过所述时延边界之后,允许所述第二终端设备进行针对CSI-RS的上报或反馈;和/或,在超过所述时延边界之后,所述第二终端设备不期待所述第一终端设备发送CSI-RS;和/或,在超过所述时延边界之后,所述第二终端设备停止接收所述第一终端设备发送的CSI-RS。
  52. 根据权利要求48至51任一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备接收所述第一终端设备发送的第三指示信息;
    其中,所述第三指示信息用于指示以下至少之一:
    所述第一终端设备将要发送用于选取目标空域发送滤波器的CSI-RS,所述第一终端设备将使用不同的空域发送滤波器发送CSI-RS,信道状态信息CSI上报量,所述第一终端设备第一个发送的CSI-RS资源的索引,所述第一终端设备发送第一个CSI-RS资源的时间间隔,其中,所述时间间隔以所述第三指示信息所在的时间单元为参考。
  53. 根据权利要求48-52中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备接收所述第一终端设备发送的第四指示信息;
    其中,所述第四指示信息用于指示所述第一终端设备发送的CSI-RS用于选取用于所述第一终端设备进行侧行数据发送的空域发送滤波器;或者,所述第四指示信息用于指示所述第一终端设备发送的CSI-RS用于选取用于所述第二终端设备进行侧行数据接收的空域接收滤波器;或者,所述第四指示信息用于指示所述第一终端设备发送的CSI-RS用于选取用于测量信道状态信息。
  54. 根据权利要求50至53任一项所述的方法,其特征在于,所述CSI上报量包括以下至少之一:
    CSI-RS资源指示CRI,CRI和参考信号接收功率RSRP,CRI和接收信号强度指示SINR,时隙资源指示,时隙资源指示和RSRP,时隙资源指示和SINR,不上报。
  55. 根据权利要求50所述的方法,其特征在于,所述第一侧行配置信息通过以下之一承载:
    侧行控制信息SCI,媒体接入控制控制元素MAC CE,PC5-无线资源控制RRC信令中。
  56. 根据权利要求52所述的方法,其特征在于,所述第三指示信息通过以下之一承载:
    PC5-RRC信令,SCI,MAC CE,侧行反馈信息。
  57. 根据权利要求53所述的方法,其特征在于,所述第四指示信息通过以下之一承载:
    PC5-RRC信令,SCI,MAC CE,侧行反馈信息。
  58. 根据权利要求48或49所述的方法,其特征在于,所述方法还包括:
    在所述第一终端设备每次使用空域发送滤波器向所述第二终端设备发送CSI-RS时,所述第二终端设备接收所述第一终端设备在与所述CSI-RS关联的SCI中携带的所述CSI-RS对应的CSI-RS资源指示信息。
  59. 根据权利要求58所述的方法,其特征在于,所述CSI-RS对应的CSI-RS资源指示信息包括所述CSI-RS对应的CSI-RS资源集合的索引和/或所述CSI-RS资源的索引。
  60. 根据权利要求48至59中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备向所述第一终端设备发送第一信息;
    其中,所述第一信息包括目标CSI上报量,所述目标CSI上报量包括以下至少之一:
    CRI,CRI和RSRP,CRI和SINR,时隙资源指示,时隙资源指示和RSRP,时隙资源指示和SINR;
    其中,所述时隙资源指示信息用于确定所述第一终端设备发送CSI-RS对应的时隙,或者,所述时隙资源指示信息用于确定所述第一终端设备发送的CSI-RS资源对应的索引。
  61. 根据权利要求60所述的方法,其特征在于,
    所述第一信息包括N个CSI-RS资源的索引,或者,所述第一信息用于确定N个CSI-RS资源的索引,所述N个CSI-RS资源为所述第二终端设备根据接收到的CSI-RS的测量结果确定的,N为所述第二终端设备需要上报或反馈的CSI-RS资源的数量,N为正整数,且N≤M。
  62. 根据权利要求61所述的方法,其特征在于,所述N个CSI-RS资源的索引按照所述N个CSI-RS对应的测量结果从高到低的顺序排列,或者,所述N个CSI-RS资源的索引按照所述N个CSI-RS对应的测量结果从低到高的顺序排列。
  63. 根据权利要求61或62所述的方法,其特征在于,所述第一信息还包括第一测量信息,所述第一测量信息用于指示所述N个CSI-RS资源对应的测量结果。
  64. 根据权利要求61-63中任一项所述的方法,其特征在于,所述N个CSI-RS资源对应的测量结果大于或等于第一门限值。
  65. 根据权利要求61-63中任一项所述的方法,其特征在于,所述N个CSI-RS资源包括N1个第一类CSI-RS资源和N2个第二类CSI-RS资源,其中,所述N1个第一类CSI-RS资源对应的测量结果大于或等于第一门限值,所述N2个第二类CSI-RS资源对应的索引由所述N1个第一类CSI-RS资源中的至少一个CSI-RS资源确定,或者,所述N2个第二类CSI-RS资源对应的索引由所述多个CSI-RS资源中除所述N1个第一类CSI-RS资源之外的CSI-RS资源中的至少一个CSI-RS资源确定,所述N2个第二类CSI-RS资源对应的测量结果为缺省值,N1和N2为正整数,N1+N2=N。
  66. 根据权利要求63所述的方法,其特征在于,所述第一测量信息包括所述N个CSI-RS资源分别对应的测量结果的量化索引信息。
  67. 根据权利要求63所述的方法,其特征在于,所述第一测量信息包括第一测量结果的量化索引信息以及N-1个差分量化索引信息,其中,所述第一测量结果对应所述N个CSI-RS资源对应的测量结果中的最高值。
  68. 根据权利要求60所述的方法,其特征在于,
    所述第一信息包括N3个CSI-RS资源的索引,所述N3个CSI-RS资源为所述第二终端设备根据接收到的CSI-RS进行测量得到的测量结果确定的,N3<N,N为所述第二终端设备需要反馈或上报的CSI-RS资源的数量,N3和N的正整数,且N≤M。
  69. 根据权利要求68所述的方法,其特征在于,所述N3个CSI-RS资源对应的测量结果大于或等于第一门限值。
