WO2020067761A1 - 데이터 신호를 송수신하는 방법 및 이를 위한 장치 - Google Patents
데이터 신호를 송수신하는 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- WO2020067761A1 WO2020067761A1 PCT/KR2019/012579 KR2019012579W WO2020067761A1 WO 2020067761 A1 WO2020067761 A1 WO 2020067761A1 KR 2019012579 W KR2019012579 W KR 2019012579W WO 2020067761 A1 WO2020067761 A1 WO 2020067761A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency band
- information
- transmission
- channel
- signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0408—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0868—Hybrid systems, i.e. switching and combining
- H04B7/088—Hybrid systems, i.e. switching and combining using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
- H04B7/06952—Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
- H04B7/06954—Sidelink beam training with support from third instance, e.g. the third instance being a base station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
Definitions
- the present disclosure (disclosure) relates to a method for transmitting and receiving a data signal, and a device therefor, more specifically, in wireless communication with a communication device having a high mobility such as a vehicle, an appropriate transmitting and receiving beam for transmitting and receiving a data signal It relates to a method for quickly determining, transmitting and receiving a data signal through the determined transmit and receive beam, and an apparatus therefor.
- next generation 5G system which is an improved wireless broadband communication than the existing LTE system
- NewRAT communication scenarios are classified into Enhanced Mobile BroadBand (eMBB) / Ultra-reliability and low-latency communication (URLLC) / Massive Machine-Type Communications (mMTC).
- eMBB Enhanced Mobile BroadBand
- URLLC Ultra-reliability and low-latency communication
- mMTC Massive Machine-Type Communications
- eMBB is a next-generation mobile communication scenario with characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate, and URLLC is a next-generation mobile communication scenario having characteristics such as Ultra Reliable, Ultra Low Latency, and Ultra High Availability.
- mMTC is a next-generation mobile communication scenario with low cost, low energy, short packet, and massive connectivity characteristics. (e.g., IoT).
- the present disclosure is to provide a method for transmitting and receiving a data signal and an apparatus therefor.
- a wireless communication system in a method for a terminal to transmit a data channel, in a first frequency band, a plurality of reference signals are transmitted through a plurality of transmission beams, and within a second frequency band , Receiving first information related to reception quality of at least one reference signal among the plurality of reference signals, determining a transmission beam to transmit the data channel based on the first information, and In one frequency band, the data channel is transmitted through the transmission beam, and the first frequency band may be higher than the second frequency band.
- it may further include transmitting the second information for the transmission beam.
- the plurality of transmission beams may be transmission beams adjacent to a previously determined transmission beam.
- each of the first frequency band and the second frequency band may be associated with different cells.
- the plurality of reference signals may be a plurality of Synchronization Signal Blocks (SSBs) or a plurality of Channel State Information-Reference Signals (CSI-RSs).
- SSBs Synchronization Signal Blocks
- CSI-RSs Channel State Information-Reference Signals
- the terminal may communicate with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the terminal.
- an apparatus for transmitting a data channel comprising: at least one processor; And at least one memory operably connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a specific operation.
- a plurality of reference signals are transmitted through a plurality of transmission beams, and within a second frequency band, a first quality related to reception quality of at least one reference signal among the plurality of reference signals 1, receiving information, determining a transmission beam to transmit the data channel based on the first information, and transmitting the data channel through the transmission beam in the first frequency band.
- One frequency band may be higher than the second frequency band.
- the specific operation may further include transmitting second information on the transmission beam in the second frequency band.
- the plurality of transmission beams may be transmission beams adjacent to a previously determined transmission beam.
- each of the first frequency band and the second frequency band may be associated with different cells.
- the plurality of reference signals may be a plurality of Synchronization Signal Blocks (SSBs) or a plurality of Channel State Information-Reference Signals (CSI-RSs).
- SSBs Synchronization Signal Blocks
- CSI-RSs Channel State Information-Reference Signals
- the device may be able to communicate with at least one of a terminal, a network, a base station, and an autonomous vehicle.
- a wireless communication system in a method for a terminal to receive a data channel, in a first frequency band, receiving a plurality of reference signals through a plurality of transmission beams, within a second frequency band , Receiving information related to reception quality of at least one reference signal among the plurality of reference signals, and within the first frequency band, transmitting the data channel through a transmission beam selected based on the information It characterized in that the receiving, the first frequency band, may be higher than the second frequency band.
- FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
- FIG. 2 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the physical channels.
- 3 to 5 are diagrams for explaining the structure of a radio frame and slot used in the NR system.
- V2X Vehicle-to-Everything
- FIG. 10 shows a BWP (Bandwidth Part) and resource pool in V2X.
- 11 to 13 are diagrams for explaining the composition and transmission method of the SS / PBCH block.
- FIG. 14 is a diagram for explaining analog beamforming in an NR system.
- 15 to 19 are diagrams for explaining beam management in an NR system.
- 20 to 21 are diagrams for explaining an example of the general operation of the transmitting and receiving device according to the present proposal.
- 22 to 23 are diagrams for explaining an example of implementation of a specific data signal transmission / reception process of the transmission / reception device according to the present proposal.
- FIG. 24 shows an example of a communication system to which embodiments of the present invention are applied.
- 25 to 28 show examples of various wireless devices to which embodiments of the present invention are applied.
- 29 shows an example of a signal processing circuit to which embodiments of the present invention are applied.
- the present specification describes an embodiment of the present invention using an LTE system, an LTE-A system, and an NR system, as an example, the embodiment of the present invention can be applied to any communication system corresponding to the above definition.
- the name of the base station may be used as a comprehensive term including a remote radio head (RRH), eNB, transmission point (TP), reception point (RP), relay, and the like.
- RRH remote radio head
- eNB transmission point
- RP reception point
- relay and the like.
- the 3GPP-based communication standard includes downlink physical channels corresponding to resource elements carrying information originating from an upper layer and downlinks corresponding to resource elements used by the physical layer but not carrying information originating from an upper layer.
- Physical signals are defined. For example, a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (physical multicast channel, PMCH), a physical control format indicator channel (physical control)
- PDSCH physical downlink shared channel
- PBCH physical broadcast channel
- PMCH physical multicast channel
- PHICH physical control format indicator channel
- PCFICH format indicator channel
- PDCCH physical downlink control channel
- PHICH physical hybrid ARQ indicator channel
- a reference signal also referred to as a pilot, refers to a signal of a predetermined special waveform that the gNB and the UE know each other, for example, cell specific RS, UE- UE-specific RS (UE-RS), positioning RS (positioning RS, PRS), and channel state information RS (channel state information RS, CSI-RS) are defined as downlink reference signals.
- UE-RS UE-UE-specific RS
- positioning RS positioning RS
- PRS positioning RS
- channel state information RS channel state information RS
- CSI-RS channel state information RS
- the 3GPP LTE / LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from a higher layer and resource elements used by the physical layer but not carrying information originating from a higher layer. Defines uplink physical signals.
- a physical uplink shared channel PUSCH
- a physical uplink control channel PUCCH
- a physical random access channel PRACH
- DMRS demodulation reference signal
- SRS sounding reference signal
- PDCCH Physical Downlink Control CHannel
- PCFICH Physical Control Format Indicator CHannel
- PHICH Physical Hybrid automatic retransmit request Indicator CHannel
- PDSCH Physical Downlink Shared CHannel
- DCI Downlink Control Information
- CFI Control Format Indicator
- downlink ACK / NACK ACKnowlegement / Negative ACK
- PUCCH Physical Uplink Control CHannel
- PUSCH Physical Uplink Shared CHannel
- PRACH Physical Random Access CHannel
- PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH or PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH RE, respectively. It is referred to as PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resource.
- the expression that the user equipment transmits PUCCH / PUSCH / PRACH is uplink control information / uplink on or through PUSCH / PUCCH / PRACH, respectively.
- the gNB transmits the PDCCH / PCFICH / PHICH / PDSCH, respectively, is the downlink data / control information on or through the PDCCH / PCFICH / PHICH / PDSCH. It is used in the same sense as sending it.
- CRS / DMRS / CSI-RS / SRS / UE-RS is assigned or configured (configured) OFDM symbol / subcarrier / RE to CRS / DMRS / CSI-RS / SRS / UE-RS symbol / carrier It is called / subcarrier / RE.
- an OFDM symbol to which tracking RS (TRS) is assigned or configured is called a TRS symbol
- a subcarrier to which TRS is assigned or configured is called a TRS subcarrier
- a TRS is assigned.
- the configured RE is called a TRS RE.
- a subframe configured for TRS transmission is called a TRS subframe.
- a subframe in which a broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe
- a subframe in which a synchronization signal (eg, PSS and / or SSS) is transmitted is a synchronization signal subframe or a PSS / SSS subframe. It is called.
- the OFDM symbols / subcarriers / REs to which PSS / SSS is assigned or configured are called PSS / SSS symbols / subcarriers / RE, respectively.
- the CRS port, the UE-RS port, the CSI-RS port, and the TRS port are antenna ports configured to transmit CRS and antenna ports configured to transmit UE-RS, respectively.
- Antenna ports configured to transmit CRSs may be distinguished from each other by positions of REs occupied by CRSs according to CRS ports, and antenna ports configured to transmit UE-RSs are configured to UEs.
- UE-RS may be distinguished by location of REs occupied, and antenna ports configured to transmit CSI-RSs are occupied by CSI-RS according to CSI-RS ports. It can be distinguished from each other by the location of the REs.
- CRS / UE-RS / CSI-RS / TRS port is also used as a term for a pattern of REs occupied by CRS / UE-RS / CSI-RS / TRS within a certain resource region.
- the three main requirements areas of 5G are: (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) Super-reliability and Ultra-reliable and Low Latency Communications (URLLC) domain.
- eMBB Enhanced Mobile Broadband
- mMTC Massive Machine Type Communication
- URLLC Ultra-reliable and Low Latency Communications
- KPI key performance indicator
- eMBB goes far beyond basic mobile Internet access, and covers media and entertainment applications in rich interactive work, cloud or augmented reality.
- Data is one of the key drivers of 5G, and it may not be possible to see dedicated voice services for the first time in the 5G era.
- voice will be processed as an application program simply using the data connection provided by the communication system.
- the main causes for increased traffic volume are increased content size and increased number of applications requiring high data rates.
- Streaming services audio and video
- interactive video and mobile internet connections will become more widely used as more devices connect to the internet. Many of these applications require always-on connectivity to push real-time information and notifications to users.
- Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment.
- cloud storage is a special use case that drives the growth of uplink data transfer rate.
- 5G is also used for remote work in the cloud, requiring much lower end-to-end delay to maintain a good user experience when a tactile interface is used.
- Entertainment For example, cloud gaming and video streaming are another key factor in increasing demand for mobile broadband capabilities. Entertainment is essential for smartphones and tablets anywhere, including high mobility environments such as trains, cars and airplanes.
- Another use case is augmented reality and information retrieval for entertainment.
- augmented reality requires a very low delay and an instantaneous amount of data.
- URLLC includes new services that will transform the industry through ultra-reliable / low-latency links, such as remote control of the main infrastructure and self-driving vehicles. Reliability and level of delay are essential for smart grid control, industrial automation, robotics, drone control and coordination.
- 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means to provide streams rated at hundreds of megabits per second to gigabit per second. This fast speed is required to deliver TV in 4K (6K, 8K and higher) resolutions as well as virtual and augmented reality.
- Virtual Reality (VR) and Augmented Reality (AR) applications include almost immersive sports events. Certain application programs may require special network settings. For VR games, for example, game companies may need to integrate the core server with the network operator's edge network server to minimize latency.
- Automotive is expected to be an important new driver for 5G, along with many use cases for mobile communications to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. This is because future users continue to expect high-quality connections regardless of their location and speed.
- Another example of application in the automotive field is the augmented reality dashboard. It identifies objects in the dark over what the driver sees through the front window, and superimposes and displays information telling the driver about the distance and movement of the object.
- wireless modules will enable communication between vehicles, exchange of information between the vehicle and the supporting infrastructure and exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians).
- the safety system helps the driver to reduce the risk of accidents by guiding alternative courses of action to make driving safer.
- the next step will be remote control or a self-driven vehicle.
- This requires very reliable and very fast communication between different self-driving vehicles and between the vehicle and the infrastructure.
- self-driving vehicles will perform all driving activities, and drivers will focus only on traffic beyond which the vehicle itself cannot identify.
- the technical requirements of self-driving vehicles require ultra-low delays and ultra-high-speed reliability to increase traffic safety to levels beyond human reach.
- Smart cities and smart homes will be embedded in high-density wireless sensor networks.
- the distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of the city or home. Similar settings can be made for each assumption.
- Temperature sensors, window and heating controllers, burglar alarms and consumer electronics are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
- the smart grid interconnects these sensors using digital information and communication technologies to collect information and act accordingly. This information can include supplier and consumer behavior, so smart grids can improve efficiency, reliability, economics, production sustainability and distribution of fuels like electricity in an automated way.
- the smart grid can be viewed as another sensor network with low latency.
- the health sector has many applications that can benefit from mobile communications.
- the communication system can support telemedicine that provides clinical care from a distance. This can help reduce barriers to distance and improve access to medical services that are not continuously available in remote rural areas. It is also used to save lives in critical care and emergency situations.
- a wireless sensor network based on mobile communication can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
- Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with wireless links that can be reconfigured is an attractive opportunity in many industries. However, achieving this requires that the wireless connection operates with cable-like delay, reliability and capacity, and that management is simplified. Low latency and very low error probability are new requirements that need to be connected to 5G.
- Logistics and freight tracking are important use cases for mobile communications that enable the tracking of inventory and packages from anywhere using location-based information systems.
- Logistics and freight tracking use cases typically require low data rates, but require wide range and reliable location information.
- the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
- the user plane means a path through which data generated at the application layer, for example, voice data or Internet packet data, is transmitted.
- the physical layer which is the first layer, provides an information transfer service to an upper layer using a physical channel.
- the physical layer is connected to the upper medium access control layer through a transmission channel. Data is moved between the medium access control layer and the physical layer through the transmission channel. Data is moved between the physical layer of the transmitting side and the receiving side through a physical channel.
- the physical channel uses time and frequency as radio resources. Specifically, the physical channel is modulated by OFDMA (Orthogonal Frequency Division Multiple Access) in the downlink, and modulated by Single Carrier Frequency Division Multiple Access (SC-FDMA) in the uplink.
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel.
- RLC radio link control
- the RLC layer of the second layer supports reliable data transmission.
- the function of the RLC layer may be implemented as a function block inside the MAC.
- the Packet Data Convergence Protocol (PDCP) layer of the second layer performs a header compression function that reduces unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
- PDCP Packet Data Convergence Protocol
- the radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
- the RRC layer is responsible for control of logical channels, transmission channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
- the radio bearer means a service provided by the second layer for data transmission between the terminal and the network.
- the RRC layer of the terminal and the network exchanges RRC messages with each other. If there is an RRC connection (RRC Connected) between the terminal and the RRC layer of the network, the terminal is in the RRC connected state (Connected Mode), otherwise it is in the RRC idle state (Idle Mode).
- the NAS (Non-Access Stratum) layer above the RRC layer performs functions such as session management and mobility management.
- the downlink transmission channel for transmitting data from the network to the terminal includes a broadcast channel (BCH) for transmitting system information, a PCH (Paging Channel) for transmitting paging messages, and a downlink shared channel (SCH) for transmitting user traffic or control messages.
- BCH broadcast channel
- PCH Policy Channel
- SCH downlink shared channel
- Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH, or may be transmitted through a separate downlink multicast channel (MCH).
- an uplink transmission channel for transmitting data from a terminal to a network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
- RACH random access channel
- SCH uplink shared channel
- BCCH Broadcast Control Channel
- PCCH Paging Control Channel
- CCCH Common Control Channel
- MCCH Multicast Control Channel
- MTCH Multicast. Traffic Channel
- FIG. 2 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using them.
- the terminal performs an initial cell search operation such as synchronizing with the base station when the power is turned on or newly enters the cell (S201).
- the terminal may receive a primary synchronization channel (PSS) and a secondary synchronization channel (Secondary Synchronization Signal; SSS) from the base station to synchronize with the base station and obtain information such as a cell ID.
- PSS primary synchronization channel
- SSS secondary synchronization channel
- the terminal may obtain a physical broadcast channel from the base station to obtain intra-cell broadcast information.
- the UE may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
- DL RS downlink reference signal
- the UE After completing the initial cell search, the UE acquires more detailed system information by receiving a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to information carried on the PDCCH. It can be done (S202).
- a physical downlink control channel (PDCCH)
- a physical downlink control channel (PDSCH)
- S202 the UE acquires more detailed system information by receiving a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to information carried on the PDCCH. It can be done (S202).
- PDCCH physical downlink control channel
- PDSCH physical downlink control channel
- the UE may perform a random access procedure (RACH) to the base station (steps S203 to S206).
- RACH random access procedure
- the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S203 and S205), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S204 and S206).
- PRACH physical random access channel
- a contention resolution procedure may be additionally performed.
- the UE that has performed the above-described procedure is a PDCCH / PDSCH reception (S207) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
- Control Channel (PUCCH) transmission (S208) may be performed.
- the terminal receives downlink control information (DCI) through the PDCCH.
- DCI downlink control information
- the DCI includes control information such as resource allocation information for the terminal, and formats are different depending on the purpose of use.
- control information that the UE transmits to the base station through the uplink or that the UE receives from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ) And the like.
- the UE may transmit control information such as CQI / PMI / RI described above through PUSCH and / or PUCCH.
- the NR system is considering using a high ultra-high frequency band, that is, a millimeter frequency band of 6 GHz or more, to transmit data while maintaining a high transmission rate to a large number of users using a wide frequency band.
- a high ultra-high frequency band that is, a millimeter frequency band of 6 GHz or more
- this is called NR, and in the present invention, it will be referred to as NR system in the future.
- 3 illustrates the structure of a radio frame used in NR.
- uplink and downlink transmission are composed of frames.
- the radio frame has a length of 10 ms, and is defined as two 5 ms half-frames (HFs).
- the half-frame is defined by five 1ms subframes (Subframe, SF).
- the subframe is divided into one or more slots, and the number of slots in the subframe depends on SCS (Subcarrier Spacing).
- Each slot includes 12 or 14 OFDM (A) symbols according to a cyclic prefix (CP). Normally, if CP is used, each slot contains 14 symbols.
- each slot includes 12 symbols.
- the symbol may include an OFDM symbol (or CP-OFDM symbol) and an SC-FDMA symbol (or DFT-s-OFDM symbol).
- Table 1 illustrates that when a CP is normally used, the number of symbols for each slot, the number of slots for each frame, and the number of slots for each subframe vary according to SCS.
- Table 2 illustrates that when an extended CP is used, the number of symbols for each slot, the number of slots for each frame, and the number of slots for each subframe vary according to the SCS.
- OFDM (A) numerology eg, SCS, CP length, etc.
- a numerology eg, SCS, CP length, etc.
- a (absolute time) section of a time resource eg, SF, slot, or TTI
- a time unit TU
- 4 illustrates the slot structure of the NR frame.
- a slot contains multiple symbols in the time domain. For example, in the case of a normal CP, one slot includes 14 symbols, but in the case of an extended CP, one slot includes 12 symbols.
- the carrier wave includes a plurality of subcarriers in the frequency domain.
- RB Resource Block
- BWP Bandwidth Part
- P contiguous RBs in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
- the carrier may include up to N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal.
- Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
- RE resource element
- a frame is characterized by a self-contained structure in which a DL control channel, DL or UL data, UL control channel, etc. can all be included in one slot.
- a DL control channel hereinafter, DL control region
- the last M symbols in the slot can be used to transmit the UL control channel (hereinafter, UL control region).
- N and M are each an integer of 0 or more.
- the resource region hereinafter referred to as a data region
- the resource region (hereinafter referred to as a data region) between the DL control region and the UL control region may be used for DL data transmission or may be used for UL data transmission.
- the following configuration may be considered. Each section was listed in chronological order.
- the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
- PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
- DCI downlink control information
- DL data scheduling information for example, DL data scheduling information, UL data scheduling information, and the like
- uplink control information for example, ACK / NACK (Positive Acknowledgement / Negative Acknowledgement) information for DL data, CSI (Channel State Information) information, and SR (Scheduling Request) may be transmitted.
- the GP provides a time gap in the process of the base station and the terminal switching from the transmission mode to the reception mode or the process from the reception mode to the transmission mode.
- some symbols at a time point of switching from DL to UL may be set to GP.
- V2X Vehicle-to-Everything
- V2X communication is a vehicle-to-vehicle (V2V), which refers to communication between vehicles, and a vehicle to infrastructure (V2I), which refers to communication between a vehicle and an eNB or RSU (Road Side Unit). It includes communication between vehicles and all entities, such as vehicle-to-pedestrian (V2P) and vehicle-to-network (V2N), which refer to communication between UEs carried by (pedestrian, cyclist, vehicle driver, or passenger).
- V2V vehicle-to-vehicle
- V2I vehicle to infrastructure
- V2P vehicle-to-pedestrian
- V2N vehicle-to-network
- V2X communication may have the same meaning as V2X sidelink or NR V2X, or a broader meaning including V2X sidelink or NR V2X.
- V2X communication includes, for example, forward collision warning, automatic parking system, cooperative adaptive cruise control (CACC), loss of control warning, traffic queue warning, traffic vulnerable safety warning, emergency vehicle warning, when driving on curved roads. It can be applied to various services such as speed warning and traffic flow control.
- CACC cooperative adaptive cruise control
- V2X communication may be provided through a PC5 interface and / or a Uu interface.
- specific network entities for supporting communication between the vehicle and all entities may exist.
- the network entity may be a BS (eNB), a road side unit (RSU), a UE, or an application server (eg, a traffic safety server).
- the UE performing the V2X communication may mean a type (UE type) RSU, a robot equipped with a communication module, and the like.
- V2X communication may be performed directly between UEs or through the network entity (s).
- V2X operation mode may be classified according to the method of performing the V2X communication.
- V2X communication requires an operator or a third party to support the UE's anonymity (pseudonymity) and privacy when using the V2X application, so that the UE identifier cannot be tracked within the region where V2X is supported. do.
- RSU is a V2X service capable device that can transmit / receive with a mobile vehicle using V2I service.
- RSU is a fixed infrastructure entity supporting V2X applications, and can exchange messages with other entities supporting V2X applications.
- RSU is a term frequently used in the existing ITS specification, and the reason for introducing the term in the 3GPP specification is to make the ITS industry more readable.
- RSU is a logical entity that combines V2X application logic with the functionality of a BS (referred to as BS-type RSU) or UE (referred to as UE-type RSU).
- V2X service A type of V2X service, one of which is a vehicle and the other is an entity belonging to an infrastructure.
- V2X service A type of V2X service, one of which is a vehicle, and the other is a device carried by an individual (eg, a portable UE device carried by a pedestrian, cyclist, driver, or passenger).
- -V2X service A type of 3GPP communication service involving a transmitting or receiving device in a vehicle.
- -V2X enabled (enabled) UE UE supporting V2X service.
- V2X service A type of V2X service, both of which are vehicles.
- -V2V communication range The range of direct communication between two vehicles participating in V2V service.
- V2X applications called V2X are like Salpin: (1) Vehicle to Vehicle (V2V), (2) Vehicle to Infrastructure (V2I), (3) Vehicle to Network (V2N), (4) Vehicle There are four types of pedestrians (V2P).
- V2X applications can use “co-operative awareness", which provides more intelligent services for end users. This allows knowledge such as vehicles, roadside infrastructure, application servers, and pedestrians to process and share that knowledge to provide more intelligent information, such as cooperative collision warnings or autonomous driving, such as knowledge of the local environment (eg, other vehicles in close proximity). Or information received from sensor equipment).
- knowledge such as vehicles, roadside infrastructure, application servers, and pedestrians to process and share that knowledge to provide more intelligent information, such as cooperative collision warnings or autonomous driving, such as knowledge of the local environment (eg, other vehicles in close proximity). Or information received from sensor equipment).
- the radio protocol architecture for the user plane for V2X communication and the radio protocol architecture for the control plane for V2X communication may be basically the same as the protocol stack structure for the sidelink. Yes (see Figure L2).
- the radio protocol structure for the user plane includes Packet Data Convergence Protocol (PDCP), Radio Link Control (RLC), Medium Access Control (MAC) and physical layer (PHY), and the radio protocol structure for the control plane is RRC ( radio resource control), RLC, MAC, and a physical layer.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- PHY physical layer
- RRC radio resource control
- RLC radio resource control
- FIG 7 shows an example in which PSCCH is transmitted in sidelink transmission mode 3 or 4 to which the present invention can be applied.
- PSCCH and PSSCH are transmitted by FDM.
- PSCCH and PSSCH can be transmitted by FDM on different frequency resources on the same time resource for this purpose.
- PSCCH and PSSCH may not be directly adjacent as shown in FIG. 7 (a), and PSCCH and PSSCH may be directly adjacent as shown in FIG. 7 (b).
- the basic unit of transmission is a sub-channel.
- the sub-channel may be a resource unit having one or more RB sizes on a frequency axis on a predetermined time resource (eg, time resource unit).
- the number of RBs included in the sub-channel (ie, the size of the sub-channel and the starting position on the frequency axis of the sub-channel) may be indicated by higher layer signaling.
- the embodiment of FIG. 7 may be applied to NR sidelink resource allocation mode 1 or mode 2.
- the BS performs resource scheduling to UE 1 through PDCCH (more specifically, DCI), and UE 1 performs D2D / V2X communication with UE 2 according to the resource scheduling.
- UE 1 may transmit sidelink control information (SCI) through a physical sidelink control channel (PSCCH) to UE 2, and then transmit data based on the SCI through a physical sidelink shared channel (PSSCH).
- SCI sidelink control information
- PSCCH physical sidelink control channel
- PSSCH physical sidelink shared channel
- Transmission mode 1 may be applied to D2D
- transmission mode 3 may be applied to V2X.
- the transmission mode 2/4 may be referred to as a mode in which the UE schedules itself. More specifically, the transmission mode 2 is applied to D2D, and a UE can select a resource in a set resource pool and perform D2D operation.
- the transmission mode 4 is applied to V2X, and through the sensing process, the UE can select a resource in the selection window and perform a V2X operation.
- UE 1 may transmit SCI to the UE 2 through the PSCCH, and then transmit the data based on the SCI through the PSSCH.
- the transmission mode may be abbreviated as mode.
- DCI downlink control information
- SCI control information transmitted by the BS to the UE through the PDCCH
- SCI control information transmitted by the UE to another UE through the PSCCH
- the SCI can deliver sidelink scheduling information.
- SCI may have various formats, for example, SCI format 0 and SCI format 1.
- SCI format 0 can be used for scheduling of the PSSCH.
- SCI format 1 can be used for scheduling of the PSSCH.
- priority priority, resource reservation, frequency resource location of initial transmission and retransmission (the number of bits may vary depending on the number of subchannels of the sidelink), time gap between initial transmission and retransmission (time gap between initial transmission and retransmission), MCS, retransmission index, and the like.
- SCI format 0 may be used for transmission modes 1 and 2
- SCI format 1 may be used for transmission modes 3 and 4.
- Mode 3 can be said to be a scheduled resource allocation.
- the UE may be in RRC_CONNECTED state to transmit data.
- the UE requests a transmission / reception resource from the BS, and the BS can schedule the resource (s) related to transmission / reception of sidelink control information and / or data to the UE.
- sidelink SPS may be supported for scheduled resource allocation.
- the UE may transmit / receive sidelink control information and / or data with other UEs using the allocated resources.
- Mode 4 may be referred to as UE autonomous resource selection.
- the UE may perform sensing for (re) selection of sidelink resources. Based on the sensing result, the UE may randomly select / reserve the sidelink resource among the remaining resources except for the specific resource.
- the UE may perform up to two parallel independent resource reservation processes.
- the UE can perform sensing to select the mode 4 transmission resource.
- two transmissions per MAC PDU may be performed.
- a resource for retransmission may be reserved with a certain time gap.
- the UE identifies transmission resources reserved by other UEs or resources used by other UEs through sensing within the sensing window, and excludes them in the selection window, and thus has less interference among remaining resources. You can select resources at random.
- the UE may decode a PSCCH including information on a period of reserved resources, and measure PSSCH RSRP from resources periodically determined based on the PSCCH. Resources in which the PSSCH RSRP value exceeds a threshold may be excluded in a selection window. Then, the sidelink resource can be arbitrarily selected from the remaining resources in the selection window.
- a sidelink resource may be arbitrarily selected from among the resources included in the selection window among the periodic resources. For example, if decoding of the PSCCH fails, this method can be used.
- BWP Bandwidth Part
- the reception bandwidth and transmission bandwidth of the terminal need not be as large as the cell bandwidth, and the reception bandwidth and transmission bandwidth of the terminal can be adjusted.
- the network / base station may inform the terminal of bandwidth adjustment.
- the terminal may receive information / settings for bandwidth adjustment from the network / base station.
- the terminal may perform bandwidth adjustment based on the received information / setting.
- the bandwidth adjustment may include reducing / enlarging the bandwidth, changing the location of the bandwidth, or changing the subcarrier spacing of the bandwidth.
- bandwidth can be reduced during periods of low activity to save power.
- the location of the bandwidth can move in the frequency domain.
- the location of the bandwidth can be moved in the frequency domain to increase scheduling flexibility.
- the subcarrier spacing of the bandwidth can be changed.
- the subcarrier spacing of the bandwidth can be changed to allow different services.
- a subset of the cell's total cell bandwidth may be referred to as a Bandwidth Part (BWP).
- the BA may be performed by the base station / network setting the BWP to the terminal, and notifying the terminal of the currently active BWP among the BWPs in which the base station / network is set.
- FIG 10 shows an example of a scenario in which the BWP to which the present invention can be applied is set.
- BWP1 having a bandwidth of 40 MHz and subcarrier spacing of 15 kHz
- BWP2 having a bandwidth of 10 MHz and subcarrier spacing of 15 kHz
- BWP3 having a bandwidth of 20 MHz and subcarrier spacing of 60 kHz
- the BWP can be defined for sidelinks.
- the same sidelink BWP can be used for transmission and reception.
- the transmitting terminal may transmit a sidelink channel or sidelink signal on a specific BWP
- the receiving terminal may receive a sidelink channel or sidelink signal on the specific BWP.
- the sidelink BWP may be defined separately from the Uu BWP, and the sidelink BWP may have separate configuration signaling from the Uu BWP.
- the terminal may receive settings for the sidelink BWP from the base station / network.
- the sidelink BWP may be set in advance for the out-of-coverage NR V2X terminal and the RRC_IDLE terminal in the carrier. For a terminal in RRC_CONNECTED mode, at least one sidelink BWP may be activated in a carrier.
- the resource pool can be a set of time-frequency resources that can be used for sidelink transmission and / or sidelink reception. From the perspective of the terminal, time domain resources in the resource pool may not be contiguous. A plurality of resource pools may be set in advance to a terminal in one carrier.
- the UE may perform cell search, system information acquisition, beam alignment for initial access, and DL measurement based on the SSB.
- SSB is mixed with SS / PBCH (Synchronization Signal / Physical Broadcast channel) block.
- SS / PBCH Synchronization Signal / Physical Broadcast channel
- SSB is composed of PSS, SSS and PBCH.
- SSB is composed of four consecutive OFDM symbols, and PSS, PBCH, SSS / PBCH and PBCH are transmitted for each OFDM symbol.
- PSS and SSS are each composed of 1 OFDM symbol and 127 subcarriers, and PBCH is composed of 3 OFDM symbols and 576 subcarriers.
- Polar coding and quadrature phase shift keying (QPSK) are applied to the PBCH.
- the PBCH is composed of a data RE and a DMRS (Demodulation Reference Signal) RE for each OFDM symbol. There are three DMRS REs for each RB, and three data REs exist between the DMRS REs.
- Cell search refers to a process in which a terminal acquires time / frequency synchronization of a cell and detects a cell ID (eg, Physical layer Cell ID, PCID) of the cell.
- PSS is used to detect the cell ID in the cell ID group
- SSS is used to detect the cell ID group.
- PBCH is used for SSB (time) index detection and half-frame detection.
- the cell search process of the terminal may be summarized as in Table 3 below.
- 336 cell ID groups exist, and 3 cell IDs exist for each cell ID group. There are a total of 1008 cell IDs.
- Information about the cell ID group to which the cell ID of the cell belongs is provided / obtained through the SSS of the cell, and information about the cell ID among the 336 cells in the cell ID is provided / obtained through the PSS
- the SSB is periodically transmitted according to the SSB period.
- the SSB basic period assumed by the UE is defined as 20 ms.
- the SSB period can be set to one of ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ by a network (eg, a base station).
- a network eg, a base station.
- the SSB burst set consists of a 5 ms time window (ie, half-frame), and the SSB can be transmitted up to L times within the SS burst set.
- the maximum transmission number L of the SSB may be given as follows according to the frequency band of the carrier. One slot contains up to two SSBs.
- the time position of the SSB candidate in the SS burst set may be defined as follows according to the SCS.
- the time position of the SSB candidate is indexed from 0 to L-1 according to the time order within the SSB burst set (ie, half-frame) (SSB index).
- -Case A-15 kHz SCS The index of the starting symbol of the candidate SSB is given as ⁇ 2, 8 ⁇ + 14 * n.
- n 0, 1.
- n 0, 1, 2, 3.
- -Case B-30 kHz SCS The index of the starting symbol of the candidate SSB is given as ⁇ 4, 8, 16, 20 ⁇ + 28 * n.
- n 0.
- n 0, 1.
- n 0, 1.
- n 0, 1, 2, 3.
- n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18.
- n 0, 1, 2, 3, 5, 6, 7, 8.
- 13 illustrates multi-beam transmission of SSB.
- Beam sweeping means that a transmission reception point (TRP) (eg, a base station / cell) changes a beam (direction) of a radio signal according to time (hereinafter, the beam and beam direction may be mixed).
- TRP transmission reception point
- the SSB may be periodically transmitted using beam sweeping.
- the SSB index is implicitly linked with the SSB beam.
- the SSB beam may be changed in SSB (index) units or in SSB (index) group units. In the latter case, the SSB beam remains the same within the SSB (index) group. That is, the transmission beam echo of the SSB is repeated in a plurality of consecutive SSBs.
- the maximum number of transmissions L of the SSB in the SSB burst set has a value of 4, 8 or 64 depending on the frequency band to which the carrier belongs. Therefore, the maximum number of SSB beams in the SSB burst set can also be given as follows according to the frequency band of the carrier.
- the number of SSB beams is one.
- the terminal may align the beam with the base station based on the SSB. For example, the terminal performs SSB detection and then identifies the best SSB. Thereafter, the terminal may transmit the RACH preamble to the base station using the PRACH resource linked / corresponding to the index (ie, beam) of the best SSB.
- SSB can be used to align the beam between the base station and the terminal even after the initial connection.
- a massive multiple input multiple output (MIMO) environment in which a transmit / receive antenna is greatly increased may be considered. That is, as a large MIMO environment is considered, the number of transmit / receive antennas may increase to tens or hundreds or more.
- the NR system supports communication in the above 6 GHz band, that is, the millimeter frequency band.
- the millimeter frequency band has a frequency characteristic in which signal attenuation according to distance is very rapidly due to using a frequency band that is too high.
- an NR system using a band of at least 6 GHz or more uses a beamforming technique that collects and transmits energy in a specific direction rather than all directions in order to compensate for a rapid propagation attenuation characteristic.
- beam formation weight vector / precoding vector is used to reduce the complexity of hardware implementation, increase performance using multiple antennas, provide flexibility in resource allocation, and facilitate beam control by frequency.
- a hybrid beamforming technique in which an analog beamforming technique and a digital beamforming technique are combined is required according to an application position.
- FIG. 14 is a view showing an example of a block diagram of a transmitting end and a receiving end for hybrid beamforming (hybrid beamforming).
- a beamforming method in which energy is increased only in a specific direction by transmitting the same signal by using an appropriate phase difference to a large number of antennas in a BS or UE is mainly considered.
- Such beamforming methods include digital beamforming that creates a phase difference in a digital baseband signal, analog beamforming that creates a phase difference using a time delay (ie, cyclic shift) in a modulated analog signal, digital beamforming, and analog beam. And hybrid beamforming using both forming. If an RF unit (or a transceiver unit (TXRU)) is provided to allow transmission power and phase adjustment for each antenna element, independent beamforming is possible for each frequency resource.
- TXRU transceiver unit
- the millimeter frequency band must be used by a large number of antennas to compensate for the rapid propagation attenuation characteristics, and digital beamforming corresponds to the number of antennas, so RF components (eg, digital analog converter (DAC), mixer, power) Since a power amplifier, a linear amplifier, and the like are required, there is a problem in that the price of a communication device increases to implement digital beamforming in the millimeter frequency band. Therefore, when a large number of antennas are required, such as a millimeter frequency band, the use of analog beamforming or hybrid beamforming is considered.
- DAC digital analog converter
- the analog beamforming method maps a plurality of antenna elements to one TXRU and adjusts the direction of the beam with an analog phase shifter.
- This analog beamforming method has a disadvantage in that it can make only one beam direction in the entire band and thus cannot perform frequency selective beamforming (BF).
- Hybrid BF is a type of digital BF and analog BF, and has a number of B RF units less than Q antenna elements. In the case of hybrid BF, although there are differences depending on the connection method of the B RF units and the Q antenna elements, the direction of beams that can be simultaneously transmitted is limited to B or less.
- DL BM Downlink Beam Management
- the BM process is a set of BS (or transmission and reception point (TRP)) and / or UE beams that can be used for downlink (DL) and uplink (UL) transmission / reception. )
- TRP transmission and reception point
- UE beams that can be used for downlink (DL) and uplink (UL) transmission / reception.
- Beam measurement the operation of measuring the characteristics of the beamforming signal received by the BS or UE.
- Beam determination The operation of the BS or UE selects its transmit beam (Tx beam) / receive beam (Rx beam).
- -Beam report (beam report): UE reports the information of the beamformed signal based on the beam measurement.
- the BM process may be divided into (1) DL BM process using SSB or CSI-RS and (2) UL BM process using sounding reference signal (SRS).
- each BM process may include Tx beam sweeping to determine the Tx beam and Rx beam sweeping to determine the Rx beam.
- the DL BM process may include (1) beamformed DL RSs (eg, CSI-RS or SSB) transmission by the BS, and (2) beam reporting by the UE.
- beamformed DL RSs eg, CSI-RS or SSB
- the beam report may include preferred DL RS ID (s) and corresponding reference signal received power (RSRP).
- the DL RS ID may be an SSB Resource Indicator (SSBRI) or a CSI-RS Resource Indicator (CRI).
- 15 shows an example of beamforming using SSB and CSI-RS.
- the SSB beam and the CSI-RS beam can be used for beam measurement.
- the measurement metric is RSRP for each resource / block.
- SSB is used for coarse beam measurement, and CSI-RS can be used for fine beam measurement.
- SSB can be used for both Tx beam sweeping and Rx beam sweeping.
- Rx beam sweeping using SSB may be performed by attempting to receive the SSB while the UE changes the Rx beam for the same SSBRI across multiple SSB bursts.
- one SS burst includes one or more SSBs
- one SS burst set includes one or more SSB bursts.
- 16 is a flowchart illustrating an example of a DL BM process using SSB.
- the setting for the beam report using the SSB is performed when setting the channel state information (CSI) / beam in RRC_CONNECTED.
- the UE receives a CSI-ResourceConfig IE including a CSI-SSB-ResourceSetList for SSB resources used for BM from the BS (S1610).
- the RRC parameter csi-SSB-ResourceSetList represents a list of SSB resources used for beam management and reporting in one resource set.
- the SSB resource set may be set as ⁇ SSBx1, SSBx2, SSBx3, SSBx4, ... ⁇ .
- the SSB index can be defined from 0 to 63.
- the UE receives signals on SSB resources from the BS based on the CSI-SSB-ResourceSetList (S1620).
- CSI-RS reportConfig related to reporting on SSBRI and reference signal received power (RSRP) is set, the UE reports the best SSBRI and the corresponding RSRP to the BS (S1630). For example, when reportQuantity of the CSI-RS reportConfig IE is set to 'ssb-Index-RSRP', the UE reports the best SSBRI to the BS and the RSRP corresponding thereto.
- QCL-TypeD may mean that QCL is performed between antenna ports in terms of spatial Rx parameters.
- CSI-RS When a repetition parameter is set for a specific CSI-RS resource set and TRS_info is not set, CSI-RS is used for beam management. ii) When the repetition parameter is not set and TRS_info is set, CSI-RS is used for tracking reference signal (TRS). iii) When the repetition parameter is not set and TRS_info is not set, CSI-RS is used for CSI acquisition.
- TRS tracking reference signal
- RRC parameter When repetition is set to 'ON', it is related to the Rx beam sweeping process of the UE.
- repetition is set to 'ON', when the UE receives the NZP-CSI-RS-ResourceSet, the UE receives signals of at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet with the same downlink spatial domain filter. It can be assumed to be transmitted. That is, at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through the same Tx beam.
- signals of at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet may be transmitted with different OFDM symbols.
- the repetition when the repetition is set to 'OFF', it is related to the Tx beam sweeping process of the BS.
- repetition is set to 'OFF', the UE does not assume that signals of at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet are transmitted to the same downlink spatial domain transmission filter. That is, signals of at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet are transmitted through different Tx beams.
- 17 shows another example of a DL BM process using CSI-RS.
- FIG. 17 (a) shows the process of determining (or refinement) the Rx beam of the UE
- FIG. 17 (b) shows the process of sweeping the Tx beam of the BS.
- FIG. 17 (a) is a case where the repetition parameter is set to 'ON'
- FIG. 17 (b) is a case where the repetition parameter is set to 'OFF'.
- FIG. 18 (a) is a flowchart illustrating an example of a process for determining a received beam of a UE.
- the UE receives the NZP CSI-RS resource set IE including the RRC parameter for 'repetition' from the BS through RRC signaling (S1810).
- the RRC parameter 'repetition' is set to 'ON'.
- the UE repeats the signals on the resource (s) in the CSI-RS resource set in which the RRC parameter 'repetition' is set to 'ON' in different OFDM symbols through the same Tx beam (or DL spatial domain transmission filter) of the BS. It is received (S1820).
- the -UE omits the CSI report (S1840). That is, when the mall RRC parameter 'repetition' is set to 'ON', the CSI report can be omitted.
- 18 (b) is a flowchart illustrating an example of a transmission beam determination process of the BS.
- the UE receives the NZP CSI-RS resource set IE including the RRC parameter for 'repetition' from the BS through RRC signaling (S1850).
- the RRC parameter 'repetition' is set to 'OFF' and is related to the Tx beam sweeping process of the BS.
- the UE receives signals on resources in the CSI-RS resource set in which the RRC parameter 'repetition' is set to 'OFF' through different Tx beams (DL spatial domain transmission filters) of the BS (S1860).
- Tx beams DL spatial domain transmission filters
- the UE reports the ID (eg, CRI) and related quality information (eg, RSRP) for the selected beam to the BS (S1880). That is, when the CSI-RS is transmitted for the BM, the UE reports the CRI and RSRP therefor to the BS.
- ID eg, CRI
- RSRP related quality information
- FIG. 19 shows an example of resource allocation in the time and frequency domain associated with the operation of FIG. 17.
- repetition 'ON' is set in the CSI-RS resource set
- a plurality of CSI-RS resources are repeatedly used by applying the same transmission beam
- repetition 'OFF' is set in the CSI-RS resource set
- different CSI-RS Resources can be transmitted in different transmission beams.
- the UE may receive a list of up to M candidate transmission configuration indication (TCI) states for at least QCL (Quasi Co-location) indication through RRC signaling.
- TCI transmission configuration indication
- M depends on UE (capability), and may be 64.
- Each TCI state can be set with one reference signal (RS) set.
- Table 4 shows an example of TCI-State IE.
- the TCI-State IE is associated with one or two DL reference signal (RS) corresponding quasi co-location (QCL) types.
- 'bwp-Id' represents the DL BWP in which the RS is located
- 'cell' represents the carrier in which the RS is located
- 'referencesignal' is a source of a similar co-location for the target antenna port (s) ( reference antenna port (s) to be a source or a reference signal including the same.
- the target antenna port (s) may be CSI-RS, PDCCH DMRS, or PDSCH DMRS.
- the UE may receive a list containing up to M TCI-state settings, in order to decode the PDSCH according to the detected PDCCH with DCI intended for the UE and a given given cell.
- M depends on UE capability.
- each TCI-State includes parameters for establishing a QCL relationship between one or two DL RSs and DM-RS ports of PDSCHs.
- the QCL relationship is established with the RRC parameter qcl-Type1 for the first DL RS and qcl-Type2 for the second DL RS (if set).
- the QCL type corresponding to each DL RS is given by the parameter 'qcl-Type' in QCL-Info, and can take one of the following values:
- the corresponding NZP CSI-RS antenna ports may be indicated / set as a specific TRS in the QCL-Type A perspective and a specific SSB and QCL in the QCL-Type D perspective. have.
- UE receiving this indication / setting receives the corresponding NZP CSI-RS using the Doppler and delay values measured in QCL-TypeA TRS, and applies the reception beam used for QCL-TypeD SSB reception to the corresponding NZP CSI-RS reception can do.
- BFR Beam failure recovery
- radio link failure In a beamformed system, radio link failure (RLF) can often occur due to UE rotation, movement, or beamforming blockage. Therefore, BFR is supported in the NR to prevent frequent RLF from occurring. BFR is similar to the radio link failure recovery process and can be supported if the UE knows the new candidate beam (s).
- the BS sets beam failure detection reference signals to the UE, and the UE has the number of beam failure indications from the physical layer of the UE within a period set by the RRC signaling of the BS.
- the threshold set by RRC signaling is reached, a beam failure is declared.
- the UE triggers beam failure recovery by initiating a random access process on the PCell;
- the beam failure recovery is performed by selecting a suitable beam (if the BS provides dedicated random access resources for certain beams, they are prioritized by the UE).
- beam failure recovery is considered complete.
- the serving cell may request the UE RRM measurement (measurement) information that is a measurement value for performing the RRM operation.
- the UE may measure and report information such as cell search information for each cell, reference signal received power (RSRP), and reference signal received quality (RSRQ).
- RSRP reference signal received power
- RSRQ reference signal received quality
- the UE receives 'measConfig' as a higher layer signal for RRM measurement from the serving cell.
- the UE measures RSRP or RSRQ according to the information of the 'measConfig'.
- the definition of RSRP, RSRQ and RSSI according to TS 38.215 document of NR system is as follows.
- RSRP is measured frequency band in which transmission from the reference cell specific signals; -; power contribution of the (RE Resource Element) (Cell specific reference signal CRS) or a CSI-RS resource elements of (Channel State Information Reference Signal) It is defined as the linear mean for ([W]).
- RSRP may be defined as a linear average for the power contribution ([W]) of a resource element of a Secondary Synchronization Signal (SSS).
- SSS Secondary Synchronization Signal
- CRS R0 according to TS 36.211 is used for RSRP determination.
- CRS R1 may be additionally used to increase reliability.
- the reference point for RSRP should be the antenna connector of the UE, and when receiving diversity is used, the reported RSRP value should not be lower than any one of the individual diversity RSRPs.
- RSRQ is defined as N * RSRP / (RSI or CSI-RSSI of E-UTRA / NR carrier).
- N is the number of RBs of the E-UTRA / NR carrier RSSI measurement bandwidth or CSI-RSSI measurement bandwidth.
- the measurement of 'N * RSRP' and the measurement of RSSI or CSI-RSSI of 'E-UTRA / NR carrier' are performed through the same resource block set (RB set).
- RSSI Refers to a wide bandwidth received power including noise and thermal noise generated within a bandwidth defined by a receiver pulse shaping filter. Again, the reference point for the RSSI should be the antenna connector of the UE, and when receive diversity is used, the reported RSSI value should not be lower than any one of the individual diversity RSSIs.
- the device A (Device A) or the device B (Device B) described in this proposal is not interpreted as being limited to a specific device, and various devices such as those mentioned in FIGS. 24 to 28. And can be interpreted.
- Device A (Device A) and Device B (Device B) of FIGS. 22 to 23 may both be D2D UEs for performing D2D communication, and Device A (Device A) is gBN and Device B (Device B) may be a D2D UE.
- the device A (Device A) described in FIGS. 22 to 23 may operate as a relay UE for transmitting a signal transmitted from the gNB to the Device B (Device B).
- a 'multi-beam sweeping' method of transmitting a narrow width beam directed in various directions over several hours and a transmission beam suitable for a specific receiver A beam may be selectively used based on reporting information transmitted from the specific receiving end.
- multi-beam sweeping information can be transmitted to an unspecified receiver group or a group of receivers mainly distributed in a large area.
- multi-beam sweeping may be used to transmit synchronization signals, system information, paging information, etc. to a plurality of receivers distributed over a large area.
- the 'transmission beam selection (Beam selection)' method is used for the purpose of transmitting information to be transmitted to a specific receiver.
- the transmitting end transmits narrowed beams pointing in different directions to the receiving end, and the receiving end measures the reception sensitivity of the transmitted beams, and then transmits measurement values for the reception sensitivity of each beam.
- the transmitting end may select a transmission beam suitable for the receiving end by referring to measurement values reported from the receiving end.
- the receiving end is performed at the receiving end as well as beamforming at the transmitting end, so that the reception sensitivity at the receiving end can be further improved.
- the width of a reception beam of reception beamforming may be narrow.
- the reception sensitivity of the signal may be improved, but when the reception beam is directed in the other direction, the reception sensitivity of the signal may be attenuated. Therefore, in order to find the beam having the best reception sensitivity, the receiving end can perform 'receive beam tracking'.
- the transmitting end repeatedly transmits a specific signal to the receiving end using a specific transmission beam, and the receiving end receives the specific signal repeatedly transmitted while changing the receiving beam, and receives for each received beam Sensitivity can be measured. Then, a reception beam having the best reception sensitivity may be selected, and a control / data channel may be received using the reception beam.