  70. 根据权利要求68或69所述的方法,其特征在于,所述第一信息还包括第五指示信息,所述第五指示信息用于指示N3的取值。
  71. 根据权利要求68至70中任一项所述的方法,其特征在于,所述第一信息还包括第二测量信息,所述第二测量信息用于指示所述N3个CSI-RS资源对应的测量结果。
  72. 根据权利要求71所述的方法,其特征在于,所述第二测量信息包括所述N3个CSI-RS资源分别对应的测量结果的量化索引信息。
  73. 根据权利要求71所述的方法,其特征在于,所述第二测量信息包括第二测量结果的量化索引信息以及N3-1个差分量化索引信息,其中,所述第二测量结果对应所述N3个CSI-RS资源对应的测量结果中的最高值。
  74. 根据权利要求61至73中任一项所述的方法,其特征在于,所述N的取值根据以下信息中的至少一种确定:
    资源池配置信息,所述第一终端设备向所述第二终端设备发送的指示信息,所述第二终端设备向所述第一终端设备发送的指示信息。
  75. 根据权利要求61至74中任一项所述的方法,其特征在于,所述测量结果包括RSRP和/或SINR。
  76. 根据权利要求60至75中任一项所述的方法,其特征在于,所述第一信息通过以下之一承载:
    SCI、MAC CE、侧行反馈信道PSFCH、PC5-RRC信令。
  77. 根据权利要求60至76中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备接收所述第一终端设备发送的第二侧行配置信息,所述第二侧行配置信息用于配置至少一个传输配置指示TCI状态,所述至少一个TCI状态包括第一TCI状态,所述第一TCI状态中包括的参考信号为所述第一终端设备根据所述第一信息确定的目标CSI-RS资源对应的CSI-RS。
  78. 根据权利要求77中所述的方法,其特征在于,所述第一TCI状态中包括的准共站址QCL类型为QCL-TypeD。
  79. 根据权利要求77或78所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备接收所述第一终端设备发送的第六指示信息,所述第六指示信息用于指示所述第一TCI状态。
  80. 根据权利要求77-79中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备接收所述第一终端设备使用所述目标CSI-RS资源对应的空域发送滤波器发送的侧行数据。
  81. 根据权利要求60至80中任一项所述的方法,其特征在于,所述第二终端设备向所述第一终端设备发送第一信息,包括:
    所述第二终端设备在第一时间单元向所述第二终端设备发送所述第一信息,其中,所述第一时间单元位于基于时延边界确定的第二时间单元之后。
  82. 根据权利要求48至59中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备向所述第二终端设备发送第二信息;其中,
    所述第二信息用于指示所述第二终端设备未检测到CSI-RS或所述第二终端检测到的CSI-RS的测量结果均小于第一门限值,或者,所述第二信息用于指示所述第一终端设备重新发送所述M个CSI-RS。
  83. 根据权利要求82所述的方法,其特征在于,所述第二终端设备向所述第二终端设备发送第二信息,包括:
    所述第二终端设备在第三时间单元向所述第二终端设备发送所述第二信息,其中,所述第三时间单元位于基于时延边界确定的第四时间单元之后。
  84. 根据权利要求64、65、69或82所述的方法,其特征在于,所述第一门限值为预配置或协议约定的,或者,所述第一门限值为网络设备配置的,或者,所述第一门限值为所述第一终端设备配置的。
  85. 一种终端设备,其特征在于,包括:
    通信单元,用于使用空域发送滤波器向第二终端设备发送M个信道状态信息参考信号CSI-RS,所述M个CSI-RS用于选取目标空域发送滤波器;
    其中,所述M个CSI-RS对应目标CSI-RS资源集合中的多个CSI-RS资源,M为正整数。
  86. 一种终端设备,其特征在于,包括:
    通信单元,用于接收第一终端设备发送的M个信道状态信息参考信号CSI-RS,其中,所述M个CSI-RS用于选取目标空域发送滤波器,所述M个CSI-RS对应目标CSI-RS资源集合中的多个CSI-RS资源,M为正整数。
  87. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至47中任一项所述的方法,或者如权利要求48至84中任一项所述的方法。
  88. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至47中任一项所述的方法,或者如权利要求48至84中任一项所述的方法。
  89. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至47中任一项所述的方法,或者如权利要求48至84中任一项所述的方法。
  90. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至47中任一项所述的方法,或者如权利要求48至84中任一项所述的方法。
  91. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至47中任一项所述的方法,或者如权利要求48至84中任一项所述的方法。
PCT/CN2021/113218 2021-08-18 2021-08-18 无线通信的方法和设备 WO2023019463A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/113218 WO2023019463A1 (zh) 2021-08-18 2021-08-18 无线通信的方法和设备
CN202180101560.4A CN117941387A (zh) 2021-08-18 2021-08-18 无线通信的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113218 WO2023019463A1 (zh) 2021-08-18 2021-08-18 无线通信的方法和设备