- the reception sensitivity of the receiving end can be improved.
- the transmitting beam capable of improving the receiving sensitivity of the receiving end ( Beam) and receive beam (Beam) are referred to as 'transmission and reception beam pair (Beam pair)'.
- the transmission / reception beam pair may be changed to a transmission beam and a reception beam having a good reception sensitivity in the changed radio channel environment.
- 'Beam Management' which adaptively changes an appropriate 'transmission / reception beam pair', may be important for 'transmission beam selection'.
- the transmitting end transmits a 'package of signals and channels' including a synchronization signal.
- the 'signal and channel bundle' includes at least a synchronization signal, and may be configured by including at least a part of a channel for transmitting system information, a signal for transmitting time information, and a signal for measuring channel quality.
- SSB Synchronization Signal Block
- the SSB may include a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- PBCH Physical Broadcast Channel
- the signals and channels of the SSB may mean that the elements constituting the wireless channel, such as Doppler shift, Doppler spread, and Average Delay, are almost similar, and thus can be assumed to be in the same channel state. .
- a wireless channel is almost similar when a 'package of signals and channels' is received using the same transmission beam of the transmitting end and the same receiving beam of the receiving end.
- the transmitting end may repeatedly transmit one or more SSBs within a predetermined time range at different times, and at this time, the transmitting end may repeatedly transmit SSBs in the same transmission beam (Beam) or SSBs in different transmission beams (Beam). . If the transmitting end repeatedly transmits SSBs with the same transmission beam (Beam) and the receiving end can generate multiple receiving beams (Beam), the receiving end may receive SSBs repeatedly transmitted with the same receiving beam (Beam). Alternatively, SSBs may be received while changing the reception beam, or signals and channels included in the SSB may be received while changing the reception beam.
- the transmitting end transmits a plurality of SSBs
- the receiving end may receive a signal in a single beam.
- the states of the radio channels through which the respective SSBs are transmitted Doppler shift, Doppler spread, average delay, beam transmission spatial, etc.
- the SSB is transmitted as a single 'antenna port'.
- the 'antenna port' is a logical concept, and does not mean the termination of an actual physical antenna.
- such an antenna port can be regarded as a unit for generating a wireless channel path through which a signal or a channel is transmitted based on a transmission end.
- the transmitting end has N transmit physical antennas and transmits different signals or channels through individual antennas, it may mean that the signal is transmitted to N antenna ports.
- the receiving end must have N or more receiving antennas to distinguish the signals transmitted to the N antenna ports (Antenan port) of the transmitting end.
- the transmitting end has N transmission antennas, but all of the individual antennas transmit the same signal or channel, it may mean that it is transmitted through one antenna port. In this case, signals emitted to the air through the N transmit antennas are mixed with each other, and a radio channel through which the same signal or channels are transmitted becomes one radio channel. At this time, the receiving end can demodulate the signal even if there is one receiving antenna.
- the maximum number of 'transmission beams that can radiate at the same time' is the 'antenna port'. (Antenna port) '.
- a port For example, if two beams can be simultaneously transmitted, it means that up to two antenna ports can be used, and if two different signals and channels are transmitted with two beams, It can be referred to as two antenna ports transmission, and can be referred to as single antenna port transmission if the same signal and channel are transmitted through two transmission beams.
- IEEE 802.11ad / ay and 3GPP 5G NR systems are considering beamforming using multiple antennas as a method for reducing signal attenuation in a high frequency band.
- Beam management of IEEE 802.11ad may be performed in two stages. It is assumed that there is a first wireless device (hereinafter referred to as 'Alpha') and a second wireless device (hereinafter referred to as 'Bravo') performing wireless communication in a high frequency band, and the two-step process for the beam management will be described.
- 'Alpha' a first wireless device
- 'Bravo' a second wireless device
- the first wireless device 'Alpha' transmits a plurality of beams having a narrow beam width over several hours.
- the second wireless device 'Bravo' has a wide beam width.
- the 'Alpha' receives specific signals transmitted through a plurality of transmission beams using a beam, and measures the signal strength of each of the specific signals transmitted through each of the plurality of transmission beams to determine the most suitable The transmission beam can be selected.
- 'Bravo' transmits a plurality of beams having a narrow beam width over several hours, and 'Alpha' can receive a specific signal using a specific beam having a wide beam width. .
- 'Bravo' transmits information on the beam with high reception sensitivity among beams transmitted by 'Alpha' to 'Alpha', and 'Alpha' also among the beams transmitted by 'Bravo'
- 'Bravo' transmits information of a transmission beam having high reception sensitivity to 'Bravo', beam pairing between 'Alpha' and 'Bravo' can be performed.
- beam management in an initial access stage and beam management in an RRC CONNECTED state may be divided.
- UE User Equipment transmits a number of Synchronization Blocks (SSBs) transmitted in various directions through different transmission beams in a DL (Downlink). Can be received through.
- a transmission beam having good reception sensitivity may be selected by measuring reception sensitivity for each SSB such as RSRP (Reference Signal Received Power). If the UE uses a plurality of reception beams, the SSB can be received over several hours while changing the reception beam, and the reception sensitivity of SSBs is measured for each reception beam, so that reception sensitivity is good. It is possible to select a reception beam (Beam) and an SSB having good reception sensitivity (ie, a transmission beam). In the NR system, SSBs and RACH resources can be associated.
- Beam reception beam
- RACH resources can be associated.
- the RACH preamble is transmitted to the gNB through one RACH resource among at least one RACH resources associated with a specific SSB, and accordingly, the gNB transmits the RACH preamble.
- the RACH resource Based on the RACH resource, information on a transmission beam selected by a corresponding UE can be known.
- the UE may receive multiple SSBs or channel state information-reference signals (CSI-RS) transmitted by the gNB to the DL.
- the UE measures the reception sensitivity of each of the received multiple SSBs or CSI-RSs, and then, for at least one beam index and / or at least one beam, such as an SSB index or a CSI-RS resource indicator (CRI).
- the reception sensitivity can be reported to the gNB.
- the UE may find an appropriate receive beam among a plurality of receive beams and report it to the gNB.
- the gNB may acquire information of a transmission beam having good reception sensitivity based on the reported information. At this time, when the gNB transmits a signal in a corresponding transmission beam, the UE can expect to receive the signal in an appropriate reception beam. In addition, at a specific time, the gNB may transmit information on a transmission beam to be used for information transmission to the UE. That is, even if the UE does not report the information on the preferred beam received by the UE to the gNB to the gNB, the gNB and the UE can recognize that the appropriate transmit / receive beam to be used for signal transmission is paired.
- the channel may change rapidly, and a beam pair found over a long period of time may be difficult to maintain when the channel changes.
- the receiving end may need to perform the process of finding a beam pair more often.
- the beam used in the high-frequency band has a narrow width, so that there is a possibility that an appropriate beam pair may not be maintained because the transmission beam and the reception beam are misaligned. It may get worse.
- a gNB or an adjacent D2D communication device determines a beam pair based on channel quality information for each beam reported by the UE or D2D communication device, and information about the beam pair or information about a transmission beam If the beam pair is changed by transferring the data to a UE or a D2D communication device, a large amount of time is required to change the beam pair, which may not be suitable in a high-speed mobile environment. Therefore, in an environment with a large number of candidate beams used in a high frequency band, it is possible to shorten the time to find an appropriate beam pair and to change an appropriate beam pair to suit the channel situation (Beam) management) method may be required.
- Beam channel situation
- 20 to 21 are diagrams for explaining an example of an operation implementation of a UE or a gNB according to an embodiment of the present disclosure.
- an initial access procedure is performed for wireless communication in a low frequency band
- a UE or a D2D communication device in an RRC CONNECTED state is in beam management for transmitting and receiving multiple beams in a high frequency band.
- Channel information for a transmission beam (Beam) reports to the gNB or a neighboring device through a low frequency band
- information about a transmission beam (Beam) to be used for actual signal transmission is a gNB or a neighboring device through a low frequency band or a high frequency band. It can be delivered to a D2D communication device.
- the wireless device performing the operation of FIG. 20 may be a UE performing D2D communication or a gNB for performing a beam pair with the UE.
- the wireless device may transmit a reference signal beamforming in a plurality of transmission beams in a high frequency band.
- the beamformed reference signal may be an SSB set including a plurality of SSBs or a CSI-RS resource set including a plurality of CSI-RS resources, and each of a plurality of SSBs and / or CSI- Each of the RS resources may be associated with a different transmission beam (S2001).
- the reference signal may be repeatedly transmitted through the same transmission beam in the high frequency band, and a control / shared channel may be transmitted through the same transmission beam.
- the wireless device may receive information related to each of a plurality of transmission beams through a low frequency band.
- the information may include information on a transmission beam selected by another wireless device, and such selection may be determined by a value related to reception sensitivity of each transmission beam, such as RSRP.
- the information may include an SSB index and / or CRI corresponding to a selected transmission beam based on a value related to the reception sensitivity (S2003).
- the wireless device may transmit a control channel and / or a data channel to another wireless device through a specific transmission beam in a high frequency band.
- the specific transmission beam may be selected by the wireless device based on information on the transmission beam transmitted by the other wireless device.
- the wireless device may transmit a control channel and / or a data channel using a transmission beam different from the transmission beam included in the information about the transmission beam. That is, when selecting a transmission beam for transmitting a control channel and / or a data channel, the wireless device may not be restricted to information on a transmission beam transmitted by another wireless device (S2005).
- FIG. 21 is a diagram for explaining an example of an operation implementation of another wireless device.
- the other wireless device according to FIG. 21 may be a UE, and when the wireless device of FIG. 20 is a UE performing D2D communication, another wireless device may also be a UE performing D2D communication.
- the other wireless device may receive a reference signal beamforming with a plurality of transmission beams in a high frequency band.
- the beamformed reference signal may be an SSB set including a plurality of SSBs or a CSI-RS resource set including a plurality of CSI-RS resources, and each of a plurality of SSBs and / or CSI- Each of the RS resources may be associated with a different transmission beam (S2101).
- a reference signal may be repeatedly received through the same transmission beam in the high frequency band, and a control / shared channel may be received through the same transmission beam.
- another wireless device may transmit information related to each of the plurality of transmission beams through the low frequency band to the wireless device.
- the information may include information on a transmission beam selected by another wireless device, and the other wireless device may select a transmission beam by a value related to reception sensitivity of each transmission beam, such as RSRP.
- the information may include an SSB index and / or CRI corresponding to a selected transmission beam based on a value related to the reception sensitivity (S2103).
- another wireless device may receive a control channel and / or a data channel from the wireless device through a specific transmission beam in a high frequency band.
- the specific transmission beam may be selected by the wireless device based on information on the transmission beam transmitted by the other wireless device.
- the wireless device may transmit a control channel and / or a data channel using a transmission beam different from the transmission beam included in the information about the transmission beam. That is, when selecting a transmission beam for transmitting a control channel and / or a data channel, the wireless device may not be restricted to information on a transmission beam transmitted by another wireless device (S2105).
- the high frequency band and the low frequency band referred to in the present disclosure may be bands included in the same cell, but may also be bands included in different cells.
- the low frequency band may be a band included in the PCell
- the high frequency band may be a band included in the SCell.
- the low frequency band and the high frequency band may be BWP (Bandwidth Part) included in PCell, SCell, PSCell, and / or sPCell.
- the cells of the low frequency band and the cells of the high frequency band may operate in a carrier aggregation (CA) method in order to implement the operation of the present disclosure.
- CA carrier aggregation
- information about a high frequency band and / or a low frequency band included in each of the PCell and SCell may be transmitted through a PCSCH PUSCH (Physical Uplink Shared Channel). It might be.
- PCSCH PUSCH Physical Uplink Shared Channel
- a UE including a D2D UE in an RRC IDLE or RRC INACTIVE state transitions to RRC CONNECTION, SESSION / LINK ESTABLISHMENT and / or COMMUNICATION LINK SETUP state in the low frequency band for wireless communication. Let's assume.
- a wireless device such as a gNB or a D2D UE (hereinafter referred to as a 'first UE') may transmit information about a high frequency band to a second UE through a low frequency band for high frequency band communication.
- the information on the high frequency band may include signal and channel configuration information, frequency location and / or state change information, and the like.
- the state change information may be information about which state of the State # 0 to State # 3 according to the present embodiment.
- the second UE After receiving the information on the high frequency band through the low frequency band, the second UE obtains state change information by decoding (control) the data channel transmitted by the gNB or the first UE (State), and then through the high frequency band It is possible to prepare and / or wait to receive the transmitted signal.
- the information on the high frequency band as described above may be transmitted through DCI (Downlink Control Information) or SCI (Sidelink Control Information), as seen in the X state of FIG. 22.
- the gNB or the D2D UE When the transmission beam (Beam) information, which the gNB or the first UE is currently using to transmit the signal to the second UE is not valid, the gNB or the D2D UE performs SSB and transmission through candidate transmission beams of a high frequency band in a specific time interval. / Or it may repeatedly transmit a reference signal such as CSI-RS.
- the second UE may have an initial access state, a beam recovery state, a hand over state, or a device being discovered. You can.
- reference signals beam-formed with a specific transmission beam may be repeatedly transmitted. If the beamformed reference signals are transmitted through different beams, the second UE receives the beamformed reference signal transmitted in a high frequency band through a specific reception beam, and the channel of the reference signals transmitted through each transmission beam (Beam) State can be measured. If the reference signal is repeatedly transmitted in the same transmission beam (Beam), the second UE may receive the beamformed reference signal while changing the reception beam. Meanwhile, the reference signal that is repeatedly transmitted may be at least one of SSB, CSI-RS, or DMRS (Demodulation Reference Signal).
- the second UE may report channel state information measured based on the beamformed reference signal to the gNB or the first UE through a low frequency band.
- the gNB or the first UE may select a transmission beam to be used for control / data channel transmission, and transmit information on the selected transmission beam to the second UE through a low frequency band.
- the second UE may decode the control / data channel received through the low frequency band to receive information on the selected transmission beam delivered by the gNB or the first UE.
- information on the selected transmission beam may be transmitted through DCI (Downlink Control Information) or SCI (Sidelink Control Information), as can be seen in the X state of FIG. 22.
- DCI Downlink Control Information
- SCI Segmentlink Control Information
- the second UE may transmit state change request information to the gNB or the first UE through the low frequency band, and the gNB or the first UE may transmit state change information to the second UE through the low frequency band.
- the state change information may be information about which state of the State # 0 to State # 3 according to the present embodiment.
- the second UE may prepare for or wait for signal reception through a high frequency band after decoding the control / data channel transmitted by the gNB or the first UE to obtain state change information.
- the state change information may also be transmitted through DCI (Downlink Control Information) or SCI (Sidelink Control Information), as can be seen in the X state of FIG. 22.
- the gNB or the first UE and the second UE may transmit a reference signal and a control / data channel through a specific transmission beam through a high frequency band.
- the reference signal is repeatedly transmitted through the same transmission beam, and the second UE receives the reference signal while changing the reception beam for a certain period of time to find an appropriate reception beam to be used in the high frequency band. have.
- the gNB or the first UE transmits a control / data channel and / or signal to the second UE through a high frequency band, and the second UE transmits a control channel and / or a channel transmitted by the gNB or the first UE through an appropriate receive beam.
- the gNB or the first UE may transmit a reference signal using a plurality of transmission beams through a high frequency band for transmission. At this time, a plurality of transmission beams used to transmit a reference signal may be excluded from a currently used transmission beam.
- the plurality of transmission beams may be currently used transmission beams and transmission beams transmitted to the surroundings. That is, even if the pair between the currently used transmission beam and the reception beam is lost because the second UE moves, the paired reception beam has a high probability of achieving an appropriate pair with the transmission beam around the paired transmission beam, so gNB Alternatively, the first UE may shorten the time required to find a new beam pair by transmitting a reference signal through transmission beams around the currently used transmission beam.
- the second UE receives the reference signal, measures the channel state, and reports channel state information based on the measured channel state to the gNB or the first UE through the low frequency band. Then, the gNB or the first UE may select a transmission beam to be used for signal transmission and transmit information on the selected transmission beam to the second UE through a low frequency band.
- the second UE may obtain information on a beam selected by the gNB or the first UE by decoding a data / control channel received through the low frequency band.
- the information on the selected beam may be transmitted through Downlink Control Information (DCI) or Sidelink Control Information (SCI), as shown in the X state of FIG. 22.
- the second UE may transmit state change request information to the gNB or the first UE through the low frequency band, and based on the state change request information, the gNB or the first UE sends the state change information to the second UE in the low frequency band Can be transmitted through
- the state change information may be transmitted through DCI (Downlink Control Information) or SCI (Sidelink Control Information), as can be seen in the X state of FIG. 22.
- the second UE may prepare or wait for reception of a signal through a high frequency band signal after obtaining state change information by decoding a channel transmitted by the gNB or the first UE.
- the gNB or the first UE and the second UE may transmit a reference signal and / or a control / data channel using a specific transmission beam through a high frequency band.
- the reference signal is repeatedly transmitted using the same transmission beam (Beam)
- the second UE receives the reference signal while changing the reception beam (Beam) for a period of time, suitable for use in the high frequency band (Beam) ).
- a time gap for changing the receive beam may be necessary. Also, it may not be possible to receive a control / data channel or the like during this time gap.
- the gNB or the first UE transmits a control / data channel and / or signal to the second UE through a high frequency band, and the second UE controls / data transmitted by the gNB or the first UE using an appropriate receive beam. Channels and / or signals may be received.
- the second UE transmits state change request information to the gNB or the first UE through the low frequency band, and based on the state change request information, the gNB or the first UE transmits the state change information to the second UE in the low frequency band. Can be transmitted through.
- the state change information may be transmitted through DCI (Downlink Control Information) or SCI (Sidelink Control Information), as can be seen in the X state of FIG. 22.
- the second UE may prepare or wait for reception of a signal through a high frequency band signal after obtaining state change information by decoding a channel transmitted by the gNB or the first UE.
- states # 0 to # 3 in the above-described embodiments are not necessarily performed in order, and the order of states # 0 to # 3 may be changed according to characteristics of each state.
- states # 0 to # 3 may be performed according to the example disclosed in FIG. 23.
- the order of the above-described embodiment is not necessarily limited to FIGS. 22 to 23, and the operation order of FIGS. 22 to 23 may be variously changed according to the characteristics of each state and the channel condition as described above. have.
- the communication system 1 applied to the present invention includes a wireless device, a base station and a network.
- the wireless device means a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), Long Term Evolution (LTE)), and may be referred to as a communication / wireless / 5G device.
- a wireless access technology eg, 5G NR (New RAT), Long Term Evolution (LTE)
- LTE Long Term Evolution
- the wireless device includes a robot 100a, a vehicle 100b-1, 100b-2, an XR (eXtended Reality) device 100c, a hand-held device 100d, and a home appliance 100e. ), An Internet of Thing (IoT) device 100f, and an AI device / server 400.
- IoT Internet of Thing
- the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
- the vehicle may include a UAV (Unmanned Aerial Vehicle) (eg, a drone).
- XR devices include Augmented Reality (AR) / Virtual Reality (VR) / Mixed Reality (MR) devices, Head-Mounted Device (HMD), Head-Up Display (HUD) provided in vehicles, televisions, smartphones, It may be implemented in the form of a computer, wearable device, home appliance, digital signage, vehicle, robot, or the like.
- the mobile device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a notebook, etc.).
- Household appliances may include a TV, a refrigerator, and a washing machine.
- IoT devices may include sensors, smart meters, and the like.
- the base station and the network may also be implemented as wireless devices, and the specific wireless device 200a may operate as a base station / network node to other wireless devices.
- the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
- AI Artificial Intelligence
- the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
- the wireless devices 100a to 100f may communicate with each other through the base station 200 / network 300, but may directly communicate (e.g. sidelink communication) without going through the base station / network.
- the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V) / Vehicle to everything (V2X) communication).
- the IoT device eg, sensor
- the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
- Wireless communication / connections 150a, 150b, and 150c may be achieved between the wireless devices 100a to 100f / base station 200 and the base station 200 / base station 200.
- the wireless communication / connection is various wireless access such as uplink / downlink communication 150a and sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, IAB (Integrated Access Backhaul)). It can be achieved through technology (eg, 5G NR), and wireless devices / base stations / wireless devices, base stations and base stations can transmit / receive radio signals to each other through wireless communication / connections 150a, 150b, 150c.
- the wireless communication / connections 150a, 150b, 150c can transmit / receive signals through various physical channels.
- various signal processing processes eg, channel encoding / decoding, modulation / demodulation, resource mapping / demapping, etc.
- resource allocation processes e.g., resource allocation processes, and the like.
- 25 illustrates a wireless device that can be applied to the present invention.
- the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
- ⁇ the first wireless device 100, the second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ and / or ⁇ wireless device 100x), wireless device 100x in FIG. ⁇ .
- the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and / or one or more antennas 108.
- the processor 102 controls the memory 104 and / or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
- the processor 102 may process information in the memory 104 to generate the first information / signal, and then transmit the wireless signal including the first information / signal through the transceiver 106.
- the processor 102 may receive the wireless signal including the second information / signal through the transceiver 106 and store the information obtained from the signal processing of the second information / signal in the memory 104.
- the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102.
- the memory 104 is an instruction to perform some or all of the processes controlled by the processor 102, or to perform the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. You can store software code that includes
- the processor 102 and the memory 104 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
- the transceiver 106 can be coupled to the processor 102 and can transmit and / or receive wireless signals through one or more antennas 108.
- the transceiver 106 may include a transmitter and / or receiver.
- the transceiver 106 may be mixed with a radio frequency (RF) unit.
- the wireless device may mean a communication modem / circuit / chip.
- the following operations are described based on the control operation of the processor 102 from the viewpoint of the processor 102, but may be stored in the memory 104 or the like for software code for performing the operation.
- the processor 102 may control the transceiver 106 to transmit a beamformed reference signal with a plurality of transmission beams in a high frequency band.
- the beamformed reference signal may be an SSB set including a plurality of SSBs or a CSI-RS resource set including a plurality of CSI-RS resources, and each of a plurality of SSBs and / or CSI- Each of the RS resources may be associated with a different transmission beam.
- the processor 102 may control the transceiver 106 to repeatedly transmit the reference signal through the same transmission beam (Beam) in the high frequency band, and to transmit a control / shared channel through the same transmission beam (Beam) Transceiver 106 can be controlled.
- the processor 102 may control the transceiver 106 to receive information related to each of a plurality of transmission beams through a low frequency band.
- the information may include information on a transmission beam selected by another wireless device, and such selection may be determined by a value related to reception sensitivity of each transmission beam, such as RSRP.
- the information may include an SSB index and / or CRI corresponding to a selected transmission beam based on a value related to the reception sensitivity.
- the processor 102 may control the transceiver 106 to transmit the control channel and / or data channel to the second wireless device 200 through a specific transmission beam in the high frequency band.
- the specific transmission beam may be selected by the processor 102 based on information on the transmission beam transmitted by the second wireless device 200.
- the processor 102 may transmit a control channel and / or a data channel using a transmission beam different from the transmission beam included in the information about the transmission beam. That is, when selecting a transmission beam for transmitting a control channel and / or a data channel, the processor 102 may not be limited to information on a transmission beam transmitted by the second wireless device 200.
- the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and / or one or more antennas 208.
- Processor 202 controls memory 204 and / or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein.
- the processor 202 may process information in the memory 204 to generate third information / signal, and then transmit a wireless signal including the third information / signal through the transceiver 206.
- the processor 202 may receive the wireless signal including the fourth information / signal through the transceiver 206 and store the information obtained from the signal processing of the fourth information / signal in the memory 204.
- the memory 204 may be connected to the processor 202, and may store various information related to the operation of the processor 202.
- the memory 204 is an instruction to perform some or all of the processes controlled by the processor 202, or to perform the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. You can store software code that includes
- the processor 202 and the memory 204 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
- the transceiver 206 can be coupled to the processor 202 and can transmit and / or receive wireless signals through one or more antennas 208.
- Transceiver 206 may include a transmitter and / or receiver.
- Transceiver 206 may be mixed with an RF unit.
- the wireless device may mean a communication modem / circuit / chip.
- the following operations are described based on the control operation of the processor 202 from the viewpoint of the processor 202, but may be stored in the memory 204 in software code or the like for performing the operation.
- the processor 202 may control the transceiver 206 to receive a reference signal beamforming with a plurality of transmission beams in a high frequency band.
- the beamformed reference signal may be an SSB set including a plurality of SSBs or a CSI-RS resource set including a plurality of CSI-RS resources, and each of a plurality of SSBs and / or CSI- Each of the RS resources may be associated with a different transmission beam.
- the processor 202 may control the transceiver 206 to repeatedly receive the reference signal through the same transmission beam (Beam) in the high frequency band, and to receive a control / shared channel through this same transmission beam (Beam) The transceiver 206 can be controlled.
- the processor 202 may control the transceiver 106 to transmit information related to each of the plurality of transmission beams through the low frequency band to the first wireless device 100.
- the information may include information on a transmission beam selected by the processor 202, and the processor 202 may select a transmission beam by a value related to reception sensitivity of each transmission beam, such as RSRP.
- the information may include an SSB index and / or CRI corresponding to a selected transmission beam based on a value related to the reception sensitivity.
- the processor 202 may control the transceiver 206 to receive the control channel and / or data channel from the first wireless device 100 through a specific transmission beam in a high frequency band.
- the specific transmission beam may be selected by the first wireless device 100 based on information on the transmission beam controlled by the processor 202 to transmit.
- the first wireless device 100 may transmit a control channel and / or a data channel using a transmission beam different from the transmission beam included in the information about the transmission beam. That is, when the first wireless device 100 selects a transmission beam for transmitting a control channel and / or a data channel, information about the transmission beam transmitted by the processor 202 may not be restricted.
- one or more protocol layers may be implemented by one or more processors 102 and 202.
- one or more processors 102, 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
- the one or more processors 102 and 202 may include one or more Protocol Data Units (PDUs) and / or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can be created.
- PDUs Protocol Data Units
- SDUs Service Data Units
- the one or more processors 102, 202 may generate messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
- the one or more processors 102, 202 generate signals (eg, baseband signals) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, suggestions and / or methods disclosed herein. , To one or more transceivers 106, 206.
- One or more processors 102, 202 may receive signals (eg, baseband signals) from one or more transceivers 106, 206, and descriptions, functions, procedures, suggestions, methods and / or operational flow diagrams disclosed herein PDUs, SDUs, messages, control information, data or information may be obtained according to the fields.
- signals eg, baseband signals
- One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
- the one or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs Field Programmable Gate Arrays
- Descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
- the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein are either firmware or software set to perform or are stored in one or more processors 102, 202, or stored in one or more memories 104, 204. It can be driven by the above processors (102, 202).
- the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein can be implemented using firmware or software in the form of code, instructions and / or instructions.
- One or more memories 104, 204 may be coupled to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions, and / or instructions.
- the one or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drive, register, cache memory, computer readable storage medium and / or combinations thereof.
- the one or more memories 104, 204 may be located inside and / or outside of the one or more processors 102, 202. Also, the one or more memories 104 and 204 may be connected to the one or more processors 102 and 202 through various technologies such as a wired or wireless connection.
- the one or more transceivers 106 and 206 may transmit user data, control information, radio signals / channels, and the like referred to in the methods and / or operational flowcharts of the present document to one or more other devices.
- the one or more transceivers 106, 206 may receive user data, control information, radio signals / channels, and the like referred to in the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein from one or more other devices. have.
- one or more transceivers 106, 206 may be coupled to one or more processors 102, 202, and may transmit and receive wireless signals.
- one or more processors 102, 202 can control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices. Additionally, the one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and one or more transceivers 106, 206 may be described, functions described herein through one or more antennas 108, 208.
- the one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
- the one or more transceivers 106 and 206 process the received user data, control information, radio signals / channels, etc. using one or more processors 102, 202, and receive radio signals / channels from the RF band signal. It can be converted to a baseband signal.
- the one or more transceivers 106 and 206 may convert user data, control information, and radio signals / channels processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
- the one or more transceivers 106, 206 may include (analog) oscillators and / or filters.
- the wireless device may be implemented in various forms according to use-example / service (see FIG. 22).
- the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 25 and include various elements, components, units / units, and / or modules ).
- the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional elements 140.
- the communication unit may include a communication circuit 112 and a transceiver (s) 114.
- the communication circuit 112 can include one or more processors 102,202 and / or one or more memories 104,204 of FIG.
- the transceiver (s) 114 may include one or more transceivers 106,206 and / or one or more antennas 108,208 of FIG. 25.
- the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140, and controls various operations of the wireless device. For example, the controller 120 may control the electrical / mechanical operation of the wireless device based on the program / code / command / information stored in the memory unit 130. In addition, the control unit 120 transmits information stored in the memory unit 130 to the outside (eg, another communication device) through the wireless / wired interface through the communication unit 110, or externally (eg, through the communication unit 110) Information received through a wireless / wired interface from another communication device) may be stored in the memory unit 130. Accordingly, the operation process of the specific control unit 120 according to the present invention and the programs / codes / instructions / information stored in the memory unit 130 may include at least one operation and memory 104, 204 of the processors 102, 202 of FIG. ).
- the additional element 140 may be variously configured according to the type of wireless device.
- the additional element 140 may include at least one of a power unit / battery, an input / output unit (I / O unit), a driving unit, and a computing unit.
- wireless devices include robots (FIGS. 24, 100A), vehicles (FIGS. 24, 100B-1, 100B-2), XR devices (FIGS. 24, 100C), portable devices (FIGS. 24, 100D), and household appliances. (Fig. 24, 100e), IoT device (Fig.
- digital broadcasting terminal digital broadcasting terminal
- hologram device public safety device
- MTC device medical device
- fintech device or financial device
- security device climate / environment device
- It may be implemented in the form of an AI server / device (FIGS. 24 and 400), a base station (FIGS. 24 and 200), and a network node.
- the wireless device may be movable or used in a fixed place depending on the use-example / service.
- various elements, components, units / parts, and / or modules in the wireless devices 100 and 200 may be connected to each other through a wired interface, or at least some of them may be connected wirelessly through the communication unit 110.
- the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130 and 140) are connected through the communication unit 110. It can be connected wirelessly.
- each element, component, unit / unit, and / or module in the wireless devices 100 and 200 may further include one or more elements.
- the controller 120 may be composed of one or more processor sets.
- control unit 120 may include a set of communication control processor, application processor, electronic control unit (ECU), graphic processing processor, and memory control processor.
- memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory (non- volatile memory) and / or combinations thereof.
- the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), and a portable computer (eg, a notebook).
- the mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
- MS mobile station
- UT user terminal
- MSS mobile subscriber station
- SS subscriber station
- AMS advanced mobile station
- WT wireless terminal
- the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input / output unit 140c. ).
- the antenna unit 108 may be configured as a part of the communication unit 110.
- Blocks 110 to 130 / 140a to 140c correspond to blocks 110 to 130/140 in FIG. 26, respectively.
- the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
- the control unit 120 may perform various operations by controlling components of the portable device 100.
- the controller 120 may include an application processor (AP).
- the memory unit 130 may store data / parameters / programs / codes / instructions required for driving the portable device 100. Also, the memory unit 130 may store input / output data / information.
- the power supply unit 140a supplies power to the portable device 100 and may include a wired / wireless charging circuit, a battery, and the like.
- the interface unit 140b may support connection between the mobile device 100 and other external devices.
- the interface unit 140b may include various ports (eg, audio input / output ports, video input / output ports) for connection with external devices.
- the input / output unit 140c may receive or output image information / signal, audio information / signal, data, and / or information input from a user.
- the input / output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and / or a haptic module.
- the input / output unit 140c acquires information / signal (eg, touch, text, voice, image, video) input from the user, and the obtained information / signal is transmitted to the memory unit 130 Can be saved.
- the communication unit 110 may convert information / signals stored in the memory into wireless signals, and transmit the converted wireless signals directly to other wireless devices or to a base station.
- the communication unit 110 may restore the received radio signal to original information / signal. After the restored information / signal is stored in the memory unit 130, it can be output in various forms (eg, text, voice, image, video, heptic) through the input / output unit 140c.
- Vehicles or autonomous vehicles can be implemented as mobile robots, vehicles, trains, aerial vehicles (AVs), ships, and the like.
- a vehicle or an autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c and autonomous driving It may include a portion (140d).
- the antenna unit 108 may be configured as a part of the communication unit 110.
- Blocks 110/130 / 140a to 140d correspond to blocks 110/130/140 in FIG. 24, respectively.
- the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, a base station (e.g. base station, road side unit, etc.) and a server.
- the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
- the controller 120 may include an electronic control unit (ECU).
- the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
- the driving unit 140a may include an engine, a motor, a power train, wheels, brakes, and steering devices.
- the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100 and may include a wired / wireless charging circuit, a battery, and the like.
- the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
- the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward / Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illumination sensor, pedal position sensor, and the like.
- the autonomous driving unit 140d maintains a driving lane, automatically adjusts speed, such as adaptive cruise control, and automatically moves along a predetermined route, and automatically sets a route when a destination is set. Technology, etc. can be implemented.
- the communication unit 110 may receive map data, traffic information data, and the like from an external server.
- the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
- the controller 120 may control the driving unit 140a such that the vehicle or the autonomous vehicle 100 moves along the autonomous driving path according to a driving plan (eg, speed / direction adjustment).
- a driving plan eg, speed / direction adjustment.
- the communication unit 110 may acquire the latest traffic information data non-periodically from an external server, and acquire surrounding traffic information data from nearby vehicles.
- the sensor unit 140c may acquire vehicle status and surrounding environment information.
- the autonomous driving unit 140d may update the autonomous driving route and driving plan based on newly acquired data / information.
- the communication unit 110 may transmit information regarding a vehicle location, an autonomous driving route, and a driving plan to an external server.
- the external server may predict traffic information data in advance using AI technology or the like based on the information collected from the vehicle or autonomous vehicles, and provide the predicted traffic information data to the vehicle or autonomous vehicles.
- 29 illustrates a signal processing circuit for a transmission signal.
- the signal processing circuit 1000 may include a scrambler 1010, a modulator 1020, a layer mapper 1030, a precoder 1040, a resource mapper 1050, and a signal generator 1060.
- the operations / functions of FIG. 29 may be performed in processors 102, 202 and / or transceivers 106, 206 of FIG.
- the hardware elements of FIG. 26 can be implemented in the processors 102, 202 and / or transceivers 106, 206 of FIG. 26.
- blocks 1010 to 1060 may be implemented in processors 102 and 202 of FIG. 26.
- blocks 1010 to 1050 may be implemented in the processors 102 and 202 of FIG. 26, and block 1060 may be implemented in the transceivers 106 and 206 of FIG. 26.
- the codeword may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 29.
- the codeword is an encoded bit sequence of an information block.
- the information block may include a transport block (eg, UL-SCH transport block, DL-SCH transport block).
- the radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
- the codeword may be converted into a scrambled bit sequence by the scrambler 1010.
- the scramble sequence used for scramble is generated based on the initialization value, and the initialization value may include ID information of the wireless device.
- the scrambled bit sequence can be modulated into a modulated symbol sequence by the modulator 1020.
- the modulation method may include pi / 2-Binary Phase Shift Keying (pi / 2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like.
- the complex modulation symbol sequence may be mapped to one or more transport layers by the layer mapper 1030.
- the modulation symbols of each transport layer may be mapped to the corresponding antenna port (s) by the precoder 1040 (precoding).
- the output z of the precoder 1040 can be obtained by multiplying the output y of the layer mapper 1030 by the precoding matrix W of N * M.
- N is the number of antenna ports and M is the number of transport layers.
- the precoder 1040 may perform precoding after performing transform precoding (eg, DFT transformation) on complex modulation symbols. Further, the precoder 1040 may perform precoding without performing transform precoding.
- the resource mapper 1050 may map modulation symbols of each antenna port to time-frequency resources.
- the time-frequency resource may include a plurality of symbols (eg, CP-OFDMA symbol, DFT-s-OFDMA symbol) in the time domain and a plurality of subcarriers in the frequency domain.
- the signal generator 1060 generates a radio signal from the mapped modulation symbols, and the generated radio signal can be transmitted to other devices through each antenna.
- the signal generator 1060 may include an Inverse Fast Fourier Transform (IFFT) module and a Cyclic Prefix (CP) inserter, a Digital-to-Analog Converter (DAC), a frequency uplink converter, etc. .
- IFFT Inverse Fast Fourier Transform
- CP Cyclic Prefix
- DAC Digital-to-Analog Converter
- the signal processing process for the received signal in the wireless device may be configured as the inverse of the signal processing processes 1010 to 1060 of FIG. 25.
- a wireless device eg, 100 and 200 in FIG. 20
- the received radio signal may be converted into a baseband signal through a signal restorer.
- the signal recoverer may include a frequency downlink converter (ADC), an analog-to-digital converter (ADC), a CP remover, and a Fast Fourier Transform (FFT) module.
- ADC frequency downlink converter
- ADC analog-to-digital converter
- CP remover a CP remover
- FFT Fast Fourier Transform
- the baseband signal may be restored to a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a de-scramble process.
- the codeword can be restored to the original information block through decoding.
- the signal processing circuit (not shown) for the received signal may include a signal restorer, a resource de-mapper, a post coder, a demodulator, a de-scrambler and a decoder.
- a specific operation described as being performed by a base station may be performed by an upper node in some cases. That is, it is apparent that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station can be performed by a base station or other network nodes other than the base station.
- the base station may be replaced by terms such as a fixed station, gNode B (gNB), Node B, eNode B (eNB), access point, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 개시는 무선 통신 시스템에서, 단말이 데이터 채널을 전송하는 방법을 개시한다. 특히, 상기 개시는, 제 1 주파수 대역 내에서, 복수의 전송 빔들을 통해 복수의 참조 신호들을 전송하고, 제 2 주파수 대역 내에서, 상기 복수의 참조 신호들 중, 적어도 하나의 참조 신호의 수신 품질(Reception Quality)에 관련된 제 1 정보를 수신하고, 상기 제 1 정보를 기반으로 상기 데이터 채널을 전송할 전송 빔을 결정하고, 상기 제 1 주파수 대역 내에서, 상기 전송 빔을 통해 상기 데이터 채널을 전송하는 것을 특징으로 하고, 상기 제 1 주파수 대역은, 상기 제 2 주파수 대역보다 높은 것을 특징으로 할 수 있다.
Description
본 개시(disclosure)는 데이터 신호를 송수신하는 방법 및 이를 위한 장치에 관한 것으로서, 더욱 상세하게는, 차량과 같이 이동성이 큰 통신 장치와의 무선 통신에 있어서, 데이터 신호를 송수신하기 위한 적절한 송수신 빔을 신속하게 결정하고, 결정된 송수신 빔을 통해 데이터 신호를 송수신하는 방법 및 이를 위한 장치에 관한 것이다.
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, 기존 LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. NewRAT이라고 명칭되는, 이러한 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC) 등으로 통신 시나리오가 구분된다.
여기서, eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, URLLC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (e.g., V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다. (e.g., IoT).
본 개시(disclosure)는 데이터 신호를 송수신하는 방법 및 이를 위한 장치를 제공하고자 한다.
본 개시(disclosure)에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 개시의 실시 예에 따른 무선 통신 시스템에서, 단말이 데이터 채널을 전송하는 방법에 있어서, 제 1 주파수 대역 내에서, 복수의 전송 빔들을 통해 복수의 참조 신호들을 전송하고, 제 2 주파수 대역 내에서, 상기 복수의 참조 신호들 중, 적어도 하나의 참조 신호의 수신 품질(Reception Quality)에 관련된 제 1 정보를 수신하고, 상기 제 1 정보를 기반으로 상기 데이터 채널을 전송할 전송 빔을 결정하고, 상기 제 1 주파수 대역 내에서, 상기 전송 빔을 통해 상기 데이터 채널을 전송하는 것을 특징으로 하고, 상기 제 1 주파수 대역은, 상기 제 2 주파수 대역보다 높을 수 있다.
이 때, 상기 제 2 주파수 대역에서, 상기 전송 빔에 대한 제 2 정보를 전송하는 것을 더 포함할 수 있다.
또한, 상기 복수의 전송 빔들은, 이전에 결정된 전송 빔과 인접한 전송 빔들일 수 있다.
또한, 상기 제 1 주파수 대역 및 상기 제 2 주파수 대역 각각은 서로 상이한 셀들과 관련될 수 있다.
또한, 상기 복수의 참조 신호들은, 복수의 SSB (Synchronization Signal Block) 또는 복수의 CSI-RS (Channel State Information-Reference Signal)일 수 있다.
또한, 상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능할 수 있다.
본 개시에 따른 무선 통신 시스템에서, 데이터 채널을 전송하는 장치에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 제 1 주파수 대역 내에서, 복수의 전송 빔들을 통해 복수의 참조 신호들을 전송하고, 제 2 주파수 대역 내에서, 상기 복수의 참조 신호들 중, 적어도 하나의 참조 신호의 수신 품질(Reception Quality)에 관련된 제 1 정보를 수신하고, 상기 제 1 정보를 기반으로 상기 데이터 채널을 전송할 전송 빔을 결정하고, 상기 제 1 주파수 대역 내에서, 상기 전송 빔을 통해 상기 데이터 채널을 전송하는 것을 특징으로 하고, 상기 제 1 주파수 대역은, 상기 제 2 주파수 대역보다 높을 수 있다.
이 때, 상기 특정 동작은, 상기 제 2 주파수 대역에서, 상기 전송 빔에 대한 제 2 정보를 전송하는 것을 더 포함할 수 있다.
또한, 상기 복수의 전송 빔들은, 이전에 결정된 전송 빔과 인접한 전송 빔들일 수 있다.
또한, 상기 제 1 주파수 대역 및 상기 제 2 주파수 대역 각각은 서로 상이한 셀들과 관련될 수 있다.
또한, 상기 복수의 참조 신호들은, 복수의 SSB (Synchronization Signal Block) 또는 복수의 CSI-RS (Channel State Information-Reference Signal)일 수 있다.
또한, 상기 장치는, 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능할 수 있다.
본 개시의 실시 예에 따른 무선 통신 시스템에서, 단말이 데이터 채널을 수신하는 방법에 있어서, 제 1 주파수 대역 내에서, 복수의 전송 빔들을 통해 복수의 참조 신호들을 수신하고, 제 2 주파수 대역 내에서, 상기 복수의 참조 신호들 중, 적어도 하나의 참조 신호의 수신 품질(Reception Quality)에 관련된 정보를 수신하고, 상기 제 1 주파수 대역 내에서, 상기 정보를 기반으로 선택된 전송 빔을 통해 상기 데이터 채널을 수신하는 것을 특징으로 하고, 상기 제 1 주파수 대역은, 상기 제 2 주파수 대역보다 높을 수 있다.
본 개시(disclosure)에 따르면, 고속 이동과 같이 채널 상태가 급격히 변화될 수 있는 상황에서도 신속하게 적절한 빔을 탐색하고, 이에 따라 송수신 빔을 변경하여, 안정적으로 데이터 신호를 송수신할 수 있다.
본 개시(disclosure)에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면.
도 3 내지 도 5은 NR 시스템에서 사용되는 무선 프레임 및 슬롯의 구조를 설명하기 위한 도면이다.
도 6은 V2X (Vehicle-to-Everything) 어플리케이션의 다양한 유형을 나타낸다.
도 7 내지 도 9는 V2X에서의 자원 할당 및 자원 선택을 위한 예시를 나타낸다
도 10은 V2X에서의 BWP (Bandwidth Part) 및 자원 풀에 대해 나타낸다.
도 11 내지 도 13은 SS/PBCH 블록의 구성(Composition) 및 전송 방법을 설명하기 위한 도면이다.
도 14는 NR 시스템에서의 아날로그 빔포밍(Analog Beamforming)을 설명하기 위한 도면이다.
도 15 내지 도 19는 NR 시스템에서의 빔 관리(Beam Management)를 설명하기 위한 도면이다.
도 20 내지 도 21은 본 제안에 따른 송수신 장치의 대략적인 동작 구현 예를 설명하기 위한 도면이다.
도 22 내지 도 23은 본 제안에 따른 송수신 장치의 구체적인 데이터 신호의 송수신 과정의 구현 예를 설명하기 위한 도면이다.
도 24는 본 발명의 실시 예들이 적용되는 통신 시스템의 예시를 나타낸다.
도 25 내지 도 28은 본 발명의 실시 예들이 적용되는 다양한 무선 기기의 예시들을 나타낸다.
도 29는 본 발명의 실시 예들이 적용되는 신호 처리 회로의 예시를 나타낸다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템, LTE-A 시스템 및 NR 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 gNB와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, gNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-RS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, 트랙킹 RS(tracking RS, TRS)가 할당된 혹은 설정(Configuration)된 OFDM 심볼은 TRS 심볼이라고 칭하며, TRS가 할당된 혹은 설정(Configuration)된 부반송파는 TRS 부반송파라 칭하며, TRS가 할당된 혹은 설정(Configuration)된 RE 는 TRS RE라고 칭한다. 또한, TRS 전송을 위해 설정(Configuration)된(configured) 서브프레임을 TRS 서브프레임이라 칭한다. 또한 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 각각 PSS/SSS 심볼/부반송파/RE라 칭한다.
본 발명에서 CRS 포트, UE-RS 포트, CSI-RS 포트, TRS 포트라 함은 각각 CRS를 전송하도록 설정(Configuration)된(configured) 안테나 포트, UE-RS를 전송하도록 설정(Configuration)된 안테나 포트, CSI-RS를 전송하도록 설정(Configuration)된 안테나 포트, TRS를 전송하도록 설정(Configuration)된 안테나 포트를 의미한다. CRS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CRS 포트들에 따라 CRS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, UE-RS들을 전송하도록 설정(Configuration)된(configured) 안테나 포트들은 UE-RS 포트들에 따라 UE-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, CSI-RS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CSI-RS 포트들에 따라 CSI-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있다. 따라서 CRS/UE-RS/CSI-RS/TRS 포트라는 용어가 일정 자원 영역 내에서 CRS/UE-RS/CSI-RS/TRS가 점유하는 RE들의 패턴을 의미하는 용어로서 사용되기도 한다.
한편, NR 시스템을 포함한 5G 통신에 대해서 살펴보도록 한다.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, NR 시스템을 포함한 5G 통신 시스템에서의 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 송신되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 송신되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 송신 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 송신채널(Trans포트 Channel)을 통해 연결되어 있다. 상기 송신채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 송신을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 송신하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다. 무선 베어러는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 송신하는 하향 송신채널은 시스템 정보를 송신하는 BCH(Broadcast Channel), 페이징 메시지를 송신하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 송신하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 송신될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향 송신채널로는 초기 제어 메시지를 송신하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 송신하는 상향 SCH(Shared Channel)가 있다. 송신채널의 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S201). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Signal; PSS) 및 부 동기 채널(Secondary Synchronization Signal; SSS)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S208)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
한편, NR 시스템은 넓은 주파수 대역을 이용하여 다수의 사용자에게 높은 전송율을 유지하면서 데이터 전송을 하기 위해 높은 초고주파 대역, 즉, 6GHz 이상의 밀리미터 주파수 대역을 이용하는 방안을 고려하고 있다. 3GPP에서는 이를 NR이라는 이름으로 사용하고 있으며, 본 발명에서는 앞으로 NR 시스템으로 칭한다.
도 3은 NR에서 사용되는 무선 프레임의 구조를 예시한다.
NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 보통 CP가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, DFT-s-OFDM 심볼)을 포함할 수 있다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) | N slot symb | N frame,u slot | N subframe,u slot |
15KHz (u=0) | 14 | 10 | 1 |
30KHz (u=1) | 14 | 20 | 2 |
60KHz (u=2) | 14 | 40 | 4 |
120KHz (u=3) | 14 | 80 | 8 |
240KHz (u=4) | 14 | 160 | 16 |
* N
slot
symb: 슬롯 내 심볼의 개수
* N
frame,u
slot: 프레임 내 슬롯의 개수
* N
subframe,u
slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) | N slot symb | N frame,u slot | N subframe,u slot |
60KHz (u=2) | 12 | 40 | 4 |
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 도 4는 NR 프레임의 슬롯 구조를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 5는 자기-완비(self-contained) 슬롯의 구조를 예시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.
1. DL only 구성
2. UL only 구성
3. Mixed UL-DL 구성
- DL 영역 + GP(Guard Period) + UL 제어 영역
- DL 제어 영역 + GP + UL 영역
* DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역
* UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
V2X (Vehicle-to-Everything)
V2X 통신은 차량 사이의 통신(communication between vehicles)을 지칭하는 V2V(Vehicle-to-Vehicle), 차량과 eNB 또는 RSU(Road Side Unit) 사이의 통신을 지칭하는 V2I(Vehicle to Infrastructure), 차량 및 개인(보행자, 자전거 운전자, 차량 운전자 또는 승객)이 소지하고 있는 UE 간 통신을 지칭하는 V2P(Vehicle-to-Pedestrian), V2N(vehicle-to-network) 등 차량과 모든 개체들 간 통신을 포함한다.
V2X 통신은 V2X 사이드링크 또는 NR V2X와 동일한 의미를 나타내거나 또는 V2X 사이드링크 또는 NR V2X를 포함하는 보다 넓은 의미를 나타낼 수 있다.
V2X 통신은 예를 들어, 전방 충돌 경고, 자동 주차 시스템, 협력 조정형 크루즈 컨트롤(Cooperative adaptive cruise control: CACC), 제어 상실 경고, 교통행렬 경고, 교통 취약자 안전 경고, 긴급 차량 경보, 굽은 도로 주행 시 속도 경고, 트래픽 흐름 제어 등 다양한 서비스에 적용 가능하다.
V2X 통신은 PC5 인터페이스 및/또는 Uu 인터페이스를 통해 제공될 수 있다. 이 경우, V2X 통신을 지원하는 무선 통신 시스템에는, 상기 차량과 모든 개체들 간의 통신을 지원하기 위한 특정 네트워크 개체(network entity)들이 존재할 수 있다. 예를 들어, 상기 네트워크 개체는, BS(eNB), RSU(road side unit), UE, 또는 어플리케이션 서버(application server)(예, 교통 안전 서버(traffic safety server)) 등일 수 있다.