Publications (1)

Publication Number Publication Date
WO2023019463A1 true WO2023019463A1 (zh) 2023-02-23

Family

ID=85239967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113218 WO2023019463A1 (zh) 2021-08-18 2021-08-18 无线通信的方法和设备

Country Status (2)

Country Link
CN (1) CN117941387A (zh)
WO (1) WO2023019463A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067761A1 (ko) * 2018-09-28 2020-04-02 엘지전자 주식회사 데이터 신호를 송수신하는 방법 및 이를 위한 장치
WO2021034691A1 (en) * 2019-08-16 2021-02-25 Qualcomm Incorporated Sidelink-based channel state information
WO2021096977A1 (en) * 2019-11-11 2021-05-20 Convida Wireless LLC Link recovery and sidelink beamforming
CN112839304A (zh) * 2019-11-22 2021-05-25 华为技术有限公司 通信方法及装置
CN113260084A (zh) * 2021-05-18 2021-08-13 北京邮电大学 一种基于毫米波的车联网v2x通信链路的建立方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067761A1 (ko) * 2018-09-28 2020-04-02 엘지전자 주식회사 데이터 신호를 송수신하는 방법 및 이를 위한 장치
WO2021034691A1 (en) * 2019-08-16 2021-02-25 Qualcomm Incorporated Sidelink-based channel state information
WO2021096977A1 (en) * 2019-11-11 2021-05-20 Convida Wireless LLC Link recovery and sidelink beamforming
CN112839304A (zh) * 2019-11-22 2021-05-25 华为技术有限公司 通信方法及装置
CN113260084A (zh) * 2021-05-18 2021-08-13 北京邮电大学 一种基于毫米波的车联网v2x通信链路的建立方法

Also Published As

Publication number Publication date
CN117941387A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
WO2018141272A1 (zh) 终端、网络设备和通信方法
WO2021232382A1 (zh) 侧行反馈资源配置方法、终端设备和网络设备
WO2021248502A1 (zh) 侧行通信方法和终端设备
US20230063901A1 (en) Sidelink feedback method and terminal device
WO2021159413A1 (zh) 下行传输方法和终端设备
US20220394503A1 (en) Wireless communication method and device
WO2023019463A1 (zh) 无线通信的方法和设备
WO2023019860A1 (zh) 无线通信的方法和终端设备
WO2023019465A1 (zh) 无线通信的方法和终端设备
CN116472763A (zh) 资源确定方法、第一终端设备和第二终端设备
WO2023019464A1 (zh) 无线通信方法、第一终端设备和第二终端设备
WO2023023946A1 (zh) 无线通信的方法和终端设备
WO2023028987A1 (zh) 无线通信的方法和终端设备
WO2023028988A1 (zh) 无线通信的方法和终端设备
WO2024031237A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023142016A1 (zh) 无线通信的方法及终端设备
WO2023115296A1 (zh) 无线通信方法、第一终端设备和第二终端设备
WO2023123399A1 (zh) 无线通信的方法、终端设备和网络设备
US20240178895A1 (en) Wireless communication method, first terminal device, and second terminal device
WO2023035184A1 (zh) 无线通信的方法和终端设备
WO2022077346A1 (zh) 信道传输的方法、终端设备和网络设备
WO2023023903A1 (zh) 无线通信方法、第一设备和第二设备
WO2023115335A1 (zh) 一种侧行传输方法及装置、终端设备
WO2023102813A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024055243A1 (zh) 侧行通信方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101560.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021953711

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021953711

Country of ref document: EP

Effective date: 20240318