또한, V2X 통신을 수행하는 UE는, 일반적인 휴대용 UE(handheld UE)뿐만 아니라, 차량 UE(V-UE(Vehicle UE)), 보행자 UE(pedestrian UE), BS 타입(eNB type)의 RSU, 또는 UE 타입(UE type)의 RSU, 통신 모듈을 구비한 로봇 등을 의미할 수 있다.
V2X 통신은 UE들 간에 직접 수행되거나, 상기 네트워크 개체(들)를 통해 수행될 수 있다. 이러한 V2X 통신의 수행 방식에 따라 V2X 동작 모드가 구분될 수 있다.
V2X 통신은, 사업자(operator) 또는 제3자가 V2X가 지원되는 지역 내에서 UE 식별자를 트랙킹할 수 없도록, V2X 어플리케이션의 사용 시에 UE의 익명성(pseudonymity) 및 개인보호(privacy)를 지원할 것이 요구된다.
V2X 통신에서 자주 사용되는 용어는 다음과 같이 정의된다.
- RSU (Road Side Unit): RSU는 V2I 서비스를 사용하여 이동 차량과 전송/수신 할 수 있는 V2X 서비스 가능 장치이다. 또한, RSU는 V2X 어플리케이션을 지원하는 고정 인프라 엔터티로서, V2X 어플리케이션을 지원하는 다른 엔터티와 메시지를 교환할 수 있다. RSU는 기존 ITS 스펙에서 자주 사용되는 용어이며, 3GPP 스펙에 이 용어를 도입한 이유는 ITS 산업에서 문서를 더 쉽게 읽을 수 있도록 하기 위해서이다. RSU는 V2X 어플리케이션 로직을 BS(BS-타입 RSU라고 함) 또는 UE(UE-타입 RSU라고 함)의 기능과 결합하는 논리적 엔티티이다.
- V2I 서비스: V2X 서비스의 일 타입으로, 한 쪽은 차량(vehicle)이고 다른 쪽은 기반시설(infrastructure)에 속하는 엔티티.
- V2P 서비스: V2X 서비스의 일 타입으로, 한 쪽은 차량이고, 다른 쪽은 개인이 휴대하는 기기(예, 보행자, 자전거 타는 사람, 운전자 또는 동승자가 휴대하는 휴대용 UE기).
- V2X 서비스: 차량에 전송 또는 수신 장치가 관계된 3GPP 통신 서비스 타입.
- V2X 가능(enabled) UE: V2X 서비스를 지원하는 UE.
- V2V 서비스: V2X 서비스의 타입으로, 통신의 양쪽 모두 차량이다.
- V2V 통신 범위: V2V 서비스에 참여하는 두 차량 간의 직접 통신 범위.
V2X(Vehicle-to-Everything)라고 불리는 V2X 어플리케이션은 살핀 것처럼, (1) 차량 대 차량 (V2V), (2) 차량 대 인프라 (V2I), (3) 차량 대 네트워크 (V2N), (4) 차량 대 보행자 (V2P)의 4가지 타입이 있다.
도 6은 V2X 어플리케이션의 타입을 예시한 것이다.
이 4가지 타입의 V2X 어플리케이션은 최종 사용자를 위해 보다 지능적인 서비스를 제공하는 "협력적 인식(co-operative awareness)"을 사용할 수 있다. 이는 차량, 길가 기반 시설, 애플리케이션 서버 및 보행자와 같은 엔티티들이 협동 충돌 경고 또는 자율 주행과 같은 보다 지능적인 정보를 제공하기 위해 해당 지식을 처리하고 공유하도록 해당 지역 환경에 대한 지식(예, 근접한 다른 차량 또는 센서 장비로부터 받은 정보)을 수집할 수 있음을 의미한다.
이러한 지능형 운송 서비스 및 관련 메시지 세트는 3GPP 밖의 자동차 SDO(Standards Developing Organizations)에 정의되어 있다.
ITS 서비스 제공을 위한 세 가지 기본 클래스: 도로 안전, 교통 효율성 및 기타 어플리케이션은 예를 들어 ETSI TR 102 638 V1.1.1: " Vehicular Communications; Basic Set of Applications; Definitions"에 기술된다.
V2X 통신을 위한 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)와 V2X 통신을 위한 제어 평면(control plane)에 대한 무선 프로토콜 구조는 기본적으로 사이드링크를 위한 프로토콜 스택 구조와 동일할 수 있다(도 L2 참조). 사용자 평면에 대한 무선 프로토콜 구조는 PDCP(Packet Data Convergence Protocol), RLC(Radio Link Control), MAC(Medium Access Control) 및 물리 계층(PHY)를 포함하고, 제어 평면에 대한 무선 프로토콜 구조는, RRC(radio resource control), RLC, MAC, 물리 계층을 포함할 수 있다. V2X 통신을 위한 프로토콜 스택에 관한 좀 더 자세한 설명은 3GPP TS 23.303, 3GPP TS 23.285, 3GPP TS 24.386 등을 참조할 수 있다.
도 7은 본 발명이 적용될 수 있는 사이드링크 전송 모드 3 또는 4에서 PSCCH가 전송되는 예를 나타낸다.
V2X 통신의 경우, 즉 사이드링크 전송 모드 3 또는 4의 경우, 사이드링크 통신과 달리 PSCCH 및 PSSCH가 FDM 방식으로써 전송된다. V2X 통신의 경우, 차량 통신이라는 특성 상 지연을 줄이는 것이 중요한 요소이므로, 이를 위해 PSCCH 및 PSSCH가 동일한 시간 자원 상의 서로 다른 주파수 자원 상에서 FDM 방식으로 전송될 수 있다. 도 7을 참조하면, 도 7(a)와 같이 PSCCH 및 PSSCH가 직접 인접하지 않을 수 있고, 도 7(b)와 같이 PSCCH 및 PSSCH가 직접 인접할 수 있다. 이러한 전송의 기본 단위는 서브 채널이다. 서브 채널은 소정의 시간 자원(예를 들어, 시간 자원 단위) 상에서 주파수 축 상으로 하나 이상의 RB 크기를 갖는 자원 단위일 수 있다. 서브 채널에 포함된 RB의 개수(즉, 서브 채널의 크기와 서브 채널의 주파수 축 상의 시작 위치)는 상위 계층 시그널링으로 지시될 수 있다. 도 7의 실시 예는 NR 사이드링크 자원 할당 모드 1 또는 모드 2에 적용될 수도 있다.
한편, 사이드링크에는 전송 모드 1, 2, 3 및 4가 있다.
전송 모드 1/3에서는, BS가 UE 1에게 PDCCH(보다 구체적으로 DCI)를 통해 자원 스케줄링을 수행하고, UE 1은 해당 자원 스케줄링에 따라 UE 2와 D2D/V2X 통신을 수행한다. UE 1은 UE 2에게 PSCCH(physical sidelink control channel)을 통해 SCI(sidelink control information)을 전송한 후, 상기 SCI에 기반한 데이터를 PSSCH(physical sidelink shared channel)을 통해 전송할 수 있다. 전송 모드 1은 D2D에, 전송 모드 3은 V2X에 적용될 수 있다.
전송 모드 2/4는, UE가 스스로 스케줄링을 하는 모드라 할 수 있다. 보다 구체적으로, 전송 모드 2는 D2D에 적용되며, 설정된 자원 풀 내에서 UE가 자원을 스스로 선택하여 D2D 동작을 수행할 수 있다. 전송 모드 4는 V2X에 적용되며, 센싱 과정을 거쳐 선택 윈도우 내에서 UE가 스스로 자원을 선택한 후 V2X 동작을 수행할 수 있다. UE 1은 UE 2에게 PSCCH을 통해 SCI을 전송한 후, 상기 SCI에 기반한 데이터를 PSSCH을 통해 전송할 수 있다. 이하, 전송 모드를 모드로 약칭할 수 있다.
BS가 PDCCH를 통해 UE에게 전송하는 제어 정보를 DCI(downlink control information)이라 칭하는데 반해, UE가 PSCCH를 통해 다른 UE에게 전송하는 제어 정보를 SCI라 칭할 수 있다. SCI는 사이드링크 스케줄링 정보를 전달할 수 있다. SCI에는 여러 가지 포맷이 있을 수 있는데, 예컨대, SCI 포맷 0과 SCI 포맷 1이 있을 수 있다.
SCI 포맷 0은 PSSCH의 스케줄링을 위해 사용될 수 있다. SCI 포맷 0에는, 주파수 홉핑 플래그(1 비트), 자원 블록 할당 및 홉핑 자원 할당 필드(사이드링크의 자원 블록 개수에 따라 비트 수가 달라질 수 있음), 시간 자원 패턴(time resource pattern), MCS (modulation and coding scheme), 시간 어드밴스 지시(time advance indication), 그룹 목적지 ID(group destination ID) 등을 포함할 수 있다.
SCI 포맷 1은 PSSCH의 스케줄링을 위해 사용될 수 있다. SCI 포맷 1에는, 우선권(priority), 자원 예약(resource reservation), 초기 전송 및 재전송의 주파수 자원 위치(사이드링크의 서브 채널 개수에 따라 비트 수가 달라질 수 있음), 초기 전송과 재전송 간의 시간 갭(time gap between initial transmission and retransmission), MCS, 재전송 인덱스 등을 포함한다.
SCI 포맷 0은 전송 모드 1, 2에 사용될 수 있고, SCI 포맷 1은 전송 모드 3, 4에 사용될 수 있다.
이하, V2X에 적용되는 모드 3 및 모드 4에서의 자원 할당(resource allocation)을 보다 구체적으로 설명한다. 우선 모드 3에 대해 설명한다.
1. 모드 3
모드 3은 스케줄된 자원 할당이라고 할 수 있다. UE는 데이터를 전송하기 위해 RRC_CONNECTED 상태일 수 있다.
도 8(a)는, UE가 모드 3 동작을 수행하는 경우를 예시한다.
UE는 BS에게 전송/수신 자원을 요청하고, BS는 사이드링크 제어 정보 및/또는 데이터의 전송/수신에 관한 자원(들)을 UE에게 스케줄링 할 수 있다. 이때, 스케줄된 자원 할당을 위해 사이드링크 SPS가 지원될 수도 있다. UE는 할당 받은 자원을 이용하여 다른 UE와 사이드링크 제어 정보 및/또는 데이터를 전송/수신할 수 있다.
2. 모드 4
도 8(b)는 UE가 모드 4 동작을 수행하는 경우를 예시한다.
모드 4는 UE 자율적 자원 선택(UE autonomous resource selection)이라 할 수 있다. UE는 사이드링크 자원의 (재)선택을 위한 센싱(sensing)을 수행할 수 있다. 센싱 결과에 기반하여 특정 자원을 제외한 나머지 자원들 중에서 UE는 사이드링크 자원을 임의로 선택/예약할 수 있다. UE는 최대 두 개의 병렬적인 독립된 자원 예약 프로세스를 수행할 수도 있다.
모드 4의 센싱 및 자원 선택에 대해 보다 구체적으로 설명한다.
도 9는 모드 4의 센싱 및 자원 선택을 예시한다.
앞서 설명한 바와 같이, UE는 모드 4 전송 자원을 선택하기 위해 센싱을 수행할 수 있다. V2X 통신에서, MAC PDU 별 2회의 전송이 이루어질 수 있다. 예를 들어, 도 9를 참조하면, 최초 전송을 위한 자원 선택 시, 재전송을 위한 자원이 일정한 시간 간격(time gap)을 두고 예약될 수 있다.
예를 들어, UE는 센싱 윈도우 내에서의 센싱을 통해 다른 UE가 예약한 전송 자원들 또는 다른 UE가 사용하고 있는 자원들을 파악하고, 선택 윈도우 내에서 이를 배제한 후 남아 있는 자원들 중 간섭이 적은 자원에서 임의로 자원을 선택할 수 있다.
예를 들어, UE는 센싱 윈도우 내에서, 예약된 자원들의 주기에 대한 정보를 포함하는 PSCCH를 디코딩하고, 상기 PSCCH에 기반하여 주기적으로 결정된 자원들에서 PSSCH RSRP를 측정할 수 있다. 상기 PSSCH RSRP 값이 임계치(threshold)를 초과하는 자원들을 선택 윈도우 내에서 제외할 수 있다. 그 후, 선택 윈도우 내의 남은 자원들에서 사이드링크 자원을 임의하게 선택할 수 있다.
또는, 센싱 윈도우 내에서 주기적인 자원들의 RSSI(Received signal strength indication)를 측정하여 예컨대, 하위 20%에 해당하는 간섭이 적은 자원들을 파악한다. 그리고 상기 주기적인 자원들 중 선택 윈도우에 포함된 자원들 중에서 사이드링크 자원을 임으로 선택할 수도 있다. 예를 들어, PSCCH의 디코딩을 실패한 경우, 이러한 방법을 사용할 수 있다.
이하, BWP(Bandwidth Part) 및 자원 풀에 대하여 설명한다.
BA(Bandwidth Adaptation)을 사용하면, 단말의 수신 대역폭 및 전송 대역폭은 셀의 대역폭만큼 클 필요가 없으며, 단말의 수신 대역폭 및 전송 대역폭은 조정될 수 있다. 예를 들어, 네트워크/기지국은 대역폭 조정을 단말에게 알릴 수 있다. 예를 들어, 단말은 대역폭 조정을 위한 정보/설정을 네트워크/기지국으로부터 수신할 수 있다. 이 경우, 단말은 상기 수신된 정보/설정을 기반으로 대역폭 조정을 수행할 수 있다. 예를 들어, 상기 대역폭 조정은 대역폭의 축소/확대, 대역폭의 위치 변경 또는 대역폭의 부반송파 간격의 변경을 포함할 수 있다.
예를 들어, 대역폭은 파워를 세이브하기 위해 활동이 적은 기간 동안 축소될 수 있다. 예를 들어, 대역폭의 위치는 주파수 도메인에서 이동할 수 있다. 예를 들어, 대역폭의 위치는 스케줄링 유연성(scheduling flexibility)을 증가시키기 위해 주파수 도메인에서 이동할 수 있다. 예를 들어, 대역폭의 부반송파 간격(subcarrier spacing)은 변경될 수 있다. 예를 들어, 대역폭의 부반송파 간격은 상이한 서비스를 허용하기 위해 변경될 수 있다. 셀의 총 셀 대역폭의 서브셋은 BWP(Bandwidth Part)라고 칭할 수 있다. BA는 기지국/네트워크가 단말에게 BWP를 설정하고, 기지국/네트워크가 설정된 BWP 중에서 현재 활성 상태인 BWP를 단말에게 알림으로써 수행될 수 있다.
도 10은 본 발명이 적용될 수 있는 BWP가 설정되는 시나리오의 일 예를 나타낸다.
도 10을 참조하면, 40MHz의 대역폭 및 15kHz의 부반송파 간격을 가지는 BWP1, 10MHz의 대역폭 및 15kHz의 부반송파 간격을 가지는 BWP2, 및 20MHz의 대역폭 및 60kHz의 부반송파 간격을 가지는 BWP3가 설정될 수 있다.
BWP는 사이드링크에 대하여 정의될 수 있다. 동일한 사이드링크 BWP는 전송 및 수신에 사용될 수 있다. 예를 들어, 전송 단말은 특정 BWP 상에서 사이드링크 채널 또는 사이드링크 신호를 전송할 수 있고, 수신 단말은 상기 특정 BWP 상에서 사이드링크 채널 또는 사이드링크 신호를 수신할 수 있다. 면허 캐리어(licensed carrier)에서, 사이드링크 BWP는 Uu BWP와 별도로 정의될 수 있으며, 사이드링크 BWP는 Uu BWP와 별도의 설정 시그널링(separate configuration signalling)을 가질 수 있다. 예를 들어, 단말은 사이드링크 BWP를 위한 설정을 기지국/네트워크로부터 수신할 수 있다. 사이드링크 BWP는 반송파 내에서 out-of-coverage NR V2X 단말 및 RRC_IDLE 단말에 대하여 (미리) 설정될 수 있다. RRC_CONNECTED 모드의 단말에 대하여, 적어도 하나의 사이드링크 BWP가 반송파 내에서 활성화될 수 있다.
자원 풀은 사이드링크 전송 및/또는 사이드링크 수신을 위해 사용될 수 있는 시간-주파수 자원의 집합일 수 있다. 단말의 관점에서 볼 때, 자원 풀 내의 시간 도메인 자원은 연속하지 않을 수 있다. 복수의 자원 풀은 하나의 캐리어 내에서 단말에게 (미리) 설정될 수 있다.
도 11은 SSB 구조를 예시한다. 단말은 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.
도 11을 참조하면, SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼에 구성되며, OFDM 심볼 별로 PSS, PBCH, SSS/PBCH 및 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파로 구성된다. PBCH에는 폴라 코딩 및 QPSK(Quadrature Phase Shift Keying)이 적용된다. PBCH는 OFDM 심볼마다 데이터 RE와 DMRS(Demodulation Reference Signal) RE로 구성된다. RB 별로 3개의 DMRS RE가 존재하며, DMRS RE 사이에는 3개의 데이터 RE가 존재한다.
셀 탐색은 단말이 셀의 시간/주파수 동기를 획득하고, 상기 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCID)를 검출하는 과정을 의미한다. PSS는 셀 ID 그룹 내에서 셀 ID를 검출하는데 사용되고, SSS는 셀 ID 그룹을 검출하는데 사용된다. PBCH는 SSB (시간) 인덱스 검출 및 하프-프레임 검출에 사용된다.
단말의 셀 탐색 과정은 하기 표 3과 같이 정리될 수 있다.
Type of Signals | Operations | |
1 st step | PSS | * SS/PBCH block (SSB) symbol timing acquisition* Cell ID detection within a cell ID group(3 hypothesis) |
2 nd Step | SSS | * Cell ID group detection (336 hypothesis) |
3 rd Step | PBCH DMRS | * SSB index and Half frame (HF) index(Slot and frame boundary detection) |
4 th Step | PBCH | * Time information (80 ms, System Frame Number (SFN), SSB index, HF)* Remaining Minimum System Information (RMSI) Control resource set (CORESET)/Search space configuration |
5 th Step | PDCCH and PDSCH | * Cell access information* RACH configuration |
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재한다. 셀의 셀 ID가 속한 셀 ID 그룹에 관한 정보는 상기 셀의 SSS를 통해 제공/획득되며, 상기 셀 ID 내 336개 셀들 중 상기 셀 ID에 관한 정보는 PSS를 통해 제공/획득된다
도 12는 SSB 전송을 예시한다. 도 12를 참조하면, SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 단말이 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, 기지국)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다. SSB 주기의 시작 부분에 SSB 버스트(burst) 세트가 구성된다. SSB 버스트 세트는 5ms 시간 윈도우(즉, 하프-프레임)로 구성되며, SSB는 SS 버스트 세트 내에서 최대 L번 전송될 수 있다. SSB의 최대 전송 횟수 L은 반송파의 주파수 대역에 따라 다음과 같이 주어질 수 있다. 하나의 슬롯은 최대 2개의 SSB를 포함한다.
- For frequency range up to 3 GHz, L = 4
- For frequency range from 3GHz to 6 GHz, L = 8
- For frequency range from 6 GHz to 52.6 GHz, L = 64
SS 버스트 세트 내에서 SSB 후보의 시간 위치는 SCS에 따라 다음과 같이 정의될 수 있다. SSB 후보의 시간 위치는 SSB 버스트 세트(즉, 하프-프레임) 내에서 시간 순서에 따라 0 ~ L-1로 인덱싱 된다(SSB 인덱스).
- Case A - 15 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- Case B - 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1이다.
- Case C - 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- Case D - 120 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18이다.
- Case E - 240 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {8, 12, 16, 20, 32, 36, 40, 44} + 56*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8이다.
도 13은 SSB의 멀티-빔 전송을 예시한다.
빔 스위핑은 TRP(Transmission Reception Point)(예, 기지국/셀)가 무선 신호의 빔 (방향)을 시간에 따라 다르게 하는 것을 의미한다 (이하에서, 빔과 빔 방향은 혼용될 수 있다). 도 8을 참조하면, SSB는 빔 스위핑을 이용하여 주기적으로 전송될 수 있다. 이 경우, SSB 인덱스는 SSB 빔과 묵시적(implicitly)으로 링크된다. SSB 빔은 SSB (인덱스) 단위로 변경되거나, SSB (인덱스) 그룹 단위로 변경될 수 있다. 후자의 경우, SSB 빔은 SSB (인덱스) 그룹 내에서 동일하게 유지된다. 즉, SSB의 전송 빔 반향이 복수의 연속된 SSB에서 반복된다. SSB 버스트 세트 내에서 SSB의 최대 전송 횟수 L은 캐리어가 속하는 주파수 대역에 따라 4, 8 또는 64의 값을 가진다. 따라서, SSB 버스트 세트 내에서 SSB 빔의 최대 개수도 캐리어의 주파수 대역에 따라 다음과 같이 주어질 수 있다.
- For frequency range up to 3 GHz, Max number of beams = 4
- For frequency range from 3GHz to 6 GHz, Max number of beams = 8
- For frequency range from 6 GHz to 52.6 GHz, Max number of beams = 64
다만, 멀티-빔 전송이 적용되지 않는 경우, SSB 빔의 개수는 1개이다.
단말이 기지국에 초기 접속을 시도하는 경우, 단말은 SSB에 기반하여 기지국과 빔을 정렬할 수 있다. 예를 들어, 단말은 SSB 검출을 수행한 뒤, 베스트 SSB를 식별한다. 이후, 단말은 베스트 SSB의 인덱스(즉, 빔)에 링크된/대응되는 PRACH 자원을 이용하여 RACH 프리앰블을 기지국에게 전송할 수 있다. SSB는 초기 접속 이후에도 기지국과 단말간에 빔을 정렬하는데 사용될 수 있다.
한편, NR 시스템의 경우, 전송/수신 안테나가 크게 증가하는 거대(massive) 다중 입력 다중 출력(multiple input multiple output, MIMO) 환경이 고려될 수 있다. 즉, 거대 MIMO 환경이 고려됨에 따라, 전송/수신 안테나의 수는 수십 또는 수백 개 이상으로 증가할 수 있다. 한편, NR 시스템에서는 above 6GHz 대역, 즉, 밀리미터 주파수 대역에서의 통신을 지원한다. 하지만 밀리미터 주파수 대역은 너무 높은 주파수 대역을 이용하는 것으로 인해 거리에 따른 신호 감쇄가 매우 급격하게 나타나는 주파수 특성을 갖는다. 따라서, 적어도 6GHz 이상의 대역을 사용하는 NR 시스템은 급격한 전파 감쇄 특성을 보상하기 위해 신호 전송을 전방향이 아닌 특정 방향으로 에너지를 모아서 전송하는 빔포밍 기법을 사용한다. 거대 MIMO 환경에서는 하드웨어 구현의 복잡도를 줄이고, 다수의 안테나들을 이용한 성능 증가, 자원 할당의 유연성, 주파수별 빔 제어의 용이를 위해, 빔 형성 가중치 벡터(weight vector)/프리코딩 벡터(precoding vector)를 적용하는 위치에 따라 아날로그 빔포밍(analog beamforming) 기법과 디지털 빔포밍(digital beamforming) 기법이 결합된 하이브리드(hybrid) 형태의 빔포밍 기법이 요구된다.
도 14는 하이브리드 빔포밍(hybrid beamforming)을 위한 전송단 및 수신단의 블록도의 일례를 나타낸 도이다.
밀리미터 주파수 대역에서 좁은 빔을 형성하기 위한 방법으로, BS나 UE에서 많은 수의 안테나에 적절한 위상차를 이용하여 동일한 신호를 전송함으로써 특정한 방향에서만 에너지가 높아지게 하는 빔포밍 방식이 주로 고려되고 있다. 이와 같은 빔포밍 방식에는 디지털 기저대역(baseband) 신호에 위상차를 만드는 디지털 빔포밍, 변조된 아날로그 신호에 시간 지연(즉, 순환 천이)을 이용하여 위상차를 만드는 아날로그 빔포밍, 디지털 빔포밍과 아날로그 빔포밍을 모두 이용하는 하이브리드 빔포밍 등이 있다. 안테나 요소별로 전송 파워 및 위상 조절이 가능하도록 RF 유닛(혹은 트랜시버 유닛(transceiver unit, TXRU))을 가지면 주파수 자원별로 독립적인 빔포밍이 가능하다. 그러나 100여 개의 안테나 요소 모두에 RF 유닛를 설치하기에는 가격 측면에서 실효성이 떨어지는 문제를 있다. 즉, 밀리미터 주파수 대역은 급격한 전파 감쇄 특성을 보상하기 위해 많은 수의 안테나가 사용해야 하고, 디지털 빔포밍은 안테나 수에 해당하는 만큼 RF 컴포넌트(예, 디지털 아날로그 컨버터(DAC), 믹서(mixer), 전력 증폭기(power amplifier), 선형 증폭기(linear amplifier) 등)를 필요로 하므로, 밀리미터 주파수 대역에서 디지털 빔포밍을 구현하려면 통신 기기의 가격이 증가하는 문제점이 있다. 그러므로 밀리미터 주파수 대역과 같이 안테나의 수가 많이 필요한 경우에는 아날로그 빔포밍 혹은 하이브리드 빔포밍 방식의 사용이 고려된다. 아날로그 빔포밍 방식은 하나의 TXRU에 다수 개의 안테나 요소를 매핑하고 아날로그 위상 천이기(analog phase shifter)로 빔(beam)의 방향을 조절한다. 이러한 아날로그 빔포밍 방식은 전체 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍(beamforming, BF)을 해줄 수 없는 단점이 있다. 하이브리드 BF는 디지털 BF와 아날로그 BF의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 RF 유닛을 갖는 방식이다. 하이브리드 BF의 경우, B개의 RF 유닛과 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한되게 된다.
하향링크 빔 관리(Downlink Beam Management, DL BM)
BM 과정은 하향링크(downlink, DL) 및 상향링크(uplink, UL) 전송/수신에 사용될 수 있는 BS(혹은 전송 및 수신 포인트(transmission and reception point, TRP)) 및/또는 UE 빔들의 세트(set)를 획득하고 유지하기 위한 과정들로서, 아래와 같은 과정 및 용어를 포함할 수 있다.
- 빔 측정(beam measurement): BS 또는 UE가 수신된 빔포밍 신호의 특성을 측정하는 동작.
- 빔 결정(beam determination): BS 또는 UE가 자신의 전송 빔(Tx beam) / 수신 빔(Rx beam)을 선택하는 동작.
- 빔 스위핑(beam sweeping): 미리 결정된 방식으로 일정 시간 인터벌 동안 전송 및/또는 수신 빔을 이용하여 공간 도메인을 커버하는 동작.
- 빔 보고(beam report): UE가 빔 측정에 기반하여 빔포밍된 신호의 정보를 보고하는 동작.
BM 과정은 (1) SSB 또는 CSI-RS를 이용하는 DL BM 과정과, (2) SRS(sounding reference signal)을 이용하는 UL BM 과정으로 구분될 수 있다. 또한, 각 BM 과정은 Tx 빔을 결정하기 위한 Tx 빔 스위핑과 Rx 빔을 결정하기 위한 Rx 빔 스위핑을 포함할 수 있다.
이 때, DL BM 과정은 (1) BS에 의한 빔포밍된 DL RS들(예, CSI-RS 또는 SSB) 전송과, (2) UE에 의한 빔 보고(beam reporting)를 포함할 수 있다.
여기서, 빔 보고는 선호하는(preferred) DL RS ID(들) 및 이에 대응하는 참조 신호 수신 전력(reference signal received power, RSRP)를 포함할 수 있다. DL RS ID는 SSBRI(SSB Resource Indicator) 또는 CRI(CSI-RS Resource Indicator)일 수 있다.
도 15는 SSB와 CSI-RS를 이용한 빔포밍의 일례를 나타낸다.
도 15와 같이, SSB 빔과 CSI-RS 빔이 빔 측정(beam measurement)을 위해 사용될 수 있다. 측정 메트릭(measurement metric)은 자원(resource)/블록(block) 별 RSRP이다. SSB는 듬성한(coarse) 빔 측정을 위해 사용되며, CSI-RS는 미세한(fine) 빔 측정을 위해 사용될 수 있다. SSB는 Tx 빔 스위핑과 Rx 빔 스위핑 모두에 사용될 수 있다. SSB를 이용한 Rx 빔 스위핑은 다수의 SSB 버스트들에 걸쳐서(across) 동일 SSBRI에 대해 UE가 Rx 빔을 변경하면서 SSB의 수신을 시도함으로써 수행될 수 있다. 여기서, 하나의 SS 버스트는 하나 또는 그 이상의 SSB들을 포함하고, 하나의 SS 버스트 세트는 하나 또는 그 이상의 SSB 버스트들을 포함한다.
1. SSB를 이용한 DL BM
도 16은 SSB를 이용한 DL BM 과정의 일례를 나타낸 흐름도이다.
SSB를 이용한 빔 보고(beam report)에 대한 설정은 RRC_CONNECTED에서 채널 상태 정보(channel state information, CSI)/빔 설정 시에 수행된다.
- UE는 BM을 위해 사용되는 SSB 자원들에 대한 CSI-SSB-ResourceSetList를 포함하는 CSI-ResourceConfig IE를 BS로부터 수신한다(S1610). RRC 파라미터 csi-SSB-ResourceSetList는 하나의 자원 세트에서 빔 관리 및 보고를 위해 사용되는 SSB 자원들의 리스트를 나타낸다. 여기서, SSB 자원 세트는 {SSBx1, SSBx2, SSBx3, SSBx4, ...}으로 설정될 수 있다. SSB 인덱스는 0부터 63까지 정의될 수 있다.
- UE는 상기 CSI-SSB-ResourceSetList에 기초하여 SSB 자원들 상의 신호들을 상기 BS로부터 수신한다(S1620).
- SSBRI 및 참조 신호 수신 전력(reference signal received power, RSRP)에 대한 보고와 관련된 CSI-RS reportConfig가 설정된 경우, 상기 UE는 최선(best) SSBRI 및 이에 대응하는 RSRP를 BS에게 보고한다(S1630). 예를 들어, 상기 CSI-RS reportConfig IE의 reportQuantity가 'ssb-Index-RSRP'로 설정된 경우, UE는 BS으로 최선 SSBRI 및 이에 대응하는 RSRP를 보고한다.
UE는 SSB와 동일한 OFDM 심볼(들)에 CSI-RS 자원이 설정되고, 'QCL-TypeD'가 적용 가능한 경우, 상기 UE는 CSI-RS와 SSB가 'QCL-TypeD' 관점에서 유사 동일 위치된(quasi co-located, QCL) 것으로 가정할 수 있다. 여기서, QCL-TypeD는 공간(spatial) Rx 파라미터 관점에서 안테나 포트들 간에 QCL되어 있음을 의미할 수 있다. UE가 QCL-TypeD 관계에 있는 복수의 DL 안테나 포트들의 신호들을 수신 시에는 동일한 수신 빔을 적용해도 무방하다.
2. CSI-RS를 이용한 DL BM
CSI-RS 용도에 대해 살펴보면, i) 특정 CSI-RS 자원 세트에 대해 반복(repetition) 파라미터가 설정되고 TRS_info가 설정되지 않은 경우, CSI-RS는 빔 관리(beam management)를 위해 사용된다. ii) 반복 파라미터가 설정되지 않고 TRS_info가 설정된 경우, CSI-RS는 트랙킹 참조 신호(tracking reference signal, TRS)을 위해 사용된다. iii) 반복 파라미터가 설정되지 않고 TRS_info가 설정되지 않은 경우, CSI-RS는 CSI 획득(acquisition)을 위해 사용된다.
(RRC 파라미터) 반복이 'ON'으로 설정된 경우, UE의 Rx 빔 스위핑 과정과 관련된다. 반복이 'ON'으로 설정된 경우, UE가 NZP-CSI-RS-ResourceSet을 설정받으면, 상기 UE는 NZP-CSI-RS-ResourceSet 내 적어도 하나의 CSI-RS 자원의 신호들은 동일한 하향링크 공간 도메인 필터로 전송된다고 가정할 수 있다. 즉, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS 자원은 동일한 Tx 빔을 통해 전송된다. 여기서, NZP-CSI-RS-ResourceSet 내 적어도 하나의 CSI-RS 자원의 신호들은 서로 다른 OFDM 심볼로 전송될 수 있다.
반면, 반복이 'OFF'로 설정된 경우는 BS의 Tx 빔 스위핑 과정과 관련된다. 반복이 'OFF'로 설정된 경우, UE는 NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS 자원의 신호들이 동일한 하향링크 공간 도메인 전송 필터로 전송된다고 가정하지 않는다. 즉, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS 자원의 신호들은 서로 다른 Tx 빔을 통해 전송된다. 도 17은 CSI-RS를 이용한 DL BM 과정의 또 다른 일례를 나타낸다.
도 17(a)는 UE의 Rx 빔 결정(또는 정제(refinement)) 과정을 나타내며, 도 17(b)는 BS의 Tx 빔 스위핑 과정을 나타낸다. 또한, 도 17(a)는, 반복 파라미터가 'ON'으로 설정된 경우이고, 도 17(b)는, 반복 파라미터가 'OFF'로 설정된 경우이다.
도 17(a) 및 도 18(a)를 참고하여, UE의 Rx 빔 결정 과정에 대해 살펴본다.
도 18(a)는 UE의 수신 빔 결정 과정의 일례를 나타낸 흐름도이다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다(S1810). 여기서, 상기 RRC 파라미터 'repetition'이 'ON'으로 세팅되어 있다.
- UE는 상기 RRC 파라미터 'repetition'이 'ON'으로 설정된 CSI-RS 자원 세트 내의 자원(들) 상에서의 신호들을 BS의 동일 Tx 빔(또는 DL 공간 도메인 전송 필터)을 통해 서로 다른 OFDM 심볼에서 반복 수신한다(S1820).
- UE는 자신의 Rx 빔을 결정한다(S1830).
- UE는 CSI 보고를 생략한다(S1840). 즉, UE는 상가 RRC 파라미터 'repetition'이 'ON'으로 설정된 경우, CSI 보고를 생략할 수 있다.
도 17(b) 및 도 18(b)를 참고하여, BS의 Tx 빔 결정 과정에 대해 살펴본다.
도 18(b)는 BS의 전송 빔 결정 과정의 일례를 나타낸 흐름도이다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다(S1850). 여기서, 상기 RRC 파라미터 'repetition'이 'OFF'로 세팅되어 있으며, BS의 Tx 빔 스위핑 과정과 관련된다.
- UE는 상기 RRC 파라미터 'repetition'이 'OFF'로 설정된 CSI-RS 자원 세트 내의 자원들 상에서의 신호들을 BS의 서로 다른 Tx 빔(DL 공간 도메인 전송 필터)을 통해 수신한다(S1860).
- UE는 최상의(best) 빔을 선택(또는 결정)한다(S1870)
- UE는 선택된 빔에 대한 ID(예, CRI) 및 관련 품질 정보(예, RSRP)를 BS으로 보고한다(S1880). 즉, UE는 CSI-RS가 BM을 위해 전송되는 경우 CRI와 이에 대한 RSRP를 BS으로 보고한다.
도 19는 도 17의 동작과 관련된 시간 및 주파수 도메인에서의 자원 할당의 일례를 나타낸다.
CSI-RS 자원 세트에 repetition 'ON'이 설정된 경우, 복수의 CSI-RS resource들이 동일한 전송 빔을 적용하여 반복하여 사용되고, CSI-RS 자원 세트에 repetition 'OFF'가 설정된 경우, 서로 다른 CSI-RS resource들이 서로 다른 전송 빔으로 전송될 수 있다.
3. DL BM 관련 빔 지시(beam indication)
UE는 적어도 QCL(Quasi Co-location) 지시를 위한 최대 M 개의 후보(candidate) 전송 설정 지시 (Transmission Configuration Indication, TCI) 상태(state)들에 대한 리스트를 RRC 시그널링을 통해 수신할 수 있다. 여기서, M은 UE (capability)에 의존하며, 64일 수 있다.
각 TCI 상태는 하나의 참조 신호(reference signal, RS) 세트를 가지고 설정될 수 있다. 표 4는 TCI-State IE의 일례를 나타낸다. TCI-State IE는 하나 또는 두 개의 DL 참조 신호(reference signal, RS) 대응하는 유사 공동-위치(quasi co-location, QCL) 타입과 연관된다.
표 4에서, 'bwp-Id'는 RS가 위치되는 DL BWP를 나타내며, 'cell'은 RS가 위치되는 반송파를 나타내며, 'referencesignal'은 타겟 안테나 포트(들)에 대해 유사 공동-위치의 소스(source)가 되는 참조 안테나 포트(들) 혹은 이를 포함하는 참조 신호를 나타낸다. 상기 타겟 안테나 포트(들)은 CSI-RS, PDCCH DMRS, 또는 PDSCH DMRS 일 수 있다.
4. QCL(Quasi-Co Location)
UE는 상기 UE 및 주어진 주어진 셀에 대해 의도된(intended) DCI를 가지는 검출된 PDCCH에 따라 PDSCH를 디코딩하기 위해, 최대 M개의 TCI-상태 설정들을 포함하는 리스트를 수신할 있다. 여기서, M은 UE 능력(capability)에 의존한다.
표 4에 예시된 바와 같이, 각각의 TCI-State는 하나 또는 두 개의 DL RS와 PDSCH의 DM-RS 포트 간에 QCL 관계를 설정하기 위한 파라미터를 포함한다. QCL 관계는 첫 번째 DL RS에 대한 RRC 파라미터 qcl-Type1과 두 번째 DL RS에 대한 qcl-Type2 (설정된 경우)를 가지고 설정된다.
각 DL RS에 대응하는 QCL 타입은 QCL-Info 내 파라미터 'qcl-Type'에 의해 주어지며, 다음 값 중 하나를 취할 수 있다:
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}
예를 들어, 타겟 안테나 포트가 특정 NZP CSI-RS 인 경우, 해당 NZP CSI-RS 안테나 포트들은 QCL-Type A관점에서는 특정 TRS와, QCL-Type D관점에서는 특정 SSB과 QCL되었다고 지시/설정될 수 있다. 이러한 지시/설정을 받은 UE는 QCL-TypeA TRS에서 측정된 도플러, 딜레이 값을 이용해서 해당 NZP CSI-RS를 수신하고, QCL-TypeD SSB 수신에 사용된 수신 빔을 해당 NZP CSI-RS 수신에 적용할 수 있다.
빔 실패 복구(beam failure recovery, BFR) 과정
빔포밍된 시스템에서, RLF(Radio Link Failure)는 UE의 회전(rotation), 이동(movement) 또는 빔포밍 블로키지(blockage)로 인해 자주 발생할 수 있다. 따라서, 잦은 RLF가 발생하는 것을 방지하기 위해 BFR이 NR에서 지원된다. BFR은 무선 링크 실패 복구 과정과 유사하고, UE가 새로운 후보 빔(들)을 아는 경우에 지원될 수 있다.
빔 실패 검출을 위해, BS는 UE에게 빔 실패 검출 참조 신호들을 설정하고, 상기 UE는 상기 UE의 물리 계층으로부터의 빔 실패 지시(indication)들의 횟수가 BS의 RRC 시그널링에 의해 설정된 기간(period) 내에 RRC 시그널링에 의해 설정된 임계치(threshold)에 이르면(reach), 빔 실패를 선언(declare)한다.
빔 실패가 검출된 후, 상기 UE는 PCell 상의 임의 접속 과정을 개시(initiate)함으로써 빔 실패 복구를 트리거하고; 적절한(suitable) 빔을 선택하여 빔 실패 복구를 수행한다(BS가 어떤(certain) 빔들에 대해 전용 임의 접속 자원들을 제공한 경우, 이들이 상기 UE에 의해 우선화된다). 상기 임의 접속 절차의 완료(completion) 시, 빔 실패 복구가 완료된 것으로 간주된다.
RRM (Radio Resource Management) 측정 (Measurement)
무선 통신 시스템에서는 전력 제어(Power control), 스케줄링(Scheduling), 셀 탐색(Cell search), 셀 재선택(Cell reselection), 핸드오버(Handover), 무선 링크 또는 연결 모니터링(Radio link or Connection monitoring), 연결 획득/재획득 (Connection establish/re-establish)등을 포함하는 RRM 동작을 지원한다. 이 때, 서빙 셀(Serving Cell)은 UE에게 RRM 동작을 수행하기 위한 측정 값인 RRM 측정(measurement) 정보를 요청할 수 있다. 특히, UE는 각 셀(Cell)에 대한 셀 탐색(Cell search) 정보, RSRP (reference signal received power), RSRQ (reference signal received quality) 등의 정보를 측정하여 보고할 수 있다. 구체적으로, UE는 서빙 셀로부터 RRM 측정을 위한 상위 계층 신호로 'measConfig'를 수신한다. 그러면, UE는 상기 'measConfig'의 정보에 따라 RSRP 또는 RSRQ를 측정한다. 여기서 NR 시스템의 TS 38.215 문서에 따른 RSRP, RSRQ 및 RSSI의 정의는 아래와 같다.
- RSRP: RSRP는 측정 주파수 대역폭 내에서 전송되는, 셀 특정 참조 신호들(Cell specific reference signal; CRS) 또는 CSI-RS (Channel State Information - Reference Signal)의 자원 요소 (Resource Element; RE)의 전력 기여도([W])에 대한 선형 평균으로 정의된다. 특히, NR에서는 SSS (Secondary Synchronization Signal)의 자원 요소의 전력 기여도([W])에 대한 선형 평균으로 RSRP가 정의될 수도 있다.
또한, RSRP 결정을 위해 TS 36.211에 따른 CRS R0가 사용된다. 경우에 따라, 신뢰성을 높이기 위하여, CRS R1이 추가로 이용될 수도 있다. RSRP를 위한 기준 점은 UE의 안테나 커넥터가 되어야 하며, 수신 다이버시티가 사용되는 경우, 보고되는 RSRP값은 개별 다이버시티들 중 어느 하나의 RSRP보다 낮아서는 안된다.
- RSRQ: RSRQ는 N*RSRP/(E-UTRA/NR 반송파의 RSSI 또는 CSI-RSSI)로 정의된다. 이 때, N은 E-UTRA/NR 반송파 RSSI 측정 대역폭 또는 CSI-RSSI 측정 대역폭의 RB 수이다. 이 때, 'N*RSRP'의 측정과, 'E-UTRA/NR 반송파의 RSSI 또는 CSI-RSSI'의 측정은 동일한 자원 블록 집합(RB set)을 통해 수행된다.
- RSSI: 수신기 펄스 정형 필터(Receiver Pulse Shaping Filter)에 의해 정의되는 대역폭 내에서 생성되는 잡음 및 열잡음을 포함하는 광대역 수신 전력(received wide band power)을 의미한다. 이 때에도, RSSI를 위한 기준 점은 UE의 안테나 커넥터가 되어야 하며, 수신 다이버시티가 사용되는 경우, 보고되는 RSSI값은 개별 다이버시티들 중 어느 하나의 RSSI보다 낮아서는 안 된다.
한편, 본 제안의 설명에 앞서, 본 제안에서 설명하는 장치 A(Device A) 또는 장치 B(Device B)는 특정 장치에 한정되어 해석되는 것이 아니며, 도 24 내지 도 28에 언급된 것과 같은 다양한 장치들에 적용되어 해석할 수 있다.
예를 들어, 도 22 내지 23의 장치 A(Device A) 및 장치 B(Device B)는 모두 D2D 통신을 수행하기 위한 D2D UE일 수 있으며, 장치 A(Device A)는 gBN이고, 장치 B(Device B)는 D2D UE일 수 있다. 또한, 도 22 내지 도 23 에서 설명되는 장치 A(Device A)는 gNB에서 전송되는 신호를 장치 B(Device B)로 전달하기 위한 릴레이 UE로 동작할 수도 있다.
본 제안의 설명에 앞서, 본 제안에서 사용하는 용어들의 정의 및/또는 기술적 의의를 설명하도록 한다.
(1) 전송 빔 포밍(Beamforming), 다중 빔 스위핑(Multi-beam seeping), 전송 빔 선택(Tx Beam Selection), 수신 빔 포밍(Beamforming), 수신 빔 트랙킹(Rx Beam Tracking) 및 빔 관리(Beam management)
고주파 대역은 저주파 대역 보다 상대적으로 신호 감쇄가 크게 발생한다. 따라서, 저주파 및 고주파 대역을 사용하는 통신 시스템에서, 고주파 대역의 신호 감쇄를 극복하고, 저주파 대역의 '통신 커버리지(coverage)'와 유사한 크기의 커버리지를 확보하기 위하여 다중 안테나를 사용하는 것을 고려하고 있다. 즉, 다중 안테나를 사용하여 EIRP (Effective Isotropic Radiated Power)를 상승시키는 방안을 고려 중인 것이다. 빔포밍(Beamforming)을 통해 EIRP를 높여주는 경우 먼 거리까지 신호를 전송할 수 있는 장점이 있다. 반면, 빔포밍을 사용하는 경우, 3dB 감쇄가 발생하는 빔(Beam)폭이 좁아지기 때문에 하나의 빔을 통해 넓은 지역에 분포한 여러 수신단들에 한번에 신호를 전송하기 어려운 단점이 있다. 또한, 특정 수신단과 통신을 하는 경우에 송신단은 상기 특정 수신단의 위치를 알 수 없기 때문에 전송에 사용할 전송 빔(beam)을 임의로 선택하는 경우, 송신단과 수신단 간의 통신이 불가능할 수도 있다.
상술한 빔포밍의 단점들을 해결하기 위해, 여러 방향을 지향하는 좁은 폭의 빔(beam)을 여러 시간에 걸쳐 전송하는 '다중 빔 스위핑(Multi-beam sweeping)' 방식과 특정 수신단에게 적합한 전송 빔(beam)을 상기 특정 수신단에서 전송한 보고 정보를 기반으로 선택적으로 사용하는 '전송 빔 선택(Beam selection)' 방식을 활용할 수 있다. 다중 빔 스위핑(Multi-beam sweeping)을 활용하면, 주로 넓은 지역에 분포한 불특정 수신단 혹은 수신단 그룹에게 정보를 전달할 수 있다. 예를 들어, 다중 빔 스위핑은 넓은 지역에 분포한 다수의 수신단에게 동기 신호, 시스템 정보, 페이징 정보 등을 전송하기 위해 사용될 수 있다. 또한, '전송 빔 선택(Beam selection)' 방식은 특정 수신단에게 전송하는 정보를 전달하기 위한 목적으로 사용된다. 이를 위해서 전송단은 서로 다른 방향을 지향하는 폭이 좁은 빔(narrowed beam)들을 수신단에게 전송하고, 해당 수신단은 전송된 빔들의 수신감도를 측정한 후, 각 빔들의 수신감도에 대한 측정 값들을 전송단에 보고할 수 있다. 또한, 전송단은 상기 수신단으로부터 보고된 측정 값들을 참고하여, 해당 수신단에게 적합한 전송 빔(Beam)을 선택할 수 있다.
한편, 전송단의 빔포밍(Beamforming) 뿐만 아니라 수신단에서도 빔포밍(Beamforming)을 수행하여, 수신단에서의 수신감도를 더욱 향상 시킬 수 있다. 그런데, 전송 빔 포밍(beamforming)과 마찬가지로 수신 빔포밍(Beamfomring)의 수신 빔(Beam) 폭이 좁을 수 있다. 이러한 경우, 특정 방향으로 수신 빔(Beam)을 지향하는 경우, 신호의 수신감도가 향상될 수 있지만, 다른 방향으로 수신 빔(Beam)을 지향하는 경우, 신호의 수신감도는 감쇄될 수 있다. 따라서, 가장 좋은 수신 감도를 가지는 빔(beam)을 찾기 위해서 수신단은 '수신 빔 추적(Beam tracking)'을 수행할 수 있다. 이를 위해, 전송단은 수신단에게 특정 전송 빔(beam)을 사용하여 특정 신호를 반복 전송하며, 수신단은 수신 빔(Beam)을 변경하면서 반복 전송되는 상기 특정 신호를 수신하여, 각 수신 빔에 대한 수신 감도를 측정할 수 있다. 그리고, 수신 감도가 가장 좋은 수신 빔(Beam)을 선택하고, 해당 수신 빔을 이용하여 제어/데이터 채널을 수신할 수 있다.
결론적으로, 전송 빔(Beam)과 수신 빔(Beam)의 방향이 적절하게 페이(pair)될 때, 수신단의 수신감도는 향상될 수 있는데, 이와 같이 수신단의 수신 감도를 향상 시킬 수 있는 전송 빔(Beam) 및 수신 빔(Beam)을 '송수신 빔 페어(Beam pair)'라고 한다. 한편, 이러한 송수신 빔 페어는 무선 채널 환경이 변경됨에 따라서, 변경된 무선 채널 환경에서 수신 감도가 좋은 전송 빔(Beam) 및 수신 빔(Beam)으로 변경 될 수 있다. 한편, NR 시스템에서는, 상술한 바와 같이 채널이 변경되는 환경에서도 특정 수준 이상의 수신 감도를 유지할 수 있도록 하는 것이 중요하다. 따라서, 적절한 '송수신 빔 페어(Beam Pair)'를 적응적으로 변경하는 '빔 관리(Beam Management)'는 '전송 빔 선택(Beam Selection)'을 위해서는 중요할 수 있다.
(2) SSB (Synchronization Signal Block)
전송단과 수신단의 시간 동기를 위해서 전송단은 동기신호를 포함하는 '신호 및 채널의 묶음'을 전송한다. 여기서 '신호 및 채널의 묶음'은 적어도 동기 신호를 포함하며, 시스템 정보를 전달하는 채널, 시간 정보를 전달하는 신호, 채널 품질을 측정하기 위해 전달하는 신호 중 적어도 일부를 포함시켜 구성될 수 있다. 본 제안에서는 편의상 '신호 및 채널의 묶음'을 SSB (Synchronization Signal Block)이라고 한다.
예를 들어, SSB에는 PSS (Primary Synchronization Signal), SSS (Secondary Synchronization Signal) 및 PBCH (Physical Broadcast Channel) 등이 포함될 수 있다.
(3) SSB의 QCL (Quasi Co Location)
SSB의 신호와 채널은 도플러 시프트(Doppler shift), 도플러 확산(Doppler spread) 및 평균 지연(Average Delay)등 무선 채널을 구성하는 요소가 거의 유사해서 동일한 채널 상태로 가정할 수 있는 것을 의미할 수 있다. 예를 들어, 전송단의 동일한 전송 빔(Beam)과 수신단의 동일한 수신 빔(Beam)을 사용하여 '신호 및 채널의 묶음'을 수신하는 경우에 무선 채널이 거의 유사하다고 할 수 있다.
전송단은 일정 시간 범위 안에서 하나 이상의 SSB를 다른 시간에 반복 전송할 수 있고, 이 때, 전송단은 동일한 송신 빔(Beam)으로 SSB들을 반복 전송하거나 서로 다른 송신 빔(Beam)으로 SSB들을 전송할 수 있다. 만약, 전송단이 동일한 송신 빔(Beam)으로 SSB들을 반복 전송하고, 수신단에서 다수의 수신 빔(Beam)들을 생성할 수 있다면, 수신단은 동일한 수신 빔(Beam)으로 반복 전송된 SSB들을 수신할 수도 있고, 수신 빔(Beam)을 변경하면서 SSB들을 수신할 수도 있고, 수신 빔을 변경해가면서 SSB에 포함된 신호 및 채널들을 수신할 수도 있다.
또한, 전송단이 복수의 SSB들을 전송할 때, 각각의 SSB들을 전송하는 송신 빔(Beam)을 변경하는 경우, 수신단은 단일 빔(Beam)으로 신호를 수신할 수 있다. 이러한 경우, 각 SSB들이 전달되는 무선 채널의 상태 (도플러 시프트, 도플러 확산, 평균 지연, 빔 송신 공간(spatial) 등)는 서로 같지 않다고 가정될 수 있다.
(4) 안테나 포트 (Antenna port)
SSB는 단일 '안테나 포트'로 전송된다. 여기서 '안테나 포트'는 논리적 개념(Logical concept)이고, 실제 물리 안테나의 종단을 의미하는 것은 아니다. 다시 말해, 이러한 안테나 포트는 전송단을 기준으로 신호나 채널이 전달되는 무선 채널 경로를 생성하는 단위라고 볼 수 있다.
예를 들어, 전송단이 N개의 전송 물리 안테나를 가지고 있고, 개별 안테나를 통해 서로 다른 신호나 채널을 전송한다면 N개의 안테나 포트(Antenna port)로 신호를 전송함을 의미할 수 있다. 이 때, 수신단은 N개 이상의 수신 안테나를 가지고 있어야 전송단의 N개 안테나 포트(Antenan port)로 전송된 신호를 구분해 낼 수 있다. 다른 예로, 전송단이 N개의 전송 안테나를 가지고 있지만 개별 안테나에서 모두 동일한 신호 혹은 채널을 전송한다면 1개의 안테나 포트(Antenna port)로 전송됨을 의미할 수 있다. 이러한 경우, N개의 전송 안테나를 통해 공중(Air)으로 방사된 신호들은 서로 섞이게 되는데, 동일한 신호 혹은 채널들이 전달되는 무선 채널은 하나의 무선 채널이 된다. 이 때, 수신단은 1개의 수신 안테나가 있어도 신호를 복조할 수 있다.
실제 물리 안테나가 많이 있는 환경에서, 아날로그 빔포머(Analog beamformer)가 전송 빔(Beam) 또는 수신 빔을 형성하는 경우, '동일 시간에 방사할 수 있는 전송 빔(Beam)'의 수가 최대 '안테나 포트(Antenna port)'의 수를 규정하는 단위가 될 수 있다. 예를 들어, 2개의 빔(Beam)을 동시에 전송할 수 있다면, 최대 2개의 안테나 포트(Antenna port)를 사용할 수 있음을 의미하고, 2개의 전송 빔(Beam)으로 서로 다른 신호 및 채널을 전송한다면, Two Antenna ports 전송이라고 할 수 있고, 2개의 전송 빔(Beam)으로 동일한 신호 및 채널을 전송한다면 Single Antenna port 전송이라고 할 수 있다.
한편, IEEE 802.11ad/ay 및 3GPP 5G NR 시스템 (이하, NR 시스템)은 고주파 대역의 신호 감쇄를 감소시키기 위한 방법으로 다중 안테나를 사용하는 빔포밍(Beamforming)을 고려하고 있다.
IEEE 802.11ad의 빔 관리(Beam management)는 2 단계로 수행될 수 있다. 고주파 대역에서 무선통신을 수행하는 제 1 무선 기기 (이하, 'Alpha') 및 제 2 무선 기기(이하, 'Bravo')가 존재한다고 가정하고, 상기 빔 관리를 위한 2 단계 과정을 살펴보도록 한다.
1) 제 1 무선기기 'Alpha'는 빔(Beam) 폭이 좁은 복수의 빔(beam)들을 여러 시간에 걸쳐 전송하는데, 이 때, 제 2 무선기기 'Bravo'는 빔(Beam) 폭이 넓은 특정 빔(Beam)을 사용하여 'Alpha'가 복수의 전송 빔들을 통해 전송하는 특정 신호들을 수신하고, 상기 복수의 전송 빔 각각을 통해 전송되는 특정 신호들 각각의 신호 세기를 측정하여 가장 적합하다고 판단되는 전송 빔(Beam)을 선택할 수 있다. 이후, 'Bravo'는 빔(Beam) 폭이 좁은 복수의 빔들을 여러 시간에 걸쳐 전송하고, 'Alpha'는 빔(Beam) 폭이 넓은 특정 빔(Beam)을 사용하여 특정 신호를 수신할 수 있다.
2) 'Bravo'는 'Alpha'가 전송한 빔(beam)들 중 수신 감도가 높은 전송 빔(Beam)에 대한 정보를 'Alpha'에게 전달하고, 'Alpha' 또한 'Bravo'가 전송한 빔들 중 수신 감도가 높은 전송 빔(beam)의 정보를 'Bravo'에게 전달함으로써, 'Alpha'와 'Bravo' 간 빔 페어링(Beam Pairing)을 수행할 수 있다.
한편, 3GPP 5G NR 시스템에서는 초기 접속 단계에서의 빔 관리와 RRC CONNECTED 상태에서의 빔 관리(Beam management)가 구분될 수 있다.
초기 접속 단계 혹은 RRC IDLE/INACTIVE 상태에서 UE (User Equipment)는 DL(Downlink, 하향링크)에서 서로 다른 전송 빔들을 통해 여러 방향으로 전송된 다수의 SSB(Synchronization Block)들을 특정 수신 빔(Beam)을 통해 수신할 수 있다. 그리고 RSRP (Reference Signal Received Power)와 같은 각 SSB별 수신 감도를 측정하여 수신 감도가 좋은 전송 빔(beam)을 선택할 수 있다. 만약, UE가 복수의 수신 빔들을 사용한다면, 수신 빔(beam)을 변경하면서 여러 시간에 걸쳐 SSB를 수신할 수 있고, 각 수신 빔(Beam) 별로 SSB 들의 수신감도를 측정하여, 수신 감도가 좋은 수신 빔(Beam)과 수신 감도가 좋은 SSB (즉, 전송 빔)를 선택할 수 있다. NR 시스템에서는 SSB들과 RACH 자원들을 연관시킬 수 있다.
따라서, UE가 RACH 자원을 선택하여 RACH 프리앰블을 전송할 때 특정 SSB과 연관된 적어도 하나의 RACH 자원들 중 하나의 RACH 자원을 통해 RACH 프리앰블을 gNB로 전송하고, 이에 따라, gNB는 상기 RACH 프리앰블이 전송된 RACH 자원을 기반으로 해당 UE가 선택한 전송 빔의 정보를 알 수 있다.
반면, RRC CONNECTED 상태에서는 gNB가 DL로 전송한 다수의 SSB들 혹은 CSI-RS (Channel State Information-Reference Signal)들을 UE가 수신할 수 있다. UE는 상기 수신된 다수의 SSB들 또는 CSI-RS들 각각의 수신 감도를 측정한 후, SSB 인덱스 또는 CRI (CSI-RS resource Indicator)와 같은 적어도 하나의 빔 인덱스 및/또는 적어도 하나의 빔에 대한 수신 감도를 gNB에게 보고할 수 있다. 이 때, UE가 다수의 수신 빔들(Beam)을 통해 DL 신호들을 수신하면, UE는 복수의 수신 빔들 중, 적절한 수신 빔(Beam)을 찾아 gNB에게 보고할 수 있다. gNB는 보고된 정보를 바탕으로 수신 감도가 좋은 송신 빔(Beam)의 정보를 획득할 수 있다. 이 때, gNB는 해당 전송 빔(Beam)으로 신호를 전송하면, UE는 적절한 수신 빔(Beam)으로 신호를 수신할 것을 예상할 수 있다. 또한, 특정 시간에 gNB는 UE에게 정보 전송을 위해 사용할 전송 빔(Beam)에 대한 정보를 전달할 수 있다. 즉, UE가 gNB에게 상기 UE가 선호하는 수신 빔(Beam)에 대한 정보를 gNB에 보고하지 않더라도, gNB와 UE는 신호 전송에 사용할 적절한 송수신 빔이 페어된 것으로 인지할 수 있다.
그런데, 고주파 대역에서 전송단 및 수신단이 사용하는 송수신 빔(Beam)의 수가 많은 경우, 적절한 송수신 빔 페어(Beam pair)를 찾기 위해서 후보 송신 빔(Beam)과 후보 수신 빔(Beam)의 조합으로 생성되는 무선 채널들의 품질을 측정하고, 측정한 채널 품질 정보를 바탕으로 우수한 송수신 빔 페어(Beam pair)를 선택할 수 있다. 하지만, 이러한 경우, 적절한 빔 페어(Beam Pair)를 찾기 위해 요구되는 시간이 길고, 또한 수신단의 계산 복잡도가 상당히 커지는 단점이 있다.
특히, 고속 이동 환경에서는 채널이 급격히 변경될 수 있는데, 오랜 시간에 걸쳐 찾은 빔 페어(Beam pair)는 채널이 변하면 유지되기 어려울 수도 있다. 이러한 경우, 수신단이 빔 페어(Beam pair)를 찾기 위한 과정을 더 자주 수행해야 할 수도 있다. 또한, 고주파 대역에서 사용하는 빔(Beam)은 그 폭이 좁아서 송신 빔(Beam)과 수신 빔(Beam)이 어긋나, 적절한 빔 페어가 유지되지 않을 가능성이 있고, 이렇게 되면, 무선 채널의 품질이 급격히 악화될 수도 있다.
따라서, UE 또는 D2D 통신 장치가 보고한 빔(Beam) 별 채널 품질 정보를 바탕으로 gNB 또는 인접 D2D 통신 장치가 빔 페어(Beam Pair)를 결정하고, 상기 빔 페어에 대한 정보 또는 전송 빔에 대한 정보를 UE 또는 D2D 통신 장치에게 전달하여 빔 페어를 변경한다면, 빔 페어의 변경에 많은 시간이 요구되어, 고속 이동 환경에서는 적합하지 않을 수도 있다. 그러므로, 고주파 대역에서 사용하는 후보 빔(Beam)들의 수가 많은 환경에서 적절한 빔 페어(Beam pair)를 찾기 위한 시간을 줄이고, 적절한 빔 페어(Beam pair)를 채널 상황에 맞게 변경할 수 있는 빔 관리(Beam management) 방법이 요구될 수 있다.
도 20 내지 도 21은 본 개시의 실시 예에 따른 UE 또는 gNB의 동작 구현 예를 설명하기 위한 도면이다.
본 개시에서는, 저주파 대역에서 무선 통신을 위하여 초기 접속 절차를 수행하고, RRC CONNECTED 상태에 있는 UE 또는 D2D 통신 장치가 고주파 대역에서의 다중 빔(Beam) 송수신을 위한 빔 관리(Beam Management)에 있어서, 전송 빔(Beam)에 대한 채널 정보는 저주파 대역을 통해 gNB 또는 인접 장치에게 보고하고, 실제 신호 전송에 사용될 전송 빔(Beam)에 대한 정보는 저주파 대역 또는 고주파 대역을 통해 gNB 또는 인접 장치가 UE 또는 D2D 통신 장치에게 전달할 수 있다.
이에 대해 구체적으로 도 20을 참조하여 살펴보도록 한다. 도 20의 동작을 수행하는 무선 장치는 D2D 통신을 수행하는 UE일 수도 있고, UE와 빔 페어를 수행하기 위한 gNB일 수도 있다.
도 20에 따른 무선 장치는, 고주파 대역에서 복수의 전송 빔(Beam)들로 빔포밍(Beamforming)된 참조 신호를 전송할 수 있다. 이 때, 상기 빔포밍 된 참조 신호는 복수의 SSB들을 포함하는 SSB 집합(set) 또는 복수의 CSI-RS 자원들을 포함하는 CSI-RS 자원 집합일 수 있으며, 복수의 SSB들 각각 및/또는 CSI-RS 자원들 각각은 서로 다른 전송 빔과 연관되어 있을 수 있다(S2001). 또한, 고주파 대역에서 동일한 전송 빔(Beam)을 통해 참조 신호를 반복 전송할 수 있고, 이와 동일한 전송 빔(Beam)을 통해 제어/공유 채널을 전송할 수 있다.
또한, 상기 무선 장치는 저주파 대역을 통해서 복수의 전송 빔들 각각에 관련된 정보를 수신할 수 있다. 이 때, 상기 정보에는 다른 무선 장치가 선택한 전송 빔에 대한 정보를 포함할 수 있으며, 이러한 선택은 RSRP와 같이 각 전송 빔의 수신 감도와 관련된 값에 의해 결정될 수 있다. 또한, 상기 정보에는 이러한 수신 감도와 관련된 값을 기반으로 선택된 전송 빔에 대응하는 SSB 인덱스 및/또는 CRI 가 포함될 수 있다(S2003).
그 후, 무선 장치는 고주파 대역에서 특정 전송 빔을 통해 제어 채널 및/또는 데이터 채널을 다른 무선 장치에 전송할 수 있다. 이 때, 상기 특정 전송 빔은 상기 다른 무선 장치가 전송한 전송 빔에 대한 정보를 기반으로 무선 장치가 선택할 수 있다. 하지만, 무선 장치는 상기 전송 빔에 대한 정보에 포함된 전송 빔과 다른 전송 빔을 사용하여 제어 채널 및/또는 데이터 채널을 전송할 수도 있다. 즉, 무선 장치는 제어 채널 및/또는 데이터 채널을 전송하기 위한 전송 빔을 선택할 때, 다른 무선 장치가 전송한 전송 빔에 대한 정보에 제약되지 않을 수 있다(S2005).
도 21은 다른 무선 장치의 동작 구현 예를 설명하기 위한 도면이다. 도 21에 따른 다른 무선 장치는 UE일 수 있으며, 도 20의 무선 장치가 D2D 통신을 수행하는 UE인 경우, 다른 무선 장치 또한 D2D 통신을 수행하는 UE일 수 있다.
도 21에 따른 다른 무선 장치는 고주파 대역에서 복수의 전송 빔(Beam)들로 빔포밍(Beamforming)된 참조 신호를 수신할 수 있다. 이 때, 상기 빔포밍 된 참조 신호는 복수의 SSB들을 포함하는 SSB 집합(set) 또는 복수의 CSI-RS 자원들을 포함하는 CSI-RS 자원 집합일 수 있으며, 복수의 SSB들 각각 및/또는 CSI-RS 자원들 각각은 서로 다른 전송 빔과 연관되어 있을 수 있다(S2101). 또한, 고주파 대역에서 동일한 전송 빔(Beam)을 통해 참조 신호를 반복 수신할 수 있고, 이와 동일한 전송 빔(Beam)을 통해 제어/공유 채널을 수신할 수 있다.
또한, 다른 무선 장치는 저주파 대역을 통해서 복수의 전송 빔들 각각에 관련된 정보를 무선 장치로 전송할 수 있다. 이 때, 상기 정보에는 다른 무선 장치가 선택한 전송 빔에 대한 정보를 포함할 수 있으며, 다른 무선 장치는 RSRP와 같이 각 전송 빔의 수신 감도와 관련된 값에 의해 전송 빔을 선택할 수 있다. 또한, 상기 정보에는 이러한 수신 감도와 관련된 값을 기반으로 선택된 전송 빔에 대응하는 SSB 인덱스 및/또는 CRI 가 포함될 수 있다(S2103).
그 후, 다른 무선 장치는 고주파 대역에서 특정 전송 빔을 통해 제어 채널 및/또는 데이터 채널을 무선 장치로부터 수신할 수 있다. 이 때, 상기 특정 전송 빔은 상기 다른 무선 장치가 전송한 전송 빔에 대한 정보를 기반으로 무선 장치가 선택할 수 있다. 하지만, 무선 장치는 상기 전송 빔에 대한 정보에 포함된 전송 빔과 다른 전송 빔을 사용하여 제어 채널 및/또는 데이터 채널을 전송할 수도 있다. 즉, 무선 장치는 제어 채널 및/또는 데이터 채널을 전송하기 위한 전송 빔을 선택할 때, 다른 무선 장치가 전송한 전송 빔에 대한 정보에 제약되지 않을 수 있다(S2105).
한편, 본 개시에서 언급하는 고주파 대역 및 저주파 대역은 동일 셀 내에 포함된 대역들일 수도 있으나, 서로 다른 셀에 포함되는 대역일 수도 있다. 예를 들어, 저주파 대역은 PCell에 포함된 대역이고, 고주파 대역은 SCell에 포함된 대역일 수도 있다.
또한, 저주파 대역 및 고주파 대역은 PCell, SCell, PSCell 및/또는 sPCell에 포함된 BWP (Bandwidth Part)일 수도 있다. 또한, 저주파 대역 및 고주파 대역이 서로 다른 셀에 포함되어 있다면, 본 개시의 동작 구현을 위해서 저주파 대역의 셀과 고주파 대역의 셀이 반송파 집성(Carrier Aggregation; CA) 방식으로 동작할 수도 있다. 이 때, 예를 들면, PCell 및 SCell 각각에 포함된 고주파 대역 및/또는 저주파 대역에 대한 정보 (예를 들면, 전송 빔과 관련된 정보 등)은 PCell의 PUSCH (Physical Uplink Shared Channel)를 통해 전송될 수도 있다.
이제 도 22를 참조하여, 저주파 및 고주파 대역을 사용하여 신호 및 채널을 전송하는 실시 예에 대해서 살펴보도록 한다.
(1) [State #0]
무선 통신을 위해서 RRC IDLE 혹은 RRC INACTIVE 상태에 있는 D2D UE를 포함하는 UE(이하, '제 2 UE')가 저주파 대역에 RRC CONNECTION, SESSION/LINK ESTABLISHMENT 및/또는 COMMUNICATION LINK SETUP 상태로 천이된 경우를 가정하자.
gNB 또는 D2D UE (이하, '제 1 UE')와 같은 무선 장치는 고주파 대역 통신을 위해서 고주파 대역에 대한 정보를 제 2 UE에게 저주파 대역을 통해 전송할 수 있다. 이 때, 상기 고주파 대역에 대한 정보에는 신호 및 채널 구성 정보, 주파수 위치 및/또는 상태(State) 변경 정보 등이 포함될 수 있다. 여기서, 상태 변경 정보는 본 실시 예에 따른 State #0~State #3 중, 어느 상태(state)의 동작을 수행할지에 대한 정보일 수 있다.
저주파 대역을 통해 상기 고주파 대역에 대한 정보를 수신한 제 2 UE는 gNB 또는 제 1 UE가 전송한 제어/데이터 채널을 디코딩(Decoding)하여 상태(State) 변경 정보를 획득한 후, 고주파 대역을 통해 전송되는 신호를 수신하기 위한 준비 및/또는 대기할 수 있다. 예를 들어, 상기와 같은 고주파 대역에 대한 정보는 도 22의 X state에서 볼 수 있는 것과 같이, DCI (Downlink Control Information) 또는 SCI (Sidelink Control Information)을 통해 전송될 수 있다.
(2) [State #1]
gNB 또는 제 1 UE가 제 2 UE에게 현재 신호를 전송하는데 사용하고 있는, 전송 빔(Beam) 정보가 유효하지 않은 경우에 gNB 또는 D2D UE는 특정 시간 구간에서 고주파 대역의 후보 전송 빔들을 통해 SSB 및/또는 CSI-RS와 같은 참조 신호를 반복 전송할 수 있다. 여기서, 전송 빔 정보가 유효하지 않은 경우는, 예를 들면, 제 2 UE가 초기 접속 상태, 빔 복구(Beam Recovery) 상태, 핸드 오버(Hand over) 상태, 장치 발견(discovery) 중인 경우 등이 있을 수 있다.
이 때, 특정 전송 빔(beam)으로 빔포밍된 참조 신호들을 반복 전송할 수 있다. 서로 다른 빔을 통해 빔포밍된 참조 신호들이 전송된다면, 제 2 UE는 고주파 대역에서 전송된 빔포밍된 참조 신호를 특정 수신 빔을 통해 수신하고, 각 전송 빔(Beam)로 전송된 참조신호들의 채널 상태를 측정할 수 있다. 만약, 동일 전송 빔(Beam)으로 참조 신호가 반복 전송된다면, 제 2 UE는 수신 빔을 변경하면서 상기 빔포밍된 참조 신호를 수신할 수 있다. 한편, 반복 전송되는 참조 신호는 SSB, CSI-RS 또는 DMRS (Demodulation Reference Signal) 중 적어도 하나일 수 있다.
제 2 UE는 상기 빔포밍된 참조 신호를 기반으로 측정한 채널 상태 정보를 저주파 대역을 통해 gNB 또는 제 1 UE에게 보고할 수 있다. gNB 또는 제 1 UE는 제어/데이터 채널 전송을 위해 사용할 전송 빔을 선택하고, 상기 선택된 전송 빔에 대한 정보를 제 2 UE에게 저주파 대역을 통해 전달할 수 있다. 또한, 제 2 UE는 저주파 대역을 통해 전달 받은 제어/데이터 채널을 디코딩하여 gNB 또는 제 1 UE가 전달한 선택된 전송 빔에 대한 정보를 수신할 수 있다. 이 때, 상기 선택된 전송 빔에 대한 정보는 도 22의 X state에서 볼 수 있는 것과 같이, DCI (Downlink Control Information) 또는 SCI (Sidelink Control Information)을 통해 전송될 수 있다.
또한, 제 2 UE는 저주파 대역을 통해 gNB 또는 제 1 UE에게 상태(State) 변경 요청 정보를 전송하고, gNB 또는 제 1 UE는 제 2 UE에게 상태(State) 변경 정보를 저주파 대역을 통해 전송할 수 있다. 여기서, 상태 변경 정보는 본 실시 예에 따른 State #0~State #3 중, 어느 상태(state)의 동작을 수행할지에 대한 정보일 수 있다. 제 2 UE는 gNB 또는 제 1 UE가 전송한 제어/데이터 채널을 디코딩하여 상태(State) 변경 정보를 획득한 후, 고주파 대역을 통한 신호 수신을 준비하거나 대기할 수 있다. 예를 들어, 여기서 상태 변경 정보 또한 도 22의 X state에서 볼 수 있는 것과 같이, DCI (Downlink Control Information) 또는 SCI (Sidelink Control Information)을 통해 전송될 수 있다.
(3) [State #2]
고주파 대역을 통해 gNB 또는 제 1 UE와 제 2 UE가 특정 전송 빔(Beam)을 통해 참조 신호(Reference Signal)과 제어/데이터 채널을 전송할 수 있다. 이 때, 참조 신호는 동일한 전송 빔을 통해 반복전송하고, 제 2 UE는 일정 시간 구간 동안 수신 빔(Beam)을 변경하면서 참조 신호를 수신함으로서, 고주파 대역에서 사용할 적절한 수신 빔(Beam)을 찾을 수 있다. 이 때, 수신 빔을 찾기 위해, 수신 빔 변경을 위해 필요한 시간 갭(gap)이 있을 수 있는데, 이러한 시간 갭 동안에는 제어/데이터 채널 등을 수신하지 못할 수 있다.
gNB 또는 제 1 UE는 제 2 UE에게 고주파 대역을 통해 제어/데이터 채널 및/또는 신호를 전송하고, 제 2 UE는 적절한 수신 빔(Beam)을 통해 gNB 또는 제 1 UE가 전송한 채널 및/또는 신호를 수신할 수 있다. gNB 또는 제 1 UE는 전송에 고주파 대역을 통해 복수의 전송 빔들을 사용하여 참조 신호를 전송할 수 있다. 이 때, 참조 신호를 전송하는데 사용되는 복수의 전송 빔들에는 현재 사용 중인 전송 빔(Beam) 제외될 수도 있다.
또한, 상기 복수의 전송 빔들은 현재 사용중인 전송 빔과 주위로 전송되는 전송 빔들일 수 있다. 즉, 제 2 UE가 이동하여 현재 사용 중인 전송 빔과 수신 빔 간의 페어가 끊어졌더라도, 상기 페어되었던 수신 빔은 페어되었던 전송 빔 주위의 전송 빔과 적절한 페어를 이룰 수 있는 확률이 크므로, gNB 또는 제 1 UE는 현재 사용중인 전송 빔 주위의 전송 빔들을 통해 참조 신호를 전송함으로써, 새로운 빔 페어를 찾는데 필요한 시간을 단축시킬 수 있다.
제 2 UE는 참조 신호를 수신하여 채널 상태를 측정하고, 측정된 채널 상태를 기반으로 한 채널 상태 정보를 저주파 대역을 통해 gNB 또는 제 1 UE에게 보고할 수 있다. 그러면, gNB 또는 제 1 UE는 신호 전송에 사용할 전송 빔(Beam)을 선택하고 상기 선택된 전송 빔에 대한 정보를 제 2 UE에게 저주파 대역을 통해 전송할 수 있다.
제 2 UE는 저주파 대역을 통해 수신한 데이터/제어 채널을 디코딩(Decoding)하여 gNB 또는 제 1 UE가 선택한 빔 (Beam)에 대한 정보를 획득할 수 있다. 예를 들어, 상기 선택한 빔에 대한 정보는 도 22의 X state에서 볼 수 있는 것과 같이, DCI (Downlink Control Information) 또는 SCI (Sidelink Control Information)을 통해 전송될 수 있다. 제 2 UE는 저주파 대역을 통해 gNB 또는 제 1 UE에게 상태(State) 변경 요청 정보를 전송할 수 있고, 상기 상태 변경 요청 정보를 기반으로 gNB 또는 제 1 UE는 제 2 UE에게 상태 변경 정보를 저주파 대역을 통해 전송할 수 있다. 예를 들어, 상기 상태 변경 정보는 도 22의 X state에서 볼 수 있는 것과 같이, DCI (Downlink Control Information) 또는 SCI (Sidelink Control Information)을 통해 전송될 수 있다. 또한, 제 2 UE는 gNB 또는 제 1 UE가 전송한 채널을 디코딩(Decoding)하여 상태 변경 정보를 획득한 후, 고주파 대역 신호를 통한 신호의 수신을 준비하거나 대기할 수 있다.
(4) [State #3]
고주파 대역을 통해 gNB 또는 제 1 UE와 제 2 UE가 특정 전송 빔(Beam)을 사용하여 참조 신호 및/또는 제어/데이터 채널을 전송할 수 있다. 이 때, 참조 신호는 동일한 전송 빔(Beam)을 사용하여 반복전송하고, 제 2 UE는 일정 시간 구간 동안 수신 빔(Beam)을 변경하면서 참조 신호를 수신하여, 고주파 대역에서 사용할 적절한 수신 빔(Beam)을 찾을 수 있다. 이 때, 적절한 수신 빔(Beam)을 찾기 위해서, 수신 빔 변경을 위한 시간 갭(Gap)이 필요할 수도 있다. 또한, 이러한 시간 갭(Gap) 동안에는 제어/데이터 채널 등을 수신하지 못할 수도 있다.
gNB 또는 제 1 UE는 고주파 대역을 통해 제 2 UE에게 제어/데이터 채널 및/또는 신호를 전송하고, 제 2 UE는 적절한 수신 빔(Beam)을 사용하여 gNB 또는 제 1 UE가 전송한 제어/데이터 채널 및/또는 신호를 수신할 수 있다.
제 2 UE는 저주파 대역을 통해 gNB 또는 제 1 UE에게 상태(State) 변경 요청 정보를 전송하고, 상기 상태 변경 요청 정보를 기반으로 gNB 또는 제 1 UE는 제 2 UE에게 상태 변경 정보를 저주파 대역을 통해 전송할 수 있다. 예를 들어, 상기 상태 변경 정보는 도 22의 X state에서 볼 수 있는 것과 같이, DCI (Downlink Control Information) 또는 SCI (Sidelink Control Information)을 통해 전송될 수 있다. 또한, 제 2 UE는 gNB 또는 제 1 UE가 전송한 채널을 디코딩(Decoding)하여 상태 변경 정보를 획득한 후, 고주파 대역 신호를 통한 신호의 수신을 준비하거나 대기할 수 있다.
한편, 상술한 실시 예의 State #0~#3은 반드시 순서대로 진행되는 것은 아니며, 각 상태(state)의 특성에 따라, State #0~#3의 순서가 변경될 수도 있다. 예를 들어, state #0~#3은 도 23에 개시된 예시에 따라 진행될 수 있다. 다만, 상술한 실시 예의 순서가 반드시 도 22 내지 도 23에 한정되는 것은 아니며, 상술한 바와 같이 각 상태(state)의 특성 및 채널 상황에 따라 도 22 내지 도 23의 동작 순서는 다양하게 변경될 수 있다.
또한, 상술한 실시 예를 통해 고주파 대역에서 적절한 송수신 빔 페어를 찾기 위한 시간을 감소시키면서도, 동시에 수신 품질(Quality)이 급격히 변경되더라도 적응적으로 적절한 송수신 빔 페어(Beam pair)를 찾을 수 있다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 24는 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 24를 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 25는 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 25를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 24의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
구체적으로 본 발명의 실시 예에 따른 제 1 무선 기기(100)의 프로세서(102)에 의해 제어되고, 메모리(104)에 저장되는 명령 및/또는 동작들에 대해서 살펴보도록 한다.
하기 동작들은 프로세서(102)의 관점에서 프로세서(102)의 제어 동작을 기반으로 설명하지만, 이러한 동작을 수행하기 위한 소프트 웨어 코드 등에 메모리(104)에 저장될 수 있다.
프로세서(102)는 고주파 대역에서 복수의 전송 빔(Beam)들로 빔포밍(Beamforming)된 참조 신호를 전송하도록 송수신기(106)를 제어할 수 있다. 이 때, 상기 빔포밍 된 참조 신호는 복수의 SSB들을 포함하는 SSB 집합(set) 또는 복수의 CSI-RS 자원들을 포함하는 CSI-RS 자원 집합일 수 있으며, 복수의 SSB들 각각 및/또는 CSI-RS 자원들 각각은 서로 다른 전송 빔과 연관되어 있을 수 있다. 또한, 프로세서(102)는 고주파 대역에서 동일한 전송 빔(Beam)을 통해 참조 신호를 반복 전송하도록 송수신기(106)를 제어할 수 있고, 이와 동일한 전송 빔(Beam)을 통해 제어/공유 채널을 전송하도록 송수신기(106)를 제어할 수 있다.
또한, 상기 프로세서(102)는 저주파 대역을 통해서 복수의 전송 빔들 각각에 관련된 정보를 수신하도록 송수신기(106)를 제어할 수 있다. 이 때, 상기 정보에는 다른 무선 장치가 선택한 전송 빔에 대한 정보를 포함할 수 있으며, 이러한 선택은 RSRP와 같이 각 전송 빔의 수신 감도와 관련된 값에 의해 결정될 수 있다. 또한, 상기 정보에는 이러한 수신 감도와 관련된 값을 기반으로 선택된 전송 빔에 대응하는 SSB 인덱스 및/또는 CRI 가 포함될 수 있다.
그 후, 프로세서(102)는 고주파 대역에서 특정 전송 빔을 통해 제어 채널 및/또는 데이터 채널을 제 2 무선 기기(200)에 전송하도록 송수신기(106)를 제어할 수 있다. 이 때, 상기 특정 전송 빔은 제 2 무선 기기(200)가 전송한 전송 빔에 대한 정보를 기반으로 프로세서(102)가 선택할 수 있다. 하지만, 프로세서(102)는 상기 전송 빔에 대한 정보에 포함된 전송 빔과 다른 전송 빔을 사용하여 제어 채널 및/또는 데이터 채널을 전송할 수도 있다. 즉, 프로세서(102)는 제어 채널 및/또는 데이터 채널을 전송하기 위한 전송 빔을 선택할 때, 제 2 무선 기기(200)가 전송한 전송 빔에 대한 정보에 제약되지 않을 수 있다.
제 2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
구체적으로 본 발명의 실시 예에 따른 제 2 무선 기기(200)의 프로세서(202)에 의해 제어되고, 메모리(204)에 저장되는 명령 및/또는 동작들에 대해서 살펴보도록 한다.
하기 동작들은 프로세서(202)의 관점에서 프로세서(202)의 제어 동작을 기반으로 설명하지만, 이러한 동작을 수행하기 위한 소프트 웨어 코드 등에 메모리(204)에 저장될 수 있다.
프로세서(202)는 고주파 대역에서 복수의 전송 빔(Beam)들로 빔포밍(Beamforming)된 참조 신호를 수신하도록 송수신기(206)를 제어할 수 있다. 이 때, 상기 빔포밍 된 참조 신호는 복수의 SSB들을 포함하는 SSB 집합(set) 또는 복수의 CSI-RS 자원들을 포함하는 CSI-RS 자원 집합일 수 있으며, 복수의 SSB들 각각 및/또는 CSI-RS 자원들 각각은 서로 다른 전송 빔과 연관되어 있을 수 있다. 또한, 프로세서(202)는 고주파 대역에서 동일한 전송 빔(Beam)을 통해 참조 신호를 반복 수신하도록 송수신기(206)를 제어할 수 있고, 이와 동일한 전송 빔(Beam)을 통해 제어/공유 채널을 수신하도록 송수신기(206)를 제어할 수 있다.
또한, 프로세서(202)는 저주파 대역을 통해서 복수의 전송 빔들 각각에 관련된 정보를 제 1 무선 기기(100)로 전송하도록 송수신기(106)를 제어할 수 있다. 이 때, 상기 정보에는 프로세서(202)가 선택한 전송 빔에 대한 정보를 포함할 수 있으며, 프로세서(202)는 RSRP와 같이 각 전송 빔의 수신 감도와 관련된 값에 의해 전송 빔을 선택할 수 있다. 또한, 상기 정보에는 이러한 수신 감도와 관련된 값을 기반으로 선택된 전송 빔에 대응하는 SSB 인덱스 및/또는 CRI 가 포함될 수 있다.
그 후, 프로세서(202)는 고주파 대역에서 특정 전송 빔을 통해 제어 채널 및/또는 데이터 채널을 제 1 무선 기기(100)로부터 수신하도록 송수신기(206)를 제어할 수 있다. 이 때, 상기 특정 전송 빔은 상기 프로세서(202)가 전송하도록 제어한 전송 빔에 대한 정보를 기반으로 제 1 무선 기기(100)가 선택할 수 있다. 하지만, 제 1 무선 기기(100)는 상기 전송 빔에 대한 정보에 포함된 전송 빔과 다른 전송 빔을 사용하여 제어 채널 및/또는 데이터 채널을 전송할 수도 있다. 즉, 제 1 무선 기기(100)는 제어 채널 및/또는 데이터 채널을 전송하기 위한 전송 빔을 선택할 때, 프로세서(202)가 전송한 전송 빔에 대한 정보에 제약되지 않을 수 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 26은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 22 참조).
도 26을 참조하면, 무선 기기(100, 200)는 도 25의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 23의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 25의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다. 따라서, 본 발명에 따른 구체적인 제어부(120)의 동작 과정 및 메모리부(130)에 저장된 프로그램/코드/명령/정보들은 도 23의 프로세서 (102, 202) 중 적어도 하나의 동작 및 메모리(104, 204) 중 적어도 하나의 동작과 대응될 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 24, 100a), 차량(도 24, 100b-1, 100b-2), XR 기기(도 24, 100c), 휴대 기기(도 24, 100d), 가전(도 24, 100e), IoT 기기(도 24, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 24, 400), 기지국(도 24, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 26에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 26의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
도 27은 본 발명에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 27을 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 26의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
도 28은 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 28을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 24의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
도 29는 전송 신호를 위한 신호 처리 회로를 예시한다.
도 29를 참조하면, 신호 처리 회로(1000)는 스크램블러(1010), 변조기(1020), 레이어 매퍼(1030), 프리코더(1040), 자원 매퍼(1050), 신호 생성기(1060)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 29의 동작/기능은 도 26의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 수행될 수 있다. 도 26의 하드웨어 요소는 도 26의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 구현될 수 있다. 예를 들어, 블록 1010~1060은 도 26의 프로세서(102, 202)에서 구현될 수 있다. 또한, 블록 1010~1050은 도 26의 프로세서(102, 202)에서 구현되고, 블록 1060은 도 26의 송수신기(106, 206)에서 구현될 수 있다.
코드워드는 도 29의 신호 처리 회로(1000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.
구체적으로, 코드워드는 스크램블러(1010)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1020)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(1030)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1040)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1040)의 출력 z는 레이어 매퍼(1030)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1040)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1040)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.
자원 매퍼(1050)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1060)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1060)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 25의 신호 처리 과정(1010~1060)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 20의 100, 200)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), gNode B(gNB), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 데이터 신호를 송수신하는 방법 및 이를 위한 장치는 5세대 NewRAT 시스템에 적용되는 예를 중심으로 설명하였으나, 5세대 NewRAT 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.
Claims (13)
- 무선 통신 시스템에서, 단말이 데이터 채널을 전송하는 방법에 있어서,제 1 주파수 대역 내에서, 복수의 전송 빔들을 통해 복수의 참조 신호들을 전송하고,제 2 주파수 대역 내에서, 상기 복수의 참조 신호들 중, 적어도 하나의 참조 신호의 수신 품질(Reception Quality)에 관련된 제 1 정보를 수신하고,상기 제 1 정보를 기반으로 상기 데이터 채널을 전송할 전송 빔을 결정하고,상기 제 1 주파수 대역 내에서, 상기 전송 빔을 통해 상기 데이터 채널을 전송하는 것을 특징으로 하고,상기 제 1 주파수 대역은, 상기 제 2 주파수 대역보다 높은,데이터 채널 전송 방법.
- 제 1 항에 있어서,상기 제 2 주파수 대역에서, 상기 전송 빔에 대한 제 2 정보를 전송하는 것을 더 포함하는,데이터 채널 전송 방법.
- 제 1 항에 있어서,상기 복수의 전송 빔들은,이전에 결정된 전송 빔과 인접한 전송 빔들인,데이터 채널 전송 방법.
- 제 1 항에 있어서,상기 제 1 주파수 대역 및 상기 제 2 주파수 대역 각각은 서로 상이한 셀들과 관련된,데이터 채널 전송 방법.
- 제 1 항에 있어서,상기 복수의 참조 신호들은,복수의 SSB (Synchronization Signal Block) 또는 복수의 CSI-RS (Channel State Information-Reference Signal)인,데이터 채널 전송 방법.
- 제 1 항에 있어서,상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능한,데이터 채널 전송 방법.
- 무선 통신 시스템에서, 데이터 채널을 전송하는 장치에 있어서,적어도 하나의 프로세서; 및상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,상기 특정 동작은,제 1 주파수 대역 내에서, 복수의 전송 빔들을 통해 복수의 참조 신호들을 전송하고,제 2 주파수 대역 내에서, 상기 복수의 참조 신호들 중, 적어도 하나의 참조 신호의 수신 품질(Reception Quality)에 관련된 제 1 정보를 수신하고,상기 제 1 정보를 기반으로 상기 데이터 채널을 전송할 전송 빔을 결정하고,상기 제 1 주파수 대역 내에서, 상기 전송 빔을 통해 상기 데이터 채널을 전송하는 것을 특징으로 하고,상기 제 1 주파수 대역은, 상기 제 2 주파수 대역보다 높은,장치.
- 제 7 항에 있어서,상기 특정 동작은,상기 제 2 주파수 대역에서, 상기 전송 빔에 대한 제 2 정보를 전송하는 것을 더 포함하는,장치.
- 제 7 항에 있어서,상기 복수의 전송 빔들은,이전에 결정된 전송 빔과 인접한 전송 빔들인,장치.
- 제 7 항에 있어서,상기 제 1 주파수 대역 및 상기 제 2 주파수 대역 각각은 서로 상이한 셀들과 관련된,장치.
- 제 7 항에 있어서,상기 복수의 참조 신호들은,복수의 SSB (Synchronization Signal Block) 또는 복수의 CSI-RS (Channel State Information-Reference Signal)인,장치.
- 제 7 항에 있어서,상기 장치는, 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능한,장치.
- 무선 통신 시스템에서, 단말이 데이터 채널을 수신하는 방법에 있어서,제 1 주파수 대역 내에서, 복수의 전송 빔들을 통해 복수의 참조 신호들을 수신하고,제 2 주파수 대역 내에서, 상기 복수의 참조 신호들 중, 적어도 하나의 참조 신호의 수신 품질(Reception Quality)에 관련된 정보를 수신하고,상기 제 1 주파수 대역 내에서, 상기 정보를 기반으로 선택된 전송 빔을 통해 상기 데이터 채널을 수신하는 것을 특징으로 하고,상기 제 1 주파수 대역은, 상기 제 2 주파수 대역보다 높은,데이터 채널 수신 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/275,043 US11632149B2 (en) | 2018-09-28 | 2019-09-27 | Method for transmitting and receiving data signal and device therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20180116613 | 2018-09-28 | ||
KR10-2018-0116613 | 2018-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020067761A1 true WO2020067761A1 (ko) | 2020-04-02 |
Family
ID=69950694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/012579 WO2020067761A1 (ko) | 2018-09-28 | 2019-09-27 | 데이터 신호를 송수신하는 방법 및 이를 위한 장치 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11632149B2 (ko) |
WO (1) | WO2020067761A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113572505A (zh) * | 2020-04-29 | 2021-10-29 | 华为技术有限公司 | 一种波束发射方法及装置 |
WO2023019463A1 (zh) * | 2021-08-18 | 2023-02-23 | Oppo广东移动通信有限公司 | 无线通信的方法和设备 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110933749B (zh) * | 2018-09-20 | 2023-04-07 | 成都华为技术有限公司 | 指示波束的方法和装置 |
US11191063B2 (en) * | 2019-01-09 | 2021-11-30 | Mediatek Inc. | Multiple physical uplink control channel (PUCCH) resources for an uplink control information (UCI) report |
US12047313B2 (en) * | 2020-06-01 | 2024-07-23 | Qualcomm Incorporated | Reference signal grouping for full-duplex operation |
WO2022011033A1 (en) * | 2020-07-07 | 2022-01-13 | Ofinno, Llc | Validation of preconfigured resource in inactive state |
US12114194B2 (en) * | 2020-08-14 | 2024-10-08 | Samsung Electronics Co., Ltd. | Method and apparatus for measurement and reporting for multi-beam operations |
CN114079523A (zh) * | 2020-08-17 | 2022-02-22 | 艾锐势企业有限责任公司 | 用于切换用户终端的方法、装置和计算机介质以及接入点 |
US11800488B2 (en) * | 2020-12-09 | 2023-10-24 | Qualcomm Incorporated | Paging transmission on sidelink |
CN112947208A (zh) * | 2021-02-26 | 2021-06-11 | 北京小米移动软件有限公司 | 设备控制方法及装置、设备、存储介质 |
CN116980096A (zh) * | 2022-04-21 | 2023-10-31 | 大唐移动通信设备有限公司 | 信息传输方法、装置、终端、网络侧设备及介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080320354A1 (en) * | 2007-05-15 | 2008-12-25 | Klaus Doppler | Context Transfers and Multi-Band Operation for Wireless Networks |
KR20110034317A (ko) * | 2009-09-28 | 2011-04-05 | 삼성전자주식회사 | 다중 주파수 대역으로 정보를 전송하는 통신 장치 및 그 방법 |
KR20130004668A (ko) * | 2011-07-04 | 2013-01-14 | 삼성전기주식회사 | 이동통신 단말기 및 그 동작 방법 |
US20140295860A1 (en) * | 2013-04-01 | 2014-10-02 | Innovative Sonic Corporation | Method and apparatus for monitoring a radio link on a small cell in a wireless communication system |
WO2018030841A1 (ko) * | 2016-08-11 | 2018-02-15 | 엘지전자 주식회사 | 무선 통신 시스템에서 단말이 참조 신호 측정 정보를 보고하는 방법 및 이를 지원하는 장치 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080039089A1 (en) * | 2006-08-11 | 2008-02-14 | Berkman William H | System and Method for Providing Dynamically Configurable Wireless Communication Network |
US9048894B2 (en) * | 2012-05-22 | 2015-06-02 | Mediatek Singapore Pte. Ltd. | Method and apparatus of beam training for MIMO operation |
US10312980B2 (en) * | 2015-11-06 | 2019-06-04 | Futurewei Technologies, Inc. | Method and apparatus for multiuser MIMO beamforming training |
ES2899655T3 (es) * | 2018-01-29 | 2022-03-14 | Ericsson Telefon Ab L M | Entrenamiento de haces de un dispositivo transceptor de radio |
-
2019
- 2019-09-27 US US17/275,043 patent/US11632149B2/en active Active
- 2019-09-27 WO PCT/KR2019/012579 patent/WO2020067761A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080320354A1 (en) * | 2007-05-15 | 2008-12-25 | Klaus Doppler | Context Transfers and Multi-Band Operation for Wireless Networks |
KR20110034317A (ko) * | 2009-09-28 | 2011-04-05 | 삼성전자주식회사 | 다중 주파수 대역으로 정보를 전송하는 통신 장치 및 그 방법 |
KR20130004668A (ko) * | 2011-07-04 | 2013-01-14 | 삼성전기주식회사 | 이동통신 단말기 및 그 동작 방법 |
US20140295860A1 (en) * | 2013-04-01 | 2014-10-02 | Innovative Sonic Corporation | Method and apparatus for monitoring a radio link on a small cell in a wireless communication system |
WO2018030841A1 (ko) * | 2016-08-11 | 2018-02-15 | 엘지전자 주식회사 | 무선 통신 시스템에서 단말이 참조 신호 측정 정보를 보고하는 방법 및 이를 지원하는 장치 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113572505A (zh) * | 2020-04-29 | 2021-10-29 | 华为技术有限公司 | 一种波束发射方法及装置 |
WO2023019463A1 (zh) * | 2021-08-18 | 2023-02-23 | Oppo广东移动通信有限公司 | 无线通信的方法和设备 |
Also Published As
Publication number | Publication date |
---|---|
US20220060221A1 (en) | 2022-02-24 |
US11632149B2 (en) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020067761A1 (ko) | 데이터 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2021002723A1 (ko) | 무선통신시스템에서 사이드링크 drx에 관련된 ue의 동작 방법 | |
WO2020209564A1 (ko) | 무선통신시스템에서 사이드링크 통신 및 피드백에 관련된 ue의 동작 방법 | |
WO2020091547A1 (ko) | 단말 간 무선 통신에서 동기 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2020101266A1 (ko) | 측위를 위한 상향링크 참조 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2020246818A1 (ko) | 무선통신시스템에서 사이드링크 신호를 송신하는 방법 | |
WO2020050646A1 (ko) | 측위 참조 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2020209594A1 (ko) | 무선통신시스템에서 사이드링크 통신 및 피드백에 관련된 ue의 동작 방법 | |
WO2020226265A1 (ko) | 비면허 대역에서 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치 | |
WO2020032679A1 (ko) | Nr v2x에서 유연한 슬롯 포맷을 고려한 통신 방법 및 장치 | |
WO2020067760A1 (ko) | 무선 링크 모니터링을 수행하는 방법 및 이를 위한 장치 | |
WO2020262906A1 (ko) | 무선통신시스템에서 성상도의 이동에 관련된 사이드링크 단말의 동작 방법 | |
WO2020085853A1 (ko) | Nr v2x에서 동기화 정보를 전송할지 여부를 결정하는 방법 및 장치 | |
WO2020242211A1 (ko) | 무선통신시스템에서 사이드링크 신호를 송신하는 방법 | |
WO2020091567A1 (ko) | 무선 통신 시스템에서 coreset 운용 방법 및 상기 방법을 이용하는 단말 | |
WO2020091500A1 (ko) | 단말 간 무선 통신에서 동기 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2020145751A1 (ko) | 비면허 대역에서 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치 | |
WO2020218872A1 (ko) | 무선통신시스템에서 사이드링크 그룹캐스트에서 피드백 자원 결정에 관련된 ue의 동작 방법 | |
WO2020096275A1 (ko) | 비면허 대역에서 채널 상태 정보 참조 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2020226386A1 (ko) | 무선통신시스템에서 사이드링크 신호를 송신하는 방법 | |
WO2020027636A1 (ko) | Nr v2x에서 파워 컨트롤을 수행하는 방법 및 장치 | |
WO2020145746A1 (ko) | 비면허 대역에서 동기 신호 블록의 시간 정보를 획득하는 방법 및 이를 위한 장치 | |
WO2020153610A1 (ko) | 비면허 대역에서의 상향링크 송수신 방법 및 이를 위한 장치 | |
WO2020060089A1 (ko) | 하향링크 채널을 송수신하는 방법 및 이를 위한 장치 | |
WO2020067842A1 (ko) | Nr v2x에서 혼잡 제어를 수행하는 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19864053 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19864053 Country of ref document: EP Kind code of ref document: A1 |